
Predictive filtering for automatic focus
pulling and robot control

Ehsan Kia

Master of Science

School of Computer Science

McGill University

Montreal, Quebec

December 2016

A thesis submitted to McGill University in partial fulfillment

of the requirements of the degree of master of science.

Copyright c©2016 Ehsan Kia



ACKNOWLEDGEMENTS

The author wishes to express his deepest appreciation to his supervisor, Paul

Kry, who provided unwavering guidance and assistance. Special thanks to all the

members of the computer graphics lab for the support, discussions and ideas.

ii



ABSTRACT

We present a system for automatic focus pulling using consumer level hard-

ware and predictive Kalman filters. This work describes the complete process of

building such a system from scratch, both in hardware and software. We document

how to modify a Canon lens to communicate with it directly, and how to commu-

nicate with it using a micro-controller. We then calibrate the lens focus motor and

measure the latency of the system. We next introduce a series of predictive filters

aimed at a variety of focus targets that could arise in a film. These filters compen-

sate for the latency in the system and aim to keep the target in perfect focus while

in motion. Finally, we test each of these filters using the modified lens to track the

predicted position of the target. We evaluate the defocus in the examples both syn-

thetically from the recorded motion data and numerically by analyzing the recorded

video for blur. We also showcase a few other uses of our predictive Kalman filters

in use with quadrotors.
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ABRÉGÉ

Nous présentons un système de mise au point automatique tirant à l’aide du

matériel de niveau des consommateurs et des filtres de Kalman prédictifs. Ce tra-

vail décrit le processus complet de la construction d’un tel système à partir de zéro,

tant au niveau matériel et logiciel. Nous documentons comment modifier un ob-

jectif Canon pour communiquer directement avec elle, et la façon de communiquer

avec l’aide d’un micro-contrôleur. Nous calibrons alors le moteur de mise au point

de l’objectif et nous mesurons la latence du système. Nous présentons ensuite une

série de filtres prédictifs visant une variété de cibles de mise au point qui pourraient

survenir dans un film. Ces filtres compensent la latence dans le système et visent à

maintenir la cible au point parfaite, tout en mouvement. Enfin, nous testons chacun

de ces filtres en utilisant l’objectif modifiée pour suivre la position prédite de la

cible. Nous évaluons la défocalisation dans les exemples à la fois synthétiquement

à partir des données de mouvement enregistrées et numériquement en analysant la

vidéo enregistrée pour le flou. Nous présentons également quelques autres utilisa-

tions de nos filtres de Kalman prédictifs en utilisation avec des quadrotors.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Blur perception . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Camera modification . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Autofocus and re-focus . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Predictive filtering . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Focus control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Lens modification . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Serial communication . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Focus calibration . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 End to end latency . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Filter design and prediction . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Constant velocity model . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Constant acceleration model . . . . . . . . . . . . . . . . . . . 21

4.3 Non-smooth process models . . . . . . . . . . . . . . . . . . . 21

4.4 Noise parameter optimization . . . . . . . . . . . . . . . . . . . 22

4.5 Rigid object tracking . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Examples and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Standard viewing scenario . . . . . . . . . . . . . . . . . . . . 24

v



5.2 Measuring blur in video . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Computing blur from motion capture . . . . . . . . . . . . . . . 26

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.1 Flying quadrotor . . . . . . . . . . . . . . . . . . . . . . 29

5.4.2 Static objects . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4.3 Sudden motion . . . . . . . . . . . . . . . . . . . . . . . 29

5.4.4 Pendulum motion . . . . . . . . . . . . . . . . . . . . . 30

5.4.5 Sliding box . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.6 Freefall . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Filter parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.6 Other use-cases . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6.1 Light painting . . . . . . . . . . . . . . . . . . . . . . . 36

5.6.2 Stipple drawing . . . . . . . . . . . . . . . . . . . . . . 37

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



LIST OF TABLES
Table page

3–1 Lens communication commands . . . . . . . . . . . . . . . . . . . . 16

5–1 Noise parameters for different scenarios . . . . . . . . . . . . . . . . 35

vii



LIST OF FIGURES
Figure page

1–1 First camera assistant . . . . . . . . . . . . . . . . . . . . . . . . . 2

1–2 Modified camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3–1 EF lens modification . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3–2 Lens communication pins . . . . . . . . . . . . . . . . . . . . . . . 14

3–3 Lens focus calibration . . . . . . . . . . . . . . . . . . . . . . . . . 17

3–4 Latency measurement setup . . . . . . . . . . . . . . . . . . . . . . 18

5–1 Blur metric comparison . . . . . . . . . . . . . . . . . . . . . . . . 25

5–2 Custom focus target for blur detection . . . . . . . . . . . . . . . . 26

5–3 Example frames from filtering video . . . . . . . . . . . . . . . . . 28

5–4 Blur comparison in pendulum example . . . . . . . . . . . . . . . . 31

5–5 Blur and prediction in box sliding example . . . . . . . . . . . . . . 33

5–6 Height prediction in freefall example . . . . . . . . . . . . . . . . . 34

5–7 Quadrotor with different attachment . . . . . . . . . . . . . . . . . 36

5–8 Example of light painting with quadrotor . . . . . . . . . . . . . . . 37

5–9 Lantecy in LED light panting . . . . . . . . . . . . . . . . . . . . . 38

5–10 Example of stipple drawing by quadrotor . . . . . . . . . . . . . . . 38

viii



CHAPTER 1

Introduction

One of the most challenging jobs in filmmaking is that of the first camera

assistant who must control the lens so that actors or objects are in focus throughout

a shot (Figure 1–1). Positions and distances can be established in rehearsal, but

pulling focus, as it is known, is difficult when the target is in motion. Additionally,

there exist a variety of scenarios where shallow depth of field makes this task even

more challenging. In particular, the depth of field becomes very shallow when

using a wide open aperture, which may be desirable to produce a dramatic blurry

background or to direct the viewer’s attention to a specific point in the image. In

this case, the depth of field can be as small as a centimeter, especially when using

medium length or telephoto lenses, but also when filming at close distances with a

wide angle lens. A small error can be the difference between focusing on the actor’s

ears instead of their eyes.

An interesting solution for difficult focus pulling scenarios is to use a motion

capture system to measure the location of actors and objects, and to drive the cam-

era focus automatically with a motor. While such an approach can trivially produce

sharp focus when everything is static, the end to end delay from measurement to

control of the focal-plane will result in a soft defocus when either the camera or

target is in motion. This latency exists in all measurement systems. For instance,

magnetic tracking systems, while ideal for this application because the sensors can

be hidden on actors and objects, typically contribute at least 15 ms latency. Fur-

thermore, magnetic tracking measurements have noise that requires filtering, which

introduces additional latency due to the phase shift. Data processing, communica-

tion, and motor control are additional sources of delay.
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Figure 1–1: The first camera assistant takes care of focus pulling and makes sure

the focus always follows the target as it moves around the scene. Photograph by

Clemens Pfeiffer, distributed under a CC-BY 2.0 license

In this work, we use predictive filtering to address the question of how one can

overcome end to end latency and automatically maintain focus on moving targets.

