
c

c

DESIGN OF A VLSI CONVOLUTION
SYSTEM FOR IMAGE PROCESSING

Damian Daniel Haule

B.Sc. (Eng.), (University of Oar es Salaam, Tanzania)

Department of Electrical Engineering

McGill University

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Engineering (M.Eng.)

March, 1990

© Damian Daniel Haule

c

c

Abstract

Abstract

One of the most commonly used algorithms in image processing is certainly the two

dimensional (2-D) convolution. It is also widely used in graphics, filtering applications, linear,

shift-invariant filters, like in edge detection, noise reduction, etc. The main problem with

2-D operations is that they require intensive computations even for small image windows.

This large computational requirements takes minutes or hours if implemented in software

and it grows very rapidly with the convolution kernel size.

One solution to this problem is to build a dedicated hardware system that can perform

the convolution calculation in a highly regular and parallel fashion. This hardware approach

is followed and a specialized VLSI convolution chip is designed and fabricated to perform a

part of the entire convolution operation. The chip is to be used in an autonomous robot vision

system, hence novel features are included for the detection and minimization of convolution

errors especially overflows.

This thesis describes the design of a VLSI convolution system for image processing in

a robot vision system. A dedicated hardware system which performs a 2-D convoh.1tion

operation on a 512x512 pixel image in less than a second for a 9x9 window size is presented.

The entire system fits on a single MULTIBUS card. The design requirements included the

specialized VLSI convolver chip as the basic processing element. Furthermore, the system

is DMA driven so that CPU independent processing is possible. Finally, the card includes

a MULTIBUS compatible interface allowing it to be supported in the INTEL iRMX-286

operating system environment.

11

Resume

Resume

L'une des techniques les plus connues dans traitement de l'image est evidemment la
convolution en deux dimensions (2-D). Elle est aussi utilisee frequemment dans graphique
par ordinateur, techniques de filtrage, filtres lineaires et "invariant a la translation", clans le
but de detecter des contours, reduire les bruits, etc ... Un probleme majeur de ces operations
en 2-D est la consommation enorme du temps de calcul, meme pour des petites fenetres. I£
temps de calcul dans les filtres croft tres rapidement avec la grandeur de noyau de convolution.

Une solution pour ce probleme est de concevoir un systeme qui peut a.ccomplir des calculs
de convolution d'une maniere precise et parallele. L'approche optimale est de concevoir un
circuit-integre specialise : il s'agit de fabriquer un processeur pour la convolution, celui-ci
peut a.ccomplir une partie de !'operation entiere. Ce processeur est utilise clans un systeme
de vision robotique, dans lequel les nouvelles caracteristiques sont necessaire pour detecter
des erreurs de convolution et en minimiser, particulierement les "depassement de capacite".

Cette these decrit la conception d'un systeme VLSI specialisant dans les calculs de con­
volution, pour traitement de Pimage clans un systeme de vision robotique. Ce systeme
"hardware" peut a.ccomplir la. convolution en 2-D sur une image 512x512 elements en moins
d'une seconde pour une fenetre 9x9. I£ systeme en entier est installe sur une carte qui peut
communiquer avec le MULTIBUS. La conception exige le processeur VLSI de convolution
comme un element de traitement de base. De plus, le systeme doit etre conduit par DMA
pour que le CPU soit independent. Finalement, la carte doit communiquer avec MULTIBUS
pour pouvoir fonctionner sur le systeme d'exploitaion Intel iRMX-286.

111

0

0

Acknowledgements

Acknowledgements

Many people, in one way or another, have assisted me in writing and preparing this

thesis. At the outset I would like to thank my advisor, Dr. A.S. Malowany, for introducing

me to the subject of Computer vision and for his guidance and encouragement while doing

this research. Lastly, but not least, he was instrumental in influencing the organization and

results of this thesis.

Thanks are also due to Dr. N. Rnmin and Dr. J. Rajski, who made the access to the

VLSI Laboratory's design facilities possible as well as introducing the material provided in

the VLSI Design I course and VLSI Testing course respectively.

Several colleague students have helped me in writing programs, preparing data laboratory

experiments, picture output, carrying out relevant library research, etc. In this regard , I

would like to thank J.F. Cote, C. Collet, L. Martin and D. Melanson. It is my pleasure to

give particular credit to all those who, in one way or another, have given their encouragement

and dedicated effort toward this thesis realization.

Finally, the author would like to thank the Department of Electrical Engineering, Uni­

versity of Dares Salaam, Tanzania for granting him an educational leave of absence and the

Association of Universities and Colleges of Canada {AUCC) for their financial support dur­

ing his stay at McGill University, Montreal, Canada for the Master of Engineering (M.Eng.)

degree programme of study. The financial supports of NSERC and CMC are also gratefully

acknowledged.

Damian D. Haule

IV

Table of contents

Thble of contents

Abstract zz

Resume. ut

Acknowledgements . ~v

Table of Figures . m

List of Tables . mt

1. INTRODUCTION. 1
1.1 Computer Vision and Robotics..................................... 1

1.2 Thesis Overview.. 6

2. CONVOLUTION COMPUTATIONS. 9
2.1 Linear Convolution Operator . 9
2.2 Circular Convolution Operator 10

2.3 1-D Convolution 12
2.4 2-D Convolution . 13

3. SYSTOLIC CONVOLUTION ARCHITECTURES . 15
3.1 Definition and Principle of a Systolic Architecture 15
3.2 Key Architectural Issues . 16
3.3 Systolic Arrays for Convolution-like Computations................... 18

4.

3.3.1 Semi-Systolic Convolution Arrays . 18
3.3.2 Pure-Systolic Convolution Arrays . 20

ARCHITECTURE OF THE CONVOLUTION PROCESSOR 26
4.1 Introduction . 26
4.2 Basic VLSI Systolic Convolver Cell . 27
4.3 VLSI Convolution Processor Architecture. 27
4.4 Operation of a Systolic Array . 34
4.5 hnplementation of a VLSI Convolution Chip . 36

5. CONVOLUTION BUS CARD ARCHITECTURE 39
5.1 Introduction . 39
5.2 Systolic Data Inter-Communications . 41

5.3 Mechanisms in Error Detection and Control . 43
5.4 Execution and hnplementation Status . 44

5.5 Convolution Card Hardware Design . 46

6. THE DMA SUBSYSTEM 49
6.1 General Description. 49
6.2 ADMA as MASTER Interface . 50

V

c

c

c

Table of contents

6.3 AD MA as SLAVE Interface . 53

6.4 ADMA to FIFO Interface . 54

6.5 Additional Operation Characteristics . 58

7. SIMULATION AND PERFORMANCE EVALUATION 61

7.1 Introduction . 61

7.2 Simulator Design . 63
7.2.1 Servicing Algorithm . 63
7.2.2 Definition of Operations . 63
7.2.3 Selection Between Prediction and Emulation Approach 64
7.2.4 Selection Rule for Next Event . 65
7.2.5 Simulator Implementation ... 66

7.3 Simulation Results . 67
7.3.1 Total Processing Time...................................... 67
7.3.2 Choking and Idle Times . 68

8. TESTING RESULTS OF THE VLSI PROCESSOR 70

8.1 Introduction . 70

8.2 Coefficient Loading (Gin to Gout) . 72

8.3 Pixel Intensity Loading (X in to X out) . 7 4

8.4 Partial Sum Module (1-'in to Yov.t) . 7 4

8.5 Serial-Parallel Multiplier Module . 75

9. CONCLUSIONS . 78

REFERENCES. 80

APPENDIX A: SDA SCHEMATICS OF THE PROCESSOR.................... 94

APPENDIX B: ORCARD SCHEMATICS OF THE BOARD . 95

APPENDIX C: PAL's DESIGN STRATEGIES . 96

APPENDIX D: LAYOUT OF THE CONVOLUTION BOARD 104

APPENDIX E: COLOR PLOT OF THE VLSI PROCESSOR 105

VI

0

0

1.1

1.2

2.1

3.1

3.2

3.3

3.4

Table of Figures

'Thble of Figures

Organization of CVaRL Research Facilities (Fig. 1 of 2) 4

Organization of CVaRL Research Facilities (Fig. 2 of 2) 5

Basic 1-D Convolution Cell . 12

Basic Principle of Systolic Architecture. 15

(a) Systolic convolution array and (b} Cell, where Wi 's stay, Xi's are
broadcast, and Yi's move systolically. 19

(a) Systolic convolution array and (b) Cell, where Yi 's stay, Wi 's move
systolically, and Xi's are broadcast. 20

(a) Systolic convolution array and (b) Cell, where Wi's stay, Xi's move
systolically, and Yi 's are formed through the fan-in of results from all
the cells. 21

3.5 (a) Systolic convolution array and (b) Cell, where Yi's stay, Xi's and
Wi 's move in opposite directions systolically. 22

3.6 (a) Systolic convolution array and (b) Cell, where Yi 's stay, Xi's and
wi's both move systolically in the same direction but at different
speeds. 23

3.7 (a) Systolic convolution array and (b) Cell, where w; 's stay, Xi's and
Yi 's move systolically in opposite directions. 24

3.8 (a) Systolic convolution array and (b) Cell, where Wi 's stay, Xi's and

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

6.1

6.2

6.3

6.4

Yi 's both move systolically in the same direction but at different
speeds. 25

VLSI Systolic Cell . 28

Processor Architecture Block Diagram . 29

Convolution Processor Block Diagram. 30

Convolution Processor Bonding Diagram . 32

Linear Convolution Example. 35

3x9 Systolic Convolution Array . 40

Convolution Card Architecture . 42

System Design Block Diagram . 4 7

DMA Master Interface.. 51

Read Cycle Signals between DMA and 82288. 53

Write Cycle Signals between DMA and 82288. , 54

DMA as SLAVE Interface. 55

vii

0

0

1Cable of Figures

6.5 DMA as FIFO Interface. 56

6.6 DMA Read Cycle Timing from BUS to FIFOs. 57

6.7 DMA Write Cycle Timing from FIFOs to BUS. 58
8.1 Maximum Frequency Vs. Supply Voltage for a Coefficient Loading

Circuit. 7 4

8.2 Maximum Clock Delay Vs. Supply Voltage for a Coefficient Loading
Circuit. 75

8.3 Maximum Frequency Vs. Supply Voltage for an Image Pixel Intensity
Loading Circuit. 76

8.4 Maximum Clock Delay Vs. Supply Voltage for an Image Pixellntensity
Loading Circuit. 77

9.1 Timing Diagram for PALL 97

9.2 Logic Representation of PALL . 97

9.3 Logic Representation of PAL2. 98

9.4 Logic Representation of PAL3. 99

9.5 Logic Representation of PAL4'. 100

9.6 Logic Representation of PAL5". 102

9.7 Logic Representation of PAL6. 103

Vlll

4.1

4.2

5.1

6.1

7.1

7.2

9.1

9.2

9.3

9.4

9.5

9.6

9.7

c

List of Tables

List of Thbles

Convolution Processor Signal Description . 31

Pin Assignment of the Convolution Processor . 33

Features of the Processor Card . 39

Timing Symbol Definition. 52

Convolution Times Analysis . 68

Idle and Choking Times Analysis . 68

PALl Description

PAL2 Description

PAL3 Description

PAL4 Description

PALS Description

PAL6 Description

PAL7 Description

" " . ,. . . 96

98

···~···~· 99
100

101

102

103

ix

c

c

c

1. INTRODUCTION

1. INTRODUCTION

In this chapter, problems and requirements associated with computer vision as applied

to robot systems are introduced. The computer hardware organization of the Computer

Vision and Robotics Laboratory (CVaRL) of McGill Research Center for Intelligent Machines

(McRCIM) is given. Finally, a brief overview of this thesis research is presented.

1.1 Computer Vision and Robotics

The use of robots in industries has become increasingly important to improve produc-

tivity and reduce production costs. Robots are used to perform repetitive tasks such as pick

and place, spot welding, spray painting, etc. The precise definition of a robot was given by

K.S. Ful32] as follows:-

"A robot is a reprogranunable, multifunctional manipulator designed to move material, parts, tools, or

specialized devices through variable programmed motions for the performance of a wriety of tasks".

The above highlighted keywords could be summarized with the word flexibility. Most

robots require the precise positioning of the object to be processed due to lack of sensory

feedback from the work environment (except for the robot's joint encoders). Thus, the

flexibility of robotic workstations is reduced by this characteristic.

At present, most researchers are working to introduce sensory feedback for robot control

and for parts inspection such as tactile sensors[43],[78],[98],[26], proximity detectors[21],[84],

etc. Computer vision is among the most flexible sensory feedback being investigated. It

permits performing motion planning and controi[70L[42],[32],(33], adjusting the planned mo-

tions to obtain the exact position and orientation of parts being moved, as well as parts

inspection[23],[38],[80],[69].

1

0

1. INTRODUCTION

Commercial systems, with limited vision capabilities, which can recognize images of one

or more non-overlapping objects with the position and orientation in less than one second

include the VS-100 and VS-110 from Machine Intelligence Corporation and the Octek Vision

Module. Movichl68] describes the application of such a system for drilling and riveting of

aircraft parts, Reinhold[SO] applied the system for the automatic inspection of sheet metal

parts, while Dillmanl29] was involved in the quality control of label applications.

Binary imaging systems do not fare well in many applications such as inspection, un­

packing, etc. This is because contrast is not sufficiently high or cannot be controlled, or

the applications required more than the outline. In these cases, it becomes necessary to use

grey level processing, in which pixels may take any value within a range, each representing a

different intensity in the original image. The advantage of grey-scale imagery is the amount

of detail the image contains about the world. The object itself, and not only the outline as is

the case for binary images, may be studied and inspected. Neverthless, grey-scale images are

more costly to acquire, transfer, store, access and process to extract discriminating features

and take longer to process with even more complicated algorithms.

Many approaches have been proposed to reduce the computation time to an acceptable

levetl22],[60]. T.J. Fountain et aJ.[30],[3l] describe CLIP7 A and CLIP N, a cellular logic pro­

cessor with 96x96 computational elements. K.E. Batcherl6] developed a massively parallel

processor {MPP) with 128xl28 bit-serial computational elements, while H.J. Siegel et atl871

describe a system in which many microprocessors communicate through a local interconnec­

tion network. Investigation of three-dimensional structures is also taking place, for example

pyramidal computersl27],[77],[72],[lS],[90],[2]. More specialized systems for robotic applications

are also designed such as with systolic arrays[5S],[28],[l7],[49] and with the concept of wavefront

computingl53],[45],[64]. Processors developed especially for robot vision systems must include

multi-microprocessors operating in parallel to reduce the computation timel57],[SS],[84]. Such

2

0

1. INTRODUCTION

systems are needed before grey level image processing techniques may be used. Future at­

tention of researchers will shift toward multi-spectral imagery, such as color images[63],[lS],

and 3-dimensional signal processing that will use stereoscopid95],[36],[271 or structured light

techniquesl4l],[47] or depth maps[75],[74],[86] to increase the robot system's world perception

to include depth.

Research studies in the department of Electrical Engineering at McGill University in the

Computer Vision and Robotics Laboratory (CVaRL) include the use of image processing and

computer vision techniques for robot assembly and repair. This study continues to address

the implementation of a flexible workstation for the automatic assembly and repair of hybrid

and printed circuits[35],[60],[66],[65].

Figures 1.1 and 1.2 show the general organization of the laboratory's research computer

facilities. They are based on VAX 32-bit mini-computers, SUN and Micro-VAX computers,

all running UNIX 4.2, VAX/VMS and/or Eunice, a Unix emulator. All computers are

connected through a local area network based on Ethernet and the TCP /lP protocol.

Main areas of research include computer vision, visual inspection of traces, solder joints,

collision avoidance, motion planning, control algorithms for robots, etc. Most of these tasks

involve a major use of visual feedback. More details are given in the 1988 CVaRL Progress

Reportf76].

3

McRCIM
Ether net

.... -._ to CRIM, VLSI Lab., CSNET, ..-,vAX 111750 f"iNTERNET, ~omp. Sci. & Physic
I Grinnell I 4 Laser:! Printers lsony a1wr

Cameras
Graphics
System l Colou~~ Dlspla

..,2x3640 Lisp Machine + 1 Colour Display [
3x3650 Lisp Machine + 1 Colour Display

~mlcroVAX II terminals for ~eneral use I

1 Sun-3/160 File Server
1 Sun-3/160 + Colour Display
1 Sun-3175 - ~ Sun-3/160

Sun-3/50
~ Sun-3/60 + Colour Display

Sun-3/60
1 Sun-3/110 (FANGlab)

microVAX II
I

I

s

Intel I~Unlmation Stepper !Force .1
RMX Control le Motor Sensor

!System • Controller
. IPUMA-2601

I Microbo l~ Robot Camera IXY Sta~el
Controlle · Focus

Infrared + Zoom
IEcureill Range
Robot Sensor

~ 32 ports on Comp. Se i . Gandalfl

~IRIS 3130 Colour Workstation

""1111
,.

1. INTRODUCTION

Figure 1.1 Organization of CVaRL Research Facilities {Fig. 1 of 2)

4

c

0

McRCIM
Ether net

2 ORCA Colour Workstatlons

HP 9000/320 Workstation

l------{s~u~n~-~3/L1n6~o}----i sun-3/60

VME-based Multi-microprocessor
Controller

Uni{;e~sal TI Micro-Explorer
Controller

HARMONY
Multi-processor

System

Unlmation
Controller

1. INTRODUCTION

Figure 1.2 Organization of CVaRL Research Facilities (Fig. 2 of 2)

5

0

1. INTRODUCTION

1.2 Thesis Overview

This thesis describes the implementation of a high-speed 2-dimensional hardware con­

volution architecture based on VLSI systolic arrays for image processing applications[441.

It addresses the issues of designing a special purpose systolic image convolution processor

meant for use in a robot vision system. An architecture for the parallel processing of the

generalized 2-D convolution is also presented.

Firstly, a VLSI convolution chip was designed to accommodate various convolution win­

dow sizes. The number of coefficients being handled is directly proportional to the number

of systolic computing elements (processors) used. In this design three such processors are

configured on one VLSI chip. Signed coefficients and unsigned data of 8-bits are supported.

All processing and inter-processor communications are performed bit-serially. The chip de­

sign incorporates error detection during convolution and overflow avoidance techniques are

proposed for maximum system autonomy. The chip is estimated to operate at a maximum

frequency of 20 MHz. under normal conditions as discussed in Chapter 8 when the fabricated

VLSI convolution processor was tested.

The designed VLSI convolution processor cell consists of a shift-register pipeline, an 8

bit array of multipliers and a tree of adders. The image data enter the processor in a raster

scan format and are stored and shifted in the pipeline. The multiplier array takes data from

the pipeline serially, does the multiplication with the stored coefficient, and then sends the

partial products to the adder tree to complete the computation of the partial sum.

The increasing resolution in modern image technology allows for improved precision in

computer vision but, increases the time-complexity of image processing. Image processing

frequently uses two dimensional convolution[59],[51],[88J, a process requiring over twenty mil-

6

c

0

1. INTRODUCTION

lion additions and multiplications for a single 9x9 window size convolution on a 512x512

picture frame . For robotic purposes, the convolution results are needed within a reasonably

short amount of time so as to allow the robot to react in real-time. A 9x9 convolution

requires close to an hour of computation time on a Sun workstation in our computer labo-

ratory, a delay that is much too high for robotic vision purposes. This thesis also describes

the design of a convolution processor card that performs a 9x9 window size convolution on

a 512x512 picture frame in less than a second.

Most image processing algorithms are very computation intensive[8]. In fact, many real­

time image processing throughput rates outstrip current parallel a.rchitectures. For example,

low level operations, such as filtering or enhancement, typically require the order of some

tens of millions of machine instructions per image. hnage processing uses a wide variety

of mathematical techniques, dominated by convolution/correlation filtering, transform tech-

niques, etc. all of which require intensive computation. Thus image processing is a major

driving force in the development of faster and more powerful parallel a.rchitectures.

The key to successful design of a VLSI convolution processor lies in a cohesive exploita­

tion of the applicational, algorithmic, and architectural aspects[l3],[39]. Hence, this thesis

demonstrates the regular and cohesive design of a highly parallel image convolver hardware

system, using a designed VLSI convolution chip or processor. The systolic convolution cell

is designed to multiply a pixel intensity by a given coefficient and to add this product to a

corresponding partial sum. Twenty seven systolic cells are arranged in a pipeline architecture

to realize a high performance convolution board or card for the convolution window size of

3x9.

The new Intel82258 Advanced DMA Controller[47] is used to perform each pixel transfer

to and from the host computer's memory. Due to the DMA's software programmability,

7

c

c

1. INTRODUCTION

pictures of any size can be processed as discussed in more detail in Chapter 6. The twenty

seven systolic cells incorporated into the circuit constitute a basic convolution window size of

3x9. The image data for these three rows is supplied by three concurrent DMA transactions

while the convolved output is handled by the fourth channel on the DMA chip. This cycle is

repeated three times with different coefficients to achieve a 9x9 window size. A fourth pass

is used to combine the partial convolutions into a final image. Since each pass requires only

200 milliseconds to process the entire image, the 9x9 convolution is obtained in less than one

second[24l. Chapter 6 briefly describes the DMA subsystem operation.

The convolution board was assembled on a 36 column MULTIBUS bus card and is being

installed on an Intel System 310 running iRMX-286 real-time multitasking operating system

for testing. This implementation will offer fast and reliable computer vision for robotic

applications. Moreover, its unlimited flexibility in terms of frame and window size will, in

the future, allow it to support even higher resolution image technology or the flexibility of

electronic windowing on the new selective scan camera systems such as the CIDTEC model

2250 solid state camera(3),[5],[12]

8

2. CONVOLUTION COMPUTATIONS

2. CONVOLUTION COMPUTATIONS

Continuous-time convolution is mainly of theoretical importance, while discrete-time

convolution has many practical applications. In particular, it may be used to implement

linear, shift-invariant filters for noise-reduction, edge enhancement and many more image-

processing applications.

2.1 Linear Convolution Operator

The 2-D linear convolution of two signals x1(m,n) and x2(m,n) is defined as:

y(m,n) = x1(m,n) * x2(m,n)
+oo +oo

- L L x1(i,j) x2(m- i,n- j)
i=-ooj=-oo
+oo +oo

- L L x2(i,j) x1(m- i,n- j)
i=-ooj=-oo

- x2(m, n) * x1 (m, n)

(2.1)

Where "* " denotes the convolution operator and convolution order is unimportant.

