
 

ADAPTIVE LOCALISATION AND 
TRACKING OF MULTIPLE 

MICROORGANISMS WITHIN A 
4D HOLOGRAPHY DATASET 

 
 
 

Marwan Elkholy 
Department of Biomedical Engineering 

McGill University 
Montreal, Quebec, Canada 

January 2017 
 
 

A thesis submitted to McGill University in partial fulfillment of the requirements 
of the degree of Master of Engineering 

 
 

  

© Marwan Elkholy 2017 



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 1 of 87 
 

  



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 2 of 87 
 

DEDICATION 

 

 

 

To my mother Dr. Azza Aly, M.D. 

The original microbiologist of our family,  

who was not able to complete her Master’s Thesis because of her difficult pregnancy with me. 

Thank you for being a constant pillar of love and support. 

  



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 3 of 87 
 

ACKNOWLEDGEMENTS 

I cannot express enough gratitude towards Professor Jay Nadeau for her constant guidance 

throughout my studies. She always made herself present and promptly responded to all my 

inquiries, whether research-related or otherwise, when I was struggling and confused. I am 

especially thankful that she has shown me the beauty of research by demonstrating her passion 

towards her work every day.  

My completion of this project would not have been possible without the support of my lab-

mates, Specifically Manuel Bedrossian whose endless curiosity inspired me to take on challenging 

endeavours; Dr. James Kent Wallace who has always been supportive and encouraging; and Dr. 

Christian Lindensmith who inspires a “nothing is impossible” attitude. Without you, my 

accomplishments over these past two years would not exist.  

I would also like to acknowledge Dr. Iman Haji-Albolhassani, who sparked my interest in Machine 

Learning algorithms through our engaging discussions in the lab; and Pina Sorrini who made the 

department feel incredibly warm and welcoming. 

Finally I would like to thank all my friends and family. Notably, Professor Ahmed Elkholy who has 

always pushed me to excel in everything I do; and Mohamed El Gindi who took an active interest 

in discussing my research, then helped to significantly optimise my work-flow. 

I stand on the shoulders of giants.  

Financial support for this project was provided by the Betty and Moore Foundation. Thank you 

for making this happen.   



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 4 of 87 
 

ABSTRACT 

Understanding microorganisms’ motility provides valuable insight into multiple fields including 

infectious disease, environmental microbiology, and astrobiology. However, observing microbial 

motility using conventional light or fluorescence microscopy allows for accurate localisation in 

two-dimensional (2D) space only, despite the fact that the natural microbial environment exists 

in three-dimensional (3D) space.  

Digital Holographic Microscopy (DHM) has recently emerged as a powerful tool for studying 

microorganisms within their unconstrained 3D space. Unfortunately, this technique suffers from 

a poor signal-to-noise ratio (SNR), especially when using unlabeled cells (without fluorescent 

proteins or dyes). Therefore, automatically tracking the bacterial trajectories using image 

processing and computer vision methods is challenging.  

This thesis presents a supervised machine-learning classifier that can handle the low SNR DHM 

phase image reconstructions, and accurately localise unlabeled cells’ centroids with an error 

margin of approximately a cell length in 3D space. The classifier was validated against two 

manually labelled gold standard datasets, each containing a specific species of bacteria (Bacillus 

subtilis and Colwellia psychrerythraea).  This classifier achieved a recall of over 50% and a 

precision of over 90% in both validation datasets. In conclusion, machine-learning classifiers are 

easy to implement and can successfully extract useful information from noisy DHM datasets.   
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RÉSUMÉ 

La motilité des microorganismes fournit des informations précieuses sur beaucoup de domaines, 

y compris les maladies infectieuses, la microbiologie environnementale et l'astrobiologie. 

Cependant, l'observation de la motilité microbienne à l'aide d'une microscopie conventionnelle 

de lumière ou de fluorescence permet une localisation précise dans l'espace bidimensionnel (2D) 

seulement, malgré le fait que l'environnement microbien naturel existe dans l'espace 

tridimensionnel (3D). 

La microscopie holographique numérique (DHM) est récemment apparue comme un outil 

puissant pour étudier les microorganismes dans leur espace 3D non contraint. 

Malheureusement, cette technique souffre d'un mauvais rapport signal / bruit (SNR), en 

particulier lors de l'utilisation de cellules naturelles (sans protéines fluorescentes ni colorants). 

Par conséquent, le suivi automatique des trajectoires bactériennes à l'aide de méthodes de 

traitement d'image et de vision par ordinateur est difficile. 

Cette thèse présente un classificateur machine-learning supervisé qui peut traiter les 

reconstructions d'image de phase de DHM avec SNR faible, et localiser les centroïdes des cellules 

naturelles dans une marge d'erreur d'approximativement une longueur de cellule dans l'espace 

3D. Le classificateur a été validé contre deux ensembles de données étiquetés manuellement, où 

chaque ensemble de données contient une seule espèce de bactéries (Bacillus subtilis ou 

Colwellia psychrerythraea). Ce classificateur a obtenu un rappel de plus de 50% et une précision 

de plus de 90% dans les deux ensembles de données de validation. En conclusion, les 

classificateurs machine-learning sont faciles à mettre en œuvre et réussissent à extraire des 

informations utiles à partir d’ensembles de données DHM bruyants.  
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CHAPTER 1: INTRODUCTION  

1.1 Project Summary 

This thesis describes a machine learning algorithm that is used to obtain three-

dimensional trajectories of live, lab-grown microorganisms as they move within an essentially 

unrestrained environment. The microorganisms are imaged using a Digital Holographic 

Microscope (DHM), which captures three dimensional holograms of the entire sample chamber 

at a rate of about 10Hz. Thanks to the phase contrast imaging capability of DHM, the 

microorganisms do not need to be labeled; all contrast enhancing techniques are performed 

numerically in post-processing after the hologram is captured.  

1.2 Motivation 

  Current techniques for observing bacterial motility are essentially two-dimensional 

because of the small depth of field provided by high numerical aperture objectives. Measurement 

of 3D trajectories is performed by approximating the third dimension from measured 2D 

trajectories, or by inferring the organisms’ z positions as they travel into and out of focus. The 

boundaries of the coverslips constrain motion in the z direction and affect the hydrodynamics of 

the motility and the organisms’ possible swimming ranges. This means that for most bacteria, 

their swimming patterns in an unconstrained 3D volume remain essentially unknown. Studying 

the 3D trajectories of microorganisms is important in numerous fields, including infectious 

disease, environmental microbiology, and astrobiology. See section 2.1 for more information.  
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1.3 Justification 

Digital Holographic Microscopy has recently emerged as a powerful tool for studying 

microorganisms within their unconstrained 3D space. Another important tool that has recently 

emerged is machine learning algorithms that find trends in data without having to be explicitly 

programmed. Both of these tools have become available thanks to the proliferation of 

computational power along with an abundance of computational algorithms. This thesis exploits 

these advances by presenting a simple yet accurate way of locating objects of interest within a 

large, noisy 3D dataset, and tracking all the objects simultaneously with high throughput.  

1.4 Contributions 

 Logistic regression (LR) is the machine learning pixel classification tool used to achieve the 

results of this study. Although LR has been previously used for pixel classification of images [1, 

2], it has never been applied to 3D holography reconstructions as a tool for object detection. This 

study presents LR being used for localisation of different microorganism species in 3D, 

demonstrating the flexibility of the classifier and its ability to ‘learn’ the properties of the 

microorganisms of interest.   
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

2.1 Why Study Microbial Motility? 

Microbial processes are often governed by the microorganisms’ motility strategies. 

Examples of microbial processes include behavioural responses of microbial cells to chemical 

stimuli, the interactions between cells and biotic or abiotic surfaces, and cell–cell interactions in 

microbial suspensions. Understanding the microbes’ motility strategies provide valuable insight 

into a broad range of fields such as infectious disease, environmental microbiology, and 

astrobiology. Figure 1 shows a typical random walk path taken by E. coli [3]. It demonstrates the 

“run” and “tumble” motility strategies visible through a traditional light microscope.  

 

Figure 1 

Typical “random walk” path taken by E. coli and other bacteria with multiple flagella. This figure demonstrates the “run” 

and “tumble” motility strategies.  [3] 

UNDERSTANDING MICROBIAL BIOPHYSICAL MECHANISMS 

Motility models are constantly being proposed and verified using the latest technologies 

available. For example back in 1973, Berg et al. [4] suggested that bacteria swim by rotating their 



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 14 of 87 
 

flagellar filaments. Using mathematical models, they found that the power required for 

propulsion was consistent with laboratory observation, given that multiple flagella rotate 

together in bundles to propagate helical waves. In 1974, Silverman et al. [5] used light microscopy 

to observe the motility of E. coli mutants. The mutants lacked genes used to construct parts of 

the flagellar filament and the flagellar hook structure. Silverman et al. then obtained electron 

micrographs of the flagellar structures, and inferred that the flagellar hook structure is driven in 

a rotary fashion, and results in the rotation of the flagellar filament. Further confirmation that 

bacteria swim by rotating their flagellar filaments was obtained in 1977, when Macnab et al. [6] 

investigated flagellar rotation by constructing physical models of the entire flagellar structures 

made from stainless steel and Teflon, with parameter properties matching those typically 

observed by light and electron microscopy. These experiments provided the foundation of 

bacteria propulsion biophysics.  

In more recent years, researchers attempted to explain how bacteria were able to direct 

their propulsion specifically towards chemical attractants, and away from chemical repellants. In 

2000, Turner et al. [7] used advances in fluorescence microscopy to perform real time imaging of 

E. coli ’s flagellar filaments. They confirmed that E. coli cells modulated the direction of rotation, 

from counter-clockwise to clockwise, of one or many of their flagellar motors to change their 

swimming direction. This is called a “tumble”. Figure 1 displays a typical E. coli random walk 

observable by a microscope, demonstrating the “run” and “tumble”. A run is when the bacterium 

moves in a direct, straight direction. A tumble is when the bacterium changes its orientation at 

the end of a run, before performing another run in a new direction. Their study was limited to 

the 167 times that a cell ran into the field of view within the plane of focus, tumbled within the 
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plane of focus, and ran out of the field of view still within the plane of focus of the fluorescence 

microscope. These events were relatively rare, but they allowed the researchers to analyze them 

in their entirety.  

