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Abstract

Communication complexity studies how many bits a certain number of par-

ties need to communicate with each other in order to compute a function

whose input is distributed among those parties. Although it is a natural

area of investigation based on practical considerations, the main motivation

comes from the myriad of applications in theoretical computer science.

This thesis has three main parts, studying three different aspects of com-

munication complexity.

• The first part is concerned with the k-party communication complexity

of functions F : ({0, 1}n)k → {0, 1} in the ‘number on the forehead’

(NOF) model. This is a fundamental model in communication complex-

ity with applications in circuit complexity, proof complexity, branching

programs and Ramsey theory. In this model we study composed func-

tions f ◦g. These functions include most of the well-known and studied

functions in communication complexity literature. A major goal is to

understand which combinations of f and g lead to hard communication

functions. In particular, due to important circuit applications, it is of
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great interest to understand how powerful the NOF model becomes

when the number of parties is log n or more. Motivated by these goals,

we show that there is an efficient O(log3 n) cost simultaneous protocol

for sym ◦ g when the number of players is more than 1 + log n, sym is

any symmetric function and g is any function. This class of functions

includes some functions that were previously conjectured to be hard

and our result rules this class out for possible very important circuit

complexity applications. We also give Ramsey theoretic applications

of our efficient protocol.

In the setting of less than log n many players, we study more closely

functions of the form majority ◦ g, modm ◦ g, and nor ◦ g, where the

latter two are generalizations of the well-known and studied functions

Generalized Inner Product and Disjointness respectively. We charac-

terize the communication complexity of these functions with respect

to the choice of g. As the main application of our results, we an-

swer a question posed by Babai et al. (SIAM Journal on Computing,

33:137–166, 2004) and determine the communication complexity of

majority ◦ qcsb, where qcsb is the “quadratic character of the sum

of the bits” function.

• The second part is about Fourier analysis of symmetric boolean func-

tions and its applications in communication complexity and other ar-

eas. The spectral norm of a boolean function f : {0, 1}n → {0, 1} is

the sum of the absolute values of its Fourier coefficients. This quantity

provides useful upper and lower bounds on the complexity of a func-

tion in areas such as communication complexity, learning theory and

circuit complexity. We give a combinatorial characterization for the

spectral norm of symmetric functions. We show that the logarithm of

the spectral norm is of the same order of magnitude as r(f) log(n/r(f))
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where r(f) = max{r0, r1}, and r0 and r1 are the smallest integers less

than n/2 such that f(x) or f(x) · parity(x) is constant for all x with∑
xi ∈ [r0, n − r1]. We present some applications to the decision tree

and communication complexity of symmetric functions.

• The third part studies privacy in the context of communication com-

plexity: how much information do the players reveal about their input

when following a communication protocol? The unattainability of per-

fect privacy for many functions motivates the study of approximate

privacy. Feigenbaum et al. (Proceedings of the 11th Conference on

Electronic Commerce, 167–178, 2010) defined notions of worst-case as

well as average-case approximate privacy, and presented several inter-

esting upper bounds, and some open problems for further study. In

this thesis, we obtain asymptotically tight bounds on the trade-offs

between both the worst-case and average-case approximate privacy of

protocols and their communication cost for Vickrey Auction, which is

the canonical example of a truthful auction. We also prove exponen-

tial lower bounds on the approximate privacy of protocols computing

the Intersection function, independent of its communication cost. This

proves a conjecture of Feigenbaum et al.
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Résumé

La complexité de communication étudie combien de bits un groupe de joueurs

donné doivent échanger entre eux pour calculer une function dont l’input

est distribué parmi les joueurs. Bien que ce soit un domaine de recherche

naturel basé sur des considérations pratiques, la motivation principale vient

des nombreuses applications théoriques.

Cette thèse comporte trois parties principales, étudiant trois aspects de

la complexité de communication.

• La première partie discute le modèle “number on the forehead” (NOF)

dans la complexité de communication à plusieurs joueurs. Il s’agit

d’un modèle fondamental en complexité de communication, avec des

applications à la complexité des circuits, la complexité des preuves, les

programmes de branchement et la théorie de Ramsey. Dans ce modèle,

nous étudions les fonctions composeés f ◦ g. Ces fonctions compren-

nent la plupart des fonctions bien connues qui sont étudiées dans la

littérature de la complexité de communication. Un objectif majeur est

de comprendre quelles combinaisons de f et g produisent des compo-
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sitions qui sont difficiles du point de vue de la communication. En

particulier, à cause de l’importance des applications aux circuits, il est

intéressant de comprendre la puissance du modèle NOF quand le nom-

bre de joueurs atteint ou dépasse log n. Motivé par ces objectifs nous

montrons l’existence d’un protocole simultané efficace à k joueurs de

coût O(log3 n) pour sym◦g lorsque k > 1+log n, sym est une function

symmétrique quelconque et g est une fonction arbitraire. Cette classe

de fonctions inclut certaines fonctions qui étaient jusqu’ici présumées

être difficiles et notre résultat élimine la possibilité d’utiliser cette classe

pour des applications importantes aux circuits. Nous donnons aussi des

applications de notre protocole efficace à la théorie de Ramsey.

Dans le contexte où k ≤ log n, nous étudions de plus près des fonctions

de la forme majority ◦ g, modm ◦ g et nor ◦ g, où les deux derniers

cas sont des généralisations des fonctions bien connues et très étudiées

Generalized Inner Product et Disjointness respectivement. Nous car-

actérisons la complexité de communication de ces fonctions par rapport

au choix de g. Comme application principale de nos résultats, nous

répondons à une question posée par Babai et al (SIAM Journal on

Computing, 33:137–166, 2004) et nous déterminons la complexité de

communication de majority◦qcsb où qcsb est la function “caractère

quadratique de la somme des bits”.

• La deuxième partie considère les applications de l’analyse de Fourier

des fonctions symmétriques à la complexité de communication et autres

domaines. La norme spectrale d’une function booléenne f : {0, 1}n →
{0, 1} est la somme des valeurs absolues de ses coefficients de Fourier.

Ce paramètre procure des bornes supérieures et inférieures utiles pour

la complexité de fonctions dans des domaines comme la communication,

l’apprentissage ou les circuits. Nous donnons une caractérisation com-

v



binatoire pour la norme spectrale des fonctions symmétriques. Nous

montrons que le logarithme de la norme spectrale est du même ordre

de grandeur que r(f) log(n/r(f)), avec r(f) = max{r0, r1} où r0 et r1

sont les entiers minimaux plus petits que n/2 pour lesquels f(x) ou

f(x) · parity(x) est constant pour tout x tel que
∑
xi ∈ [r0, n − r1].

Nous présentons quelques applications aux arbres de décision et à la

complexité de communication des fonctions symmétriques.

• La troisième partie étudie la confidentialité dans le contexte de la com-

plexité de communication: quelle quantité d’information est-ce que

les joueurs révèlent sur leur input en suivant un protocole donné?

L’inatteignabilité de la confidentialité parfaite pour plusieurs fonctions

motivent l’étude de la confidentialité approximative. Feigenbaum et

al. (Proceedings of the 11th Conference on Electronic Commerce, 167–

178, 2010) ont défini des notions de confidentialité approximative dans

le pire cas et dans le cas moyen, et ont présenté plusieurs bornes

supérieures intéressantes ainsi que quelques questions ouvertes. Dans

cette thèse, nous obtenons des bornes asymptotiques précises, pour le

pire cas aussi bien que pour le cas moyen, sur l’échange entre la con-

fidentialité approximative de protocoles et le coût de communication

pour les enchères Vickrey Auction, qui constituent l’exemple canonique

d’une enchère honnête. Nous démontrons aussi des bornes inférieures

exponentielles sur la confidentialité approximative de protocoles calcu-

lant la function Intersection, indépendamment du coût de communica-

tion. Ceci résout une conjecture de Feigenbaum et al.
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CHAPTER 1

Introduction

Suppose there are two computers and each contains a file. Let’s represent

the files as bit strings and assume both have length n. How many bits do

the computers have to communicate with each other in order to determine if

the two files are the same or not? Intuitively one expects that the computers

have to compare each bit one by one and therefore they need to exchange

n bits. This intuition is essentially correct but how can we rigorously prove

it? If we change the model slightly and assume the computers can make

randomized decisions, how many bits do they need to communicate in order

to determine whether the files are the same or not with 0.0000000000001%

probability of error? One might be tempted to think that the best strategy

is to sample indices until we find an index where the two files differ or be

confident that they are the same. This leads to Ω(n) bits of communication.

However, a more clever protocol requires only O(log n) bits (we describe this

protocol in Section 2.2.2).
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2

The rigorous study of the communication complexity of such distributed

tasks is an important area of theoretical computer science. A bit more for-

mally, in the two party setting of communication complexity, there are two

players (computers) called Alice and Bob who wish to determine the output

of a known fixed function F : X × Y → Z on a given input (x, y) ∈ X × Y .

Alice gets x and Bob gets y, and since neither of them sees the whole in-

put, they need to communicate with each other in order to compute F (x, y).

They do so according to a protocol (algorithm) that they have agreed upon

beforehand. The protocol determines whose turn it is to speak and what

a player should send. The cost of a protocol is the maximum number of

bits communicated, where the maximum is over all possible inputs. The

communication complexity of F is the cost of the most efficient protocol

that computes F . Here the word compute may have different meanings de-

pending on the particular model we are interested in. We might require the

protocol to be deterministic and give the correct answer on all inputs. This

is called the deterministic model. We might allow our protocols to be ran-

domized and err with a small constant probability. This is the randomized

model. We might allow the protocol to be non-deterministic, where players

receive a proof string and engage in a verification process. This is the non-

deterministic model. We might allow the players to exchange quantum bits

and exploit the properties of quantum mechanics. This leads to the quantum

analogs of the just mentioned classical models. Suffices to say there are other

natural and well studied models.

Unless stated otherwise, we will be dealing with the standard setting of

X = Y = {0, 1}n and Z = {0, 1}. It is easy to see that every function can be

computed with n+ 1 bits of communication: Alice sends her input x to Bob,

Bob computes F (x, y) and sends the result to Alice. By convention, we think

of functions with at most poly-log(n) communication complexity as being

efficiently computable while other functions are viewed as hard functions. In
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the opening paragraph, the function we considered was the equality function,

EQ(x, y) = 1 iff x = y. While the equality function requires n + 1 bits of

communication in the deterministic model (we will see a proof of this in

Chapter 2), there are many functions which can be computed with fewer

number of bits. For example, if we consider the parity function, PAR(x, y)
def
=

x1⊕ · · · ⊕ xn⊕ y1⊕ · · · ⊕ yn, Alice and Bob can compute it with only 2 bits.

Although there is plenty of motivation to study communication complex-

ity for its own sake, over the years communication complexity has placed

itself at the core of complexity theory. The general theme behind communi-

cation complexity’s relation to diverse areas of theoretical computer science

can be mildly described as follows. Suppose we are in some setting where we

are trying to solve some task while minimizing the use of some “resource”

(e.g., we might want to design a small chip or come up with a short proof of

a theorem). In many situations, one can show that if we can solve our task

using few resources, then we have an efficient communication protocol that

computes a certain function. Thus, a lower bound on the communication

complexity of the function would lead to a lower bound on the amount of

resources needed to solve the task. In other words, many optimization prob-

lems contain an implicit communication bottleneck, which can be exploited

to prove lower bounds.

The above idea may seem too vague at first so let us try to demonstrate

it by giving a relatively simple example from an area called data streaming.

In the streaming model, an algorithm sees a stream S ∈ [k]m, one symbol

at a time, and its goal is to compute some function f(S) (usually k is about

O(logm)). Imagine that m is very large and that we cannot afford to store

all the symbols we see. Given a small amount of memory, say O(logm), is

there a good approximation algorithm that can approximate f(S) with high

probability? The study of such problems is well motivated for instance in

the context of IP network traffic analysis, and processing massive data sets
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in general.

In breakthrough work, Alon, Matias and Szegedy [AMS99] proved lower

bounds for the space requirements of streaming algorithms that compute im-

portant statistical functions fk called frequency moments. Let’s just consider

one of these functions, denoted f∞, that outputs the number of occurrences

of the most frequent element in S. If there is a streaming algorithm for f∞

that uses small amount of memory, we can devise an efficient protocol for

the well known communication problem disjointness. Given two n-bit strings

x and y, we let DISJ(x, y) = 1 iff there is some i such that xi = yi = 1.

The protocol for disjointness is as follows. Given x, Alice converts her input

to a stream Sx = {i | xi = 1}. Similarly, given y, Bob converts his input

to a stream Sy = {i | yi = 1}. Alice simulates the streaming algorithm on

Sx. After all the symbols in Sx are read, she sends the memory contents of

the algorithm to Bob.1 Bob continues to simulate the streaming algorithm

with the stream Sy. Observe that f∞(Sx · Sy) = 1 iff DISJ(x, y) = 0 and

f∞(Sx ·Sy) = 2 iff DISJ(x, y) = 1. Note that the communication complexity

of the protocol coincides with the memory usage of the streaming algorithm.

The known randomized communication complexity lower bound for DISJ

now implies a lower bound on the memory requirements of any randomized

streaming algorithm computing f∞.

A natural question that immediately arises is: have we gained anything

by reducing the original lower bound problem to a lower bound problem in

communication complexity? The answer is an emphatic yes. Communica-

tion complexity provides a beautiful mathematical framework to tackle these

tough lower bound questions. Given a communication problem F : X ×Y →
{0, 1}, consider the matrix MF whose rows are indexed by the elements of X
and columns are indexed by the elements of Y . The (x, y)th entry contains

1Alice also sends Bob which state the algorithm is in, but this is only constant number

of bits.
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F (x, y). This is the matrix representation of the function F . The commu-

nication complexity of F can often be characterized or lower bounded by

a natural combinatorial measure of MF such as the partition number, the

covering number, discrepancy, etc. These quantities can be studied combina-

torially or they can be bounded by well studied algebraic or analytic notions

such as the rank, sign rank, approximate rank, a norm, approximate norm,

etc. This point of view, for instance, puts very powerful algebraic and an-

alytic tools at our disposal. In the last decade, information theoretic tools

have also played a major role in advancing the field.

The above illustrative reduction in the setting of data streaming is by

no means an exception. Communication complexity has connections and ap-

plications to circuit complexity, time/space trade-offs for Turing Machines,

VLSI chips, machine learning, game theory, data structures, proof com-

plexity, pseudorandom generators, pseudorandomness, branching programs,

lower bounds for polytopes representing NP-complete problems, quantum

computation, etc. It is fair to describe communication complexity as the

Swiss Army knife of computational complexity theory.

To see some of the main motivations driving the research in communi-

cation complexity, let us give a list of the most famous and important open

problems in the area:2

1. The log-rank conjecture: It is well known that log rank(MF ) lower

bounds the deterministic communication complexity of F . Is it true

that logc rank(MF ), for some absolute constant c, upper bounds the

deterministic communication complexity?

2. Quantum-Classical equivalence: Is the quantum communication

complexity of a function polynomially related to its classical commu-

2One might extend this list perhaps by a couple more open problems, depending on

their personal preference.
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nication complexity?

3. The log n barrier: Find an explicit function that is hard in the mul-

tiparty number on the forehead model when the number of players is

log n (we describe this model shortly).

4. Direct sum: Can we solve two instances of a communication problem

more efficiently than solving each instance separately?

The second and third open problems above, and the multiparty ‘number

on the forehead’ (NOF) model in general will be an important part of this

thesis. In the multiparty NOF model, there are k players who wish to evalu-

ate a function F : X1×X2×· · ·×Xk → {0, 1} on a given input (x1, x2, . . . , xk),

where the input is distributed in a way that Player i sees all xj with j 6= i.

This scenario is visualized as xi being written on the forehead of Player i. The

main motivation for this model comes from its important theoretical appli-

cations rather than any practical considerations. Note that when k = 2, this

model is the same as the 2 player model introduced earlier. For k > 2, there

is a significant overlap of information among the players and this makes the

NOF model quite powerful. Despite intense effort, even the 3 player model

is far from being well understood and many important problems that have

been solved in the 2 player setting remain open for the 3 player setting. All

of the challenges of the NOF model, however, are rewarded by the rich set

of important applications, for example in branching program lower bounds,

boolean circuit complexity, proof complexity and pseudorandom generators.

Another pillar of this thesis is on Fourier analysis of boolean functions and

its applications in communication complexity and other areas. Fourier anal-

ysis of boolean functions has a myriad of applications in theoretical computer

science and it is one of the main tools we use in understanding communica-

tion complexity. We will study the Fourier analytic properties of symmetric
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functions with applications in 2 party randomized communication complex-

ity.

Finally the third part of our thesis is about the study of privacy in com-

munication complexity. In many scenarios, it is a natural goal to keep the

inputs of the players “private” against an outsider or other players while

minimizing the number of communicated bits. The study of privacy vs com-

munication complexity is well motivated for instance in auction design and

our goal will be to study this trade-off with respect to natural definitions of

privacy.

We now give more details about our contributions in the three areas we

have mentioned above.

1.1 Motivation and Our Contributions

In this section we will give the motivation behind our work and state our main

results in an informal way. This should serve as a summary of the thesis as

well as an outline of the remaining chapters. There are 3 subsections. The

first deals with the NOF model and covers Chapters 3 and 4 (published

in [ACFN12]). The second subsection is about the spectral norm of boolean

functions and its applications in 2-party communication complexity and other

areas. This subsection covers Chapter 5 (published in [AFH12]). Finally,

the third subsection is about privacy concerns in 2-party communication

complexity and covers Chapter 6 (published in [ACC+12]).

1.1.1 NOF Model

As mentioned earlier, the NOF model has a number of important theoretical

applications and therefore it is one of the most interesting and fundamental

models of communication complexity. In this thesis we will focus on two of
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these applications: boolean circuit complexity and Ramsey theory.

Chapter 3: NOF Communication Complexity of Composed Func-

tions

Recall that P denotes the class of problems computable in polynomial time

and NP denotes the class of problems whose solutions can be verified in

polynomial time. Boolean circuits constitute a central model of computation,

in fact it is considered to be the model for non-uniform3 computation. It is

well known that problems in P can be computed by polynomial size circuits,

that is circuits with polynomially many AND, OR, and NOT gates. Thus

showing that a problem in NP requires superpolynomial size circuits would

resolve one of Clay Mathematics Institute’s millennium prize problems, i.e.,

the famous P
?
= NP problem. Working with circuits rather than Turing

Machines is more appealing to mathematicians due to the simple and more

natural definition of circuits. Although there has been exciting progress on

lower bounds for circuits in the 1980s, no real progress has been made since

then. The result that mod2 requires exponential size circuits of constant

depth remains one of the jewels of complexity theory. Another classic result

is exponential size lower bounds for constant depth circuits that are also

allowed to have MODp gates, where p is a prime. Unfortunately, the current

state of affairs is quite embarrassing: we cannot rule out that every function

in NP is computable by polynomial size depth 3 circuits composed of only

MOD6 gates!

The class ACC0 represents functions that are computable by polynomial-

size, constant-depth circuits with unbounded fan-in AND, OR, NOT and

MODm gates. Showing NP is not in ACC0 is one of the frontiers in complexity

3Turing Machine is a uniform model of computation since there is one machine that

handles inputs of all lengths. On the other hand circuits are non-uniform because there is

a different circuit for each input length.
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theory. It is well known that a function in ACC0 has poly-log(n) k-party de-

terministic communication complexity, where k is poly-log(n) [HG91, BT94].

In fact the protocol is simultaneous where all the players, without interact-

ing, speak once to an external referee who then determines the output based

only on the messages s/he receives. Proving that a function in NP requires

super-polylogarithmic communication in the simultaneous model for polylog-

arithmic number of players would result in a major breakthrough. Currently

no non-trivial lower bound is known for an explicit function for k = log n and

this has proven to be a formidable barrier (third open problem from earlier).

In this thesis we study this question in the context of composed functions.

For f : {0, 1}n → {0, 1} and g : {0, 1}k → {0, 1}, define

f ◦ g(x1, . . . , xk) = f(. . . , g(x1,i, x2,i, . . . , xk,i), . . .),

where xj,i denotes the ith coordinate of the n-bit string xj. An easy way

to visualize this composed structure is as follows. Let X denote the k × n
matrix such that the jth row contains xj. Then f ◦g(x1, . . . , xk) is computed

by applying g to each column of X one by one, and then applying f to the

resulting n-bit string.

Most of the well-known and studied functions in communication com-

plexity have the above composed structure (e.g., Inner Product, Disjointness,

Equality, Hamming Distance, Greater Than, etc.). In particular, functions

of the form f ◦ and (see [Raz95, Raz03, Kla07, She07, SZ09b, LS09, CA08,

BHN09]) and f ◦xor (see [Raz95, Kla07, SZ09a, MO09]) have been the focal

point of attention, with an emphasis on sym ◦ g where sym denotes a sym-

metric function (a symmetric function is a function whose output depends

only on the number of input bits set to 1). All of the major problems are

wide open in the setting of composed functions and very little is known even

when f and g are restricted to be very special kinds of functions.

We consider the class of functions of the form sym ◦ g, which contains
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many interesting functions and it is tempting to conjecture that some of

these functions are candidates to break the log n barrier. Since the majority

function maj is conjectured to be outside of ACC0 [Smo87], it is of inter-

est to try to determine the communication complexity of maj ◦ g for all g.

For instance, Babai, Kimmel and Lokam [BKL95] identify maj ◦ maj as a

candidate function to be hard for more than log n many players. Later, in

a significantly expanded version of [BKL95], Babai et al. [BGKL03] show

that maj ◦ maj has an efficient simultaneous protocol when k > 1 + log n.

Their upper bound in fact applies to sym ◦ g where sym is any symmet-

ric function and g is any symmetric “compressible” function, a small subset

of all symmetric functions.4 In the same paper, the authors ask about the

communication complexity of maj ◦ g for a specific symmetric g called “the

quadratic character of the sum of the bits”, which they show is not com-

pressible. And of course the more general question is whether there is any

g such that maj ◦ g is hard when the number of players is poly-log(n). In

this thesis, we remove the symmetry and compressibility conditions on g and

show that functions of the form sym ◦ g are easy in the simultaneous model

when k > 1 + log n, for any choice of the inside function g.

• (Theorem 3.1.2) Let f : {0, 1}n → {0, 1} be a symmetric function

and let g : {0, 1}k → {0, 1} be an arbitrary function. Then f ◦ g has

simultaneous multiparty protocol of cost poly-log(n) when k > 1+log n.

Studying the communication complexity of composed functions is of course

not solely important for circuit complexity applications. By determining the

communication complexity of composed functions, we would conquer a signif-

icant part of the communication complexity landscape and solve many inter-

esting open problems. As an example, let’s focus on the quantum vs classical

communication complexity problem (second open problem from earlier).

4A random symmetric function is not compressible with high probability.
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The question of whether quantum mechanics can be utilized to perform

certain tasks faster than a classical machine is important both from a practi-

cal and a philosophical standpoint. The best known algorithms for factoring

integers runs in exponential time and the security of the widely used RSA

public key cryptographic system relies on the assumption that factoring in-

tegers cannot be done efficiently. On the other hand, a remarkable discovery

by Shor shows that this task is easy with a quantum computer. Is there

a classical counterpart to Shor’s quantum algorithm? It is one of the cen-

tral questions in computational complexity theory to determine the relative

power of quantum and classical computation and communication complexity

provides an important and elegant setting in which to study this question.

By the definition of the models, quantum communication complexity of

a function is always smaller than its classical counterparts, but how big

can the gap be? It is conjectured that for total functions, the quantum

models are polynomially related to their classical counterparts and research

has been focused on establishing these conjectures for natural large families

of functions.5 In an important paper [Raz03], Razborov shows that the

conjecture is true for functions of the form sym ◦and in the 2 party setting,

where sym denotes a symmetric function. Shi and Zhang [SZ09a] verify the

conjecture for sym ◦ xor in the 2 party setting. The next big targets are

f ◦ and and f ◦ xor for general f , but handling arbitrary f seems quite

difficult at the moment. In the 2 player setting, and and xor are really the

only interesting inside functions as other functions are either trivial or reduce

to the case of and or xor.

Observe that the focus so far in the literature has been to fix an inside

function g and vary the outside function f . We propose a new dual approach.

We study the multiparty communication complexity of composed functions

by fixing the outside function to some natural function and vary the inside

5For partial functions, i.e. promise functions, exponential gaps are known.
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function. This dual approach is particularly purposive in the multiparty

setting where the choice for inside function increases double exponentially in

k; unlike the 2 party setting, we get a variety of interesting functions other

than and and xor.

The functions we study are of the form maj ◦ g, modm ◦ g and nor ◦
g, where the latter two are generalizations of the well known and studied

generalized inner product GIP = mod2 ◦ and and disjointness DISJ =

nor ◦ and respectively. Arguably, these are the king and queen of all

functions in communication complexity with a plethora of applications (see

[AMS99, MNSW98, CS04, NS06, NW93, BBM11] for DISJ and [HG91,

Nis93, FKL+01, Gro98, BNS92] for GIP). We are able to obtain dichotomies,

with respect to the choice of g, that characterize the communication com-

plexity of maj ◦ g, modm ◦ g and nor ◦ g for every g. In doing so, we

show that these functions have polynomially related quantum and classical

communication complexities.

Let g : {0, 1}k → {0, 1} be an arbitrary function with S
def
= g−1(1) being

its support set. For i ∈ {0, 1}, let Si denote the subset of S that consists of

inputs whose Hamming weight has parity i. Below, the statements are for k

up to ≈ 1
2

log n many players. Although all our lower bounds apply for the

quantum model, we restrict attention to the classical model.

• (Theorem 3.2.2) If m divides |S0|− |S1|, then modm ◦ g has an efficient

classical deterministic protocol. Otherwise, it is hard in the randomized

model.

• (Theorem 3.4.2) If |S| 6= 1, nor◦g has an efficient classical randomized

protocol. Otherwise, it is hard in the randomized model.

• (Theorem 3.3.2) If |S0| = |S1|, maj ◦ g has an efficient classical deter-

ministic protocol. Otherwise, it is hard in the randomized model.
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As a corollary to our characterization of the maj ◦ g functions, we an-

swer an open problem posed by Babai et al. [BGKL03]. Recall that the

authors identify an explicit function called quadratic character of the sum of

bits (denoted by qcsb) that is not compressible and therefore their proto-

col from [BGKL03] does not work for maj ◦ qcsb. They ask the question

of determining the communication complexity of maj ◦ qcsb. Our result

implies:

• (Corollary 3.3.3) If k > 1 + log n or k ≡ 1 mod 4, maj ◦ qcsb has an

efficient deterministic protocol. Otherwise, it is hard in the randomized

model.6

Chapter 4: Ramsey Theory Applications

One of the interesting features of the NOF model is its connection to Ram-

sey theory, and in particular Szemerédi’s Theorem. It has been known since

the introduction of the model that the deterministic communication com-

plexity of certain functions are exactly characterized by certain well-known

and studied Ramsey numbers [CFL83]. This connection has been utilized to

give surprising communication complexity upper bounds via known bounds

on Ramsey numbers. In this thesis, for the first time, we exploit the other

direction: We give non-trivial bounds on Ramsey numbers via our protocol

for sym ◦ g functions (Theorem 3.1.2). Due to its technical nature, we cut

the discussion here short and leave the details to Chapter 4.

6Technically speaking, it is hard up to ≈ 1
2 log n many players when k ≡ 3 mod 4 and

the function is only defined for k being an odd prime number.
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1.1.2 Spectral Norm of Symmetric Functions

Chapter 5: Spectral Norm and 2-party Communication Complex-

ity

One of the main tools in theoretical computer science is Fourier analysis of

boolean functions. This field has grown tremendously over the last couple

of decades and has become an integral part of theoretical computer science.

Its applications include, but are not limited to, hardness of approximation,

circuit complexity, social choice theory, learning theory and communication

complexity.

The main idea in Fourier analysis is to write a boolean function f :

{0, 1}n → {0, 1} as a linear combination of parity functions (also called

characters) χS(x)
def
= (−1)

∑
i∈S xi , where S ⊆ [n]. That is, we write

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where f̂(S) ∈ R are real coefficients and the χS’s are orthonormal with re-

spect to a natural inner product. This kind of orthogonal decomposition into

simpler functions and the linear algebraic view in general turns out to be quite

fruitful. One important example of the use of Fourier analysis in complexity

theory can be summarized as follows. There are natural quantities associated

with the Fourier expansion of a function such as the degree (largest |S| such

that f̂(S) is non-zero), sparsity (number of non-zero Fourier coefficients), Lp

norms (‖f̂‖pp =
∑

S |f̂(S)|p), etc. One tries to capture efficient computation

with one of these quantities. Often, one is not able to do so exactly but can

do it approximately. For example, functions computed by constant depth

polynomial size circuits (AC0 functions) are well approximated by functions

with low degree. This can be used to obtain a PAC learning algorithm for

AC0 functions under the uniform distribution. This kind of reduction from

computational complexity to mathematical complexity has proven to be quite



15 Chapter 1. Introduction

elegant and powerful.

Among the Lp norms, the L1 norm (also known as the spectral norm) has

an important role and captures important upper and lower bounds in dif-

ferent contexts. For example, functions with small L1 norm can be learned

efficiently in a natural setting of learning theory, and they can be computed

by small size depth 2 threshold circuits. The spectral norm also has inter-

esting connections to communication complexity, in particular to the 2 party

communication complexity of functions of the form F = f ◦ xor. For ex-

ample it can be shown that the logarithm of the approximate L1 norm of

f lower bounds the randomized communication complexity of F . Another

example is an intriguing conjecture of Grolmusz which says that for any F ,

the randomized communication complexity of F is always upper bounded by

the poly-log of the spectral norm of F [Gro97].

In this thesis we characterize the spectral norm of all symmetric functions

and more generally, gain better insight into their Fourier spectrum. Recall

that a function is symmetric if the output depends only on the number of

input bits set to 1. These functions play a central role in complexity theory

as they are usually the starting point of investigation and recently there

has been some progress towards understanding their Fourier spectrum, e.g.

[ST11, OWZ11].

For a symmetric f , let f(|x|) denote f(x). Let r0 and r1 be the minimum

integers such that f(i) = f(i+ 1) for all i ∈ [r0, n− r1] or f(i) 6= f(i+ 1) for

all i ∈ [r0, n− r1]. Define r(f) = max{r0, r1}. We show:

• (Theorem 5.1.1) Let f : {0, 1}n → {0, 1} be a symmetric function and

let r(f) be defined as above. Then, log ‖f̂‖1 = Θ
(
r(f) log

(
n
r(f)

))
.

As an application of this we verify Grolmusz’s conjecture mentioned ear-

lier in the setting of symmetric xor functions, i.e., functions of the form

F = sym ◦ xor.
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• (Corollary 5.1.3) Let f : {0, 1}n → {0, 1} be a symmetric function and

let F : {0, 1}n×{0, 1}n → {0, 1} be defined as F (x, y) = f(x⊕y). Then

the randomized communication complexity of F is upper bounded by

O(log2 ‖F̂‖1).

As a second application, we give a characterization of the parity decision

tree size of symmetric functions. A parity decision tree computes a boolean

function by querying the parities of subsets of the variables. The size of the

tree is the number of leaves in the tree.

• (Corollary 5.1.2) Let f : {0, 1}n → {0, 1} be a symmetric function.

Then the parity decision tree size of f is 2Θ(r(f) log(n/r(f))).

Note that the lower bound also applies in the case of the usual decision tree

size (where one is restricted to query only variables). Decision tree size is an

important measure in learning theory; algorithms for learning decision trees

efficiently are of great interest both for practical and theoretical reasons. One

of the most well-known and studied problems is whether small size decision

trees are efficiently learnable from uniformly random examples.

1.1.3 Privacy vs Communication Complexity

Chapter 6: Hardness of Private Communication

The study of privacy in computer science is of great importance and “privacy-

preserving computation” sits at the core of our investigations. Privacy con-

cerns in the context of communication complexity naturally arise and one

good example can be found in auction design. Auction theory is commonly

concerned with the goal of incenting bidders to bid truthfully, thereby en-

abling the auctioneer to obtain private information s/he needs to compute

an optimal outcome. As many auctions are held online, it is also quite im-

portant that the bidders do not have to reveal private information that the
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auctioneer does not need to compute the outcome. In this thesis, we will be

mainly interested in the trade-off between communication complexity and

privacy preservation.

In 1989, Kushilevitz [Kus89] initiated the study of information-theoretic

privacy in communication complexity. Informally, a communication protocol

for computing a function F (x1, x2, . . . , xk) is private if each player does not

learn any additional information (in an information theoretic sense) beyond

what follows from knowing his/her private input, and the function value

F (x1, x2, . . . , xk). A complete characterization of the privately computable

functions was given, but unfortunately, early work ruled out private proto-

cols for most interesting functions [Kus89, BS08]. For example, second-price

auctions are not possible with more than two participants, and are extremely

inefficient even in the setting of two bidders [CK89, BS08].

The unattainability of perfect privacy for many functions motivated the

study of approximate privacy, first by Klauck [Kla02] and more recently by

Feigenbaum, Jaggard and Schapira [FJS10a]. The relaxation from perfect

to approximate privacy is appealing because it renders more functions com-

putable privately, and more closely mirrors real-world situations in which

some privacy loss may be acceptable. On the other hand, it is more subtle to

capture the notion of approximate privacy. While most reasonable definitions

of perfect privacy turn out to be equivalent, this is not quite the case with

approximate privacy. In particular, the measures of Klauck and Feigenbaum

et al. are different and each has its own advantage and characteristics. Our

work here is primarily motivated by the more recent work of Feigenbaum et

al. [FJS10a]. A second motivation is to understand the connections between

the two.

Following Feigenbaum et al. let’s now give the definitions of privacy

that we will study in this thesis. Let F (x, y) be a two-party communication

function, and let P be a deterministic communication protocol for F . The
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most important feature of a protocol of cost c that computes F is that it

partitions the matrix of F , MF , into at most 2c monochromatic submatrices

(also known as rectangles). Here monochromatic means that each entry of the

submatrix is the same. The players communicate exactly the same bits for the

inputs corresponding to any one of these induced submatrices. The privacy

loss (or privacy approximation ratio, PAR) on the input (x, y) with respect

to P is defined to be the number of inputs that evaluate to F (x, y) divided

by the size of the protocol-induced rectangle containing (x, y): PAR(x, y) =
|F−1(F (x,y))|
|P (x,y)| . The worst-case privacy loss of protocol P is max(x,y) PAR(x, y),

and the worst-case privacy loss of the function F is then the minimum privacy

loss over all protocols for F . Perfect privacy of a protocol (as defined in 1989)

requires that the privacy approximation ratio (PAR) is 1 for all inputs. The

average-case privacy is measured by taking the expectation of PAR(x, y)

rather than a maximum.

