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e ABSTRACT ©

The theory of variable length coding for a discrete memoryless in-
formaﬁo;t source is extended to the problem of two correlated sources. It is well
known that the output sequence from a single source X can be encoded onc.i
st;bsequently reconstructed by a decoder with‘zero prohability of error if and only
if fh;z average codeword length ;x satisfies ;x 2 H (X) . This familiar conclu-
sion is generalized to cover correlated source coding unYer several different
assumptions about the encoders and decoders. A method is developed to determine
what minimum average codeword le”ngfhs ;x and n are needed in order to achieve
zero;error cor;lmunicatic;n for any pair of correlated sources X and Y. The results

\

are presented as an admissible rateregion in the n - ny plane.
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La théorie du codage a longueur variable pour une source d'informa-

v

. . 2 . ) P
tion discrete sans mémoire est €tendue au cas de deux sources correllees. Il est

-

. / . - A Id
bien connu que la séquence de sortie d'une source unique X peut etre codee et
par la suite reconstruite par un d€codeur avec une probabilité nulle d'erreur si et

\

. — 7’ . . . -
seulement si la longueur moyenne n_ du mot codé satisfait la relation n_ = H (X) .
X . X

t
. /7 7 . ~
Ce fait connu est généralis€ au cas de codage de sources correllées, grace & un

2
. ‘ 3
- certain nombre d'hypothtses concernant les codeurs - décodeurs.  Une méthode,

Y
7/ ‘o Noe - -
permettant de déterminer les longueurs moyennes minimales n_etn des mots
Y

/ . . . . é
codés afin d'obtenir la communication sans erreur pour deux sousces correllées X

et Y, est développée. Les.résultats sont présentés sous forme d'une région & taux

admissible dans le plan n - "n . /
<X Y
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CHAPTER |

e

INTRODUCTION ™,

The purpose of this thesis is to extend the familiar fheorny of variable

o I3

length coding for a discrete memoryless information source to the more general

situation of two correlated sources.

One of the most interesting problems concerning correlated source

coding results when the encoders .'a\d decoders are arranged as illustrated in Figure

v

1-1.  Notice that although each encoder is restricted to see the output sequence
from only one source;, the decoder is allowed to observe both of the encoded message
treams.  Systems of this type ( and other related configurations ) are studied in
detail in this thesis to determine what minimum average codeword lengths ;x and n

Y

are required by the encoders in order that the: decoder can reconstruct the source

output sequences with zero probability of error. The results are presented as an

allowable rate region in the ;x - ;Y plane.

As will be shown in Chaptet 1ll, a typical problem having the form

of Figure 1-1, might have an allowgble rate region of the nature indicated in Figure

v H

1-2. The important implication of such o rate region is that it is possible for the out-"

*

puts of two correlated sources to be communicated-to a decoder with zero distortion
by using encoders whose average codeword lengths satisfy ;x < H (X) and
n < H({Y). Thisisan improvement over the classical situation illustrated in

Figure 1-3, in which the two sources are encoded and decoded independently, which

AN
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requires that Fx 2 H (X) and -F\V 2 H (Y) . Therefore, there is a special interest
in studying the problem of coding for correlated sources, the goal being to discover
how to take advantage of this correlation between source output sequences in de-
sigging the best possible encoders and decoders.  Since the well~known Huffman

d

code is the procedure for constructing optimum codes for a single information source,

the main theme of this thesis can be summarized as being the generalization of the

Huffman code to the case of two correlated sources .
2
The correlated source coding problem illustrated in Figure 1-1 is only
¥
one of several related systems to be considered in this thesis. As indicated in ¢
¢

Figure 1-4, there exist sixteen different arrangements for the encoders and decoders
corresponding to all possible ways of positioning the fouiwitches S] p 52, S3, and
S

4 - Notice that the configuration of Figure 1-1 is just the situation which occurs

when switches S, and S, are openwith S_ and S, closed.

1 2 3 4

Th? subject of this thesis, as introduced above, is one of several in-
)
teresting topics concerning the joint coding of correlated sources.  Although most of
these problems still remain unsolved, two important contributions in this area have
recently been reported in the literature. Slepian and Wolf T4] considered the pro-
blem of fixed length or block coding for correlated sources. For all of the configuro-
tions of Figure 1-4, they determined what minimum numbers of bits per character were

needed in order to communicate the source output sequences to the decoder with

arbitrarily small decoding error probabilities. Of course, this differs from the problem

'It
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of variable length coding which employs a zero probability of error criterion. A
paper published by Wyner ES] established a similar result, again concerning fixed
length coding for joint.sources. The author of this thesis believes that the problem

v [
of variable length coding for correlated information sources has until this time been
LY -

unsolved and that consequently the solutions which are presented in this thesis are

contributions to original knowledge .

The material studied in this thesis is organized in the fo||<;wing manner.
Chapter L contains a brief review of various fundamental results on variable length
coding for a single source. Some useful quantities such as entropy and average code- . t
word length are defined, followed by a s’rctément of three well-known source coding

theorems *

Chapter 111 is devoted to studying the correlated source coding system of
Figure 1-1. First of all, the problem is defined pry/c‘usely and then a theory is
developed starting from first principles. Several examples of varying difficulty are

u

presented to aid in i||u‘g17Fafing many of the new ideas.

In Chapter IV, the results of Chapter |l are exploited in de:vising a

practical method for solvin-g the problem of Figure 1-1 forlany given pair of correlated

°
- sources . The form of this algorithm allows Thto be implemented easily by a computer

ot

\
_program . A report is given on how efficiently such a pgogjam performed when it was

used to solve specific examples.



The purpose of‘ihapfer V is to extend the results of Chapters 11l and

IV, valid only for the system of Figure 1-1, to the other fifteen cading configura-
tions of Figure 1=4 . Fortunately, it turns out that only minor modifications to the

methods of Chapter IV are necessary. Finally, Chapter VI is a summary of some

of the more important results of this fhesig, together with a mention of some related
i

topics which might be areas of future research. -
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VARIABLE LENGTH CODING FOR A SINGLE SOURCE

Ll

The theory of variable length coding for a single information source
is well knéwnjs/eglGallager [ 2, pp. 43-551) . This chapter is devoted to're-
viewing some of the important results of this theory, results which will subsequently

v

be applied when solving the problem of codihg for correlated sources.

1
Therefore, consider the classical source coding problem illustrated in
Figure 2-1. Here, source X is assumed to be a discrete memoryless source. This

means that each unit of time, the sourcé produces one of a finite set of source letters,

SQY Xys Xgr wees Xy with a fixed set of probabilities Pr (x]), Pr (x2), ..., and
Pr (xk). Qf course, these probabilities must satisfy '
k .
Y pr o) = 1.
i=1 ¢

The information rate of source X is described by a very important quantity cclle/@flfl'n/e

-,

entropy of source X . It is defined by

HX = -

Pr (xi) |092 Pr (xi) ,

L=

where H (X) is the entropy expressed in units called bits of information.

[
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Figure 2-1: The single source coding problem.
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The function of the source encoder is to represent each source letter
by a codeword consisting of a sequence of binary letters. More prevcisely, the en-
coder performs a one-to-’-o“ne mapping from the k source letters Xyr Xgr e Xy
.., and m. The

average codeword length n turns out to be a very useful measure of performance and

to a set of k binary codewords having lengths m_, m

12

is defined by

N

The decoder for the system of Figure 2-}: performs the follo'wing

. )
operations. It observes the sequence of binary letters coming from the source en-
coder and based on this information produces &, an estimate of the original solrce
output X . It is desirable to design the source encoder in such a way that the de-
coder cc:n reconstruct the source output sequence with zero probability of error. In
order for this requirement to be met, it is necessary and sufficient to choose the set of
k codewords to be uniquely decodable. This means that any finite sequence of

binar( symbols from the source encoder can be uniquely resolved into sequences of

codewords.
)
&

A

The objective in studying the system of Figure 2-1, is to determine how
to design the best possible source encoder. The optimum encoder is defined to be the

one which has the minimum possible average codeword length n with the restriction



¢

that the code must be uniquely decodable. The following familiar theorem sheds

1

some light on the subject of optimum encoders.
Y

Y

Theorem 2-1: (for proof, see [ 2, pp. 50-51])

| - N

For the system illustrated in Figure 2-1, it is possible to assign codewords to the - .

source letters such that the code is uniquely decodable and such that the average

codeword length n satisfies
n <HX + 1

#
Furthermore, for any uniquely decodable code of this type, it is necessary that

n 2 H(X) .

Although Theorem 2-1 does not in te exactly how to design an

optimum source encoder, it does establish t timum system has an average

codeword length somewhere in the range

HX) sh <HX) +1?

]

A stronger theorem can be establithedby allowing the source encoder
b

to assign codewords to sequences of L source leffers. Specifically, the encoder
: ) . Lo,
can be redefined as being a one-to-one mapping from the set of k- different source

sequences of length L to a uniquely decodable set of kL binary codewords. For

this more general situation, the following theorem can be shown to apply .

- o
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12

a

.‘ , Theorem 2-2: (for proof, see [ 2, p. 511]) 5

s

For the system shown in Figure 2-1, it is possible to assign codewords to sequences
of L source letters such that the code is uniquely decodable and such that the average

codeword length n satisfies

n <HX) +1/L.

[

. 4
- Furthermore, for any uniquely decodable code of this generalized type, it is

necessary that

n 2 HX .

}

This theorem establishes that in general, the optimum source encoder
",‘

has an average codeword length n somewhere in the range

- «

!

- HOO <7 <HQE) +1/L . ©
]

The actual finding of this optimum code can-be accomplished by applying a famed
4

constructive procedure called the Huffmun ,épde’ (see Gallager [ 2, pp. 52-55]) .

-~

The key consequence of Theorem 2-2 is that by making L arbitrarily large (that

is, by assigning codewords to arbitrarily fong source sequences ), it is possible to

design a source encoder with an average codeword length n which is arbitrarily
J 1

close to H (X). This result is wguud‘rized by the foliowing theorem.

3



. Theorem 2-3:  The output sequence from source X for the system
of Figure 2-1, can be communicated to the decoder with zero probability of error

if and only if the average codeword length for the source encoder satisfies

n 2HX .