Representing the input signal x(m, n) by a sequence of impulses we get:

+oo +oo

Where

x(m, n) = L L x(i,j)t5(m- i, n- j)
i=-ooj=-oo

t5(m, n) :: { 1 if' m=n. 0
0 otherwiSe

(2.2)

(2.3)

For linear, shift-invariant system with output y(m, n), the system's output is given by:

y(m, n) = T[x(m, n)]
+oo
L x(i,j)t5(m- i,n- j)]

(2.4)

i=-ooj=-oo

9

2. CONVOLUTION COMPUTATIONS

By the linearity property we get[SI]:

+oo +oo
y(m, n) = L L x(i,j) T[6(m- i, n- j)]

i=-oo j:=-oo

By the shift-invariance property we get[Sl]:

+oo +oo
y(m,n) = L L x(i,j) h(m-i,n-j)

i=-oo j:=-oo

where h(m, n) is the system's impulse response.

Hence we have:

y(m, n) = x(m, n) * h(m, n)

i.e. convolution between x(m, n) and h(m, n).

(2.5)

(2.6)

(2.7)

The response of any linear, shift-invariant system may be expressed as the convolution

of the input signal x(m, n) along with the system's impulse response h(m, n) called the

convolution filter or kernel.

The input signal is an image of limited dimensions. This has the advantage of limiting

the summation range to that of the dimensions of the image and, hence, the convolution will

always be absolutely summable as long as the coefficients of the impulse response and the

pixel intensities are finite.

2.2 Circular Convolution Operator

Circular convolution [SI 1 is another approach to be used. Assuming two signals XJ (m, n)

and x2(m,n), each of size MxN, and their discrete fourier transform (DFT) be X1(u,v) and

X2{u, v) respectively, then, the circular convolution is defined in such a way that:

x3(m,n) = Xt{m, n) ® x2(m,n) (2.8)

10

c

0

2. CONVOLUTION COMPUTATIONS

which implies:

(2.9)

where ® denotes the circular convolution operator. Convolution is simply multiplication of

respective DFT's in frequency domain.

It can be shown thatf8]:

(2.10)

where [x]M is x modulo M and

RM N = { 1 if 0 ~ m ~ M - 1 and 0 ~ n ~ N - 1
' 0 otherwise

(2.11)

The circular convolution may be interpreted as creating periodic signals by replicating

x1 (m, n) and x2(m, n) in both directions, and computing the linear convolution over one

period. The result is then obtained by windowing the resulting signal to the original MxN

dimensions. The circular convolution is also absolutely summable only when both the am-

plitude of both input signals are finite because of the limited summation range. It can a1so

be shown that:

y(m,n) = Xt(m,n) Q$) x2(m,n) - x2(m,n) Q$) Xt(m,n) (2.12)

i.e. again convolution order doesn't matter.

11

0

c

0

2. CONVOLUTION COMPUTATIONS

2.3 1-D Convolution

A convolution operation simply involves multiplying and adding. The actual convolution

operation can be implemented in hardware by using a specially designed VLSI convolution

chip. The 1-D convolution chip designed can be used as a basic cell for higher dimensional

processing. Thus, a 2-D convolution can be performed by cascading basic cells as building

blocks. Each basic cell is self sufficient and its output is equal to the convolved input. The

basic 1-D convolution chip is as shown in Figure 2.1[51].

X in Xout

Yout

Upon being clocked:

Yout = Yin + W.Xin

X = Xout

Xin = X

Xout(t) = Xin(t-1)

Figure 2.1 Basic 1-D Convolution Cell

where:

Xin = input data

lin = partial result from previous cell

X0ut = delayed out data

Yout = convolved output (partial result for the next cell).

Basic characteristics[5l],[971 of the 1-D convolution chip can be summarized as:

(a) it has serial inputs and serial outputs,

12

2. CONVOLUTION COMPUTATIONS

(b) each cell is pre-loaded with weights,

(c) input data is delayed within the cell to allow pipelining,

(d) cells are cascaded by ronnecting inputs to the outputs of the previous cell,

(e) a load input enables the loading of weights and

(f) a chip enable input enables the convolution computation.

2.4 2-D Convolution

One of the most compute-intensive tasks in image processing is the 2-D ronvolution

problem[S],[lS]. Consider the problem of convolving an mxm kernel with an nxn image,

where m ::; n. Assume that m is not large enough to make an FFT-based solution cost­

effective. Then the straightforward method of solving the problem will require O(m2n2)

operations.

Several systolic devices for the 2-D oonvolution problem have been proposed[51],[97],[57].

Suppose that such a device can only handle kernels of size kxk, where k ::; m. Then the

mxm kernel has to be decomposed into subkernels of size kxk. Consider the algorithm that

slides the kernel from left to right until the right boundary of the image is reached. Then

slide down one row of image and do the same, until the bottom of the image is reached.

It is easy to see that kernel elements have to enter the device O(n) times and entries of

image O(m2 /k) times. Thus, the 1/0 requirement for the kernel is the highest, that for the

input image is the second, and that for the resulting image is the lowest. A standard 2-D

13

c
2. CONVOLUTION COMPUTATIONS

convolution equation is given by[73]:

where:

k k

Yr,s - L:: L Wi,j·Xr+i-k+l, s+j-k+l
i=l j=l

w = weights pre-loaded in each cell

X = pixel information in grey scale

k = size of convolution kernel

Yr,s = convolution result for pixel r, s.

(2.13)

A major drawback in 2-D convolution is that of reading each row k times in order to

convolve the whole image. A standard way to correct this problem is to use a Systolic

Convolver and to delay the row data as required before feeding it to the adjacent rows of the

systolic design. However, this row delay implementation becomes cumbersome and costly in

hardware implementation when processing images of variable dimensions. The next chapter

outlines alternative systolic designs for convolution-like processing.

14

c

0

3. SYSTOLIC CONVOLUTION ARCHITECTURES

3. SYSTOLIC CONVOLUTION ARCHITECTURES

3.1 Definition and Principle of a Systolic Architecture

A Systolic architecture[50] is a design methodology in which many functional modules

can be mapped into silicon oost-effectively, i.e. a powerful method for implementing cost­

effective silicon subroutines for computations such as pattern matching, error correcting,

data base processing, signal and image processing, etc. It results in cost-effective, high­

performance special purpose systems applicable to a wide range of problems[14],[96] •

In asystolic system data flows from the computer memory in a rhythmic fashion, passing

through many processing elements (PE) before it returns to memory (Cf. blood circulation

to and from the heart) as shown in Figure 3.1. Data flow may be at multiple speeds in

multiple directions, both inputs and (partial) results flow, whereas only results flow in clas­

sical pipelined systems. Each data is used multiple times, hence it can speed up execution

of compute-bound problems without increasing I/ 0 requirements. It is easy to implement

because of its regularity and to reconfigure (to meet various outside oonstraints) because of

its modularity.

MEMORY MEMORY

PROCESSOR.

PE = Processing Elements

:Figure 3.1 Basic Principle d Systolic Architecture

15

c
3. SYSTOLIC CONVOLUTION ARCHITECTURES

3.2 Key Architectural Issues

In designing a. special-purpose system, three phases[ll],[39] can be identified:

1. Task definition phase,

2. Design phase and

3. Implementation phase.

In task definition phase, some system performance bottleneck is identified, and a. decision

on whether or not to resolve it with special-purpose hardware is made. In the design phase,

one has to consider three main items:

(i). The design process. Simplicity and regularity of a. design influence its cost-effectiveness.

There is a trade-off between nonrecurring (design) and recurring (parts) costs. A basic

strategy is to decompose the design into a few types of simple substructures or build­

ing blocks, which are used repetitively with simple interfaces. The design should be

modular and adjustable to meet various performance goals.

(ii). Concurrency and Communication. Two possible ways to build a fast computer sys­

tem are either to use fast components or to use concurrency, i.e. use of many processing

elements. The degree of concurrency is largely determined by the underlying algo­

rithm. Massive parallelism can be achieved if the algorithm is designed to introduce

high degrees of pipelining and multiprocessing. When a large number of processing

elements work simultaneously, coordination and communication become significant.

Hence, design a.lgorithms[8] that support high degrees of concurrency, while employing

only simple, regular communication and control to enable efficient implementation are

16

c

0

0

3. SYSTOLIC CONVOLUTION ARCHITECTURES

necessary.

(iii). Balancing Computation with I/0. A oomputation rate should balance the available

1/0 bandwidth with the host computer, memory, real-time device, etc.

Systolic architectures oonsist of a set of interconnected cellsl52],[57l, each capable of per­

forming some simple operation. Cells are interconnected to form a systolic array or a systolic

tree. Information flows between cells in a pipelined fashion, and communication with the

outside world occurs only at the boundary cells . Compute-bound architectures (when com­

puting operations take longer than I/0 transactions) and 1/0-bound architectures (when the

1/0 transactions take longer than the computing operations) require different implementa­

tion strategies.

Systolic designs in one- or two-dimensional arrays are commonly used for the regular,

compute-bound architectures. In signal and image processing applicationsl17l, systolic de­

signs have been proposed for FIR and IIR filtering[Sl], and 1-D oonvolution, 2-D convolution

and correlation[lOO}, Discrete Fourier Transform (DFT), Interpolation, 1-D and 2-D median

filteringl831 and Geometric warpingl19],[89].

In Matrix Arithmetic applications[34], existing systolic designs include matrix-vector

multiplication, matrix-matrix multiplication, matrix triangularization (solution of linear sys­

tems, matrix oonversion), QR-decomposition (eigenvalue, least squares computations), so­

lution of triangular, linear systems, etc. In non-numeric applications there are designs for

data structures (stack and queue), searching, priority queue, and sorting, graph algorithms

(transitive closure, minimum spanning trees, geometric algorithms), oonvexity hull genera­

tion, language recognition (string matching and regular expression), dynamic programming,

polynomial algorithms (multiplication and division, greatest common divisors), relational

17

c

3. SYSTOLIC CONVOLUTION ARCHITECTURES

data-base operations, etc.

3.3 Systolic Arrays fOr Convolution-like Computations

The convolution problem is defined as follows[Sl]:

Given the sequence of weights (wb w2, , wk) and the input sequence (xbx2, , xn),

compute the result sequence (YbY2, ,yn+l-k) defined by:

(3.1)

The ronvolution problem is also called the FIR - filtering problem or the correlation

problem, i.e. rombining two data-streams, Wi 's and ~s in a certain manner to form a

resultant data-stream of Yi's. The ronvolution problem is compute-bound, since each input

Xi is to be multiplied by each of the k weights.

3.3.1 Semi-Systolic Convolution Arrays

Semi-systolic convolution arrays have global data communication. If an Xi, once brought

out from the memory, is broadcast to a number of cells, then the same Xi can be used by

all the cells, i.e. multiple use of each input element. The opposite of broadcasting is fan-in,

through which data items from a number of cells can be collected. Different systolic designs

that utilize broadcasting and fan-in are as follows:

1. Broadcast inputs, move results, weights stay:

Figure 3.2 depicts this type of design. Weights are pre-loaded to the cells, one

at each cell, and stay at the cells throughout the computation while partial results Yi

move systolically from cell to cell in the left-to-right direction.

18

c

0

3. SYSTOLIC CONVOLUTION ARCHITECTURES

-+

(a)

.!...e r,--, ~ rw.-, ~ rw• r--+
L1J L~ L~

(b)
y

out ..
r

Y +--- Y. + W.X. out 1n 1n

Figure 3.2 (a.) Systolic convolution array and (b) Cell, where wi 's stay, Xj 's
are broadcast, and 1/i 's move systolica.lly.

2. Broadcast inputs, move weights, results stay:

This design is as shown in Figure 3.3. Each Yi stays at a cell to accumulate its

terms. The weights circulate around the array of cells. Its disadvantage is that a

separate bus is required for collecting outputs and its advantage is that the systolic

path for moving w; 's is less wider than that of Yi 's since for numerical accuracy Yi 's

carry more bits than Wi 's.

3. :ftm-in results, move inputs, weights stay:

Figure 3.4 shows this type of design. Consider the vector of weights (wk, Wk-1, ... , wt)

as fixed in space and input vector (xn,Xn-1, ... ,xt) as sliding over the weights in the

left-to-right direction. Weights are pre-loaded to the cells and stay throughout the

19

0

0

3. SYSTOLIC CONVOLUTION ARCHITECTURES

.........

(a)

"s ~ ~ rv-, ~ rv.-, rv-, -
LtJ L~ L~

I I • . I I
I • •
L - I - --L. - -+
X in

"In rv• w
out,. y +-- y + W • X.

(b) in 1n
" L.J

w
out +-- win

Figure 3.3 (a.) Systolic convolution array and (b) Cell, where y(s stay, wi 's
move systolically, and Zi 's are broadcast.

oomputation while results of multiplications are fanned-in and summed using an adder

to form Yi·

3.3.2 Pure-Systolic Convolution Arrays

Pure-systolic oonvolution arrays have no global data oommunication. Global broadcast­

ing or fan-in solves the 1/0 bottleneck problem, but implementing it in a modular, expand­

able way presents another problem, i.e. providing (or oollecting) a data item to (or from) all

the cells of a systolic array, during each cycle, requires the use of a bus or some sort of tree

like network. Hence pure-systolic oonvolution arrays without global data oommunication do

exist which can be extended to include an arbitrarily large number of cells. Different types

20

0

0

0

3. SYSTOLIC CONVOLUTION ARCHITECTURES

x3

(a)

(b)

~ r,-,
L~

,,

r -, Xout W I

L.J

~ rw-, r,-,
L~ L~

..... ~

ADDER

,

Figure 3.4 (a) Systolic convolution array and (b) Cell, where wi 's stay, Zj 's
trove systolically, and Yi 's are formed through the fan-in d results from all
the cells.

of designs exist for pure-systolic convolution a.rrays:

1. Results stay, inputs and weights mlVe in opposite directions:

Figure 3.5 shows this design. Each partial result Yi stays at a cell to accumulate

its terms. The x; 's and Wi 's move systolically in opposite directions such that when

an x meets a w at a cell, they are multiplied. A systolic output path is sufficient for

collecting output from cells. The advantage of this design is that it does not require

a bus or global network. To ensure that each Xi is able to meet every Wj, consecutive

Xi's are separated by two cycle times and so are the w; 's.

21

0 (a)

(b)

3. SYSTOLIC CONVOLUTION ARCHITECTURES

....
"s • ••

y +--- y + win .xin

"out+-- w. ln

X +- X
out in

Figure 3.5 (a) Systolic convolution array and (b) Cell, where Yi 's stay, xi's
and wi 's move in opposite directions systolicaJiy.

2. Results stay, inputs and weights move in the same direction but at different speeds:

This type of design is shown in Figure 3.6. Both the x and w data streams move

from left to right systolically but the Xi's move twice as fast as the Wi 's, i.e. each

Wi stays inside every cell for one extra cycle. In this case, the multiplier-accumulator

hardware is used effectively. The first weight w1 is associated with a tag bit that signals

the accumulator to output and resets its contents. All the cells work all the time when

performing a single convolution but it requires an additional register in each cell to

hold a w value. It is also possible to have a dual design whereby Wi 's move twice as

fast as Xi's.

22

c (a)

(b)

3. SYSTOLIC CONVOLUTION ARCHITECTURES

Ws Ws
.. ,. w4 ... w2 -,

"s ~ ··•
I

00-0-·
y .,__ y + win .xin

w. .,__ w
in

wout+-- w

X +- X
out in

Figure 3.6 (a) Systolic convolution array and (b) Cell, where yj's stay, Xi's
and wi 's both move systolically in the same direction but at different speeds.

3. Weights stay, inputs and results move in opposite directions:

Figure 3.7 shows this design. Weights stay, one at each cell, but results and inputs

move systolically. Although they are not geared to the most effective use of available

multiplier-accumulator hardware, they are potentially more efficient than other designs

so far discussed. Because the same set of weights is used for computing all the Yi 's

and different sets of the Xi's are used , it is natural to have the w; 's preloaded to the

cells and stay there, and let the Xi's and the Yi 's move along the array. It is proposed

as a special case of systolic filtering array. The main advantages of this design is that

it can be naturally extended to perform recursive filtering. Its drawback is that only

one half of the cells work at any time.

23

0

c

0

(a)

(b) r.,-,
L.J

3. SYSTOLIC CONVOLUTION ARCHITECTURES

v t.,..__ v. + w. x1 ou 1n n

X
out

Figure 3. 7 (a) Systolic convolution array and (b) Cell, where wi 's stay, z(s
and y(s move systolically in opposite directions.

4. Weights stay, inputs and results move in the same direction but at different speeds:

This type of design is shown in Figure 3.8. Weights stay, one at each cell, but

results and inputs move systolically at different speeds. Cells work all the time but

the Y outputs travel twice as fast as the X stream. The row output takes place

k cycles after ts input starts entering the left-most cell of the systolic array (where

k is the number of systolic cells being chained). This design can be extended to

implement 2-D convolutionsl50],[51l. The design has a dual version for which the Xi's

move twice as fast as the Yi 's. The design of Figure 3.8 was selected for the VLSI systolic

oonvolution processor mainly because of its simple control strategy requirements as will ·

be described in detail in the following chapters.

24

0

0

3. SYSTOLIC CONVOLUTION ARCHITECTURES

(a)

(b)

x7 Xs
... x6 x4

Y.3 y2 ··• ..•
r- -,

Y t+-- Y. + W. X. ou 1n 1n

X +-- X. 1n

X .__X
out

Figure 3.8 (a) Systolic convolution array and {b) Cell, where wi's stay, zi's
and Yi 's both move systolica.lly in the same direction but at different speeds.

The designs discussed above by no means exhaust all possible systolic designs for the ron-

volution problem. For example, it is possible to have systolic designs where results, weights

and inputs all move during each cycle. It rould also be advantageous to include inside each

cell a "memory" capable of storing a set of weights. With this feature, using a "systolic ad-

dress (or control) path" weights can be selected on-the-fly to implement interpolation, signal

resampling or adaptive filtering[50]. The ESL Systolic processor[97] utilizes cell memories to

implement multiple functions including convolution and matrix multiplication.

The main challenge is to understand precisely the strengths and drawbacks of each design

so that an appropriate design can be selected for a given environment.

25

0

0

0

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

The architecture selected to implement the discrete-time, two-dimensional convolution

is briefly described in this chapter. Two basic principles are used, i.e., systolic arrays (a's

described in chapter three) and bit-serial oomputing. The chapter is divided into five sections.

The first section gives a brief introduction of the basic requirements of the processor. The

second section describes the basic VLSI systolic convolver cell. Section three gives the

main architecture of the VLSI convolution processor integrated circuit (IC) containing three

systolic cells. Section four gives an example of linear convolution for a systolic array to

explain its operation. Finally, section five summarizes the implementation of the VLSI

convolution processor.

4.1 Introduction

In order to incorporate the designed convolver into the robot workstation, it was neces­

sary to make it oompatible with the standards used in our laboratory. For example, it must

be able to process images of 512x512 pixels of 256 gray levels (8-bits). Images are obtained

using a black and white camera and a frame grabber that digitalizes each pixel into 256 gray.

scale levels. Starting from the top of the image, rows are stored one after the other in the

frame grabber. Adjacent pixels in a row occupy consecutive bytes in memory. The present

image resolution used is 512x512 pixels. However, the processor board (containing 27 cells

or 9 IC's) can easily be programmed to handle arbitrary image sizes.

For robotic purposes, a 9x9 window .size convolution gives good image processing results.

The convolution involves replacing each original pixel intensity by the sum of eighty one prod­

ucts which are obtained by multiplying original pixel intensities by constant coefficientsJ9]

The original pixel intensities used are those found within a square window of 9x9 pixels on

26

0

0

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

the image while the pixel in the upper left rorner of the square is the one being replaced.

Multiplying eighty one by the amount of pixels found on a 512x512 picture frame results in

over twenty one million multiplications and additions to ronvolve a single image. For this

reason, if an image is to be processed rapidly, several additions and multiplications should

be performed roncurrently and pixels should not be repetitively read from memory.

4.2 Basic VLSI Systolic Convolver Cell

The above concurrency and minimal memory transfer specifications cannot be satisfied

by romputers based on the Von Newman architecture. However, processors based on a

systolic architecture are easily adapted for this task. A basic systolic cell designed in our

VLSI laboratory is the building block of the designed convolution card. Other rommercial

versions are now available[6l],[54]. Figure 4.1 outlines the basic arrangement of the systolic

cell. Figure 4.2 gives the block diagram with all control signals included. It contains three

shift registers that can be loaded serially: the intensity (X), the roefficient (C) and the

partial sum registers (Y). The overflow register (V) will be described in section 5.3. The

cell's only function is to multiply the 16 bit content of the intensity register with the 8 bit

rontent of the coefficient register and add this product to the 16 bit rontent of the partial

sum register. The control signal functions are summarized in table 4.1.

4.3 VLSI Convolution Processor Architecture

The designed processor[441 is a 40-pin dual in-line package (DIP). The package has a

removable lid which permits physical access to the chip and bonding wires, for example, to

allow for probing or use of other diagnostic procedures. The design was implemented using

the CMOS3 DLM[401, version of VLSI process technology which was available to our VLSI

laboratory. In this technology a double well, double metal CMOS process with a 3-micron

27

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

Cin C Register
(8 bits)

CO ut

Yin Y Register Yout
(16 bits)

V in V Register
(16 bits)

Yout

Figure 4.1 VLSI Systolic Cell

minimum feature size was employed. The Northern Telecom CMOS3 DLM process is a

single polysilicon, double metal process and has additional implant and doping steps when

0 compared to the old versions of technologies such as CMOSlB. The reduced dimensions in

the CMOS3 DLM process limits the supply voltages of the finished devices to 5 volts. More

recently, the CMOS1.2 DLM technology has become available in our laboratory.

c

The processor contains three basic VLSI convolver cells. Two cells are internally cascaded

and the third cell can be externally cascaded when desired. This allows one to use the

processor as a one·dimensional (l·D) filter for signal processing applications, or as a two.

dimensional (2-D) filter for image processing applications such as convolution in this case.

The window and/or precision of a 1-D or 2-D filter is expandable using more processors with

minimal external logic. The processor is ideally suited for ''video-rate" image processing such

as template matching, noise removal or inverse filtering. Two dimensional image processing

such as edge enhancement, and edge detection can be carried out fast enough for "real

time" robotic applications. The processor block diagram given in Figure 4.3 shows the

implementation of the three systollic cells in a single IC. The bonding diagram of the chip

28

(

Cout ...
~

"2

Ld

Cin.