The problem we will be interested in is the 2nd price Vickrey auction,

the canonical example of a truthful auction (neither player has an incentive

to cheat). The corresponding communication function takes x, y ∈ [2n] as

input and returns (x,B) if x ≤ y (indicating that Player B has won and has

to pay x), and (y, A) if y < x (indicating that Player A has won and has to

pay y).

Feigenbaum et al. [FJS10a] study the Vickrey auction problem and reveal

a possible inherent trade-off between worst-case privacy and communication

complexity: they describe a family of protocols such that the privacy loss

approaches 1 (perfect privacy) as the length of the protocol approaches ex-

ponential. We show that the upper bounds presented in [FJS10a] are essen-

tially tight and hence prove that there is indeed an inherent trade-off between

privacy and communication complexity for the Vickrey auction problem.

[FJS10a] provided a lower bound only for the special case of “bisection-type”

protocols.
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• (Theorem 6.3.1) For all p, 2 ≤ p ≤ n/4, any deterministic protocol for

the Vickrey auction problem of cost at most n2
n
4p
−5 obtains worst-case

privacy loss at least 2p−2.

Our second contribution demonstrates a similar type of trade-off for the

case of average-case approximate privacy. We prove an asymptotically tight

lower bound on the average-case approximate privacy of the Vickrey auction

problem, showing that the upper bounds from [FJS10a] are essentially tight.

Again, [FJS10a] provided lower bounds only for the special case of bisection-

type protocols.

• (Theorem 6.3.5) For all r ≥ 1, any deterministic protocol of cost at

most r for Vickrey auction problem has average-case privacy loss of at

least Ω
(

n
log(r/n)

)
.

Our lower bounds show that the approximate privacy of any polynomial

(super-linear) cost protocol is still as large as Ω(n/(log n)).

Lastly, we solve an explicitly stated open problem from [FJS10a] and

put an exponential lower bound on the average-case privacy loss of the set

intersection function. The set intersection function takes two subsets of [n]

as input and returns the intersection set.

• (Theorem 6.3.12) Any protocol that computes the set intersection func-

tion has 2Ω(n) average-case privacy loss under the uniform distribution.7

7Here the average-case PAR is actually “subjective”. We discuss the difference between

objective and subjective PAR in Chapter 6.



CHAPTER 2

Background

In this chapter, we will provide the background information required for the

presentation of our main results - Chapters 3 to 6. This chapter is broken

into three main sections. In the first section we give some general definitions

and set some notation which will be used throughout this thesis. The second

section is devoted to communication complexity. We will give the formal

definitions of the models we are interested in as well as general lower bound

techniques and examples. The third section introduces the reader to Fourier

analysis of boolean functions. This section is required to follow Chapter 5.

We note that most of the definitions and notation are indexed for easy

referencing.

20
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2.1 General Definitions

All the logarithms are to the base 2. For t ∈ R, exp(t) denotes et. If z ∈ C,

z̄ denotes its complex conjugate and Re(z) denotes its real part. We use C

to denote the complex conjugation operator so that C(z) = z̄ and for n ∈ Z,

Cn(z) = z if n is even, Cn(z) = z̄ if n is odd. We define ωm = exp(2πi/m)

to be an m-th root of unity. When m is clear from the context, we drop the

subscript from ωm and just write ω.

We use the notation [n] to denote either {1, 2, . . . , n} or {0, 1, 2, . . . , n}
and the choice will either be clear from the context or the distinction will

not matter. When x is a bit string, |x| denotes the number of 1’s in x, i.e.

the Hamming weight of x. If x ∈ {0, 1}n, xi denotes the ith bit of x, with a

notable exception. In the multiparty setting of communication complexity,

we will deal with several n-bit strings and therefore in this case we will

explicitly define xi to be an n-bit string. Then, xi,j denotes the jth bit of

the n-bit string xi.

Functions

A big part of this thesis is about boolean valued functions f : S → {0, 1},
where S is some set. For convenience, we will often define the range of

a boolean function as {1,−1} rather than {0, 1} with the understanding

that −1 corresponds to 1 and 1 corresponds to 0. In other words, f(x) is

represented as (−1)f(x). We now define the functions we will study. For

x ∈ {0, 1}n:
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and(x) = −1 iff
∑
i

xi = n

or(x) = −1 iff
∑
i

xi > 0

nor(x) = −1 iff
∑
i

xi = 0

maj(x) = −1 iff
∑
i

xi ≥ n/2

thrt(x) = −1 iff
∑
i

xi ≥ t

par(x) = −1 iff
∑
i

xi ≡ 0 mod 2

modm(x) = −1 iff
∑
i

xi ≡ 0 mod m

We also use xor to denote par. Sometimes, for a function f , we will use

the notation fn
′

to indicate that f has an n′-bit input rather than n.

All of the functions above are symmetric, which means that the output

depends only on the Hamming weight of the input, |x|. In other words, the

output does not change if we permute the input bits. We denote by sym an

arbitrary symmetric function.

Most of the communication complexity functions we deal with have a

composed structure. We recall the definition from the Introduction. Let

(x1, . . . , xk) ∈ ({0, 1}n)k. For f : {0, 1}n → {1,−1} and g : {0, 1}k → {0, 1},
define

f ◦ g(x1, . . . , xk) = f(. . . , g(x1,i, x2,i, . . . , xk,i), . . .).

In this case we call f the outside function and g the inside function. The
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famous disjointness and generalized-inner-product functions are defined as

DISJ(x1, . . . , xk) = nor ◦ and(x1, . . . , xk),

GIP(x1, . . . , xk) = par ◦ and(x1, . . . , xk),

where nor is the negation of or. Note that inside functions are automatically

assumed to be {0, 1} valued. When k = 2, the generalized-inner-product

function is called the inner-product function and is denoted by IP.

Some communication functions we study are not composed. For N an

n-bit integer, define

EXACTN(x1, . . . , xk) = −1 iff x1 + · · ·+ xk = N,

where xi are viewed as n-bit integers. For an Abelian group G, define

EVALG : Gk → {1,−1} as EVALG(x1, . . . , xk) = −1 iff x1 + · · · + xk = 0,

where the addition denotes the group operation and 0 is the identity element.

Observe that

EVALFn2 (x1, . . . , xk) = nor ◦ xor(x1, . . . , xk)

Almost all the functions we study are boolean valued, with the notable

exceptions of the functions studied in Chapter 6. The main function we

study there is the Vickrey auction (also known as the 2nd price auction) and

it is defined as follows. For a positive integer n, the n-bit Vickrey auction is

defined as F : X × Y → Z × {A,B} where X = Y = Z = {1, 2, . . . , 2n} and

F (x, y) =

{
(x,B) if x ≤ y,

(y, A) if y < x.

The other non-boolean function we study in Chapter 6 is the set intersection

function. On inputs x, y ∈ {0, 1}n, INTERSEC(x, y) outputs the set {i ∈
[n] : xi = yi = 1}.
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Probability Notation

Random variables are denoted with boldface letters, not necessarily capital.

If x is a random variable and µ a distribution, x ∼ µ means that x is dis-

tributed according to µ. The notation E [·] and Pr [·] is used for expectation

and probability respectively. When the random variable(s) and the distri-

bution(s) are clear from the context, the expectations and the probabilities

do not have any subscripts, e.g. E [f(x)]. If the distribution is clear but we

would like to explicitly point out the random variables, we put the random

variables as subscript, e.g. Ex [f(x)]. We also sometimes choose to make the

distribution explicit in this notation, e.g. Ex∼µ [f(x)]. The uniform distribu-

tion is always denoted by U and the underlying set will always be clear from

the context.

Information Theory

Let X be a random variable with range X . The entropy of X, denoted by

H(X), is defined as follows:

H(X)
def
= −

∑
x∈X

Pr [X = x] log2

(
Pr [X = x]

)

Let Y be another random variable with range Y . For any y in the range

of Y, H(X|Y = y) is defined as the entropy of X under the conditional

distribution, i.e.

H(X|Y = y)
def
= −

∑
x∈X

Pr [X = x |Y = y] log

(
Pr [X = x |Y = y]

)
.

Extending the above naturally, we define the notion of conditional entropy

H(X|Y) as

H(X|Y)
def
=
∑
y∈Y

Pr [Y = y]H(X|Y = y).
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As intuition suggests, conditioning a random variable X on another random

variable Y cannot increase its uncertainty on the average. Formally,

Fact 2.1.1. For any two random variables X and Y,

H
(
X|Y

)
≤ H

(
X
)
.

The mutual information between X and Y, denoted by I(X : Y), is

defined as

I(X : Y)
def
= H(X)−H(X|Y).

It is straightforward to verify that mutual information is a symmetric quan-

tity, i.e. I(X : Y) = H(X) − H(X|Y) = H(Y) − H(Y|X) = I(Y : X).

Fact 2.1.1 implies that mutual information between two random variables

is always non-negative. Just like entropy, one can define the conditional

mutual information between random variables. Let Z be another random

variable. Then,

I(X : Y |Z)
def
= H(X |Z) − H(X |Y,Z)

We will also need the following simple claim:

Claim 2.1.2. Let X,Y,Z,W be any random variables. Then,∣∣I(X : Y|W)− I(X : Y |W,Z)
∣∣ ≤ H(Z).

Decision Trees

Let f : {0, 1}n → {0, 1} be a boolean function. Consider the following 2-

player game. Alice gets an input x ∈ {0, 1}n which Bob does not see. Bob’s

goal is to compute f(x) by querying the bits of x of his choosing (a query

can depend on the outcome of previous queries). The minimum number of

queries required to compute f is called the query complexity or decision
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tree complexity of f . The reason for this terminology is that the strategy

of Bob for computing f can be represented by a binary tree in which each

non-leaf node is labelled by a variable xi and each edge is labelled by 0

or 1. The leaves are also labelled 0 or 1. The decision tree complexity of

f is the height of the shallowest tree that computes f correctly. Another

important measure of complexity is the size of the tree, which is defined to

be the number of leaves in the tree. The minimum size of a decision tree

that computes f is called the decision tree size of f .

In a well-known generalization of the above model, one allows Bob to

query the parity of a subset of the input bits of his choosing. This leads to

the notions of parity decision tree complexity and parity decision tree

size of a boolean function f .

2.2 Communication Complexity

2.2.1 2 Player Deterministic Model

The most basic and fundamental model in communication complexity is the 2

player deterministic model (introduced in [Yao79]). The setting is as follows.

We have a function F : X × Y → Z and two players Alice and Bob. Alice

gets x ∈ X and Bob gets y ∈ Y . They want to collaboratively compute

F (x, y) by communicating with each other. Their communication consists

of bits that are being transferred from one player to the other. They carry

out this communication according to a protocol that they have agreed upon

beforehand. More precisely, the protocol tells each player:

1. Whose turn it is to send a bit; the protocol determines this purely

based on the communicated bits thus far, and we assume without loss

of generality that Alice sends the first bit.
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2. What bit to send; the protocol determines this based on the commu-

nicated bits thus far as well as the input of the player sending the

bit.

The protocol also determines when communication stops and the value of

the output based on the whole transcript of the communicated bits (which

implies both players know the output at the end). The resource of interest

is the number of communicated bits, or in other words, the length of the

transcript. The goal is to compute the function with the shortest transcript

possible. It is worth explicitly noting that we put no restriction on the

computational capacities of Alice and Bob, and the sole interest is in the

number of bits needed to communicate in order to compute the function.

Let P denote a protocol that correctly computes a function F . Denote by

ΠP (x, y) the transcript of protocol P for the input (x, y) (i.e. the sequence

of communicated bits). The cost of P is

cost(P )
def
= max

(x,y)∈X×Y
|ΠP (x, y)|.

The deterministic communication complexity of F , denoted D(F ), is

the cost of the most efficient protocol that computes F correctly. That is,

D(F )
def
= min

protocol P that computes F
cost(P ).

Unless explicitly stated otherwise (for example, we will do so in Chapter

6), we deal with the standard setting of X = Y = {0, 1}n and Z = {1,−1},
and we are interested in how fast D(F ) grows as a function of n. Observe that

every function can be trivially computed with n + 1 bits of communication:

Alice sends x to Bob, Bob computes F (x, y) and sends the result back to

Alice. Hence for any F :

0 ≤ D(F ) ≤ n+ 1.

In view of this, protocols of cost at most poly-log(n) are considered to be

efficient and protocols of larger cost are deemed inefficient. As an example
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of an efficient protocol, suppose we want to determine if the majority of the

bits in x and y is 1, i.e. is |x|+ |y| ≥ n? This function can be computed using

dlog ne+ 1 bits since Bob can compute the output if Alice sends him |x|. A

canonical example of a hard function is the equality function which evaluates

to −1 if and only if x = y. Intuitively one expects that for Alice and Bob to

be sure that x = y, or detect a difference, they would have to compare xi and

yi for all i ∈ [n]. That is, our intuition tells us that D(EQUALITY) ≥ n.

But is this correct, and if it is, how do we formally prove it?

In order to prove lower bounds on communication complexity, we need

to have a combinatorial understanding of what protocols do. To this end,

we first observe that a protocol can be conveniently described with a binary

tree as follows (see Figure 2.1). Each node v of the tree is labelled with the

letter A or B (indicating whether the node belongs to Alice or Bob) and a

function fv. This function is of the form fv : X → {0, 1} if the label is A or

it is of the form fv : Y → {0, 1} if the label is B, and it determines what bit

the corresponding player communicates. Let us trace the behaviour of the

protocol to understand the meaning of this tree. As always, Alice gets x and

Bob gets y. First, without loss of generality, the root r is always labelled A,

which means that Alice is the first to communicate a bit. Then the protocol

determines what bit Alice will send by evaluating fr(x), i.e. Alice sends Bob

fr(x). If fr(x) is 0, we move to the left child of the root and if fr(x) = 1 we

move to the right child. Without loss of generality let’s assume we are at the

right child, which we denote by v. If v is labelled with A, then it is again

Alice’s turn to speak. If it is labelled B, it is Bob’s turn. And as before, the

function fv tells the player what bit to send. In this fashion we make our

way down the tree until we reach a leaf node. Leaf nodes are special and

they determine the output of the protocol.

Observe that every protocol can be described with such a tree and this

tree description is entirely consistent with the description we provided in the
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Figure 2.1: A binary tree representing a protocol. Each node is labelled with

A or B to indicate whose turn it is to speak. A function associated with a

node tells the player what to send. Depending on whether 0 or 1 is sent, we

move to the left or the right child of the node. The leaf nodes are indicated

with double lines. The functions associated with them determine the output

of the protocol.
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beginning. In particular, whose turn it is to speak is determined based only

on the communicated bits thus far and what a player sends is determined by

the communicated bits as well as the input of the player. Obviously the cost

of the protocol is the height of the tree.

With this point of view, we will be able to gain a very good understanding

of what a protocol does when computing a function F . First we represent F

by a |X | × |Y| matrix MF where the rows are labelled with x ∈ X , columns

are labelled with y ∈ Y , and MF [x, y] = F (x, y). A submatrix S × T
where S ⊆ X and T ⊆ Y is called a rectangle. The rectangle is said to

be monochromatic if MF restricted to S × T has the same value on all

of its entries. We will now see that a protocol of cost c that computes F

partitions1 MF into at most 2c monochromatic rectangles. In fact, this is the

most important property of a protocol and all lower bound techniques will

be based on this observation.

Proposition 2.2.1. Let P be a protocol that computes F : X ×Y → Z with

at most c bits of communication. Then P induces a partition of MF into at

most 2c monochromatic rectangles.

To see why this is the case, let’s trace once again the behaviour of the

protocol down the associated tree. We start at the root which is labelled

with A. The root corresponds to the whole matrix X × Y . The function fr

is boolean and therefore partitions X into two sets X0 and X1: for all x ∈ X0

Alice sends 0 to Bob, and for all x ∈ X1 she sends 1. Therefore the left child

of r corresponds to the rectangle X0 × Y and the right child corresponds to

X1×Y . In some sense, if we go to the left child, we eliminate (disregard) the

inputs X1 × Y and our new matrix is X0 × Y (this is where the input (x, y)

lives). If we go to the right child, we eliminate X0×Y and our new matrix is

1The word partition here is important. The rectangles are mutually disjoint and to-

gether cover the whole matrix MF .
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X1×Y . Note that X0×Y and X1×Y are disjoint. This process inductively

continues, so for each node of the tree, there corresponds a rectangle. If a

node is the descendent of another, the rectangle of the descendent will be a

subset of the other. Otherwise the rectangles are disjoint. Once we reach

a monochromatic rectangle, there is no need to partition it further since we

can safely declare F (x, y) as the value of this rectangle. Hence each leaf node

corresponds to a monochromatic rectangle. Suppose the height of the tree is

c, i.e. the protocol has cost c. Then there are at most 2c leaves. Thus, the

protocol partitions MF into at most 2c monochromatic rectangles.

It is instructive to see a different proof of the above fact. The following

gives an alternative definition of a rectangle.

Proposition 2.2.2. A set R ⊆ X × Y is a rectangle if and only if for all

(x, y), (x′, y′) ∈ R, we have (x, y′) ∈ R.

An important observation is that if a protocol produces the same tran-

script for (x, y) and (x′, y′), i.e. Π(x, y) = Π(x′, y′), then Π(x, y) = Π(x′, y′) =

Π(x, y′). This implies that all the inputs that produce a particular transcript

form a rectangle. There are at most 2c different transcripts and therefore we

have at most 2c monochromatic rectangles that partition MF .

Proposition 2.2.1 immediately suggests a lower bound strategy: to show

a function F has high communication complexity, show that no matter how

you partition MF into monochromatic rectangles, you need many rectangles.

Let’s denote by CD(F ) the minimum number of rectangles in any monochro-

matic disjoint cover of MF . The lower bound strategy can be restated as

follows.

Corollary 2.2.3.

D(F ) ≥
⌈
logCD(F )

⌉
.

With this tool, it is now easy to show D(EQUALITY) ≥ n + 1. The

matrix corresponding to the equality function is basically the identity matrix:
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the diagonal elements are −1 and the off-diagonal elements are 1. Observe

that no monochromatic rectangle can contain more than one −1 since if a

rectangle contains the entries (a, a) and (b, b), then it also has to contain

(a, b), which corresponds to a 1 entry. This means that we need at least 2n

rectangles to cover the diagonal elements, plus we need at least one rectangle

to cover the 1’s in the matrix. So in total we need at least 1 + 2n rectangles

and hence D(EQUALITY) ≥ dlog(1 + 2n)e = n+ 1.

Although every protocol that computes F induces a partition of MF into

monochromatic rectangles, simple examples show that the converse is not

true. So if some monochromatic partitions do not correspond to any protocol,

how tight is Corollary 2.2.3? The next theorem states that the gap is not

very large.

Theorem 2.2.4.

D(F ) ≤ O(log2CD(F )).

Let’s reiterate that Proposition 2.2.1 and Corollary 2.2.3 are the basis

for all lower bound techniques in communication complexity, including the

randomized model which we will discuss in the next subsection. In most

cases it is not easy to exactly determine CD(F ) so all the various lower

bound techniques try to find a suitable lower bound for CD(F ). For instance

one might try to upper bound the size of the largest monochromatic rectangle

in MF . If all monochromatic rectangles are small, then we can conclude that

we need many rectangles to partition MF . A more interesting lower bound

technique uses the rank of MF .

Proposition 2.2.5.

D(F ) ≥ log rankMF .

Proof. Suppose a protocol P of cost c computes F and denote by S1 ×
T1, . . . ,St × Tt the t monochromatic rectangles that the protocol induces
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(t ≤ 2c). For each of these rectangles Si × Ti, define the |X | × |Y| matrix

MSi×Ti by

MSi×Ti [x, y] =

{
MF [x, y] if (x, y) ∈ Si × Ti
0 otherwise

These matrices are like the indicator matrices of the rectangles. Obviously

we have MF =
∑t

i=1MSi×Ti . By the subadditivity of the rank, we have

rankMF ≤
∑t

i=1 rankMSi×Ti . Since each MSi×Ti has rank at most 1, we

conclude that rankMF is at most t ≤ 2c, i.e. c ≥ log rankMF .

Arguably the most famous open problem in communication complexity

is whether the rank lower bound is close to being tight.

Conjecture 2.2.6 (Log Rank Conjecture [LS88]). There is some universal

constant k such that

D(F ) ≤ O(logk rankMF ).

Needless to say there are other lower bound techniques and each has its

own advantages depending on the particular function we are dealing with.

One of the well-studied restrictions of the deterministic model is called

the simultaneous model. Here, the players are not allowed to interact with

each other. Upon receiving their inputs, the players send a message to an

external referee. The referee, who does not see the players’ inputs, deter-

mines the output based on these messages. The cost is the number of bits

sent to the referee and we denote by D||(F ) the deterministic simultaneous

communication complexity of F .

2.2.2 Randomized Model

The previous subsection introduced the most basic communication complex-

ity model. In this subsection we will introduce the randomized model which

has a variety of interesting applications.
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A natural way to extend the deterministic model to utilize randomness is

to allow each player to privately flip coins and make decisions based on the

outcomes of those coin flips. Normally, we have to allow some probability of

error in computing the function correctly. To make this more concrete, let’s

say that Alice has access to a random binary string rA and Bob has access to

a random binary string rB. Then a randomized protocol computes F with ε

error if

∀(x, y) ∈ X × Y , Pr [F (x, y) 6= P (x, y)] ≤ ε,

where P (x, y) denotes the output of the protocol and the probability is over

the random choices of rA and rB. The cost of a randomized protocol is

the maximum number of bits communicated, where the maximum is over

all inputs and random strings. It is worth making it clear that the random

strings being used by the players do not count towards the cost at all. We

denote by Rε
pri(F ) the randomized communication complexity of F

with ε-error, i.e. the cost of the most efficient randomized protocol that

computes F with ε-error (the subscript ‘pri’ will be clarified shortly). We are

mainly interested in the case where ε < 1/2 is some constant. The particular

choice of the constant does not matter as it can be shown that it affects the

communication complexity by only a constant factor.

Let us revisit the equality function and demonstrate the power of random-

ness. One might be tempted to think that even in the randomized model,

the players are bound to check whether xi = yi for most of the i ∈ [n] to

convince themselves that the two strings are equal or not (for instance the

strings might differ in just one coordinate). On the contrary, by using a clever

protocol, the players can compute EQUALITY(x, y) with high probability

using only O(log n) bits of communication. We describe this protocol now.

To avoid confusion, for this protocol let’s denote Alice’s input by a =

a0a1 . . . an−1 and Bob’s input by b = b0b1 . . . bn−1. The players fix some
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prime number p ∈ [n2, 2n2]. Alice views her input as the polynomial

qA(x) = a0 + a1x+ a2x
2 + · · · an−1x

n−1 mod p

over Zp, and Bob views his input as the polynomial

qB(x) = b0 + b1x+ b2x
2 + · · · bn−1x

n−1 mod p.

Then Alice chooses uniformly at random an element z ∈ Zp, and sends

Bob z as well as qA(z). This requires O(log n) bits of communication. Bob

computes qB(z), compares it to qA(z), and declares the output to be 1 if they

are the same, 0 otherwise. It is easy to see that if a = b, then the protocol

is always correct. On the other hand, if a 6= b, the players make a mistake

if qA(z) = qB(z), i.e. qA − qB(z) = 0. Note that qA − qB is a polynomial

of degree at most n − 1 and therefore has at most n − 1 roots. The players

make an error if Alice accidentally picks one of the roots so the probability

of error is at most n−1
p
≤ 1

n
.

The model we have just introduced is called the “private-coin” model

because each player has his/her own private random string. A perhaps less

natural but more useful model is the “public-coin” model in which players

share a common random string. It is clear that the public-coin model is

stronger than the private-coin model and therefore a lower bound in the

public-coin model immediately translates into a lower bound in the private-

coin model (and we are mainly interested in lower bounds). Furthermore,

it is well known that the two models are pretty much equivalent when the

error probability is a constant: the communication complexity of a function

in the private-coin model is at most O(log n) more than the communication

complexity in the public-coin model [New91]. For these two reasons, and the

fact that it is easier to reason about public-coin protocols, our discussion will

be about the public-coin model only. Therefore, we drop the subscript ‘pri’

and denote by Rε(F ) the randomized communication complexity of F in the

public-coin model.
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Going back to the equality example, let’s show Rε(F ) = O(1) for a con-

stant error probability ε. Let r ∈ {0, 1}n denote the public random string.

Alice sends Bob 〈x, r〉2
def
= x1r1 + · · · + xnrn mod 2 and Bob compares this

value to 〈y, r〉2. If they are the same, he declares the output to be 1, oth-

erwise he outputs 0. If x = y then this protocol never fails. If on the other

hand x 6= y, then it is easy to see that the inner products will be equal with

probability exactly 1/2. So the error probability of the protocol is 1/2. If we

repeat this protocol k times with fresh random strings, it is easy to see that

the error probability can be reduced to 1/2k.

Now that we have seen some interesting upper bounds, let’s turn our

attention to proving lower bounds. As mentioned earlier, one of the reasons

for working with public-coin protocols rather than private-coin protocols is

that public-coin protocols are easier to study and understand. A useful way

of viewing a public-coin randomized protocol of cost c is as a probability

distribution over deterministic protocols, each of cost at most c. Once the

random string r is fixed, what the players do is totally deterministic. So the

players follow a deterministic protocol Pr that corresponds to the random

string r. The success criterion for a randomized protocol is equivalent to

saying that for all inputs, at least 1−ε fraction of the deterministic protocols

should produce the correct answer. Consider a matrix where the rows are

labelled with all the possible Pr and the columns are labelled with the inputs

(x, y). At the entry corresponding to a particular Pr and (x, y) we put a 1 if

Pr(x, y) = F (x, y), and 0 otherwise. The success criterion for the randomized

protocol tells us that each column contains at least 1− ε fraction of 1’s. So

in total, the whole matrix has at least 1− ε fraction of 1’s. This implies that

there must be at least one row that contains at least 1− ε fraction of 1’s. To

sum up, if there is an ε-error randomized protocol for F of cost c, then there

must be a deterministic protocol P ∗ of cost at most c such that

Pr [F (x,y) 6= P ∗(x,y)] ≤ ε.
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In fact, it is not difficult to see that the above statement is true for any

probability distribution over the inputs (x, y). This property of a randomized

protocol is the basis for all lower bound techniques because arguing against

a deterministic protocol that makes some error is much easier than arguing

directly against a randomized protocol. In particular, all the insight we have

about deterministic protocols can be put to use in this setting.

Before moving forward, let’s make the formal definition of the distribu-

tional communication complexity model that we have just motivated. Let µ

be a distribution over X × Y . The ε-error distributional complexity of

F under µ is denoted by Dε
µ(F ) and is defined to be the minimum cost of a

deterministic protocol P such that

Pr(x,y)∼µ [F (x,y) 6= P (x,y)] ≤ ε.

We have already proved that for any µ, Rε(F ) ≥ Dε
µ(F ). It turns out a much

stronger relationship holds:

Proposition 2.2.7 ([Yao83]).

Rε(F ) = max
µ

Dε
µ(F ).

The proof easily follows from von Neumann’s Minimax Theorem.

In light of the relationship between randomized communication complex-

ity and distributional communication complexity, we arrive at an obvious

lower bound strategy: to prove lower bounds for Rε(F ), pick your favorite

distribution µ and prove a lower bound for Dε
µ(F ). As mentioned earlier,

this is essentially how all lower bound arguments proceed. Given that a

cost c deterministic protocol that computes F partitions MF into at most 2c

monochromatic rectangles, a protocol that computes F with ε fraction of er-

ror partitions MF into at most 2c “almost” monochromatic rectangles, on av-

erage (not all rectangles that the protocol induces must be almost monochro-

matic but a good fraction must be). To rule out such a possibility with a
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small c, there are various tactics one can try. Arguably the most famous one

is the so called discrepancy method. The idea is to show a lower bound for

Dε
µ(F ) by showing that every (large enough) rectangle in MF is balanced in

the sense that there are roughly the same fraction of 1’s and −1’s.

Let’s now mathematically formalize the discrepancy method. Let S × T
be a rectangle, where S ⊆ X and T ⊆ Y . For a distribution µ over X × Y ,

define the discrepancy of the rectangle S ×T with respect to F and µ as the

absolute value of the difference between the weight of the 1’s and the weight

of the −1’s in S × T , i.e.

discµ(F,S × T )
def
=
∣∣Pr(x,y)∼µ [F (x,y) = 1 and (x,y) ∈ S × T ]

−Pr(x,y)∼µ [F (x,y) = −1 and (x,y) ∈ S × T ]
∣∣

=

∣∣∣∣∣∣
∑

(x,y)∈S×T

F (x, y)µ(x, y)

∣∣∣∣∣∣ .
The discrepancy of F is the maximum discrepancy over all rectangles:

discµ(F )
def
= max
S×T

discµ(F,S × T ).

The discrepancy method (see e.g. [CG88]) says that to lower bound Dε
µ(F ),

it suffices to upper bound the discrepancy discµ(F ).

Proposition 2.2.8 (Discrepancy Method).

Dε
µ(F ) ≥ log

(
1− 2ε

discµ(F )

)
.

Proof. Let Dε
µ(F ) = c, so there is a deterministic protocol P of cost c that

computes F with ε error under µ. Let S1 × T1, . . . ,St × Tt, t ≤ 2c, be the

rectangles that P induces. We denote by P (Si × Ti) the value the protocol
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outputs for the inputs (x, y) ∈ Si × Ti. Then,

1− 2ε ≤
∣∣Pr(x,y)∼µ [F (x,y) = P (x,y)]−Pr(x,y)∼µ [F (x,y) 6= P (x,y)]

∣∣
=

∣∣∣∣∣∣
∑
(x,y)

F (x, y)P (x, y)µ(x, y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∑
i=1

∑
(x,y)∈Si×Ti

F (x, y)P (x, y)µ(x, y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∑
i=1

P (Si × Ti)
∑

(x,y)∈Si×Ti

F (x, y)µ(x, y)

∣∣∣∣∣∣
≤

t∑
i=1

|P (Si × Ti)|

∣∣∣∣∣∣
∑

(x,y)∈Si×Ti

F (x, y)µ(x, y)

∣∣∣∣∣∣
=

t∑
i=1

discµ(F,Si × Ti)

≤ t · discµ(F ) ≤ 2c · discµ(F ).

Rearranging, we get 2c ≥ 1−2ε
discµ(F )

.

Let’s see the discrepancy method in action by showing an exponentially

small upper bound on the discrepancy of the inner-product function IP under

the uniform distribution. For a real valued matrix M , let ‖M‖ denote its

spectral norm, i.e. ‖M‖ = maxu:‖u‖2=1 ‖Mu‖. It turns out that it is easy to

bound the discrepancy of a function under the uniform distribution in terms

of the spectral norm of MF .

Proposition 2.2.9.

discU(F ) ≤ ‖MF‖
2n

.

Proof. Let S × T be a rectangle. Denote by 1S the indicator vector for S,

i.e. the 2n dimensional vector which has a 1 for positions corresponding to
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S and 0 everywhere else. Similarly for 1T . By the definition of discrepancy,

discU(F,S × T ) =
1

22n

∣∣∣∣∣∣
∑

(x,y)∈S×T

F (x, y)

∣∣∣∣∣∣ .
It is not hard to verify that the right hand side is equal to

1

22n
|1TS ·MF · 1T | =

1

22n
|〈MF1T ,1S〉|.

Using the Cauchy-Schwarz inequality, we get 1
22n
|〈MF1T ,1S〉| ≤ 1

22n
‖MF1T ‖·

‖1S‖. Then by the definition of the spectral norm we conclude:

discU(F,S × T ) ≤ 1

22n
‖MF1T ‖2 · ‖1S‖2

≤ 1

22n
‖MF‖‖1T ‖2‖1S‖2

≤ 1

22n
‖MF‖

√
|T |
√
|S|

≤ ‖MF‖
2n

.

The spectral norm of MIP, where IP denotes the inner product function,

is easy to calculate. It is well known that the spectral norm of a matrix M is

equal to the largest singular value of M , σmax(M), which in return is equal to

the square-root of the largest eigenvalue of MTM . Using the definition of IP,

one can easily check thatMT
IPMIP = 2nI, where I denotes the identity matrix.

Therefore for all u, MT
IPMIPu = 2nu. This implies λmax(MT

IPMIP) = 2n, or in

other words, ‖MIP‖ = 2n/2. Using Proposition 2.2.9, we have discU(IP) ≤
1/2n/2. Plugging this into the Discrepancy Method (Proposition 2.2.8), we

conclude

Rε(IP) ≥ n

2
+ log(1− 2ε).

Is the discrepancy method the all powerful method that will give us tight

lower bounds for any function? The answer is no and let’s explain why. First
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note that for any function, achieving error probability 1/2 is trivial since we

can just output a random bit. The discrepancy method is a very strong tool in

the following sense. If one shows a lower bound of say Ω(n) on the randomized

communication complexity of a function using the discrepancy method, then

the lower bound applies to protocols that make 1/2−1/exp(n) probability of

error, i.e. error exponentially close to 1/2. For example, in the case of inner

product, suppose we allow the protocol to make error ε = 1/2−1/2αn for some

constant α < 1/2. Then Rε(IP) ≥ n/2 + log(1 − 2ε) = n/2 − αn = Ω(n).

When our primary interest is in constant probability of error, this is an

overkill. There are many functions that require Ω(n) communication com-

plexity when the error probability is a constant but has O(1) communication

complexity once we allow the error probability to be 1/2 − 1/exp(n). In

particular, it is well known that the discrepancy method cannot yield good

lower bounds for any function with small non-deterministic communication

complexity. A canonical example is the famous disjointness function and to

handle such functions, one needs to develop more sophisticated tools. On

this note, we end our discussion of the 2 party randomized communication

complexity model and move on to the non-deterministic model.

