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Abstract

Sparse representations of audio is a mature field that has evolved from decades of research

that established its utility in a variety of applications, for example, audio coding, source-

separation, and transformation. However, the performance of sparse approximation algo-

rithms still depend highly on signal length, which is problematic for audio signals with du-

rations of more than a few seconds. Furthermore, there is a need for elementary waveforms,

atoms, that can effectively adapt to represent temporally asymmetric features. Atoms with

temporally asymmetric amplitude evolutions have already shown promise in sparse repre-

sentation applications, namely the gammatone and formant-wave-function, however, due to

their origins from outside the sparse realm, they either cannot adapt to model a wide range

of audio features or their mathematical definition reduces the speed of the approximation

process.

This thesis addresses these crucial aspects of sparse audio representations. We establish

desirable atom properties, for example, mathematical properties that enable efficient pa-

rameter estimations and an analytic inner product formula, then compare existing atoms

using our criteria to highlight their relative strengths and weaknesses. We establish a

new asymmetric atom, the ramped exponentially damped sinusoid (REDS), that can model

salient audio signal features, especially transients and decaying oscillations, and has all the

properties we desire. Results from an experiment show that it can more sparsely represent

audio than existing atoms and mathematical proofs show how we can tune the parameters

of a REDS such that it approximately equals either existing asymmetric atom.

We introduce a new sparse approximation system, Partial Trajectory Matching Pursuit

(PTMP), that employs sinusoidal partial tracking to locate long duration atoms and, in

parallel, a small-scale sub-dictionary pursuit that locates short duration atoms. PTMP

effectively locates arbitrarily long duration atoms, something that previous algorithms have

not addressed, and, since these atoms match closely with the audio signal, they increase

the sparsity of representation. We establish several estimation methods that work within

PTMP to refine the REDS parameter set, which increase representation sparsity even

further. Results from a series of experiments that gauge PTMP’s performance show that

PTMP is a powerful sparse approximation system that manages to avoid pre-echo and

produce state-of-the-art sparsity levels by decomposing audio onto REDS atoms at high-

speed.
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Résumé

La représentation parcimonieuse des signaux sonores est un thème de recherche bien établi

ayant bénéficié de plusieurs décennies de travaux qui ont consacrés son usage dans de

nombreuses applications, comme par example le codage audio, la séparation de sources, et

les transformations sonores. Cependant, la performance des algorithmes d’approximations

parcimonieuses dépend encore fortement de la longueur du signal, ce qui est problématique

dans le cas des signaux sonores dont la durée est souvent supérieure à quelques secondes.

De plus, il y a un besoin de nouvelles formes d’onde élémentaires, ou atomes, qui puissent

représenter et s’ajuster aux caractéristiques temporelles asymétriques des signaux sonores.

L’utilisation, dans le cadre d’applications de décompositions parcimonieuses, d’atomes à

évolution temporelle d’amplitude asymétrique tels que les gammatones ou bien les fonctions

d’onde formantiques, a déjà donné lieu à des résultats prometteurs. Cependant, comme

ils proviennent de domaines d’étude extérieurs à celui des décompositions parcimonieuses,

ils ne peuvent pas s’ajuster pour modéliser une large classe de caractéristiques sonores

ou bien leur expression mathématique ne permet pas de mettre en place un processus

d’approximation rapide.

Dans cette thèse, nous nous sommes donc intéressés à ces aspects cruciaux des représent-

ations parcimonieuses des signaux audio. Nous avons dressé une liste des propriétés

souhaitables des atomes, comme par example les propriétés mathématiques facilitant une

estimation efficace des paramètres, et celles menant à une expression analytique du produit

scalaire entre atomes; nous avons ensuite comparé les types d’atomes existants selon les

critères précédemment établis afin de mettre en lumière leurs avantages et leurs défauts.

Nous proposons un nouveau type d’atomes asymétriques, que nous appelons REDS, apte

à modéliser les caractéristiques pertinentes des signaux audio, plus spécialement les transi-

toires et les oscillations amorties, tout en possédant les propriétés de la liste que nous avons

établie. Nos résultats expérimentaux montrent que l’utilisation des atomes REDS mène à

des modélisations plus parcimonieuses que celles reposant sur les atomes asymétriques pré-

existants; de plus nous établissons le lien mathématique montrant comment ajuster les

paramètres des atomes REDS afin d’approximer voire même égaler les atomes symétriques

pré-existants.

Par ailleurs, nous proposons un nouveau système d’approximation parcimonieuse, que

nous appelons Partial Trajectory Matching Pursuit (PTMP), reposant sur l’extraction de
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trajets de partiels sinusöıdaux afin de localiser les atomes de longue durée, tout en menant

simultanément une poursuite sur un sous-dictionnaire d’atomes à petite échelle afin de

localiser des atomes de courte durée. PTMP localise effectivement des atomes de durée

arbitrairement longue, ce que les algorithmes existants ne détectent pas; et puisque ces

longs atomes sont en bonne adéquation avec le signal audio, leur utilisation accrôıt la

parcimonie de la représentation. Nous avons établi et mis en place plusieurs méthodes

d’estimation qui affinent le jeux des paramètres REDS au sein de l’algorithme PTMP ce

qui accrôıt encore la parcimonie. Enfin lors d’une série d’expériences destinées à mettre

l’algorithme PTMP à l’épreuve, les résultats obtenus montrent que PTMP est un système

d’approximation parcimonieuse puissant qui prévient l’apparition de pré-echos et produit

une décomposition parcimonieuse comparable à l’état de l’art des autres méthodes tout en

assurant une décomposition rapide des signaux audio sur les atomes REDS.
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√
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Chapter 1

Introduction

Vocabularies of natural languages contain words with similar meanings that enable the

communication of various ideas and allow us to simultaneously differentiate between nearly

identical concepts. Alternatively, consider text written with a small vocabulary; the vocab-

ulary might be sufficient to express any idea, but only through full sentence explanations

of the unknown words. The same idea holds for representing (describing) sound. An audio

representation is broadly any way to describe an audio signal, which can be through the

variations of its amplitude over time (its time-domain representation), its frequency con-

tent evolution over time (its time-frequency representation), or more generally, any set of

data that either directly or indirectly describes the sound that some converter may take as

instructions to synthesize it. We extract a representation of an existing signal by compar-

ing it with elementary waveforms (atoms) of a dictionary. A basis expansion, for example

through the Fourier basis, sufficiently describes any signal, though the expansions diffuse

information makes pattern identification difficult. We can sparsely represent an arbitrary

audio signal when our vocabulary of sounds, our dictionary, is highly redundant and in-

cludes sounds that match closely with the audio signal [1]. In general terms, the sparse

representation problem, as it pertains to audio processing, is as follows; synthesize an audio

signal from the combination of as few other sounds as possible.

Sparse representations of audio is a mature field that has evolved from decades of

research that established its theoretical foundation and proved its utility in a wide array of

applications. Explorations of practical algorithms to extract sparse approximations from

arbitrary signals resulted in the establishment of several methods, including algorithms like
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Matching Pursuit and Basis Pursuit [1] [2], and theoretical performance evaluations of these

methods [3] [4] [5]. To fuel numerical approximation methods, research has also focused on

ways to design a dictionary around a signal to ensure it contains atoms that closely match

with the signal. This generally involves either concatenating several bases together, learning

a dictionary from bulk data via some machine learning method [6], from the sampling of

parametric time-frequency atoms [1], or by a hybrid approach using some combination

of the three. Finally, a significant portion of papers about sparse audio approximations

have covered an extensive list of applications, including audio coding, source-separation,

automatic music transcription, visualization, transformation, and de-noising [7] [8] [9].

Although sparse approximation algorithms have been subject to decades of research,

the inherent complexity of calculating correlations between the dictionary elements and

audio signal, and searching among the dictionary for the highest correlation, has limited

their ability to quickly decompose sounds with long durations, which is a major setback

for decomposing musical audio that lasts more than a few seconds. Thus, there is a real

need for sparse approximation algorithms whose performance depends less on audio sig-

nal size. Even the fastest implementation of matching pursuit, Matching Pursuit Toolkit

(MPTK) [10], takes hundreds of times longer than the duration of the audio signal when

the quality is set high. Besides the fast algorithm methods that MPTK implements, an-

other step towards a faster algorithm came from Daudet [11], who noted that a limiting

situation of the algorithm is when comparing long duration atoms with the audio signal,

and established that decomposing the signal onto molecules, or strings of multiple similar

atoms, increases the decomposition speed. Parallel computing may help to make sparse

decompositions of full musical pieces (minutes long) a possibility, as [12] proposed. Besides

these alternative techniques, a fundamental way to increase a greedy decomposition’s speed

is by representing more of the signal with each atom, effectively reducing the number of

atoms (iterations) overall. This crucial aspect of creating a sparse representation, whether

it be for approximating an existing signal or synthesizing a new one, puts the spotlight

back on dictionary design; to determine sounds that model an arbitrary audio signal well.

An oscillation with an amplitude that rises faster than it decays is an appropriate

model for sound from mechanical or acoustical vibrations, since these vibrations always

decrease over time due to damping, roughly exponentially, after a momentary activation

from an external force. Indeed, a faster rise time than decay time means the oscillation’s

temporal evolution is asymmetric. However, it is common practice to represent sound
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with temporally symmetric waveforms, specifically Gabor atoms; to trade coherence with

physical reality for desirable mathematical properties [13] [14] [15]. Although certainly

justifiable, the representation of asymmetric signal content with symmetric atoms will

either be non-sparse or contain energy before the onset of an oscillation that is not present

in the original sound, in other words, dark energy and/or pre-echo [16]. Several papers aim

to limit pre-echo by constraining the choice of the symmetric atoms location in time such

that it is after the onset [16] [17] [18]. While these techniques may help to avoid pre-echo,

they still require a non-sparse number of symmetric atoms to represent strong transients

and asymmetric features that are inherent to natural and musical sounds, especially at

event onsets, because, fundamentally, symmetric atoms do not sufficiently model temporally

asymmetric content.

Growing interest in the use of asymmetric atoms to sparsely represent audio started after

a proposal by Goodwin, who advocated the use of damped sinusoids to model transient

audio behavior better than symmetric Gabor atoms [19]. In light of the dark energy

problem, Gribonval proposed to use the formant-wave-function, a waveform that describes

the output of a source-filter synthesizer in the time domain, as an atom that sparsely

represents audio and typically does not create pre-echo (dark energy) like a symmetric

atom does [20]. The gammatone function is a popular model of the cochlear filter, and

has thus been the prototype atom of choice for sparse representations that reflect human

auditory perception [21] [22] [23]. Recent research has shown that asymmetric atoms can

also represent other types of signals. For text-to-speech applications, [24] decomposed the

fundamental frequency trajectory of a speech signal with gammatone atoms. For biomedical

signal decompositions, [25] designed an asymmetric atom that involves a Gaussian for the

attack and a hyperbolic tangent for the decay.

Existing asymmetric atoms have demonstrated their ability to sparsely represent audio

in these preliminary studies because they correlate with natural sounds and musical audio,

however, due to their origins outside of sparse audio representation realm they do not

easily adapt to a wide range of audio signals. The cause of this is either because their

mathematical properties make parameter estimation difficult or computationally inefficient,

or because their mathematical construction simply does not allow for much adaptation.

At the same time, the gammatone and formant-wave-function are almost never discussed

within the same context because of their different origins. We argue that a comparative

discussion would be beneficial, not only to consolidate knowledge about their performance
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as a step towards the design of a better asymmetric atom, but also to expose them to

different audio research fields.

In this thesis, our goal is to explore the ability of asymmetric atoms to sparsely rep-

resent audio. We define the scope of a sparse representation to not only include sparse

approximations of existing sounds (parsimonious analysis) but also the synthesis of new

sounds from the smallest possible number of atoms (a sound model). We will determine

what factors of the existing asymmetric atoms make them suitable for sparsely represent-

ing audio, and if some combination of those parameters in a new atom will outperform the

existing ones.

We will develop new ways to locate long duration atoms by searching for horizontal

time-frequency components in the signal and employing robust estimation methods and

heuristics to transform short-term spectral information into asymmetric atoms. We will

create a hybrid algorithm that bridges two separate sub-systems, one that locates long

duration atoms and another that searches for short duration atoms, to increase the speed

and improve the representation sparsity of sparse approximation algorithms. From the

results of the research, we aim to create sparser representations of audio that are useful for

applications like audio analysis, audio coding, and music compositional tools.

1.1 Contributions

The three main contributions of this thesis are:

1. A theoretical and practical comparison of existing asymmetric atoms, with the intro-

duction of a new atom that satisfies all the comparison criteria (Chapter 31).

2. A new algorithm that improves the scalability of the greedy sparse approximation al-

gorithm Matching Pursuit by linking two separate search techniques, one that quickly

finds long-duration atoms from partial trajectory data and the other that searches for

short-duration atoms from the cross-correlations of the signal and a small dictionary

(Chapter 4).

1Some of Chapter 3 was published in the Proceedings of the 20th International Conference on Digital
Audio Effects (DAFx-17), Edinburgh, UK, September 5-9, 2017. I was the first author and my advisor was
the corresponding author.
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3. Results from experiments that test how well the new atoms approximate audio, the

performance of the new algorithm, and Newton’s method’s ability to refine ramped

exponentially damped sinusoid (REDS) parameters (Chapter 5).

Other contributions include:

• The adaptation of the Reassignment Method into a recursive structure for refining

atom parameters within a sparse approximation algorithm (Section 2.4.2).

• A discussion about the link between audio synthesis models and sparse representations

(Section 2.5).

• A recursive inner product algorithm that estimates the onset time and duration of a

complex or real-valued damped sinusoid atom (Algorithm 3).

• A derivation of the first and second derivatives of the sparse approximation objec-

tive function for Newton’s method estimation of complex-valued atom parameters

(Appendix A).

1.2 Structure of thesis

Chapter 2 details the theoretical foundations of a sparse approximation and the motivation

for achieving a sparse representation in the context of analyzing and synthesizing audio.

It provides background information on the topic with links to classic and contemporary

research. Chapter 3 details symmetric atoms before delving into a thorough comparative

study of existing asymmetric atoms. Then, it introduces a new asymmetric atom, REDS,

that satisfies each of the properties we desire, and how it can sparsely represents audio.

Chapter 4 reveals a new algorithm that efficiently locates asymmetric atoms with long

time durations and adapts REDS parameters to construct a sparse audio approximation.

Chapter 5 reports on a series of experiments that test the performance of the new algorithm.

Finally, Chapter 6 summarizes the work that the thesis presented and directs the reader

into a path of future research.
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Chapter 2

Sparsity

Additive sound synthesis generally refers to the process of synthesizing sound by a com-

bination of other sounds, a definition that relates to sound production on different scales,

for example: music composition involves combining the sounds of musical instruments to

produce a piece that is inherently more complex than the individual parts; a polyphonic

instrument creates harmony from the superposition of multiple fundamental frequencies;

the combination of a fundamental frequency’s harmonics contributes to the sounds timbre

[26] [27].

Formally, an additive sound model represents an audio signal as a linear combination

of elements,

y = Φx (2.1)

where y ∈ RN is an audio signal, Φ ∈ RN×M is a matrix (dictionary) whose column vectors

ϕm are elements (atoms), and x ∈ RM contains the weights of each atom in the dictionary

[1] [28]. x is a sparse representation of y if many of its values are zero, which means that we

can represent y using only a few columns (atoms) of Φ. An upcoming section concretely

defines the sparse approximation problem.

Additive sound modeling’s root is the Fourier series: a theoretical Fourier series syn-

thesizer can create an arbitrary sound by adding together a (possibly infinite) number of

infinite duration sinusoids. In reality, a sound’s duration is finite and thus has a tempo-

ral location. This fact motivated Gabor’s investigation of a time-dependent additive signal

model that led to his extension of Fourier analysis into the time-frequency plane in 1946 [14]

with the Gabor transform. The Gabor transform decomposes a signal onto sinusoids whose
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amplitude envelopes are Gaussian functions. The short-time Fourier transform (STFT)

is a generalization of the Gabor transform; it models a signal by a linear combination

of time-shifted harmonically-related complex sinusoidal atoms that have some amplitude

modulation. In the 1980s, research into alternative time-frequency representations to the

STFT led to the development of the Wavelet transform [13]. Wavelets window sinusoids

equally over time but decrease the scale of the window as frequency increases. The momen-

tum from multi-resolution analysis after the introduction of the Wavelet transform carried

into the general idea of atomic modeling, wherein a dictionary may contain waveforms of

arbitrary size and construction to sparsely represent audio.

In this chapter we detail the mathematical foundations and practical aspects of sparse

audio approximations, then link classical synthesis techniques to sparse representations.

2.1 Sparse approximation

Residual energy quantifies a signal approximation’s quality, ∥r∥22 = ∥y −Φx∥22. The goal

is to achieve a quality of signal approximation such that

∥y −Φx∥22 ≤ ϵ (2.2)

where ϵ≪ ∥y∥22 is the residual energy bound.

Approximating an arbitrary signal according to the additive sound model is a matter

of solving a linear inverse problem. A system of linear equations is either fully-determined,

over-determined, or under-determined [29]. When a system is fully-determined the number

of unknowns equals the number of equations (N=M) and its unique solution is x = Φ−1y,

when Φ is invertible. The discrete Fourier transform (DFT) is an example of a fully-

determined linear inverse problem. An over-determined system means the number of equa-

tions is greater than the number of unknowns, N>M. Least squares is one method of solving

an over-determined linear inverse problem [29]. Finally, when the number of equations is

less than the number of unknowns, i.e., N < M, the system is under-determined. There

are either no solutions (not the situation of interest) or infinitely many solutions to an

under-determined problem. Given that the number of possible solutions is infinite, we

must enforce an additional problem constraint to reduce the number of relevant solutions.

A way to constrain the problem to retrieve powerful results is through the assumption that



2.1 Sparse approximation 9

x is sparse, which assumes that y is sparse in its own domain or some transform domain.

Most audio signals are typically sparse in some domain, or at least compressible [8],

which implies that the sorted coefficients in x decay rapidly [30]. For example, a pure tone

is non-sparse in time because it requires N points to define its amplitude, however, the

frequency domain sparsely represents the pure tone with a single coefficient located at the

tone’s frequency. We seek a sparse representation, rather than one from the solution of a

fully-determined system (e.g., a transform over an orthogonal basis) because it is typically

more interpretable, controllable, and efficiently transmittable. The task is to choose a

solution constraint such that x is sparse and still results in a residual energy below some

value ϵ (2.2). In other words, the optimization problem’s solution constraint must promote

sparsity. The next section will explore mathematical constraints that encourage a sparse

solution.