Sd

"l

"'2

Pe

Yill

-ovi-n

~

.32

.1\e,etA

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

..................................... ,
. • • • • .. • • , 3 2 - b i. t ~~ out.

• • S.R. r: .. I .
I c

br ~
•

0
.

>:1~ _ _., e .
f ..

r ~
f

_ ... -. ..
s

l_.,Prive 'I ~ . -
r

I I R _...
~ . 1: • -

~·i~·
_... r; ~ ""1lfl"

l riNe1
Jll.! t-,

I I I

0 ' t
' I ...
• . l

J
~rivoe.r -

J t-
.Jod.vel

t-,

Serial-
Parallel

Hu.ltiplier
f4-

'-
Stun Disab~e

I
I f • •

Adder

Overflow

..

'

J

t

l& -bit
tt. s.

' ' • ' - ' ...
()V out' ,

•
'
' ' '
' ,
f

l ·············-··--·-·-···------·····--J

Figure 4.2 Processor Architecture Block Diagram

after fabrication is as given in Figure 4.4 and the equivalent pin assignment is as shown

in Table 4.2. Finally, the complete chip plot or layout is given in Appendix E and the

corresponding SDA schematics in Appendix A.

29

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

c PROCESSOR 1 PROCESSOR 2 PROCESSOR 3
Xout3

Xin1 16-Bit J116-Bit 1-~116-Bit J1: 16-Bit Xin3 J 16-Bit J116-Bit ..,
'~hift Reg. Shift Reg hift Reg. Shift Reg '~hift Reg. Shift Reg

Cin1 Cout2 ,Cout

± l ~ I ~/

Ld
g-Bi1 r- Ser ial-Paralle ~-Bi1 r- Ser ial-Parallel ~-Bi1 ~ Ser ial-Parallel

~ r- Mu tiplier L'!_
~ ~ r- Multiplier

Ld
I' ~ ~ Mu tipl ier 1- 1- ~

i r- i r- I" i -
f r- ResetM f r- ResetM f ~ ResetM t r- t r- t ~ r- r- ~

Reg. r- Reg • ._ Reg. ~

T I TT cin3 T T
Sd Sd

' Sum Sd ' Sum " Sum.
/ Qi.sab~l~ "R.~sab\1 "'fcisable C1rcu1 Circui Circui

Yin1 "" ""
Yout2 Yin3 .J, Yout3

' ' /
H 16-Bit /

H 16-Bit
A

/ 4 16-Bit
eset '

Adder 7 S.R. Re setA Adder 7 S.R. ~ Re se
"

Adder S.R. ____, ,
J,

,
J,

/

-1
''in1

'
pverflo ~ Overflo ~ Vout2 Vin3 J!verflo Vout3

, "=!.etecti :m ... l,!~tecTi t>n 'fc~tec~i n Circuit C1rcu1 Circu1

Tg1 TPe
/I' " TPe 'I' T TPe .0'2 .0'2 g1 .0'2 g1

Figure 4.3 Convolution Processor Block Diagram

•

30

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

Signal Description

Xin Input signal, the pixel grey level

Gin Input signal, convolution coefficient

}in Input signal, partial convolution sum

OV;n Input signal, the overflow detected

X0 ut Output signal, delayed Xin signal

G0 ut Output signal, convolution coefficient

Yout Output signal, the partial sum computed

OVout Output signal, overflow flag for Yout

Ld Control signal, activates coefficient loading

Pe Control signal, activates the processor

Reset A Control signal, resets the adder circuit

ResetM Control signal, resets the multiplier

Sd Control signal, disables multiplier output

4>1, <h two-phase, non-overlapping clocks

'Thble 4.1. Convolution Processor Signal Description

c
31

PACKAGE LID
IDK40Fl-192G C-493-175-JSM

0 WIRE ALLOY Si DIA. .001" (LONG· 1.5 • IJ% r.s. IIJ-16 gms
Si .OQI25" ' I, 5 - IJ% 18-22 qms

I
D/A PREFORM ALLOY 98% Au/2% Si RECOMME~DED SIZE W/B METHOD u.s.

, I

I
NOTES: I . DIE ATTACH:PAD SIZE: .400 X .400 BONDING DIAGRAM

2.

14 13 12 11 fO 9 8
6

c

Figure 4.4 Convolution Processor Bonding Diagram

32

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

Signal Chip pin number

Xfn 13

Cln 22 I

Yi~ 21 I

0¥;~ 24
c[n 31

xPn 9
cpn 32

li~ 30

OV;~ 25

xJut 11

cJut 12

~~t 37

ovo~t 39

x:ut 10

C!ut 4

Y;,~Jt 36

ov,!t 38

x!ut 2

c!ut 3

Yo~t 1

ovo~t 40
Ld 19
Pe 16 I
Reset A 20
Reset M 8
Sd 23

~1 17

eh 18
Veld 5
V ss 33
Not connected=nc 6,7 ,14,15,26,27,28,29,34,35
Table 4.2. Pin Assignment of the Convolution Processor

33 .

c

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

4.4 Operation of a Systolic Array

Figure 4.5 shows an example of the operation of a one dimensional convolution array

based on the systolic cell shown in Figure 4.1. The two word delays (32 clock-cycles) in the

input signal path, and the single delay (16 clock-cycles) in the partial-sum path can clearly

be seen in Figure 4.1. The coefficient pins are omitted in Figure 4.5 since the convolution

coefficients a, b, and c are assumed to be preloaded inside each cell for simplicity.

Let x(t) represent the input sequence and a, band c represent the convolution coefficients.

The example shows the status of the linear array every 16 clock cycles on word boundaries.

When data is undefined in the array, it is shown blank. Because of pipeline initialization

requirements of the array, in this case, valid outputs are on every word cycle starting with

t=80 (word 5).

The operation is relatively simple. Every 16-cycles, intensities move through the shift­

registers, advancing through one processor every 32 clock-cycles, while the partial results of

the convolution, circulating on the "y" inputs, move forward through one processor every

16 clock-cycles. Because the partial result moves twice as fast through the array, this allows

it to "catch up" with the input signal already in the array. Hence, the necessary data and

partial result can meet at the appropriate location for their combination. For example at

t=32, the leftmost cell computes its partial sum y(O)=cx(1) shown as an output to the middle

cell. At t=80, the rightmost cell generates the output sum y(1)=cx(2)+bx(1)+ax(O) which

constitutes the desired convolution output result for the first image pixel. The operation of

the overflow mechanism[9],[241 is described in Chapter 5. The functional description of the

convolver when incorporated in the convolution card will be presented in Chapter 6.

One important characteristic of systolic arrays is the expandability they offer. They

34

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

0 t=O xr~ s b 8 8 c a

t=16 x<U

E : rOJ c
y(-0) 8 b s a

t=32 x<2>
y<-O>=cxCO>

0 ~x(l) C
x(O) s b y(-0) s 8 a

0 yCO>

t=48 x(J)
yCO>=cxU} yC-O>=cxCO)

0 ~ x(2J C
xU) sx(OJ

b y(OJ s a yc-o> E 0 yCU

t=64x(4)
yU>=cx(2) yC0)=cxC1)+bx<O> yC-O>=cx(O)

0
x(3) x(2) x<U b

x(O)

c c a
0 y(2) y<U yCO>

t=80 yC2>=cx(3) yC1)=cx(2)+bx(1) y(0)=cx(1)+bx(0)
x(5)

0 x(4) x(3) x(2) b xU) xCO)
c a

0 y(3) y(2) y(1)

y(3)=cx(4) y(2)=cx(3)+bx(2) y(1)=cxC2>+bx(1)+ax(0)

Figure 4.5 Linear Convolution Example

enable the user to employ the number of processors required for the particular application.

If an array of more than llxll is required, it is possible to add more processors to handle the

increased requirements, without any loss in performance. Grouping more processors increases

the kernel size, but the augmented system still appears with the same I/0 requirements and

structure.

0 Modification of the <;ircuit is relatively simple to handle the two-dimensional signals. A

35

0

c

c

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

number of 1-D convolvers are used in parallel, each operating on a different line, while their

outputs are summed to obtain the desired output result. Line delay structures are needed

at the inputs to properly synchronize the row data.

4.5 Implementation of a VLSI Convolution Chip

Details of the design and operation of the different parts of an initial version of the

processor are briefly described by Boudreault[9],[l0}. The design was implemented· through

an agreement between the Northern Telecom and the Canadian Microelectronics Corporation

(CMC) using the CMOS5 technology to realize two systolic cells on a single integrated circuit.

It was redesigned using the CMOS3 DLM[40], technology to incorporate three systolic cells

on one chip or IC.

One approach for implementing CMOS circuits is to use static gates, which are very

similar to normal digital gates in that they are not clocked. The advantages of a static

implementation include the relatively low power consumption and the small number of tran­

sistors switching simultaneously. However, the disadvantage is the larger area required for

static CMOS gates, since the logic must be duplicated for both then- and p-type transistors.

To avoid this duplication process an alternate approach using dynamic CMOS gates is often

used. Many design techniques have been devised to reduce dynamic gate problems such as

substrate latch-upf93), domino logicf48],[38], etc.

Static CMOS gates were selected for this project because they are relatively easy to use

and because they reduce chances of substrate latch-up problems. The use of static gates was

acceptable because of the silicon area available for this design.

The following techniques were used to fulfill the requirements of the convolution proces­

sor. The design uses multi-processor techniques and pipelining to divide the computational

36

c

c

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

task among a number of identical processors. An N-point convolution can be realized using

N of the processors operating in pipeline mode. The processors may be used to compute any

linear, shift-invariant filters and correlation functions, since these mathematical equations

are very similar[81]. The capability of supporting arbitrary length of convolvers and of creat­

ing two-dimensional convolution arrays from one-dimensional convolvers were incorporated

in the design specifications.

Bit-serial rommunication techniques were also used throughout the design to reduce the

number of I/0 pins required for each chip. Because this allows the use of smaller packages,

more processors may be put into a specific area. It also reduces the number of printed

circuit-board traces required, hence reducing manufacturing rosts. The use of shift-registers

to hold the roefficients and their availability as outputs makes it possible to chain them and

reduce the board's I/0 pin requirements.

Bit-serial processing was also adopted. Because the bit-serial computational, elements

are much smaller than their bit-parallel equivalents, the integration of more capabilities

(processors, dynamic range, etc.) was achieved. The roefficients were represented as 8-bit,

signed numbers (-128 to +127), while the input signals were represented as 8-bit, unsigned

numbers (0 to 255, left padded with zeroes to fill the 16 bit intensity register). This allowed

easy interfacing with the existing facilities operating on 8-bit images, and giving a reasonable

range of roefficient values.

Some error detection was provided through the overflow detection circuit, which indicates

the occurrence of errors while romputing the convolution sums. Two techniques proposed by

Boudreault[10] were incorporated to reduce the number of possible overflows, one involving

prebiasing of the convolution sum, while the other involved the use of the sum-disabling (Sd)

control signal to scale the multiplier output by an integer number of bits. Three systolic

37

4. ARCHITECTURE OF THE CONVOLUTION PROCESSOR

processors were placed on a single integrated circuit of 40 rrun2, with all necessary intercon­

nections done internally. A nominal operating dock frequency of 16 MHz was specified for

the design.

38

c

5. CONVOLUTION BUS CARD ARCHITECTURE

5. CONVOLUTION BUS CARD ARCHITECTURE

5.1 Introduction

In this chapter the architecture of a convolution processor card based on the VLSI systolic

cell and interfacing with the Intel MULTIBUS is presented. The important features of the

designed board are summarized in Table 5.1.

Feature Description

hnage size I Variable picture frame size

Speed 9x9 convolution in about 1s

Input level 256 gray scale level inputs

Result precision 16 bit precision results

Control Completely DMA controlled

Compatibility Fully MULTIBUS compatible

Interrupt capability Interrupt at end of DMA

Data unsigned 8-bit input data

Configuration Reconfigurable for 1-D and 2-D

Overflow Overflow detection capability

Card size Fits 1 MULTIBUS slot

Table 5.1. Features of the Processor Card

Using several of our systolic cells in the processor design exploits parallel processing

of concurrent multiplications and additions. Furthermore, connecting the output of the

intensity register from one cell to the input of the intensity register on the right adjacent

cell enables a pixel intensity to be used several times while having been moved from memory

only once. Ultimately, one amid have used eighty one of these cells in this circuit however,

for practical purposes of board area limitations, only 27 cells could be accomodated with the

result that the 9x9 convolutions must be achieved in three passes.

39

c
5. CONVOLUTION BUS CARD ARCHITECTURE

The 27 systolic cells are arranged in three rows of nine as shown in Figure 5.1. All

register outputs on one cell are connected to the corresponding inputs on the right adjacent

celL The output of the partial sum registers of the right most cells on the two top rows are

connected to the input of the partial sum registers of the left most cells on the two bottom

rows. The resulting pixel is collected at the output of the partial sum register of the right

most cell on the bottom row. Careful calculation reveals that, for proper operation, pixels

i, i + row-length - 9, and i + 2(row_length - 9) should be fed as inputs to the intensity

register of the left most cells in rows one, two, and three respectively. The processing of the

resulting convolution output 0 will be discussed later in Chapter 6 .

11 ••• Row 1

12 ••• Row 2

13

Figure 5.1 3x9 Systolic Convolution Array

Two methods can be used to supply the pixel intensities to the systolic array. The first

one is to supply the intensities only to the bottom line and use appropriate shift registers

to feed the same pixel intensities to rows two and one after proper delay. However for

variable image sizes it becomes difficult to obtain shift registers of the required size. The

other alternative which has been adopted is to use three pointers to fetch three image data

rows from memory and feed the systolic array with the required data streams. This method

requires each pixel to be moved three times from memory instead of once, but is easily

40

c

c

c

5. CONVOLUTION BUS CARD ARCHITECTURE

implementable and does not restrict the image row length to a fixed value.

5.2 Systolic Data Inter-Communications

The convolution board interterfaces directly with the MULTIBUS and the 286 CPU of

the system 310 is used to sequentially load the coefficient values into the systolic array. All

coefficient registers are chained into a long shift register. A parallel load shift register accepts

bytes of coefficients sent by the CPU. Its serial output feeds the input of the coefficient

register of the first cell in the chain. When a coefficient has been loaded into the parallel

load shift register, a state machine circuit clocks every coefficient shift register in the chain

for eight cycles. Transferring each coefficient in reverse order ensures that, when all twenty

seven have been transferred, each coefficient occupies its desired systolic cell. The output

of the coefficient register of the last cell in the chain is connected to the serial input of a

parallel output shift register. The parallel output shift register feeds the data bus and serves

for debugging purposes, allowing the reading of each coefficient as they are shifted out of the

last cell in the chain. Moreover, the parallel output shift register is used to store the circuit

configuration mode bit as will be explained in Chapter 6.

The System 310 CPU could have also been used to move all pixel intensities between

the system memory and the systolic array. The CPU would have to load each pixel from

memory into an internal register and then proceed to send it to the systolic array. This is

not very efficient as it implies two bus cycle transfers. On the other hand, using a DMA

controller chip to move the data is very efficient since it allows for fast one bus cycle transfers.

The Intel 82258 Advanced DMA Controller[471 was chosen for this task because of its four

independent high speed channels. Figure 5.2 outlines the circuit's basic architecture. In this

application, channel 0 is used to transfer convolved pixels back into memory while channel

1, 2, and 3 are used to feed each line of the systolic array. Programming the operation of

41

0

5. <X>NVOLUTION BUS CARD ARCHITECTURE

the 82258 involves initializing some 50 I/0 mapped registers[471. A detailed description of

the DMA subsystem is given in Chapter 6.

3 X 9
Convolution

Processor

~
,.

Input Input Input Output
Buffer! ~uffer2 Buffer3 Buffer

.. ~ .. ~· ~ •11"

--! DMA +-
~ Controller ..

+ '11111
,.

MULTI BUS

Figure 5.2 Convolution Card Architecture

Leg end:­
data

controls --

The DMA can service only one channel at any point in time. For maximum system

efficiency, the DMA acquisition overhead was reduced by using FIFO's to buffer each channel.

Three 8-bit wide FIFO's a.re used for the input channels while a 16-bit width is used for the

output channel. Each input FIFO has its output connected. to a parallel load shift register.

The serial output of each shift register is ronnected to one of the input (I) of the systolic

array (Fig. 5.1). Six 3-state octal latches are used to interface the 16 bit input data path

with the 8 bit FIFO's. Two 8-bit pixels are transferred from memory at the same time using

a 16 bit word transaction on the MULTIBUS. Two octal latches are used to latch both pixels

from the bus. Their 3-state outputs, permit the two bytes to be multiplexed into the same

FIFO.

42

c

5. OONVOLUTION BUS CARD ARCHITECTURE

The output FIFO is 16 bits wide and its output buffer connects onto the data bus. The

convolved pixels are 16 bits in length when they come out of the systolic array. For improved

computer vision results, it might be desired to keep the 16-bit precision. On the other hand,

if the resulting image is to be displayed in 256 gray scale levels, only 8 bits can be kept

and depending on the chosen coefficient values, the high or low bytes are discarded. The

processor hardware is built to perform the above three options. The selected mode is encoded

with two bits that are stored in the parallel output shift register. When 8-bit precision is

needed, two truncated pixels are concatenated into a.16-bit word and transferred to memory

in one cycle as discussed in Chapter 6.

5.3 Mechanisms in Error Detection and Control

The systolic cell is equipped with an error mechanism to detect overflows. When in the

16~bit precision mode, the user can opt to have the errors reported or not. When errors are

reported, a status register indicates if overflows occurred or not. Also, bit 0 of each output

pixel is made to reflect whether or not an overflow was obtained at any stage in the output

pixel's computation. Scanning each bit 0 on the resulting image specifies where the overflows

have occurred. When the errors are not reported, bit 0 is left unchanged.

As soon as the channel 0 DMA sequence is ended, an interrupt is generated whether or

not the termination was caused by an error. The faulty terminations can be identified by

reading the content of the error status registers found in the DMA chip. Chapter 6 discusses

how the interrupts are signaled to the CPU through the MULTIBUS by driving one of the

sixteen interrupt lines with the end of channel 0 DMA signal of the 82258 DMA chip.

Considerable logic circuitry is needed to coordinate every component of the design. The

systolic array must be allowed to convolve only when no input FIFO is "empty" and the

43

c

0

0

5. CONVOLUTION BUS CARD ARCHITECTURE

output FIFO is not "full". A oombination of the DACKx signal from the 82258 and the

XACK from the MULTIBUS is used to establish which FIFO should latch the data from the

bus and when to do so. To minimize the chip oount, all of this necessary logic is implemented

using PALs. PAL20R6 and PAL20L8 series were used. The PAL designs are summarized in

Appendix C which gives their logic representations and Boolean equations.

5.4 Execution and Implementation Status

To perform a complete 9x9 window size convolution, the image is convolved three times

with different coefficient sets and each resulting image is stored in three different areas of

memory. The final image is then obtained by adding the three partial images together. This

is easily done with a fourth pass through the convolution processor, having the three left

most coefficients equal to one and every other equal to zero. The DMA controller is able to

chain DMA sequences without the intervention of the CPU by reading the next command

directly from memory. However, in this design one can not use this feature to perform

the four successive passes because the CPU must load the new set of coefficients between

each pass. To simplify the hardware requirements in implementing the processor design, the

coefficient loading is first carried out by the CPU in the I/0 space. The CPU then sets up

the 82258 registers for the oonvolution to occur by DMA.

There a:re 262,144. pixels in a 512x512 image and every pixel must be fed once through

each of the three input channels. Also, the same number of resulting pixels must be trans­

ferred back into memory. This means that 1,048,576 pixels must be transferred for one pass

giving 4,194,304 pixel transfers for a complete 9x9 oonvolution in four passes. In the 8-bit

output precision mode, both the input and resulting pixels are transferred in pairs resulting

in approximately two million memory transfers for a complete convolution. In the 16-bit

output precision mode, only one output pixel can be transferred in one cycle. Therefore,

44

0

c

5. CONVOLUTION BUS CARD ARCHITECTURE

approximately 2,500,000 memory transfers are required to completely convolve an image, an

increase of twenty five per cent. The 82258 can perform 2,666,000 memory transfers in one

second a.t 16 MHz. Each systolic cell must process 262,144 pixels during each pass or about

a million pixels for a. complete 9x9 convolution. The present version of the systolic cell can

process one million pixels in one second at the 16 MHz nominal frequency. Therefore, the

systolic array is the limiting factor responsible for the one second time required to obtain a

complete convolved image.

The circuit has been simulated at the architectural level using a program written in

PASCAL and running under MSDOS on an ffiM PC[20l. This program simulates the con­

trol strategy used to manage the DMA transactions which service the input and output

FIFO's. The contents of the FIFO's were shown dynamically on the screen using ba.rgra.phs.

The overa.ll efficiency of the design proved to be excellent. Except for the initial transient

associated with filling the three input FIFOs, the systolic array is kept operating continu­

ously throughout the entire convolution period. The operating statistics generated by the

simulation program showed tha.t approximately twenty five percent of the bus bandwidth

remained available to the CPU during the convolution processing because of the periodic

nature of the DMA servicing. The simulation and performance evaluation is discussed in

detail in Chapter 7.

For the construction phase, the schematics, the parts and wire list were produced using

ORCAD version 3.1. A program was written to convert the ORCAD IC oriented wire listing

into a. more suitable board coordinate oriented version. The circuit has been assembled on

a. 36 column Vero Speed-wire MULTIBUS bus card. The board is currently under test in

an Intel System 310 running iRMX 286 real-time multitasking operating system. Image

processing software for frame grabbing of TV camera. images and their display on a. RGB

color display is being developed for the RMX environment. Current research developments

45

c

c

5. CONVOLUTION BUS CARD ARCHITECTURE

also include designing a new VLSI 32-bit floating point systolic convolution processor [25],[55].

5.5 Convolution Card Hardware Design

This section presents an overview of the hardware design of the convolution processor

board. The high performance convolution bus card is designed to directly interface the lntel

MULTIBUS. It takes an image stored in the memory of the host computer, performs a

desired convolution and stores the resulting picture back in memory.

