
Subcritical and Supercritical Shear Flows in
Shallow Waters - Numerical Simulations and

Laboratory Experiments

Tao Wang

Doctor of Philosophy

Department of Civil Engineering and Applied Mechanics

McGill University

Montreal, Canada

June 2015

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Doctor of Philosophy

c© Tao Wang 2015



DEDICATION

To My Parents

i



ACKNOWLEDGEMENTS

I would like to express my most sincere appreciation to my research supervisor, Pro-

fessor Vincent H. Chu, for his continuous support and encouragement. I started to work

with Professor Chu when I was an undergraduate student. His impact on me is not only

in research investigations but also in personality formation and career development. His

extensive knowledge in science, preciseness and diligence have inspired and encouraged me

to move up from one stage to the next in my study and career. I just want to share one

of his words to motivate me the most: “Doing research is like running one hundred meters.

You need to run 0.1s faster to be the champion. Engineering career is like a rally. You have

to foresee and get prepared for the long term.”

Special appreciation to my friend and colleague Dr. Shooka K. Ghannadi. We have

collaborated on the experiments and computer modeling. I have learned a lot through

knowledge sharing with her. I would like to thank her suggestions and comments on the

preparation of this thesis.

I would like to thank to Mr. John Bartczak for his help in setting up the experimental

apparatus in the hydraulics laboratory, and to thank Dr. Lai Wai Tan for her guidance

getting me start on my research.

The love and support of my parents have encouraged me to persuit graduate studies

and enable me to complete this doctoral thesis.

ii



ABSTRACT

A series of numerical simulations and laboratory experiments has been conducted to

gain understanding of high-speed supercritical shear flows in shallow waters. The study of

the supercritical flow is to complement the existing knowledge of the flow in subcritical speed.

The basic concept is developed in two chapters of thesis by the analysis of unstable shear flow

in the form of jets and/or wakes. The fractional rate of growth and the pattern speed of the

shear instabilities are determined from the numerical simulations directly using the shallow-

water equations, covering a range of Froude number beyond the range that can be determined

by the classical method. The direct numerical simulation has delineated the formation of

eddy and eddy-shocklet during the nonlinear transition of the instabilities to turbulence,

leading to the classification of subcritical, trans-critical and supercritical instabilities in terms

of the Froude number.

The challenge in the simulations of the supercritical flows is the need for the numerical

scheme to capture the sudden changes in depth and velocity across the hydraulic jumps. The

present simulations were conducted using a fifth-order Weighted Essentially Non-Oscillation

(WENO) scheme for spatial interpolation. Time integration was by a fourth-order Runge-

Kutta method. The accuracy of the scheme is evaluated by grid refinement study in the

chapter following the linear and non-linear stability analysis.

The subcritical and supercritical exchanges of mass and momentum are further studied

in the laboratory. Dye as tracer was injected into a square basin on the side of an open

channel. The concentration of the dye was measured using a video imaging method. The

rate of exchanges was monitored by the change of the dye concentration in the basin and

was then correlated with the Froude number. The experiments covered both the subcritical

and supercritical turbulent flow over a range of Froude numbers varying from Fr = 0.48 to

2.92.

The last shallow shear flow problem is the calculations for the flow resistance in a straight
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and meandering open channel occupied by arrays of blocks. The macro resistance to flow

is dependent on turbulence and waves around the blocks. The overall macro roughness

coefficient is found to depend not only on the size of the macro roughness but also on the

channel slope. A new formulation for the drag coefficient of the flow resistance in steep

channels is proposed to replace the traditional correlation using the Manning formula.
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RÉSUMÉ

Une série de simulations numériques et dexpériences de laboratoire a été menée pour

mieux comprendre les écoulements cisaillés supercritiques é haut débit en eaux peu pro-

fondes. L’étude de lécoulement supercritique vient compléter les connaissances actuelles de

l’écoulement en régime fluvial.

Le concept de base est développé à travers les deux premiers chapitres de la thèse par l-

analyse de flux de cisaillements instables tels que les jets et/ou sillages. Le taux fractionnaire

de croissance et le modèle de vitesse des instabilités du flux de cisaillement sont déterminés

selon les simulations numériques utilisant directement les équations en eaux peu profondes.

Ceci permet de couvrir une gamme de nombres de Froude au delá de la plage qui peut être

déterminée par la méthode classique. Les simulations numriques directes ont délimits la for-

mation de remous durant la transition non linaire des instabilités vers le régime torrentiel.

Ceci a permis la classification dinstabilités sous critiques, transcritiques et supercritiques en

fonction du nombre de Froude.

Le défi lors de simulations sous régime torrentiel est de modéliser les changements

brusques de profondeur et de vitesse au travers des ressauts hydrauliques. Les simula-

tions ont été réalisées à laide dun schéma WENO (Weighted Essentially Non Oscillatory)

du cinquième ordre pour la discrétisation spatiale. Lintégration temporelle fut faite laide

dune méthode de Runge Kutta du quatrième ordre. La précision du schéma fut évaluée par

létude du raffinement du maillage tel quexpliqué dans le chapitre suivant lanalyse de stabilité

linéaire et non-linéaire.

Les échanges de masse et dénergie cinétique en régime sous-critique et supercritique

furent étudiés lors dexpériences en laboratoire. Un colorant servant de traceur a été injecté

dans un bassin carré sur le côté dun canal. La concentration du colorant a été mesurée en

utilisant un procédé d’imagerie vidéo. Le taux d’échange fut mesuré par la variation de la

concentration du colorant dans le bassin, et fut ensuite corrélé avec un nombre de Froude.
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Les expériences ont été menées à la fois pour un écoulement fluvial et torrentiel sur une plage

de nombres de Froude variant de Fr=0.48 à 2.92.

Le dernier problème concernant les écoulements cisaillés en eaux peu profondes est le

calcul de la résistance du flux dans un canal ouvert droit et sinueux occupé par des séries de

blocs. La macro résistance à l’écoulement dépend de la turbulence et des vagues autour des

blocs. Le coefficient global de macro rugosité se trouve à dépendre non seulement de la taille

de la macro rugosité mais également de la pente du canal. Une nouvelle formulation pour le

coefficient de perte de charge dans les canaux à pente raide est proposée pour remplacer la

corrélation traditionnelle utilisant la formule de Manning.
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Ãf Frontal area

b Width of the block obstacles

B Total width of the channel

c Dye concentration

ca Gravity wave speed

cm Gravity wave speed

co Initial dye concentration

cp Wave pattern speed

cqs Quasi-state dye concentration

c̄ Mean concentration of the dye

c̄max Maximum mean concentration of the dye√
c′2 Root mean square fluctuation of the dye concentration√
c′2max Maximum root mean square fluctuation of the dye

CD Instant drag coefficient

C̃D Average drag coefficient

Co Courant number

fx Friction resistance force in x direction

fy Friction resistance force in y direction

F Volume fraction of fluid

FD Instant drag force

xviii



F̃D Average drag force

Fr Froude number

Frc Convective Froude number

Fuuh Linear momentum flux in x direction

Fvvh Linear momentum flux in y direction

Fuvh Non-linear momentum flux in x direction

Fvuh Non-linear momentum flux in y direction

g Gravity constant

g′ Reduced gravity constant

G Green light intensity of the dye image inside the basin

Go Green light intensity of the background inside the basin

Gc Green light intensity of the dye image outside the basin

Goc Green light intensity of the background outside the basin

Gx Driving force in x direction

Gy Driving force in y direction

h Water depth

h′ Depth fluctuation

ho Upstream depth

hd Downstream depth

hfront Depth in front of the block

hback Depth behind the block

hs Depth at the location of hydraulic jump

H Mean water depth

i Counter in x direction

j Counter in y direction

k Wave number

kx Wave number in x-direction

xix



kya Wave number in y-direction

K ′ Disturbance kinetic energy

ells Length scale associated with SECH profile

L Length(Width) of the basin

Ls Length of the sinusoid

Lx Length of the computational domain in x direction

Ly Length of the computational domain in y direction

Ma Mach number

Mac Convective Mach number

N Number of images or number of grid points

nbed Manning friction coefficient

nmacro Macro roughness coefficient

p Percentage of green light reduction

Pk Order of convergence

qo Dye injection rate

qx Flow discharge per unit width in x direction

qy Flow discharge per unit width in y direction

Qqs Quasi-state discharge

Q Total discharge in the system√
Q′2 Root mean square fluctuation of the discharge

R Rate function

S Stencils

So Channel bottom slope

t Time

TE Total energy

u Flow velocity in x direction

u′ x-velocity fluctuation

U Mean channel velocity

xx



Um Maximum velocity of SECH profile

Ua Ambient velocity of SECH profile
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CHAPTER 1

INTRODUCTION

1.1 Preface

The studies of shear instability and turbulence in shallow flows are fundamental to the

understanding of exchange processes of shallow flows in the atmosphere, oceans and coastal

waters. The depth of these flows is considered to be shallow in comparison with the large

horizontal extent of the circulations (Jirka (1994), Chu (2002)). The state of shallow flow is

dependent on whether the speed of flow is greater or smaller than the speed of the gravity

wave,
√
gH. The dimensionless parameter for relative measure of the speed is the Froude

number

Fr =
U√
gH

(1.1)

where g is the gravitational acceleration; U and H are the speed and the depth of the flow.

The flow is in a subcritical state when the flow speed is smaller than the wave speed, that is

when Froude number Fr < 1, and is in a supercritical state if Froude number Fr > 1. High

speed flow in a steep channel is supercritical. Density current of moderate speed also can be

supercritical when the speed of the gravity wave is reduced with the reduced gravity. The

speed of the internal wave that defines the state of the density current, is equal to
√
g′H,

which is a small speed as the reduced gravity g′ = g∆ρ/ρ is proportional to a small density

difference ∆ρ associated with the density current.

Most of the existing work in shallow-flow turbulence is developed for sub-critical flow

(see e.g. Rodi (1993). However, significant transport processes in the atmosphere, oceans

and coastal waters often occur in trans-critical and the supercritical states. Sands, gravels

and rocks are transported down to the river channel by the supercritical flow during the
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flood stage. The transport in density currents is decided in the trans-critical state when the

flow changes from subcritical to supercritical state across the shock waves in the form of

internal hydraulic jump.

1.2 Thesis Organization

The thesis is based on manuscripts and contains eight chapters. Chapter 1 includes

a brief summary of the research problems, literature review, objective and scope of the

study. Chapter 2 provides the summary of the governing equations and numerical method.

It provides the details of using minimum intervention strategy and WENO interpolation

to control numerical oscillations. Chapter 3 studies jet and wake instability problem and

presents the results in the linear stage. It points out the existence of the sinuous and varicose

mode and the transition between the two modes. The linear growth rate correlates with the

convective Froude number for both full jet/wake and half jet/wake. Chapter 4 continues

the jet and wake instability calculation into the non-linear stage. This chapter gives a full

picture of the development of the instability. The results at time of the maximum rate of

change in turbulent kinetic energy and saturation point are presented. Chapter 5 shows the

results of convergency study. The degree of accuracy for the direct numerical simulation is

given. Chapter 6 is the laboratory study of mass exchange between the main channel and

its side basin. Six experiments are conducted focusing for supercritical flow experiments.

The Froude number could reach 2.92. Chapter 7 is another application example of study

the roughness of a steep open channel and a meandering channel. This chapter indicates

the value of Manning friction coefficient may not be a good parameter to describe the total

roughness of the channel. The macro roughness coefficient is the overall parameter related to

the flow resistance and could be calculated by numerical simulation. Chapter 8 summarizes

the conclusions and the contribution of the thesis.

The thesis essentially is a collection of manuscripts and papers prepared by the author.

The list of the manuscripts and papers and their relation to chapters in the thesis are as
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follows:

Chapter 3:

1. Wang, T., Chu, V.H. Instabilities of Jet and Wake Flow in Shallow Waters at High

Froude Number. Physics of Fluid, draft for submission, 2015.

Chapter 4:

2. Wang, T., Chu, V.H. Non-linear Transition of Jet/Wake Instability in Shallow Flows.

Physics of Fluid, draft for submission, 2015.

Chapter 5:

3. Wang, T., Chu, V.H. Instabilities and Nonlinear Transition of High-speed Shear Flow

in Shallow Waters. Proceedings of the 8th International Conference on Computational Fluid

Dynamics, Chengdu, Sichuan, China, 2014.

Chapter 6:

4. Wang, T., Ghannadi, S.K., Chu, V.H. Experimental Study of the Exchange Process

Between the Main Flow and its Side Basin. Proceedings of the 7th International Symposium

on Environmental Hydraulics, Singapore, Singapore. 2014.

5. Wang, T., Ghannadi, S.K., Chu, V.H. Retention of Dye Tracer in Side Basins Ex-

changing with Subcritical and Supercritical Flows. Proceedings of the International Confer-

ence on Fluvial Hydraulics, River Flow 2010 (ISBN 978-3-939-230-00-7), Volume 2, Braun-

schweig, Germany, Page 1775-1782. 2010.

Chapter 7:

6. Wang, T., Chu, V.H. Manning Friction in Steep Open-Channel Flow. Proceedings

of the 7th International Conference on Computational Fluid Dynamics, Big Island, Hawaii,

USA. 2012.

7. Wang, T., Chu, V.H. Macro Resistance to Flow on Steep Channel. Proceedings of

the 3rd International Symposium on Shallow Flows, Iowa City, Iowa, USA. 2012.

8. Wang, T., Tan, L.W., Chu, V.H. Flood-Waves Simulation by Classical Method of

Consistent Transport. Proceedings of the 6th International Conference on Computational
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Fluid Dynamics (ISBN:978-3-642-17883-2), St. Petersburg, Russia, Page 287-293. 2010.

1.3 Contribution of Authors

The manuscripts of the papers included in this thesis are my original work. The labo-

ratory experiments shown in Chapter 6 are the work in collaboration with Dr. Shooka K.

Ghannadi. Professor Vincent H. Chu has supervised the entire research. He has provided

guidance and direction of the research and edited all the manuscripts.

1.4 Objective and Scope

The challenge in laboratory and numerical investigations of trans-critical and supercrit-

ical flows is the management of waves, and the parameterization for the wave effect. The

numerical simulation of the flow has to rely on stable and accurate numerical schemes to

capture the depth and velocity discontinuities across the shock waves.

This thesis is to focus on the wave effect on trans-critical and supercritical flow. The

basic concept is developed in two chapters of the thesis by the analysis of unstable shear

flow in the form of jets and/or wakes. The fractional rate of growth and the pattern speed

of the shear instabilities are determined from the numerical simulations directly using the

shallow-water equations, covering a range of Froude number beyond the range that can

be determined by the classical method of the normal mode approach. The direct numerical

simulations delineate the formation of eddy and eddy-shocklet during the nonlinear transition

of the instabilities to turbulence, leading to the classification of subcritical, trans-critical and

supercritical instabilities in terms of the Froude number. The numerical simulations capture

the sudden changes in depth and velocity across the hydraulic jumps using a fifth-order

Weighted Essentially Non-Oscillation (WENO) scheme for spatial interpolation. A fourth-

order Runge-Kutta method is used for time integration. The accuracy of the scheme is

evaluated by grid refinement study in the chapter following the linear and non-linear stability

analysis.
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The wave effect on subcritical and supercritical flows are also studied in the laboratory.

The exchanges of mass and momentum between a side basin and the main flow in an open

channel are determined in the laboratory by measuring the dye concentration using a video

imaging method.

1.5 Literature Review

The relevant literature related to the present study of the wave effect on shallow-flow

turbulence includes three parts: (i) the parameterization of the problem in the study of

the stability and its transition to turbulence, (ii) the numerical scheme developed for the

solution of the shallow water equations, and (iii) the laboratory experiments to measure the

exchanges of mass and momentum in subcritical and supercritical flows.

1.5.1 Parameterization of the Wave Effect

Waves play a central role in the development of a theory of trans-critical and supercritical

flow. The pioneering work was due to Lin (1953). He suggested the use of Mach number

based on a relative velocity to parameterize for the effect in studying the analogous problem

in gas dynamic. This relative-velocity Mach number was subsequently referred to as the

convective Mach number and used by Boganoff (1983), Papamoschou & Roshko (1998),

Sandham & Reynolds (1990), Vreman et al. (1996) and others to characterize the wave

effect on the instability and turbulence. The equivalent dimensionless parameter for the

analogous effect in shallow water is the convective Froude number (Pinilla & Chu (2008),

Chu (2010), Chu (2014)). Almost all previous studies of the effect were for the problem of

the mixing layer which happened to be a special case. The problem of the wave effects for

the general flow including the jet-and-wake like flow is to be considered in this thesis for a

correct parameterization of the wave effects that is based on a pattern velocity cp and the

generalized convective Froude number as follows:

Frc =
cp − Ua

c
(1.2)
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where c =
√
gH is the gravity-wave speed and Ua is the ambient velocity in the free stream.

The wave speed is the speed of the sound and the dimensionless number is the convective

Mach number Mac for the analogous problem in gas dynamic. For the mixing layer, cp =

(U1 + U2)/2, Ua = U2, hence the expression Frc = (U1 − U2)/
√
gH or Mac = (U1 − U2)/c

is used in most existing works. We shall see that the velocity difference across the mixing

layer, (U1 − U2), is not necessary to be the correct velocity scale for the wave effect when

more general problems such as the jets and the wakes are examined in subsequent chapters

in this thesis.

1.5.2 Shock Capturing Numerical Schemes

Various shock capturing schemes have been developed for the solutions of the shallow

water equations and the similar equations for the analogous problem in gas dynamics. Early

numerical methods were developed for the hyperbolic equations. Exact and approximate

solutions were often based on the method of characteristics. These include the works of

Stoker (1957), Carrier and Greenspan (1958), Shen and Meyer (1963), Henderson (1966)

and Wu (2005). The method of characteristics also has been used to solve the shallow water

equations. The most popular such numerical method is the Riemann solver. The subsequent

solvers developed to solve the Riemann problem include Godunov (2008), Roe (1981), van

Leer (1979), LeVeque (2002) and Toro (1999). These solvers are effective in capturing the

discontinuities across shock waves. However, using the classical method of finite volume

could obtain equally accurate and stable results in capturing the shock waves. The key to

apply the classical finite volume method is to compute the fluxes by different schemes. The

schemes have to incorporate flux limiters by adjusting the face values to ensure numerical

stability. The flux limiters are described in the works of Dick (2009), Stelling and Duinmeijer

(2003), Guinot (2003), Dodd (1998), and Leonard (1988, 1979). The recent development of

the minimal intervention strategy (MIS) by Pinilla et al. (2010) is employed to manage the

numerical oscillations in the classical finite volume (CFV) to obtain numerical solution of the
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shallow water equations. Only the missing variables on the face are needed for flux limiting

and such intervention has to be minimal to ensure interpolation accuracy. Jiang and Shu

(1996), Shu (1998),and Shu (2009) have introduced the weighted essentially non-oscillatory

(WENO) scheme for interpolation for higher-order accuracy and stability. The numerical

methods to solve the shallow water equations using the WENO scheme are given in Chapter

2 of this thesis.