——— __

. 9
_“,;:/: e




o CHAPTER 111

CODING FOR CORRELATED SOURCES

The theory of variable length codjng for a single information source
(s reviewed in Chapter 1) will now be generalized to the correlated source cod-
: g “b
ing problem illugtiiated in Figure 3~1. This is the same problem which was
VA

initially introduced in Chapter | (see Figure 1-]).

In the following discussions, it will be assumed that both source X
and source Y are discrete memoryless sources. This im;é“li/t‘es that during each
unit of time, source X produces one of a finite set of source letters, say
Xqr Xg s vees Xy s and simultaneously source Y produces one letter from the set
Yy Yor oo Yq . Successive occurrences of (X, Y) pairs are indepy‘dent and

are governed by the fixed set of probabilities

{Pr(xi,yi): i=1,2,....,k;i=1,2,...,q1},

where of course .

k q .
z z Pr(xi,yi) =1,
=l j=1

.+ The correlation between sources X and Y is best summarized by arranging the

given set of probabitities intoa q x k probability matrix P as follows :



5 " of
n
Source X X X Jd o _L
X Encoder )
Correlated Decoder
Sources
- Y ! F
Source > Y _.._Y_——-—-> __?__>
Y Encoder .

Figure 3-1: A correlated source coding problem.

.
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Pr (xl ’ Y]) Pr (le Yi) Pr (xk' Yl)
Pr () s y2)

3

Al
. . ‘D

Pr (x2 ' Yq)

Pr <9 v))

>

Pl' (xkl )’q) .
-

Pr (x, ,
i (] Yq)

Notice that the marginal probabilities for the X source letters are described by

q
Pr (xi) = Z Pr(xi, yi) for i =1,2, ...,k
i=1
Similarly, the marginal probabilities for source Y are
5 .
. R - e ‘;;ﬁﬂ‘_"'&"‘ .
Pr (y') = Pr (xi,yi) for j=1,2, ..., q
i=1 .
As in Chapter Il, it is convenient to cﬁarocterize sources X and Y
by their entropies. The entropy of source X is dé'fined to be ) e
Y ¥
k ) ,"
A L
HX) = z Pr (xi) log2 Pr (xi) bI;S
i=1 ’

&

and similarly source Y has an eitropy of

q
& . ) br ;) logy Pr ) birs .

=1

H (Y)
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)

However, this is only a partial characterization because there is a dependence
between the two sources.  For this reason, it is necessary to introduce H (XY) ,

the joint entropy of sources X and Y . This importonf.gtcntify is defined by

-

np>
]
[~ =
>~10

H (XY) Pr (xi, yl) |og2 Pr (xi, yl) bits .

1

i=1 \

3

These entropies will appear often in subsequent derivations regarding the correlated

source coding problem. , -

In order to facilitate the development of a clear and concise theory,
it is advantageous to think of the X and Y encoders for the system of Figure 31
os being composed of two stages as illustrated in Figure 3-2.  That this idea does

not result in any loss of generality will become obvious from the following defini-

tions for the precoders and the X' and Y' encoders. .

Define the X precoder to be a single valued transformation from the

. - s ] t

individual source letters Xyr Xgr «een X to the new set of letters SRR SNy X\A
where M < k . Similarly, let the Y precoder be a single valued transformation

from the letters Yir Yor - - yq, to the new set y]' , y2' r ey yN' , where

N < q . Inother words, the precoders perform mappings of the form illustrated in
Figure 3-3, where the letters Xppr Xq20 xMrM and Yy Yigr +er YNSN

are just relabelings and reorderings of the original source letters.  (This situation

will be generalized later to include coding for sequences of source letters.)

!

Notice that ) .= k and S si =q . The net effect of the preéoders in the
i=1 =1
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Figure 3-2: The form of the encoders in the correlated

Figure 3-3: The precoders for the system of Figure 3-2.

source coding problem.
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system of Figure 3-2 is to frcmsform sources X and Y into 5|mp|er sources X'

—

and Y' . These new sources can be described by entropies H (X') and H (Y)

respectively where H (X') is defined by

>

M-
H (") Z ) log, Pr 6x,")

r, r,
i ‘ i

"
= =) U] Pre Tlogy [) ey 1 birs,
=1 el i=1

g
< 3

and H (Y') is defined in a similar fashion.
,,,\//_\ ‘
Now consider the second stages of the encod}rs of Figure 3~2, namely

the X' and Y' encoders. Having ovemﬁe codeword lengths of nx and Ey
T - 2’
z Lt /

respectively, these encoders are defined to ke uniquely decodable representations

-

for the "transformed" sources X' and Y'. It should be noted that according to

Theorem 2-3, the minimum possible values for n_ and n in this situation must be
g X

R o=H () and n =H (Y ‘
n = (X)cnwny—H(Y).

- n

P 4

The_insistence on unique décodobility for the X' and Y' encoders

ensures that the outcomes X' and Y' con always be communicated to the decoder

independently and with zero probability of error. The decoder must make use of this

knowledge to produce X and Y , estimates for the source outputs X and Y

respectively.  The only encoders of interest however, are those for which the de-

coder can produce X = X and Y=Y with probability one. This can only' happen



e

20

o
o

. if the mapping p:f.o)ned by the precoders (see Figure 3-3) is reversible. That is,

w

specifying letters X' and Y' must always uniquely determine the source outputs
X and Y. The very special precoder schemes which satisfy this property afe called

admissible schemes.

By definition, then, distortionless communication is possible for the
system of Figure 3-2 if androgly if the precoder scheme is admissible.  Consequently,
it would be very useful to find the set of all admissible precoders. The theorem be-

low gives the necessary and sufficient conditions for a coding strategy to be admissible .

First, however, some new definitions are required.

Based on the reordering of X and Y source letters for the precoder
shown in Figure 3-3, define a new q x k matrix P by interchanging rows and

columns of the probability matrix P as follows :

t

A :

7

) ﬂ SN -
T [ Pr (x”,y”) conly Pr (x]r],y”) | .-} Pr (xM],y”) . (xMrM'Y”)
g . « . | | . .
Y Pr Y. b )b teee ) )
| r ,,, ¥ . r (x 'Y . Pro(x ...y r 'Y
t x Cwng L T e T M Ty T M e
: -F; _4 ' ‘ ©u5
_______ — — '_. + —— m—— o v e mwem s m—— s —
Pryye ) r ("h]' YNI)I e NP (xMrM' YN
el : . ‘
\ |
Pr (<,,r ¥ .. Pk, L,y U (Y ) Pr (x Y )
. L I NS LIRANTRN R Ns, My, Ne
£ -
b4

Notice that the matrix P is of the form

la




2]

“ Ph 1 Pyl I P
AR R NN N
I | |
Pia 1 Pz | Pmz (

- —————t—— -
P = Lo | t
e — A ———| .

: Pinc 1 P 1 P

where Pii is the sixri matrix defined for i=1,2, ..., M ond |=1,2, ..., N

to be

—Pr(x 700 I Pr(x, ,y )T
il iri' il ;
A ’ .
P..=
1

LPr (x”q, Yisi) e Pr (xiri' yisi)- . |

’ Theorem 31 : A precoder scheme is admissible for the system of Figure

3-2 if and only if the corresponding matrix P as defined abave has at most one non-
zero element in each of its MN submatrices Pii , for i=1,2, ...,

Mand j=1,2,.., N.

Proof : Investigate the precoder scheme illustrated in Figure 3-3 and its

corresponding probability matrix # :  Consider any one of the submatrices Pii which

mqk/‘e up P. The risi entries of Pii are associated with the following risi X, Y

ir
i
7 ——
(xiri' yiz), ceey (x”, yisi) , (xi2' yisi) , «.., and (xiri, yisi) . But the precoder

of Figure 3-3 maps all of these (X, Y) pairs onto the same (X', Y') pair, namely

pairs (X”, YI]) ’ (xizl YU) AR ] (X. .I )(i]), (X” ' Yi2) ’ (xizl )’12)1 ey

N
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—

(xi' ‘ yi' ). It is therefore not possible for the letters (xi' , yi') to uniquely
determine which of the above risi (X, Y) pairs occurred unless no more than one

these pairs can occur with non-zero probability. This conclusion is true for each

_ of the submatrices Pii . Hence , the precoder scheme,js ud;nigsibl_e if and only if

every submatrix P,. has no more than one non-zero element.

Corollary (see Lu [3]): ' The only admissible precoder scheme for a system
of the form of Figure 3-2 if its probability matrix P has no zero elements, is the =
triviol mapping X' = X and Y' = Y . (This is equivalent to encoding and de-

coding the two sources independently which, according to Theorem 2-3, req\,;ires that

n 2 H (X) and ;y 2 H (Y) . This result.is in marked contrast to the e - error

X

results of Slepian and Wolf [4] . )

Example 9-1:  Find all admissible precoder schemes for the system of
—‘ »

Figure 3-2 if the correlated sources are described by the probability matrix

1/3 0 1/6 Yy
P= : | /
= 0 1/3 1/6° Y,
Xy X2 X3
& o o

There are two possible Y= precodér strategies to consider and they are

-

48
o
-~
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/

@) X, (i) X, ’ (iii) X,
3] %3l
- ' i 1 1 [
X3 ™ %o 2] %2 S T I
) iv) X) and (v) x]] - X .
‘ - ' - .
ol TN X2l = %
. xa) = Xq |

_Thus, there are ten precoder schemes of the form of Figure 3-3 corresponding to the
ten poss“ib|e ways of ¢hoosing one of the two Y-precoders and one of the five X-

precoders .

-

To test these ten schemes for admissibility, it is only necessary to form

.

the matrix P for each case and apgly the test derived in Theorem 3-1 to each sub-

matrix of P . For example, consider the precoder

4]

X "nl®

N I 2N



For this case,

| |
_ 1/3 0 ll/é Pt P E
P = ——re =} = =4 ——-
|
0 1/3} 1/6 Pl | Py

Since each submatrix P_i has only one non-zero element, this precoder is ad~-

i
missible.  Similarly, by testing the other nine precoders, it is found that none of
them are admissible except for the trivial case which is defined by X'=X and

Y'=Y.