Other bacterial genera, such as Vibrio, possess a single flagellum instead of the multiple 

flagella that permit E. coli to run and tumble.  The single flagellum has a bidirectional motor 

similar to E. coli, giving these species two motility strategies: “forward” (flagellum runs one way) 

and “reverse” (flagellum runs the other way). Early studies of these organisms, such as one by 

Taylor et al. [8], had proposed that these species change direction because each reversal typically 

results in a small change in cell orientation, allowing the bacterium to significantly change its 

swimming direction over multiple reversals. In 2005, Magariyama et al. [9] used 2D phase-

contrast microscopy to observe the swimming patterns of three different strains of Vibrio 

alginolyticus--one with only forward swimming, one with only backwards swimming, and the 

wild-type bacteria with both forwards and backwards swimming. Using only the microorganisms 

that were within the narrow depth of focus of their microscope (~10 µm), they observed that 

near the surface, the forward direction (trajectory?) was straight and the backwards direction 

was significantly curved, forming a tight circle a few bacterial lengths in diameter. The asymmetry 

in swimming direction was explained by a hydrodynamic interaction with the surface [10].  

In 2011, Xie et al [11] proposed a new motility strategy for bacterial species with a single 

polar flagellum: the three-step (forward-reverse-flick) swimming pattern for chemotaxis away 

from the surface. The researchers obtained their data using an inverted microscope coupled with 

a 30 fps CCD camera. Only the bacteria present within the narrow depth of focus of their 
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microscope (~6 µm) that demonstrated two flicking events were kept, and the rest were 

discarded. Figure 2 shows a typical swimming path taken by Vibrio alginolyticus. 

 

Figure 2 

Bacterial trajectories of  Vibrio alginolyticus in a motility medium (A) and in a steep chemical gradient created by a 

micropipette filled with 1 mM serine (B). The big solid circles are the starting points of the bacterial tracks, and the small 

solid circles represent the positions at an equal time interval of 0.067  s. The green and the red segments correspond to 

the forward and the backward trajectories, respectively. The large open circles marked the flicking events; for clarity, not 

all flicking events are marked in A.  

[11] 

  

The studies described in this section shed significant light onto understanding microbial 

biophysical mechanisms. However, they were all performed as a 2D analysis of microbial motility 

patterns, and are therefore limited by the narrow depth of focus of most conventional 

microscopes. The world we live in exists in three dimensions, and therefore critical information 

may have been missed or lost due to the limitations of the technologies available to the 

researchers. New technologies such as Digital Holographic Microscopy (DHM) have emerged to 

give us further insight into 3D microbial motility. DHM will be discussed in detail in sections 2.3.  
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MOTILITY AS A TOOL FOR ASTROBIOLOGY 

  In the 17th century, a lens maker named Antonie Van Leewenhoek observed living 

microorganisms using a single-lens microscope [12]. The motility he observed gave him immense 

delight when he proclaimed: “I must say, for my part, that no more pleasant sight has ever yet 

come before my eye than these many thousands of living creatures, seen all alive in a little drop 

of water, moving among one another, each several creature having its own proper motion.” [13]. 

This marked the beginning of the field of microbiology since, prior to his observation, the 

existence of sub-visible microorganisms was not widely accepted. 

These events demonstrate the utility of characteristic microbial motility as a 

biosignature—that is, as a means for recognizing extraterrestrial microbial life as life even if it is 

physically and chemically very different from Earth life. Nadeau et al. [14] proposed motility as 

the most unambiguous biosignature for life detection missions within the Solar System, where 

liquid samples may be collected and imaged in situ. They argued that microbial motility on Earth 

was ubiquitous, even in extremely cold extraterrestrial analogue environments such as sea ice, 

glacier ice, and permafrost. The study presented images of brines collected from sea ice. The ice  

appears solid to the naked eye, but microscopic inspection reveals that it is in fact porous, 

containing a network of microscopic veins and channels filled with brine (see Figure 3), which 

may be collected as it oozes slowly from a cut surface of sea ice at sub-zero ambient 

temperatures. The researchers found microorganisms, including prokaryotes, living within these 

veins and channels by simply observing the motility of bacteria and algae. The organisms were 

unambiguously identified as alive and active because directed motion by living microorganisms 
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is distinct from diffusion and flow of dead matter. While not all bacteria present were motile, all 

observed samples contained some motile organisms.   

 

Figure 3 
Solid sea ice under microscopic inspection. The area outlined in (A) is enlarged in (B) and (C), where (C) was taken by  

epifluorescence microscopy following staining with the DNA -specific stain DAPI.  
[14]  
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2.2 Traditional Methods of Studying Microbial Motility  

WHY USE 3D MEASUREMENTS INSTEAD OF 2D?  

Observing motility using conventional light microscopy only allows for localisation in 2D. 

However, the natural microbial environment exists in 3D. Conventional observations may either 

capture a projection of the 3D trajectories onto the 2D plane [15], or they may be limited to only 

the z-planes that are in focus [7, 9, 11, 16]. This severe limitation gives an incomplete image of 

the motility patterns observed. For example, a bacterium travelling up, perpendicular to the 

plane of projection, will appear stationary using conventional techniques. Taute et al. [17] 

calculated the systematic errors that arise using conventional microscopic techniques when 

observing bacterial motility (see Figure 4). They found that aside from the effects of localisation 

errors, 2D projection (column 2 of Figure 4) of the same volume introduces systematic errors in 

speed and turning angle measurements, compared to the correct speed and turning angle 

measurements found in 3D tracking (column 1 in Figure 4). On the other hand, observations 

obtained from 2D slicing (column 3 of Figure 4) are constrained to a thin focal plane of thickness 

d. Assuming that runs have to lie fully within the slice and are five times longer than d, the vast 

majority of turning events are ignored and a bias against turning angles near 90° is introduced. 

In summary, 2D methods do not capture the entire complexity of bacterial motility within their 

natural, 3D environments.  
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Figure 4 

Comparison of 3D and 2D tracking methods [17].  

 

METHODS FOR OBSERVING MICROORGANISMS IN 3D 

There are few techniques that allow for capturing bacterial motility in 3D. Howard C. Berg 

[18] managed to manually track bacteria by moving the sample in the plane of focus to keep a 

bacterium in focus back in 1971. This has since been the gold standard of bacterial 3D tracking. 

However this method is technically demanding because it requires a specialised experimental 

setup, and only allows for tracking one bacterium at a time. A simpler way to measure depth is 

to use the largest diffraction ring diameter of the object being observed as a linear measure of 

the object’s absolute distance |𝑧| from the focal plane [19]. This method has high throughput, 

Column 3 Column 2 Column 1 
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and has been done with fluorescence microscopy [20], darkfield microscopy [21] and phase 

contrast microscopy [22]. However, these methods only allow for a maximum depth 

measurement of about ± 30µm from the focal plane before compromising the accuracy of the 

measurement. Taute et al. [17] improved upon these methods to get a larger range of 200 µm of 

depth measurements using phase contrast microscopy. They achieved this by using image cross-

correlations of the observed bacterial diffraction patterns with a “diffraction patterns reference 

library” to infer the z-position of the bacteria (see Figure 5). However their method is most 

suitable to tracking spherical bacteria of a specific size, because the method requires the creation 

of a reference library using fixed sized silica beads.  

 

Figure 5 

(a) A vertical slice through a reference library created by combining 73 aligned image stacks obtained for 1 μm silica 

beads.  

(b) Horizontal slices from the reference library at positions marked in  a.  

(c) Images of a swimming E. coli bacterium at the corresponding positions.  

(d) Reconstructed 3D trajectory for the bacterium in  c. The trajectory starting point is marked by a black dot.  

[17] 
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Digital Holographic Microscopy (DHM) has emerged as the most suitable method for 

measuring 3D motility information of live microbial cells. It overcomes the two main limitations 

discussed previously in this section: the need for a dynamic stage that must be adjusted to keep 

a bacterium in focus, and the need for a reference library to infer the position of regularly shaped 

bacteria from their out of focus diffraction patterns. DHM will be discussed in detail in section 

2.3.  
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2.3 Digital Holographic Microscopy 

 Digital Holographic Microscopy (DHM) is based on the technique of holographic 

interferometry (HI). This section will overview HI, and describe how HI is used along with a 

magnifying objective (MO) lens to create a holographic microscope. 

HOLOGRAPHIC INTERFEROMETRY 

 In 1948, Dennis Gabor [23, 24] invented holography as a technique for recording the 

amplitude and phase of a wavefield. The recorded interference pattern between an object’s 

scattered wavefield and a coherent background, called the reference wave, is called a hologram 

[25]. Holograms are recorded as a flat 2D image, but their interference patterns contain 

information about the entire three-dimensional wavefield. The original object wave can be 

reconstructed from its hologram by illuminating the hologram with its same reference wave 

again. This reconstructed wave is indistinguishable from the original object wave, and an 

observer would see a 3D image. The word holography is derived from the Greek word ‘holos’ 

meaning ‘whole’ or ‘entire’, and ‘graphein’ meaning ‘to write’.  

An important application of holography is holographic interferometry (HI). HI was developed 

in 1965 by Stenson and Powell [26, 27], allowing researchers to map the 3D displacements of 

rough surfaces with sub-micrometer accuracy. There are two main types of interferometers--the 

Michelson interferometer for reflective objects and the Mach-Zehnder interferometer for 

transmissive objects [28]. A typical Michelson interferometer is presented in Figure 6, whereas a 

typical Mach-Zehnder interferometer is presented in Figure 7. In both diagrams, the light-green 

beams are the input from the laser, the light blue is the reference beam path, and the light red 
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depicts image formation of an object point. In both designs, the object is illuminated with a plane 

wave, and the reference arrives at the charged coupled device array (CCD) plane with the same 

wavefront curvature as the object wave. The CCD is a light sensor, used to digitally record the 

resulting hologram. The digital hologram can be reconstructed back into the original object 

wavefront using numerical methods implemented by a computer [29].  