1.5.3 Jet and Wake Instability

Most of the previous works on wave effect were developed from the study of shear

flow with a hyperbolic-tangent (TANH) profile. These include the study of the analogous

problem in gas dynamics by Sandham and Reynolds (1990) and the more recent work by

Ghannadi (2015). The classical approach to solve the instability problem is to use the

normal mode approach. The instability of the flow is determined from the eigenvalues of

the linearized equations. Instability analysis of the shear flow included the work of Michalke

(1964) and Sandham and Reynolds (1990). Betchov and Criminale (1966) had studied the

profile of jet and wake and derived the growth rate at the limiting case when Frc = 0 by

the normal mode approach. Lessen, Fox and Zien (1965) studied the instability of inviscid

compressible jets and wakes and found that these flows are more unstable as the wave-

propagation angle relative to the main flow became larger. Freund et al. (2000) simulated

a perfectly expanded turbulent jet at Mach number 1.92. Ray et al. (2009) computed

phase velocities and linear instability of compressible asymmetric jets at different Mach

numbers and found good correlation to the experiments. In the cases of high Mach numbers,

the instability problem is always associated with the generation of gravity waves. The

work included Mack (1990), Lee et al.(1991), Vreman et al. (1996), Avital et al. (1998),

Balmforth (1999), Ghidaoui and Kolyshkin (1999), Kolyshkin and Ghidaoui (2002). Tachie

and Balachandar (2000) studied shallow wakes on smooth and rough surfaces in a laboratory.

They measured the mean velocity profile, velocity fluctuation and half width of the wake

7



at small Froude number. Peltier et al. (2014) conducted experimental study of the shallow

meandering jet and found the relation of the shape factor and Froude number. Chen et al.

(1990) performed three-dimensional simulations and found the stability curve for a range of

Mach numbers. Chen et al (1990) concluded the effect of varying the relative phase difference

between a fundamental instability mode and its subharmonic controlled the evolution of a

wake. The numerical simulation had indicated the reduction in wake growth rate at high

Mach numbers. The influence of increasing Mach number is stabilizing, resulting in reduced

growth rates for both antisymmetric and symmetric modes of the wake. Chu et al. (1991) had

computed the flow with a SECH velocity profile with two modes of oscillation, the sinuous

mode and the varicose mode for antisymmetrical and symmetrical disturbances, respectively.

The stability characteristics for these two modes were investigated and correlated with bed

friction.

1.5.4 Experiment on Exchange Between the Main Channel and Side Basin

The early experimental studies focusing on the flow exchange with surroundings were

done in the area of gas dynamics. Rossiter (1964) conducted wind tunnel experiments on the

flow over cavities for Mach Number (Ma) from 0.4 to 1.2. East (1966) conducted rectangular

cavity experiment to find frequency of the flow oscillations. Tam and Block (1978) proposed

the process of cavity oscillations for acoustic feedback and normal-mode resonance for Mach

number from 0.05 to 0.4. Forestier et al.(2003) extended the study to high-subsonic speed at

Ma = 0.8. The transverse exchanges of mass across the subcritical shear flows in rivers are

relatively well understood. Many previous experimental investigations have been conducted.

Almost all the experiments are performed at the subcritical state for Froude number below

0.5. The studies of the subcritical flow exchanges include the works of Alavian and Chu

(1985), Tamai et al. (1986), Booij (1989), Knight and Shiono (1990), Babarutsi and Chu

(1991), Lambert and Sellin (1996), Altai and Chu (1997), Uijttewaal and Booij (2000) and

van Prooijen et al.(2005). Alavian and Chu (1985) used a mixing-length approach to conclude
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the importance of mixing layer width in the momentum exchange. Tamai et al. (1986)

studied and visualized the existance of eddies in the shear layer at the interface between the

main channel and the floodplain. Booij (1989) and Altai and Chu (1997) showed the basin

concentration followed a first-order decaying equation from experimental observation. Knight

and Shiono (1990) added the effect of channel bottom slope in their study. Babarutsi and

Chu (1991) studied the confinement and friction effect. Lambert and Sellin (1996) also used

the mixing-length approach but corresponded the water depth to the exchange. Uijttewaal

and Booij (2000) showed the development of the turbulent mixing layers was affected by the

shallowness of the flow and the growth rate of the mixing-layer width decreased with the

channel bottom friction. Van Prooijen et al. (2005) concluded the momentum exchange was

dominated by the horizontal coherent structures and the bottom turbulence but secondary

circulation played a minor role. The most recent experimental work uses particle image

velocimetry (PIV) and particle tracking velocimetry (PTV) to measure the velocity field

in two or three dimensions. Those work includes Uijttewaal et al. (2001), Weitbrecht et

al.(2002, 2008), McCoy et al.(2007) and Constantinescu et al.(2009).
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CHAPTER 2

NUMERICAL METHOD

Direct numerical simulations are performed to study the jet and wake instability problem

and macro roughness problem. Since supercritical flows are always associated with wave

generation and radiation, a wave capturing scheme is needed to capture the shock waves.

The challenges in numerical modeling have been in the capturing of the shock-wave front

where the flow changes from supercritical to subcritical and in the advancing front where

water hits the boundaries or obstacles. Computations may collapse as a consequence of

numerical instability when the depth of water becomes negative at these fronts. The artificial

numerical oscillations have to be suppressed for long-term computational stability. A stable

and robust hydrodynamic routing model would be needed to determine the water depth and

velocity. This chapter will explain how to resolve the governing equations, the Shallow Water

Equations(SWE) in two dimensional space.

2.1 Shallow Water Equations

Shallow Water Equations are a simplified form of the full Navier-Stokes equations in

incompressible flows. The equations apply in the situations for whih the horizontal length

scale is much larger than the vertical length scale. Therefore, the vertical velocity component

is negligible in the calculation. The x and y components of the velocity are represented by

their depth average values. The general form of the shallow water equations are:

continuity equation:

∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0 (2.1)
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x-momentum equation:

∂qx
∂t

+
∂

∂x

(
q2
x

h

)
+

∂

∂y

(qxqy
h

)
= −1

2
g
∂h2

∂x
− fx +Gx (2.2)

y-momentum equation:

∂qy
∂t

+
∂

∂x

(qxqy
h

)
+

∂

∂y

(
q2
y

h

)
= −1

2
g
∂h2

∂y
− fy +Gy (2.3)

where h = depth, g = gravitational acceleration, qx, qy = x- and y-component of flow rate

per unit width. fx, fy = channel bottom friction forces. Gx, Gy= driving forces. ∂
∂x

(
q2x
h

)
in the x-momentum equation and ∂

∂y

(
q2y
h

)
in the y-momentum equation refer as the linear

term. ∂
∂y

( qxqy
h

)
in the x-momentum equation and ∂

∂x

( qxqy
h

)
in the y-momentum equation

refer as the nonlinear advection term. The momentum fluxes are defined as the following

and will be calculated to balance the mass in each control volume.

q2
x

h
= Fuuh,

q2
y

h
= Fvvh, qxqy

h
= Fuvh, qyqx

h
= Fvuh (2.4)

2.2 Shallow Water Equations Discretization

The SWE are solved by the finite volume(FV) method. The computational domain is

divided into a number of square computational meshes as shown in Figure 2–1. The center

of each control volume defines the nodal value of the water depth as shown in open circle.

The arrows in the figure represent the flow entering and leaving the control volume. The flux

of each control volume is calculated by tracking the change of mass and momentum. The

mesh is staggered meaning the control volumes for the water depth, the x and y components

of the velocity are not defined at the same place as demonstrated in Figure 2–2. The meshes

of u(i,j) and v(i,j) are one half position in front of the mesh of h(i,j) in the direction of the

flow.

The discretization of the shallow water equations is required to obtain the solutions by

direct numerical method. The control volume of the continuity equation is shown in Figure
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Figure 2–1: Discretize of computation domain into control volumes

2–3 and the continuity equation is discretized as

hn+1
i,j − hni,j

∆t
+

(qx)
n
i+1,j − (qx)

n
i,j

∆x
+

(qy)
n
i,j+1 − (qy)

n
i,j

∆y
= 0 (2.5)

The superscript n represents a variable value at time t and n+1 is the same variable value

after ∆t second.

The control volume of the flow per unit width in x direction qx is shown in Figure 2–4.

Using the momentum fluxes Fuuh and Fuvh, the x-momentum equation can be discretized

as

(qx)
n+1
i,j − (qx)

n
i,j

∆t
+
Fuuh
i+ 1

2
,j
−Fuuh

i− 1
2
,j

∆x
+
Fuvh
i,j+ 1

2

−Fuvh
i,j− 1

2

∆y
= −g

hni,j − hni−1,j

∆x
− fx +Gx (2.6)

Similarly, The control volume of flow per unit width in y direction qy is shown in Figure 2–5.

Using the momentum fluxes Fvvh and Fvuh, the y-momentum equation is discretized to

(qy)
n+1
i,j − (qy)

n
i,j

∆t
+
Fvvh
i,j+ 1

2

−Fvvh
i,j− 1

2

∆y
+
Fvuh
i+ 1

2
,j
−Fvuh

i− 1
2
,j

∆x
= −g

hni,j − hni,j−1

∆y
− fy +Gy (2.7)
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Figure 2–2: Staggered grid showing the positions of h(i,j), (qx)(i,j) and (qy)(i,j)

Figure 2–3: Control volume for continuity equation
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Figure 2–4: Control volume for x-momentum equation

Figure 2–5: Control volume for y-momentum equation

2.3 4th Order Runge-Kutta for Time Integration

The fourth-order Runge-Kutta explicit method is employed for the time integration.

Knowing a variable value φn at the previous time t = n, four iterations are performed first

to find the intermediate variable value in each iteration.

φ1st = R(φn)∆t

φ2nd = R(φn +
1

2
φ1st)∆t

φ3rd = R(φn +
1

2
φ2nd)∆t

φ4th = R(φn + φ3rd)∆t
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Finally, the variable value for the next time step φn+1 is determined by the formula below.

φn+1 = φn +
1

6
(φ1st + 2φ2nd + 2φ3rd + φ4th) (2.8)

The Runge-Kutta method updates variables h, qx, and qy with time. In shallow water

equations, the rate functions R(φ) = (Rh, Rqx , Rqy) are determined by expressing the

continuity and momentum equations in the finite difference form as the following:

Rh =
∆hi,j
∆t

= −(qx)i+1,j − (qx)i,j
∆x

− (qy)i,j+1 − (qy)i,j
∆y

,

Rqx =
∆(qx)i,j

∆t
= −
Fuuh
i+ 1

2
,j
−Fuuh

i− 1
2
,j

∆x
−
Fuvh
i,j+ 1

2

−Fuvh
i,j− 1

2

∆y
+ (fx)i,j − (Gx)i,j,

Rqy =
∆(qy)i,j

∆t
= −
Fvuh
i+ 1

2
,j
−Fvuh

i− 1
2
,j

∆x
−
Fvvh
i,j+ 1

2

−Fvvh
i,j− 1

2

∆y
+ (fy)i,j − (Gy)i,j.

2.4 Minimum Intervention to Control Numerical Ocsilations

The fluxes defined in the momentum equations are defined at the faces of qx and qy

control volumes. Therefore, interpolation is required to estimate the fluxes by the nodal

values of qx and qy. The interpolation scheme has to converge to certain accuracy as well as

maintain numerical stability. The quadratic upstream interpolation for convective kinematics

(QUICK) by Leonard (1980) is used for the initial estimation of the face value φf by using

three adjacent nodal values. The three nodal values are denoted as the upstream node φU ,

the central node φC and the downstream node φD. The QUICK interpolation formula is

φf = −1

8
φU +

3

4
φC +

3

8
φD (2.9)

The QUICK scheme is third-order accurate. However, it is oscillatory by producing numerical

oscillations where instability occurs. The flux limiter is required to maintain long term

computational stability. The flux limiter is implemented in the computational scheme to

adjust the face values without affecting the overall mass and momentum conservations. But

it affects the accuracy of the interpolation at the discontinuities by locally switching from a
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third-order scheme to a first order or second-order scheme. Therefore, the adjustment should

be made minimum when intervention is absolutely needed (Bouhairie and Chu (2009)). Flux

limiter is applied only to qx as qx is updated using the x-momentum equation, and only to qy

as qy is updated using the y-momentum equation. The initial estimation of the face value φf

is computed first using the base scheme. Then, an auxiliary variable named the downwind

weighting factor (DWF) is computed by the formula below:

DWF =
φf − φD

φD − φC

(2.10)

Leonard and Mokhtari (1990) introduced the normalized variable, φ̃ as

φ̃ =
φ− φU
φD − φU

(2.11)

The estimation is monotonic if the value of the normalized variable is between 0 and 1.

Another normalized variable θ is defined as the following and the DWF formula in monotonic

and non-monotonic regions for different flux limiters are presented in Table 2–1.

θ =
φ̃C

(1− φ̃C)
(2.12)

Finally, the face value φf is recomputed by Equation 2.13 using the new DWF value.

φ̂ = DWFφD + (1−DWF)φC (2.13)

2.5 WENO Scheme to Control Numerical Oscillations

The minimum intervention strategy shown in the previous section involves flux limiter

to control numerical oscillations. The method lowers the order of interpolation accuracy to

the first in the location of discontinuity. This method works generally well in the application

problems such as flow across the mountains stream. In certain theoretical problems such as

simulation of turbulent mixing layer and acoustic waves, the solution requires higher orders

of accuracy at the discontinuities therefore a higher order interpolation scheme is needed.

16



Table 2–1: DWF formula in monotonic and non-monotonic regions

Discretization φ̃C < 0 0 < φ̃C < 1 φ̃C > 1
scheme non-monotonic monotonic non-monotonic

QUICK 0.375 + 0.125θ

van Leer 0 θ̃C 0

MinMod 0 min(0.5θ, 0.5) 0

MUSCL 0 min(θ, 0.25 + 0.25θ, 1) 0

UMIST 0 min(θ, 0.375 + 0.125θ, 1) 0

SMART 0 min(2θ, 0.375 + 0.125θ, 1) 0

Superbee 0 max[min(θ, 0.5), min(0.5θ, 1)] 0

ULTRA- 0.5θ min[( 1
Co
− 1)θ, 0.375 + 0.125θ, 1] 0.5

QUICK I

ULTRA- 0 min[( 1
Co
− 1)θ, 0.375 + 0.125θ, 1] 0

QUICK II

Harten et al. (1987) had developed the Essentially Non-Oscillatory (ENO) scheme

to obtain piecewise-smooth solutions at discontinuities by a nonlinear adaptive procedure.

Based on the ENO scheme, Jiang and Shu (1996), Shu (1998) ,and Shu (2009) had further

developed the Weighted Essentially Non-Oscillatory (WENO) scheme. The WENO scheme

uses five points to perform interpolation and it is fifth-order of accuracy in general. At regions

where rapid change in depth and velocity occur, the WENO scheme reduces to third-order

to manage the spurious numerical oscillations that are initiated at the discontinuities. As

explained in Shu (2009), the procedure of WENO interpolation to find the face value φf

involves five nodal values in a stencil shown in Figure 2–6. The two cell values upstream are

φuu and φu and the three cell values downstream are denoted as φc, φd, and φdd. The face

value φf is estimated by a linear combination of the three third-order interpolations after

dividing these five points into three stencils. The interpolation formulations for the stencils

are:

φ1f =
1

3
φuu −

7

6
φu +

11

6
φc (2.14)
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φ2f = −1

6
φu +

5

6
φc +

1

3
φd (2.15)

φ3f =
1

3
φc +

5

6
φd −

1

6
φdd (2.16)

φ1f , φ2f , and φ3f are third-order approximations. The final approximation of φf is the convex

combination of the three third-order approximations by introducing the weight factors, γj:

φf = γ1φ1f + γ2φ2f + γ3φ3f (2.17)

The combination would be fifth-order accurate if the weighting factors are

γ1 =
1

10
, γ2 =

3

5
, and γ3 =

3

10
(2.18)

The face value φf now becomes

φf =
1

30
φuu −

13

60
φu +

47

60
φc +

9

20
φd −

1

20
φd (2.19)

The essentially non-oscillatory solution of the WENO interpolation is to choose the nonlinear

weight function ωj and let

φf = ω1φ1f + ω2φ2f + ω3φ3f (2.20)

The selection of ωj has to ensure the smoothness of the function in the stencils. If the

function φ is smooth in the entire region, then ωj ' γj. If φ has a discontinuity in the

stencil Sj, then ωj ' 0. The choice of ωk depends on the smoothness factors βj. ωk is then

calculated by:

β1 =
13

12
(φuu − 2φu + φc)

2 +
1

4
(φuu − 4φu + 3φc)

2 (2.21)

β2 =
13

12
(φu − 2φc + φd)

2 +
1

4
(φu − φd)2 (2.22)

β3 =
13

12
(φc − 2φd + φdd)

2 +
1

4
(3φc − 4φd + φdd)

2 (2.23)

Using these smooth indicators, the nonlinear weight function of ωk are calculated as

ωk =
ω̃k

ω̃1 + ω̃2 + ω̃3

with ω̃k =
γk

(ε+ βk)2
(2.24)
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Figure 2–6: Three subsets of stencils S1, S2 and S3 and their relation to the five points used
in the 5th-order WENO interpolation scheme

ε is a small positive number to avoid dividing zero at denominator. ε = 10−6 for most of the

cases.
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CHAPTER 3

JET/WAKE INSTABILITY IN SHALLOW WATERS

3.1 Introduction

The shallow water is a medium to which waves are admissible. The instability of a shear

flow in shallow water produces waves. The presence of waves on the other hand affects the

instability of a shear flow in the medium. The classical analysis of the shear-flow instability

relies primarily on the method of the normal-mode and the evaluation of the eigenvalue of

the mode. In this paper, the instability of jet and wake flows in the presence of the waves is

studied directly from numerical simulations. Previous studies of the wave effect on shear-flow

instabilities were mostly conducted for the analogous problem of the instability in gases -

which also is a medium that admits waves. Sandham and Reynolds (1991) conducted the

stability calculations using the normal mode approach in a base flow with the hyperbolic

tangent (TANH) velocity profile for the ideal gas up to Mach number of Mac = 1.2.

The jet and wake instability is complex due to the existence of a sinuous mode and a

varicose mode. It is more complex comparing with the mixing layer because the convective

velocity of the jet and wake instability is not fixed but dependent on the Froude number or

the Mach number of its analogous problem in gases. Chen et al. (1989) and Chen et al.

(1990) investigated the wake instability in gases with a Gaussian base velocity profile up to

a free stream Mach number of 7 - that is the equivalent of a convective Mach number of

2.1. In this paper, the instability of the jet and wake flows in shallow waters with a hyper-

bolic secant (SECH) base velocity profile is analysed using the direct method of numerical

simulations without making the assumption of the normal mode covering a wide range of

convective Froude number varying from 0.06 to 5.6. A highly accurate numerical scheme
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by WENO interpolation scheme ((Shu (1998), Shu (2009), Karimpour and Chu (2015)) is

employed for the direct numerical simulations using 128, 256 and 512 grid points over one

wave length. Accurate results were obtained from refinement of the grid to find convergent

solution with less than one percent of numerical error (Wang and Chu (2014)). The calcula-

tions for the instability were conducted first in the half jet/wake restricting the instability to

varicose mode. The simulations for the full jet/wake define the instability in the subcritical,

trans-critical and supercritical range of the convective Froude number. In the trans-critical

range, the instability involves both modes - first in varicose mode which is then followed by

the sinuous mode. The co-existence of both modes is a process that could not be described

by the classical method of the normal mode.