2.2.3 Non-Deterministic Model

Non-determinism is a very important notion in computational complexity

theory. At a high level, the motivation is to understand whether verifying

a given solution to a problem is easier than finding a solution. The answer

of course depends on which computational model we are dealing with. In

communication complexity, non-determinism can be much more efficient and

in this subsection, we will briefly go over non-deterministic communication

complexity.

As usual, there are two equivalent ways to view the non-deterministic
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model. We can view it as a model in which players are allowed to take

non-deterministic steps, or we can view it as a proof verification process.

We prefer to use the latter version. As before, Alice gets x ∈ X and Bob

gets y ∈ Y . We also have a third player called God, who sees the input

(x, y) and furnishes a proof string z which is then communicated to both

Alice and Bob. Upon receiving z, Alice and Bob communicate with each

other and agree on an output. If F (x, y) = −1, there must be at least one

proof string z that leads Alice and Bob to output −1. On the other hand, if

F (x, y) = 1, no matter what proof string Alice and Bob receive, they should

output 1. We include in the cost the length of z. The non-deterministic

communication complexity of F , denoted by N−1(F ), is the cost of the

most efficient non-deterministic protocol that computes F as described above.

The co-non-deterministic communication complexity of F is denoted

by N1(F ) and is defined to be equal to N−1(−F ), the non-deterministic

complexity of the negation of F .2

Recall the definition of the disjointness function. It is straightforward to

see that N1(DISJ) ≤ O(log n). God provides an index i ∈ [n] and Alice and

Bob exchange xi and yi with each other in order to check if xi = yi = 1. If

x and y are not disjoint, then there is an index i such that xi = yi = 1. If

not, for no index we will have xi = yi = 1. A similar protocol also shows

that N1(EQUALITY) ≤ O(log n). On the other hand, intuitively it seems

unlikely that N−1(EQUALITY) is small; how can God furnish a short proof

that two strings are equal?

In Subsection 2.2.1, we defined CD(F ) as the minimum number of disjoint

monochromatic rectangles needed to partition MF . Define Cz(F ) as the

minimum number of possibly intersecting monochromatic rectangles needed

2Note that in the literature, N−1(F ) is almost always denoted by N1(F ) and N1(F )

is denoted by N0(F ). This is due to the range of the function F , which is often {0, 1} as

opposed to {1,−1} as in here.
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to cover the z-entries of MF . This quantity accurately characterizes the

non-deterministic communication complexity of F .

Proposition 2.2.10.

logCz(F ) ≤ Nz(F ) ≤ 2 + logCz(F ).

We skip the proof of this proposition but remark that it is quite straight-

forward and uses the fact that once the proof string is fixed, Alice and Bob

follow a deterministic protocol.

Needless to say, Proposition 2.2.10 is the backbone of all lower bound

techniques for the non-deterministic model. Going back to the equality ex-

ample, we see that a monochromatic rectangle can cover at most one −1

entry and therefore we need 2n rectangles to cover all the −1 entries.

At the end of the previous subsection (Subsection 2.2.2), we mentioned

that the discrepancy method fails to give good lower bounds on the random-

ized communication complexity of functions that have low non-deterministic

communication complexity. Let us now make this formal.

Proposition 2.2.11 (see e.g. [Cha08] Lemma 6.17). Let F be such that

min{N1(F ),N−1(F )} = c. Then, under any distribution µ over the inputs,

discµ(F ) ≥ Ω(1/2c).

2.2.4 Multiparty Number on the Forehead Model

There are various ways one can extend the two player model to more players.

Given F : X1 × X2 × · · · × Xk → Z, the most natural generalization would

be to distribute the input (x1, x2, . . . , xk) so that Player i gets xi. This is

called the “number in the hand” multiparty model; it is an interesting model

with nice applications. In this thesis however, we are interested in the so

called “number on the forehead” multiparty model in which Player i sees all
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xj with j 6= i. We visualize this scenario as xi being written on the forehead

of Player i. Once the input is distributed, the players once again follow a

protocol in order to compute F (x1, . . . , xk). The description of a protocol is

equivalent to the 2 player model and when a player communicates a bit, all

the other players get to see it.

We can generalize the equality example seen in the 2 party setting to an

arbitrary number of players in the obvious way: let EQk(x1, x2, . . . , xk) = 1

if and only if x1 = · · · = xk. When k = 2, we saw that the deterministic

communication complexity of equality is n + 1. On the other hand, when

k > 2, it is easy to see that the communication complexity drops down to

just 2 bits. Player 1 checks if x2 = x3 = · · · = xk and Player 2 checks if

x1 = x3 = x4 = · · · = xk. If both equalities are confirmed, all the strings

are equal, otherwise they are not. This example demonstrates the power of

the multiparty number on the forehead model. The overlap of information

among the players can be exploited to give efficient protocols.

We denote by Dk(F ), D
||
k(F ), Rε

k(F ), Dε
k,µ(F ), and N−1

k (F ) the k-party

deterministic, deterministic simultaneous, randomized, distributional and

non-deterministic communication complexity of F respectively. In the 2

player setting, the single most important property of a protocol was the

fact that it induced rectangles. For the k party model with k ≥ 3, the

appropriate generalization of the notion of a rectangle is called a cylinder

intersection. A cylinder Ci in the ith direction is a subset of the input space

X1 × · · · × Xk such that membership in Ci does not depend on the ith co-

ordinate, i.e. if (x1, . . . , xi, . . . , xk) ∈ Ci then (x1, . . . , x
′
i, . . . , xk) ∈ Ci for all

x′i ∈ Xi (see Figure 2.2). A cylinder intersection C is just an intersection

of k cylinders, one in each direction, i.e. C = ∩ki=1Ci where Ci is a cylinder in

the ith direction. It is important to take a moment and observe that when

k = 2, this definition corresponds to the notion of a rectangle (see Figure

2.3).
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Figure 2.2: A cylinder in the 3rd direction. The bold dots represent a subset

of X1 ×X2, which then completely determines the corresponding cylinder.

Figure 2.3: A rectangle as the intersection of two cylinders.
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In Proposition 2.2.2, we gave an alternative definition of a rectangle. The

same characterization holds also for cylinder intersections. A set of k points

(x′1, x2, . . . , xk), (x1, x
′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k)

in X1 × · · · × Xk is called a star if x′i 6= xi for all i ∈ [k]. The point

(x1, x2, . . . , xk) is called the center of the star.

Proposition 2.2.12. A set C ⊆ X1× · · · Xk is a cylinder intersection if and

only if for every star in C, its center is also contained in C.

Now it is easy to see that a multiparty protocol induces a partition

of MF into monochromatic cylinder intersections. Here MF denotes the

k-dimensional matrix (often called a tensor) such that MF [x1, . . . , xk] =

F (x1, . . . , xk) for all (x1, . . . , xk) ∈ X1 × · · · × Xk.

Proposition 2.2.13. Let P be a deterministic protocol that computes F :

X1× · · · ×Xk → Z with at most c bits of communication. Then P induces a

partition of MF into at most 2c monochromatic cylinder intersections.

Proof. As in the 2 player case, it is easy to see that if the protocol produces

the same transcript for all the elements of a star, then the protocol must

produce the same transcript for the center of the star as well. Therefore,

the set of all points corresponding to a particular transcript forms a cylinder

intersection. There are at most 2c possible transcripts and the statement

follows.

The definition of discrepancy naturally generalizes to cylinder intersec-

tions. We will now make the formal definition with respect to complex valued

functions F : X1×· · ·×Xk → C since the definition does not call for a restric-

tion on F to be boolean. Furthermore, in Section 3.2 we will be interested

in the discrepancy of complex valued functions.
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Given a cylinder intersection C = ∩ki=1Ci, let φi denote the characteristic

function of Ci, i.e. φi(x1, . . . , xk) = 1 if (x1, . . . , xk) ∈ Ci and φi(x1, . . . , xk) =

0 otherwise. Then φ
def
=
∏k

i=1 φi is the characteristic function of C. For a

distribution µ over X1×· · ·×Xk, and a cylinder intersection C, the discrepancy

of F with respect to µ and C is

discµ(F, C) def
=

∣∣∣∣∣∣
∑

(x1,...,xk)∈C

F (x1, . . . , xk)µ(x1, . . . , xk)

∣∣∣∣∣∣
=
∣∣E(x1,...,xk)∼µ [F (x1, . . . ,xk)φ(x1, . . . ,xk)]

∣∣ . (2.1)

The discrepancy of F is the maximum discrepancy over all cylinder inter-

sections:

discµ(F )
def
= max

C
discµ(F, C).

The discrepancy method generalizes to the multiparty setting with the same

proof [BNS92].

Proposition 2.2.14 (Discrepancy Method). Let F : X1×· · ·×Xk → {1,−1},
and µ a distribution over X1 × · · · × Xk. Then,

Dε
k,µ(F ) ≥ log

(
1− 2ε

discµ(F )

)
.

In the two party setting, we saw how to upper bound the discrepancy of

F using the spectral norm of the matrix MF . This linear algebraic technique

does not work in the multiparty setting because MF is no longer a matrix

and a cylinder intersection is a relatively complicated combinatorial object.

There is still however a famous trick one can resort to in order to deal with

cylinder intersections: repeatedly apply Cauchy-Schwarz inequality to get rid

of the cylinder intersection.

Lemma 2.2.15 ([CT93, Raz00]). Let F : X1× · · · ×Xk → C and let µi be a

distribution over Xi. Define the distribution µ as the product of the µi, that
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is µ(x1, . . . , xk) = µ1(x1) · · ·µk(xk). Then,

(discµ(F ))2k ≤ Ex0
1,...,x

0
k

x1
1,...,x

1
k

 ∏
u∈{0,1}k

Cu1+···+uk(F (xu11 , . . . ,x
uk
k ))

 , (2.2)

where in the expectation, (x0
i ,x

1
i ) are distributed according to the product

distribution µi × µi.

Proof. We prove the lemma by induction on k and in order to reduce clutter,

we will prove it for real valued functions as opposed to complex valued func-

tions. The proofs are identical. Our induction hypothesis is that the lemma

is true for every function with k − 1 players. Let C = ∩1≤i≤kCi be an ar-

bitrary cylinder intersection with the characteristic function φ(x1, . . . , xk) =

φ1(x1, . . . , xk) · · ·φk(x1, . . . , xk). Recall that φi does not depend on xi. Then,

writing the discrepancy as in (2.1), we have

discµ(F, C) =

∣∣∣∣∣E
[
F (x1, . . . ,xk)

k∏
i=1

φi(x1, . . . ,xk)

]∣∣∣∣∣
≤ Ex1,...,xk−1

[∣∣∣∣∣φk(x1, . . . ,xk)Exk

[
F (x1, . . . ,xk)

k−1∏
i=1

φi(x1, . . . ,xk)

]∣∣∣∣∣
]
.

Squaring both sides and using the consequence E [Z]2 ≤ E [Z2] of Cauchy-

Schwarz inequality, we obtain

discµ(F, C)2

≤ Ex1,...,xk−1

φk(x1, . . . ,xk)
2Exk

[
F (x1, . . . ,xk)

k−1∏
i=1

φi(x1, . . . ,xk)

]2


= Ex1,...,xk−1

Exk

[
F (x1, . . . ,xk)

k−1∏
i=1

φi(x1, . . . ,xk)

]2
 . (2.3)

If we let

F x0k,x
1
k(x1, . . . , xk−1)

def
= F (x1, . . . , xk−1, x

0
k)F (x1, . . . , xk−1, x

1
k),



49 Chapter 2. Background

and also let

φ
x0k,x

1
k

i (x1, . . . , xk−1)
def
= φi(x1, . . . , xk−1, x

0
k)φi(x1, . . . , xk−1, x

1
k)

for each i ∈ {1, . . . , k − 1}, then we can rewrite (2.3) as

discµ(F, C)2

≤ Ex1,...,xk−1

[
Ex0

k,x
1
k

[
F x0

k,x
1
k(x1, . . . ,xk−1)

k−1∏
i=1

φ
x0
k,x

1
k

i (x1, . . . ,xk−1)

]]

≤ Ex0
k,x

1
k

[∣∣∣∣∣Ex1,...,xk−1

[
F x0

k,x
1
k(x1, . . . ,xk−1)

k−1∏
i=1

φ
x0
k,x

1
k

i (x1, . . . ,xk−1)

]∣∣∣∣∣
]

= Ex0
k,x

1
k

[
discµ′(F

x0
k,x

1
k , C ′)

]
. (2.4)

Above, µ′ is the product of µ1 up to µk−1 and C ′ is the cylinder intersection

defined by
∏k−1

i=1 φ
x0
k,x

1
k

i (x1, . . . ,xk−1). Raising both sides of equation (2.4) to

the power of 2k−1, we get

discµ(F, C)2k ≤ Ex0
k,x

1
k

[
discµ′(F

x0
k,x

1
k , C ′)

]2k−1

.

A repeated application of the Cauchy-Schwarz inequality implies E [Z]2
k−1

≤
E
[
Z2k−1

]
. Hence,

discµ(F, C)2k ≤ Ex0
k,x

1
k

[
discµ′(F

x0
k,x

1
k , C ′)2k−1

]
.

Now applying the induction hypothesis to discµ′(F
x0k,x

1
k , C ′)2k−1

, we get the

desired result.

The RHS of Inequality 2.2 is important and deserves a name. Let µ be a

product distribution over X1×· · ·×Xk, i.e. µ(x1, . . . , xk) = µ1(x1) · · ·µk(xk),
where µi is a distribution over Xi. We define the cube measure of a complex

valued function F : X1 × · · · × Xk → C under µ as

Eµ(F ) = Ex0
1,...,x

0
k

x1
1,...,x

1
k

 ∏
u∈{0,1}k

Cu1+···+uk(F (xu11 , . . . ,x
uk
k ))

 .
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The cube measure is always a non-negative real number. In fact, the quantity

(EU(F ))1/2k , where U is the uniform distribution, is known as the hypergraph

uniformity norm and is a measure of “quasirandomness” of F . When F = f ◦
xor, the hypergraph uniformity norm of F corresponds to Gowers uniformity

norm of f over Fn2 (see e.g. [Gow10, Section 2.4] and references therein).

Lemma 2.2.15 can now be restated as

discµ(F ) ≤ (Eµ(F ))1/2k .

Let us see the above inequality in action and show an exponentially small

upper bound on the generalized-inner-product function GIP.

Theorem 2.2.16.

discU(GIP) ≤ exp
(
− n

4k

)
.

Proof. Using Lemma 2.2.15, our task is to upper bound the cube measure

EU(GIP). Since we can decompose GIP as parity ◦ and, and parity is

just multiplication over ±1 valued variables, we have

EU(GIP) = E

 ∏
u∈{0,1}k

GIP(xu11 , . . . ,x
uk
k )


= E

 ∏
u∈{0,1}k

n∏
i=1

(−1)and(x
u1
1,i,...,x

uk
k,i)

 .
Using independence, we can move the inside product outside to obtain

EU(GIP) =
n∏
i=1

E

 ∏
u∈{0,1}k

(−1)and(x
u1
1,i,...,x

uk
k,i)


= (EU(and))n .

Thus, all we need to do is bound the cube measure of the and function on

k variables. It is not difficult to see that if for all j ∈ {1, . . . , k}, x0
j,i 6= x1

j,i,
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then the expectation is -1. This happens with probability 1/2k. On the

other hand, if there is some j such that x0
j,i = x1

j,i, the product evaluates to

1. Therefore,

EU(and) =

(
1− 1

2k

)
− 1

2k
= 1− 1

2k−1
.

So EU(GIP) = (1 − 1/2k−1)n ≤ exp(−n/2k−1), and the result follows from

Lemma 2.2.15.

Corollary 2.2.17.

Rε
k(GIP) ≥ n

4k
+ log(1− 2ε).

Note that the above lower bound collapses once k reaches log n. This

is an unavoidable consequence of Lemma 2.2.15 where we used the Cauchy-

Schwarz inequality repeatedly in order to get rid of the cylinder intersection.

As all lower bounds in the NOF model use this trick, they all suffer the

exponential loss in the number of players. As mentioned in the introduction,

proving lower bounds in the NOF model for log n players is an outstanding

open problem.

2.2.5 Communication Complexity Classes

In computational complexity theory we try to classify problems in terms of

the resources required to compute their solution. An important part of this

classification requires well defined complexity classes, like P,NP, and BPP,

which correspond to problems with efficient deterministic, non-deterministic

and randomized solutions respectively. In communication complexity, we can

define ([BFS86]) analogous complexity classes once we agree on the meaning

of “efficient”. Conventionally, protocols of cost at most poly-log(n) are con-

sidered to be efficient. This naturally leads to the following communication

complexity classes corresponding to the different communication complexity
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models:

Complexity class Pcck NPcck coNPcck BPPcck

Complexity measure Dk N−1
k N1

k Rk

Unlike the Turing Machine world, we have a reasonably good understand-

ing of the relationships between the communication complexity classes since

we can actually prove strong lower bounds. For instance, the two player non-

equality function is in BPPcc2 and NPcc2 but not in Pcc2 . Therefore we know

that Pcc2 6= NPcc2 and Pcc 6= BPPcc2 . We also know that NPcc2 6= BPPcc2 via the

disjointness function.

2.2.6 Information Complexity

The techniques we have seen so far are some of the highlights of the first gen-

eration methods in communication complexity. In recent years, a new method

based on information theory, introduced in the seminal paper [CWYS01], has

flourished and contributed significantly to the advancement of the field. We

will now very briefly touch upon this second generation technique. Our dis-

cussion will be limited to the 2 party model since these techniques currently

do not extend to the multiparty NOF model.

In a nutshell, information theory methods in communication complexity

try to measure how much information Alice and Bob reveal about their inputs

to a third party or each other when they follow a communication protocol.

There are several ways to measure this quantity but we will for now refer to

it informally as information complexity. This information is measured in bits

and therefore it serves as a lower bound on the communication complexity

of a function: if a protocol has cost c, it cannot reveal more than c bits of in-

formation. One can then obtain lower bounds on communication complexity

by lower bounding the information complexity of a function. This approach

puts powerful and intuitive tools from information theory at our disposal.
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Let µ be a distribution over the input space X×Y , and let P be a protocol

that computes a function F : X × Y → Z. Recall that ΠP (x, y) denotes the

transcript that the protocol produces when the input is (x, y). The external

information cost of a protocol with respect to µ is defined as

ICext
µ (P )

def
= I(x,y : ΠP (x,y)),

where (x,y) has distribution µ. This intuitively measures how much in-

formation a third party learns about Alice’s and Bob’s inputs by looking

at the transcript of the protocol. Another useful measure is the internal

information cost, which is defined to be

ICint
µ (P )

def
= I(y : ΠP (x,y)|x) + I(x : ΠP (x,y)|y).

This measures how much information Alice learns about Bob’s input plus

how much information Bob learns about Alice’s input.

Let us restrict our discussion to external information cost. The ε-error

information complexity of a function F with respect to a distribution µ

is denoted by ICµ,ε(F ) and is defined to be the minimum ICext
µ (P ) among all

randomized protocols P that compute F with ε error. It is straightforward

to see that for any distribution µ, Rε(F ) ≥ ICµ,ε(F ).

To illustrate how this can be used to prove communication complexity

lower bounds, let’s give a very high level and vague sketch of the lower bound

for disjointness. As we have seen before, disjointness has the composed

structure DISJ = or ◦ and. Intuitively one expects that any protocol that

solves disjointness with good accuracy must implicitly solve each of the n

instances of the and function. Suppose ν is a distribution over the inputs of

a two bit and function and define µ to be the n-fold product of ν, i.e. µ = νn.

Then one can hope to show ICµ,ε(DISJ) = n · ICν,ε(and). Unfortunately this

may not be true in general, for example when ν is not a product distribution

over {0, 1} × {0, 1}. And in the case of disjointness, it is essential that ν
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is not a product distribution. To get around this problem, one defines an

appropriate random variable so that conditioned on it, the “direct sum”

property that we hoped for holds. This then reduces our task of showing an

Ω(1) lower bound on the information complexity of the and function on 2

bits. With some effort, this can be proved by elementary means. The details

can be found in [BYJKS04].

2.3 Fourier Analysis of Boolean Functions

The study of boolean functions f : {0, 1}n → {0, 1} is central to complex-

ity theory and combinatorics as objects of interest in these areas can often

be represented as boolean functions. Fourier analysis of boolean functions

provides some of the strongest tools in this study with applications to graph

theory, circuit complexity, communication complexity, hardness of approxi-

mation, machine learning, etc. We will rely on these tools in Chapter 5.

As before, for convenience, we will view the range as {1,−1} rather than

{0, 1}. The main idea behind Fourier analysis of boolean functions is very

simple. We are interested in studying the set of boolean functions B =

{f : {0, 1}n → {1,−1}}. This set by itself does not have much structure and

therefore is not easy to reason about. On the other hand, vector spaces have a

lot of structure and we understand them very well. Therefore a natural thing

to do is to view B as residing in a vector space, and the natural candidate

is the vector space of real valued functions V = {φ : {0, 1}n → R}. This is

a 2n-dimensional vector space over the reals. Furthermore, we can turn V
into an inner product space by defining an appropriate inner product: for

φ, ψ ∈ V , define

〈φ, ψ〉 def
= E [φ(x)ψ(x)] ,

where the expectation is with respect to the uniform distribution over {0, 1}n.
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Thus we can equivalently write

〈φ, ψ〉 =
1

2n

∑
x∈{0,1}n

φ(x)ψ(x).

This absolute value of the inner product is often called the correlation

between φ and ψ because when φ and ψ are boolean functions, the inner

product really measures how well φ and ψ are correlated. For boolean func-

tions f and g, we define the correlation as

Cor(f, g)
def
= |Pr [f(x) = g(x)]−Pr [f(x) 6= g(x)]| .

Observe that this quantity is always between 0 and 1. It is 1 when f(x) =

g(x) for all x or f(x) = −g(x) for all x. It is 0 when f(x) and g(x) agree on

exactly half the points x (i.e. knowing f(x) for a random x tells us nothing

about g(x)). Since f and g are ±1-valued functions, a moment’s observation

shows that the correlation can be alternatively written as

Cor(f, g) = |E [f(x)g(x)]| = |〈f, g〉|.

More generally, for a probability distribution µ over {0, 1}n, we define the

correlation of f and g under µ as

Corµ(f, g)
def
= |Ex∼µ [f(x)g(x)]| =

∣∣∣∣∣∑
x

f(x)g(x)µ(x)

∣∣∣∣∣ .
Now that we have an inner product, we can hope to define a useful or-

thonormal basis. The Fourier basis consists of the following functions. For

each S ⊆ [n], define χS : {0, 1}n → {1,−1} as

χS(x) = (−1)
∑
i∈S xi .

In other words, the value of χS(x) is the parity of the variables in S, where

−1 means the parity is odd and 1 means the parity is even. These functions
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are often called characters and in our setting we have 2n of them. It is

straightforward to verify that

〈χS, χT 〉 =

{
0 if S 6= T ,

1 if S = T .

So we conclude that the set of characters form on orthonormal basis for the

vector space V . This means that we can write every φ ∈ V as a linear

combination of the characters:

φ(x) =
∑
S⊆[n]

φ̂(S)χS(x).

Here, φ̂(S) ∈ R denotes the coefficient corresponding to χS, and these co-

efficients are called the Fourier coefficients. This way of expanding φ

as a linear combination of the characters is called the Fourier expan-

sion of φ. Since the characters form on orthonormal basis, it follows that

φ̂(S) = 〈φ, χS〉. We will call the set of Fourier coefficients of φ the Fourier

spectrum of φ.

Remark. It is worth noting that Fourier analysis can be applied more gen-

erally in the setting of V = {φ : G→ C}, where G denotes an Abelian group

(we view {0, 1}n as Fn2 so we are in the special case of G = Fn2 ). A character

χ : G → C is any function that satisfies χ(gh) = χ(g)χ(h) for all g, h ∈ G
(when G = Fn2 , the parity functions χS are the only functions with this prop-

erty). The set of all characters form an orthonormal basis for V with respect

to the inner product 〈φ, ψ〉 = E
[
φ(x)ψ(x)

]
. Therefore all functions in V

can be written as a linear combination of the characters.

The elements of V are often referred to as polynomials. The reason for

this is as follows. If we view the domain of φ as {1,−1}n rather than {0, 1}n,

then observe that the characters take the form

χS(x) =
∏
i∈S

xi.
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That is, each character is a multilinear 3 monomial and the Fourier expansion

of φ is simply a multilinear polynomial representation of the function. There

is no real difference between the two representations and we will stick with

the domain {0, 1}n.

Since B ⊂ V , every boolean function f : {0, 1}n → {1,−1} also has a

Fourier expansion:

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

In essence, Fourier analysis of boolean functions is the study of boolean

functions by looking at the information of how well the function correlates

with different parity functions. This point of view turns out to be quite

fruitful and we will see several applications of it in this thesis.

Let us now dive a little deeper and try to explore interesting features

of Fourier analysis. We start with the most fundamental and essential fact,

often called Parseval’s Identity, which forms the bridge between the usual

representation of a function in terms of the values {φ(x) | x ∈ {0, 1}n} and

the Fourier representation in terms of the Fourier coefficients {φ̂(S) | S ⊆
[n]}. It states that the inner product we defined for V (i.e. the expected

value of the product of the functions) is the usual dot product of the Fourier

coefficients.

Fact 2.3.1 (Parseval’s Identity). For φ, ψ ∈ V,

〈φ, ψ〉 =
∑
S⊆[n]

φ̂(S)ψ̂(S).

Remark. Sometimes the above fact is called Plancherel’s Theorem and the

special case of φ = ψ is called Parseval’s Identity. For convenience we call

the general case Parseval’s Identity.

3Multilinear means that each variable has exponent 0 or 1.
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Proof. The proof simply substitutes the Fourier expansion of φ and ψ in

the definition of the inner product and then uses the orthonormality of the

characters:

〈φ, ψ〉 = E [φ(x)ψ(x)] = E

∑
S⊆[n]

φ̂(S)χS(x)
∑
T⊆[n]

ψ̂(T )χT (x)


=
∑
S,T

φ̂(S)ψ̂(T )E [χS(x)χT (x)] =
∑
S

φ̂(S)ψ̂(S).

A basic corollary of this fact is that for boolean functions,
∑

S f̂(S)2 =

1. This is easy to see by substituting φ = ψ = f in Parseval’s Identity.

This allows us to view the squares of the Fourier coefficients of a boolean

function as a probability distribution over the sets S ⊆ [n]. We will call

this the Fourier distribution. In many different settings, how close this

distribution is to the uniform distribution determines how complex a function

is. There are of course various ways to measure how close a distribution is to

the uniform distribution and which one to use depends on the context and

application.

The previous paragraph in fact outlines a general theme about how Fourier

analysis is used in computational complexity theory. In many different set-

tings, the hardness of a function exposes itself in the function’s Fourier expan-

sion. In other words, different analytic measures associated with the Fourier

coefficients of f can be good approximations to how complex the function

is e.g. in communication complexity, circuit complexity, learning theory etc.

Let us now define some of these useful measures.

The degree of a function φ is the degree of the multilinear polynomial

representation of φ. In other words, degree of φ, denoted deg(φ), is defined

as max{|S| : φ̂(S) 6= 0}. The monomial complexity of φ is the number

of monomials in its polynomial representation, i.e. |{S | φ̂(S) 6= 0}|. We
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denote it by mon(φ).

The usual Lp norms are defined as:

‖φ‖p = E [|φ(x)|p]1/p .

With respect to the Fourier coefficients, we define

‖φ̂‖p =

(∑
S

|φ̂(S)|p
)1/p

.

Recall that Parseval’s Identity implies ‖φ‖2 = ‖φ̂‖2 and for boolean functions

this quantity is 1. We characterize this situation by saying that the total L2

mass of a boolean function is 1. Other interesting Lp norms are the Fourier

L1 norm and the Fourier L∞ norm. For a boolean function we have

1 ≤ ‖f̂‖1 ≤ 2n/2.

The lower bound follows from the fact that ‖f̂‖1 ≥ ‖f̂‖2 and the upper bound

follows from the Cauchy-Schwarz inequality and ‖f̂‖2 = 1. Also we have

1

2n/2
≤ ‖f̂‖∞ ≤ 1.

The lower bound follows from the fact that ‖f̂‖2
2 ≤ 2n maxS f̂(S)2 and the

upper bound follows from ‖f̂‖∞ ≤ ‖f̂‖2. The Fourier L1 and L∞ norms are

measures of how close the Fourier distribution is to the uniform distribution.

In fact the Fourier L1 norm corresponds to the Rényi entropy of order 1/2

of the Fourier distribution:4

H1/2[φ̂2] = 2 log

(∑
S

|φ̂(S)|

)
= 2 log ‖φ̂‖1.

The Fourier L∞ norm corresponds to the min-entropy:

H∞[φ̂2] = − log ‖φ̂‖2
∞.

4For α > 0 and α 6= 1, the Rényi entropy of order α is defined as Hα(X) =
1

1−α log
(∑

x∈X Pr [X = x]
α)

.
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For boolean functions, at the one extreme we have the constant function

f ≡ 1, with ‖f̂‖1 = ‖f̂‖∞ = 1. On the other extreme, the inner-product

function satisfies |f̂(S)| = 1/2n/2 for all S, i.e., its Fourier distribution is

uniform. Therefore ‖f̂‖∞ = 1/2n/2 and ‖f̂‖1 = 2n/2.

Let us move on to other useful measures that can serve as the complexity

of a boolean function. We say that φ ∈ V sign represents a boolean function

f if φ(x)f(x) > 0 for all x, in other words, f(x) = sign(φ(x)) for all x. The

sign degree of f , denoted deg±(f), is the minimum degree of a function

φ that sign represents f . Similarly, the sign monomial complexity of

f , denoted mon±(f), is the minimum monomial complexity of a function φ

that sign represents f . As an example, first consider the majority function.

Observe that maj(x) = sign((−1)x1 + · · ·+(−1)xn−0.5) and so deg±(maj) =

1 and mon±(maj) ≤ n+ 1. On the other hand, it is quite straightforward to

show that the parity function satisfies deg±(par) = n. Let φ sign represent

par. Then 〈φ,par〉 > 0 by definition of sign representation. Because par =

χ[n] and the characters are orthogonal, we have 〈φ,par〉 = 0 for any φ with

deg(φ) ≤ n−1. Therefore the function φ that sign represents par must have

degree n. It is also not too difficult to show that mon±(ip) ≥ 2n/2. In fact a

classic result of Bruck [Bru90] shows that mon±(f) ≥ ‖f̂‖−1
∞ .

A function φ ε-approximates f if for all x, |φ(x)− f(x)| ≤ ε. In other

words, φ approximates f within ε in the infinity norm: ‖f−φ‖∞ ≤ ε. We can

define ε-approximate degree (ε-approximate monomial complexity,

ε-approximate p-norm) as the minimum degree (monomial complexity, p-

norm) of a function that ε-approximates f . We denote these quantities by

degε(f),monε(f) and ‖f̂‖p,ε. We think of ε as a fixed constant in the range

[0, 1] such as 1/3. A classic result of Paturi [Pat92], that has found many

applications in theoretical computer science, characterizes the approximate

degree of all symmetric functions. Let t0(f) ∈ [bn/2c] and t1 ∈ [dn/2e] be

the minimum integers such that f(i) = f(i+ 1) for all i ∈ [t0(f), n− t1(f)].
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Theorem 2.3.2 ([Pat92]). For f : {0, 1}n → {1,−1} a symmetric function,

deg1/3(f) = Θ
(√

n(t0(f) + t1(f))
)
.

All these measures deg(f), mon(f), ‖f̂‖p, deg±(f), mon±(f), degε(f),

monε(f), ‖f̂‖p,ε can serve as a reasonable measure of complexity of f de-

pending on the particular context. Note that by definition we have

deg±(f) ≤ degε(f) ≤ deg(f),

mon±(f) ≤ monε(f) ≤ mon(f),

and

‖f̂‖p,ε ≤ ‖f̂‖p.

2.3.1 Noise Stability

In this subsection we will introduce a very important concept in Fourier

analysis of boolean functions: the noise operator and noise stability. In

many different situations, the noise operator serves as the crucial connection

between the combinatorial properties of a boolean function and its Fourier

properties.

We begin by defining the noise operator. For x ∈ {0, 1}n and ρ ∈ [0, 1],

we say that y is a ρ-noisy copy of x, denoted y ∼ρ x, if y is such that for

each i ∈ [n] independently, we have:

yi =


xi with probability ρ,

0 with probability 1−ρ
2

,

1 with probability 1−ρ
2

.

We also write yi ∼ρ xi when the coordinates have the above relation. We

write y ∼ρ x when x is uniformly distributed over {0, 1}n and y is then

chosen to be a ρ-noisy copy of x. Note that we have symmetry: y has

uniform distribution over {0, 1}n and x ∼ρ y.



2.3. Fourier Analysis of Boolean Functions 62

For φ : {0, 1}n → R, we define the noise operator Tρ to be such that

Tρφ(x) = Ey∼ρx [φ(y)] .

It is easy to check that Tρ is linear in the sense that

Tρ(φ+ cψ) = Tρφ+ cTρψ.

Now let us see how Tρ affects a function’s Fourier expansion.

Proposition 2.3.3. Let φ : {0, 1}n → R. Then,

Tρφ =
∑
S⊆[n]

ρ|S|φ̂(S)χS.

Proof. Since Tρ is a linear operator, it suffices to show that TρχS = ρ|S|χS,

which is quite straightforward:

TρχS(x) = Ey∼ρx [χS(y)] = Ey∼ρx

[∏
i∈S

(−1)yi

]
=
∏
i∈S

Eyi∼ρxi [(−1)yi ]

=
∏
i∈S

ρ(−1)xi = ρ|S|χS.

This proposition shows that the noise operator dampens the high de-

gree Fourier coefficients and the dampening increases exponentially with the

degree.

With regards to boolean functions, our main interest will be in how sen-

sitive a function is when noise is applied to its input. To measure this, we

look at the correlation of the function with its noisy version. More formally,

define the noise stability of a function φ : {0, 1}n → R to be

Stabρ(φ)
def
= Ey∼ρx [φ(x)φ(y)] .
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For boolean functions f , this corresponds to

Pr [f(x) = f(y)]−Pr [f(x) 6= f(y)] .

By the definition of the noise operator, we can equivalently write

Stabρ(φ) = Ex∼U [φ(x)Tρφ(x)] = 〈φ, Tρφ〉.