 

Figure 6 

Michelson interferometer for digital holography of reflective samples.  

BS: beamsplitters; L: lenses; H: image; M: mirrors; G: apertures.  

[28] 

 

Figure 7 

Mach-Zehnder interferometer for digital ho lography of transmissive samples 

BS: beamsplitters; L: lenses H: image; M: mirrors; G: apertures.  

[28] 
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RECONSTRUCTING A HOLOGRAM  

  The amplitude and phase distribution in the plane of the real image can be found by the 

Fresnel–Kirchhoff integral [29, 30]. If a plane wave illuminates the hologram located in the 

plane z = 0, with an amplitude transmittance t(x, y), the Fresnel–Kirchhoff integral gives the 

complex amplitude Γ(ξ, η) in the plane of the real image. The amplitude and phase distribution 

can be approximated by the Frensel approximation: 

 

Parameter d is the distance between the object and the CCD array, a is the amplitude of the 

incident wave, and λ is the wavelength of the incident wave. The Fresnel approximation is valid 

if d is large enough, specifically:  

 

The maximum possible value of (ξ − x)2 and (η − y)2 must be considered. For example, if λ = 600 

nm and typical hologram dimensions of (ξ − x)max = (η − y)max = 0.5 cm, d must be much larger 

than 15 cm. 

The intensity I in the real image can be calculated by squaring the modulus:  

𝐼 =  𝑅𝑒 (Γ)2 + 𝐼𝑚 (Γ)2 

The phase image Ф can be obtained by the argument: 

(2.1) 

(2.2) 

(2.3) 

(2.4) 



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 26 of 87 
 

 Ф = arctan
Im(Γ)

𝑅𝑒(Γ)
 

The function Γ(ξ, η) can be digitized if the hologram transmission t(x, y) is sampled on a 

rectangular raster of N × N matrix points, with steps Δx and Δy along the coordinates. ξ and η are 

replaced by rΔξ and sΔη, where r and s are integers. In this case the discrete representation of 

the Fresnel approximation is given by the following equation [31]: 

 

Γ(r, s) is a matrix of N × N points that describes the amplitude and phase distribution of the real 

image. Δξ and Δη are the pixel sizes in the reconstructed image. In summary, this equation is a 

representation of the Fresnel approximation in terms of the discrete Fourier transform used to 

digitally reconstruct a hologram image back to its original waveform, and ready for processing.  

MICROSCOPY USING HOLOGRAPHIC INTERFEROMETRY 

 The ability of digital holographic interferometry to numerically focus on different sample 

planes without any optomechanical movement has been exploited to give rise to Digital 

Holographic Microscopy (DHM). A microscope objective (MO) enlarges the light transmitted by 

the sample (S) to form the object wave O, which interferes with the reference wave R to create 

the hologram.  Figure 8 shows the schematic of a standard Mach-Zender DHM used by Marquet 

et al. [32] to study living neurons in 3D space. One can easily observe that a DHM is nothing more 

than an interferometer containing a MO within the beam paths. 

(2.5) 
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Figure 8 

Reprinted with permission from ref [32], Optics Letters:  

Basic configuration of the Mach-Zender DHM used by Marquet et al. [32]. Inset, schematic representation of cultured cells 

mounted in a closed perfusion chamber. M, mirror. BS, beam splitter. C, Condenser. n m, refractive index of medium. D, 

thickness of sample chamber. Other abbreviations defined in text.  

  

DHM has proven to be a powerful tool by enabling the study of biological entities in 3D 

space. It has been used to study distribution and swimming patterns of plankton in the open 

ocean [33], to investigate dinoflagellate feeding behaviour [34, 35], to study the motility of algal 

zoospores [36], and to study cultured cells in the laboratory [32, 37-42]. The CCD has the ability 

to digitally record many holograms per second and hence, capture the dynamic movements of 

microorganisms in 3D. In conclusion DHM is a powerful tool that is starting to gain traction within 

the life sciences community.  

BIOLOGICAL CHALLENGES OF USING A DIGITAL HOLOGRAPHIC MICROSCOPE 

There are challenges in biology that are not encountered in the more common material 

science applications of DHM. Specifically, cells are not perfect spheres, vary in size and shape 

from one cell to another, and have indices of refraction close to that of water [43]. The power of 

the light source must also be monitored as to not harm the organisms being observed, which 



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 28 of 87 
 

results in errors due to an increase in shot noise that becomes significant at low illumination [44]. 

Other sources of noise specific to DHM include laser speckle [45], which is inherit to any imaging 

technique using coherent light sources, and temporal phase noise, which results from the 

uncorrelated noise between the two beams of the interferometer.  

These all result in difficulties with hologram reconstruction and data analysis by 

generating a low signal-to-noise ratio of the imaged microorganisms. Therefore, automatically 

identifying the microorganisms using standard image processing and computer vision methods 

is very challenging and requires the development of a sophisticated technique that can account 

for these noisy datasets. Furthermore, tracking the trajectories of each microorganism in 3D 

using DHM becomes much more complicated if the microorganisms cannot be effectively 

identified. This thesis solves the problem of bacterial identification in noisy datasets by using a 

machine learning algorithm that adapts to each dataset. It is the first time that an automated 

algorithm has been shown to work for holographic tracking of bacteria. Previous attempts to 

track bacteria with DHM have required complex de-noising algorithms coupled with manual 

tracking [46].  
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2.4 Tracking Algorithms for Observing Microbial Motility 

 Particle tracking has been used to quantitatively study many different dynamic biological 

processes such as cell membrane dynamics [47], cytoskeletal filaments, focal adhesions [48], viral 

infection [49], intracellular transport [50], gene transcription [51] and genome maintenance [52]. 

Technological developments in recent decades, such as the abundance of computational power 

along with the proliferation of computer algorithms, have resulted in the emergence of 

numerous automated particle tracking tools [53]. Automated particle tracking software tools can 

generally be divided into two steps: particle identification/detection (the spatial aspect), 

followed by particle tracking/linking (the temporal aspect).  In the first step, the coordinates of 

particles of interest are found within every frame of the image sequence. In the second step, 

detected particles are connected from frame to frame to form tracks. Many algorithms have 

been developed over the years for each of these steps; some are specific to bioimaging [54-59], 

while others are general and can be applied to any given data set [60].  

In 2014, Chenouard et al. [61] provided an objective comparative study of the most 

common particle tracking methods used in bioimaging. First, they identified three main factors 

that affect tracking performance: dynamics (type of motion), density (number of particles per 

field of view), and signal relative to noise (SNR). Second, they simulated a set of 2D and 3D image 

data based on these different factors (see Table 1 and Figure 9). They then sent these image data 

sets to 14 teams who took up the challenge of identifying and tracking the particles, using already 

established state-of-the-art methods (see Table 2). The teams then sent back their results, and 

their performance was quantitatively evaluated.   
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Table 1 

Properties of the simulated image data used by Chenouard et al. to evaluate different particl e tracking methods [61] 

 

 

Figure 9: Examples of simulated image data. Representative images of the three main factors (particle dynamics, density, 

and signal) affecting tracking performance are shown. (a) Four  biological scenarios were simulated, of which we show 

snapshot images (i–iv) and trajectories (v–viii) in arbitrary colors: particles showing random walk motion imaged in 

2D+time using widefield microscopy (i, v); larger (elongated) particles represented by asymmetric Gaussians showing 

directed motion in 2D+time (ii, vi); particles switching between random walk and randomly oriented directed motion 

imaged in 2D+time using confocal microscopy (iii, vii); and particles switching between random walk and direc ted motion 

with restricted orientation imaged in 3D+time (only one slice is shown) using confocal microscopy (iv, viii). (b, c) Three 

density levels (b; low, medium and high) and four signal -to-noise (SNR) levels (c; 1, 2, 4 and 7) were simulated.  

[61] 

Signal 

Dynamics 

a 

c 
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Table 2  

Description of 14 methods used in the comparative study by Chenouard et al. to detect (identify) and link (track) the 

particles.  

[61] 

Method Authors Detection Method Linking Method Dim. Ref.   

 Principle Remark 
  

1 Ivo F. Sbalzarini 

Yuanhao Gong Janick 

Cardinale 

Iterative intensity-

weighted centroid 

calculation 

Combinatorial 

optimization 

Greedy hill-climbing 

optimization with 

topological constraints 

2D & 3D [62] 

2 Craig Carthel Stefano 

Coraluppi 

Adaptive local-

maxima selection 

Multiple 

hypothesis 

tracking 

Motion models are 

user specified (near-

constant position 

and/or velocity) 

2D & 3D [63, 64] 

3 Nicolas Chenouard 

Fabrice de Chaumont 

Jean-Christophe 

Olivo-Marin 

Maxima after 

thresholding two-scale 

wavelet products 

Multiple 

hypothesis 

tracking 

Motion models are 

user specified (near-

constant position 

and/or velocity) 

2D & 3D [65-67] 

4 Mark Winter Andrew 

R. Cohen 

Adaptive Otsu 

thresholding 

Multitemporal 

association 

tracking 

Post-tracking 

refinement of 

detections 

2D & 3D [68, 69] 

5 William J. Godinez 

Karl Rohr 

Either thresholding + 

centroid or maxima + 

Gaussian fitting 

Kalman filtering 

and probabilistic 

data association 

Interacting multiple 

models using motion 

models as specified 

2D & 3D [70, 71] 

6 Yannis Kalaidzidis Lorentzian function 

fitting to structures 

above noise level 

Dynamic 

programming 

Track assignment 

based on weighted 

sum of multiple 

features 

2D [72] 