Returning to the considerat.on of the general system depicted in
Figure 3-2, it is useful to summarize the results obtained up to this point. It has
been established that the outputs of the correlated sources X and Y can be com-
municated to the decoder with zero probability of error if and only if the precoder
scheme is admissible. For any particular problem, it is possible to determine the
entire set of ugmissible precoders, simply by applying the testing procedure-of
Theorem 3-1. It is known that for any precoder described by entropies H (X')
and H (Y'), the average codeword'ﬁength_s' fo;fhe X' and, Y' encoders must
satisfy Fx 2 H (X') and T\Y -2 H (Y'). Therefore, by calculating these fower
bounds H (X') and H (Y')’ for each member of the set of all admissible precoders,
it is possible to plot an o||ow<;d twa-dimensional rate region.  Specifically, the

set of points (H (X'), H (Y')) can be used to construct an admissible region R in

the Rx -—ﬁy plane. Region R can be defined formally by statingjthat any point
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(Rx , Ry) must lie inside this area if and only if there exist encoders with
;x = Rx and T‘Y = RY which allow the decoder to reconstruct the source outputs

with zero distortion.

The following two theorems are necessary for determining the admissible

region R in any general problem.

Theorem 3-2 Bit Stuffing : If the point (RX . Ry) e R, then the

point (Rx+8x, Ry+8y)eR for any Sx'sy =20.

Proof : By definitionbsince the point (Rx , Ry) € R, there must
exist an encoder having Fx = Rx and ;Y =R  which allows the decoder to re-
p
construct the source outputs with zero probability of gggor.  odify this encoder as

follows : after every L. codewords sent out by the X encoder, send K. orbitrary

] 1

binary characters ; similarly for the Y encoder, send K, arbitrary binary symbols

2

after every L2 codewords. For this new coding scheme, the average codeword

T o= + n = + ) il -
lengths are n Rx K] /L] and ny RY- K2 /L2 The decoder can still re
* construct the source outputs with zero distortion because it knows the numbers
Ki ' Li (for i =1, 2) and hence can count out sequences of Li codewords and
discard the following Ki meaningless binary symbols. Therefore, the point

(Rx+ K] /L], Ry+ K2 /LZ) e R where " K,, K l.] , ond L, are any positive

12! 2

integers. Any positive real number can be expressed as accyrately as desired as the

ratio of two positive integers by taking those integers to be sufficiently large. Con-

¥

—-r
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>

sequently, in the limit of large integers, K] /L] and K2 /L2 can be replaced

by positive real numbers 8x and 8)’ . Thus, the point (Rx + 8x p Ry + Sy) eR.

Theorem 3-3 Time Sharing : If (Rxl' Ry]) e R and

(sz, RY2) e R, then (A Rxl + (1 =N sz, )\Ry] + (=N Ry2) e R forany X\ in

therange 0 < X\ s 1.

Proof : Since (Rxl ; RY]) and (sz, Ry2) belong to R, there
must exist the following two encoders which allow the source outputs to be communi-

cated to the decoder with zero probability of error : Encoder | having ;x = Rxl

and n =R ., and Encoder‘il having n “f , and n =R , . Consider the con-
y x  x2 y y2

struction of an encoder which uses the mapping scheme of Encoder | u times and
follows by using the strategy of Encoder 1l v times. Thatis, v / U+ v) of the

time, the encoderhas n =R ., and n =R . and the rest of the time, it has
x xI y yl

=R, and n =R _ . This new encoder has qverage codeword lengths of
x2 y y2

+ vaz) / (u+v) and ny = (URy] + vR

3

X

(UR

X x1

/ (U+v). Thedecoder can

31
1

Y2)

still reconstruct X and Y with zero distortion because it knows the values for u
and v and can thus keep track at all times of which of the two coding strategies is

. being used. Therefore, the rate point ((qu] + vaz) /L+v), (URy] +vRy2) / L+vy))

must belong to the admissible region. By letting A=u / (U + v), an equivalent

statement is that the point ()\Rx] +(1-MR ot )\RY] + (1 -NR R. The desired
X

y2) ‘

result follows by noting that the value for A can be made to vary continuously from

*

0 to 1 by choosing the integers u and v to be sufficiently large and in the correct

ratio. v
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The above discussions have indicated that the admissible rate region
' I

for any problem of the form illustrated in Figure 3-2 can be determined by carry-

ing out the three steps summarized below :

@) Determine the set of all admissible precoder schemes with

the aid of Theorem 3-1,

e

Gi) For each member of this set, detergrine the lower bounds
H (X" and H ') for _r-\x and’ —ny respectively. Plot

all these points (H (X'), H (Y")) on the n -T\Y pldne,

Gii) Apply Theorems 3-2 and 3-3 to the series of points
plotted-in (ii) in order to discos}gr the entire admissible

}

region R .

This basic method is best illustrated by applyiw the solution of

several examples.

\

Example 3-1: (continued)

1/3 0 1/6 .

For the probability matrix P = it was found that
0 1/3 1/6 , ,

the only admissible precoders were
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0 x Covdty () x] = o) n]=n’
- x ,

] , ,
2 @*h'om xp) = %y’ Yol v

C xa]-' x2' - x3] = x3'

X

For scheme (i) it is necessary that ;x 2 H (X') and T‘Y 2 H (Y') where

v

HXY = =Pr (xl') ‘logz Pr (x]') - Pr f(x2') |092 Pr (x2')
= -@/3%g, @/3) -0/ leg, /3
= 0.918
. 1 ] 1 !
and H(Y') = H(Y)=-~2-|ogz-2--2-|0927=1.

For scheme (ii), itis nec;essory that ;x 2 HXX) = 1.585 and T\Y 2 H(Y) = 1.

These two admissible rate points (0.918, 1) and (1.585, 1) are

“w

plotted in Figure 3-4. By applying Theorem 3-2, the admissible region R is

found to include all points of the form (0.918 + Sx , 1+ 8y) for any Sx , & =20.

Y

The resulting region shown in Figure 3-4 is actually the entire admissible region.

It has such a simple shape that Theorem 3-3 does not yield any new information

about R .

Notice that if sources X ‘and Y were coded independently, the ad-
missible region would be the double hatched region in Figure 3-4, the subset of

regior?n\‘/& described l;y -n-x 2 H X) and .By 2 H{(Y).



1.585

HX)

.918

The admissible region for- Example 3-1 .

Figure 3-4:

-




Example 3-2:  Suppose the system of Figure 3-2 is described by

the following probability matrix :

. o0 Y
. ] ]
P= 10 1 7 O Y9
0o o o
i 4 | Y3
X‘ X2 X3 X4 /

Instead of searching randomly through a large number of possibilities to find the set
of all admissible precoders, it is more efficient to first discover all admissible coding

schemes of the following two special types : .

@) Type A ; precoders whose Y pretoder is the one-to-one

mapping Y' = Y, ond
¢

(i) Type B ; precoders whose X precoder is the one-to-one

mapping X' = X.

By applying the results of Theorem 3-1 to this example, it is easily

¢

found that there are ten admissible precoders of Type A as follows :«

] -
M x @ x @ x|
. ' X

X0 71 x3| © X1 Xa)

%4 *4 *3]
- 7 . . “x2'

xa]™ %2 *17 %2 %4,

L)



N

(10) "1]‘" Xy’
x] 7 %;

3‘3]* *3

T

Of course, the Y precoder scheme in each of these cases is understood to be the

trivial one Y' = Y. »
3

Similarly, it is easily found that there are five admissible precoders

of‘Type B .as follows :
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M @ 7] @ v .
nlmn' rl "7 Ya]qy"
73 Ya]™ vy | ¥2]" Y2
@ y]7 ® ]
Yy | Y] ¥y
vyl 2 ¥3]™" Y3

)

It is understood that the X precoder in each of these cases is defined by X'=X .

As illustrated by this example, the set of all admissible Type A pre-
“coders is actually a list of X precoder schemes. Similarly, finding all admissible
Type B precoders gives a list of Y precoder strategies. The significance of these
two lists is that any precoder of the general form of Figure 33 can only be ad-
missible if its X precoder belongs to the Type A list oand its Y precoder belongs
to the Type B list. In other words, if the precoder gf Figure 3-3 is admissible,
the two precoders shown in Figure 3-5 must also be admissible.  This fact becomes

obvious according to Theorem 3~1 by inspecting the P matrices corresponding to

the three precoders in question.

LY
L3

é\ method, then, to determine the set of all admissible pe€coders in
)
any problem, is to consider all possible ways of choosing an X precoder from the
Type A listand a Y precoder from the Type B list and to apply the test of

Theorem 3-1 to each of these possibilities.




@ A Type A precoder.

-
.o»'}y’]F~-4’":i‘-.-
M2l o
AR I A
_ Y]ST g
4 xl] - x] -
721
' X)) % Y22
. - ! . - Y2'
x4 X3 :
y
252
' — [ N
% Xk NI
YNZ|
- le
Y

N

b) A Type B precoder.

A
Figure 3-5: Type A and Type B precoders’.

14
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In the present example, there are 10 x 5 = 50 ways of choosing :
,/\
one of the ten X precoders and one of the five Y precoders. Actually, only

9x 4 = 36 of these need to be tested for admissibility because the fourteen

schemes having either X' or Y' = Y are already known to be admissible.

By performihg these 36 admissibility tests, it is easily concluded
that there are a total o} 26 admissible codes for this example. These precoders . »
are arrayed in Table 3-1 fogether with-their corresponding entropies.  All of the
resulting rate points of the form (H (X'), (H (Y')) are plotted in Figuré 3-6.
According to Theorem 3-3 on time sharing, points on the line segments ab and

bc must belongto R . By applying Theorem 3-2, the complete admissible region

R is determined to be that drawn in Figure 3-6.

¢

Example 3-3: Consider a system characterized by the prohability
matrix
[~ “1
. d, 0 | 0
o 4, o
2
P =
0 0 oo d '
L k.
k 0

where Z di = 1. First note that according to Theorem 3-1, the }ollowing
i=1 |

two precoders are admissible :

£,



Precoder No.

