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Abstract

A deconfined plasma of quarks and gluons, known as quark-gluon plasma (QGP), is

produced in relativistic heavy-ion collisions. This new state of strongly coupled matter is

characterized by collective behaviour and may provide an opportunity to study Quantum

Chromodynamics (QCD) under extreme temperatures and densities. One of the most re-

markable experimental signatures of QGP formation is the suppression of high transverse

momentum (pT ) jets created in initial inelastic scattering with high momentum transfer.

Measurements have demonstrated that high pT jet production in heavy-ion collisions is

strongly suppressed when compared to proton-proton collisions. Interestingly, exper-

iments of proton-lead collisions have discovered a signal of collectivity comparable to

that in lead-lead collisions while no significant suppression of jet yield was observed.

This thesis presents the study of jet modification in large (Pb+Pb) and small (p+Pb)

colliding systems using MARTINI, a sophisticated Monte-Carlo event generator for jet

evolution in heavy-ion collisions. MARTINI incorporates the AMY radiative energy loss

formalism and the leading-order elastic collisional energy loss formulations. Realistic

simulations at the LHC energy scales are aided by new developments in MARTINI, in-

cluding the QCD running coupling, a formation time of radiation, and a thermal recoil

implementation.

We demonstrate that the QCD running coupling and the formation time of radiation

capture the characteristics of jet quenching at the LHC energy scales. The importance

of thermal recoil in describing integrated and differential jet observables is investigated.

We obtain a simultaneous description of the jet nuclear modification factor RpPb and the

xix



elliptic flow coefficients for high-energy jets in p+Pb collisions using the jet quenching

model within the uncertainties. This study provides a comprehensive understanding of

jet quenching in heavy-ion collisions and shows an indication of quark-gluon plasma in

small systems.
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Résumé

Un plasma déconfiné de quarks et de gluons, appelé plasma quark-gluon (QGP), est

produit lors de collisions d’ions lourds relativistes. Ce nouvel état de matière forte-

ment couplée est caractérise par un comportement collectif et peut fournir une occasion

d’étudier la chromodynamique quantique (QCD) sous des températures et des densités

extrêmes. L’une des signatures expérimentales les plus remarquables de la formation de

QGP est la suppression des jets à impulsion transversale élevée (pT ), créés lors de la dif-

fusion inélastique initiale avec un transfert d’impulsion élevé. Les mesures ont démontré

que la production élevée de jets de pT dans les collisions d’ions lourds est fortement sup-

primée par rapport aux collisions proton-proton. Fait intéressant, des expériences de

collisions proton-plomb ont découvert un signal de collectivité comparable à celui des

collisions plomb-plomb, alors qu’aucune suppression significative du rendement du jet

n’a été observée.

Cette thèse présente l’étude de la modification des jets dans les grands systémes (Pb+Pb)

et les petits (p+Pb) en collision à l’aide de MARTINI, un générateur d’événements Monte-

Carlo sophistiqué pour l’évolution des jets dans les collisions d’ions lourds. MARTINI

incorpore le formalisme de perte d’énergie radiative AMY et les formulations de perte

d’énergie collisionnelle élastique de premier ordre. Les simulations réalistes aux échelles

énergétiques du LHC sont facilitées par les nouveaux développements de MARTINI, y

compris le couplage de course QCD, un temps de formation de rayonnement et une

implémentation de recul thermique.
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Nous démontrons que le couplage courant QCD et le temps de formation du ray-

onnement capturent les caractéristiques de la trempe au jet aux échelles d’énergie du

LHC. On étudie l’importance du recul thermique dans la description des observables à jet

intégrés et différentiels. Nous obtenons une description simultanée du facteur de mod-

ification nucléaire du jet RpPb et des coefficients de flux elliptique pour les jets à haute

énergie dans les collisions p+Pb en utilisant le modèle de trempe au jet dans les incer-

titudes. Cette étude fournit une compréhension complète de la trempe au jet dans les

collisions d’ions lourds et montre une indication du plasma quark-gluon dans les petits

systèmes.
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Overview of heavy-ion collisions
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Chapter 1

Introduction

The first few microseconds of the Universe were too hot and dense to allow strongly inter-

acting quarks and gluons to form hadronic matter. Until 1 µs after the Big Bang, it took the

form of a thermalized plasma of quarks, gluons, and leptons without structure - a quark-

gluon plasma (QGP). After this short period of the violently expanding QGP, the Universe

progressed through different epochs from the formation of nuclear matter to primordial

nucleosynthesis to stars and galaxies [5–11]. The current knowledge of the deconfined

phase of matter is described by Quantum Chromodynamics (QCD), the quantum field

theory describing the interaction among the quarks and gluons. Colour confinement, a

unique phenomenon of QCD stating that quarks and gluons have to be confined within

a bound state, explains why free quarks and gluons have never been observed outside

of ordinary matter such as protons and neutrons. Meanwhile, asymptotic freedom, the

interaction between quarks and gluons weakens at a higher energy scale, predicts the de-

confined phase of QCD matter at very high temperatures or densities. QCD solved on

the lattice estimated that the condition for a QCD phase transition is a temperature of

Tc ∼ 100 MeV or an energy density of ε ∼ 1 GeV/fm3 [12–15]. In units in daily life, these

values are about 1012 K and 1015 g/cm3, which are 105 times hotter than the core of the

sun and 1015 times denser than the earth.
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An ideal way to achieve such extreme conditions in the laboratory is to accelerate

heavy nuclei to as high energies as possible and collide them. Relativistic collisions of

heavy nuclei (ions) compress and heat the nucleons, allowing the colliding zone to reach

the conditions of the QCD phase transition. In the year 2005, the Relativistic Heavy Ion

Collider (RHIC) at Brookhaven National Laboratory (BNL) announced a long-awaited

discovery of a QGP from relativistic Au+Au collisions [16–19]. The fireball created in

the laboratory rapidly expanded and cooled to the temperature of the QCD phase transi-

tion, allowing protons and neutrons (and unstable hadrons to decay into lighter species)

to form. Despite the much smaller size and lower energy scale of the QGP created in

heavy-ion collisions as compared to that after the Big Bang, it was sufficient to recreate

the evolution of the Early Universe crossing the QCD phase boundary.

In the past 20 years, heavy-ion programs at the RHIC at BNL or the Large Hadron

Collider (LHC) at CERN have produced an immense volume of data by which the prop-

erties of a QGP is characterized. One of the astonishing observations from experiments

is the strongly-interacting properties of the QGP, contrasting with the predicted view of

a weakly-coupled ideal gas based on the idea of asymptotic freedom. The fireball ex-

pands hydrodynamically with small viscosity, rapidly reaching thermal equilibrium. The

large anisotropy coefficients measured in experiments confirm the collective motion of a

strongly-interacting QGP.

Modification of any coloured objects traversing the fireball is an ineluctable conse-

quence of the strongly coupled property of the QGP. This property, commonly referred to

as colour opacity, is another important experimental signature of a deconfined QCD mat-

ter created in heavy-ion collisions. In high-energy collisions of two nucleons, hard scat-

tering events, involving high momentum exchange, between constituent partons (quarks

and gluons) create a pair of fast-moving partons. Jet are characteristics of parton show-

ers initiated from hard scatterings. Since hard scatterings occur at the very early stage of

the collisions, jets are ideal candidates to probe the strongly-interacting QCD matter. The

substantial suppression of high energy hadron production in heavy-ion collisions com-
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pared with that in proton-proton collisions observed in experiments is clear evidence of

deconfinement.

In this dissertation, I focus on the phenomenon of jet quenching in Pb+Pb and p+Pb

colliding systems. The main purposes of this dissertation are

• to provide theoretical descriptions to characterize jet modification in heavy-ion col-

lisions, and

• to address collective behaviour observed in small systems (p+Pb collisions) and ex-

plore a signature of a QGP in the system using hard probes.

Ch. 2 provides a general description of Quantum Chromodynamics, the cornerstone of

the field of heavy-ion collisions. In Ch. 3, jet production in inelastic scattering processes,

including the parton model and the DGLAP equations, is discussed. Ch. 4 covers a phe-

nomenological review of heavy-ion collisions and the evolution of a QGP. Two distinct

aspects that characterize the deconfined state of matter created in a laboratory are also

discussed in detail. To conduct this research, I utilized a Monte-Carlo event genera-

tor for heavy-ion collisions, MARTINI, with advanced features for realistic simulations.

The full model descriptions and improvements upon previous work are provided in

Ch. 5. Ch. 6 presents the comprehensive analysis of jet quenching in Pb+Pb collisions

and theory-model comparisons. The importance of medium response in investigating

jet-substructure modification is highlighted. Ch. 7 explores a signature of QGP creation

in small colliding systems (p+Pb) by quantifying the influences of cold nuclear matter

(CNM) and the hot QGP effect. Finally, Ch. 8 summarizes the results presented in this

thesis and discusses the implications of collectivity in heavy-ion collisions.

In this thesis, we adopt a unit system in which ~ = c = kB = 1. The temporal and

spatial scales are expressed in units of fermi (1 fm = 10−15 m), while the units of energies

and momenta are 1 GeV (= 109 eV) or 1 TeV (= 1012 eV). The metric tensor is taken

to be gµν = diag(+1,−1,−1,−1) in Cartesian coordinates. Jets in this research refer to

as a collimated shower of particles, either partons or hadrons, that are created by initial
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hard scatterings in relativistic particle collisions. However, a reconstructed jet that will be

discussed in Ch. 5.3.2, Ch. 6 and Ch. 7 denotes a clustered object of hadrons that originate

from the parton jet. The reconstructed jet is a proxy for the primary jet parton and is

therefore widely used for jet studies in the heavy-ion community.
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Chapter 2

Hot QCD matter under extreme

conditions

Quantum Chromodynamics (QCD) is the accepted theory of the strong interactions be-

tween quarks and gluons. Its complex properties have made quantitative estimations for

QCD matter notoriously difficult. Nevertheless, it allows us to make predictions about

the QCD phase transition at extreme conditions. Owing to this pioneering prediction, the

relativistic high-energy collision program has been intensely pursued and successfully

created the new state of deconfined QCD matter.

This chapter is outlined as follows. Sec. 2.1 introduces the Lagrangian of QCD and

its unique properties, including asymptotic freedom and colour confinement. In Sec. 2.2,

the phase diagram for QCD matter and the characteristics of the phase space relevant to

the high-energy collision experiments are discussed. Sec. 2.3 contains a brief discussion

of the thermodynamic properties of an ideal gas of deconfined QCD matter followed by

typical examples of numerical estimations. Sec. 2.4 summarizes this chapter.
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2.1 Quantum chromodynamics

In the Standard Model, Quantum Chromodynamics (QCD) is the theory of strong inter-

action between elementary constituents of matter, quarks and gluons, that form hadrons

(mesons and baryons). The strong interaction is extremely short-ranged and its strength

is ∼ 100 times stronger than that of the electromagnetic interaction. QCD is the non-

Abelian quantum field theory of the SU(3) symmetry group. This encodes that quarks,

carrying one of 3 types of colours, form a fundamental representation of SU(3) while

their interaction is mediated through gluons, the adjoint representation. The non-Abelian

nature of QCD allows gluons i) to carry their own colour charge, i.e., a pair of colour and

anti-colour charge, and ii) to have three- and four-gluon self-interactions. These unique

features distinguish QCD from other theories of fundamental interactions, e.g., Quantum

Electrodynamics (QED).

Let us consider the QCD Lagrangian1

LQCD = ψ̄(i /D −mq)ψ −
1

2
tr[GµνGµν ]. (2.1)

The quark fields ψ = ψα,f,i(x) are Dirac spinors with four components α = 1, · · · , 4 and

the six flavour states labelled as f = 1, · · · , Nf . The additional index i denotes the three

types of quark colour. Since quarks were proposed independently by Gell-Mann and

Zweig [20–22], a number of high-energy experiments have discovered six flavors of the

quarks: up (u), down (d), charm (c), strange (s), top (t), and bottom (b). The quark field

transforms under the fundamental representation of the colour group SU(3),

ψ → ψ′(x) = Uψ(x), (2.2)

1We use the Einstein summation convention for the flavour index f ,
∑

f ψ̄f (i /D −mq)ψf .
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where U is a 3× 3 unitary matrix acting on the colour index, i. With Einstein summation

over a, the matrix U can be represented as

U ≡ U(x) = eiθ
a(x)ta , (2.3)

where θa(x) is the local gauge transformation parameter that can be chosen arbitrarily.

The colour group generator ta = λa/2 has a colour index in the adjoint representation of

SU(3) from 1 to 8, corresponding to eight gluon fields Aaµ(x). The explicit forms of the

eight Gell-Mann matrices λa are

λ1 =




0 1 0

1 0 0

0 0 0


 λ2 =




0 −i 0

i 0 0

0 0 0


 λ3 =




1 0 0

0 −1 0

0 0 0




λ4 =




0 0 1

0 0 0

1 0 0


 λ5 =




0 0 −i
0 0 0

i 0 0


 λ6 =




0 0 0

0 0 1

0 1 0


 (2.4)

λ7 =




0 0 0

0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0

0 1 0

0 0 −2


 .

The covariant derivative Dµ, defined as

Dµ = ∂µ − igAµ, (2.5)

where g is the strong coupling constant g =
√

4παs and Aµ = Aaµ(x)ta, is introduced to

ensure gauge invariance of the QCD Lagrangian under the local gauge transformation of

SU(3). With the covariant derivative Dµ, the gluon fields transform according to

Aµ → A′µ = U

(
Aµ −

i

g
U †∂µU

)
U †. (2.6)

8



The gluon kinetic term in Eq. (2.1) is represented by the gluon field strength tensor

Gµν , defined as

Gµν(x) =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ], (2.7)

with colour component Ga
µν

Gµν = Ga
µνta = ∂µA

a
νta − ∂νAaµta − igAaµAbν [ta, tb]

= (∂µA
a
ν − ∂νAaµ + gfabcAµ,bAν,c)ta (2.8)

In the last relation, we have used [ta, tb] = ifabct
c, where fabc is the totally anti-symmetric

group structure constant of SU(3). The non-Abelian property of QCD originates from the

non-vanishing structure constant fabc. Apart from the standard partial derivative terms in

Eq. (2.8), there is an additional term containing fabc, which vanishes in QED but survives

in QCD. This term induces gluon self-interactions, making QCD more complex than QED.

A gluon mass term m2
gA

a
µA

µ
a is forbidden by gauge invariance in QCD, which constrains

gluons to be massless.

Although the contraction of the two gluon field strength tensors is not gauge-invariant

under the transformation Gµν → G′µν = UGµνU
†, the cyclic property of the trace operator

cancels U in the trace, ensuring the second term in Eq. (2.1) to be gauge invariant,

tr[GµνG
µν ]→ tr

[
G′µνG

′µν] = tr
[
UGµνU

†UGµνU †
]

= tr[GµνG
µν ]. (2.9)

Using the identity of the colour group generator, tr
[
tatb
]

= 1
2
δab, this term can be

rewritten as

− 1

2
tr[GµνG

µν ] = −1

2
tr
[
Ga
µνtaG

µν
b t

b
]

= −1

2
Ga
µνG

µν
b tr

[
tat

b
]

= −1

4
Ga
µνG

µν
a , (2.10)
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that can be further expanded using Eq. (2.8):

−1

4
Ga
µνG

µν
a =− 1

4
(∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν)

× (∂µAνa − ∂νAµa + gfabcAµbA
ν
c )

=− 1

4
(∂µA

a
ν − ∂νAaµ)(∂µAνa − ∂νAµa)

− 1

2
g(∂µA

a
ν − ∂νAaµ)fabcAµbA

ν
c

− 1

4
g2fabcA

b
µA

c
νf

adeAµdA
ν
e . (2.11)

Inserting Eq. (2.11) and Eq. (2.5) into Eq. (2.1), we obtain the expanded expression of

the QCD Lagrangian2

LQCD =ψ̄(i /D −mq)ψ −
1

4
Ga
µνG

µν
a (2.12)

=ψ̄(i/∂ −mq)ψ − gψγµAaµtaψ −
1

4
(∂µA

a
ν − ∂νAaµ)(∂µAνa − ∂νAµa)

− 1

2
g(∂µA

a
ν − ∂νAaµ)fabcA

µ,bAν,c − 1

4
g2fabcAµ,bAν,cfadeA

µ,dAν,e. (2.13)

The first term in Eq. (2.13) is the same Lagrangian as a free Dirac field, representing the

quark kinetic term in QCD. The second term is the interaction term between quarks and

gluons while the third term describes the kinetic term of the gluon fields. There is a no-

ticeable analogy between the form of the QED and QCD Lagrangian; a photon in QED

is replaced by a gluon in QCD as a mediator of the interaction. The last two terms ap-

pearing in Eq. (2.13) indicate that gluons can interact with themselves, e.g., three-gluon

and four-gluon interactions. The gluon self-interaction plays an important role in QCD

since it is responsible for many features of QCD, such as asymptotic freedom and colour

confinement.

Asymptotic freedom states that the strength of the strong interaction between quarks

and gluons becomes weaker as the energy scale of the interaction increases. This implies
2Non-Abelian gauge theories require anti-commuting scalar fields, called Faddeev-Popov ghost fields,

to enforce unitarity in non-physical gauges. As we will not need the ghost field explicitly, they will not be
discussed further in this thesis.
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1

1

Figure 2.1: (Top panel) Quark-loop correction to the gluon propagator mediating quark-

quark scattering. This diagram appears in both QED and QCD. In QED, the gluon prop-

agator is replaced by a photon propagator. (Bottom panel) Gluon-loop corrections to the

same scattering, which emerges only in non-Abelian gauge theory. This diagram con-

tributes to the decreasing running coupling as the scale increases.

that quarks and gluons behave as nearly free particles at a large energy scale because

the coupling constant is highly suppressed. The scale dependence of the strong coupling

is controlled by the renormalization group equation [23–26]. In perturbation theory, the

corresponding β-function takes the form

µ2
R

dαs
dµ2

R

= β(αs) = −α2
s(β0 + β1αs + β2α

2
s · · · ), (2.14)

where µ2
R is a renormalization scale. At leading order in the perturbative expansion, the

solution of Eq. (2.14) is given by

αs(µ
2
R) =

1

β0 ln
(
µ2
R/Λ

2
QCD

) , (2.15)

11



where

ΛQCD = µ2
0 exp

[
− 1

β0

1

αs(µ2
0)

]
(2.16)

∼ 200 MeV (2.17)

is a QCD scale at which perturbation theory definitely breaks down. The renormalization

scale µR is chosen to represent the scale where the interaction occurs. The one-loop β-

function coefficient β0 is given by [27–30]

β0 =
1

4π

(
11− 2

3
nf

)
, (2.18)

where nf is the number of quark flavours. The second term in Eq. (2.18) comes from the

quark-loop corrections to the gluon propagator as shown in Fig. 2.1 (Top). The first term

is contributed by the gluon self-interaction terms in Fig. 2.1 (Bottom), making the overall

sign of β0 positive, as long as nf < 33/2. QCD with six quark flavours satisfies this

condition. Consequently, the running coupling αs(µ2
R) asymptotically approaches zero in

the limit µ2
R →∞.

Owing to asymptotic freedom, the strong interactions at high energy can be calculated

using perturbation theory, i.e., higher-order terms can be neglected in a perturbative ex-

pansion in the strong coupling constant αs. Many high-energy nuclear reaction experi-

ments are in the regime of perturbative QCD (pQCD), where the asymptotic behaviour

of the strong coupling constant has been well tested as shown in Fig. 2.2.

Another interesting phenomenon in QCD emerging at a low energy domain is colour

confinement: only colour-singlet states can appear at microscopic scales. At low energy,

interactions between quarks and gluons become stronger, making it harder to isolate

coloured quarks or gluons from their bound states. As a consequence, quarks and gluons

always form bound states of a pair of quark and anti-quark (mesons) or those of three

12



36 9. Quantum Chromodynamics

world average, we first combine six pre-averages, excluding the lattice result, using a ‰2 averaging
method. This gives

–s(M2
Z) = 0.1176± 0.0011 , (without lattice) . (9.24)

This result is fully compatible with the lattice pre-average Eq. (9.23) and has a comparable error.
In order to be conservative, we combine these two numbers using an unweighted average and take
as an uncertainty the average between these two uncertainties. This gives our final world average
value

–s(M2
Z) = 0.1179± 0.0010 . (9.25)

�s(MZ
2) = 0.1179 ± 0.0010

� s
(Q

2 )

Q [GeV]

� decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 9.5: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

This world average value is in very good agreement with the last version of this Review, which
was –s(M2

Z) = 0.1181 ± 0.0011, with only a slightly lower central value and decreased overall

6th December, 2019 11:50am

Figure 2.2: Summary of various experimental measurements of the strong coupling con-

stant αs as a function of the interaction energy scale Q. Comparison to theoretical predic-

tion is present [31].

quarks (baryons)3. Although an analytic derivation from first principles is still challeng-

ing, numerical simulations of lattice QCD support the presence of colour confinement.

Asymptotic freedom and colour confinement are the basic ideas behind the different

phases of the QCD matter. In the following section, we discuss the QCD phase diagram

that describes the QCD matter under different conditions and the phase transitions.

13



Figure 2.3: Schematic QCD phase diagram in the temperature versus baryon chemical po-

tential plane. The hadronic phase is located at the bottom-left corner of the diagram and

the rest of the area in the diagram represents the deconfined phase. The border between

the partonic and the hadronic phases is represented as a solid white line for first-order

phase transition at large baryon densities and a dashed red line for cross-over at low den-

sities. The yellow bulb connecting the two lines indicates the predicted location of the

critical point of QCD matter. LHC experiments correspond to the high temperature and

the small baryon density region shown as light green. The Beam Energy Scan (BES) ex-

perimental program at the RHIC covers a wider range of baryon densities in search of

a first-order phase transition and the possible critical point. The figure and the relevant

article can be found in the webpage of BNL.
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2.2 QCD phase diagram

In Sec. 2.1, we discussed how asymptotic freedom emerges from the QCD Lagrangian.

Asymptotic freedom allows quarks and gluons confined within hadrons to have addi-

tional degrees of freedom and form a deconfined state of matter. The QCD phase dia-

gram shown in Fig. 2.3 illustrates various states of QCD matter under different condi-

tions displayed in the plane of temperature T and baryon chemical potential µB. When

two relativistically accelerated nuclei collide, the system can reach high enough temper-

atures to undergo a phase transition from the hadronic phase to the partonic phase, i.e.,

quark-gluon plasma. The centre-of-mass energy per nucleon-nucleon pair
√
sNN is a pa-

rameter in high-energy collisions that controls the temperature and the density of the col-

liding system. With increasing collision energy, the temperature increases and the baryon

chemical potential decreases [41]. At the top RHIC energy (200 GeV) and the LHC ener-

gies (2.76 to 13 TeV), the number of quarks in the colliding system is comparable to that

of anti-quarks, resulting in low net baryon densities. The phase space in the QCD phase

diagram corresponding to relativistic heavy-ion collisions overlaps with the path along

which the early Universe evolved. Neutron stars are known to be extremely compact and

dense such that the densities exceed the critical value for the phase transition. At such

high densities, hadrons interpenetrate each other, destroying boundaries where quarks

and gluons are confined.

At nearly zero baryon density, lattice QCD calculations predicted that the transition

is a smooth cross-over at a certain range of temperatures [12, 13]. This means that the

transition temperature Tc is not uniquely defined, but it is estimated to Tc ∼ 150 MeV

with an uncertainty band of ∼ ±15 MeV [12–15, 42]. At finite baryon chemical potential

µB and low temperature, the phase transition was suggested to be of first order [43, 44].

The Beam Energy Scan (BES) program at the RHIC is designed to search for the first-

order phase transition of the QCD matter and a critical point that connects the cross-over

3Note that 4- (tetraquark) and 5-quark (pentaquark) states have been observed [32–40] in the past
decades and searching for evidence of multiquark state is still a great interest in particle physics.
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and first-order phase transition line in the QCD phase diagram [45]. To study baryon-

rich systems, the BES program proposed the colliding energy down to 7.7 GeV at Phase

1 and 3.3 GeV at Phase 2 [46]. The Compressed Baryonic Matter (CBM) experiment at

the Facility for Antiproton and Ion Research (FAIR) will conduct a similar study at even

higher baryon density with centre-of-mass energy
√
sNN down to 2 GeV [47].

2.3 Quark-gluon plasma

As mentioned in Sec. 2.2, relativistic heavy-ion collisions produce a quark-gluon plasma

(QGP). Plasma is a state in which charged particles interact via long-range massless gauge

fields [48]. This distinguishes plasma from ordinary neutral states where the inter-particle

interactions are short-range. Deconfined colour charges in the QGP are analogous to

electric charges in electrodynamic plasma.