3.2 Direct Numerical Simulation

The shallow-water equations for the direct numerical solutions for the depth h, the

velocity components u and v and discharge components qx = uh and qy = vh are:

∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0 (3.1)

∂qx
∂t

+ u
∂qx
∂x

+ v
∂qx
∂y

= −gh∂h
∂x

(3.2)

∂qy
∂t

+ u
∂qx
∂x

+ v
∂qy
∂y

= −gh∂h
∂y

(3.3)

where h = flow depth, (qx, qy) = x- and y-components of the depth-averaged flow rates,

g = gravitational acceleration, (u, v) = x- and y-components of the flow velocity. The

discretization of h, qx, and qy is on a staggered grid. The discretization of the domain is

explained in details in Pinilla et al. (2010). A fourth-order Runge-Kutta method is employed

for the time integration. In the staggered grid, qx and qy in the momentum equations are not

defined at the same location as the water depth h. Interpolation is needed for the face values

in a computational cell. Flux limiter is applied only to qx when qx is updated using the

x-momentum equation, and only to qy when qy is updated using the y-momentum equation.
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The base flow of the jet/wake has a constant depth h = H and a SECH velocity profile

U(y) = Ua + (Um − Ua) sech2 y

`s
(3.4)

The maximum velocity Um occurs at the centerline while the velocity in the ambient is Ua.

The base flow as shown in Figure 3–1 is in the form of jet as the ambient velocity Ua is in

the same direction as the jet velocity Um. However, the same SECH profile would become

the deficit of the velocity in a wake if the ambient velocity Ua is reversed with a negative

value.

The length scale of the SECH velocity profile is `s. The depth of the base flow is

H. The dimensionless parameters are the velocity ratio Γ and jet/wake Froude number Fr

respectively defined as follows:

Γ =
Um − Ua
Um + Ua

and Fr =
Um − Ua
cm + ca

(3.5)

in which cm and ca are speeds of the gravity waves. In base flow of constant depth, cm = ca =

c =
√
gH. The maximum of the velocity gradient at the inflection point of the SECH profile

is Ûy. The vorticity thickness defined by this gradient at the inflection is δω = (Um−Ua)/Ûy.

The relation between the length scales for the profile is `s = 4
√

3 δω/9. The inflection point

of the sech profile is located at tanh(yi/`s) = 1/
√

3. The corresponding relative velocity

at the inflection point is Ui − Ua = 2(Um − Ua)/3. Figure 3–1 delineates the computation

domain for the simulation.

Periodic boundary conditions are imposed over one wave length λx in the longitudinal

direction. The width of the computation domain in the lateral direction is 6λx for most

calculations presented in this paper. For incompressible flows that are not admissible to

waves, the instability problem associated with the SECH profile has been analyzed previ-

ously by Betchov and Criminale Jr (1966), Chu et al. (1991), Maslowe (1991), Balmforth

and Piccolo (2001), Bouchut et al. (2011), Mack (1990) and Kennedy and Chen (1998).

The classical method to solve the linear instability problem is the normal mode approach
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Figure 3–1: (a) Computational domain over one wave length λx in the longitudinal direc-
tion and from y = y− to y+ in the lateral direction for full jet simulations. (b) Depth

gh′/(
√
K ′
√
gH) on x − y plane showing the pattern of the instablility that moves with a

velocity cp in x-direction. c) Hyperbolic secant (SECH) base velocity profile for full jet
simulations.
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(NMA). In the NMA, the fractional rate of growth is assumed to be constant so that the

eigenvalues may be determined from the governing ordinary differential equations. This re-

quirement for the constant fractional rate of growth is restrictive that the method cannot

find all the instabilities that emit waves. The additional difficulty of the classical method is

the requirement of the method to match the asymptotic solution at the radiating boundary,

so that the waves can escape without reflection. The time step used in the numerical sim-

ulation was selected so that the Courant number Co = (∆t/∆x)Max[
√
gh, |u|] = 0.2. For

computational efficiency, most of the present DNS were conducted with a non-zero ambient

velocity Ua = −0.5(Um−Ua). Extensive numerical experiments have shown that the nature

of the instability is only dependent on the velocity difference (Um − Ua) but not on the free

stream ambient velocity Ua. Therefore, the shear instability for the jets is the same as the

wakes of the same convective Froude number. The Froude numbers considered in the present

simulations are in the range varying from Fr = (Um−Ua)/[2
√
gH] = 0.05 to 4.0. The waves

escape without reflection at the lateral boundary y = y− = −3λx and y = y+ = 3λx. The

radiation boundary conditions are

v = −
√
g

h
(h−H) at y = y−, v =

√
g

h
(h−H) at y = y+ (3.6)

A small disturbance to the depth of water equal to h′ = 2`s ∗ 10−6 sin(2π`s/λx) from

y = −λx/64 to λx/64 is made to the initially still water.

3.3 Fractional Rate of Growth and Pattern Speed

In an unstable shear flow, all components of the small disturbance h′, u′ and v′ grow

exponentially. These include the disturbance kinetic energy K ′ = 1
2
(u′2+v′2). In the classical

stability analysis, the solution is obtained assuming the normal mode for h′, u′ and v′ as

follows:

[h′, u′, v′] = [ĥ(y), û(y), v̂(y)] exp ikx(x− cT t) (3.7)
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The imaginary part of the cT - determined as an eigenvalue in the classical method - is equal

to the fractional growth rates

=(cT ) =
1

h′
dh′

dt
=

1

u′
du′

dt
=

1

v′
dv′

dt
, (3.8)

In the present analysis of the instability, this fractional growth rate is directly determined

from the numerical simulation by evaluating the average of the kinetic energy K ′ and then

the fractional growth rate:

α =
1√
K ′

d
√
K ′

dt
=
d
[
ln
√
K ′
]

dt
(3.9)

The averages of the K ′ are obtained by first integrating from x = 0 to λx and subsequently

from y = y− to y = y+ :

K ′(y, t) =
1

λx

∫ λx

o

K ′dx, K ′(t) =
1

δω

∫ y+

y−
K ′dy (3.10)

The real part of the cT in the normal mode Equation 3.7 is the pattern speed cp. The

pattern velocity cp is determined from the space-and-time cross correlation of the simulation

data. Figure 3–1 shows a wave pattern at one instant of time. The pattern moves in the

longitudinal x-direction with a pattern speed cp. With proper normalization, this wave

pattern is unchanged in a moving coordinate following the motion of the pattern. The

depth fluctuation gh′ and the kinetic energy
√
K ′ grow exponentially at the same rate. The

dimensionless variable gh′/[
√
K ′
√
gH] that defines the pattern, is a function of the lateral

coordinate y and the moving coordinate ξ = x− cpt.

Figure 3–2 shows examples of the simulations and how the fractional rate of growth

α is determined. The column of the left-hand side shows the images for the y-component

of the velocity fluctuations v′ on the y-x plane. The lines in the semi-logarithmic plots in

the middle column relates the ln(K ′) versus time tÛy. The slopes of these lines according

to Equation 3.9, are the fractional growth rate α shown on the right-hand column of the

figure. For subcritical instability (Fr = 0.5), the fractional growth rate α is perfectly constant
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Figure 3–2: Three iconic examples showing the v′ pattern on the y-x plane (left), the distur-
bance kinetic energy on a semi-logarithmic scale (middle), and the fractional growth rate α
(right): (a) Sinuious mode of a subcritical wake Fr = 0.5, Frc = 0.6, kx = 1.0, Ua = -0.5, (b)
Varicose mode of a supercritical wake Fr = 4.0, Frc = 5.6, kx = 1.2, Ua = -0.5. (c) Varicose
mode of a supercritical jet Fr = 4.0, Frc = 5.6, kx = 1.2, Ua = 0.5.
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during the linear stage of the instability’s development as shown in part (a) of the figure. For

supercritical instability (Fr = 4.0), the fractional rate α is not constant but is modulating

about an average value as shown in (b) and (c). Despite the modulation, consistent linear

structure is maintained as the amplitude of the disturbance is amplified by millions of time.

3.3.1 Convective Froude Number

The SECH velocity profile may represent the base flow of either a jet or a wake dependent

on the magnitude and direction of the ambient velocity Ua. The case in Figure 3–2 (b) is

the flow profile of a wake where the ambient velocity Ua = −0.5(Um − Ua). The case in

(c) on the other hand is the profile of a jet where Ua = 0.5(Um − Ua). Extensive numerical

experiments have shown that there are no detectable difference between the jets and wakes

as they both have the same fractional rate α and the same pattern speed (cp − Ua). A

jet with a positive Ua is the same as a wake with a negative Ua. Therefore from now on,

we shall not make distinction between the jets and the wakes and refer to the shear flow

as jet/wake. The numerical experiments also have validated the theory by Lin (1953) and

Sandham and Reynolds (1991), who suggested the use of velocity (Um − Ua) to define the

convective Mach number to describe the mixing layer in gases. In the mixing layer, the

pattern velocity is fixed and is independent of the Froude number (or the Mach number in

the analogous gas-dynamic problem). In the jet/wake, the pattern velocity (cp−Ua) depends

on the dimensionless number. Therefore, the convective Froude number Frc is defined based

on the pattern velocity (cp − Ua):

Frc =
cp − Ua√

gH
(3.11)

The relevant dimensionless parameter for the classification of the instability is the convective

Froude number. The instability is classified as subcritical if Frc < 1 and as supercritical if

Frc > 1. The convective Froude number Frc is to be distinguished from the jet/wake Froude

number Fr defined previously in Equation 3.5. The numerical simulations are conducted by

specifying a range of jet/wake Froude number varying from Fr = 0.05 to 4.0 and a range of
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Figure 3–3: Images of the free-surface elevation profiles gh′/(
√
K ′
√
gH) on the y-x plane

that show the waves on the two sides of the returning surface; (a) supercritical half jet/wake
with Fr = 2.4, Frc = 2.8 and kx = 1.2, (b) supercritical half jet/wake with Fr = 4.0, Frc = 5.6
and kx = 1.2, and (c) supercritical full jet/wake with Fr = 1.6, Frc = 2.0 and kx = 0.5. The
dashed line marks the location of the returning surface where U =

√
gH. The thin dot-dot

line marks the location where U = cp.
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x-component of wave number varying from kx = 2π`s/λx = 0 to 2.8. The fractional growth

rate α and pattern speed cp are the parameters that are evaluated for each simulation. The

convective Froude number are determined once cp is evaluated. The dependence of the key

parameters such as α and cp, on the Fr, Frc and kx will be given in the subsequent sections.

The mode of the oscillations is observed in the images on the left-hand side of Figure

3–2 to be either sinuous or varicose depending on whether the v′ is symmetrical or antisym-

metrical, respectively. For the sinuous mode, v′ is maximum at the centerline as shown in

(a) of the images on the left-hand side of Figure 3–2. For the varicose mode, v′ is zero at

the centerline as shown in (b) and (c) of the images.

3.3.2 Direction of the Waves

Beside the symmetry and antisymmetry, the images on the left-hand column of Figure

3–2 also show the direction of the waves. The pattern of the waves depends on the convec-

tive Froude number. The direction of the waves is only in the longitudinal x-direction in

subcritical instability as shown in (a) of the images. The wave direction can be in both x-

and y-directions in supercritical instability as shown in (b) and (c). Additional examples

of the waves are shown in Figure 3–3 (a) and (b) for the half jet/wake for Fr = 2.4 and

4.0, respectively. The demarcation between regions of waves of different directions is the

returning surface - shown as the dashed line in the figure - where the local current speed U

matches the wave speed
√
gH. In the free stream outside of the jet/wake where U ' Ua, the

wave length is λya and the wave number is kya = 2π/λya. For the waves inside the returning

surface, the wave number is kx. For waves outside the returning surface in the free stream

where U ' Ua, the wave number is k =
√
k2
x + k2

ya. The direction angle θ for the waves in

the free stream therefore is

sin θ =
kx
k

=
kx√

k2
x + k2

ya

(3.12)

in which kx is specified while kya is determined from the simulation. Further explanation of

the returning surface as a demarcation line between regions of waves of different directions
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will be given in the subsequent sections.

3.4 Stability Diagram for Half Jet/Wake

The simulations have been carried out for half jet/wake and full jet/wake for a range

of different Frc and kx. The half jet/wake is an artificial mean of producing the varicose

mode of oscillations by imposing a solid boundary at the centerline, that is to set v′ = 0

at y = 0. The images in Figure 3–3 (a) and (b), are examples of the varicose mode in the

half jet/wake. The images in Figure 3–3 (c) shows the example of the sinuous mode in full

jet/wake. The varicose mode of the half jet/wake is to be examined first. The sinuous mode

and the varicose mode of the full jet/wake will be considered in the subsequent section.

Figure 3–4 shows two distinctively different kinds of varicose mode. The dimensionless

pattern speed (cp−Ua)/(Um−Ua) as shown in (c) is either greater than two-third or smaller

than two-third depending on whether the instability is subcritical or supercritical, that is

(cp − Ua)
(Um − Ua)

>
2

3
for Fr < 1,

(cp − Ua)
(Um − Ua)

<
2

3
for Fr > 1 (3.13)

The dimensionless relative speed at the inflection point of the SECH profile is equal to the

two-third of (Um − Ua). The fractional growth rate α for the subcritical instability also is

distinctly different from the rate for the supercritical instability. As shown in (a) of the figure

for subcritical instability, α decreases with the increase of Fr. For the supercritical instability

on the other hand, α increases with the increase of Fr. The dashed line in Figure 3–4 (a)

and (b) delineated the results obtained by Betchov and Criminale Jr (1966) for the limiting

case when Fr→ 0 - that is when the wave speed in the medium is infinitely large. The trend

of this limiting case obtained by Betchov and Criminale Jr (1966) is clearly consistent with

the present simulations.
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Figure 3–4: Stability diagram for the half jet/wakes; (a) the fractional rate α, (b) the
dimensionless pattern phase speed (cp − Ua)/(Um − Ua), (c) The y-component of the wave
number in the ambient free stream kya and (d) the wave frequency ω.
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3.4.1 Oblique Waves Direction and Frequency

Oblique waves are observed in the supercritical instability when the relative pattern

speed is greater than the speed of the surface wave, that is when the convective Froude

number (cp−Ua)/
√
gH > 1. The direction of these oblique waves in the ambient free stream

where U ' Ua is defined by the component of the wave number in the ambient free stream

kya = 2π/λya. The simulation data for the dependence of this kya on Fr and kx obtained

for the simulations for the supercritical instability are shown in Figure 3–4 (c). The simu-

lation data for the dependence of wave frequency ω on Fr and kx are shown in Figure 3–4

(d). The data of kya in (c) define the oblique angle of the waves which will be explained

further in a subsequent section. The simulation data agree well with the dispersion relation

ω/ka =
√
gH, which is shown as the lines shown in Figure 3–4 (d).

3.5 Simulations for the Full Jet/Wake

The mode of oscillations of the full jet/wake can be sinuous or varicose. It also can be

both sinuous and varicose at different time in a simulation. The direct numerical simula-

tions have provided various aspects of the instability - not all are available from the solution

of the eigenvalue problem in the normal mode approach. The stability diagram in Figure

3–5 summarizes four key parameters that have been obtained from the simulations of the

full jet/wake. These include (a) the fractional growth rate α, (b) the pattern speed cp, (c)

the component kya of the wave number in the free stream and (d) the wave frequency ω.

The fractional rate α is determined by the increase in the disturbance’s kinetic energy as

explained in the previous sections. The pattern speed cp, the wave number kya and the wave

frequency ω are determined from the simulations by tracking features of the time-variation

profiles and the spatial-variation profiles. The direct numerical simulation results are consis-

tent with the classical results by Betchov and Criminale Jr (1966) which are shown in Figure

3–5 (a) and (b) as dashed line for the limit case of the incompressible medium when Fr→ 0.

One remarkable of the instability is the change of mode from varicose to sinuous mode in
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Figure 3–5: Stability diagram for the full jet/wakes; (a) the fractional rate α, (b) the dimen-
sionless pattern phase speed (cp−Ua)/(Um−Ua), (c) The y-component of the wave number
in the ambient free stream kya and (d) the wave frequency ω.
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Figure 3–6: Change from varicose mode to sinuous mode in the development of the instability
for Fr = 2.8, Frc = 3.4, kx = 0.5. (a) The varicose mode of the velocity and depth fluctuation
patterns on the y- and x-plane in the first stage at time tÛy = 215. (b) The sinuous mode in

the second stage at time tÛy = 340. (c) The growth of the disturbance’s kinetic energy with
time on a semi-logarithmic scale. (d) The fractional rate of the growth in the two stages.
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the development of the instability. Figure 3–6 shows an example of such development for the

jet/wake with a Froude number of Fr = 2.8 and wave number kx = 0.5. The development of

this instability is first in varicose mode of oscillations as shown in part (a) of the figure for

time tÛy = 215, and then changes to sinuous mode as shown in (b) for time tÛy = 340. The

amplitude of the instability grows first at a lower rate and then at a higher rate as shown

in (c) and (d) of the figure. In the varicose stage of its development from the time tÛy =

150 to 250, the fractional growth rate is oscillatory modulating about an averaged value of

about α ' 0.015. In the sinuous stage later in the development from the time tÛy = 300 to

350, the fractional growth rate is the significant higher value of α ' 0.055. The co-existence

of the two modes of different fractional rates in the development of this instability at the

jet/wake Froude number of the Fr = 2.8 - and other instability in the trans-critical range of

the jet/wake Froude number Fr = 1.0 to 2.8 - is remarkable. This is the kind of instability

that could not be determined by the classical method of the normal mode because the im-

plicit in the normal mode approach is the assumption that the fractional rate of the growth

is one constant value independent of time.

3.6 Maximum Rate of Growth

The fraction rate of growth α is a function of the wave number kx and the Froude

number Fr as shown in Figure 3–4 and Figure 3–5. For each Froude number Fr, a maximum

growth rate α̂ is found to occur at a wave k̂x. This maximum rate is most significant as

the instability is amplified selectively over the entire range of the wave numbers. Figure 3–7

shows the property of the waves that is selected for the maximum growth. The development

of the full jet at the selected maximum rate of the growth is denoted by the solid symbols

in the figure. At low Froude number, the oscillations of the full jet/wake follow the sinuous

mode as denoted by the solid-square symbol in the figure. At sufficiently large Froude num-

ber when Fr > 2.8 or when Frc > 3.3, only the varicose mode is possible. This varicose mode

in the development of the full jet for the selected maximum rate is denoted in the figure by
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Figure 3–7: The summary plot of (a) the maximum growth rate, (b) the corresponding wave
number, (c) the pattern speed and (d) the convective Froude number, against Froude number
for both full jet/wake and half jet/wake. The solid symbols are full jet/wake simulations and
the open symbols are half jet/wake simulations. The circular symbols are results from Chen
et al. (1990). The square symbols are Frc < 3.4. The diamond symbols are for jet/wake in
varicose mode. The dashed line in (c) marks the wave speed

√
gH.
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the empty-diamond symbol. The maximum fractional rate of the growth α̂ is reduced with

the Froude number from a value of about 0.21 in the limit of zero Froude number to a value

of about 0.02. This trend is consistent with the previous simulation results by Chen et al.

