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ABSTRACT

Literary plot and the development of character are strongly driven by social

context within the domain of literary theory. Capturing the constructed social

world within literature can therefore greatly facilitate our understanding of the

essential elements of a story and even a genre. While there have been efforts

in the past to derive the social networks embedded in literary works, none

have demonstrated the ability to reliably and accurately infer character inter-

actions at scale. In this work, we present a novel crowdsourcing based method

for rapidly mapping literary character networks. We apply our method to a

corpus of detective and short fictional works and present a number of novel

network statistics to capture literary features specific to each genre. These

measures provide insights into how the use of social structures in detective

fiction differ from those in the broader class of short fiction. As we report,

stories that are concerned with narratives of detection are significantly more

aligned with features of extensive rather than intensive social relationships,

indicating a strong connection between open social networks and the narra-

tion of fact-finding. The results are supported by the use of specially-designed

random network models which show that short fiction character networks are

distinctly “man made”.To further our claim, we build a classifier based on

features derived from the network structure of the stories. Our proposed tech-

nique yields highly accurate character interaction sets with an F1 score of 0.91

which is significantly more accurate than existing methods.
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RÉSUMÉ

L’intrigue littéraire et le traitement des personnages sont fortement motivés

par les interactions sociales dans la théorie de la littérature. Capturer l’ensemble

d’un monde social dans la littérature peut donc faciliter grandement notre

compréhension des éléments essentiels d’une histoire et même d’un genre com-

plet. Bien qu’il ya eu des efforts dans le passé pour extraire et analyser la

complexité des interactions dans les œuvres littéraires, aucun n’a encore fait

ses preuves lorsqu’il s’agit d’inférer de manière fiable et précise les interactions

entre personnages à grande échelle. Dans ce travail, nous présentons une nou-

velle méthode de crowdsourcing permettant d’analyser rapidement des réseaux

d’interactions de personnages littéraires. En appliquant notre méthode à un

corpus de romans et d’œuvres de fiction courtes, nous obtenons un grand

nombre de statistiques permettant de capturer les caractéristiques littéraires

spécifiques à chaque genre. Ces mesures permettent de mieux comprendre

comment l’utilisation de structures sociales dans la fiction policière diffère

de celle de la catégorie plus générale de fiction courte. Au cours de notre

expérience, nous avons constaté que les récits qui se rapprochent le plus du

genre policier se distinguent clairement des genres où les interactions sociales

sont très nombreuses, indiquant une forte connexion entre un réseau social

étendu et la narration de faits. Les résultats sont corroborés par l’utilisation

de modèles de réseaux aléatoires spécialement conçus, montrant que les in-

teractions entre personnages dans la fiction sont clairement voulus et non

aléatoires. Afin de confirmer nos résultats, nous avons entrepris de construire

un classificateur basé sur les caractéristiques dérivées de la structure du réseau

des histoires. Notre technique aboutit à des résultats très prometteurs avec

un score F1 de 0.91, nettement plus précis que les méthodes existantes.
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CHAPTER 1
Introduction

Characters and their interactions are a fundamental feature of literature.

Characters provide us with the opportunity to identify with other imaginary

human beings and the ability to model social relationships. Within the domain

of literary theory, there is a rich tradition of scholarship on the meaning of

character, from the analysis of character typologies (e.g., [28]), to the study of

fan fiction and the afterlife of character (e.g., [5]), to more recent work on the

affective and cognitive identifications with characters on the part of readers

[35, 33]. What unites much of this work is an emphasis on understanding

character in the singular.

The vast majority of stories contain more than one trivially engaged char-

acter. This is true across medium (e.g., short story, movie, graphic novel) and

genre (e.g., mystery, thriller, romance). Thus, it would seem that stories de-

pend on a constructed social universe to achieve plot progression, character

development, and myriad other story-telling devices. From a structural per-

spective, this social universe can be represented as a social network of char-

acters and interactions between them which forms and is revealed over time,

providing the scaffolding for character-character interactions.

Introducing social network analysis into the study of character interaction

allows us to model both the larger social universe to which characters belong

as well as the dynamic evolution of their interactions. Character networks can

help us see how characters are not simply types or themes or even vehicles for

the affective connections between readers and texts, but instead windows into

the social imaginings of writers, periods, or genres.
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In this thesis we present a high-throughput technique for mapping the

character interaction networks in literary works. Unlike past approaches, our

method uses crowdsourcing in order to map interactions in a way that most

closely resembles the way in which they are experienced by a human reader

— one of the most important (if not the primary) interpretive perspectives to

assume. We applied our method to 41 short fictional works and found that our

method achieved an F1 score of 0.913 in capturing the interactions detected

by a controlled cohort of readers. This represents a significant improvement

over existing approaches in several ways.

In order to highlight the merits of our approach and this direction of

inquiry, we conduct an analysis of the short fiction corpus that we sequenced

in the validation phase, investigating the social signatures of the sub-genre,

detective short fiction. We propose a number of novel static and dynamic

network statistics which strongly support the thesis that detection narratives

explore a distinctly more open social universe than short fiction in general. We

also evaluate our generated networks against various random network models

and show that the highlighted features in our network are significant Finally,

we build a classifier based on the network features and show that it can classify

detective fiction from short fiction with 68% accuracy.

1.1 Contributions of the Thesis

While network analysis holds great promise for the study of literature,

only very initial attempts have been made to map and study the structure of

such social networks [1, 2, 26, 12, 22]. Our work is meant to take this research

to a new level of sophistication in three distinct ways.

1. Reliable extraction of literary networks using crowdsourcing:

Deriving social interactions from prose texts in a reliable way is a highly
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complex act for both humans and machines. It has to-date largely con-

founded automated methods and is insufficiently analyzed in manual

encoding methods [2, 12]. In this work, we propose an approach that

uses crowdsourcing to massively parallelize the reading and coding of

text by human Amazon Mechanical Turk workers. Crucially, we have

found that our approach achieves a high level of accuracy (F1 score of

0.913) which far exceeds any reported by existing automated (or manual)

approaches.

2. Novel network statistics for character networks : With the excep-

tion of Elson et al., prior work in this field has not produced generalizable

measures for the study of literary phenomena [12]. Existing research has

either focused on the mapping problem without addressing larger lit-

erary questions or on literary questions without supporting robust or

large-scale quantitative data [1, 26, 22]. Here we bridge these pursuits

by presenting, in addition to our novel interaction mapping system, a

suite of new network statistics that measure significant social features

which contribute to the meaning of a particular genre, in our case detec-

tive fiction. As we show, applying social network analysis to the study

of literature can produce truly novel insights about the nature and social

function of different genres.

3. Ability to scale to other genres/novels : Little existing work has

explored the value of understanding character networks across a broad

array of texts. Besides Elson’s study of 60 Victorian novels, analysis has

taken place on a maximum corpus size of no more than three texts [12].

Moreover, existing automated methods, while promising, are severely

hampered in their ability to correctly map the interaction structures

in a text, making large-scale studies impractical at present. Here, we
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present analysis of 41 separate works allowing us to compare an entire

anthology of a single genre (detective fiction) against a control group of

more general canonical short stories. Thus, our work does offer a fea-

sible method for scaling this research to large corpora with appropriate

resources.

Overall, we consider the present work to be an exciting and necessary

step towards large-scale studies of social structures in literature (and in other

media). The proposed mapping method makes a significant improvement to

existing interaction mining accuracy without making serious compromises to

scalability. Our subsequent analysis of detective and short fiction reveals that

characterizing the social dimensions of story-telling is an important part of

understanding how different genre and stories function.

1.2 Outline

The reminder of this thesis is organized as follows:

Chapter 2 discusses related work which has been done in analyzing lit-

erature using social network analysis. It also gives background information

about the random models used in our study and the various classifiers used

to evaluate our results. Finally we discuss the different measures we use to

evaluate our performance and their interpretation from an interaction network

perspective.

Chapter 3 discusses the corpus used in our study and the crowdsourcing

method for mapping the interaction network using AMT. We also discuss the

post-processing steps required after getting the raw data from AMT to filter

out interactions with low agreement. Finally we give the description of the

network statistics we measure for each of the network and their interpretation

from a literary perspective.
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In Chapter 4 we discuss the reliability of our method for extracting in-

teraction networks. We give the sensitivity and specificity scores for various

coverages and discuss the comparison between the generated networks and

random models using the networks stats that we described in Chapter 3. We

also report the performance of various classifiers and compare them to our

method.

In Chapter 5 we discuss the literary insights from our analysis. We also

discuss future work in augmenting the system, making it more automated and

mitigating some of the bottlenecks.
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CHAPTER 2
Background

2.1 Related Work

There have been some initial attempts to introduce social network analysis

into the study of literature. Character networks have been studied within three

major European epics (The Iliad, Beowulf, Tain Bo Cuillange) to understand

their relation to contemporary models of social networks [22]; an abridged

version of a single well-known literary work (Alice in Wonderland) to test

differences between interactions and observations on character centrality [1];

nineteenth-century novels to understand the correlation between dialogue and

setting [12]; and the genre of classical drama to better understand the notion

of tragic conflict [26].

Each of these works has added to our understanding of the relationship

between character and literary form in important ways. And each also faces

significant challenges at different phases of the process. For projects that

rely on the manual encoding of character interactions (see [22, 1, 26]), insuf-

ficient reflection has been given either to the generalizability of the process

or the problem of reliability. Manual encoding of character interactions in

long literary works is an extremely time-consuming process, which prohibits

scalability. It is also highly subjective. “Interaction,” however rudimentary

a concept, is neither straightforward nor universally identifiable. Agarwal et

al. have proposed an important distinction between social interactions and

directed observations, while has focused on dialogue as a unique form of inter-

action [1, 12]. In addition to the variability of what constitutes an interaction,
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studies have so far not addressed the subjectivity of the manual encoding pro-

cess. Worth mentioning is our own experience with “expert” human coders

during the early stages of this project. Using cohorts of student coders, we

found their agreement on interactions averaged near 50%, which served as a

significant motivation for this present crowdsourced approach.