We design predictive (delay compensation) filters for focus pulling in such systems

with inherent delay. In some cases, we can expect intermittent defocus whenever

the motion of an object deviates from an assumed motion model. For instance, con-

sider an object moving at a constant velocity that suddenly stops due to an inelastic

collision. We can predict the position from past measurements, but once the object

stops, the error in our prediction will grow linearly until we obtain measurements

that show that the object is at rest.

We evaluate video recorded with the camera shown in Figure 1–2 using a mo-

tion capture system to control the focus. We use two different electro-focus lenses

that we modified to obtain full and direct control of the focus and aperture. We

carefully measure the end to end latency and combine this with motion models for
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camera and targets to decide when and where to set the focal plane. Specifically,

a Kalman filter with a variety of different process models estimates the state of

the camera, people, and objects (e.g., position, velocity, acceleration). It then inte-

grates the model forward in time from the state estimate which compensates for the

latency. We set measurement and model noise parameters using values optimized

from example data.

We explore a wide variety of different models, designing and evaluating pre-

dictive filters for each. There exist a number of scenarios where motion can be

predicted with reasonable accuracy over small time windows. A constant velocity

model works well for tracking people and handheld cameras. Objects that are slid-

ing, thrown or falling are modeled well with constant acceleration. We also present

examples that involve non-smooth dynamics, such as collision and static friction.

Indeed, our predictions will not be perfect due to modeling errors and measurement

noise, and thus, we evaluate the quality of results for a range of examples.

Direct measurement of blur in each frame of a video can be used to evaluate

results, but in general, we compare future motion capture measurements with previ-

ously predicted focal plane settings. From this, we can estimate the blur by taking

into account the camera model, lens focal length, and distances to both the focal

plane and the target. In a concurrent research project by our lab, a set of perceptual

defocus experiments were performed on subjects and a momentary blur threshold

was identified. This helps us detect cases where a certain defocus in a video be-

comes problematic, given its blur amount and duration. For instance, end to end

latency can become particularly challenging when recording high-speed video as

short intervals of defocus will be longer at playback time and become noticeable.

Our threshold results are also useful in guiding aperture selection so as to control

the depth of field, ensuring that any temporary defocus remains below the threshold.
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1.1 Thesis organization

In this work, we present a complete system built from the ground up that al-

lows us design, record and evaluate predictive filters for automatic focus pulling.

We describe the process of modifying and calibrating a consumer lens to allow

precise control over the focus motor. Then, we measure the system and use those

measurements to design and tune predictive filters which compensate for the la-

tency measured. Finally, we evaluate how our filters perform in a wide variety of

examples.

The thesis is organized as follows and will describe in depth each part of our

process. In Chapter 2, we will give a detailed overview of the related works with

references for every section of our work. Then, in Chapter 3, we will take a close

look at modifying consumer level lenses and cameras to get a precise control pro-

grammatically. Next, we explore how to design and optimize filters to reduce blur

in different scenarios in Chapter 4. Lastly, in Chapter 5, we evaluate our system

and filters using a variety of different examples and evaluation methods.
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Figure 1–2: The camera and one of the modified lenses we use for recording videos

with automatic focus pull using predictive filtering. Blue wires attached to the

lens allow direct control of the lens from a computer using a serial communication

protocol. Four small retro-reflective markers mounted on top of the camera allow

its position and orientation to be tracked with a motion capture system.

5



CHAPTER 2

Related work

The presence and control of depth of field blur are important in computer gen-

erated images and photography. Demers [2004] provides a survey of rendering

methods for depth of field, while more recent work has addressed real-time tech-

niques [Lee et al., 2010] and accuracy with efficient sampling [Belcour et al., 2013].

In computer vision, defocus can be used to estimate depth [Subbarao and Surya,

1994], and can aid in scanning [Jakob et al., 2009]. Blur also has a strong effect on

a viewer’s perception of distances in an image. Blur gradients provide perceptual

cues about scene scale [Held et al., 2010], and blur at occlusion boundaries can pro-

vide information about depth order [Mather and Smith, 2002]. Depth of field blur

can also improve perception in renderings of volumetric data [Grosset et al., 2013].

In our work, we are concerned with the amount of blur when viewing recorded

video on a screen. With an understanding of how people see defocus in objects

moving in depth, we can design and evaluate methods for reducing blur in video

recorded with focus controlled by motion capture. The ultimate goal is to design

predictive filters that are optimized based on human perception of depth as as seen

in video. Below, we discuss related work on perception, focusing, and filtering.

2.1 Blur perception

There have been many studies that address this question in the perception lit-

erature. Most of these studies examine static stimuli only. A well-known finding

is that blur discrimination thresholds at large reference blurs obey roughly a Weber

law, so just noticeable differences (JNDs) in blur are proportional to a reference blur

level. At small blur references (up to around 2 arcmin), blur discrimination thresh-

olds exhibit a dipper function. This dipper function exists both in the fovea [Watson
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and Ahumada, 2011] and in the periphery [Wang and Ciuffreda, 2005]. The reason

for the dipper function is that, at a zero reference blur, the discrimination threshold

becomes equivalent to the detection threshold which is limited by factors such as

photoreceptor sampling, noise, and optics. The visual system thus only can detect

blur differences if the blur is above some minimum blur detection level, which is

roughly where the dipper has its dip. This detection limit also roughly corresponds

to the depth of field limit of blur in 3D scenes.

Focus pulling involves objects that move in depth. The goal is to track the

motion in depth so that it does not pass outside the camera’s depth of field. Al-

though lateral motion does elevate blur discrimination thresholds, the elevation was

found to be small even for large 2D image velocities [Burr and Morgan, 1997]. For

the problem of focus pulling, the motion is often primarily due to objects either

approaching or receding in depth and the lateral component of motion is typically

low. In this case, motion blur is likely a negligible factor for blur detection and

discrimination. The more important factor is likely to be errors in focus pulling.

Such errors might result in blur that can have a constant component (if there is a

fixed delay in the tracking of motion in depth) or a time-varying component, for

example, if the tracking mechanism overshoots or undershoots.

2.2 Camera modification

In the field of computational photography, there have been various projects try-

ing to provide lower level access to the different components in a camera. One such

example is the Frankencamera from Stanford [Adams et al., 2010], which specifies

a software stack and a set of APIs for precision access to the camera’s sensor and

processing pipeline. In a similar vein, there has been work on computational cam-

eras which explore the benefits and limits of using computation with novel optics to

produce better images [Zhou and Nayar, 2011], as well as research on the conver-

gence of optics and processing [Nayar, 2011]. Another project that we investigated
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is Magic Lantern, a project dedicated to writing custom firmware for Canon cam-

eras. While they provide many useful new functionalities, their focus control was

still not precise enough for us.

