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Abstract

In this thesis we focus on an application of the dynamic team theory, the Remote Estimation
problem, that has been gaining interest in today’s unified world of control and communi-
cation. Fit into the realm of decentralized control problems, which is almost ubiquitous
nowadays due to its own merits, the remote estimation problem finds application in var-
ious networked systems. The remote estimation system consists of a sensor (transmitter)
and an estimator (receiver). The sensor observes (senses) a dynamic source and sends the
data (of its observation) over a lossy communication channel to a remotely placed receiver.
In such scenarios, often the data communication is expensive, which gives the incentive
for intermittent transmission. On the other hand the receiver has to estimate the source
realization based on the received data. The accuracy of the estimation is measured by an
estimation error. The transmission and the estimation cost together gives the total per-
step cost of communication. In such applications, a fundamental question is to make an
optimized trade-off between the transmission cost and the estimation error. In this thesis
we investigate such an optimization problem and provide a unified framework to analyze
the costly and constrained communication problems with finite and infinite horizon. We
recognize that in the applications of remote estimation, often there lie certain symmetry
and monotonicity properties in the state-dynamics. We exploit this observation to establish
the optimality of nicely structured optimal strategies, namely the threshold-based strate-
gies. Threshold-based strategies have their appeal in simplicity of implementation. In this
work, we provide a complete characterization of the optimal thresholds and optimal per-
formances pertaining to the remote estimation problem. We derive analytic expressions for
the optimal thresholds and the optimal performances. Furthermore, we develop algorithms
to find numerical solutions, which creates the scope for extension of the current research
to higher dimensions.
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Résumé

Dans cette thèse, l’accent est mis sur une application de la théorie de la dynamique d’équipe,
le problème de l’estimation à distance, qui a progressivement gagné de l’intérêt dans le
monde unifié d’aujourd’hui, un monde de contrôle et de communication. Inscrit dans la
sphère des problèmes du contrôle décentralisé qui est presque omniprésente de nos jours en
raison de ses caractéristiques propres, le problème de l’estimation à distance (ED) trouve
son application dans divers systèmes en réseaux. Le système de l’estimation à distance
consiste en un capteur (transmetteur), et en un estimateur (receveur). Le capteur ob-
serve (perceptions) une source dynamique et envoie les données (de son observation) sur
un canal de communication avec perte, vers un receveur placé à distance. Souvent, dans de
tels scénarios, la communication de données est chère, ce qui encourage les transmissions
intermittentes. D’un autre côté, le receveur doit estimer la source de réalisation basée
sur les données reçues. L’exactitude de l’estimation est mesurée par une erreur estimée.
Ensemble, le coût de la transmission et de l’estimation donnent le coût total par étape
de la communication. Dans de telles applications, la question fondamentale est de faire
un compromis optimisé, entre le coût de la transmission et l’erreur de l’estimation. Dans
cette thèse, nous étudions un tel problème d’optimisation et nous fournissons une structure
unifiée pour analyser les problèmes à l’horizon fini et infini dans le cadre d’une communi-
cation coûteuse et contraignante. Nous remarquons que dans l’application de l’estimation
à distance résident souvent certaines propriétés de symétrie et de monotonicité dans la
dynamique stable. Nous exploitons cette information pour établir l’optimalité de stratégies
optimales très bien structurées, appelées les stratégies de seuil. Les stratégies de seuil sont
attrayantes grâce à la simplicité de leur mise en oeuvre. Dans ce travail, nous apportons
une caractérisation complète du seuil optimal et de la performance optimale relative au
problème de l’estimation à distance. Nous établissons une formule pour le seuil optimal
et les performance optimales. Par ailleurs, nous développons des algorithmes pour trouver
des solutions numériques qui permettent d’étendre d’extension de notre recherche actuelle
vers les dimensions supérieures.
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Chapter 1

Introduction

“The single biggest problem in communication is the illusion that it has taken
place.” – George Bernard Shaw

1.1 Motivation

This thesis collates an in-depth study of the Remote Estimation (RE) problem, which
is a coming-of-age theoretical problem finding its applications in the field of control and
communication. The rich framework provided by sophisticated mathematical tools connects
the two aforementioned domains of research with the possibilities of diverse applications.
The remote estimation problem is undoubtedly one among such applications, with the
potential of extensive theoretical exploration as well as practical applicability.

In today’s world, applications such as network control systems, smart grids, cyber phys-
ical systems, environmental monitoring et cetera are growing in importance. One of the
salient inherent features of such applications is the decentralized control. With the advan-
tage of lower installation and control cost over the centralized counterpart, the decentral-
ized control and communication systems offer promising solutions to complex optimization
problems. In the field of systems engineering, from the aspect of the role played by control
actions, multi-agent systems can be broadly classified in two groups, namely the centralized
and the decentralized systems. The latter group of systems are the ones where control
action (or decision) is taken by components of the system, based on the available local in-
formation to each of them, which put together reflects into the global (or holistic) outcome.
The decentralized systems are different from their centralized counterpart by their acces-
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sibility to the information available to each agent. The decentralized systems essentially
have the non-classical information structure (a set of data available to each agent) where
no two decision makers have the same information available to them.

1.1.1 The theory of Teams

Based on the objective of the control action, the decentralized systems can be categorized
as Teams or Games. The decentralized control problem that we consider in our work falls
into the category of Team Theory [1–3]. This realm of research deals with multiple agents
and considers the organizational behavior (a term introduced by Marschak), where the
agents have access to different information about the state of the world and take their
own decisions based on the information available to them in order to optimize a common
objective function.

Teams have two solution concepts: the equilibrium solution and the optimal solution.
An equilibrium solution is the set of strategies of all agents where the system performance
cannot be improved by any unilateral deviation of the agents. In the context of team
problems, this is called the person by person solution (an equivalent of such a solution in
games being the Nash equilibrium). An equilibrium solution is the set of strategies of all
agents in a team, for which no other strategy can yield a better performance. As opposed
to the globally optimal solution in teams, the equilibrium solution can be viewed as locally
optimal.

1.1.2 The RE problem

Over the years, several applications of the team theory have emerged, and remote estima-
tion problem is one such instance. In remote estimation problems, one or more agent(s)
observe(s) the realization of the state of a source process and send(s) the observation to
remotely placed agents over communication channels between them. This essentially con-
sists of two (or more) agents, one of which observes the source and then takes a decision to
transmit its observation to a remotely placed receiver. The challenge of the receiver, who
has access to an information different than the observer and does not see the source, is to
generate in real time (i.e., with zero delay) an estimate of the source so as to minimize the
estimation error. In most applications of remote estimation, the transmission of the data
is costly and hence the observer sends its observation intermittently. A natural quest then
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arises to make an optimal trade-off between the transmission cost and the estimation error.

1.1.3 Role of information in RE problem

In a RE system, an observer transmits the observed source symbol over a communication
channel to a remotely placed receiver, which tries to regenerate the source symbol. The
channel could be noiseless or noisy. In a noiseless or ideal channel, the symbol observed
by the transmitter (which is the input to the channel) is the same as that received by
the estimator (when the input alphabet is the set of reals, an ideal channel has infinite
capacity). In contrast, a noisy channel has the output different than its input. A special
type of noisy channel that we consider in this thesis is an erasure channel, where loss
of information contained in the symbol occurs due to packet drops in the channel. The
issues like successful transmission and recovery of a message (or information) in a symbol
were addressed by Shannon [4]. This was the pioneering work in the realm of classical
Information Theory which dealt with the coding (or compressing) of a source and a channel
(error correction).

Although the RE problem is a communication system in which the transmitter transmits
information about a source to a receiver, the tools from classical information theory are
not appropriate to analyze the optimal strategies and the optimal performance. This is
because an RE problem is a real-time communication system, which is described in the next
section. Recently, in [5], the authors have characterized bounds of the maximal achievable
rate for a given finite block-length and error-probability over block-fading channels. These
bounds are tight for moderate block-lengths. However, using a block or streaming code of
block-length n introduces a delay of n. Such schemes are not applicable for the models
described in this thesis where zero-delay reconstruction is required.

1.1.4 RE as real-time communication system

A real-time communication system [3,6–8] is a point-to-point communication system, con-
sisting of a causal transmitter and a causal receiver. At each instant t, upon receiving a
symbol, the receiver needs to generate an estimate of the source symbol at t − δ, where
δ > 0 is the delay in communication, which can be zero or non-zero finite. Depending
on the type of the communication channel connecting the agents, there are broadly four
categories of real-time communication systems where:
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• the transmitter and the estimator are connected by one-way noiseless channel

• the transmitter and the estimator are connected by one-way noisy channel

• the transmitter and the estimator are connected by two-way channel with noisy for-
ward and noiseless feedback

• the transmitter and the estimator are connected by two-way channel with noisy for-
ward and feedback.

Remote estimation problems may be viewed as a special case of real-time communication.
The salient features of RE are as follows:

(F1) The decisions are made sequentially.

(F2) The reconstruction/estimation at the receiver must be done with zero-delay.

(F3) When a packet does get through, it is received without noise.

The main impediment in formulating the RE problem in the classical information the-
oretic framework is that the fundamental aspects of the latter, such as the entropy of a
source, the capacity of the channel or the rate-distortion function are asymptotic in nature,
which call for a large value of delay in communication. In RE problem, an estimate of
the source is to be generated in real-time, which means zero or finite delay and hence the
notions of the classical information theory do not apply here.

Furthermore, as in real-time communication, the key conceptual difficulty is that the
data available at the transmitter and the receiver is increasing with time. Thus, the domain
of the transmission and the estimation function (the decision functions of the transmitter
and the estimator respectively) increases with time. This makes the optimization problem
combinatorial and hence intractable.

To circumvent this difficulty one needs to identify sufficient statistics for the data at
the transmitter and the data at the receiver. In the real-time communication literature,
dynamic team theory (or decentralized stochastic control theory) is used to identify such
sufficient statistics as well as to identify a dynamic program to determine the optimal
transmission and estimation strategies. Similar ideas are also used in remote-estimation
literature. In addition, feature (F3) allows one to further simplify the structure of optimal
transmission and estimation strategies.
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In particular, when the source is a first-order autoregressive process, majorization theory
is used to show that the optimal transmission strategies is characterized by a threshold [9–
13]. In particular, it is optimal to transmit when the instantaneous distortion due to not
transmitting is greater than a threshold. The optimal thresholds can be computed either
using dynamic programming [9, 10] or using renewal relationships [13,14].

In the next section, we provide a brief overview of the results existing in the literature
and discuss the ones close to our line of research in a little more details.

1.2 Previous works on RE

Two approaches have been used in the literature to investigate real-time zero-delay commu-
nication. The first approach considers coding of individual sequences [15–18]; the second
approach considers coding of Markov sources [3, 6–8, 19, 20]. The model presented above
fits with the latter approach. In particular, it may be viewed as real-time transmission,
which is noiseless but expensive. In most of the results in the literature, the focus has
been on identifying sufficient statistics (or information states) at the transmitter and the
receiver; for some of the models, a dynamic programming decomposition has also been
derived. However, very little is known about the solution of these dynamic programs.

The communication system described in this thesis is much simpler than the general
real-time communication setup due to the following feature: whenever the transmitter
transmits, it sends the current state to the receiver. These transmitted events reset the
estimation error to zero. We exploit these special features to identify an analytic solution
to the dynamic program corresponding to the above communication system.

The motivation of RE comes from networked control systems. The earliest instance in
the form of a static (one shot) RE problem was first considered in [1] in the context of infor-
mation gathering in organizations. The problem of optimal off line choice of measurement
times was considered in [21], whereas the problem of optimal on-line choice of measurement
times was considered in [22]. In the field of control, the early work on the separation of
control and estimation through identification of information states was considered in [23]
and in [24]. In recent years, several variations of remote estimation have been considered.
The closely related problem of event-based sampling (also called Lebesgue sampling) was
considered in [25]. In addition, several variations of the remote estimation problem have
been considered in the literature. The most closely related models are [9–11,26–28], which
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are summarized below. Other related work includes censoring sensors [29, 30] (where a
sensor takes a measurement and decides whether to transmit it or not; in the context of
sequential hypothesis testing), estimation with measurement cost [31–33] (where the re-
ceiver decides when the sensor should transmit), sensor sleep scheduling [34–37] (where the
sensor is allowed to sleep for a pre-specified amount of time); and event-based communi-
cation [38–40] (where the sensor transmits when a certain event takes place). We contrast
our model with [9–11] below.

In [26], optimal remote estimation of i.i.d. Gaussian processes is investigated under a
constraint on the total number of transmissions. The optimal estimation strategy is derived
when the transmitter is restricted to be of threshold-type.

In [27], the optimal remote estimation of a continuous-time autoregressive Markov pro-
cess driven by Brownian motion is considered under a constraint on the number of transmis-
sions. The optimal transmission strategy is derived under an assumption on the structure
of the optimal estimation strategy. It is shown that the optimal transmission strategy is
of a threshold-type, where the thresholds are determined by solving a sequence of nested
optimal stopping problems.

In [28] optimal remote estimation of Gauss-Markov processes is investigated when there
is a cost associated with each transmission. The optimal transmission strategy is derived
when the estimation strategy is restricted to be Kalman-like.

In [9–11], optimal remote estimation of autoregressive Markov processes is investigated
when there is a cost associated with each transmission. It is assumed that the autoregressive
process is driven by a symmetric and unimodal noise process but no assumption is imposed
on the structure of the transmitter or the receiver. Using different solution approaches ( [9,
10] use majorization theory while [11] uses person-by-person optimality), it is shown that
the optimal transmission strategy is threshold-based and the optimal estimation strategy
is Kalman-like (the precise form of these strategies is stated in Theorem 2.6.1). Thus, the
optimal transmission and estimation strategies are easy to implement.

1.3 Scope of this thesis: an overview

In this thesis, we concentrate on a two-agent problem consisting of a transmitter and a
estimator. A transmitter observes (alternatively, senses) a Markov state process and decides
whether or not to transmit the state realization to a remotely placed estimator. Hence,
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the transmitter is also called a sensor. The estimator receives a symbol which reaches it
passing through a communication channel. For this reason an estimator is often called a
receiver. We use the terms transmitter/sensor and estimator/receiver interchangeably. We
consider two cases of the real-time communication: i) one-way with noiseless channel and
ii) two-way with noisy forward channel and noiseless feedback. It is perhaps worth noting
here that we consider no source coding and consequently, the transmitter is assumed to
transmit the observed state of the source intact. The rationale behind this is that in many
applications of remote estimation, the cost of transmitting a packet is much more significant
than the size of the packet. which can be verified by looking at a ‘standard’ sensor and by
comparing the energy consumed in sensing and in communication. An example of such an
application would be network control systems with battery-powered transmitters sending
data over a packet-switched network.

We recognize the remote estimation problem as a Decentralized Markov Decision Process
(or, Dec-MDP). In this setup, the source is a Markov process. A transmitter observes the
realization of the state and takes a decision to transmit the observation to a remote receiver.
The transmitter gets an acknowledgment of the reception of the data (or the lack of so)
and hence has the knowledge of the information available to the receiver. Upon receiving
a symbol, which may or may not be the data, the receiver attempts to estimate the source.
The estimator does not know the information available to the transmitter. Thus, from the
estimator’s point of view, the source process is a Partially Observable Markov Decision
Process (POMDP). Nevertheless, the overall two-agent system is jointly fully observable,
hence the name.

In the Dec-MDP, as described above, one could pose the team problem with non-classical
information structure to find the globally optimal solution by formulating a POMDP-like
dynamic program. The main conceptual difficulty in finding the global solution is that the
information set at the agents grows with time, making it a combinatorial problem, which
is inherently intractable.

It is shown by Witsenhausen in his famous counterexample [41] that for decentralized
systems, linear control strategies are not optimal, even for LQG (Linear Quadratic Gaus-
sian) systems. In the remote estimation problem, which is a decentralized team problem,
we seek a globally optimal solution, which comprises the optimal communication strategies,
i.e., the transmission and the estimation strategies. The optimal strategies are expected to
be non-linear and in order to be able to find the global solution, we need convexity in the



8 Introduction

strategy space.
A key feature of the RE problem is the sequential communication of the control actions,

that arises in a team with decentralized control. Although the strategies of the two agents–
the transmitter and the estimator–are common knowledge, since the estimator does not
have access to the information available to the transmitter, it has to make a belief on the
transmitter’s information in order to come up with it’s own strategy. This eventually leads
to a dynamic program, which is like a POMDP but the minimization is over a functional
space, which is computationally heavy.

In this thesis, we address the fundamental trade-off between the transmission cost and
the estimation error and formulate the costly and constrained communication problems.
We choose a stylized model of the source process and the per-step cost function and seek
to establish the structures of the optimal transmission and estimation strategies as well
completely characterize the optimal performance for both the cases with an ideal and a
erasure communication channel. We provide a unified approach to find the global optimal
solutions and complete characterization and computation of the optimal performances for
a large class of RE problems without the need to solve a dynamic program explicitly for
every change of the transmission cost.

On a slightly different note, we investigate a somewhat related dynamic team problem
that has been gaining attention recently. In the light of analyzing the optimality of the
threshold-based strategies for such an interactive communication problem, we study a styl-
ized model of a two-user network, where each user observes a noisy alphabet of interest
and through sequential communication between them try to generate an estimate of that
symbol. In our discussion we have considered the alphabet of interest to be a static random
variable and mention the difficulty of formulating such a problem for a dynamic (Markov)
symbol.

Lastly, we recognize the role of symmetry and monotonicity in the structural results
throughout this thesis and attempt to analyze the sufficiency conditions that make the
value function and the optimal strategies even and quasi-convex. In a fairly generalized
framework, we establish the easily verifiable conditions which leads to the optimality of
threshold-based strategies. For the compactness of the thesis, we have put together the
content of the last two topics in two separate chapters in a standalone fashion, where we
discuss the results along with the relevant literature overview to create the context.
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1.4 Organization of this thesis

This thesis is structured as follows:
Chapter 2 discusses the remote estimation problem with an ideal communication chan-

nel, i.e., a channel with no packet drop. Hence, a transmitted symbol always reaches the
estimator. We study the discounted and long-term average setups of an infinite horizon
optimization problem. We formulate the costly and constrained communication problems
and characterize the optimal communication strategies and optimal performances.

Chapter 3 introduces two different types of erasure communication channels in the
remote estimation problem. We establish a theoretical base for the structural results on
which we develop the characterization of the optimal performances.

Chapter 4 focuses on the numerical methods of solving a remote estimation problem
with packet drops. Using the theoretical results provided in the previous chapters, we
provide stochastic approximation algorithms to numerically solve the costly and constrained
remote estimation problems. In addition, we build a framework with variants of Stochastic
Gradient Descent algorithms, which creates the scope of solving other problems fitting
closely into the structure of the remote estimation problems, such as the inventory problem.

Chapter 5 is the first addendum of the thesis, which introduces the problem of in-
teractive communication, where two agents (alternatively, users) playing the roles of a
transmitter and an estimator sequentially communicate between them. In such a scenario,
we investigate the structures of the optimal strategies.

Chapter 6 is the second addendum, which provides the sufficient conditions for the
value function and the optimal strategies of the remote estimation problem to be even and
quasi-convex.

Chapter 7 concludes the work by summarizing the findings in the previous chapters,
discussing the interpretations obtained from the results and presenting some of the future
scopes of this research.

1.5 Claims of originality and publications

1.5.1 Claims of originality

The following original contributions are presented in this thesis:
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• Developing a unified framework for the remote estimation problem that takes into
account the finite horizon and both costly and constrained communication in infinite
horizon. We consider the source state-space to be discrete as well as continuous.

• Extending structural results for countable source with finite support [10] to infinite
support. Also, extension of the structural results to infinite horizon by arguing the
effective compactness of the state-space and the boundedness of the cost function
under threshold-based strategies.

• Extending the assumption of the Gaussian noise for the continuous state-dynamics
to any arbitrary noise process possessing symmetry and unimodality.

• Introducing in a unified framework the erasure channel with (Markovian) and with-
out (i.i.d.) memory. Complete characterization of the structural results and the
performance of the optimal strategies.

• Computing analytical expressions for optimal thresholds and optimal performances
for lossless and lossy (i.i.d.) channels. For the discrete state-space, we provide
closed-form expressions for the optimal performaces as well as provide a look-up
table which enables one to compute the optimal results on-line without explicitly
solving a dynamic program. For continuous state-space, the results can be found by
solving FIE.

• Analyzing the symmetry and monotonicity of the value function and optimal strate-
gies by properly defining a folding operator. In a fairly generic framework, we analyze
sufficient conditions for these to hold for the power allocation problem in RE (Chap-
ter 6).

• Integrating the Remote Estimation problem with the domain of learning. To our
knowledge, this is the first approach to integrate stochastic approximation based
methods into an application such as remote estimation. We provide the validation of
the optimality results by comparing the simulation-based results with those found by
the analytical methods. This lays the ground for extending the work to the higher
dimension, where the threshold-based strategies have relevance due to their simple
implementation, despite the possibility of them being suboptimal.
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• Establishing the analytical results with the examples of first-order scalar autoregressive
processes (birth-death process as a representative of discrete state-space and Gaussian
process as a representative of continuous state-space).

1.5.2 List of publications

Journal papers:

(J1) Chakravorty J. and Mahajan A., “Fundamental limits of remote estimation of autore-
gressive Markov processes under communication constraints,” IEEE Transactions on
Automatic Control, vol. 62, pp. 1109–1124, March 2017.

Submitted journal papers:

(S1) Chakravorty, J. and Mahajan, A., “Sufficient conditions for the value function and
optimal strategy to be even and quasi-convex,” arXiv: 1703.10746, submitted to IEEE
Transactions on Automatic Control, 2017.

Journal papers under preparation:

(P1) Chakravorty J. and Mahajan A., “Remote estimation with packet drops,” in prepa-
ration.

(P2) Chakravorty, J., Subramanian, J. and Mahajan, A., “Stochastic approximation based
methods to compute optimal thresholds for remote estimation with packet drops,” in
preparation.

Peer-reviewed conference papers:

(C1) Chakravorty J. and Mahajan A., “Structure of optimal strategies for remote estima-
tion over Gilbert-Elliott channel with feedback”, Proceedings of IEEE International
Symposium on Information Theory (ISIT), Aachen, Germany, Jun. 25-30, 2017.

(C2) Chakravorty, J., Subramanian, J. and Mahajan, A., “Stochastic approximation based
methods for computing the optimal thresholds in remote-state estimation with packet
drops,” Proceedings of the American Control Conference (ACC), Seattle, WA, May
26-26, 2017.
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(C3) Chakravorty J. and Mahajan A., “Remote-state estimation with packet drops”, Pro-
ceedings of the IFAC Workshop on Distributed Estimation and Control in Networked
Systems, Tokyo, Japan, Sep. 8-9, 2016. Recipient of Best Student Paper Award.
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Chapter 2

Remote estimation over an ideal channel

2.1 Introduction

In many applications such as networked control systems, sensor and surveillance networks,
and transportation networks, etc., data must be transmitted sequentially from one node to
another under a strict delay deadline. In many of such real-time communication systems,
the transmitter is a battery powered device that transmits over a wireless packet-switched
network; the cost of switching on the radio and transmitting a packet is significantly more
important than the size of the data packet. Therefore, the transmitter does not transmit
all the time; but when it does transmit, the transmitted packet is as big as needed to
communicate the current source realization. In this chapter, we characterize fundamental
trade-offs between the estimation error (or distortion) and the cost or average number of
transmissions in such systems.

In particular, we investigate a two-agent communication system consisting of a transmit-
ter which observes the state process of a source and transmits its observation to a remotely
placed estimator over a lossless communication channel, i.e., a transmitted packet always
reaches the estimator. Throughout this thesis, we use the terms tranmitter/sensor and
estimator/receiver interchangeably. We consider a stylized model, where a sensor observes
a first-order autoregressive Markov process. At each time instant, based on the current
state of the process and the history of its past decisions, the sensor determines whether
or not to transmit the current state. If the sensor does not transmit, the receiver must
estimate the state using the previously transmitted values. A per-step distortion function
measures the estimation error. We investigate two fundamental trade-offs in this setup: (i)
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when there is a cost associated with each communication, what is the minimum expected
estimation error plus communication cost; and (ii) when there is a constraint on the average
number of transmissions, what is the minimum estimation error. For both these cases, we
characterize the transmission and estimation strategies that achieve the optimal trade-off.

It is worth noting here that the aforementioned model fits into the realm of Team
theory [1–3,24], where multiple agents work toward optimizing a common objective. Team
problems being a decentralized control problem where there are multiple decision makers (in
our case there are two decision makers: a transmitter/sensor and and estimator/receiver),
the goal of finding a global optimum is essentially challenging. We therefore seek to analyze
the structure of the optimal strategies and characterize the optimal performance for a
stylized model as introduced in the last paragraph.

2.2 Original contribution

Following the research of the predecessors, an immediate question is how to identify the
optimal transmission and estimation strategies for a given communication cost. It is shown
in [9–11] that the optimal estimation strategy does not depend on the communication
cost while the optimal transmission strategy can be computed by solving an appropriate
dynamic program. However, the dynamic programs presented in [9–11] do not exploit the
threshold structure of the optimal strategy.

In this chapter, we provide an alternative approach to identify the optimal transmis-
sion strategies for the remote estimation problem with ideal communication channel (i.e.,
channel with no packet drop). We consider infinite horizon remote estimation problem and
show that there is no loss of optimality in restricting attention to transmission strategies
that use a time homogeneous threshold. To determine the optimal threshold, we first pro-
vide computable expressions for the performance of a generic threshold-based transmission
strategy and then use these expressions to identify the best threshold-based strategy. Thus,
we show that the structure of optimal strategies derived in [9–11] is also useful to compute
the optimal strategy.

We investigate remote estimation for two models of Markov processes—discrete state
autoregressive Markov processes (Model A) and continuous state autoregressive Markov
processes (Model B); both driven by symmetric and unimodal innovations process—under
two infinite horizon setups: the discounted setup with discount factor β ∈ (0, 1) and the
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long term average setup, which we denote by β = 1 for uniformity of notation. For both
models, we consider two fundamental trade-offs:

1. Costly communication: When each transmission costs λ units, what is the minimum
achievable cost of communication plus estimation error, which we denote by C∗β(λ)?

2. Constrained communication: When the average number of transmissions are con-
strained by α ∈ (0, 1), what is the minimum achievable estimation error, which we
denote by D∗β(α) and refer to as the distortion-transmission trade-off?

We completely characterize both trade-offs. In particular, we show that

• In Model A, C∗β(λ) is continuous, increasing, piecewise-linear, and concave in λ while
D∗β(α) is continuous, decreasing, piecewise-linear, and convex in α. We derive explicit
expressions (in terms of simple matrix products) for the corner points of both these
curves.

• In Model B, C∗β(λ) is continuous, increasing, and concave in λ while D∗β(α) is contin-
uous, decreasing, and convex in α. We derive an algorithmic procedure to compute
these curves by using solutions of Fredholm integral equations of the second kind.
When the innovations process is Gaussian, we characterize how these curves scale as
a function of the variance σ2.

We also explicitly identify transmission and estimation strategies that achieve any point
on these trade-off curves. For all cases, we show that: (i) there is no loss of optimality in
restricting attention to time-homogeneous strategies; (ii) the optimal estimation strategy
is Kalman-like; (iii) the optimal transmission strategy is a randomized threshold-based
strategy for Model A and is a deterministic threshold-based strategy for Model B.

In addition,

• In Model A, the optimal threshold as a function of λ or α can be computed using a
look-up table.

• In Model B, the optimal threshold as function of λ or α can be computed using the
solutions of Fredholm integral equations of the second kind.



18 Remote estimation over an ideal channel

TransmitterMarkov process Receiver
Xt Ut Yt X̂t

Fig. 2.1 Block diagram of a remote estimation system with ideal channel.

2.3 Model and problem formulation

2.3.1 Model

Consider the following two models of a discrete-time Markov process {Xt}∞t=0 with the
initial state X0 = 0 and for t ≥ 0,

Xt+1 = aXt +Wt, (2.1)

where {Wt}∞t=0 is an i.i.d. innovations process. We consider two specific models:

• Model A: a,Xt,Wt ∈ Z andWt is distributed according to a unimodal and symmet-
ric pmf (probability mass function) p, i.e., for all e ∈ Z≥0, pe = p−e and pe ≥ pe+1.
To avoid trivial cases, we assume p0 is strictly less than 1.

• Model B: a,Xt,Wt ∈ R andWt is distributed according to a unimodal, differentiable
and symmetric pdf (probability density function) φ, i.e., for all e ∈ R≥0, φ(e) = φ(−e)
and for any δ ∈ R>0, φ(e) ≥ φ(e+ δ).

Remark 1 We consider in this work that the parameter a is known to both the agents. If
not, the transmitter can estimate a using its observation and when it transmits, it transmits
[Xt, ât]

ᵀ, where ât denotes its current estimate. The receiver on receiving the vector [Xt, ât]
ᵀ

solves a filtering problem and generates its estimate of the state realization using ât as the
model parameter.

For uniformity of notation, define X to be equal to Z for Model A and equal to R for
Model B. X≥0 and X>0 are defined similarly.
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A sensor sequentially observes the process and at each time, chooses whether or not to
transmit the current state. This decision is denoted by Ut ∈ {0, 1}, where Ut = 0 denotes
no transmission and Ut = 1 denotes transmission. The decision to transmit is made using
a transmission strategy f = {ft}∞t=0, where

Ut = ft(X0:t, U0:t−1). (2.2)

We use the short-hand notation X0:t to denote the sequence (X0, . . . , Xt). Similar inter-
pretations hold for U0:t−1.

The transmitted symbol, which is denoted by Yt, is given by

Yt =

Xt, if Ut = 1;

E, if Ut = 0,

where Yt = E denotes no transmission.
The receiver sequentially observes {Yt}∞t=0 and generates an estimate {X̂t}∞t=0, X̂ ∈ X,

using an estimation strategy g = {gt}∞t=0, i.e.,

X̂t = gt(Y0:t). (2.3)

The fidelity of the estimation is measured by a per-step distortion d(Xt − X̂t). Also, it is
assumed that the pmf (for Model A. Alternatively, the pdf for Model B) of Wt is known to
both the sensor and the receiver.

For both models, we assume the following: for any e ∈ X,

• d(0) = 0 and for e 6= 0, d(e) > 0;

• d(·) is even, i.e., for all e, d(e) = d(−e);

• d(·) is increasing, i.e., for e1 > e2 > 0, e1, e2 ∈ X, d(e1) ≥ d(e2);

• For Model B, we assume that d(·) is differentiable.

We also characterize our results to the following special case of Model B:

• Gauss-Markov model: the density φ is zero-mean Gaussian with variance σ2 and
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the distortion is quadratic, i.e., for any e ∈ X,

φ(e) =
1√
2πσ

exp
(
− e2/(2σ2)

)
and d(e) = e2.

2.3.2 Performance measures

Given a transmission and estimation strategy (f, g) and a discount factor β ∈ (0, 1], we
define the expected distortion and the expected number of transmissions as follows. For
β ∈ (0, 1), the expected discounted distortion is given by

Dβ(f, g) := (1− β)E(f,g)
[ ∞∑
t=0

βtd(Xt − X̂t)
∣∣∣ X0 = 0

]
(2.4)

and for β = 1, the expected long-term average distortion is given by

D1(f, g) := lim sup
T→∞

1

T
E(f,g)

[ T−1∑
t=0

d(Xt − X̂t)
∣∣∣ X0 = 0

]
. (2.5)

Similarly, for β ∈ (0, 1), the expected discounted number of transmissions is given by

Nβ(f, g) := (1− β)E(f,g)
[ ∞∑
t=0

βtUt

∣∣∣ X0 = 0
]

(2.6)

and for β = 1, the expected long-term average number of transmissions is given by

N1(f, g) := lim sup
T→∞

1

T
E(f,g)

[ T−1∑
t=0

Ut

∣∣∣ X0 = 0
]
. (2.7)

Remark 2 We use a normalizing factor of (1 − β) to have a unified scaling for both
discounted and long-term average setups. In particular, we will show that for any strategy
(f, g)

C1(f, g;λ) = lim
β↑1

Cβ(f, g;λ), and D1(f, g) = lim
β↑1

Dβ(f, g),

where λ is the per-step transmission cost and Cβ(f, g;λ) = Dβ(f, g) + λNβ(f, g). Similar
notation is used in [42].
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2.3.3 Problem formulations

Let us call the tuple (f, g) the communication strategy. We are interested in the following
two optimization problems.

Problem 2.3.1 (Costly communication) In the model of Section 2.3.1, given a dis-
count factor β ∈ (0, 1] and a communication cost λ ∈ R>0, find a communication strategy
(f ∗, g∗) such that

C∗β(λ) := Cβ(f ∗, g∗;λ) = inf
(f,g)

Cβ(f, g;λ), (2.8)

where
Cβ(f, g;λ) := Dβ(f, g) + λNβ(f, g)

is the total communication cost and the infimum in (2.8) is taken over all history-dependent
strategies.

Problem 2.3.2 (Constrained communication) In the model of Section 2.3.1, given a
discount factor β ∈ (0, 1] and a constraint α ∈ (0, 1), find a communication strategy (f ∗, g∗)

such that
D∗β(α) := Dβ(f ∗, g∗) = inf

(f,g):Nβ(f,g)≤α
Dβ(f, g), (2.9)

where the infimum is taken over all history-dependent strategies.

Remark 3 It can be shown for |a| < 1, limα→0D
∗
1(α) <∞ and for |a| ≥ 1 that limα→0D

∗
1(α) =

∞1, and in both cases limα→1D
∗
β(α) = 0.

The function D∗β(α), β ∈ (0, 1], represents the minimum expected distortion that can
be achieved when the expected number of transmissions are less than or equal to α. It is
analogous to the distortion-rate function in Information Theory; for that reason, we call it
the distortion-transmission function.

1For |a| < 1, a symmetric Markov chain as given by (2.1) has a stationary distribution whereas for
|a| ≥ 1, (2.1) does not. Therefore, in the limit of no transmission, the expected long-term average distortion
is finite for |a| < 1 and diverges to ∞ for |a| ≥ 1.
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2.4 The main results

2.4.1 Structure of optimal strategies

To completely characterize the functions C∗β(λ) and D∗β(α), we first establish the structure
of optimal transmitter and receiver.

Theorem 2.4.1 (Structural results) Consider Problem 2.3.1 for β ∈ (0, 1]. Then, for
both Models A and B, we have the following.

1. Structure of optimal estimation strategy: The optimal estimation strategy X̂0 = 0

and for t > 0 is as follows:

X̂t =

Yt, if Yt 6= E

aX̂t−1, if Yt = E,

or equivalently,

X̂t =

Xt, if Ut = 1

aX̂t−1, if Ut 6= 1.

We denote this strategy by g∗.

2. Structure of optimal transmission strategy: Define Et := Xt − aX̂t−1, which we
call the error process. Then there exists a time-invariant threshold k such that the
transmission strategy

Ut = f (k)(Et) :=

1, if |Et| ≥ k

0, if |Et| < k
(2.10)

is optimal.

The proof of the theorem is given in Section 2.6.
Similar structural results were established for the finite horizon setup in [9–11], which

we use to establish Theorem 2.4.1. See Section 2.6 for details. The transmission strategy
of the form (2.10) are also called event-driven transmission or delta sampling.

Remark 4 Each transmission resets the state of the error process to w ∈ X with prob-
ability pw in Model A and with probability density φ(w) in Model B. In between two
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consecutive transmissions, the error process evolves in a Markovian manner. Thus {Et}∞t=0

is a regenerative process.

2.4.2 Performance of generic threshold-based strategies

Let F denote the class of all time-homogeneous threshold-based strategies of the form (2.10).
For β ∈ (0, 1] and e ∈ X, define the following for a system that starts in state e and follows
strategy f (k):

• L(k)
β (e): the expected distortion until the first transmission;

• M (k)
β (e): the expected time until the first transmission;

• D(k)
β (e): the expected distortion;

• N (k)
β (e): the expected number of transmissions;

• C(k)
β (e;λ): the expected total cost, i.e.,

C
(k)
β (e;λ) = D

(k)
β (e) + λN

(k)
β (e), λ ≥ 0.

Note thatD(k)
β (0) = Dβ(f (k), g∗), N (k)

β (0) = Nβ(f (k), g∗) and C(k)
β (0;λ) = Cβ(f (k), g∗;λ).

Define S(k) as follows:

S(k) :=

{−(k − 1), · · · , k − 1}, for Model A;

(−k, k), for Model B.