A QGP created in heavy-ion (such as gold and lead ions) collision experiments consists

of a large number of partons – on the order of thousands for head-on colliding events.

Moreover, the mean free time of parton scatterings is much shorter than the lifetime of

the QGP, driving the fireball to local equilibrium quickly. These conditions allow us to

treat the QGP as a macroscopic system characterized by an equation of state (EoS). At

an asymptotically high-temperature limit where the strong coupling vanishes, one can

assume that the partons in the plasma behave as an ideal gas. The partition function for

the ideal gas reads

lnZ = diV

∫
d3p

(2π)3
ln
(
1± e−β(ω−µ)

)±1
, (2.19)

where di is the number of degrees of freedom for the particle i and V the total volume of

the system. The chemical potential µ is for a conserved charge associated with the particle

(net baryon density µB in this case). The + (−) sign refers to Fermi-Dirac (Bose-Einstein)

distributions. In a massless and zero net baryon density limit, the pressure p is obtained
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by the thermodynamic relationship

p =
1

β

∂ lnZ

∂V
= di

π2

90
T 4 ×





1 : bosons,

7/8 : fermions.
(2.20)

Gluons have N2
C − 1 colours with two spin states where NC = 3 for QCD. The degeneracy

factor for gluons dg is 16. For massless quarks, there are Nc colours with two spin states

and an additional factor of 2 for counting quarks and anti-quarks. While quarks come

in six flavours with different masses, Nf light quarks are assumed to be massless and

thus degenerate. The degeneracy factor for the massless quarks dq is 12Nf . With the total

degeneracy factor for a QGP dQGP = dg + dq, the Stefan-Boltzmann (SB) limit of the QGP

pressure reads

p =

(
16 +

21

2
Nf

)
π2

90
T 4. (2.21)

Similarly, the energy density ε, the entropy density s, and the speed of sound cs for the

ideal gas of the QGP in the SB limit are calculated straightforwardly:

ε = − 1

V

∂ lnZ

∂β
= 3p, (2.22)

s =
∂p

∂T
=

4p

T
, (2.23)

cs =

√
∂p

∂e
=

√
1

3
. (2.24)

The Wuppertal-Budapest (WB) [49] and HotQCD [50] collaborations have performed

numerical simulations of QCD on the lattice to estimate the equation of state in the finite

temperature and zero chemical potential limit. The results from the two collaborations

shown in Fig. 2.4 are consistent with each other, presenting the pressure and the scaled

entropy density of a QGP approaching the SB limits. They also agree with the Hadron

Resonance Gas (HRG) model [54, 55] predictions [51] at the low temperatures, which as-

sumes a system of non-interacting free hadrons and resonances [50]. Fig. 2.5 shows a

Bayesian analysis [53] to estimate the speed of sound in the QGP phase. The posterior
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)

 
 
 

Figure 2.4: Lattice QCD calculations for the trace anomaly, pressure, and scaled entropy

density obtained from the WB [49] (coloured) and HotQCD [50] (grey) collaborations. The

two independent results are consistent with each other. The pressure and scaled entropy

density approach the SB limit at high temperatures. The solid lines on the left show the

results from the Hadron Resonance Gas (HRG) model [51]. This figure is reproduced

from [52].

distributions based on a comparison of data to models are remarkably consistent with the

results from lattice QCD simulations and smoothly connect to the HRG results.

2.4 Summary

In this chapter, we have introduced the SU(3) non-Abelian QCD Lagrangian for inter-

actions between quarks and gluons. It is noteworthy that the non-Abelian gauge field

requires the gluon self-interaction terms, resulting in a vanishing running coupling con-

stant αs(µ2
R) in the high energy limit. This behaviour of the QCD running coupling αs(µ2

R)

is the origin of asymptotic freedom and colour confinement. We have also discussed that
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Figure 2.5: Constraints on the QCD sound of speed as a function of temperature obtained

from Bayesian analysis [53]. (a) Fifty equations of state were produced by choosing the

parameters from the prior distribution randomly and (b) weighted by the posterior likeli-

hood distribution. The RHIC and the LHC experimental data were used to determine the

likelihood distribution. The two red curves in each figure represent the lattice QCD cal-

culations [50] and the green line shows the result from the Hadron Resonance Gas (HRG)

model. This figure is reproduced from [52].

QCD has been well tested via experimentally measurable quantities, such as running

strong coupling αs(µ2
R). High-energy heavy-ion programs in the RHIC and the LHC are

important applications of QCD which allow us to access the new state of deconfined QCD

matter. In the QCD phase diagram, the phase space for heavy-ion collisions corresponds

to the high temperature and low net baryon density sector through which the early Uni-

verse has evolved. Lattice QCD has estimated QCD equations of state with thermal pres-

sure approaching the SB limit of the ideal gas at high temperatures.

In the next chapter, we shall provide a theoretical description of jet production in parti-

cle collisions. We will cover the QCD-improved parton model and the DGLAP evolution

functions that explain the parton density inside a nucleon.
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Chapter 3

Jet production

Jets produced in heavy-ion collisions are the main object of study in this dissertation.

They are produced by inelastic scattering between two incoming nucleons in high-energy

collisions. QCD, together with perturbation theory, provides a theoretical description of

jet evolution in the high energy limit. Meanwhile, the distributions of partons within nu-

cleons are encoded in parton distribution functions (PDFs). A precise knowledge of PDFs

is essential in predicting all QCD processes such as jet production. Although the inherent

non-perturbative nature of PDFs makes first principles calculations difficult, their scale

dependence can be described perturbatively.

In Sec. 3.1, we discuss the deep-inelastic scattering (DIS) process [56–67] and evalu-

ate the DIS cross-section using the corresponding Feynman diagram. Sec. 3.2 explains

the cross-section for deep-inelastic scattering using the parton model [68, 69] with parton

distribution functions (PDFs) at tree level. In Sec. 3.3, the parton model is extended to

QCD corrections including the Altarelli-Parisi splitting function [70]. We also derive the

DGLAP evolution equation [70–72] using the QCD-improved parton model and discuss

how PDFs evolve based on the DGLAP equation. Sec. 3.4 discusses hadron-hadron colli-

sions as an application of the QCD-improved parton model. This chapter is summarized

in Sec. 3.5.
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3.1 Deep-inelastic scattering

Deep-inelastic scattering (DIS) offers an opportunity to investigate the structure of a nu-

cleon. A series of deep-inelastic electron-proton scattering experiments in the 1960’s at the

Stanford Linear Accelerator Center (SLAC) discovered that the protons were not point-

like objects [56,57]. Instead, the electrons scattered off point-like constituent quarks inside

the nucleons. In deep-inelastic electron-proton scattering, the reaction is expressed as

e− + p→ e− +X, (3.1)

where X is two or more final state hadrons, consisting of a quark jet and the outgoing

beam remnant. Assuming the scattering is mediated by a single photon, the square of

the four-momentum transfer Q2 of the exchanged photon determines the unique hard

scale of the process. When the squared momentum transfer Q2 is small compared to the

mass of the colliding proton (M2
p ∼ 1 GeV2), the electron scatters off elastically, resulting

in a simple e−p → e−p reaction. For large Q2 � 1 GeV2, the virtual photon probes the

constituents of the proton, provoking deeply inelastic scatterings.

Fig. 3.1 illustrates the reaction in Eq. (3.1), where k and k′ are momenta of the in-

coming and outgoing electron and P the proton momentum. With the initial kinematic

constraints, the squared momentum transfer Q2 is defined as

Q2 = −q2 = −(k − k′)2, (3.2)

where the negative sign indicates that the momentum transfer q is space-like. For a fixed

centre-of-mass energy s = (P + k)2, we can define the Lorentz-invariant scaling variable

x and relative energy loss in the lab frame y

x =
Q2

2P · q , (3.3)

y =
P · q
P · k , (3.4)
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The quark-parton model

P

xP

Q2

E

E0

9
=
;W 2

✓

• To explain the DIS measurements at SLAC, Feynman, Bjorken,

and others (1969) proposed the so-called parton model which

states that

Assumption I: A fast moving hadron appears as a jet of par-

tons (quarks and gluons) moving in more or less the same

direction as the parent hadron and sharing its 3-momentum.

Assumption II: The reaction cross-section is the incoherent sum

of partonic cross-sections, as calculated with free partons.51

• We will now use the quark-parton model and results from the PP-I

course to derive the DIS cross-section. The kinematics is best

understood in the so-called Breit-, or infinite-momentum frame.

51By ‘incoherent sum’ we mean that cross-sections are added, instead of amplitudes.

8–11

X

Beam remnant

Jet

k

k�

Figure 3.1: Schematic view of deep-inelastic electron-proton scattering.

which satisfy

0 ≤ x ≤ 1, (3.5)

0 ≤ y ≤ 1. (3.6)

One can obtainQ2 = xys in the largeQ2 limit where the masses of the electron and proton

are ignored. The scaling variable x, together with Q2, sets the kinematic limits

Q2

x
< s. (3.7)

The coverage of x and Q2 by various deep-inelastic scattering experiments are shown in

Fig. 3.2.

The unpolarized cross-section for the process in Eq. (3.1) can be written as

dσ =
∑

X

1

4kMp

|M|2dΦ, (3.8)
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Figure 3.2: Kinematic domains in x and Q2 for various deep-inelastic scattering experi-

ments [73].

where |M|2 is summed over the spin states of the final particles. From Fig. 3.1, the scat-

tering amplitudeM reads

iM = (−ie)2

(−igµν
q2

)
〈k′| jµl (0) |k〉 〈X| jνh(0) |p〉 , (3.9)

where jµl and jµh are the leptonic and hadronic electromagnetic currents. The phase space

and the squared matrix element in Eq. (3.8) can be factorized into the leptonic and the
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hadronic part

dΦ =
ykMp

8π2
dxdydΦX , (3.10)

|M|2 =
e4

Q4
LµνH

µν , (3.11)

where the leptonic tensor Lµν is

Lµν =
1

2
tr
[
/kγµ/k

′
γν
]

=
[
k′µkν + kµk

′
ν − k · k′gµν

]
. (3.12)

Let us define a dimensionless Lorentz tensor W µν

W µν =
∑

X

∫
dΦXH

µν , (3.13)

which describes the hadronic part of the DIS cross-section. Since all phase spaces of pos-

sible X are integrated in W µν , it should only depend on the four-vectors P and q. Hµν

is constructed out of the current jh for the proton and follows the current conservation

law [74]

qµW
µν = qνW

νµ = 0. (3.14)

Using these constraints, one can find two non-vanishing terms to construct a parity in-

variant Lorentz tensor1. Conventionally these linear combinations are expressed as [75]

W µν =

[
−gµν +

qµqν

q2

]
F1(x,Q2) +

P̂ µP̂ ν

P · q F2(x,Q2), (3.15)

where

P̂ µ = P µ − P · q
q2

qµ (3.16)

1QED and QCD conserve parity. Here we consider unpolarized virtual photon exchange. Since weak
interaction violates parity, W− and Z boson exchange introduces an additional combination.
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19 18. Structure Functions

Figure 18.8: The proton structure function F p
2 measured in electromagnetic scattering of electrons and

positrons on protons, and for electrons/positrons (SLAC,HERMES,JLAB) and muons (BCDMS, E665,
NMC) on a fixed target. Statistical and systematic errors added in quadrature are shown. The H1+ZEUS
combined values are obtained from the measured reduced cross section and converted to F p

2 with a HERA-
PDF NLO fit, for all measured points where the predicted ratio of F p

2 to reduced cross-section was within
10% of unity. The data are plotted as a function of Q2 in bins of fixed x. Some points have been slightly o�set
in Q2 for clarity. The H1+ZEUS combined binning in x is used in this plot; all other data are rebinned to the
x values of these data. For the purpose of plotting, F p

2 has been multiplied by 2ix , where ix is the number
of the x bin, ranging from ix = 1 (x = 0.85) to ix = 26 (x = 0.0000085). Only data with W 2 > 3.5 GeV2 is
included. Plot from CJ collaboration (Shujie Li – private communication). References: H1 and ZEUS—
H. Abramowicz et al., Eur. Phys. J. C75, 580 (2015) (for both data and HERAPDF parameterization);
BCDMS—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given in [187]); E665—M.R. Adams
et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys. B483, 3 (1997); SLAC—
L.W. Whitlow et al., Phys. Lett. B282, 475 (1992); HERMES—A. Airapetian et al., JHEP 1105, 126
(2011);JLAB—Y. Liang et al., Je�erson Lab Hall C E94-110 collaboration, nucl-ex/0410027, M.E. Christy
et al., Je�erson Lab Hall C E94-110 Collaboration, Phys. Rev. C70, 015206 (2004), S. Malace et al., Je�er-
son Lab Hall C E00-116 Collaboration, Phys. Rev. C80, 035207 (2009), V. Tvaskis et al., Je�erson Lab Hall
C E99-118 Collaboration, Phys. Rev. C81, 055207 (2010), M. Osipenko et al., Je�erson Lab Hall B CLAS6
Collaboration, Phys. Rev. D67, 092001 (2003).
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Figure 3.3: The structure function F2 for a proton measured in an electromagnetic scat-

tering of electrons/positrons and protons from various experiments. This figure is repro-

duced from the Particle Data Group (PDG) [76].

is the component of P µ that is transverse to qµ. The contraction of Eq. (3.12) with Eq. (3.15)

yields
d2σ

dxdy
=

4πα2

xyQ2

[
xy2F1(x,Q2) +

(
1− y − x2y

M2
p

Q2

)
F2(x,Q2)

]
. (3.17)

The function F1(x,Q2) and F2(x,Q2) are called the structure functions.

In the scaling limit, where Q2 →∞with x fixed, we can neglect the proton mass term

M2
p/Q

2 and Eq. (3.17) can be reorganized

d2σ

dxdy
=

2πα2

xyQ2

[
{1 + (1− y)2}F2(x,Q2)− y2FL(x,Q2)

]
, (3.18)
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Figure 3.4: Feynman diagram for elastic electron-parton scattering at tree level.

where FL = F2 − 2xF1 is the longitudinal structure function [61–67], which is related to

the absorption of a longitudinally polarized virtual photon. Interestingly, in the scaling

limit, FL(x,Q2) vanishes and F2(x,Q2) becomes independent of Q2 [77]. The latter, often

referred to as Bjorken scaling, approximately agrees with the measurements over a broad

range of Q2 as shown in Fig. 3.3. Bjorken scaling is valid up to the first-order approxi-

mation in perturbation theory. Higher-order corrections to the strong coupling αs, which

come with gluons, violate Bjorken scaling as we will discuss later in this chapter.

3.2 Parton model

The parton model assumes that a proton consists of point-like partons bound by strong

interactions. Under this assumption, deep-inelastic electron-proton scattering can be

viewed as an elastic scattering of the electron and one of the constituent partons in the

proton as depicted in Fig. 3.4. This assumes the premise that only partons carrying an

electric charge can be involved the interaction. The corresponding partonic cross-section
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is

dσ̂ =
1

2ŝ
|M|2dΦ̂, (3.19)

where the hat notation denotes a partonic interaction. Again, the squared matrix element

can be decomposed into the leptonic tensor in Eq. (3.12) and the partonic tensor Qµν

Qµν =
1

2
tr
[
/pγ

µ
/p
′γν
]
. (3.20)

Assuming that the struck parton (a quark in this case) carries a fractional momentum

p = ξP of the proton momentum P , the resulting differential cross-section reads

d2σ̂

dxdy
=

2πα2

xyQ2

[
{1 + (1− y)2}

]
xe2

qδ(x− ξ). (3.21)

The total cross-section for all possible species of partons q and values of ξ is

d2σ

dxdy
=

2πα2

xyQ2

∑

q

∫ 1

0

dξfq(ξ)
[
1 + (1− y)2

]
xe2

qδ(x− ξ), (3.22)

where the parton distribution function fq(ξ) is defined as the probability of finding a

parton of flavour q carrying a momentum fraction ξ of the proton.

Comparing Eq. (3.18) and Eq. (3.22), we find the structure function predicted by the

parton model

F2(x) =
∑

i

∫ 1

0

dξfi(ξ)xe
2
qδ(x− ξ) = x

∑

i

e2
qfi(x) (3.23)

FL(x) = F2(x)− 2xF1(x) = 0. (3.24)

Note that F2(x) in the parton model has no Q2 dependence. Eq. (3.24) is known as the

Callan-Gross relation [79]. Recalling that a proton consists of two u quarks and one d
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Figure 18.4: The bands are x times the unpolarized (a,b) parton distributions f(x) (where f =
uv, dv, u, d, s ƒ s̄, c = c̄, b = b̄, g) obtained in NNLO NNPDF3.0 global analysis [76] at scales
µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right), with –s(M2

Z) = 0.118. The analogous results
obtained in the NNLO MMHT analysis can be found in Fig. 1 of Ref [55].The corresponding
polarized parton distributions are shown (c,d), obtained in NLO with NNPDFpol1.1 [78].
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Figure 3.5: Scaled unpolarized parton distribution function xf(x) for uv, ū, dv, d̄, s ' s̄,

c = c̄, b = b̄, and g obtained in the NNLO NNPDF3.0 global fit at the energy scales µ2 = 10

GeV2 (left) and µ2 = 104 GeV2 (right) [78]. This figure is reproduced from the Particle

Data Group (PDG) [76].

quark, the flavour sum rules [80] for a proton are

∫ 1

0

dx [u(x)− ū(x)] =

∫ 1

0

dx uv(x) = 2 (3.25)
∫ 1

0

dx [d(x)− d̄(x)] =

∫ 1

0

dx dv(x) = 1 (3.26)
∫ 1

0

dx [s(x)− s̄(x)] = 0 (3.27)

∫ 1

0

dx x

[∑

i

[qi(x) + q̄i(x)] + g(x)

]
= 1. (3.28)

where u(x), d(x), and s(x) are a shortened notation for the u, d, and s quark distribu-

tion function respectively and the subscript v indicates the valance quarks. Eq. (3.28)
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stems from the physical constraints that the proton momentum must be carried by its con-

stituent partons. The gluon PDF g(x) will be discussed later. Fig. 3.5 illustrates the parton

distribution functions for quarks and gluons in a proton obtained by a global analysis [78].

The PDFs have a weak dependence on the energy scale of µ2 = Q2. While valance quarks

are dominant at large x, more sea quarks are probed in the proton at smaller x and larger

Q2.

Using dy = dQ2/ŝ and δ(x−ξ) = 1
ξ
δ(1− x

ξ
), we write the cross-section for deep-inelastic

scattering as a combination of the PDFs and the cross-section for each parton

d2σ

dxdQ2
=
∑

q

∫ 1

x

dξ

ξ
fq(ξ)

d2σ̂

dxdQ2

(
x

ξ
,Q2

)
. (3.29)

According to the factorization theorem, the hadronic process in deep-inelastic scattering

can be factorized into a hard and a soft part separated by an arbitrary factorization scale.

In Eq. (3.29), the differential cross-section for electron-parton scattering is treated pertur-

batively and is calculable from first principles. On the other hand, the PDFs in the proton

lie in the domain of non-perturbative QCD, which has to be modelled and fitted to data.

However, the universality of the PDFs, i.e. independent of scattering processes, makes it

much easier to estimate the inelastic cross-section in colliding experiments.

3.2.1 Scaling violations

The global fit analysis for the proton PDFs shown in Fig. 3.5 shows that at small x, the

majority of the proton momentum is carried by gluons2. Roughly speaking, the proton

momentum carried by quarks is only 50% [60]

∫ 1

0

dx x
∑

q,q̄

q(x) ' 0.5. (3.30)

2Note that the gluon distribution function g(x) is reduced by a factor of 10 in Fig. 3.5.
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Scaling violation I
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radiating the gluon, the quark with momentum fraction zy scatters

o↵ the virtual photon. The momentum fraction seen by the photon

is thus x = zy which implies that z = x/y.

• Taking gluon radiation into account, the F2 structure function is

found to be (see H&M Section 10.1–5 for a lengthy derivation):

F2(x, Q2)
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Here m2 is a lower transverse momentum cut-o↵ to regularise the

divergence when the gluon becomes collinear with the quark.

• In the above, the splitting function Pqq is given by

Pqq(z) =
4

3

✓
1 + z2

1� z

◆
.

It represents the probability that a parent quark emits a gluon with

the daughter quark retaining a fraction z of the parent momentum.

Note that an infrared divergence shows up when (1 � z) ! 0

where the gluon becomes soft so that daughter and parent cannot

be resolved anymore.
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Figure 3.6: The schematic diagram for deep-inelastic scattering with gluon splitting.

This is the first indirect evidence of an electrically neutral parton inside a proton, which

has been identified as a gluon.

So far we have considered deep-inelastic electron-quark scattering at leading order.

Although Bjorken scaling is a good approximation, we have already seen the Q2 depen-

dence of F2(x,Q2) in Fig. 3.3. The structure function F2(x,Q2) increases with larger Q2

for small x ∼ 0 and decreases for large x ∼ 1 [81]. To understand scaling violations, the

perturbative calculation for the partonic cross-section in Eq. (3.19) has to be extended to

higher-order in the strong coupling αs. For instance, a quark may radiate a gluon before

or after interacting with the virtual photon. These contributions can be computed from

the QCD Lagrangian and, owing to the renormalization group equation, the PDFs fi(x)

are no longer independent of Q2, but they evolve with Q2.

The next section will discuss the QCD-improved parton model that includes fully-

corrected gluon radiation. It also covers the DGLAP equations, which describe the evo-

lution of the PDFs on energy scales.
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3.3 QCD-improved parton model

The QCD-improved parton model begins with incorporating gluon corrections to the

cross-section of deep-inelastic scattering. Let us consider a quark originating from a pro-

ton radiates a gluon and interacts with virtual photon as shown in Fig. 3.6. The quark

carries a fraction y of the proton momentum and radiates a gluon with a fraction 1 − z

of its momentum. We define the quark momentum scattering off the virtual photon as

zyP ≡ xP , meaning that z = x/y. Summing over all real gluon radiation diagrams con-

tributing to deep-inelastic scattering, we obtain

F2(x,Q2)

x
=
∑

q

∫ 1

x

dy

y
fq(y)e2

q

[
δ(1− z) +

αs
2π

(
Pqq(z) ln

(
Q2

µ2
0

)
+ Cq(z)

)]
, (3.31)

where Pab(z) = Pa→bc(z)3 is the Altarelli-Parisi splitting function, defined as the proba-

bility that a parton a radiating a parton c and becomes a parton b carrying a momentum

fraction z of the original parton a. The known function C(z) is the process-dependent

coefficient function. The δ(1 − z) term appearing in Eq. (3.31) indicates the zeroth-order

contribution that we have discussed earlier in Eq. (3.23). The arbitrary cut-off µ2
0 regulates

the colinear divergence, which occurs in the limit when the transverse momentum of the

gluon goes to zero.

The complete set of the Altarelli-Parisi splitting functions and the corresponding short-

ened notations are summarized in Table. 3.1. The plus prescription in Pqq(z) and Pgg(z),

defined by ∫ 1

0

dz
f(z)

(1− z)+

=

∫ 1

0

f(z)− f(1)

(1− z)
, (3.32)

where (1− z)+ = (1− z) for z < 1, is introduced to avoid the singularities showing up at

(1 − z) → 0. The splitting functions P (z) comply with the momentum conservation law

in Eq. (3.28).

3In this process, the radiated parton c is uniquely defined by the conservation law and the available
QCD Feynman diagrams. Thus c in Pa→bc(z) can be omitted and this process can be expressed as Pab(z).
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Process Splitting function

q → qg Pqq(z) = 4
3

[
1+z2

(1−z)+ + 3
2
δ(1− z)

]

q → gq Pqg(z) = 1
2

[z2 + (1− z)2]

g → qq̄ Pgq(z) = 4
3

[
1+(1−z)2

z

]

g → gg Pgg(z) = 6
[

z
(1−z)+ + 1−z

z
+ z(1− z) +

(
11
12
− nf

18
δ(1− z)

)]

Table 3.1: The Altarelli-Parisi splitting functions for each QCD splitting process with the

shortened notation.

3.3.1 DGLAP equation

Regarding f(x) as an unmeasurable bare parton density at tree level, one can define the

renormalized PDF f(x, µ2
F ) at the factorization scale µF = µ

f(x, µ2) = f(x) +

∫ 1

x

dy

y
f(y)

αs
2π

[
P (z) ln

(
µ2

µ2
0

)
+ C1

]
, (3.33)

which absorbs the unphysical cut-off µ0. Then the quark structure function in Eq. (3.31)

becomes

F2(x,Q2)

x
=
∑

q

∫ 1

x

dy

y
fq(y, µ

2)e2
q

[
δ(1− z) +

αs
2π

{
P (z) ln

(
Q2

µ2

)
+ C2

}]
, (3.34)

where C1 and C2 are determined by the choice of the factorization scheme.