As for modifying consumer level lenses, there have been a number of attempts

documented on the web without always having a corresponding academic publica-

tion. Two such references which helped in reverse engineering the communication

protocol were Jean Wlodarski’s Pick and Place blog [Wlodarski, 2011], as well as

a supplementary document posted by Yosuke Bando alongside his research [Bando

et al., 2013]. It is worth noting that these communication protocols are often lens

dependent and often incomplete, as most of the posted results were focused on

specific use cases.

2.3 Autofocus and re-focus

Most consumer photography cameras use phase detection in their autofocus

systems. The autofocus sensor compares the light patterns coming from opposite

sides of the lens. When the patterns do not match, the shift amount tells exactly

how much to move the lens and in what direction. Modern cameras use a collection

of these sensors and provide modes for guessing which point of the image should

be in focus. For instance, the Canon 70D provides an autofocus mode that can track

faces when recording video.

Light field photography is a potentially interesting solution to the focus track-

ing problem because the light can be refocused in a post-processing step [Ng, 2005].

The Lytro Illum camera, which is based on Ng’s work, provides excellent quality

images that are refocusable. In the past, bandwidth for video recording was a big

challenge given that the light fields are recorded with a 40 megapixel (mega-ray)

image sensor, but their most recent camera, the Lytro Cinema, overcomes this issue.

They have built a light field camera able to record videos, although the technology

is still very expensive and only available to big budget labs or movie studios.
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Other recent work includes camera arrays that are small enough to be built into

cell phones [Venkataraman et al., 2013]. Raytrix makes light field cameras targeted

to industrial applications, and has a video capable camera, though the resolution

and quality are probably insufficient for most entertainment applications.

The assistant camera operator, or AC, typically tracks focus using a handheld

remote. Cinematography Electronics produces the Cine Tape Measure. It uses an

ultrasonic sensor to continuously measure the distance to the subject. For auto-

matic focus at longer distances, there exist optical infrared laser distance measure-

ment solutions (e.g., cmotion and cfinder). Moviecam Easyfocus also uses optical

measurement and allows the camera assistant to click on a touch screen to select

the subject. The Andra autofocus systems, recently available from Cinema Control

Labs, gives the AC high-level tools for controlling focus on actors and objects that

are tracked with motion capture.

Our autofocus implementation is inspired by the Andra system, though we use

an optical motion capture system instead of wireless magnetic sensors. A number

of other commercial solutions exist. These professional systems have low latency

but are also very expensive.

2.4 Predictive filtering

Predicting motion is a critical problem across many domains. It is not only

the problem of optimal state estimation but also the prediction of present and fu-

ture states given past measurements. For interactive techniques, latency can be

the primary challenge. To improve the quality of augmented reality, Azuma and

Bishop [1994] describe how to compensate for delay in head mounted displays.

Prediction of mouse motion has been studied for navigation in distributed virtual

environments [Chan et al., 2005], for telepresence applications [Baldwin et al.,

1998], and for predicting mouse endpoint positions in human-computer interac-

tion [Pasqual and Wobbrock, 2014].
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Simon [2006] provides an excellent background on optimal state estimation

with Kalman filters. Estimator performance can be poor when measurements are

not only delayed but also have uncertain time stamps [Julier and Uhlmann, 2005].

There are also interesting problems when the measurements have variable delays

due to the speed of light and sound [Orguner and Gustafsson, 2008]. In our case,

the problem of tracking moving targets in a studio sized environment with a fixed

end-to-end latency is much simpler, and our approach closely resembles the two-

step process of Azuma and Bishop. We first use a simple steady state Kalman filter,

also known as an α-β or α-β -γ filter, to estimate the past state of a target. We then

integrate forward a model (possibly non-smooth) to predict where to set the focus.

One relevant domain where predictive filtering shows up often is robotics.

Messom et al. explore the usage of Kalman filtering in improving control of a mo-

bile robot [Messom et al., 2003]. They explore techniques to improve the precision

of their soccer playing robot using predictive filter and examine the results on the

field. In a similar vein, Kiruluta et al. use similar predictive Kalman filters on track-

ing head movements [Kiruluta et al., 1997]. The textbook by Liu [2009] is also a

great reference on the subject.

2.5 Summary

This project pulls together a wide variety of domains, touching both software

and hardware. While there are many related works in different fields, none of the

research tackles the problem we are trying to solve here. There are a few com-

mercial solutions which attempt to solve the focus tracking problem, but they are

generally very technologically complex and particularly expensive. We propose a

solution which uses predictive filtering to achieve acceptable results using cheap

and accessible consumer grade equipment. We also expand on the vast amount of

ad-hoc reverse engineering work that has been done in various digital photography

10



communities online. Lastly, we bring in research from the psychophysics domain in

order to evaluate our results and confirm that we are below perceivable thresholds.
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CHAPTER 3

Focus control

Professional filmmaking involves expensive cameras and lenses. Typically,

external lens motors of various brands are used to drive the focus ring. The assistant

camera operator uses a handheld remote to adjust the focus, and this equipment

normally has reasonably low latency for good manual control. While we could

implement predictive filtering for these traditional systems, we build an inexpensive

alternative using consumer cameras and lenses designed for photography.

The high quality of video and low prices of recent DSLR cameras have made

them very attractive equipment for amateur filmmakers. We note that the main

drawback of using photography lenses for video is that they tend to breath during

focus, i.e., there is a small zoom during focus that changes the framing of the image.

Nevertheless, the advantage is that very good optics can be obtained at affordable

prices. For our work, these lenses also provide an excellent solution for focus

control because they already contain motors for the camera’s autofocus system. By

using the motors inside the lens, we avoid the problem of trying to drive the focus

with external motors, which is usually difficult or impossible on many photography

lenses because they use a clutch system as opposed to providing direct mechanical

control with hard stops.

3.1 Lens modification

We use Canon cameras and Canon electro-focus (EF) lenses. While EF lenses

provide a great inexpensive focus control solution, the standard Canon SDK inter-

face provides a limited access for controlling the focus. It only allows us to take

preset size steps and the commands have unpredictable delays. The Canon custom

12



Figure 3–1: Canon EF lens modification, bypassing the connection between the

lens and the camera inside the lens.

firmware project Magic Lantern also suffers from similar limitations. To have pre-

cise and interactive control of the focus motor, we modify the lens to bypass the

camera and communicate with the lens directly. We disconnect the internal lens

circuitry from the connectors on the lens mount, and pass communication wires

through the side of the lens body (see Figure 3–1). To make the camera operate

as if a manual lens is attached, it is also necessary to insulate the connectors on

the lens mount. We modified two lenses: a wide angle 28 mm lens, and a medium

telephoto 85 mm lens.

3.2 Serial communication

With the communication wires exposed, we use an Arduino board1 to control

the lens, to which we send commands from a computer via the USB connection.

1 An open-source microcontroller (https://www.arduino.cc)
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the command. For this reason, we had to implement our own custom communica-

tion interface.