Under strategy f (k), the transmitter does not transmit if Et ∈ S(k). For that reason, we
call S(k) the silent set. Define linear operator B(k) as follows:

• Model A: For any v(k) : S(k) → R, define operator B(k) as

[B(k)v](e) :=
∑
n∈S(k)

pn−aev(n), ∀e ∈ S(k).

• Model B: For any v(k) : S(k) → R, define operator B(k) as

[B(k)v](e) :=

∫
S(k)

φ(n− ae)v(n)dn, ∀e ∈ S(k).



24 Remote estimation over an ideal channel

Recall from Remark 4 that the state Et evolves in a Markovian manner until the first
transmission. We may equivalently consider the Markov process until it is absorbed in
(−∞,−k] ∪ [k,∞). Thus, from balance equation for Markov processes, we have for all
e ∈ S(k),

L
(k)
β (e) = d(e) + β[B(k)L

(k)
β ](e), (2.11)

M
(k)
β (e) = 1 + β[B(k)M

(k)
β ](e). (2.12)

Lemma 2.4.1 For any β ∈ (0, 1], equations (2.11) and (2.12) have unique and bounded
solutions L(k)

β and M (k)
β that are

(a) strictly increasing in k,

(b) continuous and differentiable in k for Model B,

(c) lim
β↑1

L
(k)
β (e) = L

(k)
1 (e), lim

β↑1
M

(k)
β (e) = M

(k)
1 (e), for all e.

The proof of the lemma is given in Appendix A.2.

Theorem 2.4.2 (Renewal relationships) For any β ∈ (0, 1], the performance of strat-
egy f (k) in both Models A and B is given as follows:

1. Dβ(f (0), g∗) = 0, Nβ(f (0), g∗) = 1, and Cβ(f (0), g∗;λ) = λ.

2. For k ∈ X>0,

Dβ(f (k), g∗) =
L

(k)
β (0)

M
(k)
β (0)

,

Nβ(f (k), g∗) =
1

M
(k)
β (0)

− (1− β),

and

Cβ(f (k), g∗;λ) =
L

(k)
β (0) + λ

M
(k)
β (0)

− λ(1− β).

The proof of the theorem is given in Section 2.7.
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Remark 5 There is a −1/(1 − β) term in the expression of N (k)
β (0) because for k > 0,

U0 = 0. Had we defined U0 = 1, then we would have obtained the usual renewal relationship
of N (k)

β (0) = 1/M
(k)
β (0).

Thus, to compute Dβ(f (k), g∗) and Nβ(f (k), g∗), one needs to compute only L(k)
β (0) and

M
(k)
β (0). Computation of the latter expressions is given in the next section.

Proposition 2.4.1 For both Models A and B,

1. C(k)
β (0;λ) is submodular in (k, λ), i.e., for l > k, C(l)

β (0;λ)− C(k)
β (0;λ) is decreasing

in λ.

2. Let k∗β(λ) = arg infk≥0C
(k)
β (0;λ) be the optimal k for a fixed λ. Then k∗β(λ) is increas-

ing in λ.

The proof of the proposition is in Appendix A.3.

2.4.3 Computation of L(k)
β and M

(k)
β

Model A

For Model A, the values of L(k)
β and M (k)

β can be computed by observing that the operator
B(k) is equivalent to a matrix multiplication. In particular, define the matrix P (k) as

P
(k)
ij := pi−j, ∀i, j ∈ S(k).

Then,
[B(k)v](e) =

∑
n∈S(k)

pn−aev(n) =
∑
n∈S(k)

P (k)
n,aev(n) = [P (k)v]ae. (2.13)

With a slight abuse of notation, we are using v both as a function and a vector. Define
the matrix Q(k) and the vector d(k) as follows:

Q
(k)
β := [I2k−1 − βP (k)]−1, d(k) := [d(−k + 1), . . . , d(k − 1)]ᵀ.

Then, (2.11), (2.12) and (2.13) imply the following:
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Proposition 2.4.2 In Model A, for any β ∈ (0, 1],

L
(k)
β = [I2k−1 − βP (k)]−1d(k) (2.14)

M
(k)
β = [I2k−1 − βP (k)]−112k−1. (2.15)

See Section 2.4.6 for an example of these calculations.

Model B

For Model B, for any β ∈ (0, 1], (2.11) and (2.12) are Fredholm integral equations of second
kind [43]. The solution can be computed by identifying the inverse operator

Q(k)
β = [I − βB(k)]−1,

which is given by

[Q(k)
β v](e) =

∫ k

−k
R

(k)
β (e, w; a)v(w)dw, (2.16)

where for any given a, R(k)
β (·, ·; a) is the resolvent of φ and can be computed using the

Liouville-Neumann series. See [43] for details. Since φ is smooth, (2.11) and (2.12) can
also be solved by discretizing the integral equation using quadrature methods. A Matlab
implementation of this approach is available in [44].

2.4.4 Main results for Model A

Results for costly communication

Theorem 2.4.3 For β ∈ (0, 1], let K denote {k ∈ Z≥0 : D
(k+1)
β (0) > D

(k)
β (0)}. For

kn ∈ K, define:

λ
(kn)
β :=

D
(kn+1)
β (0)−D(kn)

β (0)

N
(kn)
β (0)−N (kn+1)

β (0)
. (2.17)

Then, we have the following.

1. For any kn ∈ K and any λ ∈ (λ
(kn−1)
β , λ

(kn)
β ], the strategy f (kn) is optimal for Prob-

lem 2.3.1 with communication cost λ.
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Fig. 2.2 In Model A, (a) the optimal costly communication cost C∗β(λ);
(b) the distortion-transmission function D∗β(α).

2. The optimal performance C∗β(λ) is continuous, concave, increasing and piecewise lin-
ear in λ. The corner points of C∗β(λ) are given by {(λ(kn)

β , D
(kn)
β (0)+λ

(kn)
β N

(kn)
β (0))}kn∈K

(see Fig 2.2(a)).

The proof of the theorem is given in Section 2.8.

Results for constrained communication

To describe the solution of Problem 2.3.2, we first define Bernoulli randomized strategy
and Bernoulli randomized simple strategy [45].

Definition 2.4.1 Suppose we are given two (non-randomized) time-homogeneous strategies
f1 and f2 and a randomization parameter θ ∈ (0, 1). The Bernoulli randomized strategy
(f1, f2, θ) is a strategy that randomizes between f1 and f2 at each stage; choosing f1 with
probability θ and f2 with probability (1−θ). Such a strategy is called a Bernoulli randomized
simple strategy if f1 and f2 differ on exactly one state, i.e., there exists a state e0 such that

f1(e) = f2(e), ∀e 6= e0.

Theorem 2.4.4 For any β ∈ (0, 1] and α ∈ (0, 1), define

k∗β(α) = sup{k ∈ Z≥0 : Nβ(f (k), g∗) ≥ α}

= sup
{
k ∈ Z≥0 : M

(k)
β ≤

1

1 + α− β
}

(2.18)



28 Remote estimation over an ideal channel

and

θ∗β(α) =
α−Nβ(f (k∗β(α)+1), g∗)

Nβ(f (k∗β(α)), g∗)−Nβ(f (k∗β(α)+1), g∗)

=
M

(k∗+1)
β − 1

1+α−β

M
(k∗+1)
β −M (k∗)

β

. (2.19)

For ease of notation, we use k∗ = k∗β(α) and θ∗ = θ∗β(α).
Let f ∗ be the Bernoulli randomized simple strategy (f (k∗), f (k∗+1), θ∗), i.e.,

f ∗(e) =



0, if |e| < k∗;

0, w.p. 1− θ∗, if |e| = k∗;

1, w.p. θ∗, if |e| = k∗;

1, if |e| > k∗.

(2.20)

Then

1. (f ∗, g∗) is optimal for the constrained Problem 2.3.2 with constraint α.

2. Let α(k) = Nβ(f (k), g∗). Then, for α ∈ (α(k+1), α(k)), k∗ = k and θ∗ = (α −
α(k+1))/(α(k) − α(k+1)), and the distortion-transmission function is given by

D∗β(α) = θ∗D
(k)
β + (1− θ∗)D(k+1)

β . (2.21)

Moreover, the distortion-transmission function is is continuous, convex, decreasing
and piecewise linear in α. Thus, the corner points of D∗β(α) are given by {(N (k)

β (0), D
(k)
β (0))}∞k=1

(see Fig 2.2(b)).

The proof of the theorem is given in Section 2.8.

Corollary 2.4.1 In Model A, for any β ∈ (0, 1],

Dβ(f (1), g∗) = 0, and Nβ(f (1), g∗) = β(1− p0) := αc.
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Algorithm 1: Computation of C∗β(λ) for Model B
input : λ ∈ R>0, β ∈ (0, 1], ε ∈ R>0

output: C(k◦)
β (λ), where |k◦ − k∗β(λ)| < ε

1 Let λ∗β(k) denote the left-hand side of (2.22), which is computed by finite-difference
method

2 Pick k and k̄ such that λ∗β(k) < λ < λ∗β(k̄)

3 k◦ ← (k + k̄)/2
4 while |λ∗β(k◦)− λ| > ε do
5 if λ∗(k◦) < λ then
6 k ← k◦

7 else
8 k̄ ← k◦

9 k◦ ← (k + k̄)/2

10 return D
(k◦)
β (0) + λN

(k◦)
β (0)

2.4.5 Main results for Model B

Results for costly communication

Let ∂kD
(k)
β , ∂kN

(k)
β and ∂kC

(k)
β denote the derivative of D(k)

β , N (k)
β and C(k)

β with respect to
k (in Lemma 2.9.1 we show that D(k)

β , N (k)
β and C(k)

β are differentiable in k).

Theorem 2.4.5 For β ∈ (0, 1], we have the following.

1. If the pair (λ, k) satisfies the following

λ = −
∂kD

(k)
β (0)

∂kN
(k)
β (0)

, (2.22)

then, the strategy (f (k), g∗) is optimal for Problem 2.3.1 with communication cost λ.
Furthermore, for any k > 0, there exists a λ ≥ 0 that satisfies (3.73).

2. The optimal performance C∗β(λ) is continuous, concave and increasing function of λ.

The proof of the theorem is given in Section 2.9. Algorithm 1 shows how to compute C∗β(λ).
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Algorithm 2: Computation of D∗β(α) for Model B
input : α ∈ (0, 1), β ∈ (0, 1], ε ∈ R>0

output: D(k◦)
β (α), where |N (k◦)

β (0)− α| < ε

1 Pick k and k̄ such that N (k)
β (0) < α < N

(k̄)
β (0)

2 k◦ ← (k + k̄)/2

3 while |N (k◦)
β (0)− α| > ε do

4 if N (k◦)
β (0) < α then

5 k ← k◦

6 else
7 k̄ ← k◦

8 k◦ ← (k + k̄)/2

9 return D
(k◦)
β (α)

Results for constrained communication

Theorem 2.4.6 For any β ∈ (0, 1] and α ∈ (0, 1), let k∗β(α) ∈ R≥0 be such that

N
(k∗β(α))

β (0) = α. (2.23)

Such a k∗β(α) always exists and we have the following:

1. The strategy (f (k∗β(α)), g∗) is optimal for Problem 2.3.2 with constraint α.

2. The distortion-transmission function D∗β(α) is continuous, convex and decreasing in
α and is given by

D∗β(α) = D
(k∗β(α))

β (0). (2.24)

The proof of the theorem is given in Section 2.9. Algorithm 2 shows how to compute
D∗β(α).

Special case of Model B–Gauss-Markov model

In general, the optimal thresholds, and the functions C∗β(λ) and D∗β(α) depend on the noise
distribution φ(·). For the Gauss-Markov model, the dependence on the variance σ2 of the
noise may be quantified exactly.
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Fig. 2.3 Gauss-Markov model (σ2 = 1 and a = 1): (a) optimal costly com-
munication cost C∗1 (α); (b) distortion-transmission function D∗1(α).

For ease of notation, we drop the dependence on β from the notation, and instead, show
the dependence on σ. Thus, C∗σ(λ) denotes the optimal value for the costly communication
case when the noise variance is σ2. Similar notation holds for other terms.

Theorem 2.4.7 For the Gauss-Markov model for Problem 2.3.1, k∗σ(λ) = k∗1(λ/a2σ2) and
C∗σ(λ) = σ2C∗1(λ/σ2). For Problem 2.3.2, k∗σ(α) = σk∗1(α) and D∗σ(α) = σ2D∗1(α).

The proof of the theorem is given in Section 2.9.
An implication of the above theorem is that we only need to numerically compute C∗1(λ)

and D∗1(α), which are shown in Fig. 2.3. The optimal total communication cost and the
distortion-transmission function for any other value σ2 can be obtained by simply scaling
C∗1(λ) and D∗1(α) respectively.

2.4.6 An example for Model A: symmetric birth-death Markov chain

An example of a Markov process and a distortion function that satisfy Model A is the
following:

Example 2.4.1 Consider a Markov chain of the form (2.1) where the pmf (probability
mass function) of Wt is given by

pn =


p, if |n| = 1

1− 2p, if n = 0

0, otherwise,



32 Remote estimation over an ideal channel

Table 2.1 Values of D(k)
β , N (k)

β and λ(k)
β for different values of k and β for

the Markov chain of Example 2.4.1 with p = 0.3. Note that D(0)
β (0) = D

(1)
β (0);

therefore K defined in Theorem 2.4.3 equals Z>0.
(a) For β = 0.9

k D
(k)
β (0) N

(k)
β (0) λ

(k)
β

0 0 1 –
1 0 0.5400 1.0989
2 0.4576 0.1236 4.1021
3 0.7695 0.0475 9.2839
4 1.0066 0.0220 16.2509
5 1.1844 0.0111 24.4478
6 1.3130 0.0058 33.4121
7 1.4029 0.0031 42.8289
8 1.4638 0.0017 52.5042
9 1.5040 0.0009 62.3245
10 1.5298 0.0005 72.2255

(b) For β = 0.95

k D
(k)
β (0) N

(k)
β (0) λ

(k)
β

0 0 1 –
1 0 0.5700 1.1050
2 0.4790 0.1365 4.3657
3 0.8282 0.0565 10.6058
4 1.1218 0.0288 19.9550
5 1.3715 0.0163 32.0869
6 1.5811 0.0098 46.4727
7 1.7536 0.0061 62.5651
8 1.8927 0.0039 79.8921
9 2.0028 0.0025 98.0854
10 2.0884 0.0016 116.8739

(c) For β = 1.0

k D
(k)
β (0) N

(k)
β (0) λ

(k)
β

0 0 1 –
1 0 0.6000 1.1111
2 0.5000 0.1500 4.6667
3 0.8889 0.0667 12.3810
4 1.2500 0.0375 25.9259
5 1.6000 0.0240 46.9697
6 1.9444 0.0167 77.1795
7 2.2857 0.0122 118.2222
8 2.6250 0.0094 171.7647
9 2.9630 0.0074 239.4737
10 3.0000 0.0060 323.0159

where p ∈ (0, 1
3
). The distortion function is taken as d(e) = |e|.

This Markov process corresponds to a symmetric, birth-death Markov chain defined
over Z as shown in Fig. 2.4, with the transition probability matrix is given by

Pij =


p, if |i− j| = 1;

1− 2p, if i = j;

0, otherwise.

0 1 2 · · ·−1−2· · ·
p

1− 2p

p

1− 2p

p

1− 2p

p

1− 2p

p

1− 2p

p

pppppp

Fig. 2.4 A birth-death Markov chain
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Fig. 2.5 Plots of D∗β(α) vs α for different β for the birth-death Markov chain
of Example 2.4.1 with p = 0.3.

Performance of a generic threshold-based strategy

Lemma 2.4.2 Define for β ∈ (0, 1]

Kβ = −2− (1− β)

βp
and mβ = cosh−1(−Kβ/2).

Then,

1. For β ∈ (0, 1),

D
(k)
β (0) =

sinh(kmβ)− k sinh(mβ)

2 sinh2(kmβ/2) sinh(mβ)
;

N
(k)
β (0) =

2βp sinh2(mβ/2) cosh(kmβ)

sinh2(kmβ/2)
− (1− β).

2. For β = 1,

D
(k)
1 =

k2 − 1

3k
; N

(k)
1 =

2p

k2
;

and
λ

(k)
1 =

k(k + 1)(k2 + k + 1)

6p(2k + 1)
.

The proof is given in Section 2.10.

Optimal strategy for costly communication

Using the above expressions for D(k)
β (0) and N (k)

β (0), we can identify K and for each kn ∈ K,
compute λ(kn)

β according to (3.68). These values are tabulated in Table 2.1 for differ-
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Fig. 2.6 Plot of C∗β(λ) vs λ for the Markov chain of Example 2.4.1 with
p = 0.3.

ent values of β (all for p = 0.3). Using Table 2.1, we can compute the corner points
(λ

(kn)
β , D

(kn)
β (0)+λ

(kn)
β N

(kn)
β (0)) of C∗β(λ). Joining these points by straight lines gives C∗β(λ),

as shown in Fig. 2.6. The optimal strategy for a given λ can be computed from Table 2.1.
For example, for λ = 20, β = 0.9, we can find from Table 2.1a that λ ∈ (λ

(4)
β , λ

(5)
β ].

Hence, k∗β = 5 (i.e., the strategy f (5) is optimal) and the optimal total communication cost
is

C∗0.9(20) = D
(5)
0.9(0) + 20N

(5)
0.9 (0) = 1.1844 + 20× 0.0111 = 1.4064.

Optimal strategy for constrained communication

Using the values in Table 2.1, we can also compute the corner points (N
(k)
β (0), D

(k)
β (0))

of D∗β(α). Joining these points by straight lines gives D∗β(α) (see Fig. 2.5). The optimal
strategy for a given α can be computed from Table 2.1. For example, at α = 0.1 and
β = 0.9, k∗β(α) is the largest value of k such that N (k)

β (0) ≥ α. Thus, from Table 2.1a, we
get that k∗ = 2. Then, by (3.74),

θ∗ =
α−N (3)

β

N
(2)
β −N

(3)
β

= 0.6899.
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Let f ∗ = (f (2), f (3), θ∗). Then the Bernoulli randomized simple strategy (f ∗, g∗) is optimal
for Problem 2.3.2 for β ∈ (0, 1). Furthermore, by (3.72), D∗β(α) = 0.5543.

2.5 Salient features and discussion

2.5.1 Comparison with periodic and randomized strategies

In our model, we assume that the transmission decision depends on the state of the Markov
process. In some of the remote estimation literature, it is assumed that the transmission
schedule does not depend on the state of the Markov process. Two such commonly used
strategies are:

1. Periodic transmission strategy with period T :

Ut = fp(t mod T ),

where
∑T−1

t=0 fp(t) = 1/α.

2. Random transmission strategy:

Ut =

1, w.p. α

0, w.p. 1− α.

Below, we compare the performance of the threshold-based strategy with these two strate-
gies for the long-term average setup for Problem 2.3.2 for Model B with a = 1.

Performance of the periodic strategy

In general, the performance of a periodic transmission strategy depends on the choice of
transmission function fp. For ease of calculation we consider the values of (α, T ) for which
fp is unique.

1. α = 1/T , T ∈ Z>0, i.e., the transmitter remains silent for (T − 1) steps and then
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transmits once. The expected distortion in this case is

Dper(α) =
1

T
E
[ T−1∑
t=0

E2
t

]
(a)
=

1

T
E
[ T−1∑
t=0

tσ2
]

=
1

T

(T − 1)T

2
σ2 =

σ2

2

( 1

α
− 1
)
,

where (a) uses Et = W0 +W1 +W2 + · · ·+Wt−1.

2. α = (T − 1)/T , T ∈ Z>0, i.e., the transmitter remains silent for 1 step and then
transmits for (T − 1) steps. The expected distortion in this case is

Dper(α) =
1

T
E[E2

1 ] =
σ2

T
= σ2(1− α).

Performance generic stationary transmission strategy

Next, we derive an expression of Dβ(f, g∗) for arbitrary stationary transmission strategy f
(that does not use the value of the state Et to determine when to transmit; so the receiver
is the same as in Theorem 2.4.1) for the long-term average setup for Model B when a = 1.

Proposition 2.5.1 For β = 1 and a = 1 in Model B, let f be an arbitrary stationary
transmission strategy. Let τ denote the stopping time of the first transmission under f .
Then

D1(f, g∗) =
σ2

2

[E(τ 2)

E(τ)
− 1
]
.

Proof For any t < τ , Et = W 2
0 + · · · + W 2

t−1. Therefore, E[E2
t ] = tσ2 and define L̂(t) =∑t−1

s=1E[E2
s ] = 1

2
t(t − 1)σ2. Now, L1(0) = E[L̂(τ)] = (σ2/2)[E(τ 2) − E(τ)] and M1(0) =

E(τ). By using the same argument as in the proof of Theorem 2.4.2, we get D1(f, g∗) =

L1(0)/M1(0), which implies the result.

Performance of randomized transmission strategy

For the randomized strategy defined above, τ is a Geom1(α) random variable. Therefore,
E(τ 2) = 2/α2 − 1/α and E(τ) = 1/α. Hence, following Proposition 2.5.1, we have

Drand(α) = σ2
[ 1

α
− 1
]
.
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Fig. 2.7 shows that threshold-based strategy performs considerably well compared to
the periodic transmission strategy and the randomized transmission strategy.
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Fig. 2.7 Comparison of the performances of the threshold-based strategy
(denoted by Dopt) with periodic and randomized transmission strategies (de-
noted by Dper and Drand, respectively) for a Gauss-Markov process with a = 1
and σ2 = 1.

2.5.2 Discussion on deterministic implementation

The optimal strategy shown in Theorem 2.4.4 chooses a randomized action in states
{−k∗, k∗}. It is also possible to identify deterministic (non-randomized) but time-varying
strategies that achieve the same performance. We describe two such strategies for the
long-term average setup.

Steering strategies

Let a0
t (respectively, a1

t ) denote the number of times the action ut = 0 (respectively, the
action ut = 1) has been chosen in states {−k∗, k∗} in the past, i.e.

ait =
t−1∑
s=0

1{|Es| = k∗, us = i}, i ∈ {0, 1}.
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Thus, the empirical frequency of choosing action ut = i, i ∈ {0, 1}, in states {−k∗, k∗}
is ait/(a0

t + a1
t ). A steering strategy compares these empirical frequencies with the desired

randomization probabilities θ0 = 1 − θ∗ and θ1 = θ∗ and chooses an action that steers
the empirical frequency closer to the desired randomization probability. More formally, at
states {−k∗, k∗}, the steering transmission strategy chooses the action

arg min
i

{
θi − ait + 1

a0
t + a1

t + 1

}
in states {−k∗, k∗} and chooses deterministic actions according to f ∗ (given in (3.71)) in
states except {−k∗, k∗}. Note that the above strategy is deterministic (non-randomized)
but depends on the history of visits to states {−k∗, k∗}. Such strategies were proposed
in [46], where it was shown that the steering strategy described above achieves the same
performance as the randomized strategy f ∗ and hence is optimal for Problem 2.3.2 for
β = 1. Variations of such steering strategies have been proposed in [47, 48], where the
adaptation was done by comparing the sample path average cost with the expected value
(rather than by comparing empirical frequencies).

Time-sharing strategies

Define a cycle to be the period of time between consecutive visits of process {Et}∞t=0 to state
zero. A time-sharing strategy is defined by a series {(am, bm)}∞m=0 and uses strategy f (k∗)

for the first a0 cycles, uses strategy f (k∗+1) for the next b0 cycles, and continues to alternate
between using strategy f (k∗) for am cycles and strategy f (k∗+1) for bm cycles. In particular,
if (am, bm) = (a, b) for all m, then the time-sharing strategy is a periodic strategy that uses
f (k∗) a cycles and f (k∗+1) for b cycles.

The performance of such time-sharing strategies was evaluated in [49], where it was
shown that if the cycle-lengths of the time-sharing strategy are chosen such that,

lim
M→∞

∑M
m=0 am∑M

m=0(am + bm)
=

θ∗N
(k∗)
1

θ∗N
(k∗)
1 + (1− θ∗)N (k∗+1)

1

=
θ∗N

(k∗)
1

α
,

then the time-sharing strategy {(am, bm)}∞m=0 achieves the same performance as the ran-
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domized strategy f ∗ and hence, is optimal for Problem 2.3.2 for β = 1.

2.6 Proof of the structural result: Theorem 2.4.1

2.6.1 Finite horizon setup

A finite horizon version of Problem 2.3.1 has been investigated in [10] (for Model A) and
in [9, 11] (for Model B), where the structure of the optimal transmission and estimation
strategy was established.

Theorem 2.6.1 [9–11] For both Models A and B, for a finite horizon version of Prob-
lem 2.3.1, we have the following.

1. Structure of optimal estimation strategy: the estimation strategy defined in Theo-
rem 2.4.1 is optimal.

2. Structure of optimal transmission strategy: define Et as in Theorem 2.4.1. Then
there exist thresholds {kt}Tt=1 such that the transmission strategy

Ut := ft(Et) =

1, if |Et| ≥ kt;

0, if |Et| < kt
(2.25)

is optimal.

The above structural results were obtained in [10, Theorems 2 and 3] for Model A and
in [9, Theorem 1] and [11, Lemmas 1, 3 and 4] of Model B.

Remark 6 The results in [10] were derived under the assumption that {Wt} has finite
support. These results can be generalized for {Wt} having countable support using ideas
from [50]. For that reason, we state Theorem 2.6.1 without any restriction on the support
of {Wt}. See Appendix A.1 for the generalization of [10, Theorems 2 and 3] to {Wt} with
countable support.

2.6.2 Infinite horizon setup

In a general real-time communication system, the optimal estimation strategy depends on
the choice of the transmission strategy and vice-versa. Theorem 2.6.1 shows that when
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the noise process and the distortion function satisfy appropriate symmetry assumptions,
the optimal estimation strategy can be specified in closed form. Consequently, we can fix
the estimation strategy to be of the above form and consider the optimization problem
of identifying the best transmission strategy. This optimization problem has a single de-
cision maker—the transmitter—and we use techniques from centralized stochastic control
to solve it. Since the optimal estimation strategy is time-homogeneous, one expects the
optimal transmission strategy (i.e., the choice of the optimal thresholds {kt}∞t=0) to be time-
homogeneous as well. The technical difficulty in establishing such a result is that the state
space is not compact and the distortion function may be unbounded.

To prove Theorem 2.4.1, we proceed as follows:

1. We show that the result of the theorem is true for β ∈ (0, 1) and the optimal strategy
is given by an appropriate dynamic program.

2. We show that for the discounted setup, the value function of the dynamic program
is even and increasing on X.

3. For β = 1, we use the vanishing discount approach to show that the optimal strategy
for the long-term average cost setup may be determined as a limit to the optimal
strategy for the discounted cost setup is the discount factor β ↑ 1.

The discounted setup

Lemma 2.6.1 In Model A. an optimal transmission strategy is given by the unique and
bounded solution of the following dynamic program: for all e ∈ Z,

Vβ(e;λ) = min
[
(1− β)λ+ β

∑
w∈Z

pwVβ(w;λ),

(1− β)d(e) + β
∑
w∈Z

pwVβ(ae+ w;λ)
]
. (2.26)

Proof When d(·) is bounded, the per-step cost c(e, u) := (1−β)[λu+d(e)(1−u)], u ∈ {0, 1},
for a given λ is also bounded and hence according to [51, Proposition 4.7.1, Theorem 4.6.3],
there exists the unique and bounded solution Vβ(e;λ) of the dynamic program (2.26).

When d(·) is unbounded, then for any communication cost λ, we first define e0 ∈ Z≥0 <
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∞ as:
e0 := min

{
e : d(e) ≥ λ

1− β
}
.

Now, for any state e, |e| > e0, the per-step cost (1−β)d(e) of not transmitting is greater
then the cost of transmitting at each step in the future, which is given by (1−β)

∑∞
t=0 β

tλ =

λ. Thus, the optimal action is to transmit, i.e., f ∗(e) = 1. Hence, the dynamic program
can be written as

Vβ(e;λ) = min{V 0
β (e;λ), V 1

β (e;λ)},

where

V 0
β (e;λ) = (1− β)d(e) + β

∑
w∈Z

pwVβ(ae+ w;λ),

V 1
β (e;λ) = (1− β)λ+ β

∑
w∈Z

pwVβ(w;λ).

Let E∗ := {e : |e| ≥ e0}. Then, for all e ∈ E∗, Vβ(e;λ) is constant. Thus, (2.26) is
equivalent to a finite-state Markov decision process with state space {−e0+1, · · · , e0−1}∪e∗
(where e∗ is a generic state for all states in the set E∗). Since the state space is now finite,
the dynamic program (2.26) has a unique and bounded time-homogeneous solution by the
argument given for bounded d(·).

Lemma 2.6.2 In Model B, an optimal transmission strategy is given by the unique and
bounded solution of the following dynamic program: for all e ∈ R,

Vβ(e;λ) = min
[
(1− β)λ+ β

∫
R

φ(w)Vβ(w;λ)dw,

(1− β)d(e) + β

∫
R

φ(w)Vβ(ae+ w;λ)dw
]
. (2.27)

Proof When d(·) is bounded, the per-step cost c(e, u), as defined in part (a), for a given
λ is also bounded. Let K = (1 − β) supe∈R{d(e)}. Then, the strategy ‘always transmit’
satisfies [52, Assumption 4.2.2] with Vβ(e;λ) ≤ K/(1−β). Also, λ, d(·) and φ(·) satisfy [52,
Assumption 4.2.1]. Hence, the above dynamic program has a unique and bounded solution
due to [52, Theorem 4.2.3].

When d(·) is unbounded, define e0 and e∗ as in the proof of Lemma 2.6.1. By an
argument similar to that in the proof of Lemma 2.6.1, we can restrict the state space
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of (2.27) to [−e0, e0] ∪ e∗. Hence, the state space is compact and on this state space d(·)
is bounded. Thus, the dynamic program (2.27) has a unique and bounded solution by the
argument given for bounded d(·).

Proof (Proof of Theorem 2.4.1 for β ∈ (0, 1)) The structure of the optimal strate-
gies follows from Theorem 2.6.1. The optimal thresholds are time invariant because the
corresponding dynamic programs (2.26) and (2.27) have a unique fixed point.

Properties of the value function

Proposition 2.6.1 For any a ∈ X>0, consider the two Markov processes {X(+)
t }∞t=0 and

{X(−)
t }∞t=0 such that X(+)

0 = X
(−)
0 = 0 and

X
(+)
t+1 = aX

(+)
t +Wt and X

(−)
t+1 = −aX(−)

t +Wt.

Let V (+)
β and V (−)

β be the value functions corresponding to {X(+)
t }∞t=0 and {X(−)

t }∞t=0. Then

V
(+)
β (e) = V

(−)
β (e), ∀e.

Therefore, if k is an optimal threshold for {X(+)
t }∞t=0 then k is also optimal for {X(−)

t }∞t=0.

See Appendix A.4 for the proof.

Remark 7 As a consequence of the above proposition, we can restrict attention to a > 0

while proving the properties of the value function Vβ(·).

Proposition 2.6.2 For any λ > 0 and β ∈ (0, 1), the value functions Vβ(·;λ) given
by (2.26) and (2.27) are even and increasing on X≥0.

See Appendix A.4 for the proof.

The long-term average setup

Proposition 2.6.3 For any λ ≥ 0, the value function Vβ(·;λ) for Models A and B, as
given by (2.26) and (2.27) respectively, satisfy the following SEN conditions of [51,52]:

(S1) There exists a reference state e0 ∈ X and a non-negative scalarMλ such that Vβ(e0, λ) <

Mλ for all β ∈ (0, 1).
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(S2) Define hβ(e;λ) = (1−β)−1[Vβ(e;λ)−Vβ(e0;λ)]. There exists a function Kλ : Z→ R

such that hβ(e;λ) ≤ Kλ(e) for all e ∈ X and β ∈ (0, 1).

(S3) There exists a non-negative (finite) constant Lλ such that −Lλ ≤ hβ(e;λ) for all
e ∈ X and β ∈ (0, 1).

Therefore, if fβ denotes an optimal strategy for β ∈ (0, 1), and f1 is any limit point of {fβ}
for any increasing sequence of β, then f1 is optimal for β = 1.

Proof Let V (0)
β (e;λ) denote the value function of the ‘always transmit’ strategy. Since

Vβ(0;λ) ≤ V
(0)
β (0;λ) and V (0)

β (0;λ) = λ, (S1) is satisfied with e0 = 0 and Mλ = λ.
We show (S2) for Model B, but a similar argument works for Model A as well. Since

not transmitting is optimal at state 0, we have

Vβ(0;λ) = β

∫ ∞
−∞

φ(w)Vβ(w;λ)dw.

Let V (1)
β (e, λ) denote the value function of the strategy that transmits at time 0 and follows

the optimal strategy from then on. Then

V
(1)
β (e;λ) = (1− β)λ+ β

∫ ∞
−∞

φ(w)Vβ(w;λ)dw

= (1− β)λ+ βVβ(0;λ) (2.28)

Since Vβ(e;λ) ≤ V
(1)
β (e;λ) and Vβ(0;λ) ≥ 0, from (2.28) we get that (1 − β)−1[Vβ(e;λ) −

Vβ(0, λ)] ≤ λ. Hence (S2) is satisfied with Kλ(e) = λ.
By Proposition 2.6.2, Vβ(e;λ) ≥ Vβ(0;λ), hence (S3) is satisfied with Lλ = 0.

Proof (Proof of Theorem 2.4.1 for β = 1) Since the value function Vβ(·;λ) satisfies
the SEN conditions for reference state e0 = 0, the optimality of the threshold strategy for
long-term average setup follows from [51, Theorem 7.2.3] for Model A and [52, Theorem
5.4.3] for Model B, respectively.

2.7 Proof of Theorem 2.4.2

2.7.1 Preliminary results

Define operator B as follows:
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• Model A: For any v : Z→ R, define operator B as

[Bv](e) :=
∞∑

w=−∞

pwv(ae+ w), ∀e ∈ Z.

Or, equivalently,

[Bv](e) :=
∞∑

n=−∞

pn−aev(n), ∀e ∈ Z.

• Model B: For any bounded v : R→ R, define operator B as

[Bv](e) :=

∫
R

φ(w)v(ae+ w)dw, ∀e ∈ R.

Or, equivalently,

[Bv](e) :=

∫
R

φ(n− ae)v(n)dn, ∀e ∈ R.

As discussed in Remark 4, the error process {Et}∞t=0 is a controlled Markov process.
Therefore, the functions D(k)

β and N (k)
β may be thought as value functions when strategy

f (k) is used. Thus, they satisfy the following fixed point equations: for β ∈ (0, 1),

D
(k)
β (e) =

β[BD(k)
β ](0), if |e| ≥ k

(1− β)d(e) + β[BD(k)
β ](e), if |e| < k,

(2.29)

N
(k)
β (e) =

(1− β) + β[BN (k)
β ](0), if |e| ≥ k

β[BN (k)
β ](e), if |e| < k.

(2.30)

Lemma 2.7.1 For β ∈ (0, 1], (B.1) and (B.2) have unique and bounded solutions D(k)
β (e)

and N (k)
β (e) that

1. are even and increasing (on X≥0) in e for all k,

2. satisfy the SEN conditions (see Proposition 2.6.3) and therefore

D
(k)
1 (e) = lim

β↑1
D

(k)
β (e) and N

(k)
1 (e) = lim

β↑1
N

(k)
β (e).

3. D(k)
β (e) is increasing in k for all e and N (k)

β (e) is strictly decreasing in k for all e.
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The proofs of 1) and 2) follow from the arguments similar to those of Section 2.6 and
are therefore omitted. The proof of 3) is given in Appendix A.5.

2.7.2 Proof of Theorem 2.4.2

We prove the result for the discounted cost setup, β ∈ (0, 1). The result extends to the
long-term average cost setup, β = 1, by using the vanishing discount approach similar to
the argument given in Section 2.6.

We first consider the case k = 0. In this case, the recursive definition of D(k)
β and N (k)

β ,
given by (B.1) and (B.2), simplify to the following:

D
(0)
β (e) = β[BD(0)

β ](0);

and
N

(0)
β (e) = (1− β) + β[BN (0)

β ](0).

It can be easily verified that D(0)
β (e) = 0 and N

(0)
β (e) = 1, e ∈ X, satisfy the above

equations. Also, C(0)
β (e;λ) = Cβ(f (0), g∗;λ) = λ. This proves the first part of the proposi-

tion.
For k > 0, let τ (k) denote the stopping time when the Markov process in both Model

A and B starting at state 0 at time t = 0 leaves the set S(k). Note that τ (0) = 1 and
τ (∞) =∞.