Using Parseval’s identity and Proposition 2.3.3, we see that the noise stability

of a function has a clean Fourier formula:

Stabρ(φ) = 〈φ, Tρφ〉 =
∑
S⊆[n]

ρ|S|φ̂(S)2.

This in particular shows that the noise stability of a function is always non-

negative, which is not immediately obvious from the original definition of

noise stability. Also observe that the above formula implies that noise stable

functions must have significant Fourier weight on the low degree coefficients.

This intuitively makes sense too since high degree characters are very noise

sensitive.



CHAPTER 3

NOF Communication Complexity of Composed Functions

Two of the most well-known and studied functions in the standard two party

as well as the multiparty models are the generalized inner product function

GIP and the disjointness function DISJ. The GIP function is a hard func-

tion (or conjectured to be hard) in almost every model of communication

complexity. As such, strong lower bounds can be proven for many different

kinds of boolean circuits using GIP [HG91, Nis93, FKL+01, Gro98]. It is

also used in obtaining decision tree lower bounds [Nis93], in the construction

of pseudorandom generators, time/space trade-offs for Turing Machines and

branching program lower bounds [BNS92].

The DISJ function, unlike GIP, is easy in the non-deterministic model.

Proving lower bounds for DISJ in the randomized model even for 2 players

was a major challenge. A strong lower bound for 3 players has been proven

only very recently [LS09, CA08]. Both the 2 player and multiplayer lower

bounds on DISJ lead to the development of interesting techniques and a

64
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deeper understanding of communication complexity in general. Apart from

this, the interest in studying DISJ also stems from the fact that it is very

suitable for reductions: communication complexity lower bounds for DISJ

(and slight variations) have been successfully used to give lower bounds in the

context of data streaming [AMS99], proof complexity [BPS07], data struc-

tures [MNSW98], game theory [CS04, NS06], boolean circuits [NW93], and

property testing [BBM11].

The functions GIP and DISJ have the following composed structure.

Let f : {0, 1}n → {−1, 1} and g : {0, 1}k → {0, 1} be two functions. Define

f ◦ g(x1, . . . , xk) = f(. . . , g(x1,i, x2,i, . . . , xk,i), . . .), where xj,i denotes the ith

coordinate of the n-bit string xj. In this notation, GIP = mod2 ◦ and and

DISJ = nor ◦ and, where nor is the negation of or. Many other im-

portant and well-studied functions in communication complexity are also

composed. In both the two party and the multiparty models, functions

of the form f ◦ and have been studied extensively [Raz95, Raz03, Kla07,

She07, SZ09b, LS09, CA08, BHN09], with an emphasis on sym◦and, where

sym represents a symmetric function. For instance, in the important paper

[Raz03], Razborov shows that the 2 party quantum and classical communi-

cation complexities of sym ◦ and are polynomially related. Functions of the

form f ◦ xor have also received a lot of attention in the 2 player setting

[Raz95, Kla07, SZ09a, MO09], especially the Hamming distance problem

thrt ◦ xor where thrt is a threshold function.1 Notably, Shi and Zhang

[SZ09a] obtain 2 party classical and quantum equivalence of functions of the

form sym ◦ xor.

In this chapter, we study the multiparty communication complexity of

composed functions with two goals in mind. The first goal is to better un-

derstand the power of log n and more players. The second and more general

1Even though xor and mod2 both represent the parity function, we use the notation

xor for an inside function g and mod2 for an outside function f .
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goal is to understand which combinations of the “inside” function g and

the “outside” function f lead to hard communication problems and which

combinations lead to easy communication problems. The focus of previ-

ous research has been on proving lower bounds for composed functions by

selecting a “hard” outside function and a convenient inside function (see

e.g., [She07, SZ09b, LS09, CA08, BHN09, LZ10]). Our approach is to study

composed functions without putting any restriction on g and obtain char-

acterizations for the communication complexity of composed functions with

respect to the choice of g. This dual approach is particularly interesting in

the multiparty setting where the choice for g increases double exponentially

in k.

First we study functions of the form sym ◦ g in the setting of log n and

more players. As discussed in Chapter 1, a natural question is whether any

of these functions can break the log n barrier. In particular, functions of the

form maj ◦ g for some specific g have been considered as possible candidates

(see e.g., [BKL95, BGKL03]). In Section 3.1 we show that for any g, sym◦g
has an efficient simultaneous protocol for more than log n many players.

Second, we study functions of the form maj◦g, modm◦g and nor◦g in the

setting of less than log n many players. The latter two are generalizations of

GIP and DISJ respectively. We characterize the communication complexity

of these functions with respect to the choice of g. This in particular allows us

to show that such functions have polynomially related quantum and classical

communication complexities. These results are presented in Sections 3.2,

3.3 and 3.4. It is worth mentioning that our upper bounds for maj ◦ g and

modm◦g have a natural Fourier analytic reinterpretation. Some readers may

find this point of view more natural and intuitive and so we present this in

Section 3.5.

Although all our lower bounds apply in the quantum model, we will state

them using classical communication complexity notation.
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3.1 sym ◦ g

In this section we present a deterministic protocol for sym◦g where sym de-

notes an arbitrary symmetric function and g is an arbitrary boolean function.

The protocol becomes simultaneous and efficient when k > 1 + log n.

A multiparty non-simultaneous protocol for such a function, GIP =

mod2 ◦ and, was first discovered by Grolmusz [Gro94]. This protocol is

non-trivial for all k but only efficient when k reaches log n (the complexity is

similar to Theorem 3.1.2 part (a)). It is not difficult to see that the protocol

also works for sym ◦ and. Later Pudlák [Pud06] gave a non-simultaneous

protocol for sym ◦ and, which can be considered as a very elegant reinter-

pretation of Grolmusz’s protocol (Pudlák’s protocol is described in detail in

[Cha08]). Babai et al. [BGKL03], using a new idea, obtained a simultaneous

protocol for sym◦g where g is a symmetric and compressible function, when

k > 1 + log n (see [BGKL03, Section 6] for the definition of a compressible

function). Although the class of symmetric compressible functions contains

natural functions like thrt and modm, this class is only a small portion of

all symmetric functions as a random symmetric function is not compressible

with high probability. Babai et al. [BGKL03] in fact identify the quadratic

character of the sum of bits function as a symmetric inside function g for

which their method fails.

We improve upon the result of [BGKL03] in two ways. First, we re-

move the symmetry and compressibility conditions on g and allow inside

function(s) to be selected arbitrarily, and second, we provide a non-trivial

protocol even when k ≤ 1 + log n. This rules out any function of the form

sym ◦ g as a candidate to break the log n barrier; this in particular rules out

functions of the form maj ◦ g, which have been studied before as possible

candidates.

We obtain our protocols in the non-simultaneous model by extending the
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ideas of Grolmusz and Pudlák. We combine this with a beautiful lemma of

Babai et al. [BGKL03, Lemma 6.10] in order to make our protocols simul-

taneous. Before we state this lemma and our result, let us first set some

notation.

We view an input (x1, x2, . . . , xk) ∈ ({0, 1}n)k to the players as a k × n
matrix X where the ith row of X is xi. We generalize the definition of a

composed function in the following way. Define f ◦ ~g, where f : {0, 1}n →
{±1}, ~g = (g1, . . . , gn) with gi : {0, 1}k → {0, 1}, by f ◦ ~g(x1, . . . , xk) =

f(. . . , gi(x1,i, x2,i, . . . , xk,i), . . .). That is, we apply gi to the ith column of X,

and then apply f to the resulting n-bit string to obtain the output. When

all the gi are the same function g, we recover f ◦ g. Let Hk denote the k

dimensional hypercube where the vertex set is {0, 1}k and there is an edge

between two vertices iff their Hamming distance is 1. Given an input in the

k × n dimensional matrix form X, we associate each column of X with the

corresponding vertex of Hk.

Lemma 3.1.1 ([BGKL03]). Suppose k > 1 + log n and let X be a k × n

boolean matrix given as an input for a k party communication problem. Let

ni be the number of columns of X with Hamming weight i. Then there is

a simultaneous deterministic protocol in which each player sends at most

O(k log n) bits to a referee, who then can compute ni for all i ∈ {0, . . . , n}.

We note that in the following theorem, it will be clear from the proof that

allowing different inner functions for different columns is important even to

handle functions f ◦ g when the number of players k � log n.

Theorem 3.1.2. Let f : {0, 1}n → {±1} be a symmetric function, g :

{0, 1}n → {0, 1} an arbitrary function, and ~g = (g1, . . . , gn) a vector of n

functions where gi : {0, 1}k → {0, 1} are arbitrary functions. Then,

(a) Dk(f ◦ ~g) ≤ O(n/2k · log n+ k log n),
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(b) for k > 1 + log n: D
||
k(f ◦ g) ≤ O(log3 n),

(c) for k > 1 + 2 log n: D
||
k(f ◦ ~g) ≤ O(log3 n).

Proof. We first prove part (a). Fix an input for f ◦ ~g given in k × n matrix

form X. The protocol proceeds in two steps. In the first step, the players

determine the column positions of some u ∈ Hk. Later, they use this to

compute the output of f ◦ ~g.

We now describe the first step. Let X≥3 denote the (k−2)×n dimensional

submatrix ofX where the first two rows are deleted. SinceX≥3 has n columns

and there are 2k−2 possible strings of length k − 2, the string s ∈ {0, 1}k−2

that appears the least number of times as a column of X≥3 appears at most

n/2k−2 times. Without any communication, Player 1 and Player 2 can agree

on this string (breaking ties in say lexicographical order). Player 2, using

at most n/2k−2 bits of communication, can send Player 1 the bits on Player

1’s forehead corresponding to the positions that string s appears. With

this information, Player 1 knows the positions of four vertices 00s, 01s, 10s

and 11s. Now Player 1 can announce one of these vertices (call it u) and the

column indices corresponding to u. The total cost is at most O((n/2k) log n).

We proceed to step 2. Observe that the columns corresponding to u are

taken care of, that is, we already know the value gj(u) where j is a column

index corresponding to u. Let Sj = g−1
j (1). For v ∈ {0, 1}k, let 1j(v) = 1 if

v is in column j, and 1j(v) = 0 otherwise. To compute the output of f ◦ ~g,

it suffices to compute ∑
j

∑
v∈Sj

1j(v), (3.1)

where the outer sum is over all column indices that do not correspond to u.

Consider a shortest path from v to u in Hk: v = w1, w2, . . . , wt = u. Observe

that since 1j(u) = 0,

1j(v) =
t−1∑
i=1

(−1)i+1(1j(wi) + 1j(wi+1)). (3.2)
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Each term (1j(wi) + 1j(wi+1)) is known by some player because wi and wi+1

differ only in one coordinate. To compute (3.1), each player announces her

part of the sum. Since
∑

j

∑
v∈Sj 1j(v) ≤ n, it suffices for players to send

their part of the sum modulo n + 1. Therefore this step of the protocol has

cost at most k · dlog(n+1)e. This completes the proof of part (a). Note that

the second step of the protocol is simultaneous while the first step is not.

When k is sufficiently large, we bypass the first step using Lemma 3.1.1.

We now prove part (c). Let ` = 2+2 log n. For bit strings u and v, let u·v
be the concatenation of u and v. Only the first ` players will speak. For each

column j, the rows `+1 to k naturally induce a function g′j : {0, 1}` → {0, 1};
g′j(u) = gj(u · v) where v ∈ {0, 1}k−` appears in column j from row ` + 1 to

k. Thus our task reduces to finding a protocol for f ◦ ~g′ with ` players. From

now on we drop the superscript in g′j and denote it by gj.

As before we are interested in computing

n∑
j=1

∑
v∈Sj

1j(v). (3.3)

Let ~0 be the all 0 vertex. Let v ∈ Sj and let v = w1, . . . , wt = ~0 be a shortest

path between v and ~0. Then we have

1j(v) =
t−1∑
i=1

(−1)i+1(1j(wi) + 1j(wi+1)) + (−1)|v|1j(~0). (3.4)

Substitute (3.4) into (3.3). Since the quantity in (3.3) is at most n, we can

do arithmetic modulo n + 1. As before, each term (1j(wi) + 1j(wi+1)) in

the sum is known to a player so the part of the sum involving these terms

can be computed by the players using at most ` · dlog(n+ 1)e bits. For each

j ∈ {1, . . . , n}, we group the terms involving 1j(~0) when substituting (3.4)

into (3.3) (excluding the 1j(~0) appearing as 1j(wt) in the sum in (3.4)) and

let cj be the coefficient of 1j(~0) modulo n + 1. We also need to compute∑
j cj1j(

~0), which can be done as follows. From the original ` × n input



71 Chapter 3. NOF Communication Complexity of Composed Functions

matrix X, we create a new matrix X ′ by duplicating the jth column cj many

times. Note that X ′ has at most n2 columns so we can apply Lemma 3.1.1

on X ′ to compute the number of all 0 columns in X ′, which is exactly what

we want. This step has cost O(log3 n). So putting things together, we can

compute (3.3) with at most O(log3 n) bits of communication. The whole

protocol is easily seen to be simultaneous. This completes the proof of part

(c).

We conclude with the proof of part (b). The strategy is exactly the same

as above. We need to calculate
∑

j cj1j(
~0). Since all the gj are the same, cj =

c for all j for some c. So we want to compute c
∑

j 1j(~0), which is precisely

cn0 (n0 is defined in the statement of Lemma 3.1.1). We can compute n0

using Lemma 3.1.1 when k > 1 + log n. So putting things together, we can

compute (3.3) using at most O(k2 log n) bits of communication. Given part

(c), we are done.

Remark. For functions of the form sym ◦ g, we can make a small improve-

ment to part (a) and show Dk(sym◦g) ≤ O(n/2k−2+(k+1) log n) as follows.

In light of the proof of part (b) above, in step 1 of the protocol, all Player 1

needs to communicate is a vertex u and the number of occurrences of u. The

column indices corresponding to u are not needed. Thus the cost of step 1 is

at most n/2k−2 + k + dlog(n/2k−2)e = n/2k−2 + dlog ne+ 2. Combined with

step 2, the total cost is at most n/2k−2+(k+1)·dlog(n+1)e+2. Furthermore,

we can also improve part (c) when we allow ourselves to be non-simultaneous

and show Dk(sym ◦ ~g) ≤ O(log2 n). To see this, set ` = dlog(n + 1)e in the

proof of part (c). Observe that there is a vertex u ∈ {0, 1}` that does not

appear as a column in the first ` rows of the input matrix. Player k an-

nounces this vertex using ` bits. We replace ~0 with u in the proof and note

that 1j(u) = 0 for all j. Therefore the desired output can be computed using

` + ` · dlog(n + 1)e = dlog(n + 1)e2 + dlog(n + 1)e. These slightly improved

upper bounds will be used in Section 4.1.1.
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In what follows, we study the communication complexities of modm ◦ g,

maj ◦ g and nor ◦ g, for any boolean function g. All these functions are of

the form sym◦g and so for k > 1+log n, the O(log3 n) simultaneous commu-

nication complexity upper bound just presented applies to these functions.

We note that we will not mention this O(log3 n) upper bound explicitly and

consider ourselves in the setting of k ≤ 1 + log n.

3.2 modm ◦ g

Remark. All the lower bounds that will be presented in this and subsequent

sections apply in the quantum models. We however stick to the classical

communication complexity notation as in Chapter 2.

In this section, we determine the k-party communication complexity of

modm ◦ g, for every function g. Babai, Nisan and Szegedy [BNS92] show

a lower bound of Ω(n/4k) for the k-party randomized communication com-

plexity of generalized inner product GIP = mod2 ◦ and. Their proof is

later refined by [CT93, Raz00], where the technique of upper bounding the

discrepancy via the cube measure (Lemma 2.2.15) is introduced. Grolmusz

[Gro95] extends the analysis of [BNS92] to get an Ω(n/4k) lower bound for

modm ◦and, for constant m. Viola and Wigderson [VW08] obtain the same

result by extending the analysis of [CT93, Raz00].

We show that in general, the communication complexity of modm ◦ g
is determined by the quantity

∣∣|S0| − |S1|
∣∣, where Si is the subset of the

support of g that consists of all inputs whose Hamming weight has parity

i. (For the case where g = and, considered in the mentioned papers, the

support of g is (1, 1, . . . , 1), so
∣∣|S0| − |S1|

∣∣ = 1.) We prove a dichotomy for

the communication complexity of modm ◦ g. When m divides |S0| − |S1|,
we exhibit an efficient protocol by using ideas from the protocol for sym ◦ g
presented in the previous section. On the other hand, when m does not
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divide |S0|−|S1|, we show an Ω(n/m24k) lower bound (ignoring some additive

logarithmic factors). The case of m not dividing |S0| − |S1| is analysed in

two parts. When m and |S0| − |S1| are coprime, we use the Discrepancy

Method (Proposition 2.2.14) in conjunction with a careful analysis of the

cube measure (the expectation in Lemma 2.2.15) to obtain the desired lower

bound. We prove that there is also a strong lower bound for randomized

protocols in the remaining case (where m and |S0| − |S1| are not coprime

but m does not divide |S0|− |S1|) by giving a reduction to the previous case.

This reduction also uses ideas from our protocol for sym ◦ g.

In the analysis of discrepancy, we will make use of the characterization of

the modm function in terms of exponential sums. Fix 2 ≤ m ∈ N and 0 ≤
a, b ≤ m− 1. Let ω = e2πi/m be an m-th root of unity. For (y1, y2, . . . , yn) ∈
{0, 1}n the function expa,bm (y1, y2, . . . , yn) is defined to be

expa,bm (y1, y2, . . . , yn) = ωa((
∑n
j=1 yj)−b).

It is straightforward to check that for any b,

1

m

m−1∑
a=0

expa,bm (y1, y2, . . . , yn) ∈ {0, 1}

and

1

m

m−1∑
a=0

expa,0m (y1, y2, . . . , yn) = 1 if and only if modm(y1, y2, . . . , yn) = −1.

(3.5)

Before presenting the main result of this section, we first state a fact which

we need for our upper bound (when m divides |S0| − |S1|) and our reduction

(when m and |S0| − |S1| are not coprime but m does not divide |S0| − |S1|).
This fact essentially follows from the argument presented in the proof of

Theorem 3.1.2. Recall that Hk denotes the k-dimensional hypercube. For

each vertex v of the hypercube, we define nv to be the number of occurrences

of v as a column of X.
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Fact 3.2.1. Let S0 = {u1, . . . , ur} and S1 = {v1, . . . , vr} be two subsets of

the vertices of Hk such that for each i, the distance between ui and vi is odd.

The sum
∑r

i=1 nui +
∑r

i=1 nvi mod m can be computed by the players in the

simultaneous model using at most k · dlogme bits. Similarly, if for each i,

the distance between ui and vi is even,
∑r

i=1 nui −
∑r

i=1 nvi mod m can be

computed in the simultaneous model using at most k · dlogme bits.

Proof. Note that we are interested in computing
∑r

i=1(nui + nvi) mod m.

Each term (nui + nvi) can be written as a telescoping sum as in (3.2). Each

term in the telescoping sum is known by a player. Since we can do arithmetic

modulo m, the desired value can be computed with each player sending their

part of the sum modulo m. So the total cost is k · dlogme. The second part

holds similarly.

Theorem 3.2.2. Let m ≥ 2 be an integer, g : {0, 1}k → {0, 1} be a boolean

function and S = {y ∈ {0, 1}k : g(y) = 1} be its support. Define S0 =

{y ∈ S : y has even weight} and S1 = {y ∈ S : y has odd weight}. Then the

function modm ◦ g satisfies the following:

(a) If m divides |S0| − |S1|, then D
||
k(modm ◦ g) ≤ k dlogme.

(b) Otherwise, Rε
k(modm ◦ g) ≥ 5n

m24k
+ log(1− 2ε)− (k + 1)dlogme − 1.

Proof. Part (a): Suppose that m divides |S0|− |S1|; we will give an efficient

protocol for modm ◦ g. Assume without loss of generality that |S0| ≥ |S1|.
We choose (arbitrarily) a subset S ′0 ⊆ S0 of size |S1|. As the distance

between an element of S ′0 and an element of S1 is odd, we can compute∑
v∈S′0

nv +
∑

v∈S1
nv mod m using Fact 3.2.1. For the remaining elements

in S0 − S ′0, we simply pair them with ~0. Therefore, using Fact 3.2.1 once

again, we can compute (|S0|−|S1|)n~0 +
∑

v∈S0−S′0
nv ≡

∑
v∈S0−S′0

nv mod m.

Thus, we have computed
∑

v∈S0∪S1
nv mod m, from which the output of

modm◦g is determined. Observe that the sums
∑

v∈S′0
nv+

∑
v∈S1

nv mod m
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and
∑

v∈S0−S′0
nv mod m need not be computed separately and that we can

compute
∑

v∈S0∪S1
nv mod m in one shot using k dlogme bits of communi-

cation. (See Section 3.5 for a reinterpretation of this protocol in terms of

computing polynomials.)

Part (b), Case 1: We consider two cases, depending on whether m and

|S0| − |S1| are coprime or not. The first case is when m and |S0| − |S1| are

coprime.

For (y1, y2, · · · , yn) ∈ {0, 1}n, define fm(y1, . . . , yn) =
∑

j yj mod m.

Also for b ∈ {0, 1, . . . ,m − 1}, let f bm(y1, . . . , yn) = 1 if
∑

j yj ≡ b mod m,

and 0 otherwise. Note that f bm are 0/1 valued functions rather than ±1

valued like modm. We define Fm = fm ◦ g and F b
m = f bm ◦ g.

The strategy is as follows. Assume g is not constant. First note that by

an elementary argument, one can show that the fraction of points x with

Fm(x) = b is roughly (with an exponentially small error) 1/m for all b ∈
{0, 1, . . . ,m − 1}. It is possible to show that the same holds within any

cylinder intersection that is not very small by analysing the cube measure

of the functions expa,bm ◦ g with respect to the uniform distribution. This

step uses the assumption that |S0| − |S1| and m are coprime. It follows that

in any sufficiently large cylinder intersection, the number of points x with

F 0
m(x) = 1 is roughly the same as the number of points x with F 1

m(x) = 1.

Define the distribution µ that puts equal weight to all x with F 0
m(x) = 1 and

F 1
m(x) = 1. All other points get 0 weight. The discrepancy discµ(modm ◦ g)

can now be easily upper bounded and this yields the desired lower bound via

the Discrepancy Method (Proposition 2.2.14).

We now flesh out the above strategy. Let C be a cylinder intersection and

U denote the uniform distribution over ({0, 1}n)k. We will denote by φ the
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characteristic function of C. For any b, we have

E
[
F b
m(x)φ(x)

]
= E

[
1

m

m−1∑
a=0

expa,bm ◦ g(x)φ(x)

]

=
1

m

m−1∑
a=0

E
[
expa,bm ◦ g(x)φ(x)

]
,

where all the expectations are with respect to the uniform distribution. The

term corresponding to a = 0 contributes 1
m
|C|
2nk

to the sum, and thus we can

write
1

m

|C|
2nk
− error ≤ E

[
F b
m(x)φ(x)

]
≤ 1

m

|C|
2nk

+ error, (3.6)

where error = 1
m

∑m−1
a=1

∣∣E [expa,bm ◦ g(x)φ(x)
]∣∣. Note that the terms of this

sum are exactly discU(expa,bm ◦ g, C), which can be upper bounded using the

cube measure (Lemma 2.2.15). The following lemma gives an upper bound

on the cube measure of expa,bm ◦ g.

Lemma 3.2.3. Assume m and |S0| − |S1| are coprime. Then for any a ∈
{1, 2, . . . ,m− 1} and b ∈ {0, 1, . . . ,m− 1},

EU(expa,bm ◦ g) ≤ 1

e8n/(m22k)
.

We defer the proof of this lemma to the end of the section to not break

the flow. We can now upper bound the error:

error <
1

e8n/(m24k)
.

From this, it easily follows that the number of points with F 0
m(x) = 1 is very

close to the number of points with F 1
m(x) = 1, with exponentially small error:∣∣E [(F 0

m(x)− F 1
m(x))φ(x)

]∣∣ =
∣∣E [F 0

m(x)φ(x)
]
− E

[
F 1
m(x)φ(x)

]∣∣
≤ 2 · error.
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Recall the definition of µ, and let α > 0 be the non-zero weight that µ assigns

to a point in the support of F 0
m and F 1

m. Then,

discµ(modm ◦ g, C) =

∣∣∣∣∣∑
x

modm ◦ g(x)φ(x)µ(x)

∣∣∣∣∣
= α ·

∣∣∣∣∣∣∣
∑
x:

F 0
m(x)=1 or F 1

m(x)=1

modm ◦ g(x)φ(x)

∣∣∣∣∣∣∣
= α ·

∣∣∣∣∣∑
x

(F 0
m(x)− F 1

m(x))φ(x)

∣∣∣∣∣
= α · 2nk ·

∣∣E [(F 0
m(x)− F 1

m(x))φ(x)
]∣∣

≤ α · 2nk · 2 · error.

We can get a bound on α · 2nk as follows. Note that the whole input

space ({0, 1}n)k is a cylinder intersection and so we can use (3.6) to ob-

tain E [F 0
m(x)] = 1/2nk · |support(F 0

m)| = 1/m ± error. Similarly we have

1/2nk · |support(F 1
m)| = 1/m ± error. Since α · 2nk = 2nk/(|support(F 0

m)| +
|support(F 1

m)|), we get

α · 2nk ≤ 1

2/m− 2 · error
.

Putting things together we get

1

discµ(modm ◦ g, C)
≥ 1/m− error

error
≥ e8n/(m24k)

m
− 1 ≥ 211n/(m24k)

m
− 1.

Finally, we can apply the discrepancy method to conclude

Rε
k(modm ◦ g) ≥ 11n

m24k
+ log(1− 2ε)− logm− 1. (3.7)

Part (b), Case 2: We now consider the case where m does not divide

|S0|− |S1|, but gcd(m, |S0|− |S1|) > 1. The lower bound here is obtained via

a reduction to the previous case. We assume for the remainder of the proof
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that |S0| − |S1| > 0. The case |S0| − |S1| < 0 can be handled in the same

way. Let 1 < d = gcd(m, |S0| − |S1|), and let m = dq and |S0| − |S1| = dr,

where q and r are coprime integers. Because m does not divide |S0| − |S1|,
q ≥ 2. Our strategy is to use a protocol for modm ◦ g in order to construct a

protocol for modq ◦ g′ for some function g′ for which we can apply the lower

bound on the randomized communication complexity given in (3.7).

We start by partitioning the set S0 into sets S ′0, T1, . . . , Td with |S ′0| = |S1|
and |T1| = · · · = |Td| = r. Let g′ be the function whose support is T1. Note

that the support of g′ has size r and consists only of inputs of even Hamming

weight. So we can apply the lower bound (3.7) to modq ◦ g′ since q and r are

coprime.

Using a protocol for modm ◦ g (with inputs from {0, 1}k×n), we will con-

struct a protocol for modq ◦ g′ as follows. Let the input for modq ◦ g′ be

X ∈ {0, 1}k×n′ (we’ll make the relation between n and n′ explicit shortly).

Recall that for each v ∈ {0, 1}k, nv denotes the number of occurrences of

v as a column of X. First, using Fact 3.2.1 we can compute
∑

v∈S′0∪S1
nv

mod m using k dlogme bits of communication. Again using Fact 3.2.1, for

any ` ∈ {2, . . . , d}, the difference
∑

v∈T` nv −
∑

v∈T1 nv mod m can also be

computed at a cost of k dlogme bits. As a result, we can compute∑
v∈S′0∪S1

nv +
d∑
`=2

(∑
v∈T`

nv −
∑
v∈T1

nv
)
≡
∑
v∈S

nv − d
∑
v∈T1

nv mod m.

Let s = s(X) denote this number. Observe that
∑

v∈T1 nv ≡ 0 mod q if

and only if d
∑

v∈T1 nv ≡ 0 mod m. So
∑

v∈T1 nv ≡ 0 mod q if and only if∑
v∈S nv ≡ s mod m. The latter can be determined by running the protocol

for modm ◦ g on the input which is obtained from X (viewed as an k × n′

array) by appending m− s columns all of which belong to S.

In short, the protocol for modq ◦ g′ on inputs from ({0, 1}n′)k consists of

two steps: First, the players compute s. Then they simulate the protocol for

modm◦g on the input of size ({0, 1}n)k specified above, where n = n′+(m−s).
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Suppose that we can use c bits to compute modm ◦ g(X) when X is of

size k × n. Then the cost of the above protocol is c + k dlogme. Using the

fact that n′ = n− (m− s) > n/2, and (3.7), we conclude

c+ kdlogme ≥ 5n

m24k
+ log(1− 2ε)− logm− 1.

That is,

Rε
k(modm ◦ g) ≥ 5n

m24k
+ log(1− 2ε)− (k + 1)dlogme − 1.

Corollary 3.2.4. If g : {0, 1}k → {0, 1} has even support size, then D
||
k(mod2◦

g) ≤ k. Otherwise, Rε
k(mod2 ◦ g) ≥ n

4k
+ log(1− 2ε)− k − 2.

Proof of Lemma 3.2.3

By definition of the cube measure, we have

EU(expa,bm ◦ g) = Ex0
1,x

0
2,...,x

0
k

x1
1,x

1
2,...,x

1
k

 ∏
u∈{0,1}k

Cu1+···+uk(expa,bm ◦ g(xu11 , . . . ,x
uk
k ))


= Ex0

1,x
0
2,...,x

0
k

x1
1,x

1
2,...,x

1
k

 ∏
u∈{0,1}k

Cu1+···+uk
(
ωa

∑n
j=1 g(x

u1
1,j ,x

u2
2,j ,...,x

uk
k,j)−ab

) .
In the exponent of ω, we can safely ignore ab since exactly half of the terms

in the product are conjugated. So without loss of generality we assume b = 0.

The first standard step is to write the exponential sum in the cube mea-

sure as an n-fold product, interchange the two products, and then finally

interchange the n-fold product and the expectation using the independence

of the coordinates. This way, the cube measure EU(expa,0m ◦g) can be written

as the n-fold product of the cube measure of ωa·g(y1,...,yk). That is,

EU(expa,0m ◦ g) =

(
Ey0

1,...y
0
k

y1
1,...,y

1
k

[
ω
a
∑

(u1,...,uk)∈{0,1}k
(−1)u1+···+uk ·g(yu11 ,...,y

uk
k )
])n

,
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where in the expectation, y0
j and y1

j are independent and uniformly dis-

tributed over {0, 1}.
Observe that for every setting of y0

j , y1
j (for 1 ≤ j ≤ k) where y0

j = y1
j

for some j, the sum in the exponent is 0, and thus the expression inside the

expectation evaluates to 1. This happens with probability (1 − 1
2k

). Now

consider a setting of y0
j , y1

j (for 1 ≤ j ≤ k) where y0
j 6= y1

j for all 1 ≤ j ≤ k.

Simply write yj for y0
j . Then we can nicely write yuj as yj ⊕ u, for u ∈ {0, 1}.

Consequently,∑
(u1,...,uk)∈{0,1}k

(−1)u1+···+ukg(yu11 , . . . , y
uk
k )

=
∑

(u1,...,uk)∈{0,1}k
(−1)u1+···+ukg(y1 ⊕ u1, . . . , yk ⊕ uk).

By letting vi = yi ⊕ ui, the last sum becomes

(−1)y1+···+yk
∑

(v1,...,vk)∈{0,1}k
(−1)v1+···+vkg(v1, . . . , vk)

= (−1)y1+···+yk
∑

(v1,...,vk)∈S

(−1)v1+···+vk = (−1)y1+···+yk(|S0| − |S1|).

This is either |S0| − |S1| or |S1| − |S0|, depending on the parity of y1 + y2 +

· · · + yk. Among all tuples (y1, y2, . . . , yk), exactly half of them have even

parity. As a result,

Ey0
1,...y

0
k

y1
1,...,y

1
k

[
ωa

∑
u∈{0,1}k (−1)u1+···+uk ·g(yu11 ,...,y

uk
k )
]

= (1− 1

2k
) +

ωa(|S0|−|S1|) + ωa(|S1|−|S0|)

2k+1

= (1− 1

2k
) +

Re(ωa(|S0|−|S1|))

2k

= 1−
1− cos

(
2π
m
· a(|S0| − |S1|)

)
2k

= 1− 2 sin2(a(|S0| − |S1|)π/m)

2k
.
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Because m and |S0|−|S1| are coprime, a(|S0|−|S1|)π/m is not a multiple

of π, for 1 ≤ a ≤ m − 1. So sin2(a(|S0| − |S1|)π/m) ≥ sin2(π/m) ≥ 4/m2.

(Here we use the fact that sin(x) ≥ 2x/π for 0 ≤ x ≤ π/2.) Thus,

EU(expa,0m ◦ g) ≤
(
1− 8

m22k
)n ≤ 1

e8n/(m22k)
.

3.3 maj ◦ g

It is not difficult to show that the maj ◦ g functions are the hardest among

the functions of the form sym◦ g.2 Recall that for a function f , the notation

fn
′

means that f ’s input is an n′-bit string.

Proposition 3.3.1. Let g : {0, 1}k → {0, 1} be a boolean function and f :

{0, 1}n → {−1, 1} be a symmetric function on n variables. For any ε ≥ 0,

Rε′

k (f ◦ g) ≤ Rε
k(maj

2n ◦ g) · dlog(n+ 1)e ,

where ε′ = ε dlog(n+ 1)e.

Proof. If g is constant, the statement clearly holds. We assume g is not

constant in the following. By a binary search strategy we will show how to use

a communication protocol for maj2n◦g to compute a function f ◦g. Consider

a randomized protocol with cost c computing maj2n ◦ g with error ε. We are

going to use this protocol to build a protocol that determines the number,

w, of ones in {g(x1,1, . . . , xk,1), . . . , g(x1,n, . . . , xk,n)}. Since f is symmetric,

f ◦ g(x1, . . . , xk) can then be computed from w without communication.

The binary search algorithm for computing w proceeds in stages. During

the search we maintain the condition that w ∈ [`, u] for some interval [`, u]

whose length is halved after each stage. Initially, ` = 0 and u = n. Suppose

2The fact that maj is “hardest” among all symmetric functions is not unique to com-

munication complexity.
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that at some stage we have ` ≤ w ≤ u. In order to determine the values `′, u′

for the next stage, we will determine whether w ≤
⌊
`+u

2

⌋
or not. Then, if

w ≤
⌊
`+u

2

⌋
, we set `′ = ` and u′ =

⌊
`+u

2

⌋
, otherwise we set `′ =

⌊
`+u

2

⌋
+ 1 and

u′ = u. Clearly, it takes at most dlog(n+ 1)e stages to arrive at the exact

value of w.