2.1.1 Sparsity-promoting norms

Constraining the solution to an ℓp norm minimum leads it along some direction that can

be sparse depending on the norm p. This section discusses the effect of different minimum

norm solution constraints, more precisely, whether or not they promote sparsity, at what

cost they have on the problem’s mathematical properties, and whether they provide access

to a direct solution to a linear inverse problem.

The ℓp-norm of x is

∥x∥p = (|x1|p + |x2|p + . . .+ |xn|p)
1
p (2.3)

An ℓp-norm’s two dimensional shape, also referred to as an ℓp-ball, is the solution to the

equation

∥x∥pp = |x1|p + |x2|p = c (2.4)

where c ∈ R≥0 is a constant (the unit norm ball corresponds to c = 1). Figure 2.1 shows

two dimensional ℓp-norm solution scenarios for each p under consideration. The point of

intersection, whose coordinates are x1 and x2, is the min ∥x∥p solution to the linear inverse

problem, y = Φx. Visually, the ℓp ball increases from the origin until it intersects with the

blue line. That point of intersection is the solution.

First, we discuss the minimum ℓ2 norm case, min ∥x∥2, whose ℓp-ball is x2
1 + x2

2 = c,



10 Sparsity

x1

x2

[
x1

0

]
[
0
x2

]

(a) ℓ0

x1

x2 [
0
x2

]

(b) ℓ1

x1

x2[
x1

x2

]

(c) ℓ2

Figure 2.1 ℓp-norm solutions. The blue line is y = Φx.

the equation of a circle, see Figure 2.1c. Since both x1 and x2 are non-zero, the solution is

non-sparse. Notice how x1 and x2 are both smaller in magnitude than the solution values

from the other two figures. To summarize, minimizing the solution’s ℓ2 norm provides a

unique, small, and non-sparse solution. x̃ = ΦH(ΦΦH)−1y is a minimum ℓ2 norm solution.

Next, let us consider minimizing the solution’s ℓ1 norm, whose ℓp-ball is |x1|+ |x2| = c,

the equation of a square diamond, see Figure 2.1b. While the ℓ1 norm does not model

sparsity directly, it leads to a sparse and unique solution as a constraint for the linear

inverse problem. The solution is larger in value and sparser in terms of non-zero values

than the ℓ2 norm case. Basis Pursuit [2] (LASSO) solves the ℓ1 norm problem.

Finally, we consider minimizing the solution’s ℓ0 “norm”, whose ℓp-ball is |x1|0+ |x2|0 =
c, the unit axis, see Figure 2.1a. Quotation marks around “norm” reflect how ℓ0 is not

technically a norm because ∥lx∥0 ̸= l∥x∥0 for l ∈ R. The ℓ0 “norm” models sparsity directly

because it counts the number of elements in x. Minimizing the solution’s ℓ0 “norm” leads

to a sparse solution. Since there are two points of intersection, the solution is not unique.

This system is non-convex and its direct solution is NP-hard, however, greedy algorithms

that approximate a solution exist [3].

2.1.2 Problem statement

As ℓ0 is a direct measure of sparsity, the sparse approximation problem’s canonical form is

minimize
x

∥x∥0

subject to ∥y −Φx∥22 ≤ ϵ
(2.5)
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ℓ0 ℓ1 ℓ2

Models sparsity directly Models sparsity indirectly Non-sparse

Non-convex Convex Convex

Non-unique solution Unique solution Unique solution

Non-smooth Non-smooth Smooth

Greedy algorithms approxi-
mate the solution

Solution available via con-
vex optimization

Direct solution available
(e.g., least squares)

Table 2.1 ℓp norm comparison in the context of promoting a sparse solution
to a linear inverse problem.

where, ∥x∥0 is the ℓ0 “norm” of x which counts the number of non-zero elements in x [2].

Although there is no algorithm that can directly solve the sparse approximation problem,

greedy algorithms build an approximate solution vector one entry at a time.

2.2 Matching Pursuit (MP)

Matching Pursuit (MP) is an iterative algorithm that approximately solves (2.5) [1]. At

each iteration, matching pursuit chooses an atom ϕm and a coefficient x that minimizes

the signal residual energy, formally,

argmin
x,m

∥y − ϕmx∥22 (2.6)

Let J(x) = ∥y − ϕmx∥22. The value of x that minimizes J(x) for any ϕm is the one that

satisfies ∇xJ(x) = 0. The expanded form of J(x) is,

∥y − ϕmx∥22 = (y − ϕmx)
⊺(y − ϕmx)

= y⊺y − y⊺ϕmx− xϕ⊺
my + xϕ⊺

mϕmx

= ∥y∥22 − 2xϕ⊺
my + x2∥ϕm∥22 (2.7)
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ϕmx

ϕm

y

∥y − ϕmx∥2

Figure 2.2 Projection of y onto ϕm.

The partial derivative of J(x) with respect to x, ∇xJ(x), and the value of x when∇xJ(x) =

0 is as follows,

0 = ∇x∥y − ϕmx∥22 =
∂

∂x

(
∥y∥22 − 2xϕ⊺

my + x2∥ϕm∥22
)

= −2ϕ⊺
my + 2x∥ϕm∥22

→ x =
ϕ⊺

my

∥ϕm∥22
(2.8)

ϕm is normalized so that ∥ϕm∥22 = 1.

More intuitively, the distance ∥y − ϕmx∥2 is smallest when it is orthogonal to ϕm, see

Figure 2.2. (y − ϕmx) ⊥ ϕm so

0 = (y − ϕmx)
⊺ϕm

→ x =
ϕ⊺

my

∥ϕm∥22
(2.9)

The problem simplifies after substituting (2.8) into J(x),

J(ϕ⊺
my) = ∥y∥22 − 2y⊺ϕmϕ

⊺
my + (ϕ⊺

my)
2∥ϕm∥22

= ∥y∥22 − 2(ϕ⊺
my)

2 + (ϕ⊺
my)

2

= ∥y∥22 − (ϕ⊺
my)

2

Thus, the minimization problem (2.6) reduces to a search over column index m,

argmin
m

(
∥y∥22 − (ϕ⊺

my)
2
)

(2.10)
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which is equivalent to maximizing |ϕ⊺
my|,

argmax
m
|ϕ⊺

my| (2.11)

Accordingly, matching pursuit chooses the atom that forms the largest inner product with

the kth iteration signal residual r(k), ϕm̃, where m̃ = argmaxm|ϕ⊺
mr

(k)|, then subtracts it

from r(k) to get r(k+1),

r(k+1) = r(k) − x(k)ϕm̃ (2.12)

where x(k) = ϕ⊺
m̃r

(k). For dictionaries of real-valued atoms, MP must estimate phase from

a discrete set as it does for the other parameters. Alternatively, when dictionary atoms are

complex-valued, the coefficient x contains not only the atom’s magnitude information but

also its phase, and MP does not need to conduct an explicit search over a set of phases

[19]. In this thesis we use dictionaries of complex-valued atoms. For complex-valued atoms

Φ ∈ CN×M the update equation is

r(k+1) = r(k) − 2ℜ
{
x(k)ϕm̃

}
(2.13)

where x(k) = ϕH
m̃r

(k) ∈ C and m̃ = argmaxm|ϕH
mr

(k)| (see Algorithm 1) [31].

MP’s stopping condition is based on the residual energy and/or iteration number. Stop-

ping MP after k iterations guarantees a solution sparsity of at most k, ∥x∥0 ≤ k. The

residual energy after k iterations is dependent on y and Φ. A residual energy stopping

condition is applicable when the goal is to achieve some level of representation quality.

For this case, MP’s iteration count stopping condition acts as a fail-safe; if MP’s rate of

convergence to the desired residual energy is impractically slow, it will still stop after some

Algorithm 1 Matching Pursuit

1: init: k = 0, x(k) = 0, r(k) = y
2: repeat
3: m̃ = argmaxm|ϕH

mr
(k)|

4: x(k) = ϕH
m̃r

(k)

5: x
(k+1)
m̃ = x

(k)
m̃ + x(k)

6: r(k+1) = r(k) − 2ℜ{x(k)ϕm̃}
7: k = k + 1
8: until stopping condition
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iteration count k.

Matching pursuit searches for a locally optimal solution. Since it does not consider how

atoms from other iterations interact, its solution may be globally sub-optimal. Orthogonal

Matching Pursuit (OMP), an MP extension, manages a global view of the problem by

projecting the entire solution onto the residual after each iteration [32].

2.3 On parametric dictionaries

A solution to (2.5) is Φ = y, so x = 1 and ∥x∥0 = 1. Even though in this case x is

perfectly sparse its representation of y is meaningless. Given that x’s representation of y

must be meaningful (we elaborate on this in the next paragraph), solving (2.5) is a matter

of building Φ to minimize ∥x∥0 with elements of interpretable, descriptive structure.

Decomposing onto parametrized atoms provides access to the signal’s structural infor-

mation via the parameters of the representative atoms. Parametric atoms have structure

and are necessarily elementary. Since audio signals are very high-dimensional (they have

complex features like highly non-stationary time and frequency behavior, etc. ) and data

sets and atoms are low-dimensional (elementary) functions, for a solution to be sparse (to

involve only a few atoms), a dictionary must make available an enormous variety of atoms

to choose from. This concept is comparable to spoken language’s highly redundant vocab-

ularies that enable concise sentence structuring. The problem is that the computational

complexity grows, and thus the speed of approximation algorithm slows, proportionally

(or worse) to the dimensions of Φ [11]. A tractable MP algorithm demands a dictionary

whose parametric structuring allow fast algorithms, for example, the fast Fourier transform

(FFT) or Mallat’s pyramidal discrete Wavelet transform (DWT) [33], to calculate the inner

products, and efficient searches for the most correlated atom [15].

Several MP software packages, such as MPTK [10] and LastWave [34], employ fast

techniques to decompose 1-D (e.g., audio) signals. Even so, MPTK, which is the fastest

implementation of MP currently available, still has an execution time of more than one

hundred times the signal duration when either the dictionary contains atoms with large

time support or when the number of iterations is high [11]. Given these reasons for an

impractically slow run of MP, the opposite points highlight how MP can run quickly to

extract a high-quality approximation:

1. Minimize the number of iterations.
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2. Minimize the time to run each iteration by:

i Minimizing the search time for the best correlated atom.

ii Accelerating and/or minimizing the number of inner products updates.

Interestingly, the sparse approximation optimization problem’s objective, minimize ∥x∥0,
is also a way to improve the speed of MP. However, the ways to accelerate MP depend on

one another and makes the design of a fast MP algorithm a real challenge. For example,

increasing the number of atoms in the dictionary tends to decrease the number of iterations.

This involves finely sampling the atom’s parameter set, which includes duration N, so, by

extension, the dictionary will necessarily contain atoms with long durations. However, the

time to search through a dictionary for the best atom increases proportionally, or worse,

with the number of dictionary columns M and the complexity of the inner product compu-

tation grows in proportion, or worse, to atom duration N. The dictionary size’s influence

on search time and computation complexity is dependent on the search method and in-

ner product computation method (e.g., direct calculation or through an FFT), respectively.

MPTK uses an STFT to calculate correlations for most types of atoms and employs an

efficient tree search [10]. Conversely, a smaller dictionary enables fewer and faster inner

product updates and quick searches for the best correlated atom, however the resulting

solution is less sparse and the added iteration count to reach an equivalent approximation

quality may result in a slower overall execution time.

Given the aforementioned trade-off, we choose to search for the sparsest approximation

of a signal that is also high-quality (has a relatively small ϵ).

2.3.1 Problem reformulation

We release (2.1) from its matrix notation to consider an alternative measure of sparsity.

y =
K∑
k=1

ϕ(λk)xk (2.14)

where function ϕ creates atom ϕk ∈ RN from parameter set λk ∈ RQ. KQ is the measure

of sparsity and N(KQ)−1 is the approximation compression ratio. Like the ℓ0 “norm”, KQ

is a direct measure of sparsity. More specifically, KQ is a direct measure for sparse audio

coding.
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Rather than transmitting the signal y itself, audio coding involves transmitting instruc-

tions for a converter to re-synthesize y. When the sparsity measure is ∥x∥0 and the synthesis

model is (2.1), it entails that x is the instruction set, and so the converter contains a static

matrix Φ. Since we are interested in adaptive dictionaries, we prefer to measure sparsity

in terms of 2.14: the instructions are λ for the converter ϕ(λ). Thus, the transmitter sends

KQ samples of data rather than N. Clearly, the goal is to minimize KQ, more specifically,

to design atoms with a minimal number of parameters Q that can also sparsely represent

audio and develop ways to approximate y with a minimal number of those atoms K. The

following chapters address this goal.

Next, we look at how to virtually expand dictionary size without increasing the number

of inner product computations by searching among an atom’s pseudo-continuous parameter

space and adapting it to the residual.

2.4 Dictionary adaptation

A facet of dictionary based methods research is directed towards ways to design dictio-

naries such that they will sparsely represent a signal. There are several ways to create a

dictionary: by concatenating bases (e.g.,MDCT bases, diracs, wavelets, etc.) [11], learning

atoms via some machine learning technique, sampling a parametric atom (e.g., translating

and modulating it in time and frequency), and by a mixed method involving two or more of

the previous approaches. Dictionary learning involves adapting a dictionary to a signal via

some machine learning algorithm [6]. Adaptation may be through the parameters of the

atom to design a dictionary around a signal [35], or by a probabilistic method wherein the

dictionary is not parametric. Dictionary learning is not aimed at quickly finding a solution

as it typically does not scale well, rather, one of its main utilities is in creating a dictionary

that fits well with a certain signal type, for example natural sounds and speech [21], then

recycling the dictionary to approximate other signals within the same class with a sparse

approximation algorithm, like MP or Basis Pursuit.

Another approach of dictionary adaptation is through the refinement of atom parame-

ters within the greedy MP framework [1]. In general, a dictionary’s discrete parameter set

is coarse so its size does not decrease the algorithm’s speed. The best fitting atom of that

dictionary points to a parameter value subset. The idea is to search within that subset

after locating it to optimize one or more parameters. Next, we explore ways to refine atom
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parameters within a greedy algorithm, starting with the flexible and powerful Newton’s

method that the original paper on MP applied [1], then we contribute a new method that

is more robust and efficient than Newton’s method at estimating certain parameters like

frequency and damping factor.

2.4.1 Newton’s method (NM)

In a greedy iterative framework of solving the sparse approximation problem, we seek an

atom that minimizes the residual energy. More precisely, let λ be some parameter of atom

ϕλ, then we seek a value for that parameter that minimizes the residual energy function,

J(λ) = ∥y− ϕλx∥22. Newton’s method (NM) iteratively searches for the minimum of J(λ)

(i.e., the solution to ∂J(λ)
∂λ

= 0) using the first and second partial derivative of J(λ).

Although Newton’s method is often mentioned in MP literature as an optional step

to refine parameters [1], [15], [20], to the best of our knowledge, the actual equations

that enable such an implementation for an arbitrary atom parameter λ are not present

in the literature. Therefore, we derive the general-form equations for a complex-valued

atom so that one may more readily implement and test atomic Newton method parameter

refinement. Note that these equations will also work for a real-valued atom. The first

derivative of the residual energy function J(λ) is

∂

∂λ
J(λ) =

∂

∂λ
∥y − ϕλx∥22 =

∂

∂λ

(
yHy − 2ℜ{x̄ϕH

my}+ x̄ϕH
λϕλx

)
= −2ℜ

{
x̄
∂ϕH

λ

∂λ
y

}
+ 2|x|2∂ϕ

H
λ

∂λ
ϕλ (2.15)

and the second derivative is

∂2

∂λ2
J(λ) =

∂

∂λ

( ∂

∂λ
J(λ)

)
= −2ℜ

{
x̄
∂2ϕH

λ

∂λ2
y

}
+ 2|x|2

(
∂2ϕH

λ

∂λ2
ϕλ +

∂ϕH
λ

∂λ

∂ϕλ

∂λ

)
(2.16)

Newton’s method estimate of λ at iteration (k) is

λ(k) = λ(k−1) −
∂
∂λ
J(λ(k−1))

∂2

∂λ2J(λ(k−1))
(2.17)
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One advantage of Newton’s method for parametric refinement is its flexibility: in theory,

this method can refine any parameter of ϕ, so long as the function is at least twice-

differentiable with respect to that parameter. Even more, we can estimate multiple param-

eters simultaneously at each iteration with the extension of Newton’s method into multiple

dimensions. Let λ ∈ RQ be a vector that contains multiple parameters of atom ϕλ, then

λ(k) = λ(k−1) −
(
HλJ(λ

(k−1))
)−1

∇λJ(λ
(k−1)). (2.18)

where ∇λJ(λ) is the gradient of J(λ) and HλJ(λ) is the Hessian matrix of J(λ),

(
HλJ(λ)

)
i,j

=
∂2J(λ)

∂λi∂λj

= −2ℜ

{
x̄
∂2ϕH

λ

∂λi∂λj

y

}
+ 2|x|2

(
∂2ϕH

λ

∂λi∂λj

ϕλ +
∂ϕH

λ

∂λi

∂ϕλ

∂λj

)
(2.19)

The Hessian matrix is square symmetric so the number of unique entries in the matrix is
1
2
Q(Q+ 1). A Newton step in multiple dimensions uses 3

2
Q(Q+ 1) inner products.

Newton’s method is a good choice for refining parameters that are not accessible via

a classical sinusoidal parameter estimation method, like the Reassignment Method [36] or

ESPRIT [37]. Next, we promote such sinusoidal model estimation techniques for greedy

sparse approximation problems.

2.4.2 Recursive Reassignment Method (RRM)

We contribute here a new atom parameter estimation method that requires less compu-

tations and tends to converge faster than Newton’s method. The recursive reassignment

method (RRM) is the reassignment method fit into a recursive structure that iteratively

reduces ∥r∥22. It involves the atom’s envelope w = |ϕ| and envelope derivative w′, see Algo-

rithm 2, where ⊙ denotes element-wise multiplication. RRM takes in the initial parameter

estimate, in this case the frequency, and refines the estimate until the algorithm reaches

some maximum iteration count, or g(k+1) ≯ g(k).