The automated extraction of networks has so far fared with limited suc-

cess. Agarwal et al. reports a maximum F1 score of 0.61 using natural lan-

guage processing, while Elson’s approach to extracting dialogue and attaching

it to speakers reports F1 of 0.67 [2, 12]. Social interactions between charac-

ters are highly complex acts - they can have a great deal of variability in the

naming conventions used to identify characters or in the subtleties of what

constitutes an interaction, making it a challenging object to capture in either

a manual or machine-learning way.

Finally, with the exception of Elson et al., prior work on literary character

networks has so far not produced generalizable measures or insights into liter-

ary phenomena [12]. In the case of Mac Carron et al., while it is an interesting

question to study the extent to which fictional character networks correspond

to real social networks, using contemporary network features to understand

historical texts that span a great deal of both time and space (ancient Greece

to the medieval British isles) is insufficiently grounded in the realities of his-

torical context and difference [22]. Similarly, referring to social networks from

the genre of epic texts as “mythological” represents a significant confusion of

literary terminology and the nature of these texts.

Studying literary phenomena requires a careful understanding of the dis-

tinctions within that field of study. While Elson et al. limit themselves to

one form of interaction, that of dialogue, they offer robust findings about the

non-correlation between the amount of dialogue and the setting of Victorian
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novels [12]. This interestingly contradicts much accepted literary wisdom that

urban novels indicate an increase in the number of characters and a decrease

in social connectivity (as a form of social alienation that comes with modern

urbanization). Agarwal et al. introduces a potentially productive distinction

between social interactions and directed observations, and shows how this im-

pacts notions of character centrality, but offers no larger literary claims about

the significance of this distinction, which would indeed be interesting to pursue

[1]. Moretti uses no network measures to ground his insights [26].

2.2 Literary perspectives on character

A great deal of literary theory addresses the meaning of character for

narrative structure or reader’s imaginative identification with texts (whether

fictional or non-fictional). For the Russian formalists, characters were thought

of principally as ”types” that served to give meaning to a particular genre,

such as highly formulaic ones like the fairy tale [28]. In contrast, for the school

of French structuralists, character was understood as nothing more than an

aggregation of rhetorical features a character was not to be confused with a

real person, but was instead the sum of the descriptive language used to convey

that character [32]. Later approaches attempted to integrate these thematic

and mimetic understandings of character the way characters often function as

thematic types but are also constrained by their real-world nature [27].

More recent research on character has emphasized its affective or identi-

ficatory function for reading. Characters are the vehicles through which we

emotionally identify with and invest in stories. The example of fan fiction,

which dates at least back to the eighteenth century (Brewer), is a good exam-

ple of characters efficacy in generating readers’ responses to literary material.

Character has also been understood to be the means through which readers in

the past came to terms with new social experiences such as the introduction
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of consumer culture (Lynch). Newer research drawing on cognitive psychology

and theories of mind has emphasized the way characters are useful for mod-

eling cognitive behavior [33, 35]. We enjoy reading about characters because

it is a way for us to navigate the complexity of other people’s minds. As Lisa

Zunshine writes regarding detective fiction, ”We can thus enjoy being lied to

in the highly structured world of a murder mystery because it offers us a safe

setting in which to relieve our anxieties about the uncertainties and deceptions

of real life” (122).

Where our work and other recent attempts at introducing social network

analysis to the study of literature differs from this tradition is through the

emphasis on dynamic interactions as a key to understanding the narrative

function of character. Whether exploring the afterlife of fan fiction, theories

of mind, affective identification, or the typologies of character, what all of

this work has in common is an emphasis on an understanding of character in

the singular. Even recent work on character space, which models characters

through their descriptive prominence, does not account for characters through

a sense of their interconnectedness [34]. Social network analysis by contrast

argues that the meaning of any character is a function of his or her relation-

ships with respect to all of the other characters introduced over the course

of a story. Characters offer a way to study not simply types or themes or

affective connections between readers and imaginary people, but the ability to

understand the social imaginings of writers and genres.

2.3 Crowdsourcing & AMT

Crowdsourcing is a distributed problem solving mechanism which is being

recently seen as an alternate to worker-employee type of model. Jeff Howe who

coined the word defines crowdsourcing as [20]
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“Simply defined, crowdsourcing represents the act of a company

or institution taking a function once performed by employees and

outsourcing it to an undefined (and generally large) network of

people in the form of an open call. This can take the form of peer-

production (when the job is performed collaboratively), but is also

often undertaken by sole individuals. The crucial prerequisite is

the use of the open call format and the large network of potential

laborers.”

Crowdsourcing differs from a standard worker-employee model as the partici-

pation is mostly voluntary and the time of participation is also not mandated.

The timeframe may vary between one-time to several years and there are no

fixed hours. There is a relaxed sense of responsibility and general expecta-

tions from the workers are low. The people who participate in a crowdsourced

system do it for some sort of gain. It can be economical (getting paid), social

(achieving some status) or self-satisfaction (sense of contribution). The task is

given is either collaborative (i.e. every person knows and contributes towards a

fixed goal) or non-collaborative where the users may not be actively involved

in the goals and direction of the project. Crowdsourcing can be applied to

a wide array of problems which can vary from simple tasks like identifying

objects in images to very complex tasks like neuron mapping [24].

Because of the nature of crowdsourcing, the tasks are designed such that

they are engaging, short and require a short timespan from the users. A single

task, can be given to multiple people and their responses can be combined. If

a task is too large to be completed in a small amount of time, the task must

be sub-divided into to smaller sub-tasks which are crowd-friendly.

The applications of crowdsourcing are vast and far-reaching. Online

crowdsourcing has been very successful during the past decade. Wikipedia
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& Linux are prime examples of collaborative crowdsourcing. In recent years,

crowdsourcing has also been applied to create a viable source of capital for

various projects. Termed as crowd-funding, this method uses small contribu-

tions of capital from various users to fund a specific project. Examples include

Kickstarter, IndiGogo.

2.3.1 Amazon Mechanical Turk

Developed by Amazon in 2005, Amazon Mechanical Turk (AMT) is a

crowdsource market which lets users create and manage the crowdsourcing of

various tasks done by a large community of crowd-workers.

AMT allows two kinds of accounts (1) requesters who post tasks and

(2) workers who complete the tasks. Each task called a HIT, created by the

requester, can be assigned to one or more workers. The requester assigns

the amount of money he is willing to pay for each HIT and also sets the

criteria for a worker to be able to accept the hit. The criteria can be based on

several parameters such as % of accepted HITs, number of HITs completed

and number of rejected HITs. The requester may also set special requirements

for the HIT which requires the workers to clear a qualification criteria in order

to accept the HIT.

Workers can search for HITs which fit their criteria and select which they

want to work on. Each HIT has a time period designated which if exceeded

will result in disqualification of that HIT. Once the workers have completed

their HIT, the requester can approve or deny their HIT based on the answer or

agreement among the workers. The requester can also select to auto-approve

after certain time has elapsed. Once a HIT is accepted, the worker gets paid.

Amazon charges 10% commission for the task as AMT fee.
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There are a special class of workers call “Master” users in AMT which

are workers with demonstrated accuracy in specific types of HITs. Amazon

charges 20% extra for using masters.

2.4 Levenshtein Distance

The Levenshtein distance is a measure of similarity between two se-

quences. It is distance between two sequences is defined as the number of

edits (inserts, deletes, substitutions) required to change one sequence to an-

other.

The Levenshtein distance between two strings, a and b is given by leva,b(|a|, |b|)

where

leva,b(i, j) =



max(i, j) if min(i, j) = 0,

min


leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise.

where 1(ai 6=bj) is the indicator function equal to 0 when ai = bj and 1 otherwise.

When comparing different strings for similarity, we use the Levenshtein ratio

which defined as

|a|+ |b| − leva,b
|a|+ |b|

We use the Levenshtein ratio instead of length as it is normalized over

the sum of lengths of both the strings which keeps it stable for larger strings.

The ratio has a value of 1 if both strings are similar and 0 otherwise.
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2.5 Random Models

In our study, we use variants of two different random network generation

models to create synthetic interaction networks for comparison against the

AMT generated networks. This section gives a brief introduction to these

models.

2.5.1 ER Model

Proposed by Paul Erdos and Alfred Renyi, in the Erdos-Renyi model for

random graph generation, each edge is given equal probability of being added

to the random graph [13]. Let us consider the generation of a random graph.

Suppose we have V nodes and we want to create a random graph with K

edges, There are a total of
(
V
2

)
possible edges. In the ER model, each edge

has equal probability of being selected. We do a uniform random selection K

times among the
(
V
2

)
edges and the resultant set of edges is the random graph.

Note that once an edge is selected, it is not removed from the pool of available

edges. This means that we could select the same edge multiple times. In this

case, the weight associated with that edge increases.

2.5.2 BA Model

The Barabasi-Albert model for random graph generation follows the pref-

erential attachment mechanism in which new nodes have a tendency to connect

to nodes with a high degree [3]. The degree distribution from the resulting

graph follows a power law. Consider the iterative generation of a random

graph using the BA model with V nodes and K edges. For each iteration, we

select two nodes and create an edge between them. We do this for K iteration.

Initially, all nodes have equal probability of getting an edge. We uniformly

choose two nodes (u, v) with a probability 1
|V | and create an edge e. Once

the edge is created, the probability of both nodes to get selected for the next

iteration changes to 2
|V |+2

thus after n iterations, the probability of node u
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getting selected is d(u)+1
|V |+2n

where d(u) is the degree of node u in the graph of

the (n − 1)th iteration. The resultant graph has “hubs” which are connected

to many nodes. This model mimics a real world social network where popular

people are connected to many other people. Twitter celebrities are hubs which

everyone follows. They have a high degree whereas people connected to them,

on average, have lower degree.

2.6 Classifiers

This section gives a brief overview of the classifiers we use in our study. Of

these, the Naive Bayes and the Labeled Latent Dirichlet allocation (LLDA) are

language-based probabilistic classifiers and Support Vector Machine (SVM) is

a linear non-probabilistic binary classifier.

2.6.1 Naive Bayes Classifier

The Naive Bayes classifier is a probabilistic classification model which

relies on Bayes rule [30]. In our work we use a variation of the Naive Bayes

classifier called the Multinomial Naive Bayes.

For our classification exercise, consider we have a number of documents

D = (d1, d2...dm). Let C = (c1, c2...cn) be the set of classes to which these

documents belong and xi1, x
i
2....x

i
k represent the tokens of the document di.