7 Liang Liang James 

Duncan Hongying 

Shen Yingke Xu 

Gaussian-mixture 

model fitting 

Multiple 

hypothesis 

tracking 

Interacting multiple 

models with forward 

and backward linking 

2D [73] 

8 Klas E. G. 

Magnusson Joakim 

Jaldén Helen M. Blau 

Watershed based 

clump splitting and 

parabola fitting 

Viterbi algorithm 

on state-space 

representation 

Brownian motion is 

assumed in all cases 

2D & 3D [74, 75] 

9 Perrine Paul-

Gilloteaux 

Either maxima with 

pixel precision (2D) or 

thresholding + 

Gaussian fitting (3D) 

Nearest neighbor 

+ global 

optimization 

Global optimization of 

associations using 

simulated annealing 

2D & 3D [76, 77] 

10 Philippe Roudot 

Charles Kervrann 

François Waharte 

Histogram based 

thresholding and 

Gaussian fitting 

Gaussian template 

matching 

Only local and per-

trajectory particle 

linking 

2D [78-80] 

11 Ihor Smal Erik 

Meijering 

Gaussian fitting 

(round particles) or 

centroid calculation 

(elongated particles) 

Sequential 

multiframe 

assignment 

Global linking cost 

minimization 

2D [65, 81, 

82] 

12 Jean-Yves Tinevez 

Spencer L. Shorte 

Parabolic fitting to 

localized maxima 

Linear assignment 

problem 

Two-step approach 

(frame-to-frame and 

segment linking) 

2D & 3D [83, 84] 

13 Joost Willemse 

Katherine Celler 

Gilles P. van Wezel 

Watershed based 

clump splitting 

Nearest neighbor Allows merging and 

splitting of particles 

and uses a linear 

motion model 

2D & 3D [85, 86] 

14 Han-Wei Dan Yuh-

Show Tsai 

Morphological 

opening based clump 

splitting 

Nearest neighbor 

and Kalman 

filtering 

Essentially a 2D 

method keeping track 

of maximum intensity 

in z 

2D & 3D [87, 88] 
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The results showed that no one particle tracking method performed best for all data. The 

best identification methods were based on careful implementation and parameter tuning of any 

algorithm. The best tracking methods were the ones that used multiframe/multitrack 

optimization instead of the simpler nearest-neighbour linking. In addition, methods that made 

explicit use of the prior knowledge about the particle motion in each scenario were more 

successful than methods that did not. In conclusion, the paper stated the importance of having a 

“training” data set that simulated real data as accurately as possible. The training data are used 

to quantitatively evaluate and optimize tracking methods before applying the methods to real 

data. 

One example of a tracking method that uses multiframe/multitrack optimization on 

Digital Holographic Microscopy (DHM) datasets is the algorithm developed by Sheng et al. [34], 

who measured the three-dimensional trajectories of two different types of dinoflagellates and 

their prey. The trajectories were classified by their radius, pitch of helical swimming, translation, 

and angular velocity. To obtain the trajectories, the author first had to locate the 3D coordinates 

of the each particle using an automated segmentation method [89]. Then a 3D Lagrangian 

tracking algorithm was implemented which selected the most likely trajectory based on six 

criteria. These criteria were the smoothness of the trajectory segment, the smoothness of the 3D 

velocity, the smoothness and upper bound conditions on acceleration, similarity of cell size, 

similarity in shape based on correlation between the first image and subsequent images, and the 

similarity of the aspect ratio between the minimum and maximum dimensions of the in-focus 

images.  More formally, this procedure is known as a multi-layer decision tree combined with a 

support vector machine classifier. The most likely trajectories were examined manually and the 
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most correct-looking one selected. Even though this method can result in accurate tracks, it is 

very time consuming and only appropriate for tracking a small number of microorganisms within 

a sample.  

In this thesis, a high precision machine-learning particle identification/detection 

algorithm based on linear logistic regression [90] was implemented. The algorithm requests an 

expert user to identify bacteria from a training data set, which is a small subset of the recorded 

dataset. Therefore, the training data is as close as possible to the rest of the recorded dataset. 

This training step would account for the large variability in reconstruction image settings among 

different DHM data sets.  

As for particle tracking/linking, the simple nearest-neighbour Hungarian linking algorithm 

developed by Tinevez et al. [91] was implemented here. Links are created amongst particle pairs 

found to be the closest in Euclidean distance. By virtue of the Hungarian algorithm, it is ensured 

that the sum of the pair distances is minimized over all particles between two frames. The main 

advantage of using this simple linking algorithm is that it does not require any prior knowledge 

about the microorganism’s movements throughout the data set. Since the particle 

identification/detection step described previously has high precision, accurate trajectories were 

obtained using one of the simplest tracking/linking algorithms available.  

In the chapter 4 of this thesis, the performance of the algorithm is evaluated using two 

“gold standard” DHM datasets in which the microorganisms were manually labelled and tracked 

by an expert.  
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CHAPTER 3: METHODS AND EXPERIMENTAL TECHNIQUES 

3.1 Data Acquisition 

SPECIFICATIONS AND DESIGN OF THE DIGITAL HOLOGRAPHIC MICROSCOPE 

The Digital Holographic Microscope (DHM) used in this study was designed and built by Wallace 

et al [92]. It is a twin-beam off-axis DHM, suitable for extreme environments in terms of 

mechanical and thermal stress. Figure 10 shows a schematic of this DHM in its laboratory 

implementation. Figure 11 shows the same microscope, but in its robust, field portable 

implementation. Table 3 lists the properties and technical specifications of this DHM.  

 

Figure 10 
Reprinted with permission from ref [92], Optics Express: 

Schematic and images of the compact, twin-beam digital holographic microscope in its laboratory implementation.  
(a) Schematic showing four main elements (discussed in the text): the source, the sample (specimen path is labeled  Spec. 

and reference path is labeled Ref.), the microscope, and the sensor.  
(b) Solid model of the hardware. The fiber-fed source assembly is at the bottom, and the imaging camera is at the top. The 
microscope optics – comprised of the two aspheric lenses and the relay lens – are contained within the 300 mm long lens 

tube. The three- axis stage between the source the microscope optics provides easy manual manipulation of the specimen 
under study.  

(c) Photograph of the instrument in the laboratory. A shutter over the collimating lens protects against condensation, and 
is operated remotely by a controller . 

[92] 
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Figure 11 
Field implementation of the portable DHM designed by Wallace et al. [93] 

 

Table 3 
Reprinted with permission from ref [92], Optics Express: 

Properties of the DHM designed by Wallace et al. [92] 

Property Value Unit Note 

Operating Wavelength 405 nm Single-mode fiber-coupled 
laser 

Objective focal length f0 7.6 mm Aspheric singlet 

Objective Numerical 
Aperture 

0.30   

Relay lens focal length fr 150 mm Achromatic Doublet 

System magnification 19.7   

Lateral resolution 0.7 µm  

CCD pixel size 3.45 x 3.45 µm x µm 2448 x 2050 CCD chip 

Sample imaging volume 360 x 360 x 
>600 

µm x µm x µm In 2048 x 2048 (4Mpx) 
mode 

Sampling Rate 15 Frames per 
second 

4Mpx mode; 22 fps with 
1Mpx 

Instrument length 400 mm Input fiber to back of CCD 



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 36 of 87 
 

SAMPLE CHAMBER 

A microfluidic sample chamber was designed to fit the DHM without leaking. The sample 

chamber contained two channels, each channel holding a volume of 24µL. One channel was for 

the sample and the other channel was for a fluid-only reference, as required by DHM. The 

chambers allowed the laser light to pass through high-quality glass as shown in Figure 12 . The 

sample chambers were disassembled and cleaned before every use.  

 

Figure 12 
Sample chamber design schematic used in this thesis.  

PDMS: polydimethylsiloxane, a common material used for construction of microfluidic channels.  
[94] 

 

PREPARATION OF MICROBIAL SAMPLES 

The Bacillus subtilis cells were grown to mid-log phase in Lysogeny Broth (LB) in a shaking 

incubator at 30 ºC. They were then diluted in motility medium (10mM potassium phosphate, 

10mM NaCl, 0.1mM EDTA, 0.1mM glucose, pH 7.0) immediately before being inserted into the 

sample chamber and imaged using the DHM at room temperature.  
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The Colwellia psychrerythraea cells were maintained in ½ strength 2216 Marine Broth (Difco) at 

6°C. They were then diluted using the same Difco broth immediately before being inserted into 

the sample chamber and imaged using the DHM at room temperature.  

RECONSTRUCTION OF A HOLOGRAM INTO MULTIPLE 2D Z-PLANES 

The commercial KOALA® software from LynceeTec was used for the holographic reconstructions 

[95]. For each hologram imaged at a specific time-frame, two series of images were reconstructed 

that spanned multiple z-planes; the intensity images and the phase images. The images were 

saved in 8-bit .tiff format; each image had a unique name which contained both its z slice and 

time-frame location. This process was repeated for each hologram imaged at all time-frames. The 

holograms of “gold standard 1” and “gold standard 2” datasets were numerically reconstructed 

at a z spacing of 1.25 µm/slice and 2.50 µm/slice, respectively. 
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3.2 Generating Motility tracks 

OVERVIEW 

This chapter presents an Object-Identification Learning Algorithm suitable for a large variety of 

4-D datasets. The user identifies objects of interest within a subset of the dataset, and then 

similar objects within the entire dataset are presented back to the user by the algorithm.   

Generating motility tracks is achieved in two steps: the first step is Object Identification and the 

second step is Object Tracking.  

 

Figure 13  
3D tracks of Vibrio alginolyticus  moving through a sample volume of size 360 x 360 x 200 µm 3.  

These tracks were obtained using the 3D Object-Identification Learning Algorithm described in this paper . 

 

Table 4 
Generalised input and output of the algorithm descibed in this study.  

 Input 4D holographic time series reconstruction 
dataset. 