The lntel82258 ADMA (Advanced Direct Memory Access) Coprocessor chip was selected

for the DMA control because of its MULTIBUS I compatibility characterized by 24 address

lines, 16 data lines, 12 control lines, 9 interrupt lines and 6 bus exchange lines. It has

4 independently programmable DMA channels. Hence, we can program three channels to

transfer source image data to the input FIFOs and the fourth channel is programmed to

transfer the convolved pixel data from the output FIFO to memory on the MULTIBUS. These

channels function with a simple DMA request (DREQ) and DMA acknowledge (DACK#)

protocol. Here a DMA transfer from the source image to the input FIFO will be requested

when an input FIFO becomes "empty" or conversely when the output FIFO becomes "full"

'and needs to be drained.

The ADMA starts up in the 286 Mode after reset. It is subsequently programmed to

operate in the Remote mode where the ADMA is meant to be the sole local or resident

bus master interfacing to the system processor through the 82289 bus arbiter. A complete

description of the capabilities of the 82258 ADMA Controller can be found in the user's

guide[47].

The 82258 ADMA controller is aided by the 82289 Bus Arbiter and the 82288 Bus

46

0

5. CONVOLUTION BUS CARD ARCHITECTURE

Controller in performing the necessary bus cycle transfers from and to the memory of the

host computer. When signaled by the 82258, the input FIFOs grab the latched data from

the bus. Similarly, the output FIFO data is transimitted directly to the bus which allows

for fast single cycle bus transfers. The block diagram of Figure 5.3 shows the three different

channels used to input the image through the systolic convolution array. Because the image

format is made up of 8-bit pixels, it is possible to transfer two bytes at the same time when

doing a word transfer. This multiplexing is achieved using PAL7 given in Appendix C and is

shown schematically in sheet 4 of Appendix B. The two latches used to buffer and multiplex

the internal data bus are regulated by the MSBEN output of PAL7.

Systolic
Convolution

Array
"11 ,.

Input Input Input Output
Buffer! ~uUer2 Buffer3 Buffer

.. ... I"' ... ~ ~

1 DMA ~
,. Controller .. 82258 ..

I I
Bus Bus

Controller Arbitrer
82288 82289

I I ~ ,
WULTIBUS

Figure 5.3 System Design Block Diagram

Every 16 clock cycles of the convolver, three new bytes must be loaded into the shift

47

c

5. CONVOLUTION BUS CARD ARCHITECTURE

registers that feed the inputs of the oonvolver. Design sheet 5 in Appendix B shows the 3

pairs of FIFO's used as input buffers. The 3 shift registers (SFTINl, SFTIN2 and SFTIN3)

have pin 18 grounded so that O's will be shifted for the eight last clock cycles. The convolver

input format requires the pixel intensities as the low bytes padded with O's to form a 16-hit

word. The shift register controls ace derived from PALl as given in Appendix C.

Design sheet 10 of Appendix B shows the oonvolver array (3 rows of 9 processors) with

its 3 inputs (CIN, X.IN, and YIN) as stated in Table 4.1. The CIN and LD signals are

used to input the coefficient values into the convolver while the image intensities XIN, the

partial sums YIN, and the overflow flags OVIN are processed by the RESETA and RESETM

signals synchronized with CLKl and CLK2. The output of the convolver is a 16 hit word

representing an integer. Depending on the application, it may be desired to keep only the

top 8 hits, the bottom 8 bits or to keep them all. The Qa' and Qh' signals (HoRL, 16o8) of

"Coef-Out" shift register on sheet 8 of Appendix Bare used to select the mode of operation.

PAL2 generates the necessary controls for the operation of the convolver array as given in

Appendix C. The results ace always stored hack into the memory of the host computer using

word transfers. The 4 FIFO's on sheet 6 of Appendix B are used as a buffer between the

convolver outputs and the data bus. Further details of the control signals generated by the

seven PALs are presented in Appendix C giving their respective logic descriptions, associated

Boolea.n equations and additional brief comments.

48

c

c

6. THE DMA SUBSYSTEM

6. THE DMA SUBSYSTEM

6.1 General Description

In this chapter, the detailed operation of the DMA Controller Subsystem of Figure 5.3

will be presented. The DMA subsystem is based on the Intel ADMA 82258 chip. Because

of its programmability, it permits a great flexibility in the definition of the image frame to

be convolved. However, since it has only four independent data channels, the convolution

window is limited to three rows since 3 channels are used for input data and 1 channel for

output data. In order to accomodate operating the 82258 and the convolver subsystems

at their maximum operating frequencies, these have been isolated from one another by

introducing FIFOs in the data channels to exchange data between both subsystems. Thus

the DMA always loads the three input FIFOs and empties the output FIFO whereas the

Convolver always empties the input FIFOs and fills the output FIFO. The image to be

convolved is passed in each of the three input FIFOs coming out as a convolved picture from

the output FIFO.

Since the FIFO depth is only 64 units, all the 512x512 image pixels cannot be loaded

in one block. The DMA must load the image into the FIFO in small packets. In addition,

the DMA must do so while insuring that the Convolver will stop the least amount of times

due to lack of inputs or because the output FIFO is full. To solve this problem, a simple

algorithm was devised and tested by a simulation as presented in Chapter 7. Each FIFO

communicates its need to be serviced to the DMA when only 8 units (almost empty) remain

in an input FIFO or 56 units (almost full) are present in the output FIFO. The DMA will

then choose according to the priority of the request (Output first) and start servicing that

particular FIFO. The DMA will stop when the input FIFOs are almost full (i.e. 56 units) or

49

c

c

6. THE DMA SUBSYSTEM

when the output FIFO is almost empty (i.e. only 8 units remaining). Then the DMA will

service any other present request from the other FIFOs. Because of this, the image to be

convolved must be augmented by 64 units to ensure that the output FIFO will be serviced

often enough to give back an entire convolved picture. Otherwise, the convolver might stop

operating due to lack of inputs while some of the desired outputs still remain in the output

FIFO.

Thus, the DMA subsystem must perform three major functions. First it must be MAS-

TER of the MULTIBUS for data exchange. Second it must be a SLAVE to the MULTIBUS

to permit the CPU to program it by loading registers and third it must implement in hard­

ware the servicing algorithm for the FIFOs.

6.2 ADMA as MASTER Interface

To meet the above requirements of the MULTIBUS, buffers are used as shown in Figure

6.1. The address bus latches of the ADMA are tri-stated to remove them from the bus

when it is no longer its MASTER. Because the ADMA must read and write data to the

MULTIBUS, transceivers are used.

The ADMA does not control the MULTIBUS directly. The 82288 Bus Controller and

the 82289 Bus Arbiter translate the commands of the ADMA into their proper MULTIBUS

format and timing. The Bus Arbiter is responsible for acquiring or relinquishing the bus for

the ADMA. The Bus Controller generates all the read and write commands as well as some

latch controls for proper synchronization.

When the ADMA needs to execute a MULTIBUS command, it first tells the Bus Arbiter

that it wants to be MASTER of the bus by asserting its HOLD signal resulting in the

BUSREQ# and BPRN # signals to the MULTIBUS. When the Bus Arbiter finally obtains

50

c
6. THE DMA SUBSYSTEM

HOLD
HLDA

DMA
SO#

S1#

CONTROL
UNIT

ADDRESS DATA Bus Bus

LATCHES TRANSCEIVER Controller Arbitrer
82288 82289

MULTIBUS

Figure 6.1 DMA Master Interface.

the bus, it activates Address Enable (AEN #) signal corresponding to the Hold Acknowledge

(HLDA) signal for the 82258. The DMA subsystem is now the MASTER of the bus. The

Bus Arbiter will relinquish the bus only after the last command of a block move has been

completed, (HOLD and BREQ ace removed).

AEN# enables the Bus Controller. When the DMA wants to read or write, it asserts

SO# or Sl#. This is translated by the Bus Controller into MRDC# or MWRC# at the

proper time as well as the signals for synchronization of the buffers with the command.

These signals ace Address Latch Enable (ALE), Direction of Transceiver (DT /R#) and

Data Enable (DEN). ALE loads the address latches with the desired address value. This

insures address stability. DT /R# gives the direction of the data transfer (LOW for the

51

,.....
~

6. THE DMA SUBSYSTEM

direction from the bus to the DMA system). DEN enables the data transceivers. Figure 6.2

shows the timing waveforms generated by the bus controller for two successive read cycles

where the timing symbols are defined in Table 6.1. The read and write cycles timing are.

presented in Figure 6.2 and Figure 6.3 respectively.

Symbols Parameter M in Max Unit

tl 258 Output Valid Delay 1 40 ne
~ ALE ActiVe Delay from CLK 3 22 n•
ts ALE Inactive Delay from CLK 20 n•
~ DTIR# LOW from CLKck 26 na
~ DTIR* HIGH from DEN Inactive 6 36 ne
le DEN (read) ActJve from DTIR# 5 35 na

" DEN (read) Inactive from CLK 3 36 n•
fe CMD# ActiVe Delay from CLK 3 25 "' .. CMD# InactiVe Delay from CLK 5 25 ne
t,. READY# Setup Time 38 "' t, READY# Hold Time 25 na
t12 DEN (write) ActiVe from CLK 30 "* 113 DEN (wr1te) Inactive from CLK 3 30 ne
t,4 XACK# Signal Memory Delay ne
t15 XACK# Memory Removal from CMD# 65 "' t,. READY# Inactive Delay 5 n•
t,7 READY# Active Delay 0 24 na
t,, Enable ActiVe Delay from CLK • 125 125 ne
t,, Shlftln Delay from eLK"• 82.5 82.5 ns
\o ln/OutReady lnact.from Shin/Out 28 n•
~1 lniOutReady Act from Shin/Out 25 na
\2 In Data stable Setup Time 3 na

~~ In Data stable Hold Time 25 na
~4 PreYIOUI Word stable from CLK1 0 na
\s Next Word stable from OutReady 20 na
~. Next Word stable from CLK 40 n•

Table 6.1 Timing Symbol Definition.

The 82284 Clock Generator and Ready Interface is used. In addition to generating

the CLK and RESET signals for the entire DMA subsystem, the 82284 also synchronizes

52

c

6. THE DMA SUBSYSTEM

'I I Ts To To Ts Tc Tc j Tl

CLK

--Sl•S2

flE
-DTIR

DEN
-Cll)

REmY
Cheak

Figure 6.2 Read Cycle Signals between DMA and 82288.

the XACK# signal to form the READY# signal which regulates the ADMA operation by

inserting wait states as required (see sheet 3 of Appendix B).

6.3 ADMA as SLAVE Interface

The DMA has internal registers which control the memory transfer to be executed. This

implies that the CPU will initialize these registers using 1/0 instructions and thus must be

able to access the DMA as a SLAVE as shown in Figure 6.4.

When the CPU is MASTER of the MULTIBUS, it asserts the selected address of the

ADMA register. Because the internal registers of the ADMA take up the entire address

space given by the lower 8 bits, 256 addresses must be reserved to access the DMA. The

higher 8-bit address is recognized by the Address Decoder which generates the Chip Select

53

c

c

6. THE DMA SUBSYSTEM

Ts To To Ts To To

CLK
--Sl•S2

flE
-DT/1

IIN
-Cll)

ROOY
Chltak

Figure 6.3 Write Cycle Signals between DMA and 82288.

(CS#) signal to the DMA. Upon receiving this signal, the DMA operating in Remote Mode

sends back the {local) Bus Relinquish (BREL) signal which is used to control the address

drivers and data transceivers, through the Control Unit. With WR# and RD# wired to

the IOWC# and IORC# lines respectively, the DMA registers can be accessed by the CPU.

A special counter in PAL5 generates the XACK# signal after reception of a bus command.

The delay introduced by the counter is larger than the worst time taken by the DMA to

access its registers. The DMA ceases to be a SLAVE as soon as CS# is de-activated.

6.4 ADMA to FIFO Interface

Each FIFO outputs two flag signals indicating the number of units held in storage. These

signals are the Almost Full/Empty (AF /E) signal, which indicates that the FIFO contents

are only 8 units away from the front or the end of the queue, and the Half Full (HF) signal,

54

0

c

6. THE DMA SUBSYSTEM

IOWC #
YJR/1
RD# IORC# DMA
CS#

BREL
1

CONTROL
UNIT

DATA ADDRESS ADDRESS
lfRANsCEIVERS DRIVERS DECODER

8 8

MULTI BUS

Figure 6.4 DMA as SLAVE Interface.

which signals that a.t least 32 units are present in the queue.

The state of each FIFO is monitored by the FIFO Control block as indicated in Figure

6.5. When one of the Input FIFOs is almost empty or if the Output FIFO is almost full, the

FIFO control sends a. DMA Request (DREQ#) signal corresponding to the FIFO needing

to be serviced. The ADMA responds to this request only if it has finished servicing another

FIFO and if no higher priority FIFO is also requesting a. transfer. The priority scheme is

resolved in the AD MA based on the number of the channel requesting a. transfer, where

channel 0 (the Output FIFO) has highest priority and channel 3 the lowest. The Output

has priority over the inputs to avoid any clogging of the system. When the AD MA is ready

55

c

c

0

6. THE DMA SUBSYSTEM

DMA

DREQ0-3 DACK0-3# EOD0-3#

F I F 0 CONTROL
INTERRUPT
GENERATOR

STATE STATE STATE STATE

I OUT FF I IN1 FF 11 IN2 FF I IN3 FF I
DATA DATA DATA DATA

INTERRUPT
LINE

M U L T I B U S

Figure 6.5 DMA as FIFO Interface.

to service a request, it asserts the corresponding DMA Acknowledge (DACK#) line.

The DACK# signal regulates the FIFO Control such that each time the ADMA reads or

writes, it forces the FIFO to grab or push data on the bus at the right moment. This permits

the ADMA to perform a 'single-cycle' transfer, the fastest transfer mode supported by the

DMA. However, this does not mean that a single clock cycle is used. As shown in Figure

6.6 and Figure 6. 7, the minimum number of clock cycles for a read or a write command is 6.

When mch channel has finished its program, the corresponding End of DMA (EOD#) line

is activated. An interrupt to the CPU is generated when EODO# is produced after all the

outputs have been transferred.

When the DMA writes to the iRMX memory, the Control unit enables the tri-state

56

c

6. THE DMA SUBSYSTEM

buffers of the output FIFO which implies that the 82258 DMA processor cannot perform

'on the fly' operations on the data. The FIFO Control sends the Shift Out (ShOut) signal

to the Output FIFO before each MWRC# to output new data to the bus. In reading from

the MULTIBUS memory, the DMA reads two bytes (i.e. one word) at a time resulting in

a maximum reading rate of 4. 7 Mbytes/second. with an optimum Convolver clock frequency

of 18.8 Mhz as will be discussed in Chapter 7. The FIFO Control separates each byte with

the Enable (INEN) signal and loads them in turn into the requesting input FIFO using the

Shift In (Shin) signaL This is shown in Figure 6.6.

Ts la la Ts la la li

aJ(

-Ctl)

READY
Ct-clc -SRDY
(RACi()

c9RDYEH
=8)

READY
Output.

In en

Shin
Irfdy

Wata

Figure 6.6 DMA Read Cycle Timing from BUS to FIFOs.

57

6. THE DMA SUBSYSTEM

sheet 3 of Appendix B).

The crystal option on the 82284 Clock Generator was chosen requiring that the pins Xl

and X2 be connected to a crystal. The CLK output gives a 50% duty cycle square wave at 16

MHz and PCLK at 8 MHz. PCLK is modified by SO# and SI# but it is not used. To ensure

that the setup time for READY# at the 822S8 is respected, the synchronous generation

of READY# was selected. Synchronous Enable (SYEN#) is connected to AEN# so that

READY# is generated only when the 822S8 is MASTER of the bus. SRDY # is connected

to XACK# so that READY# is produced as soon as the bus command is executed. Note

that both address buffers and address latches have negated outputs because the MULTIBUS

has active LOW addresses whereas the DMA has active HIGH addresses.

The data path control signals are implemented in the Control Unit by PALS (see sheet 2

of Appendix B). Basically it is a two channel multiplexer selected by AEN#. When AEN# is

inactive (HIGH), the DMA is in potential SLAVE mode. The data transceivers are enabled

(G# LOW) when BRE LOW is asserted (i.e. DMA Slave). The direction is derived from

IOWC#: when IDGH (corresponding to a read command by the 'CPU) the transceivers are

connected from the DMA to the MULTIBUS and when LOW (for a write command) the

MULTIBUS is fed to the DMA.

When AEN# is active (LOW), the DMA is MASTER of the bus. The transceivers are

thus only enabled when DEN# derived from 82288 is active and their direction is determined

by DT/R# signal. PALS also contains the generation circuit of CS#. When the upper 8

bits correspond to the address defined by switch 1, the comparator outputs active LOW

signal which is further qualified to ensure that the DMA will never receive an active CS#

signal as long as AEN# is active. Only when the DMA is not MASTER of the bus will

(; the result of the comparator influence CS#. Thus the internal registers of the DMA will

59

c

6. THE DMA SUBSYSTEM

not interfere with the data bus during a writing operation (i.e. the servicing of the Output

FIFO enabled by DACKO#). The bus tranceiver direction is regulated by the BUS/DMA#

signal to transmit data to the MULTIBUS when servicing the output FIFO.

The Coef-In and Coef-Out registers are selected using one of the unused DMA register

locations (address 40 HEX). PAL7 decodes this signal as SLAVE# and de-asserts CS# for

this condition. When the CPU reads or writes into the DMA, the maximum delay time

for the register transaction is just above 6 clock cycles. For logical simplicity, XACK# is

generated by a counter (see design sheet 4 of Appendix B) which counts 8 cycles and then

is locked. The counter starts counting when either IOWC# or IORC# is activated and is

cleared when these commands are removed from the bus.

DREQ generation is done with PAL4 (see sheet 3 of Appendix B). It is produced for the

input FIFOs when AF /E is HIGH, HF is LOW and DACK# is HIGH (i.e. the input FIFO

is almost empty). When DACK# becomes LOW, DREQ remains active until both AF/E

and HF are HIGH (i.e. the input FIFO is almost full). DREQ then becomes LOW until the

initial condition is met again. The opposite sequence happens for DREQO#. It is produced

when both HF and AF /E are HIGH and will remain so until HF is LOW and AF /E and

DACKO# are HIGH.

Shift Out generation (ShOut) is produced by a D flip-flop to give a pulse synchronized

version of the ALE signal, synchronized on the rising ooge of CLK and cleared as soon as

DACKO# is inactive. Shift In generation for the three signals (Silnl, Siln2 and Siln3) are

generated by PAL6. They are started by the DCLK pulse, produced at the first rising edge

of CLK with an active XACK# and force the input FIFOs to load the 2 bytes contained in

the input latches. In the next chapter, the simulation study of the FIFO control strategy

will he presented.

60

c

7. SIMULATION AND PERFORMANCE EVALUATION

7. SIMULATION AND PERFORMANCE EVALUATION

7.1 Introduction

As the cost of building and testing prototypes increases, simulations to test a system's

performance become more necessary. However, gate simulators are not the best approach

when large VLSI chips are used. Too much unnecessary information is generated and they

require having detailed plans. H the planned architecture does not perform correctly, the time

spent designing these plans will have been wasted. This chapter summarizes how simulation

at the architectural level proved to be a useful tool in the design of a high performance

convolution processor card[20].

For real-time applications such as robotic vision, the convolution processor card is in-

tended to perform a two dimensional 9x9 convolution of a 512x512 picture frame in about a

second. To execute rapidly the twenty-one millions of operations involved in one convolution,

this card is based on designed VLSI chips, i.e., systolic convolution cells which perform the

computations in pipeline fashion, and Intel's 82258 Advanced DMA chip, which transfers

the data between the host computer and the convolution cells. Still, these two subsystems

require an efficient interface in order for the card to perform as desired. Architectural simula­

tion confirmed that data queues with a simple control algorithm provide an efficient solution

and enabled the design to be successfully completed.

As digital systems are required to respond to more and more diversified environments[73],

they have grown more complex, often relying on expensive or specially tailored VLSI chips.

Prototypes have accordingly become more expensive and greater emphasis has been put

on the optimum development of these costly chips. To this end, special purpose design

languages[85] and simulators have been used more than ever to test a system's performance.

61

c

c

7. SIMULATION AND PERFORMANCE EVALUATION

The first question a. simulation must answer is whether or not the global approach of the

system works. This answer is not easy to obtain using conventional simulators. Due to the

presence of complex VLSI chips and the systems that support them, a. gate level simulator

becomes cumbersome. The designer has to disentangle the answer from the mass of produced

information. The use of specially tailored chips make chip level simulations[4] either difficult

or necessitate programs large enough to allow the definition of new blocks. In any case,

the simulation will be expensive, time-consuming, and needs the detailed description of the

system. H the global approach proved to be wrong, all these efforts will have been wasted

since the basic features of the design are defective.

What is needed is a simulator which will test the architecture of the system before

detailed plans are drawn. H the simulator is simple enough, different alternatives can be

tested rapidly and efforts can be concentrated into the most promising architecture, with

good confidence that the resulting system will work.

Unfortunately, the presence of the buffers does not solve completely the problem of

obtaining an efficient interface between the Convolver and the DMA. The algorithm used by

the DMA to service the buffers must insure that the convolver halts for a minimum amount

of time due to a lack of inputs or to a lack of place in the output FIFO. Maximum efficiency

will be reached if the amount of data in the FIFO's attains a cyclical staircase configuration.

The presence of pixels in all the buffers will permit the Convolver to continue to function

while the DMA fills the input buffer or empties the output buffer. The cyclical motion of the

staircase configuration among the buffers allows each FIFO to be serviced in turn without

significant time penalties. However, since all the buffers are empty at the beginning of the

convolution, the algorithm must insure that the buffer levels will naturally and rapidly reach

this staircase configuration.

62

7. SIMULATION AND PERFORMANCE EVALUATION

The above is a dynamic problem which cannot be answered merely by analyzing the

algorithm utilized. A simulation is needed because confidence in the architecture is desired

before drawing any detailed plans of the system. A simulation at the architectural level will

efficiently provide the answer to the above buffer_7servicing problem.

7.2 Simulator Design

7.2.1 Servicing Algorithm

The discussion of Chapters 5 and 6 reveals that each buffer can store at most 64 units

(8 bits wide for input FIFO's and 16 bits wide for the output buffer). Two flags indicate the

Almost Full (AF) and Almost Empty (AE) conditions. The AF and AE conditions occur

when 56 or more units are present, and when only 8 units or less remains in the buffer

respectively. A simple servicing algorithm consists of requesting a DMA transfer to fill the

input FIFO when it reaches the AE condition, or to empty the output buffer in the AF

state. These transfers will stop only when the input FIFO achieves the AF condition or

when the output buffer attains the AE state, irrespective of other DMA requests. When

DMA transfers are requested simultaneously, the requesting FIFO with highest priority will

be serviced first. The output buffer has higher priority than the input FIFO's to insure

proper removal of outputs.