To classify a new document d, we need to find its probability of being in

a class c ∈ C and choose the class which maximizes the probability P (c|d).

ĉ = argmax
c

P (ci|d), ci ∈ C

consider P (ci|d) as per Bayes rule we know

P (ci|d) =
P (d|ci)P (ci)

P (d)
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To calculate P (d|ci), we make the Naive Bayes assumption that all indi-

vidual tokens are independent of each other. We tokenize our document to

individual tokens(words) and remove any stopwords. To represent the whole

document, we use a bag-of-words model which counts the occurrence of each

token in the document. P (d) is constant for all classes and can be ignored.

We have

P (ci|(x1, x2, ..., xk)) ∝ P ((x1, x2, ..., xk)|ci)P (ci)

Applying the Naive bayes assumption

P (ci|(x1, x2, ..., xk)) ∝ P (x1|ci)P (x2|ci)...P (xk|ci)P (ci)

To calculate P (xi|ci), we combine all the training documents into one big

bag-of-words which has the frequency of each word and P (ci) is the relative

frequency of the class ci in the training set.

P (xi|ci) =
frequency of xi ∈ {di | Class(di ∈ D) = ci}

sum of all tokens in d

P (ci) =
# of documents of class ci
total number of documents

2.6.2 LLDA Classifier

Labeled Latent Dirichlet Association (LLDA) is a variant of Latent Dirich-

let Association (LDA) which is a probabilistic generative topic model. LDA

is used to automatically discover topics in a set of documents [4]. It is an

unsupervised learning method meaning the algorithm finds the topics and the

words belonging to the topics automatically. The only input is the number of
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Figure 2–1: LDA model represented using the plate notation. Figure from [4]

topics to find. LDA is an unsupervised method which means it clusters words

into abstract topics. If a topic model is already known, a variation of the LDA

called labeled LDA is used which uses the prior topic model for classification.

[29]. The labeled LDA variation is where the algorithm is made supervised by

supplying topic labels.

The idea behind LDA is that each document is generated from a mixture

of topics. Consider a set of M documents D = (d1, d2....dM) called “corpus“

where each document is in turn a collection of words d = (w1...wN). Let

Z = (z1, z2..., zk) be the set of topics for D. α, β and ζ are constants for

random distributions.

The only observed variables we have are the words in the documents them-

selves. If we work backwards from the words, LDA assumes that each word

in each document is derived from some distribution of words over the topics

zn. For example we may have a topic “mammals” having words like “mouse”

with probability 0.03 and “eggs” with probability 0.001. Each document is

generated by a mixture of such topics. Now the topics themselves are derived

from a topic distribution denoted by θd. There will be one topic mixture for
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each document in our set. The topic mixture is a Dirichlet distribution over

all the possible topics.

Figure 2–1 shows the LDA model using plate notation. The nodes (cir-

cles) represent hidden variables and edges (arrows) represent dependency of

one random variable on the other. The shaded nodes represent observable

variables and the non-shaded nodes represent hidden variables. The boxes

around the nodes represent replicated structures basically that node is repli-

cated X number of times where X is denoted and the bottom of each plate.

The following are the probability distributions for various variables in LDA.

1. The topic distribution for each topic βk. This is a Dirichlet with a

parameter η given by P (βk | η). The topic distribution is independent

as it only depends on the Dirichlet parameter η.

2. The topic mixture distribution for each document d in the corpus. This

is also a Dirichlet with parameter α given by P (θd | α).

3. The topic assignment zd,n for each word of the document given by P (zd,n|θd).

4. Finally, we have the probability of the nth word from a document d,

wd,n given a topic mixture for that document zd and the overall topic

distribution βk given by P (wd,n | zd,n, βk).

The joint probability distribution of observed and hidden variables over all the

documents in the LDA is given by:

P (w, z, θ, β|α, η) =

(
K∏

k=1

P (βk | η)

)(
D∏

d=1

P (θd | α)

(
N∏

n=1

P (zd,n|θd)P (wd,n | zd,n, βk)

))

The generative model for LDA generates a set of documents from the topic

mixture distribution and the distribution of words in a topic. The following

17



are the steps that LDA uses to generate a single document. The assumption

here is that the topic distributions βk are already known.

1. Choose the number of words for the document N

2. Choose the topic mixture θ from a Dirichlet distribution Dir(α)

3. For each of the N words wn

(a) Choose a topic zn from the topic mixture θ

(b) Each topic has a probability distribution over the words it can pro-

duce, we now choose a word wn based on this distribution condi-

tioned on the topic zn, P (wn|zn, βk)

Example: Let us consider generation of a document with the LDA model

1. Choose N = 5, the number of words in the document

2. From the topic mixture θ we choose the topics “Arts” with probability

1/3 and “Education” with probability 2/3

3. Generate each word wn from the topics by selecting topics based on their

probabilities

(a) “Education” selected word produced: “School”

(b) “Arts” selected word produced: “Music”

(c) “Education” selected word produced: “Students”

(d) “Education” selected word produced: “Public”

(e) “Arts” selected word produced: “Actor”

4. The final document produced “School Music Students Public Actor”

Given an initial estimate of the model parameters η and α the topic distri-

bution can be inferred iteratively using various methods like gibbs sampling,

variational bayes approximation and expectation propagation [8, 9, 25]. Note

that LDA does not consider the order of words, it uses a bag-of-words repre-

sentation for the documents similar to the Naive Bayes classifier.

18



Learning: We have a set of topics Z and a set of documents D. We want to

be able to assign the topics to documents such that it follows the LDA topic

generation model. We use the covered gibbs sampling method for inferring

topics [11]. The following illustrates the algorithm

Algorithm 1: LDA using covered gibbs sampling

Input: Set of documents D
Output: topic assignments z for each document word wn ∈ d for each

document d ∈ D
Assign random topic to each word in every document ;
initialize ;
M ← Number of documents D ;
V ← Number of words in all documents (vocabulary length) ;
K ← Number of topics ;
α← Dirichlet parameter for topic mixture ;
η ← Dirichlet parameter for per topic distribution;
counters nm,z, nz,t, nz ;
foreach iteration do

for m = 0→M − 1 do
d← Dm ;
for n = 0→ length(d)− 1 do

t← Dm,n ;
z ← zm,n;
nm,z[d, z] −= 1, nz,t[z, t] −= 1, nz[z] −= 1;
for k = 0→ K − 1 do

p(z = k)← (nm,z[d, t] + α)nz,t[k,t]+η

nz [k]+ηV
;

z′ ← sample from p(z) ;
nm,z[d, z

′] += 1, nz,t[z
′, t] += 1, nz[z

′] += 1;

Classification: Once we have the topic label for each word in the training set,

to classify a new document dnew we go through each word in the document and

check if it is available in our vocabulary, if present, we calculate the probability

of that word belonging to each topic. Finally we make the assumption of

independence among words similar to naive bayes and calculate the score for

each topic. We select the one with the highest store as the topic for the

document dnew
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2.6.3 Support Vector Machine (SVM) Classifier

The SVM classifier is a non-probabilistic binary classifier [17]. Unlike the

previous classifiers, classic SVMs can only classify data into two classes. If each

document can be considered as a point in a N dimensional space of features,

an SVM tries to create a hyperplane which best separates the data. There

may be many hyperplanes which may separate the data, we choose the one

which maximizes the distance from both classes. This is called the maximum

margin hyperplane.

If we have a set of documents D = (d1, d2...dn) which belong to classes

C = (1,−1) where each di ∈ D has features Fi = (f1, f2...fn) We represent

each document as a vector in an N dimensional space. We want to find a N−1

dimensional hyperplane which separates points with ci = 1 with ci = −1.

The equation for a hyperplane can be written as

W.Fi − b = 0

where W is a vector normal to the plane and b is a constant that deter-

mines the distance from the origin. We want to get the value of W and b that

maximizes the margin between the data. The margin can be represented by

two hyperplanes which are parallel to the current hyperplane but on opposite

directions of it.

W.Fi − b = 1

W.Fi − b = −1

We also add the constraint that no data points should cross into the

margin region so we have the following
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W.Fi − b > 1 ∀ Fi ∈ C1

W.Fi − b < −1 ∀ Fi ∈ C2

The distance between the hyperplanes is given by 2
||W || . Hence, to achieve

maximal margin, we want ||W || to be minimum.

So finally we have the following

Minimize ||W ||

given Ci(W.Fi − b) > 1

Here ||W || is computationally expensive as it involves a square root, we

replace it with 1
2
||W ||2

We now have
Minimize 1

2
||W ||2

given Ci(W.Fi − b) > 1

Multi-class SVM: While the generic SVM is a binary classifier, there are

various methods to classify multi-class data using SVM. The method used

depends on the type of data. If we have a case where the samples in the input

data can belong to more than one class, then we build a classifier for each class

where training set consists of the documents in the class (positive cases) and

documents not in the class (negative cases). We then apply each classifier and

select the K-best classes. However, if the data has classes which are mutually

exclusive, we apply a one-vs-all approach. We build a classifier for each class

like in the previous case but here we choose the class which has the highest

score. We then remove that class and recursively keep running the classifier

until all classes are exhausted.
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Non-linear Classification: In many real world examples, the data to classify

is not linearly separable, in such cases, we map the input data space into a

linear feature space using some non-linear kernel function. This makes the

data linearly separable and we can apply an SVM on this. A commonly used

kernel is the RBF kernel(gaussian) which is defined as

k(Fi,Fj) = exp(− 1

2σ2
‖Fi − Fj‖2)

where ‖Fi − Fj‖2 is the squared distance between the feature vectors Fi and

Fj.
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CHAPTER 3
Methods & Data

3.1 Datasets

The dataset we collected and used in this study performed three separate

functions.

1. It permitted us to select appropriate values for parameters that affected

the performance of the character network mapping method (Section 4.1).

2. It enabled us to evaluate the overall performance characteristics of the

method (Section 4.2.1).

3. Finally, the dataset served as the subject for the literary analysis we

performed to demonstrate the value of large-scale analysis of interaction

structures across and between genres (Chapter-5).