(1990) denoted by the circular symbol. On the whole, the pattern speed of the wave (cp−Ua)

shown in (c) of the figure is between 0.6 to 0.7 time of the velocity across the jet/wake. This

pattern speed not coincidentally is approximately equal to the flow at the inflection point

of the SECH profile where the shear rate is maximum. The relation between the convective

Froude number - which defines the nature of the stability - and the jet/wake Froude number

is given in (d) of the figure. The convective Froude number is initially approximately equal

to the Froude number. The value relative to jet/wake Froude number increase by 40 %, that

is Frc = 1.4Fr when the jet/wake Froude number increases to a value of Fr = 4.0.

3.7 Waves Pattern across the Returning Surface

The pattern of the wave motion in the instability therefore is closely related to the

location of the returning surface where the velocity of the profile U matches the wave velocity
√
gH. Figure 3–8 shows the profile of the waves on the two sides across the returning surface.

The dashed line marks the location of the returning surface. The thin dot-dot line is where

the velocity U is equal to the pattern velocity cp. For subcritical instability as shown in the

examples in the top row of Figure 3–8, the amplitude of waves decays monotonically away

from the shear flow as y → ±∞. For supercritical instability, the decay is not monotonic

but is associated with radiation of waves from the shear flow. Figure 3–9 (a) shows how

these waves may be initiated due to the generating source that moves with a velocity equal

to the pattern velocity (cp − Ua). At supercritical speed when (cp − Ua) >
√
gH - that is

when Frc > 1 - the wave front would have an oblique angle given by

sin θ =

√
gH

(cp − Ua)
(3.14)
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Figure 3–8: Profiles of gh′/(
√
K ′
√
gH) showing the wave propagation for Fr = 0.5 , 2.8 and

4.0. The red line is located at position x = 1/4λx. The purple line is located at position
x = 1/2λx. The blue line is located at position x = 3/4λx
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Figure 3–9: (a) Radiation of the waves from the instability that are moving forward in the
longitudinal direction with the velocity cp − Ua for Fr = 4.0 and kx = 1.2. The dash line
shows the Froude lines. (b) The computation of the wave angles in two different methods
for Fr =1.6, 2.4 and 4.0. The circular symbols are from half jet/wake simulation and the
square symbols are from full jet/wake simulation.

The sin θ evaluated using this formula that is Equation 3.14 for all simulations of the super-

critical instability is plotted against the other sin θ evaluated using Equation 3.12 in Figure

3–9 (b). The evaluation of the angle θ for all simulations based on these two equations has

produce the same results. The cp in Equation 3.14 is determined from the simulation com-

pletely independent of the determination of kya used in Equation 3.12. The agreement in

the oblique-wave angles obtained between the two methods therefore supports the hypoth-

esis that the oblique waves outside the returning surface are generated by the moving source.

3.8 Summary and Conclusion

The direct numerical simulation of the shear instability with a SECH based velocity

profile has determined the fractional growth rate and the pattern of wave development.

Some of the parameters such as the linear growth rate of the supercritical flows associated

with the instability but can not be determined by the classical analysis using the normal
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mode. The calculations for the jet/wake instability associated with the SECH profile have

covered a range of convective Froude number from 0.06 to 5.6 (Froude number from 0.05

to 4.0). The dominant mode of the instability is the sinuous modes when the convective

Froude number is small. The instability changes to varicose mode when the convective

Froude number exceeds a critical value of about 3.4. These calculations of shear instability

for the SECH velocity profile are most significant in the study of high-speed currents whether

they are free-surface flow in open channels or density current in density stratified flow. The

simulations for the instability are presented in the paper for the small amplitude waves

when the nonlinear terms in the governing equations are negligible. The subsequent finite

development of the instability for studying the transition to turbulence is to be reported in

a companion publication.
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CHAPTER 4

NON-LINEAR TRANSITION OF JET/WAKE INSTABILITY IN SHALLOW
FLOWS

4.1 Introduction

The study of shear instability and its transition to turbulence in shallow flows are

fundamental to the understanding of the circulations in the atmosphere, oceans and coastal

waters. The depth of these flows are considered to be shallow in comparison with the

large horizontal extent of the circulations (Jirka (1994), Chu (2002)). Waves can affect

significantly the turbulent exchanges across the shallow shear flow particularly in flows with

large Froude number (Chu (2010)). Despite the ubiquitous presence of the surface gravity

waves in steep channels and the interfacial waves in gravity currents, relevant literature of the

wave effect is mostly found in the studies of analogous problem in gas dynamics. The studies

of the dilation effect in gas dynamics have revealed the exchange processes to depend on

Mach number. Early evidence of the effect on turbulence was consider by Bradshaw (1977).

Experimental studies by Papamoschou and Roshko (1988), Elliott and Samimy (1990) and

Rossmann et al. (2002) have identified the convective Mach number as the parameter and

reported the reduction of mixing rate with the convective Mach number. Chen et al. (1990),

Mack (1990), Sandham and Reynolds (1991), Vreman et al. (1996), and Pantano and Sarkar

(2002) among others have conducted numerically simulations to show the similar reduction

of the turbulence exchanges with the increase in value of the convective Mach number. There

are clear evidences that the structure of the turbulence is modified by the presence of shock

waves. The intriguing effect due to shock wave presence on turbulence has been associated

with the formation of eddy (Lee et al. (1991)). Closely analogous effect of the gravity waves
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on the turbulent exchanges in shallow waters is expected as the governing shallow-water

equations are similar in form to the gas dynamic equations (Liggett (1994)).

In this paper, the transition of instability to turbulence is considered for the jet/wake

shallow flows with a hyperbolic-secant (SECH) velocity profile as shown in Figure 4–1. The

numerical simulations start with a small perturbation to the base flow. The transition to

turbulence begins when the amplitude of the disturbance has grown sufficiently large to

modify the mean flow. The role of the waves on the transition is examined for a wide range

of initial Froude number varying from Fr = 0.05 to 4.0. The simulation data are analysed

for the formation of the eddy in shear flow of small Froude number and the formation of

eddy-shocklet - that involves shock waves - in shear flow of sufficiently large Froude num-

ber. The present simulations for the transition of the jet/wake instability to turbulence are

complementary to a companion paper dealing with the linear problem when the amplitude

of the disturbance is negligible in the development of the instability.

4.2 Direct Numerical Simulation

The simulations for the depth h, the velocity components u and v and discharge com-

ponents qx = uh and qy = vh in the shallow flows are based on the shallow-water equations:

∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0 (4.1)

∂qx
∂t

+ u
∂qx
∂x

+ v
∂qx
∂y

= −gh∂h
∂x

(4.2)

∂qy
∂t

+ u
∂qx
∂x

+ v
∂qy
∂y

= −gh∂h
∂y

(4.3)

where h = flow depth, (qx, qy) = x- and y-components of the depth-averaged flow, g =

gravity, (u, v) = x- and y-components of the flow velocity. The discretization of h, qx, and qy

is on a staggered grid. The discretization of the grid is explained in Pinilla et al. (2010) and

Karimpour and Chu (2015). A fourth-order Runge-Kutta method is employed for the time

integration. In the staggered grid, qx and qy in the momentum equations are not defined
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Figure 4–1: (a) Computational domain with periodic boundary conditions over one wave-
length λx in the longitudinal direction and radiating boundary conditions at y = y− to y+.

(b) Water depth fluctuations gh′/(
√

¯̄K ′
√
gH) for Fr =4.0 kx = 1.2. (c) Mean velocity profile

with maximum velocity Um and half width δ.
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at the same location as the water depth h. Interpolation is needed for the face values in a

computational cell. Flux limiter is applied only to qx as qx is updated using the x-momentum

equation, and only to qy as qy is updated using the y-momentum equation.

The base flow of the jet/wake has a constant depth h = H and a SECH velocity profile

U − Ua = ∆o sech2y

`
(4.4)

where Ua is the ambient velocity and (U − Ua) is the velocity relative to the ambient; ∆o is

the velocity scale and ` the length scale of the profile. The velocity gradient at the inflection

point of the SECH profile is Ûy. It defines the vorticity thickness δω = ∆o/Ûy, which is

equal to 9`/(4
√

3). The inflection point is located at yi = tanh(yi/`) = 1/
√

3, where the

relative velocity is ∆i = 2∆o/3. The sketch in Figure 4–1 shows the jet in a co-flow with

an ambient velocity Ua in the direction of the jet velocity. The same SECH profile would

become the velocity deficit of a wake if the ambient velocity Ua is reversed with a negative

value. Numerical experiments have shown that the instability is dependent on the ∆o and `,

but is not dependent on the ambient velocity Ua. The shear instability for the jets therefore

is the same as the wakes of the same convective Froude number. We shall not distinguish a

jet from a wake and consider the jet/wake instability and transition to depend only on the

Froude number

Fr =
∆o

cm + ca
(4.5)

in which cm and ca are speeds of the gravity waves. For the base flow of constant depth H,

the speeds are cm = ca = c =
√
gH. Periodic boundary conditions are imposed over one wave

length λx in the longitudinal direction. The width of the computation domain in the lateral

direction is 6λx for the calculations presented in this paper. The instability of the shear flow

with the SECH profile has been analyzed previously by Betchov and Criminale Jr (1966),

Chu et al. (1991) and Maslowe (1991) for non-dilating medium that does not admit waves

using the classical normal mode approach (NMA). The time step used in the direct numerical

simulation (DNS) was selected so that the Courant number Co = (∆t/∆x)Max[
√
gh, |u|] =
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0.2. For computational efficiency, the present DNS was conducted with a negative ambient

velocity Ua = −0.5∆o. The Froude numbers considered in the present simulations are in

the range varying from Fr = 0.05 to 4.0. The waves escape without reflection at the lateral

boundary y = y− = −3λx and y = y+ = 3λx. The radiation boundary conditions are

v = −
√
g

h
(h−H) at y = y−, v =

√
g

h
(h−H) at y = y+ (4.6)

The perturbation to the initially still waters is a small depth disturbance equal to h′ =

2`s ∗ 10−6 sin(2π`s/λx) over a small region from y = −λx/64 to λx/64 close to the jet/wake’s

centerline. The disturbances eventually grow to finite amplitude which modified the mean

velocity profile to be deviated from the initial SECH profile.

4.3 Mean Velocity Profiles

The mean velocity U(y, t) as a function of y and time t, is calculated from the simulations

by averaging over the wave length λx:

U(y, t) =

∫ λx

o

u(x, y, t) dx, V (y, t) =

∫ λx

o

v(x, y, t) dx = 0 (4.7)

Due to symmetry in the boundary condition, the V component is zero. The deviations from

the mean velocity therefore are u′ = u− U and v′ = v. The deviation from the mean depth

H is h′ = h−H. Two parameters are introduced to define this relative mean velocity. They

are the first moment µ1 and the second moment µ2 as follows:

µ1 =

∫ +∞

−∞

U − Ua
∆o

dy, µ2 =

∫ +∞

−∞

(U − Ua)2

∆2
o

dy (4.8)

The width and velocity of the equivalent top-hat velocity profile of the same volume excess

flux and momentum excess flux are:

µ̄ =
µ2

1

µ2

, ∆̄ =
µ2

µ1

∆o (4.9)
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where ∆̄ = U − Ua is the velocity of the top-hat relative to the ambient velocity.

4.3.1 Sub-critical, Trans-critical and Supercritical Flows

Simulations were conducted for jet/wake flows of eight different Fr-kx pairs: (a) Fr =

0.05, kx = 1.0; (b) Fr = 0.5, kx = 1.0; (c) Fr = 1.0, kx = 0.8; (d) Fr = 1.6, kx = 0.5; (e)

Fr = 2.4, kx = 0.5; (f) Fr = 3.0, kx = 1.2; (g) Fr = 3.5, kx = 1.2; (h) Fr = 4.0, kx = 1.2.

The wave number kx = 2π/λx is selected for the most unstable wave length λx associated

with the maximum rate of growth. Figure 4–2 shows mean velocity profiles (solid lines) and

the equivalent top-hat profiles (dashed lines) for the eight flow cases (a), (b), (c), (d), (e),

(f), (g) and (h), each at three different times associated with the key events that occur at

times t = tR, t = tR′ and t = tS. We shall discuss the results by referring the transition

as sub-critical for the first three flow cases (a), (b) and (c), as trans-critical for the flow

cases (d) and (e), and as supercritical for the last three flow cases (f), (g) and (h). This

classification as sub-critical, trans-critical and supercritical is related to the wave effect on

the transition to be explained subsequently in the later sections.

4.3.2 R-event, R’-event and S-event

Figure 4–3 shows the time series of the disturbance’s kinetic energy K ′, the top-hat

width µ̄, the top-hat velocity ∆̄, the normalized spreading rate (dµ̄/dt)/∆̄, and the total

energy dissipation (TE-TEo)/(µ̄λxHK ′) that define the key events: R, R’ and S. The dis-

turbance’s kinetic energy shown in the first row of the figure is obtained by averaging over

the computational domain as follows:

K ′ =
1

µ̄

∫ y+

y−
[

1

λx

∫ λx

o

1

2
(u′2 + v′2)dx] dy (4.10)

The time series of the width µ̄ and velocity ∆̄ of the top-hat profiles are shown in the second

and third rows. The normalized spreading rate shown in the fourth row of Figure 4–3 is

(dµ̄/dt)/∆̄. The total energy dissipation spreading rate (TE-TEo)/(µ̄λxHK ′) is shown in

46



Figure 4–2: Mean velocity profiles (U −Ua)/∆o (solid red lines) at time t = t∗R, t = t∗R′ and
time t = t∗S for the initial Froude number (a) Fr = 0.05, (b) Fr = 0.5, (c) Fr = 1.0, (d) Fr =
1.6, (e) Fr = 2.4, (f) Fr = 3.0, (g) Fr = 3.5, (h) Fr = 4.0. The equivalent top-hat profiles are
defined by the dashed lines. The initial un-perturbed SECH profile is denoted by the thin
dot-dot lines.
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Figure 4–3: Time series of the disturbance’s kinetic energy K ′/∆2
o (top row), the top-hat

width µ/` (2nd row), the top-hat velocity δ̄/∆o (3rd row), the spreading rate (dµ̄/dt)/∆̄

(4th row) and the total energy dissipation (TE-TEo)/(µ̄λxHK ′) (bottom row) for the initial
Froude number (a) Fr = 0.05, (d) Fr = 1.6, (e) Fr = 2.4, and (h) Fr = 4.0. The open-diamond
symbol marks the R-event, the open-square symbol for the R’-event and the circle symbol
for the S-event. The dash line in the top row was obtained from the simulation cases of
Ua = 0.5.
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the last row of Figure 4–3. The kinetic energy rises rapidly during the transition. The key

events as marked in the figure are the R-event that occurs at the time t = tR when the

increase of the kinetic energy is most rapidly. The R’-event, at time t = tR′ , occurs when

the width µ increases most rapidly. The S-event occurs at time t = tS when the disturbance

kinetic energy reaches its first saturation peak. For the sub-critical transition (a) Fr = 0.05,

and the supercritical transition (h) Fr = 4.0, the R-event and R’-event are occurring at about

the same time. The occurrence of the events in the trans-critical range in (d) and (e), is

different. For (d) Fr = 1.6 and (e) Fr = 2.4, the occurrence of the R’-event is delayed to a

time almost the same as the S-event. The delay is just one of many aspects that distinguish

the trans-critical transition from the sub-critical and supercritical transition.

The mean profiles of the three events R, R’ and S and the dimensionless time associated

with these events t∗R = tRÛy, t
∗
R′ = tR′Ûy and t∗S = tSÛy, are arranged in group of three as

shown in Figure 4–2 for each Froude number and wave number pair (a) to (h). From top to

bottom, the width of the flows for each Froude number is observed to increase rapidly with

time during the transition from t∗R to t∗R′ and then to t∗S. The mean profiles (red solid

lines) and its equivalent top-hat profiles (dashed lines) are to be compared with the initial

SECH profile (thin dot-dot lines). The half-width δ is defined at the lateral position y = δ

where the relative mean velocity (U−Ua) is equal to one-half of its maximum ∆̄ = (Um−Ua).

The width and velocity of the equivalent top-hat profile are µ and ∆̄. Figure 4–4 (A) shows

the dependence of the length-scale ratios δR/µR and δR′/µR′ on the Froude number for the

eight flow cases (a) to (h); the subscripts R and R’ denote the time of the event at t = tR

and t = tR′ , respectively. The velocity difference across the jet/wake initially equal to

∆o = (Um − Ua) is reduced to ∆̄R and ∆̄R′ . The result is the proportional reduction of

the Froude number to FrR and FrR′ . Figure 4–4 (B) shows the reduced values of these FrR

and FrR′ which are smaller in value compared with the initial value of Fr, and are in much

smaller fraction for the trans-critical transition. We see from this figure why the case (d) Fr

= 1.6 and the case (e) Fr = 2.4 are in the trans-critical range because the Froude numbers,
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FrR and FrR′ , are close to the value of unity for the critical flow.

4.3.3 Subcritical, Trans-critical and Supercritical Transitions

The profiles in the trans-critical range of (d) Fr = 1.6 and (e) Fr = 2.4 are to be

distinguished from those in the subcritical cases (a) (b) (c) and supercritical cases (f) (g)

(h). The width of the mean profile increases with time from t = tR to t = tR′ and then to

t = ts. The most rapid of the changes in width occurs between time t = tR and t = tR′ . In

Figure 4–4 (C), the rates dδR/dt and dδR/dt are correlated with the Froude number Fr. The

rate for the subcritical transitions (a) (b) and (c) is

1

∆R

dδR
dt
' 1

∆R′

dδR′

dt
' 0.1 for FrR < 1 (4.11)

The rate in the trans-critical cases (d) and (e) is

1

∆R

dδR
dt
' 0.09 for FrR < 1,

1

∆R′

dδR′

dt
' 0.3 ∼ 0.4 for FrR′ < 1 (4.12)

For the supercritical transitions (f) (g) and (h), the rate is

1

∆R

dδR
dt
' 1

∆R′

dδR′

dt
' 0.01 ∼ 0.03 for FrR < 1, (4.13)

which is almost an order of magnitude smaller than the values of 0.1 of subcritical flow. We

see that the normalized spreading rate is significantly greater for the trans-critical transition

when the Froude numbers FrR and FrR′ are close to the value of unity. The trans-critical

spreading rate is 50% to 100% greater compared with the subcritical rate, and is an order

of magnitude greater than the supercritical rate. We do not have yet a good explanation for

the greater rate. This increase in the spreading rate of the trans-critical transition is con-

sistent with the disturbance’s kinetic energy shown in Figure 4–4 (D). Indeed, and that is

not coincidence, the increase in the spreading rate is closely correlating with the intensifying

disturbance’s kinetic energy in the same range of Froude number.