Output 3D Tracks of objects within the dataset. 
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Figure 14 
Algorithm Flowchart 
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3.2.1 - OBJECT IDENTIFICATION 

Goal: To find the 3D centroid of every object at all time frames within any 4D 

holography dataset.   

This section will describe a binary classification algorithm used to separate pixels representing 

microorganisms from pixels representing background within a 4D holography dataset. This 

Identification algorithm outputs the 3D centroids of every microorganism in the dataset D.   

 

Figure 15 
Object Identification Methodology Overview 

 

 

Figure 16 
Left Image: raw hologram phase reconstruction image.  

Right Image: Pixels classified as bacteria (white pixels) and pixels classified as background (black pixels) of the Left Imag e. 
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noise reduction

Phase 1 and 2

Training the 
Classifier using a 
small subsection 

of the Dataset

Phase 3

Running the 
Classifier on the 
entire Dataset

Post-processing

Removing false 
positives



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 41 of 87 
 

Variables and parameters  

 

Table 5 
Variable and Parameter list of the object identification algorithm 

 

 

  

Input Variables Variable Type  Description 

D 4D 8-bit positive integer 
Matrix  

Variable D is a 4D hyper-stack 
of two dimensional grayscale 
images that pan through the 
sample depth and time.   

Dtrain 3D 8-bit positive integer 
Matrix 

Dtrain is a 3D stack of two 
dimensional images at 1 
point in time. This stack 
represents the entire volume 
at 1 time-frame.  

Parameters Parameter Type  Description 

pCutoff Double-precision number 
between zero and one 

Pcutoff is the value 
representing the threshold 
minimum probability 
required for a pixel to be 
classified as “object”.  

minCluster Positive 8-bit integer minCluster is the minimum 
number of connected pixels 
that an “object” could 
possess. Connected “object” 
pixels of a size below 
minCluster are ignored and 
treated as noise.   

Output Variables Variable Type  Description 

Points Double-precision Cell Array Output Variable Points is a 
cell array containing all the 
3D object centroids found 
within every time-frame. 
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Linear Logistic Regression Classifier 

A linear logistic regression classifier [90] can be used for any dataset with a binary output. It is 

trained using a supervised training dataset; supervised meaning that an answer key exists for the 

training dataset.  

The Linear Logistic Regression pixel classifier described in this section is flexible; therefore, it can 

deal with the large variability of DHM datasets. It is implemented in MATLAB using the glmfit() 

and glmval() functions found in MATLAB’s “Statistics and Machine Learning” toolbox. It is a 

supervised learning algorithm.  

The classifier ℎ𝑤(𝑥) is calculated to map the pixel features matrix 𝑋𝑡𝑟𝑎𝑖𝑛 (see Figure 14) of the 

pixels in the training data set 𝐷𝑡𝑟𝑎𝑖𝑛 , to a binary vector 𝑦𝑡𝑟𝑎𝑖𝑛 . 𝑤 is the linear weights of the 

feature columns in  𝑋𝑡𝑟𝑎𝑖𝑛. 

𝐷𝑡𝑟𝑎𝑖𝑛 → 𝑋𝑡𝑟𝑎𝑖𝑛 

𝑋𝑡𝑟𝑎𝑖𝑛 ∗  ℎ𝑤(𝑥) = 𝑦𝑡𝑟𝑎𝑖𝑛 

ℎ𝑤(𝑥) =  
1

1 + 𝑒𝑤𝑇𝑥
 

𝑋𝑡𝑟𝑎𝑖𝑛  and 𝑦𝑡𝑟𝑎𝑖𝑛 are known, and therefore the only unknown is the linear weights vector 𝑤 of 

the classifier ℎ𝑤(𝑥). 𝑤 cannot be found in closed form, hence a gradient descent approach is 

necessary to calculate 𝑤. 𝛼 is the gradient-descent learning-rate parameter. 

𝑤 ← 𝑤 + 𝛼 ∑(𝑦𝑡𝑟𝑎𝑖𝑛,𝑖 − ℎ𝑤(𝑥𝑖))𝑥𝑖

𝑚

𝑖=1

 

𝑤 ← 𝑤 + 𝛼[𝑋𝑡𝑟𝑎𝑖𝑛]𝑇(𝑦𝑡𝑟𝑎𝑖𝑛 − 𝑦̂) 

(3.1) 

(3.2) 
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Once 𝑤 is calculated, the classifier ℎ𝑤(𝑥) is then applied to the feature vector X of the entire 

dataset 𝐷. This operation equals a vector 𝑦, corresponding to the probability of a pixel being 

bacteria.  

𝐷 → 𝑋 

𝑋 ∗ ℎ𝑤(𝑥) = 𝑦 

0 < 𝑦 < 1 

The threshold minimum probability required for a pixel to be classified as “object” is the 

parameter 𝑝𝑐𝑢𝑡𝑜𝑓𝑓. The threshold minimum size of 3D connected pixels required for a cluster of 

“object” pixels to be classified as microbe is the parameter 𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟.  

Clusters of pixels that satisfy these two criteria are identified as cells, and their location 

coordinates are recorded.  

 

Figure 17 
Linear Logistic Regression Classifier function. The output varies smoothly between 0 and 1, making this function ideal for 

calculating probabilities that also lie between 0 and 1.  
 

  

(3.3) 
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Three dimensional pixel Features 

Table 6 describes the 3D pixel features used to classify the dataset. The functions used to extract 

these features can be implemented in the GPU using MATLAB’s built-in toolboxes.   

Table 6 
Pixel Features used in the classifier  

Pixel Feature Relevance 

Absolute difference between Pixel Grayscale 
Value and median pixel value (the median pixel 
grayscale value is set to 127 in preprocessing). 

Objects are usually brighter or darker than the 
median grayscale value.  

Median of pixel neighbourhood Taking the median will account for noisy 
outliers within the pixel region  

Standard deviation of pixel neighbourhood Noisy pixel neighbourhoods will have a high 
standard deviation 

Gradient of the pixel The gradient is high at the boundary between 
an object and the background 

Absolute difference between grayscale value 
of the current pixel and the pixel above it. 

In phase reconstructions, the objects’ 
grayscale values fluctuate heavily between 
very bright and very dark around the z-slice 
where the object is located.  

Absolute difference between grayscale value 
of the current pixel and the pixel below it. 

In phase reconstructions, the objects’ 
grayscale values fluctuate heavily between 
very bright and very dark around the z-slice 
where the object is located. 

Standard Deviation of the entire current 2D z-
slice image 

The standard deviation of an image is low 
when some objects are in focus, and high when 
objects are not in focus. 
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Object Identification Methodology 

Pre-processing 

Once holograms are acquired and reconstructed onto separate z-planes, they undergo four steps 

before being input into the Identification Algorithm.  

The first step is to shift the grayscale values of every reconstructed image such that the median 

pixel grayscale value is 127. This is to ensure that overexposed and underexposed images become 

uniform in brightness and therefore, numerically comparable with each other. 

The second step is to subtract the median background from every reconstructed image within 

the dataset. A window containing the current time frame, the temporal previous 5 frames and 

the temporal next 5 frames is created for every time step. The background is defined as the 

median grayscale value of each pixel location within each window. These background images are 

then subtracted from dataset. 

Running the background subtraction algorithm is time consuming. It would be faster and easier 

to generate only one background for every z-slice, rather than the method described above which 

generates a unique background for every time frame and every z-slice. This trade-off is ultimately 

worth it because the background subtraction algorithm produces the most accurate results by 

also removing artifacts within the dataset that drift very slowly over a long period of time, such 

as dead cells.  

The third and final step is to increase the contrast of the image, making darks darker and lights 

lighter. Increasing the contrast makes training the classifier easier for the user, because the 

bacteria become more visually apparent. This is achieved by calculating the difference between 
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the median grayscale value (127) and the image’s pixel values, and multiplying that difference by 

a positive factor 𝑐𝑓, where 𝑐𝑓 > 1. Depending on the dataset, 𝑐𝑓 usually varies between 2 and 

5. 

 

Figure 18 
Left Image: Phase reconstruction image of a hologram at a specific z slice and time frame  

Right Image: The same image as the left image after pre -processing. The median background has been removed from t he 
image and the contrast has been doubled by setting cf = 2. Patterns of concentric circles represent moving objects within 

the dataset that are out of focus; one dark rod-shaped cell is within this z plane of focus (arrow).  

 

Phase 1 – Initialization 

In this phase of the algorithm, the user must define a training dataset 𝐷𝑡𝑟𝑎𝑖𝑛,, and initialize the 

selection algorithm. 

The training dataset is a subset of the entire holography dataset. It must contain instances of 

positive objects. A good training dataset could be the entire volume of the sample at a single time 

frame. For shallow samples, multiple time frames may be used if desired.  
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To initialise the selection algorithm described in Phase 2, the user must scan through the entire 

training dataset, and record the (x,y,z,t) location of a pixel within each cell.  

A binary answer key vector 𝑦𝑡𝑟𝑎𝑖𝑛,0 is initialized; user labelled bacteria pixels are assigned the 

value 1, and all other pixels are assigned the value 0. 

 

Figure 19 – Phase 1 
User-selected cell’s pixels (blue-purple stars) at one z-slice within the training dataset. These coordinates will be used to 

initialize the selection algorithm described in Phase 2, which will make selecting more pixels easier and faster than  
manual labelling.  
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Phase 2 – Training the Classifier 

Training the logistic regression classifier is achieved in two steps.   

The first step is to complete the binary answer key vector 𝑦𝑡𝑟𝑎𝑖𝑛, described at the end of Phase 

1. The second step is to calculate the weight vector 𝑤 for the classifier ℎ𝑤(𝑥). 

Vector 𝑦𝑡𝑟𝑎𝑖𝑛 is updated iteratively. Each iteration labels a new group of pixels as bacteria, using 

the selection algorithm described in this section, until all bacteria pixels within the training 

dataset have been labelled.  