Table 3–1: The dataset used for our study. The dataset was taken from “Longman
Anthology of Detective Fiction” [23] and includes 21 detective fiction and 20 short
fiction works

Detective Fiction
Title (Year) Author Word length
Revised Endinkgs (1998) Burke,Jan 2267
The House In Goblin Wood
(1947)

Carr,JohnDickson 7010

The Witness For The Prosecu-
tion (1925)

Christie,Agatha 6382

The Hunt Ball (1943) Crofts,Freeman Wills 4707
Cold Turkey (1992) Davidson,Diane Mott 6477
The Speckled Band (1892) Doyle,Arthur Conan 9898
The Parker Shotgun (1986) Grafton,Sue 6602
The Gutting Of Couffignal
(1925)

Hammett,Dashiell 11717

And Pray Nobody Sees You
(1995)

Haywood,Gar Anthony 5005

Chee’s Witch (1986) Hillerman,Tony 3854
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Under Suspicion (2000) Howard,Clark 8510
Deborah’s Judgment (1991) Maron,Margaret 7319
Sadie When She Died (1972) Mcbain,Ed 11221
Nine Lives To Live (1992) Mccrumb,Sharyn 6474
Skin Deep (1987) Paretsky,Sara 4801
The Purloined Letter (1844) Poe,Edgar Allen 7198
My Queer Dean (1955) Queen,Ellery 1958
The Dean Curse (1992) Rankin,Ian 8074
Missing In Action (2000) Robinson,Peter 7500
The Haunted Policeman (1938) Sayers,Dorothy 8455
Inspector Maigret Deduces
(1959)

Simenon,Georges 4141

Short Fiction
Title (Year) Author Word length
Sarah Cole (1984) Banks,Russell 9291
Caviar (1979) Boyle,T.C. 6954
The Ceiling (2002) Brockmeier,Kevin 5179
Paul’s Case (1905) Cather,Willa 8416
The Lost Phoebe (1916) Dreiser,Theodore 6589
Communist (1985) Ford,Richard 6838
Tiny, Smiling Daddy (1997) Gaitskill,Mary 5530
Young Goodman Brown (1835) Hawthorne,Nathaniel 5219
The Snows of Kilimanjaro
(1936)

Hemingway,Ernest 9380

The Real Thing (1892) James,Henry 10470
A Temporary Matter (1999) Lahiri,Jhumpa 7291
Two Blue Birds (1927) Lawrence,D.H. 5537
The Vane Sisters (1959) Nabokov,Vladimir 5338
The Translation (1993) Oates,Joyce Carol 8217
Everything That Rises Must
Converge (1965)

OConnor,Flannery 6511

The Half-Skinned Steer (1999) Proulx,E. Annie 6579
My Shape (2004) Silber,Joan 6452
Generous Wine (1914) Svevo,Italo 6733
The Private History of A Cam-
paign That Failed (1885)

Twain,Mark 7857

Nineteen Fifty-Five (1981) Walker,Alice 5613

For the purpose of literary analysis, we required a sample of literary works

that spanned comparable genres and were representative of both genres. Our

dataset consisted of 41 short stories representing two principal groups shown
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in Table 3–1 : 21 detective stories taken from the “Longman Anthology of

Detective Fiction” [23], a standard handbook in the field that brings together

detective fiction written in English between 1844-2002 divided into three sub-

categories (The Amateur Detective, The Private Investigator, and The Police)

and 20 short stories that represent canonical examples of the genre in English

from different anthologies across the same time period (1835-2004). In addition

to being representative, selections were matched with respect to length: the

mean word length of each group was 6,753 and 6,936 words respectively. This

dataset proved to be diverse and large enough to also satisfy the requirements

for tuning and testing our interaction network mining system.

In order to process these texts, our interaction mapping system, like all

others to date, required a dictionary for each work that resolves various aliases

of a character to the canonical name of the character itself (used as a proxy

for the unique identity of the character) [12]. Accordingly, we produced a

dictionary for each of the 41 works in our dataset. These were generated by

literature students who read the works and compiled a list of names (aliases)

used to refer to each character in the book. It is worth noting these alias lists

were later discovered to be somewhat incomplete — as should be expected

whenever an interpretive task is undertaken manually. As we will highlight

later, our crowdsourcing method provided a way to discover additional aliases

that had been missed. This alias discovery functionality is a unique and valu-

able feature of our interaction mapping system.

3.2 Network Statistics

To capture properties which hold a literary significance in our social net-

works, we propose various statistics. Given a social network of interactions N

where nodes represent the characters and the edges represent the interactions
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between them, the following is a list of network statistics that we compute for

each work in our study.

Number of edges: It is the number of unique interactions which characters

have among themselves. This does not account for the frequency of interac-

tions among characters.

NumEdges(N) = |E|

Number of nodes: This is the number of unique characters present in the

text. This is computed after all the aliases have been resolved.

NumNodes(N) = |V |

Average degree: It denotes the average number of unique interactactions

characters have over the length of the story. The average degree for the network

is given by:

AvgDeg(N) =
|E|
|V |

Degree-weighted heaviest edge score: This measure checks if the heaviest

edge (edge with the highest weight) connects the strongest nodes (nodes with

the highest degree). This measure tries to answer if there is a strong interaction

between the protagonist and the next most important character. Eg (Holmes

and Watson in Sherlock Holmes). It is the ratio of the sum of degrees of nodes

connected by the strongest edge to the sum of weights of the strongest nodes

in the graph. If ex = (uxsa , v
x
sb

) is the xth heaviest edge of N which connects

uxsa , the ath strongest node and vxsb the bth strongest node, and d(u) denotes
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the degree of a node u then the Degree-weighted heaviest edge score is defined

as:

DegEdgeScore(N) =
d(u1sa) + d(v1sb)

d(ux11 ) + d(ux22 )

Heaviest edge fraction: It is the ratio of the strongest edge to the total

number of interactions that occur in the story. This tries to capture how

significant is the strongest interaction usually between the protagonist, is when

compared to other interactions that occur in the story. If w(e1s) denotes the

weight of the edge e and |I| is the total number of interactions that happen

throughout the story, the heaviest edge fraction is given by:

HeaviestEdgeFraction(N) =
w(e1s)

|I|

Average 2-clustering: It is a measure of dispersion of neighborhood of a

particular node. For a given node it is the number of 2-hop connectedness of

the neighborhood of that node. It measures the ability of the node to explore

the social network.

Avg2Clustering(N) =
1

|V |
∑
x∈V

|{(u, v) : u, v ∈ N (x), σN/x(u, v) ≤ 2}|
|N (x)|(|N (x)| − 1)

2-clustering along the heaviest edge: This measure calculates how con-

nected the neighbors of the strongest edge in the graph are.

Avg2ClusteringHeaviestEdge(N) =
∑

x∈N (u1s)/v
1
s

|{(x, v1s) : σN/u1s(x, v
1
s) ≤ 2}|

|N (u1s)| − 1
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Max/avg degree ratio: It is the ratio of the degree of strongest node to the

sum of all degrees in the network. This measures captures the importance of

a particular character compared to all the other characters in the story.

MaxAvgDegreeRatio(N) =
d(u1c)∑
v∈V d(v)

Time-to-edge-complete: This measures captures how far into the story do

we see the last relation appear. It is the time at which we see the last edge

dropped on the graph. Some stories have all the edges dropped early into

the story and the story revolves around having interactions between already

established relations whereas some stories add the last relation close to the

end of the story revealing a surprise relationship. We divide our stories into

blocks of approximately 250 words. if bmax denotes the maximum blocks of a

network N , The story progresses from the first block to bmax. If blastEdge is the

block in which we see the last relation(edge) being added to the network, the

time to complete edge is defined as:

TimeToCompleteEdge(N) =
blastEdge
bmax

Density: The density of a graph is a measure of how close the graph in

becoming a complete graph. It is the ratio of the edges present to all possible

edges in the network.

Density(N) =
2|E|

|V |(|V | − 1)
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Degree-center neighborhood fraction: It is the ratio of the degree of the

strongest character (protagonist) by the total number of edges present. It

captures how many interactions directly involve the protagonist.

DegreeCenterNeighbourFraction(N) =
d(u1c)

|E|

Diameter It is defined as maximum length of the the longest shortest path

between any two vertices in N .

Diameter(N) = max
u,v∈V

σN(u, v)

Closeness vitality: Calculated for the strongest node(protagonist) it is the

change in the sum of distances between all node pairs when excluding the node

that it is being computed for. It captures the effect of removal of the central

character in the story. If the network is very sparse, removing the central

character may make many of the nodes not being able to connect to other

nodes.

ClosenessVitality(N) =
∑

x6=y∈V/ux1

σN/u1c(x, y)− σN(x, y)

(|V | − 1)(|V | − 2)

Time-to-node-complete: This measure captures how far into the story do

we see the last character being introduced. We calculate this similar to Time-

to-edge-complete, if bmax denotes the maximum blocks of a network N , and

blastNode is the block in which we see the last character(node) being added to

the network, the time to complete node is defined as:
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TimeToCompleteNode(N) =
blastNode
bmax

time-to-interaction-complete: This measure captures how far into the

story we see the last interaction. This is similar to the Time-to-complete-

edge, the difference is that this captures when in the story do we see two

characters interact last. Here we are concerned with when the last weight to

an existing edge is added. In cases the last edge may be the same as last inter-

action. If bmax denotes the maximum blocks of a network N , and blastInteraction

is the block in which we see the last interaction being added to the network,

the time to complete node is defined as:

TimeToCompleteInteraction(N) =
blastInteraction

bmax

Average weight: It is the ratio of sum of weights of all the edges to the

number of edges.

AvgWeight(N) =

∑
e∈|E|w(e)

|E|

Heaviest edges ratio: It is the ratio of the weights of the heaviest edge to

the 2nd heaviest edge. This tends to capture the strength of the interaction

between the most frequent interaction usually between the protagonist and a

character to the second strongest interaction.

HeaviestEdgeRatio(N) =
w(e1s)

w(e2s)
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Figure 3–1: Setup of our interaction network pipeline.