For controlling the lens, the list of commands that were reverse engineered are

shown in Table 3–1. Ultimately, we only use a small set of those to control the

aperture and focus motor position. Also note that these are specific to the lenses we

were using, and some of the commands are different from what was found by the

other projects we used as a reference.

These motor commands on the lens all work relative to some reference start

position. When the lens is first powered on, that motor current position is assigned

to 0, and any further command will move relative to that. For this reason, before

starting, we first pull the focus all the way back and reset the lens in order to have

the 0 at the minimum focus distance. From there, we can query the lens for the

motor position and know exactly where the focus is, using the calibration function

detailed in the next section. The Arduino script used for communicating with the

lens can be found in Appendix A.

We find that the ultrasonic stepper motors in our lenses can be reliably con-

trolled, with no observable backlash nor any skipped steps during extended periods

of use.

3.3 Focus calibration

To control the focus of our lenses, we need a mapping between the position of

the stepper motor, or ticks, and the resulting focal distance. Rather than trying to

accurately model the optics of a commercial compound lens – a daunting task – we

use a simple linear relationship between ticks and inverse focal distance (diopters).

This simple model works very well for our lenses (e.g., see Figure 3–3). We fit the

linear function using samples collected for different focal planes measured to a fixed

landmark on the camera (i.e., distance to the camera body reference frame). But to

get a best linear fit we must adjust how we measure the distance from the camera

15



Command (hex) Lens Answer Description

0x97, 0x01 7 bytes Ask for lens info, such as Lens ID, brand, pro-

tocol version, min/max zoom, etc

0xB0 4 bytes Ask for max/min aperture values

0xA0 2 bytes Ask for current zoom value

0x0A 1 bytes Check if camera is busy (busy poll). The cam-

era responds with 0xAA whenever it is ready

0xC0 2 bytes Get the relative position of the focus motor in

ticks (since the last reset)

0x44, 0x??, 0x?? Move the focus motor relative to its current po-

sition. The number of ticks is specified by the

last 2 bytes sent (shown as 0x?? 0x??)

0x05 Set the focus motor to the furthest position

0x06 Set the focus motor to the closest position

0x13, 0x80 Set the aperture size to the minimum value

Table 3–1: A list of camera commands, the lens response and their description.

These commads can vary slightly between different lens models

depending on the lens that is attached. Specifically, we find the offset that yields the

smallest residual after a linear fit. The calibration was then tested in both directions

to check for any backlash in the focus motor. Together, the linear function and

offset allow us to compute the desired tick count by linearly interpolating between

the collected data points, given a target focal plane distance measured with respect

to the camera frame.

To have the focus follow a fast moving target it is important to know that the

lens motor will be capable of changing the focal plane fast enough. For the 28 mm

lens, the motor speed is approximately 3800 ticks per second (the full range is 1800

ticks) or about 12 diopters per second. Thus, the maximum speed of a target is

about 2 m/s when at the closest focusable distance. The motor and the full range of

ticks in the 85 mm lens is very similar, but given the different optics, the focus rate

is about 3.6 diopters per second making the maximum speed 1.5 m/s at the closest
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low speeds are detected. In our application, it is best to avoid filtering at the level of

the measurement system to permit better estimates of measurement noise. It is like-

wise desirable to have fixed latency properties of the measured position to simplify

the delay compensation problem. In our work, we use an inexpensive OptiTrack

motion capture system. This typically leaves visual markers in the video but allows

us to make simple tests with available equipment.

Our end to end system has many sources of latency: communication from mo-

tion capture cameras to computer, 3D reconstruction and tracking, communication

to a focus driving process, USB communication of commands to an Arduino, serial

communication with the lens, which then drives the stepper motor.

To measure the end-to-end latency in the system, we use a 1200 fps high-speed

camera to record both the lens motion and a tracked object as it comes to an abrupt

stop. In the setup shown in Figure 3–4, we hit a block of wood on a table, while both

the table and the lens are in view. The end to end latency is then easily measured

by counting the number of frames from when the block hits the table and when the

lens’ motor stops turning in the slow motion video.

Figure 3–4: Setup for measuring the latency of the system. Left, the configuration

of the lens and high-speed camera. Right, the actual view from the high-speed

camera, seeing both the lens and the block hitting the table.
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We measured two configurations. One configuration has the focus driving

process on another computer as the motion capture machine, while the other avoids

network communication by running the focus driving process on the same com-

puter. For the first configuration, we averaged 15 measurements to obtain 55 ms

end to end latency, with a standard deviation of 5 ms. For the second configuration,

with 9 measurements we observe an average of 31 ms latency with 2 ms standard

deviation.

It could be possible to further reduce some of the sources of latency in our

configurations. However, we believe many systems will have comparable latency

and thus our tests provide a realistic indication of the challenges of automatic focus

pulling with different kinds of motion capture. The relatively high end to end lag of

the first configuration helps demonstrate the benefit of compensating for lag in sce-

narios where it might be difficult to reduce the lag (e.g., high-speed photography).

3.5 Summary

At this point, we have shown the full process of modifying a consumer level

lens and controlling it through serial communication. We have also gone through

the process of calibrating the focus and calculating the motor tick to focus conver-

sion function. Lastly, we also found the other unknowns in the system such as the

latency for different configurations.

In the following chapter, we use these measurements to design predictive filters

to compensate for the measured latency. We will explore a wide variety of different

models while taking intro consideration the limitations of our lens and the focus

tracking system we presented in this chapter.
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CHAPTER 4

Filter design and prediction

We use a Kalman filter to track the target state, from which we can predict

its future position and the necessary focus distance. We estimate the noise from

measurements, and the lag used for the prediction step is obtained as previously

described in Section 3.4. We implement two simple process models for the fil-

ter: constant velocity, and constant acceleration. However, in the filter and during

delay compensation we also accommodate some non-smooth phenomena such as

collisions or constant deceleration from sliding friction until rest.

We track 3D motion capture points, and following a simple Kalman filter for-

mulation, we use

xk = Fxk−1 +Buk +wk−1 (4.1)

zk = Hxk−1 + vk−1. (4.2)

with a linear process F and measurement model H. We will typically not be able

to know anything about how our target is being controlled, and therefore drop the

Buk term. We assume that the process noise w has a zero mean normal probability

distribution N(0,Q) and we model the noise with one parameter σ (see below).

Similarly, we use a single parameter λ to model the measurement noise v, which

we assume to be a zero mean normal distribution N(0,R) with covariance R = λ 2I,

where I is the 3-by-3 identity matrix. We discuss how we set the noise parameters

later in this section.
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4.1 Constant velocity model

The simplest process model we use is a constant velocity model. We maintain

3D position and velocity as the state of the target, x = (pT ,vT )T . Assuming the

model and measurement noise are uncorrelated discrete white noise processes, we

have

F =







I hI

0 I






, H =

(

I 0

)

, Q = σ2







1
4
h4I 1

2
h3I

1
2
h2I h2I






(4.3)

where I is again the 3-by-3 identity matrix, and h is the sampling time step. This

steady-state Kalman filter is also known as an α-β filter. This is the default model

which works best in most non-specific situations. It can be used for actors moving

around or for any unplanned irregular motion.