Players use a protocol for maj2n ◦ g to compare w and
⌊
`+u

2

⌋
as fol-

lows. As g is not constant, we can define auxiliary input variables x′1, . . . , x
′
k,

all of which are bit strings of length n, such that the number of ones in

g(x′1,1, . . . , x
′
k,1), . . . , g(x′1,n, . . . , x

′
k,n) is exactly n−

⌊
`+u

2

⌋
. Now run the pro-

tocol for maj2n ◦ g on the input x1x
′
1, . . . , xkx

′
k, where each xix

′
i is a 2n-bit

string obtained by concatenating xi and x′i. Clearly the output of this pro-

tocol tells us whether w ≤
⌊
`+u

2

⌋
or not.

We now analyse the error and communication cost of this protocol. Since

there are dlog(n+ 1)e stages, the total cost is at most dlog(n+ 1)e times the

cost for the majority protocol. Also, by a union bound, the protocol makes

an error with probability at most dlog(n+ 1)e · ε.

We can combine Proposition 3.3.1 with our lower bounds for modm ◦
g functions (Theorem 3.2.2) to obtain a dichotomy for the communication

complexity of maj ◦ g for every g.

Theorem 3.3.2. Let g : {0, 1}k → {0, 1} be a boolean function and S = {y ∈
{0, 1}k : g(y) = 1} be its support. Define S0 = {y ∈ S : y has even weight}
and S1 = {y ∈ S : y has odd weight}. Then the function maj ◦ g satisfies the

following:

• If |S0| = |S1|, then D
||
k(maj

n ◦ g) ≤ k · dlog(n+ 1)e.

• Otherwise, R
1/3
k (majn ◦ g) ≥ Ω

(
n

(k log k)2·4k logn log logn

)
.

Proof. The case where |S0| = |S1| follows from Fact 3.2.1 by setting m =

n + 1. (See Section 3.5 for a reinterpretation of this protocol in terms of

computing polynomials.)
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Now consider the case where |S0| 6= |S1|. We use Proposition 3.3.1 to

prove a lower bound on the randomized communication complexity of maj2n◦
g. Observe that for some large enough constant c,

∏
p≤ck log k:p prime p > 2k ≥

||S0| − |S1|| because there are at least k primes in the set {2, 3, . . . , ck log k}.
Thus, there exists a prime m ≤ ck log k that does not divide |S0|− |S1|. Now

applying Proposition 3.3.1 with ε = 1
3dlog(n+1)e , together with Theorem 3.2.2,

and also using m ≤ k log k and k ≤ log n, we get

Rε
k(maj

2n ◦ g) ≥ R
1/3
k (modm ◦ g)/ dlog(n+ 1)e

≥ Ω

(
n

(k log k)2 · 4k log n
− log log n

)
.

By a standard boosting argument (i.e., repeating a protocol with constant

error probability t times and taking the majority vote to reduce the error

probability to exponentially small in t) we have

R
1/3
k (maj2n ◦ g) ≥ Ω

(
n

(k log k)2 · 4k log n log log n

)
.

Finally, since maj2n+1 ◦ g is at least as hard as maj2n ◦ g, we obtain the

desired result.

To illustrate the above theorem, we apply it to some natural choices

of inner functions g (omitting the details). Recall thrt(y1, . . . , yk) = 1 if∑
yi ≥ t and thrt(y1, . . . , yk) = 0 otherwise. If g is the threshold function

thrt for some 0 < t < n, then it is simple to show that maj ◦thrt is always

a hard function as long as the number of players is at most ≈ 1
2

log n. The

functions maj ◦ modm exhibit an interesting behaviour: For even m, the

function maj ◦ modm is always hard as long as the number of players is at

most ≈ 1
2

log n. By contrast, for odd m, it has an efficient protocol for some

values of k, namely when k is an odd multiple of m.

Theorem 3.3.2 can also be used to determine the communication complex-

ity of a class of functions considered by Babai et al. [BGKL03]. For an odd
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prime k, define the function qcsbk : {0, 1}k → {0, 1} by qcsbk(y1, . . . , yk) =

1 if and only if y1 + · · · + yk is a quadratic residue modulo k. Recall that

z ∈ Fk is a quadratic residue if there exists a ∈ Fk such that z = a2. The au-

thors of [BGKL03] prove that qcsbk is not ‘compressible’, so their protocol

does not apply for sym◦qcsbk. They leave as an open question the problem

of finding good upper or lower bounds for the communication complexity of

the function maj◦qcsbk. The following corollary completely determines the

hardness of this function for any number of players k, except in the range

between ≈ 1
2

log n and log n.

Corollary 3.3.3. Let k be an odd prime.

• If k ≡ 1 mod 4, then D
||
k(maj ◦ qcsbk) ≤ O(k log n).

• If k ≡ 3 mod 4, then R
1/3
k (maj ◦ qcsbk) ≥ Ω

(
n

(k log k)24k logn log logn

)
.

• If k > 1 + log n, then D
||
k(maj ◦ qcsbk) ≤ O(log3 n).

Proof. Let S be the support of qcsbk and define S0 and S1 as in Theorem

3.3.2. It is known that when k ≡ 1 mod 4, z ∈ {0, . . . , k− 1} is a quadratic

residue modulo k if and only if −z ≡ k − z mod k is a quadratic residue

modulo k; see e.g., [Sho09, Theorem 2.21]. As k is odd, z is even if and only

if k−z is odd. In other words, the function (y1, . . . , yk) 7→ (1−y1, . . . , 1−yk)
defines a bijection between S0 and S1. Thus, |S0| = |S1| whenever k ≡
1 mod 4. Otherwise, if k ≡ 3 mod 4, then the number |S| of quadratic

residues modulo k is odd; see e.g., [Sho09, Theorem 2.20]. This implies that

|S0| 6= |S1|. For k > 1 + log n, we can use Theorem 3.1.2.

3.4 nor ◦ g

In this section, we obtain a simple and perhaps surprising characterization for

the k-player randomized communication complexity of nor ◦ g. We use the
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following lower bound of Sherstov [She13] for the randomized communication

of the disjointness function DISJ = nor ◦ and:

Theorem 3.4.1 ([She13]).

R
1/3
k (DISJ) ≥ Ω

(√
n

2kk

)
.

First we observe that the above lower bound for disjointness applies - via

a simple reduction - to nor ◦ g where g’s support size is 1. We complement

this with an efficient randomized protocol for nor ◦ g when g’s support size

is more than one.

Theorem 3.4.2. Let g : {0, 1}k → {0, 1} be a boolean function and S =

{y ∈ {0, 1}k : g(y) = 1} be its support. For some constant ε < 1/2,

• If |S| = 1, R
1/3
k (nor ◦ g) ≥ Ω

(√
n

2kk

)
,

• Otherwise, Rε
k(nor ◦ g) ≤ O(k).

Proof. For the first part, let S = {v} with v ∈ {0, 1}k. Then, we can solve

nor ◦ and on input X by first flipping all the input bits of the rows i for

which vi = 0 and then run a protocol for nor ◦ g. The lower bound then

follows from Theorem 3.4.1.

For the upper bound, first assume that |S| is even. In this case, by

Corollary 3.2.4, we have a deterministic protocol P for mod2 ◦ g of cost

k. We will use this protocol P as a subroutine to compute nor ◦ g. As

before, denote by X the k × n dimensional matrix representing the input.

Denote by Xr a random matrix obtained from X by deleting every column

independently with probability 1/2. The players can agree on Xr without any

communication using their public random bits. We output −1 if P (Xr) = −1

and output 1 otherwise.

Observe that if nor ◦ g(X) = −1, then nor ◦ g(Xr) = −1, and so

mod2 ◦ g(Xr) = −1. In this case our protocol does not make an error. If
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nor ◦ g(X) = 1, then the bit string g(X) is not the all-zero string and

thus the parity of a random subset is uniformly distributed on {0, 1}, i.e.,

mod2 ◦ g(Xr) = 1 with probability 1/2. So in this case, the error probability

is 1/2. Repeating this protocol t times would reduce the error probability to

1/2t.

Now assume |S| is odd and greater than 1. Divide S into two non-disjoint

parts S1 and S2 of even size each. Let g1 be the boolean function with

support S1 and g2 be the boolean function with support S2. Observe that

nor◦g(X) = −1 if and only if both nor◦g1(X) = −1 and nor◦g2(X) = −1.

Since we covered the case of even support size, we are done.

3.5 The Polynomial View of Protocols

Before moving on to the concluding remarks of this chapter, we feel it is

worth pointing out that some of the upper bounds we presented have a very

natural reinterpretation in terms of protocols computing polynomials. We

now explain this using the Fourier analysis notation we set in Chapter 2.

Let’s recall the very high level strategy of our protocol for sym ◦ g func-

tions. As before, we view the input to the players as a k×n matrix X and we

are interested in the number of columns of X that fire a 1 when g is applied.

Let N be this number. Then we write N as a sum (of integer values) such

that each term in the sum is known by a player. Furthermore, we use the fact

that N ≤ n in order to do computation modulo n + 1. This way, when the

players announce their aggregate parts, each player communicates at most

O(log n) bits.

Going back to our characterization for maj◦g functions (Theorem 3.3.2),

we have an efficient protocol provided that |S0| = |S1|, where Si denotes the

k-bit strings in the support of g whose Hamming weight has parity i. In fact,

in this case the efficient protocol applies to all functions of the form sym ◦ g.
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Let’s now reprove this fact. First, consider the Fourier expansion of g:

g(x) =
∑
S⊆[k]

ĝ(S)χS(x).

Then we can write N as

N =
n∑
i=1

∑
S⊆[k]

ĝ(S)χS(xi),

where xi denotes the input variables corresponding to column i of X. The

important observation now is that the condition |S0| = |S1| implies that

ĝ(S) = 0 for S = [k] (this is straightforward to check using the definition

of ĝ(S)). In other words, we have written N as a polynomial of degree at

most k − 1. This in return implies that the value of every monomial of this

polynomial is known by some player. Thus, we have written N as a sum,

where each term in the sum is known by a player. We still have to be careful,

however, since the Fourier coefficients are not integers. We have to make

sure that when a player sends his/her aggregate part, the number of bits

is not too many. Each Fourier coefficient can be viewed as a fraction with

denominator 2k, which is less than n. Therefore we can multiply the above

equality by 2k and turn each term into an integer. With this, the sum is at

most 2kn ≤ n2 and we can do computation modulo 2kn + 1. So each player

again only needs to send O(log n) bits when announcing their part of the

sum.

In the case of modm ◦g functions, we can exploit the fact that all we need

to compute is N mod m, i.e., we can do computation modulo m. Recall

that in our characterization for these functions (Theorem 3.2.2), we had an

efficient protocol when m divides |S0| − |S1|. This condition implies that

ĝ([n]) = 0 when working modulo m, and therefore we can use the same

analysis as above.
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3.6 Conclusion and Open Problems

The most well-studied communication problems like generalized inner product

and disjointness have a composed structure with an outer function f and

an inner function g. Recently, this structure has been exploited by several

authors to prove hardness in the NOF model. A natural question that arises

is what combination of f and g results in hardness. Almost all previous work

focused on fixing the inner function g with a convenient property that allows

one to prove hardness for a range of outer functions f . In this work, we

address the dual and natural problem of studying families of functions that

arise from varying the inner function g. We obtain complete characterizations

of hard and easy functions in three of these families: maj ◦ g, modm ◦ g
and nor ◦ g. Our characterizations show that hard functions in each of

these families, somewhat unexpectedly, exhibit simple and elegant structure.

Furthermore, as a corollary, we show that these functions have polynomially

related quantum and classical communication complexities.

A key component of our characterization is a new simultaneous protocol

for sym ◦ g that is efficient for every g, when the number of players is more

than log n. This rules out the possibility of composing a symmetric function

with any inner function to take us past the log n barrier for proving strong

lower bounds. In particular, Babai et. al., ten years ago, posed an open

problem of determining the communication complexity of the function maj◦
qcsb, where qcsb is the quadratic residuosity function. Combining our

protocol for sym ◦ g with our characterization of maj ◦ g, we are able to

completely answer this question. While this may sound as a setback to

the hope of going past the log n barrier, it highlights the importance of

considering block composition where the inner function acts on a block of

columns rather than one column as presented in this chapter. This leads to a

natural open question: Is there an inner function g that acts on two columns
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such that maj ◦ g is hard for more than log n players?

Another natural and important avenue is to extend our dichotomy results

to other outside functions. A good starting point is to consider thrt ◦ g and

obtain a dichotomy for any t. Our results for nor ◦ g and maj ◦ g imply

characterizations for thr1 ◦ g and thrn/2 ◦ g. These characterizations are

quite different. As t goes from 1 to n/2, when and how does the charac-

terization change? We note that we ask this question in the randomized

communication complexity setting as a characterization of thr1 ◦ g in the

deterministic setting is likely to be very challenging due to its connections

with very challenging open problems in Ramsey theory. In the next chapter

we explore these connections.



CHAPTER 4

Ramsey Theory Applications

This chapter is devoted to the interesting connection of the NOF model with

Ramsey theory. In particular, our protocol for functions of the form sym ◦ g
implies bounds on important Ramsey numbers. Before presenting our results,

we first give the history and background information regarding these Ramsey

numbers.

The famous Van der Waerden’s Theorem, which can be considered as the

seed for modern Ramsey theory, states that for all c and k, there exists a

large enough N(c, k) such that no matter how you color the integers [N ] with

c colors, there is always a monochromatic length k arithmetic progression.

Erdős and Turán [ET36] conjectured more generally that every large enough

subset of [N ] must contain a k-term arithmetic progression. More precisely,

they conjectured that for all δ and k, there is a large enough N(δ, k) such that

every subset A of [N ] of density δ (i.e., of size δN) contains an arithmetic

progression of length k. Roth [Rot53] proved the Erdős-Turán conjecture for

90
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the special case of k = 3 in 1953. It was not until 1975 that a proof for the

general case was discovered by Szemerédi [Sze75]. This theorem is considered

to be one of the jewels of mathematics.

It is of course a natural question to ask how fast N grows in Van der

Waerden’s and Szemerédi’s Theorems. We will be interested in the following

two Ramsey numbers. For a finite Abelian group G, define ck(G) to be the

minimum number of colors we can use to color G so that no k-term arithmetic

progression is monochromatic. Also let rk(G) be the cardinality of the largest

subset of G that contains no length k arithmetic progression. Let N = |G|.
We use the notation ck(N) and rk(N) when working over [N ] rather than

an Abelian group G. Van der Waerden’s Theorem and Szemerédi’s Theorem

are equivalent to showing ck(N) = ω(1) and N/rk(N) = ω(1) respectively.

Obviously we have N/rk(N) ≤ ck(N). Obtaining good quantitative bounds

on ck(N) and rk(N) is one of the major challenges in combinatorics.

The best known bounds for rk(N) are as follows (we write the bounds in

terms of N/rk(N) as the interest is in this fraction). Sanders [San11] recently

showed that
N

r3(N)
≥ Ω

(
logN

(log logN)5

)
,

and the best upper bound comes from Behrend’s construction of a set with-

out a 3-term progression [Beh46] (in [Elk11], Elkin obtains a minor improve-

ment):
N

r3(N)
≤ O

(
2
√

8 logN(logN)1/4
)
.

For general k, the best bounds are

N

rk(N)
≥ Ω

(
(log logN)tk

)
,

(tk is a positive constant that depends only on k) due to Gowers [Gow01],

and
N

rk(N)
≤ C · 2O((logN)1/ log k+log logN),
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for a constant C, due to O’Bryant [O’B11].

It has been observed several times that the above lower bound results are

in fact easier and cleaner to handle when working over Fnp as one can exploit

linear algebraic tools. As Green notes [Gre05], another motivation to work

in the finite field setting is inspired by Bourgain’s work [Bou99], which can

be interpreted to show how to convert results obtained in the finite fields

setting to arbitrary groups.

Very recently Bateman and Katz [BK12], in a breakthrough work, show

that
N

r3(Fn3 )
≥ Ω

(
(logN)1+ε

)
.

Non-trivial upper bounds are harder to come by in the finite field setting.

Behrend’s construction does not work over Fnp . The best upper bound we

have for N/r3(Fn3 ) is much weaker and is about N0.28, which comes from

design theory; see e.g., [Gre05, Section 4]. It is reasonable to expect, both

in the setting of [N ] and Fnp , that the lower bounds are far from being tight.

For instance, Green [Gre05] conjectures that

N

r3(Fn3 )
≥ N δ,

for an absolute constant δ.

A well known generalization of Van der Waerden’s Theorem and Sze-

merédi’s Theorem is called the multidimensional version or the corners prob-

lem. In the k dimensional setting, our space is Gk rather than G, and the

structure we are looking for is a corner rather than an arithmetic progression.

A k dimensional corner is a set of k + 1 points in Gk of the form

(x1, x2, . . . , xk), (x1+λ, x2, . . . , xk), (x1, x2+λ, . . . , xk), . . . , (x1, x2, . . . , xk+λ),

for some non-zero λ ∈ G.

Let c∠k (G) be the minimum number of colors we can use to color Gk

so that no k-dimensional corner is monochromatic. Also let r∠k (G) be the
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cardinality of the largest subset of Gk that contains no k-dimensional corner.

As before, we use the notation c∠k (N) and r∠k (N) when working over [N ]k.

To eliminate any confusion, we note explicitly that a k dimensional corner

consists of k + 1 points and therefore there is a correspondence between a k

dimensional corner and a (k+ 1)-term arithmetic progression. In particular,

via a standard reduction, we have rk+1(G) ≤ r∠k (G)/Nk−1. For example, for

k = 2, let A be a subset of G that does not contain a 3-term arithmetic

progression. Then let A′ ⊂ G2 be the set of pairs (x, y) such that x + 2y

is in A. It is easy to see that if A′ contains a 2 dimensional corner, then A

contains a 3-term arithmetic progression.

In a far reaching extension of Szemerédi’s Theorem, Gowers [Gow07] ob-

tains an explicit lower bound on Nk/r∠k (N), but the bound is of Ackerman

type and we do not state it here.1 This bound remains best known for ar-

bitrary fixed k. In the two dimensional case (which can be thought of as

the generalization of Roth’s Theorem [Rot53], i.e., Szemerédi’s Theorem for

k = 3.), Shkredov [Shk06b, Shk06a] obtains the bound

N2

r∠2 (N)
≥ (log logN)ε.

The best upper bound comes from Behrend’s construction via a reduction.

In the finite field setting, a better lower bound is obtained by Lacey and

McClain [LM07]:
N2

r∠2 (Fnp )
≥ log logN

log log logN
.

To the best of our knowledge, no non-trivial upper bound on Nk/r∠k (Fnp ) is

mentioned in the literature.

There is an interesting connection between the coloring number for cor-

ners and multiparty communication complexity. Define the EXACTN func-

1The bound Gowers obtains is similar to what Szemerédi obtains in the setting of

progressions. This is because Gowers generalizes Szemerédi’s Regularity Lemma to hyper-

graphs and this step is responsible for the horrendous bound.
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tion to be equal to -1 if and only if x1 + · · · + xk = N , where xi are the in-

puts, each an n-bit integer in [N ]. Chandra Furst and Lipton [CFL83] show

that the k + 1 party deterministic communication complexity of EXACTN

is essentially equal to log c∠k (N). The known lower bounds on Nk/r∠k (N)

[FK78, Gow07] imply superconstant lower bounds on c∠k (N) and using this,

they conclude that the deterministic k-party communication complexity of

EXACTN is superconstant for all constant k. Furthermore, they convert

the known upper bound on N/r3(N) due to Behrend into an upper bound

on c∠2 (N) and obtain a surprising non-explicit protocol of cost O(
√
n) for

the EXACTN function for 3 players. Although this and other kinds of com-

munication complexity bounds have been proven using Ramsey theory (e.g.,

[CFL83, Pud03, Tes03, CKK+07, BGG06]), no bounds on Ramsey numbers

have been proven via communication complexity bounds before.

For an Abelian group G, define EVALG : Gk → {±1} to be equal to -1 if

and only if x1 + · · ·+xk = 0, where the xi ∈ G are the inputs, and 0 denotes

the identity element of G. As observed in [BGG06], the proof of [CFL83]

also shows that the k + 1 party communication complexity of EVALG is

essentially equal to log c∠k (G). Here, we are interested in upper bounds on

c∠k (N) and c∠k (Fn2 ), which in return give upper bounds for Nk/r∠k (N) and

Nk/r∠k (Fn2 ).

In this chapter we will show the following.

• Section 4.1.1: We observe that EVALFn2 is the same function as nor ◦
xor. Using our deterministic protocol for functions of the form sym◦g
from the previous chapter, we get the upper bound Nk/r∠k (Fn2 ) ≤
c∠k (Fn2 ) ≤ O(N1/2k−1

logk+2 N) (Corollary 4.1.3). As far as we are aware,

this result gives the first non-trivial upper bound and we suspect that it

is essentially tight. For k ≥ log logN , our bounds imply the following

strong bounds: Nk/r∠k (Fn2 ) ≤ c∠k (Fn2 ) ≤ O((logN)3+log logN). The color-

ing induced by the protocol does not give an explicit large set without



95 Chapter 4. Ramsey Theory Applications

a corner. Inspired by our protocol, we provide such an explicit set with

a simple description (Theorem 4.1.4). Our results can be considered as

the first application of communication complexity to Ramsey theory.

• Section 4.1.2: Recall that Behrend [Beh46] obtained the upper bound

N/r3(N) ≤ O(2
√

8 logN(logN)1/4). This result does not imply any

bounds for c3(N). We observe that Behrend’s idea can be used to

give an explicit coloring of [N ] and obtain the upper bound c3(N) ≤
2
√

8 logN(2 logN)1/2. This upper bound, via a standard reduction, also

gives an upper bound for c∠2 (N). Using this, we present an explicit

protocol of cost O(
√
n) for the EXACTN function for 3 players. As

mentioned before, [CFL83] gets the same upper bound with a non-

explicit protocol using a probabilistic argument.

In the following section, we will first state formally the relationship be-

tween the communication complexities of EXACTN and EVALG with c∠k (N)

and c∠k (G). Afterwards, we will present our results as outlined above.

4.1 Upper bounds on coloring numbers for

corners

First, we state a result by Chandra, Furst and Lipton that connects multi-

party communication complexity with coloring numbers for corners:

Lemma 4.1.1 ([CFL83]).

log

(
c∠k

(⌈
N − 1

k

⌉))
≤ Dk+1(EXACTN) ≤ k + log(c∠k (N)).

As observed in [BGG06], such a connection, with essentially the same

proof, also holds for the EVALG function. We provide a proof for complete-

ness.
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Lemma 4.1.2.

log(c∠k (G)) ≤ Dk+1(EVALG) ≤ k + log(c∠k (G)).

Proof. Upper bound: Fix a coloring of Gk with c∠k (G) colors so that there

is no monochromatic corner. Denote the players’ input by x1, . . . , xk+1. For

i = 1, . . . , k, define x′i = −
∑

j 6=i xj, where the addition represents the op-

eration of the group. Observe that EVALG(x1, . . . , xk+1) = 1 if and only

if xi = x′i for all i = 1, . . . , k. Now, for i = 1, . . . , k, Player i com-

putes the color of (x1, . . . , x
′
i, . . . , xk). Player k + 1 computes the color of

(x1, . . . , xk). One player announces her color and the rest compare it with

their color. If the colors are the same, they accept. Otherwise they reject.

If EVALG(x1, . . . , xk+1) = 1 then obviously all the colors are the same. If

EVALG(x1, . . . , xk+1) = 0, then setting z = −
∑n

j=1 xi, we have x′i = xi + z

for all i ∈ {1, . . . , n}. Thus the k+1 points that the players compute the col-

ors for form a corner. By assumption, this corner is not monochromatic and

the correctness of the protocols follows. The number of bits communicated

is clearly as advertised.

Lower bound: Let c be the cost of an optimal (k + 1)-party protocol for

EVALG. We will color Gk with 2c colors so that no corner is monochromatic.

The coloring is as follows. We know the protocol partitions the input space

Gk+1 into at most 2c cylinder intersections, each of which has the same value

with respect to EVALG’s output. We color a point (x1, . . . , xk) inGk with the

label of the cylinder intersection that contains (x1, . . . , xk,−(x1 + · · ·+ xk)).

To show that this is indeed a legal coloring, suppose there is a corner which

is monochromatic:

(x1, x2, . . . , xk),

(x1 + λ, x2, . . . , xk),

(x1, x2 + λ, . . . , xk),
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...

(x1, x2, . . . , xk + λ).

These are colored respectively with the colors of

(x1, x2, . . . , xk,−(x1 + · · ·+ xk)− λ+ λ),

(x1 + λ, x2, . . . , xk,−(x1 + · · ·+ xk)− λ),

(x1, x2 + λ, . . . , xk,−(x1 + · · ·+ xk)− λ),

...

(x1, x2, . . . , xk + λ,−(x1 + · · ·+ xk)− λ).

This is a star, contained in a cylinder intersection with value 1, and its center

is (x1, x2, . . . , xk,−(x1 + · · ·+ xk)− λ). Hence the center must also be in the

same cylinder intersection and must have the value 1. But this is not true

since the sum of the coordinates is λ which is non-zero by definition.

4.1.1 Finite field setting

In Section 3.1, we presented a protocol for functions of the form sym ◦ g.

Observe that EVALFn2 can be written as nor◦xor and therefore the protocol

described in Theorem 3.1.2 works for EVALFn2 . Using Lemma 4.1.2, we get

an upper bound on c∠k (Fn2 ), and this in return gives a lower bound on r∠k (Fn2 ).

The bounds below are obtained using the remark made right after the proof

of Theorem 3.1.2.

Corollary 4.1.3. Let N = 2n. For any k,

c∠k (Fn2 ) ≤ 16N1/2k−1

logk+2N.

In particular, when k > log n,

c∠k (Fn2 ) ≤ 32(logN)3+log logN .
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The coloring above does not give an explicit large set that does not contain

a corner. A color class defined by a communication protocol as described in

the proof of Lemma 4.1.2 corresponds to a set of inputs for nor ◦ xor that

evaluate to −1 for which the communication transcript is the same. We now

consider the protocol of Theorem 3.1.2 and try to build such a large set of

inputs. To ensure that the different inputs lead to the same communication

in the first step of the protocol, we fix the number of times the all-zero column

occurs to 0. As the second step of the protocol only depends on the number

of times each column appears, fixing these numbers defines a set without

corner. This set does not however have the desired size. Below, we show

that it is sufficient to fix the number of columns with Hamming weight i for

all i ∈ {0, 1 . . . , k} and this yields a much larger corner-free set.

For X = (x1, . . . , xk) ∈ (Fn2 )k, we denote by ni(X) the number of columns

of X with Hamming weight i, i.e., ni(X) = |{j ∈ {1, . . . , n} :
∑k

`=1 X`,j = i}|,
where the sum

∑k
`=1X`,j should be understood as an operation over the

integers. Let Ni =

⌊
(ki)

2k−1
n

⌋
for i ∈ {1, . . . , k−1} and Nk = n−

∑k−1
i=1 Ni and

Sk =
{
X ∈ (Fn2 )k : ∀i ∈ {1, . . . , k}, ni(X) = Ni

}
. (4.1)

Observe that this implies that for all X ∈ Sk, n0(X) = 0 and ni(X) ≥ 1 for

i ∈ {1, . . . , k}.

Theorem 4.1.4. Let n ≥ 2 and 2 ≤ k ≤ dlog ne, and let N = 2n. The set

Sk defined above does not contain a corner, and

|Sk| ≥ Ck
Nk

N− log(1−2−k) logk/2N

where Ck only depends on k. For k = dlog ne,

|Sk| ≥ Nk

(logN)C log logN
.

for some constant C > 0.
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Proof. We first prove that Sk does not contain a corner. This part of the

proof does not make use of the particular values chosen for Ni, in fact we

prove that Sk as defined in (4.1) does not contain a corner for any choice of

N1, . . . , Nk satisfying
∑

iNi = n. Recall that n0(X) = 0 for all X ∈ Sk, and

this is crucial for the argument. Assume that there exists X ∈ Sk and non-

zero λ ∈ Fn2 such that for all ` ∈ {1, . . . , k}, X + λ` ∈ Sk where λ` ∈ (Fn2 )k is

zero except for the `-th row where it is equal to λ. Consider the columns of

X corresponding to indices j such that λj = 1. Let t denote the minimum

Hamming weight among these columns. Note that t > 0. By the minimality

of t, the columns of X with Hamming weight t− 1 remain intact in X + λ`

for all ` ∈ {1, . . . , k}. So nt−1(X + λ`) ≥ nt−1(X) = Nt−1 for every `. On

the other hand, observe that by the choice of t, there is some `′ such that

nt−1(X + λ`
′
) > nt−1(X). This is a contradiction.

We now move on to estimate the size of Sk. The values of Ni were picked

so that Sk is as large as possible while keeping the size estimation simple.

We will prove generally that for any k ≥ 2,

|Sk| ≥ (2k − 1)n · 1

nk/2
· 1

2

e−2k−2k2

√
2π

k−1
(1 + k)

.

Then, to obtain the advertised bound, we write

(2k − 1)n ≥ (2n)k(1− 2−k)n =
Nk

N− log(1−2−k)
,

and we define Ck = 1
2

e−2k−2k2

√
2π
k−1

(1+k)
. To obtain the bound for k = dlog ne, we

observe that N− log(1−2−k) ≤ (1− 1/n)−n ≤ 4.

We use Stirling’s approximation: for all n ≥ 1(n
e

)n√
2πn ≤ n! ≤ e ·

(n
e

)n√
2πn.

We define the reals αi such that Ni = αi
2k−1

n. Note that αi ≤
(
k
i

)
for all
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i ∈ {1, . . . , k − 1} and Nk ≤ 1
2k−1

n+ k so that αk ≤ 1 + 2k−1
n
k.

|Sk| =
(

n

N1 N2 · · · Nk

)
·
(
k

1

)N1

· · ·
(
k

k

)Nk
≥

(
n
e

)n√
2πn

ek (N1e−1)N1 · · · (Nke−1)Nk
√

(2π)kN1 · · ·Nk

·
(
k

1

)N1

· · ·
(
k

k

)Nk
≥

(
n
e

)n√
2πn

ek
(

α1

2k−1
ne−1

)N1

· · ·
(

αk
2k−1

ne−1
)Nk√

(2π)kN1 . . . Nk

·
(
k

1

)N1

· · ·
(
k

k

)Nk
≥ (2k − 1)n

√
2πn

ekαNkk
√

(2π)kN1 . . . Nk

.

Observe that

αNkk ≤
(

1 +
(2k − 1)k

n

) n

2k−1
+k

≤ ek+2k2 ,

where we used the fact that (2k − 1)/n ≤ 2 as k ≤ dlog ne. Moreover,

N1 · · ·Nk ≤
(
k
1

)
· · ·
(
k−1
k

)
(1 + k)

(2k − 1)k
nk ≤ 2k

2 · (1 + k)nk

(2k − 1)k
,

which gives the desired bound.

4.1.2 An explicit O(
√
n)-protocol for EXACTN for 3

players

Using an elegant argument, [Beh46] shows that for any N sufficiently large,

there is a subset of [N ] = {1, 2, . . . , N} of size at least

Ω

(
N

2
√

8 logN(logN)1/4

)
(4.2)
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that does not contain any (nontrivial) 3-term arithmetic progressions. We

observe that Behrend’s argument can actually be made to give an explicit

coloring of [N ] using at most

2
√

8 logN(2 logN)1/2 (4.3)

colors such that there is no monochromatic 3-term arithmetic progression.

Furthermore, Behrend’s argument also shows that in our coloring there is a

color class of the size stated in (4.2). This coloring will be used to obtain an

explicit protocol for EXACTN for three players.

Note that Behrend’s result has been used in [CFL83] to show the existence

of a O(
√
n)-cost protocol for the EXACTN function for three players. The

high-level outline is as follows. By mapping (x, y) ∈ [N ]×[N ] to x+2y ∈ [N ],

the large set which exists by Behrend’s argument can be used to obtain a

large subset of [N ]× [N ] that does not contain a corner. Then a probabilistic

argument shows that with high probability, a sufficiently large number of

translations of this subset will cover the whole space [N ] × [N ]. Each of

these translations is colored by a distinct color, and this shows the existence

of a protocol of cost O(
√
n).

Our observation shows that we can bypass the probabilistic step above.

Moreover, the explicit protocol we obtain might give insight into how three

players can cooperatively offer a much more efficient protocol than two play-

ers.

For completeness, we start by sketching Behrend’s construction. Consider

a subset T of points x = (x0, . . . , xd−1) ∈ Zd that lie on a sphere x2
0 +

x2
1 + · · · + x2

d−1 = t. Observe that T cannot contain a 3-term arithmetic

progression, i.e., we cannot have x + y = 2z for distinct x,y, z ∈ T . By

imposing a constraint xi < m for all i ∈ {0, . . . , d− 1}, one can then choose

t appropriately so as to obtain a large set T ⊆ {0, 1, . . . ,m− 1}d without 3-

term arithmetic progressions. The final step is to map this set T to positive
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integers. This is done by seeing the vector x as the digits of an integer

written base 2m. More precisely, x is associated to the positive integer

x = 1 + x0 + x1(2m) + · · · + xd−1(2m)d−1. It is then simple to prove that

a 3-term arithmetic progression for the integers x, y, z directly corresponds

to a 3-term arithmetic progression for the vectors x,y, z. One can then

obtain the lower bound in (4.2) on the size of the set by choosing m and d

appropriately. Now we show how to use these ideas to obtain a coloring of

[N ] with no monochromatic arithmetic progression of length 3.

As described above, m and d are some parameters to be determined later.

For each x ∈ [N ] we write x− 1 in base (2m) as

x− 1 = x0 + x1(2m) + x2(2m)2 + . . .+ xd−1(2m)d−1, (4.4)

where 0 ≤ xi < 2m for 0 ≤ i < d. Then, our coloring for [N ] is as follows.

Define S(x) to be the subset of indices i such that xi < m, and define

t(x) =
( ∑
j∈S(x)

x2
j

)
+
( ∑
j 6∈S(x)

(xj −m)2
)
.