Average clustering: It is the average of ratio of number of triangles that

are present between any three nodes to the total number of possible. Let us

define Auv = 1 iff (u, v) ∈ E else 0. then the average clustering is given by

AvgClustering(N) =

∑
i < j < k ∈ V AijAjkAik∑

i<j<k∈V AijAik

3.3 Mapping Character Networks

Following existing work, we initially conceived of a near fully-automated

system for mining character interactions from text. Quickly confronted by the

issues also identified in the literature (character name instability, the nuanced
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typology of interaction, and the encoding of interactions in complex gram-

mar/syntax), we revisited the fundamental objective of the mapping problem:

capturing all character interactions as they are encountered in the reading of

the text. We realized that, were it possible, human readers would be ideal for

mapping such interactions. crowdsourcing presented an opportunity to enlist

the aid of human readers in a massively parallel and highly standardized way.

A crucial detail when undertaking the mapping of character interactions

involves defining what is meant by an “interaction.” Clear definitions of the

term are still largely missing in work in this area, although Agarwal, Elson,

and Woloch have begun to create useful taxonomies [1, 12, 34]. We formulated

our definition of interaction in two different ways: formally and operationally

(so as to enable participants in our crowdsourced efforts to understand and

act on it).

Formally, we define an interaction as any concrete action between two

characters that requires physical proximity. This excludes more abstract in-

teractions such as thinking about a person or remembering someone as well

as remote interactions mediated by letters or other messages. It also excludes

the act of one character simply mentioning another. Our notion of interac-

tion is grounded in a theory of co-presence between characters, which in the

philosophical literature would fall under the heading of mutual recognition or

theories of “acknowledgement” [19, 14].

Because our interaction mapping method involved the use of a large pop-

ulation of individuals with varying (and generally low) degrees of familiarity

with literary analysis, we chose to operationalize our definition through the

following instructions provided in the crowdsourcing interface. Participants

were told that
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Figure 3–2: An example of the interface presented to Amazon Mechanical Turk
workers. The left pane provides the text block to be coded. Interactions are entered
into the right pane, one interaction per line. In the present study, interactions
are undirected, so the ordering in which names are given for an interaction do not
matter.

“An interaction can be any sort of action between two characters

(talking, looking, touching, eating, etc.). An interaction cannot

be any other abstract action like thinking (about the character),

mention of the character when he is not physically present, etc.”

This definition represents an attempt to both capture the essence of our formal

definition and also to provide concrete examples that aid comprehension.

3.4 Crowdsourced Interaction Detection Setup

Using the Amazon Mechanical Turk (AMT) platform, we designed a cod-

ing interface (see Figure 3–2) in which workers were presented with individual

text blocks for which they had to report all interactions between characters

that occurred in the text [6].

Figure 3–1 gives the outline for our process. First, the text to be se-

quenced is broken into fixed block of 250 words each and each block is posted
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to AMT. Once we get the interaction data from AMT we apply name res-

olution to resolve all alias and disambiguate the results. We then clean the

interactions by removing self-edges and unresolved names. To find the optimal

majority, we subsample interactions and verify them manually using an inter-

face similar to Figure 3–2. Finally we build the interaction network using that

majority threshold. The following sections give more detailed information on

each of these steps.

3.4.1 Text block length

We experimented with text block length and found that 250 words allowed

a text block long enough to contain numerous interactions without overwhelm-

ing the worker with text. Note that, while the target length for each text block

was 250 words, we actually terminated the text block at the end of the sen-

tence after the 250 word mark was reached. This was done in order to preserve

semantic meaning at the end of the text block.

It is important to note that this block-based approach created a discrete

and regular measure of interaction pacing in stories. Under this model, each

work is a sequence of non-overlapping blocks. Furthermore, in a given block,

only one interaction can be coded for a distinct pair of characters, effectively

setting a resolution limit for the detection of recurring interactions among

characters.It is also important to note that this method would miss interac-

tions which occur at the boundaries of blocks ie. one of the character is in

one block the other in the next one. Certainly, an interesting question for

future work would investigate the utility and value of exploring alternative

formalisms, for example overlapping blocks.
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3.4.2 Worker instructions.

The AMT coders were given instructions to read a block of text and iden-

tify the names of characters who are interacting in the block. As mentioned

earlier, we define an interaction as an activity where two or more characters

engage physically, e.g. talking, touching, and looking (crucially, the inter-

action does not need to be symmetric). In addition, we instructed coders to

skip pronouns (e.g., “he” or “she”) and general references (e.g., “the student”)

whenever the character to which they referred could not be resolved within

the context of the text block.

3.4.3 Coverage and cost.

In order to evaluate the extent to which coding a text block multiple

times (called coverage) improved the quality and coverage of detected charac-

ter interactions, we required each text block to be coded by 10 different AMT

workers. Initially, we only permitted “Masters” AMT workers to perform the

tasks. This, however, proved too stringent a criterion as jobs completed slowly.

As a result, we relaxed our criteria to include workers who have at least 95%

acceptance rate and at least 1000 accepted tasks. Each task (called a HIT

in AMT) was assigned 15 minutes for completion and paid the worker $0.10

USD. As a result, a single text block cost one US dollar to code. Notably, as

will be discussed later, we found that 10x coverage was not always necessary

in order to guarantee high accuracy, so the actual coding cost per text block

could be reduced.
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3.4.4 Narrator representation.

Early on we discovered that AMT workers struggled to correctly code

interactions drawn from stories written with a first-person narrator. In par-

ticular, since all ambiguous pronoun references were skipped, AMT workers

necessarily left out all interactions involving the narrator. To fix this, in first-

person narrator texts, we replaced all “I” references made by the narrator

with a special character called “THE NARRATOR.” AMT workers were then

instructed to treat this special character as any other character in the story.

Note that this replacement was done semi-manually (one of the authors and

Find/Replace functionality). While this is a clear performance bottleneck in

our proposed system, we consider this step to be a natural direction for future

work for which NLP tools already exist to approach the problem.

3.5 Interaction Post-Processing

The AMT coding exercise for a given work yielded a set of text blocks

with several sets of reported interactions. At this stage, an interaction con-

sisted of the names of two characters, each name being a free text entry field in

the AMT interface. In order to construct the canonical character interaction

sequence (and the network), then, these names and aspects of the interactions

in which they participated needed to be processed such that all names operate

as aliases to the correct underlying character.

3.5.1 Name resolution

Name resolution involved solving three different problems: (1) spelling/copying

mistakes, (2) unique character aliases (e.g., “Sherlock” and “Mr. Holmes”), (3)

ambiguous character aliases (e.g., “my good man” in reference to Dr. Watson

at some points in the story and Mr. Holmes in others).
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To handle the first two cases, a work’s character-alias dictionary (de-

scribed in Section 3.1) was used and extended. Given the unique alias dic-

tionary, many AMT-provided names could be mapped to canonical character

names using the following checks on candidate name x:

1. if x is the canonical character name c, match to c;

2. if x is in the alias list for character c, match to c;

3. if levenstein(x, c) > 0.8 for some canonical character name c, then match

to c;

4. if levenstein(x, a) > 0.8 for an alias a belonging to canonical character

name c, then match to c;

5. else, x must be an ambiguous alias.

Note that steps 3 and 4 are responsible for correcting spelling and copy errors.

Also note that this process of discovering new character aliases is enabled by

the use of human readers who bring a level of literary perception to the task

which automated methods, to date, are unable to achieve.

All ambiguous aliases (e.g., “the criminal”) were resolved through manual

inspection: a literature student revisited that text block and determined the

character to which the alias corresponded in that context. Like the character

alias dictionary construction, this manual process clearly represents a bottle-

neck in scaling our method. We consider this another important problem for

future work in which computation or crowdsourcing could yield good solutions.

3.5.2 Self-interaction removal

On occasion, the name resolution process will reveal that an interaction

reported by AMT was actually an interaction between a single character with

himself (e.g., Holmes-Holmes). Or in an interaction between three characters,

to other characters refer to this character by different names and the AMT
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coder puts down an interaction between the different alias of the same char-

acter which gets resolved to a self-interaction. Such self-interactions reflect

situations where the worker was unable to recognize that the two character

names resolved to the same character. More generally, in our analysis, we

did not include even valid self-interactions (whatever that might mean). As

a result, we removed all self-interactions from the AMT interaction data as a

final post-processing stage.

3.6 Interaction selection

Given the uncontrolled population of workers who participated in the

study, the interpretive nature of the coding exercise, and the non-negligible

chance for human error, it would not be prudent to accept all reported inter-

actions as true interactions (in the sense that the interaction actually occurred

between two characters in the text). A common strategy for overcoming these

crowdsourcing specific issues is to require some proportion of the AMT work-

ers who coded the same text block to report the same interaction in order for

it to be accepted as a true interaction [6]. Our 10x coverage allows us to apply

different thresholds ranging from 2+ agreement1 to 10 agreement. The right

choice of threshold is, itself, an empirical question which we consider in the

next section.

3.7 Network inference.

The threshold-selected interactions provide the basis for directly con-

structing the character network. Note that the network constructed will be

1 We use the “2+” notation (as opposed to simply “2”) to indicate that
interactions on which 2 or more coders agreed should be included.
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weighted since we can assign to edge (x, y) the number of interactions reported

between characters x and y. Furthermore, because, in this study, we did not

enforce a convention in character ordering within an interaction, the network

will be undirected. As a direction for future work, it will be interesting to

consider how directionality might be captured and encoded in order to re-

flect the directionality implied in some kinds of interactions (e.g., looking and

speaking).

3.7.1 Manual Annotation of AMT Results

In order to use the short fiction corpus described in Section 3.1 for thresh-

old selection and method performance evaluation, we required ground-truth

against which to compare interactions discovered by our method. Using a web

interface similar to the one used in our crowdsourcing system, a literature stu-

dent annotated 150 text blocks, selected at random from the set of AMT tasks

generated from the entire corpus. For each text block, the student performed

two tasks: (1) reporting whether each AMT interaction existed in the text

block and (2) reporting all interactions in the text block that were not iden-

tified by an AMT interaction. Note that the student was not responsible for

correcting spelling mistakes — they were instructed to forgive clear spelling

or copy errors.

In order to make this annotated interaction set representative of AMT

performance over the entire corpus, the number of text blocks selected from a

work was proportional to its length (relative to the rest of works in the corpus).