4.2 Constant acceleration model

For tracking focus on objects that are thrown, falling, or sliding to a stop,

a constant acceleration model can be more appropriate. In this case, we include

the acceleration in the state, x = (pT ,vT ,aT )T, and use model, measurement, and

covariance matrices corresponding to an α-β -γ filter (see [Simon, 2006]).

F =













I hI 1
2
h2I

0 I hI

0 0 I













, H =

(

I 0 0

)

. (4.4)

4.3 Non-smooth process models

Tracking an object sliding to a stop on the floor requires a piecewise model

because the object transitions between constant deceleration to zero acceleration at

zero velocity. We implement this by testing for a sign change in the depth velocity

of the tracked state. We prevent the filtered state estimate from overshooting by

zeroing the velocity and acceleration, and resetting the estimate covariance to Q.

We achieve this by modifying the filter state directly in our code when a certain
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condition is hit. This ensures that the model correctly tracks the transition from

sliding to sticking, but we also need to use the same non-smooth model in delay

compensation. That is, the focus distance is an integral of the estimated state, for-

ward in time, by the end-to-end latency. We compute the integral numerically while

including a test at each step to check if the object has come to rest.

For the box pushing example in our results, note that the box is initially at rest.

We let the Kalman filter estimate both the acceleration of the push and then the

deceleration due to friction. As a result, we have defocus errors during the push.

Alternatively, we could improve tracking with a simple constant velocity model

when the box is held or pushed by a hand, and reinitialize the filter on release to

immediately transition to deceleration due to frictional sliding.

A similar situation occurs during collisions. Our examples include a ballistic

motion that ends with an inelastic collision. In this case, we use the position of the

floor as a trigger to reset the covariance to Q and to zero the velocity and acceler-

ation. Again, numerical integration starting from the estimated state and including

an inelastic collision model provides delay compensation for the control of focus.

For the start of the falling humanoid example in our results, we reset the covariance

and set the acceleration to -9.8 m/s2 at a given transition condition (the velocity

exceeding a threshold).

4.4 Noise parameter optimization

The values for σ and λ have an important effect on the quality of the final

results. We find the values experimentally by running an optimization over sample

data, i.e., motion that was recorded in test runs, or rehearsals. Since the motion

capture provides the position over the entire trajectory, we can know the position

of the target in the future, as well as the positions predicted by our filter. In this

manner, we compute the error in focus distance throughout each rehearsal. We then
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search the space of σ and λ parameters for values which minimize this error using

SciPy’s optimize module (see Section 5.5).

4.5 Rigid object tracking

Camera motion requires a prediction of rigid motion to track the position and

normal of the focal plane. Our motion capture system tracks both position and

orientation. However, to simplify the problem of filtering orientations, we use only

use the raw marker position measurements. We use independent Kalman filters and

delay compensation in a first step, followed by a shape matching step to obtain the

predicted frame [Müller et al., 2005]. We note that it would not be difficult to use

an extended Kalman filter with linearized rotations to deal with camera rotation

instead [Drews et al., 2013].

When tracking a camera, we set the origin to be on the focal plane, at a point

approximately corresponding to the center of the lens. For an actor, in contrast, a

point of interest within the frame can be selected, for instance, an eye.

4.6 Summary

We have now developed a model for our scene and various filters that are de-

signed to work in different scenarios. These range from the basic constant velocity

model, which is general enough to be useful in most cases, but we also looked at

more complex non-linear filters for when the focus target follows a less arbitrary

motion. We also looked at how to optimize the parameters in our filters, using the

system measurements found earlier and recorded results.

We will next demonstrate how these filters perform using the setup described

in Chapter 3 to get real-world measurements, as well as evaluate the filters synthet-

ically with recorded motion capture data.
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CHAPTER 5

Examples and Evaluation

We evaluate our predictive filters in two ways. First, we measure blur in videos

recorded both with and without our predictive filter, as well as measuring blur in

videos recorded with the Canon 70D follow focus mode. Second, given our mea-

surement of the latency, we use motion capture trajectories to synthetically evaluate

the performance of the filter without trying to measure the blur in video frames.

5.1 Standard viewing scenario

In this section, we use a standard viewing scenario to evaluate and compare

our defocus results. All arcmin1 blur measurements are defined with respect to the

following setup.

Observers are assumed to be seated at a distance of 150 cm from a high def-

inition 24-inch monitor. The stimulus on the display is 32.6 cm wide and 1200

pixels, or about 1.6 pixels per arcmin. This viewing angle and resolution defines

the standard viewing scenario for this section.

5.2 Measuring blur in video

To get an objective idea of how well our filter is doing, we need to compare

the blur in videos recorded with and without to filter and see if our solution actually

reduces the blur in the recording. There are many blur metrics in the literature and a

few were tested for this project. First, we tested a perceptual blur metric by Crete et

al. [2007] which was validated with subjective tests and psychophysics functions.

We have also experimented with a method presented by Pertuz et al. [2013] which

1 An arcmin is a unit of angular measurement equal to 1/60 degrees
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We use a 24-inch diagonal high definition display at a distance of 150 cm and a

Canon 70D with an APS-C sensor that has a 1.6× crop factor. We use two different

prime lenses, 28 mm and 85 mm, and we use both at f/1.8, which is the maximum

aperture because this provides the most challenging focus scenario.

We use a simple thin lens model to approximate the circle of confusion for an

out of focus target. Let S1 be the distance to the focal plane in the scene, and let S2

be the distance to the target. The diameter of the circle of confusion is given as

c =
f

N

∣

∣

∣

∣

1

S1
− 1

S2

∣

∣

∣

∣

, (5.1)

where the lens has f-number N and focal length f .

For the Canon 70D, to convert the circle diameter to high definition video

pixels we multiply by 85.3̄, or 1920 pixels divided by 22.5 mm (which is the full

frame width of 36 mm divided by the 1.6 crop factor). We subsequently convert

the diameter of the circle of confusion to the standard deviation of its point spread

function by multiplying by 1/
√

2. Finally, we divide by 1.6 to convert from pixels

to arcmin following our standard viewing model.

Note that this motion capture to arcmin conversion and our blur perception

thresholds can help the assistant camera operator select an aperture that would allow

blur caused by filter prediction errors to fall below the perceptual threshold, without

the need to measure blur in raw video frames.

5.4 Examples

To test out our filters, we recorded many different examples, all of which can

be seen in the provided video. A preview of the video can be seen in Figure 5–3.