Now we color x with the pair (S(x), t(x)).

Lemma 4.1.5. In the above coloring of [N ] there is no monochromatic 3-

term arithmetic progression. Moreover, for d =
√

2 logN and m = 2
√

1
2

logN−1,

the total number of colors needed is at most 2
√

8 logN(2 logN)1/2.

Proof. The fact that there is no monochromatic 3-term arithmetic progres-

sion can be seen as follows. Suppose that x, y, z have the same color, and

that x+ y = 2z. First, since x, y, z have the same color, we have

S(x) = S(y) = S(z).

From this and the hypothesis that x+ y = 2z, we can prove by induction on

i that xi + yi = 2zi, for all 0 ≤ i < d. From this it follows that x2
i + y2

i ≥ 2z2
i
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and (xi − m)2 + (yi − m)2 ≥ 2(zi − m)2, and equality holds if and only if

xi = yi = zi. As a result, t(x) + t(y) ≥ 2t(z), and equality holds if and only

if x = y = z. Now because x, y, z have the same color,

t(x) = t(y) = t(z),

so equality does indeed hold. It follows that x = y = z. This shows that

there is no monochromatic (nontrivial) 3-term arithmetic progression.

Now the total number of colors is at most 2d(d(m − 1)2 + 1), because

there are 2d possible sets S(x), and t(x) ≤ d(m− 1)2. So for the values of d

and m given in the lemma, it is easy to verify that the total number of colors

needed is as stated in (4.3).

Note that the above setting of the parameters is optimal for the total

number of colors needed in our coloring. This is because we need (2m)d ≥ N

in order to write N − 1 as in (4.4).

By a standard argument, i.e., mapping each (x, y) ∈ [N ]2 to x + 2y, we

can exhibit an explicit coloring of [N ]2 without a monochromatic corner.

Here we will use this to describe an explicit O(
√
n)-protocol for the 3 player

communication problem EXACT2n . Recall that in this problem there are

three players: Alice, Bob, and Charlie, with inputs x, y, z (0 ≤ x, y, z ≤
2n) respectively on their foreheads. The players want to determine whether

x+ y + z = 2n.

Our protocol is obtained by combining the above explicit coloring and the

argument from [CFL83] (that shows how to obtain a protocol from a coloring,

as in the proof of Lemma 4.1.2). It is based on the following observation.

Let

x′ = 2n + y − z, y′ = 2n+1 − x− 2z, z′ = x+ 2y.

Then y′+ z′ = 2x′, i.e., y′, x′, z′ form a 3-term arithmetic progression. More-

over, x + y + z = 2n if and only if x′ = y′ = z′. In addition, x′, y′, and
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z′ can be computed by Alice, Bob, and Charlie, respectively, without any

communication.

The Protocol:

• Alice sends the color of x′;

• Bob and Charlie send one bit each indicating whether y′ and z′ have

the same color as x′;

• The players conclude that x + y + z = 2n if and only if x′, y′, z′ have

the same color.

Here the colors of x′, y′, z′ are determined as above, but note that x′, y′, z′ ∈
[2N ]. So we set d =

√
2(n+ 1) and m = 2

√
(n+1)/2. The cost of the protocol

is at most

2 +
⌈
log(2ddm2)

⌉
≤ 2
√

2(n+ 1) +
1

2
log(n+ 1) + 4.

4.2 Open Problems

There are several interesting open problems related to the topics studied in

this chapter. We state a few of them here.

Getting good bounds on c∠k (G) and r∠k (G) is a major challenge. Can one

make progress on this using the connection with communication complex-

ity? Observe that EVALG has O(1) complexity in the randomized model

as it reduces to the 2 player EQUALITY function, which is the canonical

example of a function with a very efficient randomized protocol. Hence, to

show a good lower bound on Dk(EVALG), one needs to use a lower bound

technique that does not apply to randomized protocols. So far, the only

strong lower bound technique we have in the NOF model is the discrepancy

method (and its extension called the generalized discrepancy method) which
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proves lower bounds for the randomized model. Can we develop new lower

bound techniques that work only for the deterministic model? It is a major

open problem in the NOF model to exhibit an explicit function which is easy

in the randomized model but hard in the deterministic model, even for 3

players.2 The EVALG function is of course a natural candidate.

Chandra, Furst and Lipton [CFL83] showed that the EXACTN function

for 3 players has an O(
√
n)-cost protocol. Our protocol for EVALFn2 has cost

Θ(n) when k is a constant, but it has cost O(log2 n) when k ≥ log n. Does

EXACTN have an efficient protocol for log n many players? Is it possible

to get a o(n) cost protocol for EVALFn2 for 3 players? We suspect that the

answer to the latter question is no.

Our protocol for EVALFn2 does not work for EVALFn3 . Can one get a

similar bound for EVALFn3 , and for EVALFnp in general? The complexity of

EVALG for other G is also interesting to study.

2It is proved in [BDPW10], by a clever counting argument, that such functions exist.



CHAPTER 5

Spectral Norm and 2-party Communication Complexity

5.1 Introduction

This chapter marks the end of our discussion of the NOF model and we move

on to the second part of our thesis which is about Fourier analysis of symmet-

ric boolean functions. Here we will give a combinatorial characterization for

the spectral norm of all symmetric functions and discuss its applications to

decision tree complexity and communication complexity of these functions.

We will conclude with an intriguing open question (an extension of our main

result) and mention some of its interesting consequences.

It is important to review the basics of Fourier analysis of boolean functions

before moving on (Section 2.3).

106
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5.1.1 Spectral Norm of Boolean Functions

As
∑

S f̂(S)2 = 1 for a boolean function f , it is often useful to view the

squares of the Fourier coefficients as a probability distribution over the sub-

sets S ⊆ [n]. The spectral norm corresponds to the Rényi entropy of order

1/2 of the squares of the Fourier coefficients, H1/2[f̂ 2] = 2 log
(∑

S |f̂(S)|
)

=

2 log ‖f̂‖1. It provides useful upper and lower bounds on the complexity of

a function in settings such as learning theory, circuit complexity, and com-

munication complexity. It is particularly useful in settings where parity is

considered a function of low complexity. We list some of the applications

below.

In the setting of learning theory, the spectral norm is used in conjunction

with the Kushilevitz-Mansour Algorithm [KM91] (see [KV94] for an introduc-

tion to computational learning theory). This algorithm, using membership

queries, learns efficiently a concept class F where the Fourier spectrum of

every function in F is concentrated on a small set of characters (This set

can be different for different functions.). Kushilevitz and Mansour observe

that an upper bound on the spectral norm implies such a concentration, and

obtain:

If F = {f : {0, 1}n → {−1, 1} | ‖f̂‖1 ≤ s}, then F is learnable

with membership queries in time poly(n, s, 1/ε).

Using the above result, they show that functions computable by small size

parity decision trees (see the end of Section 2.1 for the definition of parity

decision tree size) are efficiently learnable with membership queries. This is

done by observing that a function computable by a size s parity decision tree

satisfies ‖f̂‖1 ≤ s. This inequality is also interesting since it provides a lower

bound in terms of the spectral norm on the size of any parity decision tree

computing f .

Threshold circuits (i.e., circuits composed of threshold gates) constitute



5.1. Introduction 108

an important model of computation (in part due to their resemblance to

neural networks), and they have been studied extensively. A classical result of

Bruck and Smolensky [BS92] states that a function with small spectral norm

can be represented as the sign of a polynomial with few monomials. This

in turn implies that functions with small spectral norm can be computed by

depth 2 threshold circuits of small size. The result of Bruck and Smolensky

has found other interesting applications (see for example [SB91, GHR92,

Gro99, OS08]).

We now turn our attention to communication complexity. One of the most

famous conjectures in communication complexity is the Log Rank Conjecture

which states that the deterministic communication complexity of a function

F : {0, 1}n × {0, 1}n → {−1, 1} is upper bounded by logc rankMF where

the matrix MF is defined as MF [x, y] = F (x, y). Grolmusz [Gro97] makes a

similar intriguing conjecture for the randomized communication complexity:

There is a constant c such that the randomized communication

complexity of F : {0, 1}n × {0, 1}n → {−1, 1} is upper bounded

by logc ‖F̂‖1.

In the same paper, Grolmusz is able to prove a much weaker upper bound of

O(‖F̂‖2
1δ(n)) with exp(−cδ(n)) probability of error. Even this weaker result

has interesting applications in circuit complexity and decision tree complexity

(see [Gro97] for more details).

Another major open problem in communication complexity is whether the

classical and quantum communication complexity of total boolean functions

f : X ×Y → {−1, 1} (i.e., functions defined on all of X ×Y) are polynomially

related. It is conjectured that this is so and research has been focused on

establishing it for natural large families of functions. In an important paper

[Raz03] Razborov showed that the conjecture is true in the 2 party setting for

functions of the form sym ◦ and where sym denotes a symmetric function.
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Shi and Zhang [SZ09a] verified the conjecture for sym ◦ xor, again in the 2

party setting. The next big targets are f ◦ and and f ◦ xor for general f ,

but handling arbitrary f seems quite difficult.

A variant of the spectral norm, the approximate spectral norm, is inti-

mately related to the communication complexity of “xor functions”. The

ε-approximate spectral norm of f , denoted ‖f̂‖1,ε, is the smallest spectral

norm of a function φ : {0, 1}n → R such that ‖f − φ‖∞ ≤ ε. It is known

(see for example [LS09]) that log ‖f̂‖1,ε lower bounds the quantum bounded

error communication complexity of f ◦xor. We expect that the lower bound

log ‖f̂‖1,ε is tight, and that this quantity characterizes the communication

complexity of xor functions. More discussion on the communication com-

plexity of xor functions, and how it relates to this work is given in Section

5.5.

This ends our discussion of the use of the spectral norm in learning theory,

circuit complexity and communication complexity. We conclude this subsec-

tion by mentioning a relatively recent result that studies the spectral norm

of boolean functions. Green and Sanders [GS08] show that every boolean

function whose spectral norm is bounded by a constant can be written as

a sum of constantly many ± indicators of cosets. This gives an interesting

characterization of boolean functions with small spectral norm.

5.1.2 Fourier Spectrum of Symmetric Functions

As argued in previous chapters, symmetric functions are at the heart of

complexity theory as natural functions like and, or, majority, and modm

are all symmetric. They are often the starting point of investigation because

the symmetry of the function can be exploited. On the other hand, they

can also have surprising power. In several settings, functions such as parity

and majority represent “hard” functions. Given their central role, it is of
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interest to gain insight into the Fourier spectrum of symmetric functions.

There are various nice results related to the Fourier spectrum of sym-

metric functions. We cite a few of them here. A beautiful result of Paturi

[Pat92] tightly characterizes the approximate degree of every symmetric func-

tion, and this has found many applications in theoretical computer science

[Raz03, BBC+01, She09, dW08, She11]. Kolountzakis et al. [KLM+09] stud-

ied the so called minimal degree of symmetric functions and applied their

result in learning theory. Shpilka and Tal [ST11] later simplified and im-

proved the work of Kolountzakis et al. Recently, O’Donnell, Wright and

Zhou [OWZ11] verified an important conjecture in the analysis of boolean

functions, the Fourier Entropy/Influence Conjecture, in the setting of sym-

metric functions. In fact we make use of their key lemma in this chapter.

5.1.3 Our Results and Proof Overview

We give a combinatorial characterization of the spectral norm of symmetric

functions. For x ∈ {0, 1}n, recall |x| =
∑
xi. For a function f : {0, 1}n →

{−1, 1}, let r0 and r1 be the minimum integers less than n/2 such that

f(x) or f(x) · parity(x) is constant for x with |x| ∈ [r0, n − r1]. Define

r(f)
def
= max{r0, r1}. We show that log ‖f̂‖1 is of the same order of magnitude

as r(f) log(n/r(f)):

Theorem 5.1.1 (Main Theorem). For any symmetric function f : {0, 1}n →
{−1, 1}, we have

log ‖f̂‖1 = Θ

(
r(f) log

(
n

r(f)

))
whenever r(f) > 1. If r(f) ≤ 1, then ‖f̂‖1 = Θ(1).

As an application, we give a characterization of the parity decision tree

size of symmetric functions. As described in Section 2.1, a parity decision
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tree computes a boolean function by querying the parities of subsets of the

variables. The size of the tree is simply the number of leaves in the tree.

Corollary 5.1.2. Let f : {0, 1}n → {−1, 1} be a symmetric function. Then

the parity decision tree size of f is 2Θ(r(f) log(n/r(f))).

The proof of this corollary is presented in Section 5.4. Note that the

lower bound also applies in the case of the usual decision tree size (where

one is restricted to query only variables). Decision tree size is an important

measure in learning theory; algorithms for learning decision trees efficiently

is of great interest both for practical and theoretical reasons. One of the

most well-known and studied problems is whether small size decision trees

are efficiently learnable from uniformly random examples.

As a second application, using the protocol of Shi and Zhang [SZ09a,

Proposition 3.4], and the observation that ‖F̂‖1 = ‖f̂‖1 when F = f ◦ xor,

we verify Grolmusz’s conjecture mentioned earlier in Section 5.1.1 in the

setting of symmetric xor functions.

Corollary 5.1.3. Let F : {0, 1}n × {0, 1}n → {−1, 1} be a function of the

form sym ◦xor, where sym denotes an arbitrary symmetric function. Then

for constant ε,

Rε(F ) ≤ O(log2 ‖F̂‖1).

Proof Overview

As the proof of our main result is technical, it is instructive to present an

overview of the proof before diving into the details. To this end, we now give

an outline for the proof of Theorem 5.1.1.

The upper bound is quite straightforward and is given in Lemma 5.3.1.

The lower bound is handled in two different cases: when r(f) is bounded

away from n/2 (Lemma 5.3.3) and when r(f) is close to n/2 (Lemma 5.3.7).
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We refer to the Fourier spectrum of f restricted to the sets S ⊆ [n] of

size k as the k-th level of the Fourier spectrum. Note that for a symmetric

f , we have f̂(S) = f̂(T ) whenever |S| = |T |. Therefore the Fourier spectrum

is maximally spread out in each level. The overall strategy for the lower

bound is to show an appropriate lower bound on the L2 mass of the Fourier

spectrum on a middle level. Middle levels have many Fourier coefficients,

and therefore contribute significantly to the spectral norm provided there is

enough L2 mass on them. An important tool in our analysis is the use of

certain discrete derivatives of f . Identify {0, 1}n with Fn2 and let e1, . . . , en

denote the standard vectors in Fn2 . For i 6= j, define fij(x)
def
= f(x+ ei+ ej)−

f(x). We observe that∑
i 6=j

E
[
f 2
ij(x)

]
= 8

∑
S

|S|(n− |S|)f̂(S)2.

The quantity on the LHS, and therefore the RHS, can be lower bounded

using r(f) (Lemma 5.3.2). As the coefficient |S|(n − |S|) increases as |S|
approaches n/2, we are able to give a lower bound on the L2 mass of the

Fourier spectrum on the middle levels. This approach gives tight bounds for

r(f) bounded away from n/2, but not for a function such as majority.

To handle functions f with r(f) close to n/2, we use ideas from [OWZ11].

The main lemma of [OWZ11] states that the first derivatives of a symmetric

function are noise sensitive (see Section 2.3.1 for the definition of noise sta-

bility). We observe that this is also true for the derivatives fij. This allows

us to derive the inequality∑
S

|S|(n− |S|)f̂(S)2(ρ|S| + ρn−|S|) ≤ 8√
πc
·
∑
S

|S|(n− |S|)f̂(S)2,

where ρ = (1 − c/n). The quantity ρ|S| + ρn−|S| is decreasing in |S| for

|S| ≤ n/2. Thinking of c as a large constant, we see that the dampening of

the middle levels with ρ|S|+ρn−|S| decreases the value of the sum significantly.
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From this, we can lower bound the L2 mass of the middle levels. Note that

if
∑

S |S|(n − |S|)f̂(S)2 is small to begin with (r(f) is small), the above

inequality is not useful. On the other hand if r(f) is large,
∑

S |S|(n −
|S|)f̂(S)2 is large, and the strategy just described gives good bounds.

5.2 Preliminaries

For a boolean function f , we define Wk[f ] =
∑
|S|=k |f̂(S)|2. We simply use

Wk when f is clear from the context. For a symmetric function, we often

write f(k) for f(x) with
∑

i xi = k and k ∈ [n]. We use h to denote the

binary entropy function h(α) = −α log(α)− (1− α) log(1− α). We will use

the following simple estimates for binomial coefficients (See [MU05, Lemma

9.2]): Let α ∈ [0, 1] such that αn is an integer. Then

αn∑
k=0

(
n

k

)
≤ 2nh(α), (5.1)

and
2nh(α)

n+ 1
≤
(
n

αn

)
. (5.2)

If α ∈ [0, 1/2] is arbitrary, then

2nh(α)

n(n+ 1)
≤
(

n

bαnc

)
≤ 2nh(α). (5.3)

The following fact is also easy and classical. For every constant c > 0,

there exists a constant C > 0 such that for any n ≥ 1,(
n

bn/2 + c
√
nc

)
≥ C

2n√
n
. (5.4)

Definition 5.2.1. For any f : {0, 1}n → R, we define

R(f)
def
=
∑
S⊆[n]

|S|(n− |S|)f̂(S)2.
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For a ∈ Fn2 , we define the derivative of f : Fn2 → R in the direction a as

∆af : x 7→ f(x+ a)− f(x).

Let e1, . . . , en denote the standard vectors in Fn2 , and let f : {0, 1}n → R.

For all i 6= j, define

fij
def
= ∆ei+ejf. (5.5)

Lemma 5.2.2. For every f : {0, 1}n → R, we have∑
i 6=j

E
[
f 2
ij(x)

]
= 8R(f).

Proof. We have

fij(x) =
∑
S

f̂(S)χS(x)(χS(ei + ej)− 1) =
∑

S:|S∩{i,j}|=1

−2f̂(S)χS(x),

which by Parseval’s identity implies

E
[
f 2
ij(x)

]
=

∑
S:|S∩{i,j}|=1

4f̂(S)2.

Summing over all pairs i 6= j, we obtain∑
i 6=j

E
[
f 2
ij(x)

]
= 8

∑
S⊆[n]

|S|(n− |S|)f̂(S)2.

5.3 Proof of Theorem 5.1.1

As mentioned earlier the upper bound is proved in Lemma 5.3.1. The proof

of the lower bound is divided into two parts: Lemma 5.3.3 handles the case

where r is bounded away from n/2 and Lemma 5.3.7 the case when r is close

to n/2.
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5.3.1 Upper Bound

Lemma 5.3.1. For all n ≥ 1 and every symmetric function f : {0, 1}n →
{−1, 1},

log ‖f̂‖1 ≤ 2 · r(f) log(n/r(f)) + 3.

Proof. By definition of r0 and r1, there exists a function

g ∈ {−1, 1,−parity,+parity}

such that f(k) = g(k) for all k ∈ [r0, r1]. By linearity of the Fourier trans-

form, we have for any S ⊆ [n],

f̂(S) = ĝ(S) + f̂ − g(S)

= ĝ(S) +
1

2n

n∑
k=0

(f(k)− g(k))
∑
|x|=k

χS(x)

= ĝ(S) +
1

2n

r0−1∑
k=0

(f(k)− g(k))
∑
|x|=k

χS(x)

+
1

2n

n∑
k=n−r1+1

(f(k)− g(k))
∑
|x|=k

χS(x)

Thus,

|f̂(S)| ≤ |ĝ(S)|+ 1

2n

r0−1∑
k=0

2

(
n

k

)
+

1

2n

n∑
k=n−r1+1

2

(
n

k

)
≤ |ĝ(S)|+ 2 · 2h(r0/n)n + 2h(r1/n)n

2n
,

where for the last inequality, we used (5.1). Summing over all subsets S ⊆ [n],

we get

‖f̂‖1 ≤ 1 + 2(2h(r0/n)n + 2h(r1/n)n) ≤ 1 + 4 · 2h(r/n)n.

As h(t) ≤ −2t log t when t ≤ 1/2, we obtain log ‖f̂‖1 ≤ 3 + 2r log(n/r).
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5.3.2 Lower Bound

We start by making some simple observations.

Lemma 5.3.2. Let f : {0, 1}n → {−1, 1} be a symmetric function, and

define r0 = r0(f) and r1 = r1(f). Then

R(f) ≥
(

(n− r0 + 1)(n− r0)

(
n

r0 − 1

)
+ (n− r1 + 1)(n− r1)

(
n

r1 − 1

))
2−n.

(5.6)

Moreover, assuming that f(s) = 1 for all s ∈ {r0, . . . , n− r1}, we have

∑
S 6=∅

f̂(S)2 ≤ 4

(∑
s<r0

(
n

s

)
+
∑
s<r1

(
n

s

))
2−n. (5.7)

Proof. Define fij as in (5.5). As f is symmetric, we only need to consider

f12.

E
[
f 2

12(x)
]

= Ex3...xn

[
1

4
·
(
f 2

12(00x3 . . .xn) + f 2
12(01x3 . . .xn)

+f 2
12(10x3 . . .xn) + f 2

12(11x3 . . .xn)
) ]

=
1

4
Ex3...xn

[
(f(00x3 . . .xn)− f(11x3 . . .xn))2

+ (f(11x3 . . .xn)− f(00x3 . . .xn))2 ]
≥ 1

2

((
n− 2

r0 − 1

)
· 2−(n−2) · 4 +

(
n− 2

n− r1 − 1

)
· 2−(n−2) · 4

)
= 8 ·

(
(n− r0 + 1)(n− r0)

n(n− 1)
·
(

n

r0 − 1

)
+

(n− r1 + 1)(n− r1)

n(n− 1)
·
(

n

r1 − 1

))
2−n.

To obtain the second equality, observe that

f 2
12(01x3 . . . xn) = f 2

12(10x3 . . . xn) = 0

because f is symmetric. Inequality (5.6) follows by applying Lemma 5.2.2.
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In order to establish inequality (5.7), we show a lower bound on the

principal Fourier coefficient of f :

f̂(∅) ≥ 1− 2

(∑
s<r0

(
n

s

)
+
∑

s>n−r1

(
n

s

))
2−n,

which implies that

f̂(∅)2 ≥ 1− 4 ·

(∑
s<r0

(
n

s

)
+
∑
s<r1

(
n

s

))
2−n.

Lower Bound: r � n/2

Lemma 5.3.3. For every symmetric function f : {0, 1}n → {−1, 1} with

r = r(f),

log ‖f̂‖1 ≥ Ω

((
1− 2r − 2

n

)
· r log(n/r)

)
.

Proof. Observe that we can assume without loss of generality that f(s) = 1

for all s ∈ {r0, . . . , n − r1}. In fact, to handle the case f = −1 or f =

±parity in [r0, n − r1], it suffices to multiply the function by −1 or by

±parity, respectively. This does not affect the spectral norm of the function.

We prove the statement by showing that a significant portion of the L2

mass of f̂ sits in the middle levels from m to n − m for a well-chosen m

depending on r(f).

Define α0 = r0−1
n

< 1/2 and α1 = r1−1
n

. We also let

m0 =

⌊
n/2 · (1−

√
4α0 − 6α2

0 + 4α3
0)

⌋
and

m1 =

⌊
n/2 · (1−

√
4α1 − 6α2

1 + 4α3
1)

⌋
.
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By Lemma 5.3.2, we have
∑

k>0Wk ≤ 4 ·
(∑

s<r0

(
n
s

)
+
∑

s<r1

(
n
s

))
2−n.

Let Uk and Vk be so that Wk = Uk +Vk and
∑

k>0 Uk ≤ 4 ·2−n
∑

s<r0

(
n
s

)
and∑

k>0 Vk ≤ 4 · 2−n
∑

s<r1

(
n
s

)
. Our objective is now to obtain a lower bound

on
∑n−m0

k=m0
k(n− k)Uk +

∑n−m1

k=m1
k(n− k)Vk using Lemma 5.3.2

n−m0∑
k=m0

k(n− k)Uk +

n−m1∑
k=m1

k(n− k)Vk

= R(f)−
∑

k/∈[m0,n−m0]

k(n− k)Uk −
∑

k/∈[m1,n−m1]

k(n− k)Vk

≥ (n− r0)(n− r0 + 1)

(
n

r0 − 1

)
2−n − (m0 − 1)(n−m0 + 1)4 · 2−n

∑
s<r0

(
n

s

)
+ (n− r1)(n− r1 + 1)

(
n

r1 − 1

)
2−n − (m1 − 1)(n−m1 + 1)4 · 2−n

∑
s<r1

(
n

s

)
.

(5.8)

Define A0
def
= (n−r0)(n−r0+1)

(
n

r0−1

)
2−n−(m0−1)(n−m0+1)4·2−n

∑
s<r0

(
n
s

)
,

and let A1 be its analogue for r1 so that the right hand side of (5.8) equals

A0 + A1.

Observe that
(
n
s

)
= s+1

n−s

(
n
s+1

)
, and s+1

n−s ≤
r0−1

n−(r0−1)
= α0

1−α0
for s < r0 − 1.
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Thus

A0 ≥
(

n

r0 − 1

)
2−n·(

(n− α0n− 1)(n− α0n)− 4(m0 − 1)(n−m0 + 1)
1

1− α0/(1− α0)

)
=

(
n

r0 − 1

)
2−n·(

n2(1− α0)2 − (1− α0)n− 4(m0 − 1)(n−m0 + 1)
1− α0

1− 2α0

)
≥
(

n

r0 − 1

)
2−n·(

n2

(
(1− α0)2 − (1− (4α0 − 6α2

0 + 4α3
0))

1− α0

1− 2α0

)
− (1− α0)n

)
=

(
n

r0 − 1

)
2−n(1− α0)

(
n2
(
(1− α0)− (1− 2α0 + 2α2

0)
)
− n

)
=

(
n

r0 − 1

)
2−n(1− α0)

(
α0(1− 2α0)n2 − n

)
. (5.9)

Analogously, we have

A1 ≥
(

n

r1 − 1

)
2−n(1− α1)

(
α1(1− 2α1)n2 − n

)
. (5.10)

We now assume that r0 ≥ r1. Observe that we then have m0 ≤ m1. Com-

bining (5.8) and (5.9), we get

n2

n−m0∑
k=m0

Wk ≥
n−m0∑
k=m0

k(n− k)Wk ≥
(

n

r0 − 1

)
2−n(1−α0)

(
α0(1− 2α0)n2 − n

)
.
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Note that for symmetric functions ‖f̂‖1 =
∑n

k=0

√(
n
k

)
Wk, and thus

‖f̂‖1 ≥
n−m0∑
k=m0

√(
n

k

)
Wk ≥

√√√√( n

m0

) n−m0∑
k=m0

Wk

≥

√(
n

m0

)(
n

r0 − 1

)
2−n

(1− α0) (α0(1− 2α0)n2 − n)

n2

≥

√√√√( n⌊
n/2(1−

√
4α0 − 6α2

0 + 4α3
0)
⌋)( n

α0n

)

·
√

2−n
(1− α0) (α0(1− 2α0)n2 − n)

n2
. (5.11)

Using (5.2) and (5.3), we obtain

‖f̂‖2
1 ≥

2
n
(
h
(

1
2
− 1

2

√
4α0−6α2

0+4α3
0

)
+h(α0)−1

)
n(n+ 1)2

· (1− α0) (α0(1− 2α0)n2 − n)

n2
.

As a result

log ‖f̂‖1 ≥
n

2

(
h

(
1

2
− 1

2

√
4α0 − 6α2

0 + 4α3
0

)
+ h(α0)− 1

)
+

1

2
log

(1− α0) (α0(1− 2α0)n2 − n)

n3(n+ 1)2
.

Claim 5.3.4. There exists a constant c > 0 such that for every α0 ∈ (0, 1/2),

h

(
1

2
− 1

2

√
4α0 − 6α2

0 + 4α3
0

)
+h(α0)−1 ≥ c(1−2α0)·α0 ·log(1/α0). (5.12)

Proof. Using the inequality |h(x2)−h(x1)| ≤ h(x2−x1) which holds for every

0 < x1 < x2 < 1, we have

h

(
1

2
− 1

2

√
4α0 − 6α2

0 + 4α3
0

)
+h(α0)−1 ≥ h(α0)−h

(
1

2

√
4α0 − 6α2

0 + 4α3
0

)
.

By looking at the Taylor expansion, it is easy to see that there exists an

ε > 0, such that for every α0 ∈ [0, ε] ∪
[

1
2
− ε, 1

2

]
we have

h(α0)− h
(

1

2

√
4α0 − 6α2

0 + 4α3
0

)
≥ 1

2
(1− 2α0) · α0 · log(1/α0).
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On the other hand, there exists a constant cε > 0 such that when α0 ∈
(ε, 1/2− ε), both h(α0)−h

(
1
2

√
4α0 − 6α2

0 + 4α3
0

)
and the right-hand side of

(5.12) belong to [cε, 1]. Taking c
def
= 1/cε finishes the proof.

Using this claim, we obtain

log ‖f̂‖1 ≥ c(1− 2α0) · α0 log(1/α0) · n
2

+
1

2
log

(1− α0) (α0(1− 2α0)n2 − n)

n3(n+ 1)2
.

This proves the desired result provided r(f) is larger than some constant.

Next we handle small (constant) values of r(f). We start with the case

r(f) = 1. In this case, it is easy to see that ‖f̂‖1 = O(1). Next, we consider

r(f) = 2. Let gk(x) = −1 iff |x| =
∑

i xi = k. For the function g1, we have

for S 6= ∅,

ĝ1(S) =
1

2n
· −2

∑
|x|=1

χS(x)

=
−2

2n
·

n∑
i=1

(−1)1i∈S

=
−2

2n
(n− |S| − |S|) =

−2(n− 2|S|)
2n

.

Hence,

‖ĝ1‖1 = 1− 2
n

2n
+

2

2n

n∑
k=1

(
n

k

)
|n− 2k|

= Θ(
√
n),

by observing that a constant fraction of the probability mass of the binomial

distribution lies in the interval [n/2−2
√
n, n/2−

√
n]. Similarly, one can show

that ‖ĝ1 + ĝn−1‖1 = Θ(
√
n). All other functions with r(f) = 2 are obtained

from these two functions by adding functions g0 or gn and by multiplying by

a constant or the parity function.



5.3. Proof of Theorem 5.1.1 122

We now consider the case r(f) ≥ 3, but constant. We perform an analysis

similar to the proof of Lemma 5.3.3. We can assume that r0 ≥ r1. We take

m0 =
⌊
n/2(1−

√
5α0 − 6α2

0)
⌋
. As in (5.9), we obtain the bound

A0 ≥
(

n

r0 − 1

)
2−n(1− α0)(2α0n

2 − n).

Hence, the analogue of inequality (5.11) becomes

‖f̂‖1 ≥

√(
n

m0

)(
n

r0 − 1

)
2−n

(1− α0)(2α0n2 − n)

n2

≥

√√√√( n⌊
n/2(1−

√
5α0 − 6α2

0)
⌋)( n

α0n

)
2−n

(1− α0)(2α0n2 − n)

n2
.

But
⌊
n/2(1−

√
5α0 − 6α2

0)
⌋

= n/2−Θ(
√
n) and thus

( n⌊
n/2(1−

√
5α0−6α2

0)
⌋) =

Ω(2n/
√
n) (see inequality (5.4)). As a result,

‖f̂‖1 ≥ Ω

(√
1√
n

(
n

α0n

)
1

n

)

≥ Ω

(√(
n

r0 − 1

)
n−3/2

)
,

which proves the lemma.

Lower Bound: r ≈ n/2

For the case r ≈ n/2, we use a result of [OWZ11] that states that the

derivative of a symmetric boolean function is noise sensitive. Here, we use

the noise sensitivity of the derivative fij. The following lemma is an analogue

of [OWZ11, Theorem 6].

Lemma 5.3.5. Let f be a symmetric boolean function and fij be defined as

in (5.5). Then for ρ = 1− c/n, we have∑
S

f̂ij(S)2ρ|S| ≤ 4√
πc
·
∑
S

f̂ij(S)2, (5.13)
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for any c ∈ [1, n]. Summing over all i, j with i 6= j, we get

8
∑
S

|S|(n− |S|)f̂(S)2ρ|S| ≤ 4√
πc
· 8R(f). (5.14)

Proof. The proof is the same as the proof of [OWZ11, Theorem 6] except

that we use fij instead of the derivative. We have∑
S

f̂ij(S)2ρ|S| = Ex [fij(x)Ey [fij(y)]]

where in the expectations, x is uniform and y ∼ρ x. Note that we can write

for any x

|Ey [f12(y)|x] | =
∣∣∣∣Ey3...yn

[
(Pr [y1y2 = 00|x]−Pr [y1y2 = 11|x])

· (f(11y3 . . .yn)− f(00y3 . . .yn))

∣∣∣∣ x]∣∣∣∣
≤ |Ey3...yn [f(11y3 . . .yn)− f(00y3 . . .yn)|x]| .

To find an upper bound for this expression, it suffices to replace the use of

[OWZ11, Lemma 1] by the following claim.

Claim 5.3.6. Let E = {i ∈ [m] : i ≡ 0 mod 2} and O = {i ∈ [m] : i ≡ 1

mod 2}. Let p1, . . . , pm be a non-negative unimodal sequence and g : [m] →
{−1, 0, 1} with the property that the sets g−1(1) ∩ E and g−1(−1) ∩ E are

interleaving, and the sets g−1(1)∩O and g−1(−1)∩O are interleaving. Then

|
∑m

i=1 pig(i)| ≤ 2 max{pi}.

To prove the claim, we simply write |
∑m

i=1 pig(i)| ≤ |
∑

i∈O pig(i)| +

|
∑

i∈E pig(i)|. Now [OWZ11, Lemma 1] implies that each term is upper-

bounded by max{pi}.

We are now ready to prove the following result.

Lemma 5.3.7. There exists a constant γ < 1/2 such that for any symmetric

boolean function f with r(f) ≥ γn, we have log ‖f̂‖1 = Ω(n).
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Proof. Let ρ = 1− c/n where c is a constant chosen later, and let n be large

enough so that ρ ≥ 1/2. We apply (5.14) to g
def
= f · parity:∑

S

|S|(n− |S|)ĝ(S)2ρ|S| ≤ 4√
πc
·R(g).