Furthermore, at least one text block was drawn from each work. Hereafter,

we refer to this set of 150 text blocks, their annotated AMT interactions and

flagged missing interactions as the annotated dataset.
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3.8 Classifiers

In order to test the effectiveness of the networks statistics proposed in

Section 4.4 and to identify characteristic of a genre based on their social net-

work, we build an SVM based classifier using the statistics as features for the

classifier. Note that this classifier is purely based on the network statistics

and does not account for any language models on which the genres are based

on. We use libsvm 2 for implementing our classifier. Training was done using

10-fold cross validation which used an RBF based kernel. The parameters for

the kernel were optimially selected by using a grid search over the parameter

space.

To compare the performance of the classifier, we implement two language

model based classifiers. The first one is a Naive Bayes classifier which depends

on the frequency of some words occurring more frequently in a particular

genre. For example SF would, on an average, have more words like “murder”,

“victim” etc when compared to SF.

The second classifier is built using LLDA which models topics in a partic-

ular genre. The LLDA assigns each word a weight which reflects probability

of that word belonging to a particular topic. We fix the topics as the classes

that we want to identify i.e. SF and DF. We use the weight as a proxy for

genre probability and classify based on the combined weight of all the words

in a text.

2 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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CHAPTER 4
Results

4.1 Threshold and Coverage Selection

To determine the correct agreement threshold we evaluated how differ-

ent choices of agreement threshold affected important performance statistics:

sensitivity, specificity, precision, and accuracy. These statistics, shown in Ta-

ble 4–1, were derived from the annotated dataset (described in Section 3.7.1)

using the following sets:

• P = {(x, y), ...} is the set of interactions, (x, y), between characters that

the literature student annotator indicated as existing.

• N =
(
C
2

)
−P , where C is all characters mentioned in the text block, is the

set of interactions that don’t exist in the text block. This formula takes

the full set of all interactions that could have occurred, given character

names present in the text block (i.e.,
(
C
2

)
), and removes all interactions

that did occur.

• P x+
AMT is the set of interactions in the text block reported by at least x

AMT users.

• Nx+
AMT =

(
C
2

)
− P x+

AMT is the set of all possible interactions that could

have happened which AMT (with agreement level x+) reported as not

occurring.

Given these terms, then, we can define true positives as TP x+ = P∩P x+
AMT ,

false positives as FP x+ = N ∩ P x+
AMT , true negatives as TNx+ = N ∩ Nx+

AMT ,

and false negatives as FNx+ = P ∩Nx+
AMT . Note that these are the counts for

a single block, so the counts used for the entire annotated dataset are summed
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Table 4–1: The performance of the AMT-based interaction mapping system when
assessed on the annotated dataset. Each row reports the performance of the system
under the assumption that a certain number of agreements among independent
AMT coders is required to support the inclusion of an interaction. For example, 2+
agreement reports performance statistics if one includes only interactions on which
at least 2 AMT coders agreed. As can be seen, the 2+ agreement threshold gives the
best overall performance. Also noteworthy is the fact that there were no interactions
on which 10 workers agreed (thus, the 10 agreement threshold is omitted from all
tables).

Agreement Spec. Sens. Prec. Acc.
2+ 0.901 0.893 0.922 0.896
3+ 0.970 0.653 0.964 0.795
4+ 0.985 0.477 0.974 0.711
5+ 0.990 0.339 0.976 0.643
6+ 0.991 0.230 0.964 0.596
7+ 0.991 0.083 0.905 0.524
8+ 0.995 0.031 0.875 0.503
9+ 1.000 0.009 1.000 0.494

over the 150 blocks. The statistics reported in Table 4–1 were computed using

their standard formulations [31].

As can be seen, increasing the required level of agreement increases speci-

ficity, the fraction of AMT interactions that are, indeed, interactions in the

text. Requiring even moderate levels of agreement, however, have disastrous

effects on sensitivity, the fraction of interactions in the text that are identified

by AMT: a minimum agreement level of 4 is already missing more than one

half of all interactions in the text. Fortunately, the most modest agreement

level, 2+, yields very high levels of sensitivity and specificity, making this the

clear choice of agreement threshold. For the remainder of the study, this is

the threshold we use.
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4.2 Optimal coverage

The annotated dataset also afforded the opportunity to consider the best

choice of AMT coverage of a text block to achieve best interaction discovery

rates. At the outset, it was unclear as to what level of coverage

Table 4–2: Optimal performance of M randomly selected AMT workers. M ranges
from 2 to 10. For each M we have K agreement thresholds where K ranges from 2
to M

Agreement Spec. Sens. Prec. Acc.

2 Random workers

2+ 0.992 0.559 0.950 0.903

3 Random workers

2+ 0.972 0.688 0.952 0.845

3+ 0.996 0.089 0.917 0.706

4 Random workers

2+ 0.967 0.715 0.962 0.830

3+ 0.987 0.441 0.962 0.752

4+ 0.996 0.058 0.900 0.625

5 Random workers

2+ 0.967 0.766 0.965 0.858

3+ 0.986 0.484 0.968 0.747

4+ 0.991 0.192 0.943 0.643

5+ 1.000 0.048 1.000 0.600

6 Random workers

2+ 0.922 0.828 0.932 0.869

3+ 0.986 0.564 0.978 0.761

4+ 0.986 0.341 0.963 0.657

5+ 0.996 0.133 0.966 0.585

6+ 1.000 0.038 1.000 0.546

7 Random workers

2+ 0.922 0.832 0.933 0.871

3+ 0.986 0.568 0.978 0.763

4+ 0.986 0.350 0.963 0.661

5+ 0.991 0.144 0.939 0.578

6+ 0.996 0.048 0.909 0.546

7+ 1.000 0.010 1.000 0.533

8 Random workers
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2+ 0.922 0.832 0.933 0.871

3+ 0.986 0.568 0.978 0.763

4+ 0.986 0.350 0.963 0.661

5+ 0.991 0.144 0.939 0.578

6+ 0.996 0.048 0.909 0.546

7+ 1.000 0.010 1.000 0.533

9 Random workers

2+ 0.911 0.877 0.929 0.892

3+ 0.975 0.639 0.969 0.790

4+ 0.985 0.443 0.972 0.695

5+ 0.991 0.314 0.973 0.641

6+ 0.991 0.107 0.923 0.544

7+ 0.995 0.036 0.889 0.515

8+ 1.000 0.009 1.000 0.503

10 Random workers

2+ 0.901 0.893 0.922 0.896

3+ 0.970 0.653 0.964 0.795

4+ 0.985 0.477 0.974 0.711

5+ 0.990 0.339 0.976 0.643

6+ 0.991 0.230 0.964 0.596

7+ 0.991 0.083 0.905 0.524

8+ 0.995 0.031 0.875 0.503

9+ 1.000 0.009 1.000 0.494

would optimize the coding result for a given agreement threshold (e.g., 2+).

Specifically, given that we conducted the coding with 10x coverage, would less

coverage have provided effectively the same result?

There are several factors that make this investigation worthwhile. Most

practically, there is the question of cost. Coding the entire corpus at 10x cov-

erage cost $1, 125. If, for example, 5x coverage could have given us an equally

good result, money could have been saved. There is also reason to suspect that

a smaller coverage might result in better performance for a given agreement

threshold: as one increases the number of people voting on a solution, the

likelihood of X+ people’s answers agreeing by chance increases. Thus, for our
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Figure 4–1: The effect of changing the number of workers who code the same text
block on the sensitivity and specificity with which interactions are identified in the
text. While specificity is relatively stable over all choices of coverage, sensitivity
increases dramatically until 6x coverage is reached.

selected 2+ agreement threshold, is there a fold coverage less than 10x that

would provide equal or better performance?

To investigate this, we simulated coverage of 2x, 3x, up to 10x by taking

only a portion of the completed coding tasks done for text blocks in the an-

notated dataset (which was done at 10x) such that for each text block we had

the desired coverage. We then computed the specificity and sensitivity for this

simulated dataset imposing an agreement threshold of 2+.

Figure 4–1 reveals that any coverage value smaller than 6 will have a

significant impact on sensitivity. Additionally, this analysis reveals some in-

teresting trends in how coverage differentially affects specificity and sensitivity.

Specificity is relatively stable, remaining above 90% and degrading gradually

as coverage increases. This indicates that even with few workers per block, the

AMT system is quite good at not reporting false interactions (though, admit-

tedly, this is likely due to the relatively large number of negatives present in

each block). Sensitivity, on the other hand, dramatically improves by over 35%
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as additional coverage is added. Together this suggests that the harder prob-

lem for our crowdsourcing platform is identifying true interactions — which is

consistent with the challenges of reasoning about the existence and nature of

a relationship between the mentions of two characters in a text block.

It is also worth noting that, while the curves are flattening out at 6x

coverage, it would be interesting in future work to carry that curve out and

determine if or when increasing coverage actually hurts performance. This

said, we expect that because our curves meet at 10x coverage that any increase

will continue to negatively impact specificity at the expense of sensitivity gains.

4.2.1 Validation

Given that an agreement threshold of 2+ yields the best performance on

the annotated dataset, Table 4–1 allows us to determine the performance we

should expect from our system: an F1 score of 0.913. We define the F1 score

of a xi+ majority agreement as:

F1xi+ = 2 ·
Precisionxi+ ·Recallxi+
Precisionxi+ +Recallxi+

This favorably compares to all existing methods, the best of which have re-

ported F1 scores of 0.609 [2] and 0.67 [12], with the latter method being

restricted to only dialogue. It is noteworthy that an F1 score close to 0.67

either means that precision and recall are both around 0.67 or that the perfor-

mance is imbalanced and one of the statistics is significantly lower, placing it

closer to 0.5. In either case, the error rate of such methods will be exceedingly

high — either missing true or including false interactions at a rate of between

30% and 40%. As a result, our method stands out as the only currently viable

method for mapping interactions both accurately and with a significant degree

of scalability.
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Figure 4–2: Detective fiction networks

4.2.2 AMT-specific Observations

One unexpected and rewarding aspect of our crowdsourcing platform was

the enthusiasm it generated among Amazon Mechanical Turk workers. After

AMT workers completed the batch of tasks corresponding to the selected cor-

pus, we received no less than 10 emails from AMT workers expressing interest

in the work and performing similar tasks in the future (e.g., “I really enjoyed
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Figure 4–3: Short fiction networks

doing your tasks that you posted last month. I was just curious to know if you

will be posting more work in the near future.”). As we will discuss later, this
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degree of enthusiasm for the coding work suggests that our character inter-

action mapping system might be successfully converted into a citizen science

platform.