50



Figure 4–4: (A) width ratios, 2δR/µ̄R and 2δR′/µ̄R′ , (B) Froude numbers, FrR and FrR′ ,
(C) normalized spreading rates, (dδ̄/dt)R/∆R and (dδ̄/dt)R′/∆R′ , (D) disturbance’s kinetic

energies, K ′R and K ′R′ , (E) aspect ratios of the vortex streets, (a/h)R and (a/h)R′ , (F)
rms values of u′ and v′ at the R-event,

√
u′2R/∆R and

√
v′2R/∆R, (G) rms values of u′

and v′ at the R’-event,
√
u′2R′/∆R′ and

√
v′2R′/∆R′ , (H) total energy dissipation, (TER -

TEo)/(µ̄λxHK ′R) and (TER′ -TEo)/(µ̄λxHK ′R′). The diamond symbol denotes the R-event
and the square symbol the R’-event. The dashed lines in (E) marks the 95% confidence
interval for the aspect ratio of the mountain-wake vortex streets determined by Young and
Zawislak (2006).
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4.4 Vorticity Patterns

The distinction between the transitions, subcritical, trans-critical and supercritical tran-

sitions, is more clear on inspection of Figure 4–5. The pattern of the vorticity fluctuations

ζ ′ = (∂xv
′−∂yu′) on the y-x plane are shown in the figure for the initial Froude number of (a)

Fr = 0.05, (b) Fr = 0.5, (c) Fr = 1.0, (d) Fr = 1.6, (e) Fr = 2.4, (f) Fr = 3.0, (g) Fr = 3.5, (h)

Fr = 4.0 at the dimensionless times t∗R = tRÛy, t
∗
R′ = tR′Ûy and t∗S = tSÛy. The subcritical

transition (a) (b) (c) is the roll up of vorticity to form eddies that has definable vorticity

center. The alternating positive and negative vorticity pattern is qualitatively similar to the

Kármán vorticity street. The aspect ratio of the cross-stream and along-stream spacing of

vortices for the subcritical cases is in the range between a/h = 0.58 and 0.26 as shown in

Figure 4–4 (E). These values are remarkably consistent with the mean values of 0.42 and

the 95% confidence values between 0.36 and 0.47, found in the island-wake vortex streets by

Young and Zawislak (2006). The von Karman’s invicid theory gives this aspect ratio a value

of 0.28. The aspect ratios for supercritical transitions (f) (g) (h) are estimated although the

vortex street is no longer discernible for these cases with the higher Froude number of Fr =

3.0, 3.5 and 4.0 when waves are interfering the organization of the vorticity to form the ed-

dies. The island-wake vortex streets described by Young and Zawislak (2006) are essentially

two-dimensional shear flow. The vertical motion of the island wakes is constrained by the

density stratification in the atmosphere. The scale of the horizontal motion in the wake is

large compared with the depth. The island wakes therefore are shallow flows and probably

are dependent on some form of densimetric Froude number in a similar manner as in the

eddies produced in the present simulations using the shallow water equations.

4.5 RMS Velocity Fluctuations

Figure 4–6 shows the root-mean-square (rms) of the velocity fluctuations
√
u′2/∆ (solid

lines) and
√
v′2/∆ (dashed lines) at time t = tR, t = tR′ and time t = tS. At low Froude

number for the cases (a) (b) and (c), the jet/wake is dominated by the sinuous mode of
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Figure 4–5: Patterns for vorticity fluctuations ζ
′
δω/
√

¯̄K ′ on the y-x-plane for the initial
Froude number (a) Fr = 0.05, (b) Fr = 0.5, (c) Fr = 1.0, (d) Fr = 1.6, (e) Fr = 2.4, (f) Fr =
3.0, (g) Fr = 3.5, (h) Fr = 4.0 at time t∗R = tRÛy, t

∗
R′ = tR′Ûy and t∗S = tSÛy. Scales for the

normalized variables are given in (i). The aspect ratio of the cross-stream and along-stream
spacing of vortices a/h and its dependence of the Froude number are summarized in Figure
4–4(E).
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oscillations. The significantly greater value of the lateral component
√
v′2/∆ compared with

the longitudinal component
√
u′2/∆ is due to the meandering of the jet/wake from side to

side. The varicose mode progressively becomes more important at higher Froude number.

The relative role of the two rms components
√
u′2/∆ and

√
v′2/∆, and their dependence on

the Froude number is shown in Figure 4–4 (F) for the R-event and (G) for the R’-event.

Again, the intensification of the fluctuations is observed in the trans-critical flow cases of (d)

and (e). The fluctuation intensities are much reduced for the supercritical flow cases (f), (g)

and (h) with higher Froude number.

4.5.1 Laboratory Experiments - Shallow Jets

Laboratory experiments for the jet/wake flows are rare. The turbulent plane jet exper-

iments in shallow waters by Giger et al. (1991), Dracos et al. (1992) and Jirka (1994) are

relevant comparisons with the simulations carried out for small Froude number. Figure 4–7

shows the longitudinal rms velocity profiles across the jet that correlates the
√
u′2/∆ with

y/δ. The diamond, triangle and square symbols are the laboratory data obtained by Giger

et al. (1991). The solid line is the present simulation for (a) Fr = 0.05 with a Froude number

comparable to the laboratory experiment. The small-scale turbulence from the secondary

instability - which is part of the fully developed turbulent flow in the laboratory - can not be

reproduced from the present numerical simulation. The simulation rms velocity fluctuation

profiles therefore are not expected to be exactly comparable to the laboratory data. How-

ever, the simulation profile in Figure 4–7 is consistent, in the sense that the laboratory data

have similar shape of the twin peaks. Most remarkably, the peak value of
√
u′2/∆ ' 0.2 in

the simulated profile is equal to the peak observed in the corresponding laboratory profiles.

Another aspect of the shallow jet is its spreading rate. The spatial rate of the half-width

δ from the laboratory experiment of Dracos et al. (1992) is approximately dδ/dx ' 0.1.

Assuming an advection velocity of the dominant eddies to be dx/dt = 0.7∆, the spatial
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Figure 4–6: Mean profile for the rms values of
√
u′2/∆o (solid lines) and

√
v′2/∆o (dashed

lines) at time t = tR, t = tR′ and time t = tS for the initial Froude number (a) Fr = 0.05,
(b) Fr = 0.5, (c) Fr = 1.0, (d) Fr = 1.6, (e) Fr = 2.4, (f) Fr = 3.0, (g) Fr = 3.5, (h) Fr = 4.0.
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Figure 4–7: The rms profiles of the shallow jet - laboratory data compared with the simu-
lation of the subcritical transition (a) Fr = 0.05 and kx = 1.0, at time t = tR (solid line).
The square symbols are at X/H = 10; the circular symbols are at X/H = 14; the diamond
symbols are at X/H = 18 from laboratory experiment in Giger et al. (1991).
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spreading rate is then estimated to have the temporal rate as follows:

dδ

dt
=
dδ

dx

dx

dt
' 0.1× 0.7∆ = 0.07∆ (4.14)

This estimated temporal rate from the laboratory experiments with a small Froude number

is comparable to the spreading rate during the transition shown in Figure 4–4 (C).

4.6 Wave Effect and Energy Dissipation

Figure 4–8 shows the free-surface elevation fluctuation profiles at the three time event

R, R’ and S. These profiles are functions of x and y. The dimensionless depth fluctuations

gh′√
¯̄K′
√
gH

are plotted versus y/λx for x = 1/4λx, x = 1/2λx,x = 3/4λx,and x = λx. Sudden

changes in depth in the form of shock waves (hydraulic jumps) are observed in the trans-

critical flow (d) and (e) and supercritical flow (f) (g) and (h), when the convective Froude

number is greater than the value of unity. The wave radiation away from the transition is

particularly prominent in the supercritical flow. These shock waves of significant amplitude

with sudden change in depth and velocity are observed to radiate away from the transitions.

The local energy dissipation and the radiation of the wave energy from the shock waves are

calculated from the simulations. The total energy include the energy of the mean flow, over

the entire computational domain is

TE =

∫ y+

y−

∫ λx

o

(
1

2
u2 +

1

2
v2 +

1

2
gh)h dxdy (4.15)

This mimus the initial energy associated with the SECH profile, (TE-TEo), is the energy

losses due to local dissipation and radiation. The dimensionless variable for the energy losses

relative to the disturbance kinetic produced is (TE-TEo)/(µ̄λxHK ′). The time series of this

energy losses is shown in the last row in Figure 4–3. Figure 4–4 (H) shows the dependence

of this energy losses, associated with the R-event and R’-event, on the Froude number. The

losses is negligible for the sub-critical flow case but is huge for supercritical flow. For the su-

percritical flow (h) Fr = 4.0, the work needed for the energy losses are about 18 time greater
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Figure 4–8: The normalized depth fluctuation profiles for gh′/(
√
gH
√
K ′) with y at x = 1

4
λx,

x = 2
4
λx, x = 3

4
λx, and x = λx.
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than the disturbance kinetic energy produced. The energy losses in trans-critical flow is one

order of magnitude greater the losses in sub-critical flow. The losses in supercritical flow is

another order of magnitude greater. It is clear that the waves have the most prominent role

in the supercritical flow.

4.7 Conclusion

The direct numerical simulations of the jet/wake transition to turbulence have produced

results that are consistent with the fully developed turbulent plane jets data obtained in the

laboratory and the visualization of the island wakes in the atmosphere. The reduction in

the exchanges for the supercritical flow is anticipated due to the huge energy dissipation

and radiation by the waves. The intensification of the disturbance energy and the spread-

ing rate in the trans-critical flow however is unexpected. Laboratory experimental data are

not available for the trans-critical and supercritical transition. Therefore, further studies in

the laboratory are necessary to confirm, in particular, the unexpected results found in the

trans-critical flow transition.
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CHAPTER 5

CONVERGENCY STUDY

Grid refinement study has to be conducted for direct numerical simulations to show the

simulated results are not dependent on the mesh size. A series of grid refinement calculations

has been carried out to confirm the linear growth rate of the instabilities by WENO scheme.

Calculations are performed for different grid points across one wavelength, that is N = 32,

64, 128, 256 and 512 points. The convergence of the maximum linear growth rate α̂ is studied

and correlated with the number of points over one vorticity thickness δωo/∆x for different

grid sizes.

The order of convergence as the grid is refined is determined from the procedure outlined

by Stern et al. (2001). For a group of three values α̂k−1, α̂k, and α̂k+1 obtained from

the simulation at different grid sizes, k denotes the number of grid points, the order of

convergence Pk is

Pk =
1

ln r
ln [

α̂k+1 − α̂k
α̂k − α̂k−1

] where r =
α̂k
α̂k+1

(5.1)

The estimated true value from the extrapolation is

α̂true =
rPk α̂k+1 − α̂k
rPk − 1

(5.2)

Knowing the estimated true value, the estimated fractional error (FE) is then computed by

FE(%) =
|α̂− α̂true|
α̂true

× 100 (5.3)

Table 5–1 shows the values of growth rate and fractional error of for Fr = 1.6 and Fr

= 2.4 at the maximum wave number kx = 0.5. Table 5–2 tabulates the results of the grid

refinement study of supercritical flows of Fr = 4.0 at five different kx values . The graphs of
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Figure 5–1: (a) Grid refinement of full jet simulation for Fr = 1.6 kx = 0.5 and Fr = 2.4
kx = 0.5 and (b) Fr = 4.0 kx = 0.8, 1.2, 1.6, 2.4, 2.8

maximum growth rate against the number of grid point over one vorticity thickness δω are

shown in Figure 5–1.

The WENO scheme performs very well. The error of the computation is quite acceptable

in the present simulation for N = 128 and 256 nodes over the wavelength between the periodic

boundary conditions. In the full jet simulations, the results obtained with N = 128 give an

accuracy of three significant figures. The simulations with N = 256 have an accuracy of

four significant figures. N = 512 point result is almost identical with the extrapolated exact

solution. Because of the computational efficiency, all the results in Chapter 3 are from N =

256 simulations. The resulting graph of the fractional error as refining the grid is presented

in Figure 5–2.

The convergency study of the non-linear part of the instability analysis is demonstrated

by calculating the first peak of the maximum kinetic energy. The exact solution is extrapo-

lated based on three grid sizes of N = 64 , 128, and 256. Table 5–3 presents the results for

three typical case corresponding of the flow in the subcritical, trans-critical and supercritical

stage. The WENO scheme also performs very well as the error is approximately 0.1% as

shown in Figure 5–3. The results of N = 256 are also reliable because it almost matches

with the exact solutions. Therefore, the results in Chapter 4 are from N = 256 simulations.
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Table 5–1: Grid size, fractional error and order of convergence for full jet simulation (sinuous
mode) of Fr = 1.6, kx = 0.5 and Fr = 2.4, kx = 0.5

Case Number N δωo/∆x α̂/Ûy FE(%) Order

Fr = 1.6 kx=0.5

1 32 3.310 0.065401 26.8479

2 64 6.619 0.091711 2.5806 -4.08

3 128 13.239 0.090152 0.8367 1.59

4 256 26.477 0.089632 0.2556 1.71

5 512 52.954 0.089474 0.0781

Exact ∞ ∞ 0.089404 0

Fr = 2.4 kx=0.5

1 32 3.310 0.063391 1.1965

2 64 6.619 0.067071 1.3657 -3.10

3 128 13.239 0.066642 0.7171 0.26

4 256 26.477 0.066285 0.1764 2.02

5 512 52.954 0.066196 0.0434

Exact ∞ ∞ 0.066168 0

Figure 5–2: Fractional error in percentage the growth rate of the full jet simulation of Fr =
1.6 kx=0.5, Fr = 2.4 kx=0.5, and Fr = 4.0 kx=1.2
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Table 5–2: Grid size, fractional error and order of convergence for full jet simulation (varicose
mode) of Fr = 4.0 kx = 0.8, 1.2, 1.6, 2.4 and 2.8

Case Number N δωo/∆x α̂/Ûy FE(%) Order

Fr = 4.0 kx=0.8

1 32 5.295 0.029050 14.1782

2 64 10.591 0.024785 2.5872 -2.18

3 128 21.182 0.025724 1.1041 -1.83

4 256 42.364 0.025460 0.0661 4.06

5 512 84.727 0.025444 0.0040

Exact ∞ ∞ 0.025443 0

Fr = 4.0 kx=1.2

1 32 7.943 0.023575 8.7124

2 64 15.886 0.024583 4.8121 0.36

3 128 31.773 0.025877 0.2002 -5.16

4 256 63.545 0.025841 0.0600 1.74

5 512 127.091 0.025830 0.0180

Exact ∞ ∞ 0.025825 0

Fr = 4.0 kx=1.6

1 32 10.591 0.021563 9.6956

2 64 21.182 0.024175 1.2412 -5.47

3 128 42.364 0.024116 0.9946 1.82

4 256 84.727 0.023908 0.1237 3.01

5 512 169.454 0.023882 0.0154

Exact ∞ ∞ 0.023879 0

Fr = 4.0 kx=2.4

1 32 15.886 0.019097 8.5999

2 64 31.773 0.018937 7.6900 3.28

3 128 63.545 0.017386 1.1310 -3.06

4 256 127.091 0.017572 0.0697 4.02

5 512 254.181 0.017584 0.0043

Exact ∞ ∞ 0.017585 0

Fr = 4.0 kx=2.8

1 32 18.534 0.013330 6.9646

2 64 37.068 0.013935 2.7456 1.21

3 128 74.136 0.014197 0.9167 1.09

4 256 148.272 0.014320 0.0579 3.99

5 512 296.545 0.014327 0.0037

Exact ∞ ∞ 0.014328 0
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Table 5–3: Grid size, fractional error and order of convergence of the first peak of turbulent
kinetic energy for full jet simulation of Fr = 0.5 kx=1.0, Fr = 2.4 kx=0.5, and Fr = 4.0
kx=1.2

Case Number N δωo/∆x K̂ ′/∆2 FE(%) Order

Fr = 0.5 kx=1.0

1 64 13.239 0.07717 0.8624

2 128 26.477 0.07773 0.1401

3 256 52.954 0.07782 0.0228 2.62

Exact ∞ ∞ 0.07784 0

Fr = 2.4 kx=0.5

1 64 6.619 0.06498 6.9500

2 128 13.239 0.06935 0.6665

3 256 26.477 0.06973 0.1083 3.49

Exact ∞ ∞ 0.06981 0

Fr = 4.0 kx=1.2

1 64 15.886 0.00502 1.7964

2 128 31.773 0.00591 0.5272

3 256 63.545 0.00622 0.0856 1.52

Exact ∞ ∞ 0.00628 0

Figure 5–3: Fractional error in percentage of the first peak of the turbulent kinetic energy
of the full jet simulation of Fr = 0.5 kx=1.0, Fr = 2.4 kx=0.5, and Fr = 4.0 kx=1.2
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CHAPTER 6

EXPERIMENTAL STUDY OF THE EXCHANGE PROCESS BETWEEN
THE MAIN FLOW AND ITS SIDE BASIN

6.1 Introduction

6.1.1 Mass Exchange Process in the Basin

The study of mass and momentum exchange between the main flow and its side basins

has many important engineering applications. For example, the spur dikes in Figure 6–1(a)

are constructed as river training structures to protect erosion. The river stream is considered

as shallow flow since the depth is much smaller than the width. The main stream enters

and exits into the dike causing the exchange process. Recirculating flow regions are observed

inside the spur dikes and sediments or pollutants could be trapped due to locally low velocity.

The rate of the mass exchange between the spur dikes and the main river is an important

parameter used to describe this exchange process.

The exchange process for the supercritical flows is as important as the exchange process

in subcritical flows. A fish ladder in Figure 6–1(b) is built as an ancillary structure of a dam

to facilitate fish to swim back to the upstream fish hatchery. The fish tends to swim against

the supercritical main flow and rests inside the chamber to pass the dam. The fish ladder is

constructed along a steep slope and consists of several chambers. The main flow velocity is

higher than the recirculation velocity inside the chambers.

6.1.2 Shear Flow in Shallow Open Channels

Pinilla and Chu (2008, 2009 a,b) and Chu (2010) have studied numerically the role of

gravity-wave radiation on the development of shear flow in shallow open channels. Figure 6–

2 shows their simulations of the shear instabilities of a hyperbolic tangent velocity profile for
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Figure 6–1: (a) Spur dikes in the Yellow River, China to protect erosion. (b) Fish ladders
in Columbus River, USA built next to a dam

three different convective Froude numbers: (a) Frc = 0.4 (b) Frc = 0.8 and (c) Frc = 1.2. The

columns on the left-hand side of the figure show the velocity vectors and the columns on the

right-hand side show the dilation. The evolution of a small disturbance with time eventually

leads to large scale lateral exchanges between the two sides of the shear flow of different

velocities. At low convective Froude number when Frc = 0.4, the mass and momentum

exchanges as shown in Figure 6–2(a) are characterized by the formation of the turbulent

eddies. At high convective Froude number when Frc = 1.2 as shown in Figure 6–2(c), the

exchanges are characterized by the radiation of gravity wave and the less energetic sliding

shocklets. The radiation of gravity waves from the shocklets has reduced the instability and

suppressed the mass exchanges across the shear layer.