Then,

L
(k)
β (0) = E

[ τ (k)−1∑
t=0

βtd(Et)
∣∣∣ E0 = 0

]
(2.31)

M
(k)
β (0) = E

[ τ (k)−1∑
t=0

βt
∣∣∣ E0 = 0

]
=

1− E[βτ
(k) |E0 = 0]

1− β (2.32)

D
(k)
β (0) = E

[
(1− β)

τ (k)−1∑
t=0

βtd(Et) + βτ
(k)

D
(k)
β (0)

∣∣∣ E0 = 0
]

(2.33)

N
(k)
β (0) = E

[
βτ

(k)(
(1− β) +N

(k)
β (0)

) ∣∣∣ E0 = 0
]
. (2.34)
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Substituting (B.3) and (B.4) in (B.6) we get

D
(k)
β (0) = (1− β)L

(k)
β (0) + [1− (1− β)M

(k)
β (0)]D

(k)
β (0).

Rearranging, we get that

D
(k)
β (0) =

L
(k)
β (0)

M
(k)
β (0)

.

Similarly, substituting (B.3) and (B.4) in (B.8) we get

N
(k)
β (0) = [1− (1− β)M

(k)
β (0)][(1− β) +N

(k)
β (0)].

Rearranging, we get that

N
(k)
β (0) =

1

M
(k)
β (0)

− (1− β).

The expression for C(k)
β (0;λ) follows from the definition.

2.8 Proofs of results for Model A

2.8.1 Proof of Theorem 2.4.3

λ

k∗β(λ)

k0

k1

k2

λ
(k0)
β λ

(k1)
β

Fig. 2.8 Plot of k∗β(λ) for Model A.

By Proposition B.4.1, k∗β(λ) = arg infk≥0C
(k)
β (0;λ) is increasing in λ. Let K denote the

set of all possible values of k∗β(λ). Since k is integer-valued, the plot of k∗β vs λ must be a
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staircase function as shown in Fig. 2.8. In particular, there exists an increasing sequence
{λ(kn)

β }kn∈K such that for λ ∈ (λ
(kn−1)
β , λ

(kn)
β ], k∗β(λ) = kn. We will show that for any kn,

C
(kn)
β (0;λ

(kn)
β ) = C

(kn+1)
β (0;λ

(kn)
β ). (2.35)

Simplifying (B.11), we get that λ(kn)
β is given by (3.68).

Proof of (B.11)

For any λ ∈ (λ
(kn−1)
β , λ

(kn)
β ], C(kn)

β (0;λ) ≤ C
(kn+1)
β (0;λ). In particular, for λ = λ

(kn)
β ,

C
(kn)
β (0;λ

(kn)
β ) ≤ C

(kn+1)
β (0;λ

(kn)
β ). (2.36)

Similarly, for any λ ∈ (λ
(kn)
β , λ

(kn+1)
β ], C(kn+1)

β (0;λ) ≤ C
(kn)
β (0;λ). Since both terms are

continuous in λ, taking limit as λ ↓ λ(kn)
β , we get

C
(kn+1)
β (0;λ

(kn)
β ) ≤ C

(kn)
β (0;λ

(kn)
β ). (2.37)

Eq. (B.11) follows from combining (B.12) and (2.37).

Proof of Part 1)

By definition of λ(kn)
β , the strategy f (kn) is optimal for λ ∈ (λ

(kn−1)
β , λ

(kn)
β ].

Proof of Part 2)

Recall C∗β(λ) = infk≥0C
(k)
β (0;λ). By definition, for λ ≥ 0, C(k)

β (0;λ), is increasing and
affine in λ. Therefore, its point-wise minimum (over k) is increasing and concave in λ.

As shown in part 1), for λ ∈ (λ
(kn)
β , λ

(kn+1)
β ], C∗β(λ) = C

(kn+1)
β (0;λ), which is linear (and

continuous) in λ; hence, C∗β(λ) is piecewise linear. Finally, by (B.11), C(kn)
β (0;λ(kn)) =

C
(kn+1)
β (0;λ(kn)). Therefore, at the corner points, lim

λ↑λ(kn+1)

β

C∗β(λ) = lim
λ↓λ(kn+1)

β

C∗β(λ).

Hence, C∗β(λ) is continuous in λ.
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2.8.2 Proof of Theorem 2.4.4

Note that by definition, θ∗ ∈ [0, 1] and

θ∗Nβ(f (k∗), g∗) + (1− θ∗)Nβ(f (k∗+1), g∗) = α. (2.38)

Proof of Part 1)

The optimality of (f ∗, g∗) relies on the following characterization of the optimal strategy
stated in [53, Proposition 1.2]. The characterization was stated for the long-term average
setup but a similar result can be shown for the discounted case as well, for example, by
using the approach of [54]. Also, see [55, Theorem 8.4.1] for a similar sufficient condition
for general constrained optimization problem.

A (possibly randomized) strategy (f ◦, g◦) is optimal for a constrained optimization
problem with β ∈ (0, 1] if the following conditions hold:

(C1) Nβ(f ◦, g◦) = α,

(C2) There exists a λ◦ ≥ 0 such that (f ◦, g◦) is optimal for Cβ(f, g;λ◦).

We will show that the strategies (f ∗, g∗) satisfy (C1) and (C2) with λ◦ = λ
(k∗)
β .

(f ∗, g∗) satisfy (C1) due to (2.38). For λ = λ
(k∗)
β , both f (k∗) and f (k∗+1) are optimal

for Cβ(f, g;λ). Hence, any strategy randomizing between them, in particular f ∗, is also
optimal for Cβ(f, g;λ). Hence (f ∗, g∗) satisfies (C2). Therefore, by [53, Proposition 1.2],
(f ∗, g∗) is optimal for Problem 2.3.2.

Proof of Part 2)

The expression of k∗ and θ∗ follow directly from (3.69) and (3.70). The form of D∗β(α) given
in (3.72) follows immediately from the fact that (f ∗, g∗) is a Bernoulli randomized simple
strategy.

D∗β(α) is the solution to a constrained optimization problem with the constraint set
{(f, g) : Nβ(f, g) ≤ α}. Therefore, it is decreasing and convex in the constraint α. The
optimality of (f ∗, g∗) implies (3.72). Piecewise linearity of D∗β(α) follows from (3.72).
Finally, by definition of α(k) and θ, lima↑α(k) D∗β(α) = D

(k)
β (0) = lima↓α(k) D∗β(α). Hence,

D∗β(α) is continuous in α.
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2.9 Proofs of results for Model B

Lemma 2.9.1 In Model B, for β ∈ (0, 1],

1. D(k)
β and N (k)

β are continuous in k,

2. N (k)
β is strictly decreasing in k,

3. D(k)
β , N (k)

β and C(k)
β are differentiable in k.

Proof The proof follows from Lemma 2.4.1 and Theorem 2.4.2.

2.9.1 Proof of Theorem 3.9.3

Proof of Part 1)

The choice of λ implies that ∂kC
(k)
β (0;λ) = 0. Hence strategy (f (k), g∗) is optimal for the

given λ.
Note that, (2.22) can also be written as λ =

(
(M

(k)
β (0))2∂kD

(k)
β (0)

)
/∂kM

(k)
β (0). By

Lemma 2.4.1, ∂kM
(k)
β (0) > 0 and by Lemma 2.7.1, ∂kD

(k)
β (0) ≥ 0. Hence, for any k > 0, λ

given by (2.22) is positive. This completes the first part of the proof.

Proof of Part 2)

The monotonicity and concavity of C∗β(λ) follows from the same argument as in Model A.
Note that k∗β(λ) = arg infk≥0C

(k)
β (0;λ) can take a value ∞ (which corresponds to the

strategy ‘never communicate’). Thus, the domain of k isX≥0∪{∞}, which is a compact set.
Now, C∗β(λ) = mink∈[0,∞] C

(k)
β (0;λ), where C(k)

β (0;λ) is continuous in both λ and k. Since,
C∗β(λ) is point-wise minimum of bounded continuous functions, where the minimization is
over a compact set, it is continuous.

2.9.2 Proof of Theorem 3.9.4

Proof of Part 1)

Recall conditions (C1), (C2), given in Section 2.8.2, for a strategy to be optimal for a
constrained optimization problem. We will show that for a given α, there exists a k∗β(α) ∈
R≥0 such that (f (k∗β(α)), g∗) satisfy conditions (C1) and (C2).
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By Lemma 2.9.1, N (k)
β (0) is continuous and strictly decreasing in k. It is easy to see

that limk→0N
(k)
β (0) = 1 and limk→∞N

(k)
β (0) = 0. Hence, for a given α ∈ (0, 1), there exists

a k∗β(α) such that N
(k∗β(α))

β (0) = Nβ(f (k∗β(α)), g∗) = α. Thus, (f (k∗β(α)), g∗) satisfies (C1).
Now, for k∗β(α), we can find a λ satisfying (2.22) and hence we have by Theorem 3.9.3

that strategy (f (k∗β(α)), g∗) is optimal for Cβ(f, g;λ), and therefore satisfies (C2); and is
consequently optimal for Problem 2.3.2.

Proof of Part 2)

By Lemma 2.9.1, Ñ(k) := N
(k)
β (0) is strictly decreasing and continuous in k. Therefore,

Ñ−1 exists and is continuous. Now,

D∗β(α) = min
{k : k≤Ñ−1(α)}

D
(k)
β (0),

where, by Lemma 2.9.1, D(k)
β (0) is continuous in k. Thus, by Berge’s maximum theorem,

D∗β(α) is continuous in α.

2.9.3 Proof of Theorem 2.4.7

To prove the theorem, we first need to prove the following lemma.

Lemma 2.9.2 For Gauss-Markov model (a special case of Model B), let L(k)
σ and M (k)

σ be
the solutions of (2.11) and (2.12) respectively, when the variance of Wt is σ2. Then

L(k)
σ (e) = σ2L

(k/σ)
1

( e
σ

)
, M (k)

σ (e) = M
(k/σ)
1

( e
σ

)
, (2.39)

D(k)
σ (e) = σ2D

(k/σ)
1

( e
σ

)
, N (k)

σ (e) = N
(k/σ)
1

( e
σ

)
. (2.40)

Proof Define L̂(k)
σ (e) := σ2L

(k/σ)
1

(
e
σ

)
. Now consider,

[B(k)
σ L̂(k)

σ ](e) =

∫ k

−k
φ(n− ae)L̂(k)

σ (n)dn, ∀e ∈ R

(a)
= σ2

∫ k/σ

−k/σ
φ(z − ae/σ)L

(k/σ)
1 (z)dz

= σ2[B(k/σ)
1 L

(k/σ)
1 ](e/σ),
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where (a) uses a change of variables n = σz. Therefore,[
L̂(k)
σ − βB(k)

σ L̂(k)
σ

]
(e) = σ2

[
L

(k/σ)
1 − βB(k/σ)

1 L
(k/σ)
1

]( e
σ

)
= σ2 e

2

σ2
= e2.

But, by Lemma 2.4.1, the above equation has a unique solution L(k)
σ . Therefore L(k)

σ = L̂
(k)
σ .

A similar argument may be used to prove the scaling of M (k)
σ . The scaling of D(k)

σ and
N

(k)
σ follow from Theorem 2.4.2.

Proof of Theorem 2.4.7

The theorem follows from Lemma 2.9.2, Theorem 2.4.2 and elementary algebra.

2.10 Proofs of results for Example 2.4.1

Lemma 2.10.1 Define for β ∈ (0, 1]

Kβ = −2− (1− β)

βp
and mβ = cosh−1(−Kβ/2)

Then,

[Q
(k)
β ]ij =

1

βp

[A
(k)
β ]ij

b
(k)
β

, i, j ∈ S(k),

where, for β ∈ (0, 1),

[A
(k)
β ]ij = cosh((2k − |i− j|)mβ)− cosh((i+ j)mβ),

b
(k)
β = sinh(mβ) sinh(2kmβ);

and for β = 1,

[A
(k)
1 ]ij = (k −max{i, j})(k + min{i, j}),
b

(k)
1 = 2k.
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In particular, the elements [Q
(k)
β ]0j are given as follows. For β ∈ (0, 1),

[Q
(k)
β ]0j =

1

βp

cosh((2k − |j|)mβ)− cosh(jmβ)

2 sinh(mβ) sinh(2kmβ)
, (2.41)

and for β = 1,

[Q
(k)
1 ]0j =

k − |j|
2p

. (2.42)

Proof The matrix I2k−1 − βP (k) is a symmetric tridiagonal matrix given by

I2k−1 − βP (k) = −βp



Kβ 1 0 · · · · · · 0

1 Kβ 1 0 · · · 0

0 1 Kβ 1 · · · 0
... . . . . . . . . . . . . ...
0 · · · 0 1 Kβ 1

0 0 · · · 0 1 Kβ


.

Q
(k)
β is the inverse of the above matrix. The inverse of the tridiagonal matrix in the above

form with Kβ ≤ −2 are computed in closed form in [56]. The result of the lemma follows
from these results.

2.10.1 Proof of Lemma 2.4.2

By substituting the expression for Q(k)
β from Lemma 2.10.1 in the expressions for L(k)

β and
M

(k)
β from Proposition 2.4.2, we get that

1. For β ∈ (0, 1),

L
(k)
β (0) =

sinh(kmβ)− k sinh(mβ)

4βp sinh2(mβ/2) sinh(mβ) cosh(kmβ)
,

M
(k)
β (0) =

sinh2(kmβ/2)

2βp sinh2(mβ/2) cosh(kmβ)
.

2. For β = 1,
L

(k)
1 (0) = k(k2 − 1)/(6p), M

(k)
1 (0) = k2/(2p).
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The results of the lemma follow using the above expressions and Theorem 2.4.2. The
expression for λ(k)

1 is obtained by plugging the expressions of D(k+1)
1 , D(k)

1 , N (k+1)
1 , and N (k)

1

in (3.68).

2.11 Conclusion

We characterize two fundamental limits of remote estimation of autoregressive Markov
processes under communication constraints. First, when each transmission is costly, we
characterize the minimum achievable cost of communication plus estimation error. Second,
when there is a constraint on the average number of transmissions, we characterize the
minimum achievable estimation error.

We also identify transmission and estimation strategies that achieve these fundamen-
tal limits. The structure of these optimal strategies had been previously identified by
using dynamic programming for decentralized stochastic control systems. In particular,
the optimal transmission strategy is to transmit when the estimation error process ex-
ceeds a threshold and the optimal estimation strategy is to select the transmitted state
as the estimate, whenever there is a transmission. We use ideas based on renewal theory
to identify the performance of a generic strategy that has such a structure. For the case
of costly communication, we identify the value of communication cost for which a partic-
ular threshold-based strategy is optimal; for the case of constrained communication, we
identify (possibly randomized) threshold-based strategies that achieve the communication
constraint.

These results are derived under idealized assumptions on the communication channel:
communication is noiseless and without any constraint on the transmission rate or the
transmission bandwidth. Under these assumptions, the error process resets after each
transmission (see Remark 4). This reset property is critical to derive the structure of
optimal transmission and estimation strategies (Theorems 2.4.1 and 2.6.1). In the absence
of such a structural result, the solution methodology developed in this chapter does not work
and the optimal transmission and estimation strategies have to be identified by numerically
solving the (decentralized) dynamic programs described in [6, 8].

Having said that, the transmission and estimation strategies described in Theorems 2.4.1
and 2.6.1 may be used as heuristic sub-optimal strategies when the communication channel
does not satisfy the idealized assumptions described above. In that case, it may be possible
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to use the solution methodology developed in this chapter to obtain performance bounds
on such strategies.

A similar remark holds for multi-dimensional autoregressive processes. It is reasonable
to expect (although we are not aware of a proof of this statement) that for multi-dimensional
autoregressive processes, the optimal estimation strategy will be similar to that described
in Theorems 2.4.1 and 2.6.1 while the optimal transmission strategy will be to transmit
when the error process lies outside a (multi-dimensional) ellipsoid. The performance of
such strategies can be evaluated using the solution methodology developed in this chapter.
The renewal relationships derived in Theorem 2.4.2 also hold for multi-dimensional autore-
gressive processes. The only difference is that L(k)

β (0) and M (k)
β (0) are computed by solving

multi-dimensional Fredholm integral equations of the second kind. The optimal transmis-
sion strategies can then be computed by solving multi-dimensional versions of (2.22) (for
costly communication) and (3.74) (for constrained communication). However, it is not im-
mediately clear whether these equations will have a unique solution. Further investigation
is required to obtain algorithms that identify the optimal transmission ellipsoid.

Finally, the solution methodology developed in this chapter to identify optimal thresh-
olds is also of independent interest. In various applications of Markov decision processes
threshold strategies are optimal. The approach developed in this chapter is directly appli-
cable to such models.
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Chapter 3

Remote estimation with packet drops

3.1 Introduction

3.1.1 Motivation and literature overview

In this chapter we consider an RE system in which a sensor/transmitter observes a first-
order Markov process and causally decides which observations to transmit to a remotely
located receiver/estimator. As in the previous chapter, here too we consider no source-
coding, i.e., when the transmitter transmits, it transmits the entire source symbol and the
size of the data-packet does not matter. Communication is expensive and takes place over
a lossy channel. The channel has two states: off state and on state. When the channel is
in the off state, a packet transmitted from the sensor to the receiver is dropped. When the
channel is in the on state, a packet transmitted from the sensor to the receiver is received
without error. The reception of the source symbol is acknowledged to the transmitter by a
noiseless ACK/NACK feedback. The block diagram of the communication system is given
in Fig. 3.1.

In this chapter we investigate the optimization problem of two erasure channels sepa-
rately in two parts. In the first part we discuss the structural results for a Gilbert-Elliott
channel, i.e., a channel with Markovian packet drops (also called a burst erasure channel).
In the second part, we present an i.i.d. packet drop channel as a special case of the burst
erasure channel. We analyze the optimization results and completely characterize the opti-
mal thresholds and the optimal performances of the costly and constrained communication
problems. In both cases, we consider a model where the communication takes place with
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acknowledgment; so either the transmitted packet is delivered without any error to the
receiver or the packet is dropped. We assume that the channel state is causally observed
at the receiver and is fed back to the transmitter with one-unit delay. Whenever there
is a successful reception, the receiver sends an acknowledgment to the transmitter. The
feedback is assumed to be noiseless.

At the time instances when the receiver does not receive a packet (either because the sen-
sor did not transmit or because the transmitted packet was dropped), it needs to estimate
the state of the source process. There is a fundamental trade-off between communication
cost and estimation accuracy. Transmitting all the time minimizes the estimation error but
incurs a high communication cost; not transmitting at all minimizes the communication
cost but incurs a high estimation error.

As pointed out in Chapter 1, the existing literature on remote-estimation with a model
similar to ours considers either channels with no or i.i.d. packet drops. In the cases where
the threshold-based strategies are optimal, one would expect the structure of the threshold
to be dependent on the channel model as well. In this chapter, in a fairly unified manner, we
consider two cases where packet dropping channels are with i.i.d. or Markovian memory.
We identify sufficient statistics at the transmitter and the receiver. When the source
is a first-order autoregressive process, we show that threshold-based strategies (where the
threshold depends on the previous channel-state) and the Kalman-like estimation strategies
are optimal.

Markov
Process Transmitter Erasure

Channel Receiver
𝑋𝑡

𝑈𝑡

𝑌𝑡 �̂�𝑡

ACK/NACK

Fig. 3.1 Block diagram of a remote estimation setup with erasure channel.

3.2 Preliminary discussion on the proof approach

The remote estimation problem is essentially a decentralized control problem where there
are two decision makers, a transmitter (sensor) and an estimator (receiver), who have access
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to different information. Based on the information available to them, they generate their
strategy to minimize a common objective function. This set up fits into the realm of Team
theory. We solve the team problem in two steps:

• The person-by-person approach - following [3,7], we arbitrarily fix the strategy of one
agent (decision maker) and find the best strategy of the other. This approach helps
to find out the information state of the transmitter for a fixed estimation strategy.
Also, it is argued that the structure of the optimal estimator is independent of the
transmission strategy.

• The common-information approach - Following [57], we split the information at the
transmitter and the receiver into two parts: common information (which is the data
known to all future decision makers) and local information (which is the total data
minus the common information). Next we consider a centralized stochastic control
problem, which we call the coordinated system, where a virtual decision maker ob-
serves the common information at each agent at time t and chooses a prescription (a
function which based on the local information generates the action) according to a
coordination strategy that is a function of the common information. The strategy of
the agents are then generated based on that coordination strategy.

Since the coordinated system is centralized, an optimal coordinated strategy may be
identified from an appropriate dynamic program. The detailed steps are discussed in the
respective sections.

3.3 Remote estimation with Markovian packet drops

In the first part of this chapter, we consider the erasure channel to have Markovian packet
drops. We first investigate the finite horizon problems and then extend the results to
the infinite horizon. We establish the structure of the optimal communication strategies
for a generic model. Then, for a stylized model with first order autoregressive sources, we
characterize the optimal performances. The communication channel with i.i.d. packet drops
is then expressed as a special case of the Markovian channel and we derive the computable
expressions for the optimal performances.
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3.3.1 The communication system

Fig. 3.1 shows the block diagram of the communication system. Each component is de-
scribed in the following sections.

Source model

The source is a first-order time-homogeneous Markov process {Xt}t≥0, Xt ∈ X. For ease of
exposition, in the first part of the chapter we assume that X is a finite set. We will later
argue that a similar argument works when X is a general measurable space. The transition
probability matrix of the source is denoted by P , i.e., for any x, y ∈ X,

Pxy := P(Xt+1 = y | Xt = x).

Channel model

The channel is a Gilbert-Elliott channel [58, 59]. The channel state {St}t≥0 is a binary-
valued first-order time-homogeneous Markov process. We use the convention that St = 0

denotes that the channel is in the off state and St = 1 denotes that the channel is in the
on state. The transition probability matrix of the channel state is denoted by Q, i.e., for
r, s ∈ {0, 1},

Qrs := P(St+1 = s|St = r).

The input alphabet X̄ of the channel is X ∪ {E}, where E denotes the event that there
is no transmission. The channel output alphabet Y is X ∪ {E0,E1}, where the symbols E0

and E1 are explained below. At time t, the channel input is denoted by X̄t and the channel
output is denoted by Yt.

The channel is a channel with state. In particular, for any realization (x̄0:T , s0:T , y0:T )

of (X̄0:T , S0:T , Y0:T ), we have

P(Yt = yt | X̄0:t = x̄0:t, S0:t = s0:t) = P(Yt = yt | X̄t = x̄t, St = st) (3.1)

and

P(St = st | X̄0:t = x̄0:t, S0:t−1 = s0:t−1) = P(St = st | St−1 = st−1) = Qst−1st (3.2)
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Note that the channel output Yt is a deterministic function of the input X̄t and the
state St. In particular, for any x̄ ∈ X̄ and s ∈ {0, 1}, the channel output y is given as
follows:

y =


x̄, if x̄ ∈ X and s = 1

E1, if x̄ = E and s = 1

E0, if s = 0

This means that if there is a transmission (i.e., x̄ ∈ X) and the channel is on (i.e., s = 1),
then the receiver observes x̄. However, if there is no transmission (i.e., x̄ = E) and the
channel is on (i.e., s = 1), then the receiver observes E1. If the channel is off, then the
receiver observes E0.

The transmitter

There is no need for channel coding in a RE setup. Instead, the role of the transmitter
is to determine which source realizations need to be transmitted. Let Ut ∈ {0, 1} denote
the transmitter’s decision. We use the convention that Ut = 0 denotes that there is no
transmission (i.e., X̄t = E) and U1 = 1 denotes that there is transmission (i.e., X̄t = Xt).

Transmission is costly. Each time the transmitter transmits (i.e., Ut = 1), it incurs a
cost of λ.

The receiver

At time t, the receiver generates an estimate X̂t ∈ X of Xt. The quality of the estimate is
determined by a distortion function d : X× X→ R≥0.

3.3.2 Information structure and problem formulation for finite horizon

It is assumed that the receiver observes the channel state causally. Thus, the information
available at the receiver1 is

I2
t = {S0:t, Y0:t}.

1We use superscript 1 to denote variables at the transmitter and superscript 2 to denote variables at
the receiver.
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The estimate X̂t is chosen according to

X̂t = gt(I
2
t ) = gt(S0:t, Y0:t), (3.3)

where gt is called the estimation rule at time t. The collection g := (g1, . . . , gT ) for all time
is called the estimation strategy.

It is assumed that there is one-step delayed feedback from the receiver to the transmit-
ter.2 Thus, the information available at the transmitter is

I1
t = {X0:t, U0:t−1, S0:t−1, Y0:t−1}.

The transmission decision Ut is chosen according to

Ut = ft(I
1
t ) = ft(X0:t, U0:t−1, S0:t−1, Y0:t−1), (3.4)

where ft is called the transmission rule at time t. The collection f := (f1, . . . , fT ) for all
time is called the transmission strategy.

The collection (f, g) is called a communication strategy. The performance of any com-
munication strategy (f, g) over a finite horizon T <∞ is given by

CT (f, g;λ) = E(f,g)

[ T∑
t=0

λUt + d(Xt, X̂t)

]
(3.5)

where the expectation is taken with respect to the joint measure on all system variables
induced by the choice of (f, g).

We are interested in the following optimization problem.

Problem 3.3.1 In the model described above, identify a communication strategy (f ∗, g∗)

that minimizes the cost CT (f, g;λ) defined in (3.5).

Remark 8 The initial sections of this chapter provide the detailed derivations for the
structural results for the finite horizon setup (i.e., T < ∞). The results can be naturally
extended under certain technical conditions [60]. In the infinite horizon setup, we consider
two cases: discounted and long-term average and consider two optimization problems, costly

2Note that feedback requires two bits: the channel state St is binary and the channel output Yt can be
communicated by indicating whether Yt ∈ X or not (i.e., transmitting an ack or a nack).
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communication and constrained communication for both cases. The structural results are
discussed in Section 3.7.

3.4 Main results for the finite horizon

3.4.1 Structure of optimal communication strategies

Two types of structural results are established in the real-time communication literature:
(i) establishing that part of the data at the transmitter is irrelevant and can be dropped
without any loss of optimality; (ii) establishing that the common information between the
transmitter and the receiver can be “compressed” using a belief state. The first structural
results were first established by Witsenhausen [3] while the second structural results were
first established by Walrand-Varaiya [6].

We establish both types of structural results for RE. First, we show that (X0:t−1, U0:t−1)

is irrelevant at the transmitter (Lemma 3.4.1); then, we use the common information
approach of [57] and establish a belief-state for the common information (S0:t, Y0:t) between
the transmitter and the receiver (Theorem 3.4.1).

Lemma 3.4.1 For any estimation strategy of the form (3.3), there is no loss of optimality
in restricting attention to transmission strategies of the form

Ut = ft(Xt, S0:t−1, Y0:t−1). (3.6)

The proof idea is similar to [7]. We show that {Xt, S0:t−1, Y0:t−1}t≥0 is a controlled
Markov process controlled by {Ut}t≥0. See Section 3.5 for proof.

Now, following [57], for any transmission strategy f of the form (3.6) and any realization
(s0:T , y0:T ) of (S0:T , Y0:T ), define ϕt : X→ {0, 1} as

ϕt(x) = ft(x, s0:t−1, y0:t−1), ∀x ∈ X.

Furthermore, define conditional probability measures π1
t and π2

t on X as follows: for any
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x ∈ X,

π1
t (x) := Pf (Xt = x | S0:t−1 = s0:t−1, Y0:t−1 = y0:t−1),

π2
t (x) := Pf (Xt = x | S0:t = s0:t, Y0:t = y0:t).

We call π1
t the pre-transmission belief and π2 the post-transmission belief. Note that when

(S0:T , Y0:T ) are random variables, then π1
t and π2

t are also random variables which we denote
by Π1

t and Π2
t .

For the ease of notation, for any ϕ : X→ {0, 1} and i ∈ {0, 1}, define the following:

• Bi(ϕ) = {x ∈ X : ϕ(x) = i}.

• For any probability distribution π on X and any subset A of X, π(A) denotes
∑

x∈A π(x).

• For any probability distribution π on X, ξ = π|ϕ means that ξ(x) = 1{ϕ(x)=0}π(x)/π(B0(ϕ)).

Lemma 3.4.2 Given any transmission strategy f of the form (3.6):

1. there exists a function F 1 such that

π1
t+1 = F 1(π2

t ) = π2
tP. (3.7)

2. there exists a function F 2 such that

π2
t = F 2(π1

t , ϕt, yt) =


δyt if yt ∈ X

π1
t |ϕt , if yt = E1

π1
t , if yt = E0.

(3.8)

Note that in (3.7), we are treating π2
t as a row-vector and in (3.8), δyt denotes a Dirac

measure centered at yt. The update equations (3.7) and (3.8) are standard non-linear
filtering equations.

See Section 3.5 for proof of Lemma 3.4.2.

Theorem 3.4.1 In Problem 3.3.1, we have that:
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1. Structure of optimal strategies: There is no loss of optimality in restricting attention
to optimal transmission and estimation strategies of the form:

Ut = f ∗t (Xt, St−1,Π
1
t ), (3.9)

X̂t = g∗t (Π
2
t ). (3.10)

2. Dynamic program: Let ∆(X) denote the space of probability distributions on X. De-
fine value functions V 1

t : {0, 1} ×∆(X)→ R and V 2
t : {0, 1} ×∆(X)→ R as follows.

V 1
T+1(s, π1) = 0, (3.11)

and for t ∈ {T, . . . , 0}

V 1
t (s, π1) = min

ϕ : X→{0,1}

{
λπ1(B1(ϕ))

+W 0
t (π1, ϕ)π1(B0(ϕ)) +

∑
x∈B1(ϕ)

W 1
t (π1, x)π1(x)

} (3.12)

V 2
t (s, π2) = min

x̂∈X

∑
x∈X

d(x, x̂)π2(x) + V 1
t+1(s, π2P ), (3.13)

where,

W 0
t (π1, ϕ) = Qs0V

2
t (0, π1) +Qs1V

2
t (1, π1|ϕ),

W 1
t (π1, x) = Qs0V

2
t (0, π1) +Qs1V

2
t (1, δx).

Let Ψt(s, π
1) denote the arg min of the right hand side of (3.12). Then, the optimal

transmission strategy of the form (3.9) is given by

f ∗t (·, s, π1) = Ψt(s, π
1).

Furthermore, the optimal estimation strategy of the form (3.10) is given by

g∗t (π
2) = arg min

x̂∈X

∑
x∈X

d(x, x̂)π2(x). (3.14)
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The proof idea is as follows. Once we restrict attention to transmission strategies of the
form (3.6), the information structure is partial history sharing [57]. Thus, one can use the
common information approach of [57] and obtain the structure of optimal strategies.

See Section 3.5 for proof of Theorem 3.4.1.

Remark 9 The first term in (3.12) is the expected communication cost, the second term
is the expected cost-to-go when the transmitter does not transmit, and the third term is
the expected cost-to-go when the transmitter transmits. The first term in (3.13) is the
expected distortion and the second term is the expected cost-to-go.

Remark 10 Although the above model and result are stated for sources with finite al-
phabets, they extend naturally to general state spaces (including Euclidean spaces) under
standard technical assumptions. See [61] for details.

3.4.2 Optimality of threshold-based strategies for autoregressive source for
finite horizon case

In this section, we consider a first-order autoregressive source {Xt}t≥0, Xt ∈ X, where the
state space X ∈ {R,Z}. We assume that the initial state X0 = 0 and for t ≥ 0, we have
that

Xt+1 = aXt +Wt, (3.15)

where a ∈ X andWt ∈ X is distributed according to a symmetric and unimodal distribution.
For X = R, let us denote the corresponding probability density function µ. For X = Z,
µ is the corresponding probability mass function. Furthermore, the per-step distortion is
given by d(Xt − X̂t), where d(·) is a even function that is increasing on X≥0. The rest of
the model is the same as before.

For the above model, we can further simplify the result of Theorem 3.4.1 for the finite
horizon, as given by Theorem 3.4.2. See Section 3.6 for the proof.

Theorem 3.4.2 For Problem 3.3.1 with the state dynamics (3.15),

1. Structure of optimal estimation strategy: The optimal estimation strategy is given as
follows: X̂0 = 0, and for t ≥ 0,

X̂t =

aX̂t−1, if Yt ∈ {E0,E1}
Yt, if Yt ∈ X

(3.16)
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2. Structure of optimal transmission strategy: There exist threshold functions kt : {0, 1} →
R≥0 such that the following transmission strategy is optimal:

ft(Xt, St−1,Π
1
t ) =

1, if |Xt − aX̂t−1| ≥ kt(St−1)

0, otherwise.
(3.17)

Remark 11 As long as the receiver can distinguish between the events E0 (i.e., St = 0)
and E1 (i.e., Ut = 0 and St = 1), the structure of the optimal estimator does not depend
on the channel state information at the receiver.

Remark 12 It can be shown that under the optimal strategy, Π2
t is symmetric and uni-

modal (SU) (defined in Section 3.6.2) around X̂t and, therefore, Π1
t is SU around aX̂t−1.

Thus, the transmission and estimation strategies in Theorem 3.4.2 depend on the pre- and
post-transmission beliefs only through their means.

Remark 13 Recall that the distortion function is even and increasing (in the states in
X≥0). Therefore, the condition |Xt− aX̂t−1| ≥ kt(St−1) can be written as d(Xt− aX̂t−1) ≥
k̃t(St−1) := d(kt(St−1)). Thus, the optimal strategy is to transmit if the per-step distortion
due to not transmitting is greater than a threshold.

Remark 14 As noted in Remark 8, the structural results for the infinite horizon are
discussed in Section 3.7. Moreover, in its subsequent sections we characterize the optimal
performance for the infinite horizon setup.

3.5 Proof of the structural results for finite horizon case

3.5.1 Proof of Lemma 3.4.1

Arbitrarily fix the estimation strategy g and consider the best response strategy at the
transmitter. We will show that Ĩ1

t := (Xt, S0:t−1, Y0:t−1) is an information state at the
transmitter.

Given any realization (x0:T , s0:T , y0:T , u0:T ) of the system variables (X0:T , S0:T , Y0:T , U0:T ),
define i1t = (x0:t, s0:t−1, y0:t−1, u0:t−1) and ı̃1t = (xt, s0:t−1, y0:t−1). Now, for any ı̆1t+1 =

(x̆t+1, s̆0:t, y̆0:t) = (x̆t+1, s̆t, y̆t, ı̆
1
t ), we use the shorthand P(̃ı1t+1|̃ı10:t, u0:t) to denote P(Ĩ1

t+1 =
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ı̆1t+1|Ĩ1
0:t = ĩ10:t, U0:t = u0:t). Then,

P(̆ı1t+1|i1t , ut) = P(x̆t+1, s̆t, y̆t, ı̆
1
t |x0:t, s0:t−1, y0:t−1, u0:t)

(a)
= P(x̆t+1, s̆t, y̆t, ı̆

1
t |x0:t, x̄0:t, s0:t−1, y0:t−1, u0:t)

(b)
= P(x̆t+1|xt)P(y̆t|x̄t, s̆t)P(s̆t|st−1)1{ı̆1t=ı̃1t }

= P(̆ı1t+1|̃ı1t , ut) (3.18)

where we have added x̄0:t in the conditioning in (a) because x̄0:t is a deterministic function of
(x0:t, u0:t) and (b) follows from the source and the channel models. By marginalizing (3.18),
we get that for any ı̆2t = (s̆t, y̆t, ı̆

1
t ), we have

P(̆ı2t |i1t , ut) = P(̆ı2t |̃ı1t , ut) (3.19)

Now, let c(Xt, Ut, X̂t) = λUt + d(Xt, X̂t) denote the per-step cost. Recall that X̂t =

gt(I
2
t ). Thus, by (3.19), we get that

E[c(Xt, Ut, X̂t)|i1t , ut] = E[c(Xt, Ut, X̂t)|̃ı1t , ut]. (3.20)

Eq. (3.18) shows that {Ĩ1
t }t≥0 is a controlled Markov process controlled by {Ut}t≥0.

Eq. (3.20) shows that Ĩ1
t is sufficient for performance evaluation. Hence, by Markov decision

theory [62], there is no loss of optimality in restricting attention to transmission strategies
of the form (3.6).