7.2.2 Definition of Operations

The architectural simulator studies only the effects of the presence of buffers between

the Convolver and the DMA subsystems. All other supporting subsystems are assumed to

add no supplementary delays. Furthermore, the DMA is assumed never to lose the bus. The

DMA reading and writing times with the buffers are postulated as short as possible: only six

63

7. SIMULATION AND PERFORMANCE EVALUATION

of its clock cycles (Tdma) are taken. In addition, no time penalty is assumed to be incurred

by the DMA when it switches servicing from one FIFO to another. This is true for the 82258

DMA only when DMA requests are detected during servicing and the bus is not relinguished.

Inputs and outputs have to be serially shifted into the Convolver processor which means that

in an optimal design, at least sixteen of its clock cycles (Tcvlr) are necessary to read from the

input buffers, calculate one ronvolution, and write the previous result to the output FIFO's.

In fact, "wait states" may be required by other hardware limitations such as dynamic memory

refresh which are not considered in the simulation.

In this simplified system, the Convolver can only operate in two modes. It is either

actively romputing sums and products or choking due to lack of inputs or to lack of space

in the output buffer. When active, each operation takes one unit from the input buffers and

adds one unit to the output buffer in sixteen Tcvlr's. Choking is equivalent to an indefinite

wait operation. The DMA has five different modes of operation. It can service the output

buffer by removing one unit in six Tdma's, or service one of the three input buffers by adding

two units in six Tdma's, or the DMA can be idle when there is no DMA request. The DMA

idle mode resembles the Convolver "choking" mode since it is equivalent to an indefinite

wait operation .

7.2.3 Selection Between Prediction and Emulation Approach

The global state of the convolution board is the combination of the operating mode of

its two subsystems. A total of nine different states can be attained during the convolution

process. Only the Choking-Idle state is impossible during convolution. In fact, it corresponds

to the termination of the ronvolution.

Using the system simplifications outlined in the previous section, the configuration of

64

c

7. SIMULATION AND PERFORMANCE EVALUATION

the system buffers at the next change of state can be predicted from their configuration at

the beginning of the current state. However, this analysis of the change of state times is

very complex since it depends on the contents of each FIFO. The contents of the FIFO's

are not simply predictable because of the coupling between the Convolver and the DMA

subsystems. Most important of all, this prediction approach requires a great deal of time

for the programmer to correctly analyze the behavior of the system and develop the desired

program. For this reason another method, the emulation approach, was selected.

In the emulation approach, each subsystem operation is simulated as occurring in a dis-

crete time increment step. The general approach reproducing the stepwise operations makes

use of a priority queue data structure(!] in selecting the next future discrete eventsJ561 Each

event is the completion of a single operation on the buffers by either of the two subsys-

terns. Each event will modify the system's current state according to a set of rules, possibly

generating additional future events. This approach increases simulation time but greatly

simplifies program definition since it simply emulates the actual operation of the system. It

also permits an easy modification of the simulator to match changes in the actual system.

7.2.4 Selection Rule for Next Event

The priority queue is a data structure which is used to select the next event among

many competing future events. In the case of our convolution board, only the next events

from the Convolver and the DMA are contesting for execution. Thus the priority queue

reduces to a simple comparison between completion times of the next event of each of the

two subsystems. The total elapsed time for each subsystem is kept in variables TSdma and

TScvlr respectively. The time interval for the completion of the corresponding next event

operations are placed in variables OPdma and OPcvlr. H (TSdma+OPdma) is smaller,

greater or equal to (TScvlr+OPcvlr), the event associated with the DMA, with the Convolver

65

0

0

7. SIMULATION AND PERFORMANCE EVALUATION

or with both subsystems will occur respectively. The corresponding TS is incremented by

the amount of time ta.ken by the operation and the subsystem decides which operation will

be performed next. It updates the corresponding OP variable before this decision process is

repeated.

The DMA and the Convolver select the following operation to be executed by applying

the servicing algorithm or the simple choking rule respectively. This decision is based on the

configuration of the FIFO's at completion of the last event. Special care must be taken for the

execution of the Idle or Choking operations. Their indefinite wait nature is translated into

an "infinite" value for their execution time (OP). The cooperation of the other subsystem

is employed to terminate the event which would otherwise take an "infinite" time. Only a

change in the configuration of the buffers (eg. full or empty, almost full etc ...) can remove

the cause for an Idle or Choking event. As soon as one subsystems removes this cause, it

will also terminate the indefinite wait operation of the other system. The other subsystem

will then be able to select a new operation and participate again in the decision process.

7.2.5 Simulator Implementation

Although some languages have recently been developed for architectural simulations,l46L[67]

they lack the dynamic graphical display of selected system information. Furthermore, fol­

lowing the algorithm described above, the simulator is so easily programmed that it was

implemented with a simple PASCAL program, written and run under MSDOS on an IBM

PC.

The program keeps track of minimum, maximum, and average choking and idle times,

in addition to the configuration of the FIFO's and the total elapsed time of each subsys­

tems. The total statistics of the system and the content of the FIFO's can also be shown

66

0

7. SIMULATION AND PERFORMANCE EVALUATION

dynamically on the oomputer screen. The oontent of the buffers were displayed using bar

graphs.

7.3 Simulation Results

7.3.1 Total Processing Time

The performed simulations oonfirmed that the buffers and the servicing algorithm do

provide an efficient interface between the Convolver and the DMA. The cyclical staircase

configuration is obtained very rapidly by the system and is maintained throughout the rest

of the computations.

The maximum operating frequency of the convolution cells is about 20 MHz as discussed

in Chapter 8, but the ADMA maximum operating frequency is 16 MHz. This limits th'e min­

imum processing time of the DMA to about 246 ms for a 512x512 image. For a range of

frequencies between 12 and 20 MHz, the minimum processing time of the Convolver varies

from 350 down to 210 ms. The "ideal" processing time of the oonvolution card becomes the

maximum of these two minima while the "actual" time shows the execution time obtained

by simulating the interactions due the Convolver frequency, FIFO sizes, and servicing algo­

rithm. Table 8.1 presents these minimum and total processing times for different simulated

Convolver frequencies.

Frequency (MHz) 12 14 16 18 20

Time DMA (msec) 245.76 245.76 245.76 245.76 245.76

Time CVLR (msec) 349.53 299.59 262.14 233.02 209.72

Ideal Time (msec) 349.53 299.59 262.14 245.76 245.76

Actual Time (msec) 360.71 317.77 284.87 259.57 245.83

Percentage Increase 3.20 6.07 8.67 5.62 0.03

Thble 8.1. Convolution Times Analysis

67

c

c

7. SIMULATION AND PERFORMANCE EVALUATION

The percentage increase shows the relative degradation on the actual board design when

compared to the "idealized" system whose throughput is limited by the slowest subsystem

only. As expected, the simulated times exceed the idealized times but by less than 10 percent,

showing the effectiveness of the proposed design. A four-pass 9x9 convolution can still be

done in a little more than a second.

7.3.2 Choking and Idle Times

Table 8.2 shows the minimum, average, and maximum DMA idle and Convolver choking

time intervals for different Convolver frequencies. The total amount of time spent choking

or being idle as well as the number of times this operation was performed are also listed.

Frequency (MHz) 12 14 16 18 20

DMA Idle Times

Minimum (usec) 27.63 17.73 9.75 3.29 2.03

Average (usec) 28.49 18.12 10.13 3.68 12.90

Maximum (usec) 52.00 42.86 35.63 29.92 22.48

Total (msec) 114.92 71.98 1 u9.08 13.78 0.04

Number Occurrences 4034 39731 3856 3746 3

Convolver Choking Times

Minimum (usec) 2.46 4.55 5.88 7.07 9.53

Average (usec) 2.76 4.56 5.88 7.08 9.91

Maximum (usec) 21.38 21.38 21.38 21.76 22.48

Total (msec) 11.4 18.13 22.69 26.52 36.09

Number Occurrences 4034 3973 3856 3746 3642

'Thble 8.2. Idle and Choking Times Analysis

As the Convolver frequency increases, the amount of time spent choking increases whereas

the amount of time being idle decreases. For slower Convolver clock frequencies, the increase

in total processing time can be compensated by interleaving CPU operations with the DMA

memory transfers. Each time the DMA is idle, the workstation's CPU could regain the

68

7. SIMULATION AND PERFORMANCE EVALUATION

MULTIBUS and perform useful work. The simulations show that the portion of the bus

bandwidth available to the CPU during convolution processing varies from over 30 percent

to almost nil. However, these values would be meaningless if the idle time intervals are· too

short for any productive operation of the CPU. Fortunately, simulation results show that

each idle time interval is at least of the order of several micro-seconds, permitting tens of

CPU operations to be performed. FUrthermore, as the Convolver frequency decreases, the

size and number of idle time intervals increases. Without the simulations, this interesting

trade-off between convolution speed and CPU operation would have remained hidden.

69

c

0

8. TESTING RESULTS OF THE VLSI PROCESSOR

8. TESTING RESULTS OF THE VLSI PROCESSOR

8.1 Introduction

The field of ICs has undergone exponential growth particularly in the number of gates

placed on one piece of silicon. The increased complexity of circuits can result in large scale

test problems especially in the VLSI domain. It is thus very important to detect a fault

as early as possible; test effectiveness and high fault coverages at IC level can save a lot of

money at the board level and at the system levei[371.

Testing an IC means comparing that IC with something that is known to be correct.

Comparing the behaviour of the IC with the function specification is referred to as FUNC­

TIONAL testing while comparing the realized structure of the IC (gates and connections)

with the structure as defined in the logic description is known as STRUCTURAL testing.

The main emphasis of VLSI testing is to orient designers of VLSI chips and boards

to think about testing problems in parallel with the design process. With the growing

complexity of VLSI systems, their testing is becoming even more complex and almost im­

possible in many cases. Thus, in VLSI testing one will have to consider structured design­

for-testability[94],[9l],[62] as a necessary requirement for designing complex systems. The

emerging concept of built-in self-test (BIST)[92],[821 is very important.

The objective of testing is to ensure that the device will perform all its design functions as

defined in specification. The scope of such tests includes characterization testing, production

testing, burn-in testing and incoming inspection. Characterization testing determines and

tabulates the device characteristics under various ranges of operating parameters such as

voltage, frequency or loading. The main objective in production line testing is to regulate

70

0

c

0

8. TESTING RESULTS OF THE VLSI PROCESSOR

the manufacturing process to ensure that the device meets its specifications and functions

correctly based on a suitably quick testing strategy. Here statistical sampling methods

are often necessary. In burn-in testing, the idea is to operate the devices for a selected

period. Mter this period, the devices are tested for proper functioning and any failed units

are discarded. This strategy is based on the expectation that any defective units will be

destroyed during the burn in period. The goal of incoming inspection is to ensure that the

combined operation of a complete system functions properly and according to specification.

Characterization testing incorporates the following aspects:

(A). Electrical Characteristics: Here the current consumption, output drive capability,

input leakage current, range of operating voltage levels, etc. are tested. These are

steady state characteristics of the device.

(B). Switching Characteristics: These document the propagation delay time, setup time,

hold time, rise/fall time, access/refresh time, minimum clock width and speed. AC

parametric testing is concerned with timing relationships as the transistors in the device

change their states.

The functional tests of the designed convolution processor were performed using the HP

and ASIX 2 test stations. Test vectors were randomly generated for 1024 different possible

input combinations and the corresponding expected output vectors were computed. For the

HP test station, the HP computer was used to access the input and expected output vectors

from the respective disc files and to transmit these values to both the data generator and

the logic analyzer which compares these values to those obtained from the test device. Any

errors are decoded and stored in a file for further study.

71

0

0

0

8. TESTING RESULTS OF THE VLSI PROCESSOR

The characterization tests were performed on the following modules shown in Figure 4.2

of the processor architecture block diagram:

(i). Gin to Gout, i.e. testing of an 8-bit shift register used for coefficient loading and

storing.

(ii). X;n to Xout, i.e. testing of a 32-bit shift register used to load and store image pixel

intensities.

(iii). fin to Yout, i.e. testing of an adder circuit used to sum the computed product

with the in-coming partial sum and a 16-bit shift register used to store and shift the

wmputed partial wnvolution sum.

(iv). Serial-parallel multiplier, i.e. testing of the multiplication of the in-coming image

pixel intensity (X;n) and the pre-stored coefficient (G;n) for proper wmputation.

(v). O'Yin to OVout, i.e. testing of the overflow detection circuit.

Examination of the wnvolution processor function with changes of supply voltage, oper­

ating frequency, clock delay, etc. were carefully analyzed and these results are summarized

in the following sections.

8.2 Coefficient Loading (Gin to Gout)

Characterization testing was performed on the coefficient loading and storing circuit

which includes an 8-bit shift register. A set of 1024 input and output test vectors were

generated randomly and saved on a disc file. Then these vectors were loaded into the data

72

0

c

8. TESTING RESULTS OF THE VLSI PROCESSOR

generator. Then using fast binary transfer method, the HP computer loaded the decoded

data to the logic analyzer and verified the results obtained for proper matching. The error

map facility of the test station was also used to detect errors.

The characterization tests are performed by verifying that the loading functioned cor-

rectly. Measurements were taken by fixing some parameters while varying parameter of

interest and vice versa. The switching times were verified during the functional test. The

binary search[5] method was used in this characterization.

The characterization results for this module are shown graphically in Figure 8.1 and

Figure 8.2. The module operates over a frequency range of 30 MHz from lOMHz to 40MHz

for supply voltages ranging from 4 to 6 volts with Clock Delays (CD) of up to 25ns. Also

note that the maximum frequency of operation increases with the supply voltage within the

CMOS3 DLM functional voltage range (3 to 7 Volts).

The HP logic analyzer was set for synchronous sampling using an external clock source.

This means that the point at which the analyzer samples data is referenced to an external
I

dock. This point can be varied via the Clock Delay (CD) setting which is measured from

the rising edge of t/J2. Four different CD settings were used in this module namely Ons, IOns,

25ns, and 50ns. In asynchronous operation, the data is sampled at a fixed point determined

by the internal crystal dock generator.

Characterization of maximum clock delay with supply voltage at a fixed frequency of

operation was also performed for this module with the results shown in Figure 8.2. Note

that the maximum clock delay decreases with increasing supply voltage and that the chip

becomes unfunctional outside the rated supply voltage range of 3 to 7 volts. The maximum

clock delay must be less than 95% of the clock period and therefore the chip does not function

73

0

c

......
~
~
;:...
u
5
[
~

8. TESTING RESULTS OF THE VLSI PROCESSOR

50

.~.-~··"1
45

40

35

30

15
: : CD:f50tl~ .i··· , : On: : ,: : :

5

: t ! : Jr~:.-~\;.r··-· ! - I i \\ 1 :
\ .
\~ 0o~--~~----2~~~3----~4--~s----~6--~7L-~~8----9L-~to

Supply voltage [Volts]

Figure 8.1 Maximum Frequency Vs. Supply Voltage for a Chefficient Loading Cir­
cuit.

with CD greater than 50ns (see Figure 8.1).

8.3 Pixel Intensity Loading (Xin to Xout)

The test procedures were repeated to characterize the image pixel intensity loading and

storing module containing a 32-bit shift register. Similar results were obtained as summarized

in Figure 8.3 and Figure 8.4.

8.4 Partial Sum Module (Yin to Yout)

This module contains the adder circuit which oomputes the partial sum between the in-

74

0

c

0

8. TESTING RESULTS OF THE VLS~ PR09ESSOR

I

60 ··········· r · ~-············· >·< ·r···········r ·· · j·······r········ :··············:···········

50 ··············j················)·············· ·j······f":.: .. :!·····--········t···············!···············'j'···············1·············· ·:··············

40 ····· ·;·· ! ' ;bl.~~.,.,,,,;~:;,;,;;_::··· ····.··· L i···

! ~ . : -·.::.~.)'"'"'
~ : . ·~....:

: : : : I :: : . Il : /1 ::: : 1 :: : : : ·r··· : ::I :: : .
: : ; ' : : : :

~ .t ~ .t ~--. ~--. ; : ~ ~

10 ··············'················j········· ······l.:······Ll::.···················:···············:············· ··!················'··············
; :

1 2 3 4 5 6 7 8 9

Supply voltage [Volts]

Figure 8.2 Maximum Oock Delay Vs. Supply Voltage for a Coefficient Loading
arcuit.

I

10

coming sum Yin and the product Cin·Xin from the serial-parallel multiplier circuit giving the

partial sum Yout for the next processor. This module also comprises a 16-bit shift register

used to store or shift the computed partial sum. The results of its characterization were

similar to that of the image pixel intensity loading circuit shown in Figure 8.3 and 8.4.

8.5 Serial-Parallel Multiplier Module

This circuit contains 8 identical multiplier cells, one for each coefficient bit. The function

of each cell is to multiply the in-coming image pixel intensity with the pre-stored coefficient

bit. The characterization was found to be unsatisfactory as the expected results were not

75

0

c

......

~
>.
()
c:
11.)

3-
~

8. TESTING RESULTS OF THE VLSI PROCESSOR

50

45 'j"''"'' 'j" ······!· ,, ···j ··t···········,.··] .. :::.::·_.:::·::::~ ,. ~ ;
: c~~m :

40

35 r . . i ! I _li . JL !. .

30

25

20

15

10

5

:: :I : ;:: : : :· I ::' ,:;_t,.' ... -~:ji\ I : L
l CD::h50rfs ~ .. ····· .-~· l 1 ~ \ l i

....... : J . J;:~:\;;t:~·:: ' ~:~ ... : ·. \J :
·············t.··········i·············l·······•·····i······ :·························

0 '·
0 1 2 3 4 5 6 7 8 9 10

Supply voltage [Volts]

Figure 8.3 Maximum Frequency Vs. Supply Voltage for an Image Pixel Intensity
Loading Circuit.

achieved. Identical results were obtained using both the HP and ASIX 2 test stations. Five

chips were found to behave the same way suggesting either a. design problem or a fabrication

problem. It was decided to re-check the design layouts and the corresponding schematics in

the SDA environment. The design was originally prepared in the KIRK environment which

did not offer the powerful software testing capabilities for design verification currently offered

in the SDA environment.

With SDA tools, it was possible to compare all the layouts and schematics for each

design module. Schematics were simulated using SILOS, a. Logic and Fault Simulator, while

layouts were simulated using SPICE. Both of these simulation results were found to compare

76

c

0

,.....,
('iJ

c:
;>.
cU

~
8 u
~
~

8. TESTING RESULTS OF THE VLSI PROCESSOR

70r---~---r--~--~r---r-~~---.---,----~--~
f=SM~.

60

50

10

•: ;:
i ~

....... ' i ' .. ' ... #' '" •• i ~

0~--~----~--~~--~·~~--~-----L-----L----~----~--__J
0 1 2 3 4 5 6 7 8 9

Supply voltage [Volts]

:Figure 8.4 Maximum Clock Delay Vs. Supply Voltage for an Image Pixel Intensity
Loading Circuit.

10

succesfully. All cells were found to function as specified in the design specifications. Finally,

it was decided to compare the chip schematic and the overall layout including all cells. Here

it was detected that the serial-parallel multiplier is not functioning properly because its

control signal, ResetM was permanently grounded by a fault contact in the layout. Since,

the multiplier needs to be reset after every 16 clock cycles by the control signal ResetM going

"HIGH", this condition was not met and hence the multiplier was not giving the expected

results. With this minor correction in the layout the overall schematic was simulated and

found to function properly. The chip has now been re-submitted for fabrication.

77

0

c

9. CONCLUSIONS

9. CONCLUSIONS

The designed VLSI convolution system is expected to be the heart of the vision processor

to be incorporated in an lntel System 310 running iRMX-286 real-time multitasking oper­

ating system. This will allow users to perform convolution of images with 512x512 pixels

in about a second for a single 9x9 window size or kernel. For smaller image kernels, the

computation time would be proportionally less. This solution is very attractive, especially

when compared with the software implementation which takes hours on a Vax Computer for

the same kernel.

The design of a convolution system for image processing in a robot vision system is

briefly outlined in this thesis. Firstly, the design of a VLSI systolic convolution circuit is

presented. The convolution system was implemented using CMOS3 DLM process, i.e. a

double well, double metal CMOS process with a 3-micron minimum feature size. The circuit

uses multi-processor techniques such as pipelining to divide the computational task among

a number of identical processors. Thus, an N-point convolution can be realized using N of

the processors operating in pipeline mode. The designed processors may be used to compute

any linear, shift-invariant filters and correlation since their equations are very similar to

convolution.

To reduce the number of 1/0 pins required for each chip, bit-serial processing and com­

munication techniques were used throughout the chip design. A total of only 30 pins were

used for three systolic processors placed on one 40-pin dual in-line package (DIP) chip. The

use of shift-registers to hold the coefficients and their availability as outputs makes it possible

to chain them and reduce the board's 1/0 pin requirements.

The input signals were represented as 8-bit, unsigned numbers (0 to 255), while the

78

c

9. CONCLUSIONS

coefficients were represented as 8-bit, signed numbers (-128 to +127). This allows easy

interfacing with the existing facilities operating on 8-bit images, and giving a reasonable

range of coefficient values. Error detection was provided through the overflow detection

circuit, which indicates the occurrence of errors while computing the convolution sums.

According to simulation and testing results the convolution processor can operate at a clock

frequency of 20 MHz, allowing the processing of 512x512 images for a 9x9 kernel with the

designed card in less than a second.

Secondly, the design and performance simulation of a convolution bus card is briefly pre­

sented in this thesis. The design of a high performance convolution card was accomplished

using architectural simulation as a design tool for digital systems. Due to the programma­

bility of the new lntel 82258 Advanced DMA Controller, pictures of arbitrary sizes can be

processed. The basic processing element in this system is the designed VLSI systolic con­

volution processor. The system is DMA driven allowing the CPU to perform concurrent

processing. A prototype board has been constructed interfacing to the MULTIBUS of an

lntel System 310 running the lntel iRMX-286 real-time operating system.