X Precoder No.

Y Precoder No.

H (Y")

A3

S i

N0 N O A N
N W W H Hh o v ;PO 08O N NN 00 0 0 0V

R T S e e . e
NN A OO -~ O

© 10
10
10

10

—
o

——

NN NN NR

G ;O i1 & v i G O G

W W AN DA WL W N O RAE WL W N O R LN
et el el

.811

811
1.5
.811

1.5

.811
1.5
811

1.5

811

1.5
811
811
1.5

1.5 -
1.5

1.5
1.5

Table 3-1: The admissible precoders for
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Therefore the points (0, H (Y)) and (H (X), 0) belong to the admissible region R .
Notice that since P is diagonal, H(X) =H (Y) = H (XY) . The two points
©, H (XY)) and (H (XY), 0) are plotted in Figure 37 . The following theorem

allows the admissible region for this example to be determined by inspection.

Theorem 3-4 : For a system of the form of Figure 3-1 (or Z
Figure 3-2 ) the source outputs can be communicated to the decoder with zero

probability of error only if ;x + EY =2 H{XY). "’

Proof :  Suppose a system exists which allows the source information

to be communicated to the decoder with zero distortion and which has encoders such
that Fx+7f < H (XY) . Consider a combining of the X and Y encoders of this
e Y -

system to form an XY encoder for the joint source XY. For example, choose an
XY encoder which alternates on every bit between the codeword sequences of the

X and Y encoders. This encoder allows the decoder to reconstruct the output of ,
source XY with zero distortion and furthermore, it has an average codeword length
of n =n +n . Therefore, n < H (XY). However, according to Theorem

xy x .y xy

2-3 for the single source XY, it is'necessary that ;xy 2 H (XY) .in order to have

distortionless communication. This contradiction implies that the opening assump-




Y.

, n
X

0o H (XY)

2
figure 37 The admissible region for Example 3-3.




‘ tion was wrong. Therefore, no system can exist with n +;y < H (XY) such
x

that the source outputs can be reconstructed by a decoder with zero probability

of error. That is, it is always necessary that T{x +T\Y 2 H (XY) .

— erud
4 —

R Example 3-3 (concluded) : In Figure 3-7, the line segment joining
the points (@, H (XY)) and (H (XY), 0) is the line ;x +FY =H (XY) . A&ording
“ to the Time Sharing Theorem, points on this segment are admissible. Theorem 3-4

proves that no points below this line can belong to region R. Therefore, the entire

admissible region R is that illustrated in Figure 3-7 .

This chapter has developed some simple procedures for finding the ad-
missible region R for problems of the form indicated in Figure 3-2. Until now,
this has been a restricted class of problems because fher;)recoders have been limited
to performing transformations oh the individual source letters.  Fortunately, it is very
easy to generalize this situation to allow coding for sec.guences of source letters. In-
deed, by pretending that the X source letters SR SVRIVE ond the Y source
letters Yyr You e yq are actually sequences of L letters from two simpler
sources, the most general problem can be solved using exactly the same methods em-
ployed previously in this chapter. This fact is itlustrated by the following

concluding example.

Example 3-4 : Find the admissible region R for a system described

5

by the probability matrix




/3 0 1/6]
P = .
S L V2 B V2 P e
X *2 *3

if coding is permitted for sequences of L=2 source_letters.

By assuming that source X actually has 9 outcomes SRR
X) Xgr X} Xgr oey XgXg and source Y has four letters Y1 Yy Yy Yo Yo ¥qr
and Yo Py the following equivalent problem can be set up :  find the admissible

region for a system with probability matrix

i ¢ 108 0 00— 148 0 1/36) Y

o 1% 118 0 0 0 0 18 1/3 Y1Yp
P = .
0 0 o 1/ 0 18 1218 0 1/38].  y,y,
0. 0. o o. 1/ 148 0 128 1/36] vy,
v .x]x] x]x2 x]x3 xzx] ><2x'2 x2x3 x3x] x3x2 x3x3
Y

L
if coding is only permitted for individual source letters.

It has been establisiied in this chapter how to solve such a problem.
It turns out in this case that no admissible Type B precoders exist besides the trivial

one but that.the best . (lowest entropy) admissible Type A precoder is the code
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& @

. —_ ]
*2 X1 R4 Yl] "

Y1Y2]™ vy

x. |7 % Yo¥1] ™ V3 ‘

X3%y Yo¥9] ~ V4
- X '
3

X3%9

t

X4 x3]-° x4' n '

which has H (X') = 2(0.918) and H (Y') = 2 (1) . Therefore, the point

n = H (') /2=0.918 and HY =H (Y") /2 = 1 isan admissible rate point,
the extra factor of two arising because the above precoder is for sequences of length

two. Consequently, the admissible region R is the same as that plotted in Figure

3-4 in connection with Example 3-1 .

v




CHAPTER 1V

AN ALGORITHM FOR DETERMINING THE ADMISSIBLE REGION

All thélbasic ideas and theorems necessary in understanding the system
of correlated sources illustrated in Figure 3-2 have been established in Chapter 111.
In practice, however, the solution of problems described by large, sparse probability |
matrices can require an enormous amount of work.  For example, for a system with
a 10 x 10 probability matrix, there are many billions of different precoder mapping
combinations of the form of Figure 3-3. To search randomly tlhrough this gigantic
number of possibilities to find the admissible coding schemes is obviously imprastical,
if not impossible. The purpose of this chapter, then, is to develop an algorithm
which allows such |arge: problems to be solved efficiently with the aid of a digital
computer. It should be kept in mind that even though the methods below assume that
only .coding for individual source letters is permitted, they can be applied equally

well to problems allowing coding for sequences. 4

During the discussions of Chapter Il and specifically in connection
with Example 3-2, the following four step method was suggested for solving any

correlated source coding problem of the form of Figure 3-2:

-

Step A: Determine the set of all admissible precoders whose Y
precoder is defined by the one-to-one mapping Y' =Y . Each admissible code of
this restricted type, which we shall call Type A, has o different X precoder. The

result of Step A, ther{, is o list of various X precoder mapping schemes.
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Step B: Determine the set of all admissible precoders whose X.
precoder is defined by the one-to-one mopping X'= X . Each odmissible code of
this restricted type, called Type B, is characterized by a different Y precoder.

Therefore, this step results in a list of various Y precoder mapping strategies.

Step C: Consider the set of all possible ways of choosing an X
precoder from the list discovered in Step A and a Y precoder from the list found
4
in Step B. Test each such precoder for admissibility. As proven in Example 3-2,

this procedure determines the set of all admissible precoders. .

Step D: For each admissible precoder revealed by Step C, cal-
culate and plot the points (H (X'), H (Y')) on the n - ;y plane. Find the entire
X

admissible region R by applying Theorems 3-2 ond 3-3.

The above four steps form the basis for an algorithm which will be
developed in the remainder of this chapter. First of all, a detailed strategy will
be given for efficiently performing Step A . No new methods will be necessary
for Step B because it only differs from Sfe.p A in that the roles of X and Y are
reversed. An improved final step will then be worked out by combining Steps C
and D . This procedure will tcke odvonta;;e of the fact that in most problems, it
is not necessary to determine the complete set of admissible precoders (os in Step C
above) in order to draw the admissible region R. For instance the admissible region

drawn in Figure 3-6 in connection with Example 3-2 is defined by only three pre-




coders, those corresponding to the points a, b, and c. None of the other ad-

missible precoders appear in the final solution.
s

. Algorithm for Step A : Consider a problem of the form depicted

in Figure 3-2 which is characterized by a given probability matrix P. The goal
of Step A is to use; this given information to discover the set of all admissible pre-
coders of the special type (Type A) shown in Figure 3-5a. Notice that the Y
precoder is limited to be a one-to-one mapping whereas the X precoder is un-
restricted.ﬁ It is convenient to divide the set of all admissible Type A precoders

inje’different classifications based on their X precoders. Specifically, catagorize

“u

the precoders occgrding to how many groupings of two or more X source letters
occur in the X precodermapping scheme. For example, for the precoder of

)Figure 3-5a, if r

r

I TS R M

r, are all greater than one and r

AP IR )

are all equal to one, then this X precoder has J groupings of two or more source

»

letters.

This classification for Type A precoders indicates that Step A can

-

be carried out in several sequential steps as follows :

I3

1
Step A (1) : Determine the set of all admissible Type A precoders

whose X mapping schemes have at most one grouping of two or more source letters.




'

[

Step A (2): Determine the set of all admissible Type A precoders

whose X mapping schemes have two groupings of two or more source letters.

&
N,

Step A (J) : Determine the set of all admissible Type A precoders

whose X mapping schemes have J groupings of two or more source letters.

By choosing the number J to be large enough, the sets of admissible
precoders found in Steps A (1) through A (J) together make up the set of all ad-
missible Type A pre;:oders. The advantage of performing Step A according to
this sequence of J steps is that it furns out that once Step A (1) has been completed,
Step A (2) can be performed dirx_ecfiy from the results of Step A (1) without even
looking at the probability matrix. Similarly, it will be shown below how any Step
A (1) can be carried out directly from the results of Step A (I=1) by a simple pro-

»

cedure .

The key, then, to efficiently performing Step A according to the set

- of steps indicated above is to develop an olg'orithm to carry out Step A (1) . This in-
volves discovering the set of all admissible precoders of the special form illustrated in
Figure 4-1 . These codes are cha:acterized by X mapping schemes having either one
grouping of twwo or more source letters (when " > 1) or having no such groupings

(when o= 1) . For any admissjble precoder of this form we will henceforth refer to

its only grouping of source letters (x” P Xyg s crenr Xy ) as being an admissible X-

]




" Figure 4-1: A Type A precoder hqving only
one X-grouping.