Some of these examples were used for measuring blur in videos, some were used

for measuring blur synthetically using mocap data, while others simply there to

demonstrate the limits of our system. We will now explain each example in more

detail.
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(a) Sliding box (b) Static objects

(c) Freefall (d) Sudden motion

(e) Flying Quadrotor (f) Pendulum motion

Figure 5–3: Example frames from recorded video using filtering and delay com-

pensation for various scenarios. See supplementary video for the full demo of the

filter in each scenario
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5.4.1 Flying quadrotor

The first example we experiment with is that of a flying quadrotor, as seen in

Figure 5–3(e). For this example, we use the simplest of our models, the constant

velocity predictive filter. The arbitrary movement of a flying object or a moving

human is hard to predict but slow enough for our base filter to do a satisfactory job.

Trying to manually track focus for such a target is nearly impossible even for the

most skillful focus pullers, especially when using a very shallow depth of field as

we have in this example. Our tracking system, on the other hand, manages to keep

the quadrotor in focus for the whole duration of the flight with no help whatsoever

from the camera assistant.

5.4.2 Static objects

In this example, we set a couple objects on a table and this time, it is the cam-

era holder who walks around the room. In this case, we use rigid body tracking to

model the camera to account for rotational prediction. This again is a very basic

scene, which normally would be fairly hard to properly focus on with a wide aper-

ture, but as seen in the example video and in Figure 5–3(b), our system is able to

switch between the different objects and keep the focus as the camera moves around

in different directions.

5.4.3 Sudden motion

This example is to show how fast our system is able to track objects. We

use the base constant velocity filter once again, but here, we have a person swing

a red card very rapidly towards the camera, while our system tries keeping focus

on it the whole way through. The card, as seen in Figure 5–3(d), stays in focus

while the subjects’ face quickly becomes blurred in the background. This example

really shows the power of such a system and how easy it is to create powerful and

impressive shots.
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5.4.4 Pendulum motion

For this example, we set up a pendulum which oscillates with a period of 3.4

seconds and an amplitude of 0.7 meters. This is one of the examples we used to do

our numerical blur evaluation as explained in the previous section. We attached our

tracking marker on the front of the pendulum, as seen in Figure 5–3(f) and focus on

it using the constant acceleration predictive filter, as it can very closely approximate

the harmonic motion of the pendulum. We record the motion with different setups

and then analyze the video for blur.

We plot a comparison of blur measurements in Figure 5–4. This compares

the Canon 70D focus tracking to motion capture tracking, both with and without

delay compensation to overcome 31 ms of latency. Each type was recorded and

measured 3 times to check consistency. The built in focus, as expected, performs

by far the worse, with peak blur around 10 arcmin. Using the mocap system with

no prediction already gives a huge benefit, but we still see peak blurs that average

2 arcmin, which is still in the noticeable region. Once we use our predictive filters,

as seen by the green line, the blur falls below the perceivable threshold of 1 arcmin.

For this experiment, we used the constant acceleration model to best approximate

the sinusoidal motion. Looking at the plot, we can confirm our intuition, which

is the tracking system manages to catch up with the target at the two peaks of the

oscillation, but struggles to keep up when the pendulum is moving the fastest. We

also notice that the tracking struggles a bit more when the target is closest to the

lens, as the focus is much more sensitive defocus in close range.
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5.4.5 Sliding box

The next example we evaluate using our numerical measurement method is

that of a sliding box. We record videos of a box sliding to rest on the ground, with

the focus target attached on the front, as seen in Figure 5–3(a). For this experiment,

we again use a constant acceleration model (decelerating due to friction), but we

also add an extra non-linear constraint, which consists for limiting the velocity

and acceleration to negative values. This prevents the prediction from overshooting

when the box finally comes to a rest and avoids the extra defocus event which would

usually happen at the end of the motion.

Figure 5–5 shows blur for motion capture driven autofocus with and without

predictive filtering in our box sliding example. Notice how the green focus distance

curve closely matches the motion capture ground truth, showing how well our fil-

ter can predict the motion of the sliding box. It is also good to see how the blur

measured in the video approximately follows the same pattern as the blur predicted

from the motion capture path and lens parameters. Lastly, looking at blur values,

we observe that without filtering, we have a peak that is well above the 1 arcmin

threshold for a long period of time. On the other hand, with the filtering, the blur

line stays below 1 arcmin for the whole duration of the shot and therefore has no

visible blur.

5.4.6 Freefall

Lastly, we have an example where the focus target is falling under the influence

of gravity, then comes to an abrupt stop once it hits the ground. Sudden changes

in motion like this are usually extremely difficult scenarios for a predictive system

with latency, which is why we present this example. Here, for the falling section, we

once again have a constant acceleration model, with a known acceleration (gravity,

9.8 m/s2), but we add a non-linear event which is the ground collision. Since we
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scenario latency model norm σ2 λ 2

push + slide 55 acc. L2 101.9 10−8.9

push + slide 55 acc. L1 101.4 10−8.4

slide only 55 acc. L1 101.4 10−8.1

slide only 55 acc. L1 101.4 10−8.1

Crazyflie 31 vel. L2 101.1 10−8.1

Crazyflie 31 vel. L1 102.6 10−9.6

falling 55 acc. L2 101.0 10−6.0

falling 55 acc. L1 101.6 10−8.6

Table 5–1: Optimal noise parameters for different scenarios.

Note that non-smooth motion models play an important role in the final quality

of many examples, and these model transitions are included within our optimization

of noise parameters.

Figure 5–6 shows height estimates during the falling example. Without pre-

diction, the red curve shows that latency leads to persistent defocus. The orange

curve shows that prediction tracks well during the fall, but overshoots after the im-

pact. The green curve shows that delay compensation with our non-smooth model

matches closely the true height.

Table 5–1 gives an overview of the optimal parameters we find for a number

of scenarios, including smooth motion (Crazyflie) and non-smooth motion (sliding

to stop under friction, and falling with inelastic collision). Noise parameters corre-

spond to standard SI units for the model and measurements (meters, seconds), and

a motion capture rate of 100 Hz.

We explored both L1 and L2 minimization. While we speculated that opti-

mization with the L1 norm might result in defocus errors that are harder to per-

ceive, the optimal parameters suggest otherwise. Overall, the values are very sim-

ilar across all of our tests. As such, we believe that the end-to-end latency is the

most important factor influencing quality, then followed by the motion model.
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5.6 Other use-cases

Alongside this work, there were a few other projects being worked on in our

lab which ended up directly benefiting from the predictive filters developed here.

Two such projects used a computer controlled quadrotor to perform artistic tasks,

but each system had inherent delays causing inaccuracies. This is where our predic-

tive Kalman filters came in to improve the results by compensating for the latency.

(a) LED attachment (b) Brush attachment

Figure 5–7: The quadrotor used for our projects with different attachments.

5.6.1 Light painting

The first project consisted of attaching an LED to a quadrotor and having it

draw certain 3-dimensional shapes in the air while a stationary camera takes a long

exposure photograph. An image of the quadrotor used with the LED attachment

can be seen in Figure 5–7(a). Some preliminary results are shown in Figure 5–8.

While these give a general idea of what such a system is capable of, we can already

observe the errors caused by the end-to-end latency.