The first iteration of the weight vector 𝑤1 is calculated using 𝑋𝑡𝑟𝑎𝑖𝑛 and the initial 𝑦𝑡𝑟𝑎𝑖𝑛,0 vector 

created at the end of Phase 1. Then 𝐷𝑡𝑟𝑎𝑖𝑛  is classified using ℎ𝑤1
(𝑥). Parameters 𝑝𝑐𝑢𝑡𝑜𝑓𝑓  and 

𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟 are tuned (see Table 5), and the resulting classified image is presented.  

𝑝𝑐𝑢𝑡𝑜𝑓𝑓 is the value representing the threshold minimum probability required for a pixel to be 

classified as belonging to a cell. Its value is between zero and one. 𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟 is the minimum 

number of connected pixels that an “object” could possess. Connected “object” pixels of a size 

below 𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟 are ignored and treated as noise.   

From this resulting classified image, a cell’s pixels are identified by the user. These pixels are 

labelled as belonging to a cell and hence their value is set to 1 in vector 𝑦𝑡𝑟𝑎𝑖𝑛,1.  

This process is repeated until all bacteria pixels within the training dataset have been labelled 

and thus, the vector 𝑦𝑡𝑟𝑎𝑖𝑛 is complete.  



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 49 of 87 
 

Once all the bacteria pixels have been selected and recorded in vector 𝑦𝑡𝑟𝑎𝑖𝑛, the final value of 

weight vector 𝑤 is calculated, followed by an appropriate selection of parameters 𝑝𝑐𝑢𝑡𝑜𝑓𝑓 and 

𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟.  

Training is now complete; the variables and parameters found at the end of phase 2 are passed 

to phase 3.  

𝑤𝑛 ← 𝑤𝑛 + 𝛼[𝑋𝑡𝑟𝑎𝑖𝑛]𝑇 (𝑦𝑡𝑟𝑎𝑖𝑛,𝑛−1 − ℎ𝑤𝑛−1
(𝑥𝑖)) 

𝑋𝑡𝑟𝑎𝑖𝑛 ∗  ℎ𝑤𝑛
(𝑥) = 𝑞𝑛 

 

𝑓𝑜𝑟 ∀ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖 𝑖𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑞𝑛(𝑖): 

   𝑖𝑓  𝑞𝑛(𝑖) >  𝑝𝑐𝑢𝑡𝑜𝑓𝑓, 

   𝑦𝑡𝑟𝑎𝑖𝑛,𝑛(𝑖) = 1; 

  𝑒𝑙𝑠𝑒    

  𝑦𝑡𝑟𝑎𝑖𝑛,𝑛(𝑖) = 0; 

 𝑒𝑛𝑑  

𝑒𝑛𝑑 

 

(3.4) 

(3.5) 
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Figure 20 – Labelling a new group of pixels as bacteria using the training classifier.  
Top Left: original phase reconstruction image.  

Top Right: segmented image with white pixels labelling bacteria, and black pixels labelling back ground.  
Bottom: User selected an extra cluster of unlabelled connected bacteria pixels, to be added to the binary answer key 

vector y train.  
This process is repeated until all pixels of bacteria are labelled as such.  

 

Phase 3 – Finding objects within the dataset 

The linear logistic regression algorithm described previously is implemented on all pixels of the 

entire dataset. The linear weights vector 𝑤  of the classifier ℎ𝑤(𝑥)  was calculated from the 

training dataset at the end of Phase 2. Parameters 𝑝𝑐𝑢𝑡𝑜𝑓𝑓 and 𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟 were also defined at 

the end of Phase 2. 
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All the 3D connected pixel objects are found at every time frame. The threshold for minimum 

number of 3D connected pixels in an object to be considered a microbe is defined as 𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟.  

The 3D Centroids of objects considered microbes at each time frame are recorded and stored in 

output variable 𝑝𝑜𝑖𝑛𝑡𝑠. 

Post-processing 

The purpose of this step is to remove false positives. 

A characteristic of false positive points is that they appear for a short duration of time and then 

disappear. Points with this characteristic are removed using the following method:   

1. Define a minimum track duration threshold. 

2. Run a simple point tracker algorithm based on nearest neighbour identification, called 

‘simple_tracker.m’ [91].  

3. Remove points that belong to tracks for a duration below the threshold.  
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3.2.2 - GENERATING TRACKS 

Goal: To link 3D centroids together from consecutive time frames to generate a 

Track. Each track describes the trajectory of a microbe throughout the sample 

volume. 

Object tracking/linking is the 4th and final Phase of the algorithm described in this thesis. This 

section will describe the linking algorithm used to plot the trajectories of the centroids obtained 

from the Identification algorithm described in section 3.2.1  

Variables and Parameters 

Table 7 
Variables and Parameters list of the object tracking algorith m 

Input Variables Variable Type  Description 

Points Double-precision Cell 
Array 

Variable Points is a cell array 
containing all the 3D object 
centroids found within every 
time-frame. 

Parameters Parameter Type Description 

max_linking_distance Positive number Defines a maximal distance for 
particle linking. Two particles 
will not be linked (even if they 
are the remaining closest pair) if 
their distance is larger than this 
value. 

max_gap_closing positive 8-bit integer Defines a maximal frame 
distance in gap-closing. Frames 
further way than this value will 
not be investigated for gap 
closing. 

Output Variables Variable Type Description 

Tracks Unsigned 8-bit integer cell 
array 

One cell in cell array Tracks per 
found object track. The integer 
array in each cell shows the 
index of each object in Points 
within the track. 



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 53 of 87 
 

 

Object Tracking Methodology 

Phase 4 – Tracking the objects’ movements 

Tracking the centroids found after implementing the Object Identification Algorithm presented 

earlier is achieved by running a simple tracker based on nearest neighbour identification, called 

‘simple_tracker.m’[91].  

Appropriate values for parameters 𝑚𝑎𝑥_𝑙𝑖𝑛𝑘𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  and 𝑚𝑎𝑥_𝑔𝑎𝑝_𝑐𝑙𝑜𝑠𝑖𝑛𝑔  must be 

chosen. 𝑚𝑎𝑥_𝑙𝑖𝑛𝑘𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  is the maximum Euclidean distance for two points at 

consecutive time frames to be considered the same point travelling through a trajectory. 

𝑚𝑎𝑥_𝑔𝑎𝑝_𝑐𝑙𝑜𝑠𝑖𝑛𝑔 is the maximum number of dropped frames within a single track. 
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3.2.3 - VALIDATION 

Validation Metrics 

The F0.5 score was calculated to validate the performance of the algorithm against a gold standard 

validation dataset (see section ‘Gold Standard’ below).  

The F0.5 score is defined as: 

𝐹0.5 = (1 + 0.52) ∙
𝑃 ∙ 𝑅

(0.52 ∙ 𝑃) + 𝑅
 

Where precision (P) and recall (R) are defined as: 

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Where (TP) is true positives, (FP) is false positives and (FN) is false negatives.  

The F0.5 score was chosen for validation to weigh precision higher than recall, by attenuating the 

influence of false negatives. The rationale behind this is that this algorithm was developed to 

precisely find at least 50% of the microbes within the dataset, and not to find all the microbes 

within the dataset. Therefore, False negatives are acceptable more so than false positives.  

The output centroids found using the Identification algorithm were validated against the Gold 

Standard centroids described in the section below. An identification tolerance was defined as the 

maximum Euclidean distance between a centroid found using the identification algorithm, and 

the actual location of that centroid found in the Gold Standard.  

(3.6) 

(3.7) 
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The tracks returned by the Tracking algorithm were validated against the Gold Standard tracks 

described in the section below. A tracking tolerance was defined as the minimum percentage of 

points found within a track to be ‘detected’ by the tracking algorithm. 

Gold Standard 

Two DHM validation datasets were created with the properties listed in Table 8. These properties 

were measured manually using an expert human. They were defined as the Gold Standard 

towards which the Identification Algorithm described here would be validated. Figure 21 and 

Figure 22 show three-dimensional plots of the tracks within each of the two Gold Standard 

validation datasets. 

Table 8 
Properties of the Gold Standard Datasets used for validation 

Property Validation Dataset 1 Validation Dataset 2 

Sample volume 360 x 360 x 252 µm3 360 x 360 x 392 µm3 

Object Bacillus subtilis  Colwellia psychrerythraea 

Concentration ≤ 10 cells per sample volume ≤ 10 cells per sample volume 

Object size, shape ~ 8 µm3, elongated ~2 µm3, comma-shaped 

Resolution of each 2D 
Hologram Reconstruction 
Images’  

454 x 452 pixels 512 x 512 pixels 

Number of z-plane 
Reconstructions 

201 157 

Number of unique time 
frames  

84 18 

z-plane resolution 1.25 µm/slice 2.50 µm/slice 

Total number of objects in 
the dataset 

324 98 

Total number of unique 
tracks in the dataset 

8 6 
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Figure 21 
The 8 Microbial B. subtilis Tracks (solid black lines) within Validation Dataset 1, found manually by the expert human user.  
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Figure 22 
The 6 Colwellia psychrerythraea  tracks (dashed black lines) within Validation Dataset 2, found manually by the expert 

human user. 
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3.3 Optimizing Computational Speed 

OPTIMIZING RAM USAGE 

Running this algorithm presents challenges to the user because of the large 4D dataset. In order 

to reduce the memory usage, all the images are resized from 2048 x 2048 pixels to 512 x 512 

pixels. Only a single time-step’s 3D volume is loaded into memory at any given time. Only when 

the 3D coordinates of the object centroids found using this algorithm are saved in the output 

coordinates matrix, then the 3D volume of the next time step is loaded into the same memory 

location as the previous 3D volume.  

USING A GPU FOR IMAGE PIXEL OPERATIONS 

Most of the features for logistic regression used in this algorithm are standard image pixel 

operations, such that they could easily be implemented in the Graphical Processing Unit (GPU) 

using standard image processing routines. This effectively reduces the computational time 

required to completion.  
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CHAPTER 4: RESULTS AND OBSERVATIONS 

Overview 

Two validation datasets of different properties were used to evaluate the performance of the 

Particle Identification and Tracking algorithm described in section 3.3. Validation dataset 1 

contained eight B. subtilis microorganisms of various orientations and sizes, and validation 

dataset 2 contained six Colwellia psychrerythraea microorganisms of various orientations and 

sizes.  