N
¢g: CE
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‘ . grouping. Using this terminology, the goal of Step A (1) can be restoted as follows :

find the set of all admissible X-groupings. ’

a

.
To achieve this objective, consider the forming of a matrix P0 by per-

forming column interchanges on the probability matrix P according to the following
’

rules :

() Find the row of P which has the most non-zero entries :

4 ; ) .
the J row. If two or more rows have the same maxi-

0 o

mum number of non-zero entries, choose any one of these
rows. Define 15 to be the number of zeroes in the
, & ,

Joth row. B ) 4

. (ii) Interchange columns of P so that the JOth row has all of

<
’ its ly Zeroes in the leftmost columns. e “
The resulting matrix f’o has an appearance of the following form :
i l - ‘
e " | i
! : 0 0 0 I T &1 |
o= 7y box o x x] .= Ty 1 Pop
70 I Lo
. ' :
Yq L | ]
01 0O . Ot 02 02 02
' ' X X ens X X X .on X _
] 2 lo 1 2 | k b
where "x" denotes a non-zero element. Notice that P0 has been partitioned into e
. . two matrices P.. and P.. and the X source letters have been relabeled accordingly.

01 02




48

- - o
-3

Since each column of P02 has a non-zero element in the J th row, Theorem 3-1

0

implies that any precoder of the form of Figure 4~1 cannot be .admissible if the X-

grouping (x”, Vx]2d' e Xp ) contains two or more of the source letters
]

x?%, xgz, ..., and XE?-I . In other words, any admissible X-grouping for the
0
system described by matrix P (or equivalently PO) , must contain only one or else

none ef the letters x?z, xgz, ceey xc:f_l . Consequently, Step A (1) can be
0

solved by combining the solutions of the following two simpler problems:

i -

()] Find the set S, of all admissible X-groupings which
' 02 02

contain none of the source letters X) 0 Xg 4oy and
02 '
xk_l and : . ‘L[T',.
! 0 ’ S

b s
(tn Find the set 512 of all admissible X-groupings which

02
VIRERY,

. . 02
contain exactly one of the source letters OVR

and x0 . ‘

k=1g ‘ | -

[

It will now be shown how these two steps can be used as a basis for .
a recursive algorithm for carrying out Step A (1) .

o

First of all, consider the first step, problem 1.. It involves the study

of X-groupings which contain only source letters associated with matrix P

o1
namely x?], xg] P s x?] . But the set of all admissible X-groupings of this

0
type is just the set of all admissible X-groupings for a system of the form of Figure

3-2 which is described by the probability matrix Poi instead of P0 . Therefore,



Ty
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the problem of finding all admissible X=-groupings for matrix PO (P) is dependent

>
g

on the solution of the same problem for a smaller matrix P

o1 -

: The procedure of interchanging columns of P to get matrix P, ina

0

special partitioned form, can be repeated for matrix P Specifically, it is

o1 -

possible to form a matrix P, by interchanging columns of P according to the

] .0l

P..]. Asabove, this step.makes the problem of

given rules to get Py = [p 12

1

finding all admissible X-groupings for matrix P_ . (or equivalently P]) depend on

01

the simpler problem of finding all admissible X-groupings for the smaller matrix P

1
P

By repeating this operation for matrix P and later for P

11 21’

etc., a

317 7

sequence of problems of decreasing complexity is generated. Eventually a final

stage must be reached, with P.l = [P

P.. ], where the matrix Pi] will have

il i2

a row containing no zero elements. It is obvious in this case that the only admissible
0

X-groupings formed from the letters of Pi will be trivial groupings consisting of one

1

3

source letter.

' Step A (1) can be completed by working backwards step by step. The

set Si+l of all admissible X-g oupings as found for matrix Pi _can be used to

]
determine Si‘, the set of-all admissible X-groupings for Pi or P(i-l)] . Similarly,

t it is possible to progress all the wuy back, ending up with SO , the set of all admissible

X-groupings for the original matrix P. To illustrate this procedure, suppose that the

has clready_ been determined and we want to

1 01

use this information to find S. . Since it has been proven above that § =S5 Us

0 0 1 12°

it remains only to specify 512 in order to be able to calculate S0 .

“set S, of admissible groupings for P



The simplest kird of admissible X-groupings belonging to the set 512

qre the single letter grotipings (x()lzj, (xgz), ..., and (xﬁf| ) . A¥l other group-
0

ings of S]2 must consist of one of these letters, xi , joined together with one or more

01 01

01 .. .
letters from the set Xy 0 X oo X thus resulting in groupings of the form

I
0
01 01 02 ) . .
(xi' , ...,xmtxi ), where 1 < i, m < IO‘ and 1 < | = k-lb. But if such a

grouping is admissible, Theorem 3-1 implies that its subset (x(i)] g oeees xS\l) must also
be an admissible X-grouping and hence must belong to the set S] \(because it con-

tains none of the xo2 letters) . Consequently, all admissible X-groupings of the ‘

01

form (x,?] foeeer X, x?z) are composed of an Xrgrouping from the known set S]

m
02 02 02

annexed to one of the source lettets XP Xy s Xy It is easy to determine

0 02

all such groupingssimply by trying all possible ways of annexing one of the x

letters to each admissible grouping of the set S] . In summary, then, a practical

2

method for determining $,, involves the following :

@) Combine the single letter groupings (x(])z) — (ngl )
0
with
) the set of all admissible groupings formed by annexing

one of the letters xlz, .. "“ngl to the X~groupings,
0

of the set Sl .

e With 5 and S, known, it is a simple matter to calculate S ,

the union of these sets".




A complete method has now been developed for performing Step A (1).

The algorithm is best illustrated by using it to solve a simple example.

1 P

Example 4-1: Find the set of all admissible X-groupings for a

; system described by the matrix

1 . .
v 0 0 0 Y1 —
L 1 1
= lo 1 z ot Yo o
0 0 0 !
i ry Y3 - .
X X2 X3 %4

The row with the most non-zero elements is‘the second row. By interchangin
Y ging

columns of P, the matrix PO is formed as follows :

1 0! 0 0

| -

) Vo 1
=0 0t g | = [Py fo!
]

1 ’
‘ Lo gz ! 0 0-
X1 X % X3

-4

_-By repeating this procedure for P01 , the matrix P] is found to be

'B“l : -
P . 0 3
' z ] .
— | — '
. ) Pl— 0 : 0 = [PH:P12] 6
' ] o
10 ) 7l
I %4 . ‘

oy
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o

. Since P” is a column matrix, its set of admissible X-groupings 52

of the single letter grouping (x]) . The set S‘] of admissible X«groupings for

consists only

matrix P] is formed by combining v

@) the set Sy = {(x\)} with
’ (ii) + the single letter grouping (x4) and

(iii)  the set of all admissible X-groupings formed by annexing

the letter %y to each grouping in the set S2 . The only

grouping falling into this category is (x] x4) . There-

fore, S] = {(x]), (x4), (x] x4)} .

The set SO of admissible X-groupings for marix Po is formed by combining

t
f

: “t
(i) the set SI = {(x]), (x4)’, (S(l x4)} with ¢

i) the single letter groupings (x2), (;3) , and

(iii)  the set of all admissible X-groupings formed by

annexing one of the letters Xpr Xg tO groupings from ¢

3!

. the set S - The admissible X-groupinés of this latter

type are (x1 XZ)’ (x] x3), (x4 x2), (x4 %), (x] X4 x2)
und(x1 X4 x3) .
e e~ Therefore, the set of all admissible_ X-groupings for this problem is
So = {(x])' (X4) ’ (X] x4) ’ (x2) ’ (X3) ’ (x]ri(z) ’ (X] x3) ' (x4~x2) 7 (X4 x3 ’

by g xg) o+ b xgxg)}



53

Now that an algorithm has been developed for Step A (1), let us turn
our attention to Step A (2), the problem of finding all admissible precoders of the
17 T2 > 1) . Notice that if the precoder
of Figure 4-2 is admissible, then according to Theorem 3-1, the X-groupings

type illustrated in Figure 4-2 (where r

(x” R VWIRTEVER I ) and (x2] P Xog 1 seer Xo ) must be admissible by them-

1 2 .
selves and thus must belong to the set SO . Consequently, it is possible to carry out
Step A (2) directly from the results of Step A (1) as follows : take the set SO of

admissible 4;(-grroupings found in Step A (1) and try all possible ways of combining

two of these groupings to form precoders of the form shown in Figure 4-2.

Example 4-1 : (continued) It has been found above that the set of

all admissible X-groupings is SO = {(x]), (x4), (x] x4), (x2), (x3), (x1 x2),

(x] x3), (x4 x2), (x4 x3), (x] X4 x2), (x] 4 x3)} . To find all precoders having
the form shown in Figure 4-2, we need only investigate all possible ways of choosing
two from the following X-groupings = (x] x4), (x] x2), (x] x3), (x4 XZ)' (><4 x3),

(x] x4 x2), (x] X4 x3) .

Forming a precoder from the two groupings (x] x4) and (x] x2) is

clearly unacceptable because the letter x. appears twice so that an X-mapping

]
scheme is not well defined. Similarly, choosing the grouping (x] x4) along with
any other does not form an acceptable precoder. By trying all the other possibilities,

it is easily found that the following are the only two admissible precoders of the re-

quired type : ‘




s
- ; .
I
Xlz |
. =Xy
”( . Y]] - Y1 |
Il _T i} N
i Yof = 2
)
X2 3] " vy
: =Xy
; .
2r2. s
5] " % Yol " Y4
x4]] ~ x4'
]l " *m

Figure 4-2: A Type A precoder having
two X-groupings.

!
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Consider now a method for performing Step A (J) given the results of

14

Steps A (1), A (2), ..., and A (J-1) . The goal is to determine all admissible pre-

coders of the form shown in Figure, 4-3, where r,, t., ...., r are all restricted
9 1 2

J
to be larger than one. " According to Theorem 3-1, if the precoder of Figure 4-3

is admissible, all of the X-groupings (x“, X197t e x]r]), (x2], Xoor +++ x2r2), e
; ) must be admissible by themselves and therefore must be-

J
long to the list found in Step A (1). Furthermore, any precoder formed by choosing

and (xJ], Xjgr weer Xy

any (J-1) of the J X-groupings of Figure 4~3 must be admissible and thus must be-

long to the list of admissible precoders found in Step A (J-1) .

Hence, a method for finding the set of all admissible precoders of the form
in Figure 4-3 is to investigate all possible ways of annexing one of the admissible X-

groupings found in Step A (1) to one of the admissible precoderss found in Step A (J-1).