Similar dependence of the shear instability on the convective Froude number is obtained

from the linear stability analysis using the normal mode approach as shown in Figure 6–3.

For the hyperbolic tangent base velocity profile, the exponential growth rate αmax decreases

with the convective Froude number Frc. This dependence on the convective Froude number

for the shear flow in open channels is analogous to the shear instability of compressible

gas dynamics. The lines for Mach number Ma = 0.01, 0.4, 0.8 and 1.2 in Figure 6–3 are
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Figure 6–2: Development of shallow shear flow of hyperbolic-tangent velocity profile for
three convective Froude numbers; (a) Frc = 0.4, (b) Frc = 0.8 and (c) Frc = 1.2. The three
left-hand columns show the velocity vectors and the rollup of a thin layer of dye between the
shear flows moving in opposite directions. The three right-hand columns show the dilation
of the depth-averaged velocity. Radiation of gravity waves characterizes the shear flow of
large convective Froude number Frc = 1.2 in (c)

instability calculations obtained for ideal gas by Sandham and Reynolds (1990). The gravity-

wave radiation from the shear flows in open channels has the similar effect on instability as

the radiation of the sound from the shear layer in compressible gas.

Figure 6–4 shows another shear-flow exchange between an open-channel flow with one

side basins for three different Froude numbers. The shear layer in the subcritical main

flow of Froude number Frc = 0.2 is shown in Figure 6–4(a). For comparison, the cases

of the supercritical main flow with Frc = 1.5 and 3.5 are shown in Figure 6–4(b) and (c),

respectively. The impingement of the mixing layer on the downstream corner generates the

recirculating flow in the basin. The level of the turbulence energy defines the contours in the

figure. It is clear the turbulent energy is concentrated in the mixing layer between the main
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Figure 6–3: Exponential growth rate α of the unstable shear flow of the classical hyperbolic
tangent velocity profile. Its dependence on the convective Froude number Frc is analogous
to the dependence of the rate on the convective Mach number Mac in the compressible shear
flow

flow and the recirculating flow in the basin. The subcritical mixing layer characterized by

formation of eddies in the mixing layer as shown in Figure 6–4(a) is significantly greater in

thickness when compared with the supercritical mixing layer shown in Figure 6–4(c). The

recirculating flow associated with the subcritical mean flow is also more energetic comparing

with that associated with the supercritical mean flow. These comparisons between the

subcritical and supercritical shear flow are consistent with the conclusion from the stability

analysis by Pinilla and Chu (2008, 2009 a,b) and the direct numerical simulation of the

turbulent flow by Chu (2010).
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Figure 6–4: The normalized turbulence kinetic energy distribution associated with flow in
the square basin for Froude number (a) Frc = 0.2, (b) Frc = 1.5 and (c) Frc = 3.5

6.1.3 Scope of Current Investigation

The laboratory experiments are performed to support the development of turbulence

model for both subcritical and supercritical flows. Most of the existing laboratory works

are done in subcritical flow only. The current experiments are aiming to the supercritical

flow and are revealing the difference between the subcritical and supercritical exchange. The

experiments cover a wide range of Froude numbers Fr from Fr = 0.48 to Fr = 2.92. Red

dye was injected into the basin and the experiments were filmed by a video camera with the

frame rate of 30 frames per second. A video imaging method was employed to measure the

dye concentration. The accumulation and retention times of the dye in the side basin are

determined as the parameters to characterize the exchanges.

6.2 Experimental Method

6.2.1 Experimental Set up

The mass and momentum exchanges across the shear flow are investigated in the lab-

oratory in a 217 cm long and 35.5 cm wide water table. The channel bottom could be flat

or tilted with a slope. The experimental setups are shown in Figure 6–5 (a) and (b) for the

subcritical flow and supercritical flow experiments, respectively. In subcritical experiments,
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the flow enters the channel directly from the upstream stilling basin while in supercritical

experiments, a square reservoir is created upstream and separated from the channel by a

sluice gate. The supercritical flow is created by changing the water depth in the reservoir. A

square side basin with dimension L = 24 cm x 24 cm is attached along the side of the main

open channel at 96 cm upstream from the flow entrance to allow flow exchange. During the

experiments, red dye (Triactive Red DF-6BL New) of concentration co as the tracer at a rate

of qo is injected into the channel from the injection point on the upstream edge of the basin

for flow visualization. Figure 6–6 shows the close-up of the basin and the main channel, and

the flow circulates in the basin in counterclockwise direction. The experiment is filmed by a

video camera hanging directly above the channel with the zoom focusing to the basin. The

tests are conducted for supercritical flows of Froude number Fr = 2.92, 1.69, 2.45, 2.14 and

subcritical flows of Froude number Fr = 0.48 and 0.55 on the channel slopes of So = 0 and

0.3%, respectively. The test conditions including water depth h and velocity U in the main

channel are summarized in Table 6–1.

Table 6–1: Experiment conditions

Experiment No. Fr So U(m/s) mean depth (cm) co (mg/L) qo (ml/s)

E1 0.55 0 0.33 3.70 1000 0.444

E2 0.48 0 0.28 3.50 5000 0.444

E3 2.92 0.3% 1.21 1.74 1000 0.396

E4 1.69 0.3% 0.73 1.87 1000 0.520

E5 2.45 0.3% 1.02 1.77 4000 0.323

E6 2.14 0.3% 0.87 1.69 4000 0.415

6.2.2 Video Imaging Method

The measurement of the dye concentration in the basin was based on a video imaging

method developed by Zhang and Chu (2003). The dye concentration can be determined as

a function of light intensity which could be determined from analysing the images produced

by the video camera. Each image contains 1440*1080 pixels and in each pixel there are
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Figure 6–5: Side view and plan view of experiment apparatus (a) subcritical experiments
(b) supercritical experiments
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Figure 6–6: Close-up of the basin showing the dye entraining direction

three numbers (R,G,B) telling the three basic color, red, green and blue color intensity. This

number is an integer from 0 to 255. 0 means minimum intensity while 255 means maximum

intensity of the corresponding color. The combination of the three numbers gives any color

as seen in the image. The injection of the red dye in the basin of depth h reduced the

intensity of both green and blue light as shown in Figure 6–7 while red light intensity is kept

the same. The percentage of the green light intensity reduction p was calculated for each

pixel by

p = 1− G

Go

(6.1)

G is the green color intensity of the image and Go is the green color intensity of the back-

ground. The background is the clean water image in the basin before the injection of the

dye. As the lighting conditions on the flow is not entirely uniform and unavoidable shake of

the camera during the experiment, the aperture of the video camera might not be kept at

the same value during the experiment. As a result, further adjustment is needed to adjust

the camera aperture by

p = 1− G

Go

× Goc

Gc

(6.2)
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Figure 6–7: Absorption of green and blue light due to the presence of red dye in the open-
channel flow of depth h.

Figure 6–8: Experiment image background image and processed image by removing the
background

where Gc is the green color intensity of the image and Goc is the green color image of

the background at the same location of the clear water outside the basin where no dye is

presented in this area.

The image processing is illustrated in Figure 6–8. The processed image is obtained by

subtracting the background image from the original image at every pixel of the image. The

processed image could show the movement of the dye and the development of the boundary

layer more clearly.
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Table 6–2: Calibration data for all experiments

Concentration(mg/L) p (E1) p (E2) p (E3,E4) p (E5,E6)

25.0 0.6500 0.7090 0.5523 0.5141

12.5 0.6039 0.6562 0.4265 0.3937

6.25 0.4910 0.5443 0.2945 0.2726

3.125 0.3488 0.3992 0.1960 0.1704

1.5625 0.2357 0.2823 0.1158 0.1039

0.78125 0.1392 0.1767 - -

0 0.0000 0.0000 0.0000 0.0000

6.2.3 Data Calibration

A calibration curve is needed to correlate the dye concentration to green light intensity

reduction p. The calibration has to be conducted before each experiment by keeping the same

light condition as the experiment. The pre-determined concentration solutions were dumped

into the calibration box which has the same dimension as the basin. Since the percentage of

reduction p depends on water depth, the water depth inside the basin during the experiment

is measured and then used as the calibration depth to ensure the same volume of water in

the basin during the experiment and in the calibration box. The same lighting condition is

also kept in calibration and during the experiment.

The preparation of the calibration concentration solution is done by dilution. The first

sample to start the dilution is 25 mg/L dye solution. The subsequent samples are done by

dilution the previous sample by half. The process of preparing calibration samples are then

filmed and the percentage of green light reduction p is determined. Table 6–2 shows the

calibration data and Figure 6–9 shows the calibration curves for all the experiments.

The calibration data are fitted with a smooth polynomial with the equation in the

following form. a1, a2, a3, a4, a5, a6 are constants and their values are shown in Table 6–3.

c = a1p+ a2p
2 + a3p

3 + a4p
4 + a5p

5 + a6p
6 (6.3)
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Figure 6–9: Calibration curves for all the experiments (a) E1 (b) E2 (c) E3 and E4 (d) E5
and E6

Table 6–3: The coefficient for each calibration curves

Constant E1 E2 E3, E4 E5, E6

a1 4.6596 -5.5185 20.982 -13.206

a2 1.7958 88.066 -162.55 636.83

a3 29.836 -234.60 1106.2 -5148.4

a4 0 239.85 -2497.3 19885

a5 0 0 2121.1 -35168

a6 0 0 0 23456

75



6.3 Experimental Results

6.3.1 Dye Entrainment Mechanism

Figure 6–10, 6–11 and 6–12 show the processed images of the start of dye accumulation

for Froude number 0.48, 2.45 and 2.92. The time interval between adjacent image is 0.5 s.

There is a recirculating eddy observed in the subcritical images Fr = 0.48. The dye enters

the basin from the downstream edge of the basin and rotates counterclockwise. The dye gets

into the basin from the outer core progressively into the inner core. The eddy is well defined

and the roll up of the eddy is the feeding mechanism of the dye. As the Froude number

increases to 2.45 and 2.92, the eddies becomes less well defined. Surface waves are observed

in and outside of the basin. Especially in Figure 6–12 (Fr = 2.92), the dye entering into the

basin is not by the recirculation of the eddy with the flow. Instead, it seems the dye follows

the direction of the surface wave radiation which pumps in and out from the basin to the

main flow. The wave pumping is the dominant exchange mechanism.

6.3.2 Accumulation and Retention Time

The dye in the basin increased with time after the dye was introduced from the main

flow. The supply of the dye from the leading edge of the basin was maintained until the dye

concentration in the basin reached a quasi-steady state. The source of the dye supply was

then shutoff to allow the dye concentration in the basin to reduce with time. The concen-

tration of the basin could be obtained by tracking the percentage of green light reduction

and the calibration curve. Figure 6–13 shows the basin concentration versus time for all

the six experiments. The plots are dimensionless. The dimensionless dye concentration is c∗

= ln( cUhL
coqo

), which is obtained by the normalization of the source dye mass flux coqo. The

dimensionless time is t∗ = tU/L, where U is averaged flow velocity in the main channel and

L is the dimension of the square basin. The concentration of the dye in the basins c∗ first

increased with time t∗. It reaches a quasi-steady state after a period of time. The decay

of the dye concentration in the basin is subsequent to the quasi-steady state after the dye
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Figure 6–10: Dye accumulation images for Fr = 0.48
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Figure 6–11: Dye accumulation images for Fr = 2.45
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Figure 6–12: Dye accumulation images for Fr = 2.92
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supply is shutoff from the upstream source. A curve of the following functional form is fitted

through the experimental data for the period during the accumulation phase:

c∗ = c∗qs(1− exp(−
t

τa
)) (6.4)

where τa is the dimensionless accumulation time and c∗qs is the dimensionless quasi-steady

concentration. Similarly, the reduction of the dye concentration with time for the period

during the decaying phase is fitted with the follow function. τr is the dimensionless retention

time.

c∗ = c∗qs(exp(−
t

τr
)) (6.5)

The accumulation time scale τa and the retention time scale τr are the dimensionless

parameters that are introduced to characterize the overall exchanges of fluids in the basin

with the main flow in the open-channel. A large value of the dimensionless time scales would

suggest a slow exchange process and vice versa. Booij (1989) has used the retention time

τr to define the exchanges of subcritical flow in harbours. Altai and Chu (1997) determined

the retention time τr for a wider range of the subcrtical Froude numbers, and found the

retention time to have comparable values as those obtained by Booij (1989).

The accumulation and retention phase of the experiment could be fitted by the first

order exponential curves in Equation 6.4 and 6.5 as shown in Figure 6–14 and 6–15 for all

the experiments. It appears that the data fit quite well with the concentration data in the

retention phase rather than the accumulation phase. This is probably due to the complexity

of the dye accumulation process. The first order equation may over simplify the process.

There are other parameters such as basin oscillation and channel friction could affect the

dispersion of the dye and subsequently affect the accumulation time. On the other hand,

the retention time is a better measure of the mass exchange process between the basin and

the main open-channel flow. In both subcritical and supercritical experiments, the retention

could be described as first order decay. The eddies in the subcritical experiments and waves

in the supercritical experiments dominate the retention process than any other effect.
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Table 6–4 summarizes the values of the basin dimensionless retention time scales from

the experimental data. Bigger retention time means it takes longer time for the dye to escape

the basin thus indicates less mass exchange with the main flow. The values of the retention

time for the subcritical main flow are rather reasonable. It is comparable in magnitude to the

previous results obtained by Booij (1989) and Altai and Chu (1997) for similar shear flows.

However, the dimensionless retention time for the case of the supercritical main flow is three

to four times greater than the value of the subcritical flow. Figure 6–16 plots the retention

time τ ∗r versus the Froude number Fr obtained from the present series of experiments. The

retention time is about τ ∗r = 24.6 and 30.2 for subcritical flow with Fr = 0.48 and 0.52. τ ∗r

progressively increases as the increase of the Froude number. It reaches 107.2 at Fr = 2.92.

The big difference in retention time is also confirmed by the observation from the images

described previously. It is clear that the mass exchange processes in the supercritical flow

are different from the processes in subcritical flow. The exchanges in the subcritical flow are

characterized by the roll up of the fluid in the coherent eddies and the excitation of the shear

layer by the gravity wave feedback as evident in the dyed flow images shown in Figure 6–10.

On the other hand, the exchanges in the supercritical flow are due to gravity waves radiation

from the shear layer in a manner analogous to the development of supersonic shear layers in

compressible fluid (Bogdanoff (1983), Papamoschou and Roshko (1988), Kim (1990)). There

is no evidence that can be found in Figure 6–12 to suggest that coherent eddies had formed

in the supercritical shear layer. Although significant flow oscillations are produced by the

radiation of the gravity waves, the presence of the gravity waves do not seem to have any

direct effect on the mass exchanges of the dye between the basin and the supercritical main

flow. The indirect effect of wave radiation on the shear instability is however expected.

6.3.3 Mean and RMS Concentration Profiles

The quasi-steady state concentration profile could be further analyzed by statistical

method. A series of images in the quasi-steady state are produced with the frame interval
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Figure 6–13: The evolution of the dye concentration inside the basin with time as the dye
turns on and then shuts off at the source
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Figure 6–14: Dye concentration inside the basin in the accumulation process. The green line
shows the best-fit line from the first order accumulation equation.
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Figure 6–15: Dye concentration inside the basin in the retention process. The green line
shows the best-fit line from the first order decay equation.
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Table 6–4: Dimensionless retention time for all the experiments

Experiment No. Fr cqs (mg/L) τr (s) τ∗r

E1 0.55 3.0 22.0 30.2

E2 0.48 12.0 21.0 24.6

E3 2.92 6.0 21.5 107.2

E4 1.69 7.5 24.0 71.9

E5 2.45 21.0 24.5 103.2

E6 2.14 26.0 26.5 95.2

Figure 6–16: Dimensionless retention time correlates to Fr
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1/30 s. In each image, at each pixel number (x,y), the dye concentration could be calculated

by the video imaging method and the calibration curve described in the previous section.

Therefore, the instantaneous dye concentration in the quasi-steady state c(x, y, t) is defined

as a function of space and time. The mean concentration c̄(x, y) at a particular location

x and y could be calculated from averaging the instantaneous concentration c(x, y, t) in

Equation 6.6. N is the total number of quasi-steady state images.

c̄(x, y) =
1

N

N∑
n=1

c(x, y, t) (6.6)

The root mean square (RMS) of the concentration fluctuations could be also obtained from

the following equation.

√
c̄′2(x, y) =

1

N

N∑
n=1

[c(x, y, t)− c̄(x, y)]2 (6.7)

The mean concentration profiles and the RMS concentration fluctuation profiles across

of the mixing layer are plotted at three longitudinal sections, x = 0.25L, 0.5L, and 0.75L.

The location of these sections is defined in Figure 6–6. The dimensionless mean concentration

profiles c̄UhL/coqo and the dimensionless RMS profiles
√
c̄′2UhL/coqo for all six experiments

are shown in Figure 6–17 and Figure 6–18. In these plots, the x-axis is y/L, indicating the

position in longitudinal direction. The origin y/L = 0 is defined at the upper right corner

of the basin, which is also the location of dye injection point. Positive y/L values indicate

the location outside the basin in the main stream while negative y/L values indicate the

location inside the basin. y/L = -1 is defined at the inner edge of the basin.

The mean concentration profiles shown in Figure 6–17 are a measure of basin oscillation.

In subcritical experiments E1 and E2, the basin shows more regular behavior as the quasi-

steady state concentration inside the basin is a constant. The concentration outside the

basin drops smoothly and approaches to zero as moving away from the mixing layer. The

mixing layer is well defined. In supercritical flow experiments, dye concentration inside the

basin is also a constant but with more variation. The variation is due to the generation
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Figure 6–17: Mean concentration profiles at cross sections x = 0.25L, 0.50L, and 0.75L for
all the experiments. (a) E1 (b) E2 (c) E3 (d) E4 (e) E5 (f) E6
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Figure 6–18: Root mean square profiles at cross sections x = 0.25L, 0.50L, 0.75L for all the
experiments. (a) E1 (b) E2 (c) E3 (d) E4 (e) E5 (f) E6
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of the gravity waves. The concentration outside the basin is more oscillatory because the

gravity waves continuously pumping in and out from the basin. The concentration outside

the basin changes more significantly particularly in the cross section x = 0.75L. This is due

to the fact that mixing layer is not well defined.

The RMS fluctuation profiles follow the Gaussian distribution as shown in Figure 6–

18. The maximum RMS value is at the outside edge of the basin. The RMS fluctuation is

produced by the excitation of the mixing layers from the basin. At high Froude numbers,

an extremely high peak value is observed at x = 0.75L. At downstream of the basin, the

variation in concentration is big and the mixing process is extremely irregular. The basin

excitation is enhanced by gravity waves and more turbulence is observed. As a result,

subcritical flows demonstrate more vigorous and regular mixing process while supercritical

flows demonstrate less vigorous and irregular mixing process.