The B. subtilis microorganisms in validation dataset 1 were elongated and rod shaped, from 5 µm 

to 12µm in length. The Colwellia psychrerythraea microorganisms in validation dataset 2 were 

also rod-shaped but less elongated than B. subtilis. They were smaller, ranging in length from 1 

µm to 3 µm. Some of these microorganisms are shown in Figure 23 and Figure 24 . 
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4.1 Particle Identification Algorithm Results 

 

Figure 23 
Left Image: one z-slice containing three B. subtilis microorganisms (white arrows) within the 3D training volume of 

Validation Dataset 1.  
Right Image: Post-Classification Binary Image of the Left Image. White pixels represent microorganisms within the plane of 

focus, and black pixels represent background.  

 

Figure 24 
Left Image: one z-slice containing two Colwellia psychrerythraea  microorganisms (white arrows) within the 3D training 

volume of Validation Dataset 2.  
Right Image: Post-Classification Binary Image of the Left Image. White pixels represent microorganisms within the plane of 

focus, and black pixels represent background.  

30 µm 30 µm 
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PARTICLE IDENTIFICATION RESULTS FROM VALIDATION DATASET 1 

Overview 

The algorithm was trained using the validation dataset 1 volume at time-frame t = 85. This volume 

contained 4 B. subtilis microorganisms. Figure 23 displays a single z-slice of this training volume, 

containing 3 of the 4 microorganisms in the training dataset. 

The weight vector 𝑤 was calculated using the feature matrix 𝑋𝑡𝑟𝑎𝑖𝑛 and the user-labelled binary 

identification vector  𝑦𝑡𝑟𝑎𝑖𝑛 . Parameters 𝑝𝐶𝑢𝑡𝑜𝑓𝑓 and 𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟  were tuned to identify all 

groups of microorganism pixels within this sample volume. 

Table 9 
Parameter values assigned using Training dataset of Validation Dataset 1.  

Parameter name Assigned value 

𝑝𝐶𝑢𝑡𝑜𝑓𝑓 0.07 

𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟 60 

 

The calculated weight vector 𝑤 was used to classify all the pixels in the entire validation dataset1, 

and find the microorganisms present at all time frames. The results of the microorganism 

identification algorithm are presented in Figure 25 as a three-dimensional plot, and in Figure 26 

as a top-view two-dimensional plot.   
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Figure 25 
3D plot of manually identified tracks (black) and automatically identified points (magenta) throughout all time frames 

within Validation Dataset 1.  

 

Figure 26 
Top view of manually identified tracks (black) and automatically labelled points (magenta) throughout all the z planes and 

time frames Validation Dataset 1.  

1 

1 
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F0.5 Validation Score 

The F0.5 validation score is chosen to evaluate the performance of this algorithm because it places 

more emphasis on Precision rather than Recall (see section 3.2.3 for more details).  

Table 10 
Validation metrics of the microorganism identification algorithm using Validation Dataset 1  

Total number of Points in Dataset  324 

Total number of Points found by identification algorithm 187 

True Positives 185 

False Positives 2 

False Negatives 139 

Precision (P) 98.9% 

Recall (R) 57.1% 

 

𝐹0.5 =  (1 + 0.52) ∙
𝑃 ∙ 𝑅

(0.52 ∙ 𝑃) + 𝑅
  =  (1 + 0.52) ∙

0.989 ∙ 0.571

(0.52 ∙ 0.989) + 0.571
 

𝐹0.5 = 0.863 

Identification Error 

The microorganisms within Validation Dataset 1 are B. subtilis. Depending on where it is in its cell 

cycle, B. subtilis ranges in from  3 –9 µm in length and  0.5 – 1 µm in diameter [96, 97].  

The identification error is defined as the three dimensional Euclidean distance between a 

microorganism’s centroid found using the identification algorithm, and the actual location of that 

centroid found in the validation dataset. The sample dataset volume of validation dataset 1 is 

360 µm x 360 µm x 252 µm. 

(4.1) 
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The root-mean-squared (RMS) identification error for this dataset was found to be 7.42µm. 

 

Figure 27 
Histogram of error distances between manually labelled microorganisms and the microorganisms found using the 

identification algorithm in Validation Dataset 1. The  RMS error distance is 7.42 µm. 

 

PARTICLE IDENTIFICATION RESULTS FROM VALIDATION DATASET 2 

Overview 

The algorithm was trained using the validation dataset 2 volume at time-frame t = 9. This volume 

contained 6 Colwellia psychrerythraea microorganisms. Figure 24 displays a single z-slice of this 

training volume, which contains 2 of the 6 microorganisms in the training dataset. 

The weight vector 𝑤 was calculated using the feature matrix 𝑋𝑡𝑟𝑎𝑖𝑛 and the user-labelled binary 

identification vector 𝑦𝑡𝑟𝑎𝑖𝑛 . Parameters 𝑝𝐶𝑢𝑡𝑜𝑓𝑓 and 𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟  were tuned to identify all 

groups of microorganism pixels within this sample volume. 

Table 11 
Parameter values assigned using Training dataset of Validation Dataset 2.  

Parameter name Assigned value 

𝑝𝐶𝑢𝑡𝑜𝑓𝑓 0.03 

𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟 10 

Validation Dataset 1  

RMS error = 7.42 µm 
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The calculated weight vector 𝑤 was used to classify all the pixels in the entire validation dataset 

2, and find the microorganisms present at all time frames. The results of the microorganism 

identification algorithm are presented in Figure 28 as a three-dimensional plot, and in Figure 29 

as a top-view two-dimensional plot.   

 

Figure 28 
3D plot of manually identified tracks (black) and automatically identified points (magenta) throughout all time frames 

within Validation Dataset 2.  
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Figure 29 
Top view of manually identified tracks (black) and automatically labelled points (magenta) throughout all the z planes and 

time frames Validation Dataset 2.  

F0.5 Validation Score 

The F0.5 validation score is chosen to evaluate the performance of this algorithm because it places 

more emphasis on Precision than Recall (see section 3.2.3 for more details).  

Table 12 
Validation metrics of the microorganism identification algorithm using Validation Dataset 2  

Total number of Points in Validation Dataset 2  98 

Total number of Points found by identification algorithm 82 

True Positives 75 

False Positives 7 

False Negatives 23 

Precision (P) 91.5% 

Recall (R) 76.5% 
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𝐹0.5 =  (1 + 0.52) ∙
𝑃 ∙ 𝑅

(0.52 ∙ 𝑃) + 𝑅
  =  (1 + 0.52) ∙

0.915 ∙ 0.765

(0.52 ∙ 0.915) + 0.765
 

𝐹0.5 = 0.880 

Identification Error 

The microorganisms within validation dataset 2 are Colwellia psychrerythraea. They range in 

length from 2–4 µm and an average diameter of 1 µm [98]. 

The identification error is defined as the three dimensional Euclidean distance between a 

microorganism’s centroid found using the identification algorithm, and the actual location of that 

centroid found in the validation dataset. The sample volume of validation dataset 2 is 360 µm x 

360 µm x 392 µm. 

The RMS identification error in this dataset was found to be 5.59 µm (see Figure 30). 

  

Figure 30 
Histogram of error distances in Validation Dataset 2 between manually labelled microorganisms and the microorganisms 

found using the identification algorithm. The RMS identification error distance is 5.59 µm  

Validation Dataset 2 

RMS error = 5.59 µm 

(4.2) 
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4.2 Particle Tracking Results 

The performance of any particle tracking algorithm depends heavily on the results of the particle 

identification algorithm used; if a particle cannot be identified, tracking it will be extremely 

challenging.  

The x,y,z,t coordinates of the microorganisms identified in section 4.1 were used as inputs to a 

simple particle tracking algorithm based on nearest neighbour linking [91]. The particle tracking 

results of both validation datasets 1 and 2 are presented in Figure 31, Figure 32, Figure 33, and 

Figure 34. 

The tracking algorithm performed as expected. It successfully linked the points found using the 

identification algorithm. There was no overlap in the automatically identified tracks between 

different microorganisms.  
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Figure 31 
3D plot of manually labelled tracks (black) and automatically identified tracks (magenta) throughout all time frames in 

Validation Dataset 1 

 

Figure 32 
top view of manually identified tracks (black) and automatically labelled tracks (magenta) throughout all the z planes and 

time frames of Validation dataset 1.   



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 70 of 87 
 

 

Figure 33 
3D plot of manually labelled tracks (black dashed lines) and automatically labelled tracks (magenta dashed lines) 

throughout all time frames in Validation Dataset 2. The algorithm suc cessfully found 5 out of 6 microorganism 
trajectories. 

 

Figure 34 
Top view of manually labelled tracks (black dashed lines) and automatically labelled tracks (magenta dashed lines) 

throughout all the z planes and time frames of Validation Dataset 2. The algorithm successfully found 5 out of 6 
microorganism trajectories.  



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 71 of 87 
 

4.3 Properties of Microbial Motility  

SWIMMING DIRECTION 

The azimuthal angle is defined as the angle between the positive x axis and the direction vector 

of microbial motility projected onto the xy-plane. The azimuthal angle varies from -π to π. 

The elevation angle is defined as the angle between the xy-plane and the direction vector of 

microbial motility. It varies from -π/2 to π/2. 

The majority of the swimming direction in Validation Dataset 1 was along the x-axis at all 

elevations and azimuth 0, -π and π (Figure 35). This result is consistent with the plotted tracks in 

the validation dataset (Figure 32), which shows most of the motility occurring in the x direction. 

There is a peak at direction (azimuth = 0 rad, elevation = 0 rad). This peak suggests that there 

might have been slight drift within the sample chamber in that direction. 