Future developments of this research include the design of a new VLSI systolic convo­

lution processor which can handle floating point numbers for more precision. This double

precision floating point convolution processor design is expected to greatly facilitate range

data image processing studies. Image processing software for frame grabbing of TV Cam­

era images and their display on a RGB color display is also being developed for the RMX

environment. Based on such powerful image processing hardware system, it is possible to

envisage sophisticated sensor based intelligent or expert robot vision systems in the near

future.

79

c

REFERENCES

REFERENCES

[1] Aho, A.V., Hopcroft, J. and Ullman, J.D., Data Structures and Algorithms, Don

Mills: Addison~ Wesley Publishing Company, 1983.

[2] Ahuja, N. and Swamy, S., "Multiprocessor Pyramids for Bottom-Up hnage Analy­

sis", Proceedings of the International Conference on Pattern Recognition and hnage

Processing", pp. 380-385, 1982.

[3] Alvertos, N., Brzakovic, D. and Gonzalez, R.C., "Camera Geometries for hnage

Matching in 3-D Machine Vision", IEEE Transactions on Pattern Analysis and Ma~

chine Intelligence, 11, #9, pp. 897-915, September, 1989.

[4] Armstrong, J.R., "Chip-Level Modeling with HDLs", IEEE Design and Test of Com­

puters, pp. ~18, February 1988.

[5] Baglez, F., "On Testability Analysis of Combinational Networks", 1984 International

Symposium on Circuits and Systems, Montreal, Canada, May 7-10, 1984.

[6] Batcher, K.E., "Design of a Massively Parallel Processor", IEEE Transactions on

Computers, C-29, pp. 836-840, 1980.

[7] Besl, P.J. and Jain, R.C., "Invariant Surface Characteristics for 3D Object Recognition

in Range hnages", Computer Vision, Graphics, and Image Processing, 33, pp. 33-80,

January 1986.

80

0

0

REFERENCES

[8] Blahut, R.E. "Fast Algorithms for Digital Signal Processing", Addison-Wesley, Read­

ing, MA, 1985.

[9] Boudreault, Y. and Malowany, A., "A VLSI Convolver for a. Robot Vision System",

Proceedings of the Canadian Conference on Very Large Scale Integration, 1986, Mon­

treal, Quebec, pp. 265-270.

[10] Boudreault, Y., "Design of a. VLSI Convolver for a Robot Vision System", a the­

sis submitted to the Faculty of Graduate Studies and Research, McGill University,

Montreal, Canada., 1986.

[11] Bromley, K., Symanski, J.J. and Speiser, J.M., "Systolic Array Processor Develop­

ments". In VLSI Systems and Computations by H.T.Kung and R.F. Sproul, 1981, pp.

273-284.

[12] Butter, J.T. and Kerkhoff, H.G., "Multiple-Valued CCD Circuits", IEEE Computer

Magazine, 21, #4, pp. 58-70, April, 1988.

[13] Ca.pello, P.R. and Steiglitz, K., "Digital Signal Processing Applications of Systolic

Algorithms". In VLSI Systems and Computations, by H.T.Kung and R.F. Sproul,

1981, pp. 245-254.

[14] Capello, P., Davidson, G., Gersho, A., Koc, C. and Somayazulu, V., "A Systolic

Vector Quantization Processor for Real-time Speed Coding", Proc. IEEE Int. Conf.

ASSP, Tokyo, Japan, April 1986.

[15] Capson, D.W. and Eng, S.K., "A Tiered-Color illumination Approach for Machine

81

0

c

0

REFERENCES

fuspection of Solder Joints", IEEE Transactions on Pattern Analysis and Machine

Intelligence, 10, #3, pp. 387-393, May, 1988.

[16] Carayannis, G., Freedman, P. and Malowa.ny, A., "An Integrated programming en­

vironment for a generic robotic workcell", Proceedings of the Symposium on Manufac­

turing Application Languages, June, 1988, Winnipeg, Manitoba, pp. 11-85.

[17] Cha.kra.barti, C. and Ja.' Ja.', J., "Optimal Systolic designs for computing DHT and

DCT", in VLSI Signal Processing, Ill, R. Brodersen, and H. Moscovitz, Eels. New

York: IEEE Press, pp. 411-422, 1988.

[18] Chang, J.H., lbarra, O.H., Pong, T.C. and John, S.M., "Two-Dimensional Convolu-
\

tion on a. Pyramid Computer", IEEE Transactions on Pattern Analysis and Machine

Intelligence, 10, #4, pp. 590-594, July, 1988.

(19] Cho, N.l. and Lee, S.U., "DCT Algorithms for VLSI Parallel hnplementa.tions",

IEEE 'Jransactions on Acoustics, Speech, and Signal Processing, 387, #1, pp. 121-

128, January, 1990.

(20] Collet, C., Cote, J.F., Haule, D.D. and Malowany, A.S., "Architectural Simulation

as a Design Tool for Digital Systems", Proceedings of the 1989 Summer Computer

Simulation Conference, Austin, Texas, pp. 151-156, July 24-27, 1989.

[21] Cook, G.E., "Robotic Arc Welding: Research in Sensory Feedback Control", IEEE

Transactions on Industrial Engineering, IE-30, #3, pp. 252, August 1983.

[22} Cookey, M., Trussel, H.S. and Won, I.J., "Seismic Deconvolution by Multiple Meth-

82

0

c

c

REFERENCES

ods", IEEE 1Tansactions on Acoustics, Speech, and Signal Processing, 38, #1, pp.

156-160, January, 1990.

[23] Corby, N.R. "Machine Vision for Robotics", IEEE 1Tansactions on Industrial Engi­

neering, IE-30, #3, pp. 282-291, August 1983.

[24] Cote, C.J., Collet, C., Haule, D.D. and Malowany, A.S. "A High Performance Con­

volution Processor", SPIE Proceedings of the Visual Communications and Image Pro­

cessing Ill, Cambridge, Massachusetts, Volume 1001, pp. 469 - 475, November 9-11,

1988.

[25] Cote, J.F., Larochelle, F. and Malowany, A.S., "Architecture Simulation of VLSI De­

sign to Validate Algorithms", Proceedings of the 1989 Summer Computer Simulation

Conference, Austin, Texas, pp. 115-118, July 24-27, 1989.

[26] Cowan, C.K. and Kovesi, P.D., "Automatic Sensor Placement from Vision Task

Requirements", IEEE 1Tansactions on Pattern Analysis and Machine Intelligence, 10,

#3, pp. 407-416, May, 1988.

[27] De Floriani, 1., "Feature Extraction from Boundary Models of Three-Dimensional

Objects", IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, #8,

pp. 785-799, August, 1989.

[28] Deller, J.R., Jr., "A 'Systolic Array' Formulation of the Optimal Bounding Ellipsoid

Algorithm", IEEE 1Tansactions on Acoustics, Speech, and Signal Processing, 37, #9,

pp. 14325-1436, September, 1989.

83

c

REFERENCES

[29] Dillman, E.G., "Vision System for Quality Control of Label Application", Proceed­

ings of SPIE, Vol. 336, pp. 168, 1984.

(30] Fountain, J.J., Mathews, K.N. and Duff, M.J.B., "The CLIP7 A Image Processor",

IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, #3, pp. 310-

320, May, 1988.

[31] Fountain, T.J. and Geotcherian, V., "CLIP4 Parallel Processing System", Proceed­

ings of IEEE, Vol. 127, pp. 219-224, 1980.

[32] Fb, K.S., "Robotics and Automation", IEEE Computer, 15, #12, pp. 34-40, Decem­

ber 1982.

(33] Fb, K.S., "Pattern Recognition for Automatic Visual Inspection", IEEE Computer,

15, #12, pp. 34, December 1982.

[34] Gader, P.D., "Bidiagonal Factorization of Fourier Matrices and Systolic Algorithms

for Computing Discrete Fourier Transforms", IEEE Transactions on Acoustics, Speech,

and Signal Processing, 37, #8, pp. 1280-1284, August, 1989.

[35] Gauthier, D., Levine, M.D., Malowany, A., Begnoche, N. and Lefebvre, G., "Measur­

ing the alignment accuracy of surface mount assembly circuit Board Masks", Vision

Interface 88, June, 1988, Edmonton, pp. 1-6.

(36] Gennery, D.B., "A Stereo Vision System for an Autonomous Vehicle", Proceedings

from The International Joint Conference on Artificial Intelligence, pp. 576-582, 1977.

84

c '

REFERENCES

[37] Goel, P., "An hnplicit Enumeration Algorithm to Generate Tests for Combinational

Logic Circuits", IEEE 'lhmsactions on Computers, c-33, #3, pp. 215-222, March

1981.

[38) Goncalves, R.C. and H.J. DeMan, "NORA: A Racefree Dynamic CMOS Technique

for Pipelined Logic Structures", IEEE Journal on Solid State Circuits, SC-18, #3, pp.

261~267, June 1983.

[39] Gu, J. and Smith, K.F., "A Structured Approach for VLSI Circuit Design", IEEE

Computer Magazine, 22, #11, pp. 9-23, November, 1989.

[40] Guide to the Integrated Circuit Implementation Services of the Canadian Microelec­

tronics Corporation, Carruthers Hall, Queen's University, Kingston, Canada, GICIS

Version 3:0, January 1987.

[41] Hall, E.L., Tio, J.B.K., McPherson, C. A. and Sadjadi, F.A., "Measuring Curved

Surfaces for Robot Vision", IEEE Computer, 15, #12, pp. 42-54, December 1982.

(42] Hansen, C. and Henderson, T.C., "CAGD-Based Computer Vision", IEEE Transac­

tions on Pattern Analysis and Machine Intelligence, 11, #11, pp. 1181-1194, Novem­

ber, 1989.

[43] Harmon, L.D., "Automated Touch Sensing", International Journal of Robotics Re­

search, 1, #2, pp. 3-32, 1982.

[44] Haule, D.D. and Malowany, A.S., "High-speed 2-D Hardware Convolution Archi­

tecture Based on VLSI Systolic Arrays", IEEE Proceedings of the 1989 Pacific Rim

85

c
REFERENCES

Conference on Communications, Computers and Signal Processing, Victoria., BC, pp.

52-55, June 1-2, 1989.

[45] Hwang, J.N., Vlontzos, J.A. and Kung, S.Y., "A Systolic Neural Network Architec­

ture for Hidden Markov Models", IEEE 'Iransactions on Acoustics, Speech, and Signal

Processing, 37, #12, pp. 1967-1980, December, 1989.

[46] Iacobovici, S. and CC. Ng, "VLSI and System Performance Modeling", IEEE Micro,

1, #4, August 1987, pp. 59-72.

[47] Intel Corporation, Intel 82258 ADMA, User's Guide, 3065 Bowers Avenue, Santa

Clara, California 95051, 1986.

[48] Krambeck, R.H., Lee, C.M. and Law, H.F.S., "High-Speed Compact Circuits with

CMOS", IEEE Journal on Solid State Circuits, SC-17, #3, pp. 614-619, June, 1982.

[49] Kung, H.T., "Why Systolic Architectures?", IEEE Computers, 15, #1, pp. 37-46,

January 1982.

[50] Kung, H.T. and Picard, R.L., "Hardware Pipelines for Multi-Dimensional Convolu-

tion and Resampling", CAPADM-81, pp. 273-278, 1981.

[51] Kung, H.T. and Song, S.W., "A Systolic 2-D Convolution Chip", CAPADM-81, pp.

159-160, 1981.

[52] Kung, H. T., "Why Systolic Architectures", IEEE Computer, Jan. 1982, pp. 37-46.

86

REFERENCES

[53] Kung, S.Y. and Ga.l-Ezer, R.J., "Synchronous Versus Asynchronous Computation

in Very Large Scale Integrated (VLSI) Array Processors", Proceedings of SPIE, Real

Time Signal Processing V, Vol. 341, pp. 53-65, 1982.

[54] Landeta, D. and Malinowski, C.W., "Two Dimensional Convolver Architecture for

Real Time Ima.ge Processing", Proceedings of the SPIE Visual Communications and

hnage Processing, Philadelphia, Penn., pp. 1095-1105, Nov. 5-10, 1989.

[55] La.rochelle, F., Cote, J.F. and Malowany, A.S., "A Floating Point Convolution Sys­

tolic Cell", Proceedings of Vision Interface, London, Ontario, June 19-23, 1989.

[56) Law, A.M. and Kelton, W.D., Simulation Modeling and Analysis, New York: McGraw-

Hill Book Company, 1982.

[57] Lee, S.Y. and Aggarwal, J.K., "Parallel 2-D convolution on a mesh connected array

processor", IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-

9, pp. 590-594, July, 1987.

[58] Lee, S.Y. and Aggarwal, J.K., "A System Design/Scheduling Strategy for Parallel

hnage Processing", IEEE Transactions on Pattern Analysis and Machine Intelligence,

12, #2, pp. 194-204, February, 1990.

[59] Levine, M.D., Vision in Man and Machine, New York: McGraw-Hill Book Company,

1985.

[60] Ling, N., Malowany, M.E. and Ma.lowany, A.S., "An Expert System Scheduler for

Circuit-Board Repair Tasks in a Robotic Workcell", 1989 ASME International Corn-

87

REFERENCES

puters in Engineering Conference, Anaheim, CA, pp. 523-529, July 30 - August 2,

1989.

[61] LSI Logic Corporation, L64240 Multi-bit Filter Data Sheets, 1551 McCa.rthy Blvd.,

Milpitas, California 95035, July 1987.

[62] Maamari, F. and Ra.jski, J., "A Reconvergent Fanout Analysis for Efficient Exact

Fault Simulation of Combinational Circuits", Proceedings of the 18th Fault Tolerant

Comp. Symposium, pp. 122-126, June 1988.

[63] Malowany, M.E. and Malowany, A.S., "Color-Edge Detectors for a VLSI Convolver",

Proceedings of the SPIE Visual Communications and Image Processing, Philadelphia,

Penn., pp. 1116-1126, Nov. 5-10, 1989.

[64] Malowany, M.E. and Malowany, A.S., "A Systolic Cell for Fit-Error Computations

in Range-Image Processing", Proceedings of the 1989 ASME International Computers

in Engineering Conference, Anaheim, California, pp. 71-79, July 30 - August 2, 1989.

[65] Mansouri, A.R. and Malowany, A., "Using Vision Feedback in Printed Circuit Board

Assembly", IEEE Microprocessor Forum Conference, Atlantic City, N.J., March, 1985,

pp. 115-122.

[66] Michaud, C., Malowany, A.S. and Levine, M.D., "Electronic Assembly by Robots",

Graphics Interface 1985, Montreal, Canada, pp. 391-397, May 27-31, 1985.

[67] Mitchell, C.L. and Flynn, M.J., "A Workbench for Computer Architects", IEEE

Design and Testing of Computers, February 1988, pp.19-29.

88

c

c

REFERENCES

[68] Movich, R.C., "Vision-Controlled Robotic Cell", Proceedings of SPIE, Robot Vision,

Vol. 336, pp. 59-66, 1984.

(69] Nakagawa, Y., "Automatic Inspection of Solder Joints on Printed Circuit Boards",

Proceedings of SPIE, Vol. 336, pp. 121-127, 1984.

[70) Nelson, R.C. and Aloimonos, J., "Obstacle Avoidance Using Flow Field Divergence",

IEEE '!ransactions on Pattern Analysis and Machine Intelligence, 112, #10, pp. 1102-

1106, October, 1989.

[71] Ni, L.M. and Jain, A.K., "A VLSI Systolic Architecture for Pattern Clustering",

IEEE 'lrans. Pattern Analysis Machine Intelligent, PAMI-7, pp. 80-89, Jan. 1985.

[72] Nitzan, D., "Three-Dimensional Vision Structure for Robot Applications", IEEE

'lransactions on Pattern Analysis and Machine Intelligence, 10, #3, pp. 291-310,

May, 1988.

[73] Oppenheim, A. V. and Willsky, A.S., "Signals and Systems", Prentice-Hall, Engle­

wood Cliffs, NJ, 1983.

[74] Parent, P. and Zucker, S.W., "Trace Inference, Curvature Consistency and Curve

Detection", IEEE Transactions on Pattern Analysis and Machine Intelligence, 11,

#8, pp. 823-840, August, 1989.

[75] Pa.rtha.sa.rathy, S., Birk, J. and Dessimoz, J., "Laser Rangefinder for Robot Control

and Inspection", Proceedings of SPIE, Vol. 336, pp. 2-11, 1984.

89

c

c

0

REFERENCES

[76] Progress Report, Computer Vision and Robotics Laboratory (CVaRL), Department

of Electrical Engineering, McGill University, Montreal, Canada, 1988/89.

[77] Qureshi, Q.A. and Fischer, T.R., "A Hardware Processor for hnplementing the Pyra­

mid Vector Quantizer", IEEE Transactions on Acoustics, Speech, and Signal Process­

ing, 37, #7, pp. 1135-1143, July, 1989.

[78] R.aibert, M.H. and Tanner, J.E., "Design and hnplementation of a VLSI Tactile

Sensing Computer", International Journal of Robotics Research, 1, #3, pp. 3-18, Fall

1982.

[79] Reed, T.R. and Wechsler, H., "Segmentation of Textured hnages and Gestalt Or­

ganization Using Spatial/Spatial-Frequency Representations", IEEE Transactions on

Pattern Analysis and Machine Intelligence, 12, #1, pp. 1-13, January, 1990.

[80] Reinhold, A.G., "Automatic fuspection of Sheet Metal Parts", Proceedings of SPIE,

Vol. 336, pp. 84-90, 1984.

(81] Roberts, R.A. and Mullis, C. T., "Digital Signal Processing", Addison-Wesley Pub­

lishing Company, Inc., Reading, MA, 1987.

(82] Robinson, M. and Raj ski, J., "An Algorithmic Branch and Bound Method for PLA

Test Pattern Generation", Proceedings of the 1988 IEEE International Test Confer­

ence, pp. 784-795, April 1988.

[83] Roncella, R. and Saletti, R., "A VLSI Systolic Adder for Digital Filtering of Delta­

Modulated Signals", IEEE Transactions on Acoustics, Speech, and Signal Processing,

90

c

c

REFERENCES

37, #5, pp. 749-755, May, 1989.

[84) Sanderson, A.C. and Perry, G., "Sensor-Based Robotic Assembly Systems: Research

and Applications in Electronic Manufacturing", Proceedings of IEEE, Vol. 71, NO: 7,

pp. 856-871, July 1983.

[85] SDA Systems Inc., "Schematics, Simula.tions and Tests", Reference manual, Version

2.0, February 1988.

[86] Shahraray, B. and Anderson, B.J ., "Optimal Estimation of Contour Properties by

Cross-Validated Regularization", IEEE Transactions on Pattern Analysis and Machine

Intelligence, 11, #6, pp. 600-611, June, 1989.

[87] Siegel, H.J., Siegel, L.J., Kemmerer, F.C., Mueller, P.T., Smalley, H.E. a.nd Smith,

S.D. "PASM: A Pa.rtitiona.ble SIMD/MIMD System for Im~ge Processing and Pattern

Recognition", IEEE Transactions on Computers, C-30, pp. 934-947, December 1981.

[88] Silverman, H.F., "Programming the WFTA for Two-Dimensional Data", IEEE Trans­

actions on Acoustics, Speech, and Signal Processing, 37, #9, pp. 1425-1431, Septem­

ber, 1989.

[89] Truong, T.K., Reed, I.R., Hsu, I.S., Shyu, H.C. a.nd Shao, H.M., "A pipelined design

of a. fact prime factor DFTM a. finite field", IEEE Computer Magazine, 37, pp. 266-273,

March, 1988.

[90] Uhr, L., "Pyramid Multi-Computer Structures and Augmented Pyramids", in Com­

puting Structures for Image Processing, M.J.B. Duff editor, Academic Press, pp. 95-

91

0

0

REFERENCES

112, 1983.

[91] Wagner, K.D., Chin, C.K. and McCluskey, E.J., "Pseudorandom Testing", IEEE

Transactions on Computers, C-36, #3, pp. 332-343, March 1987.

[92) Wa.ng, F., "BIST Using Pseudorandom Test Vectors and Signature Analysis", Pro­

ceedings of the IEEE Custom Integrated Circuits Conference, pp. 1611-1618, January

1988.

[93] Weste, N. and Eshraghia.n, K., "Principles of CMOS VLSI Design, A Systems Per­

spective", Addison-Wesley, 1985.

[94] Williams, T.W. and Parker, K.P., "Design for Testability - A Survey", Proceedings

of the IEEE, vol. 71, NO: 1, pp. 98-112, January 1983.

[95] Yakimovsky, Y. and Cunningham, R., "A System for Extracting Three- Dimensional

Measurements from a Stereo Pair of TV Cameras", Computer Graphics and Image

Processing, 1, pp. 195-210, 1978.

[96] Yeh, H., "Systolic Implementation on Kalma.n Filters", IEEE Trans. on ASSP, 36,

#9, Sept. 1988, pp. 1514-1517.

[97] Yen, D.W. and Kulka.rni, A.V., "The ESL Systolic Processor for Signal and Image

Processing", Proceedings of the 1981 IEEE Society Workshop on Computer Architec­

ture for Pattern Analysis and Image Database Management, IEEE Computer Society

Press, pp. 265-272, November, 1981.

92

c

0

REFERENCES

[98] Yeshurun, Y. and Schwarts, E.L., "Sha.pe Description with a Space- Variant Sen-

sor: Algorithms for Scan-Path, Fusion, and Convergence over Multiple Scans", IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11, #11, pp. 1217-1222,

November, 1989.

[99] Yokoya, N. and Levine, M.D., "Range Image Segmentation Based on Differential

Geometry: A Hybrid Approach", technical report: McRCIM-TR-CIM 87-167, McGill

Research Center for Intelligent Machines, McGill University, September 1987.

[100] Zohars, S., "A VLSI Implementation of a Correlator/Digital-Filter Based on Dis-

tributed Arithmetic", IEEE Transactions on Acoustics, Speech, and Signal Processing,

37, #1, pp. 156-161, January, 1989.

93

0

r ,..,.

APPENDIX A: SDA SCHEMATICS OF THE PROCESSOR

APPENDIX A: SDA SCHEMATICS OF THE PROCESSOR

This page contains 14 Sheets

94

SheetNumber 1

Flip Flop without Pre-set (ffnp)

~2 ~----------------~

PH1B 1)--f----.

~2B ~------------___.!

0 0 0

SheetNumber 2

Flip Flop with Pre-set (ff)

PH Ill J)-----1--__.