The structure function F2(x,Q2) should not depend on the factorization scale µ2. The

renormalization group equation extends to F2(x,Q2), leading to

∂F2(x,Q2)

∂ lnµ2
= 0, (3.35)
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at leading order in αs. Substituting Eq. (3.34) into Eq. (3.35) yields

∂f(x, µ2)

∂ lnµ2
=
αs
2π

∫ 1

x

dy

y
f(y, µ2)P (z) +O(α2

s). (3.36)

Eq. (3.36) is called Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equation. More

generally, we can construct a set of 2nf + 1 coupled DGLAP equations using the splitting

functions shown in Table. 3.1

∂fj(x, µ
2)

∂ lnµ2
=
∑

i

αs
2π

∫ 1

x

dy

y
fi(y, µ

2)Pij(z) +O(α2
s), (3.37)

where i and j denote the parton originating from the proton and the struck parton with

virtual photon after splitting, respectively. Eq. (3.36) and Eq. (3.37) are valid at leading

order in αs, but it can be generalized to higher order in perturbative QCD using the gen-

eralized splitting functions

Pij(z) = P 0
ij(x) +

αs
2π
P

(1)
ij (z) + · · · . (3.38)

The DGLAP equation in Eq. (3.36) and Eq. (3.37) describes the evolution of the running

parton density with the factorization scale µ2. A convenient choice of the factorization

scale is to set µ2 = Q2 and now Eq. (3.33) becomes

f(x,Q2) = f(x) +

∫ 1

x

dy

y
f(y)

αs
2π

[
P (z) ln

(
Q2

µ2
0

)
+ C1(z)

]
. (3.39)

Although the renormalized parton density in Eq. (3.39) is not calculable because of the

arbitrary cut-off µ0, the DGLAP equations allow us to calculate its dependence on Q2

based on perturbative QCD. That is, when the x-dependent PDFs are measured at some

scale Q2, we can solve the DGLAP equations to estimate the PDF at different Q2.

The explicit Q2 dependence of the parton density in Eq. (3.39) states the scaling vi-

olations we discussed in Sec. 3.2.1. The quark density function is modified by the con-
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volution of the splitting functions P (z) and logarithmic Q2 dependence. Physically, the

resolution scale of a photon with virtuality Q2 is proportional to 1/Q. At higher Q2, the

photon probes more low-x quarks that have experienced splitting processes. The result-

ing cross-section is characterized by the scaling violation patterns shown in Fig. 3.3.

3.4 Hadron-hadron collisions

An application of the QCD-improved parton model is hadron-hadron collisions, e.g.,

proton-proton and heavy-ion collisions at the RHIC and the LHC. Let us consider a

proton-proton collision illustrated in Fig. 3.7 as an example. Two partons from the col-

liding protons whose momenta are P1 and P2 strongly interact based on QCD, producing

jets and the beam remnants

p(P1) + p(P2)→ jet +X. (3.40)

The produced jets are often back-to-back di-jets because of energy-momentum conserva-

tion and their virtualities are proportional to the momentum exchange Q2. The corre-

sponding inclusive cross-section is

dσ(P1, P2) =
∑

i,j

∫
dx1dx2fi(x1, µ

2
F , αs(µ

2
R))fj(x2, µ

2
F , αs(µ

2
R))

× dσ̂ij
(
x1P1, x2P2, αs(µ

2
R),

Q2

µ2
F

,
Q2

µ2
R

)
+O

(
ΛQCD

Q

)p
. (3.41)

The PDFs fi(x, µ2
F ) with the factorization scale µF defined in Eq. (3.33) have the αs(µ2

R)

dependence as in Eq. (3.33). The renormalization scale µR and the QCD parameter ΛQCD

are introduced in Eq. (2.15). Note that the PDFs are universal in any processes. The

similar factorization scheme applies to the inclusive parton-parton cross-section σ̂ij with

two PDFs. Factorization is valid up to power corrections of order
(

ΛQCD

Q

)p
, where p is

positive and process-dependent.
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Hadron-hadron cross sections I

• Schematically, a hadron-hadron cross section can be written as
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X
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• Here the (arbitrary) factorisation scale µ can be thought of

as the scale which separates the long and short-distance physics.

Roughly speaking, a parton with a transverse momentum less

than µ is then considered to be part of the hadron structure and

is absorbed in the parton distribution. Partons with larger trans-

verse momenta participate in the hard scattering process with a

short-distance partonic cross-section �̂.

9–4

Figure 3.7: The schematic diagram for hadron-hadron inelastic scattering.

3.5 Summary

In this chapter, we have discussed the theoretical framework for jet production. In deep-

inelastic electron-proton scattering, a highly virtual photon has strong resolution power

to probe partons inside the proton. The parton model introduces the parton distribution

functions to account for the non-perturbative structure functions of nucleons. In the high

Q2 limit with fixed x, deep-inelastic scattering features Bjorken scaling, which is violated

at higher-order in αs(µ2
R) because of the QCD corrections involving gluon radiation. The

Altarelli-Parisi splitting functions describe these QCD processes and can be evaluated

perturbatively using QCD Feynman diagrams. The scale evolution of the renormalized

PDFs, which contain the bare PDFs and the higher-order corrections, can be described

by a set of the DGLAP equations. The factorization theorem allows us to separate the

hard partonic sector and the PDFs when calculating the deep-inelastic scattering cross-

section. Not only that, but this can also be applied to any collision processes that involve

perturbative and non-perturbative physics.

The last part of this chapter briefly mentioned the study of hadron-hadron collisions

at the RHIC and the LHC as an application of deep-inelastic scattering. Owing to the uni-
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versality of the PDFs and the DGLAP evolution equations, we can easily apply these con-

cepts to study jet production in heavy-ion collisions. In the next chapter, we will provide a

phenomenological description of heavy-ion collisions and discuss some highlighted mea-

surements that support the creation of a strongly coupled QGP in the collisions.
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Chapter 4

Relativistic Heavy-ion collisions

Relativistic heavy-ion collisions provide a unique opportunity to study QCD at high en-

ergy scales. One of the biggest achievements of the experimental heavy-ion program is

the discovery of the QGP. This has demonstrated the accessibility of the colour-deconfined

state at extreme temperatures and densities. For the last few decades, the study of the

QGP has been a promising aspect of heavy-ion programs at the RHIC at BNL and LHC

at CERN. The relativistic heavy-ion programs have fostered our understanding of how

matter emerges from the early universe to the present day. Similar to the evolution of

the early universe, the QGP produced in a laboratory undergoes a phase transition to the

hadronic state and chemical freeze-out before measurement by a detector.

This chapter is dedicated to an overview of heavy-ion collisions at RHIC and the LHC.

Sec. 4.1 provides a phenomenological description of the heavy-ion collisions. Then we

discuss the two important topics: collectivity in Sec. 4.2 and hard probes in Sec. 4.3 of the

strongly coupled QGP observed at the collision experiments. Sec. 4.4 provides a summary

of this chapter.
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Figure 4.1: Schematic view of relativistic heavy-ion collisions in the longitudinal plane.

The two black-dashed lines indicate the overlap (colliding) zone. (Left) Two Lorentz-

contracted nuclei before the collision with impact parameter b. (Right) The two nuclei

after the collision. The spectators shown as white balls outside of the overlap zone pass by

each other while their paths remain nearly unaffected by the collisions. The participants

inside the overlap zone interact strongly with each other, producing a hot and dense

plasma of quarks and gluons. This figure is reproduced from [82].

4.1 Phenomenology of heavy-ion collisions

When a nucleus is accelerated to relativistic velocities, the thickness of the nucleus is

Lorentz contracted to 2R/γ, where R is the radius of the nucleus and γ is the Lorentz fac-

tor. At the top RHIC energy of
√
sNN = 200 GeV and the LHC energy of

√
sNN = 2.76 TeV,

the γ are approximately 110 and 1500, respectively. Because these energy scales are large

enough to have inelastic scattering processes, quarks and gluons inside the nucleons can

participate in strong interactions with those in the counterpart nucleons at the moment

they pass through each other.

The impact parameter b is defined by the transverse distance between the centre-of-

masses of the two colliding heavy-ions. For non-central collisions, b > 0, nucleons outside

of the overlap zone are referred to as spectators, which keep moving in the beam direction

without any major interactions. Participants are those inside the overlap zone, colliding

with at least one nucleon from the counterpart and producing the QGP. This involves
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Figure 4.2: The centrality determination at
√
sNN = 2.76 Pb+Pb collisions performed by

the ALICE collaboration. The distribution of the amplitudes measured at the VZERO de-

tector is divided by several centrality bins. The Glauber fit using a combination of Ncoll

and Npart together with a negative binomial distribution is compared to the distribution.

This amplitude distribution is used to estimate the particle multiplicity for a given cen-

trality bin [83].

strong interactions between valence and sea quarks as well as gluons inside the partici-

pants. A schematic diagram of two colliding nuclei with non-zero impact parameter is

shown in Fig 4.1.

The size of the QGP produced by a collision and the number of particles measured at

detectors depend on the impact parameter b or the number of participantsNpart of the col-

lision. Unfortunately, none of these are measurable quantities because experiments have

no control of the exact location of ions. Instead, centrality – the measure of how central

the collision is – is determined by measurable quantities such as charged hadron multi-

plicity. For example, events with the 5% highest charged particle multiplicity correspond

to the 0-5% most central collisions. Fig. 4.2 shows how the detector amplitudes, which
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Parameters

Nuclear R a w
1p 1 1 0
16O 2.608 0.513 -0.051
63Cu 4.218 0.596 0
197Au 6.38 0.535 0
208Pb 6.62 0.546 0

Table 4.1: List of the parameter sets to fit the charge density distributions for nuclei of

interest. The values are taken from [84].

are further estimated to particle multiplicity, can be represented as the bins in centrality.

The results shown in Fig. 4.2 are measured at
√
sNN = 2.76 TeV Pb+Pb collisions by the

ALICE collaboration.

4.1.1 Glauber model

The Glauber model [85–87] is a semi-classical approach to describe heavy-ion collisions

in the impact parameter space b1. This model calculates the number of participants Npart

and the number of nucleon-nucleon binary collisions Ncoll in A+B collisions, where A

and B refer to the number of nucleons in the two colliding nuclei. The nuclear charge

density ρ(r) and inelastic nucleon-nucleon cross-section σNNinel , which is measurable from

experiments, are used as inputs to the Glauber calculations. The nuclear charge density

is parameterized by a Fermi distribution with additional parameters [87],

ρ(r) = ρ0

1 + w
(
r
R

)2

1 + exp
(
r−R
a

) , (4.1)

where ρ0 is the nuclear charge density at the centre of the nucleus and R is the radius of the

nucleus. The additional parameter w characterizes how the shape of the nucleus deviates

1Bold minuscule letters are taken to be the notation for two- or three-vectors depending on the dimen-
sion of the quantities, x ≡ ~x. The norm of the three-vector will be often defined as x ≡ |x|
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Centrality dNch/dη 〈Npart〉 (Nch/dη)/(〈Npart〉/2)

0-5% 1601± 60 382.8± 3.1 8.4± 0.3

10-20% 966± 37 260.5± 4.4 7.4± 0.3

40-50% 261± 9 85.0± 2.6 6.1± 0.3

70-80% 35± 2 15.8± 0.6 4.4± 0.4

Table 4.2: Selected centrality bins and corresponding charged particle multiplicity at mid-

rapidity, the averaged number of participants Npart, and multiplicity per participant pair

in
√
sNN = 2.76 TeV Pb+Pb collisions. The values are taken from [88]. The charged-

particle multiplicity is estimated from the detector amplitude and the averaged Npart is

obtained by the Glauber calculations. The last column indicates that the particle produc-

tion rate per binary collision is higher at central collisions. The table for entire centrality

bins is available in [88].

from the Wood-Saxon shape and a correspond to the skin depth. For specific nuclei of

interest, the corresponding parameters are listed in Table. 4.1. With given parameter sets,

ρ0 is determined by normalization of the charge density distribution,

∫
d3rρ(r) = Ze, (4.2)

where Z corresponds to the proton number of the nucleus. In the Glauber model, the

charge density is used to represent the nuclear density by adjusting ρ0 so that

∫
d3rρA(r) = A. (4.3)

With the two inputs, one can analytically expressNpart andNcoll as a function of impact

parameter b [89],

Npart(b) =

∫
ds TA(s)

(
1− e−TB(s)σNN

inel

)
+

∫
ds TB(s− b)

(
1− e−TA(s)σNN

inel

)
, (4.4)

Ncoll(b) =

∫
ds TA(s)TB(b− s) σNNinel = TAB(b) σNNinel , (4.5)
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where the nuclear thickness function TA(b) and the nuclear overlap function TAB(b) are

defined as

TA(b) =

∫
dz ρA(z,b), (4.6)

TAB(b) =

∫
ds TA(s)TB(b− s). (4.7)

The resulting Npart and Ncoll can then be used to estimate measurable quantities, e.g.,

charged hadron multiplicity. Fig. 4.2 shows the Glauber fit for particle multiplicity esti-

mation, which uses a combination of Ncoll and Npart together with a negative binomial

distribution. The ALICE measurement is well-described by the Glauber fitting function.

In Table 4.2, charged particle multiplicity at mid-rapidity |η| < 0.5, averaged Npart, and

multiplicity per participant pair are listed for four centrality bins.

4.1.2 Time evolution of heavy-ion collisions

The illustration of different stages of heavy-ion collisions is shown in Fig. 4.3 in time

versus beam-direction coordinates. The time evolution of heavy-ion collisions can be

broadly decomposed into three distinct stages; the initial stage, the QGP phase, and the

hadron gas phase. Detailed descriptions of each stage are provided as follows:

• Initial stage of the collisions

While the two nuclei penetrate through each other, the participants undergo nucleon-

nucleon inelastic scattering and initial-state radiation, creating a large number of

highly excited partons. As a consequence, a large amount of energy is deposited

into the colliding zone. The newly created medium is in a pre-equilibrium stage

and approaches local thermal equilibrium through frequent collisions among the

constituents of the medium. Highly energetic particles, referred to as jets, are also

produced at this stage through large-x scatterings. The random impact parameter

b of the collisions produce fluctuating eccentricities in the transverse plane of the
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Figure 4.3: Schematic diagram of different stages of heavy-ion collisions in time ver-

sus beam-direction coordinates. This illustrates two relativistic heavy-ions colliding and

undergoing the pre-equilibrium phase (grey), the QGP phase (red), and the hadron gas

phase (blue). The phase transition temperature Tc with broad cross-over is represented as

a yellow area. The chemical freeze-out and kinetic freeze-out at the hadronic phase are

also shown. This figure is reproduced from [90].

overlap zone. Understanding the initial geometry is necessary to interpret the ex-

perimental results from the collisions. The actual overlap time of the two Lorentz

contracted nuclei is τ = 2R/γ, but the thermalization time τ0 widely used for mod-

elling heavy-ion collisions is a few tenths of fm, e.g., τ0 ∼ 0.6 fm for
√
sNN = 2.76

TeV Pb+Pb collisions, because of the size of the mean free path λmfp.
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• QGP in thermal equilibrium

The temperature of the system is sufficiently high that the nucleons are decomposed

into colour-deconfined quarks and gluons. Moreover, due to the high density of

the medium and small mean free path λmfp compared to the size of the system,

partons in the medium quickly establish thermal equilibrium and exhibit collective

behaviour. Collective motion of the QGP is well described by relativistic hydro-

dynamics, which uses the QCD equation of state as an input of the calculations.

Because the QGP is colour opaque, coloured hard probes created at the early stage

such as jets experience energy loss while penetrating the QGP – jet quenching. Mea-

surements of the survived jets allow us to constrain the properties of the QGP. As

the system evolves, thermal pressure toward the surrounding vacuum forces the

QGP to undergo collective expansion and cooling.

• Freeze-out in hadronic phase

When the system cools down below the transition temperature Tc, the thermal-

ized partons start to form colour-neutral hadrons. Even after the QGP turns into

hadronic matter, the constituent hadrons continue to collide with each other, keep-

ing the local equilibrium of the system. Meanwhile, unstable hadrons in excited

states decay into stable hadrons – resonance decay. Once all hadrons are in a sta-

ble state, the production yields of the particles are frozen, while elastic collisions

may still occur. The corresponding temperature is called the chemical freeze-out

temperature. Hadronic re-scattering persists until kinetic freeze-out. The species

and energy-momentum after kinetic freeze-out remain unchanged until they are

detected in detectors.

Notably, the QGP created in heavy-ion collisions is substantially dense and strongly

interacting so that the system is quickly thermalized. The thermodynamic pressure gen-

erated by the QGP leads to collective expansion of the system. The collective behaviours

observed in heavy-ion collisions are thus a signature of the QGP created in the collisions.
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Another important tool to probe the creation of the QGP is energetic particles created at

the initial stage of the collisions. Hard probes are created before the formation of the QGP

and possess a full history of interactions with the QGP. The suppression of high trans-

verse momentum (pT ) hadrons is a well-known phenomenon in heavy-ion collisions to

be used to study the QGP.

In the following sections, we will discuss the two phenomenological signatures of

the QGP created in heavy-ion collisions. In Sec. 4.2, collectivity observed in heavy-ion

collisions and supporting observables will be presented. Also, we will briefly introduce

relativistic hydrodynamics that provides theoretical descriptions of the thermalized QCD

matter. Sec. 4.3 will talk about the production of hard probes and their suppression ob-

served in heavy-ion collisions.

4.2 Collectivity

The QGP droplets produced at the RHIC and the LHC reach temperatures T/Tc ∼ 3. The

running coupling constant αs at this scale is still large enough ∼ O(1) that the created

QGP behaves like an almost perfect fluid, so-called strongly coupled QGP (sQGP). As a

consequence, the system is quickly thermalized after the collisions. The thermalized sys-

tem feels the thermodynamic pressure, causing collective expansion of the system. The

collective behaviour observed at non-central collisions is one of the key findings support-

ing the hypothesis that the strongly-interacting QGP is created in the colliding systems.

This arises from the pressure gradient due to the spatial anisotropy of the colliding area

in the transverse plane. The resulting anisotropic flow is highly correlated with the initial

geometry of the collisions and has a large influence on the final-state particle production.
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Figure 4.4: A cross-sectional view of two heavy ions colliding with a non-zero impact

parameter b. The anisotropic shape of the overlap zone with respect to the reaction plane

produces pressure gradients in momentum space and momentum anisotropy of particle

production.

A convenient way of characterizing anisotropic flow is to use a Fourier expansion of

the differential distribution of the invariant particle yield2,

E
d3N(pT , φ)

d3p
=
d2N(pT , φ)

2πpTdpTdy

(
1 + 2

∞∑

n=1

[xn cos(nφ) + yn sin(nφ)]

)
, (4.8)

2The factor d3p/E is a Lorentz invariant quantity. The proof of this can be found, for example, in [91].
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where E and p are the energy and 3-momentum of the particle. The rapidity3 y is defined

by

y =
1

2
ln
E + pz
E − pz

, (4.10)

and φ is the azimuthal angle of the particle. With the following replacements,

xn = vn cos(nΨRP ), (4.11)

yn = vn sin(nΨRP ), (4.12)

Eq. (4.8) becomes

E
d3N(pT , φ)

d3p
=
d2N(pT , φ)

2πpTdpTdy

(
1 + 2

∞∑

n=1

vn cos [n(φ−ΨRP )]

)
, (4.13)

where ΨPR is defined as the reaction plane angle containing the impact parameter b and

the beam axis. The azimuthal anisotropy is usually quantified by the coefficients of the

Fourier expansion vn in Eq. (4.13),

vn(pT , y) = 〈cos [n(φ−ΨRP )]〉, (4.14)

where the angular brackets denote an average of all particles in a event and all events in a

given pT and y bin. Since the reaction plane angle ΨRP is not experimentally measurable,

the coefficients of anisotropic flow are estimated from azimuthal correlations between the

measured particles [92].

The anisotropic flow coefficients vn, especially the elliptic flow coefficient v2, have

centrality dependence since the initial geometry influences the pressure gradients. An

3In experiments, it is convenient to use pseudorapidity,

η = − log

[
tan

(
θ

2

)]
, (4.9)

since it only requires the polar angle θ in momentum space relative to the beam direction. In the limit,
p� m, pseudorapidity is often a standard proxy for rapidity.
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Figure 4.5: ALICE measurements of the pT differential anisotropic flow coefficients vn
obtained from the two-particle correlation method measured in

√
sNN = 2.76 TeV Pb+Pb

collisions in the 0-5% (left panel) and 30-40% (right panel) centrality bins [93]. The full

and open symbols represent the minimum distance between a pair of particles in a unit

of the rapidity of ∆y > 0.2 and ∆y > 1.0, respectively. Theoretical calculations using

hydrodynamics [94] are compared on the right. The hydrodynamic calculations are in

fairly good agreement with the measurements.

example of a non-central collision is shown in Fig. 4.4. The anisotropic almond shape of

the overlap zone with respect to the reaction plane develops a large elliptic flow coeffi-

cient v2. Fig. 4.5 shows the pT differential anisotropic flow coefficients vn with n = 1, 2, 3,

and 4 obtained from the two-particle azimuthal correlation method in
√
sNN = 2.76 TeV

Pb+Pb collisions measured by ALICE. The magnitude of the elliptic flow coefficient v2

measured in the 30-40% centrality bin (right panel) is greater than that measured in the 0-

5% centrality bin (left panel) due to the large anisotropy in the initial geometry. However,

the higher-order anisotropic flow coefficients show a weak dependence on centrality. The

theoretical results shown in the right panel were provided by hydrodynamic simulations

of the QGP [94], which agree fairly well with the measurements. In the following subsec-

tion, we will briefly discuss hydrodynamic modelling of the thermalized system and its

success in describing the QGP.

48



4.2.1 Hydrodynamics

The illustration of a system with many degrees of freedom is, in general, a challenging

problem in theoretical physics. However, it is possible to describe many-body systems

using an effective macroscopic picture. Relativistic hydrodynamics [95–97] provides a

theoretical tool to describe the system in which quarks and gluons are thermalized. This

alternative prescription of the QGP has been successful in explaining collective phenom-

ena arising in heavy-ion collisions [98–104].

The applicability of hydrodynamics can be quantified by the Knudsen number KN ∼
l/L [105], the ratio of the relevant microscopic scale l to the macroscopic scale L. In the

case of heavy-ion collisions, the microscopic scale l is the mean free path λmfp of the

scatterings between deconfined quarks and gluons and the macroscopic scale L is the size

of the QGP. Generally, hydrodynamics becomes applicable when the Knudsen number is

sufficiently smaller than unity, KN � 1.

Hydrodynamic modelling assumes that the system is in local thermal equilibrium.

Although in the hydrodynamic approach, detailed microscopic dynamics are not neces-

sary, it indeed requires the QCD equation of state of the given system relating pressure

p, energy density ε, and baryon density n. The basic hydrodynamic equations describe

conservation of current and energy-momentum,

∂µN
µ = 0, (4.15)

∂µT
µν = 0. (4.16)

In Eq. (4.15),Nµ is the four-vector currents of the baryon, which is equal to nuµ in the ideal

fluid case. For viscous hydrodynamics, it is necessary to include an additional term for

the diffusion currents nqµ. With the fluid velocity v, the four-velocity uµ(u0,u) is defined
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by

u0 =
1√

1− v2
, (4.17)

u =
v√

1− v2
, (4.18)

which satisfies uµuµ = 1. The energy-momentum tensor T µν shown in Eq. (4.16) is de-

composed into the 4-momentum and the associated current as follows:

• T 00 is the energy density

• T i0 is the energy flux along axis i.

• T 0j is the density of the jth component of momentum with j = 1, 2, 3.

• T ij is the flux along axis i of the jth component of momentum.

For ideal fluids, T µν in the local rest frame can be expressed as

T µν = (ε+ p)uµuν − pgµν , (4.19)

where uµ = (1, 0, 0, 0) in the local rest frame of the fluid and gµν = diag(1,−1,−1,−1) is

the Minkowski metric tensor.

Ideal hydrodynamics assumes that each fluid element is homogeneous and local equi-

librium is always maintained during the evolution. Although it is natural to employ

ideal hydrodynamics as an application to the QGP, almost all fluid in nature involves dis-

sipative effects. The Müller-Israel-Stewart (MIS) [106–108] and Denicol-Niemi-Molnar-

Rischke (DNMR) [109–111] theories provide a proper description of second-order viscous

hydrodynamics in a gradient expansion. Since the plasma is no longer assumed isotropic,

one needs to include corrections proportional to gradients such as the shear viscosity η

and the bulk viscosity ζ . It turned out that the magnitudes of the anisotropic flow vn are

quite sensitive to the viscosity of the plasma as shown in Fig. 4.5. Thus, estimating the

values of shear and bulk viscosity has been an important aspect of the hydrodynamic
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modelling of the QGP. Throughout this thesis, we will employ the results of second-order

viscous hydrodynamic simulations obtained by MUSIC [100] to study jet energy loss in

the QGP created in heavy-ion collisions.