3.5.2 Proof of Lemma 3.4.2

Consider

π1
t+1(xt+1) = P(xt+1|s0:t, y0:t)

=
∑
xt∈X

P(xt+1|xt)P(xt|s0:t, y0:t)

=
∑
xt∈X

Pxtxt+1π
2
t (xt) = π2

tP (3.21)

which is the expression for F 1(·).
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For F 2, we consider the three cases separately. For yt ∈ X, we have

π2
t (x) = P(Xt = x|s0:t, y0:t) = 1{x=yt}. (3.22)

For yt ∈ {E0,E1}, we have

π2
t (x) = P(Xt = x|s0:t, y0:t)

=
P(Xt = x, yt, st|s0:t−1, y0:t−1)

P(yt, st|s0:t−1, y0:t−1)
(3.23)

Now, when yt = E0, we have that

P(xt, yt, st|s0:t−1, y0:t−1) = P(yt|xt, ϕt(xt), st)Qst−1stπ
1
t (xt)

(a)
=

Qst−11π
1
t (xt), if ϕt(xt) = 0 and st = 1

0, otherwise
(3.24)

where (a) is obtained from the channel model. Substituting (3.24) in (3.23) and canceling
Qst−111{st=1} from the numerator and the denominator, we get (recall that this is for the
case when yt = E0),

π2
t (x) =

1{ϕt(x)=0}π
1
t (x)

π1
t (B0(ϕ))

. (3.25)

Similarly, when yt = E1, we have that

P(xt, yt, st|s0:t−1, y0:t−1) = P(yt|xt, ϕt(xt), st)Qst−1stπ
1
t (xt)

(b)
=

Qst−10π
1
t (xt), if st = 0

0, otherwise
(3.26)

where (b) is obtained from the channel model. Substituting (3.26) in (3.23) and canceling
Qst−101{st=0} from the numerator and the denominator, we get (recall that this is for the
case when yt = E1),

π2
t (x) = π1

t (x). (3.27)

By combining (3.22), (3.25) and (3.27), we get (3.8).



68 Remote estimation with packet drops

3.5.3 Proof of Theorem 3.4.1

Once we restrict attention to transmission strategies of the form (3.6), the information
structure is partial history sharing [57]. Thus, one can use the common information ap-
proach of [57] and obtain the structure of optimal strategies.

Following [57], we split the information available at each agent into a “common infor-
mation” and “local information”. Common information is the information available to all
decision makers in the future; the remaining data at the decision maker is the local infor-
mation. Thus, at the transmitter, the common information is C1

t := {S0:t−1, Y0:t−1} and
the local information is L1

t := Xt. Similarly, at the receiver, the common information is
C2
t := {S0:t, Y0:t} and the local information is L2

t := ∅. When the transmitter makes a
decision, the state (sufficient for input-output mapping) of the system is (Xt, St−1); when
the receiver makes a decision, the state of the system is (Xt, St). By [57, Proposition 1],
we get that the sufficient statistic Θ1

t for the common information at the transmitter is

Θ1
t (x, s) = P(Xt = x, St−1 = s|S0:t−1, Y0:t−1),

and the sufficient statistic Θ2
t for the common information at the receiver is

Θ2
t (x, s) = P(Xt = x, St = s|S0:t, Y0:t).

Note that Θ1
t is equivalent to (Π1

t , St−1) and Θ2
t is equivalent to (Π2

t , St). Therefore, by [57,
Theorem 2], there is no loss of optimality in restricting attention to transmission strategies
of the form (3.9) and estimation strategies of the form

X̂t = gt(St,Π
2
t ). (3.28)

Furthermore, the dynamic program of 3.4.1 follows from [57, Theorem 3].
Note that the right hand side of (3.13) implies that X̂t does not depend on St. Thus,

instead of (3.28), we can restrict attention to estimation strategy of the form (3.10). Fur-
thermore, the optimal estimation strategy is given by (3.14).
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3.6 Proof of Theorem 3.4.2

We prove the result for X = R. Similar argument holds for X = Z.

3.6.1 A change of variables

Define a process {Zt}t≥0 as follows: Z0 = 0 and for t ≥ 0,

Zt =

aZt−1, if Yt ∈ {E0,E1}
Yt, if Yt ∈ X

Note that Zt is a function of Y0:t−1. Next, define processes {Et}t≥0, {E+
t }t≥0, and

{Êt}t≥0 as follows:

Et := Xt − aZt−1, E+
t := Xt − Zt, Êt := X̂t − Zt

The processes {Et}t≥0 and {E+
t }t≥0 are related as follows: E0 = 0, E+

0 = 0, and for t ≥ 0

E+
t =

Et, if Yt ∈ {E0,E1}
0, if Yt ∈ X

and Et+1 = aE+
t +Wt.

Since Xt − X̂t = E+
t − Êt, we have that d(Xt − X̂t) = d(E+

t − Êt).
It turns out that it is easier to work with the processes {Et}t≥0, {E+

t }t≥0, and {Êt}t≥0

rather than {Xt}t≥0 and {X̂t}t≥0.
Next, redefine the pre- and post-transmission beliefs in terms of the error process.

With a slight abuse of notation, we still denote the probability density of the pre- and
post-transmission beliefs as π1

t and π2
t . In particular, π1

t is the conditional pdf (probability
density function) of Et given (s0:t−1, y0:t−1) and π2

t is the conditional pdf of E+
t given

(s0:t, y0:t).
Let Ht ∈ {E0,E1, 1} denote the event whether the transmission was successful or not.

In particular,

Ht =


E0, if Yt = E0

E1, if Yt = E1

1, if Yt ∈ X.
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Note that Ht is a deterministic function of Ut and St. We use ht to denote the realization
of Ht.

The time-evolutions of π1
t and π2

t are similar to Lemma 3.4.2. In particular, we have

Lemma 3.6.1 Given any transmission strategy f of the form (3.4):

1. there exists a function F 1 such that

π1
t+1 = F 1(π2

t ). (3.29)

In particular,

π1
t+1 =

π̃2
t ? µ, if yt ∈ {E0,E1}
µ, if yt ∈ X,

(3.30)

where π̃2
t given by π̃2

t (e) := (1/|a|)π2
t (e/a) is the conditional probability density of

aE+
t , µ is the probability density function of Wt and ? is the convolution operation.

2. there exists a function F 2 such that

π2
t = F 2(π1

t , ϕt, ht). (3.31)

In particular,

π2
t =


δ0, if ht = 1

π1
t |ϕt , if ht = E1

π1
t , if ht = E0.

(3.32)

The key difference between Lemmas 3.4.2 and 3.6.1 (and the reason that we work with
the error process {Et}t≥0 rather than {Xt}t≥0) is that the function F 2 in (3.31) depends on
ht rather than yt. Consequently, the dynamic program of Theorem 3.4.1 is now given by

V 1
T+1(s, π1) = 0, (3.33)
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and for t ∈ {T, . . . , 0}

V 1
t (s, π1) = min

ϕ : R→{0,1}

{
λπ1(B1(ϕ))

+W 0
t (π1, ϕ)π1(B0(ϕ)) +W 1

t (π1)π1(B1(ϕ))
}
,

(3.34)

V 2
t (s, π2) = D(π2) + V 1

t+1(s, F 1(π2)), (3.35)

where,

W 0
t (π1, ϕ) = Qs0V

2
t (0, π1) +Qs1V

2
t (1, π1|ϕ),

W 1
t (π1) = Qs0V

2
t (0, π1) +Qs1V

2
t (1, δ0),

D(π2) =

minê∈X
∫
X d(e− ê)π2(e)de, if X = R

minê∈X
∑

X d(e− ê)π2(e), if X = Z.

Note that due to the change of variables, the expression for W 1
t does not depend on

the transmitted symbol. Consequently, the expression for V 1
t is simpler than that in The-

orem 3.4.1.

3.6.2 Symmetric unimodal distributions and their properties

For ease of exposition, we state the results in this section for X = R. The results for X = Z

hold analogously.
A probability density function π on reals is said to be symmetric and unimodal (SU)

around c ∈ R if for any x ∈ R, π(c− x) = π(c+ x) and π is non-decreasing in the interval
(−∞, c] and non-increasing in the interval [c,∞).

Given c ∈ R, a prescription ϕ : X → {0, 1} is called threshold based around c if there
exists k ∈ X such that

ϕ(e) =

1, if |e− c| ≥ k

0, if |e− c| < k.

Let F(c) denote the family of all threshold-based prescription around c.
Now, we state some properties of symmetric and unimodal distributions.
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Property 3.6.1 If π is SU(c), then

c ∈ arg min
ê∈R

∫
X
d(e− ê)π(e)de.

For c = 0, the above property is a special case of [9, Lemma 12]. The result for general c
follows from a change of variables.

Property 3.6.2 If π1 is SU(0) and ϕ ∈ F(0), then for any h ∈ {E0,E1, 1}, F 2(π1, ϕ, h)

is SU(0).

Proof We prove the result for each h ∈ {E0,E1, 1} separately. Recall the update of π1

given by (3.32). For ht = E0, π2 = π1 and hence π2 is SU(0). For ht = E1, π2 = π1|ϕ; if
ϕ ∈ F(0), then π1(x)1{ϕ(x)=0} is SU(0) and hence π1 is SU(0). For ht = 1, π2 = δ0, which
is SU(0).

Property 3.6.3 If π2 is SU(0), then F 1(π2) is also SU(0).

Proof Recall that F 1 is given by (3.30). The property follows from the fact that convolu-
tion of symmetric and unimodal distributions is symmetric and unimodal.

3.6.3 SU majorization and its properties

For any set A, let IA denote its indicator function, i.e., IA(x) is 1 if x ∈ X, else 0.
Let A be a measurable set of finite Lebesgue measure, its symmetric rearrangement Aσ

is the open interval centered around origin whose Lebesgue measure is same as A.
Given a function ` : R→ R, its super-level set at level ρ, ρ ∈ R, is {x ∈ R : `(x) > ρ}.

The symmetric decreasing rearrangement `σ of ` is a symmetric and decreasing function
whose level sets are the same as `, i.e.,

`σ(x) =

∫ ∞
0

I{z∈R:`(z)>ρ}σ(x)dρ.

Given two probability density functions ξ and π over R, ξ majorizes π, which is denoted
by ξ �m π, if for all ρ ≥ 0, ∫

|x|≥ρ
ξσ(x)dx ≥

∫
|x|≥ρ

πσ(x)dx.
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Given two probability density functions ξ and π over R, ξ SU majorizes π, which we
denote by ξ �a π, if ξ is SU and ξ majorizes π.

Now, we state some properties of SU majorization from [9].

Property 3.6.4 For any ξ �a π, where ξ is SU(c) and for any prescription ϕ, let θ ∈ F(c)

be a threshold-based prescription such that for i ∈ {0, 1}, ξ(Bi(θ)) = π(Bi(ϕ)). Then,
ξ|θ �a π|ϕ. Consequently, for any h ∈ {E0,E1, 1},

F 2(ξ, θ, h) �a F 2(π, ϕ, h).

For c = 0, the result follows from [9, Lemma 7 and 8]. The result for general c follows from
change of variables.

Property 3.6.5 For any ξ �a π, F 1(ξ) �a F 1(π).

This follows from [9, Lemma 10].
Recall the definition of D(π2) given after (3.35).

Property 3.6.6 If ξ �a π, then

D(π) ≥ D(πσ) ≥ D(ξσ) = D(ξ).

This follows from [9, Lemma 11].

3.6.4 Qualitative properties of the value function and optimal strategy

Lemma 3.6.2 The value functions V 1
t and V 2

t of (3.33)–(3.35) satisfy the following prop-
erty.

(P1) For any i ∈ {1, 2}, s ∈ {0, 1}, t ∈ {0, . . . , T}, and pdfs (probability density functions)
ξi and πi such that ξi �a πi, we have that V i

t (s, ξi) ≤ V i
t (s, πi).

Furthermore, the optimal strategy satisfies the following properties. For any s ∈ {0, 1}
and t ∈ {0, . . . , T}:

(P2) if π1 is SU(c), then there exists a prescription ϕt ∈ F(c) that is optimal. In general,
ϕt depends on π1.
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(P3) if π2 is SU(c), then the optimal estimate Êt is c.

Proof We proceed by backward induction. V 1
T+1(s, π1) trivially satisfies the (P1). This

forms the basis of induction. Now assume that V 1
t+1(s, π1) also satisfies (P1). For ξ2 �a π2,

we have that

V 2
t (s, π2) = D(π2) + V 1

t+1(s, F 1(π2))

(a)

≥ D(ξ2) + V 1
t+1(s, F 1(ξ2))

= V 2
t (s, ξ2), (3.36)

where (a) follows from Properties 3.6.5 and 3.6.6 and the induction hypothesis. Eq. 3.36
implies that V 2

t also satisfies (P1).
Now, consider ξ1 �a π1. Let ϕ be the optimal prescription at π1. Let θ be the threshold-

based prescription corresponding to ϕ as defined in Property 3.6.3. By construction,

π1(B0(ϕ)) = ξ1(B0(θ)) and π1(B1(ϕ)) = ξ1(B1(θ)).

Moreover, from Property 3.6.3 and (3.36),

W 0
t (π1, ϕ) ≥ W 0

t (ξ1, θ) and W 1
t (π1, ϕ) ≥ W 1

t (ξ1, θ).

Combining the above two equations with (3.34), we get

V 1
t (s, π1) = λπ1(B1(ϕ)) +W 0(π1, ϕ)π1(B0(ϕ))

+W 1(π1, ϕ)π1(B1(ϕ))

≥ λξ1(B1(θ)) +W 0(ξ1, θ)ξ1(B0(θ))

+W 1(ξ1, θ)ξ1(B0(θ))

≥ V 1
t (s, ξ1) (3.37)

where the last inequality follows by minimizing over all θ. Eq. (3.37) implies that V 1
t also

satisfies (P1). Hence, by the principle of induction, (P1) is satisfied for all time.
The argument in (3.37) also implies (P2). Furthermore, (P3) follows from Prop-

erty 3.6.1.



3.6 Proof of Theorem 3.4.2 75

3.6.5 Proof of Theorem 3.4.2

We first prove a weaker version of the structure of optimal transmission strategies. In
particular, there exist threshold functions k̃t : {0, 1}×∆(R)→ R≥0 such that the following
transmission strategy is optimal:

ft(Xt, St−1,Π
1
t ) =

1, if |Xt − aZt−1| ≥ k̃t(St−1,Π
1
t )

0, otherwise
(3.38)

or, equivalently, in terms of the {Et}t≥0 process:

ft(Et, St−1,Π
1
t ) =

1, if |Et| ≥ k̃t(St−1,Π
1
t )

0, otherwise.
(3.39)

We prove (3.39) by induction. Note that π1
0 = δ0 which is SU(0). Therefore, by (P2),

there exists a threshold-based prescription ϕ0 ∈ F(0) that is optimal. This forms the
basis of induction. Now assume that until time t − 1, all prescriptions are in F(0). By
Properties 3.6.2 and 3.6.3, Π1

t is SU(0). Therefore, by (P2), there exists a threshold-based
prescription ϕt ∈ F(0) that is optimal. This proves the induction step and, hence, by the
principle of induction, threshold-based prescriptions of the form (3.39) are optimal for all
time. Translating the result back to {Xt}t≥0, we get that threshold-based prescriptions of
the form (3.38) are optimal.

Observe that Properties 3.6.2 and 3.6.3 also imply that for all t, Π2
t is SU(0). Therefore,

by Property 3.6.1, the optimal estimate Êt = 0. Recall that Êt = X̂t − Zt. Thus, X̂t = Zt.
This proves the first part of Theorem 3.4.2.

To prove that there exist optimal transmission strategies where the thresholds do not
depend on Π1

t , we fix the estimation strategy to be of the form (3.16) and consider the
problem of finding the best transmission strategy at the sensor. This is a single-agent
(centralized) stochastic control problem and the optimal solution is given by the following
dynamic program:

JT+1(e, s) = 0 (3.40)
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and for t ∈ {T, . . . , 0}

Jt(e, s) = min{J0
t (e, s), J1

t (e, s)} (3.41)

where

J0
t (e, s) = d(e) +Qs0EW [Jt+1(ae+W, 0)]

+Qs1EW [Jt+1(ae+W, 1)], (3.42)

J1
t (e, s) = λ+Qs0d(e) +Qs0EW [Jt+1(ae+W, 0)]

+Qs1EW [Jt+1(W, 1)], (3.43)

We now use the results of Chapter 6 to show that the value function is even and quasi-
convex on R≥0.

The results of Chapter 6 rely on stochastic dominance. Given two probability density
functions ξ and π over R≥0, ξ stochastically dominates π, which we denote by ξ �s π, if∫

x≥y
ξ(x)dx ≥

∫
x≥y

π(x)dx, ∀y ∈ R≥0.

Now, we show that dynamic program (3.40)–(3.43) satisfies conditions (C1)–(C3) of
Theorem 1 in Chapter 6. In particular, we have: Condition (C1) is satisfied because the
per-step cost functions d(e) and λ + Qs0d(e) are even and quasi-convex. Condition (C2)
is satisfied because the probability density µ of Wt is even, which implies that for any
e ∈ R≥0, ∫

w∈R
µ(ae+ w)dw =

∫
w∈R

µ(−ae+ w)dw.

Now, to check condition (C3), define for e ∈ R and y ∈ R≥0,

M0(y|e) =

∫ ∞
y

µ(ae+ w)dw +

∫ −y
−∞

µ(ae+ w)dw

= 1−
∫ y

−y
µ(ae+ w)dw,

M1(y|e) =

∫ ∞
y

µ(w)dw +

∫ −y
−∞

µ(w)dw.
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M1(y|e) does not depend on e and is thus trivially even and quasi-convex in e. Since µ is
even, M0(y|e) is even in e. We show that M0(y|e) is increasing in e for e ∈ R≥0 later (see
Lemma 3.6.3).

Since conditions (C1)–(C3) of Theorem 6.1.1 in Chapter 6 are satisfied, we have that
for any s ∈ {0, 1}, Jt(e, s) is even in e and increasing for e ∈ R≥0. Now, observe that

J0(e, s)− J1(e, s) = (1−Qs0)d(e) +Qs1EW [Jt+1(ae+W, 1)]− λ−Qs1EW [Jt+1(W, 1)]

which is even in e and increasing in e ∈ R≥0.
Therefore, for any fixed s ∈ {0, 1}, the set A of e in which J0

t (e, s) − J1
t (e, s) ≤ 0 is

convex and symmetric around the origin, i.e., a set of the form [−kt(s), kt(s)]. Thus, there
exist a kt(·) such that the action ut = 0 is optimal for e ∈ [−kt(s), kt(s)]. This proves the
structure of the optimal transmission strategy.

Now we prove Lemma 3.6.3. Note that a more generalized result is given by Claim 1 in
Chapter 6 and is proved in Appendix E.1. Here we prove the result for binary actions for
the continuity of the reading.

Lemma 3.6.3 For any y ∈ R≥0, M0(y|e) is increasing in e, e ∈ R≥0.

Proof To show that M0(y|e) is increasing in e for e ∈ R≥0, it sufficies to show that
1 − M0(y|e) =

∫ y
−y µ(ae + w)dw is decreasing in e for e ∈ R≥0. Consider a change of

variables x = ae+ w. Then,

1−M0(y|e) =

∫ y

−y
µ(ae+ w)dw =

∫ y−ae

−y−ae
µ(x)dx (3.44)

Taking derivative with respect to e, we get that

∂M0(y|e)
∂e

= a[µ(y − ae)− µ(−y − ae)] (3.45)

Now consider the following cases:

• If a > 0 and y > ae > 0, then the right hand side of (3.45) equals a[µ(y−ae)−µ(y+

ae)], which is positive.

• If a > 0 and ae > y > 0, then the right hand side of (3.45) equals a[µ(ae − y) −
µ(ae+ y)], which is positive.
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• If a < 0 and y > |a|e > 0, then the right hand side of (3.45) equals |a| [µ(y − |a|e)−
µ(y + |a|e)], which is positive.

• If a < 0 and |a|e > y > 0, then the right hand side of (3.45) equals |a| [µ(|a|e− y)−
µ(|a|e+ y)], which is positive.

Thus, in all cases, M0(y|e) is increasing in e, e ∈ R≥0.

3.7 Structural results for infinite horizon optimization problem

Under some technical assumptions [60], the structural results for the finite horizon can be
extended to the infinite horizon. In the rest of this chapter, we discuss the results for the
infinite horizon. Let us first define the performances in the infinite horizon setup. In this
context, we consider two cases: discounted and long-term average.

For the above two cases, similar to the finite horizon setup, the costly performance of
any communication strategy (f, g) for the infinite horizon is given by the following:

• Discounted cost: Consider a discount factor β ∈ (0, 1). Then

Cβ(f, g;λ) = (1− β)E(f,g)

[ ∞∑
t=0

βt(λUt + d(Xt, X̂t))

]
(3.46)

where the expectation is taken with respect to the joint measure on all system vari-
ables induced by the choice of (f, g).

• Long-term average cost:

C1(f, g;λ)3 = lim
T→∞

1

T
E(f,g)

[ T−1∑
t=0

λUt + d(Xt, X̂t)

]
(3.47)

3.7.1 Performance metrics for the first order autoregressive process

Given a transmission and estimation strategy (f, g) and a discount factor β ∈ (0, 1], we
define the expected distortion and the expected number of transmissions as follows. For

3For consistency of notation, here we consider β = 1 as we can get the results for long-term average by
taking β ↑ 1 using vanishing discount approach.
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β ∈ (0, 1), the expected discounted distortion is given by

Dβ(f, g) := (1− β)E(f,g)
[ ∞∑
t=0

βtd(Xt − X̂t)
∣∣∣ X0 = 0

]
(3.48)

and for β = 1, the expected long-term average distortion is given by

D1(f, g) := lim sup
T→∞

1

T
E(f,g)

[ T−1∑
t=0

d(Xt − X̂t)
∣∣∣ X0 = 0

]
. (3.49)

Note that here we used with an abuse of notation d(Xt − X̂t) to indicate the per step
distortion.

Similarly, for β ∈ (0, 1), the expected discounted number of transmissions is given by

Nβ(f, g) := (1− β)E(f,g)
[ ∞∑
t=0

βtUt

∣∣∣ X0 = 0
]

(3.50)

and for β = 1, the expected long-term average number of transmissions is given by

N1(f, g) := lim sup
T→∞

1

T
E(f,g)

[ T−1∑
t=0

Ut

∣∣∣ X0 = 0
]
. (3.51)

Note that for β ∈ (0, 1], Cβ(f, g;λ) = Dβ(f, g) + λNβ(f, g).

Remark 15 Similar to Chapter 2, we use a normalizing factor of (1−β) to have a unified
scaling for both discounted and long-term average setups. In particular, we will show that
for any strategy (f, g)

C1(f, g;λ) = lim
β↑1

Cβ(f, g;λ), and D1(f, g) = lim
β↑1

Dβ(f, g).

Similar notation is used in [42].

3.7.2 Costly communication

Now we state the optimization problem for costly communication with the infinite horizon.
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Problem 3.7.1 (Costly communication) In the model described in (3.15), for a dis-
count factor β ∈ (0, 1], identify a communication strategy (f ∗, g∗) that minimizes the cost
Cβ(f, g;λ) defined in (3.46)–(3.47).

The following is the main result for Problem 3.7.1.

Theorem 3.7.1 For a first-order autoregressive source with symmetric and unimodal dis-
turbance,

1. Structure of optimal estimation strategy: for Problem 3.7.1, the optimal estimation
strategy same as given by Theorem 3.4.2.

2. Structure of optimal transmission strategy: for Problem 3.7.1, there exist time-
homogeneous threshold functions k : {0, 1} → X≥0 such that the following transmission
strategy is optimal:

f ∗t (Xt, St−1,Π
1
t ) =

1, if |Xt − aX̂t−1| ≥ k(St−1)

0, otherwise.
(3.52)

The proof technique of Theorem 3.7.1 for the discounted case, i.e., for β ∈ (0, 1) is similar to
that of Theorem 3.4.2 and therefore is omitted. The only difference being that the threshold
functions here are time-homogeneous. This is because when we fix the estimator to be of
the form given in Theorem 3.7.1 and find the best transmitter, the dynamic program of the
corresponding centralized Markov Decision Process can be shown to be a contraction and
hence has a time-homogeneous unique solution [10]. For the long-term average case, i.e.,
for β = 1, we apply the vanishing discount approach, similar to Chapter 2.

3.7.3 Implication of Theorem 3.7.1 and dynamic programming decomposition

The implication of Theorem 3.7.1 is the following. In general, in RE problems, the struc-
ture of optimal estimation strategy depends on that of the optimal transmission strategy.
However, as is shown in Theorem 3.7.1, the optimal estimation strategy can be charac-
terized in closed form, independent of that of optimal transmission strategy. Thus, we
can fix an estimation strategy of the form (3.16) and consider the optimization problem of
finding the best transmission strategy corresponding the fixed estimation strategy. Since
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there is only one decision-maker (the transmitter), this optimization problem is centralized
in nature. Since the optimal estimation strategy given by (3.16) is time-homogeneous, it
can be shown that the optimal transmission strategy for discounted-case infinite horizon is
time-homogeneous and is given by the following dynamic program:

Vβ(e, s) = min{V 1
β (e, s), V 0

β (e, s)} (3.53)

where

V 1
β (e, s) = (1−Qs0)

(
λ+ βE[Vβ(Et+1, St) |Et = e, St−1 = s, Ut = 1, Ct = 1]

+Qs0(λ+ d(e) + βE[Vβ(Et+1, St) |Et = e, St−1 = s, Ut = 1, Ct = 0]
)

and
V 0
β (e, s) = d(e) + βE[Vβ(Et+1, St) |Et = e, St−1 = s, Ut = 0].

Let D1
β denote the performance of a strategy in which we transmit all the time. We

assume that D1
β is uniformly bounded4, say by D̄1

β <∞.
The above dynamic program has a unique solution due to the following reasons. Let us

consider X = Z. When the per-step distortion d(·) is bounded, the existence of a unique
and bounded solution follows from [51, Proposition 4.7.1, Theorem 4.6.3]. When d(·) is
unbounded, then for any communication cost λ, we first define e0 ∈ Z≥0 <∞ as:

e0 := min
{
e : d(e) ≥

D̄1
β

1− β
}
.

Now, for any state e, |e| > e0, the per-step cost (1 − β)d(e) of not transmitting is greater
then the cost of transmitting at each step in the future, which is given by D̄1

β. Thus, the
optimal action is to transmit, i.e., f ∗(e) = 1.

Let E∗ := {e : |e| ≥ e0}. Then the countable-state state-process is equivalent to a finite-
state Markov chain with state space {−e0 + 1, · · · , e0− 1} ∪ e∗ (where e∗ is a generic state
for all states in the set E∗). Since the state space is now finite, the dynamic program (3.53)
has a unique and bounded time-homogeneous solution by the argument given for bounded
d(·). The argument goes through for X = R, with the exception that in that case the

4If D1
β is not uniformly bounded, then the performance of every strategy is infinite and seeking an

optimal strategy is meaningless.
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effective state space [−e0, e0] ∪ e∗ is compact and hence the dynamic program (3.53) has a
unique and bounded time-homogeneous solution.

The results for the long-term average case can be obtained by using vanishing discount
approach. Similar to the technique adopted in Chapter 2, one can show that the value
function satisfies Proposition 2.6.3.

Proof Let V (0)
β (e, s;λ) denote the value function of the ‘always transmit’ strategy. Since

Vβ(0, s;λ) ≤ V
(0)
β (0, s;λ) and V (0)

β (0, s;λ) = λ, (S1) is satisfied with e0 = 0 and Mλ = λ.
We show (S2) for X = R, but a similar argument works for X = Z as well. Since not

transmitting is optimal at state 0, we have

Vβ(0, s;λ) = β[Qs0

∫ ∞
−∞

µ(w)Vβ(w, 0;λ)dw +Qs1

∫ ∞
−∞

µ(w)Vβ(w, 1;λ)dw].

Let V (1)
β (e, s;λ) denote the value function of the strategy that transmits at time 0 and

follows the optimal strategy from then on. Then

V
(1)
β (e, s;λ) = (1− β)[λ+Qs0d(e)] + β[Qs0

∫ ∞
−∞

µ(w)Vβ(w, 0;λ)dw +Qs1

∫ ∞
−∞

µ(w)Vβ(w, 1;λ)dw]

= (1− β)[λQs0d(e)] + βVβ(0, s;λ) (3.54)

Since Vβ(e, s;λ) ≤ V
(1)
β (e;λ) and Vβ(0, s;λ) ≥ 0, from (3.54) we get that (1−β)−1[Vβ(e, s;λ)−

Vβ(0, s;λ)] ≤ λ+Qs0d(e). Hence (S2) is satisfied with Kλ(e) = λ+Qs0d(e).
As shown in Section 3.6.5, the value function is even and quasi-convex and hence

Vβ(e, s;λ) ≥ Vβ(0, s;λ). Hence (S3) is satisfied with Lλ = 0.

Now, we are ready to show the proof of Theorem 3.7.1 for long-term average set-up.

Proof (Proof of Theorem 3.7.1 for β = 1) Since the value function Vβ(·;λ) satisfies
the SEN conditions for reference state e0 = 0, the optimality of the threshold strategy for
long-term average setup follows from [51, Theorem 7.2.3] for X = Z and [52, Theorem 5.4.3]
for X = R, respectively.
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3.8 Computation of the performances of a generic threshold based

strategy

Recall the process Et introduced in Section 3.6.1. We call this process the error process.
Let f (k) denote the threshold-based transmission strategy:

f (k)(Et, St−1) :=

1, if |Et| ≥ k(St−1)

0, if |Et| < k(St−1).
(3.55)

With a slight abuse of notation, to show the dependence of the thresholds on the channel
state St−1, we use ks, for any realization s ∈ {0, 1} of St−1. Note that (3.55) can be written
as:

f (k0,k1)(Et, St−1) :=



1, if St−1 = 0 and |Et| ≥ k0

0, if St−1 = 0 and |Et| < k0

1, if St−1 = 1 and |Et| ≥ k1

0, if St−1 = 1 and |Et| < k1.

(3.56)

Denote the set S(ks) as follows:

S(ks) =

(−ks, ks), if X = R

{−ks + 1, · · · , ks − 1}, if X = Z.

Note that (3.55) implies that when the error state e ∈ S(ks), the transmitter does not
transmit. For this reason, we call the set S(ks) the silent set. Denote by µ(S(ks)) the
following:

µ(S(ks)) :=


∫
e∈S(ks) µ(e)de, if X = R∑
e∈S(ks) µ(e), if X = Z.

Define the functions µ(ks) and d(ks) as follows:

µ(ks)(e) :=

µ(e), if e ∈ S(ks)

µ(e)

µ(S(ks)) , if e ∈ X \ S(ks).
(3.57)

Note that µ(ks) is the posterior π2
t mentioned in Lemma 3.4.2 and the process noise density
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µ refers π1
t in the same lemma.

d(ks)(e) :=

d(e), if e ∈ S(ks)

Qs0d(e), if e ∈ X \ S(ks),
(3.58)

where Qs0 := P(St = 0 |St−1 = s).
For any v : X× {0, 1} → R, define operator B(k0,k1) as

[B(k0,k1)v](e, s) := (3.59)
∑

s′∈{0,1}Qss′
∫
n∈X µ

(ks)(n− ae)v(n, s′)dn, if X = R∑
s′∈{0,1}Qss′

∑
n∈X µ

(ks)(n− ae)v(n, s′), if X = Z,

where e ∈ X and s, s′ ∈ {0, 1}. For β ∈ (0, 1], the source-state e ∈ X and the channel-state
s ∈ {0, 1}, define the following for a system that starts in state (e, s) ∈ X × {0, 1} and
follows strategy f (k0,k1):

• L(k0,k1)
β (e, s): the expected distortion until the first successful reception

• M (k0,k1)
β (e, s): the expected time until the first successful reception

• K(k0,k1)
β (e, s): the expected number of transmissions until the first successful reception

• D(k0,k1)
β (e, s): the expected distortion

• N (k0,k1)
β (e, s): the expected number of transmissions

• C(k0,k1)
β (e, s;λ): the expected total cost, i.e.,

C
(k0,k1)
β (e, s;λ) := D

(k0,k1)
β (e, s) + λN

(k0,k1)
β (e, s), λ ≥ 0.

Note that under f (k0,k1), {Et}t≥0 is a Markov process. From the balance equations, we
get: for all a, e ∈ X, s ∈ {0, 1} and ks ∈ X≥0

L
(k0,k1)
β (e, s) =

Qs0

[
d(e) + β[B(k0,k1)L

(k0,k1)
β ](e, s)

]
, if |e| ≥ ks

d(e) + β[B(k0,k1)L
(k0,k1)
β ](e, s), if |e| < ks,

(3.60)
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M
(k0,k1)
β (e, s) =

Qs0

[
1 + β[B(k0,k1)M

(k0,k1)
β ](e, s)

]
, if |e| ≥ ks

1 + β[B(k0,k1)M
(k0,k1)
β ](e, s), if |e| < ks,

(3.61)

and

K
(k0,k1)
β (e, s) =

1 +Qs0β[B(k0,k1)K
(k0,k1)
β ](e, s), if |e| ≥ ks

β[B(k0,k1)K
(k0,k1)
β ](e, s), if |e| < ks.

(3.62)

Following the proof technique adopted in Chapter 2, one can show the following (see
Appendix B.1 for the detailed proof).

Lemma 3.8.1 Equations (3.60) and (3.61) have unique solutions L(k0,k1)
β and M (k0,k1)

β that
are strictly increasing in ks for s ∈ {0, 1} and Equation (3.62) has a unique solution that
is decreasing in ks.

Proposition 3.8.1 For any β ∈ (0, 1], the performance of strategy f (k0,k1) for costly com-
munication is given as follows: For ks ∈ X>0 and s ∈ {0, 1},

D
(k0,k1)
β (0, s) := Dβ(f (k0,k1), g∗) =

L
(k0,k1)
β (0, s)

M
(k0,k1)
β (0, s)

,

N
(k0,k1)
β (0, s) =

K
(k0,k1)
β (0, s)

M
(k0,k1)
β (0, s)

,

and

C
(k0,k1)
β (0, s;λ) := Cβ(f (k0,k1), g∗;λ) =

L
(k0,k1)
β (0, s) + λK

(k0,k1)
β (0, s)

M
(k0,k1)
β (0, s)

.

See Appendix B.2 for the proof.
Note that by Proposition 3.8.1, one can computeD(k0,k1)

β andN (k0,k1)
β from the knowledge

of L(k0,k1)
β , M (k0,k1)

β and K(k0,k1)
β .

3.8.1 Computation of L(k0,k1)
β , M (k0,k1)

β and K
(k0,k1)
β for X = Z

Definition 3.8.1 The Hadamard product � for vectors and matrices is defined as follows:

• For two vectors of same dimension, v, w, v � w denotes the element-wise product,
i.e., the i-th element of the vector v � w is given by (v � w)i = viwi,



86 Remote estimation with packet drops

• For a vector v and a matrix W with the same number of rows, v �W is a matrix
given by

[v �W ]i,j = v(i)Wi,j.

Note that � is associative in the following sense. For vectors u, v and matrix W with
compatible dimensions, v � (Wu) = (v �W )u.

Define the vector h(ks) as follows:

h(ks)
e :=

Qs0, if |e| ≥ ks,

1, if |e| < ks.

Denote by h(k0,k1) ∈ Z2× 1 := [[h(k0)]ᵀ, [h(k1)]ᵀ]ᵀ. Let us now consider the augmented states
z := (e, s) and z′ := (e′, s′). Define matrix P̃ on (Z× {0, 1})2 as follows:

P̃zz′ = Qss′µ|e′−ae|, ∀z, z′ ∈ Z× {0, 1}.

Let P e denote the transition probability matrix of the error process Et and recall the same
for the channel given by matrix Q. Note that, since Et and St are statistically independent,
we can write P̃ as P̃ = P e ⊗Q, where ⊗ denotes the Kronecker product of two matrices.

Define the operator B(k0,k1) as given by the following

B(k0,k1)v := h(k0,k1) � (P̃ v) = (h(k0,k1) � P̃ )v. (3.63)

Note that (3.60) can be written as

L
(k0,k1)
β = h(k0,k1) � d̃+ βB(k0,k1)L

(k0,k1)
β , (3.64)

where d̃ := [[d(k0)]ᵀ, [d(k1)]ᵀ]ᵀ with d(k0), d(k1) defined in (3.58).
Following Lemma 3.8.1, (3.64) has a unique fixed point solution given by

L
(k0,k1)
β =

[
I − βB(k0,k1)

]−1

(h(k0,k1) � d̃), (3.65)

where I is the identity matrix of compatible dimension. Proceeding similarly, one can show
that M (k0,k1)

β and K(k0,k1)
β (defined in a similar way as in (3.65)) can be computed by the
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following:

M
(k0,k1)
β =

[
I − βB(k0,k1)

]−1

h(k0,k1), (3.66)

K
(k0,k1)
β =

[
I − βB(k0,k1)

]−1

1(k0,k1), (3.67)

where where I is the identity matrix of compatible dimension. 1(k0,k1) := [[1(k0)]ᵀ, [1(k1)]ᵀ]ᵀ

and 1(ks), s ∈ {0, 1} is given by:

1(ks)(e, s) :=

0, if e ∈ S(ks)

1, if e ∈ X \ Sks .