In this system, we use motion capture to accurately track the position of the

quadrotor in order to know when to activate and deactivate the LED light. The issue

arises due to the end-to-end delay from getting the position to sending a command

to the LED, resulting in the lines being offset depending on the latency and the
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(a) Table (b) CS (computer science)

Figure 5–8: Long exposure photograph of a quadrotor drawing various shapes in

the air with an attached LED. The shapes are roughly a meter in size.

velocity of our tracked quadrotor. This issue can be seen clearly in Figure 5–9,

where the experimenter swings the quadrotor up and down, with the LED being

programmed to turn on when below a certain height. As we can observe, without

any filtering, the LED ends up turning on too late on the way down and turning off

too late on the way up, resulting in a skewed boundary. On the other hand, once we

apply the predictive filtering, we observe a clean straight boundary.

5.6.2 Stipple drawing

The next project consisted of attaching a brush to the quadrotor and having

it create stipple drawings on a canvas by repeatedly colliding into it [Galea et al.,

2016]. A picture of the modified quadrotor can be seen in Figure 5–7(b).

For this project, we first generate a stipple version of an input image and then

compute an optimal order to draw the dots. The quadrotor, which is being tracked

by the motion capture system, then draws the stipples one by one onto the canvas.

An example generated and resulting stipple drawing can be seen in Figure 5–10. In

this project, as the previous one, it is crucial to have accurate position information

for the quadrotor in order to reduce the position error for each stipple.
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(a) Without predictive filtering (b) With predictive filtering

Figure 5–9: Example of the error in light painting due to latency in the system and

the same experiment performed with predictive Kalman filtering applied.

(a) Computer generated drawing (b) Quadrotor drawing

Figure 5–10: An example stipple drawing generated by our algorithm and the re-

sulting drawing by the quadrotor.
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5.7 Summary

We presented our setup and introduced the two methods used for evaluating

the filters we have developed: measuring the blur in video footage of the filter in

action and measuring expected blur from our filter running on motion capture data.

Next, we presented six different examples showcasing each of the filters we

designed and in each case, we observed that using our predictive filters lowered

the blur to below the perceivable threshold. We also observed that using models

specific to the scene are sometimes necessary to stay below the threshold.

Lastly, we looked at two more use-cases for our predictive Kalman filters in

other projects involving quadrotors. This shows how the findings in our work can

have benefits in many other places. We will now conclude and present a few promis-

ing new directions for future works.
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CHAPTER 6

Conclusion

We first present an automatic focus method that uses motion capture to control

a modified electro-focus lens. We describe how to modify and calibrate a lens,

how to communicate and control it using serial communication, as well as measure

end-to-end latency in the complete system. We then present predictive filters for

automatic focus control in various scenarios, based on the measurements in our

system as well as psychophysics experiments. Next, we record a series of examples

using the automatic focus system we built and evaluate those videos to numerically

show how our predictive filters perform.

We found in our experiments that using a naive motion capture tracking system

with no filtering while giving decent results, still had perceivable blur in more chal-

lenging scenarios. On the other hand, with our predictive filters, the peak blurs were

reduced by half on average, putting them below detection thresholds according to

psychophysics experiments, even with approximate motion models and moderate

amounts of latency.

We looked at different models such as constant velocity, constant acceleration,

and models with non-linear events. For each case, we showed how to design a

custom filter and observed that there can be benefits to using scene specific models.

In general, we found that the constant velocity model performs well enough in most

situations.

From these results, it is clear that a system like this can have very beneficial

use-cases in the movie industry and in helping with more complex and challenging

shots. In the case of slow motion, every slight defocus event would get ampli-

fied even more, so it because much more crucial to have a precise and rapid focus
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system. Such a task may be impossible to ever achieve by a human being and an

automatic focus system like presented in this paper may be ultimately needed for

the more extreme shots. It will allow for a whole new range of shots that were

simply not possible before and give a new tool set for the director to explore.

6.1 Future work

We believe that it will worthwhile exploring the use of our predictive focus

method with wireless magnetic motion capture sensors, which can be hidden on ac-

tors and objects, to investigate how the latency and noise of these sensors influence

defocus of moving actors and objects. Our predictive filters would work great for

addressing the added phase delay of noise filtering. It would also be interesting to

look into the development of adaptive motion models and improved noise parame-

ters for our filters. Having an automatic system which can choose and adapt which

configuration to use depending on the scene would make this system far more user-

friendly and simple to use.

As mentioned in the related works, the company Andra currently sells a similar

system. While their setup ultimately lacks our filtering component, they instead

have an interesting UI on a tablet providing the user with a better control of the

setup and parameters. It would be interesting to explore such an interface in the

future and see what can be done in that direction trying to automate as much as

possible while still giving the director some control when needed.

Another subject worth looking as pointed out in an earlier chapter is working

with more extreme lenses such as anamorphic ones. Currently, we assume that the

target will always be in the center of the lens, and our model ignores distortions

that happen in the outer region of the frame. For regular lenses, we found that the

effects were negligible, but it would be interesting add that to our model to better

approximate the focus distance in all regions of the frame.
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Lastly, another direction we would like to explore is developing visually based

metrics for evaluating blur in videos. We would need to run psychophysics trials

on humans to evaluate the probability of seeing a blur of a certain length and size.

Then, from that data, we would create a function that gives us the probability of a

certain blur in a video to be perceived. Then, we could use this metric to run a more

perceptually based optimization on our filters.
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Appendix A

This is the Arduino script used to control the 28 mm and 85 mm Canon lenses.

The timings were measured using an oscilloscope for our lenses and are needed

to work properly. The lens uses a modified SPI protocol, meaning that we cannot

use the built-in Arduino SPI. Instead, we re-implement our own in send signal,

which lets go of the clock after each message sent and waits for the lens to pull the

current, signaling that it is done processing the command.

The clock speed for the Arduino also matters. For the 28mm lens, we originally

used 82 KHz which worked fine, but for the 85mm lens, we require a faster 500 KHz

clockspeed to communicate with the lens with the required timings.

void setup() {

Serial.begin(115200);

init_pins();

init_lens();

}

void init_pins() {

pinMode(LogicVDD_Pin, OUTPUT);

pinMode(Lens2Cam_Pin, INPUT_PULLUP);

pinMode(Cam2Lens_Pin, OUTPUT);

pinMode(Clock_Pin, OUTPUT);

}

int starting_position = 0;

void init_lens() {

digitalWrite(Clock_Pin, LOW);

digitalWrite(LogicVDD_Pin, LOW);

digitalWrite(Cam2Lens_Pin, LOW);

delay(500);

digitalWrite(Cam2Lens_Pin, HIGH);

digitalWrite(LogicVDD_Pin, HIGH);

digitalWrite(Clock_Pin, HIGH);

delay(500);

busypoll();

starting_position = 0;

starting_position = get_motor_position();

Serial.println("ready");

}

void focus_nearest() {

send_signal(0x06);
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send_signal(0x00);