Example 4-2 : Find the set of all admissible Type A precoders given

" that the outcome of Step A (1) (the set of all admissible X-groupings) is the set

Sg = [ %, (egxg)s b g xpXge by X b xg) (), (o), (xg),
(s &g (] - ‘




- 1
x(JH)l] %4

Ml *m | o |

Figure 4-3: A Type. A precoder having J
X=- groupings. . ‘ . : CL

®
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. tep A (2) : By trying each possible way of choosing two of the
X=-groupings from the set So, (excluding the trivial groupings (x]), (x2), ceey (xé)),

the following precoders are found to be admissible :

X ) x
- x ' _J - x ' - x '
x2~ 1 x2~ 1 . x | 1
p= - \_\ -
x3 - % ! X5 - x ' x5 - x !
ﬁ_ 2 xé_ 2 xé_ 2
xs] - Xa x3] - x x]] - x
x6]—‘ x4 x4] - x x2] “’x4
Xy ] , 0 T 2
o) -ox X4 1 X3 | 1
X
3.4 -1 p -
| Xs Y X s
Xg Lo X | 2 Xg | 2
x6 x2 1 - 1
- x] = %3 *1] 7 %3
*4 1" %3 xg] 74 x4] %4
N .

Step A (3) : By trying each possible way of annexing one of the X-

groupings of the set Sp to one of the six admissible precoders found in Step A (2),

4

the following precoder is found to be the only admissible one :

X.l . ,
7 x2- x]
*3] \
X4-
® *s1 .,
xé_ x3
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A

There are no precoders containing more than three X-groupings of more
than one source letter. Therefore, the set of all admissible Type A precoders is

formed by combining the admissible precoders found in Steps A1), A@), and A (3).

The algorithm developed above for performing Steps A (1) through A (J),
allows the determination of all admissible Type A precoders as required by Step A.
The meﬂ;ods are very well suited for computer programming due to the simple step by
step progression. Some more examples will be presented towards the end of this

chapter to illustrate how efficiently the above method can be implemented by a com-

puter program.

Algorithm for Step B :L The object of Step B is to determine the set of

all admissible Type B precoders. This is exactly the some problem as solved in Step A
except that the roles of X and Y are reversed. Therefore, the identical method de-
veloped above can also be used for Step B simply by replacing the probability matrix P

by its transpose PT .

Algorithm for Steps C and D . The goal of this final step is to determine
the admissible region R given the set ;f‘oll admissible Type A and Type B pre-
coders as found in Steps A and B respectively. The list of admissible Type A
precoders is actually a list of KA different X precoder mapping schemes and similarly,
the set of <:dmissib|ew Type B precoders is a |jst of Kg Y precoder mapping schemes.

The set of all admissible precoders is thus a subset of the KAKB different possible ways

AN
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of choosing an X precoder from the Type A listanda Y precoder from the Type
~%

B list. As shown in Figure 4-4, each of these KAKB possibilities defines a point

H X"), H (Y") inthe Fx - ;Y plane. Therefore, the problem of determining the

~

admissible region R involves searching through o“:grid of KAKB points to find which

&*

ones , (out of those corresponding to admissible precoders) are the vertices defining

region R.
Many of the grid points in Figure 4-4 can be eliminated from further
consideration by inspection. For example, ‘as proven by Theorem 3-4, none of the
grid points below the line Fx + .ﬁy = H (XY) (which is the line FG in Figure 4-4)
can represent admissible precoders. Furthermore, since points C and D are known
to represent admissible precoders (of Type A and Type B respectively), all of the
grid points above the line segment CD must !ie inside the boundary of the admissible
region R, as proven by Theorems 3-2 and 3-3. gonsequenfly, it can be stated

that no points other than those lying on or between lines CD and FG can be ver-

tices for region R .

A method, then, for discovering the admissible region R, is to
systematically choose points from the area between lines CD and FG, gnd to test
the corres;;onding precoders for odmis&ibility. Whenever a code is feste%i and found _
to be admissible, the region R can l:e increased o:':cordingly. For excmple‘, if the
code corresponding to point E of Figure 4-4 is founc; to be admissible, the friangu-
lar area CED can be added to R. Moreover, only the grid points lying above line
FG and below triangle CED still need to be considered as possible vertices for

>

region R .
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The method described above can be summarized by the following

“

. steps :
i Let R. be the admissible region defined by points
0 g Y P

C and D. : ‘ -

G) Seti=0.

*

;'ri) Continue (or start if i =0) a systematic search through
o the set of ol K,Kp grid points. Checkeachpointto
see if it lies in the area below region Ri and above line

FG. If it does, test the corresponding precoder for ad-

+ missibility. Continue this search only until an admissible

point is discovered.

R @iv) Form admissible region Ri+l by taking region Ri and
annexing the area defined by the admissible point found
in (iii) .
v) Set i = i+1.

(vi) Go to (iii) .

At sor{:e stage , when step (iii) results in no new admissible points, the

problg}n is completed agd the admissible region R is just region Ri .

-
”

Two important points that should be discussed concerning step (iii) of

the above method are how to efficiently carry out the grid'search and the admissibility

. )

1
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" tests. Rather than searching through the set of all grid points in a random order, it

should be more efficient to search in some organized manner. One promising idea

is to search through the grid boints in the order of increasing ;x +n . This causes

points which are on the average farthest below the region Ri to be tested first. This
2 - o e .

methol seems to be very efficient because when an admissible point is discovered, it

defines a comparatively large area to be annexed to region Ri . This not only causes

\l
region RiH to be a much better cppro[imofion to the entire admissible region R but

.

it also greatly reduces the number of grid points (lying in the area between Ri+'| dnd

line FG) wEich remain to be tested.

Experiené:e has shown that céreful ordering of a large rumber of grid
points according to -r_\x + _n-y is usually not practical but luckily a rough ordering of

4

this nature is already available from the results of Steps A and B. During the method
followed for these two steps, the precoders were arranged according to the number of
groupings of two or more source letters. But, on the average, precoders ho\l/ing the
larger number of such groupings tend to have the smaller entropies. Therefore, a prac-
tical method of performing the grid search can begin by searching through the precoders
whose X and -Y mapping schemes have the maximum numbers of groupings of two or

more source leiters. The search then continues by considering precoders which have

diminishing numbers of source letter groupings.

An impgrtant ope'rotion which must be performed during the grid search
is the testing of various precoder schemes for admissibility . A;gording to Theorem

3-1, one admissibility testing procedure is to form the matrix P corresponding to the

£

l
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1

. precoder under consideration, and to count the number of non-zero elements in
certain submatrices of P . Although ﬁ'\is method seems simple enough, it is very
inefficie;ﬂ. Counting elements in a matrix is very time cbnsuminé, especially for
problems which have large probability matrices. Furthermore, in large problems,

a great many admissibility tests have to be performed. An alternative method for

performing admissibility tests is illustrated by the following example.

’

¥ Example 4-3: Given a system described by a 5 x 5 probability

" matrix, it is desired to test the following precoder for ddmissibility :

[N x]| . ;
Xa | Y? " o ‘
, . ¢ Y3 {
x3 - x ! y4q -y !
%4 2 Y5 2j ’
1 x5] - Xz ‘ .

f i
. {
7!

[t is easy to see from Theorem 3-1 that this code will be admissible if and only if the
{

fo‘”owing four simpler precoders are all qamissible o . '
| R 4 M x] o, ity
X X Yy, y]' X X '
2 7 yz 2 yz]-* Yo
- X)X 3 : X3] ™ % y3]"~ g
, R B T 7] Bas 4] " %3
r x.] - x.' Yel = Ya x.1" x,' )’4_.),4- P
Y51 7% Y517 Y3 517 %4 2

et e

Ys .
® 4
¥



D
® () ] =X L B Y B R 21 B )
- ' - ' - '
o I B ‘ ) IS Y B £
X3 R 71 B 2N X3 . ysl =g
x - X3 x - x3
4 s y4]
— ' — ' — ! - 4 '
xs] < xt vs) Ty xg] ™ %y Ys 4

As shown in the above example, any precoder can be tested for admissi~

T N N R TN TN

' bilil;y by testing several precoders of a simpler type, those having only one X-grouping
and one Y-grouping of two or more source letters. Therefore, an efficient test method
can begin by forming a table of all X-groupings versus all Y-groupings and entering
into the elements of this table "admissible" or "not admissible” according to whether
or not the correspondi\ng precoders defined by one X-grouping and one Y—groupin;;

cf'él'q'dmissibb. Consequently, any general precoder strategy can be tested for ad-

N .

rr;issibi!ify‘ by looking up the correct entries in this table. Using this method, the code

of Example 4-3 could be tested for admissibiliiy by performing only four table ook~

ups. This is obviously very efficient compared to the alternative of searching fhrgugh
25 elements of the ﬁr;ob-db'nlﬁyﬁmaﬁr?—fmomwp—ﬁeﬁqeroelememi_Jtﬂﬂli.bg e
illustrated by the examples below that espec.iolly for large, sF;arse matrices, the’czost

of setting up the table as described above is small compared to the large savings which

result during the performance of admissibility tests.

A Fortran computer program (380 cards long) has been written to
v

apply the methods developed in this chapter to the problem of finding the admissible

. region R for correlated sources described by any given ﬁrobobility matrix. This

A\

program has been used to solveseveral examples, two of whitlwitl now-be presented.