3.8.2 Computation of L(k0,k1)
β , M (k0,k1)

β and K
(k0,k1)
β for X = R

The results for the countable Markov state process (X = Z) extend naturally for the
uncountable case (X = R), where the process noise takes values in R and the optimal
thresholds can be computed by solving Fredholm-like integral equations of second kind.
For a generic threshold based strategy f (k0,k1), one can theoretically compute the perfor-
mances L(k0,k1)

β , M (k0,k1)
β and K(k0,k1)

β can be computed and using the renewal relationships
in Proposition 3.8.1, one can compute D(k0,k1)

β and N (k0,k1)
β . The optimal threshold can then

be computed by a binary search. Although theoretically feasible to solve the Fredholm-like
integral equations of second kind, it is not straightforward to solve them numerically be-
cause the integration kernel is discontinuous and the integration domain is (−∞,∞). For
this reason, we investigate an alternative computational approach in Chapter 4. The main
idea behind our proposed solution is to replace the exact policy evaluation by a Monte
Carlo based approximate policy evaluation and to replace the binary search for the optimal
threshold by a SA iteration.

3.9 Results for i.i.d. packet drops in the channel

In this section we consider i.i.d. packet drops in the channel. We recognize that this can
be expressed as a memoryless channel, which is a special case of the burst erasure channel
with identical rows in the probability transition matrix Q. Let us denote P(St = 0 |St−1 =

s) = P(St = 0) := ε.
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Evidently, the structural results given in Theorems 3.4.1, 3.4.2 and 3.7.1 hold for a
communication channel with an i.i.d. erasure channel. As a consequence of the i.i.d. packet
drops, the thresholds k ∈ X≥0 in Theorem 3.7.1 are scalar, independent of St−1 and hence
k0 = k1. For this reason, in the subsequent analysis, we substitute the threshold ks,
s ∈ {0, 1}, in the notations of all relevant parameters for the Markov erasure channel by k.
Consequently, the state space of the controlled Markov process reduces to X from X×{0, 1}.

In this section we discuss in details the computational results for the integer state-
process. Note that using Lemma 3.8.1 and Proposition 3.8.1, we can show the following:

Lemma 3.9.1 For any β ∈ (0, 1), D(k)
β (0) is increasing in k and N

(k)
β (0) is strictly de-

creasing in k.

See Appendix B.3 for the proof with X = Z. The proof for X = R follows similarly.
When there is a constraint in the expected number of transmissions, Nβ(f, g), β ∈ (0, 1],

say by a given α ∈ (0, 1), then the constrained communication problem is stated as follows:

Problem 3.9.1 (Constrained communication) In the model described in (3.15) , for a
discount factor β ∈ (0, 1] and a given α ∈ (0, 1), identify a communication strategy (f ∗, g∗)

that computes the following:

D∗(f, g) := min
Nβ(f,g)≤α

Dβ(f, g).

3.9.1 Optimal thresholds for costly and constrained communication for i.i.d.
erasure channel for X = Z

Finally, we characterize the optimal strategies and optimal performances for Problems 3.7.1
and 3.9.1.

Definition 3.9.1 (Bernoulli randomized simple strategy) Given two (non–random-
ized) time–homogeneous strategies f1 and f2 and a randomization parameter θ ∈ (0, 1), the
Bernoulli randomized strategy (f1, f2, θ) is a strategy that randomizes between f1 and f2 at
each stage; choosing f1 with probability θ and f2 with probability (1− θ). Such a strategy is
called a Bernoulli randomized simple strategy if f1 and f2 differ on exactly one state i.e.
there exists a state e0 such that for all e 6= e0, f1(e) = f2(e).
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The next two theorems characterize the performances for costly and constrained com-
munication for infinite-horizon setup under the optimal communication strategies as given
by Theorem 3.7.1.

Theorem 3.9.1 (Characterization of optimal costly performance) For β ∈ (0, 1], let K
denote {k ∈ Z≥0 : D

(k+1)
β (0) > D

(k)
β (0)}. For kn ∈ K, define:

λ
(kn)
β :=

D
(kn+1)
β (0)−D(kn)

β (0)

N
(kn)
β (0)−N (kn+1)

β (0)
. (3.68)

Then, we have the following.

1. For any kn ∈ K and any λ ∈ (λ
(kn−1)
β , λ

(kn)
β ], the strategy f (kn) is optimal for Prob-

lem 3.7.1 with communication cost λ.

2. The optimal performance C∗β(λ) is continuous, concave, increasing and piecewise lin-
ear in λ. The corner points of C∗β(λ) are given by {(λ(kn)

β , D
(kn)
β (0)+λ

(kn)
β N

(kn)
β (0))}kn∈K

(see Fig. 3.2).

See Appendix B.4 for the proof.

Theorem 3.9.2 (Characterization of optimal constrained performance) For any β ∈ (0, 1)

and α ∈ (0, 1), define

k∗β(α) = sup
{
k ∈ Z≥0 : αM

(k)
β ≥ K

(k)
β

}
(3.69)

θ∗β(α) =
M

(k∗)
β

(
αM

(k∗+1)
β −K(k∗+1)

β

)
K

(k∗)
β M

(k∗+1)
β −K(k∗+1)

β M
(k∗)
β

. (3.70)

For ease of notation, we use k∗ = k∗β(α) and θ∗ = θ∗β(α).
Let f ∗ be the Bernoulli randomized simple strategy (f (k∗), f (k∗+1), θ∗), i.e.,

f ∗(e) =



0, if |e| < k∗;

0, w.p. 1− θ∗, if |e| = k∗;

1, w.p. θ∗, if |e| = k∗;

1, if |e| > k∗.

(3.71)
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Fig. 3.2 The optimal costly performance as a function of λ.

Then,

1. (f ∗, g∗) is optimal for Problem 3.9.1 with constraint α.

2. Let α(k) = Nβ(f (k), g∗). Then, for α ∈ (α(k+1), α(k)), k∗ = k and θ∗ = (α −
α(k+1))/(α(k) − α(k+1)), and the distortion-transmission function is given by

D∗β(α) = θ∗D
(k)
β + (1− θ∗)D(k+1)

β . (3.72)

Moreover, the distortion-transmission function is continuous, convex, decreasing and
piecewise linear in α. Thus, the corner points of D∗β(α) are given by {(N (k)

β (0), D
(k)
β (0))}∞k=1

(see Fig. 3.3).

The proof is similar to that of Theorem 2.4.4 and hence is omitted here.

3.9.2 An example: symmetric birth-death Markov chain with i.i.d. erasure
channel

In this section, we verify with a numerical example the main results for Problem 3.9.1
and analyze the variation of the distortion-transmission function with the packet-drop
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Fig. 3.3 D∗β(α) as a function of α.

probability, ε. Consider an aperiodic, symmetric, birth-death Markov chain defined over Z
with the transition probability matrix as given by:

Pij =


p, if |i− j| = 1;

1− 2p, if i = j;

0, otherwise,

where we assume that p ∈ (0, 1
3
). Let the distortion function be d(e) = |e|. The model

satisfies (3.15) with a = 1. We verify the main results for p = 0.3, β = 0.9. Fig. 3.4 shows
the distortion-transmission function as a function of α for ε ∈ {0, 0.3, 0.7}. We see from
the plots that the optimal distortion increases with increase in the value of ε, which is in
consistent with the intuition.

3.9.3 Optimal thresholds for costly and constrained communication for i.i.d.
erasure channel for X = R

The following two theorems characterize the optimal performances under costly and con-
strained communication, the results of which essentially rely on the monotonicity properties
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Fig. 3.4 Plots of D∗β(α) versus α, for β = 0.9 and ε ∈ {0, 0.3, 0.7}.

of D(k)
β , N (k)

β and C(k)
β , which follow from Lemma 3.8.1 and Proposition 3.8.1. The proof is

similar to what is given in Chapter 2 and Appendix B.1 ( [13,14]).
Let ∂kD

(k)
β , ∂kN

(k)
β and ∂kC

(k)
β denote the derivative5 of D(k)

β , N (k)
β and C(k)

β with respect
to k.

The following two theorems characterize the optimal performance for Problems 3.7.1
and 3.9.1. The proof is similar to [14].

Theorem 3.9.3 For β ∈ (0, 1], we have the following.

1. If the pair (λ, k) satisfies the following

λ∂kN
(k)
β (0) + ∂kD

(k)
β (0) = 0, (3.73)

then, the strategy (f (k), g∗) is optimal for Problem 3.7.1 with communication cost λ.
Furthermore, for any k > 0, there exists a λ ≥ 0 that satisfies (3.73).

5Following the argument given for Lemma 2.4.1, one can show thatD(k)
β , N (k)

β and C(k)
β are differentiable

in k.
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2. The optimal performance C∗β(λ) is continuous, concave and increasing function of λ.

Theorem 3.9.4 For any β ∈ (0, 1] and α ∈ (0, 1), let k∗β(α) ∈ R≥0 be such that

N
(k∗β(α))

β (0) = α. (3.74)

Such a k∗β(α) exists and we have the following:

1. The strategy (f (k∗β(α)), g∗) is optimal for Problem 3.9.1 with constraint α.

2. The distortion-transmission function D∗β(α) is continuous, convex and decreasing in
α and is given by

D∗β(α) = D
(k∗β(α))

β (0). (3.75)

As we mentioned in the case for Markov erasure channel, although the analytical com-
putation of L(k)

β , M (k)
β and K

(k)
β requires solving the Fredholm-like integration of second

kind, here too the computation becomes challenging due to infinite limits of integration
and the discontinuity of the integrand kernel. So, we investigate the applicability of the
simulation-based approaches to find the optimal thresholds and the optimal performances.

3.9.4 A special case for X = R: Gaussian process noise: scaling with variance

In this section, similar to the ideal channel as described in [14], we derive the scaling of the
optimal threshold and the optimal performance with the variance of the process noise.

First we state the following lemma:

Lemma 3.9.2 For Gauss-Markov model (a special case of the first-order autoregressive
model with X = R), let L(k)

σ , M (k)
σ and K(k)

σ be the solutions of (3.60), (3.61) and (3.62)
respectively, when the variance of Wt is σ2. Let the per-step distortion is given by d(e) = e2

for all e ∈ R. Then

L(k)
σ (e) = σ2L

(k/σ)
1

( e
σ

)
, M (k)

σ (e) = M
(k/σ)
1

( e
σ

)
, (3.76)

K(k)
σ (e) = K

(k/σ)
1

( e
σ

)
,

D(k)
σ (e) = σ2D

(k/σ)
1

( e
σ

)
, N (k)

σ (e) = N
(k/σ)
1

( e
σ

)
. (3.77)
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The proof is given in Appendix B.5.
Define k∗(λ) = arg mink C

(k)
β (0;λ) and k∗(α) = arg min

k:N
(k)
β (0)≤αD

(k)
β (0). Then,

Theorem 3.9.5 For the Gauss-Markov model for Problems 3.3.1–3.7.1, k∗σ(λ) = k∗1(λ/a2σ2)

and C∗σ(λ) = σ2C∗1(λ/σ2). For Problem 3.9.1, k∗σ(α) = σk∗1(α) and D∗σ(α) = σ2D∗1(α).

Proof The theorem follows from Lemma 3.9.2, Proposition 3.8.1 and elementary algebra.

3.10 Conclusion

In this chapter, we studied remote estimation over a Gilbert-Elliott channel with feed-
back. We assume that the channel state is observed by the receiver and fed back to the
transmitter with one unit delay. In addition, the transmitter gets ack/nack feedback for
successful/unsuccessful transmission. Using ideas from team theory, we establish the struc-
ture of optimal transmission and estimation strategies and identify a dynamic program to
determine optimal strategies with that structure. We then consider first-order autoregres-
sive sources where the noise process has unimodal and symmetric distribution. Using ideas
from majorization theory, we show that the optimal transmission strategy has a threshold
structure and the optimal estimation strategy is Kalman-like. Furthermore, we character-
ize the optimal costly and constrained performances for a first-order autoregressive model
with i.i.d. packet drop, which is a special case of the Gilbert-Elliott channel.
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Chapter 4

Stochastic approximation based
approaches to compute optimal
thresholds in remote estimation

4.1 Introduction

Previous chapters discuss the stochastic dynamic programming formulation to find the
globally optimal solution of a team problem with non-classical information structure. In
contrast to that, in this chapter, we employ two types of Stochastic Approximation (SA)
approaches to find the optimal thresholds of the RE problem introduced in the previous
chapters. For the costly communication, we focus on estimating the local minima using
one type of SA methods, called the Stochastic Gradient (SG) method to find the optimal
solution. For the constrained communication, we use fixed point iteration method to find
the optimal solution. In the context of RE, we discuss the SA approaches to find the
optimal solution.

Although the SA algorithms typically converge to locally optimal solution, they find
their relevance in practice due to certain advantages over the stochastic dynamic program-
ming formulation. First, SA can be implemented without the knowledge of the probability
transition function of an Markov Decision Processes (MDP), whereas the dynamic pro-
gramming formulation needs the complete knowledge of it. This in fact lays the ground for
a field of learning-based treatments of stochastic optimization, called Reinforcement Learn-
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ing. Second, often in scenarios where the state and action spaces of a MDP are large, the
stochastic dynamic programming proves to be quite expensive, whereas the SA approaches
can be comparatively much cheaper by dint of proper choice of lower-dimensional features.
A term abundantly used in the field ofMachine Learning, the features are essentially param-
eterization of the control strategy, which appear in formulating the Approximate Dynamic
Program.

4.2 Motivation for applying SA approaches to RE problem

Recall the remote estimation problem with packet drops in the communication channel,
as discussed in Chapter 3. It is shown that the optimal estimator is Kalman-like and the
optimal transmitter is threshold based. In this chapter we consider the infinite horizon
optimization problem, for which the thresholds are time-homogeneous. Furthermore, we
restrict our discussion to i.i.d. erasure channels (with packet drop probability ε). As is
explained in last chapter, the task to characterize the optimal strategy and optimal perfor-
mances follows two steps: 1) compute the performance of a generic threshold-based strategy
and 2) find the optimal threshold, which leads to the optimal performance. The first step is
typically called the policy evaluation and the second step is called the policy improvement.

Exact policy evaluation: Given a policy f (k), compute L(k)
β (0), M (k)

β (0) and K(k)
β (0)

by solving (3.60), (3.61), and (3.62), and compute the performancesD(k)
β (f (k), g∗), N (k)

β (f (k), g∗),
and C(k)

β (f (k), g∗;λ) using the expressions in Proposition 3.8.1.
According to Proposition 3.8.1, computing L(k)

β (0), K(k)
β (0) and M (k)

β (0) is sufficient to
compute D(k)

β (0) and N
(k)
β (0) (and therefore, compute the performance of strategy f (k)).

In Chapter 2, which considers the case of no packet drops (i.e., ε = 0), L(k)
β (0) and M (k)

β (0)

were computed by solving the balance equations for the truncated Markov chain. These
balance equations corresponded to Fredholm integral equations of the second kind. Using
this exact policy evaluation, the optimal thresholds were identified by a binary search
over k.

When ε 6= 0, the balance equations for the truncated Markov process still correspond to
Fredholm integral equations of the second kind, but it is not straightforward to solve them
numerically because the integration kernel is discontinuous and the integration domain
is (−∞,∞). For this reason, we investigate an alternative computational approach. The
main idea behind our proposed solution is to replace the exact policy evaluation by a Monte
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Carlo based approximate policy evaluation and to replace the binary search for the optimal
threshold by a stochastic approximation iteration. In particular, we use KW algorithm [63]
and SF [64] to solve (3.73) and RM algorithm [65] to solve (3.74). The details are presented
in the next section.

Using the results of Proposition 3.8.1, it is possible to evaluate the performance of any
strategy as follows. Using an approach similar to that introduced in Chapter 2, when there
are no packet drops (i.e., ε = 0), one can derive the following standard Fredholm integral
equations of the second kind: for e ∈ [−k, k],

L
(k)
β (e) = d(e) + β

∫ k

−k
µ(w − ae)L(k)

β (w)dw,

M
(k)
β (e) = 1 + β

∫ k

−k
µ(w − ae)M (k)

β (w)dw,

K
(k)
β (e) = β

∫ k

−k
µ(w − ae)K(k)

β (w)dw.

This relationship was exploited in Chapter 2 to propose the following algorithms to
compute optimal thresholds for both costly and constrained communication.

1. For costly communication, for a given strategy f (k), ∂kD
(k)
β (0)/∂kN

(k)
β (0) is approx-

imated as
(
D

(k+δ)
β (0) − D(k)

β (0)
)
/
(
N

(k+δ)
β (0) − N (k)

β (0)
)
, where δ is a small number.

Each term in the above expression is computed using exact policy evaluation. Then,
an δ-optimal strategy is obtained by using binary search to identify a threshold k

that satisfies (3.73).

2. For constrained communication, for a given strategy f (k), N (k)
β (0) is computed using

exact policy evaluation. Then, an δ-optimal strategy is obtained by using binary
search to identify a threshold k that satisfies (3.74).

In this chapter we propose stochastic approximation based algorithms to compute the
optimal thresholds for both costly and constrained communication. Our motivation for
considering an alternative computational approach is two-fold.

First, when ε 6= 0, Eqs. (3.60) reduces to the following (the expression for (3.61) is
similar): for e ∈ R,

L
(k)
β (e) = h(k)(e)d(e) + β

∫ ∞
−∞

µ1(w − ae)h(k)(e)L
(k)
β (w)dw,
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where h(k)(e) is 1 for e ∈ (−k, k) and is ε otherwise. Although, this is a Fredholm integral
equation of the second kind, it is not straightforward to solve it numerically because the
kernel µ1(w − ae)h(k)(e) is discontinuous and the domain is (−∞,∞).

Second, the idea of solving the Fredholm integral equations does not scale to higher di-
mensions. Although, it is not known whether or not the structural results of Theorem 3.7.1
hold when the source is a vector Gauss-Markov process, yet it is appealing to use threshold
based transmission strategies due to their simplicity. Solving a multi-dimensional Fred-
holm integral equation involves iteratively solving multi-dimensional integrals, and suffers
from the usual curse of dimensionality. Furthermore, even if the Fredholm integral equa-
tion is solved approximately, searching for thresholds satisfying (3.73) or (3.74) in higher
dimensions is more complicated than the one dimensional binary search.

For these reasons, we investigate alternative computational approaches. The main idea
behind our proposed solution is to replace the exact policy evaluation by a Monte Carlo
based approximate policy evaluation and to replace the binary search for the optimal thresh-
old by a stochastic approximation iteration. In particular, we use KW algorithm [63] and
SF algorithm [64] to solve (3.73) and RM algorithm [65] to solve (3.74). The details are
presented in the next section.

4.3 Stochastic approximation algorithms

4.3.1 Noisy policy evaluation

The first step to develop a stochastic approximation algorithm to identify the optimal
thresholds is to replace the exact policy evaluation by an approximate policy evaluation.
The simplest way to do so is to use sample path average. In particular, let {(E(k)

t , U
(k)
t )}t≥0

denote the sample paths of the error process and the transmission process under policy
f (k) and T be a large number. Then, D(k)

β (0) ≈ (1 − β)
∑T

t=0 β
td(E

(k)
t ), N

(k)
β (0) ≈ (1 −

β)
∑T

t=0 β
tU

(k)
t , and C(k)

β (0;λ) = D
(k)
β (0) + λN

(k)
β (0).

For the discounted case, using naive approach leads to numerical difficulties as one needs
to compute βt for large t, which makes the term very small. To circumvent this, we estimate
L

(k)
β (0), M (k)

β (0) and K(k)
β (0) by Monte Carlo evaluations until renewal instance and then

use the renewal relationship of Proposition 3.8.1 to approximate D(k)
β (0) and N (k)

β (0). We
call this method the Renewal Monte Carlo (RMC). It is perhaps worth mentioning here
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that RMC is a low-bias method since it is inherently a Monte Carlo method, which uses no
intial guess of the value-action function and at the same time it is a lower-variance method
compared to a naive Monte Carlo method as the length of the episodes are shorter due to
renewal.

The Monte Carlo evaluations are done by averaging over K episodes. In each episode,
the error process starts at E0 = 0 and evolves under strategy f (k)

t . The episode ends at the
stopping time τ (k) of the first successful reception. Let {(E(k)

n,t , U
(k)
n,t )}t≥0 denote the sample

path of the error process and the transmission process in episode n. Then,

L
(k)
β (0) ≈ 1

K

K∑
n=1

τ (k)−1∑
t=0

βtd(E
(k)
n,t ), (4.1)

M
(k)
β (0) ≈ 1

K

K∑
n=1

τ (k)−1∑
t=0

βt, (4.2)

K
(k)
β (0) ≈ 1

K

K∑
n=1

τ (k)∑
t=0

βtU
(k)
n,t . (4.3)

Then, D(k)
β (0), N (k)

β (0), and C(k)
β (0;λ) can be computed using the expressions in Proposi-

tion 3.8.1. The complete details for this evaluation are shown in Algorithm 3.
Let L̂(k,K)

β , M̂ (k,K)
β and K̂(k,K)

β denote the right hand sides of (4.1), (4.2) and (4.3). Then,
(4.1)–(4.3) can be written as

L
(k)
β (0) = L̂

(k,K)
β + ξLK, M

(k)
β (0) = M̂

(k,K)
β + ξMK ,

K
(k)
β (0) = K̂

(k,K)
β + ξKK ,

where ξLK, ξMK and ξKK are approximation errors that go to zero as K goes to infinity. Define
estimates D̂(k,K)

β , N̂ (k,K)
β , and Ĉ(k,K)

β (λ) for D(k)
β (0), N (k)

β (0), and C(k)
β (0;λ) in terms of L̂(k)

β ,
M̂

(k)
β and K̂(k)

β using renewal expressions given in Proposition 3.8.1.
Note that the stochastic approximation algorithms that we describe next work under

mild assumptions on ξLK, ξMK and ξKK . Therefore, the number K of episodes need not be
large. In our experiments that we report later, we choose K as 1000.
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Algorithm 3: Algorithm for noisy policy evaluation
1 function MonteCarloEvaluation(k, K)

input : Threshold k ∈ R>0

Number of episodes K ∈ Z>0

output : Estimate L̂(k,K)
β of L(k)

β (0)

Estimate M̂ (k,K)
β of M (k)

β (0)

Estimate K̂(k,K)
β of K(k)

β (0)

initialize: L̂ = 0, M̂ = 0, K̂ = 0
2 for iteration i = 1 upto K do
3 Set t = 0, ` = 0, m = 0, k = 0, E0 = 0
4 while true do
5 St+1 ∼ Bernoulli(ε)
6 if |Et| < k or St+1 = 0 then
7 `← `+ βtE2

t

8 m← m+ βt

9 k ← k + βt1{|Et|≥k}
10 else
11 k ← k + βt

12 break

13 Et+1 = aEt +Wt, where Wt ∼ N (0, σ2)
14 t← t+ 1

15 L̂← L̂+ `, M̂ ← M̂ +m, K̂ ← K̂ + k

16 return (L̂/K, M̂/K, K̂/K)

4.3.2 Computing thresholds for costly communication using stochastic
approximation

In our subsequent discussion, we assume the following:

(A1) C(k)
β (0;λ) is convex in k.

(A2) E[C
(k,K)
β (λ)] = C

(k)
β (0;λ).

We verified through simulation that (A1) holds. (A2) holds if C(k,K)
β (λ) is an unbiased

estimator of C(k)
β (0;λ), which we verified through simulations.

According to Theorem 3.9.3, a threshold k is optimal if ∂kC
(k)
β (0;λ) = 0. Using Al-

gorithm 3, we can obtain a noisy “measurement” Ĉ(k,K)
β (λ) of C(k)

β (0;λ). Using this noisy
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Algorithm 4: Algorithm for costly communication using KW algorithm
input : Initial guess kinit ∈ R>0;

Number of episodes K ∈ Z>0

Number of iterations Niterations ∈ Z>0

output : Optimal threshold k◦
initialize: k◦ = kinit

1 for iteration i = 1 upto Niterations do
2 Pick δ as a small non-negative real
3 k◦+ ← k◦ + δ
4 k◦− ← k◦ − δ
5 [L̂+, M̂+, K̂+] = MonteCarloEvaluation

(
k◦+, K

)
6 [L̂−, M̂−, K̂−] = MonteCarloEvaluation

(
k◦−, K

)
7 Compute C+, C− using Proposition 3.8.1
8 ∂kC← (C+ − C−)/2δ
9 Compute γi using Adaptive Moments (AdaM) [66]

10 k◦ ← k◦ − γi∂kC
11 return k◦

measurement, it is possible to search for the optimal threshold using the KW algorithm [63],
which is a first-order stochastic gradient descent algorithm. In addition, as an alternative
to the KW algorithm, we also apply SF algorithm [64], which we discuss in Section 4.4.

The KW algorithm works as follows. We start with an initial guess k◦0 of the optimal
threshold. Let k◦i denote our guess at the beginning of iteration i. During iteration i, we
obtain a noisy measurement of the gradient ∂kC

(k)
β (0;λ) using the finite difference ∆

(k◦i ,K)
i =

Ĉ
(k◦i +δ,K)

β (λ)− Ĉ(k◦i−δ,K)

β (λ) and update our guess as follows:

k◦i+1 = k◦i − γi∆
(k◦i ,K)
i , (4.4)

where γi are learning rates that satisfy
∑∞

i=1 γi = ∞ and
∑∞

i=1 γ
2
i < ∞. See Algorithm 4

for details.

Theorem 4.3.1 Under assumptions (A1)–(A2), the threshold iterates k◦i of Algorithm 4
converge almost surely to the optimal threshold, i.e., limi→∞ k

◦
i = k∗(λ), a.s., where k∗(λ)

is optimal threshold for Problem 3.7.1.

The proof follows immediately from [63].
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Table 4.1 Comparative results for costly communication using SA (KW)
and FIE for a = 1 and ε = 0.

(a) β = 0.9

Threshold k∗ Performance C∗β(λ)

SA FIE Error SA FIE Error
λ (Absolute) (Absolute)

100 4.9355 4.9298 5.7 ×10−3 5.2511 5.2510 1.1 ×10−4

200 6.3221 6.3086 1.4 ×10−2 6.5221 6.5219 2.3 ×10−5

300 7.3421 7.3289 1.3 ×10−2 7.2208 7.2205 3.0 ×10−4

400 8.2118 8.1764 3.5 ×10−2 7.6654 7.6652 1.5 ×10−4

500 8.9469 8.9177 2.9 ×10−2 7.9700 7.9699 9.2 ×10−5

600 9.5830 9.5854 2.5 ×10−3 8.1886 8.1886 2.5 ×10−5

700 10.0803 10.1984 1.2 ×10−1 8.3515 8.3507 8.3 ×10−4

(b) β = 1.0

Threshold k∗ Performance C∗β(λ)

SA FIE Error SA FIE Error
λ (Absolute) (Absolute)

100 4.3438 4.3446 7.9 ×10−4 7.8540 7.8539 1.2 ×10−4

200 5.283 5.2841 8.3 ×10−4 11.2327 11.2324 3.0 ×10−4

300 5.9340 5.9136 2.0 ×10−2 13.8265 13.8257 7.8 ×10−4

400 6.4079 6.4004 7.5 ×10−3 16.0131 16.0124 7.6 ×10−4

500 6.8028 6.8028 4.4 ×10−5 17.9399 17.9390 9.5 ×10−4

600 7.1487 7.1485 1.1 ×10−4 19.6810 19.6809 6.7 ×10−5

700 7.4569 7.4534 3.5 ×10−3 21.2829 21.2828 8.0 ×10−5

Table 4.2 Comparative results for constrained communication using SA
(RM) and FIE for a = 1 and ε = 0.

(a) β = 0.9

Threshold k∗ Performance D∗β(α)

SA FIE Error SA FIE Error
α (Absolute) (Absolute)

0.1 2.2230 2.2217 1.3 ×10−3 0.9293 0.9283 9.9 ×10−4

0.2 1.4416 1.4404 1.2 ×10−3 0.3954 0.3947 7.0 ×10−4

0.3 1.0586 1.0620 3.4 ×10−3 0.1974 0.1989 1.5 ×10−3

0.4 0.8014 0.8057 4.3 ×10−3 0.0989 0.1003 1.4 ×10−3

0.5 0.6017 0.5981 3.5 ×10−3 0.0460 0.0453 7.4 ×10−4

0.6 0.4357 0.4395 3.7 ×10−3 0.0186 0.0190 4.6 ×10−4

0.7 0.2823 0.2808 1.5 ×10−3 0.0052 0.0052 8.1 ×10−5

0.8 0.1396 0.1465 6.8 ×10−3 0.0006 0.0007 9.9 ×10−5

(b) β = 1.0

Threshold k∗ Performance D∗β(α)

SA FIE Error SA FIE Error
α (Absolute) (Absolute)

0.1 2.5396 2.5391 5.7 ×10−4 1.3677 1.3671 5.8 ×10−4

0.2 1.6020 1.5991 2.9 ×10−3 0.5485 0.5464 2.0 ×10−3

0.3 1.1713 1.1719 6.2 ×10−4 0.2767 0.2770 3.4 ×10−4

0.4 0.9014 0.9033 1.9 ×10−3 0.1477 0.1485 7.7 ×10−4

0.5 0.6994 0.6958 3.6 ×10−3 0.0767 0.0756 1.0 ×10−3

0.6 0.5334 0.5371 3.7 ×10−3 0.0365 0.0373 7.2 ×10−4

0.7 0.3884 0.3906 2.2 ×10−3 0.0148 0.1500 2.4 ×10−4

0.8 0.2540 0.2563 2.3 ×10−3 0.0043 0.0044 1.2 ×10−4

Table 4.3 Comparative results for costly communication using SA (SF) and
FIE for a = 1 and ε = 0.

(a) β = 0.9

Threshold k∗ Performance C∗β(λ)

SA FIE Error SA FIE Error
λ (Absolute) (Absolute)

100 4.9318 4.9298 2.01 ×10−3 5.2511 5.2510 9.8 ×10−5

200 6.3074 6.3086 1.19 ×10−3 6.5221 6.5219 2.0 ×10−4

300 7.3200 7.3289 8.89 ×10−3 7.2208 7.2205 2.8 ×10−4

400 8.1858 8.1764 9.4 ×10−3 7.6652 7.6652 2.8 ×10−5

500 8.9218 8.9177 4.14 ×10−3 7.9700 7.9699 2.2 ×10−5

600 9.5868 9.5854 1.45 ×10−3 8.1886 8.1886 2.5 ×10−5

700 10.1753 10.1984 2.31 ×10−2 8.3507 8.3507 5.6 ×10−5

(b) β = 1.0

Threshold k∗ Performance C∗β(λ)

SA FIE Error SA FIE Error
λ (Absolute) (Absolute)

100 4.3558 4.3446 1.1 ×10−2 7.8541 7.8539 2.0 ×10−4

200 5.2846 5.2841 4.9 ×10−4 11.2327 11.2324 3.0 ×10−4

300 5.9204 5.9136 6.8 ×10−3 13.8263 13.8257 5.4 ×10−4

400 6.4003 6.4004 1.1 ×10−4 16.0131 16.0124 7.2 ×10−4

500 6.8113 6.8028 8.5 ×10−3 17.9400 17.9390 1.0 ×10−3

600 7.1531 7.1485 4.6 ×10−3 19.6810 19.6809 8.1 ×10−5

700 7.4513 7.4534 2.1 ×10−3 21.2829 21.2828 8.4 ×10−5

The rate of convergence of the KW algorithm is sensitive to the choice of learning
rates. We use AdaM algorithm [66] to adaptively tune the learning rate based on the
“measurements” ∆

(k◦i ,K)
i .
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4.3.3 Computing thresholds for constrained communication using stochastic
approximation

First, we note the following facts:

(F1) M
(k,K)
β is increasing with k and K

(k,K)
β is decreasing with k.

(F2) E[M
(k,K)
β ] = M

(k)
β (0) and E[K

(k,K)
β ] = K

(k)
β (0).

(F1) can be proved using an argument similar to the one used in Chapter 2. (F2) holds by
definition.

According to Theorem 3.9.2, a threshold k is optimal if αM (k)
β (0) = K

(k)
β (0). Using

Algorithm 3, we can obtain noisy “measurements” ofM (k)
β (0) andK(k)

β (0). Using these noisy
measurements, it is possible to search for the optimal threshold using the RM algorithm [65],
which is a first-order stochastic root-finding algorithm that works as follows.

We start with an initial guess k◦0 of the optimal threshold. Let k◦i denote our guess at
the beginning of iteration i. During iteration i, we obtain a noisy measurement M̂ (k,K)

β of
M

(k)
β (0) and K̂(k,K)

β of K(k)
β (0) and update our guess as follows:

k◦i+1 = k◦i − γi
(
αM̂

(k◦i ,K)
i − K̂(k◦i ,K)

i

)
, (4.5)

where γi are learning rates that satisfy
∑∞

i=1 γi = ∞ and
∑∞

i=1 γ
2
i < ∞. See Algorithm 5

for details.

Algorithm 5: Algorithm for constrained communication
input : Initial guess kinit ∈ R>0;

Number of episodes K ∈ Z>0

Number of iterations Niterations ∈ Z>0

output : Optimal threshold k◦
initialize: k◦ = kinit

1 for iteration i = 1 upto Niterations do
2 γi ← 1/i

3 [L̂, M̂ , K̂] = MonteCarloEvaluation
(
k◦, K

)
4 k◦ ← k◦ − γi

(
αM̂ − K̂

)
5 return k◦
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(a) Costly case: β = 0.9
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(b) Costly case: β = 1.0
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(c) Constrained case: β = 0.9
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(d) Constrained case: β = 1.0

Fig. 4.2 The sample paths for costly and constrained cases for ε = 0.3 with
KW and RM algorithms. Here the bold lines represent the sample means for
100 runs and the shaded regions correspond to mean ± twice the standard
deviation across the runs (i.e., the 95% confidence interval).

Theorem 4.3.2 The threshold iterates k◦i of Algorithm 5 converge almost surely to the
optimal thresholds, i.e., limi→∞ k

◦
i = k∗(α), a.s., where k∗(α) is optimal threshold for Prob-

lem 3.9.1.

The proof follows immediately from [65].
Here we found that using the learning rates γi = 1/i yields fast convergence and hence

we did not use AdaM to adapt the learning rates.
In the next section, we introduce an SA approach, alternative to KW, namely the

Smoothed Functional algorithm, and investigate its performance in the costly communica-
tion problem.
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4.4 Stochastic approximation for costly communication using

Smoothed Functional algorithm

Stochastic approximation algorithms scale well to multi-dimensional setup, where the KW
algorithm can be replaced by Simultaneous Perturbation Stochastic Approximation (SPSA)
algorithm [67] which requires only two random samples to estimate the gradient.

Like SPSA, Smoothed Functional (SF) algorithms, originally introduced in [64], also
belong to the class of simultaneous perturbation methods, because they update the gradi-
ent/Hessian of the objective using function measurements involving parameter updates that
are perturbed simultaneously in all component directions. [68,69] explore the SF algorithm
with Gaussian perturbations for the long-term average cost function with the underlying
MDP being ergodic for any given parameter value.

The key idea of SF algorithms is to approximate the gradient/Hessian of the expected
performance by its convolution with a multivariate smooth distribution function (most
commonly a Gaussian distribution). This results in smoothing of the objective function
which in turn helps the algorithm to converge to a global minimum or to a point close
to it. The main advantage of SF over SPSA algorithm is that in SF one “convexifies” the
objective function by convolving it with a convex function, which ensures that the optimal
solution thus obtained is close to the globally optimal solution. Thus, it is expected that
the variance in the sample paths in the SF algorithm will be smaller compared to that
obtained with an SPSA algorithm.

In our work we utilize a variant of SF algorithm with Gaussian smoothing, namely two
measurement Gaussian SF algorithm, that has the advantage of a lower estimation bias
in comparison to the one-sided form [70]. The basic Gaussian SF algorithm is essentially
a stochastic gradient descent algorithm, which works as follows. We start with an initial
guess k◦0 of the optimal threshold. Let k◦i denote our guess at the beginning of iteration i.
During iteration i, we obtain a noisy measurement Ĉ(k◦i ,K)

β (λ) of the objective function. Let
ηKi be a sequence of independent Gaussian variables distributed as N (0, 1). We update our
guess of optimal threshold according to the following gradiend descent rule:

k◦i+1 = k◦i − γi
ηKi
2β̃

(
Ĉ

(k◦i +β̃ηKi ,K)
i − Ĉ(k◦i−β̃ηKi ,K)

i

)
, (4.6)

where γi are learning rates that satisfy
∑∞

i=1 γi = ∞ and
∑∞

i=1 γ
2
i < ∞. β̃ > 0 is tuning



106 Stochastic approximation in remote estimation

1 2 3 4 5 6 7

·104

5

10

λ = 100

λ = 300

λ = 500

Iterations

T
hr

es
ho

ld

(a) Costly case: β = 0.9, ε = 0.3
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(b) Costly case: β = 1.0, ε = 0.3

Fig. 4.4 The sample paths for costly case for ε = 0.3 with SF algorithm.
Here the bold lines represent the sample means for 100 runs and the shaded
regions correspond to mean± twice the standard deviation across the runs (i.e.,
the 95% confidence interval). Note that the sample paths are asymptotically
converging to the mean value, which is not the case with KW algorithms
(Fig. 4.2).