}

void aperture_full() {

send_signal(0x13);

send_signal(0x80);

send_signal(0x13); // second aperture_step cmd needed ...

send_signal(0x80); // depending on current aperture pos

}

int get_motor_position() {

send_signal(0xC0);

byte hi = send_signal(0x00);

byte lo = send_signal(0x00);

signed short pos = ((hi & 0xFF) << 8) | (lo & 0xFF);

return pos - starting_position;

}

void focus_step(int step) {

if (step == 0) return;

byte lb = step & 0xFF;

byte hb = (step>>8) & 0xFF;

send_signal(0x44);

send_signal(hb);

send_signal(lb);

delayMicroseconds(500);

busypoll();

}

// 85mm

float p0 = 1621.38579;

float p1 = -94715.8913;

float p2 = -3638133.32;

int F_MAX = 1680;

void focus_dist(float d) {

float x = 1.0 / d;

float y = p0 + x * (p1 + x * p2);

int target = min(F_MAX, max(0, (int)y));

int current = get_motor_position();

while (current < -10 || current > 2000) {

busypoll();

current = get_motor_position();

}

focus_step(target - current);

}

void busypoll() {

int count = 0;

byte resp = 0x00;

while (resp != 0xAA && count < 20) {

send_signal_slow(0x0A);

resp = send_signal_slow(0x00);

count++;

}

}
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byte send_signal(byte sig) { // SPI command generator

noInterrupts();

byte rcv = 0;

byte sig_ = sig;

delayMicroseconds(100); // Delay observed empirically

for (int i = 8; i > 0; i--) {

// Falling edge

CLR_DCLK; // digitalWrite(Clock_Pin, 0);

if ((sig_ & 0x80) == 0x80) SET_DOUT; // digitalWrite(Cam2Lens_Pin, 1);

else CLR_DOUT; // digitalWrite(Cam2Lens_Pin, 0);

sig_ = sig_ << 1;

SLEEP_400_NS; SLEEP_400_NS; NOP; // Pad LO duration to ˜1us

// Rising edge

SET_DCLK;

rcv = (rcv << 1) | POLL_DIN;

SLEEP_400_NS; SLEEP_300_NS; NOP; // Pad HI duration to ˜1us

}

SET_DOUT; // digitalWrite(Cam2Lens_Pin, HIGH);

pinMode(Clock_Pin, INPUT_PULLUP);

delayMicroseconds(15); // Empirically

interrupts();

while(!digitalRead(Clock_Pin));

pinMode(Clock_Pin, OUTPUT);

interrupts();

return rcv;

}
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Appendix B

This Matlab script was used to extract the blur from a video using our custom

focus target and markers as presented in Chapter 5. The script first reads the frames

from a video, uses the markers to crop the appropriate region. It finally extracts the

blur amount from each frame by fitting the best blur kernel.

% Read video frames
vid = VideoReader(’pendulum_filter.mp4’);
frames = read(vid);
CR = [250.0, 250.0, 840.0, 400.0];
frames = frames(CR(2):CR(2)+CR(4),CR(1):CR(1)+CR(3),:,1:end);

gpos = zeros(size(frames, 4), 2);
rpos = zeros(size(frames, 4), 2);

% Get initial marker positions
imshow(frames(:,:,:,1));
h = impoint(gca, []);
rcenter = int32(wait(h));
h = impoint(gca, []);
gcenter = int32(wait(h));
mwidth = 50;
close;

% Track markers across all frames
for f=1:size(frames, 4)

frame = frames(:,:,:,f);
frame = double(frame)/255;

gxs = max(gcenter(1) - mwidth, 1);
gxe = min(gcenter(1) + mwidth, CR(3));
gys = max(gcenter(2) - mwidth, 1);
gye = min(gcenter(2) + mwidth, CR(4));

rxs = max(rcenter(1) - mwidth, 1);
rxe = min(rcenter(1) + mwidth, CR(3));
rys = max(rcenter(2) - mwidth, 1);
rye = min(rcenter(2) + mwidth, CR(4));

R1 = frame(rys:rye,rxs:rxe,1);
G1 = frame(rys:rye,rxs:rxe,2);
B1 = frame(rys:rye,rxs:rxe,3);

R2 = frame(gys:gye,gxs:gxe,1);
G2 = frame(gys:gye,gxs:gxe,2);
B2 = frame(gys:gye,gxs:gxe,3);

rmarker = medfilt2(R1 - 0.5 * (G1 + B1) > 0.24, [5 5]);
gmarker = medfilt2(G2 - 0.5 * (R2 + B2) > 0.04, [5 5]);

[R,C] = find(rmarker);
rpos(f,:) = mean([C,R]) + double([rxs,rys]);
[R,C] = find(gmarker);
gpos(f,:) = mean([C,R]) + double([gxs,gys]);

gcenter = int32(gpos(f,:));
rcenter = int32(rpos(f,:));
mwidth = (gcenter(1) - rcenter(1)) / 5;

end

gpos = [smooth(gpos(:,1), 20), smooth(gpos(:,2), 20)];
rpos = [smooth(rpos(:,1), 20), smooth(rpos(:,2), 20)];
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dist = gpos - rpos;
dist = sqrt(dist(:,1).ˆ2 + dist(:,2).ˆ2);
min_dist = min(dist);
mid = size(frames(:,:,:,1))/2;
mid(3) = 0;

sigmas = zeros(1, size(frames, 4));

% Crop each frame given the marker positions
for f=1:size(frames, 4)

rd = round(rpos(f,:));
gd = round(gpos(f,:));
frame = frames(:,:,:,f);

dif = gd - rd;
angle = atan2(dif(2), dif(1));
if angle < -pi/2

angle = angle + pi;
elseif angle > pi/2

angle = angle - pi;
end

frame = imrotate(frame, rad2deg(angle)/2, ’bilinear’);

midx = floor((rd(1) + gd(1))/2);
dist = floor(2 * (gd(1) - rd(1)) / 5);
minx = midx - dist;
maxx = midx + dist;
miny = rd(2) - 50;
maxy = rd(2) + 50;

frame = frame(miny:maxy, minx:maxx, :);
frame = rgb2gray(frame);

curve = sum(frame);
curve = (curve - min(curve)) / (max(curve) - min(curve));
cx = find(diff(sign(curve-0.50001)));
assert(size(cx, 2) == 4);

h = size(frame, 1);
sigma = zeros(1, 4 * h);
for i=1:size(frame,1)

curve = double(frame(i,:));
for j=1:4

white = mean(curve(cx(j)-40:cx(j)-30));
black = mean(curve(cx(j)+30:cx(j)+40));
subcurve = curve(cx(j)-30:cx(j)+30);

if white < black
tmp = white;
white = black;
black = tmp;

end
subcurve = (subcurve - black) / (white - black);

if subcurve(1) < subcurve(end)
subcurve = 1 - subcurve;

end
sigma(i + (j - 1) * h) = rise_distance(subcurve);

end
end

sigmas(f) = mean(sigma);
sigmas(f)

end
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