Note that parity = χ[n] which shows f̂([n] \ S) = ĝ(S) for all S, and in

particular R(g) = R(f). So we can rewrite the above inequality as∑
S

|S|(n− |S|)f̂(S)2ρn−|S| ≤ 4√
πc
·R(f). (5.15)

Summing (5.14) and (5.15), we get∑
S

|S|(n− |S|)f̂(S)2(1− ρ|S| − ρn−|S|) ≥
(

1− 8√
πc

)
R(f). (5.16)

Let β < 1/2 be a positive constant to be chosen later. We have∑
|S|≤βn

|S|(n− |S|)f̂(S)2(ρ|S| + ρn−|S|) ≥
∑
|S|≤βn

|S|(n− |S|)f̂(S)2(ρβn + ρ(1−β)n)

≥
∑
|S|≤βn

|S|(n− |S|)f̂(S)2(1/2 · e−cβ + 1/2 · e−c(1−β)).

For the first equality, we used the fact that ρ|S|+ρn−|S| is decreasing in |S| for

|S| ≤ n/2. For the second inequality, we used the inequality (1 − c/n)βn ≥
e−cβ/2 when 1− c/n ≥ 1/2. Similarly, we have∑

|S|≥(1−β)n

|S|(n− |S|)f̂(S)2(ρ|S| + ρn−|S|)

≥
∑

|S|≥(1−β)n

|S|(n− |S|)f̂(S)2(e−cβ/2 + e−c(1−β)/2).

Summing the two inequalities, we obtain∑
|S|6∈(βn,(1−β)n)

|S|(n− |S|)f̂(S)2(ρ|S| + ρn−|S|)

≥ e−cβ + e−c(1−β)

2

∑
|S|6∈(βn,(1−β)n)

|S|(n− |S|)f̂(S)2.
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Combining this with (5.16), we obtain∑
βn≤|S|≤(1−β)n

|S|(n− |S|)f̂(S)2(1− ρ|S| − ρn−|S|)

=
∑
S

|S|(n− |S|)f̂(S)2(1− ρ|S| − ρn−|S|)

−
∑

|S|6∈(βn,(1−β)n)

|S|(n− |S|)f̂(S)2(1− ρ|S| − ρn−|S|)

≥ (1− 8√
πc

)R(f)− (1− e−cβ/2− e−c(1−β)/2)

·
∑

|S|6∈(βn,(1−β)n)

|S|(n− |S|)f̂(S)2.

As e−cβ/2 + e−c(1−β)/2 < 1, this leads to∑
βn≤|S|≤(1−β)n

|S|(n− |S|)f̂(S)2(1− ρ|S| − ρn−|S|)

≥
(
e−cβ/2 + e−c(1−β)/2− 8√

πc

)
R(f).

Consequently,

n2

4

∑
βn≤|S|≤(1−β)n

f̂(S)2 ≥ R(f)(e−cβ/2 + e−c(1−β)/2− 8/
√
πc).

By picking c = 104 and β = 10−4 ln 2, we have e−cβ+e−c(1−β)

2
− 8√

πc
≥ 1

10
. We

conclude that
∑

βn≤k≤(1−β)nWk ≥ 4R(f)
10n2 , and thus

‖f̂‖1 =
n∑
k=0

√(
n

k

)
Wk ≥

√(
n

βn

)
R(f)

4

10n2
.

Using (5.6), it follows that

‖f̂‖1 = Ω

(√(
n

βn

)(
n

r − 1

)
2−n

)
= Ω

(
2(h(β)+h(α)−1)n

2 (n+ 1)−1
)
,

where α = (r − 1)/n. If α is such that h(α) ≥ 1 − h(β)/2, we obtain the

desired bound log ‖f̂‖1 = Ω(n).
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5.4 Proof of Corollary 5.1.2

We start by observing that we can assume that f(x) is constant whenever

|x| ∈ [r0, n − r1]. In fact, if this is not the case, then f · parity(x) will be

constant when |x| ∈ [r0, n−r1]. But f(x) can be computed from f ·parity(x)

using only one query to parity(x), which multiplies the size of the tree by

at most 2. In the remainder of the proof, we assume f(x) is constant for

|x| ∈ [r0, n− r1].

We start by proving the lower bound. It is simple to prove that ‖f̂‖1 is

a lower bound on the parity decision tree size of f [KM91, Lemma 5.1]. For

completeness, we provide a sketch of a proof. As all the possible inputs that

lead to some leaf L have the same value for f , we can write f as a sum over all

leaves of the tree f(x) =
∑

L f(L)1L(x), where the function 1L takes value 1

if the input belongs to the leaf L and is 0 otherwise. By linearity of the Fourier

transform and the triangle inequality, we have ‖f̂‖1 ≤
∑

L |f(L)|‖1̂L‖1. Now

observe that the inputs corresponding to L (that we also call L) are inputs

that satisfy some parity conditions on subsets belonging to some subspace

S. Then, we have 1̂L(S) = ± |L|
2n

for any S ∈ S. Note that the number of

such subsets is 2n/|L|. But if S /∈ S, then
∑

x∈L χS(x) = 0. It follows that

‖1̂L‖1 = 1 and that ‖f̂‖1 is a lower bound on the size of the tree.

Using Theorem 5.1.1, this proves the lower bound stated in Corollary

5.1.2, except in the case where r(f) = 1. For this case, observe that we can

assume that a leaf at depth d corresponds to 2n−d possible inputs; see e.g.,

[KM91, Lemma 5.1]. So we have at most two input bit strings that have a

value for f that is different from the value f takes when x ∈ [r0(f), n−r1(f)].

This proves that the depth of the tree is at least n − 1 and completes the

proof of the lower bound.

For the upper bound, we give a decision tree of size at most 4
(

n
r0(f)

)
+

4
(

n
r1(f)

)
for computing f . We start by considering a complete binary tree
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of depth n. Level i of the tree corresponds to querying the i-th input bit

xi. The number of leaves of the tree is 2n. Clearly, one can compute any

function using such a tree. We are going to use the values r0(f) and r1(f) to

remove unnecessary nodes from the tree. Note that each node at level i can

be labelled by a bit string of length i. We remove all the nodes that have

r0 ones and at least r1 zeros, and the nodes that have r1 zeros and at least

r0 ones, together with all their children. All of these nodes correspond to

inputs x for which |x| ∈ [r0, n− r1], so the value of f is a constant that only

depends on f .

It now remains to compute the number of leaves of the constructed de-

cision tree. The number of leaves at a level i < n is 0 if i < r0 + r1 and(
i−1
r0−1

)
+
(
i−1
r1−1

)
if i ≥ r0 + r1. At level n, we have all the remaining nodes

that can have at most r0 ones or at most r1 zeros, thus at most
(
n
r0

)
+
(
n
r1

)
leaves. Thus, the total number of leaves is at most

n−1∑
i=r0+r1

(
i− 1

r0 − 1

)
+

(
i− 1

r1 − 1

)
+

(
n

r0

)
+

(
n

r1

)

≤
n−1∑

i=r0−1

(
i

r0 − 1

)
+

n−1∑
i=r1−1

(
i

r1 − 1

)
+

(
n

r0

)
+

(
n

r1

)
= 2 ·

((
n

r0

)
+

(
n

r1

))
.

We can then obtain the stated result by (5.3) and the fact that h(x) ≤
−2x log x for x ∈ (0, 1/2].

5.5 Future Work

A natural next step is to extend Theorem 5.1.1 to approximate spectral

norm. Indeed this would have interesting implications. Recall that the ε-

approximate spectral norm of a boolean function f is the smallest spectral
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norm of a function φ with ‖f − φ‖∞ ≤ ε, i.e., for all x, |f(x) − φ(x)| ≤ ε.

Trivially ‖f̂‖1,ε is smaller than ‖f̂‖1. We conjecture that it cannot be much

smaller.

Conjecture 5.5.1. For all symmetric functions f : {0, 1}n → {±1},

log ‖f̂‖1 = Θ∗(log ‖f̂‖1,1/3)

where Θ∗ suppresses factors between 1 and log n.

We now discuss some of the applications of the above conjecture in con-

junction with Theorem 5.1.1.

Analog of Paturi’s Result for Monomial Complexity

A famous result of Paturi [Pat92] characterizes the approximate degree of all

symmetric functions. Recall that the degree of a function f is the largest |S|
such that f̂(S) is non-zero. The ε-approximate degree is then the smallest

degree of a function φ with ‖f − φ‖∞ ≤ ε. Let t0 and t1 be the minimum

integers such that f(i) = f(i+ 1) for all i ∈ [t0, n− t1].

Theorem 5.5.2 ([Pat92]). Let f : {0, 1}n → {±1} be a symmetric function

and let t0 and t1 be defined as above. Then, deg1/3(f) = Θ(
√
n(t0 + t1)).

Paturi’s result has found numerous applications in theoretical computer

science [Raz03, BBC+01, She09, dW08, She11].

The monomial complexity of a boolean function f , denoted mon(f), is

the number of non-zero Fourier coefficients of f . The approximate monomial

complexity is then also defined as the smallest monomial complexity of a

function that approximates f in the `∞ norm. The monomial complexity

appears naturally in various areas of complexity theory, and it is desirable to

obtain simple characterizations for natural classes of functions. An argument

similar to the one in [BS92] shows that monε(f) ≤ 2n
ε2
‖f̂‖2

1 for every ε > 0.
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Combining this with Conjecture 5.5.1 and Theorem 5.1.1 would show that

r(f) characterizes the approximate monomial complexity of f :

Conjecture 5.5.3 (Consequence of Conjecture 5.5.1). For a symmetric

function f : {0, 1}n → {±1},

log mon1/3(f) = Θ∗(r(f)).

Communication Complexity of Xor Functions

Recall the Log Rank Conjecture mentioned in the introduction. This conjec-

ture has an analogous version for the randomized communication complexity

model: “Log Approximation Rank Conjecture”. The ε-approximate rank of

a matrix M is denoted by rankε(M), and is the minimum rank of a matrix

that ε approximates M . It is known that Rε(F ) ≥ log rankε′(MF ), where ε′

is a constant that depends on ε and MF is the matrix representation of F .

Log Approximation Rank Conjecture states that this lower bound is tight:

Conjecture 5.5.4 (Log Approximation Rank Conjecture). There is a uni-

versal constant c such that for any 2 party communication problem F ,

log rankε′(MF ) ≤ Rε(F ) ≤ logc rankε′(MF ).

The important paper of Razborov [Raz03] established this conjecture for

the functions sym ◦ and. In fact, Razborov showed that the quantum and

classical randomized communication complexities of such functions are poly-

nomially related. Later, Shi and Zhang [SZ09a], via a reduction to the case

sym◦and, showed the quantum/classical equivalence for symmetric xor func-

tions sym◦xor. They show that the randomized and quantum bounded error

communication complexities of F are both Θ(r(f)), up to polylog factors.

However, their result does not verify the Log Approximation Rank Conjec-

ture for symmetric xor functions.
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Conjecture 5.5.1 along with Theorem 5.1.1 would verify the Log Approx-

imation Rank Conjecture for symmetric xor functions (This follows from the

protocol of Shi and Zhang [SZ09a, Proposition 3.4] for symmetric xor func-

tions, and the facts ‖MF‖tr,ε = 2n‖f̂‖1,ε and rankε(MF )1/2 ≥ ‖MF‖tr,ε/(1 +

ε)2n.). Furthermore, we would obtain a direct proof of the result of Shi and

Zhang. This is very desirable since a major open problem is to understand

the communication complexity of f ◦ xor for general f (with no symmetry

condition on f). There is a sentiment that this should be easier to tackle

than f ◦ and as xor functions seem more amenable to Fourier analytic tech-

niques. A direct proof of the result of Shi and Zhang gives more insight into

the communication complexity of xor functions.

Agnostically Learning Symmetric Functions

Let C be a concept class and φi : {−1, 1}n → R be functions for 1 ≤ i ≤ s

such that every f : {−1, 1}n → {−1, 1} in C satisfies ‖f −
∑s

i=1 ciφi‖∞ ≤ ε,

for some reals ci. The smallest s for which such φi’s exist corresponds to the

ε-approximate rank of C. If each φi(x) is computable in polynomial time,

then C can be agnostically learned under any distribution in time poly(n, s)

and with accuracy ε [KKMS08] (see the paper for the definition of agnostic

learning).

Klivans and Sherstov [KS10] proved strong lower bounds on the approx-

imate rank of the concept class of disjunctions {
∨
i∈S xi : S ⊆ [n]} and

majority functions {maj(±x1,±x2, . . . ,±xn)} thereby ruling out the possi-

bility of applying the algorithm of [KKMS08] to agnostically learning these

concept classes.

Theorem 5.1.1 together with Conjecture 5.5.1 provides additional nega-

tive results and gives strong lower bounds on the approximate rank of the

concept class consisting of symmetric functions f with large r(f).



CHAPTER 6

Hardness of Private Communication

As significant parts of our lives migrate to the internet, the study of privacy

becomes an important area of research in many disciplines. There is a huge

body of work studying different aspects of privacy in different contexts. In

this chapter, we will be concerned with privacy in the context of communica-

tion complexity. A prime example of interest comes from auctions, in which

there are several participants who wish to obtain some item(s). The partici-

pants place bids and the auctioneer then decides on the winner and the price

the winner has to pay based on the rules of the auction. For example, in the

Vickrey auction (also known as the 2nd price auction), the highest bidder

wins and pays the price of the second highest bid. Vickrey auction is quite

famous in the game theory literature since it is the canonical example of a

truthful mechanism, i.e., the best strategy for each participant, regardless of

what other players choose to do, is to bid their true valuation for the item.

In auctions like these, the auctioneer is concerned with obtaining informa-
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tion from the participants that allows her to compute the outcome of the

auction. On the other hand, the participants do not want to give away any

information about their inputs (valuations) that is not necessary to compute

the outcome.

Let’s look into the above example a little deeper. Suppose we have two

players and a single item. The players have their private valuations (a pos-

itive integer) for this item. We’ll view their valuation as their input. In the

most basic protocol, the players would communicate their inputs to the auc-

tioneer and the auctioneer would compare the two values and decide on the

winner as well as the price the winner has to pay. Although this protocol is

communication-wise quite efficient1, both players’ inputs are completely re-

vealed to the auctioneer. In contrast, consider the following protocol which

proceeds in rounds. In round i, the players send a bit each indicating whether

their input is greater than i. When we reach a round where one of the players

indicates their input is not greater than i, the protocol ends. The auctioneer

can then decide on the winner and the price the winner has to pay (say we

break ties in a predetermined way). Notice that in this protocol, the auc-

tioneer learns what she needs to learn in order to decide the outcome, but

she does not learn any additional information. In particular, she does not

learn the input of the winner, but only the input of the loser. And the input

of the loser is required information to determine how much the winner has

to pay. Even though this protocol is “perfectly private”, it suffers in the cost

of communication since the protocol can have cost exponential in the length

of the players’ inputs.

To make the above discussion a bit more formal, let X = Y = Z = [2n]

1In this setting, this is considered to be an efficient protocol because the output of the

protocol is essentially the same length as the inputs to the players.
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and define F : X × Y → Z × {A,B} as

F (x, y) =

{
(x,B) if x ≤ y,

(y, A) if y < x.

This function corresponds to the Vickrey auction. The matrix representation

of F is shown in Figure 6.1. Informally, we say that F has a perfectly private

Figure 6.1: The matrix for Vickrey auction when n = 3.

communication protocol if the communication transcript does not reveal any

information about the players’ inputs other than what is revealed by the

function’s output. Formally, this corresponds to saying that the monochro-

matic rectangles induced by the protocol exactly coincides with the rectangles

shown in the figure. If, for example, the protocol induces two rectangles for

a particular output, say (1, B), knowing that we are in one rectangle and

not the other gives us information about Player B’s input that the function

output itself does not give. It is easy to check that the communication-wise

inefficient protocol that we described above induces exactly the rectangles
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shown in the figure and is indeed a perfectly private protocol. On the other

hand, the efficient protocol in which both players reveal their inputs induces

a separate rectangle for each entry of the matrix. As such, it is the worst

possible protocol in terms of privacy.

Studying only perfect privacy has several shortcomings. First, it is easy

to see that many functions do not have perfectly private protocols and there-

fore requiring perfect privacy is not reasonable. Second, even if a function

has a perfectly private protocol, it may require infeasible amount of commu-

nication. Third, although perfect privacy is nice to pursue in an ideal world,

in the real world, some loss of privacy can be quite acceptable. All these

reasons motivate the study of approximate privacy and trade-offs between

privacy and communication complexity.

Feigenbaum et al. [FJS10a] define two notions of approximate privacy.

The worst-case privacy approximation ratio is defined to be the worst ratio

between the size of a region corresponding to a particular output and the size

of a protocol induced rectangle within that region. In the average-privacy ap-

proximation ratio, rather than taking the worst ratio, we look at the average

ratio (formal definitions of these notions will be made in the next section).

The authors study the privacy approximation ratios of several natural auc-

tions and functions. In the case of Vickrey auction, they are able to analyse

some specific protocols and obtain upper and lower bounds on their approx-

imate privacy. However, they do not obtain a general result that applies to

any protocol that computes the Vickrey auction.

In this chapter, we show that any protocol computing the Vickrey auction

has an inherent trade-off between privacy and communication complexity by

obtaining asymptotically tight lower bounds (in terms of the communica-

tion cost) on worst-case and average-case privacy approximation ratios of

these protocols. Furthermore, we obtain an exponential lower bound on the

average-case privacy approximation ratio of any protocol computing the set
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intersection function, independent of the cost of the protocol. This solves an

explicitly stated open problem from [FJS10a].

The rest of this chapter is organized as follows. In Section 6.1 we for-

mally define the privacy measures that we are interested in. First we define

the worst-case privacy approximation ratio, then we define the average-case

privacy approximation ratio, and in the last part, we discuss the connection

of average-case privacy approximation ratio with other information theo-

retic notions of privacy. In Section 6.2, we review our initial discussion on

the Vickrey auction and state some preliminary results. Section 6.3 is de-

voted to the presentation of our main results. First we prove worst-case

privacy approximation ratio lower bound for the Vickrey auction. Next we

prove average-case privacy approximation ratio lower bound for the Vick-

rey auction. And lastly, we prove average-case privacy approximation ratio

lower bound for the Intersection function by using the connection between

average-case privacy approximation ratio and information theoretic notions

of privacy. We conclude in Section 6.4.

6.1 Privacy Measures

6.1.1 Worst-Case Privacy Approximation Ratio

We first set some notation. Given F : X × Y → Z, each input (x, y) is

associated with the region Rx,y of all inputs in the preimage of F (x, y), i.e.,

Rx,y = {(x′, y′) ∈ X × Y | F (x, y) = F (x′, y′)}.

For any value z ∈ Z, we let Rz = F−1(z) be the preimage of z. The set

of all regions of a function F is R(F ) = {Rx,y ∈ X × Y}. Let P be a

communication protocol that computes the function F . Recall that ΠP (x, y)

denotes the transcript that the protocol produces on input (x, y). We let Px,y
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denote the protocol-induced rectangle that contains (x, y), or in other words,

Px,y = {(x′, y′) ∈ X × Y | ΠP (x, y) = ΠP (x′, y′)}.

Note that Px,y ⊆ Rx,y since P correctly computes F .

A perfectly private communication protocol for F will reveal only the out-

put of F and no additional information. Every two inputs (x, y) and (x′, y′)

such that F (x, y) = F (x′, y′) should be indistinguishable from each other

[Kus89, CGGK94]. Approximate privacy provides a measure of how much

indistinguishability has been lost. The following definition captures the pri-

vacy loss of a communication protocol with respect to a third party observer

(eavesdropper) who overhears the messages sent between the players. This

measure is referred to as objective.

Definition 6.1.1. [FJS10a] A protocol P for a function F on X × Y has

worst-case objective privacy approximation ratio (PAR) defined by

PAR(P ) = max
(x,y)

|Rx,y|
|Px,y|

= max
(x,y)

PAR(P, x, y),

where for each input (x, y), PAR(P, x, y) = |Rx,y |
|Px,y | denotes that input’s own

privacy approximation ratio. Often we do not specify the protocol P when

it is clear from context.

The PAR measure of privacy can be extended to subjective PAR, which

measures the privacy that the players lose to each other.

Definition 6.1.2. [FJS10a] A protocol P for a function F on X × Y has

worst-case subjective privacy approximation ratio (PARsub) defined

by:

PARsub(P ) = max

{
max
(x,y)

|Rx,y ∩ X × {y}|
|Px,y ∩ X × {y}|

,max
(x,y)

|Rx,y ∩ {x} × Y|
|Px,y ∩ {x} × Y|

}
.
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6.1.2 Average-Case Privacy Approximation Ratio

For a probability distribution D on X × Y and a protocol P for a function

F : X ×Y → Z, Feigenbaum et al. [FJS10a] define the average-case PAR as

the quantity

E(x,y)∼D

[
|Rx,y|
|Px,y|

]
.

Here we consider the following alternative definition.

Definition 6.1.3. For a probability distribution D on X ×Y and a protocol

P for a function F : X × Y → Z, let the average-case objective privacy

approximation ratio of protocol P for function F be:

avgD PAR(P ) = E(x,y)∼D

[
|Rx,y|D
|Px,y|D

]
,

where for S ⊆ X × Y , |S|D =
∑

(x,y)∈S D(x, y). Furthermore, we let the

average-case subjective privacy approximation ratio of protocol P

for function F be:

avgD PARsub(P ) =

max

{
E(x,y)∼D

[
|Rx,y ∩ X × {y}|D
|Px,y ∩ X × {y}|D

]
,E(x,y)∼D

[
|Rx,y ∩ {x} × Y|D
|Px,y ∩ {x} × Y|D

]}
.

As opposed to Feigenbaum et al. we measure the size of subsets of X ×Y
relative to the measure D. This definition coincides with the definition of

Feigenbaum et al. for the uniform distribution. Their paper does not give

any results for distributions other than uniform, so our definition is consis-

tent with their results. Similarly, our main results are also for the uniform

distribution. We believe that our modified measure has several advantages.

It allows natural alternative characterizations, and (as we will see in the next

subsection) it is related to other known measures of privacy.

One benefit of Definition 6.1.3 is that it allows us to write average-case

PAR as a sum that is convenient to work with. Consider a protocol P for a
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function F . For a region R ∈ R(F ) let cutP (R) = |{Px,y | (x, y) ∈ R}| be the

number of protocol-induced rectangles contained within R. The following

statement is implicit in Feigenbaum et al. [FJS10a] for the case of uniform

distribution and objective PAR.

Proposition 6.1.4. For any function F : X ×Y → Z, protocol P for F and

any probability distribution D on X × Y,

avgD PAR(P ) =
∑

R∈R(f)

|R|D · cutP (R),

and

avgD PARsub(P ) = max

{ ∑
y∈Y,R∈R(F )

|R ∩ X × {y}|D · cutP (R ∩ X × {y}),

∑
x∈X ,R∈R(F )

|R ∩ {x} × Y|D · cutP (R ∩ {x} × Y)

}
.

Proof. For any protocol-induced rectangle A,
∑

(x,y)∈AD(x, y) · 1
|A|D

= 1.

Hence,

avgD PAR(P ) = E(x,y)∼D

[
|Rx,y|D
|Px,y|D

]
=

∑
(x,y)∈X×Y

D(x, y) · |Rx,y|D
|Px,y|D

=
∑

R∈R(F )

∑
(x,y)∈R

D(x, y) · |R|D
|Px,y|D

=
∑

R∈R(F )

|R|D
( ∑

(x,y)∈R

D(x, y) · 1
|Px,y|D

)
=

∑
R∈R(F )

|R|D · cutP (R),

where for the last equality, divide the R in the inner sum into the protocol

induced rectangles inside R.

The case of subjective PAR is analogous.
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6.1.3 Average-Case PAR and Mutual Information

The definition of average-case PAR is closely related to previously studied

concepts in communication complexity such as information cost [BBCR10]

(as discussed in Section 2.2.6) and information-theoretic privacy introduced

by Klauck [Kla02]. The main distinction is that these concepts measure

in terms of bits, and PAR does not. Next we recapitulate some of these

measures and show their relationship to average-case PAR.

Among these notions, Klauck’s privacy measure [Kla02] is most closely

related to average-case PAR. Let D be a probability distribution on X × Y
and let (x,y) ∼ D. Klauck [Kla02] gives the following definition of privacy

of a protocol.

PRIVD(P ) = max{I(x : ΠP (x,y)|y, F (x,y)), I(y : ΠP (x,y)|x, F (x,y))}.

The relationship between this measure and our average-case PAR is given by

the following theorem.

Theorem 6.1.5. For a probability distribution D on X × Y and a protocol

P for a function F : X × Y → Z, the following holds:

PRIVD(P ) ≤ log(avgD PARsub(P )).

Proof. By symmetry, it suffices to show that I(x : ΠP (x,y)|y, F (x,y)) ≤
log(avgD PARsub(P )).

I(x : ΠP (x,y)|y, F (x,y))

≤ H(ΠP (x,y)|y, F (x,y))

=
∑

y∈Y,z∈Z

Pr[y = y, F (x,y) = z] ·H(ΠP (x,y)|y = y, F (x,y) = z)

≤
∑

y∈Y,z∈Z

|Rz ∩ X × {y}|D · log(cutP (Rz ∩ X × {y}))

≤ log(avgD PARsub(P )),
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The first inequality holds by simple algebra. The second inequality holds

because, for any y ∈ Y and z ∈ Z, Pr[y = y, F (x,y) = z] = |Rz ∩X ×{y}|D
and H(ΠP (x,y)|y = y, F (x,y) = z) ≤ log(cutP (Rz ∩ X × {y})). The final

inequality follows from concavity of logarithm and Proposition 6.1.4.

Hence, one can use lower bounds on PRIV to derive lower bounds for

average-case PAR. For example, recall the disjointness function DISJ :

{0, 1}n × {0, 1}n → {0, 1}, which on inputs x, y ∈ {0, 1}n is defined to be

one if {i ∈ [n] : xi = yi = 1} is empty and zero otherwise. Klauck [Kla02]

shows that for any protocol P for the disjointness problem, PRIVD(P ) ≥
Ω(
√
n/ log n), where D is uniform on strings of hamming weight

√
n. Using

the above lower bound, we immediately obtain avgD PARsub(P ) ≥ 2Ω(
√
n/ logn)

for any protocol P for DISJ.

There are two other well studied measures that are closely related to our

average-case PAR: the external and internal information cost (ICext and ICint,

resp.) that we briefly discussed in Section 2.2.6. The external information

cost was defined in [CWYS01] where the internal cost was also used implicitly.

Later, using this measure, Bar-Yossef et al. [BYJKS04] obtained Ω(n) lower

bounds on the randomized communication complexity of DISJn. The internal

information cost was formalized in [BBCR10]. For a protocol P for function

F : X ×Y → Z and a distribution D on X ×Y , they are defined respectively

as follows:

ICext
D (P ) = I(x,y : ΠP (x,y))

ICint
D (P ) = I(x : ΠP (x,y)|y) + I(y : ΠP (x,y)|x).

As one can see the internal information cost is closely related to the privacy

measure PRIV of Klauck. The only substantial difference is that PRIV is

conditioned on the value of the function whereas ICint is not. When f is a

boolean function, they are asymptotically identical.
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Proposition 6.1.6. For any probability distribution D on X × Y and any

protocol P for a function f : X × Y → Z:

PRIVD(P )− log |Z|≤ ICint
D (P )≤ 2 · (PRIVD(P ) + log |Z|).

The proposition follows from Claim 2.1.2.

6.2 Vickrey Auction

Vickrey auction (also known known as 2nd price auction) arises in mechanism

design, and is a canonical example of a truthful mechanism: neither player

has incentive to cheat, as long as the auction is computed correctly. Let’s

recall the definition from the introduction of this chapter. For a positive

integer n, the n-bit Vickrey auction is defined as F : X × Y → Z × {A,B}
where X = Y = Z = {1, 2, . . . , 2n} and

F (x, y) =

{
(x,B) if x ≤ y,

(y, A) if y < x.

Two players, Alice and Bob, have private values x and y, respectively.

These private values indicate the amount of money that the item is worth

to each of them. If x ≤ y, then Bob wins, and the price that he pays is

x. (Thus, F (x, y) = (x,B) means that Bob wins and pays x for the item.)

Similarly, if x > y, then Alice wins, and the price that she pays is y. Vickrey

auction remains truthful for more than two players, but is not computable

with perfect privacy (PAR = 1) for more than two players [BS08].

Perfect privacy for two-player Vickrey auction is achieved by the succes-

sive English bidding protocol, in which bids start at 1 and increase by 1 in

each round, and the first player to drop out of bidding reveals his entire pri-

vate value. Note that this incurs no loss of privacy, since that value is part

of the function output. This protocol has cost 2n+1 for the n-bit Vickrey



6.2. Vickrey Auction 142

auction, and is known to be the only protocol which obtains perfect privacy

PAR = 1 for Vickrey auction.

Theorem 6.2.1. [Kus89] Perfect privacy for two-player n-bit Vickrey auc-

tion is only achievable by the 2n+1-cost English bidding protocol.

Notice that the range of F is of size 2n+1 and that F is surjective, so

that there must be at least 2n+1 distinct leaves in any protocol tree for F .

Thus any protocol for F requires cost at least n + 1. An example of a

protocol achieving cost n+1 is the bisection protocol that proceeds by binary

search on an interval containing the smaller input [FJS10a]. However, the

bisection protocol obtains PAR = 2n, the worst possible loss of privacy for

this function.

Although the bisection protocol loses a lot of privacy in the worst-case,

it achieves exponentially better privacy in the average-case.

Proposition 6.2.2. Let P denote the bisection protocol for the n-bit Vickrey

auction. For any probability distribution D on [2n]× [2n], we have

avgD PAR(P ) ≤ n+ 1.

Proof. Each region R of the n-bit Vickrey auction is covered by at most n+1

rectangles induced by the bisection protocol, i.e., cutP (R) ≤ n + 1. The

claim follows by Proposition 6.1.4.

Let’s now make a couple of observations regarding the subjective vs ob-

jective PARs of the Vickrey auction. Objective and subjective worst-case

PAR coincide because all regions are rectangles with width or height one (we

omit the trivial proof):

Lemma 6.2.3. Let P be any protocol for the Vickrey auction. Then PAR(P ) =

PARsub(P ).
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A similar equivalence holds for average-case PAR under the uniform dis-

tribution:

Lemma 6.2.4. Let P be any protocol for the n-bit Vickrey auction and U

be the uniform probability distribution on [2n]× [2n]. Then

avgU PARsub(P ) ≤ avgU PAR(P ) ≤ 2 avgU PARsub(P ).

Proof. To prove the relationship for the average-case PAR, consider an input

(x, y) ∈ [2n]× [2n]. If x ≤ y then Rx,y ∩{x}×Y = Rx,y and Rx,y ∩X ×{y} =

{(x, y)}. If x > y then Rx,y ∩ {x}×Y = {(x, y)} and Rx,y ∩X ×{y} = Rx,y.

Identically for Px,y instead of Rx,y. Hence if x > y,

|Rx,y ∩ X × {y}|
|Px,y ∩ X × {y}|

=
|Rx,y|
|Px,y|

and
|Rx,y ∩ {x} × Y|
|Px,y ∩ {x} × Y|

= 1 ≤ |Rx,y|
|Px,y|

.

On the other hand, if x ≤ y, then

|Rx,y ∩ X × {y}|
|Px,y ∩ X × {y}|

= 1 ≤ |Rx,y|
|Px,y|

and
|Rx,y ∩ {x} × Y|
|Px,y ∩ {x} × Y|

=
|Rx,y|
|Px,y|

.

Thus, avgU PARsub(P ) ≤ avgU PAR(P ). For the upper bound

∑
x,y

1

4n
· |Rx,y|
|Px,y|

=
∑
x>y

1

4n
· |Rx,y ∩ X × {y}|
|Px,y ∩ X × {y}|

+
∑
x≤y

1

4n
· |Rx,y ∩ {x} × Y|
|Px,y ∩ {x} × Y|

.

Hence, avgU PAR(P ) ≤ 2 avgU PARsub(P ).
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6.3 Main Results: PAR Lower Bounds

6.3.1 Worst-Case PAR Lower Bound for Vickrey Auc-

tion

The two protocols (English bidding protocol and bisection protocol) dis-

cussed in the previous section suggest that any protocol computing Vickrey

auction should have a trade-off between cost and privacy. Protocol steps

which resemble those of the English bidding protocol partition the inputs in

an unbalanced way, so that most inputs follow one branch of the protocol

tree, and few inputs follow the other branch. Such steps preserve privacy but

do not make much progress (in an imbalanced partition, on the larger side

the protocol still has a lot of work to do in order to compute the function).

On the other hand, protocol steps that resemble those of the bisection proto-

col (binary search), partition the inputs in a nearly balanced way. Such steps

make good progress, but are bad for privacy (dividing the remaining inputs

in half increases the PAR by a factor of 2). This is the high-level intuition

behind the proof of the worst-case PAR lower bound for Vickrey auction.

Theorem 6.3.1. For every n and p, 2 ≤ p ≤ n/4, any deterministic protocol

for two-player Vickrey auction with communication cost (length) less than

n2
n
4p
−5 obtains worst-case PAR at least 2p−2.

Here the variable p serves as a parameter, explicitly linking the protocol

length to the achievable PAR. For instance, if we put p =
√
n, then we con-

clude by Theorem 6.3.1 that either the protocol communicates 2Ω(
√
n) bits in

the worst case, or the worst-case privacy loss is 2Ω(
√
n). This theorem shows

that for Vickrey auction, there is an inherent trade-off between communi-

cation complexity and privacy. Note that the trade-off holds for both the

objective and subjective worst-case PAR due to Lemma 6.2.3.

In the rest of this section, we prove the theorem.



145 Chapter 6. Hardness of Private Communication

We will assume without loss of generality that in the protocol, the players

take turns and send one bit per message. Any protocol can be put into this

form by at most doubling the length of the protocol. Moreover, note that

our protocol is assumed to be deterministic and to have zero error.

Let M denote the communication matrix for Vickrey auction (Figure 6.1).