4.3 Hard probes

As mentioned in the previous chapter and Sec. 4.1, energetic particles created at the first

moment of heavy-ion collisions are commonly referred to as jets. Since they propagate

through the droplet of QGP produced in the same collision, they are considered as key

probes of the QGP. They are created via hard processes involving large momentum ex-

changes. According to the QCD factorization theorem, those processes can be described

as the convolution of different contributions to the cross-section. For example, the cross-

section for final state single hadron production at proton-proton collisions is formulated

as [112]

dσpp→hX ≈
∑

abj

∫
dxa

∫
dxb

∫
dzjfa/p(xa, µf )⊗ fb/p(xb, µf )

⊗ dσab→jX(µf , µR)⊗Dj→h(zj, µF ), (4.20)

where fa/p(xa, µf ) are the parton distribution functions of the parton a with momentum

fraction of xa from the colliding proton. Similarly, fb/p(xb, µf ) is the PDF of the parton b

with xb from the other proton. dσab→jX(µf , µR) is the cross-section of a 2 → 2 scattering

between parton a and b, producing a parton j and residual X . Dj→h(zj, µF ) is the frag-

mentation function for the parton j to the final-state hadron h with momentum fraction

zj . The factorization scale µf , µF and the renormalization scale µR are typically taken

to be a relevant energy scale Q such as the hadron pT . The PDFs can be obtained by a

global fit of data measured by multiple experiments, e.g., deep inelastic scatterings (DIS)

and proton-proton collisions. As an example, Fig. 4.6 shows an overview of CTEQ6 [113]

PDFs at interaction scale Q = 2 GeV and Q = 100 GeV.
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Figure 4.6: CTEQ6 parton distribution function (PDFs) as a function of momentum frac-

tion x at Q = 2 GeV (left) and Q = 100 GeV (right) [113].

The initial hard scattering encoded in dσab→jX is a 2→ 2 partonic elastic scattering pro-

cess at leading order in strong coupling constant αs. The scattered partons are energetic

and highly virtual, i.e., squared momentum transferQ2 is large. Since high-virtuality par-

ticles are unstable, they reduce their virtuality by parton branching processes. The parton

splittings are described by the Altarelli-Parisi splitting functions shown in Table. 3.1. The

partons produced by multiple splitting are then hadronized around the transition tem-

perature Tc.

Proton-proton collisions provide a clean environment in which the parton evolution

is well-described by the DGLAP equations and the underlying events (UE) produced by

subordinate interactions are negligible. In heavy-ion collisions, however, the creation

of the QGP extensively modifies the evolution of jets, resulting in suppression of high-

energy hadron production. In the following subsection, we will address the theoretical

approaches to the jet quenching phenomenon and available data measured by experi-

ments.
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Figure 4.7: The modification factors RA
a for Pb nuclei. From left to right, RA

a of valence

quarks, sea quarks, and gluons are presented at the scale Q2 = 1.69 GeV2 (top panel) and

Q2 = 100 GeV2 (bottom panel). Experimental data from deep inelastic l+A scattering,

Drell-Yan dileption production in p+A collisions and pion production in d+Au and p+p

collisions at RHIC were used for the global parameter fitting [121]. The black lines repre-

sent the best-fit results, while the dotted green curves indicate the error sets. The shaded

green bands are uncertainties.

4.3.1 Jet quenching

Jet quenching in heavy-ion collisions is a well-established phenomenon for coloured hard

probes such as light quarks and gluons. This has been extensively measured experimen-

tally [114–116] and calculated theoretically [1,117–120]. The purpose of the jet quenching

study is to provide evidence of QGP creation in the colliding system and to understand

mechanisms of jet-medium interactions.
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When studying jet quenching in heavy-ion collisions, one needs to consider two nu-

clear effects which lead to the modification of final-state hadron production. One is the

nuclear PDFs (nPDF) [122, 123]; the nuclear structure in nuclei are different from the su-

perposition of their constituent nucleons due to initial state nuclear effects. This is often

referred to as the cold nuclear matter (CNM) effect or nuclear PDF effects. The modi-

fication of the PDFs in a nucleus A is represented by RA
a (x,Q2), the ratio of the density

function of a parton a in a nucleus A fa/A(x,Q2) to that in a proton fa/p(x,Q2)

RA
a (x,Q2) =

fa/A(x,Q2)

fa/p(x,Q2)
. (4.21)

Similar to PDFs, the nuclear PDFs are obtained by the global fit analyses using colli-

sion experiments such as DIS, p+A, and d+A collisions [124–133]. Several parameter

fitting analyses of the nuclear PDFs are currently available [121, 134, 135]. Fig. 4.7 shows

the EPS09 [121] nPDF for valence quarks, sea quarks, and gluons for Pb nuclei at Q2 =

1.69 GeV2 and Q2 = 100 GeV2. The behaviour of RA
a (x,Q2) shown in Fig. 4.7 can be

divided into four regions [136],

• RA
a > 1 for x . 0.8: Fermi motion effects [137, 138]

• RA
a < 1 for 0.2 . x . 0.8: the European Muon Collaboration (EMC) effects [125,

139–141]

• RA
a > 1 for 0.04 . x . 0.2: the anti-shadowing region

• RA
a < 1 for x . 0.04: the shadowing region

Detailed discussion on shadowing and anti-shadown can be found in [142–167].

Another important effect is due to the colour opacity of the QGP created in heavy-ion

collisions. This leads to significant suppression of final-state hadron production via jet-

medium interactions. While energetic partons propagate through the QGP medium, they

interact with the constituents of the medium elastically and inelastically, transporting

their energy to the surrounding background. Multiple 2 → 2 scatterings between a hard
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parton and a constituent parton in the QGP cause the exchange of momentum, increasing

virtuality for each parton. Then virtual partons tend to reduce their virtuality by radiating

additional partons. These processes modify the vacuum splitting functions in Table 3.1,

resulting in energy loss of energetic partons. There are a number of parton energy loss

approaches developed and studied, namely those of Baier-Dokshitzer-Mueller-Peigne-

Schiff-Zakharov (BDMPS-Z) [168–170], Gyulassy-Levai-Vitev (GLV) [171–173], Amesto-

Salgado-Wiedemann (ASW) [174, 175], higher twist (HT) [176–178], and Arnold-Moore-

Yaffe (AMY) [179–182].

The jet quenching effect is quantified by the nuclear modification factor RAA, i.e. the

ratio of high pT particle production in nucleus-nucleus (AA) collisions compared to that

in pp collisions. One may define the nuclear modification factor RAA

RAA(pT ) =
1

〈Ncoll〉
d2NAA(pT )/dpTdη

d2Npp(pT )/dpTdη
, (4.22)

where the averaged number of binary nucleon-nucleon (NN) collisions 〈Ncoll〉 is a proper

normalization at a given centrality class of AA collisions calculated from the Glauber

model. NAA and Npp represent the final state particle yield per event in AA and pp colli-

sions, respectively. For AA collisions behaving as a simple superposition of Ncoll binary

collisions, the nuclear modification factor RAA would be unity. However, many experi-

ments observed strong suppression of high pT charged hadrons at central heavy-ion col-

lisions at the RHIC and the LHC as shown in Fig. 4.8. Their measurements, together with

multiple theoretical approaches, support that the QGP created in heavy-ion collisions in-

duces jet quenching.

4.4 Summary

In this chapter, a brief review of relativistic heavy-ion collisions was discussed. The study

of heavy-ion collisions has been a prominent application of the theory of QCD. Moreover,
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Figure 4.8: Measurements of the nuclear modification factorRAA in central heavy-ion col-

lisions at various centre-of-mass energies and colliding systems measured by the SPS, the

RHIC, and the LHC [183–190], compared to predictions of six models for
√
sNN = 5.02

TeV Pb+Pb collisions from [191–196]. The strong suppression pattern over the broad

range of pT observed at the measurements shows the QGP creation in heavy-ion col-

lisions, which is also supported by the theoretical calculations. The figure is taken

from [197].

the creation of the QGP in experimental heavy-ion programs is a remarkable success in

studying the extreme environment that existed shortly after the Big Bang. This chapter

addressed the two important pieces of evidence of the QGP creation in heavy-ion col-

lisions: collective motions and jet quenching observed in measurements. A theoretical

approach to studying jet quenching will be presented in Ch. 5 in detail.
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Part II

Study of jet quenching in heavy-ion

collisions
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Chapter 5

MARTINI: Theoretical modelling of jet

quenching

The phenomenological study of jet quenching in heavy-ion collisions is a challenging

task. This is mainly because it requires adequate modelling of a variety of aspects of the

collisions in which different scales are involved. The relevant aspects include:

• the initial hard scattering for jet production

• a realistic description of the QGP evolution

• a theoretical prescription for jet energy loss in the QGP

• a modelling of phase transition at the transition temperature Tc.

As mentioned in Sec. 4.3, jet production in the initial stage and subsequent propagation

in the medium involving large momentum scales may be studied within the framework

of perturbative QCD. In the parton shower language, e.g., Eq. (4.20), one has to deal

with measured probabilities to find a parton with specific scales in the parton distribution

function or to find a hadron from a given fragmentation function (FF). The Monte-Carlo

method is well-suited for simulating systems with probability distributions and large un-

certainties. The probabilistic nature of the parton shower is well realized by Monte-Carlo
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event generators and a variety of parton shower event generators exist, e.g., PYTHIA [198],

HERWIG++ [199], ISAJET [200], and SHERPA [201].

While those event generators are quite successful in describing parton showers in rel-

ativistic high-energy particle collisions, their focus is mainly on the lepton and nucleon

collisions where clearly there is lack of creation of the QGP and jet-QGP interaction1. The

major purpose of Monte-Carlo event generators for heavy-ion collisions is to explore jet

quenching, which clearly dictates the creation of QGP, and to extract properties of the

QGP. Most heavy-ion event generators are developed based on those for binary collisions

and provide their own theoretical prescriptions to simulate jet evolution in the QGP.

This chapter introduces the Monte-Carlo event generator for heavy-ion collisions,

MARTINI (Modular Algorithm for Relativistic Treatment of heavy IoN Interactions) [1].

In Sec. 5.1 general concepts and descriptions of MARTINI will be presented. MARTINI

utilizes key components of PYTHIA [202] and its core lies in jet energy loss processes. De-

tailed descriptions of the jet energy loss models, i.e., the AMY radiative formalism, and

collision and conversion processes, are discussed in Sec. 5.2. Sec. 5.3 covers my original

work to develop the MARTINI model and to establish more realistic environments for jet

quenching in heavy-ion collisions. Sec. 5.4 provides the detailed program flow in MAR-

TINI and Monte-Carlo implementation of the theoretical models. The summary of this

chapter is presented in Sec. 5.5.

5.1 Introduction to MARTINI

MARTINI [1] is a Monte-Carlo event generator for relativistic heavy-ion collisions. MAR-

TINI simulates time-ordered jet evolution in the presence of the evolving QGP back-

ground. The evolution of the momentum distribution Pa(p) for a given parton a of mo-

mentum p propagating through a QGP medium is governed by a set of coupled rate

1There have been attempts to encapsulate heavy-ion modules in PYTHIA [202], namely Angantyr, al-
though rigorous simulations of the QGP sector using hydrodynamics is not provided.
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equations,

dPq(p)

dt
=

∫

k

Pq(p+ k)
dΓqqg(p+ k, k)

dkdt
− Pq(p)

dΓqqg(p, k)

dkdt

+ 2Pg(p+ k)
dΓgqq(p+ k, k)

dkdt
, (5.1)

dPg(p)

dt
=

∫

k

Pq(p+ k)
dΓqqg(p+ k, p)

dkdt
+ Pg(p+ k)

dΓggg(p+ k, k)

dkdt

− Pg(p)
(
dΓgqq(p, k)

dkdt
+
dΓggg(p, k)

dkdt
θ(2k − p)

)
, (5.2)

where Pa(p) is the probability of finding a parton a of momentum p with a being either a

quark (anti-quark) or a gluon. dΓabc(p, k)/dk is the transition rate of a parton a of momen-

tum p emitting a parton c of momentum k and becoming a parton b. In the last term of

Eq. (5.1), Γgqq(p+ k, k) represents either Γgqq̄(p+ k, k) and Γgq̄q(p+ k, k). The factor of 2 takes

into account that q and q̄ are distinguishable. However, this factor is not present in the

transition Γggg(p + k, k) as shown in Eq. (5.2), since the two outgoing gluons are identical.

The θ function in Eq. (5.2) prevents double-counting of the final states. The integration

includes k < 0, which represents the energy gain of the parton a from the background

medium.

The transition rate Γ(p, k) encodes the 1→ 2 AMY radiative energy loss rates [179–182]

incorporated in MARTINI. The 2 ↔ 2 collisional transition rates [203] and the conversion

rates [1] are also implemented in a similar manner. The theoretical descriptions of the jet

energy loss processes are presented in detail in the next section. The evolving QGP back-

ground is simulated by MUSIC [100], a (3+1) dimensional viscous hydrodynamic model.

The initial conditions of the hydrodynamic simulations are provided by either the Monte-

Carlo Glauber model [87] or the IP-Glasma model [3].

MARTINI solves the coupled parton evolution equations Eq. (5.1) and Eq. (5.2) using

Monte-Carlo methods. Every hard parton evolves individually and randomly undergoes

transition processes. The probabilistic parton evolution averaged over a large number of

independent events yields a reasonable and reliable solution for the evolution equations.
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θ ∼ g

Figure 5.1: A diagram of typical parton interaction involving multiple elastic collisions

between hard and thermal partons and additional gluon radiation. The orders of magni-

tude of various scales associated with each process are also shown. The figure is repro-

duced from [181].

The modular structure of MARTINI allows users to include or omit certain processes

independently in the simulations. MARTINI also provides flexibility to choose different

models such as different initial state and hydrodynamics models. The interface for setting

parameters in MARTINI is identical to that of PYTHIA and adding or modifying parameters

is also straightforward.

In the following section, we will discuss the jet energy loss processes implemented in

MARTINI and their theoretical background.

5.2 Jet energy loss models

Gluon radiation and elastic scattering are regarded as the processes that lead to jet quench-

ing in heavy-ion collisions. In the following subsections, we introduce the AMY radiative

energy loss formalism [179–182], and the collisional energy loss model [203]. These two

independent models are incorporated in the MARTINI framework to provide realistic de-

scriptions of jet energy loss.
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typical particle momentum p, k T

typical momentum transfer q
gT

Debye screening mass mD

typical scattering angle θ
g

typical radiation angle θ

mean free path: small angle scattering (θ ∼ g, q ∼ gT )
(g2T )−1

formation time of collinear radiation (θ ∼ g)

Table 5.1: List of various parametric scales typically emerging in a weakly-coupled equi-

librated QCD plasma.

5.2.1 AMY radiative formalism

The Arnold-Moore-Yaffe (AMY) [179–182] formalism is a finite-temperature field theory

formulation of gluon radiation. The AMY formalism concerns a weakly-coupled and

fully equilibrated QGP at asymptotically high temperature where perturbative QCD is

applicable. A hierarchy of well-separated energy scales g2T � gT � T emergent in the

pQCD regime facilitates a power counting analysis in the formalism.

One assumes a hard on-shell parton undergoing multiple elastic scatterings with ther-

mal partons in the medium, emitting a gluon as illustrated in Fig. 5.1. The typical mo-

menta of the participants of scattering is order T , the temperature scale. The momentum

transfer q of an exchanged gluon is order gT , causing deflection angle of θ ∼ g. The mean

free path between consecutive scatterings is order (g2T )−1, which is also the order of the

formation time of gluon radiation. The radiation is nearly collinear, order of θ ∼ g. The

relevant scales associated with elastic scattering and gluon radiation are summarized in

Table 5.12.

LPM effect At high temperatures where g(T ) � 1, the elastic collisions against plasma

constituents are treated as instantaneous compared to the radiation processes. The time

2A detailed review of the scale estimation is given in Sec. I.B of Ref. [180].
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Figure 5.2: A typical interference term appearing in the square of multiple scattering

amplitudes involving gluon emissions. A gluon may be radiated before and after consec-

utive scatterings against plasma constituents. In the LPM regime, this term contributes to

the leading-order gluon emission rate.

for typical elastic scattering is estimated as τ ∼ 1/mD ∼ (gT )−1 (See Table 5.1). However,

the moment of a radiation process is not uniquely defined; this time scales like tf ∼
(g2T )−1 in the weakly-coupled plasma limit. This finite formation time of radiation is of

the same order of magnitude as the mean free path λmfp between elastic scatterings as

shown in Table 5.1. As a result, radiations induced by consecutive scatterings may not be

treated as independent events due to coherence between multiple scattering events. This

is known as the Landau-Pomeranchuk-Migdal (LPM) effect [204–206]. The LPM effect

manifests as non-vanishing interference terms in the squared matrix element as shown

in Fig. 5.2. Therefore, even in the perturbative QCD regime, one essentially considers

resummation of all appropriate diagrams to obtain the leading-order gluon emission rate.

Fig. 5.3 shows a typical ladder diagram with contributions from the interference terms.

The leading-order radiation rate requires a resummation of these diagrams with all possi-

ble number of gluon rungs. Note that the self-energy resummation on the top and bottom

fermion propagators is implied3. Arnold, Moore and Yaffe rigorously evaluated the lad-

der diagrams of Fig. 5.3 via diagrammatic analysis and proved that only these diagrams

are relevant to the leading-order gluon emission rate [181].

3The self-energy resummation emerges from the non-interfering terms in the squared diagram of all
possible gluon radiations. See Fig. 14 in Ref. [181].
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Figure 5.3: A generic gluon self-energy diagram contributing to the leading-order gluon

radiation rate. The gluon propagators can be arbitrary attached in the diagram due to

non-Abelian theory of QCD. Resummation of self-energy attached in the top and bottom

fermion propagators is implied. The figure is taken from [207].

=

+ + +

Figure 5.4: Diagrams of the Schwinger-Dyson equation for the gluon self-energy resum-

mation in Eq. (5.3).

The resummed ladder diagrams can be expressed in terms of the Schwinger-Dyson

type equation, where randomly attached gluons are classified into three groups. The dia-

grammatic representation of the Schwinger-Dyson type equation is illustrated in Fig. 5.4
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The corresponding integral equation is given by [208]

2h = iδE(h, p, k)F(h) + g2T

∫
d2q⊥
(2π)2

C(q⊥)

{
(CR − CA/2)[F(h)− F(h− kq⊥)]

+ (CA/2)[F(h)− F(h + pq⊥)

+ (CA/2)[F(h)− F(h− (p− k)q⊥)]

}
, (5.3)

where h ≡ (k× p)× e‖ determines non-collinearity of the final states. A unit vector e‖ is

fixed by convention as collinear with any of p, k, and p + k, where p and k are momenta

of initial and radiated partons, respectively. δE(h, p, k) is the energy difference between

the initial and final states in the leading order,

δE(h, p, k) =
h2

2pk(p− k)
+
m2
k

2k
+

m2
p−k

2(p− k)
− m2

p

2p
, (5.4)

where m2
k is the medium induced thermal mass of a parton carrying the momentum k.

For each species, they are given by

m2 =





m2
D/2 : gluon

CFg
2T 2/4 : quark,

(5.5)

where the Debye mass is [209]

m2
D =

2Nc +Nf

6
g2T 2. (5.6)

C(q⊥) is the differential elastic cross-section to exchange transverse momentum q⊥. In

the QCD medium, this value at leading order in the strong coupling is given by [209]

C(q⊥) =
m2
D

q2
⊥(q2

⊥ +m2
D)
. (5.7)

The three terms in the integral in Eq. (5.3) correspond to the second, third, and fourth

terms in the right hand side of Fig. 5.4. They represent the three possible types of an
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additional gluon propagator attached to the resummed gluon self-energy diagram. The

quadratic Casimir is CR = CF for the fundamental representation of a quark field and

CR = CA for the adjoint representation of a gluon field. The number of the colour states

is Nc = 3 in SU(3).

The solution of Eq.( 5.3), F(h, p, k), is the input of the radiative rates for various 2→ 1

processes, which are given by

d2Γ(p, k, T )

dpdk
=
CRg

2

16πp7

1

1± e−k/T
1

1± e−(p−k)/T
×





1+(1−x)2

x3(1−x)2
q → qg

Nf
x2+(1−x)2

x2(1−x)2
g → qq̄

1+x4+(1−x)4

x3(1−x)3
g → gg





×
∫

d2h

(2π)2
2h · Re F(h, p, k), (5.8)

where 1/(1 ± e−k/T ) is the Pauli blocking or Bose enhancement factor for a final state

parton of momentum k with positive sign for quarks (the Fermi-Dirac distribution) and

a negative sign for gluons (the Bose-Einstein distribution). T is the local temperature of

the QGP and the momentum fraction x is defined as x ≡ k/p. For the case of qq̄-pair

production g → qq̄, the prefactor CR − CA/2 should appear on the second term of the

integral in Eq. (5.3). Additional photon radiation rates are also calculated analogously

to the gluon radiation rates in Ref. [179, 181]. The results in Eq. (5.8) correctly reproduce

both the Bethe-Heitler (λmfp > tf ) and the LPM (λmfp < tf ) limits.

Fig. 5.5 shows the AMY radiative rates in Eq. (5.8) versus the momentum of an initial

parton (left) and the temperature of the QGP (right) for the different radiative processes,

including photon radiation. The left picture in Fig. 5.5 shows the majority of radiation

rates is contributed from gluon radiation (q → qg and g → gg), while the qq̄-pair creation

and the photon radiation processes are suppressed by several orders of magnitude. The

gluon radiation processes exhibit a monotonic dependence on the momentum of an ini-

tial hard parton, whereas the qq̄-pair creation and the photon radiation rates moderately
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Figure 5.5: The AMY radiative rates in Eq. (5.8) as a function of momentum p of a hard

parton (left) and of the temperature of the background medium (right). In each figure,

four different radiative processes are plotted; q → qg, g → gg, g → qq̄, q → qγ. The

temperature in the left figure is set to T = 0.4 GeV and the initial momentum is set to

p = 100 GeV. The strong coupling αs = 0.3 is used for both of the plots.

decrease at higher momentum. Fig. 5.5 (right) clearly indicates that all processes have

increasing behaviour with temperature.

Double differential rates of the radiative processes are shown in Fig. 5.6. In each panel,

the momenta of initial incoming partons are set to p = 20 GeV (left) and p = 100 GeV

(right). The differential rates are non-zero since the k integration in Eq. (5.1) and Eq. (5.2)

runs from −∞ to ∞. The negative radiation can be understood as 2 → 1 absorption

where a hard parton absorbs a thermal parton and gains its energy. However, photon

absorption is neglected since photons interact electromagnetically and its interactions are

much weaker than strong interactions. The distribution of radiated momentum for the

two gluon emission processes has a peak at k ∼ 0, indicating that radiation is dominated

by soft gluon radiation.
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Figure 5.6: The double differential AMY radiative rates for a fixed initial momentum of

p = 20 GeV (left) and p = 100 GeV (right) as a function of momentum k of a radiated

parton. In each panel, four different radiative processes are plotted; q → qg, g → gg,

g → qq̄, q → qγ. The temperature T = 0.4 GeV, and the strong coupling αs = 0.3 is used.

Finite-size effect The AMY formalism is developed assuming an infinite, static thermal

QCD medium. Caron-Huot and Gale [210] generalized the AMY formalism consider-

ing a dynamically evolving medium to incorporate the effect of a finite formation time

of radiative processes, τf ∼ 1/g2T . In this work, the AMY radiative rate in momentum

space as shown in Eq. (5.8) is reformulated to capture the time dependence of the inelas-

tic radiation rate. The basic idea starts with benchmarking the results of the BDMPS-Z

radiative energy loss [168–170], in which a rigorous quantum treatment of the LPM effect

at finite-size QCD medium is elaborated. The total probability of radiation is given by

dP a
bc

dk
=
P
a(0)
bc (x)

πp
× Re

∫ ∞

0

dt1

∫ ∞

t1

dt2
∂

∂x
· ∂
∂y

(
p

2k(p− k)

)2

[K(t2,x; t1,y)− (vac)]x=y=0,

(5.9)

representing a parton a with energy p produced at time t1 = 0 split into a pair of partons b

and c with energy k and p−k, respectively. P a(0)
bc (x) represent the Altarelli-Parisi splitting

68



functions in vacuum as shown in Table 3.1. K(t2,x; t1,y) is a propagator associated with

the Hamiltonian of the process

H = δE(p⊥)− iC3, (5.10)

where δE(p⊥) and C3 are given by

δE(p⊥) =
pp2
⊥

2k(p− k)
+
m2
b

2k
+

m2
c

2(p− k)
− m2

a

2p
,

C3(x) =
Cb + Cc − Ca

2
v2(x) +

Ca + Cc − Cb
2

v2(
k

p
x) +

Ca + Cb − Cc
2

v2(
p− k
p

x). (5.11)

ma and Ca are respectively the thermal mass and the Casimir factor (CF = 4/3 for quarks

and CA = 3 for gluons) of the parton a. v2(x) is the dipole cross-section for colour singlet

qq̄ pair [211]. The vacuum term in the time integration in Eq. (5.9) corresponds to the

propagator in vacuum. The subtraction of the vacuum term accounts for the renormal-

ization of the parton wave function.