A refinement step requires only two inner products, one for the atom derivative and

another to update the atom’s gain. Moreover, the reassignment method converges quickly,

does not rely on a convex objective function, and performs well even when the initial

estimate is far from ground truth (this is not the case for the Newton or gradient descent

method). RRM is limited to refining an atom’s frequency and, if the atom is a damped

sinusoid, the damping factor. Note that this technique extends to higher-order parameter
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Algorithm 2 RRM frequency refinement

1: init: k = 0, ϕ(0) = eiω
(0)
c n, rw = r ⊙w, rw′ = r ⊙w′, g(0) = ⟨rw,ϕ(0)⟩

2: repeat

3: ω
(k+1)
c = ω

(k)
c −ℑ

{
⟨rw′ ,ϕ(k)⟩

g(k)

}
4: ϕ(k+1) = eiω

(k+1)
c n

5: g(k+1) = ⟨rw,ϕ(k+1)⟩
6: k = k + 1
7: until stopping condition

estimation, such as the estimation of frequency slope, at the cost of more inner products

per iteration.

2.5 Sparsity in synthesis

In this section, we establish how classic audio synthesis techniques link to the more modern

idea of a sparse representation. Literature has pointed out that granular analysis-synthesis

of audio is an atomic decomposition’s synthesis counterpart [31]. We discuss two other

audio synthesis techniques and establish how they relate to the sparse synthesis model,

more precisely, if the techniques create complex sounds with a sparse number of elementary

waveforms (atoms).

2.5.1 Additive synthesis

In additive synthesis from non-stationary sinusoidal modeling, a linear combination of am-

plitude and frequency modulated sinusoids represent the signal. Rather than sum an entire

Fourier basis, as one does with an inverse DFT, the synthesizer chooses prominent sinusoids

(peaks) out of the signal’s, possibly short-time, frequency spectrum. Often, some estima-

tion technique refines the frequencies of the sinusoids. Due to this reductive selection and

refinement, sinusoidal modeling often reconstructs a signal to some degree of quality with

less sinusoids than the DFT length. While the DFT is the solution of a fully-determined

linear inverse problem that uses a complete dictionary of complex sinusoids, estimating

the frequency of a sinusoid responsible for a peak in the DFT spectrum effectively extends

the dictionary into a pseudo-continuous frequency parameter space. Extending the set of

sinusoids of the DFT makes the dictionary over-complete. The over-complete dictionary
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makes a sparse representation realizable.

Representing a signal via sinusoidal modeling involves creating a small sub-set of the

STFT dictionary by extracting parameters from the peaks of short-time spectra, then

interpolating between those points to create a set of instantaneous parameters, phase θl[n]

and amplitude al[n]:

y[n] =
L∑
l

al[n] cos(θl[n]) (2.20)

Although the peaks of each frame are typically sparse, the additive synthesis framework

does not guarantee a certain level of reconstruction quality. Regardless, the additive sinu-

soidal model does not sparsely represent transients because a transient will typically have

a dense frequency spectrum. One way to improve the situation is to incorporate into the

additive synthesis representation of steady-state content a separate atomic decomposition

with damped sinusoids to represent transients [38].

2.5.2 Source-filter

Creating a sustained sound (e.g., a voice) from the source-filter model involves filtering a

sparse excitation signal made of a (possibly) periodic sequence of short duration signals.

Likewise, synthesizing a percussive sound (e.g., a piano) involves summing the output of

several resonant filters with comparably long decay times from a single excitation. In

the time-domain method, this means that the model synthesizes a signal y as a linear

combination of time-shifted resonant filter impulse responses (i.e., time-frequency atoms).

Formally, we express this as y = y[n] =
∑

hλ[n− τ ]xλ,τ = Φx, where Φ is a dictionary of

atoms hλ,τ [n] = hλ[n− τ ] that are indexed by λ and time shift τ ∈ R, and x contains their

amplitude coefficients xλ,τ .

In practice, shifting h[n] by τ entails either convolving it with a bandlimited impulse

excitation1 or by placing h[n] at some round integer value of tau, [τ ], then phase-shifting

the oscillation of h[n] to fit it to the correct time location. The second method illustrates

the connection between source-filter synthesis and the atomic model and furthermore the

sparse audio approximation procedure, because, recall that when sparsely approximating

1Sinc interpolation is the theoretically ideal method of bandlimiting an impulse function h[n − τ ] for
non-integer values of τ . In practice, since the sinc function is non-causal and has an infinite duration, it
is common to truncate the sinc function with a finite duration window in exchange for some of its ideal
properties.
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an existing signal, MP places an atom in some discrete time location and phase shifts it

through the complex coefficient x or, if the atom is real, solves for phase via some estimation

method. The data that instructs a source-filter synthesizer is a sparse representation of the

resulting audio signal. Moreover, the source-filter model matches the framework of atomic

modeling and sparse approximations.

2.6 Summary

In this chapter, we described the motivation for enforcing a sparse constraint onto the

solution vector of an under-determined linear inverse problem. We explained how MP

builds an approximate solution to the sparse approximation problem by choosing one atom

at a time, and discussed the difficulty of implementing fast MP algorithms. Then, we

reformulated the sparse approximation problem to highlight the importance of parametric

atoms and generalized the additive sound model definition by avoiding matrix notation. We

established general equations for refining parameters via Newton’s method and proposed

a recursive estimation technique using sinusoidal model parameter estimators. Finally, we

discussed the relation of common audio synthesis techniques to sparse audio representations.
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Chapter 3

Ramped Exponentially Damped

Sinusoid Atoms

The previous chapter emphasized a crucial step towards a sparser audio representation:

design a dictionary with a prototype atom whose definition involves a minimal number of

parameters that is capable of representing a wide range of signal content.

Knowledge of salient audio signal features can help guide the design of such an atom:

sound commonly has an amplitude envelope that rises faster than it decays (i.e., it is tem-

porally asymmetric) and has time-varying frequency content [27]. Thus, a time-frequency

structured signal model that is asymmetric in time is appropriate, for example, a damped

sinusoid. However, the damped sinusoid model [19] does not have an amplitude enve-

lope that rises smoothly from zero to a maximum while real signals almost always do. A

compromise involves building a heterogeneous dictionary that includes symmetric atoms

(e.g., Gabor atoms) and damped sinusoid atoms, although heterogeneous dictionaries typ-

ically require more data than homogeneous ones because each prototype atom within the

dictionary has a unique parameter set. However, more importantly, decomposing asymmet-

ric signal content with a finite number of symmetric atoms will either lead to a non-sparse

solution or pre-echo (dark energy) [7].

We prefer to design a homogeneous dictionary (i.e., one that contains a single prototype

atom), where the prototype atom is an exponentially damped sinusoid with an attack

envelope. Currently, only two functions common in the literature have assumed this atomic

role: the formant-wave-function [39] [20] (used in audio synthesis) and the gammatone (used
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in perceptual audio coding) [40] [21]. Since neither function originated from the sparse

representation area, they either cannot adapt to a wide range of sounds or suffer from a

mathematical definition that prohibits parametric estimation and/or fast approximation

algorithms.

In this chapter, we present a theoretical and practical comparative discussion of existing

prototype atoms to consolidate knowledge and highlight their relative strengths and limi-

tations. Our points of comparison reflect the qualities that we seek in a model: ability to

match diverse signal behavior (especially transients), and “good” mathematical properties.

Some of the desired mathematical properties include having a concentrated spectrum and

an analytic inner product formula. We start with symmetric atoms as they are the common

choice then move to an in-depth comparative discussion of asymmetric atoms. Since none

of the existing atoms satisfies every criteria, we introduce a new atom that does. Then we

establish connections between the new and existing atoms from their mathematical defi-

nitions and end with an experiment that shows how the new atom outperforms existing

ones.

3.1 Desirable properties

We generalize the form of a prototype atom as

ϕ[n] = E[n]eiωcn, (3.1)

where E[n] is the amplitude envelope (window) function, ωc = 2πfc is the normalized

angular frequency of oscillation (0 ≤ fc ≤ 1
2
). and n is discrete time.

We generalize an asymmetric atom’s definition through its envelope,

E[n] = A[n]e−αnu[n] (3.2)

where α ∈ R≥0 is the damping factor, u[n] is the unit step function and A[n] is an attack

envelope that distinguishes each asymmetric atom (A[n] ∈ R≥0 ∀ n ∈ N).
For organizational purposes, we divide prototype atom properties into three categories:

time-frequency properties, algorithmic efficiency, and control & flexibility.
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n
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0 nm nI

Figure 3.1 An example envelope of the form (3.2) overlaid with an expo-
nential envelope (blue), where nI is the influence time and nm is the time
location of the envelope maximum.

3.1.1 Time-Frequency Properties

A dictionary of atoms with varying degrees of time and frequency concentration is important

for creating a sparse representation overall. For example, a sustained piano note begins

with a short attack, which is best represented with concentrated time (spread frequency)

resolution, followed by a long decay, which requires an atom with long time support and a

concentrated spectrum. Multi-resolution analysis involves decomposing a signal onto a set

of analyzing functions whose time-frequency tiling is non-uniform [13] [41]. We are going

one step further by considering that some sounds require excellent time localization in

the transient region and concentrated frequency resolution in the decay region. We aim at

representing both regions with atoms whose envelopes are closer to those of natural sounds.

We quantify concentration in time and frequency by the time spread, ∆t, and frequency

bandwidth, ∆f , respectively. The Heisenberg-Gabor inequality states ∆t∆f ≥ 1
2
(we use

the definition of ∆f and ∆t from [14]).

Moreover, we prefer an atom that has a unimodal spectrum: an atom whose mathemat-

ical definition is of the form (3.2) has a spectrum F [ϕ](ω) that is unimodal if |F [ϕ](ω)| is
monotonically increasing for ω ≤ ωc and monotonically decreasing for ω ≥ ωc. A function

that is truncated in time with a rectangular window admits a non-unimodal spectrum be-

cause the truncation is equivalent to convolving the spectrum with a sinc function whose

oscillations introduce multiple local maxima/minima [42]. Multiple local maxima/minima

in the spectrum can complicate spectral parameter estimation. We prefer an infinitely

differentiable atom (i.e., of class C∞, as defined in [43]) because its spectrum is unimodal.
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3.1.2 Algorithmic Efficiency

Fast algorithms are one of the focuses of sparse representations research, as they aim

to make sparse decomposition processes more tractable. Amid publications dedicated to

creating faster algorithms, some reported techniques have become widely adopted [10].

Specifically, certain analytic formulas are known to increase the algorithm speed because

they avoid some of the algorithm’s most time consuming numerical calculations (e.g., the

inner product).

An envelope shape that enables the inner product of two atoms to be expressed as an

analytic formula is required for a fast matching pursuit algorithm [1]. Matching pursuit

can calculate and store the dictionary’s inner products once when the dictionary is static.

However, when matching pursuit refines atom parameters within the iterative loop it cannot

use pre-computed inner products and, therefore, it must compute them at each iteration.

Numerical calculations of many inner products at every iteration prohibit speed. Analytic

formulas make the process tractable.

Another way to increase the efficiency of a sparse decomposition program is to use para-

metric atoms, then refine atom parameters using an estimator. Finding a more adapted

atom at every iteration may require less iterations overall. Developing parametric esti-

mation techniques sometimes relies on having analytic discrete Fourier transform (DFT)

formula. For example, in derivative methods, two spectra are divided to solve for one or

more variables [44].

[19] explains how a recursive property of the complex damped exponential helps calcu-

late the convolution of damped sinusoid atoms with a signal: since the impulse response

of a complex one-pole filter is a damped complex exponential sinusoid, a recursive filter

can efficiently calculate the correlation. We provide each atom’s Z-transform to indicate its

causal filter simplicity and therefore practicality for calculating the correlation. Besides,

the Z-transform is useful for source-filter synthesis and auditory filtering.

3.1.3 Control & Flexibility

We modulate the damped sinusoid with A to enhance the atom’s adaptability to natural

sounds. A damped sinusoid’s damping factor α indirectly controls its ∆t and ∆f . Smooth-

ing the damped exponential’s initial discontinuity with A concentrates its frequency lo-

calization in exchange for a more spread time localization. We want a parametrization of
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A that enables precise control over its time and frequency characteristics, controllability

being an essential aspect of audio synthesis. Furthermore, the attack portion of an audio

signal often contains dense spectral content that allows humans to characterize its source

[26].

Influence time has a major effect on the atom’s overall perceived sound as it controls

the degree to which the initial discontinuity is smoothed [26]. We define influence time

nI as the duration that A influences the atom: nI is the largest value of n for which

e−αn(A[n]− 1) > δ is true (in this chapter δ = .001, see Figure 3.1). The effects of varying

influence time are intuitively linked to ∆t and ∆f . In the frequency domain, influence time

mostly controls the spectral envelope far from its center frequency (skirt width as defined

in [39]). Increasing influence time spreads the atom’s time localization and concentrates

its spectrum.

An important quantity to compare between the atoms is the time ∆I = nI −nm, where

nm is the time location of E’s maximum. nm is often called a temporal envelope’s attack

time in sound synthesis [45]. We find nm by setting E’s continuous time derivative equal to

zero and solving for n. For a continuous E whose α > 0, nm precedes nI (i.e.,A influences

E even after nm). To compare atoms along this criteria, we equalize their nm values then

compare their ∆I values. ∆I indicates the amount of influence that varying the skirt width

will have on the bandwidth. We prefer an atom with a small ∆I value because its 3 dB

bandwidth (set through α) is not affected much by the structure of A. An envelope with

a small ∆I also reflects those produced by many acoustic instruments: an exciter increases

the system’s energy and then releases (at nI), which results in a freely decaying resonance.

We do not want to complicate the definition of the atom when modulating the damped

sinusoid by A either; we encourage time-domain simplicity. The damped sinusoid’s simple

definition enables us to solve for its parameters algebraically. Classic parametric estimation

techniques are useful for adapting the damped sinusoid to an arbitrary signal [44]. We

want to retain these desirable properties even after introducing A. An atom’s time-domain

simplicity will depend on how its A marries with the complex damped sinusoid. Finally,

after modulating the damped sinusoid with A, we want the atom’s envelope to match well

with those in actual musical signals.
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3.2 Symmetric Atoms

Symmetric atoms are described as such because they are symmetric about some time in-

stant. Symmetric impulse responses are common to FIR filters, and have a linear phase

response. Although symmetric atoms are not the focus of this study, we discuss Gabor

atom properties to contrast those of the asymmetric atoms. The symmetric Gabor atom

is a standard for sparse representation applications and, therefore, its mathematical prop-

erties that pertain to implementation efficiency are a reference point for the forthcoming

asymmetric atom comparisons.

3.2.1 Gabor Atom

In 1946, Gabor proposed to modulate an infinite duration sinusoid with a Gaussian function

whose parameters include time scale and translation, because it concentrates the energy of

the waveform into a specific temporal location, i.e., the waveform’s time center [14]. The

resulting prototype waveform, the Gabor atom, remains a common choice for inclusion in

dictionaries for sparse approximations due to its optimal time and frequency concentration

(i.e., the Gabor atom’s time-frequency localization is such that ∆t∆f = 1
2
).

Since then, the short-time Fourier transform has become a commonplace time-frequency

representation [46], for which the Gabor transform is a special case, wherein the modulating

amplitude envelope is called a window function. There are many window functions that

have since been designed for discrete Fourier analysis which could likewise be used as atoms

for sparse representations [42], for example, the Hann window.

Later, [1] constructed a time-frequency Gabor dictionary by scaling, modulating, and

translating a Gaussian window,

ϕ[n] = E[n]eiωcn (3.3)

where

E[n] = exp(−π(n−τ
s
)2) (3.4)

where E[n] is the atom’s envelope, s ∈ R≥1 is the scale that changes the time support of the

atom, τ ∈ R is the time shift, and ωc = 2πfc. The Gabor atom’s ℓ2-norm is ∥ϕ∥2 =
√
s

21/4
.



3.3 Asymmetric Atoms 29

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

Time (samples)

A
m
p
li
tu
d
e

Figure 3.2 Time distribution of Gabor atoms (in black) from decomposition
of a damped sinusoid (bold, blue), showing dark energy creation before the
onset (i.e., pre-echo).

An analytic formula of the inner product between two Gabor atoms is available [13],

⟨ϕ1, ϕ2⟩ =
√
2s1s2√
s21 + s22

exp

(
−i(s21τ2 + s22τ1)(ωc2 − ωc1) + π(τ2 − τ1)

2

s21 + s22
− (ωc2 − ωc1)

2

4π(s−2
1 + s−2

2 )

)
(3.5)

This formula’s derivation involves an infinite sum in positive and negative directions, and

therefore is accurate when neither atom is significantly truncated in time.

Decomposing asymmetric signal content with a finite number of symmetric atoms will

either lead to a non-sparse solution or pre-echo (dark energy) [16] [7]. Notice the dark

energy formation before the signal onset (pre-echo) in Figure 3.2, which shows an MP

decomposition example of a damped sinusoid onto a dictionary of Gabor atoms. Several

algorithms aim to select symmetric atoms such that it minimizes the audible effect of pre-

echo [17] [7] though they slow down MP and generally lead to a non-sparse solution. [20]

noted that using asymmetric atoms can help to avoid the creation of pre-echo and dark

energy, and [19] showed that damped sinusoids can sparsely represent temporal asymmetries

and strong transients.

3.3 Asymmetric Atoms

This section includes an in-depth comparison of existing asymmetric atoms and introduces

a new asymmetric atom, the ramped exponentially damped sinusoid (REDS). The REDS

can adapt to a range of audio signal features and has mathematical properties that enable

efficient sparse decompositions and synthesis.
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3.3.1 Damped Sinusoid

The damped sinusoid (DS) is essential in audio as it represents a vibrating mode of a

resonant structure. The use of a DS model in the context of analysis dates back to Prony’s

method [47], according to our knowledge, and was the first asymmetric atom used in the

context of sparse representations [19].