4.3 Random Models

Random network models provide another way of investigating the social

processes that produce observed networks. To this end, we developed three

generative random network models inspired by conventional Erdos-Renyi and

preferential attachment processes but which allowed us to simulate the con-

struction of a literary network through the arrival of interactions over the

timescale of the work [15]. In all our models, the original interaction tim-

ing schedule (when interactions happened in the story) was respected and the

number of characters (nodes) was fixed to the original character set size. The

models implemented different mechanisms for deciding on the pair of char-

acters that would be involved in a given interaction. In the uniform model,

the two characters were chosen with uniform random probability for each in-

teraction. In the uniform-preferential attachment (UPA) model, one node is

chosen with uniform random probability and one node is chosen with probabil-

ity proportional to their current degree. In the double preferential attachment

(DPA) model, the two characters were chosen with probability proportional

to their current degree in the growing network. We considered these models

to express three different plausible mechanisms (random character interaction,

important-random character interaction, and interaction based on importance

alone) that might drive the growth of social networks in DF and SF.

For each model, we simulated 1000 random networks for each work in our

corpus. For each statistic of interest, we computed the p-value of the work’s

statistic value in its true network against the distribution of statistic values in

the networks produced by each model. Table 4–3 shows the fraction of DF/SF
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works that had a significant (p-value < 0.01) value for each statistic when

compared against the three different models. Thus, in this table, a larger

value (closer to 1) for a given statistic-model pair indicates that that more

works in the genre have a value which significantly deviates from what would

be expected under that particular model.

Overall, for both DF and SF, DPA is, by far, the best fit for the statistics

considered, evident by comparing the average deviation scores for each model

within genre. Between the two genre, SF has statistic values that are better

modeled by DPA. This fact becomes more pronounced when one considers

the stand-out statistics for DF and SF: the statistics for which that genre has

a greater deviation from the DPA model. While DF and SF have an even

number of such statistics, the average deviation for DF is much higher than

for SF (the average deviation among the more different statistics is 0.66 and

0.44 for DF and SF, respectively). Note that this is not guaranteed to happen

due to statistic selection: the criteria that guided the selection of statistics

was their ability to distinguish DF and SF networks. The fact that certain of

these statistics are more or less similar to DPA networks is independent or, at

least, not obviously dependent on this other criterion.

That preferential attachment appears to be a better model for short fiction

corroborates our earlier characterization (through feature analysis) of short

fiction as a genre marked by social networks that consist of a fewer number of

more intense relationships. Moreover, detective fiction’s greater deviation from

a preferential attachment model suggests that the genre may place increased

emphasis on other social network formation processes (such as a preference for

reaching distant parts of the network).
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4.4 Random network analysis

While the roots of detective fiction extend back into the nineteenth cen-

tury, it was only at the turn of the twentieth century when detective fiction

emerged as one of the quintessential modern genres. For both early and later

theorists, narratives of detection were imagined to serve the purpose of sense-

making, vehicles for trying to navigate a world that was increasingly less fa-

miliar — an experience that would be appreciated by contemporary readers

[21, 10]. This could take the form of re-establishing moral codes through the

strong binary of good versus evil that pervades detective fiction (Grafton). Or

it could take a more conservative tack, as George Grella has argued, where

detective fiction is thought to be about restoring a lost social order [16, 18].

Central to these approaches is an emphasis on the singularity of character, the

charismatic detective at the heart of the story who allows for this identifica-

tory process of discovery. The detective, whether male or female, private eye

or police detective, serves as a stand-in for the uncertain reader [35].

Here we’re interested in studying the extent to which detective fiction can

be understood less as the experience of a single, charismatic individual (the

great detective) and more as an articulation of the social processes through

which a shared understanding of the truth comes to be known. In this section

we investigate this idea through the hypothesis that detective fiction consists of

a more open social network, which dramatizes the navigation of more complex

social space in order to arrive at socially accepted truths.

The notion of an open or closed social network is one question (of many)

which can be investigated using the character interactions and inferred net-

works constructed for each text in our corpus. From an operational perspec-

tive, by “open” we refer to a network in which the truth seeker (the detective,

in this case) favors using interactions to explore a social network rather than

51



invest in building a small number of strong relationships. Our hypothesis is

that this is a high-level property that appears in detective fiction (DF) and is

much less common in general short fiction (SF). As this is a multi-dimensional

property, we have used a combination of established and novel network statis-

tics (see Section 3.2) to evaluate this hypothesis.

DF has larger, sparser networks As a starting point, basic node and edge

count statistics reveal that DF interaction networks involve more characters

and more interactions than short fiction (this is true even when controlling for

text length, not shown). However, despite having more edges (and an over-

all higher average degree), the networks are less dense (the number of edges

cannot keep up with the factor of n potential edges created every time a node

is added). Consider that a larger, sparser network is a natural pre-condition

for having a more open network in which there is space for independent social

structures to emerge which the detective must explore.

Certainly, a protagonist who choses to interact with more characters over

the course of a story will produce this pattern, supporting our hypothesis. It

is also possible, however, that this trend is simply a product of there being

more characters in the story: if every character has some interactions (with

the main character or otherwise), then this will, itself, drive up the number

of edges present. The lower density and greater diameter of DF networks,

however, suggests that the greater number of edges is not simply a matter of

all characters having more interactions (which would lead to a more fully con-

nected network, driving up the density and decreasing the diameter). Thus,

the increased number of edges is not necessarily a product of a larger set of
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arbitrarily (or uniformly) interacting characters.

DF has less indirectly connected neighborhoods The average clustering

coefficient — the connectedness of a node’s neighborhood — is not statis-

tically significantly different between DF and SF. Moreover, the amount of

clustering is relatively low, suggesting that in both genre neighborhoods are

not highly connected. 2-clustering, on the other hand is significantly lower in

DF. 2-clustering is the 2-hop (rather than 1-hop) connectedness of a node’s

neighborhood. Even if the clustering coefficient is low, high dispersion suggests

that in a two step random walk, it is relatively common to end up back in the

starting node’s neighborhood. While both DF and SF show a strong tendency

towards high dispersion, DF maintains distinctly lower values, indicating that

a detective’s walk through the social network will tend to lead to new places

rather than back to previously visited neighborhoods.

Notably, the 2-clustering along the strongest edge (which always links

to the detective in DF) shows a higher deviation between genre. The higher

value for short fiction indicates that the social circles of the central charac-

ter (by degree) and her most important neighbor are more densely connected

(i.e., almost always completely connected). For example, classic short fiction

is often driven by very strong single relationships around which the stories

revolve, as in the boy narrator and his stand-in father Glen in Richard Ford’s

“The Communist,” or Helen and Harry in Hemingway’s “The Snows of Kil-

amanjaro.” This is less true for the detective and the detective’s immediate

strongest neighbor, implying that the detective more often fills a structural

hole in the network, a position well-established to have important information
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acquisition and control properties [7]. Thus, not only does the detective in-

habit a less tightly knit social universe, but within her portion of it, she holds

a position that ties it together.

Detectives don’t invest in strong relationships A significant part of the

open network thesis rests on the intuition that detectives favor spending their

interactions to explore new parts of the social network. If this is the case,

then we should expect to find that detectives tend to connect to less heavy

edges. Two statistics confirm this in different ways. The heaviest edge fraction

shows that the heaviest edge (which invariably involves the detective in DF)

accounts for a much smaller proportion of all interactions than the heaviest

edge in short fiction. The degree-weighted heaviest edge score captures the

extent to which the heaviest edge connects the most degree-central nodes in

the network: this is more true in SF, indicating that in DF the detective is

making different decisions about where to invest her interactions. In practice,

sometimes this can have a circular structure, as in Clark Howard’s “Under

Suspicion,” in which the detective Frank Dell moves through a wide array of

interactions with suspects and colleagues only to have it revealed at the end

that it was his partner who killed the young woman found dead at the opening

of the story (who was also the partner’s daughter and Dell’s former lover).

Detectives aren’t the center of the social universe For a detective to

be able to explore a social network, there must be a network to explore. This

suggests that, in an open network, there should be more going on outside

of the central character’s experiences that matter to the fact-finding process.

Two of our statistics directly support this idea. Normalized closeness vitality
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measures the average increase in shortest path lengths in the network when

the most degree-central node is removed. The increase in distance is distinctly

less in detective as opposed to general short fiction. Thus, a degree central

node in SF is more important in connecting paths of information flow through

the network than a degree central node in DF. Said differently, this indicates

that detectives (the most degree central node in a DF network) is less central

in the network than well-connected nodes in SF. Additionally, if we consider

the proportion of the network that the degree central node is connected to,

the degree-center neighborhood fraction, we find that this, too, is lower for

DF. Certainly, this is likely related to the fact that DF involves more char-

acters; however, regardless, it is notable that the interactions in DF are not

allocated to connecting the detective more directly to all parts of the network.

These statistics support the idea that the detective — and perhaps the act of

detection — is not just about encountering the greatest number of people, but

in encountering and exploring, albeit incompletely, more complex social net-

works. For example, in Margaret Maron’s “Deborah’s Judgment,” at stake in

the story is the untangling of complex ties between a series of interconnected

and inter-related characters who knew each other from a previous period. Un-

derstanding those ties provides the resolution to the crime.

DF takes longer to build/reveal the entire network In contrast to

the statistics used above, here we consider the question of how quickly the

social network is formed. To investigate this, we formulated the time-to-

node/edge/interaction-complete statistics, which capture the percentage of

the story required in order to encounter the final node/edge/interaction in
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the network. We find that the time-to-node-complete and time-to-interaction-

complete statistics are not notably different between detective and short fic-

tion. In the case of nodes, it would seem that in DF and SF all characters

have been introduced between 50% and 75% of the way through the story. In

the case of interactions, the tendency towards late final interactions (i.e. 88%

and 80% through the text) likely reveals in both genre the important role that

social interactions play in moving a plot forward.