Eq. (5.9) is Fourier-transformed to transverse momentum space and re-organized to

remove non-compact time integration to implement the AMY results. The resulting rate

is given by [210]

dΓabc(t)

dk
≡ P

a(0)
bc (x)

πp
× Re

∫ t

0

dt1

∫
d2q⊥
(2π)2

∫
d2p⊥
(2π)2

iq⊥ · p⊥
δE(q⊥)

C(t)K(t,q⊥; t1,p⊥). (5.12)

dΓabc(t)/dk is the time-dependent inelastic radiation rate and the time integration of Eq. (5.12)

over t from 0 to∞ recovers dP a
bc/dk in Eq. (5.9). In transverse momentum space, the time-

dependent C(t) acts as the Boltzmann-like collision operator

Cψ(p⊥) =

∫

q⊥

C(q⊥)

{
Cb + Cc − Ca

2
[ψ(p⊥)− ψ(p⊥ − q⊥)]

+
Ca + Cc − Cb

2
[ψ(p⊥)− ψ(p⊥ +

k

p
q⊥)]

+
Ca + Cb − Cc

2
[ψ(p⊥)− ψ(p⊥ +

p− k
p

q⊥)]

}
, (5.13)

69



0 1 2 30.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

d
/d

pd
k

T = 0.4 GeVq qg
pinit = 50 GeV, krad = 5 GeV

AMY
Caron-Huot, Gale
MARTINI

0 1 2 3 4 5 60.0000

0.0001

0.0002

0.0003

0.0004

0.0005 q qg
pinit = 200 GeV, krad = 50 GeV

0 1 2 3
L (fm)

0.00

0.01

0.02

0.03

d
/d

pd
k

g gg
pinit = 50 GeV, krad = 5 GeV

0 1 2 3 4 5 6
L (fm)

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125
g gg
pinit = 200 GeV, krad = 50 GeV

Figure 5.7: The radiative transition rates with the formation time of radiation [210], com-

pared to those reproduced by the Monte-Carlo method in MARTINI. The horizontal axis

indicates the length of the non-evolving medium propagated since the birth of initial par-

ton. Each panel represents the two different radiative transition processes (the top and

bottom panels) and the two momentum configurations (the left and right panels) at the

background temperature of T = 0.4 GeV. In each panel, the original AMY rate is also

plotted for reference.

where ψ(p⊥) is a wave function in transverse momentum space and the function C(q⊥)

is associated with the differential elastic cross-section in Eq. (5.7). The AMY inelastic

radiation rates in Eq. (5.8) and the correction for the finite-size formation time of radiation

in Eq. (5.12) will be used for the radiative energy loss processes in this thesis.

Physically, the moment of hard splitting is ambiguously defined within the formation

time and the pair of the split partons are not resolved by the medium during this period.

70



Hence, the radiation rates are suppressed until the pair of partons are identified as indi-

vidual partons. Eq. (5.12) is the modified AMY rates in which the formation time of radi-

ation is taken into account. Unfortunately, solving Eq. (5.12) repeatedly for each parton in

the evolution is a time-consuming task. Instead, we designed a Monte-Carlo procedure

that closely follows the physics contained in Eq. (5.12) in our previous work [212] and

improved the reproducibility in this work.

To implement the formation time effects in the Monte-Carlo simulations, we intro-

duced a separation condition between the pair using the uncertainty principle,

∆r⊥∆p⊥ > C(k, T ), (5.14)

in the transverse direction to that of the original parton. With this condition, the pair of

partons are fully incoherent when their transverse distance is greater than the quantum

mechanically allowed uncertainty. The minimum uncertainty C(k, T ) is parameterized as

C(k, T ) = 0.25× (k/T )0.11, (5.15)

where k is the momentum of the emitted parton. Since the radiative processes in MAR-

TINI are collinear, the transverse distances ∆r⊥ and ∆p⊥ are driven by the random walk

motions of each parton in the response to successive elastic scatterings against thermal

partons. This parameterization is chosen to modify the original AMY rates that imitate

the solution of Eq. (5.12). This ensures that the radiation rate at early times of the ra-

diation is suppressed while the probability increases at later times as the two partons

individually get transverse kicks by elastic collisions in the thermal background.

Fig. 5.7 shows comparisons between the solution of Eq. (5.12) and the results of the

Monte-Carlo procedure implemented in MARTINI. The horizontal axis represents the

propagation length (time) through the brick medium with a temperature of T = 0.4 GeV

since the birth of initial parton. The four different configurations of the radiative transi-

tion are presented to see the effects of the formation time of radiation and the performance
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Figure 5.8: Example Feynman diagrams with time running from left to right for the elastic

processes included in the MARTINI energy loss model. From left to right, the figures

show qq, gq, qg, and gg processes, where qg denotes a process of a hard quark scattering

against to a thermal gluon. The symbol q implies either a quark or an anti-quark. The two

blue external propagators in each sub-figure indicate hard partons, while those with red

external propagators represent thermal partons.

of reproduction in MARTINI in various cases. The top panel shows the process of an initial

quark radiating a gluon q → qg, while the lower panel presents the transition of initial

gluon radiating another gluon g → gg. The momenta of the original and radiated par-

tons are pinit = 50 GeV, krad = 5 GeV, respectively, on the left panel and pinit = 200 GeV,

krad = 50 GeV on the right panel. In each panel, the original AMY rates, in which no

length (time) dependence is exhibited, are also shown for reference.

We observed that the radiative rates reproduced in MARTINI show gradual increases

at early time of the birth of the incoming parton. At later times, roughly after a forma-

tion time of radiation τf , the rates smoothly converge to the original AMY rates. The

behaviours adequately track the results in [210]. We verified that the formation time

τt parametrically increases with the radiated momentum, i.e., τf ∼
√
k/T 3 in the LPM

limit [210].

5.2.2 Collisional energy loss

Collisional energy loss plays an important role in momentum broadening of jet parti-

cles. This can be understood by space-like momentum transfer between two scattering

particles. Considering collisional energy loss in our research, we follow the approach de-

scribed in Ref. [203] to obtain the transition rate for 2 ↔ 2 elastic scatterings as shown in

72



Fig. 5.8. Neglecting scatterings between two hard partons, the general expression for the

transition rate in the massless limit is

d2Γ(p, ω, T )

dpdω
= dk

∫
d3k

(2π)3

∫
d3k′

(2π)3

2π

16pp′kk′
δ(p− p′ − ω)δ(k′ − k − ω)

× |M|2f(k, T )(1± f(k′, T ))), (5.16)

where p = |p| and p′ = |p′| are the absolute value of the three-momenta of incoming and

outgoing hard partons, respectively. k = |k| and k′ = |k′| are those of thermal partons.

The transferred energy ω satisfies the energy conservation condition, ω = p − p′ = k′ −
k, imposed by the delta functions. dk denotes the degeneracy of the thermal parton of

momentum k. The particle distribution functions f(k, T ) follow either the Fermi-Dirac

distribution for quarks or the Bose-Einstein distribution for gluons. The factor of 1 ±
f(k′, T ) is either Pauli blocking (−) for quarks or Bose enhancement (+) for gluons.

One of the techniques to calculate Eq. (5.16) is to replace the k′ integration with the

integration over exchanged momentum q = k′ − k [213, 214]. In the limit p → ∞ and by

placing p on the x-z plane and q on the z-axis, Eq. (5.16) reduces to

d2Γ(p, ω, T )

dpdω
=

dk
(2π)3

1

16p2

∫ p

0

dq

∫ ∞
q−ω
2

dk θ(q − |ω|)

×
∫ 2π

0

dφkq|pq
2π

|M|2f(k, T )(1± f(k′, T )), (5.17)

where φkq|pq is the angle between the k× q and the p× q plane. The lower bound of the k

integration kmin = (q−ω)/2 is the minimum value of k, which is kinematically allowed to

satisfy the on-shell condition for the four partons. The θ function in Eq. (5.17) imposes the

momentum restriction, −q < ω < q, ensuring the momentum transfer is always space-

like.
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Figure 5.9: Feynman diagram for 2→ 2 soft scatterings that contributes to the collisional

energy loss rate. P and K are the four-vectors of incoming hard and thermal partons,

respective. P ′ and K ′ are those of outgoing partons. The upper and lower lines are either

quark or gluon legs. The shaded bulb in the middle of the gluon propagator represents

the Hard Thermal Loop (HTL) resummation [215, 216].

The transition rate in Eq. (5.17) is evaluated in the limit where the momentum transfer

is soft ∼ gT . In this limit, the squared matrix element, e.g., for qq → qq scattering, reads

|M|2qq =
8

9
g4 Tr

(
/Pγµ /P

′
γν
)

Tr
(
/Kγα /K

′
γβ
)
Dµα(Q)D∗νβ(Q), (5.18)

where the capital letters denote the four-momenta. The Hard Thermal Loop (HTL) re-

summed gluon propagator [215, 216] in the Coulomb gauge, shown in Fig. 5.9, is

Dµν(Q) = δµ0δν0∆L(ω, q) + P µν
T ∆T (ω, q), (5.19)

where P ij
T = δij − q̂iq̂j is the only non-zero component of the transverse projection oper-

ator. The longitudinal and transverse components of the gluon propagators are, respec-

tively,

∆L(ω, q) =
−1

q2 −m2
g

[
x ln

(
x+1
x−1

)
− 2
] ,

∆T (ω, q) =
−1

q2(x2 − 1)−m2
g

[
x2 + x

2
(1− x2) ln

(
x+1
x−1

)] , (5.20)
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Figure 5.10: The elastic collision rates in Eq. (5.17) as a function of momentum p of a

hard parton (left) and of temperature of background medium (right). In each panel, four

different elastic scattering processes are plotted; qq → qq, gq → gq, qg → qg and gg →
gg. For ij → ij process, i and j denote a hard and thermal partons, respectively. The

temperature in the left panel is set to T = 0.4 GeV, and the initial momentum is set to

p = 100 GeV. The strong coupling αs = 0.3 is used.

where x = ω/q. Substituting Eq. (5.19) and Eq. (5.20) into Eq. (5.18) and integrating in

Eq. (5.18) over the angular variable, we obtain

∫
dφkq|pq

2π
|M|2qq =

8

9
g4p2

[ {
(k + k′)2 − q2

}
|∆L|2

+
1

2

(
1− ω2

q2

)2 {
(k + k′)2 + q2

}
|∆T |2

]
. (5.21)

This result, derived from the soft momentum transfer limit q ∼ gT , is then applied to the

whole transferred momentum region4. Inserting Eq. (5.21) into Eq. (5.17) and numerically

evaluating the integrals, we finally obtain the collisional energy loss rates.

4This approximation is labelled as ‘method B’ in Ref. [203]. Detailed descriptions and validation of the
approximated method can be found in the reference.

75



Figure 5.11: Example Feynman diagrams with time running from left to right for the

conversion processes in the MARTINI energy loss model. From the left to right panel,

an annihilation, a Compton scattering, and a photon conversion process are shown. For

the annihilation and Compton scattering processes, time running in both directions is

possible. The colour scheme for the external propagators follows the convention shown

in Fig. 5.8.

Fig.5.10 shows the elastic rates in Eq. (5.17) versus momentum of an initial parton

(left) and the temperature of the QGP (right) for the different elastic scattering processes.

Due to the larger Casimir factor for gluons, the scattering processes involving gluons have

higher rates than those involving quarks only. Similar to the radiative rates, the collisional

rates also have a monotonic dependence on p and moderate dependence on T .

5.2.3 Conversion rate

Besides the scattering processes in which the species of participants remain unaltered,

MARTINI also handles conversion processes. Typical examples of annihilation and Comp-

ton processes for q ↔ g as well as photon conversion processes q → γ are shown in

Fig. 5.11. In the limit p � T , the transition rates for those conversion processes are given

by [1],

dΓconvq→g(p, T )

dp
= CF

2πα2
sT

2

3p

(
1

2
ln
pT

m2
q

− 0.36149

)
, (5.22)

dΓconvg→q(p, T )

dp
= Nf

Nc

N2
c − 1

dΓconvq→g
dp

, (5.23)

dΓconvq→γ(p, T )

dp
=
(ef
e

)2 2παeαsT
2

3p

(
1

2
ln
pT

m2
q

− 0.36149

)
, (5.24)
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Figure 5.12: Conversion rates in Eq. (5.22), (5.23), and (5.24) as a function of momentum p

of a hard parton (left) and of the temperature of the background medium (right). In each

panel, four different conversion processes are plotted: q → g, g → q, and q → qγ where q

is either u, d or s quarks. The temperature in the left panel is set to T = 0.4 GeV and the

initial momentum is set to p = 100 GeV. The strong coupling αs = 0.3 is used.

The transition rates for q → g and g → q in Eq. (5.22) and Eq. (5.23) differ by the factors

from the colour and flavour states of the initial and final species. The transition rate for

photon conversion q → γ in Eq. (5.24) is analogous to the q → g rate in Eq. (5.22) where

the electromagnetic coupling αe and the quark charge ef of flavour f are used for the

photon vertex. mq = g2T 2/6 is the thermal quark mass. Currently, we neglect energy loss

during the conversion processes for simplicity, resulting in conversion rates independent

of ω.

Fig.5.12 shows the conversion rates in Eq. (5.22), (5.23), and (5.24) versus momen-

tum of an initial parton (left) and the temperature of the QGP (right) for the different

conversion processes. We observed that the conversion rates between q and g are nearly

identical, while the photon conversion rates are highly suppressed. We also differentiated
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the photon conversion processes from u quarks and d, s quarks, which differ by electric

charges of the quarks ef . Similar to the qq̄-pair production and photon radiation rates

shown in Fig. 5.5, the conversion rates also moderately decrease at higher momentum

and increase at higher temperature.

5.3 New developments

5.3.1 QCD running coupling

As discussed in Ch. 2.1, the dependence of the strong coupling constant αs(µ2
R) on a renor-

malization scale µR is an important feature of perturbative QCD. The heavy-ion collision

programs at the RHIC and the LHC involve energy scales in the range of 100 GeV∼ 1 TeV,

providing a good opportunity to explore the dynamics of quarks and gluons in the weak

coupling limit. At such high energy scales, it is natural to employ the running coupling

scheme in Eq. (2.15) with the β-function coefficient β0 in Eq. (2.18),

αs(µ
2
R) =

4π

β0 ln
(
µ2
R/Λ

2
QCD

) , (5.25)

β0 = 11− 2

3
nf , (5.26)

where the number of flavours nf is fixed to 3 since the massless approximation is the

prerequisite for the energy loss models in MARTINI and the dimensional scale ΛQCD = 200

MeV is used. We impose a cutoff at αs = 0.45 to regulate the divergence in the limit,

µR → ΛQCD. The running scale µR is substituted by the average momentum transfer
√
〈p2
⊥〉, which is estimated as

µR →
√
〈p2
⊥〉 =




κr(q̂p)

1
4 : radiative processes [2], (5.27)

κe
√
q̂λmfp : elastic processes. (5.28)
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For the radiative processes,
√
〈p2
⊥〉 is the momentum transfer between original and radi-

ated partons. To obtain Eq. (5.27), we combine the following two equations

q̂ =
〈p2
⊥〉
τf

, (5.29)

τf ∼ p/〈p2
⊥〉, (5.30)

where Eq. (5.29) is the definition of the average momentum transfer per unit length q̂ and

Eq. (5.30) can be derived from the geometrical relationship between original and radiated

partons. Eq. (5.28) follows Eq. (5.29) where τf is replaced by the mean-free path of the

elastic processes λmfp.

In the previous version of MARTINI [2,217], the running coupling scheme was applied

to the vertex of hard splitting and the coupling constant for elastic scattering were fixed.

q̂ in Eq. (5.27) was parameterized using p and T to reproduce the relative strength of

the coupling constant compared to αs(p = 10 GeV). The new version uses a rigorous

estimation of q̂ in Eq. (5.27) for radiative processes and implements the running coupling

scheme for the elastic processes as shown in Eq. (5.28).

The average momentum transfer per unit length q̂ in Eq. (5.27) and Eq. (5.28) is ana-

lytically derived in Ref. [117], given by

q̂ =

∫ qmax

d2q⊥q
2
⊥
dΓelas
d2q⊥

= CRαs,0m
2
DT ln

(
1 + q2

max/m
2
D

)
, (5.31)

with m2
D = g2T 2(2Nc + Nf )/6 and qmax ≈ 6pT . The elastic collision rate that enters in

Eq. (5.31) is given by
dΓelas
d2q⊥

=
CR

(2π)2

g2m2
DT

q2
⊥(q2

⊥ +m2
D)
. (5.32)
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Figure 5.13: Running coupling constant αs(µ2
R; p, T ) for the radiative (quark and gluon)

and elastic processes as a function of momentum at T = 0.5 GeV (left), T = 0.2 GeV

(right). The maximum value of αs = 0.45 is fixed to avoid infra-rad divergence at µR →
ΛQCD.

The mean free path of the elastic scatterings λmfp in Eq. (5.28) can be obtained by

λmfp =
1

Γelas
, (5.33)

Γelas =

∫ qmax

qmin

d2q⊥
dΓelas
d2q⊥

= CRαs,0T

[
ln

(
1 +

m2
D

q2
max

)
− ln

(
1 +

m2
D

q2
min

)]
. (5.34)

The IR cut-off of the integration in Eq. (5.34) is set to qmin = 0.05T to be consistent with

the minimum momentum transfer used for the calculations of the total elastic rates [203]

implemented in MARTINI.

The prefactors κr and κe are the free parameters of our model to determine the pro-

portionality between the scale µR and averaged momentum transfer estimated in Monte-

Carlo simulations for radiation and scattering, respectively. In this thesis, we used κr =

1.5, κe = 4.5. The reference coupling αs,0 in Eq. (5.31) influences the running coupling for
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Figure 5.14: The renormalization scale of running coupling constant µR(p, T ) for the ra-

diative (quark and gluon) and elastic processes as a function of momentum at T = 0.5

GeV (left), T = 0.2 GeV (right).

radiation and is set to 0.3. The αs(µ2
R) for elastic scatterings are not affected by the choice

of the fixed αs,0 since it is cancelled out by q̂ and λmfp.

The quadratic Casimir CR (4/3 for a quark and 3 for a gluon) is cancelled in the final

expression of µR for scattering in Eq. (5.28), but not for radiation in Eq. (5.27). This natu-

rally introduces a species dependence in the running coupling constant for the radiative

processes. The physical argument for this is that the greater colour factor for gluons leads

to greater momentum transfer in each interaction, while the strength of the coupling is

weaker due to the asymptotic behaviour of the strong coupling constant.

The running coupling constant αs(µ2
R; p, T ) in Eq. (5.25) with Eq. (5.27) or Eq. (5.28)

versus momentum of a hard parton is shown in Fig. 5.13 at T = 0.5 GeV (right) and

T = 0.2 GeV (left). As mentioned above, the running coupling constant for radiation is

distinguished by the quadratic Casimir of species. For the radiative processes, we found

the running coupling is 10% higher for quarks than for gluons at p = 1 GeV, T = 0.5

GeV and this gap decreased at higher momentum scales. The coupling for radiation runs

faster than that for elastic scattering. Consequently, the relative contribution of the ra-
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diative processes on jet modification would decrease at higher energy scales. Compar-

ing the left and the right panels in Fig. 5.13, the coupling is weaker at the early time of

the jet evolution due to high temperatures of the background medium, while it gradually

strengthened as the system cools down at later times. Fig. 5.14 shows the estimated renor-

malization scale µR(p, T ) versus parton momentum p at T = 0.5 GeV (right) and T = 0.2

GeV (left). Similarly to Fig. 5.13, the three different curves represent µR(p, T ) for radia-

tive (quark and gluon) and elastic processes. As expected from the analytic expressions,

we found that µR(p, T ) for radiation has larger dependence on momentum than that for

scattering. The difference in µR(p, T ) between the radiative and elastic processes becomes

significant at higher momentum, p > 100 GeV. We also observed that the scale µR(p, T )

decreases at lower temperatures.

5.3.2 Thermal recoils

When a jet propagates through a droplet of hot and dense QCD medium, energetic par-

tons from the jet and constituents of the QGP exchange their energies and momenta

through successive elastic scatterings. The lost energy and momentum from the jet are

deposited into the medium, creating collective flows propagating along with the fast-

moving jet [218–224]. The jet-induced flows contain energy and momentum originating

from the jet partons, enhancing the soft hadron production near the jet axis. In the kinetic

theory approach, this medium response to the jet energy loss is characterized by the con-

stituent partons in the thermalized medium scattering with the jet partons. In traditional

analyses of jet quenching, hadronic observables, e.g., the nuclear modification factorRAA,

are dominated by energetic hadrons and are relatively insensitive to soft processes. How-

ever, since the enhanced soft hadron yield is captured by the jet reconstruction, jet observ-

ables are significantly affected by the distribution of the lost energy [225–228]. MARTINI

implements the evolution of recoiling partons based on the kinetic theory prescription to

study the effect of thermal recoils on jet observables.
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Figure 5.15: Illustration of a 2 ↔ 2 elastic scattering process, which creates a thermal re-

coiling particle of momentum K ′. The momenta of hard and soft partons are represented

by blue and red, respectively. By convention, the momentum transferQ flows from a hard

parton to a thermal parton.

The elastic scattering processes in MARTINI involve space-like momentum transfer Q

as shown in Fig. 5.15. We first sample the four-momentum transfer Q(ω,q) and then sam-

ple a thermal parton K(k,k). The four-momentum of a recoiling parton from a collision

is determined by the four-momentum sum of the momentum transfer Q and the momen-

tum of a sampled thermal parton K. In Sec. 5.2, we assumed that all partons in MARTINI

jet evolution are massless and on-shell, i.e., P 2 = K2 = 0. The thermal parton is sampled

such that the recoil parton also satisfies the on-shell condition, with |q| = q and |k| = k,

K ′2 = (K +Q)2

= 2KQ−Q2

= 2(kω − 2kq cos θ) + ω2 − q2

= 0, (5.35)

which constrains the lower bound of the kinematic range of k,

kmin =
q − ω

2
, (5.36)

when cos θ = −1. This lower limit indicates how much the momentum transfer Q is away

from on-shell. We use the rejection sampling method to sample the thermal momentum
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Figure 5.16: The energy distribution of hard partons (upper left), recoiling partons (upper

right), and the sum of the hard and recoil partons (lower centre). The horizontal plane

represents the azimuthal angle φ and rapidity η axis while the vertical axis indicates pT of

partons.

k ∈ [kmin,∞), which follows either the Fermi-Dirac or the Bose-Einstein distribution.

Sampling k determines the angle θ between k and q.

If the three-momentum of the recoiling parton is greater than a certain kinematic cut

pcut, it is included in the list of partons to evolve through the QGP medium. Newly

added particles, thermal recoils or medium recoils, can further participate in jet-medium

interactions. One can set pcut either to be proportional to the local temperature of the fluid

cell or to a fixed value in energy scale. Those whose momenta are lower than pcut should
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be treated as a source of medium response to the jet, which is not yet implemented in

MARTINI.

The energy distribution of hard parton including thermal recoils in a typical MARTINI

event is illustrated in Fig. 5.16. The upper left figure shows hard partons after jet evolution

through a QGP medium, while the recoiling partons produced by elastic processes are

shown in the upper right figure. The inclusive parton distribution is shown in the lower

panel. We observed that the distribution of thermal recoils spread out around the di-jet

peaks, confirming momentum broadening effects due to scattering processes. We also

noticed that thermal recoils are a richer source than radiated partons at peripheral areas

of jets. This effect will be quantified and discussed in detail in Sec. 6.5 by examining jet

structure observables.