6.3.4 Mixing Layer Thickness

The width of the mean concentration profile is illustrated in Figure 6–19 (a). It shows the

dimensionless concentration c̄UhL/coqo at location x = 0.25L for Fr = 2.45. The maximum

concentration c̄max is defined in the figure first. The lateral position of the profile (ymean) is

then found to be one-half of the maximum concentration (1
2
c̄max). The ymean is a measure

of the mixing layer thickness based on the mean profile. Similarly, the width of the RMS

fluctuation profile is illustrated in Figure 6–19 (b). The lateral positions corresponding to

one-half of the maximum RMS fluctuation 1
2

√
c̄′2max are y+

rms in positive axis and y−rms in

negative axis. The half width of the RMS fluctuation profile δ is calculated as

δ = y+
rms − y−rms (6.8)

Figure 6–20 plots ymean, y+
rms and y−rms for three different Froude numbers (Fr = 0.48

, 1.69 and 2.45) at locations x = 0.25L, x = 0.5L, and x = 0.75L, respectively. When Fr

= 0.48, the depth of the turbulent flow is deep and the mixing layer behaves more orderly.
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Figure 6–19: (a)definition of the mixing layer width by mean concentration (b)definition of
the mixing layer width by RMS.

The layer thickness shown in RMS fluctuation profile increase linearly as moving away from

the origin. This result agrees with previous experiments on the measurement of free mixing

layer (Wygnanski and Fiedler (1970), Brown and Roshko (1974), Champagne et al. (1976)).

They concluded the growth rate of the free mixing layer increased with distance at low

Froude numbers. However, for Fr = 1.69 and 2.45, the linear dependence on the distance

does not exist any more. Instead, the layer thickness reduces in all three locations because

of continuous excitation of the gravity waves.

Figure 6–21 shows the variation of the mixing layer thickness based on the mean profile

and RMS fluctuation profile at longitudinal locations x = 0.25L, x = 0.5L, and x = 0.75L
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Figure 6–20: Mixing layer thickness of ymean, y+
rms and y−rms in three different Froude numbers

at locations x = 0.25L, x = 0.5L, and x = 0.75L
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Figure 6–21: The variation of the mixing layer thickness Versus Froude number (a) based
on the mean profile and (b) based on the RMS fluctuation profile

with the Froude number Fr. Both of the mean profile and RMS fluctuation profile suggest

the mixing layer thickness decreases with Froude number for all three locations. Also, the

thickness of the supercritical mixing layer is significantly smaller in comparison with that of

the subcritical mixing layer. Such results are qualitatively in agreement with the numerical

simulation of the flow shown in Figure 6–4.

6.4 Conclusion

The subcritical and supercritical flow exchanges were studied experimentally by a video

imaging method. In subcritical flow, the process of the entrainment across the shear layer
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was due to formation of eddies in the shear layer between the main flow and the recirculating

flow in the basin. The entrainment is due to roll up of fluid to form eddies. In supercritical

flow on the other hand, the entrainment was not as well defined. Gravity waves were gen-

erated as the supercritical main flow interacted with the flow in the basin. The radiation of

the gravity waves away from the basins was intense but did not positively affect the entrain-

ment. In comparison with the case of the subcritical main flow, the shear layer between the

supercritical main flow and the flow in the basin was less turbulent.

The retention time is one overall parameter that characterizes the mass and momentum

exchanges across the shear layer between the main channel and its side basins. Supercritical

flows lead to bigger retention time meaning longer exchange process. The measurement of

the parameter using the video imaging technique has supported the conclusion obtained

from hydrodynamic stability analysis that the supercritical shear layer is more stable to

disturbance and as a consequence less energetic for the exchanges across the shear layer.

Statistical analysis on the mean profile and RMS fluctuation profile is also conducted

on the dye concentration in the basin in quasi-steady state. The transient variation of the

dye in the basin had been analyzed. The results obtained from the transient analysis had

led to essentially the same conclusion that the mixing across the supercritical shear layer is

significantly reduced due to wave radiation from the shear flow. These observed radiation-

damping in supercritical shear flow is a phenomenon supported by stability analysis in Pinilla

and Chu (2009) and numerical simulations in Chu (2010).
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CHAPTER 7

NUMERICAL SIMULATIONS OF MACRO RESISTANCE IN STEEP OPEN
CHANNELS AND MEANDERING CHANNELS

7.1 Introduction

The navigation of water around rocks and boulders in mountain stream is a process

that is unique and distinctively different from the slow flow through large rivers. In steep

channel, the flow changes rapidly from subcritical to supercritical at the control sections.

The photo of the steep mountain stream in Figure 7–1 depicts the process. Significant energy

dissipation occurs in the hydraulic jumps as the supercritical flow returns to its subcritical

state. The white waters in the steep river are the demarcation for the return of supercritical

flow to its subcritical state.

The resistance to flow is traditionally parameterized using the Manning coefficient of

friction nbed. The values of the Manning nbed are tabulated (Arcement and Dchneider (1989),

Chow (1959)). However, the selection of an appropriate nbed from the tables is a matter of

intangibles as described by Ven Te Chow (1959): “To veteran engineers, this means the

exercise of sound engineering judgment and experience; for beginners, it can be no more

than a guess, and different individuals will obtain different results. ”Alternatively, the value

of nbed can be determined from in-situ measurements as described in French (1985). Either

of these methods can be problematic.

In this chapter, the flow resistance is determined by direct numerical simulations. The

goal of the simulations is to show that the Manning formulation is not generally correct when

the dimensions of the obstacles are comparable to the width of the flow. The resistance to

flow will be shown to be better correlated with an averaged drag coefficient. The direct

numerical simulation also will provide the force and moment calculation that is critical in
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Figure 7–1: The transition from subcritical to supercritical flow at the control sections and
the return to subcritical flow through the hydraulic jumps. The white waters mark the
location of the jumps.

the determined incipient motion of rocks and boulders in the highly unsteady flow through

the mountain stream.

7.2 Numerical Models

7.2.1 Trans-critical Solver MIS2D

The development of the trans-critical solver for 2D numerical simulation of the shallow

open-channel flow is based on finite-volume formulation using a staggered grid. The finite-

difference equations in the limit as ∆x and ∆y approach zero are the partial differential

equations:

∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0 (7.1)
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∂qx
∂t

+
∂

∂x

(
q2
x

h

)
+

∂

∂y

(qxqy
h

)
= −1

2
g
∂h2

∂x
− fx (7.2)

∂qy
∂t

+
∂

∂x

(qxqy
h

)
+

∂

∂y

(
q2
y

h

)
= −1

2
g
∂h2
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fx and fy are the friction force components which relate the Manning coefficient nbed and

the velocity components (u, v) as follows:

fx = n2
bedg

u
√
u2 + v2

h
1
3

, fy = n2
bedg

v
√
u2 + v2

h
1
3

(7.4)

The procedure to perform the direct numerical simulation to obtain the solution of

Shallow Water Equations is described previously in Chapter 2. The numerical solver has to

be effective in capturing the discontinuity of the shock waves. The flux limiter with minimal

intervention strategy (MIS) is applied in the momentum equations. This two-dimensional

trans-critical solver based on the minimal intervention strategy will be referred as MIS2D

model in this chapter.

7.2.2 FLOW-3D Hydrodynamic Model

The validation of the MIS2D model is checked against the commercial software FLOW-

3D. FLOW-3D is a hydrodynamic model analysis tool that solves the full flow governing

equations, the Navier-Stokes equations, in three dimensions (Hirt (2011)). The popularity of

the 3D modeling has increased with the availability of more powerful desktop computers. The

computational domain is divided into Cartesian computational meshes in the simulations.

The mesh is staggered which means depth and pressure are defined at the cell center and

velocity and shear stress are defined at cell faces. Given the initial conditions, an explicit

solution method is used to evaluate the variables associated with velocities for the next step

in the Navier-Stokes equations. Water pressure is evaluated in each cell by an iterative

method until finding a converged state and then cell velocities are adjusted accordingly.

Volume of Fluid (VOF) technique is used to compute the water free surface and come up
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with the new configuration. The turbulence model is activated to solve the viscosity term

by Renormalized Group (RNG) Model.

7.3 Model Validation by Oblique Dam-break Waves

7.3.1 Oblique Dam-break Waves by MIS2D

The simulation of oblique shock waves are performed to validate the MIS2D model. The

waves are produced in a 100 m × 100 m square basin by the sudden removal of a dam. The

initial water depths at time t = 0 are ho = 10 m and hd = 1 m separated by a dam located

in the diagonal direction across the basin. Figure 7–2 (a) shows the plan view of the waves

at time t = 2.5 s. Figure 7–2 (b) shows the depth and velocity profiles of the waves along

the cross section A-A at this time obtained by the MIS2D using the MINMOD flux limiter

with grid size of ∆x = ∆y = 0.5 m.

The MIS2D simulation is highly accurate and is very stable when the MINMOD flux

limiter is used minimally to manage the spurious numerical oscillations. The MIS2D sim-

ulation profiles with ∆x = ∆y = 0.5 m are nearly identical to the exact solution obtained

by Stoker (1957) using the method of characteristic. At time t = 2.5 s, the wave height is

hs/ho = 0.396 and the velocity is u/gh = 0.741 according to the exact solution. Figure 7–2

(c) shows the convergence of the MIS2D simulation toward the exact solution as the grid is

refined. The order of the convergence for velocity approaches to unity using the procedure

for estimating and reporting of uncertainty as recommended by Celik et al. (2008). The

integration of the Shallow Water Equations by the MIS2D model is second-order accuracy

in time and space according to Pinilla et al. (2010). However, the convergence of the surge

wave velocity to the exact solution is only first-order. This behavior nevertheless is consistent

with the recent Godunov’s assessment on the discontinuous solutions of the shallow-water

equations.
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7.3.2 Oblique Dam-break Waves by FLOW-3D

The simulation of the same oblique dam-break waves is repeated using a computational

fluid dynamic model known as FLOW-3D developed and commercialized by Flow-Science

Inc. (Hirt (2011)). The FLOW-3D model uses the finite difference method to solve nu-

merically the Navier-Stokes equations. The spurious numerical oscillations are managed by

a second-order monotonicity preserving method. FLOW-3D also uses the orthogonal stag-

gered mesh. The Volume of Fluid (VOF) method is employed in the FLOW-3D to resolve

the free water surface. It provides an accurate way to advect the fluid interface through a

fixed computational grid while keeping the interface sharp and well defined. There are three

key elements which must be in place in any CFD tools in order to be called a VOF method.

First, there must be a fluid fraction variable F , which tracks the amount of fluid within a

given computational cell. Second, an advection algorithm is required to not only advect F ,

but to keep the interface sharp. Third, free surface boundary conditions must be applied

to the interface. The area and volume ratios in each cell are computed and the ratios are

integrated into the conservation equations. The value of each dependant variable is associ-

ated to each cell and applied at the centre of the cell except the velocity, which is applied on

the face of the cell. In order to solve the mass conservation and momentum equations, an

explicit solution algorithm is used to evaluate the variables associated with velocities in the

Navier-Stokes equation for a given time taking into account the initial conditions or variable

values at previous time step. Water pressure is evaluated in each cell and iterations are used

to advance the solution through a sequence of steps from a starting state to a final, converged

state. The cell corresponding to the velocities are then adjusted. The present FLOW-3D

simulation uses an uniform grid with ∆x = ∆y = ∆z; the dimensions of the grid ∆x and

∆y are the same as the 2D simulations using MIS2D.

The FLOW-3D package also has the ability to do 2D simulation when the 3D modeling

is not necessary. This 2D model is referred as FLOW-3D Shallow Water Model (FLOW-3D-

SWM). It allows to model large river reaches, coasts and estuaries, and other large domains.
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It takes a 2D grid in x− and y− direction and the vertical velocity is assumed to be zero. The

model assumes all variables can be represented by their depth-averaged values and solves

the 2D momentum equations with corrections for variation in depth.

The results of the oblique dam-break waves in a 100 m x 100 m square basin due to

sudden removal of the dam are shown in Figure 7–3 and Figure 7–4. The initial depths are

ho = 10 m and hd = 1 m. There are 20 layers in the vertical direction. Figure 7–4 shows the

depth of the waves being color coded by velocity. Figure 7–3 shows the depth and velocity

profiles along the diagonal cross section A-A. These FLOW-3D-SWM and FLOW-3D profiles

are to be compared with the exact solution shown in Figure 7–2 (b). At this time t = 2.5s,

the location of surge wave front obtained by FLOW-3D and FLOW-3D-SWM is both behind

the supposed location at x/t
√
gho = 1.0 and the surge wave height is higher than the exact

solution of h/ho = 0.396. The difference is not large. The large difference in the number of

layers at the shock-wave front may create numerical difficulty and that may make the 3D

solution not realistic.
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Figure 7–2: Oblique dam-break waves at time t = 2.5 s; (a) plan view, (b) depth and velocity

profiles along the cross-section A-A, (c) diminishing error as the MIS2D simulation converges

to the exact solution. Circle symbol denotes the exact solution of Stoker (1957).
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Figure 7–3: Comparison of depth and velocity profiles along the diagonal cross section A-A

at time t = 2.5 s. Simulations are carried out using the FLOW-3D-SWM and FLOW-3D for

the 100 m x 100 m square basin with grid ∆x = ∆y = ∆z = 0.5 m
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Figure 7–4: Velocity of the oblique shock wave problem. Left-hand side of the figure shows

the simulation by FLOW-3D-SWM method while the right-hand side of the figure shows the

simulation performed by FLOW-3D model.
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7.4 Macro Resistance to Flow in Steep Open-Channel

7.4.1 Comparison of Three Numerical Schemes

The next series of simulations is conducted for open-channel flow in steep slope. The

flow through the periodic arrays of blocks in Figure 7–5 is idealized in an attempt to mimic

the steep flow in mountain streams. As shown in the plan view of Figure 7–5, the macro

resistance to the open-channel flow is due to an array of blocks. To assess the effectiveness

of the three schemes, the first set of simulations has an initial depth of ho = 2 m and block

width b = 10 m. Three channel-bottom slopes are considered at So= 0.005, 0.01 and 0.04.

Periodic boundary condition is given at the left and right boundaries. The effect of bottom

friction is eliminated by setting the roughness to zero and the effect of viscosity is eliminated

by not activating the turbulent model. Therefore, the gravity component along the slope is

the only driving force to cause the water to flow along the slope of the channel.

Figure 7–5: Plan view of the open-channel flow through an array of blocks.
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Figure 7–6: Froude number and water depth distribution in a steep open channel on slope
So = 0.005. Top: MIS2D simulation result; Middle: FLOW-3D result; Bottom: FLOW-3D-
SWM result.

The flow resistance of the channel is due to the presence of the blocks and the channel

friction resistance. In the present simulation, such flow resistance is directly determined by

the MIS2D, FLOW-3D, and FLOW-3D-SWM models. The simulations begin with a fixed

initial depth of 2 m. Driven by the gravity, the flow through the channel first accelerates

and then reaches a quasi-steady state. Figures 7–6, 7–7, and 7–8 show the Froude number

and depth maps for the three slopes So = 0.005, 0.01 and 0.04 respectively using the three

simulation methods with the same grid size ∆x = ∆y = ∆z = 0.5 m. There are only two

fluid layers over the depth of 1 m in the full three-dimensional FLOW-3D simulations. It is

shown the MIS2D results give more fluctuations in Froude number and water depth while

the FLOW-3D simulation results are less turbulent.
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Figure 7–7: Froude number and water depth distribution in a steep open channel on slope
So = 0.01. Top: MIS2D simulation result; Middle: FLOW-3D result; Bottom: FLOW-3D-
SWM result.

Since the periodic condition does not allow the water to escape from the computational

domain, in each simulation, there is a unique flow rate Q to describe the discharge capacity

of the particular channel condition. The total discharge Q through the channel is obtained

by integration of the velocity over the channel cross sections. Figure 7–9 compares the time

series graph of the discharge rate Q against time t using three methods for three slopes in the

same graph. It is found all the simulations follow the same trend. The water flow rateQ starts

to accelerate with gravity initially and then reaches a quasi-steady rate. Higher slope yields

higher discharge. The quasi-steady flow Qqs is reached when the driven force of gravity is in

balance with the resistance to flow by the blocks. The two-dimensional methods MIS-2D and

FLOW-3D-SWM give comparable Qqs. However, the three-dimensional method FLOW-3D,

gives significant higher quasi-steady flow rate than the two-dimensional methods. Moreover,
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Figure 7–8: Froude number and water depth distribution in a steep open channel on slope
So = 0.04. Top: MIS2D simulation result; Middle: FLOW-3D result; Bottom: FLOW-3D-
SWM result.

the graphs of the FLOW-3D flow rate show less fluctuation. In the present calculations,

the discharge Qqs is the average of Q over the period from t= 150 s to 300 s. Table 7–1

summaries the results for Qqs. The root-mean-square discharge shows the fluctuation of the

flow rate at each time from the average of the quasi-steady rate and it is computed by the

formula below and the results are tabulated in Table 7–2.

√
Q̄′2 =

√∑300
t=150 (Q(t)−Qqs)2

Qqs

(7.5)

The root-mean-square discharge is significantly lower for the simulation obtained using

the full FLOW-3D model. Although the FLOW-3D-SWM is a 2D model, its root-mean-

square value of the discharge is slightly higher. Higher root-mean-square values apparently

are associated with scale of the turbulent motions which can be observed from the images

106



Table 7–1: Quasi-steady state flow rate Qqs (m3/s) obtained for the three channel slopes So
= 0.005, 0.01 and 0.04 using MIS2D, FLOW-3D and FLOW-3D-SWM models.

Slope MIS2D FLOW-3D FLOW-3D-SWM
0.005 51.0 80.4 50.8
0.01 70.4 106.4 73.2
0.04 120.7 174.1 140.3

Table 7–2: Root-mean-square discharge
√
Q̄′2 (m3/s) for the three channel slopes obtained

using the MIS2D, FLOW-3D and FLOW-3D SWM models.

Slope MIS2D FLOW-3D FLOW-3D-SWM
0.005 1.1 0.7 3.3
0.01 2.0 0.8 2.4
0.04 2.4 1.4 3.1

shown in Figures 7–6, 7–7,and 7–8. The scale and nature of the turbulent motions obtained

by the three models are clearly different.

The results obtained from the 3D model are more different than the difference between

the 2D simulation models. This difference might be explained by the computational mesh

is not fine enough particularly in the vertical direction for FLOW-3D model. Because of

the limitation in computing power, further mesh refinement is not feasible to fully resolve

the three dimensional features. Further more, more artificial resistance might be introduced

into the problem to stabilize the three dimensional model in FLOW-3D. This resulting

significant higher discharge values and lower RMS fluctuations in all the three slopes than

the 2D models. Therefore, the full three dimensional model (FLOW-3D) may not be the

best choice to solve this problem. The horizontal length scale is a few folds larger than

the vertical scale the 2D models. MIS2D and FLOW-3D SWM appear to be adequate and

economical thus represent the reality much better. The MIS2D and FLOW-3D SWM do not

produce significantly different results. The subsequent simulations are performed by MIS2D

model due to faster computing speed and easiness to set up.
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Figure 7–9: Variation of flow rate in Q(m3/s) with time t (s) for steep open channel flow
obtained by the three models MIS2D, FLOW-3D and FLOW-3D-SWM. Top: So = 0.005;
Middle: So = 0.01; Bottom: So = 0.04. The quasi-steady-state statistics are determined
from the data obtained over a period of time from 150 s to 300 s.