Algorithm 6: Algorithm for costly communication using SA (SF) algorithm
input : Initial guess kinit ∈ R>0;

Number of episodes K ∈ Z>0

Number of iterations Niterations ∈ Z>0

output : Optimal threshold k◦
initialize: k◦ = kinit

1 for iteration i = 1 upto Niterations do
2 Pick β̃ as a small non-negative real
3 Pick η a Gaussian sample with mean 0 and variance 1
4 [L̂η+, M̂

η
+, K̂

η
+] = MonteCarloEvaluation

(
k◦ + β̃η, K

)
5 [L̂η−, M̂

η
−, K̂

η
−] = MonteCarloEvaluation

(
k◦ − β̃η, K

)
6 Compute Cη+ and Cη−, using Proposition 3.8.1
7 Compute γi using AdaM [66]
8 k◦ ← k◦ − γi η2β̃ (Cη+ − Cη−)

9 return k◦

parameter. See Algorithm 6 for details.
It is shown in [70, Proposition 6.7], that the expected value of the term in the parenthesis

in (4.6) asymptotically converges to the gradient of the performance (w.r.t. the threshold
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k), ∇kC
(k)
β , as β̃ → 0. Furthermore, given δ > 0, let Kδ denote the set of points that

are in an open δ-neighborhood of the set of global optimal solutions K. Then, under
certain assumptions, there exists a β̃0 > 0 such that for all β̃ ∈ (0, β̃0] corresponding
optimal threshold, k◦ converges almost surely to Kδ as the number of iterations i→∞ [70,
Theorem 6.8].

4.5 Numerical results

In all the results reported below, a = 1 and σ2 = 1. The code for the experiments is
available at [71].

4.5.1 Channels with no packet drop (for validation)

We start by comparing the proposed stochastic approximation algorithms with the exact
algorithm of Chapter 2.

For costly communication, we consider β ∈ {0.9, 1.0} and λ ∈ {100, 200, . . . , 700}. We
set the number of episodes in Algorithm 3 to 1000 and number of iterations in Algorithm 4
to 10,000. The corresponding thresholds are shown in Tables 4.1–4.3.

The optimal thresholds obtained by Fredholm integral equations (as proposed in Chap-
ter 2) are also shown in Tables 4.1–4.3. The thresholds obtained by stochastic approxima-
tion are within 10−2 of the optimal for most cases. We also compute the total cost C(k)

β (0;λ)

(by solving Fredholm integral equation) for both cases. The cost of the thresholds obtained
by stochastic approximation is less than 10−3 from the optimal cost. For the SF algorithm,
we tune the hyper-parameter β̃. We observed that β̃ ∈ {0.1, 0.8} yields good results.

For constrained communication, we consider β ∈ {0.9, 1.0} and α ∈ {0.1, 0.2, . . . , 0.8}.
The number of episodes in Algorithm 3 is set to 1. The corresponding thresholds are shown
in Table 4.2.

As in the case of costly communication, we compare the thresholds and the performance
D

(k)
β (0) obtained by stochastic approximation with those obtained by Fredholm integral

equations. The thresholds obtained by stochastic approximation are within 10−3 or less of
the optimal.

These results show that the results obtained by stochastic approximation algorithms
are accurate.
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4.5.2 Channel with packet drops

We repeat the experiments of the previous section with ε = 0.3. To understand the
variability of stochastic approximation across different runs, we run each experiment 100
times and plot the mean and standard deviation of the thresholds versus the number
of iterations for the KW (which is essentially the SPSA algorithm in 1-D) in Fig. 4.2–
4.4. For ease of visualization, we only show the results for a subset of values of λ and
α. For both costly and constrained communication, there is very little variation across
multiple runs. For costly communication, it takes about 9000 iterations to converge with
KW algorithm and around 20,000 iterations to converge with SF algorithm. Note that
the asymptotic convergence of the sample paths mentioned in Theorem 4.3.1 is very slow
in case of KW (see Fig. 4.2), whereas that is much faster in case of SF algorithm. For
constrained communication it takes around 3000 iterations for convergence. We repeat the
simulations for the costly performance with the SF algorithms as explained in Algorithm 6.
The results obtained are shown in Figs. 4.2–4.4.

4.6 Conclusion

We present stochastic approximation algorithms to compute optimal thresholds for remote
state estimation over communication channels with packet drops. The inner loops of these
algorithms use Monte Carlo evaluation to get a noisy estimate of the performance of a
threshold-based strategy. We embed the renewal feature of the error process to compute
the performance using Monte Carlo and call the process Renewal Monte Carlo, which gives
satisfactory result within moderately large time for convergence.

Stochastic approximation algorithms scale well to multi-dimensional setup, where the
KW algorithm can be replaced by SPSA algorithm [67], SF algorithm [64] among other
simultaneous perturbation algorithms, which requires only two random samples to estimate
the gradient.
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Chapter 5

Two-user interactive communication

In this chapter we discuss two-user interactive communication which is not quite in the
line of RE problem discussed so far, but is of considerable interest. We consider a stylized
framework with two users and analyze the optimality of threshold-based strategies.

5.1 Introduction and literature overview

In recent years, there has been increasing interest in interactive communication in the
context interactive computing, interactive source coding, and interactive channel coding.

Communication complexity, which is coding-efficiency for function computation, is con-
sidered in [72], where the focus is on establishing order-of-magnitude upper and lower
bounds for the communication complexity. The worst-case communication complexities of
all Boolean functions are provided in the discussion of the computation of vector-valued
functions in the communication complexity framework in [73].

The problem of interactive source reproduction is studied in [74,75] (where a distributed
block source coding formulation, for discrete memoryless stationary sources taking values
in finite alphabets is considered with the focus on the source reproduction), [76,77](where
two-terminal source-coding for lossless reproduction of a stationary nonergodic source with
decoder side-information is considered. Here, the code termination criterion depended
on the sources and previous messages). The problem of interactive function (Boolean)
computation satisfying an expected per-sample Hamming distortion criterion is considered
[78], which is similar to Wyner-Ziv source coding with a decoder side-information. A
three-terminal problem with dicrete memoryless stationary sources taking values in finite
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alphabets is considered in [79], where the sources are observed at one terminal and the
other two terminals try to compute the samplewise function of the sources losslessly. Two-
terminal distributed source-coding with alternating messages for function computation at
both teminals is studied in [80], where the authors show that while interaction is useless in
terms of the minimum sum-rate for lossless source reproduction at one or both locations,
the gains can be arbitrarily large for function computation even when the sources are
independent. In the survey paper [81], the authors address four fundamental organizational
and operational issues related to large sensor networks: connectivity, capacity, clocks, and
function computation. In a two-user interactive communication setup [82], where a sender
communicates with a receiver who wishes to reliably evaluate a function of their combined
data, the authors show that if only the sender can transmit, the number of bits required
is a conditional entropy of a naturally defined graph. They also determine the number of
bits needed when the communicators exchange two messages.

In [83], the author considers an interactive protocol by which he investigates if the
channel is noisy, what is the effect upon the number of transmissions needed in order to
solve the computation problem reliably and provides a simulation protocol using explicit tree
code. In [84], the authors describe new ways to simulate 2-party communication protocols
and provide the first compression schemes for general randomized protocols and the first
direct sum results in the general setting of randomized and distributional communication
complexity, without requiring bound on the number of rounds in the protocol or that the
distribution of inputs is independent.

In [85], the authors study the interactive channel capacity of an ε-noisy channel and
compute the upper bound, which compares with Shannon’s non-interactive channel ca-
pacity. For a small enough ε, their result gives the first separation between interactive
and non-interactive channel capacity. Similar results are discussed in [86], where the first
capacity approaching coding schemes are computed that robustly simulate any interac-
tive protocol over an adversarial channel that corrupts any ε fraction of the transmitted
symbols.

In this chapter we consider interactive source coding under a zero-delay or real-time
constraint. In particular, we consider a model in which two users sequentially obtain noisy
observations of a static random variable. At each time, after making its observation, user 1
sends a quantized symbol to user 2; after receiving user 1’s symbol and its own observation,
user 2 sends a quantized symbol to user 1. Then both users generate an estimate of the
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underlying static random variable. This processes repeats over a finite time horizon. At
each stage, the users quantize and estimate based on the history of their source observations
and the quantized symbols from the other user. The per-step cost consists of two parts: a
cost associated with each quantized symbol and a distortion cost between the underlying
random variable and the estimate made by the two users at that time. The objective is to
minimize the total expected cost over a finite horizon.

The above model may also be considered to be a generalization of real-time communi-
cation models of [3,6–8]. The real-time communication problem was first formulated in [3]
where the real-time source coding problem was investigated and the structure of optimal
encoding and decoding strategies was identified. These results were genralized to real-time
joint source-channel coding with noiseless feedback in [6] where, in addition, to the struc-
ture of optimal encoding and decoding strategies, a dynamic program to determine the
optimal strategies was also identified. The structure of optimal encoding and decoding
strategies for communication over noisy channel without feedback was considered in [7]; a
dynamic programming decomposition for this setup was obtained in [8]. These results were
generalized to real-time communication over noisy channels with noisy feedback in [87].

Some multi-user real-time communication problems have also been investigated in the
literature.

5.2 Model and problem formulation

Consider an interactive communication system as shown in Fig. 5.1. The system consists
of two users that observe correlated sources {X i

t}∞t=1, X i
t ∈ Xi, i ∈ {1, 2}. The sources are

generated according to
X i
t = hit(Z,W

i
t ), (5.1)

where hi is a known function, Z ∈ Z is a random variable of interest and {W 1
t }∞t=1, {W 2

t }∞t=1

are i.i.d. sequences that are independent of each other and also independent of Z. {X1
t }∞t=1,

{X2
t }∞t=1 are correlated across time and also correlated with each other. For ease of expo-

sition, we assume that the alphabets Z, X1, and X2 are finite.
The users sequentially quantize their observations and send a symbol to the other user

over a finite-rate noiseless channel. In particular, during time slot t, first user 1 sends a
symbol U1

t ∈ U1 to user 2, then user 2 sends a symbol U2
t ∈ U2 to user 1. Both U1 and



112 Two-user interactive communication

User 1 User 2
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Fig. 5.1 Block diagram of a tewo-user interactive communication system.

U2 are finite sets and the quantized symbols are generated based on all the information
available to users, i.e.,

U1
t = f 1

t (X1
1:t, U

1
1:t−1, U

2
1:t−1), U2

t = f 2
t (X2

1:t, U
1
1:t, U

2
1:t−1).

where f it is called the encoding rule of user i at time t. Cost functions ci : Ui → R≥0

measure the cost of transmission.1

During time slot t, after observing the quantized symbol from user 1, user 2 generates
an estimate Ẑ2

t ∈ Z; after observing the quantized symbol from user 2, user 1 generates an
estimate Ẑ1

t ∈ Z. These estimates are generated based on all the information available to
the users, i.e.,

Ẑ1
t = g1

t (X
1
1:t, U

1
1:t, U

2
1:t−1), Ẑ2

t = g2
t (X

2
1:t, U

1
1:t, U

2
1:t), (5.2)

where git is called the decoding rule of user i at time t. Distortion functions dit : Z×Z→ R≥0

measure the fidelity of reconstruction at time t
The sequence f i := (f i1, · · · , f iT ), i ∈ {1, 2} is called the encoding strategy of user i.

Similarly, the sequence gi := (gi1, · · · , giT ), i ∈ {1, 2} is called the decoding strategy of
user i. The tuple (f1, f2,g1,g2) is called the communication strategy.

The performance J(f1, f2,g1,g2) of a communication strategy (f1, f2,g1,g2) is given by

1Assuming a transmission cost allows us to model different scenarios. For example, in variable rate
communication, the cost function ci(ui) = log |ui| is used (see [88]). Even in fixed rate communication, a
user may not transmit at each time and the transmission cost is zero for not transmitting and a constant
for transmitting.
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the expected total transmission cost and distortion under that strategy, i.e.,

J(f1, f2,g1,g2) = E
[ T∑
t=1

2∑
i=1

[
ci(U i

t ) + dit(Z, Ẑ
i
t)
]]
, (5.3)

where the expectation is with respect to a joint measure on all system variables induced
by the choice of (f1, f2,g1,g2).

We are interested in the following optimization problem.

Problem 5.2.1 For the interactive communication system described above, choose a com-
munication strategy (f1, f2,g1,g2) that minimizes total expected cost J(f1, f2,g1,g2) defined
in (5.3).

A key feature of the above model is that both users must generate an estimate of Z at
each step. This feature makes our model different from the standard model of interactive
communication, where there are multiple rounds of communication and each user generates
a single estimate at the end of communication.

Due to this sequential nature of estimation, the standard information theoretic argu-
ments cannot be used. Instead, we directly analyze the optimization problem. The above
optimization problem has two decision makers—user 1 and user 2—that have access to
different information but need to cooperate and coordinate their actions to minimize a
common objective. Therefore, it belongs to the category of dynamic team problems [89].

The main conceptual difficulty in solving the above optimization problem is that the
information available at both users is increasing with time, and hence, so is the domain
of their stratgies. For example, suppose all alphabets are binary. Then there are 223t−2

possibilities for encoding and decoding strategies at each user at time t. Thus, even for a
horizon of 3, there are about 10175 possible communication strategies (with the dominant
term being (227)4 possibilities at stage 3). Thus, a brute force search is computationally
intractable.

In single agent muti-stage optimization problems, such a difficulty is resolved by identi-
fying a time-homogeneous information state at the decision maker. It is difficult to identify
such information states in multi-agent multi-stage decision problems because the different
decision makers have access to different information.

We resolve this difficulty in two steps using ideas from team theory. In the first step, we
take a person-by-person approach. We arbitrarily fix the strategy of one user, say user 2,
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and search for the best response strategy at user 1. By showing that X1
1:t and X2

1:t are
conditionally independent given (Z,U1

1:t, U
2
1:t), we identify a sufficient statistic ξit|t−1 (to be

defined later) of xi1:t. This means that there is no loss of optimality in restricting attention
to encoders of the form:

U1
t = f̂ 1

t (Ξ1
t|t−1, U

1
1:t−1, U

2
1:t−1), U2

t = f̂ 2
t (Ξ2

t|t−1, U
1
1:t, U

2
1:t−1).

A similar structure for the decoders is also identified.
In the second step, we use the common-information approach of [57] and identify a

sufficient statistic π1
t (to be defined later) of (u1

1:t−1, u
2
1:t−1) at user 1 and a sufficient statistic

π2
t (to be defined later) of (u1

1:t, u
2
1:t−1) at user 2. This means that there is no loss of

optimality in restricting attention to encoders of the form:

U1
t = f̃ 1

t (Ξ1
t|t−1,Π

1
t ), U2

t = f̃ 2
t (Ξ2

t|t−1,Π
2
t ).

We also identify a dynamic program that determines optimal encoding and decoding strate-
gies of the above form.

Remark 16 In this work, we consider static Z. A natural extension could be to discuss
the results for a Markovian Zt process. The main difficulty in fitting a dynamic process
is the following. In order to establish the structural results, the key steps are to (i) show
the conditional independence of the sources X i

t given the information Z1:t and (ii) find a
sufficient statistic for the process Zt, which does not grow with time. Although (i) holds
for a dynamic Zt, it is quite tricky to satisfy (ii).

5.2.1 A conditional independence result

The sources are conditionally independent given Z. Our main results rely on the fact that
the sources remain conditionally independent when conditioned on Z and the communi-
cated symbols. For ease of notation, P(X1:t = x1

1:t |Z = z, U1
1:t = u1

1:t, U
2
1:t = u2

1:t) is denoted
by P(x1

1:t | z, u1
1:t, u

2
1:t). We use similar notation for other probability expressions as well.

Lemma 5.2.1 For any arbitrary encoding strategies (f1, f2) and any realization z of Z,
xi1:t of X i

1:t, and ui1:t ∈ U i
1:t, i ∈ {1, 2}, we have the following:

P(x1
1:t, x

2
1:t | z, u1

1:t, u
2
1:t) = P(x1

1:t | z, u1
1:t, u

2
1:t)P(x2

1:t | z, u1
1:t, u

2
1:t) (5.4)
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and

P(x1
1:t, x

2
1:t | z, u1

1:t−1, u
2
1:t−1) = P(x1

1:t | z, u1
1:t−1, u

2
1:t−1)P(x2

1:t | z, u1
1:t−1, u

2
1:t−1). (5.5)

Lemma 5.2.1 can be proved using algebraic calculations involving chain rule of probability
and total probability. See Appendix D.1 for details. Similar results on conditional in-
dependence are discussed in [90] (for decentralized control systems with control sharing),
in [91,92] (for secret key argument and secure computing) and in [93] (for CEO problems).

5.2.2 Belief states and their update

For ease of notation, define Ut = (U1
t , U

2
t ).

Definition 5.2.1 For any realization xi1:t of X i
1:t and ui1:t of U i

1:t, i ∈ {1, 2} define belief
states ξit|t−1, ξ

i
t|t ∈ ∆(Z) as follows: for any z ∈ Z,

ξit|t−1(z) = P(Z = z |X i
1:t = xi1:t, U1:t−1 = u1:t−1),

ξit|t(z) = P(Z = z |X i
1:t = xi1:t, U1:t = u1:t),

where ut = (u1
t , u

2
t ).

ξit|t−1 denotes user i’s belief on Z after it has observed the source realization of time t
but before the communication of that time slot takes place; ξit|t denotes the belief after the
communication has taken place. For a specific realization of (xi1:t, u1:t), ξit|t−1 and ξit|t are
probability distributions. When the conditioning is on random variables (X i

1:t, U1:t), the
beliefs are ∆(Z) valued random variables that we denote by the corresponding uppercase
letters Ξi

t|t−1 and Ξi
t|t.

In order to derive the structural results, it is important to identify how these beliefs
depend on the strategy. To do so, we determine how the beliefs evolve with time. In the
sequel, we use −i to denote the user different from user i.

Lemma 5.2.2 There exist functions F i
t|t, F

i
t+1|t, i ∈ {1, 2}, such that

ξit|t = F i
t|t
(
ξit|t−1, u1:t, f

−i), ξit+1|t = F i
t+1|t

(
ξit|t, u1:t, x

i
t+1

)
. (5.6)
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By combining these two, we get that there exists a function F i
t such that

ξit+1|t+1 = F i
t (ξ

i
t|t, u1:t, x

i
t+1, f

−i). (5.7)

The proof of Lemma 5.2.2 is given in Appendix D.2.

5.2.3 Step 1: The person-by-person approach

As explained earlier, we follow a two-step approach to derive the structure of optimal
strategies. In the first step, we follow a person-by-person approach. We arbitrarily fix the
strategy of one user and then investigate the best response strategy at the other user.

First, we identify the structure of optimal decoding strategies. Since decoding is a
filtering problem, we have:

Proposition 5.2.1 (Structure of optimal decoding strategies) There is no loss of
optimality to restrict the attention to decoding strategies of the form:

Ẑi
t = ĝi(Ξi

t|t), i ∈ {1, 2}, (5.8)

where ĝit is given by
ĝi(ξi) = arg min

ẑi∈Z

∑
z∈Z

di(z, ẑi)ξi(z).

Now, we fix the decoders at both users according to (5.8) and find the best response
encoder. By combining Lemmas 5.2.1 and 5.2.2, one can show the following:

Lemma 5.2.3 Fix decoding strategies g1,g2 to be of the form (5.8). Arbitrarily fix the
communication strategy f2 of user 2. Then, R1

t = (Ξi
t|t−1, U1:t−1) is an information state

for the encoder at user 1. In particular, R1
t satisfies the following properties:

1. R1
t is a function of the information (X1

1:t, U1:t−1) available at user 1.

2. The conditional distribution of R1
t+1 given all the available information (X1

1:t, U1:t−1)

and the current action U1
t depends only on R1

t and U1
t , i.e.,

P(R1
t+1 |X1

1:t, U1:t−1, U
1
t ) = P(R1

t+1 |R1
t , U

1
t ). (5.9)
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3. R1
t is a sufficient statistic for the current cost. In particular,

E
[ ∑
i∈{1,2}

(ci(U i
t ) +di(Z, Ẑi

t)) |X1
1:t, U1:t−1, U

1
t

]
= E

[ ∑
i∈{1,2}

(ci(U i
t ) +di(Z, Ẑi

t)) |R1
t , U

1
t

]
.

(5.10)

A similar result holds if (f1,g1) is fixed and we consider the best response at user 2.
Lemma 5.2.3 implies that {R1

t}t≥1 is a controlled Markov process with control action
U1
t . Therefore, there is no loss of optimality to restrict attention to Markov strategies

U1
t = f̂ 1

t (Ξ1
t|t−1, U1:t−1).

By repeating the argument at user 2, we get the following:

Proposition 5.2.2 (Structure of optimal encoding strategies) There is no loss of
optimality to restrict the attention to encoding strategies of the form:

U1
t = f̂ 1

t (Ξ1
t|t−1, U1:t−1), U2

t = f̂ 2
t (Ξ2

t|t−1, U1:t−1, U
1
t ). (5.11)

5.2.4 Step 2: The common-information approach

We have identified the structure of optimal decoders in closed form and simplified the struc-
ture of optimal encoders. In this section, we refine the structural result of Proposition 5.2.2
by following the common-information approach of [57].

We fix the decoding strategies as specified in Proposition 5.2.1 and consider the problem
of optimally selecting encoding strategies that are of the form (5.11). Following [57], define
the common information to be the data that is observed by all future decision makers, i.e.,
define the common information Ci

t at user i at time t as:

C1
t = U1:t−1, C2

t = (U1:t−1, U
1
t ).

Define the remaining information at user i as local information Lit, i.e., Lit = ξit|t−1. Thus,
we can say

U i
t = f it (L

i
t, C

i
t).

The main idea of [57] is to consider Problem 5.2.1 from the point of view of a virtual decision
maker that observes Ci

t and chooses prescriptions φit : Lit 7→ U i
t that map local information
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to actions. The encoders simply use these mappings and their local information to generate
U i
t .
It is shown in [57] that the above coordinated system is equivalent to the original system.

Since the coordinated system has only one decision maker, it can be solved using tools from
Markov decision theory. To describe the results, we first note that:

Lemma 5.2.4 For the encoders of the form given in Proposition 5.2.2, the update of
Lemma 5.2.2 can be written as

ξit|t = F i
t|t
(
ξit|t−1, u

−i
t , φ

−i
t

)
. (5.12)

Definition 5.2.2 For any realization xi1:t of X i
1:t and ui1:t of U i

1:t, i ∈ {1, 2} define belief
states πit ∈ ∆(∆(X1)×∆(X2)) as follows: for any ξ1

t|t−1, ξ
2
t|t−1 ∈ ∆(Z),

π1
t (ξ

1, ξ2) = P(Ξ1
t|t−1 = ξ1,Ξ2

t|t−1 = ξ2 |U1:t−1 = u1:t−1),

π2
t (ξ

1, ξ2) = P(Ξ1
t|t−1 = ξ1,Ξ2

t|t−1 = ξ2 |U1:t−1 = u1:t−1, U
1
t = u1

t ),

where ut = (u1
t , u

2
t ).

Then, similar to Lemma 5.2.4, we can show the following

Lemma 5.2.5 There exist functions F̃ i
t , i ∈ {1, 2}, such that

π1
t+1 = F̃ 1

t

(
π2
t , U

2
t , φ

2
t

)
, π2

t = F̃ 2
t

(
π1
t , U

1
t , φ

1
t

)
. (5.13)

According to the discussion above, we fix the decoding strategy to be of the form
Proposition 5.2.1 and restrict encoding strategy to be of the form Proposition 5.2.2. The
optimization problem then satisfies the partial history sharing model of [57]. Therefore,
from [57], we get the following:

Theorem 5.2.1 There is no loss of optimality in restricting attention to encoding strategies
of the form:

U1
t = f̃ 1

t (ξ1
t|t−1,Π

1
t ), U2

t = f̃ 2
t (ξ2

t|t−1,Π
2
t ). (5.14)
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Moreover, optimal strategies of this form may be determined from the following dynamic
program. Define

Di
t(ξ

i
t|t) =

∑
z∈Z

dit(z, ĝ
i(ξit|t))ξ

i
t|t(z), i ∈ {1, 2}.

Then, recursively define value functions {V 1
t }t≥1 and {V 2

t }t≥1 as follows:

V 2
T+1(π2) = 0 (5.15)

and for t = T , T − 1, . . . , 1

V 2
t (π2) = min

φ2t : ∆(Z)→U2
E[c2(U2

t ) +D2
t (Ξ

2
t|t) + V 1

t+1(Π1
t+1) | Π2

t = π2, U2
t = φ2

t (Ξ
2
t|t−1)], (5.16)

and

V 1
t (π1) = min

φ1t : ∆(Z)→U1
E[c1(U1

t ) +D1
t (Ξ

1
t|t) + V 2

t (Π2
t ) | Π1

t = π1, U1
t = φ1

t (Ξ
1
t|t−1)]. (5.17)

Let ψ2
t (π

2) denote the arg min of (5.16) and ψ1
t (π

1) denote the arg min of (5.17). Then,
the optimal strategy f̃1, f̃2 is given by

f̃ it (ξ
i
t|t−1, π

i
t) = ψit(π

i
t)(ξ

i
t|t−1). (5.18)

Note that the expectations in (5.16) and (5.17) can be computed using the update rules in
Lemmas 5.2.2 and 5.2.5.

5.3 Discussion and conclusion

Theorem 5.2.1 identifies a sufficient statistic at the encoder and the decoder; the domain
of which does not depend on time. Moreover, the dynamic program provides a way to
identify optimal (or sub-optimal) strategies. As a consequence, the search complexity
increases linearly with time horizon (rather than double exponentially, as for brute force
search). If Z is finite, say of cardinality n, then ∆(Xi) may be viewed as an element of
Rn−1; and hence the belief space is the space of probability distributions on R2n−2.

Note that the dynamic program is similar to the dynamic programs for partially ob-
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servable Markov decision processes (POMDP). So, it is possible to use point-based algo-
rithms for continuous state POMDPs to numerically solve the resultant dynamic program.
Another option is to use discretization based algorithms developed for real-time communi-
cation [94]. Following [9], it may be possible to establish that threshold-based strategies
are optimal when all random variables are Gaussian and the transmitter has the option of
not transmitting.

Since the domain of the encoding and decoding strategies is not changing with time,
the result of Theorem 1 naturally extends to infinite horizon setups as well. We expect
that under appropriate regularity conditions, the optimal strategy is time homogeneous and
given by the fixed point of a dynamic program. It may be possible to use such a dynamic
program to find bounds on time average distortion.

Although the results of this chapter are derived for a two-user interactive communica-
tion system, they generalize to the following multi-terminal setup. Consider n users with
observations similar to (5.1). During time-slot t, first user 1 broadcasts a symbol U1

t to
all users. Then user 2 broadcasts U2

t to all users, and so on, until user n broadcasts Un
t

to all users. All users generate an estimate of Z and the process repeats at t + 1. Such a
multi-user setup can be analyzed using the same approach as presented in this work.
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Chapter 6

Sufficient conditions for evenness and
quasi-convexity of the value function
and the optimal strategies

In this chapter we discuss a topic which is not a Remote Estimation (RE) problem by itself,
but the main result discussed here is one of the central ideas in establishing the structural
results in the previous chapters. In all of the scenarios we have mentioned so far, we
recognize the role of symmetry and monotonicity for the optimality of the threshold-based
strategies. This motivates us to analyze in a more general setup the sufficient conditions
for the value function and the optimal strategies to be symmetric and quasi-convex.

6.1 Motivation

Markov decision theory is often used to identify structural or qualitative properties of
optimal strategies. Examples include control limit strategies in machine maintenance [95,
96], threshold-based strategies for executing call options [97, 98], and monotone strategies
in queueing systems [99, 100]. In all of these models, the optimal strategy is monotone in
the state, i.e., if x > y then the action chosen at x is greater (or less) than or equal to the
action chosen at y. Motivated by this, general conditions under which the optimal strategy
is monotone in scalar-valued states are identified in [60, 101–105]. Similar conditions for
vector-valued states are identified in [106–108]. General conditions under which the value
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function is increasing and convex are established in [109].
Most of the above results are motivated by queueing models where the state (i.e., the

queue length) takes non-negative values. However, for typical applications in systems and
control, the state takes both positive and negative values. Often, the system behavior
is symmetric for positive and negative values, so one expects the optimal strategy to be
even. Thus, for such systems, a natural counterpart of monotone functions are even and
quasi-convex (or quasi-concave) functions. In this chapter, we identify sufficient conditions
under which the value function and optimal strategy are even and quasi-convex.

As a motivating example, consider a remote estimation system in which a sensor ob-
serves a Markov process and decides whether to transmit the current state of the Markov
process to a remote estimator. There is a cost or constraint associated with transmission.
When the transmitter does not transmit (or when the transmitted packet is dropped due to
interference), the estimator generates an estimate of the state of the Markov process based
on the previously received states. The objective is to choose transmission and estimation
strategies that minimize either the expected distortion and cost of communication or mini-
mize expected distortion under the transmission constraint. Variations of such models have
been considered in [9–11,13,14,26,110].

In such models the optimal transmission and estimation strategies are identified in two
steps. In the first step, the joint optimization of transmission and estimation strategies is
investigated and it is established that there is no loss of optimality in restricting attention
to estimation strategies of a specific form. In the second step, estimation strategies are
restricted to the form identified in the first step and the structure of the best response
transmission strategies is established. In particular, it is shown that the optimal trans-
mission strategies are even and quasi-convex.1 Currently, in the literature these results
are established on a case by case basis. For example, see [9, Theorem 1], [10, Theo-
rem 3], [28, Theorem 1], [14, Theorem 1] among others.

In this chapter, we identify sufficient conditions for the value functions and optimal
strategy of a Markov decision process to be even and quasi-convex. We then consider a
general model of remote estimation and verify these sufficient conditions.

1When the action space is binary—as is the case in most of the models of remote estimation—an even
and quasi-convex strategy is equivalent to one in which the action zero is chosen whenever the absolute
value of the state is less than a threshold.
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6.1.1 Model and problem formulation

Consider a Markov decision process (MDP) with state space X (which is either R, the
real line, or a symmetric subset of the form [−a, a]) and action space U (which is either a
countable set or a compact subset of reals).

Let Xt ∈ X and Ut ∈ U denote the state and action at time t. The initial state X1

is distributed according to the probability density function µ and the state evolves in a
controlled Markov manner, i.e., for any Borel measurable subset A of X,

P(Xt+1 ∈ A | X1:t = x1:t, U1:t = u1:t) = P(Xt+1 ∈ A | Xt = xt, Ut = ut),

where x1:t is a short hand notation for (x1, . . . , xt) and a similar interpretation holds of u1:t.
We assume that there exists a (time-homogeneous) controlled transition density p(y|x;u)

such that for any Borel measurable subset A of X,

P(Xt+1 ∈ A | Xt = x, Ut = u) =

∫
A

p(y|x;u)dy.

We use p(u) to transition density corresponding to action u ∈ U.
The system operates for a finite horizon T . For any time t ∈ {1, . . . , T − 1}, a measur-

able function ct : X× U→ R denotes the instantaneous cost at time t and at the terminal
time T a measurable function cT : X→ R denotes the terminal cost.

The actions at time t are chosen according to a Markov strategy ft, i.e.,

Ut = ft(Xt), t ∈ {1, . . . , T − 1}.

The objective is to choose a decision strategy f := (f1, . . . , fT−1) to minimize the expected
total cost

J(f) := Ef
[ T−1∑
t=1

ct(Xt, Ut) + cT (XT )
]
. (6.1)

We denote such an MDP by (X,U, p, c).
From Markov decision theory [111], we know that an optimal strategy is given by the

solution of the following dynamic program. Recursively define value functions Vt : X → R
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and value-action functions Qt : X× U→ R as follows: for all x ∈ X and u ∈ U,

VT (x) = cT (x), (6.2)

and for t ∈ {T − 1, . . . , 1},

Qt(x, u) = ct(x, u) + E[Vt+1(Xt+1) | Xt = x, Ut = u]

= ct(x, u) +

∫
X
p(y|x;u)Vt+1(y)dy, (6.3)

Vt(x) = min
u∈U

Qt(x, u). (6.4)

Then, a strategy f∗ = (f ∗1 , . . . , f
∗
T−1) defined as

f ∗t (x) ∈ arg min
u∈U

Qt(x, u)

is optimal. To avoid ambiguity when the arg min is not unique, we pick

f ∗t (x) =

max
{
v ∈ arg min

u∈U
Qt(x, u)

}
, if x ≥ 0

min
{
v ∈ arg min

u∈U
Qt(x, u)

}
, if x < 0.

(6.5)

Let X≥0 and X>0 denote the sets {x ∈ X : x ≥ 0} and {x ∈ X : x > 0}. We say that
a function g : X → R is even and quasi-convex if it is even and for x, x′ ∈ X≥0 such that
x < x′, we have that g(x) ≤ g(x′). The main contribution of this chapter is to identify
sufficient conditions under which Vt and f ∗t are even and quasi-convex.

6.1.2 Main result

For a given u ∈ U, we say that a controlled transition density p(u) on X× X is even if for
all x, y ∈ X, p(y|x;u) = p(−y|−x;u).

Our main result is the following.

Theorem 6.1.1 Given an MDP (X,U, p, c), define for x, y ∈ X≥0 and u ∈ U,

S(y|x;u) = 1−
∫
Ay

[p(z|x;u) + p(−z|x;u)]dz, (6.6)
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where Ay = {x ∈ X : x < y}. Consider the following conditions:

(C1) cT (·) is even and increasing and for t ∈ {1, . . . , T − 1} and u ∈ U, ct(·, u) is even and
quasi-convex.

(C2) For all u ∈ U, p(u) is even.

(C3) For all u ∈ U and y ∈ X≥0, S(y|x;u) is increasing for x ∈ X≥0.

(C4) For t ∈ {1, . . . , T − 1}, ct(x, u) is submodular2 in (x, u) on X≥0 × U.

(C5) For all y ∈ X≥0, S(y|x;u) is submodular in (x, u) on X≥0 × U.

Then, under (C1)–(C3), Vt(·) is even and quasi-convex for all t ∈ {1, . . . , T} and under
(C1)–(C5), f ∗t (·) is even and quasi-convex for all t ∈ {1, . . . , T − 1}.

The main idea of the proof is as follows. First, we identify conditions under which
the value function and optimal strategy of an MDP are even. Next, we show that if we
construct an MDP by “folding” the transition density, then the “folded MDP” has the same
value function and optimal strategy as the original MDP for non-negative values of the
state. Finally, we show that if we take the sufficient conditions under which the value
function and the optimal strategy of the folded MDP are increasing and “unfold” these
conditions back to the original model, we get conditions (C1)–(C5) above. The details are
given in the next two sections.

6.2 Even MDPs and folded representations

We say that an MDP is even if for every t and every u ∈ U, Vt(x), Qt(x, u) and f ∗t (x) are
even in x. We start by identifying sufficient conditions for an MDP to be even.

6.2.1 Sufficient condition for MDP to be even

Proposition 6.2.1 Suppose an MDP (X,U, p, c) satisfies the following properties:

(A1) cT (·) is even and for every t ∈ {1, · · · , T − 1} and u ∈ U, ct(·, u) is even.

(A2) For every u ∈ U, the transition density p(u) is even.
2Submodularity is defined in Sec. 6.3.2
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Then, the MDP is even.

Proof We proceed by backward induction. VT (x) = cT (x) which is even by (A1). This
forms the basis of induction. Now assume that Vt+1(x) is even in x. For any u ∈ U, we
show that Qt(x, u) is even in x. Consider,

Qt(−x, u) = ct(−x, u) +

∫
X
p(y|−x;u)Vt+1(y)dy

(a)
= ct(x, u) +

∫
X
p(−z|−x;u)Vt+1(−z)dz

(b)
= ct(x, u) +

∫
X
p(z|x;u)Vt+1(z)dz = Qt(x, u)

where (a) follows from (A1), a change of variables y = −z, and the fact that X is a
symmetric interval; and (b) follows from (A2) and the induction hypothesis that Vt+1(·) is
even. Hence, Qt(·, u) is even.