Properties

Staying with the predefined generic atom expression (3.1):

ADS[n] = 1 (3.6)

and thus nm = nI = 0. Its continuous-time Fourier transform is well known,

F [ϕDS](ω) =
1

α + i(ω − ωc)
(3.7)

as is the DFT,

F [ϕDS](κ) =
1− eN(−α+i(ωc−2πκ/N))

1− e−α+i(ωc−2πκ/N)
(3.8)

and finally, the Z-transform,

Z[ϕDS](z) =
1

1− e−α+iωcz−1
(3.9)

Figure 3.3 shows the complex damped sinusoid’s digital filter block diagram. The DS’

spectrum is unimodal but not concentrated. We establish the analytic inner product for

two DS atoms:

⟨ϕDS1 , ϕDS2⟩ =
1− eN(−α1−α2+i(ωc1−ωc2 ))

1− e−α1−α2+i(ωc1−ωc2 )
(3.10)

and the analytic cross-correlation formula:

⟨ϕDS1 , ϕDS2⟩[m] =

⎧⎨⎩aM2em(α1−iωc1 ) − e(α2+iωc2 )(−m+1)−(α1−iωc1 ) for −M2 ≤ m ≤ 0,

aM1em(−α2−iωc2 ) − e(α1−iωc1 )(m−1)−(α2+iωc2 ) for 0 < m ≤M1,

(3.11)
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Figure 3.3 Damped sinusoid’s digital filter block diagram per (3.9), where
a = e−α+iωc .

where a = eα1+α2+i(ωc2−ωc1 ), M2 = (N2 − 1), M1 = (N1 − 1), and m is a discrete lag (shift)

variable, m = τ2 − τ1. Although a damped sinusoid theoretically decays for an infinite

duration, and thus warrants a cross-correlation derivation with an upper bound of positive

infinity, in practice, atoms are of finite duration N , so we must use an upper bound for the

cross-correlation derivation based on each atom’s respective duration, N1 and N2. When

the damped sinusoid’s amplitude at sample N is less than −60 dB, we could negate the

difference between an analytic cross-correlation formula that accounts for truncation and

one that does not. However, (3.11) accounts for atoms of finite duration in case either ϕDS1

or ϕDS2 has an amplitude greater than −60 dB at sample N1 or N2, respectively.

3.3.2 Gammatone

Auditory filter models are designed to emulate cochlea processing and are central to ap-

plications like perceptual audio coding, where auditory filters are used to determine which

sounds should be coded or not according to auditory masking principles. Auditory filter

modeling has a variety of applications in bio-mechanics and psychoacoustic research.

The most popular auditory filter model is the gammatone (GT) filter due to its history

and simple time domain expression. Originally described in 1960 as a fitting function for

basilar displacement in the human ear [40], the gammatone filter was later found to precisely

describe human auditory filters, as proven from psychoacoustic data [48]. [21] shows that

atoms learned optimally from speech and natural sounds resemble gammatones. Designing

gammatone filters remains a focus in audio signal processing [22].

More recently, filter models closely related to the gammatone filter have emerged, such

as the all-pass gammatone filter and the cascade family [49]. Added features of these

variants do not overlap with our criteria so they are not included for comparison.
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Properties

We assign the gammatone as the prototypical auditory filter model. A single variable

polynomial envelope function shapes the gammatone:

AGT [n] = np (3.12)

Literature involving the gammatone typically calls p+1 the filter order. AGT is not asymp-

totic. nm = p
α
and nI > 2nm. No part of the gammatone is, strictly speaking, a freely

decaying sinusoid (excluding when p = 0, in which case it is a DS), though it asymptotically

approaches a DS as n→∞.

We demonstrate the filter order’s effect by applying the Fourier transform frequency

differentiation property to express its spectrum parametrized by p:

F [ϕGT ](ω) =
p!

(α + i(ω − ωc))p+1
(3.13)

From its frequency representation, we see that the filter order determines the denominator

polynomial order. Finally, referencing the convolution property of the Fourier transform,

the gammatone impulse response is a DS convolved with itself p times.

Frequency spread ∆f decreases with respect to the model order, while the time spread

∆t increases. A gammatone of order four (p = 3) correlates best with auditory models [22].

The gammatone’s spectrum is unimodal and concentrated.

The attack envelope is not parametrized, and therefore cannot be controlled indepen-

dently of α. After setting p, controlling the atom is solely through α and ωc. Influence

time (or skirt width) is not directly controllable, so one cannot tune the atom to have time

concentration in exchange for frequency spread. Thus, the adaptability of this model to a

range of sound signal behavior is limited.

We establish an analytic formula for the gammatone’s Z-transform that supports an

arbitrary integer p > 0:

Z[ϕGT ](z) =

∑p
r=1

⟨
p

r−1

⟩
(e−α+iωcz−1)r

(1− e−α+iωcz−1)p+1
(3.14)

where the Eulerian number
⟨

p
r−1

⟩
=
∑r

j=0(−1)j
(
p+1
j

)
(r − j)p. Figure 3.4 shows the gam-
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Figure 3.4 Gammatone digital filter block diagram per (3.14), where a =
e−α+iωc and br = ar

⟨
p

r−1

⟩
.

matone’s digital filter block diagram. The gammatone’s DFT is

F [ϕGT ](κ) = (−i)p dp

dωp
κ

(
1− eN(−α+i(ωc−ωκ))

1− e−α+i(ωc−ωκ)

)
(3.15)

where ωκ = 2πκ/N .

We establish the gammatone’s inner product formula by using the following property:
de−αn

dα
= −ne−αn. We can therefore retrieve the gammatone inner product expression by

differentiating the DS’s inner product formula (3.10), with respect to either α1 or α2, p1+p2

times:

⟨ϕGT 1 , ϕGT 2⟩ = (−1)p1+p2
dp1+p2

dαp1+p2
1

(
1− eN(−α1−α2+i(ωc1−ωc2 ))

1− e−α1−α2+i(ωc1−ωc2 )

)
(3.16)

The same methodology applies for finding the gammatone’s analytic cross-correlation for-

mula from (3.11). These formulas are complicated for p1 + p2 > 3.

3.3.3 Formant-Wave-Function

In the source-filter model, an output sound signal results from an excitation function sent

into a (resonant) filter, called a source-filter pair [39]. Most acoustic instruments involve an

exciter, either forced or free, and a resonator [27]. A source-filter model of sound production

is an appropriate model for an instrument that has a resonator that is not coupled with

the source of excitation. An example is the voice production system, where the vocal tract

filters glottal pulses.

Source-filter synthesis involves sending an excitation function through one or more res-

onant filters in parallel. The filters are typically one or two pole and defined by their
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auto-regressive filter coefficients. The excitation function is either an impulse or, more of-

ten, an impulse that a window smooths to emulate natural excitation. The window shape

effects the transient portion of the time-domain output from the system, and the skirts of

the spectral envelope. The filter coefficients control the shape of the spectral envelope near

the resonant peak.

Time-domain formant-wave-function synthesis describes the output of the source-filter

model by a single function in the time domain. The amplitude envelope of the function

generically matches the output envelope of a source-filter pair: a damped exponential

(filter) with a smooth or discontinuous onset (excitation). The advantage of this approach

is twofold: the formant-wave-function’s time-domain definition enables the direct control

of its spectrum through its parameters and synthesis by table lookup [39].

Properties

The formant-wave-function (FOF) is ubiquitous with time-domain wave-function synthesis.

[39] proposed its use because it has the following desirable properties: its spectral envelope is

compact and allows for flexible control over its shape through only two parameters, while

its amplitude envelope’s temporal evolution matches that of a source-filter synthesized

waveform. The FOF’s A is:

AFOF [n] =

⎧⎨⎩1
2
(1− cos(nβ)) for 0 ≤ n ≤ π

β
,

1 for π
β
< n.

(3.17)

where β ∈ R>0 controls influence time. Decreasing β increases influence time, nI ≈ π
β
, and

the time location of the maximum,

nm = 1
β
cos−1

(
α2−β2

α2+β2

)
(3.18)

∆I and α
β
are positively correlated.

A raised cosine is an excellent attack shape in terms of concentration, however, since it

is piecewise (its value must be held at one after half of a period) some other design criteria

suffer.

F [ϕFOF ](ω) =
β2

2

1 + e−
π
β
(α+i(ω−ωc))

(α + i(ω − ωc))((α + i(ω − ωc))2 + β2)
(3.19)
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Figure 3.5 Formant-wave-function digital filter block diagram per (3.21),
where a = e−α+iωc and b = eiβ.

The FOF’s spectrum is not unimodal when the piecewise transition occurs within the

window of observation. Moreover, it is difficult to estimate the FOF’s parameters and its

analytic inner product formula is complicated [20].

We establish the FOF’s DFT and Z-transform by converting the cosine function into a

sum of complex exponentials and using the linear property. The FOF’s DFT is

F [ϕFOF ](κ) =
1

2

1 + aN1
κ − 2aNκ

1− aκ
− 1

4

(
1− (aκe

iβ)N1

1− aκeiβ
+

1− (aκe
−iβ)N1

1− aκe−iβ

)
(3.20)

where aκ = eα+i(ωc−2πκ/N), and the FOF’s Z-transform is

Z[ϕFOF ](z) =
1

2

1 + aN1z−N1

1− az−1
− 1

4

(1− (aeiβ)N1z−N1

1− aeiβz−1
+

1− (ae−iβ)N1z−N1

1− ae−iβz−1

)
(3.21)

where a = e−α+iωc and N1 = [π
β
]. Therefore the impulse response from the sum of three

complex pole-zero filters in (3.21) is a formant-wave-function (FOF), see Figure 3.5. The

time-varying input delay complicates controlling attack shape.

3.3.4 Recapitulation

The existing asymmetric atoms have several desired properties missing. While the gamma-

tone’s unimodal frequency spectrum and time-domain simplicity are appealing, expressing

its DFT and inner product is complicated. Most importantly, without a parameter to con-

trol influence time, the gammatone is not flexible enough to sparsely represent a variety

of signal features. On the other hand, the FOF’s attack function enables precise control

over its spectral envelope, however, its piecewise construction is problematic: spectral rip-
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ples result from a truncation in time, refining its parameters is difficult, and its frequency,

Z-transform, and inner product expressions are complicated.

3.3.5 Towards a New Atom

The starting goal of this study was to design a C∞A that is similar to AFOF . While piece-

wise construction is the reason for the FOF’s shortcomings, approximating the raised cosine

with a C∞ function does not necessarily improve the situation because many functions ad-

mit complicated frequency-domain and Z-domain formulas when their definitions include

a unit step. For example, (1 − e−βn2
) has a compact bell shape that seems to be, at first

inspection, a good candidate to replace the raised cosine. However, after the introduction

of a unit step function, it admits a non-algebraic Fourier transform expression (a special

function defines the imaginary part). Many bell-shaped functions have the same problem

(e.g., tanh (βn)2).

On the other hand, there are A options that are simple but have ∆I that are large

compared to the FOF for equal nm. In fact, any C∞ function will have a larger ∆I than

the FOF’s for equal nm. Therefore, our goal became more specific: define a C∞ A that

admits simple mathematical expressions when married with a complex damped exponential,

and whose ∆I is close to that of the FOF’s for equal nm. After an exhaustive search, we

resolved that designing a function to satisfy all of the design criteria is difficult.

3.3.6 Ramped Exponentially Damped Sinusoid

To reflect generality, we call the new atom the ramped exponentially damped sinusoid

(REDS). Identically to existing source-filter and auditory filter models, a complex exponen-

tially damped sinusoid defines the atom’s decay section. A binomial with one exponential

term shapes the atom’s attack envelope. By defining the atom as a sum of exponentials

(see (3.24)), we satisfy all the desirable mathematical properties of this study. The main

idea is that we can use the linear property of the Fourier transform and Z-transform to seg-

ment the derivation into several transforms of complex exponentials because the complex

damped exponential’s transforms are simple and well known.
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Figure 3.6 REDS digital filter block diagram per (3.27), where ar =
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Properties

We define REDS concisely in the time-domain by expressing AREDS[n] polynomially as

(1− e−βn)p:

ϕ[n] =
(
1− e−βn

)p
en(−α+iωc)u[n] (3.22)

where β controls the influence time (or skirt width) and p+ 1 is the order.

nm = 1
β
log(1 + pβ

α
) (3.23)

and nI ≈ − 1
β
log(1− (1− δ)1/p), where δ is the same as in Section 3.1.3.

As in the gammatone model, order is often constant within an application: we may

choose the order, for example, to match with auditory data or to approximate a frame

condition [22]. Given that the order is a constant, the number of control parameters and

their effect are the same as the FOF. To summarize, the REDS parameter set is a conflation

of the source-filter and auditory filter models.

We express the REDS in binomial form to reveal its sum of exponentials construction:

ϕ[n] =

p∑
r=0

(−1)r
(
p
r

)
en(−α−rβ+iωc)u[n] (3.24)

where the binomial coefficient
(
p
r

)
= p!

(p−r)!p!
. Considering the linear property of the Fourier

transform, we readily find from (3.24) the Fourier transform of REDS:

F [ϕREDS](ω) =

p∑
r=0

(−1)r
(
p
r

) 1

α + rβ + i(ω − ωc)
(3.25)
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Figure 3.7 F [ϕFOF ](κ) (black) and F [ϕREDS ](κ) (red, bold) with constant
β and α = .05. The spectrum of REDS is unimodal while the FOF’s is non-
unimodal. REDS is more frequency-selective than the FOF for p > 2.

and the DFT:

F [ϕREDS](κ) =

p∑
r=0

(−1)r
(
p
r

)1− eN(−α−rβ+i(ωc−2πκ/N))

1− e−α−rβ+i(ωc−2πκ/N)
(3.26)

Finally, we apply the linear property to retrieve the Z-transform:

Z[ϕREDS](z) =

p∑
r=0

(−1)r
(
p
r

) 1

1− e−α−rβ+iωcz−1
(3.27)

A sum of p + 1 complex one-pole filters in parallel will thus output a REDS (see Figure

3.6).

The REDS has a concentrated and unimodal spectrum. Similarly to the FOF, it is

possible to precisely control REDS’ spectra: by varying β one may exchange concentration

in time for frequency, and vice versa. The FOF has greater time concentration than the

REDS because the raised cosine attack function has a fast uniform transition from zero

to one, while the REDS attack envelope is bell-shaped. Formally, nIREDS
> nIFOF

when

nmREDS
= nmFOF

. REDS’ spectral concentration surpasses the FOF’s as p increases, see

Figure 3.7.

Since the REDS is constructed from a linear combination of p + 1 damped sinusoids,

the inner product is equal to the sum of (p1 + 1)(p2 + 1) damped sinusoid inner products

⟨ϕDS1 , ϕDS2⟩, see (3.10). Likewise, the cross-correlation of two REDS atoms is equal to the

sum of (p1 + 1)(p2 + 1) damped sinusoid cross-correlations ⟨ϕDS1 , ϕDS2⟩[m], see (3.11).
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Figure 3.8 Asymmetric atom attack envelopes, A[n].

Considering that these formulas for Gabor atoms and FOFs provide an efficiency boost

in existing MP algorithms [20], and the REDS formulas are simpler than those, it can only

be that using the formulas are more efficient than numerical computations.

3.3.7 Relations

There are a few important relations between the attack envelopes, A[n], of the aforemen-

tioned asymmetric atoms, see Figure 3.8 for examples of each atom’s A[n]. By applying

the small angle approximation to AFOF [n], we show that a FOF and gammatone of p = 2

are approximately equal when the FOF’s β is very small:

lim
β→0

2
β2 (1− cos(βn)) = n2 (3.28)

We wish to quantify the approximation error in terms of β. To do this, we use the series

expansion of AFOF [n] about β = 0:

(1− cos(βn)) = 1
2
n2β2 − 1

24
n4β4 + 1

720
n6β6 . . . (3.29)

2

β2
(1− cos(βn)) = n2(1− 1

12
n2β2 + 1

360
n3β3 . . .) (3.30)

2

β2
(1− cos(βn)) ≈ n2(1− ϵ) (3.31)

where ϵ = 1
12
n2β2 is the error between the FOF and gammatone. The error increases with

n, however, we know that AGT [n] only influences the atom for a duration of nI = 2nm =
2p
α
= 4

α
. Assuming that β ≪ α such that the GT and FOF’s nm values are approximately

equal, ϵ = 1
12
n2
Iβ

2 = 1
12
( 4
α
)2β2 and

β = α
√

3
4
ϵ (3.32)
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Likewise, by applying the small angle approximation to AREDS[n], we show that AREDS

and AGT are approximately equal when β is small:

lim
β→0

1
βp

(
1− e−βn

)p
= np (3.33)

We quantify the approximation error between a gammatone and REDS in terms of β by

using the series expansion of AREDS[n] about β = 0:

(1− e−βn)p = (βn)p(1− 1
2
npβ + 1

24
n2β2p(1 + 3p) . . .) (3.34)

1

βp
(1− e−βn)p = np(1− 1

2
npβ + 1

24
n2β2p(1 + 3p) . . .) (3.35)

1

βp
(1− e−βn)p ≈ np(1− ϵ) (3.36)

where ϵ = 1
2
npβ is the error between the REDS and gammatone. We substitute nI =

2nm = 2p
α

for n, assuming that β ≪ α so their nm values are approximately equal, and

solve for β:

β =
αϵ

p2
(3.37)

REDS ability to approximate a gammatone, with a quantifiable error, is useful for sev-

eral reasons. In practice, the perceptual difference between a REDS and gammatone is

negligible when ϵ < .001. Regarding dictionary based methods, a homogeneous REDS dic-

tionary can contain approximate gammatone atoms. If one wants to design a gammatone-

only dictionary, which is common for research in perceptual auditory coding, a REDS

dictionary is a practical alternative because it has a simpler inner product formula. More-

over, a REDS filter requires fewer mathematical operations per sample than a gammatone

filter, and can range in envelope shape from a gammatone to a damped exponential and

anywhere in-between. Furthermore, by (3.28) and (3.33), AREDS[n] ≈ 2AFOF [n] when

p = 2 and their β values are 1
4
ϵα.

3.4 Sparse approximation experiment

We decomposed a set of real audio signals with MP. We selected the audio signal set to

reflect a range of the source-filter model: it includes a vocal sound (sustained, relatively

high damping and smooth attack per atom), a vibraphone (not-sustained, made of low
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SRR (dB)

Dur. Atoms N DS GT FOF REDS

Vocal 1.0 104 28 30.7 35.9 37.8 38.8
Violin 1.6 104 29 20.0 14.6 27.7 28.0
Vibes 5.5 50 217 17.6 32.1 36.9 37.1

Table 3.1 Asymmetric atom sparse approximation comparison results. The
sampling rate of the audio signals is 44100 Hz. The signal’s duration, “Dur.”,
is in seconds.
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(a) Vibraphone decomposition onto 50 REDS
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(b) Singing voice. Atom spacing ex-
pands/contracts reflecting vibrato.

Figure 3.9 Time-frequency distribution of REDS from sparse approxima-
tion experiment.

damping and short attack per atom), and a violin (intermediate situation).

For this comparison study, the MP algorithm did not employ any refinement techniques

and thus decomposed each signal onto each static dictionaryΦDS, ΦGT , ΦFOF , andΦREDS.

The manual dictionary design process involved fitting a dictionary of damped sinusoids to

each signal, ΦDS, then creating the other three dictionaries by modulating ΦDS with AGT ,

AFOF , and AREDS.