108



Figure 7–10: Bar graphs for the quasi-steady flow rate Qqs (top), and for the root-mean-

square discharge
√
Q̄′2 (bottom)
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7.4.2 Manning Coefficient of Friction

The next series of simulations are performed to study the effect of initial water depth

ho and block size b on the flow resistance passing through an array of blocks as shown in

Figure7–5. The simulation begins with a layer of water at rest on a channel of uniform

slope So using a periodic boundary condition. The velocity in the channel increases under

the influence of the gravity. Supercritical flows are created by altering the block width b.

Typical of the simulation results of Froude number contours on the plan view are shown in

Figure 7–11. At steep slope of So = 0.02, with small block size (b = 1 and b = 2), the flow in

the channel is essentially supercritical. The Froude number exceeds the value of unity except

the regions behind the blocks. With the increase of block size, it is observed constant flow

transition occurs frequently at the confined spaces between the blocks. These areas are the

critical sections controlled the flow process. The change of color from red to blue in Figure

7–11 marks the location of the hydraulic jump where significant energy dissipation occurs

as the supercritical flow returns to its subcritical state. The wall-and-bed friction drag is

represented by the Manning coefficient nmacro. The form drag can be calculated from the

depth averaged flow obtained from the simulations.

The total flow rate Q eventually reaches a quasi-steady state as described in previous

sections. The value of the quasi-steady discharge Qqs is determined from the plot of Q

versus time. In the quasi-steady state, the friction slope is equal to the bottom slope So

and the discharge on the average is the quasi-steady discharge Qqs. Given a Manning bed-

and-wall friction coefficient nbed, a macro Manning coefficient nmacro is determined from the

quasi-steady flow rate Qqs using the following formula:

Qqs =
1

nmacro

AR
2
3S

1
2
o (7.6)

The macro Manning coefficient nmacro is a catch-all parameter for the overall resistance

of the blocks to the flow. The values of this overall resistance coefficient for different water
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Figure 7–11: Froude number distribution of the flow around the blocks of different sizes b =
1 m, 2 m, 5 m and 10 m in channel of average water depth ho = 0.5 m on a slope So = 0.02
at time t = 300 s

depth ho = 0.5 m, 1 m, 2 m and 4 m are given in Figure 7–12 for one channel of slope So =

0.01. The corresponding time series plots of the flow rate Qqs is given in Figure 7–13.

In the limiting of small water depth, the macro coefficient is the same as the friction

coefficient; i.e.,nmacro = nbed. It increases with the depth to a value as high as nmacro ' 0.12

when the water depth reaches ho = 4 m. When the block size is small, the blocks would not

contribute much on the channel resistance and there is less interaction between the blocks

and water. Therefore, the computed nmacro is only slightly larger than the specified Manning

coefficient nbed. As the size of the blocks increases, water is constrained in the areas between

the blocks. Those areas are the control sections of the flow which determine the upstream

discharge. The form drag is the dominant resistance to flow, when the water is sufficiently

deep and when the dimensions of the obstruction are comparable to the width of the flow.
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Although the Manning formula is widely used in calculation based on the one-dimensional

(1D) hydrodynamic model such as Hec-Ras, the value of the macro coefficient selected for

the 1D simulation would be invalid if the macro coefficient nmacro changes with the depth.

The value of the macro Manning nmacro obtained from in-situ measurement at low flow would

not be the same at flood stage when the water depth is greater than the water depth during

the in-situ measurement.

Figure 7–12: Macro coefficient of friction nmacro in a channel with an array of blocks; block
size is fixed at b = 5 m and the slope is fixed at So = 0.01. The depth is differnt ho = 0.5 m
,1 m ,2 m and 4 m. The label on the side shows the averaged Froude number in the channel

7.4.3 Form Drag Coefficient

For large scale obstructions, the resistance to flow is due to the friction drag and the

form drag. The friction drag follows the correlation of the Manning formula. The form drag
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Figure 7–13: Total flow rate Q versus time t on a channel of slope So = 0.01 for water depth
ho = 0.5 m, 1 m, 2 m and 4 m. The bed-and-wall Manning coefficient nbed = 0.00 and 0.02.
For a fixed block size b = 0.5 m, the quasi-steady discharge Qqs is dependent on the water
depth
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on the other hand is defined by the averaged drag coefficient as follows:

C̃D =
F̃D

Ãf
1
2
ρṼ 2

(7.7)

There are 21 blocks over the length of the channel L. In quasi-steady state, the averaged

drag force is equal to the averaged weight component of the fluid in the direction of the

inclined; i.e.,

F̃D = ρgL[
Bho − 21b2

21
] sin θ (7.8)

The frontal area of the block is

Ãf = bho (7.9)

The averaged velocity is the quasi-steady flow rate Qqs divided by the pore cross-sectional

area and then weight averaged as follows:

Ṽ =
Qqs

ho(B − 4b)

2b

B
+

Qqs

ho(B)

B − 4b

B
+

Qqs

ho(B − 3b)

2b

B
(7.10)

The average drag coefficients calculated according to Eq. 7.7 from the simulation are shown

in Fig. 7–14 to be relatively independent of the water depth unlike the macro coefficient

nmacro in Fig. 7–12. It is clear the drag-coefficient relation according to Eq. 7.7 is a better

correlation in this case when the maximum blockage to the flow 4b = 4 × 5 = 20 m which

is comparable to the total width of the flow of B = 70 m. The form drag and friction drag

follow an opposite relation to depth. The flow resistance increases with the water depth

according to the drag-coefficient correlation, and decreases with the depth according to the

Manning formulation.

7.4.4 Unsteady Drag Coefficient

The drag coefficient computed by Eq. 7.7 is an average value. It is introduced assuming

the flow in the channel has reached a steady state. The instantaneous drag force FD on

the block is computed directly from the numerical simulation by integrating the hydrostatic
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Figure 7–14: Average drag coefficient C̃D in a channel with an array of blocks with block
width b= 5 m, depth ho = 0.5 m ,1 m ,2 m ,and 4 m at slope So = 0.01.

pressure in the front face and at the back face of each block as follows:

FD =
∑ 1

2
ρgh2

front∆y −
∑ 1

2
ρgh2

back∆y (7.11)

This instantaneous force FD has a very different magnitude compared with the averaged

force F̃D given by Eq. 7.8 because the water depth is highly variable due to the formation of

hydraulic jumps in the steep open-channel flow. Figure 7–15 shows the variation of depth for

the case of the block size b = 5 m, the channel slope So = 0.04 and average depth ho = 0.5

m. The maximum and minimum depths in the channel in this case are very different. Water

piles up in the front face of the blocks. It reaches three times higher than the average depth

ho = 0.5 m. Since the flow through the blocks is unsteady, the drag force depends on time

and space. The instantaneous force is directly calculated using Equation 7.11. The time and

spatial variations of the drag coefficient obtained from the direct calculation is shown in Fig.
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Figure 7–15: (a) Map in plan view showing the depth variation for the channel flow through
array of blocks; block size b = 5 m, channel slope So = 0.04 and average depth ho = 0.5 m.
(b) Depth profile through the cross-section x-x.

7–16, where the drag coefficient CD is plotted versus time t for four distinctive blocks no.1,

no.2, no.3 and no.4 (Fig. 7–5) for the numbering of the blocks. The variation of the drag

coefficient is huge particularly on block no.4. The value of the unsteady drag coefficient for

block no.4 varies from the low value of CD = 0.1 to the high value of CD = 27. This 270

folds changes of the unsteady coefficient on the blocks is conceptually significant because the

incipient motion of the rocks and boulders does not depend on the averages C̃D but rather

is determined by the peaks of the force and moment in the highly unsteady flow.
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Figure 7–16: The unsteady drag coefficient CD with block size b = 5m, depth ho = 4 m at

slope So = 0.01 for Block 1, 2, 3, and 4 from t = 100 s to 200 s

7.5 Flood Routing Through a Meandering Channel

The existence of the form drag over the friction drag is anticipated in many steep open-

channel flow through large obstruction. The flood through a meandering river as shown

in Figure 7–17 is another example. The numerical simulations for the flow through the

meandering river are again carried out using MIS2D solver as shown before. The simulation

starts with a layer of water at rest. The gravity along the incline accelerates the flow toward

the quasi-steady state. The periodic boundary conditions produce the meander of infinite

length. The flow is triggered by altering the channel bottom slope So. Figure 7–18 shows

the vorticity profiles of the flow obtained for four channel slopes of So = 0.0025, 0.005, 0.01,

and 0.02 and two Manning coefficients nbed = 0.00 and nbed = 0.02.
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Figure 7–17: Meandering river of meander amplitude a, width w, water depth h and wave
length λ on a channel of slope So.

Figure 7–18: Vorticity contours in the meandering rivers of bed slope So = 0.0025, 0.005,
0.01, 0.02 and Manning coefficient nbed = 0.00 and nbed = 0.02 at time t = 250 s.
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Figure 7–19 and Fig. 7–20 show the variation of the total discharge Q with time t for

the meanders with Manning bed-and-wall coefficient nbed = 0.00 and nbed = 0.02. The

discharge accelerates with time initially at a rate that is equal to the gravity force along

the incline. It eventually attains a terminal state of a quasi-steady discharge Qqs when the

resistance force is exactly equal to the driving force of the gravity. In the case of nbed = 0.00

, although bed-and-wall friction is zero, the flow approaches a quasi-steady state. Since

the friction force is zero, the resistance to flow is entirely due to the form drag which is

produced by the turbulence and waves as the flow negotiates through the meander. The

macro coefficient nmacro is found using the quasi-steady flow rate Qqs as before based on

the Manning’s Equation in Eq. 7.6. Figure 7–22 plots the results of the macro coefficient

nmacro with averaged depth ho. Again, the macro coefficient nmacro is found to be strongly

dependent on the depth.

Figure 7–19: Quasi-steady state flow rate in meandering river with Manning coefficient for
the bed nbed = 0.00. Computations are conducted using grid size ∆x = 0.083 m
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Figure 7–20: Quasi-steady state flow rate in meandering river with Manning coefficient for
the bed nbed = 0.02. Computations are conducted using grid size ∆x = 0.083 m.

As shown in Figure 7–21, the macro coefficient nmacro is not a constant but dependent

on the channel slope So. A series of simulation is performed using the same approach by

fixing the slope So = 0.01 and changing depth ho to 0.5 m, 1 m, 2 m and 4 m. If the Manning

equation is valid, the Manning coefficient should be a constant that depends neither on the

slope nor on the depth. However, macro coefficient is observed to increase with slope as well

as depth. These results are significant. It points to the fact that the Manning formula is not

correct for evaluating the flow resistance due to large scale features such as the meander.

Since the Manning formulation is not valid in this case, a correlation for the form drag

is attempted. In the quasi-steady state, the drag force is equal to weight of the water along

the incline. For the meandering river the weight along the incline is
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Figure 7–21: Macro Manning coefficient of friction nmacro in the meandering channel of slope
So = 0.0025, 0.005, 0.01, and 0.02.

F̃D = ρgBLsho sin θ (7.12)

where Ls is the arc length of the sinusoid. The frontal area is

Ãf = aho (7.13)

where a is the amplitude of the meander. The velocity through the meandering channel is

simply

Ṽ =
Qqs

who
(7.14)

With F̃D, Ãf and Ṽ as given in the above equations, the averaged drag coefficient C̃D is

calculated using Eq. 7.7 for the meandering river. Figure 7–23 shows the results. The

drag coefficient is relatively independent of the water depth suggesting the form drag is the
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dominant process in this particular meander river with a channel width w = 10 m and a

meandering amplitude of a = 5 m.

Figure 7–22: Macro Manning coefficient of friction nmacro in the meandering channel of depth
ho = 0.5 m,1 m ,2 m and 4 m on a slope So = 0.01. The label on the side shows the averaged
Froude number in the channel.

7.6 Conclusion

The results of numerical simulations have shown that the resistance to the flow in open

channels is a combination of the friction drag and the form drag. Although the selection of

the Manning friction coefficient nbed has been the practice in one-dimensional hydrodynamic

modeling such as Hec-Ras, it is important to recognize that this coefficient may also depend

on the depth of the flow. The macro coefficient nmacro obtained from in-situ measurement

at low flow rates may have a very different value at flood stage. The friction drag may

be specified by the Manning coefficient of friction. The form drag on the other hand is
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Figure 7–23: Averaged drag coefficient C̃D in the meandering channel of depth ho = 0.5 m,1
m, 2 m and 4 m on a slope So = 0.01.

more appropriately determined by the drag coefficient. The two kinds of flow resistance

follow entirely opposite dependences on the water depth. When the size of the obstacles

is comparable with the size of the channel, the form drag is the dominant resistance in the

channel and the drag coefficient could be determined from numerical calculations. The direct

numerical simulation also will provide the force and moment calculation that is critical in

the determined incipient motion of rocks and boulders in the highly unsteady flow through

the mountain stream. The peak values of the force and moment obtained from the direct

numerical simulations is significantly greater than the averages. These differences must be

factored in the model for rock-and-boulder transports in steep rivers and in the model of

debris flow produced by floods and Tsunami.
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CHAPTER 8

CONCLUSION

8.1 Summary

A series of numerical simulations and laboratory experiments has been carried out for

a number of problems for shallow water flow in open channels focusing on the wave effects

on turbulence in high-speed shear flow with large Froude numbers. A robust hydrodynamic

solver of consistent transport is developed to perform direct numerical simulations. The

fifth order WENO scheme is used to interpolate the face values and control the numerical

oscillations by locally switching the scheme to third order. The spurious oscillations also

have been managed using the flux limiter using the minimal intervention strategy (MIS2D).

The accuracy of the WENO scheme is demonstrated by the convergence study of the linear

growth rate and the maximum kinetic energy of the jet/wake. The fractional error is smaller

than 0.1%. The accuracy of MIS2D model is demonstrated by comparing the dam-break

wave simulation with the exact solution and the solution obtained from FLOW-3D.

8.1.1 Instabilities of Jet and Wake Flow in Shallow Waters at High Froude
Number

Direct numerical simulations of the instability in shallow water associated with base

flow that has the jet/wake hyperbolic secant profile are performed. The simulations cover a

wide range of Froude number from Fr =0.05 to 4.0. The dominant instability involves both

the sinuous and varicose modes when the convective Froude number is small, but only the

varicose mode when the convective Froude number exceeds the critical value of about 2.8.

These calculations of shear instability for the SECH velocity profile is most significant in the

study of high-speed currents when the convective Froude number is greater than the value
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of unity. The results are consistent with previous study of the analogous problems in gas

dynamics.

8.1.2 Non-linear Transition of Jet/Wake Instability in Shallow Flows

The simulations to study the transition of jet/wake instability to turbulent flow in shal-

low flows are extended to the non-linear stage for both subcritical flow and supercritical

flow. A small perturbation of the most unstable wave length is introduced to the jet/wake

that has a hyperbolic secant velocity profile. The simulations track the rapid increase in the

kinetic energy of the disturbance and the modification to the mean flow during the nonlin-

ear transition. Aspect ratio of the eddy and eddy-shoklet shows agreement with available

experimental data. The transition to turbulence depends on the relative velocity but not on

the absolute velocity in the free-stream. Waves play a significant role in the transition. Sig-

nificant reduction in mass and momentum exchanges is observed with the increase in value

of the Froude number. The effect of the waves on the exchanges is classified according to the

Froude number as subcritical, trans-critical and supercritical on the transition. To capture

the flow discontinuities in the numerical simulations, the spatial interpolation over a stagger

grid is by a fifth-order WENO scheme. A fourth-order Runge-Kutta method advances the

calculations in time. The orders of convergence are 2.6, 3.4 and 1.7 for the simulations of

the transition at the Froude number of 0.5, 2.4 and 4.0, respectively.

8.1.3 Experimental Study of the Exchange Process Between the Main Flow and
its Side Basin

The transverse exchanges of mass between an open-channel main flow and an array of

side basins are studied in the laboratory using a red dye as the tracer. A video imaging

method is employed to measure the dye concentration. The accumulation and retention

times of the dye in the side basins are determined as the parameters to characterize the

exchanges. The mixing and exchange processes across these shear flows at high Froude

number are critically dependent on the energy dissipation across the shock waves and the
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radiation of energy from the waves. The energetic radiation of the gravity waves in the

supercritical flow does not lead to vigorous exchanges. On the contrary, the dimensionless

retention time for the supercritical flow at high Froude number is three to four times greater

than the retention time for the subcritical flow.

8.1.4 Numerical Simulations of Macro Resistance in Steep Open Channels and
Meandering Channels

The resistance to flow due to macro roughness on steep open-channel flow is calculated

directly from numerical simulation by MIS2D model. A series of calculations has been carried

out for several channel geometries including the flow through the meandering river and flow

through obstacles. The flow around the macro roughness is turbulent and dependent on wave

radiation from the turbulent flow. The overall macro roughness coefficient is determined from

the simulations. The overall flow resistance includes both the channel bottom friction and

the form drag. The friction is described by the conventional Manning formula and the form

drag is described by the drag coefficient.

8.2 Contribution to Knowledge

The research has advanced knowledge of the wave effects on the shear instability and its

transition to turbulence for the flow in shallow flows. A comprehensive study of the trans-

critical and supercritical instabilities in comparison with the sub-critical flows are conducted.

A generalized convective Froude number is introduced to parameterize the wave effects. In

the jet/wake instability problem, the convective Froude number defines stability for both

sinuous and varicose modes of oscillations. The co-existence of modes and the switching

from the varicose to sinuous mode described by the direct numerical simulation is a problem

beyond the classical description by the normal mode. Convergence study has shown the

numerical simulations to have better than one percent of accuracy. The analysis of non-

linear stage of the jet/wake development evaluates the velocity fluctuation, mean velocity

profile, total energy and half width, and correlates these variables with convective Froude
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number. The correlation shows the existence of the subcritical range, trans-critical range

and supercritical range of the flow. In the experiments to study the exchange process, the

generation of waves is observed in the laboratory at Froude number greater than the unity.

Friction effect has been included as an addition to the wave effects in the simulations of macro

roughness in open channel flow. Manning coefficient of friction often used in engineering

practice in one dimensional formulation is found to underestimate the flow resistance as

the wave drag is not generally negligible in meandering river channels. Waves produces by

the blockage of rocks and gravels can also contribute significantly the overall resistance in

channel flow on steep slope. The various aspects of the wave effects examined in this thesis

are elements needed for the development of a comprehensive theory of turbulence for the

trans-critical and supercritical flow in shallow flows.
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