Since Qt(·, u) is even, Eqs. (6.4) and (6.5) imply that Vt and f ∗t are also even. Thus,
the result is true for time t and, by induction, true for all time t.

6.2.2 Folding operator for distributions

We now show that if the value function is even, we can construct a “folded” MDP with
state-space X≥0 such that the value function and optimal strategy of the folded MDP match
that of the original MDP on X≥0. For that matter, we first define the following:

Definition 6.2.1 (Folding Operator) Given a probability density π on X, the folding
operator Fπ gives a density π̃ on X≥0 such that for any x ∈ X≥0, π̃(x) = π(x) + π(−x).

As an immediate implication, we have the following:

Lemma 6.2.1 If f : X → R is even, then for any probability distribution π on X and
π̃ = Fπ, we have ∫

x∈X
f(x)π(x)dx =

∫
x∈X≥0

f(x)π̃(x)dx.

Now, we generalize the folding operator to transition densities.

Definition 6.2.2 Given a transition density p on X× X, the folding operator Fp gives a
transition density p̃ on X≥0×X≥0 such that for any x, y ∈ X≥0, p̃(y|x) = p(y|x) + p(−y|x).
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Definition 6.2.3 (Folded MDP) Given an MDP (X,U, p, ct), define the folded MDP as
(X≥0,U, p̃, ct), where for all u ∈ U, p̃(u) = Fp(u).

Let Q̃t and Ṽt and f̃ ∗t denote respectively the value-action function, the value function,
and the optimal strategy of the folded MDP. Then, we have the following.

Proposition 6.2.2 If the MDP (X,U, p, ct) is even, then for any x ∈ X and u ∈ U,

Qt(x, u) = Q̃t(|x|, u), Vt(x) = Ṽt(|x|), f ∗t (x) = f̃ ∗t (|x|). (6.7)

Proof We proceed by backward induction. For x ∈ X and x̃ ∈ X≥0, VT (x) = cT (x) and
ṼT (x̃) = cT (x̃). Since VT (·) is even, VT (x) = VT (|x|) = ṼT (|x|). This is the basis of
induction. Now assume that for all x ∈ X, Vt+1(x) = Ṽt+1(|x|). Consider x ∈ X≥0 and
u ∈ U. Then we have

Qt(x, u) = ct(x, u) +

∫
X
p(y|x;u)Vt+1(y)dy

(a)
= ct(x, u) +

∫
X≥0

p̃(y|x;u)Vt+1(y)dy

(b)
= ct(x, u) +

∫
X≥0

p̃(y|x;u)Ṽt+1(y)dy = Q̃t(x, u),

where (a) uses Lemma 6.2.1 and that Vt+1 is even and (b) uses the induction hypothesis.
Since the Q-functions match for x ∈ X≥0, equations (6.4) and (6.5) imply that the value

functions and the optimal strategies also match on X≥0, i.e., for x ∈ X≥0,

Vt(x) = Ṽt(x) and f ∗t (x) = f̃ ∗t (x).

Since Vt and f ∗t are even, we get that (6.7) is true at time t. Hence, by principle of induction,
it is true for all t.

6.3 Monotonicity of the value function and the optimal strategy

We have shown that under (A1) and (A2) the original MDP is equivalent to a folded
MDP with state-space X≥0. Thus, we can use standard conditions to determine when the
value function and the optimal strategy of the folded MDP are monotone. Translating
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these conditions back to the original model, we get the sufficient conditions for the original
model.

6.3.1 Monotonicity of the value function

The results on monotonicity of value functions rely on the notion of stochastic monotonicity.
Given a transition density p defined on X, the cumulative transition density function P

is defined as
P (y|x) =

∫
Ay

p(z)dz, where Ay = {x ∈ X : x < y}.

Definition 6.3.1 (Stochastic Monotonicity) A transition density p on X is said to
be stochastically monotone if for every y ∈ Y, the cumulative density function P (y|x)

corresponding to p is decreasing in x.

Proposition 6.3.1 Suppose the folded MDP (X≥0,U, p̃, c) satisfies the following:

(B1) cT (x) is increasing in x for x ∈ X≥0; for any t ∈ {1, . . . , T − 1} and u ∈ U, ct(x, u)

is increasing in x for x ∈ X≥0.

(B2) For any u ∈ U, p̃(u) is stochastically monotone.

Then, for any t ∈ {1, . . . , T}, Ṽt(x) is increasing in x for x ∈ X≥0.

A version of this proposition when X is a subset of integers is given in [60, Theorem 4.7.3].
The same proof argument also works when X is a subset of reals.

Recall the definition of S given in (6.6). (B2) is equivalent to the following:

(B2’) For every u ∈ U and x, y ∈ X≥0, S(y|x, u) is increasing in x.

An immediate consequence of Propositions 6.2.1, 6.2.2, and 6.3.1 is the following:

Corollary 6.3.1 Under (A1), (A2), (B1), and (B2) (or (B2’)), the value functions Vt(·)
is even and quasi-convex.

Remark 17 Note that (A1) and (B1) are equivalent to (C1), (A2) is same as (C2), and
(A2) and (B2) (or equivalently, (A2) and (B2’)) are equivalent to (C3). Thus, Corol-
lary 6.3.1 proves the first part of Theorem 6.1.1.
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6.3.2 Monotonicity of the optimal strategy

Now we state sufficient conditions under which the optimal strategy is increasing. These
results rely on the notion of submodularity.

Definition 6.3.2 (Submodular function) A function g : X× U → R is called submod-
ular if for any x, y ∈ X and u, v ∈ U such that x ≥ y and u ≥ v, we have

g(x, u) + g(y, v) ≤ g(x, v) + g(y, u).

An equivalent characterization of submodularity is that

g(y, u)− g(y, v) ≥ g(x, u)− g(x, v),

=⇒ g(x, v)− g(y, v) ≥ g(x, u)− g(y, u),

which implies that the differences are decreasing.

Proposition 6.3.2 Suppose that in addition to (B1) and (B2) (or (B2’)), the folded MDP
(X≥0,U, p̃, ct) satisfies the following property:

(B3) For all t ∈ {1, . . . , T − 1}, ct(x, u) is submodular in (x, u) on X≥0 × U.

(B4) For all y ∈ X≥0, S(y|x;u) is submodular in (x, u) on X≥0 × U, where S(y|x;u) is
defined in (6.6).

Then, for every t ∈ {1, · · · , T−1}, the optimal strategy f̃ ∗t (x) is increasing in x for x ∈ X≥0.

A version of this proposition when X is a subset of integers is given in [60, Theorem 4.7.4].
The same proof argument also works when X is a subset of reals.

An immediate consequence of Propositions 6.2.1, 6.2.2, and 6.3.1 is the following:

Corollary 6.3.2 Under (A1), (A2), (B1), (B2) (or (B2’)), (B3), and (B4) the optimal
strategy f ∗t (·) is even and quasi-convex.

Remark 18 As argued in Remark 17, (A1), (A2), (B1), (B2) are equivalent to (C1)–(C3).
Note that (B3), (B4) is the same as (C4), (C5). Thus, Corollary 6.3.2 proves the second
part of Theorem 6.1.1.
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6.4 Remarks about discrete X

So far we assumed that X was a subset of the real line. Now suppose X is discrete (either
the set Z of integers or a symmetric subset of the form {−a, . . . , a}). With a slight abuse
of notation, let p(y|x;u) denote P(Xt+1 = y|Xt = x, Ut = u).

Theorem 6.4.1 The result of Theorem 6.1.1 is true for discrete X with S defined as

S(y|x, u) = 1−
∑
z∈Ay

[
p(z|x;u) + p(−z|x;u)

]
where Ay = {x ∈ X : x < y}.

The proof proceeds along the same lines as the proof of Theorem 6.1.1. In particular,

• Proposition 6.2.1 is also true for discrete X.

• Given a probability mass function π on X, define the folding operator F as follows:
π̃ = Fπ means that π̃(0) = π(0) and for any x ∈ X>0, π̃(x) = π(x) + π(−x).

• Use this definition of the folding operator to define the folded MDP, as in Defini-
tion 6.2.3. Proposition 6.2.2 remains true with this modified definition.

• A discrete state Markov chain with transition function p is stochastically monotone
if for every y ∈ X,

P (y|x) =
∑
z∈Ay

p(z), where Ay = {x ∈ X : x < y}

is decreasing in x.

• Propositions 6.3.1 and 6.3.2 are also true for discrete X.

• The result of Theorem 6.4.1 follows from Corollaries 6.3.1 and 6.3.2.

6.4.1 Monotone dynamic programming

Under (C1)–(C4), the even and quasi-convex property of the optimal strategy strategy can
be used to simplify the dynamic program given by (6.2)–(6.4). For conciseness, assume
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that the state space X is a set of integers form {−a,−a + 1, · · · , a − 1, a} and the action
space U is a set of integers of the form {u, u+ 1, · · · , ū− 1, ū}.

Initialize VT (x) as in (6.2). Now, suppose Vt+1(·) has been calculated. Instead of com-
puting Qt(x, u) and Vt(x) according to (appropriately modified versions of) (6.3) and (6.4),
we proceed as follows:

1. Set x = 0 and wx = u.

2. For all u ∈ [wx, ū], compute Qt(x, u) according to (6.3).

3. Instead of (6.4), compute

Vt(x) = min
u∈[wx,ū]

Qt(x, u), and set

ft(x) = max{v ∈ [wx, ū] s.t. Vt(x) = Qt(x, v)}.

4. Set Vt(−x) = Vt(x) and ft(−x) = ft(x).

5. If x = a, then stop. Otherwise, set wx+1 = ft(x) and x = x+ 1. Go to step 2.

6.4.2 A remark on randomized actions

Suppose U is a discrete set of the form {u, u + 1, . . . , ū}. In constrained optimization
problems, it is often useful to consider the action space W = [u, ū], where for u, u+ 1 ∈ U,
an action w ∈ (u, u+ 1) corresponds to a randomization between the “pure” actions u and
u+ 1. More precisely, let transition probability p̆ corresponding to W be given as follows:
for any x, y ∈ X and w ∈ (u, u+ 1),

p̆(y|x;w) = (1− θ(w))p(y|x;u) + θ(w)p(y|x;u+ 1)

where θ : W→ [0, 1] is such that for any u ∈ U,

lim
w↓u

θ(w) = 0, and lim
w↑u+1

θ(w) = 1. (6.8)

Thus, p̆(w) is continuous at all u ∈ U.

Theorem 6.4.2 If p(u) satisfies (C2), (C3), and (C5) then so does p̆(w).
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Proof Since p̆(w) is linear in p(u) and p(u + 1), both of which satisfy (C2) and (C3), so
does p̆(w).

To prove that p̆(w) satisfies (C5), note that

S̆(y|x,w) = S(y|x, u) + θ(w)[S(y|x, u+ 1)− S(y|x, u)].

So, for v, w ∈ (u, u+ 1) such that v > w, we have that

S̆(y|x, v)− S̆(y|x,w) =
(
θ(v)− θ(w)

)
[S(y|x, u+ 1)− S(y|x, u)]

Since θ(·) is increasing, θ(v)− θ(w) ≥ 0. Moreover, since S(y|x, u) is submodular in (x, u),
S(y|x, u+1)−S(y|x, u) is decreasing in x, and, therefore, so is S̆(y|x, v)−S̆(y|x,w). Hence,
S̆(y|x,w) is submodular in (x,w) on X × (u, u + 1). Due to (6.8), S̆(y|x;w) is continuous
in w. Hence, S̆(y|x;w) is submodular in (x,w) on X × [u, u + 1]. By piecing intervals of
the form [u, u+ 1] together, we get that S̆(y|x;w) is submodular on X×W.

6.5 An example: Optimal power allocation strategies in remote

estimation

Consider a remote estimation system that consists of a sensor and an estimator. The sensor
observes a first order autoregressive process {Xt}t≥1, Xt ∈ X, where X1 = 0 and for t > 1,

Xt+1 = aXt +Wt,

where a ∈ X is a constant and {Wt}t≥1 is an i.i.d. noise process. We consider two cases:

1. Case A: The state space is continuous, i.e., X = R. In this case we assume that
{Wt}t≥1 is distributed according to probability density function ϕ.

2. Case B: The state space is discrete, i.e., X = Z. In this case we assume that {Wt}t≥1

is distributed according to probability mass function ϕ.

At each time step, the sensor uses power Ut to send a packet containing Xt to the remote
estimator. Ut takes values in [0, umax], where Ut = 0 denotes that no packet is sent. The
packet is received with probability q(Ut), where q is an increasing function with q(0) = 0

and q(umax) ≤ 1.
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Let Yt denote the received symbol. Yt = Xt if the packet is received and Yt = E if the
packet is dropped. Packet reception is acknowledged, so the sensor knows Yt with one unit
delay. At each stage, the receiver generates an estimate X̂t as follows. X̂0 is 0 and for
t > 0,

X̂t =

aX̂t−1, if Yt = E

Yt, if Yt 6= E.

Under some conditions, such an estimation rule is known to be optimal [9, 10,12,13,112].
There are two types of costs: (i) a communication cost λ(Ut), where λ is an increasing

function with λ(0) = 0; and (ii) an estimation cost d(Xt − X̂t), where d is an even and
quasi-convex function with d(0) = 0.

Define the error process {Et}t≥0 as Et = Xt− aX̂t−1. The error process {Et}t≥0 evolves
in a controlled Markov manner as follows:

Et+1 =

aEt +Wt, if Yt = E

Wt, if Yt 6= E
(6.9)

Due to packet acknowledgments, Et is measurable at the sensor at time t. If a packet is
received, then X̂t = Xt and the estimation cost is 0. If the packet is dropped, Xt− X̂t = Et

and an estimation cost of d(Et) is incurred.
The objective is to choose a transmission strategy f = (f1, . . . , fT ) of the form Ut =

ft(Et) to minimize

E

[ T∑
t=1

[
λ(Ut) + (1− q(Ut)d(Et)

]]
.

The above model is Markov decision process with state Et ∈ X, control action Ut ∈
[0, umax], per-step cost

c(e, u) = λ(u) + (1− q(u))d(e), (6.10)

and transition density/mass function

p(e+|e;u) = q(u)ϕ(e+) + (1− q(u))ϕ(e+ − ae). (6.11)

For ease of reference, we restate the assumptions imposed on the cost:

(M0) q(0) = 0 and q(umax) ≤ 1.
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(M1) λ(·) is increasing with λ(0) = 0.

(M2) q(·) is increasing.

(M3) d(·) is even and quasi-convex with d(0) = 0.

In addition, we impose the following assumptions on the probability density/mass function
of the i.i.d. process {Wt}t≥1:

(M4) ϕ(·) is even.

(M5) ϕ(·) is unimodal (i.e., quasi-concave).

Claim 1 We have the following:

1. under assumptions (M0) and (M3), the per step cost function given by (6.10) satisfies
(C1).

2. under assumptions (M0), (M2) and (M3), the per step cost function given by (6.10)
satisfies (C4).

3. under assumption (M4), the transition density p(u) given by (6.11) satisfies (C2).

4. under assumptions (M0), (M2), (M4) and (M5), the transition density p(u) satisfies
(C3) and (C5).

The proof is given in Appendix E.1.
An immediate consequence of Theorem 6.1.1 and Claim 1 is the following:

Theorem 6.5.1 Under assumptions (M0), (M2)–(M4), the value function for the remote
estimation model is even and quasi-convex. Under the additional assumption (M5), the
optimal strategy is also even and quasi-convex.

Remark 19 Note that the result does not depend on (M1). This is for the following reason.
Suppose there are two power levels u1, u2 ∈ [0, umax] such that u1 < u2 but λ(u1) ≥ λ(u2),
then for any e ∈ X, c(e, u1) ≥ c(e, u2). Thus, action u1 is dominated by action u2 and is,
therefore, never optimal and can be eliminated.
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Remark 20 Although Theorem 6.5.1 is derived for continuous action space, it is also true
when the action space is a discrete set. In particular, if we take the action space to be {0, 1}
and q(1) = 1, we get the results of [9, Theorem 1], [26, Proposition 1], [10, Theorem 3], [14,
Theorem 1]; if we take the action space to be {0, 1} and q(1) = ε, we get the result
of [13, Theorem 1], [110, Theorem 2].

6.6 Conclusion

In this chapter we consider a Markov decision process with continuous or discrete state
and action spaces and analyze the monotonicity of the optimal solutions. In particular, we
identify sufficient conditions under which the value function and the optimal strategy are
even and quasi-convex. The proof relies on a folded representation of the Markov decision
process and uses stochastic monotonicity and submodularity. We present an example of
optimal power allocation in remote estimation and show that the sufficient conditions are
easily verified.
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Chapter 7

Conclusion and future directions

7.1 Summary of the results presented in this thesis

In this thesis we investigated the dynamic team (i.e. team with decentralized control) that
appears in a remote estimation problem. We restrict our attention to two-agent system—
with one transmitter and one estimator–connected by an erasure communication channel
which is either one-way and noiseless or two-way with noisy forward and noiseless feedback.
The noise in the channel is considered to take place in the form of loss of packets. For the
ideal channel and an erasure channel with and without memory, we have investigated the
structure of the optimal communication strategy and characterized optimal performance
in the context of costly or constrained communicationthe, where the constraint is on the
expected number of transmissions. The Lagrange relaxation of the constrained problem is
posed as a costly communication. For an arbitrary but fixed estimation strategy, we use a
person-by-person approach to find the structure of the best performing transmitter. The
estimator solves a filtering problem. Although in general the structure of the estimation
strategy depends on the transmission strategy, for a stylized model with some simplifying
assumptions, the structure of the optimal strategy can be computed irrespective of the
transmission strategy. This trick converts the decentralized problem into an equivalent
centralized problem with only one decision maker–the transmitter. The dynamic program
for the infinite horizon optimization problem is formulated, which is similar to that of a
POMDP, with the minimization taken over a functional space.

For a stylized model with some simplifying assumptions, we further simplify the com-
putation of the optimal performance. It is argued that some sufficient conditions such as
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symmetry in the per-step cost function and the distribution of the process noise along with
submodularity and stochastic monotonicity, the value function and the optimal strategy
are even and quasi-convex. Thus, the optimality of a class of simple transmission strategies
called the threshold-based strategies is established. The optimal estimator is shown to be
Kalman-like.

After establishing the structures of the optimal communication strategies, the focus
of this thesis centers around characterizing completely the optimal costly and constrained
performances. By a change of variable, we proceed our discussion with a regenerative
process called the error process. This enables us to compute certain parameters until the
time of reset and apply Renewal Theory to compute the performance a generic threshold-
based strategy. Computation of the optimal thresholds involve the submodularity property
of the costly performance and some sufficient conditions for the optimality of a constrained
performance.

7.1.1 Discussions on the generality of the results

The structural results in the RE problem with ideal and erasure channel have been previ-
ously established on a case-by-case basis. For example, [9] takes into account the first-order
autoregressive process with Gaussian noise and finite horizon. [10] proves the optimality
results along with a dynamic programming decomposition for finite horizon and discrete
as well as continuous state space. Both of these works consider ideal communication chan-
nel. In contrast, i.i.d. packet drops in the channel in long-term average setup is considered
in [12]. In this thesis, we have tried to provide a unified framework to discuss the optimality
results for different scenarios occurring in the RE problem, which is summarized below.

• Discrete and continuous state space: We investigate the optimization problems
for both discrete state space (we call it Model A in Chapter 2) and continuous state
space (we call it Model B in Chapter 2). Although most of the results are generated
for a first-order autoregressive Markov process, we talk about the structural results
for a generic communication model without the stylized structure (for example, see
Chapter 3.3).

• Symmetry and monotonicity in optimal solutions: We analyze the sufficient
conditions for the value function and the optimal strategies to be even and quasi-
convex in states. This leads to a class of optimal solutions which are of threshold-
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type. In Chapter 6 we have generalized the binary action-space (whether to transmit
or not) that occurs in a remote estimation problem to a finite (for discrete actions)
or a compact (for continuous actions) action-space and elucidate the results with an
example of the power-allocation in remote estimation.

• Infinite horizon: In most of the thesis, we have considered the infinite horizon opti-
mization problem, where we consider both the discounted and the long-term average
cases. Under certain technical conditions to show that effectively the state space is
compact and the distortion is bounded (for e.g. see Chapters 2–3), the structural
results obtained with finite horizon setup can be extended to the infinite horizon
case. The value function in infinite horizon is a contraction and consequently the op-
timal strategies are time-homogeneous. We have unified the results for the long-term
average setup and those for the discounted case by invoking the vanishing discount
approach.

• Costly and constrained optimization: In this research we have addressed the
constrained optimization problem, where the constraint is on the expected number
of transmissions. In order to find the optimal solutions, we first solved its Lagrange
relaxation, which we call the costly optimization problem.

• Erasure communication channel: We consider a one-way noiseless channel (Chap-
ter 2) as well as a two-way channel which is noisy in the forward path and the feedback
is noiseless (Chapter 3). The noise in the channel is in terms of packet drop. Instead
of a binary communication channel, we consider a more generic version of erasure
channel, where the input alphabet to the channel is the observation made by the
transmitter/sensor, and the output of the channel is the input alphabet or an erasure
symbol, which is the input to the estimator/receiver.

• Learning in RE: In this work, in the context of the numerical methods to find a
global optimal solution of a remote estimation problem, we explore the applicabil-
ity of learning-based methods (stochastic approximation). The limitations in terms
of computational complexity that arises in the analytical formulation triggered our
curiosity to delve into the domain of the numerical methods to find globally optimal
strategy. We focus on certain stochastic gradient methods that yield satisfactory
results for one-dimensional problem. In case of Markov erasure channels, the need
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for a proper interpretation of optimality results in two-dimensional space is required.
In one dimensional problem, the optimality of the threshold-based strategies is es-
tablished. In higher dimension, although the optimality of threshold-based strategies
is not known, it is perhaps still worth investigating the performance of the best
threshold-based strategy due to the simplicity of implementation.This motivated us
to investigate stochastic gradient algorithms using simultaneous perturbation meth-
ods, which has its merits in the face of curse of dimensionality. In order to shed
some light on the effectiveness of such algorithms, we compare the results yielded by
two such algorithms. In all simulations, we have integrated a variant of Monte Carlo
simulation, which we call the Renewal Monte Carlo simulation, with the renewal rela-
tionships found in Chapters 2–3. As discussed in Chapter 4, for the discounted case,
this method has the advantage of circumventing numerical issues arising with very
small values of the βt for a large value of t.

7.2 Some discussion on the results

7.2.1 Comments on the assumptions

The main assumptions that enable us to get an optimal estimator that is indifferent to
transmission strategies and to analyze the optimality of the threshold-based strategy are
as follows:

• (A1) Unimodality and symmetry in the state-dynamics: We assume that
the process noise is unimodal and symmetric. This results in the pre- and post-
transmission beliefs of the estimator to be symmetric and unimodal, which is crucial
for our analysis, as this brings about the stochastic monotonic distributions and plays
the key role in the structure of the optimal estimation strategy.

• (A2) Even and quasi-convexity of the cost function: We assume that the
per-step cost function, which involves the transmission cost and the distortion due
to estimation, to be even and quasi-convex in the state. This, together with the
stochastic monotonicity of the state process, leads to the evenness and quasi-convexity
of the value function.

• (A3) The parameter a: We assume that the state-dynamic parameter a is known
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to the agents.

(A1) is fairly mild since we are not restricting to any particular distribution (it could be
of finite or infinite support). At the same time, it includes distributions, which occur in
practice, e.g. Gaussian, Cauchy distribution etc. (A2) is a reasonable assumption since in
most scenarios we consider the distortion to be an even function of the error. We assume
(A3) for simplicity of the analysis. If a is not known to the agents, then the transmitter
sends its estimate of a along with its observation of the state and the estimator uses this
input to generate its output. The rest of the results remain the same.

7.2.2 Some issues relevant to RE

Given below is a brief synopsis of some aspects that might be interesting to analyze, which
we left out in our research. These lay the course for future research in the context of RE.

• Partial observation of the source symbol by the transmitter. In this thesis
we assume that the transmitter fully observes the state process and takes a deci-
sion of whether or not to transmit. This is a fairly reasonable in the context of
battery-powered transmitters fully observing the source and sending data-packet over
a packet-switched network, where the size of data-packet is cheap compared to the
transmission of the data. When the transmitter does not observe the source com-
pletely, it can generate its own estimate of Xt based on its past decisions (solving a
filtering problem), and send that estimate to the receiver. The rest of the analysis
remains same for the optimal communication strategies.

• On the noise present in the channel. In this thesis we assume that the noise
present in the forward path of the channel (i.e., from the transmitter to the estima-
tor) is due to the loss of packets. There has been few recent results on the presence
of noise in the communication channel. In the finite horizon setup, [113] shows the
optimization results for a communication channel with i.i.d. noise with Gamma dis-
tribution. The transmitter transmits its observation of the source symbol Xt and
the sign of the source symbol as a side-information to the receiver. It would be an
interesting extension to our current framework to add noise in addition to the packet
drop in the channel and to analyze the optimality results.
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We assume that the feedback (ACK/NACK) from the receiver is noiseless. The
situation of noisy feedback is tricky in the sense that although we can evaluate the
performance of the noisy feedback in the same light of the noisy forward channel, it
is not straightforward to establish the optimality results.

• Quantization of the source. In this thesis we assume that the transmission of
the source is much costlier compared to the sensing and the size of the data-packet.
This situation is commensurate with the applications in networked systems, where
the transmitters are often battery-powered devices sending its observations over a
packet-switched network to a remotely placed estimator. However, if the size of data-
packet is also costly, the transmitter needs to quantize the data. Such a variant of
the remote estimation problem can be taken care of by vector quantization of the
source as a part of a lossy source coding and use our scheme to to come up with an
approximation of the source symbol.

7.3 Future directions

We believe that there are several possible directions which may lead to interesting results
in the framework of the optimality of the monotone strategies, the threshold-based strategy
being one of them. In the current framework with two-agent dynamic team problem, the
effects of the scenarios mentioned in Section 7.2.2 will be quite interesting.

A straightforward extension of the first-order autoregressive problems that we discussed
in this thesis would be to consider a controlled state dynamics. For a class of problems with
such a dynamics, such as inventory control, the optimality of the threshold-based strategies
is established in literature [114]. We can use the SA approach developed in this thesis to
compute the optimal threshold and optimal performances.

It would be interesting to utilize the framework for analyzing the structure of the optimal
strategies and the optimal performance developed in the current work to control problems
where there is a cost of communication along with the classical certainty-equivalent opti-
mal controller (as in a classical Linear Quadratic Gaussian (LQG) control problem). The
fundamental trade-off lies between the controller performance and the communication cost.
It would be worthwhile to investigate the optimal solutions for one-step delayed sharing
when there is a cost pertaining to sharing of the state.
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Another way open for research is the extension of these results in a multidimensional
framework. When the source symbols are vector-valued, the performances of threshold-
based transmission strategies along with Kalman-like estimator can be evaluated. Such an
extension could be worth investigating due to the simple implementation of the threshold-
based strategies. Although the optimality of such strategies is not yet established, finding
the best performing threshold-based strategy has the potential of finding significance prac-
tical applicability. For a non-diagonal system matrix in the vector-valued state dynamics,
the transmission strategy faces the thresholds embedded in an Euclidean space (of dimen-
sion higher than one). The notion of monotonicity is trickier in such a scenario, since total
ordering is not defined in higher dimensional Euclidean space. One needs to define a proper
notion of ordering in order to define the optimal threshold.

Last but not the least, the scope of learning in remote estimation problem seems to
have its own merits. In an even more generic framework, for a broader class of dynamic
team problems having the state evolution with controlled restarts (which turns the error
process regenerative), the application of RMC may prove to be advantageous over naive
Monte Carlo or the temporal difference methods, which tend to have high variance and
high bias respectively. With some additional knowledge of the symmetry and monotonicity
property of the state dynamics and the optimal strategies, one could successfully employ
functional approximation in the approximate dynamic programming. This aspect of re-
search increases the feasibility of finding the optimal solutions with fewer assumptions on
the source model and when the analytical computations become too expensive (e.g. the
difficulty with continuous state processes that is mentioned in Chapter 4). Furthermore,
this area of research opens the scope of analyzing the implication in general decentralized
control problem with big data, where the decision of sharing the state of the source with
the controller becomes harder due to high processing cost.
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Appendix A

Proofs of Chapter 2

A.1 Proof of the structural results

The results of [10] relied on the notion of ASU (almost symmetric and unimodal) distribu-
tions introduced in [115].

Definition A.1.1 (Almost symmetric and unimodal distribution) A probability dis-
tribution µ on Z is almost symmetric and unimodal (ASU) about a point a ∈ Z if for every
n ∈ Z≥0,

µa+n ≥ µa−n ≥ µa+n+1.

A probability distribution that is ASU around 0 and even (i.e., µn = µ−n) is called ASU
and even. Note that the definition of ASU and even is equivalent to even and decreasing
on Z≥0.

Definition A.1.2 (ASU Rearrangement) The ASU rearrangement of a probability dis-
tribution µ, denoted by µ+, is a permutation of µ such that for every n ∈ Z≥0,

µ+
n ≥ µ+

−n ≥ µ+
n+1.

We now introduce the notion of majorization for distributions supported over Z, as
defined in [50].
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Definition A.1.3 (Majorization) Let µ and ν be two probability distributions defined
over Z. Then µ is said to majorize ν, which is denoted by µ �m ν, if for all n ∈ Z≥0,

n∑
i=−n

µ+
i ≤

n∑
i=−n

ν+
i ,

n+1∑
i=−n

µ+
i ≤

n+1∑
i=−n

ν+
i .

The structure of optimal estimator in Theorem 2.6.1 were proved in two steps in [10].
The first step relied on the following two results.

Lemma A.1.1 Let µ and ν be probability distributions with finite support defined over Z.
If µ is ASU and even and ν is ASU about a, then the convolution µ ∗ ν is ASU about a.

Lemma A.1.2 Let µ, ν, and ξ be probability distributions with finite support defined over
Z. If µ is ASU and even, ν is ASU, and ξ is arbitrary, then ν �m ξ implies that µ ∗ ν �m
µ ∗ ξ.

These results were originally proved in [115] and were stated as Lemmas 5 and 6 in [10].
The second step (in the proof of structure of optimal estimator in Theorem 2.6.1) in [10]

relied on the following result.

Lemma A.1.3 Let µ be a probability distribution with finite support defined over Z and
f : Z→ R≥0. Then,

∞∑
n=−∞

f(n)µn ≤
∞∑

n=−∞

f+(n)µ+
n .

We generalize the results of Lemmas A.1.1, A.1.2, and A.1.3 to distributions over Z with
possibly countable support. With these generalizations, we can follow the same two-step
approach of [10] to prove the structure of optimal estimator as given in Theorem 2.6.1.

The structure of optimal transmitter in Theorem 2.6.1 in [10] only relied on the structure
of optimal estimator. The exact same proof works in our model as well.

A.1.1 Generalization of Lemma A.1.1 to distributions supported over Z

The proof argument is similar to that presented in [115, Lemma 6.2]. We first prove the
results for a = 0. Assume that ν is ASU and even. For any n ∈ Z≥0, let r(n) denote the
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rectangular function from −n to n, i.e.,

r(n)(e) =

1, if |e| ≤ n,

0, otherwise.

Note that any ASU and even distribution µ may be written as a sum of rectangular
functions as follows:

µ =
∞∑
n=0

(µn − µn+1)r(n).

It should be noted that µn − µn+1 ≥ 0 because µ is ASU and even. ν may also be written
in a similar form.

The convolution of any two rectangular functions r(n) and r(m) is ASU and even. There-
fore, by the distributive property of convolution, the convolution of µ and ν is also ASU
and even.

The proof for the general a ∈ Z follows from the following facts:

1. Shifting a distribution is equivalent to convolution with a shifted delta function.

2. Convolution is commutative and associative.

A.1.2 Generalization of Lemma A.1.2 to distributions supported over Z

We follow the proof idea of [50, Theorem II.1]. For any probability distribution µ, we can
find distinct indices ij, |j| ≤ n such that µ(ij), |j| ≤ n, are the 2n + 1 largest values of µ.
Define

µn(ij) = µ(ij),

for |j| ≤ n and 0 otherwise. Clearly, µn ↑ µ and if µ is ASU and even, so is µn.
Now consider the distributions µ, ν, and ξ from Lemma A.1.2 but without the restriction

that they have finite support. For every n ∈ Z≥0, define µn, νn, and ξn as above. Note that
all distributions have finite support and µn is ASU and even and νn is ASU. Furthermore,
since the definition of majorization remain unaffected by truncation described above, νn �m
ξn. Therefore, by Lemma A.1.2,

µn ∗ νn �m µn ∗ ξn.
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By taking limit over n and using the monotone convergence theorem, we get

µ ∗ ν �m µ ∗ ξ.

A.1.3 Generalization of Lemma A.1.3 to distributions supported over Z

This is an immediate consequence of [50, Theorem II.1].

A.2 Proof of Lemma 2.4.1

Let ‖ · ‖∞ denote the sup-norm, i.e., for any v : S(k) → R,

‖v‖∞ = sup
e∈S(k)

|v(e)|.

To prove the lemma, let us first prove the following:

Lemma A.2.1 For β ∈ (0, 1), for both Models A and B, the operator βB(k) is a contrac-
tion, i.e., for any v : S(k) → R,

‖βB(k)v‖∞ ≤ β‖v‖∞.

Thus, for any bounded h : S(k) → R, the equation

v = h+ βB(k)v (A.1)

has a unique bounded solution v. In addition, if h is continuous, then v is continuous.

Proof We state the proof for Model B. The proof for Model A is similar. By the definition
of sup-norm, we have that for any bounded v

‖βB(k)v‖∞ = β sup
e∈(−k,k)

∫ k

−k
φ(w − ae)v(w)dw

≤ β sup
e∈(−k,k)

‖v‖∞
∫ k

−k
φ(w − ae)dw

≤ β‖v‖∞, (since φ is a pdf).
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Hence, βB(k) is a contraction.
Now, consider the operator B′ given as: B′v = h+ βB(k)v. Then we have,

‖B′(v1 − v2)‖∞ = β‖B(k)(v1 − v2)‖∞ ≤ β‖v1 − v2‖∞.

Since β ∈ (0, 1) and the space of bounded real-valued functions is complete, by Banach
fixed point theorem, B′ has a unique fixed point.

If h is continuous, we can define B(k) and B′ as operators on the space of continuous
and bounded real-valued function (which is complete). Hence, the continuity of the fixed
point follows also from Banach fixed point theorem.

A.2.1 Proof of (b) of Lemma 2.4.1

Note that for any bounded v, ‖B(k)v‖∞ is bounded and increasing in k. We show that
L

(k)
β (e) is continuous and differentiable in k. Similar argument holds for M (k)

β (e).
We show the differentiability in k. Continuity follows from the fact that differentiable

functions are continuous. Note that L(k)
β (e) and M (k)

β (e) are even functions of e. Now, for
any ε > 0 we have

L
(k+ε)
β (e)− L(k)

β (e)

= β

∫ k

−k
φ(w − ae)[L(k+ε)

β (w)− L(k)
β (w)]dw + 2β

∫ k+ε

k

φ(w − ae)L(k+ε)
β (w)dw

= β

∫ k

−k
φ(w − ae)[L(k+ε)

β (w)− L(k)
β (w)]dw + 2βφ(k − ae)L(k+ε)

β (k + ε)ε+O(ε2)

Let R(k)
β (e, w; a) be the resolvent of φ, as given in (16). Then,

L
(k+ε)
β (e)− L(k)

β (e) = 2β

∫ k

−k
R

(k)
β (e, w; a)φ(k − ae)L(k+ε)

β (w)εdw +O(ε2)

This implies that

∣∣∣ L(k+ε)
β (e)− L(k)

β (e)

ε

∣∣∣ ≤ 2‖φ‖∞‖L(k)
β ‖∞

∣∣∣ ∫ k

−k
βR

(k)
β (e, w; a)dw

∣∣∣ +O(ε).

Since βB(k) is a contraction, the value of the integral in the first term on the right hand
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side of the above inequality is less than 1 and the result follows from the definition of
differtiability.

Proof of Lemma 2.4.1

The solutions of equations (2.11) and (2.12) exist due to Lemma A.2.1.

(a) Consider k, l ∈ X≥0 such that k < l. A sample path starting from e ∈ S(k) must
escape S(k) before it escapes S(l). Thus L(l)

β (e) ≥ L
(k)
β (e). In addition, the above

inequality is strict because Wt has a unimodal distribution. Similar argument holds
for M (k)

β .