Recall from Chapter 2 that every communication protocol can be visualized

as a binary tree. Each node v of the tree is associated with a rectangle

(submatrix) T (v) = TA(v)× TB(v) ⊆ X × Y . The root node r is associated

with the entire matrix TA(r) × TB(r) = X × Y = M . Each leaf node l is

associated with a monochromatic submatrix TA(l) × TB(l). Each internal

node v has two children, v0 and v1. If the protocol calls for Alice to speak

at node v, then the bit sent by Alice at v induces a partition of TA(v) into

two pieces, TA(v0) and TA(v1). The submatrix associated with v0 is TA(v0)×
TB(v), and the submatrix associated with v1 is TA(v1) × TB(v). Similarly if

Bob speaks at node v, then the submatrix associated with v0 is TA(v)×TB(v0)

and the submatrix associated with v1 is TA(v)× TB(v1).

We can define a PAR value for an input (x, y) with respect to a node v

of the tree: for any (x, y) ∈ T (v),

PARv(x, y) =
|Rx,y|

|Rx,y ∩ T (v)|
.

If v is a leaf, then for any (x, y) ∈ T (v), PARv(x, y) = PAR(x, y). The

following simple claim will be useful:

Claim 6.3.2. ∀(x, y) ∈ T (v), PAR(x, y) ≥ PARv(x, y).

We now describe the strategy of the proof. We are given a protocol for

the Vickrey auction and its associated protocol tree. Starting at the root,

we will follow a path down the protocol tree. Our decision to go to the left

or right child of a node will depend on the behaviour of the protocol at that

node. If we simplify the argument a bit, the choice is essentially made as
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follows. If the protocol, at a particular node, makes an unbalanced partition

(e.g., the perfectly private English bidding protocol), then we will choose

the child that corresponds to the bigger part. We call this step “useless”

since the protocol still has work to do in order to correctly compute this big

part. On the other hand, if the protocol makes a balanced partition (e.g.,

the bisection protocol), we will choose the child that incurs the most privacy

loss. By making the appropriate choices to go left or right, we will end up

at a node (i.e. a rectangle) such that the inputs in the rectangle will either

have large privacy loss PAR(x, y) ≥ 2p−2, or will require at least n2
n
4p
−5 bits

of communication. The theorem then follows from this.

Let’s now get into the details of this strategy. For each node v, we will

maintain three sets S(v), LA(v), LB(v) ⊆ [2n], where S stands for “small”

and L stands for “large”. We define

LA(v) = TA(v) ∩ [2n]\[2n−p],

LB(v) = TB(v) ∩ [2n]\[2n−p],

and

S(v) = TA(v) ∩ TB(v) ∩ [2n−p].

So LA(v) and LB(v) track the large inputs in v, and S(v) tracks the small

inputs (except we don’t distinguish between players A and B). At the root

r, S(r) = [2n−p] and LA(r) = LB(r) = [2n]\[2n−p].
The submatrix S(v) × S(v) plays an important role in our strategy and

it has two properties to keep in mind. First, observe that every entry is

contained in a large region (it sits at the upper-left corner of M) and therefore

these entries have the potential to incur a big (exponential) privacy loss.

Second, the submatrix S(v)× S(v) has exactly the same structure/shape as

the original Vickrey auction matrix M , albeit smaller (but still large enough).

Because of these two properties of S(v) × S(v), we will actually keep track
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of these inputs and we will base our decision to choose the left or right child

of a node v by looking at whether the protocol partitions S(v) in a balanced

way.

The purpose of the sets LA(v) and LB(v) is to help us keep track of

the privacy loss of inputs in S(v) × S(v). In particular, for any (x, y) in

S(v)×S(v) where Player A wins (i.e. x > y), privacy loss for (x, y) increases

as the size of LA(v) decreases. Similarly for those inputs where Player B

wins, privacy loss increases as the size of LB(v) decreases. More precisely,

for any (x, y) in S(v)× S(v) with x > y,

PAR(x, y) =
|Rx,y|
|Px,y|

≥ PARv(x, y) =
|Rx,y|

|Rx,y ∩ T (v)|
≥ 2n − 2n−p

|LA(v)|+ 2n−p
, (6.1)

where the last inequality holds because |Rx,y| ≥ 2n−2n−p and |Rx,y∩T (v)| ≤
|LA(v)|+ 2n−p. Similarly, for any (x, y) in S(v)× S(v) with x ≤ y,

PAR(x, y) ≥ PARv(x, y) ≥ 2n − 2n−p

|LB(v)|+ 2n−p
.

Let’s now make precise how we traverse down the protocol tree. There

are two cases, depending on whether it is Player A’s or Player B’s turn to

send a message. We will first describe the case where at node v, it is Player

A’s turn to speak. Player A sends Player B some bit b which partitions her

inputs TA(v) into two pieces. Since S(v) and LA(v) are always subsets of

TA(v), this induces a partition of S(v) into S0(v) and S1(v) and LA(v) into

L0
A(v) and L1

A(v). Let α = 2
−n
4p . We determine if a step made progress or

was useless in the following way:

• If α|S(v)| ≤ |S0(v)| ≤ (1 − α)|S(v)| (hence α|S(v)| ≤ |S1(v)| ≤ (1 −
α)|S(v)|), then we say this step made progress on S(v). In this case,

the set S(v) is partitioned into roughly balanced pieces. Select i such

that |LiA(v)| ≤ 1
2
|LA(v)|.

• Otherwise, pick i such that |Si(v)| ≥ (1 − α)|S(v)|. In this case, we

call it a useless step.
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The second case is when it is Player B’s turn to speak and it is completely

analogous to the previous case. Now TB(v) is partitioned into two pieces,

inducing a partition of S(v) into S0(v) and S1(v), and a partition of LB(v)

into L0
B(v) and L1

B(v). We pick i as above, but with LiA replaced with LiB.

We keep traversing the protocol tree as described above until one of the

two events happens for the first time:

• Player A (or Player B) has made p progress steps, so LA(v) (or LB(v))

has been halved at least p times.

• The strategy reaches a leaf node, and can go no further.

The theorem will now follow from the two lemmas below.

Lemma 6.3.3. Let our strategy reach node v and find Player A (or Player

B) took p progress steps on the way. Then, for each (x, y) ∈ S(v) × S(v)

such that x > y (or x ≤ y) PAR(x, y) ≥ 2p−2.

Lemma 6.3.4. If our strategy reaches a leaf node v without Player A or

Player B taking p progress steps, then for every (x, y) ∈ T (v), the protocol

communicates at least ln 2
4

(n− 2p)2n/4p bits.

Proof of Lemma 6.3.3. Let r be the root node of our protocol tree. Note

that |LA(r)| = 2n − 2n−p. Let ϕ be the path in the protocol tree from r to

v that our strategy chooses such that player A takes p progress steps along

ϕ. Consider any pair of adjacent nodes u,w in path ϕ such that Player A

makes progress in going from u to w. Then, we know |LA(w)| ≤ 1
2
|LA(u)|.

Hence,

|LA(v)| ≤ 1

2p
|LA(r)| = 2n − 2n−p

2p
.

For inputs (x, y) ∈ S(v)×S(v) on which Alice wins, Inequality (6.1) implies

PAR(x, y) ≥ 2n − 2n−p

2n−2n−p

2p
+ 2n−p

≥ 2p−2
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The analysis when Player B makes p progress steps proceeds very similarly.

Proof of Lemma 6.3.4. The strategy reaches a leaf node v traversing a path

ϕ, and |S(v)| = 1. (If |S(v)| > 1, then there is more than one possible answer,

and so the computation is not yet finished.) In this case, Player A and Player

B each took fewer than p progress steps. Let q be the total number of useless

steps followed to get to v. (The protocol is at most 2p + q long.) On each

progress step (u,w) in path ϕ, by definition, |S(w)| ≥ α|S(u)|. On each

useless step (u,w), |S(w)| ≥ (1− α)|S(u)|. This gives a lower bound on the

size of set S(v). Hence |S(v)| ≥ 2n−pα2p(1− α)q.

Assume that q < ln 2
4

(n − 2p)2
n
4p . The calculation below shows that

|S(v)| > 1, thus deriving a contradiction to the fact that v is a leaf node

where the protocol ends.

|S(v)| ≥ 2n−pα2p(1− α)q

> 2n−p(2−
n
4p )2p(1− 2−

n
4p )

ln 2
4

(n−2p)2
n
4p

= 2
n
2
−p(1− 2

−n
4p )

ln 2
4

(n−2p)2
n
4p

> 2
n
2
−pe−2

− n
4p ln 2

2
(n−2p)2

n
4p

= 2
n
2
−pe−(ln 2)(n

2
−p)

= 1,

where for the last inequality, we used the fact that (1 − x) > e−2x for x ∈
(0, 1/2].

Thus we know that either there is an input with privacy loss at least

2p−2 or an input with communication at least ln 2
4

(n−2p)2n/4p ≥ n
12

2n/4p bits.

Since we might have doubled the communication cost by assuming that the

players take turns to send a bit, we obtain the resulting lower bound.
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6.3.2 Average-Case PAR Lower Bound for Vickrey Auc-

tion

In this section we prove a lower bound on the average-case PAR of Vickrey

auction under the uniform distribution. The restriction to uniform distribu-

tion is not surprising since if the distribution is concentrated say on a single

input, one should not expect large loss of privacy. Also note that by Lemma

6.2.4 our bound applies to both objective and subjective average-case PAR.

Theorem 6.3.5. For all n, r ≥ 1, any deterministic protocol of length at

most r for the two-player n-bit Vickrey auction problem has average-case

PAR at least Ω( n
log(r/n)

) (over the uniform distribution of inputs).

This bound is asymptotically tight since the n
r
-bisection protocol achieves

asymptotically the same upper-bound (see [FJS10a]).

The rest of this section is devoted to the proof of Theorem 6.3.5.

Proposition 6.1.4 characterizes the average-case PAR as the weighted sum

of cutP (R) over all regions R of the function (recall that cutP (R) denotes

the number of rectangles within R that the protocol has induced). We will

lower bound average-case PAR by summing only over the “large” regions.

In particular, we will sum only over regions Rx,y with x, y ≤ 2n−1. These

regions together cover 3/4 the area of X ×Y , and each has size between 2n−1

and 2n (i.e., they all have the same weight up to a factor of 2). Let’s call this

collection of regions L. Then,

avgU PAR(P ) ≥ 2n−1

4n

∑
R∈L

cutP (R). (6.2)

The sum above suggests that counting the number of induced rectangles

of a protocol that computes the Vickrey auction is the key to lower bounding

the average-case PAR. To count the number of induced rectangles, we will

abstract it away into the Ball Partition Problem. As we will see shortly, a
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lower bound on the Ball Partition Problem will then yield a lower bound on

the average-case PAR of Vickrey auction.

Definition 6.3.6 (Ball Partition Problem). For integers N, r ≥ 1, there are

N balls and r rounds. All of the balls begin in one big set. In each round,

the balls in each current set are partitioned into (at most) two new sets. The

cost of partitioning the balls in any set S into sets S1 and S2 is min(|S1|, |S2|).
After r rounds, each of the N balls shall be in a singleton set. The total cost

of the game is the sum of the cost, over all r rounds, of every partition made

during each round. We denote the minimal possible cost by B(N, r).

The interesting values of r lie in a particular range. For r < log2N , the

game cannot be finished at any cost. For r > N , the game can easily be

finished with minimal cost B(N, r) = N−1: cut away 1 ball from the largest

set at every round. However, for intermediate values logN ≤ r ≤ N , one

might ask: what is the smallest possible cost c achievable in r rounds?

Theorem 6.3.7. For the Ball Partition Problem, B(N, r) ≥ N logN

4 log( 4r
logN

)
.

The above lower bound is asymptotically optimal. We will prove this at

the end of this section (Proposition 6.3.10) to not break the flow.

The following lemma states that the number of rectangles induced by

a cost r protocol that computes the (logN)-bit Vickrey auction is lower

bounded by B(N, r).

Lemma 6.3.8. Let N, r ≥ 1 be integers and let B(N, r) be the minimal

cost of the Ball Partition Problem on N balls in r rounds. Then for any

deterministic r-bit protocol P for (logN)-bit Vickrey auction,∑
R∈R

cutP (R) ≥ B(N, r).

From Theorem 6.3.7 and Lemma 6.3.8 it is easy to derive the average-case

PAR lower bound for Vickrey auction (Theorem 6.3.5). Let P be a cost r
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protocol that solves the n-bit Vickrey auction and let N = 2n. Consider the

upper left quarter of the Vickrey auction matrix which corresponds to the

(n − 1)-bit Vickrey auction. The protocol P solves the (n − 1)-bit Vickrey

auction as a subproblem and therefore using Lemma 6.3.8 we have∑
R∈L

cutP (R) ≥ B(N/2, r).

Plugging this into Inequality (6.2), we obtain

avgU PAR(P ) ≥ 1

2N
B(N/2, r).

Now applying the lower bound from Theorem 6.3.7 for B(N/2, r) gives us

the desired lower bound on the average-case PAR.

To complete the proof of Theorem 6.3.5, we now present the proofs of

Lemma 6.3.8 and Theorem 6.3.7.

Proof of Lemma 6.3.8. A cost r protocol for the (logN)-bit Vickrey auction

gives us a solution to the Ball Partition Problem with N balls and r rounds.

Let’s first see why this is true, and then argue why the cost of the solution

is at most the number of protocol-induced rectangles. The statement of the

lemma then follows.

We will consider the diagonal elements of the Vickrey auction matrix as

“balls” and view the protocol as partitioning these diagonal elements. Note

that at the end of the protocol, each diagonal element must be in a separate

protocol-induced rectangle as they each belong to a different region. Recall

the following notation used in the proof of Theorem 6.3.1. A protocol is asso-

ciated with a protocol tree where each node v corresponds to a combinatorial

rectangle T (v) = TA(v) × TB(v) ⊆ X × Y . Define Dv = TA(v) ∩ TB(v) to

be the diagonal elements contained in the rectangle corresponding to v. At

the root, Dv is equal to [N ]. If the root has children v1 and v2, then Dv

gets partitioned into Dv1 and Dv2 . Continuing in this fashion, the diagonal
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elements travel down the protocol tree. Whenever there is a node v with

children v1 and v2 such that Dv1 6= ∅ 6= Dv2 , the diagonal elements (balls)

get partitioned further. Since the tree has height (cost) r and at the end

each diagonal element ends up in a different leaf node, the protocol provides

a solution to the Ball Partition Problem for N balls and r rounds.

Now let’s argue why the cost of this solution is at most the number of

induced rectangles. We will start by analysing the first step of the protocol

and see how many rectangles it creates. This will be sufficient to derive

a lower bound on the number of induced rectangles in terms of B(N, r).

Initially we have 2N rectangles, one for each region. Let’s assume Player A

first sends a bit (i.e., horizontally cuts the matrix). How many new rectangles

does this create? As mentioned above, at the root, Dv is equal to [N ] and

its two children v1 and v2 is such that Dv = Dv1

⋃̇
Dv2 . Let x1 = max(Dv1)

and x2 = max(Dv2). Assume that x1 < x2. For every y ∈ Dv1 , y 6= x1,

(x1, y) ∈ Ry+1,y∩T (v1) and also (x2, y) ∈ Ry+1,y∩T (v2). So for each y ∈ Dv1 ,

Ry+1,y is “cut” into two and there are |Dv| − 1 such y’s. If x2 < x1, we

would switch the roles of v1 and v2. Hence we conclude that this step of the

protocol creates at least min(|Dv1|, |Dv2|) − 1 new rectangles on top of the

2N we started with.

If at the first step, Player B speaks, the argument is similar. Let y1 =

max(Dv1) and y2 = max(Dv2), and assume y1 < y2. Then for every x ∈ Dv1 ,

(x, y1) ∈ Rx,x ∩ T (v1) and also (x, y2) ∈ Rx,x ∩ T (v2). Thus in this case one

does not even lose the −1 additive term.

Each node of the protocol tree that splits into two potentially creates

new induced rectangles. Suppose that we are at a node v (not necessarily

the root) that splits into v1 and v2 so that Dv1 6= ∅ 6= Dv2 . Note that

Dv × Dv is a smaller version of the Vickrey auction that the protocol still

needs to solve. And via the same argument that we just presented, we know

that the split of v into v1 and v2 creates at least min(|Dv1|, |Dv2|) − 1 new
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Figure 6.2: An arbitrary node in the ball-partitioning tree.

rectangles. There are exactly N − 1 nodes v that split into v1 and v2 with

Dv1 6= ∅ 6= Dv2 . Thus overall, the number of induced rectangles is at least

2N+B(N, r)−(N−1) = B(N, r)+N+1. We ignore the additive (N+1) term

and obtain the desired lower bound on the number of induced rectangles.

Proof of Theorem 6.3.7. We will examine the entropy of the partitions at

each round. This permits an abstraction away from a particular ball-partition

instance, in order to obtain general properties. This will lead to a lower bound

on the objective function B(N, r), the cost of the Ball Partition Problem.

It will be useful to associate with the Ball Partition Problem in r rounds

a full binary tree of depth r where each set obtained at round t is associated

to a distinct node at level t, and the remaining nodes are associated with the

empty set. The association should be so that a node associated with a set S

has its children associated with sets S1 and S2 obtained from S during the

partitioning. We label each node i, by the size of the associated set, Ni, and

we label edges by the fraction of balls that travel “over” that edge from the

parent to the child node. (See Figure 6.2: a node labelled Ni with children

labelled ciNi and (1− ci)Ni will have edges to those children labelled ci and

1− ci, respectively.)
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The tree’s root node is labelled N ; each leaf is labelled 1 or 0. (The 0

leaves are a result of assuming the binary tree is full; if some ball is partitioned

into a singleton set in round i < r, then in each subsequent round it is

“partitioned” into two sets: the singleton set and the empty set.)

Remark. At each level of the tree, the sum of the node labels equals N .

Thus the sum of labels of all the non-leaf nodes in the tree is rN .

Consider the path followed by any ball b from the root to a leaf. It

traverses edges labelled db1, db2, . . . , dbr, where
∏r

i=1 d
b
i = 1

N
.

Multiplying this number for all balls gives a nice symmetrization which

is true for all trees representing solutions to the Ball Partition Problem.(
1

N

)N
=

∏
b a ball

r∏
i=1

dbi (6.3)

Consider some non-leaf node i of the tree, with edges to its children

labelled ci and 1−ci (Figure 6.2). Together, these edges contribute (ci)
ciNi(1−

ci)
(1−ci)Ni to the right-hand side of equation (6.3). (If ci = 0 this term equals

1 by definition.) Without loss of generality, assume each ci ≤ 1/2. Equation

(6.3) can be rewritten as:(
1

N

)N
=

∏
non-leaf node i

(ci)
ciNi(1− ci)(1−ci)Ni

−N logN =
∑
i

Ni(−H(ci)) (6.4)

Here H(x) = x log 1
x

+ (1− x) log 1
1−x is the binary entropy of x.

Since the leaf nodes are not included in the sum,
∑

non-leaf node iNi = rN

(by the Remark above). Let c =
∑

i
ciNi
rN

be the average cost of a cut in the

Ball Partition Problem. Then the cost of the entire tree is B(N, r) = crN .

Since H is concave,
∑

i
Ni
rN
H(ci) ≤ H(

∑
i
ciNi
rN

) = H(c).

N logN = rN
∑
i

Ni

rN
H(ci) ≤ rNH(c) (6.5)
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For the sake of contradiction, suppose that the cost of the tree B(N, r) =

crN < N logN

4 log( 4r
logN

)
. Then the average cost of a cut is c < logN

4r log( 4r
logN

)
. This c

can be rewritten as c = x
− log x

for x = logN
4r

. Combining equation (6.5) and

Lemma 6.3.9 (below),

logN

r
≤ H(c) = H

( x

− log x

)
< 4x = 4

logN

4r
=

logN

r

The inequality makes this a contradiction. Therefore every tree of depth ≤ r

must incur cost ≥ N logN

4 log( 4r
logN

)
.

Lemma 6.3.9. For 0 < x ≤ 1
2
, the binary entropy H

(
x

− log x

)
< 4x.

Proof. For 0 < x ≤ 1
2
, log 1

x
≥ 1 so clearly 0 <

(
x

− log x

)
≤ 1

2
. Let y = x

− log x
.

Expanding,

H(y) = y log
1

y
+ (1− y) log

1

1− y

For 0 < y ≤ 1
2
, it is not difficult to see that − log(1− y) ≤ 2y and 1− y < 1.

H(y) ≤ y log
1

y
+ (1− y)2y < y log

1

y
+ 2y

Substituting for y and expanding,

H

(
x

log 1
x

)
< x

(
log log 1

x

log 1
x

)
+ x

(
log 1

x

log 1
x

)
+ 2x

(
1

log 1
x

)
Examination reveals that for 0 < x ≤ 1

2
, the parenthesized coefficients are

each ≤ 1. Hence H( x
log 1

x

) < 4x.

This completes the proof of the main theorem of this section. Now, as

promised, we show that the lower bound for B(N, r) is asymptotically tight.

Proposition 6.3.10. Let N and r be integers such that 2 logN ≤ r. For the

Ball Partition Problem, B(N, r) ≤ O
(

N logN
log( r

logN
)

)
.
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Proof. Ignoring the rounding issues, at each round we can split each non-

singleton set S into two sets of sizes α|S| and (1−α)|S|, for α = (logN)/r ≤
1/2. It follows that within r rounds, each set contains at most one element

as (1−α)rN ≤ Ne−αr < 1. The total cost of the ball partitioning is the sum

of sizes of all the smaller sets obtained in each partition. This corresponds to

the number of elements in these sets (counting multiplicity). Each element

can appear in at most log1/αN = (logN)/ log(r/ logN) of the smaller sets as

the size of the set containing the element shrinks by factor of α on each such

occasion. Hence, the total cost is at most N · (logN)/ log(r/ logN). Always

rounding the size of the smaller set up will introduce a constant factor in the

final bound.

6.3.3 Average-Case PAR Lower Bound for Set Inter-

section

In this section we will show an average-case PAR lower bound for the set-

intersection function using the relationship described in Proposition 6.1.6

together with the known lower bounds on internal information cost of DISJ.

This proves a conjecture from [FJS10a], which says that the average-case

subjective PAR for the set intersection function under the uniform distribu-

tion is exponential in n. Function INTERSEC : {0, 1}n × {0, 1}n → P([n])

on inputs x, y ∈ {0, 1}n gives the set {i ∈ [n] : xi = yi = 1}.
We make use of the following lower bound on the internal information cost

of DISJ. Let ν be the uniform distribution supported on {(0, 1), (1, 0), (0, 0)}.
Let τ be the distribution generated by taking the n-fold product of ν. In

other words, τ is the uniform distribution supported on pairs of strings that

are disjoint.

Theorem 6.3.11. [Bra11] Let P be any randomized protocol that computes

disjointness DISJ with error probability < 1/3. Then, ICint
τ

(
P
)

= Ω(n).
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Using the above theorem, we show the following bound for set-intersection.

Theorem 6.3.12. Let P be any deterministic protocol that computes set in-

tersection INTERSEC. Then, for U the uniform distribution, PRIVU

(
P
)

=

Ω(n).

Proof. We prove this by contradiction. Assume that we have a protocol P

to solve INTERSECm on m-bit inputs with little privacy loss under the

uniform distribution. The main idea of the argument is to come up with an

appropriate reduction from set disjointness DISJn on n bits to set intersec-

tion INTERSECm. This reduction will need to satisfy the following features:

solving intersection on the reduced instance should solve set-disjointness on

the original input instance. The reduced instance should not blow up too

much in size, i.e., m = Θ(n). Finally, and most importantly, distribution τ

on input instances to set-disjointness should generate (by our reduction) the

uniform distribution on set-intersection. This last step seems difficult to do

via a deterministic reduction. So we aim to get a workaround as follows.

Let Π be the random variable denoting the transcript generated by P .

Then, our assumption on P gives the following for some constant β which

we fix at the end:

IU
(
x : Π |y, INTERSEC(x,y)

)
+IU

(
y : Π |x, INTERSEC(x,y)

)
< βm.

The uniformly distributed pairs of m-bit random strings (x,y) can be

alternatively generated by first selecting a random subset A of [m] where

each element is in the set independently with probability 1/4. For each i ∈ A,

we set (xi,yi) = (1, 1). Then, for each coordinate i ∈ Ac = [m]−A, (xi,yi)

is picked independently according to ν. Let τ denote the joint distribution

(x,y,A) sampled as described. Let (x,y|A) denote pair of random variables

that are distributed according to x,y conditioned on A as above, and let the

underlying distribution on this pair be denoted by τA. Thus, our assumption
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becomes equivalently:

EµA

[
IτA
(
x : Π |y,A

)
+ IτA

(
y : Π |x,A

)]
< βm,

where µA is the distribution on A. Applying the Chernoff bound on the

deviation of |A| from its expectation, one concludes:

EµA

[
IτA
(
x : Π |y,A

)
+ IτA

(
y : Π |x,A

) ∣∣∣∣ |A| ≤ m/2

]
<

βm

1− exp(−Ω(m))

Thus, there exists some fixed set A of size at most m/2 such that

IτA
(
x : Π |y,A = A

)
+ Iτa

(
y : Π |x,A = A

)
< β′m. (6.6)

This set A is going to provide us with the workaround needed for the

deterministic reduction. We define our reduction now with respect to A.

Set n = m − |A| ≥ m/2. Let P ′ be a protocol that solves set-disjointness

as follows: Given two n-bit strings (u, v), protocol P ′ first embeds u and v

naturally into Ac = [m] − A. Let the embedded strings be called x(u) and

y(v) which each player can generate privately on its own. Then, the players

run the protocol P on
(
x(u), y(v)

)
. Let J be the intersection set that P

returns. Clearly, DISJn(u, v) = 1 iff |J | = |A|. Finally, note if (u,v) are

generated according to τ , then the mapped strings
(
x(u),y(v)

)
∼ (x,y|A =

A). Hence, (6.6) implies that ICτ (P ) ≤ β′m ≤ 2β′n. By setting β′ to be a

small enough constant, we derive a contradiction to Theorem 6.3.11. This

completes the argument.

By using Theorem 6.1.5, this immediately yields the following theorem,

conjectured by Feigenbaum et al. [FJS10b].

Theorem 6.3.13. For all n ≥ 1, and any protocol P computing the set-

intersection INTERSEC on n bits, the average-case subjective PAR is ex-

ponential in n under the uniform distribution: avgU PARsub(P ) = 2Ω(n).
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6.4 Conclusion

The study of privacy is an important area of practical and theoretical com-

puter science. From a theoretical perspective, the first step is to find the right

formulation for it. Usually there is not one right definition because the right

definition depends on the particular aspects of privacy that one is interested

in. For example, different privacy models stem from the question: privacy

from whom? Additional differences can arise from different considerations of

what knowledge should be kept private (e.g., does the output of the function

contribute to privacy loss?).

In this chapter we have discussed the following privacy measures:

PAR,PARsub, avg PAR, avg PARsub,PRIV, ICint, ICext .

Notions like PAR, avg PAR and ICext measure privacy from an eavesdropper

whereas PARsub, avg PARsub, ICint and PRIV measure privacy from other

participants. Furthermore, recall that the main difference between ICint and

PRIV is that PRIV does not consider the knowledge of the function value as

a privacy loss.

There are aspects of privacy that the above measures do not capture. For

example, every bit of the input may not be equally private (the most signifi-

cant bit of a salary is much more privacy revealing than the least significant

bit). Which bits or parts of the input are private can depend on the context

of the problem as well as other participants.

Regardless of these difficulties in capturing the “right” definition of pri-

vacy, we believe that worst-case and average-case privacy approximation ra-

tios studied in this chapter are intuitive, useful and in many situations the

right measures of privacy in the setting of communication complexity. There-

fore understanding these measures in more depth (e.g., obtaining privacy vs

communication cost trade-offs for other functions, as well as better under-

standing the relationship of these measures with other privacy measures) is
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an important challenge. There are interesting directions that one can pursue

along these lines:

• This chapter was only concerned with deterministic protocols that com-

pute the function correctly on all inputs. What about protocols that

make a certain fraction of error? What about randomized protocols?

• Can we develop general techniques for obtaining privacy vs communi-

cation cost trade-offs?

• What other notions of approximate privacy are natural and useful to

study? How do these new notions compare to the other ones?



CHAPTER 7

Conclusion

Computation is a fundamental aspect of our universe. In the last 70 years

we finally took the steps to formalize the notion of computation and rigor-

ously understand it. This quest has played a crucial role in the invention

of first computers which have evolved into indispensable devices that we

now use everyday. Furthermore, not only has it added a new perspective to

old philosophical questions, it has also created new ones just as deep and

exciting. Computational complexity theory plays one of the starring roles

in all this development with its connections to the nature of mathematical

knowledge, artificial intelligence, foundations of quantum mechanics, closed

timelike curves, etc... (see the survey by Aaronson titled “Why Philosophers

Should Care About Computational Complexity” [Aar11]).

Computational complexity theory has matured significantly over the last

several decades even though we still seem as far away from answering ques-

tions like P
?
= NP as we were back then. As discussed in the Introduction,

162
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one of the highlights of this young research area has been communication

complexity, which has grown into a picklock for the field. With applications

in circuit complexity, proof complexity, machine learning, game theory, data

structures, pseudorandom generators and other areas, communication com-

plexity is a true hero of computational complexity theory and theoretical

computer science in general. In this thesis we presented our contributions

to communication complexity in three main parts in which we studied three

different aspects of communication complexity.

In the first part, we studied the so called ‘number on the forehead’ (NOF)

model of multiparty communication complexity. This is one of the most

important models with applications to circuit complexity, Ramsey theory,

pseudorandom generators and branching programs. Without a doubt, the

holy grail in this area is breaking the log n barrier, i.e., exhibiting an explicit

function that is hard in the NOF model when the number of players is log n.

In Chapter 3 we showed that the NOF model with log n many players is more

powerful than previously thought. We ruled out some candidates previously

considered to break the log n barrier by presenting an efficient protocol for

the set of composed functions sym ◦ g, where sym is an arbitrary symmetric

function and g is any function. Furthermore, we presented an interesting

application of this result to Ramsey theory in Chapter 4.

Composed functions have a special role in communication complexity

since most of the functions that drew significant interest have this structure.

In particular, the king and queen of communication complexity generalized-

inner-product GIP = mod2 ◦ and and disjointness DISJ = nor ◦ and are

composed. Given a composed function f ◦ g, the most basic and central

question to study is what combinations of f and g lead to hard or easy

communication functions. The focus in the literature so far has been to fix g

to be a natural function like and and then figure out what kinds of f make

f ◦ g hard. In this thesis we proposed a new dual approach. We fixed f to
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be a natural function like mod2, nor, maj, and obtained strong upper and

lower bounds on the communication complexity of f ◦ g for every possible g.

As there are many choices for g in the NOF model, this approach gives us

new insights about the communication complexity of composed functions.

In the second part of the thesis, we studied the Fourier analytic properties

of symmetric functions (Chapter 5). Fourier analysis provides us a different

and very useful way of looking at boolean functions. It is by now one of

the main tools used in computational complexity theory and the situation

is no different in communication complexity. In particular the communica-

tion complexity of f ◦ xor is intimately connected to the Fourier analytic

properties of f . In this thesis we gave a combinatorial characterization for

the Fourier L1-norm of all symmetric functions and discussed its applications

to communication complexity and decision tree complexity. We hope that

our result will be extended to approximate L1-norm. As discussed in the

conclusion of Chapter 5, this would have several important applications in

computational complexity theory.

In the third part of the thesis (Chapter 6), we studied a different aspect of

communication complexity: the trade-off between communication cost and

privacy of the players. We used the notions of worst-case approximate pri-

vacy and average-case approximate privacy introduced by Feigenbaum et al.

[FJS10a]. These serve as very reasonable formalizations of privacy as argued

in [FJS10a] and this thesis. One area where players wish to keep their inputs

private while minimizing the communication cost is combinatorial auctions.

In this setting we studied the Vickrey auction, which is the canonical exam-

ple of a truthful mechanism. We showed essentially tight trade-offs between

the cost of any protocol computing the Vickrey auction and the worst-case

approximate privacy as well as the average-case approximate privacy of the

players. We also showed an exponential lower bound on the average-case

approximate privacy for the set-intersection function, regardless of the cost
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of the protocol; this solved an explicitly stated open problem from [FJS10a].

At the end of each chapter from 3 to 6, we stated some open problems

that we personally thought were both interesting and within reach. In the

final pages of this thesis, let’s step back and recall some of the big questions

that are at the forefront of communication complexity.

Quantum vs classical communication complexity for total boolean func-

tions is one of the most intriguing questions in the field. It is conjectured that

quantum and classical communication complexities are polynomially related

but progress on it has been limited. The conjecture is open even in the 2

player setting and it would be a breakthrough to establish it for functions

of the form f ◦ and or f ◦ xor for all f . We believe that functions of the

form f ◦ xor should be easier to tackle because of the intimate relationship

between the communication complexity of f ◦ xor and the Fourier analytic

properties of f . Fourier analysis of boolean functions have matured tremen-

dously over the last couple of decades and it probably holds the keys that

would unlock some of the mysteries in communication complexity.

In our biased view, the most important problem in communication com-

plexity is breaking the log n barrier. We can prove strong lower bounds for

several functions for up to ≈ 1
2

log n players and interestingly, all these lower

bounds apply in the randomized model since they are based on the discrep-

ancy method. In fact, we don’t know of an explicit function that is hard in

the deterministic model but easy in the randomized model for even 3 players.

The EVALG function has been conjectured to have this property, for any

G: we know EVALG has an efficient randomized protocol for any G, and it

is conjectured to be hard in the deterministic model. The nice thing about

this conjecture is that we are free to choose our favourite G. And the smart

choice for G would be a “quasirandom”1 G (see [Gow08]) as one can hope to

1A group is called quasirandom if it is far away from being an Abelian group in a

certain sense. Informally these groups have good mixing properties. More formally, these
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exploit this property to prove deterministic communication complexity lower

bounds for EVALG. Here, we would like to take the above conjecture a step

further and identify EVALG, for a quasirandom G, as a candidate to break

the log n barrier. As far as we know, EVALG has never been considered as

a candidate to break the log n barrier before.

The idea of looking at quasirandom G is not new and was proposed by

Gowers [Gow08] in order to get good bounds on the Ramsey number rk(G).

Tao [Tao12] recently accomplished this for k = 3. Can Tao’s result be lifted

to give good bounds for r∠2 (G)? This would show that EVALG is hard in

the deterministic model for 3 players. More ambitiously, can it be lifted to

give good bounds for r∠k (G), where the dependence on k is good? This would

break the log n barrier.

are groups whose non-trivial irreducible representations have high dimension.
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