Y



Example 4-4 : Find the admissible region R for sources whose

correlation is described by the following probability matrix :

<
a
0.2 0 0 0 0 ]
0 0.1 0 °© 0.05  0.05
P= Y o 0 0.2 0 0
0 0 0 0.2 0
o 0 0 0 0.2 |
@

The computer program found the admissible region R to be that shown in Figure
4~-5, aregion defined by three points C, D, and E. The execution time required
to solve this problem was 0.74 seconds. Step A resilted in the finding of 17
admissible Type A precoders and Step B produced 27 admissible Type B pre-
coders. The final step of the algorithm, then, was a secrc‘)h through

17 x 27 = 459 grid points. However, only 47 admissibility tests actually -had to
be performed since during the carrying out of the grid search, all other grid points
were found to lie either below the line ;x + ;)' = H (XY) or inside-what was already
known to be part of the admissible region R. The 47 admissibility tests were ac-
complished as explained above by performing look-ups in a table, v;/hich in this case
had a size of 10 x 14.  While such tables may not result in great savings in com-
puting time for simple problems such ds Example 4;4,’ they save a tremendous amount

of work in more complicated problems like the example which follows.
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Figure 4-5: The admissible region for Example 4-4.
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» Example’ 4-5: Find the odmissiiﬂe region R if the probability matrix
is ° "

05 0 0 025 0 0 0* 0 0 0

0 .05 0 0 025 0 .025 0 0- -0

025 0 05 0 " 0 0 0 0 0 -0

0 0 0 05 .0 0 .025 0 .025 -0

P= ].025 '0 .025 0 05 0 0 0o .025 0
0 0 0 025 0 .05 0 0 0 0

0 0 .025 0 0 0 .05 0 .025 O

025 0 0 0 025 0 0 .05 0 0

0 0 0 0 025 0 0 0 .05 0
025 0 025 0  .025 0  .025 .025 O .05

‘
1

Notice that this matrix has only 30 non-zero entries out of 100. Steps A and B

' of the computer program resulted in the determination of 500 admissible Type A pre-~

coders and 205 Type B precoders. The execution of Steps A and B required

five seconds computer time. /

The final step of the algorithm, then, consisted of a grid search through
500 x 205 = 102,500 points. This was obviously the most time consuming step.
The computer program used an additional execution time of 35 seconds to determine

'

that the admissible regiong R is defined by four points as illustrated in Figure 4-6.
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Figure 4-6 :

The aumissible region for Example 4-5 .
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‘ The computer solution of this problem used a total storage area of 74,100

bytes. 1

It is interesting to note that out of the 102,500 grid points, far less
than 10,000 admissibility tests had to be performed. These tests were carried out
by referring to a table of 34 x 18 (612 elements). ' The great saving in computing

i
b
time due to this table is abvious when ofte realizes that a precoder scheme such as

1

|
|
|
|
p% 3 -~ !
. 5 Y3 79

.x.l ] - x.| )']' - y]l
- ' Y -
X3]™ % ., { 9] w
X41- x_ y27
Y ]
| 1- x.° - 1
; N 4 Y41 T 73
i 7 .
3 Y51 © Y4
| X
| 8 |- x.
5 '
~ N 259 )'7] - Y5
Y8 A —
x -
21— x,'
6 Yial =Yg
%0l 10) 6

could be tested for admissibility by looking up just 12 entries in the table instead

of the old way of partitioning matrix P and sorting through 100 entries to count the

non-¥ero ones. Furthermore, the saving is magnified due to the fact that thousands

“

of tests had to be done.

69
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The successful solution by digital computer of the above examples and

~
Al

many others, has indicated that the methods developed in this chapter work very
well.  As expected, the method is fastest and most efficient for problems described
by probability matrices containing very few zeroes. Insuch cases, the numbers of
admissible Type A and Type B precoders are small. This means that only a small
number of grid points are candidates for vertices of the admissible region and con-
sequently fha‘t ve;’): few admissibility tests must be performed. Naturally, the method

consumes more time for sparse probability matrices, but it is still an efficient method

of solution as illustrated for the sparse 10 x 10 probability matrix of Example 4-5.

It should be pointed out, however, that although the above methods
may be successful in solving problems of two correlated sources which are coded using
sequences of length L =1, they ropidly lose their usefulness with increasing L. The

finding of admissible rate regions when codewords are provided for sequences of L

" source letters involves applying the same methods but to a new probability matrix of

. dimension qL X kL (fee Example 3-4). Consequently, the amount of work required

* *in solving these problems increases exponentially with L, thus quickly becoming im-

v

practical. Further study might help lessen this difficulty ; it might, for example, be
instructive to explore the progression of the sizes and shapes of admissible regions as

L increases.
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" CHAPTER V

ALTERNATIVE CONFIGURATIONS IN CORRELATED SOURCE CODING

In this chapter, the theory of variable length coding will be extended
to apply to all of the sixteen different coding co;\figurcﬁons introduced in Chapter |
¢ee Figure 1-4). [t will be assumed here (just as in Chapters 1] and 1V) that the
encoders are constructed in two stages as illustrated in Figure 5-1. However, in order

to deat with some of the new coding arrangements, it is necessary to generalize our

"

definitions for the precoders. Consider, for example, the problem depicted in

Figure 5-2, where a single precoder has knpwlgdge of the outputs from two sources

.

X and Y. We must redefine this precoder as being a transformation from the set of ‘

all  (XY) outcomes SRIRE K - PX Yy X Y ...*, and Xy yq , toa

new set of letters z]l , 22' ; -..,z_ " . This definition can be further extended to

N

allow coding for sequences of L (XY) outcomes.

It is revealing to determine for the system of Figure 5-2 what minimum

average codeword length is required-in order that the decoder can reproduce the output
sequence from, for example, source Y with zero probability of error.  Since Theorem
2-3 is not strong enough to handle this situation, a more general theorem will now be

proven.

Theorem 5-1 : For the system of Figure 5~2, the decoder can reconstruct

the output sequence from source Y with zero probability of error if'and only if

ny ZH(Y).’
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/
Praof : According to Theorem 2-3, the condition ?l-y = H(Y)

«

clearly sufficient to allow zero distortion communication from source Y to

e -

coder. An encoder can achieve n =H (Y) even if it entirely ignores the ettput

from source X. It remairs only for us to prove that ;Y 2 H (Y) is also a necessary

condition.

Assume initially that the probability matrix has no zero elements ; that
is, Pr (xi , yi) #Z 0 forall i,j. The erecgder must therefore satisfy the condition

3

th?fémlx Y pairs having the same Y letter yi can be mapped onfg the same
z ief'ter. I!‘or example, o situation having X1 Y4 and SRL, both méli)ped onto
z]' would not be acceptable because if the decoder were to receive the codeword
z]', it would not be able to deduce whether yy or y, was cctuclf?‘fr(’:nsmiﬁed by

source Y . Of all precoders satisfying this restriction, the one having the lowest

entropy is the following :

x
N
=




. This scheme has an entropy of A

k
)

k
Prgx.., yi)] log, [Z Prx, s yi)J
"i=1 i=1

b H (@) = L

{
H
e

T
I

L0

fl

<o
- .Z.] Pr (yl) log2 Pr (yl) = H ().
j= :

L]
~

Therefore, according to Theorem 2-3, the decoder of Elhg\\‘ﬁe 5-2 can only reconstruct

the output of source Y with zero probability of error if the average codeword length

- 77 “satisfies ;)' 2 H (Y) . This conclusion is still valid for the case when zeroces are
allowed”in the probability matrix because if any outcome (xi p y') occurs with pro-

| f

| bability zero, the precoder may map X, yi onto any one of the z'~letters without

changing the probability of error. Moreover, the entropy calculation is unaffected

since Pr (xi , yl) log2 Pr (xi , yl) = 0.

The above result also holds for the situation where the precoder is

allowed to be a mapping for sequences of (XY) outcomes. This can be shown.easily

E— i f’:ﬁﬂf—fhejléttex& X soeee 2 X , and , P actuall
by pretending g X O0d Yy Yy Yq Y

represent sequences of L letters from simpler sources.

P

'
o [
R

Let us first consider the four correlated source coding configurations in
Figure 5~3, all of which are characterized by uncoupled decoders. For Case 1,
sources X and Y are encoded and decoded independently and therefore the results
of Ehopter [l for single sources can be applied. That is, the source outputs for Case
. + 1 can be communicated to the dec.oders with zero distortion if and only if T‘x 2 H (X)

3

ondFyzH(’Y).‘
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Figure 5-3: Correlated Source Coding with Uncoupled Decoders.
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‘ Cases 2, 3, and 4 appear to be slightly more comp|icqted,but by
applying Theorems 5-1 and 2-3 to fh;zs'e problems, it is easy to see that the ad- '
missible regions are all idéntical to that for Case 1, namely the area ;x 2 H X),

n_ 2 H(Y) . Itshould be emphasized that these results hold even when coding is

Y

permitted for sequences of source letters.

Consider next the four correlated source. coding arrangements illustrated
in Figure 5-4, those chorccferi‘zed by completely coupled decoders.  Of these four
problems, Case 8 has the simplest solution.  Since both of its encoders are allowed
to see the outputs from both sources X and Y, the entire source output information

« can be communicated to the decoder through either one of the encoders exclusively.
Thus,‘ H XY), 0) and (0, H (XY)) are admissible rate points.and gccording to
Theorems 3-2, 3-3, and 3-4, the admissible region R for Case 8 must be the

area —nx +_ny =z H (XY) .

Unfortunately, it is not possible to derive any such simple formula to
describe the admissible region for Case 5. This fact has already been demonstrated

very clearly, Case 5 being none other than the problem studied in such detail in

Chapters 11l and 1V. However, with the aid of the following theorem, it will be

— ¢

shown that the admissible region for Case 6 takes a very simple form. Note that

Case 7. does not need to be studied separately because it is just a symmetric version

s
Jf Case 6, formed by interchanging the roles-of X 'ond Y .
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Correloted Source Coding, with Coupled Decoders .
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Theorem 5-2: (see Lu B]) For the system illustrated in Figure 55,

the point (;x ,Twy) = (H (X), H (Y1 X)) is an admissible rate point, where

H (Y:1 X) is called the conditional entropy of Y given X and is defined by

Z

o)
Helx) 2 -

g

Pr (xi , yl.) 1092 Pr (yi I xt) = H XY)- H (X) . :
~| o

Proof :  Since the output of source X is always known to the Y pre-

7

coder, it is possible to design a Y precoder which employs several different coding
strategies depending on what outcome is produced by source X: Consider, for ex-
ample, a Y precoder which operates in the following manner : when the output of

source X is X the Y source !eHers are Huffman coded according to the set of

probabilities Pr (y] | xi) , Pr (y2 | xi), ..