We can represent a signal as time-varying partials per the additive model, or as filtered

excitation sequences per the source-filter model, by decomposing it onto a dictionary of

REDS atoms with constrained damping factors. We chose to demonstrate the ability of

the REDS to analyze the signal set from the source-filter viewpoint. For the singing voice,

if the dictionary contained atoms with small damping (long time support) then the selected

atoms would represent partials of the signal. We set the damping to be high and in doing

so, successfully represented spectral formants with a series of short duration atoms with

relatively large skirt widths whose temporal spacings, rather than frequencies, oscillated
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Criteria DS GT FOF REDS

Concentrated Spectrum − ✓ ✓ ✓
Unimodal Spectrum ✓ ✓ − ✓
Influence Time Control − − ✓ ✓
Time-Domain Simplicity ✓ ✓ − ✓
Causal Filter Simplicity ✓ ✓ − ✓
Inner Product Simplicity ✓ − − ✓

Table 3.2 Asymmetric atom comparison results.

to reflect the sound’s vibrato, see Figure 3.9b. Regarding the vibraphone, we created a

dictionary whose damped sinusoids had large time support with low decay rates.

For each test, the REDS dictionaries provided higher signal-to-residual ratio (SRR)

values for the same number of iterations, see Table 3.1, where

SRR = 20 log10

(
∥y∥22
∥r∥22

)
(3.38)

For the singing voice, the gammatone and REDS were close in performance because the

formant time-domain envelopes had very smooth attacks. REDS matched the vibraphone’s

envelope tightly, while the gammatone caused pre-echo because it is more symmetric than

the signal. The reconstructed signal from the REDS decomposition had an SRR of 38.8

dB, and consisted of 50 atoms (.04% of the signal’s length), see Figure 3.9a.

3.5 Summary

In this chapter, we described several types of atoms for sparse representations of audio. We

established a set of desirable properties for an asymmetric atom, e.g., the ability to adapt to

a range of audio signal features. Then, we compared existing asymmetric atoms along those

criteria and introduced a new asymmetric atom, REDS. We established relevant analytical

formulas for each atom, for example, analytic inner product formulas, and established under

what conditions some of the atoms are approximately equivalent. Table 3.2 summarizes the

results of the asymmetric atom comparative study and Figure 3.10 shows each asymmetric

atom’s envelope E[n] and corresponding frequency spectrum. Given that REDS meets all

of our requirements, the next step involves the design of a sparse representation system
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(d) REDS: p = 3 and α = .05.

Figure 3.10 Asymmetric atom envelopes E[n] (left) and magnitude normal-
ized spectra (right).

that decomposes an arbitrary audio signal onto REDS atoms.
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Chapter 4

Partial Tracking Matching Pursuit

In this chapter, we establish an MP-based system that adapts parametric asymmetric

atoms (REDS) to an arbitrary audio signal. It bridges two separate search methods, one

that efficiently locates short duration atoms (e.g. on the order of milliseconds) and the

other that efficiently extracts long duration atoms (e.g., whose durations last seconds or

even minutes). We call the system partial tracking matching pursuit (PTMP) because it

locates long duration atoms by extracting and reformatting long horizontal partials.

Partial tracking algorithms output partial trajectories that describe the evolution of

sinusoidal model parameters over time. Research about additive sound synthesis per the

sinusoidal model has led to several publications on partial tracking techniques, the first of its

kind being [50] with recent developments in [51] [52]. Daudet emphasized that dictionaries

with long duration atoms limit the speed of MP, then addressed the problem by proposing

the Molecular Matching Pursuit algorithm that represents a long duration oscillation, not

with a long duration atom, but with a “molecule”, which is a group of short duration atoms

of similar frequencies.

For the first time, we employ the method of partial tracking in a sparse approximation

context to efficiently locate atoms of arbitrary duration and overcome part of the sparse

approximation’s scalability limitations. PTMP outputs REDS parameter set λ(k) after

iteration k = (1, 2, . . . , K).
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4.1 Partials extraction

The first stage of PTMP’s large-scale sub-system extracts partial trajectories, Pρ for ρ =

(1, 2, . . . , R), and prepares them for transformation into asymmetric atoms by formatting,

splitting, and arranging them to fit with an asymmetric atom model.

4.1.1 Peak picking

The first step involves comparing audio signal y with time-shifted Fourier atoms and finding

prominent atoms (peaks) in the time-frequency plane. A discrete Fourier atom ϕκ[n] is a

complex sinusoid modulated by a real and symmetric window E[n]:

ϕκ[n] = E[n]e2πiκn/NPT (4.1)

where κ = n = (0, 1, 2, . . . , NPT −1), and NPT ∈ N is the atom’s discrete length (PT stands

for partial tracker). E[n] is normalized such that ∥E[n]∥ = 1, and by extension ∥ϕκ[n]∥ = 1.

PTMP uses a symmetric window, more specifically a Blackman-Harris window [42], for the

peak picking and the forthcoming spectral analysis step because these tasks demand a

compact spectrum with high side-lobe rejection.

We start by calculating the discrete STFT of y, Sy,

Sy = Sy[m,κ] = ⟨y[n+mH], ϕκ[n]⟩ =
N−1∑
n=0

y[n+mH]E[n]e−i2πκn/NPT (4.2)

where m ∈ N is the frame index and H ∈ N is the hop size. After calculating the STFT,

we detect and determine the peaks of the spectrum for every observation frame m, κ̂m.

Bin κ is a peak, κ̂, when it fulfills several criteria. Besides the definitive criteria for

a peak that [50] describes, our peak selection criteria involves a local (inside of one ob-

servation frame) relative minimum peak height that [53] establishes (with details in [54]),

and another one that we establish to retain a global selectivity over the entire audio sig-

nal. We convert the magnitude spectrum to decibels (dB), denoted with a dB subscript:

|Sy[m,κ]|dB = 20 log10|Sy[m,κ]|. First of all, per [50], |Sy[m,κ]|dB must be a local maximum

in the magnitude spectrum, more precisely,

|Sy[m,κ− 1]|dB < |Sy[m,κ]|dB > |Sy[m,κ+ 1]|dB (4.3)



4.1 Partials extraction 47

0 20 40 60 80 100 120 140

−60

−40

−20

0

DFT bin κ (-)

20
lo
g
1
0
|S

y
[m

,κ
]|

Figure 4.1 Spectral peak picking. The orange marks locate the local max-
ima that satisfy (4.5) and the blue circles locate the local maxima that satisfy
both (4.4) and (4.5), where Gg = 60dB and Gh = 10dB.

Second, [54] proposed a relative minimum peak height threshold that adds another level of

selectivity to the peak picking decision that helps to avoid the selection of spurious peaks,

more precisely, peaks that are likely not the result of an underlying sinusoidal component.

We adopt the same technique: |Sy[m,κ]|dB must beGh greater than the averaged magnitude

of its neighboring valleys,

|Sy[m,κ]|dB >
1

2
(|Sy[m,κ−]|dB + |Sy[m,κ+]|dB) +Gh (4.4)

where Gh is the relative height threshold, and κ− and κ+ are the locations of the valleys

(local minima) to the left and right of κ.

Lastly, |Sy[m,κ]|dB must be greater than the general amplitude threshold Gg. The value

of Gg is relative to the absolute maximum of the signal’s STFT, which includes all frames

and bins, |Sy|dB,
|Sy[m,κ]|dB > max|Sy|dB −Gg (4.5)

We establish a global selection criteria to reflect that MP selects the best fitting atom

over the entire signal, not for every short-time analysis frame. This global amplitude

constraint eliminates spectral peaks that have relatively low magnitudes compared to the

global maximum. The combination of global selection and local peak height criteria help to

eliminate noise-induced spurious peaks and peaks that originate from window E[n]’s side

lobes rather than the signal itself. Figure 4.1 shows the |Sy[m,κ]|dB of a glockenspiel audio

sample, superimposed with a marking at each peak, |Sy[m, κ̂]|dB.
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4.1.2 Estimating sinusoidal model parameters

After locating L short-time Fourier transform peaks of frame m, κ̂m
l for l = (1, 2, . . . , L),

we employ the spectral information at the peak locations to extract the parameters of

underlying complex damped sinusoids by using phase-based (spectral) non-stationary si-

nusoidal model estimators: the Reassignment Method [55] and Derivative Method [44]. To

the best of our knowledge, these estimators have not intersected with sparse approximation

applications.

First, we find an estimate of the underlying sinusoid’s time center by employing the

Reassignment Method. [55] explains how to calculate reassigned values efficiently using a

ratio of Fourier transforms. This estimation requires the computation of another STFT,

this time with a time-weighted version of y[n+mH]:

Syτ [m,κ] = ⟨y[n+mH](n− NPT−1
2

), ϕκ[n]⟩ (4.6)

The time center estimate of the sinusoid corresponding to Sy[m, κ̂] is

τ̂ml = τm + ℜ
{
Syτ [m, κ̂m

l ]

Sy[m, κ̂m
l ]

}
  

τδ[κ̂
m
l ]

(4.7)

where τm = mH + (NPT − 1)/2 is the discrete time center of frame m.

[51] used the reassignment method to avoid pre-echo creation when re-synthesizing a

signal from sinusoidal partials per the additive sound model, and described a technique

called “cropping” to better preserve the phase information of the signal ([36] details this

idea further). An on-center component is one with a value of |τδ[κ̂m
l ]| that is less than some

value, for example, less than the hop size H. An on-center component allows for reliable

parameter estimates because it suggests that the sinusoid of interest is relatively stationary

and spans the majority, if not all, of the analysis frame. Strong damping also effects τδ

because it shifts a component’s temporal center of energy away from τm.

We propose the use of reassignment method to avoid dark energy creation (e.g., in the

form of pre-echo) in the context of greedy sparse approximations. Figure 4.2 shows a

partial extracted from a test signal before time reassignment, where the time locations

are the discrete time frame centers (τm) and the same partial after reassigning τm to τ̂ml
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Figure 4.2 Partials (lines) with spectral peaks (dots) from a synthetic audio
signal (top panel) before and after time reassignment and cropping. In this
case, NPT = 8192 and H = 256.

per (4.7). Notice how the partial onset is after the onset of the audio signal so there is

no pre-echo. We adopt the cropping technique to ensure reliable parameter estimations as

well. The bottom panel of the figure illustrates that the remaining reassigned spectral peak

locations after cropping are the ones that are more reliably centered inside of the audio

signal. PTMP proceeds to estimate the frequency and damping factor for on-center peaks,

in other words, the ones that satisfy |τδ[κ̂m
l ]| ≤ H. We confidently discard peaks whose

|τδ[κ̂m
l ]| is greater than the hop size H because we know another analysis frame has a better

“view” of that component. At the same time, a component with a damping factor strong

enough to make |τδ[κ̂m
l ]| > H suggests that it is relatively transient, so we safely discard

the peak since the small-scale sub-system can detect and represent it sufficiently.

Next, we assume a complex damped exponential signal model and use the derivative

method to estimate each on-center peak’s frequency and damping factor. The derivative

method requires the signal’s time derivative y′. Since the digital audio signal y is a discrete-
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time vector, we must calculate its numerical derivative. Here, we employ the technique that

[44] establishes to compute the signal’s numerical derivative, which is to filter the signal

with the following differentiator filter impulse response:

h[n] =
(−1)n

n
forn ̸= 0, andh[0] = 0. (4.8)

where n = {0, 1, . . . Nh − 1} − (Nh − 1)/2. In practice, an impulse response of order

Nh = 1023 (order must be odd) provides an approximate signal derivative with negligible

bias (except at very high frequencies) [44]. The signal’s numerical derivative is y′ = y ∗ h.
Alternatively, we could instead use the reassignment method for the estimation of damp-

ing and frequency because it provides an equivalent estimation accuracy as the derivative

method [44]. Although it requires slightly more computations, the computational differ-

ence being the convolution of the signal with h[n], we employ the derivative method in this

case because it is the more flexible choice; the derivative method does not rely on having

a differentiable window [56].

Another STFT, this time of the signal derivative, provides us with enough information

to calculate ω̂m
l and α̂m

l .

Sy′ [m,κ] = ⟨y′[n+mH], ϕκ[n]⟩ (4.9)

The frequency estimate for bin κ̂m
l is

ω̂m
l = ℑ

{
Sy′ [m, κ̂m

l ]

Sy[m, κ̂m
l ]

}
(4.10)

and the damping factor estimate is

α̂m
l = −ℜ

{
Sy′ [m, κ̂m

l ]

Sy[m, κ̂m
l ]

}
(4.11)

Lastly, we store the magnitude of each peak of frame m, aml = |Sy[m, κ̂m
l ]|. We discard

phase information because we are not synthesizing directly from the partial trajectories

interpolated phase, which is the usual case for partial tracking applications. A later step

determines atom phase.
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4.1.3 Frame-to-Frame Peak Matching

PTMP creates sinusoidal trajectories by linking together spectral peaks per the heuris-

tics [50] proposed (i.e., the McAulay-Quatieri method of peak matching). One difference

between this procedure and the one that [50] describes is that we enforce an additional con-

straint onto the peak connection decision, more precisely, in addition to the local frequency

deviation ωδ that [50] describes, we also enforce a general frequency deviation ω∆ to ensure

the partial trajectory’s frequency evolution is roughly stationary. Both constraint values

are dimensionless.

The McAulay-Quatieri method of peak matching is sufficient in our case because we are

interested in extracting long horizontal partials, more precisely, ones with little frequency

modulation per the asymmetric atom model. If one wants to extract atoms with frequency

modulation, it is beneficial to use a partial tracker that connects peaks in a globally optimal

way and uses frequency modulation information to make better decisions, for example, the

Hidden Markov Model partial tracker [57].

LetPρ be partial number ρ that contains a set of peak parameters, Pρ = {ωm, αm, τm, am}ρ,
where m ∈ [bρ, dρ] is frame index, bρ and dρ are the birth and death frames of Pρ, respec-

tively, and Mρ is Pρ’s length in frames, i.e.,Mρ = dρ − bρ + 1.

Suppose that we matched the peaks up to frame m− 1 and generated a new parameter

set for frame m from the aforementioned process. Let ωm ∈ RL and ωm−1 ∈ RV be vectors

that contain the frequencies of frame m and m − 1, respectively (in general L ̸= V ). The

method of assigning each frequency in frame m to some existing trajectory that contains

frequency ωm−1
v from frame m− 1, or to a new trajectory, is as follows.

1. Calculate the relative difference ∆l,v = |ωm
l /ω

m−1
v − 1| for every combination of l and

v.

2. Find the best match for the values that are still in consideration by choosing the

combination that results in the minimum difference, {l̃, ṽ} = argminl,v ∆l,v. There is

no match for ωm−1
ṽ if ∆l̃,ṽ > ωδ, so declare the trajectory that contains ωm−1

ṽ as dead

and take ωm−1
ṽ out of further consideration. If ∆l̃,ṽ ≤ ωδ, proceed to check if ωm

l̃
is

within the general frequency deviation range, ω∆.

ω∆ refers to the maximum amount that a partial trajectory’s frequency is allowed to

deviate. Let ωṽ denote a vector that contains the frequencies of partial trajectory
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Figure 4.3 Peak-to-peak matching heuristics. The blue and red dots mark
the point of a partial’s birth and death, respectively.

Pṽ that owns ωm−1
ṽ . To test this condition, calculate the maximum deviation be-

tween the new frequency and the partial trajectory’s frequencies, max|ωm
l̃
/ωṽ− 1|. If

max|ωm
l̃
/ωṽ − 1| ≤ ω∆, assign ωm

l̃
to the partial trajectory that contains ωm−1

ṽ , and

take both frequencies out of further consideration. If max|ωm
l̃
/ωṽ − 1| > ω∆, declare

the trajectory that contains ωm−1
ṽ as dead and take ωm−1

ṽ out of further consideration.

Repeat this step until none of the values in ωm−1 are in consideration (they are either

matched or dead).

3. Birth a new partial trajectory for each frequency in ωm that was not assigned to an

existing partial trajectory.

Existing partial tracking algorithms define the allowable amount of local frequency

deviation linearly with respect to the peak frequency (in those cases the frequency deviation

variable has a dimension of frequency) [50] [53]. Alternatively, we define ωδ and ω∆ as

non-linear functions with respect to ωv for two reasons. One reason is to reflect that

the frequency modulation of a harmonic is relative to the modulation of its fundamental.

The other reason is to reflect human auditory perception: humans are more sensitive to

frequency variations when they occur at low frequencies than at high frequencies [26].

Therefore, we allow less frequency deviation at low frequencies than at high frequencies.

Figure 4.3a illustrates how ωδ and ω∆ guide peak matching, and Figure 4.4 shows an

example of the partial trajectories that the peak-to-peak matcher creates.
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Figure 4.4 Partial trajectory formation example.

4.1.4 Splitting partials

After extracting partial trajectories over the entire signal, we reformat the partial trajecto-

ries to generally fit with an asymmetric atom model. At this point, the partial trajectories

have frequency evolutions that are consistent with our asymmetric atoms because ω∆ con-

strains them. However, we still need to reformat the partial trajectories such that their

amplitude modulations are consistent with an asymmetric atom’s envelope (i.e., the ampli-

tude envelope has an attack part followed by a damped exponential part).

We split each partial trajectory per the following heuristic procedure. Let aρ be a vector

containing the magnitudes of partial trajectory Pρ, where aρ[m] is the magnitude of partial

trajectory number ρ at location m. Find the valleys of aρ: m is the location of a valley

(local minimum) if

aρ[m− 1] > aρ[m] < aρ[m+ 1] (4.12)

Next, find the location of the closest local maximum in the positive direction of m, denoted

by m+. If aρ[m+] − aρ[m] ≥ νδ, where νδ is the valley threshold, split the partial at m:

one partial ends and another one begins at m. Repeat this process for every valley in aρ

and for every partial trajectory number ρ.

We split the partials based on amplitude modulation cues to ensure multiple super-

imposed audio events with close frequencies do not remain hidden under a single partial

trajectory. We illustrate the problem with the following example. Suppose an audio sig-

nal contains a sequence of damped sinusoids that are close enough in time such that a

new one starts while the previous one’s amplitude is large enough to constitute a peak in

the spectrum (per Section 4.1.1), and close enough in frequency such that their frequency

differences are less than ωδ and ω∆ (per Section 4.1.3). Due to this frequency and time
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Figure 4.5 Partial trajectories from a clarinet audio signal.

overlap, the partial tracker will capture the sequence with one partial trajectory. We em-

ploy the partial trajectory’s amplitude data to locate the onset of new asymmetric atoms.

This enables a decomposition onto a sequence of multiple atoms, thereby more precisely

reflecting the amplitude envelope of the audio signal at that particular frequency.