Notably, the inclusion of recoils causes an increase in the total energy of the system,

e.g., those in the parton list for jet evolution in MARTINI, because of additional contribu-

tion of sampled thermal partons. To remove the influence of the background component,

MARTINI keeps the information of the sampled thermal partons. The energy-momentum

of those artificial partons, so-called holes, are subtracted at the analysis level. There ex-

ists a caveat that the holes evolve by free-streaming without any elastic scattering against

other thermal partons.

5.4 Monte-Carlo implementation

The general flow of the MARTINI program and Monte-Carlo implementation of each com-

ponent are described as follows:

Jet production An initial hard scattering and subsequent parton shower in vacuum are

generated by PYTHIA. The species to collide are decided by the ratio of the number of

protons in each nucleus; for heavy-ion collisions, the combinations of proton-proton,

proton-neutron, and neutron-neutron collisions are possible. Since PYTHIA does not pro-
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vide the option to change the collision system after its initialization, MARTINI employs

the modified version of PYTHIA to specify beam species while the events are iterated.

The HadronLevel flag in PYTHIA is by default off to prevent PYTHIA from processing

hadronization before medium evolution.

Jet evolution in vacuum After a collision event is initialized, PYTHIA performs initial

state radiation (ISR), final state radiation (FSR), and multiparton interaction (MPI). Par-

tons created in the PYTHIA parton shower enter the time-ordered jet evolution stage.

MARTINI accepts only light quarks (u, d, and s) since the energy loss models imple-

mented in MARTINI are based on massless approximation. The partons passed to the jet

evolution stage are assumed to be massless and on-shell. The position of the initial hard

scattering is randomly sampled from the initial energy or entropy density distribution

by giving weight proportional to the density. The partons created by the PYTHIA parton

shower are placed at the sampled position and free streamed according to their momen-

tum until the initialization time τ0 of the QGP. Here we assume that the vacuum shower

takes place before the QGP stage and there is no interference between the vacuum and

the in-medium shower5.

In-medium shower Once the hydrodynamic medium emerges, i.e., τ > τ0, the vac-

uum shower switches to an in-medium shower. In MARTINI, partons can evolve if their

momenta exceed a certain threshold6, typically chosen to pmin ∼ 4T . While a parton prop-

agates through the medium, it is Lorentz-boosted into the rest frame of the hydrodynamic

5This assumption implies that the virtualities (off-shellness) of all partons have to decrease down to a
scale of order Q2 ∼ 1 GeV2 before τ < τ0 so that the vacuum shower ends before the QGP is initialized.
More recent work [229] showed that there is a large potential overlap between the vacuum and the in-
medium shower, e.g., see Fig. 1 in Ref. [229]. This requires that an energy loss model handles high-virtuality
parton showers in the medium as well as in-medium showers for on-shell partons, which is challenging to
achieve. The purpose of [229] is to combine multiple energy loss models, each of which engages in a
different virtuality regime of jet evolution. For this study, we stick to this assumption as we utilize a single
energy loss model.

6This is because the energy loss models implemented in MARTINI are constructed in the asymptotic
limit. The momentum cut, pmin ∼ 4T , is to avoid any unreliable behaviours at the energy scale ∼ ΛQCD,
while to preserve features of parton energy loss as much as possible.
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fluid cell where the parton is located. The boost factor is determined by the fluid velocity

v in Eq. (4.17) and (4.18), which is provided by the hydrodynamic calculations. In the

frame of the fluid cell, transition rates are computed according to the local temperature

of the cell. The total probability for a parton of momentum p to undergo any energy loss

process is determined by

P (p,∆τ) = ∆τ
dΓtotal(p, T )

dp

= ∆τ

[∫
dk
d2Γrad(p, k, T )

dpdk
+

∫
dω
d2Γelas(p, ω, T )

dpdω
+
dΓconv(p, T )

dp

]
, (5.37)

where ∆τ is time step in a unit of proper time. The transition rate of each process can

be found in Eq. (5.8) (radiative), Eq. (5.17) (elastic), and Eq. (5.22) (conversion). The time

step ∆τ is set to a small number to guarantee the total probability does not exceed 1.

If a random number x ∈ (0, 1) is smaller than the total probability x < P (p,∆τ), then

it decides which process occurs according to the relative probabilities of each process that

the given parton can undergo. In case of radiative processes, we sample the radiated en-

ergy assuming that radiation processes are collinear. This is a good approximation in the

weak coupling limit since the opening angle of radiation, of order g [181], is suppressed.

For elastic processes, a space-like four-momentum transfer Q = (ω,q) is sampled with

constraints such that |ω| < |q|. In case the recoil feature is on, a thermal parton that

satisfies Eq. (5.36) is sampled to create a thermal recoiling parton. We use the rejection

sampling method to sample those quantities. Once parton information is updated ac-

cordingly, the transition processes are finished and the resulting outgoing parton(s) is

boosted back into the lab frame for further propagation.

Hadronization The in-medium shower terminates when all fluid cells cool down to a

transition temperature Tc. Then information on final partons is passed to PYTHIA for

hadronization. Since we use the Lund string model in PYTHIA, it is essential to keep track

of colour strings of all partons during the in-medium shower. Partons originating from
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the PYTHIA parton shower, thermal recoils, and holes are separately hadronized through

the Lund model to distinguish sources of hadrons for analysis purposes. The final-state

hadrons converted from the hadronization process are collected for further analysis pur-

poses.

5.5 Summary

In this chapter, we introduced MARTINI, a Monte-Carlo event generator for heavy-ion

collisions to study jet energy loss. In Sec. 5.1, we discussed the time-ordered evolution

of the momentum distribution in Eq. (5.1) and Eq. (5.2), key components in MARTINI, as

well as MARTINI’s modular features. Sec. 5.2 briefly reviewed the jet energy loss models

implemented in MARTINI, including the AMY radiative energy loss formalism, collisional

processes, and conversion processes. Apart from the energy loss models, we improved

MARTINI by adopting the running coupling scheme and thermal recoils as discussed in

Sec. 5.3 for more realistic heavy-ion simulation at higher energy scales. Finally, the de-

tailed Monte-Carlo methodology to solve Eq. (5.1) and Eq. (5.2) was covered in Sec. 5.4.

In the next two chapters, we will show MARTINI results of jet observables that are sen-

sitive to jet quenching and modification due to the QGP medium created in heavy-ion

collisions.

88



Chapter 6

Jet modification in Pb+Pb collisions

In the previous chapter, we discussed the Monte-Carlo event generator for heavy-ion col-

lisions MARTINI with full details of theoretical energy loss models. Its primary purpose is

to quantify the jet-medium interplay at the parton level and provide a profound under-

standing of jet quenching in the QGP. To achieve a realistic environment of jet evolution,

we have incorporated the new running coupling scheme and creation of thermal elastic

recoils in Sec. 5.3. Implementing jet energy loss prescriptions into the Monte-Carlo event

generator is described in Sec. 5.4.

In this chapter, we investigate jet quenching in large colliding systems e.g., Pb+Pb

collisions, at LHC energy scales. This involves the theory-to-experiment comparisons

to support the findings from experimental measurements provided by the RHIC and the

LHC. Sec. 6.1 provides initial conditions of the jet evolution and hydrodynamic modelling

of the QGP medium for jet-medium interaction. We introduce the full jet reconstruction

techniques [230] provided by FASTJET [231] to find the original jet partons produced by

primary hard scatterings. This chapter addresses the analyses of reconstructed jet observ-

ables together with single hadron observables. In Sec. 6.3 we investigate the effects of the

running coupling and the formation time of radiation using hadronic and jet observables.

Sec. 6.4 presents the systematic study of jet energy loss at two different centrality classes

and with various values of the jet radius. The study of jet structure modifications due to
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medium interaction yield plenty of insights into jet quenching. We show the results of

selected jet structure observables in Sec. 6.5. Sec. 6.6 summarizes this chapter.

6.1 Initial conditions and hydrodynamic modelling

The MARTINI simulation requires three key components of jet evolution in heavy-ion colli-

sions: a parton list after vacuum shower, the initial positions of jets, and space-time infor-

mation of the QGP medium. PYTHIA creates a parton shower through the built-in MAR-

TINI interface (see Sec. 5.4 for details). For realistic jet production, we use CTEQ6L [113]

parton distribution function and EPS09LO [121] nuclear PDFs. MARTINI, however, does

not incorporate the initial condition module for jets and hydrodynamic modellings. Users

should, therefore, specify the paths to those external files in the MARTINI setup file.

To determine the initial positions of jets embedded into the evolution, we first assume

that the density distribution of jets is correlated with the energy density at the initial stage

of the collision. This is a good approximation because the initial energies are deposited

from binary collisions, which also produce high-energy jets. Then the location of each

jet is sampled in the transverse plane with weights proportional to the energy density

provided by IP-Glasma [3]. The longitudinal position in the z direction is fixed to zero at

τ = 0.

Fig. 6.1 shows the transverse profiles of initial energy density of four different central-

ity classes of Pb+Pb collisions at
√
sNN = 2.76 TeV. The bumpy shapes of the density pro-

files reflect the realistic event-by-event fluctuations of initial parton interaction between

the two nuclei. The randomly distributed hot spots (red) represent higher chances of jet

production at the locations. In peripheral centralities, the size of the QGP decreases be-

cause of the smaller overlap zone of collisions. Our hydrodynamic model uses the initial

energy density profile as an input to the simulations.

MUSIC, state-of-the-art viscous 3 + 1 dimensional hydrodynamic model [100], per-

formed the hydrodynamic simulations in this work. We used the parameterized equa-
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Figure 6.1: The transverse profile of the energy density at the initial stage of collisions

for
√
sNN = 2.76 TeV Pb+Pb collisions. Each figure shows different centrality classes.

The colour bar represents the relative energy density at a given location. The profile is

provided by IP-Glasma model [3].

tions of state provided by Huovinen and Petreczky (s95p-v1) [232] for
√
sNN = 2.76 TeV,

and the HotQCD Collaboration [50] for 5.02 TeV collisions. MUSIC generates information

of the three velocity and temperature of the fluid cell at each 3+1D space-time grid, which

is then imported by MARTINI for jet-medium interaction.
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Figure 6.2: Temperature distributions in the transverse plane at mid-rapidity (η = 0)

at different times obtained by MUSIC [100] simulations for 0-5% Pb+Pb collisions at
√
sNN = 2.76 TeV. The initialization time of hydrodynamic simulation is τ = 0.4 fm and

the freeze-out temperature of the system is Tc = 0.165 GeV. The white background repre-

sents either the medium is absent or the temperature is lower than Tc. As time goes on,

the thermalized medium cools down to Tc and the whole medium is frozen out at τ ∼ 12

fm.

Fig. 6.2 illustrates the different time slices of the temperature evolution in the trans-

verse plane at mid-rapidity (η = 0) obtained from a 0-5% Pb+Pb collision at
√
sNN = 2.76

TeV. The hydrodynamic simulation is initialized at τ0 = 0.4 fm, and the chemical freeze-
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out temperature, where the phase transition to the hadronic state occurs, is Tc = 0.165

GeV. The white background shows that either the medium is absent or the temperature

of the fluid cell at the position is lower than Tc. The maximum temperature Tmax is rep-

resented on the bottom-left side of each panel. We found that the highest temperature is

around Tmax = 0.65 GeV at the beginning of the evolution and decreases as the medium

evolves. Since we used the event-by-event fluctuating initial entropy density for the ini-

tial condition of MUSIC simulation, the temperature profiles also reflect the fluctuating

features.

6.2 Hadronic and jet observables

The main observable that we present in this paper is the nuclear modification factor RAA

in Eq. (4.22). The Lorentz invariant charged hadron differential yield, often referred to as

pT spectrum is given by

E
d3N ch(pT )

d3p
=

1

2πpT

d2N ch(pT )

dpTdη
, (6.1)

which has a form of Eq. (4.8) but averaged over azimuthal angle. The Lorentz invariant

charged hadron differential yield is related to the invariant differential cross-section

E
d3σch(pT )

d3p
=

[
E
d3N ch(pT )

d3p

]
σNNinel , (6.2)

where σNNinel is the inelastic nucleon-nucleon cross-section. The simplest task to perform

in the experimental aspect is to measure the invariant charged hadron differential yields

from Pb+Pb and pp collisions and construct the nuclear modification factor for charged

hadrons

Rch
AA(pT ) =

1

〈Ncoll〉
d2N ch

AA(pT )/dpTdη

d2N ch
pp (pT )/dpTdη

, (6.3)

where Ncoll is the number of binary nucleon-nucleon collisions in Pb+Pb collisions.

Perturbative QCD provides a theoretical foundation to calculate parton energy loss

from first principles. However, hadronic observables may blur the important features at
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the parton level because of non-perturbative effects such as hadronization. This issue mo-

tivated the invention of full jet reconstruction techniques [230], which combines hadronic

jet fragments in the final state. The idea is to retrieve the original partons that initiated

the parton shower. Since jet reconstruction clusters four-momenta of hadrons within the

defined area, reconstructed jets are less sensitive to non-perturbative effects. Moreover,

full jets offer differential information on jet-medium interplay since they contain both

leading and sub-leading hadrons. Jet clustering algorithms widely used in jet analyses,

e.g., longitudinally invariant kT [233, 234], inclusive Cambridge/Aachen [235, 236], and

anti-kT [237], are available in the FASTJET3 [231] package. One can cluster jets from the

measured hadrons and obtain the inclusive jet yield

E
d3N jet(pT )

d3p
=

1

2πpT

d2N jet(pT )

dpTdη
. (6.4)

The jet nuclear modification factor is then evaluated using the jet cross-section from

Pb+Pb and pp collisions

Rjet
AA(pT ) =

1

〈Ncoll〉
d2N jet

AA(pT )/dpTdη

d2N jet
pp (pT )/dpTdη

. (6.5)

Throughout this thesis, we used the anti-kT jet clustering algorithm to cluster jets from

final state hadrons, which is the most commonly used technique in experiments.

Using the definitions of the pT spectra shown in Eq. (6.1) and Eq. (6.4), we computed

charged hadron and jet pT spectra in
√
sNN = 2.76 TeV pp collisions. Since the jet produc-

tion rate in the transverse momentum space is a steeply falling function, ∼ p−nT with pos-

itive n, producing enough statistics at a high pT scale requires a huge number of Monte-

Carlo events. To achieve high efficiency in the analysis, we divide the kinematically-

allowed phase space1 into sub-space intervals. Then we generate Monte-Carlo events of

∼ 104 with the kinematic sub-interval as an input. In the analysis stage, we combine the

1In PYTHIA this can be controlled by phase space parameters, PhaseSpace:pTHatMin and PhaseS-
pace:pTHatMax. Practically we set finer grid at lower p̂T and coarse grid at higher p̂T up to the half of
the colliding energy scale, which is the maximum energy of momentum transfer in initial hard scatterings.
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Figure 6.3: The Lorentz invariant charged hadron differential yield averaged over pseu-

dorapidity |η| < 1 (left) and invariant jet differential cross-section in |η| < 2 at
√
sNN =

2.76 TeV pp collisions. For the jet clustering algorithm, we used the jet radius parameter

R = 0.4. The green lines and the blue dots correspond to the results obtained by MARTINI

simulations and experimental data from the CMS collaboration [116, 187], respectively.

The lower panel shows the ratio between MARTINI and the CMS results. The green bands

around the lines show the statistical uncertainties.

results obtained from each sub-interval with weight by corresponding jet cross-section

computed by PYTHIA.

Fig. 6.3 presents the MARTINI results for pp collisions where the hydrodynamic medium

is expected to be absent. The left figure shows the invariant charged hadron differential

yield averaged over pseudorapidity space |η| < 1, and the right figure is the invariant jet

cross-section averaged over |η| < 2. We used the radius parameter R = 0.4 for the jet

clustering algorithm. The green bands around the lines denote the statistical uncertain-

ties, which are reduced by accumulating corresponding MARTINI Monte-Carlo events.
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We compare our MARTINI calculations to the corresponding CMS [116,187] results. We

present their ratio in the bottom panel of each plot. Each ratio shows that our results of pT

spectra at pp collisions deviates from the experimental data by at most 20%. The MARTINI

simulations through PYTHIA reproduce the pp measurements within the deviation less

then 20%. Thus our pp results serve as a legitimate baseline for our jet quenching analysis

in heavy-ion collisions throughout this thesis.

6.3 Effects of running coupling and the formation time of

radiation

In the previous chapter, we illustrated how we implemented the running coupling scheme

and the formation time of radiation in MARTINI. In this section, we show the effects of

each implementation in observables and demonstrate how they improve the descriptions

of measurements.

Fig. 6.4 shows the charged hadron nuclear modification factor RAA for 0-5% Pb+Pb

collisions at
√
sNN = 2.76 TeV. The four lines with different colours correspond to the

MARTINI simulation results with unique combinations of the formation time of radiation

(the last part of Sec. 5.2.1) and running coupling scheme (Sec. 5.3.1). For the case with the

fixed coupling configurations, we set αs = 0.36 to describe the data at pT ∼ 10 GeV. The

shaded bands around each line correspond to the statistical uncertainties.

The result with both the features (blue) agrees well with the CMS measurements [187],

while that with none of the effects yields stronger energy loss of the charged hadron pro-

duction rate with the weaker pT dependence. The two features considerably decrease the

energy loss of jets in the QGP. First, the running coupling scheme reduces the interac-

tion strength between jets and the QGP. Fig. 5.13, for example, shows that the coupling

constant αs(µR; p, T ) decreases as the parton momentum and temperature increase. This

reduced αs(µR; p, T ) directly influences the AMY radiative transition rates in Eq. (5.8) and

the elastic scattering rates in Eq. (5.17) and Eq. (5.21), leading to smaller quenching for
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Figure 6.4: Charged hadron nuclear modification factor RAA for 0-5% Pb+Pb collisions at
√
sNN = 2.76 TeV. The blue line shows the MARTINI result, including both effects, while

the red line shows the result without those effects. The orange and green lines include

running coupling and finite formation time, respectively. We compare our MARTINI to

the CMS measurements [187].

more energetic partons. Furthermore, the temperature dependence of αs(µR; p, T ) results

in weaker quenching at an early time of the evolution. The quenching effect becomes

stronger at later times with higher QGP temperatures.

Second, the formation time of in-medium radiation reduces the radiative transition

rates at the early time since the birth of the radiated parton, shown in Fig. 5.7. The for-

mation time increases like τf ∼
√
k/T 3, where k is the momentum of the radiated parton.

However, a typical formation time of radiation should not be large since Fig. 5.6 shows

that the distributions of radiated partons have a peak at k ∼ 0. We observed that the run-

ning coupling has a dominant influence on the jet quenching and pT dependence of RAA

while the effect caused by the finite-size formation time of radiation is relatively small.
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Figure 6.5: Inclusive jet nuclear modification factor RAA with R = 0.4 for 0-5% central

Pb+Pb collisions at
√
sNN = 2.76 TeV. The colour scheme for the four lines is same as

that in Fig. 6.4 We compare our results to the measurements from the CMS [116] and

ATLAS [114] collaborations.

With the running coupling scheme turned on, the formation time only affects the RAA

values at low pT (10 ∼ 30 GeV). This is because their effects are not independent of each

other, but are rather convolved. Our results suggest that the two features implemented in

MARTINI improve the descriptions of the charged hadron RAA at
√
sNN = 2.76 TeV.

In Fig. 6.5, we present the MARTINI results of the jet RAA for 0-5% central Pb+Pb colli-

sions at
√
sNN = 2.76 TeV with the same setups as shown in Fig. 6.4. We used the radius

parameter R = 0.4 and passed a complete set of final-state hadrons, i.e., hadrons from the

initial parton shower, recoils, and holes, to FASTJET. As mentioned earlier, the fictitious

hadrons that correspond to the holes are subtracted from the jet signals at the analysis

stage. Similar to the case of the charged hadron RAA calculations, both the effects con-

tribute to smaller jet quenching but result in monotonic magnitude shifts in transverse
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momentum space in the jet RAA. The finite-size effects of radiation induce increases of

the jet RAA over the entire pT range because those jets consist of low pT hadrons (30-50

GeV). Comparing to the measurements from the CMS [116] and ATLAS [114] collabora-

tions, we achieved a better agreement when including the two effects. This is a consistent

trend with what we found in the charged hadron analysis. We notice that the CMS mea-

surement exhibits more quenching at lower pT than the ATLAS result in 0-10% possibly

due to the centrality difference.

6.4 Systematic analysis of jet quenching

From the analysis presented in Sec 6.3 we concluded that the two effects, the running cou-

pling scheme and the formation time of in-medium radiation, lead to a better agreement

with the measurements of the charged hadron and the jet RAA. Now we shall use this

MARTINI configuration with the initial conditions shown in Sec. 6.1 as our baseline for

further investigations of jet quenching in heavy-ion collisions.

This section presents the in-depth analysis of jet quenching using more differential

measurements of the charged hadron and the jet RAA provided by the heavy-ion pro-

grams in the LHC at
√
sNN = 2.76 and 5.02 TeV. We explore the relationship between

the jet quenching effects and the size of the QGP by looking at higher centrality classes.

This is further validated by cross-checking comparisons to measurements from different

collaborations. The jet analysis is sensitive to the jet definition and the radius parameter

R used in the analysis. We conduct the same jet analysis by varying the size parameter R

and investigate the R dependence of the quenching effect of reconstructed jets. Then we

switch to 5.02 TeV Pb+Pb collisions to explore the behaviour of jet quenching at a higher

kinematic regime.
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Figure 6.6: Charged hadron RAA for
√
sNN = 2.76 TeV Pb+Pb collisions, averaged over

the pseudorapidity range, |η| < 1.0. We show four centralities, 0-5, 5-10, 10-30, and 30-

40%. The blue lines with the statistical uncertainty bands correspond to the MARTINI

result using event-by-event hydrodynamic simulation provided by MUSIC [100] and IP-

Glasma initial conditions. The green triangles with the y-axis error bars and the shaded

boxes represent the CMS measurements [187] and associated statistical and systematic

uncertainties, respectively. Note that the centrality bin of the data in the bottom-right

panel corresponds to 30-50%.

6.4.1 Centrality dependence

We present the MARTINI results of the charged hadron RAA for
√
sNN = 2.76 TeV Pb+Pb

collisions with multiple centrality bins in Fig. 6.6. We simulated event-by-event MUSIC

hydrodynamic evolution using 50 unique IP-Glasma initial conditions per 5% centrality
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interval2 , producing a total of 400 different hydrodynamic medium profiles for 0-40%

centrality Pb+Pb collisions at
√
sNN = 2.76 TeV. In Fig. 6.6, we performed MARTINI jet

evolution using the MUSIC hydrodynamic medium profile in 0-5, 5-10, 10-30, and 30-40%

centrality bins. The blue lines correspond to the MARTINI calculations and the shaded

band around each line indicates the statistical uncertainties. The CMS measurements

are shown as the green triangles with statistical uncertainties. The shaded boxes are the

systematic uncertainties from various factors, e.g., detector efficiency and normalization

determination3.

The experimental results reported noticeable suppression of the charged hadron RAA

in the four different centrality bins. Our MARTINI calculations with the MUSIC hydrody-

namic modelling of the QGP describe the quenched RAA at all centrality bins well. Note

that the centrality interval for the calculation is slightly more central than that for the data

in the bottom-right panel. This leads to more quenching in the MARTINI results than the

data.

These remarkable agreements support creation of the QGP in 0-40% Pb+Pb collisions

at
√
sNN = 2.76 TeV. We observed that the jet quenching effect is stronger at lower pT

ranges (pT & 10 GeV), i.e., lower values of RAA, while the magnitudes rise at higher

pT ranges. Recalling that the PYTHIA parton shower and the energy loss models imple-

mented in MARTINI are based on perturbative QCD, the low pT region (pT < 10 GeV)

in which pQCD is no longer reliable is excluded from our analysis. The measurements

show that the central collisions (0-5%) yield a stronger quenching effect than the periph-

eral collisions. This indicates that jets propagating through the QGP interact with their

surrounding medium less than in peripheral collisions. This is because the overlap zones

in peripheral collisions are smaller than those in head-on collisions, creating a smaller

2The centrality intervals of our hydrodynamic simulations are determined by the initial condition pro-
vided by the IP-Glasma model. Detailed information on the centrality determination procedure can be
found in Sec. II B in [3].

3Detailed values for each contribution to the systematic uncertainties affecting Pb+Pb and pp collisions
are listed in Table 2 in [187]
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Figure 6.7: Inclusive jet RAA for 2.76 TeV Pb+Pb collisions averaged over the pseudora-

pidity range, |η| < 2.0. Each panel shows a different interval in centrality, 0-5, 5-10, 10-30,

and 30 − 40%. Jets are reconstructed with the anti-kT algorithm with the radius param-

eter of R = 0.4. The MARTINI results are compared to the CMS measurement [116] with

the same color notation as in Fig. 6.6. As in Fig. 6.6, the centrality bin for the data in the

bottom-right panel corresponds to 30-50%.