., and Pr
()'q

' x.)'-l
|

By defining

., and ne- to be the average codeword lengths corres-

n oy L , .. |
Y X Y 1% Y X

ponding to these k different Y-codes, the overall average codeword length ;Y can

be expressed as follows :

k
ny = Z Pr (xi) ny|xi
i=1

.
.

/ ¢
N

.

Note that it would be possible for the above Y encoder to transmit the output

o

sequence from source Y “to the \V decoder with no errors Ef—éﬂ;‘?hé Y decoder

- -
obsohad-kmowtedge—of %!}; ¥—outputsequence (because knowing X would enable

—_—— —

the decoder to deduce which of the k coding schemes was actually used by the Y
precoder). Distortionless communication can therefore be guaranteéd by choosing
! ) !

f;he X precoder to be uniquely decodable (which it must be in any case).
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Now let us calculate !hé minimum average codeword lengths for the
above coding strategies. Since the X precoder is uniquely decodable, it is of
course sufficient that ﬁx 2 H (X) . Consider the coding scheme used by the

Theorem 2-3 tells us that the Y output can always
i

Y encoder when X = x_ .

$& reconstructed correctly by the Y decoder as long as’

¢

. By combining this statement with the expression for Fy , we see that zero-error

=1
~
x
Y
i
>~

Pr (yl l xi) logZ\Pr (yi‘l xi) .

=i

B

communication is péssible through the Y-channel of the system of Figure 5-5 pro-

vided that
k q ‘
FY > - Z Pr (xi) [.Z Pr (y' | xi) Iog2 Pr (yI | xi‘)]
-1 i=1

k q
Z ZPf(xi,)'i)logzPr(yilxi)zH(le)_
-1l

v

= -
..
S |

—

Thus, the point (_r.\'x ,-r-wy) = (H (X), H (Y 'X)) must,be an admissible rate point for

the system of Figure 5-5 . \-\ #

AY

Theorem 5-2 ’conl be applied dTréttfy—fu'unTéasr—é‘probFemnndﬁf— _—

implies that the point (H (X), ,H (Y | X)) must belong to its admissible region R .

We can also assert that 0, H (XYJ) ¢ R becouse, as can be seen in Figure 5-4,
it is possible for all source information to be conveyed to the decoders by way of the

4

r 3
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Y channel alone. Since the points (H (X), H (Y! X)) and (0, H (XY)) both lie
on the line T\x +-r-1y = H (XY) , Theorem 3-4 tells us that the entire admissible
region R for any Case & system is simply that shown in Figure ;—6. @serve that
no points below the horizontal line~ Fy = H (Y| X) con belong to R because even

if T\x is increased above the value H (X), the X encoder can be no better than

uniquely decodable and consequently no further improvements can be made to the Y

encoder.

Even though the admissible region for Case 6 has now been discovered,
it is still useful to mention how one might go about determining the set of admissible
precodefs (this problem will arise in connection with Case 10). A careful inspection

of the Case 6 system reveals that it can be redrawn as in Figure 5-7 so as to make

¢ v

it dppear very similar to a Case 5 problem, the ‘most riotable difference being that
source Y has been replaced by the joint source XY . By relabeling source XY as

a new source Z and'by realizing that the decoder of Figure 5-7 can be thought of

as producing estimates X and Z rather than X and. Y (these two situations are

t

eql;fvulent because X and Z (X, Y) can be recovered with zero probability of error
by o decoder if and only if X and Y can), it follows that the system of Figure 5-7

is mathematically identical to a Case 5 problem for two correlated sources X and

Z . Therefore, _b‘y Aséftiing;;; a new probability mafrix Pnew to describe the corre-

¢

lation between sources X and XY instead of between sources X and Y, the e thods

B T e
of Chapters Il and IV can be applied directly to find the admissible precoders for

“any Case 6 problem.

-
v
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Consider now the four systems depicted in Figure 5-8. These cases

are characterized by a Y decoder which operates without knowledge of the X en-
coded message streag even though the X decoder has access to both codeword
sequences. While it is not trivial to determine the admissible regions for Cases 9

and 10, very simple regions exist for Cases 11 ~and 12. For Case 11, it follows

'and ) that (H X 1Y), H(Y)

directly from Theorem 5-2 (by interchanging X

r

——————————— there turhs out to be a close relatiunship between the Case_ 9 and Case 5 con-

o

‘

is an admissible point. Since this point lies on the line -ﬁx +?1_Y = H (XY) ond
since the 'Y encoder for Case 11 must be uniquely decodable, the admissible region

R is just the rectangular area shéwn in Figure 5-9.

Theorem 52 can also be applied to Case .12 to show that (H (X 1Y),

H (Y)) e R . Since all source information for Case 12 can be transmitted to the

L -
decoders through the Y channel alone, it can also-be stated that ©, H (XY)) ¢ R .
By realizing that these two points lie on the line —nx +_ny = H (XY) ond that

Theorem 5-1 requires that Ry 2 H (Y) , the entjre admissible region R for Case

12 is found to be that drawn in Figure 5=10.

© In order to solve the Case 9 problem, it is necessary to make use of

some of the results of Chapters |l and IV . This is a logical approach because

- f

figurations. In fact, it is easy to recognize that any precoder scheme which is ad-

L

- missible for Case 9 must also be admissible for Case 5. However, since the Y

encoder for Case 9 must always be uniquely decodable, the set of all admissible

~J
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. precoders for Case 9 must include only the admissible Type A precoders of
Case 5. Thisresult allows Case 9 to be solved simply by performing Step A,
as described in Chapter. IV, for the corresponding Case 5 problem. The re-

sulting admissible region R has a simple rectangular form as itlustrated in

Figure 511 . "
— e % .
. It is possible to solve Case 10 by exploiting its similarity to Case
6 . ltisa fact that ony'qéimissible precoder for Case 10 must be admissible for .

Case 6 also. However, the reverse is not true because, as seen in Figure 5-8,

the Y encoder for Case 10 must be uniquely decodable, a restriction not present

' . inthe Case 6 problem. Indeed, a little thought will show that any admissible

precoder for Case 6 will be admissible for Case 10 if and only if its Y pre-
K

coder is such that Y can be decoded independently of X.

]
v

*  Therefore, a method of solving Case 10 can proceed as follows.

. Find the sets of all o‘dmissible Type A and Type B precoders for the correspond-
ing Case 6 problem. From the list of Type B precoders, reject those for which¥®
Y dannot be uniquely decoded independently of the encoded X message stream.
Consicier all possible wo);s of choosinga Y ‘precoder from this reduced list and an

A

X precoder from the full list of admissible Type A- precoders. Search through

-

___the resulting grid, using exactly the same method ns}_anwedJnLhcpteL WV, to

9

L - - T L . )
’ ~find-the-admissible region— R - — -~ __ - — -

| B 3 ~
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The only remaining correlated source coding configurations to be

“ n

EY
considered are the four cases ilﬂustrated in Figure 5-12. Cases 13, 14, 15, and

16 correspond exactly to Cases 9, 11, 10, and 12 respectively except that
the roles of . X and Y have been reversed. Consequently, the problems of

Figure 5-12 can be solved using the methods developed above .

\‘b)
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n ' CHAPTER VI

CONCLUSION

In summary, the principal achievement of this thesis has been the

.

L d

preseritation of a compact theory regarding variable length coding for two
correlated information sources. Methods have been successfully derived for the
purpose of determining admissible rate regions for correlated sources which are
encoded in any one of sixteen possible configurations. For simplicity, most of the
results in preceding chapters were established by assuming that the precoders could
only provide codewords for individual source letters. But in Example 3-4, it was

shown how this situation can be easily generalized to include coding for sequences

of L source letters. Actually, this approach in correlgi;red source coding is

‘K \
analagous to that used in Huffman coding for single sources, because in both cases

the finding of optimum codes depends upon an initial assumption as to the fength of

sequences of source letters to be encoded. dn fact, the major contribution of this

thesis may be considered to be the generalization of the Huffman code to more com-"

plicated source structures. \

L

Now that the theory of joint coding for two sources has been

o fh%ugh{y;ihvé}ﬁgated,i it is quite natural to inquire if the results of this thesis can

'

be extended to the problem of variable length*coding for N correlated sources

Iy

[T

(see Cover [1] )Q. To try and answer this question, consider the arrangement of
I

three sources illustrated in Figure 6=1. Juyst as in Chapter Ill, it is convenient-as

T

-

-— g - e — - - - - -
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3
+

an initial step to set up a probability matrix P to describe the correlation between
these sources. As indicated in Figure 6—2/,‘LoWever, a three~dimensional array is
needed, to store the complete set of joint probabilities. Proceeding as in Chapter IIl,
it is possible to prove necessary and sufficient conditions concerning the admissibility
of precoder schemes for the system of Figure 6=1. As before, the reordering of

4
source letters defined by any specific precoder scheme suggests a corresponding way

»

v

of subdividing the probability array of Figure\é—.? into a set of three-dimensional
blocks. It turns out that if each such block contains at most one non-zero element,

then and only then will the precoder scheme be admissible. - v

[t can be shown that all the important concepts of Chapter Ifi ~can be

extended to apply not only to the above system of ‘three sources, but more generally

1
_ to the problem of N correlated sources. Unfortunately, however, the replacement

-
)

of matrices by higher order tensors makes the theory much more difficult to visualize.
Furthermore, even if it were possible to generalize the folution methods of Chapter’
IV and compose computer programs to tackle muhi-sourc% problems, the amount of
computing work required would quickly become unmanageable with an increo'sing
number of correlated sources. Besides this, there is even one more complication not

mentioned until now, the fact that in undertaking a complete study of the problem of

2N (N-1)

N correlated sources, it is necessary to consider 2 different configurations

-

for the encoders and decoders, o seemingly hopeless proposition for N 2 3 .

v

3
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Figure 6-2: A Probubility Array for Three Correlated Sources .
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) In conclusion, it js hoped that this thesis has been successful in
shedding much light on the subject of vériable length coding for two or more N

.

correlated-sources, a problem which has been unsolved for some time. Nevertheless,

>

many questions still remain unanswered and several related problems remain to be

explored.

3
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