4.1.5 Arranging partials

In preparation for the next stage, PTMP arranges P in order of decreasing energy, which

we approximate as the sum of the partial’s amplitude vector,
∑

m aρ[m]. After the ar-

rangement, P1 is the highest energy partial. Figure 4.5 shows trajectories that the partial

tracker extracted from a clarinet audio sample.

4.2 Partial to atom

In this section, we describe how to use the data from a partial trajectory to create an

asymmetric atom. Given the partial data from the previous step, the following process

determines values for the atom’s entire parameter set. As a result, this process outputs a

fully determined large scale asymmetric atom (REDS), ϕ(λk), where the REDS parameter

set λ(k) = {N, fc, α, β, p, τ}(k).
Retrieving an atom from a partial trajectory involves one of two approaches: the first

approach for the case when the trajectory spans more than some number of frames Mmin,

and the other for when it spans less than Mmin frames.
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4.2.1 Frequency

To start, we calculate the atom’s normalized frequency fc as the weighted average of the

partial trajectory frequencies ωρ[m] and amplitudes aρ[m]:

fc =
1

2π

∑
m ωρ[m]aρ[m]∑

m aρ[m]
(4.13)

4.2.2 Damping

If Mρ > Mmin, we assume that some of Pρ reflects a freely decaying sinusoid. We locate

the section of Pρ that resembles a freely decaying sinusoid and use the damping factors

within that section to estimate the atom’s damping factor α. The section of Pρ where the

damping factor is positive corresponds to the decaying part. Let m† denote the indices of

damping factor αρ[m] such that αρ[m
†] > 0 is true. We define the atom’s damping factor

α as the weighted average of amplitudes aρ[m
†] and αρ[m

†]:

α =

∑
m† αρ[m

†]aρ[m
†]∑

m† aρ[m†]
(4.14)

We avoid skewing the estimate of α by not weighing in the frames that have negative or

zero values of αρ. Alternatively, we could estimate α through least-squares fitting of the

partial’s amplitude evolution aρ to a damped exponential curve. However, we choose to

implement the weighted average approach (4.14) because it is simple and provides excellent

results.

For M ≤ Mmin, the partial has too few data points for a robust estimate of α, so we

discard αρ.

4.2.3 Onset and duration

We seek refined values of the atom’s onset τ and duration N for a few reasons. The first

reason is that the precision of τ̂ρ[1] and τ̂ρ[Mρ] are dependent on the STFT hop size H.

Second, we seek to extend the ends and beginnings of the partials that we split (see 4.1.4),

because we assume that they are superimposed. Finally, recall from Section 4.1.2 that we

reassign the time location of each peak and crop the peaks that are off-center. After time

reassignment, a partial’s start and end times are relatively close to the signal component’s
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and thus reduces the likelihood of pre and post-echo creation. Then, cropping eliminates

peaks relatively close to the signal component’s onset and termination, such that τ̂ρ[1] and

τ̂ρ[Mρ] are both safely inside the time span of the signal component, as shown in Figure

4.2. Therefore, since the oscillation responsible for the partial trajectory Pρ starts before

τ̂ρ[1] and ends after τ̂ρ[Mρ], we must find more accurate estimates of the atom’s onset time

and duration.

If Mρ > Mmin, we create a damped sinusoid atom of length Nρ = τ̂ρ[Mρ]− τ̂ρ[1]+1, ϕρ,

with α and fc, and project it onto the residual to retrieve complex gain x̂ρ

x̂ρ = ⟨rτ̂ρ[1],ϕρ⟩ (4.15)

where rδ0 | rδ0 [n] = r[n+ δ0].

We use the recursive inner product (RIP) algorithm to refine the atom’s onset and

duration values, see Algorithm 3. We assume that most of the atom’s energy is within the

time span (τ̂ρ[1], τ̂ρ[Mρ]), so we use a real-valued version of RIP to hold the phase of the

atom constant with respect to ∠x̂. Since we must input the phase of the atom into the

real-valued version of RIP, we retrieve the phase of the damped sinusoid atom at the first

and last sample, θ[1] = ∠x̂ρϕρ[1] and θ[Nρ] = ∠x̂ρϕρ[Nρ], respectively. Then we run the

algorithm twice, once starting from τ̂ρ[Mρ] and iterating in the direction of positive time

to retrieve a new estimate of the atom’s end, and once starting from τ̂ρ[1] and iterating in

the direction of negative time to retrieve a new estimate of the atom’s onset.

If Mρ ≤ Mmin, our procedure is the same except that we extend a complex sinusoid of

frequency fc without amplitude modulation since, at this stage, we do not have an estimate

of α.

Recursive Inner Product

Goodwin proposed the use of recursion to calculate the cross-correlation between a dic-

tionary of damped sinusoid atoms and y as an alternative to a direct computation [31].

We establish a recursive algorithm whose purpose is to refine an atom’s parameters rather

than to calculate dictionary correlations. Our RIP algorithm computes the inner product

of the residual r and a damped exponential atom ϕρ on a sample-by-sample basis to extend

the length of the atom either forwards or backwards in time and thereby retrieve better

estimates of the atom’s τ and N .
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The algorithm starts at some sample δ0 of the residual, r[δ0], and extends the atom

either forwards or backwards until the inner product between the atom and residual does

not increase from one iteration to the next. The output of the algorithm is a refined estimate

of the atom’s end time, or start time, depending on whether the trace direction is forward or

backward, respectively. Recall that ϕρ must be normalized such that ∥ϕρ∥22 = 1, see Section

2.2. Since the atom’s length changes at each iteration of the algorithm, we incorporate an

update mechanism in the algorithm to ensure that the atom’s euclidean norm is always

one.

Before iterating, the algorithm initializes the atom’s euclidean norm, η(0) = ∥ϕρ∥2 ∈ R+,

and inner product, g(0) = ⟨rδ0 ,ϕρ⟩ ∈ C . For each iteration, it first calculates the current

sample of the complex damped sinusoid ϕρ[δ0 + k], where k is the iteration number and δ0

is the start sample, as the output of a complex one-pole filter:

ϕρ[δ0 + k + 1] = ϕρ[δ0 + k]e−α+i2πfc (4.16)

Given the new sample, it updates the atom’s euclidean norm,

η(k+1) =
((

η(k)
)2

+ |ϕρ[δ0 + k + 1]|2
)1

2
(4.17)

then updates the inner product of the atom and residual,

g(k+1) =
g(k)η(k) + r[δ0 + k + 1]ϕ̄ρ[δ0 + k + 1]

η(k+1)
(4.18)

The algorithm runs until |g(k+1)| ≯ |g(k)|, so the iteration number that corresponds to

the largest inner product is k. The inner product may only decrease momentarily and then

continue to increase after some number of samples. This usually happens in the presence

of a superimposed transient because it adds rapid fluctuations and distorts the oscillation

that the algorithm is tracing. To bridge over the fluctuations, we specify an overshoot value

Ξ, which is the number of samples, ξ, to search past k after |g(k+1)| ≯ |g(k)| is true. After

ξ exceeds Ξ, the algorithm ends. If |g(k+ξ)| > |g(k)|, it sets k = k + ξ, ξ = 0, and continues

as normal.

We use real values for the inner product and norm update when we have already com-

mitted the atom’s phase. In this case, we initialize ϕρ = eiθ[δ0], where θ[δ0] is the phase of
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Algorithm 3 Recursive Inner Product

1: init: ϕ = 1, η = ∥ϕρ∥2, g = ⟨rδ0 ,ϕρ⟩
2: repeat
3: ϕ← ϕe−α+iωc

4: g ← gη + r[δ0 + k + 1]ϕ̄
5: η ←

√
η2 + |ϕ|2

6: g ← gη−1

7: k ← k + 1
8: until stopping condition
9: return k, g, η

atom ϕρ at sample δ0. We convert ϕρ to its real-valued counterpart before updating g(k+1),

g(k+1) =
g(k)η(k) + 2ℜ

{
ϕρ[δ0 + k + 1]

}
r[δ0 + k + 1]

η(k+1)
(4.19)

and ∥ϕρ∥2,

η(k+1) =
((

η(k)
)2

+
⏐⏐2ℜ{ϕρ[δ0 + k + 1]

}⏐⏐2)1/2 (4.20)

Real values ensure that the extended section’s phase is coherent with the existing atom’s

phase.

4.2.4 Envelope

For Mρ > Mmin, the final step retrieves the atom’s attack shape and onset time. At

this stage, we extracted a damped sinusoid atom whose damping, frequency, and phase

estimates are reliable. Moreover we have a good estimate of the end time for the atom.

In the previous step, we recursively computed the inner product backwards with a real

sinusoid to refine the onset time value, τ̂ρ[1]. At this point τ̂ρ[1] is only accurate if the

signal contains a pure damped sinusoid with no attack shape, which is almost never the

situation, thus we search for a better estimate of the onset time before committing it as τ

within λ.

In fact, retrieving an accurate estimate of τ is dependent on an accurate estimate of β,

and vice-versa. In other words, the quality of their estimations are mutually dependent.

Suppose a synthetic signal contains a REDS atom whose attack envelope’s maximum is nm

samples after its onset time τ , and that our current estimate of onset time τ̂ρ[1] is some
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number of samples after the true value of τ , for example 2
3
nm. Estimating β in this scenario

leads to an atom whose envelope maximum occurs 1
3
nm after its onset time, to match with

the signal. In other words, the estimated attack time is much smaller (skirt width is much

wider) to compensate for the error in onset estimation, see Figure 4.6a. Likewise, adapting

the onset time with a fixed β results in a sub-optimal approximation that is either before or

after the true value of τ , so it might cause pre-echo, see Figure 4.6b. Therefore, to retrieve

an accurate attack envelope we estimate β and τ simultaneously.

A Newton step performs the estimation of β and τ . Starting from a real-valued damped

sinusoid atom,

ϕDS(τ
(0), θ) = e−α(n−τ (0)) cos(ωc(n− τ (0)) + θ) (4.21)

whose phase θ is from the previous step, Newton’s method searches for a real-valued REDS

atom, ϕREDS(β, τ, θ) = A(β, τ)[n]ϕDS(τ, θ)[n], where

A(β, τ)[n] =
(
1− e−β(n−τ)

)p
u[n− τ ] (4.22)

Newton’s method’s reliability depends on how close the initial estimate β̂(0) is to ground-

truth. We find a coarse estimate for β̂(0) by modulating ϕDS with a set of AREDS to create a

sub-dictionary of REDS atoms, calculating the inner products of r and the sub-dictionary,

and setting β̂(0) to match the β value of the atom responsible for the largest inner product.

In practice, since the sole difference between the atoms in the sub-dictionary are the attack

envelopes, the inner product only needs to consider the samples spanning nI .

Refining τ involves a multidimensional search over the τ and θ space. Even though we

keep the initial θ during the Newton refinement, we must incorporate the phase space into

the time space so that the atom can shift in time1. A Newton search over only the one-

dimensional τ space does not work. Conceptually, the phase blocks the atom’s movement

through time, like a mountain that the atom cannot pass over. Thus, we calculate the

Hessian matrix and gradient vector of ϕREDS(β, τ, θ) with respect to θ and τ to perform a

multidimensional Newton step. See Appendix A for the derivations. Since the dimension

of the search involves the phase space as well, the Newton step finds a correct phase shift

to match the time shift.

After retrieving a new value of τ , we update ϕREDS(β, τ, θ) then estimate β via a

1If the atom is complex, the Newton step must refine the argument of the atom’s complex gain, ∠x,
because it describes the atom’s phase.
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Figure 4.6 The envelope of a REDS atom (black) that Newton’s method
estimated from the ground-truth envelope (dashed, red). The initial value of
the REDS atom’s α and ωc were equal to ground-truth, then Newton’s method
estimated τ and β.

one-dimensional Newton step. Through trials we found that a three-dimensional Newton

step to estimate β, τ, and θ is not stable. We iterate over two Newton steps, for τ then

β, until the residual energy from one iteration to the next does not decrease (i.e., when

∥r(k+1)∥22 ≮ ∥r(k)∥22 ), see Algorithm 4 and Figure 4.6c.

If Mρ ≤ Mmin, since we could not reliably convert the partial trajectory’s damping

factors into an approximation of α, the final step retrieves an estimate of β, τ , and α.

For this, we incorporate the estimation of α into the first Newton step so that it searches

the τ , ϕ, and α multidimensional space. We accommodate the atom’s changing envelope
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Algorithm 4 REDS attack envelope and onset estimation

1: init: k = 0, τ (0) = τ̂ρ[1], β
(0) = β̂

2: repeat
3: µ = [τ (k), θ]⊺

4: µ = µ−
(
Hµϕ(τ

(k), β(k), θ)
)−1∇µϕ(τ

(k), β(k), θ)

5: τ (k+1) = µ[0]

6: β(k+1) = β(k) −
∂
∂β

ϕ(τ (k+1),β(k),θ)

∂2

∂β2
ϕ(τ (k+1),β(k),θ)

7: k = k + 1
8: until stopping condition

from one iteration to the next by expanding or contracting its length N such that ϕ(N)

is small enough to negate the discontinuity’s perceptual relevance, for example, such that
ϕ(N)
ϕ(nm)

≈ .001.

4.2.5 Decay termination

Generally, for atoms with long decay rates, the recursive inner product stops before the

damped sinusoid part decays to an inaudible value, which introduces a discontinuity at the

atom’s end. We consider three possible options to remedy the situation at the atom’s end.

As one option, we could assume that the damped sinusoid part must decay freely “for-

ever”. Under this assumption, we extend the atom to reach a value of −60 dB, however,

in doing so, we create dark energy: arbitrarily extending the atom past its optimal point

introduces energy into the residual signal for which later iteration steps must approximate.

For example, a piano produces freely decaying oscillations that decay indefinitely if the

pianist is stepping down on the sustain pedal, however, if the pianist releases the sustain

pedal the vibrations abruptly terminate.

A second option: after tracing the atom forward, if the end of the atom is above some

threshold (like −60 dB), then we increase α (increase the decay rate) such that the end,

ϕ(N) is below the threshold. We avoid post-echo and the need for a taper envelope. The

downside is the non-optimal α value: since we are not using the best α, we need multiple

similar atoms around its location to make up for the amplitude difference.

The last option involves the application of a taper to the end of the atom so that it

smoothly decays to a zero value. The taper is a time-reversed REDS attack envelope,

AREDS[N − 1− n+ τ ]. The downside of this approach is that the taper exhausts another
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parameter. For this thesis, we choose the third option, to taper the end at the cost of an

extra parameter, because it allows us to fit the atom to the signal more closely than the

other two options and avoids the creation of dark energy.

4.3 Small-scale pursuit

A dictionary of small-scale atoms represents transients and other highly non-stationary

signal content sufficiently. Several fast numerical computation techniques keep the small-

scale sub-system speedy. Refinement of the fixed dictionary’s coarse discretization grid

results in a sparser solution per iteration and allows for a compact dictionary size that

relieves the sub-system’s computational burden.

4.3.1 Discretization and storage

The small-scale dictionary’s discretization scheme is as follows. We select a discrete du-

ration set, Ns = 2s where s ∈ [smin, smax]. We assume that the partial tracking step

sufficiently represents atoms greater than or equal to NPT , so we set Nsmax to be less than

NPT . Nsmin
should be small to ensure that some of the atoms can represent highly non-

stationary signal content, for example Nsmin
≤ 64. For each duration, we construct a block

of REDS atoms that share the same gammatone-like amplitude envelope and span a range

of frequencies, κs,

Φs = ϕs[n, κs] = en(−αs+i2πκs/Ns)(1− e−βsn)pu[n] (4.23)

where κs = (2, 3, . . . , Ns

2
− 2), αs =

15
Ns

to negate discontinuity artifacts at the atom’s end,

β = αs10−3

p2
, and p = 3.

Φs’s storage is spread throughout multiple sub-dictionaries, one for each unique value

of Ns. By compartmentalizing Φs per atom length, we reduce the computer memory

requirements and make the algorithm faster by selecting, per atom length, a fast method of

inner product computation. MPTK also uses sub-dictionaries that it calls “blocks”: each

block is a windowed DFT matrix [10], so it constructs one block for each unique amplitude

envelope E[n].
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4.3.2 Cross-correlation computation and update

Computing cross-correlations of y and an overcomplete Φ is one of the main computa-

tional hurtles of MP. We choose one of two methods to compute the cross-correlation of a

sub-dictionary and signal, depending on the difference between the signal’s length and the

atom’s length. The first is direct convolution, more precisely, convolution per the mathe-

matical definition. Direct convolution is the fastest method when the difference between

signal length and atom length is greater than some value. For example, if the signal length

is 214 and the atom’s length is 26, direct convolution is the fastest method. When the signal

and atom length’s are closer to one another, for example if the signal length is 213 and the

atom’s length is 210, the fastest method of convolution computation is via the FFT [58],

which employs the convolution property of the Fourier transform, y ∗ ϕ = F [y] ⊙ F [ϕ].
Thus, we take the zero-padded FFT of the signal and of the time-reverse complex conjugate

of each atom Φs, ϕ̄s[−n], multiply their DFT’s together, then take the IFFT to retrieve

the cross-correlation. Lastly, when the signal length is very large in comparison to the

dictionary atom lengths we may use the fast FFT convolution on segments of the signal

and overlap-add the results, however, computing one FFT for the entire signal is usually

faster.

To initialize the small-scale sub-system, we calculate and store the cross-correlation

between the audio signal and dictionary y ⋆ Φs, and the dictionary’s zero-padded DFT.

We gain some computational efficiency by avoiding the calculation of the dictionary FFT

at every step. If we were to only use atoms inside the dictionary (no refinement or atoms

from another sub-system) we could compute and store the dictionary’s cross-correlations,

although storing these huge multi-dimensional arrays requires a considerable amount of

memory allocation and is sometimes not even possible. In fact, most implementations

compute the inner products at each iteration [10] [34]. Calculating the cross-correlations

via an atom’s analytic formulas is another possibility, though the method we adopt is

applicable to an arbitrary atom type and is considerably simpler to implement.

The best atom is the one that is responsible for the absolute maximum of all the cross-

correlations. Note that the index of the cross-correlation locates the atom in time with

respect to the signal, τ .
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4.3.3 Parameter refinements

Searching inside of a pseudo-continuous parameter space after locating the best choice from

the coarse dictionary typically results in a sparser solution. Starting with the best atom

from Φs, we refine its frequency with RRM, see Section 2.4.2. Then we jointly search

for refined values of α and β with a multidimensional Newton algorithm that requires the

REDS atom’s first and second partial derivatives. Appendix A includes these equations.

Note that the length of the atom has to increase to accommodate decreases to α.