PH2B 8-------------'

0 0 0

SheetNumber 3

3-input Full-Adder Circuit (fa2)

A

B

c SNOT

KBAR

() 0 ()

SheetNumber 4

Basic Multiplier Cell (mult)

-w'"'

PH !1.11[)--

·D--
ltiUI~ -""' Ill

""" Sheet 1
QN -Cillll'

~ - ~ :---
...

1, l.l I -•D r :;:: IIIIE
Ill Sheet 2 0~

"' Pllta Ql ~

""' -- -
I

-~
r--- A Sheet 3 - ,.,

I -1-e-- c

I -
,., ----""' L:- IIIIE

Ill Sheet 2 o- -
""' 01- ------

.() .. . ' '

SheetNumber 5 ·

Control Circuit for the Multiplier (topmult)

1f

" ICIN QH

a Sheet 1 QH8

PPOIJT

CIN7/Si9" P!i28PE

P!i2P[

P!illl'[
XO\II&M

P!iFE

RESETW

._0 0

I
• rr i;..SheetN umber S: SheetNumber 6 -
-- - - l -- -

fifE~ Sheet 4 -- -
-~ lr -- ~W -- - I-*-,-:- Sheet 4 -rt=- - ~

- -
-

- ~w --~
r - -t--,.. - Sheet 4 -..

rt=- -- -
- .::.h-3 -- -''-' - Sheet 4 -,....._:- -r=- ---

=w -...
Serial-Parallel Multiplier (8-bits)

- Sheet 4 -,.....:- -
~r-=- --
I I

-- -W - Sheet 4 r--:-" -1r=- -
~J --- Sheet 4 ,......__:-

1r=- -
I I

- .::.W - -- Sheet 4 -- -• -...

'0 "·

r=- -
:.o

SheetNurnber 7

Sum Disable Circuit (sdcircuit)

PP!N

SO OUT
so

SIGN

() 0 0

·._0

......
~

-.. -~

......
~

'"'

'"' -......

-

Partial

---.. Sheet 7 -
4

'-tl-.
c Sheet 3

-.. -· Sheet 1
..

.... --·

SheetNumber 8

Sum Adder Circuit (add3)

I

I-- --!]- -- Sheet 1 -~
.... -

-"

=1
-

......
Ll ~

-:;= .. Sheet 2 • --· •r--- 1"'1 -,__ - -·

~

-
--
-·

SheetNumber 9

Overflow Detection Circuit (ov2)

-· Sheet 1
... _
-·· --- Sheet 1 -

,{) .. 0

2-bit Shift Register (sr) SheetNumber 10
~G-----------------~r--------------------.

~8~~--------------~

0 () 0

SheetNumber t 1

16-bit Shift Register (sr16)

~ ...
=:- ±-

... - .. Sheet 10 Sheet 10 •• - ... - - - - --- -

~ - Sheet 10 ··R. !.:__ - ~
.. .. Sheet 10 .. - .:r-o - • - - -- -

-
lF=:=:: q_ ..._ ...

Sheet 10 ::; Sheet 10 •• • •• - .. - ...
"" ... f- - -,___.. - --

I --...__ .. Sheet 10 -·~ • Sheet 10 ~ ~ - .:!--'" -- - --

-

SheetNurnber 12

32-bit Shift Register (sr32)

0

IATAIN - DATAIN

1 H1PE

- PH1PE
DATAOUT ~ - PH2PE Sheet 11 Q16 ~

PH1BPE -
- PH2BPE

118PE

1
~28PE

- DATAIN
--= PH1PE ·----- DATAOUT ~ -= PH2PE Sheet 11 - 016 DA -= PH1BPE -- TAOUT

-= PH28PE -

SheetNumber 13

Control Signal Driver Circuit (driv)

PE
A .----.

>--------f~~

IHI
8

PEP HI

L__-- nand2

PHIS PE

() 0

0

d

.. .,

0

c

APPENDIX B: ORCARD SCHEMATICS OF THE BOARD

APPENDIX B: ORCARD SCHEMATICS OF THE BOARD

This page contains 10 Sheets

95

0

.<~ > 3,6
)Mt:: :.IX

2 IS? > 2.3 01 Ql
> 2,3 / 3' 02 Q2

[)!::.(2,3 03 Q3 " R "> 4 04 Q4 """
pull-ups are not 'SI > 3 os QS ;-: "

,------<·c;: " reallw required > 3 V. 06 Q6
for /eod's as thew > 2.4 07 Q? :>

""" :s' " have internal pull-ups > 3 / 08 QS
' 3 IA'CE':> L1 c address

9 2 < EOOO# 3 IAEN*
1 oc out0-7

<ML • BUS I C), 92: l ~~ j~
'"I.,L,L, 1i ta: !

ACO •• 23J ~=~L.~~~~ =:11:.1?19
...

Mrn .92::1 01 QJ.

I(((§~[~~B!~~
AO " _, 02 Q2

!~
10 REeDY

A1 'V 03 Q3 " T2 A2 04 Q4 ' A3 -' " ~5 '
OS Q5

RESET A4 06 Q6 rE'-
AS -' ' 07 Q7
A6 " 08 QS "'\

A7 ' "
H21 l:ORC6 2 AS ' 11 c ac:lc:lr•••

~ ' M?? T ~lolr.llk ~ A9 oc outS-15

8 AOHA A10 '
2~

All ' ~ ... !::. onr.:i
82258 A12 ' - , 2

3 7 OREQO
A13 1)1 Q1

3 6 A14 1)2 Q2 -'
3 --.;- OREQ1 A15 ;: 1)3 Q3 '
3 4 OREQ2 A16 04 Q4 ="

OREQ3 A17 21 OS Q5 "'\
A18 2 =" V cc - PINS 26.60 A19 :z: 06 Q6 "'\

<ilNO - PINS 9.43 12: 07 Q7

2 li!iEJ!C;:l . 17 HL.OA
A20 oe QS -' A21 11 '

8~~~i~29S~~t~ii~ ~ii
e •dc:lr•••
oe out16-23

--m~~l4 ~ 3 ;c:~l~ 3 ..
11 Rl-A ~ Rl-8 .AO u; Yl Al 2 HS7
I'"' > ~ > 5K 5K ~ .R~ ~ Y2 A2

4 HSS'-> ~
rl

.A2
10114 f1 Y3 A3 6 MSS.'-

tC:., JJJ
li .R3 Y4 A4 B HS6::'-

11::

;t'l ol Buc.l n iS:
,,.n '/ •c:lc:lr•••.J.n0-7 ,._.._ """

·' ·'
<il

~ lfWI,SPIIi> Bffitj•
94 ... 4

TF'R6 '11 111 TF'R. 2 74L.S241:
(

R/11)A'06
5LAVE-B

c: B/DMA6 .A4 C! 11 HS3 Y1 Al

~11· ;11·
.R':> 3 MS4-"

23 4S 67 99 78 9 .A6 Y2 A2
Y3 A3 .. HSI"'\

LOioi....DMA....DATA
.Rf

-~ Y4 A4 7 MS2-"

~~~~~~~=·<ilg ~~~~~~~= <ilg 
HI<ilH48M~ATA 'I 

74LS640 7 56 pa_ <il 

!~~~ee9a !~~~ee9a 
7 

(iiL-control It t tltltlth lt ltlthhlt~~lf <ilH-i<aol•t• 

OJ.rL B->A 

~~- - AOHA .TIBUS Int4trf•c• 
OJ.rH A->B SJ.z• •nt 

~~~ A :t~Ma94t Convolution Sw•t•m 
:e 2~ .~tf~ !Sheet of' J.

()

1'1. H21

1'1. H22

"DHAs•l•c~ .
'PAL?

20LB

0 ()

R2-I 'SW-2
~ 1 cc H ~-=

:E /
vV

Buff"Pl-A
74LS126 1

................. 2 1 <.EODO.

/

PALS

:N.t >s

ne
ne
ne
ne
ne
ne

elk
/Of/t

/
SK / J-j / 11--; -=:::1

H- -=:::1
1 / q -=:::1 /

3 -=:::1
-=:::1

int•rrupt ••l•ct 5W D: P-8

PALE.
~ I1 01 siin3

I2 02 /I" I"· lac: I 3

I3 03 /I"' I"· LA,..I 2

I4 04 I" I"<: I .a cl

IS os ~ I-~; ,
I6 06 ~', ~--~
I7 07 ~ ~~11';::2"' 1 IS OB .N~ Jl' S

:N3 > S

I9
I10
I11
I12

.l
§tK .3

ZOR6

DHA Data Control* Add. D•coding & Int•rrupt
!Si Zflt poeument Numb•r jREV

A 1 Imag• Convolution Swst•m p.o
Date: November -.:.':1 L'!JB'!JISheet ;z or

0 0

~! CLOCK GENERATOR

~- ·0.L. X l L._i_ X 1 READY ~!1~6=~~=~s~l.~· o~,n~a~lfj_e~n~d~o~f~~bt~s~c~:.,~c~l ~e===~R~E~A~D~Y~*'~>> 1 ~7pF CLK DMA clock CLK > 1,2.4
d C2 T 12 MH:z 8 X2 RESET 2 qenera l MR reset RESET > 1, 2

rl R-DlSCRETE
-:;:- .is pF' . ~ EFl PCLK NC

R1-C r------:...td ARDY
vcc V

300 Ohms M23 XACI<+ VCC o-o--_1_11.,-v./' "-vl'v-A
4
::!.---..... ---*'>I.d AYEN

/r-~~----~~~----------~~r.,,Kr-----------~~SRDY
-.. .--------"!d SYEN

M14
l. ~>-----------lr-~~----'l1H1 c;:rd. SO
l. lnV 16: s 1

~~l::N~l:T~·---------------+++~1;a2·RE~

~ ::;84
1 Buf'fN1-A

._OCI<+),,_..:?4LS12S l.IHOL D ::t---

3_ La., BUS ..ARBITER

"-. o:1. LLCI< SO/HLD 1
1!1

H1R -. ~ ? H/S101 ~-&·~.f----l~e
H1S BPRN+ 9 BREQ

BPRN hf-
---~- READY

M16 S~Koe e BPRO CLI<~~--+4~~-----------------
I'U3 ~~~ •. K! 15 BCLK RESET 1--:-.::t... 4 -+.f.-.t-1----.....,.......,,..--------4-1---l

LOCI<~~ll6.-~~+4--~~~~0V c;:R~~ -··cc H29 CBRQ+ 12 CBRQ
1'117 HU5Y• 1 BUSY

i/. 1"'11.4 :N: ·• 6 INIT
AL/CB L'5 1

S/R I--Tl3f-__,
AEN ~~3 ----~-1---~

51<

--
82289

RU~ CONTROLLfrR > 1.2
' 1 INTA cJ.9 so 3 · · · ac:t i ve !.lh'en IORC

HA! IOWC :.IJL_ DHA has multibus

' HRDC I
HWTC READY

1? CLI< 2

DTAf l.S
16 CEN/~

6 R1-E1 5 DEN 14
......!.. ALE CENL 7 vv ...,.cc

HCE CHDLY 6 ~ SI< HB
B:Z:ZBB ·1.-+.-&.. -.+ &... ~

da1:a 1:ran-.e•iver •nah • ~
data 1' ever _dir•~tion nT /I:!A

. 61151:0. 92:::1 > 9

1 :j(:](

~· 5
5 'E
1 ~(K •• s
s 'E

1 ~l:K •
5
5 'E

1 ~(K • 6 H
6 ·~

/dac:k3
.... 3

afe3
/dac:k:Z
nf2
a··e:z
/•IA~k
a·'e1

'PAL4

11
I2
13
I4
IS
16
1?
18
19

..,. I10

..,. '•[Ill
/i•eadw 112

I13
r--1/"--l.'rnrL.Ii··d~a...~---:.; I 14

-

L.,.2.....-0L...--8 _ __,

Ul > 6

shift out output FIFO

Q ___.2_ ne:

~
74LS?4
R1-F

1 ::z..,..,..,_ -v•CC

SI<

Master Interface. Dreq Gen. & FIFO out En •

!Size oc:urnen1: Number
A ImaQe Convolution Swstem

1

MI:O , 92"1
MJL :BUS[0 92:J > 9 R1-G

8 V"V" 1 vcc
SK

0

· XACI< COUNTER
2 ~X~Hc:JSK:tE:H!N•41=>---,------i-~1~ CLR

L---id LOAD
J.J CLK
~ ENT

.---4t--l-1 ENP
D R~g
C QC ~i-------..
B QB f-
A QA f- ~

lA V 7
f"Y • INVj.-A

H23 'J(Or.lo(A 6 V s 2 . ./' 1
~~L---~~~~~ ~'-~--------~~ ~L-~

~1-B ~4
74L.S125

0

add,..••• atc:h •nabl•

Buf'f'P1-B 4
74LS126

~ ~>-~6------------------r-~--<J.RmE~~'JC>A~l.
,_.t!a.Z..H27 _ ___ili:I.Etlt _ ___. /.

2
3IOCLK

e./ ea
Buf'f'~
74L.S126 ~

iZii (

11111

'~!:~a•a

~~iie29S c8

Data In

ll J~[1 i 1 ~Vl.-8 •
~ p ~ 4

~04
01

--.i.. ~
'----....-..J

74L.S74 Yl.
DFF1-B j3

1211 (

1111 , ...
'~ji~!·8

~~iii29S c8

g Rl.-H
v.v--1- <>VCC

SK 2

L.atc:h/HuK2
74ALS533

nr-n 7"1
:NPIJ :o. 7: >S

l-:rl.alf7klt1t Llll.li'JI1~a.s~ i 1. •

Slav• XACK C•n• BHE• & IN/OUT FIFO Buf'f'4tr
Si Z&' poc:um&'n~ NUmb&'r jRI::V

A 1 1~9• Convolution Swst•m f3.0 0

Da er 2'31. l '318'31 ISh••~ 4 of' l.l.

0

ROW + > J.O
ROW +J. > 10
ROW +2>10

7 IJSr""'::
7 IC .K LA

4:- ~li Q~ ~~~1- 4:- ~li ~~ ~1~~- 4:- ~If Q~ ~111- 4:-
E~h~!o~<r

SFTIN2
ERb~iB~!

~
ERhkiB~!

SF'TIN3
SF'TIN1 74LS299 R3-c ~ 74LS299

74LS299 SK

~,,~5~5,,~ ,c~5~ca' 1

~~~~~~~:i~ ~8~~8~22 ~~!~~s~a2~ 
vJc 

~ 1 ll I! ~7l ~ '~ ~s ~6 ~7l ~ ~4 ~f.> ! -lLL 
ii'L_ 

-I8EI> 3 -mu> 3 -~BED- 3 
'E >3 
·c.z ~ 3 
'E3 ~ 3 
~<r 
~7 

__;;> 7 

1111t lt 111 '- 111 11J. -~' lt lt ''1 I 1'- ~~ 2~~~ i~~ L 11 ~u t t IJ. 1 111 t t 1111 111 l!A 11.1 J.ll-
~P~I' r.:: f'~ T ..:p~l foC f'~ T t" 1"'1"' 

~~~28~i~~ 
' 67413

~~~28~i~~ 
' 67413 

~~~2687~~=~ ~~~28~i~~ 
' 67413

~~~28~i~~ 
' 67413 

~~~28~i~~ 
' 67413

F'IF'OJH F"IFOJL FIF'0_.2H FIF0_.2L F'IF'OJH F"IF'OJL

~~ ~!8~~~2 ~~ ~iB~~~i ~= ~~B~~~i ~~ 8i8~~~i ~= 8rB~~~s ~= 8rB~~~s
1i ~ n~~ 1i .1 d~ 1i A 11'1:1~ 1i .1 l"d~ li ~4 ~-7r~ 1i ~ 1rr~

!

~~ rdl
ne i

-==- ~f:, sl4 -==-+ . .
-==- /1f:.~l4 -==- ~=; 1~ -==- J~~~ -==- ~~1~ . . - -

..
nrn . .,., ·

Input Buf'f'ers

41: :NPUT-u-tSU::SI U 7~ :::>J.ze jocurnen't Number
~~~ A Imase Convolution Swstem 

ate: November 2~. L ~13~ IShl!'tt't S Of" J.J. 

http:t:JU::::'L.U7


0 

8tS JL 

7 CLKlR 

10 IYOl 

VCC SK 
9· R3-A 
L.lAA 2 

0 

~!~~§1~* 

2A ~r8~~~i 
FIFO_DHH 

~ 67413 

~~~28~~~~ 
11111 t lt l.t

rl .. il' r

'

c~~~!o~!

~~~~i~~ii~ 

SFTOUT1 
74LS299 

~! ~ 1 ~7~~ ....... ~ 
,/ 

· ~t ~ r ~:~9· 
2A ~rs~~~s 

FIFO_DHL 
~ 67413 