QGP. Our MARTINI model captures the pT and centrality dependence of charged hadron

suppression in
√
sNN = 2.76 TeV Pb+Pb collisions.

Now we investigate the suppression of fully reconstructed jets in heavy-ion collisions.

Fig. 6.7 shows the inclusive jet nuclear modification factor Rjet
AA for

√
sNN = 2.76 TeV

Pb+Pb collisions with pseudorapidity |η| < 2.0. Jets are reconstructed using the inclusive

final state hadrons, defined by the anti-kT algorithm with the radius parameter R = 0.4.
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Figure 6.8: Inclusive jetRAA for
√
sNN = 2.76 TeV Pb+Pb collisions with 0-10, 10-20, 20-30,

and 30 − 40% centrality intervals. The MARTINI setup for these calculations are identical

to that in Fig. 6.7. The MARTINI results are compared to the ATLAS measurement [114].

Each panel shows a different centrality interval, 0-5, 5-10, 10-30, and 30− 40%, compared

to the corresponding CMS measurements [116]. As in Fig. 6.6, the centrality intervals

for the prediction and the data are slightly different, leading to moderate overestimation

of jet energy loss in the MARTINI results. A slight increase of the jet RAA at 75 < pT <

150 discussed in Sec. 6.3 appears at peripheral collisions < 30%, while our results are

consistently monotonic in the transverse momentum space. We observed a centrality

dependence of jet quenching in the jet RAA similar to that in the charged hadron RAA.

We performed a similar comparison analysis using the ATLAS measurements, shown

in Fig. 6.8. We divided the centrality intervals to 0-10, 10-20, 20-30, and 30 − 40% for the
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direct centrality comparisons. From Fig. 6.7 and Fig. 6.8, we noticed that the centrality

dependence of the calculated jet RAA was not clearly visible relative to that of the charged

hadron RAA shown in Fig. 6.6. For instance, in the 30-40% centrality bin, our calculation

slightly underestimates the measured jet RAA at high pT . One possible reason for this

weak centrality dependence would be the characteristics of the quenching mechanism in

MARTINI. When a jet propagates through the QGP, partons in a jet lose their energies

through elastic and inelastic processes. However, since the jet is an integrated object con-

sisting of particles inside the predefined jet radius, the main reason for energy loss of jets

is momentum broadening, i.e., jet energy dissipation out of the jet area. In MARTINI, the

AMY radiative process is strictly collinear, i.e., opening angle of radiation is θ → 0. There-

fore the role of the radiative processes in energy loss of reconstructed jets is to modify the

rate of elastic scattering, only indirectly influencing the energy loss behaviour. This might

cause the smaller centrality dependence of the jet RAA in the MARTINI results. Nonethe-

less, we found qualitative agreements between the calculations and the measurements

within the uncertainty range.

6.4.2 Jet radius dependence

Jets with larger jet radius parameterR have wider area in the φ-η space to contain hadrons

and tend to get more reconstructed energies. This leads the differential jet cross-section

shown in Fig. 6.3 (right panel) to a roughly longitudinal shift to higher energies. With

increasing R, the jet RAA values would remain unchanged if the effect of jet quenching

is independent of the distance from the jet axis. Thus, the jet quenching analysis with

varying the jet radius parameter R provides an opportunity to investigate differential jet

energy loss versus the distance from the jet axis.

The MARTINI calculations of jet RAA with various jet radius parameters R are shown

in Fig. 6.9. Each panel in Fig. 6.9 shows the jet RAA with R = 0.2, 0.3, and 0.4 compared

to the CMS measurements [116]. We observe higher values of the jet RAA with increasing

R for all centrality bins. This suggests weaker jet quenching effects with increasing dis-
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Figure 6.9: Inclusive jet RAA for
√
sNN = 2.76 TeV Pb+Pb collisions with different jet

radius parameter R = 0.2, 0.3, and 0.4, compared to the corresponding CMS data [116].

Additionally we present our results with R = 0.6 to investigate the R dependence at

larger R. Each panel shows centrality intervals of 0-5, 5-10, 10-30, and 30-40%. The jet

RAA with R = 0.4 in each panel is same as that shown in Fig. 6.7.

tance from the jet axis. We will show that the recoils and holes largely contribute to this

behaviour of jet quenching in Sec. 6.5.

Although the uncertainty bands in the measurements are quite sizable, we noticed

weak R dependence of the jet RAA in the data and the predictions. The jet density dis-

tribution as a function of distance from the jet axis we will present in the next section

(Sec. 6.5) describes that the majority of jet energy is concentrated within R < 0.2 in MAR-

TINI. In this regard, the reason for this weakR dependence of the jetRAA is because the jet
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RAA is mainly constrained by the jet quenching effect inR < 0.2. As an extended analysis,

we additionally show the results with R = 0.6 depicted in the red lines. The results are

consistent with our observation that a larger jet radius yields smaller quenching in the jet

RAA.

While the jet RAA with R ≤ 0.4 have negligible pT dependence in all centrality bins,

we observed slight enhancement at low pT of R = 0.6, causing negative slopes for the jet

RAA. The interpretation of this originates from the implementation of thermal recoils in

MARTINI. As we discussed in Sec. 5.3.2, when a thermal recoil parton is created during

elastic scattering, an artificial parton representing an incoming thermal parton, a hole, is

also produced to conserve total energy in the collision process. Since these holes do not

re-scatter in the MARTINI evolution, i.e., free streaming, they are not hydrodynamically

diffused before they are hadronized. This may underestimate the total energy of the holes

to be subtracted from the jet signal. We expect this underestimation is more likely to be

strong for jets with larger R and low pT .

6.4.3 Jet quenching at 5.02 TeV

So far we have studied suppression of jets produced in Pb+Pb collisions at
√
sNN = 2.76

TeV, the first collisions of Pb nuclei delivered by the LHC at the end of 2010. Following

the Run I period, the LHC proceeded with the Run II program to record Pb+Pb collisions

at
√
sNN = 5.02 TeV at the end of 2015 and 2018. The increased centre-of-mass energy

of heavy-ion collisions allows us to access an energy density that should create a denser,

hotter, and longer-lived QGP medium [239]. From a theoretical perspective, studying

heavy-ion collisions at different centre-of-mass energy is an exceptional opportunity to

pin down the physics behind the measurements and constrain model parameters.

For the analysis of Pb+Pb collisions at
√
sNN = 5.02 TeV, we simulated 500 event-

by-event hydrodynamic events with IP-Glasma initial conditions for the 0-50% centrality

interval. We initialized the hydrodynamic modelling with the equations of state provided

by the HotQCD Collaboration [50] as mentioned earlier in Sec. 6.1 and the initialization
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Figure 6.10: Inclusive jet RAA for
√
sNN = 5.02 TeV Pb+Pb collisions with rapidity |y| <

2.8 compared to the data measured by the ATLAS collaboration [238]. The top panel

shows three different centrality intervals, 0-10, 20-30, and 40-50%, and the bottom panel

shows two other centrality intervals, 10-20, and 30-40%.

time of τ0 = 0.4 fm. The PDF sampling in PYTHIA is carried out with an identical setup

to those for
√
sNN = 2.76 TeV collisions with CTEQ6L [113] parton distribution functions

and EPS09LO [121] nuclear PDFs.

107



Using this model setup, we calculated the jet RAA for 5.02 TeV Pb+Pb collisions as

shown in Fig. 6.10. We show the jet RAA at 0-10, 20-30, and 40-50% centrality intervals in

the top figure, and 10-20 and 30-40% centrality intervals in the bottom figure. The recon-

structed jets contain inclusive final state particles determined using the anti-kT algorithm

with R = 0.4. For each centrality result, we made comparisons with the corresponding

ATLAS measurements [238].

We observe a general trend of the increasing jet RAA with jet pT from the ATLAS mea-

surements at all the centrality intervals up to 50%. Our MARTINI results show weak pT

dependence, resulting in a deviation from the measurements especially at lower jet pT in

the 0-10% most central collisions. At higher jet pT the discrepancy tends to diminish. This

insensitivity to pT shown in the calculations implies that the reconstructed jets in MAR-

TINI are more collimated within the jet radius than the measured jets. Determining the jet

energy is sensitive to the spatial distribution of final-state particles in the pseudorapidity

η and azimuthal φ space. In MARTINI, this distribution is affected by the elastic collisions

and consequently sampled recoils (and holes), whose energies are of the same order as

the temperature of the QGP. Examination of the soft constituents of the reconstructed

jets would give a better understanding of the discrepancy we observed from the jet RAA

analysis in 5.02 TeV Pb+Pb collisions.

6.5 Medium recoils and jet modifications

In our previous analyses, we presented the predictions with the implementation of ther-

mal recoils. In this section, we discuss the effects of thermal recoils and their role in

studying jet quenching in heavy-ion collisions. Thermal recoils, originating from a ther-

mal medium, are scattered by energetic jet partons through elastic scattering processes.

As a result, a certain amount of jet energy is transferred to those thermal recoils, which

then evolve in the thermal medium. Since momentum broadening plays an important
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Figure 6.11: Inclusive jet RAA for
√
sNN = 2.76 TeV Pb+Pb collisions at four different

centrality bins, compared to the CMS measurements [116]. We plot the results with recoils

and holes in red and without them in green.

role in energy loss of fully reconstructed jets, exploring the effect of thermal recoils would

give us plenty of valuable information on how jets lose energy in the medium.

To quantify the effect of recoils in the jet observables, we made comparisons between

two sets of jets; i) one reconstructed by inclusive partons including hard partons, recoils,

and holes and ii) by hard partons only. In Fig. 6.11, we show the jet RAA for
√
sNN = 2.76

TeV Pb+Pb collisions obtained from MARTINI simulations with and without thermal re-

coils. In all the centrality intervals, we observe a clear separation between jets with recoils

and without recoils. For instance, the thermal recoils enhance the magnitudes of the jet
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Figure 6.12: Inclusive jet RAA for 0-5% Pb+Pb collisions at
√
sNN = 2.76 TeV with recoils

and holes (red) and without them (green). Each panel shows four different sizes of the jet

radius parameter, compared to the CMS measurements [116].

RAA by ∼ 0.15 in the most central collisions (0-5%), while similar effects were observed in

other centrality bins. This enhancement does not induce any jet pT dependence.

In Fig. 6.12, we show the comparisons with and without thermal recoils using various

sizes of the jet radius from R = 0.2 to 0.6. The difference in magnitudes between the jet

RAA with and without recoils is small for jets with R = 0.2, while the deviation becomes

significant at larger R. We found more than a 50% increase in the magnitude of the jet

RAA with R = 0.6. This is because jets with a larger radius parameter are more likely

to contain more recoiling particles, restoring more energies from those thermal recoils.

However, the CMS measurements show the jet RAA independent of the size of the jet
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radius, which yields moderate discrepancy at smallerR. In the right-bottom panel, where

the jet radius R is the largest, the enhancement observed at low pT disappears when the

thermal recoils and holes are excluded. This confirms the argument we made in Sec. 6.4.2

that the enhancement originates from the underestimation of holes inside the jet area,

owing to the lack of re-scattering processes.

We examine the contribution of thermal recoils to reconstructed jets by analyzing dif-

ferential jet observables, such as the jet shape function and jet mass. The following sub-

section introduces the jet-structure observables and presents our results.

6.5.1 Jet shape function

The jet shape function ρ(r) describes the radial distribution of jet momentum density

inside the jet area, defined as [240]

ρ(r) =
1

δr

1

Njet

∑

jet

∑
trk∈[ra,rb) p

trk
T

pjetT
, (6.6)

where a given jet radius is divided by annulus bins with radial width of δr = 0.05. ra =

r − δr/2 and rb = r + δr/2 are the inner and outer radius of each radial bin, respectively.

r is the radial distance between each particle (track) and the jet axis, given by

r =
√

(ηtrk − ηjet)2 + (φtrk − φjet)2 ≤ 0.3 (6.7)

Note that since the reconstructed jets do not always have a perfect circular shape, the

particles satisfying the r < 0.3 condition do not coincide with the constituents of the jet.

In this analysis, we reconstructed inclusive jets using the anti-kT algorithm with the

distance parameter R = 0.3. We then selected jets with pjetT > 100 GeV and 0.3 < |η| <
2.0. The mid-rapidity region, |η| < 0.3, was excluded in the analysis because of the “η-

reflected” method [116,241] used by the CMS collaboration to estimate contributions from

background. The jet shape function ρ(r) was evaluated using charged hadrons with pchT >
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Figure 6.13: The jet shape function ρ(r) for Pb+Pb collisions at
√
sNN = 2.76 TeV with

recoils and holes (blue) and without them (green). Each panel shows different centrality

intervals, 0-10, 10-30, and 30-40%. The reconstructed jets are defined by the anti-kT algo-

rithm with the jet radius parameter of R = 0.3. We also plot the pp results as a reference.

1 GeV. After calculating the jet shape, the integral of jet shape over the range 0 ≤ r ≤ R is

normalized to unity.

Fig. 6.13 shows the jet shape function for 2.76 TeV Pb+Pb collisions at the 3 different

centrality intervals. Similar to the jet RAA analysis in the previous section, we plot the

results with and without the recoil feature in our MARTINI simulations to visualize the

effect of recoil in our observables. We plot the pp results without the hydrodynamic

medium as a reference. We notice that the jet shape density peaks at the centre of the

jet and steeply falls when moving away from the jet axis. This shows that most of the

energy inside a jet radius is concentrated near the jet axis. For example, more than 80% of

energy in a jet from pp collisions is located within r < 0.1. This is further supported by

the small-angle dominant vacuum and in-medium parton shower processes.

When switching from pp to Pb+Pb calculations we observe two competing effects on

forming the jet shape function ρ(r). On the one hand, jet energy loss mechanisms sup-

press the jet shape function, as shown from the green plots (the case with hydrodynamic

medium and without medium recoiling particles). The density depletion is weaker at
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Figure 6.14: The ratio of jet shape function between Pb+Pb and pp collisions at
√
sNN =

2.76 TeV with recoils and holes (blue) and without them (green). Each panel shows dif-

ferent centrality intervals, 0-10, 10-30, and 30-40%. The reconstructed jets are defined by

the anti-kT algorithm with the jet radius parameter of R = 0.3. We compare our results to

the CMS measurements [240].

peripheral centrality intervals because of smaller medium effects. Since the jet shape is

defined to be self-normalized, the decrease in density at large r leads to slight increases

at the first bin, r < 0.05. On the other, the inclusion of recoiling particles helps to develop

the jet density, especially at large r regions. Thermal recoils are dissipated by in-medium

processes and they are more likely to be located at large r.

In Fig. 6.14, we plot the ratio of the jet shape function between Pb+Pb and pp colli-

sions. Our results illustrate two competing effects: the jet energy depletion because of

the medium effect (green triangles) and the density increase from the inclusion of the

thermal recoils (blue circles). The role of medium recoil is significant at the high r of the

ratio plot. Their contributions result in a rise of the jet shape ratio starting from r = 0.15.

The medium effects combined with thermal recoils determine the non-monotonic ratios

of the jet shape function between Pb+Pb and pp. Our full calculations with thermal re-

coil (blue circles) captures the general trend of the CMS measurements [240]. We found

the largest contributions from thermal recoils in central collisions where the medium ef-
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fects are largest. We observe a consistent behaviour of the centrality-dependent medium

effects in the analysis of the jet nuclear modification factor and the jet shape function.

6.5.2 Jet mass

The mass of a reconstructed jet is defined as [242, 243]

M =
√
E2 − p2

T − p2
z, (6.8)

where E is the total energy of the jet, and pT and pz are transverse and longitudinal mo-

mentum of the jet, respectively. Since a jet comprises particles from parton shower, the

jet mass in Eq. (6.8) is closely related to the virtuality (off-shellness) of the original par-

ton of the shower [242]. Since the four-vector of the jet is sensitive to the jet quenching

in the QGP, its invariant mass provides additional information that characterizes their

properties.

In the jet mass analysis, jets were constructed using charged particles with 0.15 < pchT <

100 GeV. We used the anti-kT algorithm with the jet radius parameter of R = 0.4. Since

the jet mass is related to the initial virtuality of the initial single-parton jet, we collected

jets using different kinematic cuts on pjetT to examine a differential feature of the jet mass.

We present our MARTINI results of the normalized jet mass distribution for 0-10% Pb+Pb

collisions at
√
sNN = 2.76 TeV in Fig. 6.15. We observe that the peak of the distribution

moves toward higher jet mass as pT of jets increase. The distribution of the jet mass with

higher pjetT was broader than those with lower pjetT because of larger jet-by-jet fluctuations

in the parton shower. We notice that the jet mass for pp and Pb+Pb collisions is similar

to each other. This is because of the two competing effects on the shape of the jet mass

distribution – loss of the jet mass because of jet quenching (green) and gain of the jet mass

attributed from thermal recoils (red).

In Fig. 6.16, we show the average jet mass with and without recoils for the three differ-

ent jet pT intervals. We observe an increasing trend of the average jet mass as a function
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Figure 6.15: The jet mass distribution for 0-10% Pb+Pb collisions at
√
sNN = 2.76 TeV

with recoils and holes (red) and without them (green). Each panel shows different jet

pT intervals: 60-80, 80-100, and 100-120 GeV. The reconstructed jets are defined by the

anti-kT algorithm with jet radius parameter R = 0.4. We compare our results to ALICE

measurements [243]. In the bottom-left figure, we show the PYTHIA pp results from the

ALICE collaboration for the comparison purpose.

of jet pT . Although the results underestimate the average jet mass at 100 < pjetT < 120 GeV,

thermal recoils play an essential role in describing the measured jet mass. We observed

that their contributions were negligible at low jet pT and became noticeable at high pT .
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Figure 6.16: The average jet mass for 0-10% Pb+Pb collisions at
√
sNN = 2.76 TeV with

recoils and holes (red) and without them (green) as a function of jet pT . We compare the

MARTINI results to the ALICE measurements [243].

6.6 Summary

In this chapter, we have studied jet modifications caused by the QGP created in heavy-

ion collisions using our Monte-Carlo event generator, MARTINI. With the AMY radiative

energy loss and collisional energy loss processes implemented in MARTINI we have repro-

duced the jet observables measured by the experiments at the LHC. We have analyzed the

sensitivity of the integrated and differential jet observables to the jet modification via jet-

medium interactions. Event-by event fluctuation of the background was simulated via the

3 + 1 dimensional viscous hydrodynamic model, MUSIC, together with IP-Glasma initial

conditions. To achieve realistic jet production rates in PYTHIA, we applied CTEC6L [113]

parton distribution functions and EPS09LO [121] nuclear PDFs. With this setup, we ob-
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tained at most 20% deviation in our PYTHIA simulation from the experimental measure-

ments of the differential charged hadron yield and jet cross-section.

The analysis of the finite formation time of radiation (5.2.1) and the QCD running

coupling scheme (5.3.1) revealed that the running coupling is the dominant influence on

jet quenching while both effects play essential roles in describing the nuclear modification

of charged hadrons and reconstructed jets. This confirms that our MARTINI jet quenching

model provides reasonable descriptions of charged hadron and jet observables in 2.76

TeV Pb+Pb collisions.

We examined jet quenching at different centrality intervals and jet radius parameters.

We observed smaller quenching in the charged hadron and the jet RAA at peripheral col-

lisions compared to that at central collisions caused by the smaller size of the medium

and lower peak temperatures. Larger jet radius also led to smaller suppression of the jet

RAA. This is because thermal recoils in our simulations partially restore jet energies. Di-

rect comparisons between the cases with and without thermal recoils revealed that their

contribution increases with larger jet radius. However, the experimental results reported

that jet quenching was insensitive to the jet radius R.

The findings from our analysis of the thermal recoils are further supported by analyz-

ing the jet intra-jet observables such as jet shape function and jet mass. By comparing our

computations of the jet shape function with and without the thermal recoils, we estab-

lished the results are substantially sensitive to the thermal recoils at central collisions (up

to a 30% change). The non-trivial ratio of the jet shape function between Pb+Pb and pp

was induced by the two competing effects: depletion by jet quenching and enhancement

at large r contributed from thermal recoils. The jet mass consistently showed these com-

peting effects, resulting in a larger jet mass. The jet mass calculations derived a similar

conclusion that both effects play an essential role in describing the jet mass for higher pT

jets.

While we obtained reasonable descriptions of various jet-related observables as pre-

sented in this chapter, we also detected a minor discrepancy in our calculations when
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comparing to corresponding experimental measurements. For example, we observed that

our model does not show a sufficient increase in average jet mass as shown in Fig. 6.16

for the last jet pT bin (100-120 GeV). This is a direct consequence of our implementation

of the thermal recoils and holes in our MARTINI simulations. Recalling the description

in Sec. 5.3.2, a hole is created together with the corresponding thermal recoil for energy-

momentum conservation in the system, and they do not interact with the medium. This

simplified implementation leads to an inadequate energy distribution of holes in the φ-η

plane. Technically, a hole represents a space for the thermal parton kicked by a jet. Hence

it is more reasonable to simulate their evolution hydrodynamically based on a strongly

coupled approach, which is a future task.

In the next chapter, we will explore the signature of QGP creation in small systems

such as p+Pb collisions using our jet quenching model. We will examine each source of

jet modification in small systems and discuss the sensitivity of jet-medium interactions to

describe jet observables in small systems.
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Chapter 7

Search of QGP in small systems

In heavy-ion collisions, high-energy QCD jet production serves as a reliable probe of QGP

created in the collisions. In the previous chapter, we analyzed how jets created at the ini-

tial stage of collisions are modified as they traverse the QGP. Specifically, we have demon-

strated the performance of our MARTINI model in describing jet quenching phenomena

in Pb+Pb collisions. The primary purpose of this chapter is to extend an understanding

of jet modification to small systems such as p+Pb collisions to explore the possibility of

QGP creation in small systems.

The study of quark-gluon plasma in small systems is puzzling because many experi-

ments have reported diminishing jet energy loss in these colliding systems [197,244–253],

while plentiful evidence of flow characteristics has also been observed at the central col-

lisions of small systems [254, 255]. Some research on small systems has argued multiple

sources of bias in centrality determination [245,256]. Bias effects distort the measurements

of the nuclear modification factor in central and peripheral collisions of small systems.

For more details, see Sec. 4 and 5 in [245]. Thus, although small systems show collective

properties at central collisions, it is not straightforward to perform theory-experiment

comparisons at central collisions where the medium effects are expected to be largest.

In this chapter, we applied our framework of jet simulation to minimum bias p+Pb col-

lisions at 5.02 TeV to study the medium effects that we have observed in Pb+Pb collisions.

119



We first discuss the evidence of collectivity observed in small colliding systems in Sec. 7.1.

These observations suggest the possibility of QGP creation in small systems. In Sec. 7.2,

we present the results of hydrodynamic simulations of p+Pb collisions with Monte-Carlo

Glauber [85–87] initial conditions. Sec. 7.3 reports the results of our MARTINI jet evolu-

tion on small systems with small droplets of the QGP. We present the jet production rates

at different rapidities to quantify non-monotonic nuclear effects in asymmetric colliding

systems. Then we study the importance of the recoils in calculating jet observables in

small systems. Sec. 7.5 summarizes our results presented in this chapter and discusses

the implications in terms of QGP creation in small systems.

7.1 Collectivity in small systems

As we discussed in Sec. 4.2, collective properties arise from anisotropic thermal pressure

in colliding systems and are an important signature of QGP creation. The CMS collabo-

ration has reported that the coefficients of the elliptic flow at p+Pb collisions are compa-

rable to those at Pb+Pb collisions [245]. Fig. 7.1 shows the elliptic flow coefficients v2 as a

function of event multiplicity Ntrk derived using various methods from the CMS collabo-

ration [245, 257]. The left and right panels compare those values for 2.76 TeV Pb+Pb and

5.02 TeV p+Pb collisions with an identical multiplicity range. The Pb+Pb values are con-

sistently higher than corresponding values in p+Pb collisions, but they are qualitatively

comparable to each other. This supports the collective nature of both the Pb+Pb and p+Pb

collisions.

The PHENIX collaboration has conducted systematic studies in many small colliding

systems at the RHIC in the small systems geometry scan [260] to pin down the source of

anisotropic momentum flow in small systems. In the experiments, small nuclei with dif-

ferent geometric shapes, e.g., a proton, deuteron, or Helium-3, were collided with Au nu-

clei. The left panel of Fig. 7.2 illustrates the average spatial eccentricities ε2 and ε3 for small

impact parameter p+Au, d+Au, and 3He+Au collisions obtained from the Monte-Carlo
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Figure 7.1: The elliptic flow coefficients v2 measured as a function of Ntrk obtained from

the two- and four-particle cumulant methods presented in [257] are shown with open

data points. The v2 results from the six- and eight-particle cumulant methods and the

LYZ method [258, 259] are displayed with solid points. The left panel shows Pb+Pb colli-

sions at 2.76 TeV and the right panel is p+Pb collisions at
√
sNN = 5.02 TeV. The figure is

reproduced from [245].