[31] showed that if atoms have equal angular spacing on circles in the z-plane, we can

use the DFT (FFT) to compute the inner products between the atoms and audio signal

over ωc. MPTK [10] uses this approach to calculate dictionary inner products over a coarse

time grid with an STFT. As an alternative to computing a cross-correlation between each

atom in a dictionary and the signal, we propose the use of an STFT to efficiently compute

the dictionary inner products over the coarse time grid, then refine the temporal location

of the best-correlated atom with a separate estimation technique, for example, Newton’s

method. We assume that the speed improvements of this alternative method are negligible

because we likely require several iterations of the computation-heavy Newton step to shift

the atom to a better temporal location. MPTK [10] employs the STFT approach without

refining temporal location. To compute a cross-correlation in MPTK, one sets the STFT’s

hop size equal to one. Switching to either of the faster cross-correlation methods that we

described in Section 4.3.2 is beneficial.

4.4 Algorithm

PTMP retains the MP-based local optimization inner product selection criteria within its

hybrid structure. It is hybrid because it involves two sub-systems that employ separate

atom search and creation techniques. At each iteration k, PTMP estimates a REDS pa-

rameter set λ = {N, fc, α, β, τ} that results in the largest inner product with residual,

λ(k) = argmaxλ|ϕH
λr

(k)| (i.e., that minimizes the residual energy ∥r∥22). Either the large-

scale or small-scale sub-system, γ = L or S, respectively, locates λ(k) depending on which

inner product coefficient, xS or xL, is greater in magnitude. PTMP runs as follows (see

flowchart in Figure 4.7):
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1. Initialization:

i) Compute the signal and small-scale dictionary cross-correlation, Xs = y ⋆ Φs.

Find the best small-scale atom and store its parameter set λS and coefficient xS.

ii) Extract partial trajectories from y, Pρ, with the partial tracker and sort them

based on energy. Set the partial trajectory index to one, ρ = 1. Create an atom

from highest energy partial, then store its parameter set λL and coefficient xL.

2. Sub-system selection:

i) Locate the potential best option, O(k) = argmaxγ|xγ|.

ii) If O(k) = O(k−1), go to Step 3.

iii) If O(k) ̸= O(k−1), there is potential to switch from sub-system O(k−1) to O(k). To

be sure, extract and sort new partial trajectories from r(k−1), Pρ, reset ρ = 1,

retrieve a new λL and coefficient xL, then update O(k) = argmaxγ|xγ|. Then, if
O(k) = S, update Xs per r

(k−1), retrieve a new λS and coefficient xS, then update

O(k) = argmaxγ|xγ|.

3. Residual update

i) Update the residual r(k) = r(k−1)−2ℜ{xO(k)ϕ(λO(k))} and commit the parameter

set and coefficient to memory: λ(k) = λO(k) and x(k) = xO(k) .

ii) If O(k) = S, update the part of Xs that ϕ(λO(k)) overlaps with in time. Find the

best small-scale atom and store its parameter set λS and coefficient xS.

iii) If O(k) = L, increment the partial trajectory index ρ = ρ+1 to point to the next

highest energy partial. If ρ is above the number of partials in P, R, extract and

sort new partial trajectories from r(k), Pρ, and reset ρ = 1. Retrieve a new λL

and coefficient xL from Pρ.

iv) Increment the iteration number, k = k+1. Terminate if k is above the maximum

iterations, K, or if ∥r∥22 is below some threshold, ϵ. Otherwise, return to Step 2.

PTMP exploits the fact that residual energy monotonically decreases in an MP-based al-

gorithm, formally ∥r(k)∥22 < ∥r(k−1)∥22. Thus, independent of λ, |ϕ(λ)Hr(k)| ≤ |ϕ(λ)Hr(k−1)|
(they are equal when the residual update is not in the region of ϕ(λ)). Notice that in Step
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3, PTMP only updates one sub-system’s values, λO(k) and xO(k) . Upon return to Step 2,

it compares the updated coefficient to the non-updated coefficient. It confidently does this

because the non-updated coefficient is a best-case scenario: had the coefficient updated at

the end of Step 3, it would have either decreased or remained the same. Thus, it skips to

Step 3 when O(k) = O(k−1) (i.e., it remains within the same sub-system while this is true).

Finally, when O(k) ̸= O(k−1), PTMP performs an update to the sub-system in need. The

update could decrease the updated coefficient such that it is no longer the maximum, so it

re-checks argmaxγ|xγ|. By this logic, PTMP manages a search for the best parameter set

with a minimum number of updates per iteration.

4.5 Summary

This chapter established PTMP, an MP-based system that locates REDS atoms via the

combination of two separate techniques, from partial trajectories and from the comparison

of a static dictionary of small-scale REDS atoms with the audio signal, and bridges the

search by comparing each side’s results to remain within an MP framework. While the

search method is applicable to most types of atoms, whether asymmetric or symmetric,

we established methods to transform partial trajectory data into asymmetric atoms, more

specifically, REDS, and refine their parameters using a variety of estimation techniques.

We detailed how to refine an atom’s onset and duration values through a recursive inner

product algorithm, then jointly estimate the REDS attack envelope and onset time with

Newton’s method in multiple dimensions. In the next chapter, we perform experiments

that gauge PTMP’s performance and report the results.
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Figure 4.7 Partial tracking matching pursuit (PTMP) flowchart, see Section
4.4 for details.
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Chapter 5

Experiments

This chapter describes a series of experiments that test the performance of partial tracking

matching pursuit (PTMP) and its estimators. The first group of experiments test how

well Newton’s method estimates REDS parameters. Then we document PTMP’s ability to

decompose a range of audio signals, starting with a set of synthetic audio then moving to

real musical audio. The synthetic audio set represent a variety of time-frequency behaviors,

varying from content that matches well with an asymmetric atom model to content that

does not. In the last group of decomposition experiments, we test PTMP’s ability to decom-

pose real musical signals, including excerpts of single instrument and multi-instrumental

musical pieces. Finally, we experiment with different ways to manipulate the parameter sets

of the REDS atoms that PTMP extracted from real audio signals, and report on the result-

ing sounds. A supplementary website contains audio files of the test signals for this chapter

along with sounds that we synthesized after post-processing REDS parameters sets per Sec-

tion 5.5. The URL for this website is: http://www.music.mcgill.ca/~julian/thesis.

5.1 Estimators

This section details experiments that gauge Newton’s method’s ability to estimate a REDS

atom in two situations. The first situation is when we have determined α and fc and seek

values for β and τ (i.e., when Mρ > Mmin). The second set reflects the situation when we

know fc and need values for β and α and τ (i.e., when Mρ ≤Mmin).

Let λ be some variable of the synthetic audio signal y that we want Newton’s method

to estimate. λ̂(0) is an initial estimate of λ that we use to initialize Newton’s method and

http://www.music.mcgill.ca/~julian/thesis
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δ
(0)
λ is the difference between the ground-truth value and the initial estimate, δ

(0)
λ = λ− λ̂(0).

We setup the experiment by synthesizing an audio signal y from one REDS, time shifted

by τ with a decay time of α−1, whose attack influences time nI is such that part of the

atom reflects a freely decaying sinusoid. Then, we create a range of differences between

the initial estimate and ground-truth for attack influence time δ
(0)
nI ∈ [−50, 250], time shift

δ
(0)
τ ∈ [−250, 250], and decay time δ

(0)

α−1 ∈ [−250, 400].
One run of an experiment involves the following steps:

1. Initialize Newton’s method with some combination of two initial estimates.

2. Iterate until the number of iterations, k, reaches 50, or until SRR(k+1) ≯ SRR(k).

3. Record the number of iterations and the SRR at the final iteration. Record the

difference, δ
(0)
τm , between the time location of y’s maximum, τm, and the initial time

location of the atom’s maximum, τ̂
(0)
m .

For the experiment where we seek values for the attack shape and onset time (i.e., when

Mρ > Mmin), we complete the aforementioned steps for every combination of δ
(0)
nI and δ

(0)
τ ,

where δ
(0)

α−1 = 0, see Figure 5.1a. For the second experiment, where we seek values for

β and α and τ (i.e., when Mρ ≤ Mmin), we complete the aforementioned steps for every

combination of δ
(0)
nI and δ

(0)

α−1 , where δ
(0)
τ = 0, see Figure 5.1b.

Results from the first experiment verify that the algorithm reaches a high SRR for

certain combinations of initial values n̂
(0)
I and τ̂ (0), which is the green area that follows a

diagonal trend in the SRR plot of Figure 5.1a. Outside of this region, Newton’s method does

not work (the white sections in either the SRR or Iterations plot). We deduce that Newton’s

method works (it improves upon the initial parameter estimates) when the combination

of initial values result in a relatively small |δ(0)τm |. In other words, the performance of

Newton’s method for estimating the envelope of a REDS atom depends mainly on the

difference between the time location of the signal’s amplitude maximum τm, and the initial

time location of the atom’s amplitude maximum, τ̂
(0)
m . Thus, it is important to locate the

envelope peak in time of the audio signal1.

Similar results emerge from the second experiment, where we seek values for α and β.

Results in Figure 5.1b show that Newton’s method iterates when the combination of n̂
(0)
I

1For a real signal y, one method to retrieve the envelope is to bandpass filter y at fc then apply
the Hilbert transform to retrieve an approximate analytic signal whose absolute value is the approximate
amplitude envelope.
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Figure 5.1 Results from the experiments involving Newton’s method esti-
mation of REDS parameters.
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and α̂−1(0) is such that |δ(0)τm | is relatively small, see the correlation between the non-white

parts of the SRR and Iterations plot, and the parts of the δ
(0)
τm plot where |δ(0)τm | is relatively

small. We note that the non-white sections of the SRR and Iterations plot correspond

to where δ
(0)

α−1 and δ
(0)
nI are positive. Therefore, an overestimate of the attack and decay

durations is generally better than an underestimate. We think this is the case because

large scale atoms have more significant samples to compare with the signal than smaller

scale atoms. Overall, a good initial estimate will have its maximum centered around the

true maximum and be leaning to the larger scale rather than smaller scale. Overall, it is

better to initialize Newton’s method with a combination of initial estimates that result in

a relatively small |δ(0)τm | value and an atom whose scale is larger, rather than smaller, than

the scale of y.

As reinforcement for the previous statements, the last experiment shows the benefits of

initializing Newton’s method such that |δ(0)τm | is relatively small. As in the second experi-

ment, we complete a run for every combination of δ
(0)
nI and δ

(0)

α−1 . However, instead of setting

δ
(0)
τ = 0, we set a value for τ̂ (0) that is dependent on the combination of n̂

(0)
I and α̂−1(0)

such that δ
(0)
τm = 0. More precisely, since τm = τ + nm, we set τ̂

(0) = τm− 1

β̂(0)
log(1 + pβ̂(0)

α̂(0) ).

Figure 5.1c shows that Newton’s method iterates for most combinations of initial values,

since most of the area of the SRR and Iterations plot is non-white. The only white parts

of the two graphs are the bottom row and left column: the bottom row corresponds to an

initial estimate of attack time n̂
(0)
I that is close to zero, and the left column corresponds

to α̂−1(0) values that result in an envelope whose time spread is too small for it to have

sufficient bandwidth, more specifically, the envelope’s “effective” duration is less than f−1
c .

5.2 Synthetic Audio Tests

5.2.1 One REDS

In this experiment we sample the REDS parameter set randomly to synthesize a signal

from one atom, then pass it into PTMP to approximate it with one atom. We repeat this

100 times and record each run’s SRR. To test whether noise influences PTMP’s estimation

accuracy, we repeat the sequence for different SNRs by adding Gaussian white noise to y.

The energy levels of the noise relative to the signal in dB are SNR = (0,−20, . . . − 120).

The box plots in Figure 5.2 show the reconstruction quality distribution for each SNR.
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Figure 5.2 PTMP’s single iteration approximation of a REDS atom in noise
have these SRR values. The data set has 100 samples per SNR.

5.2.2 Multiple REDS

For the second experiment, we test PTMP’s ability to decompose multiple superimposed

REDS in additive Gaussian white noise. It involves synthesizing a signal from 20 REDS

whose parameter sets are random, then decomposing the signal by running 20 iterations of

PTMP. We average the residual energy after 20 runs at each level of SNR, and show the

reconstruction quality distribution for each SNR in Figure 5.3. Figure 5.4 shows the sono-

gram of an example test signal, along with the sonogram of PTMP’s signal approximation.

From this plot, we see that PTMP performs excellently because it is able to locate every

atom except one low-energy one (see around 16 kHz, 0.5 seconds).

5.2.3 Symmetric

Given that a benchmark for matching pursuit algorithms is how well they decompose asym-

metric content with symmetric atoms [16] [17] [59], we conducted a reverse test to see how

well PTMP approximates symmetric content with asymmetric atoms. We performed first

a control test by decomposing an asymmetric one, the synthetic damped sinusoid. Then,

in one test we decomposed a Gabor atom, and in another test, two superimposed Gabor

atoms, with asymmetric (REDS) atoms. Figure 5.5 shows the time-domain distribution of

the asymmetric atoms and the time-frequency energy distribution2 of those atoms.

2[7] calls this time-frequency energy distribution a Wivigram. We create a Wivigram by superimposing
each atom’s Wigner-Ville distribution.
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Figure 5.3 PTMP’s 20-iteration approximation of 20 REDS atoms in noise
have these SRR values. The data set has 20 samples per SNR.
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Figure 5.4 Sonogram of the target audio signal y (left), made of 20 REDS
atoms, and the 20 iteration PTMP approximation (right).

Figures 5.5b and 5.5c show how there is no pre-echo before the symmetric signals and

there is some dark energy after them. The dual-Gabor test illustrates that the locally

optimal choice of first atom spans both Gabor blobs. There are some REDS atoms at

slightly higher and lower frequencies than the signal’s center frequency that create an

interference pattern (i.e., a beat) to match the dual-Gabor’s amplitude modulation. A

symmetric version of this test in [7] shows that a 60 dB approximation of a damped sinusoid

involves 60 to 100 Gabor atoms. Our test shows that a 60 dB approximation of a Gabor

atom involves 40 REDS atoms, and the dual-Gabor requires 68 atoms.
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Figure 5.5 PTMP approximation of synthetic asymmetric and symmetric
audio (SRR = 60 dB). The top graphs are the time domain distribution of
REDS atoms, and bottom graphs are the Wivigrams.

5.2.4 Frequency Modulation

In the next experiments, we use synthetic test signals that are more difficult for PTMP to

decompose to observe how it behaves when faced with audio features that do not fit with

the asymmetric atom model, more precisely, with audio that has frequency modulation.

When a dictionary does not include chirp atoms [15], MP approximates chirp signals by

stringing together a progression of stationary atoms of increasing or decreasing frequencies.

y’s chirp rate determines the length of the stationary atoms; faster chirp rates call for

atoms with shorter durations.

An interesting result comes from a test involving the decomposition of a synthetic

source-filter model vocal sound. Figure 5.6 displays the partial trajectories of the signal,

where the partial tracker did not constrain the frequency deviations to allow for a clear view

of the frequency modulations (this is not representative of the partials that PTMP extracts),

and the Wivigram from the PTMP approximation. We note that when there is no frequency

modulation, in the time span from zero seconds to around 1.3 seconds, PTMP creates

long atoms from partial trajectory data. Since PTMP’s partial trajectories break at slight

frequency changes, partials last only a few frames, or less, where there is vibrato (frequency

modulation). Thus, PTMP chooses smaller REDS atoms to represent the vibrato, which

starts at around 1.4 seconds and continues onward. In this representation, we see a clear
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Figure 5.6 Partials (left) and Wivigram (right) of a source-filter synthe-
sized vocal sound that PTMP approximated. Vibrato begins after the vertical
dashed line.

transition at around 1.3 seconds. PTMP represents the non-vibrato section with long

atoms from partials (reminiscent of the additive synthesis model) and approximates the

section with vibrato with short-duration REDS atoms whose temporal spacings fluctuate

in response to the vibrato (reminiscent of the source-filter model).

5.3 Real Audio Tests

5.3.1 Instrument Excerpts

For the first real audio experiment, PTMP decomposed thirteen acoustic and electronic

musical instrument excerpts. The instrument set spanned the musical instrument families.

Visuals of the audio excerpt waveforms along with the Wivigrams are in Figures 5.7, 5.8

and 5.9. For each excerpt, PTMP ran until its approximation reached an SRR of 30 dB.

PTMP settings for this experiment are in Table 5.1. We include a summary of the results

in Table 5.4.

PTMP sparsely represents percussive instruments, for example, the vibraphone solution

has a sparsity of ∥x∥0 = 7. Since PTMP adapts a REDS atom’s attack shape to sparsely

represent the signal’s onsets, there is no pre-echo or dark energy in the final or intermediate

stages of the decomposition, see Figures 5.7a, 5.7b, 5.8c, 5.7c, and 5.8d. Partial trajec-

tories also help to minimize ∥x∥0 by successfully locating long asymmetric atoms for the

instruments that have freely decaying resonances. Notice in Figures 5.7c and 5.7e how only
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Variable Experiment 1 Experiment 2

Partial Tracker

NPT 8192 8192
H 256
Gg 30 dB 25 dB
Gh 10 dB 7 dB
νδ 2 dB
ω∆ .015
ωδ .01

Small Dictionary Φs

s (6, 7, 8, 9) (6, 7, . . . , 11)
Ns 2s

p 3
αs − log(.001)/Ns

βs αs 2αs

Refinement Steps
NM Attack 40 20

NM Envelope 20 30
RRM Frequency 5 7

Table 5.1 PTMP settings for the real audio signal tests.

a few atoms represent most of y because their durations and their amplitude modulations

follow y’s damped oscillations.