~~~28~~~~ 
11 1111111111

riil' r

i~g~

· lf.J Ll 1r a~·
2A ~r8~~~s

FIFO_DLH

~:~2~7;;;~
LL!I.J.s.lt1111t1
rl"'r'l' T

~6~4

0

· 1 i ~f4-:t~1r 9·

2A ~rs~~~s
FIFO_DLL

~ 67413

~~~28~~~~ 
1 1111111 .111 
.,I' T 

~~118 

' trn tc::., :a i>USI 

Convolver and output FIFO 
~.1 ze poc:umen1: NUmber jf<t;V 

A 1 Image Convolution System p.o 
a't e: November 2~ 1 ~8~ !Sheet o of" 



s 
s 
s 
G 

0 

~ 

~ 
~ 

CROU" 

~{ 
li 

"7=" 27pF 1\ 

vcc~ 

+ 
vcc 

1 R3-B3 
,/"-

SK 

I.±! X2 T 20HHz 

1 
R3-Dr; 
A./' 

5K 

~ 

PALl 
01"0 2 Il 01"1 3 
cr2 4 I2 
.i.nh 5 I3 

I4 rout G 
ne: IS 

IG ne: I7 ne: 
ne: IS 

I9 ne: IlO ne: Ill ne: Il2 
1 

/o• 3 ~K 
:ZORti 

CLOCK_C:EN.l 
.1 XTL.lA 
2 TCLK 

XTL1B RSTO 
12 XTL2A ZCLK 

..JJ... XTL2B osc 
I STRT eo 

STRH 
ADD1 Cl 
ADD2 
INH 

19. RSTI 
Lt:l~t:IJ. 

0 {) 

TEST> 8 

DFF2-A 14 
01 ~2 Cond s 2 0 p Q PE 
02 ~~~= 3 R 
o3 P'rQc: CLK 
04 ~ rad c G 
05 Qe L Q H 
OG Qf' 

R3-C. 74LS.74 Il 07 ? !"--aoir 08 
VCC" 1 AA 4 

~ SK "V 

5.10 

a 

HRSK• ;~> a 
N > 

<aoin •1-ao •c:t<a •• resetm 

.13 
pu- .K:Z > 8.1 0 

L.1.L ~V l-e 
_a_ 6 

_.I..§_ LR > S., 
~4AS04 

_2.._ 
~V.l-D 

,.1tL t---..2.. 8 .K lB > 10 ...... /74AS04 
Vc:c: - PIN 5 
C:ND - PIN 14 ~NVl-E 

,.JJ... ,.tO 

/74AS04 
> 10 

~NV.l-F 
~ ,.12 

.K > 10 
/74AS04 

Clock Gen. ~ •nd Convolver Control 



Coi.n..SUFF 
74ALS640 

?ll::>U;.N 
7 EST 

21l::>LRYE. 

.H21 IORC. 
.1'122 :no~ce 

7 IC -K LR 

0 

,.,,.. 

+•c.+ 
:"os-,..,.,... 

/& -.-v. ..... 
/: ~t:: 
/ .ni"L 

:'!ut ,... .,.,. ..... 
n~. 

/r-• 
~·· 

J. 
:lt 

MU . T 8 S 0 •• 92 > 9 M23 
XACK# 

.608 > 2 

co .. r_out 
74LS299 

PAL3 
I1 01 
I2 02 
I3 03 ? 
I4 04 ~ 
IS os 
I6 06 ~ I7 07 
IS 08 
I9 
I10 
I11 
I12 

~ 
ZOR6 

&i.oui: 
r•••ta ,._, 

~;:~~~-
::.../,~l"d 
1-/xu!~k ·/~MJ 

ns; 

/•lav• 

+ 
)l 

~ 

~0 !\ 
Buf'fN1-c 

9 74LS12S 

'A >10 

;RO# > 2 

>6 

> 10 

Co•ffici.ent Input Circuit 

f-ii.ze f'OCUMen1: NUmb .. !" tRE:V 

A 1 . Ima~• Convolution Swst•m j3.0 
Da1: •: Nov•mber z~. • ':18-:J !Sheet e of 11 



H 
u 
l 
t 
I 
b 
u 
• 
p 
2 

ConnectlB 

HULTIBUS-L 

0 

H 
u 
l 
t 
I 
b 
u 
• 
p 
1 

Connect2A 
HULTIBUS 

0 

H 
u 
l 
t 
I 
b 
u 
• 
p 
1 

Connect2B 
HULTIBUS-H 

HULTIBUS P~n/S~9nal Ass~gnments 



7 

8 
s 

8 
7 
7 

8 

V 

7 

.s 

7 

s 

I 

.1< L6 

I'CIN':: 
RQW ;-+1 

RESET_R 
s N 
[EL; 

I( ~A 

y R3-f'" 
-=-iF" ? SK 

>1 

c 

j( .1< 

LR 1Jool + 

) 

I< LKlD 

IR >W +2 

19 CLK2 
_1.1_ CLK1 

_2_~ C1IN C30UT 
~ X !IN X30UT 

;e. Y1IN Y30UT 

_2_Q_ RESET A 3 )( 1 ClOUT 
e_ CONVOLVER C2IN 

RESETH 
1..2. PE 

__19 
X lOUT 

LD 0 Y10UT 
~ so 

~~ 
X 

~! ~l 
OV10UT 

~~ _2_4 OV30UT 
OV1IN 

CONV1 ~.~~~ 

..18 CLK2 
L CLK1 

_22 C1IN C30UT 
~ X !IN X30UT 
~ YliN Y30UT 

_2_Q_ RESET A 3 )( 1 ClOUT 
CONVOLVER 

~ RESETH C2IN 
L~ PE 

..1...2. 
X lOUT 

LD 

Jd! 
Y10UT 

~ 50 

~! ~~ 
OV10UT 

~ OV1IN OV30UT 

CONV4 ~.~~~ 

18 CLK2 
7 CLKl 

..2...2 C1IN C30UT 
~ X1IN X30UT 
~ YliN Y30UT 

_2_Q_ RESET A 3 )( 1 ClOUT 
.J;!. RESETH CONVOLVER C2IN 

_1~ PE 

.!...2. 
X lOUT 

LO 0 Y10UT 
~ SD 

~l ~~ Jt 
~0 OV10UT 

24. y~ OV30UT 
OVliN 

CONV7 ~. ~~~ 

' 
18 CLK2 17 CLK1 

3 22 C1IN 
2 13 

21 X !IN 
Y1IN 

~: 
20 RESET A ,3 X 1 

8 RESET M CONVOLVER 
16 

r.U-- . 
PE 

19 

~: ~ 
LD c' 

0 
so X y V< 

~§ 2X 2Y 2\ 

...4Q_ 24 OV1IN 
03 03 o: 

UI UI UI Ul 
TN TN TN T ~ 

CONV2 ~~. ~9 ~5! 

18 CLK2 17 CLK1 

3 22 C1IN 
~ 

13 
21 X !IN 

YliN 

~: 
_20 RESET A 3 X 1 

8 CONVOLVER 
~ 

RESET M 
PE 

~: 19 LD 0 
_ll. SD c X y V< 

2C 2X 2Y 2\ 

4Q 24 OV1IN sr 03 03 0' 
ur ur UJ 

TN TN T N T ~ 

CONVS ~~ ~· ~t! 2. 0 9 6 0 8 

18 CLK2 
17 CLK1 

3 22 CliN 
';<: 13 X !IN 

Z1 YliN 

~: 
~0 RESET A 3 X 1 

8 CONVOLVER 
6 RESET M 

~: 
PE 

19 
_ll. 

LD 0 
so c X y V< 

2C 2X 2Y 2\ 

40 24 OVliN 03 03 03 o: 
UI UI UI Ul 
TN T N T N T I 

CONV8 ~~. ~9 ~5! 

C30UT 3 
X30UT 2 

Y30UT 

)( 1 ClOUT ~ JOLVER C2IN 

~ X lOUT 

Jd! 
YlOUT 

OV10UT 

OV30UT 40 

~~ 

C30UT __3_ 

X30UT 2 

Y30UT 

)( 1 ClOUT ~ VOLVER C2IN 

~ X lOUT 

~d! 
Y10UT 

OVlOUT 

OV30UT ... 40 

~~ 

C30UT 3 
2 X30UT 

Y30UT _1 

)( 1 ClOUT ~ v'OLVER C2IN 

~ X lOUT 
0 YlOUT 

~t ~i 
OV10UT 

OV30UT ,40 

YN YN 

~~ 

18 CLK2 17 CLKl 
__2_~ C1IN 13 X !IN 
~1 Y1IN 

20 RESET A 3 )( 1 
_j;i CONVOLVER 
16 RESETH 

PE 
19 LO 0 

_kL so 

~~ ~~ ~! ~~ 24 . OV1IN 

CONV3 ~~~~ 

18 CLI<2 17 CLI<1 
__2Z C1IN 3 X1IN 
.;z Y1IN 

20 RESET A 3 )( 1 
e CONVOLVER 

16 RESETH 
PE 

19 LO 0 
~ so 

~! ~~ ~t ~i 24. OV1IN y y YN YN 

CONV6 ~ ~ ~'@]'~ 

18 CL1<2 17 CL1<1 

22 C1IN 
_13 X1IN 
2 Y1IN 

_20. RESET A 3 )( 1 
8 RESETH CONVOLVER 

16 PE 
19 LO 0 
~ so 

~! ~~ ~t ~i 24. OV1IN y y YN YN 

CONV9 ~~~~ 

C30UT 3 
X30UT H-Y30UT 

~ ClOUT 
C2IN 

r!-4--X lOUT 
YlOUT ~ OVlOUT 

OV30UT .40 

C30UT 3 

X30UT H-Y30UT 

~ ClOUT 
C2IN 

r-!4-X lOUT 
YlOUT sH= OV10UT 

OV30UT 40 

C30UT 3 COUT 
~ 

;;> 

X30UT 
Y30UT 1 YOUT 

bib ClOUT 
C2IN 

X lOUT 

~ YlOUT 
OVlOUT 

OV30UT 40 QILOUT ;:> 

VLSI Convolution Chips 

8 

8 

2 

ocument Number REV 

Convolution S~stem 3.0 



0 

c 

c 

APPENDIX C: PAL's DESIGN STRATEGIES 

APPENDIX C: PAL's DESIGN STRATEGIES 

Cl. Description of PALl: 

Qa. and Qb form a. simple 4-bit counter. COND is used to determine if the convolver 

ca.n process another set of inputs. On pulse 14, this condition is verified and INHIBIT is 

generated if the condition fails. This inhibit condition will be removed in a. successive pulse 

14 when COND is high again. A graphical representation of PALl, its description and a 

timing diagram of these signals are as given in Table 9.1, Figure 9.1 and Figure 9.2. 

CHIP PAL1 PAL20R6 
elk orO or 1 or2 inh irout ne ne ne ne ne GND 
/oe ne so in Qf Qe Qd Qe Qb Qa cond ne V cc 

EQUATIONS 
/Qd := IQd*/Qb + IQd*/Qc + /Qd*/Qa + Qa*Qb*Qc*Qd 

/Qe := IQc*/Qb + IQc*/Qa + Qc*Qb*Qa 
IQb := IQa*IQb + Qa*Qb 
/soin = IQf + inh 
/Qa := Qa 
/Qe := IQa+Qd+/Qb+/Qc 
IQf :• IQe 
lcond = /orO + /or 1 + lor2 + lirout 

'Thble 9.1 PALl Description 

96 



0 

c 

0 

Cl.k2 
ClK1 

APPENDIX C: PAL's DESIGN STRATEGIES 

a 1 3 4 s 6 ., 8 9 A B c 0 E F 

'* : SOIN, S8IN ** : II:SET, SltlJT 

Figure 9.1 Timing Diagram for PALl. 

inh ... .... 

rD g 

~ 
Qa a 
Qb ,___.r. l6-Qc: 

... 
r-) I 

Qd ..... I >- D g 

4-bi1 
..... - t) 

COU'Iter Ci 

Figure 9.2 Logic Representation of PALl. 

C2. Description of PAL2: 

PAL2 is a. 3 bit self-starting counter that is used to shift the coefficients into the Con­

volver. When a. coefficient is written into the shift register, PAL2 counts 8 cycles to shift 

97 



0 

c 

APPENDIX C: PAL's DESIGN SfRATEGIES 

the 8 bits. Its description and graphical representation is given in Table 9.2 and Figure 9.3 

respectively. 

CHIP PAL2 PAL20R8 
elk now /biih /iowc ne 16o8 HorL /mask inh ne ne GND 
loe ne cload Qc Qb Qa s lout scwt Qwt shtleft ne V cc 
EQUATIONS 
/Qc :•/Qe*IQa + IQb*IQc + Qa*Qb*Qc 
IQb :• Qb*Qa + /Qb*IQa 
/Qa := Qa + /scwt*/Qb*/Qe 
/cload = /Qc * /scwt * IQa * IQb 
/shtleft = Qc + Qb + Qa + scwt 
/Qwt :• /low + /high + liowc 
/sewt := /low + lhieb + /iowe + Qwt 
/slout := inb + 16o8*/mask*HorL + 16o8*masl.*/HorL 

Table 9.2 PAL2 Description 

Figure 9.3 Logic Representation of PAL2. 

98 



APPENDIX C: PAL's DESIGN STRATEGIES 

Q C3. Description of PALS: 

C.· 

0. 

PAL3 is used to generate the XACK signal when a coefficient is read or written from or 

into the Convolver. Toggle is a signal that alternates every 16 clock cycles of the Convolver 

and is used when bytes are to be saved as the resulting image. Refer to Table 9.3 for its 

description and Figure 9.4 for its graphical representation. 

CHIP PAL3 PAL20R6 
elk IXad ne test 16o8 inh /low /hi&h /iDre /iowe Qwt GND 
/oe doad /exae:t xwt xrd sad to&&:le dqwt ne xen ne Vee 
EQUATIONS 
/xen ::: now + /high 
/toggle := inh*/toagte + ltoagle*/test*l6o8 + to1ale*test*linh* 16oS 
lserd := /tore + lhl&h + /low · 
/dqwt := lqwt 
/xrd := scrd 
lxwt :• dqwt*/cload*iowt 
exad. = /xwt + /xrd 

'Thble 9.3 PAL3 Description 

f!::l +==::::1....;. 
elk --------t 

inh -tD..-+1"1 

1'-oe-+D~I~ 

Figure 9.4 Logic Representation of PAL3. 

99 



0 

0 

APPENDIX C: PAL's DESIGN STRATEGIES 

C4. Description of PAL4: 

PAL4 generates the DMA requests for the 4 channels using direct inputs from the FIFO's 

as described in Chapter 6. Refer to Table 9.4 for its description and Figure 9.5 for its 

graphical representation. 

CHIP PAL4 Pal20l8 
/daci3 bf3 afe3 /daci2 bf2 afe2 /dackl bf I afel /daciO bfO GND 
afeO reset ne rese~ dO nreset dreq3 dreq2 dreq 1 dreqO scrd V cc 
EQUATIONs 
/dreqO = /bfO*afeO + /dackO*/afeO 
/dreql = /hfl*afel + /dackl*/afel 
/dreq2 • /hf2*afe2 + /dack2*/afe2 
/dreq3 = /bf3*afe3 + /daci3*/afe3 
lnreset = reset 
hesetp = reset + scrd 
/dO • ldaciO 

'Th.ble 9.4 PAL4 Description 

hU -oo()l-~ ~ 
dac:k2t-.f>--r--.. 
•• , •• 2 ....... oo()l--l~ 

hf2 ----IIJII--4 
dadca-o.--r-.... 
afn~Q ....... I>~ .. . .J 

hf3-Dt---l 
,~,----~~~----

sc:rd---

Figure 9.5 Logic Representation of PAL4. 

100 



0 

APPENDIX C: PAL's DESIGN STRATEGIES 

C5. Description of PAL5: 

Outbufen enables the output FIFO when the DMA is emptying it or when the CPU 

reads the contents of the coefficient shift register. Status is used as the low bit of the output 

FIFO. When the 16-bit mode is selected, it reflects if an overflow has been detected but 

leaves the low bit unaffected in the 8-bit mode. Refer to Table 9.5 for the PAL5 description 

and Figure 9.6 for its graphical representation. 

CHIP PAL5 Pal20l8 
now /hich liorc 16o8 ldmahich /aen dtr /dadO liowc lowbit den GND 
brei ovout ne status nbrel ltrans bd naen /cs outbufen ne Vcc 
EQUATIONS 
lnbnl = brei 
trans = brel*den + brel*laen + aen*den 
lbd = iowc*/dtr*ldaclO + iowc*/aen + aen*/dtr*/dactO 
lnaen = laen 
cs • hich*/aen 
loutbufen = /low*/dactO + lhich*/dackO + /iorc*/dadO 
/status = 16o8*1ovout + /lowbit*/16o8 

Table 9.5 PAL5 Description 

101 



0 

c 

0 

APPENDIX C: PAL's DESIGN STRATEGIES 

dt,.. 
doc:ket 

i<M.d ---+-1---1 

den -""DD'-+-+-.... 

'-+------- nl.rel 

hi~ --t---L...._/"----c.t 

lowbi t --+----1 

"08 
OVOU1 _....,... __ -1 

]OY 
icwc:l---~, 

d•cket ------J r-- ou1bulen 

Figure 9.6 Logic Representation of PAL5. 

C6. Description of PAL6: 

PAL6 generates the controls when an input FIFO should grab data from the bus. The 

pulse synchronized signal Dclk goes high when XACK# is active. It generates the shift in 

(siin) signals since XACK# signifies that the data is valid on the bus. Siout is used to load 

data from the output shift register into the output FIFO. Refer to Table 9.6 for the PAL6 

description and to Figure 9. 7 for its graphical representation. 

CHIP PAL& Pai20R8 
ell xaek daell dad2 dad3 ne ne ne ne ne ne GND 
lot rst siout ne sine inen siin3 siin2 siin 1 dclk toeele Vee 
EQUATIONS 
IQdelk := xack + daek 1 *daek2*dack3 
ldelk • xack "" dack l*dack2*dack3 "" Qdclk 
lsiinl :=ldack 1 + linen*lddk 
lsiin2 :=ldack2 + linen*ldclk 
lsiin3 :=ldaek3 + linen*ldclk 
linen :•in en + lsiin l*/siin2*1siin3 
/siout = /toeele + lrst 

'Thble 9.6 PAL6 Description 

102 



c 

APPENDIX C: PAL's DESIGN STRATEGIES 

dclk 

Figure 9. 7 Logic Representation of PAL6. 

C7. Description of PAL7: 

Control signals of PAL 7 are covered in Chapter 5 and 6. Table 9. 7 gives the description 

of PAL7. 

CHIP PAL7 PAL20L8 
/DMAselect,/ADRO,/ADR1,/ADR2,/ADR3,/ADR4,/ADR5,/ADR6,/ADR7,reset,/scrd,GND 
/aen,/rrdack1,msben,/resetp,/ds,/SLAVE,/rrdack2,/rrdack3,dclk,siin1,/dack1,VCC 

EQUATIONS 

SLAVE • ADR7 * /ADR6 * /ADR5 * /ADR4 * /ADR3 * /ADR2 * /ADR1 * /ADRO * DMAselect 
ds • /SLAVE * DMAselect * /aen 

· /siln1 • /rrdack1 * /dclk + /rrdack1 * /dack1 
/msben • /rrdack1 * /rrdack2 * /rrdack3 
resetp • reset + scrd 

'Thble 9. 7 PAL 7 Description 

103 



APPENDIX D: LAYOUT OF THE CONVOLUTION BOARD 

APPENDIX D: LAYOUT OF THE CONVOLUTION BOARD 

c 

This page contains 1 Sheet 

0 
104 



1 
2 
3 
4 

c s s z A 6 w 
8 1 0 p 7 :2 
s z 19 8 3 18 9 8 '!17 10 1 5 16 11 0 615 A 12 I c 'l 1'i s 13 p :2 :2 G 8 13 0 14 0 IZI E 9 12 4 15 s R L N 1011 16 w 6 8 1 I 17 1 

p 1 'i N 18 p p 2 23 V 19 A 1 A A A :2 3ZZ L 1 0 L L 20 s 2 19 L L 0 'lZ1 s 2 19 L 21 3 18 :2 3 4 5 20 3 18 s 6 R 2 22 '!17 
6 6 19 g 'l 17 2 23 8 5 16 p 'l 18 g 5 16 9 24 :2 615 A p 817 6 15 g 

25 0 'l 1'! •39 •46 L A 9 16 I 'l 1'! 26 M 8 13 8 •35 •41 •45 •47 •51 6 L 1015 N a 13 I 27 
A 91Z 2 •33 •37 •43 •49 •SO 1 111'! 1 9 12 N 28 c 1911 :2 •34 •36 •42 •48 •52 .1Z13 1011 2 29 •32 •31 •40 •S3 •S4 30 L 1 0 •30 •29 •44 •SS •S6 1 0 1 0 6 1 0 6 31 s 2 19 •28 •27 •38 •57 •SS 8 2 19 8 2 19 7 2 19 7 32 6 3 18 •26 •25 •59 •60 :2 3 18 2 3 1a 4 3 18 4 33 4 't17 A •24 •23 •12 •61 •62 :2 '!17 2 '!17 1 'l 17 1 34 0 5 16 D •22 •21 • 6 •63 •64 8 5 16 8 5 16 3 5 16 3 35 615 H •20 •19 •10 •65 •66 8 6 15 g 6 15 6 15 36 L 'l 1'! •18 •14 • 8 • 2 •68 'l 1'1 'l 1'i 3 7 1'i 3 37 0 8 13 •16•15•9 • 3 •67 8 8 13 8 8 13 H 8 13 L 38 w 9 12 •17 •11 • 7 • s • 1 c 9 12 A 9 12 9 12 39 1011 •13 •4 1011 1011 1011 40 A A 

A 1 0 A 1 L L 41 L 1 0 L 1 0 L 1 0 1 0 1 0 L 1 0 42 s 2 19 s 2 19 z 19 L z 19 L z 19 s 2 19 s z 19 s 2 19 43 s 3 18 s 3 18 s 3 18 s 3 18 s 3 18 6 3 18 2 3 18 2 3 18 44 3 't17 3 'i17 s 'i 17 s 't 17 s'i17 4 '!17 g 'i 17 g 'i 17 45 3 5 16 3 5 16 3 5 16 3 5 16 3 5 16 0 5 16 
g 

5 16 g 5 16 46 615 615 3 6 15 3 6 15 3 6 15 c 6 15 c 6 15 6 15 
1 47 A 'l 1'i A 7 1'i A 'l 1'! 'l 1'i 'l 1'1 'l 1'i 'l 1'i c ? 1'1 48 D 8 13 a 13 L 8 13 L 8 13 I 8 13 0 8 13 I 8 13 H D D 8 13 / / N u 49 D 91Z D 91Z D 9 12 M 9 12 M 91Z 8 9 1Z T 9 12 N 9 12 so 1 1011 :2 1911 3 1911 1 1011 :2 1011 1011 1011 1011 

2 ••••••••••••••••••••••••••••••••••••••• •86 1• •••••••••••••••••••••••••••••••••••• •BS 

\ 

L 1 L 1 9 
s z 19 s z 19 
2 3 18 :2 3 18 
9 '!17 g 'i17 
9 5 16 g 5 16 

6 15 6 15 6 15 
0 7 1'i 71'i 0 ., 1'i 
u 8 13 a 13 u a 13 
T 9 12 91Z T 9 1Z 
2 1011 Hl11 1 1911 

1 0 1 0 1 0 6 1 0 
2 19 L 2 19 2 19 7 z 19 
3 18 s 3 18 3 1a 4 3 18 
'l 17 2 'l 17 '!17 1 'i17 
5 16 9 5 16 5 16 3 5 16 
6 15 9 6 15 615 6 15 
7 1'1 7 1'i 'li'i 0 'li'i 
8 13 I 8 13 a 13 L 8 13 
9 12 N 9 12 91Z L 9 12 
1011 3 1011 1011 1011 

1 0 5 1 0 1 6 1 
2 19 7 2 19 2 19 7 z 19 
3 18 4 3 18 3 18 4 3 18 
'l 17 1 'i 17 '!17 1 'i17 
5 16 3 5 f€. 5 16 3 5 16 
6 15 6 15 6 15 6 15 
7 1'i 0 7 1'i 7 1'i 2 'l 1'i 
8 13 L 8 13 8 13 H 8 13 
9 12 H 9 12 91Z 9 12 
1011 1011 1011 1011 

5 1 0 1 0 1 e 6 1 e 6 
2 19 7 2 19 2 19 7 z 19 7 
3 1a 4 3 18 3 1a 4 3 18 4 
'i 17 1 'i 17 '!17 1 't17 1 s 16 3 5 16 5 16 3 s 16 3 
6 15 6 15 615 6 15 
? 1'i 1 7 1'i ? 1'i 0 ? 1'i 0 
a 13 L a 13 a 13 H 8 13 H 
9 12 9 12 91Z H 9 12 L 
Hl11 1011 1011 1011 

HB 

9 
19 19 
11 11 
12 1Z 
13 13 
1't 1't 
15 15 
16 16 
17 17 Z'i 
18 18 .zg 
19 19 zz 
29 29 Z1 

1 'i0 1 '!0 1 '!0 
2 39 2 39 2 39 
3 38 3 38 3 38 

37 't 37 'i 3/ 
5 36 5 36 36 

c 35 c 6 35 c 6 35 
0 'l 3'i 0 'l 3'i 0 'l 3'i 
N 8 33 N 8 33 N 8 33 

9 3Z 9 3Z 9 3Z V 19 31 V 19 31 V 19 31 9 11 39 8 11 39 7 11 39 
1Z z 1Z Z9 1Z Z9 
13 Z8 13 Z8 13 28 
1't V 1't V 1'i V 
15 26 15 26 15 26 
16 zs 16 zs 16 Z5 
17 Z'i 17 Z'i 17 Z'i 
18 Z3 18 Z3 18 Z3 
19 zz 19 zz 19 zz 1 0 29 Z1 20 Z1 29 Z1 z 19 

3 1a L 't17 s 5 16 1 6 15 2 'l 1'i 
8 13 6 
9 12 8 1011 p 

2••···········~··············••60 1••··························••59 

1 
.. 

z 
3 
'i 
5 
6 
'l 
8 
9 
19 
11 
1Z 

c 
0 
N 
V 
s 

13 
1'i 
15 
16 
17 
18 
19 
29 

1 
.. 

2 
3 
'i 
5 
6 
'l 
8 
9 
19 
11 

c 
0 
N 
V 
6 

12 
13 
1'i 
15 
16 
17 
18 
19 
20 

'i0 
39 
38 
37 
36 
35 
3'i 
33 
3Z 
31 
39 
Z9 
Z8 
V 
Z6 
Z5 
Z'l 
Z3 
Z2 
Z1 

'!0 
39 
38 
37 
36 
35 
3'i 
33 
3Z 
31 
39 
Z9 
Z8 
V 
Z6 
Z5 
Z'i 
Z3 
zz 
Z1 

11-
21-
31-
41-
St-
6t-
71-
81-
91-

101-
111-
121-
131-
141-
151-
161-
171-
181-
19r 
0\-
11-
21-
31-
41-
St-
61-
71-
81-
91-
Ot-
11-
21-
31-
41-
St-
61-
71-
81-
91-
Ot-
11-
21-
31-
41-
St-
61-
71-
81-
91-
Ot-

Board La~o~out 

OCUIT\Ilnt Numb~r 

Imaglt 
November of 

REV 
3.0 

11 



APPENDIX E: COLOR PLOT OF THE VLSI PROCESSOR 

APPENDIX E: COLOR PLOT OF THE VLSI PROCESSOR 

c 

This page contains 1 Sheet 

c 
105 



I 
\/1 

I M~ri: lNI V 

~ JJ ; -- -=-~ ~-= ~ :._~ -~ - ~ ~_=_- ~-~ ~. ==IT~p~u~s:=r::::=:::l == ~ -= = =--c~ ~. 9J- ~ -~ ~ -- ~- • 4,p- -~ -· -- =-~_':. - ~~ • 
,, 