However, the time-to-edge-complete statistic is statistically significant,

indicating that DF tends to reveal or add its final edge far later in the story

than SF. This suggests that an important part of detective fiction is the late

arrival of a relationship which may carry important information for the detec-

tive’s (and the reader’s) truth seeking endeavor. In Georges Simenon’s classic

“Maigret Deduces,” for example, the final relationship established is between

the secondary detective and the murderer that generates the confession of the

crime, whereas in Diane Davidson’s “Cold Turkey” the final edge of the story

is between the murderer and the corpse (the victim), constituting an edge that

brings resolution for the reader.

In the latter case, the late arrival of a relationship is not only coincident

with the proper identification of perpetrator and victim, but more importantly

signals the narrative resolution of the two different temporal planes that are,

according to a classic essay by Tzvetan Todorov, essential to detective fiction:

the narrative present in which the detective operates and the narrative past

(of the crime) that must be reconstructed [32].
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Table 4–3: A comparison between literary social networks from detective and short
fiction and three novel generative network models: uniform random attachment
(Uniform), uniform-preferential attachment (UPA), and double preferential attach-
ment (DPA). Values in the table are the fraction of works in that genre that deviate
from the random model (for a given statistic). This is computed as the percent of
works in a particular genre that, for a given statistic and model, had a statistic value
that was statistically different (p-value < 0.01) from those observed in the model
networks build for that work. The bold values flag the genre stand-out statistics:
statistics for which that genre has greater deviance from the DPA model. Notably,
the average deviation of these stand-out statistics is 0.66 for DF versus 0.44 for SF.

Detective Fiction Short Fiction
Statistic Uniform UPA DPA Uniform UPA DPA
# of edges 0.9 0.86 0.62 0.6 0.65 0.2
average degree 0.9 0.86 0.62 0.65 0.65 0.25
degree-weighted heaviest edge score 0.52 0.52 0.52 0.95 0.95 0.95
heaviest edge fraction 0.81 0.76 0.48 0.75 0.85 0.55
average dispersion 0.43 0.19 0.19 0.3 0.3 0.3
max/avg degree ratio 0.86 0.86 0.76 0.85 0.65 0.45
density 0.9 0.86 0.62 0.6 0.65 0.2
degree-center neighborhood fraction 0.86 0.86 0.76 0.85 0.65 0.45
dispersion along the heaviest edge 0.1 0.1 0.1 0.3 0.3 0.3
diameter 0.57 0.43 0.24 0.65 0.6 0.35
closeness vitality 0.81 0.81 0.57 0.75 0.7 0.55
heaviest edges ratio 0.14 0.19 0.1 0.45 0.45 0.45
average clustering 0.52 0.43 0.19 0.4 0.35 0.2
average deviation 0.64 0.59 0.44 0.62 0.59 0.40

4.4.1 Classifier Performance

With the Naive Bayes classifier we get an average accuracy of 58.4% which

is slightly better than random. This suggests that mere word frequency may

not be a good indicator for classifying a genre. The LLDA classifier gives the

best average accuracy of 92%. The SVM classifier which uses our network

features gives an average accuracy of 68.0%. This gives us better performance

than Naive Bayes but it is nowhere near the LLDA classifier accuracy.

Though our classifier does not beat the LLDA based classifier. An accu-

racy of 68% gives a signal that the structure of a network carries withitn itself

information which is characteristic of a particular genere. A viable future work
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would be to develop new statistics around network features which can serve

as better features for genere classification.
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CHAPTER 5
Discussion & Future Work

This work represents a cross-disciplinary effort to (1) tackle the hard prob-

lem of mapping character interaction networks at scale and (2) demonstrate

that such computational systems and their quantitative products can provide

substantive insight into questions with significant literary merit. The results

we have obtained and reported raise a number of larger ideas and questions

about this present work and future directions of research.

1. AMT interaction mapping. Our method demonstrates the best per-

formance of any method published to date. Additionally, the crowd-

sourced component enables us to scale mapping efforts to large corpora.

This said, the entire mapping pipeline is not yet automated (or crowd-

sourced), leaving clear and important directions for future work that

aim to improve the overall scale of datasets that can be processed. Three

problems stand out. First, techniques must be developed for normalizing

narrator representation in texts in order to make first-person narrators

easy to code. Second, we require techniques for constructing character-

alias dictionaries that do not require a single (or handful of) expert(s) to

sit and hand-code name-character relationships. Third, post-hoc name

resolution after the crowdsourced interaction sets have been returned

needs to be automated.
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All three of these are interpretive exercises. One exciting research direc-

tion, then, would focus on hybrid solutions in which automated, crowd-

sourcing, or expert-based systems coordinate to perform the tasks men-

tioned above.

2. Alias discovery. Where the construction of character-alias dictionar-

ies is concerned, our method presents some valuable improvements over

automated systems. Unlike automated systems which require such a

dictionary and then process only names that match entries in the dic-

tionary provided, humans code interactions through a more natural and

sophisticated reading of the text which can yield names and aliases that

were not included (for whatever reason) in the character-alias dictionary.

While this necessitates the name resolution phase, our crowd-based sys-

tem has the ability to correct errors and omissions in the dictionary,

which overcomes a potentially serious source of error in character map-

ping studies.

3. Citizen science. Given the remarkable accuracy we obtain through

crowdsourced coding of interactions and the enthusiastic responses from

the AMT workers who did the work, we believe that our method is well

suited to be rolled out as a citizen science initiative. The successful

launch of such a platform would eliminate much of the cost associated

with mining books, would provide a dedicated population of interaction

coders, and could attract the attention of individuals more familiar with

literature and literary analysis (providing a larger population of experts
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who could be tasked with the harder problems such as building and cu-

rating character-alias dictionaries).

4. Devising new network statistics. There has been a tendency in past

work to apply only existing network statistics in pursuit of a literary hy-

pothesis. However, attacking the complex questions and ideas that arise

in literary analysis requires a willingness to develop and use new net-

work statistics. Our analysis of detective and short fiction is an example

of this: the standard network statistics did not completely address the

core question of interest, leading us to develop additional measures to

support our thesis.

5. Literary insights. This analysis has generated valuable literary in-

sights at multiple levels. First, we have been able to show that social

networks are a good indicator of genre. Until now, this correlation be-

tween form and social dynamics in literature had been assumed but not

proven.

Second, the use of social network analysis has led to distinctly new in-

sights into the potential meanings and social functions of our selected

genre of detective fiction. Our statistics indicate that far from being

exclusively about issues of play, morality, charisma, or even suspense,

one of detective fiction’s indicative features is its ability to dramatize

the navigation of more complex and open social networks. We find that

detective fiction can be understood as a genre designed to generate new

kinds of social order, ones that consist of what we would call extensive

versus intensive social networks [16]. The function of detective fiction as

a genre is to facilitate the imaginary navigation of an increasing social
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openness and simultaneously generate a sense of consensus within such

openness. It remains to be seen whether these results hold for different

languages and cultures (does German detective fiction or the more recent

rise of Mexican border detective fiction exhibit similar features?) as well

as different genres. Whether social networks are indicative of different

sub-genres of the novel, for example, or between novels and other long

prose works such as the epic or romance marks an important area of new

research.

6. Random models for character interactions. Detective fiction’s lack

of fit to the models considered suggests that different social processes are

at work that are not accounted for by these random models and indicate

an interesting area for further exploration. More broadly, our findings

(and the general success of random models in network science literature)

confirm that random models can not only tell us how constructed or “in-

tentional” a literary social network is, but they can also give us insights

into the social processes that are unique to different literary genres. We

consider the application and innovation of random network models in

support of literary analysis to be an exciting direction for the field.
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CHAPTER 6
Conclusion

In this thesis we present a novel crowdsourcing based method for extract-

ing interaction networks from literary texts at large scale. We use detective

fiction and short fiction texts in our study and show that we can reliably

and accurately reconstruct the social network of characters. We also propose

several statistics that we show are significant for different generes.

We compare our networks with randomly generated networks and find

that the extracted networks have features which significantly differ from ran-

dom networks showing that these networks are man-made. We also justify the

literary meaning behind the stats and why they are significant. Finally we

build an SVM based classifier from our stats and get 68% accuracy.

Our methods are generic and scalable enough to be extended to other

generes & larger corpora of texts like novels. They can also be used in cases

where we need to discover an interaction between two entities not limited to

text. Because of the enthusiasm and positive response that we got from AMT

users, We believe that this work can be converted to a citizen science project

where people will participate voluntarily and help in creating more networks.

63



REFERENCES

[1] A. Agarwal, A. Corvalan, J. Jensen, and O. Rambow. Social network anal-
ysis of alice in wonderland. In Proceedings of the NAACLHLT 2012 Work-
shop on Computational Linguistics for Literature, pages 88–96, 2012.

[2] A. Agarwal, A. Kotalwar, and O. Rambow. Automatic extraction of
social networks from literary text: A case study on alice in wonderland.
In the Proceedings of the 6th International Joint Conference on Natural
Language Processing (IJCNLP 2013), 2013.

[3] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks.
Reviews of modern physics, 74(1):47, 2002.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the
Journal of machine Learning research, 3:993–1022, 2003.

[5] D. A. Brewer. The Afterlife of Character, 1726-1825. University of Penn-
sylvania Press, 2011.

[6] M. Buhrmester, T. Kwang, and S. D. Gosling. Amazon’s mechanical
turk: A new source of inexpensive, yet high-quality data? Perspectives
on Psychological Science, 6(1), 2011.

[7] R. Burt. Structural holes and good ideas. American Journal of Sociology,
110(2):349–399, 2004.

[8] G. Casella and E. I. George. Explaining the gibbs sampler. The American
Statistician, 46(3):167–174, 1992.

[9] V. Cevher, D. Kahle, K. Tsianos, and T. Saleem. Variational bayes ap-
proximation. Rice University, 2008.

[10] G. Chesterton. A defence of detective stories. 1901.

[11] W. M. Darling. A theoretical and practical implementation tutorial on
topic modeling and gibbs sampling. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 642–647, 2011.

[12] D. K. Elson, N. Dames, and K. R. McKeown. Extracting social networks
from literary fiction. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pages 138–147. Association
for Computational Linguistics, 2010.

64



65
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