On the other hand, the approximation is not especially sparse for instruments that

involve a continuous/sustaining excitation, however, representing these classes of audio

is difficult for sparse approximation algorithms in general. More specifically to PTMP,

partial trajectories locate some long atoms, however, since the amplitude modulation for

the instruments without freely decaying resonances do not follow the asymmetric atom

model, ∥r∥22 is relatively high even after the large atom decompositions and so Φs-located

atoms (short atoms) must compensate. Results from the decomposition experiment in

Chapter 3 (see Table 3.1) reinforce this fact because they show that different types of

asymmetric atoms approximate the vocal signal to similar SRR values since the vocal

sound does not involve freely decaying resonances (long atoms), while the FOF and REDS

atoms clearly outperform the others in terms of sparsity for the vibraphone signal because

it involves freely decaying resonances (long atoms). A dictionary that contains atoms with

frequency modulation and noise may help improve representation sparsity for signals that

do not involve long atoms, because it may be able to represent the breath sounds from



78 Experiments

Family Instrument Comments Note Duration N ∥x∥0
Percussion Piano A♯

4 3.63 160,000 2997

Glockenspiel Brass Mallet A♯
5 1.32 58,000 1127

Vibes F♯
3 3.40 150,000 7

Snare Drum - 0.27 12,000 1115
Kick Drum - 0.36 16,000 58

Brass Trumpet F♯
5 2.02 89,000 5146

Tuba E1 2.49 110,000 2122
Strings Violin w. Vibrato E5 3.17 140,000 8897

Guitar Electric D♯
3 4.54 2,000,000 586

Bass Electric D♯
3 6.80 3,000,000 289

Woodwinds Flute w. Flutter E4 6.12 270,000 6983

Clarinet E♭ F♯
4 3.20 141,000 3775

Vocal Female w. Vibrato F♯
4 0.95 42,000 1741

Table 5.2 PTMP musical instrument excerpt approximation results. N is
audio signal y’s length in samples and ∥x∥0 is the number of atoms in the
representation. The sampling rate is 44100 Hz for all signals. SRR = 30 dB
for all decompositions.

instruments of the woodwind and brass families, bowing sounds from string instruments,

and so on. Interestingly, PTMP represents sounds with relatively large bandwidths, like

the noise from a violin bow, with a sequence of REDS atoms that have attack influence

times that are short relative to the decay rate (i.e., atoms with wide skirt widths).

5.3.2 Music

Finally, we test PTMP’s ability to sparsely represent excerpts of musical pieces. These are

the descriptions of the music test signals:

1. Glock: A glockenspiel playing a melody. The sustain of the notes overlap in time,

and some are at the same frequency.

2. Bach: A live solo piano recording of Bach’s Chromatic Fantasy that contains audience

and venue noise. This segment is the opening fast melodic line and chord.

3. Mamavatu: A studio recording of a world music song. The instruments in the song

are the tabla, bass, acoustic guitar, and female vocal with vibrato.
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Figure 5.7 Instrument excerpt results (1/3). y (top), Wivigram (middle),
and r energy evolution (bottom), where atoms from partials are in red and
Φs-located atoms are in black.
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Figure 5.8 Instrument excerpt results (2/3).

4. Sing it Back: A studio recording of a pop song. The instruments in the song are

the drum set, electric bass, electric guitar with modulation effects, and female vocals

with vibrato.
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Figure 5.9 Instrument excerpt results (3/3).

Retrieving a sparse representation of the musical excerpts (especially the ones that contain

contributions from multiple instruments) is more challenging than the instrument excerpts.

The glockenspiel and Bach signals match well with the asymmetric atom model, though

the Bach signal is more challenging because the piece involves a fast sequence of notes and

the recording includes live venue noise and reverberation. The last two signals are the

most challenging for PTMP to create a high-quality sparse approximation because their

multi-instrumental composition results in signals that are non-sparse in time and frequency.

Table 5.3 includes the results of this test.

The SRR graphs in Figure 5.10 reveal PTMP’s sub-system selection throughout the

decomposition of the musical signals and approach rate to a −30 dB residual energy. In

these graphs, the atoms from partial tracking are in red and the atoms from the small-scale

dictionary are in black. The fast residual energy decrease for the glockenspiel signal is due

to PTMP representing each of the 15 freely decaying notes with the first 15 atoms, see the

steep red line that begins at k = 0. The partial tracker does not contribute as much for the

other signals because multi-instrument transient contributions segment the partials. For

the full-band music signals, almost every atom, even from the first iterations, are from the

small-scale dictionary. The intermediate case is the Bach signal: PTMP represents first
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Comments Duration N ∥x∥0
Glock Melodic line 5.94 262,114 1156
Bach w. venue noise 3.62 159,677 3789
Mamavatu 5.94 262,114 23,887
Sing it Back 3.86 85,219 16,959

Table 5.3 PTMP decomposition of music. N is audio signal y’s length in
samples and ∥x∥0 is the number of atoms in the representation. The sampling
rate is 44100 Hz, except “Sing it Back”, which is 22050 Hz. SRR = 30 dB for
all decompositions.
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Figure 5.10 Residual energy evolution of music decomposition test. Atoms
located by partial tracking are in red and atoms located from Φs are in black.

the notes of the piano melody, however, the piano is not sustaining throughout the melody,

so the atoms durations are smaller than those from the glockenspiel signal.

The full-band music signals (Mamavatu and Sing it Back) have dense spectra from drum-

set induced noise bursts, multi-band compression, and frequency modulation. Creating an

approximation of 30 dB SRR requires many small atoms to represent their highly non-

stationary and stochastic content. For full-band audio, incorporating atoms of filtered
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Number of Atoms Elapsed Time (min)

Instrument MP PTMP MP PTMP

Guitar 4913 1059 1.26 1.54
Vibraphone 363 65 0.12 0.09
Piano 1141 346 0.32 0.31
Trumpet 1232 1168 1.14 1.14
Glockenspiel 4141 2026 1.35 1.49

Table 5.4 Results from 30 dB SRR approximation test using a 2.6 GHz
Intel c⃝ Core i7 machine.

noise into the dictionary may help to represent that content, though a discussion on sparse

representations of noise is out of the scope of this thesis. Gammatone-like REDS atoms

produce similar results as Gaussian atoms at the later stages of the pursuit when the

algorithm already represented the tonal parts. Thus, depending on whether the signal

has content that fits with the REDS model, PTMP with REDS atoms can represent a

signal with either more or equal sparsity than a matching pursuit with symmetric atoms.

Moreover, PTMP avoids creating pre-echo by adapting REDS atoms to y.

5.4 Comparison with Existing Techniques

In this section, we apply the following algorithms to a real audio decomposition problem

and compare their performance: (MP) a fast matching pursuit that uses MPTK techniques;

(MP-r) MP with RRM frequency and onset refinement and Newton’s method envelope

refinement; (PTMP) partial tracking matching pursuit.

First, we decompose real audio excerpts of a guitar, vibraphone, piano, and trumpet,

and a melodic line from a glockenspiel, using MP and PTMP. We record the number of

atoms and computation time for them to reach a 30 dB SRR approximation and show

the results in Table 5.4. When the signal contains slowly decaying resonances, such as

the piano, vibraphone, or guitar, PTMP’s approximation is significantly more sparse than

MP’s. When a signal does not contain long temporally asymmetric features, PTMP cir-

cumvents partial tracking and effectively equals MP. This desirable behavior is reflected in

the trumpet decomposition, as MP and PTMP’s approximations have roughly the same

sparsity and computation time.
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Figure 5.11 Results from equal static dictionary test.
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Figure 5.12 Results from equal SRR evolution test.

Next, we compare algorithm convergence rates by using the same dictionary across

methods to decompose the guitar signal. Figure 5.11 shows that PTMP converges faster

than MP and MP-r, and reaches some SRR value in roughly the same time as MP and MP-r

with the fewest number of atoms (most sparsity). To further investigate algorithm speed,

we customize the static dictionaries such that the SRR evolutions were approximately

equivalent. The results in Figure 5.12 show that PTMP is the fastest algorithm because its

static dictionary need not include those long duration atoms that slow MP’s inner product

updates; it finds them through partial trajectory data. Similarly, MP-r is faster than MP

mainly because its refinement steps enable a smaller static dictionary.

These results demonstrate that PTMP can create audio signal approximations that

are more sparse than MP in equal time. Bridging a fast MP search for short duration

atoms with partial tracking and conversion of long duration atoms ensures that PTMP

performance is better than or equal to MP for an arbitrary signal, depending on whether

it contains slowly decaying resonances or not.
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Figure 5.13 Glockenspiel tonal and transient separation after PTMP de-
composition.

5.5 Post-processing

We now experiment with some audio transformations of the glockenspiel signal by manip-

ulating the REDS parameter set λ that PTMP estimated. In the first experiment, we

segment the parameter set in two: one set includes atoms with N > 512 and the other has

atoms with N ≤ 512. Synthesizing signals from each of the two parameter sets results in

an approximate transient and tonal part separation, see Figure 5.13.

Next, we change the values of τ and hold the other parameters constant. Changing

only τ alters the spacing between atoms but does not alter the reconstruction’s perceptual

tonal character or sound quality. Compacting the spacing of the atoms by multiplying

every τ by 1
5
makes the tempo of the performance five times faster, which sounds like the

percussionist is playing a glissando, see Figure 5.14b. Even further, we reduce τ such that

all the atoms play at once, so that the melodic sequence becomes one chord, see Figure

5.14c. Since we do not change the decay or attack, each note sustains for the same amount

of time as the original approximation. With an algorithm that creates pre-echo and dark
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Figure 5.14 Sonogram of the glockenspiel signal before and after time shift-
ing.

energy in the intermediate stages of approximation, shifting the atoms in time will most

likely undo the dark energy region phase cancellations and re-surface pre-echo artifacts [7].

Since PTMP’s sparse approximation usually has no perceptual pre-echo or dark energy at

the onsets, the onsets of the notes remain intact even after time shifting. Thus the signal

has a natural sound even after transformation. If we decompose onto only short duration

atoms with MP, time shifting ruins implicit co-atom phase relationships and reduces not

only the global duration of the excerpt but the duration of each individual note.

In the final experiment, we manipulated atom attack shapes by varying β values. This

effect works particularly well for sounds with amplitude envelopes that match closely with
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Figure 5.15 Piano excerpt before and after manipulating the attack shape
through β. Time domain waveforms are in the top panels and sonograms are
in the bottom panels.

REDS atoms (i.e., with an attack portion followed by a long decay), for example, sounds

that originate from a piano, glockenspiel, or guitar. We varied the attack shapes of the set

of atoms that PTMP determined from the piano excerpt in Section 5.3.1. We successfully

controlled the piano signal approximation’s attack shape, from the original signal’s fast

attack all the way to smooth attack whose influence time was over a second. Figure 5.15

shows the results of multiplying every β value in λ by 1
100

. Notice that the original wave-

form’s envelope resembles a damped exponential, while the processed waveform’s envelope

more closely resembles a gammatone’s envelope. After performing this manipulation, the

resulting audio signal sounds like a bowed instrument rather than a piano partly because

it has a gradual increase in energy followed by a sustaining sound rather than a relatively

fast increase followed by a decay, and also because the dense frequency content from the

original signal’s transient region is not prevalent in the audio signal post-manipulation.

5.6 Summary

This chapter included practical tests of PTMP’s ability to decompose audio signals. It

showed how REDS can adapt to signal features with the help of Newton’s method and

the Recursive Reassignment Method. Results from our synthetic and real audio experi-

ments support our hypothesis that the asymmetric atom model fits excellently with audio

produced from plucked string and percussive instruments, and that gammatone-like asym-
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metric atoms have similar abilities to represent highly non-stationary and sustained parts

of audio as symmetric Gaussian atoms. We highlighted that PTMP does not sparsely rep-

resent frequency modulations, though it provides a unique signal representation because

it jointly models sound through the additive and source-filter models. We showed how

the manipulation of the REDS parameters leads to different post-processing effects like

time stretching and transposition. Overall, PTMP proves to be a powerful sparse audio

approximation tool.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we addressed the problem of creating a sparse audio representation from a

practical and theoretical position. The main goal of this thesis was to explore the perfor-

mance of atoms that are sinusoids with temporally asymmetric (causal) amplitude modu-

lations.

We generalized the form of an asymmetric atom to compare existing asymmetric func-

tions that permeated into the realm of sparse approximations, the result of which led to

the creation of a new asymmetric atom, REDS, that not only fits excellently with a range

of audio features, but also through its mathematical properties allow estimation methods

to determine its parameters. We developed methods to estimate all the parameters of the

new asymmetric atom, including the derivations for Newton method refinement and estab-

lished when Newton’s method in multiple dimensions converges to parameter values close

to ground-truth.

We improved the greedy sparse approximation algorithm’s ability to scale to an audio

signal of arbitrary size by bridging two atomic search methods, one that employs sinusoidal

partial trajectory data to locate atoms of long duration and another that relies on the classic

static dictionary correlation-based search. From this research, we achieved our general goal

of extracting sparse representations of audio signals that contain strong transients, for

example, audio with percussion and plucked-string instruments.
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6.2 Future Work

Now we direct the reader towards future work based upon the research of this thesis. Since

our asymmetric atom model assumes a constant frequency, the representation of signals

with frequency modulation, like a singing voice with vibrato, are not especially sparse. A

natural extension of this research incorporates frequency modulation into REDS through an

additional parameter. Then, partial pursuit must adopt frequency modulation estimation

methods, for example, by removing the partial frequency deviation constraint. Gribonval

researched atom chirp rate estimation [15], though the details of this method are specific

to Gabor atoms. The Recursive Reassignment Method may extend to estimate chirp rate

rather rapidly. The source-filter model represents frequency modulations as a sequence

of constant frequency pulses, so although the signal representation will probably be more

sparse after incorporating atoms with frequency modulation support, it will no longer reflect

the source-filter model.

During our search for a new asymmetric atom that we describe in Section 3.3.5, we

discovered an atom that we call the betatone (BT) due to the relation between its amplitude

envelope definition and the beta function:

ϕBT [n] = np(N − n− 1)αeiωcn (6.1)

This atom does not fit the general asymmetric atom form (3.2) since it does not involve

a damped exponential, and its mathematical construction may not admit simple analytic

formulas. Regardless, the betatone has some powerful properties that are worth mentioning

as a subject of future research. For one, the BT’s envelope is continuously differentiable

within the finite span 0 ≤ n ≤ N − 1, and since it equals zero at both the boundaries

(n = 0 and n = N − 1), it does not create any discontinuity artifacts like the other

asymmetric atoms. Moreover, depending on the ratio between p and α, the envelope

“leans” to either the right or left; its asymmetry may be in either time direction. BT’s

envelope is temporally symmetric when p = α. We see potential for the betatone because

of its envelope’s malleability, which can adapt to symmetric or asymmetric signal content.

Another future work path is to extend partial pursuit to search for symmetric Gabor

atoms. With the exception of Section 4.2, the partial pursuit algorithm also works for

symmetric atoms. The main difference is rather than transforming the partial data into
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REDS, it will transform into a symmetric atom. Furthermore, a worthwhile effort involves

the meshing of REDS with Gabor atoms in the system because it may result in a sparser

representation, especially since sustaining sounds, like from the trumpet, do not fit with

the asymmetric atom model, but do fit with sound from a superposition of time shifted

Gabor atoms. It is worthwhile to explore whether a hybrid dictionary of only two different

types of atoms, REDS and Gabor atoms, is sufficient to sparsely represent the sounds from

the majority of musical instruments, since research has, to the best of our knowledge, yet to

accomplish that goal. Since the incorporation of symmetric atoms into partial pursuit also

re-introduces the possibility of pre-echo creation, partial pursuit needs heuristics that se-

lect the atom shape, whether symmetric or asymmetric, that creates the least dark energy.

Furthermore, the distribution and type of the long duration atoms from the approxima-

tion, whether symmetric or asymmetric, may provide clues as to what source the atom is

representing, which may be useful for source-separation and classification applications.
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Appendix A

REDS partial derivatives

Newton’s method searches for a real-valued REDS atom, ϕREDS = AϕDS, where

A =
(
1− e−β(n−τ)

)p
u[n− τ ] (A.1)

starting from a damped sinusoid,

ϕDS = e−α(n−τ) cos(ωc(n− τ) + θ) (A.2)

by estimating values for β, τ , and α. Newton steps in multiple dimensions refine τ and θ

then α and β.

The following lists the REDS partial derivatives with respect to each variable. Starting

with τ ,

∂ϕ

∂τ
=

∂ϕDS

∂τ
A+ ϕDS

∂A

∂τ
(A.3)

∂2ϕ

∂τ 2
=

∂2ϕDS

∂τ 2
A+ 2

∂ϕDS

∂τ

∂A

∂τ
+ ϕDS

∂2A

∂τ 2
(A.4)
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where

∂ϕDS

∂τ
= e−α(n−τ) (α cos(ωc(n− τ) + θ) + ωc sin(ωc(n− τ) + θ)) (A.5)

∂2ϕDS

∂τ 2
= α

∂ϕDS

∂τ
+ e−α(n−τ)

(
αωc sin(ωc(n− τ) + θ)− ω2

c cos(ωc(n− τ) + θ)
)

(A.6)

∂A

∂τ
= − pβe−β(n−τ)(1− e−β(n−τ))p−1 u[n− τ ] (A.7)

∂2A

∂τ 2
= β

∂A

∂τ
+ p(p− 1)β2e−2β(n−τ)(1− e−β(n−τ))p−2u[n− τ ] (A.8)

The partial derivatives with respect to θ are

∂ϕ

∂θ
=

∂ϕDS

∂θ
A (A.9)

∂2ϕ

∂θ2
=

∂2ϕDS

∂θ2
A (A.10)

where

∂ϕDS

∂θ
= − e−α(n−τ) sin(ωc(n− τ) + θ) (A.11)

∂2ϕDS

∂θ2
= − e−α(n−τ) cos(ωc(n− τ) + θ) (A.12)

The mixed partial derivative with respect to τ and θ is

∂2ϕ

∂τ∂θ
=

∂2ϕDS

∂τ∂θ
A+

∂ϕDS

∂θ

∂A

∂τ
(A.13)

where

∂2ϕDS

∂τ∂θ
= e−α(n−τ) (−α sin(ωc(n− τ) + θ) + ωc cos(ωc(n− τ) + θ)) (A.14)

The partial derivatives with respect to β are

∂ϕ

∂β
= ϕDS

∂A

∂β
(A.15)

∂2ϕ

∂β2
= ϕDS

∂2A

∂β2
(A.16)



95

where

∂A

∂β
= p(n− τ)e−β(n−τ)(1− e−β(n−τ))p−1 u[n− τ ] (A.17)

∂2A

∂β2
=

(
p(p− 1)(n− τ)2e−2β(n−τ)(1− e−β(n−τ))p−2 − (n− τ)

∂A

∂β

)
u[n− τ ] (A.18)

The partial derivatives with respect to α are

∂ϕ

∂α
=

∂ϕDS

∂α
A (A.19)

∂2ϕ

∂α2
=

∂2ϕDS

∂α2
A (A.20)

where

∂ϕDS

∂α
= − (n− τ)ϕDS (A.21)

∂2ϕDS

∂α2
= (n− τ)2ϕDS (A.22)

The mixed partial derivative with respect to α and β is

∂2ϕ

∂α∂β
=

∂ϕDS

∂α

∂A

∂β
. (A.23)
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