Glauber model. According to the study, the elliptical and triangular initial geometries of

d+Au and 3He+Au collisions are characterized by the ε2 and ε3 signals, while the values

in p+Au collisions are purely driven by fluctuations. As shown in the left panel of Fig. 7.2,

the PHENIX measurements reported the largest ε2 and ε3 from d+Au and 3He+Au colli-

sions, respectively. The sizable values of ε2 and ε3 in p+Au collisions indicate that initial

geometric fluctuations have a significant effect in determining the spatial eccentricities.

The right panel of Fig. 7.2 shows the measured v2 and v3 as a function of pT in the 0-5%

most central collisions of p+Au, d+Au, and 3He+Au systems at
√
sNN = 200 GeV. This

confirms that the colliding system ordering of eccentricities is directly translated into the
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Figure 7.2: (Left panel) Average spatial eccentricities ε2 and ε3 for p+Au, d+Au, and
3He+Au colliding systems from a Monte Carlo Glauber model. (Right panel) Measured

elliptic and triangular harmonic flow coefficients v2 (Right top) and v3 (Right bottom)

as a function of pT in the 0-5% central collisions of the three small colliding systems at
√
sNN = 200 GeV. A Monte-Carlo Glauber model depicting an elliptical (ψ2) and a triangu-

lar (ψ3) symmetric plane angle is inserted in the top and bottom panels, respectively [260].

anisotropic harmonic flow coefficients in those systems as follows:

v
p+Au
2 < vd+Au

2 ≈ v
3He+Au
2 (7.1)

v
p+Au
3 ≈ vd+Au

3 < v
3He+Au
3 (7.2)

The results in Fig. 7.2 support the strong correlations between spatial geometries of the

colliding systems and the final-state momentum anisotropies.

Given the apparent source of the momentum anisotropic flows, Fig. 7.3 compares the

experimental measurements to the two different hydrodynamic simulations [4, 261]. Al-
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Figure 7.3: The v2 and v3 measurements as a function of pT for charged hadrons in 0-

5% central 3He+Au collisions at
√
sNN = 200 GeV compared with various theoretical

calculations [260].

though the two hydrodynamic models have their own implementations of treating fluc-

tuations in the initial geometry, their predictions are consistent with the v2 measurements

and the magnitude separation between v2 and v3. The comparison of results in Fig. 7.3

confirms the reliability of hydrodynamic approaches in predicting final-state momentum

anisotropic flow1.

7.2 Initial conditions and hydrodynamic modelling

In this section, we present the results of hydrodynamic simulations for p+Pb collisions as

an ingredient of our jet evolution scheme. As discussed in the previous section, the final-

state flow properties are largely caused by initial geometries and fluctuating configura-

tions of the colliding systems. To take initial eccentricities into account in our simulation,

we have used the Monte-Carlo Glauber model for the initial condition.
1The reliability argument of hydrodynamics in small systems is valid only for high multiplicity events,

Ntrk & 70, and the extension to low multiplicities leaves challenging issues. This originates from a large de-
viation from equilibrium and short-lived evolution. For more details, see Ref. [262] and references therein.
The validity of fluid dynamics in small systems has been discussed and qualitatively estimated. See Ap-
pendix A in [4]
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Figure 7.4: Temperature distributions in the transverse plane at mid-rapidity at different

times obtained by MUSIC [100] simulations with Monte-Carlo Glauber initial conditions

in 0-5% Pb+Pb collisions at
√
sNN = 2.76 TeV. The initialization time of the hydrodynamic

simulation is τ = 0.6 fm and the freeze-out temperature of the system is Tc = 0.165 GeV.

The freeze-out time of the evolution is estimated as τ ∼ 3.6 fm.

Fig. 7.4 depicts the temperature distributions in the transverse plane at mid-rapidity

for 0-5% p+Pb collisions at
√
sNN = 5.02 TeV. We chose the initialization time of the hy-

drodynamic medium in p+Pb collisions to be τ0 = 0.6 fm and the chemical freeze-out

temperature is set to Tc = 0.165 GeV. In central p+Pb collisions, all the fluid cells reach

the freeze-out hyper-surface at ∼ 3.6 fm, which is a much shorter time than that for 0-5%

Pb+Pb collisions at
√
sNN = 2.76 TeV as shown in Fig. 6.2. The maximum temperature

at τ0, Tmax(τ0) = 0.357 GeV, is estimated to be half of the peak temperature in Pb+Pb

collisions.

The asymmetric nature of p+Pb collisions is well represented by the pseudorapidity

distributions of charged hadron multiplicity, as shown in Fig. 7.5. Note that the negative η
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Figure 7.5: Pseudorapidity dependence of charged hadron multiplicity for 0-1% and 0-5%

centrality collisions of p+Pb systems at
√
sNN = 5.02 TeV obtained from MUSIC hydrody-

namic simulations [4]. We compare our simulation results to the ATLAS measurements

for corresponding centrality intervals [263]. Note that the rapidity convention in this plot

is opposite to that used in the ATLAS analysis.

in the picture represents the p-going side and the positive η is the Pb-going side, which is

opposite to the convention that we use in this analysis. The strong pseudorapidity depen-

dence of final-state charged hadron yields clearly shows a violation of boost-invariance

in the region away from the mid-rapidity. The MUSIC hydrodynamic calculations agree

fairly well with the ATLAS measurements within a broad range of pseudorapidity inter-

vals.
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7.3 Rapidity-dependent jet production

In the previous section, we described the properties of our hydrodynamic simulations by

MUSIC for asymmetric p+Pb colliding systems. Using the results of hydrodynamic simu-

lations, we study rapidity-dependent jet production rates in p+Pb collisions. In Sec. 7.1,

we discussed the sizable collectivity observed in various small systems and the validity of

hydrodynamic modelling. If these small systems also exhibit jet quenching phenomena

in the jet production rates, it would constitute robust evidence of the creation of strongly

coupled QCD matter. This analysis quantifies the jet modification in small systems to

explore signatures of jet quenching in small systems. We used CTEQ6L [113] parton dis-

tribution functions and EPS09LO [121] nuclear PDFs for the PDF sampling in our p+Pb

study. The convention used in this analysis is that the Pb beam is going in the−z direction

and the proton beam is going in the +z direction.

Fig. 7.6 shows the inclusive jet cross-section in minimum bias p+Pb collisions at
√
sNN =

5.02 TeV as a function of jet pT . The differential jet cross-sections are normalized by the

one obtained in the mid-rapidity range, |η| < 1, to examine the relative jet production

rates in the pseudorapidity space. We observed that the pT differential jet cross-section in

p+Pb collisions peaked at mid-rapidity (purple). The jet production rates become lower

and narrower as absolute values of rapidity increase. We observed significant reduc-

tions in the jet production rates far from mid-rapidity for high jet pT because of kinematic

constraints in those regions. The jet production rates were symmetric in pseudorapidity

within slight variations contributed from nuclear PDF effects in Pb nuclei. We obtained

good agreement with the CMS measurements [251] across the pseudorapidity intervals.

In Fig. 7.7, we present the ratio between minimum bias p+Pb and pp di-jet produc-

tion rates as a function of di-jet pseudorapidity, ηdijet = (η1 + η2)/2, at
√
sNN = 5.02

TeV. The four panels correspond to the four different kinematic ranges of average di-jet

pT . We compared the preliminary CMS data to our MARTINI calculations with (dashed

green) and without (solid blue) the hydrodynamic medium. Unlike the results in Fig. 7.6
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Figure 7.6: The inclusive differential jet cross-section in minimum bias p+Pb collisions at
√
sNN = 5.02 TeV as a function of jet pT normalized to that at mid-rapidity (|η| < 1). The

shaded bands around the lines indicate the statistical uncertainties. Jets are reconstructed

with the anti-kT algorithm with R = 0.3. We present our results corresponding to various

pseudorapidity intervals with different colour schemes and compare to the correspond-

ing CMS measurements [251].

where the p+Pb jet production rates are normalized by the one with the same colliding

system, the di-jet ratio results in Fig. 7.7 show the anti-shadowing and shadowing effects

in pseudorapidity space. We observed the significant shadowing effects at forward di-jet

pseudorapidity (p-going side) where the momentum fraction from Pb nuclei xPb con-

tributing to the initial hard collisions is small. This corresponds to the suppression of RPb
i

at xPb . 0.04 shown in Fig. 4.7. At backward di-jet pseudorapidity (Pb-going side), we
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Figure 7.7: The ratio of the di-jet production rates as a function of di-jet pseudorapidity

between minimum bias p+Pb and pp collisions at
√
sNN = 5.02 TeV. Each panel shows

four different averaged di-jet pT intervals. MARTINI calculations with (blue solid) and

without (green dashed) the hydrodynamic medium are compared to preliminary data

from the CMS collaboration [264]. The shaded bands around the lines denote the statisti-

cal uncertainties.

observed the EMC effect with large uncertainties caused by the steep decrease of jet pro-

duction rates that we have observed in Fig. 7.6. We found the peaks of the pseudorapidity

distributions in-between those regions with depletion effects. These peaks correspond to

the anti-shadowing effects where 0.04 . xPb . 0.2 and the peak moves to forward di-jet

pseudorapidity with the increasing average di-jet pT as expected from the Fig. 4.7.
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Figure 7.8: Inclusive jet RpPb in 0-90% p+Pb collisions at
√
sNN = 5.02 TeV with recoils

and holes (blue) and without them (red). The reconstructed jets are defined by the anti-

kT algorithm with the jet radius parameter of R = 0.4. Each panel shows four different

rapidity intervals on the Pb-going side. The green lines represent our results without

the hydrodynamic medium. We compare MARTINI results to the corresponding ATLAS

measurements [244].

The MARTINI results with and without the hydrodynamic medium show slight di-

vergences at forward and backward di-jet pseudorapidity, but the results are statistically

indistinguishable. We obtained reasonable agreement between the preliminary CMS data

and our MARTINI calculations.

In Fig. 7.8 and Fig. 7.9, we show our RpPb results for 0-90% p+Pb collisions at 5.02

TeV. Each panel shows different rapidity intervals between −2.1 < y < 2.8. The green
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Figure 7.9: Same as Fig. 7.8 with four different rapidity intervals on the p-going side [244].

lines show our result without the hydrodynamic medium, including the nuclear PDF

effects, i.e., EPS09LO. We observed slight modification caused by nuclear effects such as

shadowing, anti-shadowing, and the EMC effect.

With these results as the baseline, we made comparisons to the scenario with jet

quenching. We performed MARTINI simulations with (blue) and without (red) the thermal

recoil implementation, as shown in Fig. 7.8 and Fig. 7.9. In small systems, jet modification

contributed from radiative processes is expected to be small since the formation time of

radiation is comparable to the size of the colliding zone. This implies that jet quench-

ing in p+Pb collisions would be dominated by the elastic processes. Comparing to the

baseline calculations (green), the quenching scenario without thermal recoils (red) shows
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sizable suppression up to 25%. The suppression was largely recovered when jets con-

tained thermal recoils (blue). This implies that the elastic scattering processes still play

a significant role in jet quenching in p+Pb systems. We observed a negligible deviation

between the scenario with thermal recoils (blue) and the baseline (green) except in large

rapidity regions.

The MARTINI results are compared to the ATLAS measurements. The data shows a

slight enhancement from unity, exhibiting no apparent evidence of jet quenching across

the rapidity space within the systematic uncertainties. The scenario without jet quenching

(green) is favoured by the measurements. The jet RpPb, however, shows a weak discrimi-

nating power between the scenarios with and without jet quenching because of negligible

medium effects.

Although the measured jet RpPb do not exhibit an obvious signature of jet quenching,

they were comparable to the MARTINI results with the jet quenching prescription. This

leaves room for a possibility of probing the jet quenching effects in p+Pb collisions. In

the next section, we analyze anisotropic harmonic flows of high pT particles to explore

evidence of path-length dependent jet quenching in the small systems.

7.4 Path-length dependent jet quenching

The anisotropic flow coefficients for high pT particles are a powerful indicator to detect

QGP. Jets are produced through binary collisions without preferred initial directions to

propagate. In pp collisions, isotropic jet production is preserved, resulting in vanishing

harmonic flow coefficients in the final stage. Under the condition that a strongly coupled

medium is present, the isotropy of jet production is distorted depending on the length

of the medium a jet propagates though. The path-length dependence of jet quenching

develops anisotropic flow coefficients vn for high pT particles. In Sec. 7.1, we discussed

large fluctuations of the initial geometry in p+Au collisions contributing to sizable initial

spatial eccentricities. Geometric fluctuations of the colliding zone in small systems have
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a high potential to yield non-zero values of vn for high pT particles, given that a strongly

coupled QCD medium is created in the systems. The hydrodynamic models consistent

with the measurements endorse the formation of a QGP as shown in Fig. 7.3.

The analysis of harmonic flow coefficients for high-energy particles explores how a

QGP distorts the isotropic jet production during jet evolution. Harmonic flow observables

for high pT particles have several advantages over the nuclear modification factor RpA in

search of a signature of QGP in small systems. First, when calculating RpA, one must deal

with the normalization factor TpA, which accounts for the number of binary collisions in

the corresponding centrality interval of p+A collisions. In theoretical approaches, this can

be circumvented by randomly sampling a single binary collision in p+A collisions. How-

ever, experimentalists must estimate TpA through the Glauber model [87], which makes

it harder to perform a theory-experiment comparison. The anisotropic flow coefficients,

however, are purely data-driven observables, which are accessible without further model

estimation or requirements of the pp baseline.

Second, RpA is mostly affected by cold nuclear matter and the QGP. The modification

of RpPb in small systems is not as prominent as that in large systems and the effect of cold

nuclear matter becomes comparable to the jet quenching effect. Given these subtleties of

small systems, quantifying the medium effects largely depends on the choice of the nu-

clear PDFs and their uncertainties. On the other hand, vn for high-energy particles are

driven almost entirely by medium effects because the cold medium effects emerge at the

early time of the collisions. These unique features of the anisotropic flow coefficients al-

low us to differentiate the precise effects of jet quenching from cold nuclear matter effects

in search of QGP creation in small systems.

In the analysis of anisotropic flow coefficients contributed from jet particles, we propa-

gated jets through high-multiplicity events of p+Pb collisions. To determine the centrality

of the collisions, minimum bias events are sorted according to their initial total entropy

density at mid-rapidity. The initial entropy density of the system is a good proxy for

centrality determination based on final charged hadron multiplicity [265].
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Figure 7.10: (Left panel) pT distribution of high pT charged hadron v2 calculated using

the scalar product method [266–268] for 0-5% p+Pb collisions at 5.02 TeV. The v2 values

from the three rapidity intervals are shown up to 50 GeV. The reference flow information

is obtained from hydrodynamic simulations. (Right panel) integrated high pT charged

hadron v2 and v3 in the rapidity plain. The v2 and v3 values are integrated over the pT
range from 10 to 50 GeV compared to our calculations without the medium effects.

The anisotropic flow coefficients of jet particles are calculated using the scalar product

method [266–268].

vn(pT ){SP} =
〈vn(pT )vrefn cos[n(φn(pT )−Ψref

n ]〉√
〈(vrefn )2〉

, (7.3)

where vrefn and Ψref
n respectively denote the flow coefficients and event plain angle of

the reference events. The reference events were constructed from charged hadrons from

pT = 0.3 to 3 GeV [4].

The left panel of Fig. 7.10 shows pT differential charged hadron v2 for 0-5% central

p+Pb collisions at 5.02 TeV at the three different rapidity intervals. We obtained moder-

ately decreasing charged hadron v2 regardless of the rapidity intervals. We observed 2%

of the elliptic flow coefficients for charged hadrons up to 50 GeV. The v2 and v3 integrated
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Figure 7.11: Recent v2 (left panel) and v3 (right panel) measurements from the ATLAS

collaboration for 0-5% central p+Pb collisions at 8.16 TeV. The measurements are obtained

using two-particle correlations, measured separately for minimum-bias triggered (MBT)

events and events requiring a jet with jet pT greater than either 75 GeV or 100 GeV [269].

from pT = 10 to 50 GeV as a function of rapidity are shown in the right panel of Fig. 7.10.

Those without the hydrodynamic medium are compared to visualize the medium effects

from our results. We found vanishing elliptic and triangular flow coefficients when the

hydrodynamic background is absent. The non-zero elliptic flow coefficients for high pT

particles became apparent when jet quenching is present. We argue that p+Pb collisions

create a strongly coupled QGP with fluctuating shapes, resulting in path-length depen-

dent jet quenching. The values of v3 with the hydrodynamic medium are less than 1%

with larger uncertainties.

Although experimental measurements of vn for high pT hadrons are not available at

5.02 TeV, the ATLAS collaboration has performed a similar analysis in p+Pb collisions at

higher centre-of-mass energy. Fig. 7.11 shows the measurements of the high pT hadron v2

(left panel) and v3 (right panel) in 0-5% centrality p+Pb collisions at 8.16 TeV. The v2 mea-

surements show the non-zero values of the elliptic flow coefficients for high pT hadrons

up to 50 GeV within the uncertainty bars. The v3 values have large fluctuations, approach-

ing zero at pT ∼ 20 GeV. We believe that the consistent behaviours of v2 and v3 for high-
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energy particles at two different centre-of-mass energies serve as meaningful evidence of

jet quenching in small systems.

7.5 Summary

In this chapter, we have explored the signatures of QGP creation in small systems such

as p+Pb collisions. This work was motivated by the study of azimuthal momentum

anisotropies in three different small colliding systems conducted by the RHIC. The key

findings from this analysis are i) the initial eccentricities in small systems are driven by

the intrinsic geometry and fluctuations in the spatial configuration of each colliding sys-

tem and ii) the initial eccentricities are highly correlated with the azimuthal momentum

anisotropies of the final-state particles. This analysis explained that sizable elliptic flow

coefficients in p+Au collisions originate purely from fluctuations in the configurations of

colliding nucleons in the Au nuclei, predicting a path-length dependent jet quenching

signal. A remarkable agreement of vn between hydrodynamic models and data justified

the reliability of hydrodynamic simulations in studying jet quenching in small systems.

To explore the hint of jet quenching induced by QGP in small systems, we have em-

ployed the MARTINI jet evolution scheme, identical to that used in the previous chapter

for Pb+Pb collisions. MUSIC, the 3 + 1 dimensional viscous hydrodynamic model, sim-

ulated the strongly coupled QCD medium in p+Pb collisions event-by-event. The initial

conditions for both the positions of produced jets and hydrodynamic simulations were

provided by the Glauber model [85–87]. We observed that the QCD medium in p+Pb col-

lisions at 5.02 TeV has a shorter lifetime, less than 4 fm in central cases, and has a lower

maximum temperature than that in Pb+Pb collisions. As p+Pb systems are the collisions

of two species with different sizes, we found the asymmetric pseudorapidity distribu-

tions of charged hadron multiplicity for central p+Pb collisions. Our results show good

agreements with the ATLAS measurements in a broad range of pseudorapidity.
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In Fig. 7.6, we obtained the maximum inclusive jet cross-section at mid-rapidity, while

the jet cross-section decreased at higher absolute values of rapidity. This trend was even

stronger at higher jet pT because of kinematic limitations. However, we did not find a

strong asymmetry of the jet production rates in rapidity space in p+Pb collisions. Our

results reproduce the CMS measurements well. The nuclear PDF effects are noticeable in

the ratio of di-jet production rates between p+Pb and pp collisions as a function of di-jet

rapidity. We observed the strong depletion of the ratio at forward rapidity caused by the

shadowing effect and the moderate EMC effect at backward rapidity. The anti-shadowing

region in mid-rapidity shifted toward forward-rapidity as the di-jet pT interval increased.

While the jet quenching effect slightly modified the ratio, both cases show reasonable

agreements with the CMS measurements.

The jet RPbp calculations with various rapidity intervals show no strong modification

in 0-90% p+Pb collisions at 5.02 TeV (Fig. 7.8 and Fig. 7.9). We noticed that thermal recoils

still play a critical role in determining the magnitude of the jet RpPb. The medium effects

including thermal recoils yielded slight jet quenching, but no convincing evidence of the

QGP creation is discovered from the comparison between our results and the data.

The analysis of the path-length dependent jet quenching suggested a hint of the QGP

existence in central p+Pb colliding systems. We obtained non-zero charged hadron elliptic

flow coefficients from pT = 10 to 50 GeV, which essentially vanish when turning off the

medium effects (Fig. 7.10). The azimuthal momentum anisotropies for high pT particles

are driven by different amounts of jet quenching in different jet directions. Because this

anisotropic signal is not influenced by the nuclear PDF effects at the jet evolution stage,

we believe that this can be a smoking gun of the formation of QGP in small systems. The

recent measurements of the harmonic flow coefficients in 0-5% central p+Pb collisions at

8.16 TeV reported similar values of v2 at high pT , which reinforces our conclusion of the

strongly coupled QCD medium in small systems.
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Chapter 8

Conclusion

Jets are ‘hard probes’, moving quickly and strongly interacting in the QGP. Since the first

evidence of heavy-ion-collision jets in 2003 in the STAR and PHENIX experiments, they

have been a powerful tool to reveal the properties of the QGP. The study of jet quenching

phenomena requires theoretical and experimental efforts from the heavy-ion community.

Its quantitative understanding is necessary for the precise characterization of the QGP.

The basic methodology to theoretically study jet quenching is to understand the processes

through which jets and the QCD medium strongly interact during the jet evolution. In

the view of jet quenching models, their interaction can be described in terms of radiative

energy loss and collisional energy loss. Several formalisms, developed to describe the

jet quenching phenomena, have achieved remarkable successes in contributing to our

current understanding of the QGP.

In this dissertation, We have focused on developing an integrated model framework,

the MARTINI code package, for precise phenomenological studies of jet quenching. The

MARTINI framework encompasses the two energy loss models – the AMY radiative for-

malism and the leading order elastic scattering rates, both of which are based on high-

temperature plasma approximations where the coupling g is weak. The early form of

MARTINI already showed promising performance in describing the charged hadron nu-

clear modification factor RAA at the top RHIC energy.
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We implemented an improved treatment of the QCD running coupling constant and

the formation time of radiation in the AMY formalism to capture underlying physics

emerging at the LHC energy scales. These realistic features effectively reduce jet quench-

ing for higher energy particles due to smaller coupling constant and longer formation

time of a radiative process. We also developed an algorithm to simulate thermal recoils

and medium response to the jet quenching based on the weakly-coupled approach. Al-

though thermal recoils are mostly soft, they contribute remarkably to the integrated and

differential jet observables in small and large colliding systems. The systematic investi-

gations on thermal recoils revealed their importance in describing various jet measure-

ments.

The phenomenological studies of jet quenching in Pb+Pb collisions at 2.76 and 5.02

TeV using the MARTINI framework helped us to understand the mechanism of jet-medium

interplay, leading to strong jet modification in heavy-ion collisions. Jet showers consist-

ing of partons experience radiations and elastic scatterings through strong interaction

with the medium, but their energies transferred to the medium play an essential role in

reconstructing full jet objects in the final state. We obtained simultaneous descriptions of

single hadron and jet observables using the MARTINI jet quenching model.

Our attempt to search the QGP in small colliding systems was motivated by the mea-

surements of the elliptic and triangular harmonic flow coefficients at various small sys-

tems. We found that the nuclear PDF effects are quantitatively comparable to the medium

effects in small systems. The overall jet modification in small systems was found to

be negligible and hardly distinguishable by the measurements within their uncertainty.

However, the analysis of anisotropic flow coefficients for high pT particles discovered ev-

idence of path-length dependent jet quenching due to fluctuating-shaped QGP in central

p+Pb collisions at 5.02 TeV.

In conclusion, the MARTINI framework, based on perturbative QCD, with hydrody-

namic medium obtained by MUSIC allows us to investigate sophisticated mechanisms of

jet quenching in heavy-ion collisions. The novel features newly implemented in MARTINI
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play an essential role in describing single hadron and jet observables measured at the

LHC. Exploration of the model parameters is still a necessary task for improvements to

our current results and descriptions of high-precision measurements from future heavy-

ion programs. Although numerous experimental measurements can be described by ad-

equate modelling of jet quenching, there is no shortage of exciting adventures to explore

in the community of jet physics in heavy-ion collisions.
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H. E. Haber, C. Hanhart, S. Hashimoto, Y. Hayato, K. G. Hayes, A. Hebecker,

S. Heinemeyer, B. Heltsley, J. J. Hernández-Rey, J. Hisano, A. Höcker, J. Holder,
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