(b) The continuity and differentiability is shown in Section A.2.1.

(c) The limit holds since L(k)
β (e) and M (k)

β (e) are continuous functions of β.

A.3 Proof of Proposition 2.4.1

1. C(l)
β (0;λ)−C(k)

β (0;λ) = (D
(l)
β (0)−D(k)

β (0))−λ(N
(k)
β (0)−N (l)

β (0)). By Lemma ?? and
Theorem 2.4.2, N (k)

β (0)−N (l)
β (0) is positive, hence C(l)

β (0;λ)−C(k)
β (0;λ) is decreasing

in λ. Hence C(k)
β (0;λ) is submodular.

2. Note that k∗β(λ) = arg infk≥0C
(k)
β (0;λ) can take a value ∞ (which corresponds to

the strategy ‘never communicate’). Thus, the domain of k is X≥0 ∪ {∞}, which is
compact. Hence, by [116, Theorem 2.8.2], k∗β is increasing in λ.

A.4 Proofs of Propositions 2.6.1 and 2.6.2

We prove the results for Model A when the horizon T is finite. The results then follow by
taking limits as T →∞. The proofs for Model B are almost identical.

The value function for the finite horizon setup for β ∈ (0, 1]is given by Vβ,T+1 = 0 and
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for t = T, · · · , 1

Vβ,t(e;λ) = min
{

(1− β)λ+ β
∞∑

n=−∞

pnVβ,t+1(n;λ),

(1− β)d(e) + β

∞∑
n=−∞

pn−aeVβ,t+1(n;λ)
}
. (A.2)

The value functions V (+)
t and V (−)

t are defined similarly.
For ease of notation, we drop β and λ in the rest of the discussion in this Appendix.

Lemma A.4.1 The value functions Vt(·), V (+)
t (·) and V (−)

t (·) are even.

Proof For all a ∈ X, the per-step costs d(e) and λ are even and the transition probabilities
Pen(0) = pn−ae and Pen(1) = pn satisfy Pen(u) = P(−e)(−n)(u) for u ∈ {0, 1}. Therefore,
Vt(e) is even [117, Theorem 1]. A similar argument holds for V (+)

t (e) and V (−)
t (e).

Lemma A.4.2 For the finite horizon setup, V (+)
t (e) = V

(−)
t (e).

Proof We prove the result by backward induction. The result is trivially true for T + 1 as
V

(+)
T+1(e) = V

(−)
T+1(e) = 0, which forms the basis of the induction. Assume V (+)

t+1 (e) = V
(−)
t+1 (e)

for all e ∈ X. Define

V̂
(+)
t (e) =

∞∑
n=−∞

pn−aeV
(+)
t+1 (n), V̂

(−)
t (e) =

∞∑
n=−∞

pn+aeV
(−)
t+1 (n).

Then

V̂
(+)
t (e) =

∞∑
n=−∞

pn−aeV
(+)
t+1 (n) =

∞∑
−n=−∞

p−n−aeV
(+)
t+1 (−n)

(a)
=

∞∑
n=−∞

pn+aeV
(+)
t+1 (n)

(b)
=

∞∑
n=−∞

pn+aeV
(−)
t+1 (n) = V̂

(−)
t (e),

where (a) uses p and V (+)
t+1 are even and (b) uses the induction hypothesis. Substituting this

back in the definition of V (+)
t (e) and V

(−)
t (e), we get that V (+)

t (e) = V
(−)
t (e). Therefore,

the result is true by induction.
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Lemma A.4.3 For m, e ∈ X≥0, define

Q(m|e, 0) =
∑

n:|n|≥m

pn−ae and Q(m|e, 1) =
∑

n:|n|≥m

pn.

Then, for all e,m ∈ X≥0 and a > 0, Q(m|e, 0) and Q(m|e, 1) are increasing in e.

We will prove this Lemma later.

Definition A.4.1 A function f : X → R is called even and increasing on X≥0 if for all
x ∈ X≥0, f(x) = f(−x) and f(x) ≤ f(x+ 1).

Lemma A.4.4 The value function Vt(e) is even and increasing on X≥0.

Proof We have already shown that Vt(e) is even. For a > 0, the properties described in
the proof of Lemma A.4.1 and the statement Lemma A.4.3 imply that Vt(e) is even and
increasing as shown in Theorem 6.1.1, Chapter 6. Now, Lemma A.4.2 implies that Vt(e) is
also even and increasing for a < 0.

Proof (Proofs of Propositions 2.6.1 and 2.6.2) The result follows from Lemmas A.4.2
and A.4.4 by taking the limit T →∞, since equality is preserved under limits.

Proof (Proof of Lemma A.4.3) Q(m|e, 1) is independent of e. DefineR(m|e) =
∑

n:|n|≤m pn−e.
Then, Q(m|e, 0) = 1 − R(m|ae). To show Q(m|e, 0) is increasing in e, it suffices to show
that R(m|ae) ≥ R(m|ae+ 1) (which implies that R(m|ae) ≥ R(m|ae+ a)).

Now consider

R(m|ae)−R(m|ae+ 1) = pm−ae − p−m−ae−1 = pm−ae − pm+ae+1.

If m ≥ ae, then 0 ≤ m − ae < m + ae + 1, hence, pm−ae ≥ pm+ae+1. If m < ae,
then 0 < ae − m < m + ae + 1, hence pm−ae = pae−m ≥ pm+ae+1. Thus, in both cases,
R(m|ae) ≥ R(m|ae+ 1).

A.5 Proof of Part 3) of Lemma 2.7.1

By Lemma 2.4.1, M (k)
β (e) is strictly increasing in k; therefore, by Theorem 2.4.2, N (k)

β (e)

is strictly decreasing in k.
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We prove the monotonicity of D(k)
β in k for Model A for β ∈ (0, 1). The result for β = 1

follows by taking limit β ↑ 1. The result for Model B is similar. Based on Lemma A.4.2,
we restrict attention to a > 0.

For any β ∈ (0, 1) and k ∈ Z≥0, define the operator T (k) : (Z → R) → (Z → R) as
follows. For any D : Z→ R,

[T (k)D](e) =

β[BD](0), if |e| ≥ k

(1− β)d(e) + β[BD](e) if |e| < k.
(A.3)

This operator is the Bellman operator for evaluating strategy f (k). Hence, it is a contraction
and D(k) is the unique fixed point of T (k).

Define D(k,0)
β = D

(k)
β , and for m ∈ Z>0, D

(k,m)
β = T (k+1)D

(k,m−1)
β .

From Lemma A.4.3 and [117, Lemma 2], we get that for any e ∈ Z≥0,

∞∑
n=−∞

pn−aeD
(k)
β (n) ≥

∞∑
n=−∞

pnD
(k)
β (n),

or equivalently, [BD(k)
β ](e) ≥ [BD(k)

β ](0).
For |e| = k, D(k,1)

β (e) = (1 − β)d(e) + β[BD(k)
β ](e) and D

(k)
β (e) = β[BD(k)

β ](0); hence,
D

(k,1)
β (e) > D

(k)
β (e). For |e| 6= k, D(k,1)

β (e) = D
(k)
β (e) because both terms have the same

expression. Hence, for all e ∈ Z,

D
(k,1)
β (e) ≥ D

(k)
β (e), or D

(k,1)
β ≥ D

(k)
β .

If we apply the operator T (k+1) to both sides, the monotonicity of T (k+1) implies that
D

(k,2)
β ≥ D

(k,1)
β ≥ D

(k)
β . Proceeding this way, we get that for any m > 0,

D
(k,m)
β ≥ D

(k)
β . (A.4)

Note that limm→∞D
(k,m)
β = D

(k+1)
β , because D(k+1)

β is the unique fixed point of the operator
T (k+1). Thus, taking limit m→∞ in (B.10), we get that D(k+1)

β ≥ D
(k)
β .
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Appendix B

Proofs of Chapter 3

B.1 Proof of Lemma 3.8.1

In the proof we consider X = Z. The proof for X = R follows similar steps. Recall the
notations B(k0,k1), L(k0,k1)

β , M (k0,k1)
β and K

(k0,k1)
β in Chapter 3.8. We prove the result for

L
(k0,k1)
β . Similar argument holds for M (k0,k1)

β and K(k0,k1)
β .

Similar to the argument for the value function given in Section 3.7.3 , we can argue
that L(k0,k1)

β is bounded. βB(k0,k1) is a contraction operator from the space of bounded
continuous functions on integers to itself.

Lemma B.1.1 For β,Qs0 ∈ (0, 1) and ks ∈ Z≥0, ks <∞, s ∈ {0, 1}, the operator βB(k0,k1)

is a contraction.

Proof

‖βB(k0,k1)v‖∞ = β sup
z∈Z×{0,1}

∑
z′∈Z×{0,1}

h(k0,k1)
z P̃zz′vz′

(a)
< β sup

z∈Z×{0,1}

∑
z′∈Z×{0,1}

P̃zz′vz′

≤ β‖v‖∞
(

sup
z∈Z×{0,1}

∑
z′∈Z×{0,1}

P̃zz′
)

(b)
= β‖v‖∞,

where z = (e, s), z′ = (e′, s′). (a) holds as Qs0 < 1 and ks < ∞ and (b) holds since P̃ is a
stochastic matrix.
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Thus, by Banach fixed point theorem, (3.64) has a unique fixed point solution. This proves
the existence of the unique solution, which is the first part of the lemma.

To prove the monotonicity of the solutions, we first consider the monotonicity in k0.
By a similar argument, the monotonicity in k1 can be shown. Note that f (m,k1) ≥ f (`,k1)

for any ` > m. This implies that one would wait longer to transmit under f (`,k1). Hence,
the expected time till the first successful reception under f (m,k1) is less than that for f (`,k1),
leading to a larger expected distortion under f (`,k1) compared to that incurred with f (m,k1).
Thus L(`,k1)

β (e) ≥ L
(m,k1)
β (e). In addition, the above inequality is strict because Wt has a

unimodal distribution. This completes the proof.

B.2 Proof of Proposition 3.8.1

We start by recalling the operator B(k0,k1) as introduced in Section 3.8. Note that the
error process {Et}∞t=0 is a controlled Markov process. Therefore, the functions D(k0,k1)

β and
N

(k0,k1)
β may be thought as value functions when strategy f (k0,k1) is used. Thus, they satisfy

the following fixed point equations: for β ∈ (0, 1),

D
(k0,k1)
β (e, s) =

Qs0

(
(1− β)d(e) + β[B(k0,k1)D

(k0,k1)
β ](e, s)

)
, if |e| ≥ ks

(1− β)d(e) + β[B(k0,k1)D
(k0,k1)
β ](e, s), if |e| < ks,

(B.1)

N
(k0,k1)
β (e, s) =

Qs0

(
(1− β) + β[B(k0,k1)N

(k0,k1)
β ](e, s)

)
, if |e| ≥ ks

(1− β) + β[B(k0,k1)N
(k0,k1)
β ](e, s), if |e| < ks

(B.2)

where ks = k(s) for s ∈ {0, 1}. For ks > 0, s ∈ {0, 1}, let τ (k0,k1) denote the stopping
time of first successful reception when the Markov process starting at state (0, s), follows
strategy f (k0,k1).
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Thus we have,

L
(k0,k1)
β (0, s) = E

[ τ (k0,k1)−1∑
t=0

βtd(Et)
∣∣∣ E0 = 0, S0 = s

]
(B.3)

M
(k0,k1)
β (0, s) = E

[ τ (k0,k1)−1∑
t=0

βt
∣∣∣ E0 = 0, S0 = s

]
=

1− E[βτ
(k0,k1) |E0 = 0, S0 = s]

1− β (B.4)

K
(k0,k1)
β (0, s) = E

[ τ (k0,k1)∑
t=0

βtUt

∣∣∣ E0 = 0, S0 = s
]

(B.5)

D
(k0,k1)
β (0, s) = E

[
(1− β)

τ (k0,k1)−1∑
t=0

βtd(Et) + βτ
(k0,k1)D

(k0,k1)
β (0, St)

∣∣∣ E0 = 0, S0 = s
]
(B.6)

N
(k0,k1)
β (0, s) = E

[
(1− β)

τ (k0,k1)∑
t=0

βtUt + βτ
(k0,k1)N

(k0,k1)
β (0, St)

∣∣∣ E0 = 0, S0 = s
]

(B.7)

= (1− β)K
(k0,k1)
β (0, s) + E[βτ

(k0,k1)
∣∣∣ E0 = 0, S0 = s]N

(k0,k1)
β (0, s). (B.8)

Substituting (B.3) and (B.4) in (B.6) we get

D
(k0,k1)
β (0, s) = (1− β)L

(k0,k1)
β (0, s) + [1− (1− β)M

(k0,k1)
β (0, s)]D

(k0,k1)
β (0, s).

Rearranging, we get that

D
(k0,k1)
β (0, s) =

L
(k0,k1)
β (0, s)

M
(k0,k1)
β (0, s)

.

Similarly, substituting (B.4) in (B.8) we get

N
(k0,k1)
β (0, s) = (1− β)K

(k0,k1)
β (0, s) + [1− (1− β)M

(k0,k1)
β (0, s)]N

(k0,k1)
β (0, s).

Rearranging, we get that

N
(k0,k1)
β (0, s) =

K
(k0,k1)
β (0, s)

M
(k0,k1)
β (0, s)

.

The expression for C(k0,k1)
β (0, s;λ) follows from the definition.
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B.3 Proof of Lemma 3.9.1

In the proof we consider X = Z. The proof for X = R follows similar steps.
By Lemma 3.8.1 and Proposition 3.8.1, we have that N (k)

β (0) is strictly decreasing in k.
To prove the monotonicity of D(k)

β (0) in k, we restrict our attention to a ∈ Z>0. The
result holds for any a ∈ Z due to [14, Lemma 11].

For any v : Z→ R, define operator B as

[Bv](e) :=
∞∑

w=−∞

pwv(ae+ w), ∀e ∈ Z.

Or, equivalently,

[Bv](e) :=
∞∑

n=−∞

pn−aev(n), ∀e ∈ Z.

For any β ∈ (0, 1), ε ∈ (0, 1) and k ∈ Z≥0, define the operator T (k) : (Z→ R)→ (Z→
R) as follows. For any D : Z→ R,

[T (k)D](e) =

ε
(
(1− β)d(e) + β[BD](e)

)
, if |e| ≥ k

(1− β)d(e) + β[BD](e) if |e| < k.
(B.9)

This operator is the Bellman operator for evaluating strategy f (k). Hence, it is a contraction
and D is the unique fixed point of T (k).

Define D(k,0)
β = D

(k)
β , and for m ∈ Z>0, D

(k,m)
β = T (k+1)D

(k,m−1)
β .

For |e| = k, D(k,1)
β (e) = (1 − β)d(e) + β[BD(k)

β ](e) and D
(k)
β (e) = ε((1 − β)d(e) +

β[BD(k)
β ](e)); hence, D(k,1)

β (e) > D
(k)
β (e), since ε ∈ (0, 1). For |e| 6= k, D(k,1)

β (e) = D
(k)
β (e)

because both terms have the same expression. Hence, for all e ∈ Z,

D
(k,1)
β (e) ≥ D

(k)
β (e), or D

(k,1)
β ≥ D

(k)
β .

If we apply the operator T (k+1) to both sides, the monotonicity of T (k+1) implies that
D

(k,2)
β ≥ D

(k,1)
β ≥ D

(k)
β . Proceeding this way, we get that for any m > 0,

D
(k,m)
β ≥ D

(k)
β . (B.10)
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Note that limm→∞D
(k,m)
β = D

(k+1)
β , because D(k+1)

β is the unique fixed point of the operator
T (k+1). Thus, taking limit m→∞ in (B.10), we get that D(k+1)

β ≥ D
(k)
β .

B.4 Proofs of Theorems 3.9.1 and 3.9.2

B.4.1 Proof of Theorem 3.9.1

We first characterize the structure of C(k)
β (0;λ).

Proposition B.4.1 For the model given (3.15),

1. C(k)
β (0;λ) is submodular in (k, λ), i.e., for l > k, C(l)

β (0;λ)− C(k)
β (0;λ) is decreasing

in λ.

2. Let k∗β(λ) = arg infk≥0C
(k)
β (0;λ) be the optimal k for a fixed λ. Then k∗β(λ) is increas-

ing in λ.

Proof 1. C(l)
β (0;λ)−C(k)

β (0;λ) = (D
(l)
β (0)−D(k)

β (0))−λ(N
(k)
β (0)−N (l)

β (0)). By Lemma 3.9.1,
N

(k)
β (0) − N (l)

β (0) is positive, hence C(l)
β (0;λ) − C(k)

β (0;λ) is decreasing in λ. Hence
C

(k)
β (0;λ) is submodular.

2. Note that k∗β(λ) = arg infk≥0C
(k)
β (0;λ) can take a value ∞ (which corresponds to

the strategy ‘never communicate’). Thus, the domain of k is X≥0 ∪ {∞}, which is
compact. Hence, by [116, Theorem 2.8.2], k∗β is increasing in λ.

By Proposition B.4.1, k∗β(λ) = arg infk≥0C
(k)
β (0;λ) is increasing in λ. Let K denote the

set of all possible values of k∗β(λ). Since k is integer-valued, the plot of k∗β vs λ must be a
staircase function. In particular, there exists an increasing sequence {λ(kn)

β }kn∈K such that
for λ ∈ (λ

(kn−1)
β , λ

(kn)
β ], k∗β(λ) = kn. We will show that for any kn,

C
(kn)
β (0;λ

(kn)
β ) = C

(kn+1)
β (0;λ

(kn)
β ),

or, equivalently,

L
(kn)
β (0) + λ

(kn)
β K

(kn)
β (0)

M
(kn)
β (0)

=
L

(kn+1)
β (0) + λ

(kn)
β K

(kn+1)
β (0)

M
(kn+1)
β (0)

, (B.11)
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from which we get that λ(kn)
β is given by (3.68) by using the relations given in Proposi-

tion 3.8.1.

Proof of (B.11)

For any λ ∈ (λ
(kn−1)
β , λ

(kn)
β ], C(kn)

β (0;λ) ≤ C
(kn+1)
β (0;λ). In particular, for λ = λ

(kn)
β ,

C
(kn)
β (0;λ

(kn)
β ) ≤ C

(kn+1)
β (0;λ

(kn)
β ). (B.12)

Similarly, for any λ ∈ (λ
(kn)
β , λ

(kn+1)
β ], C(kn+1)

β (0;λ) ≤ C
(kn)
β (0;λ). Since both terms are

continuous in λ, taking limit as λ ↓ λ(kn)
β , we get

C
(kn+1)
β (0;λ

(kn)
β ) ≤ C

(kn)
β (0;λ

(kn)
β ). (B.13)

Eq. (B.11) follows from combining (B.12) and (B.13).

Proof of Part 1)

By definition of λ(kn)
β , the strategy f (kn) is optimal for λ ∈ (λ

(kn−1)
β , λ

(kn)
β ].

Proof of Part 2)

Recall C∗β(λ) = infk≥0C
(k)
β (0;λ). By definition, for λ ≥ 0, C(k)(0;λ), is increasing and

affine in λ. Therefore, its pointwise minimum (over k) is increasing and concave in λ.
As shown in part 1), for λ ∈ (λ

(kn)
β , λ

(kn+1)
β ], C∗β(λ) = C

(kn+1)
β (0;λ), which is linear (and

continuous) in λ; hence, C∗β(λ) is piecewise linear. Finally, by (B.11), C(kn)
β (0;λ(kn)) =

C
(kn+1)
β (0;λ(kn)). Therefore, at the corner points,

lim
λ↑λ(kn+1)

β

C∗β(λ) = lim
λ↓λ(kn+1)

β

C∗β(λ). Hence, C∗β(λ) is continuous in λ.

B.5 Proof of Lemma 3.9.2

Following the definition given by (3.57)–(3.58), we define the function µ(k) for the i.i.d.
erasure channel as follows:

µ(k)(e) :=

µ(e), if e ∈ (−k, k)

εµ(e), if e ∈ R \ (−k, k),
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where ε = P(St = 0) is the probability of packet-drop.
Similarly, define the function d(k) as follows:

d(k)(e) :=

d(e), if e ∈ (−k, k)

εd(e), if e ∈ R \ (−k, k).
(B.14)

To show the dependence on the variance σ2, let us use a subscript σ in the above
equation, i.e.,

µ(k)
σ (e) :=

µσ(e), if e ∈ (−k, k)

εµσ(e), if e ∈ R \ (−k, k),
(B.15)

Note that e ∈ (−k, k) implies e/σ ∈ (−k/σ, k/σ) and e ∈ R \ (−k, k) implies e/σ ∈
R \ (−k/σ, k/σ). Now, for any e ∈ (−k, k),

µ(k)
σ (e) = µσ(e)

(a)
= (1/σ)µ1(e/σ)

(b)
= (1/σ)µ

(k/σ)
1 (e/σ),

where (a) holds by algebraic calculation on a Gaussian pdf with zero mean and variance
σ2 and (b) holds due to (B.15). Similarly, for e ∈ R \ (−k, k),

µ(k)
σ (e) = εµσ(e) =

ε

σ
µ1(e/σ) =

1

σ
µ

(k/σ)
1 (e/σ).

Now, define L̂(k)
σ (e) := σ2L

(k/σ)
1

(
e
σ

)
and the operator B(k) as introduced in Appendix B.1.

Then,

[B(k)
σ L̂(k)

σ ](e) =

∫
n∈R

µ(k)
σ (n− ae)L̂(k)

σ (n)dn, ∀e ∈ R

(a)
= σ2

∫
z∈R

µ
(k/σ)
1 (z − ae/σ)L

(k/σ)
1 (z)dz

= σ2[B(k/σ)
1 L

(k/σ)
1 ](e/σ),
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where (a) uses a change of variables n = σz. Therefore, for e ∈ (−k, k),[
L̂(k)
σ − βB(k)

σ L̂(k)
σ

]
(e) = σ2

[
L

(k/σ)
1 − βB(k/σ)

1 L
(k/σ)
1

]( e
σ

)
= σ2 e

2

σ2
= e2 = d(k)(e).

Similarly, for e ∈ R \ (−k, k),[
L̂(k)
σ − βB(k)

σ L̂(k)
σ

]
(e) = σ2

[
L

(k/σ)
1 − βB(k/σ)

1 L
(k/σ)
1

]( e
σ

)
= σ2ε

e2

σ2
= εe2 = d(k)(e).
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Appendix C

Adaptive Moment algorithm for
computing the learning rates in SA

C.1 Adaptive Moment approximation - AdaM

AdaM is an efficient way of computing adaptive learning rates in SA algorithms for different
parameters from estimates of first and second moments of the gradients. This algorithm
combines the advantages of two previously developed algorithms–AdaGrad [118] and RM-
SProp [119]. The first works well with sparse gradients and the second works efficiently
in on-line and non-stationary frames. Some of the advantages that makes AdaM a good
choice for SA are the following, (i) the magnitudes of parameter updates are invariant
to rescaling of the gradient, (ii) its step-sizes are approximately bounded by the step-size
hyper-parameter, (iii) it does not require a stationary objective, it works with sparse gra-
dients, and it naturally performs a form of step size annealing.

C.1.1 The algorithm

In this section we briefly describe the algorithm, which is given in Algorithm 7. Let the
parameterized stochastic objective function to be minimized be denoted by Jt(kt), where
kt is the parameter at time t. Denote by k◦ the initial parameter vector in n-dimensional
Euclidean space Rn. Denote by mt and vt the first and second moment vectors at time t
and their initial values by m0 and v0. Let the gradient of the objective function at time t
be denoted by gt. Note that with a slight abuse of notations, all operations on the vectors
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Algorithm 7: AdaM Algorithm for computation of optimal parameter using SA.
input : Step-size γ ∈ R>0, exponential decay rates β1, β2 ∈ [0, 1), ε ∈ R>0

output: kt
1 Initial guess of parameter: k0 ← k◦

2 Initial value of the first moment vector: m0 ← 0
3 Initial value of the second moment vector: v0 ← 0
4 Initial time: t← 0
5 while kt not converged do
6 t← t+ 1
7 gt ← ∇kJt(kt−1)
8 mt ← β1mt−1 + (1− β1)gt
9 vt ← β2vt−1 + (1− β2)gt � gt

10 Bias-corrected first moment estimate: m̂t ← mt/(1− βt1)
11 Bias-corrected second moment estimate: v̂t ← vt/(1− βt2)

12 kt ← kt−1 − γ(m̂t/(
√
v̂t) + ε)

13 return kt

mean element-wise operations. For details, please refer to [66].
Algorithm 7 updates exponential moving averages of the gradient and the squared

gradient where the hyper-parameters control the exponential decay rates of these moving
averages. The moving averages themselves are estimates of the first moment (the mean)
and the second raw moment (the uncentered variance) of the gradient of the objective
function. The initialization of the moments are taken to be zero, which may create a bias
towards zeros, especially especially during the initial steps and with low decay rates. This
is counterbalanced by computing bias-corrected estimates. The update rule of the algorithm
relies heavily on the careful choice of step-sizes. [66, Theorem 4.1] provides an upper bound
of the regret, i.e., total approximation error for the objective value.

In is shown in [66] that AdaM works at least as well as AdaGrad and RMSProp in
terms of speed of convergence, when a noisy observation of the gradient of the objective
function is available. In high-dimensional optimization problems such as Neural Networks
or Logistic Regression this algorithm works well. However, in our algorithms we are using a
simultaneous perturbation method to compute an estimate of the gradient of the objective
function. So, the effect of computing the learning rates involving the random perturbation
vector on the speed of convergence is worth investigating.
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Appendix D

Proofs of Chapter 5

D.1 Proof of Lemma 5.2.1

Define the functions Ait, Bi
t, i ∈ {1, 2} as follows:

Ait(x
i
1:t, z) := P(xi1 | z) · · ·P(xit | z)

B1
t (x

1
1:t, u1:t) := P(u1

1 |x1
1) · · ·P(u1

t |x1
1:t, u

2
1:t−1)

B2
t (x

2
1:t, u1:t) := P(u2

1 |x2
1, u

1
1) · · ·P(u1

t |x2
1:t, u

1
1:t).

Then, we have by the chain rule of the probability,

P(z, x1
1:t, x

2
1:t, u

1
1:t−1, u

2
1:t−1) (D.1)

= P(z)A1
t (x

1
1:t, z)B

1
t (x

1
1:t, u1:t)A

2
t (x

2
1:t, z)B

2(x2
1:t, u1:t).

Now, by total probability we have,

P(z, u1
1:t, u

2
1:t) = P(z)

∑
x11:t,x

2
1:t

(
A1
t (x

1
1:t, z)B

1
t (x

1
1:t, u1:t)

A2
t (x

2
1:t, z)B

2(x2
1:t, u1:t)

)
(D.2)

= P(z)
∑
x1

A1
t (x

1
1:t, z)B

1
t (x

1
1:t, u1:t)

∑
x2

A2
t (x

2
1:t, z)B

2(x2
1:t, u1:t). (D.3)
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Therefore,

P(x1
1:t, x

2
1:t | z, u1:t) =

P(z, x1
1:t, x

2
1:t, u

1
1:t, u

2
1:t)

P(z, u1
1:t, u

2
1:t)

(a)
=

A1
t (x

1
1:t, z)B

1
t (x

1
1:t, u1:t)∑

x1 A
1
t (x

1
1:t, z)B

1
t (x

1
1:t, u1:t)

A2
t (x

2
1:t, z)B

2
t (x

2
1:t, u1:t)∑

x1 A
2
t (x

2
1:t, z)B

2
t (x

2
1:t, u1:t)

= P(x1
1:t | z, u1:t)P(x2

1:t | z, u1:t),

where (a) follows from (D.1) and (D.3). Following the similar steps we get P(x1
1:t, x

2
1:t | z, u1:t−1) =

P(x1
1:t | z, u1:t−1)P(x2

1:t | z, u1:t−1).

D.2 Proof of Lemma 5.2.2

Let us arbitrarily fix the strategy of user 2. Consider the following:

ξ1
t|t(z) = P(z |x1

1:t, u1:t) =
P(z, x1

1:t, u1:t)

P(x1
1:t, u1:t)

.

Now, by total probability, we have P(z, x1
1:t, u1:t) =

∑
x21:t
P(z, x1:t, u1:t), where x1:t =

(x1
1:t, x

2
1:t). Also, by chain rule we have

P(z, x1:t, u1:t) = P(u1
t |x1

1:t, u
1
1:t−1, u

2
1:t−1)P(u2

t |x2
1:t, u

1
1:t, u

2
1:t−1)P(x2

1:t | z, u1:t−1)

P(z |x1
1:t, u1:t−1)P(x1

1:t, u1:t−1)

= P(u1
t |x1

1:t, u
1
1:t−1, u

2
1:t−1)P(u2

t |x2
1:t, u

1
1:t, u

2
1:t−1)P(x2

1:t | z, u1:t−1) (D.4)

ξ1
t|t−1(z)P(x1

1:t, u1:t−1).

Now, it is shown in the proof of Lemma 5.2.1 that,

P(x2
1:t | z, u1:t−1) =

A2
t (x

2
1:t, z)B

2
t (x

2
1:t, u1:t)∑

x1 A
2
t (x

2
1:t, z)B

2
t (x

2
1:t, u1:t)

,
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which depends only on f2. Let us denote it as `(f2). Substituting this in the expression for
ξ1
t|t, we have

ξ1
t|t(z) =

ξ1
t|t−1(z)

∑
x21:t

(
1(u2

t = f 2
t (x2

1:t, u
1
1:t, u

2
1:t−1))`(f2)

)
∑

z

(
ξ1
t|t−1(z)

∑
x21:t

(
1(u2

t = f 2
t (x2

1:t, u
1
1:t, u

2
1:t−1))`(f2)

))
=: F 1

t|t(ξ
1
t|t−1, u

2
t , f

2).

Note that F 1
t|t is of the above form since there is no dependence of F 1

t|t on f1 through ξ1
t|t−1.

Now consider the following,

ξ1
t+1|t(z) = P(z |x1

1:t+1, u1:t) =
P(z, x1

t+1 |x1
1:t, u1:t)

P(x1
t+1 |x1

1:t, u1:t)
. (D.5)

Also, it can be shown by similar calculation that P(z, x1
t+1 |x1

1:t, u1:t) = P(x1
t+1 | z)ξ1

t|t(z).
Substituting back in (D.5), we have

ξ1
t+1|t(z) =

P(x1
t+1 | z)ξ1

t|t(z)∑
z P(x1

t+1 | z)ξ1
t|t(z)

=: F 1
t+1|t(ξ

1
t|t, x

1
t+1).

This completes the proof for user 1. The results for user 2 can be derived similarly.
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Appendix E

Proofs of Chapter 6

E.1 Proof of Claim 1

We first prove some intermediate results:

Lemma E.1.1 Under (M4) and (M5), for any x, y ∈ X≥0, we have that

ϕ(y − x) ≥ ϕ(y + x)

Proof We consider two cases: y ≥ x and y < x.

1. If y ≥ x, then y + x ≥ y − x ≥ 0. Thus, (M5) implies that ϕ(y + x) ≥ ϕ(y − x).

2. If y < x, then y+x ≥ x−y. Thus, (M5) implies that ϕ(y+x) ≥ ϕ(x−y) = ϕ(y−x),
where the last equality follows from (M4).

Some immediate implications of Lemma E.1.1 are the following.

Lemma E.1.2 Under (M4) and (M5), for any a ∈ X and x, y ∈ X≥0, we have that

a
[
ϕ(y − ax)− ϕ(y + ax)

]
≥ 0.

Proof For a ∈ X≥0, from Lemma E.1.1 we get that ϕ(y − ax) ≥ ϕ(y + ax). For a ∈ X<0,
from Lemma E.1.1 we get that ϕ(y + ax) ≥ ϕ(y − ax).

Lemma E.1.3 Under (M4) and (M5), for any a, b, x, y ∈ X≥0, we have that

ϕ(y − ax− b) ≥ ϕ(y + ax+ b) ≥ ϕ(y + ax+ b+ 1).
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Proof By taking y = y − b and x = ax in Lemma E.1.1, we get

ϕ(y − b− ax) ≥ ϕ(y − b+ ax).

Now, by taking y = y + ax and x = b in Lemma E.1.1, we get

ϕ(y + ax− b) ≥ ϕ(y + ax+ b).

By combining these two inequalities, we get

ϕ(y − ax− b) ≥ ϕ(y + ax+ b).

The last inequality in the result follows from (M5).

Lemma E.1.4 Under (M4) and (M5), for a ∈ Z and x, y ∈ Z≥0,

Φ(y + ax) + Φ(y − ax) ≥ Φ(y + ax+ a) + Φ(y − ax− a).

Proof The statement holds trivially for a = 0. Furthermore, the statement does not
depend on the sign of a. So, without loss of generality, we assume that a > 0.

Now consider the following series of inequalities (which follow from Lemma E.1.3)

ϕ(y − ax) ≥ ϕ(y + ax+ 1),

ϕ(y − ax− 1) ≥ ϕ(y + ax+ 2),

· · · ≥ · · ·
ϕ(y − ax− a+ 1) ≥ ϕ(y + ax+ a).

Adding these inequalities, we get

Φ(y − ax)− Φ(y − ax− a) ≥ Φ(y + ax+ a)− Φ(y + ax),

which proves the result.

Proof of Claim 1

First, let’s assume that X = R. We prove each part separately.
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1. Fix u ∈ [0, umax]. c(·, u) is even because d(·) is even (from (M3)). c(·, u) is quasi-
convex because 1− q(u) ≥ 0 (from (M0)) and d(·) is quasi-convex (from (M3)).

2. Consider e1, e2 ∈ R≥0 and u1, u2 ∈ [0, umax] such that e1 ≥ e2 and u1 ≥ u2. The
per-step cost is submodular on R≥0 × [0, umax] because

c(e1, u2)− c(e2, u2) = (1− q(u2))(d(e1)− d(e2))

(a)

≥ (1− q(u1))(d(e1)− d(e2))

= c(e1, u1)− c(e2, u1),

where (a) is true because d(e1)−d(e2) ≥ 0 (from (M3)) and 1−q(u2) ≥ 1−q(u1) ≥ 0

(from (M0) and (M2)).

3. Fix u ∈ [0, umax] and consider e, e+ ∈ R. Then, p(u) is even because

p(−e+|−e;u) = q(u)ϕ(e+) + (1− q(u))ϕ(−e+ + ae)

(b)
= q(u)ϕ(e+) + (1− q(u))ϕ(e+ − ae)
= p(e+|e;u),

where (b) is true because ϕ is even (from (M4)).

4. First note that

S(y|x;u) = 1−
∫ y

−∞

[
p(z|x;u) + p(−z|x;u)

]
dz

= 1−
∫ y

−∞
q(u)

[
ϕ(z) + ϕ(−z)

]
dz

−
∫ y

−∞
(1− q(u))

[
ϕ(z − ax) + ϕ(−z − ax)]dz

(c)
= 1− 2q(u)Φ(y)

− (1− q(u))
[
Φ(y − ax) + Φ(y + ax)

]
where Φ is the cumulative density of ϕ and (c) uses the fact that ϕ is even (condition
(M4)).
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Let Sx(y|x;u) denote ∂S/∂x. Then

Sx(y|x;u) = (1− q(u))a
[
ϕ(y − ax)− ϕ(y + ax)

]
.

From (M0) and Lemma E.1.2, we get that Sx(y|x;u) ≥ 0 for any x, y ∈ R≥0 and
u ∈ [0, umax]. Thus, S(y|x;u) is increasing in x.

Furthermore, from (M2) Sx(y|x, u) is decreasing in u. Thus, S(y|x, u) is submodular
in (x, u) on R≥0 × [0, umax].

Now, let’s assume that X = Z. The proof of the first three parts remains the same.
Now, in part 4), it is still the case that

S(y|x;u) = 1− 2q(u)Φ(y)− (1− q(u))
[
Φ(y − ax) + Φ(y + ax)

]
However, since X is discrete, we cannot take the partial derivative with respect to x.
Nonetheless, following the same intuition, for any x, y ∈ Z≥0, consider

S(y|x+ 1;u)− S(y|x;u) = (1− q(u))
[
Φ(y + ax)

− Φ(y + ax+ a) + Φ(y − ax)− Φ(y − ax− a)
]

(E.1)

Now, by Lemma E.1.4, the term in the square bracket is positive, and hence S(y|x;u) is
increasing in x. Moreover, since (1− q(u)) is decreasing in u, so is S(y|x+ 1;u)−S(x|x;u).
Hence, S(y|x;u) is submodular in Z≥0 × [0, umax].
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