In Validation Dataset 2, there is a peak (Figure 36) at direction (azimuth = 2.74 rad, elevation = 0 

rad), suggesting that there might have been slight drift within the sample chamber in that 

direction.  
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Figure 35 
Histogram of the Instantaneous motility direction of the tracks found in Validation Dataset 1 using the identification 

algorithm 

1 

1 
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Figure 36 
Histogram of instantaneous motility direction of the tracks found within Validation Dataset 2, using the identification 

algorithm.  
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SWIMMING SPEED 

Ito et al. [99] measured the average swimming speed in 2D for B. subtilis, and found it to be 23 

µm/s. In order to compare this with the results outlined in this study of Validation Dataset 1, the 

projection of the 3D tracks onto the xy plane was obtained and the 2D motility speeds were 

measured from these projections. A histogram of the 2D swimming speeds automatically 

identified by the algorithm is presented in Figure 37a; the median of the 2D swimming speeds 

was found to be 21.7 µm/s with a wide range of variation. These swimming speeds are 

comparable with the literature. 

On the other hand, the histogram of the 3D swimming speeds of the same dataset of 

microorganisms identified by the algorithm is presented in Figure 37b. It is observed that the 

median of the 3D swimming speeds is 28.8 µm/s. 

Further investigation into the swimming speeds was conducted. The instantaneous 3D speeds of 

every track in validation dataset 1 were measured manually using user labelled locations of the 

cells at every time frame. These measurements were projected onto the xy-plane to generate 2D 

speeds, and then plotted against each time frame within the dataset (Figure 38). Figure 38 

displays distinct peaks in the instantaneous speed at 9 out of 84 time frames (Black arrows). 

These peaks are spikes in the instantaneous speeds of at least double the value of both the 

previous and the next time frames. The peaks occur for every microorganism’s tracks at that time 

frame.  

This anomaly suggests that the time stamps recorded at those time frames are not exactly 

precise; the microorganisms were imaged a while after the timestamp, allowing them to move 
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further and therefore, to appear as though their instantaneous speeds have dramatically 

increased.  

 

Figure 37(a, b)  
Histogram of calculated microorganism speeds in Validation Dataset 1.  

The graphs show the same speeds. The 3D motility speed is calculated from the 3D tracks found using the algorithm. The 
2D motility speed is calculated as a projection of the tracks from the z plane onto the xy axis, effectively generating a 

“Top View” of the microbial motility.   

 

 

 Figure 38 
Manually User Labelled Instantaneous 2D speed of each track within the dataset. 

Black Arrows point to peaks in the instantaneous speeds for all tracks, suggesting that the time stamps recorded for these 
frames are erroneous.  

Validation Dataset 1  

Median = 21.7 µm/s 

Validation Dataset 1 

Median = 28.8 µm/s 
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CHAPTER 5: DISCUSSION, FUTURE WORK AND CONCLUSIONS 

5.1 Discussion 

Current techniques for observing bacterial motility are essentially two-dimensional 

because of the small depth of field provided by high numerical aperture microscope objectives. 

Measurement of 3D trajectories is inaccurate, since it is performed by approximating the third 

dimension from measured 2D trajectories, or by inferring the organisms’ z positions as they travel 

into and out of focus. This means that for most bacteria, their swimming patterns in an 

unconstrained 3D volume still remain unknown. DHM is an emerging technology that can capture 

3D trajectories of microorganisms. DHM phase images are used to create contrast between 

transparent bacteria and the medium that they swim in.  One of the challenges of using DHM is 

the low signal-to-noise ratio (SNR) of the images captured, making automated identification and 

tracking the bacteria difficult using standard image processing and computer vision techniques. 

This thesis presents and validates a machine-learning identification method based on linear 

logistic regression that can consistently identify over 50% of all microorganisms within noisy DHM 

phase image reconstructions, with a precision of over 90%. Identification was validated using two 

different species of microorganisms of different sizes, without using any chemical contrast 

enhancement. Figure 31, Figure 32, Figure 33 and Figure 34 show the tracks obtained by using 

the algorithm, compared to the same tracks manually labelled by a human expert. Figure 13 

demonstrates the performance of the algorithm on a third species of bacteria (Vibrio 

alginolyticus), and plots their 3D tracks. The identification algorithm presented in this thesis is 

demonstrated as flexible, simple and easy to implement.  
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The observed root-mean-squared identification error of the algorithm is nearly equal to 

the length of the microorganism being identified: 5.59 µm for the Colwellia psychrerythraea, and 

7.42 µm for the Bacillus subtilis datasets. Tracking the cells through time was easy in the datasets 

shown here because of the low density of cells within the sample chamber. In higher density 

situations, a more sophisticated tracking algorithm may be required to account for overlap. 

However, one major advantage of 3D identification is that overlap incidents are much less 

frequent than in traditional 2D cases. This is because in 3D the cells must actually come into close 

contact with each other for an overlap to occur. On the other hand, in 2D, one cell must only pass 

in front of another for an overlap to occur regardless of how distant they actually are from each 

other.  

This is the first time that Logistic Regression has been used to classify 3D holography 

datasets, segmenting the objects of interest from the background. It was found that extracting 

just a few simple 3D image pixel features was sufficient to obtain accurate results from the 

classifier. The most memory-intensive part of the algorithm was calculating the linear weights 

vector of the classifier using gradient descent regression (equation 3.2). The calculation for 

finding the weights vector for 9 features required having a computer configured with 32GB of 

random-access-memory (RAM).  

The results obtained from the identification algorithm were used to calculate the 

microorganisms’ instantaneous 3D swimming directions, and presented in Figure 35 and Figure 

36. These histograms could be useful for detecting the direction of flow in 3D within the sample 

chamber, as well as for determining the 3D direction of taxis which may help observing bacterial 

swarming mechanisms.  
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The algorithm’s results were also used to calculate the 3D swimming speeds of Bacillus 

subtilis, presented in Figure 37, and compared with those found in literature [99]. Since the 

literature only describes its 2D swimming speed, the 3D results obtained by the algorithm were 

projected onto the xy-plane to generate 2D speeds. The results were consistent with the 

literature. Comparing the 3D and its projected 2D speeds obtained in this thesis, it was found 

that the median of the 2D speeds was ~25% less than the median of the 3D speeds. This finding 

is comparable to the results presented by Taute et al. [17], who found the systematic errors 

between measuring 2D speeds of microorganisms versus their actual 3D speeds (see Figure 4). 

When further investigation into the instantaneous swimming speeds was conducted and 

plotted in Figure 38, distinct peaks in the instantaneous speed at 9 out of 84 time frames were 

found. These peaks were spikes in the instantaneous speeds of at least double the value of both 

the previous and the next time frames, and occurred for every microorganism at that time frame. 

This anomaly suggests that maybe the time stamps recorded at those time frames were not 

precise; all the microorganisms were imaged a while after the timestamp, allowing them to move 

further and therefore, to appear as though their instantaneous speeds had dramatically 

increased. Therefore, more investigation into the accuracy of the timestamps file needs to be 

done before conducting any further speed-related experiments.  

5.2 Future Work 

INVESTIGATE THE TIME STAMPS 

The accuracy of the time stamps file generated by the KOALA® software [95] should be 

investigated before conducting further experiments that depend on time, such as measurements 



Marwan Elkholy January 2017 Supervisor: Prof. Jay Nadeau 
McGill University  Department of Biomedical Engineering 

Page 79 of 87 
 

of speed. This could be done by imaging a constant flow of micro-particles using the DHM. The 

micro-particles’ measured speeds, obtained by dividing their displacements over the time 

difference between the two time stamps, should be constant in this scenario.   

Inaccuracies in the hologram time stamps could arise from slow writing of the data 

obtained by the DHM onto the PC hard disk. The DHM CCD is set to capture 4Mpx images at a 

rate of 15 fps, which is a very large data transfer rate. One suggestion would be to investigate if 

lowering the image resolution setting to 1Mpx could have a beneficial impact on the accuracy of 

the time stamps. If the hologram’s image resolution is lowered, then the DHM’s lateral resolution 

must again be calculated to ensure that the tradeoff in image quality does not affect the 

microscope’s ability to resolve sub-micron scale structures.  

INVESTIGATE DIFFERENT 3D FEATURES OF THE ALGORITHM 

  The algorithm presented in this thesis extracted 9 features to perform the classification. 

Each added feature increases the computational time required to complete the classification, 

and may increase the accuracy. However, increased accuracy is not guaranteed. Therefore, it 

would be interesting to find out which features have the most impact, and which have little to 

no impact. Furthermore, it would also be interesting to explore new features and their effect on 

improving the classification performance, whether these improvements increase the 

computational speed, or increase the accuracy of the classification, or both.  

 It may also be beneficial to investigate the effect of using a different machine-learning 

algorithm, such as convolutional neural networks. 
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INVESTIGATE THE EFFECT OF MICROBIAL DENSITY ON ALGORITHM PERFORMANCE 

 As bacterial samples get denser, all tracking algorithms have a harder time simultaneously 

tracking each and every cell within the sample. Further investigation on the impact of microbial 

density on the identification algorithm presented in this thesis would be interesting. However, 

this is difficult because validating the algorithm’s performance requires an expert human to 

manually label all the microorganisms within the sample. This human step is very time consuming 

and tedious, especially for dense bacterial samples.  

 To avoid this issue, virtual data could instead be simulated to evaluate the effect of 

density on the algorithm’s performance. However, this procedure would not take into account 

the lower SNR that will arise because of the multiple interference patterns created by the dense 

sample in the DHM.  

CREATE A MOTILITY DATABASE  

 Thanks to the ease with which DHM microbial trajectories are obtained by using the 

algorithm in this thesis, an open source, 3D motility database can now be easily populated with 

motility properties of different microorganisms, properties such their respective swimming 

speeds and turning angles/mechanisms, in many different environments. A motility database 

may help us answer questions such as: 

i. What role does microbial motility play in aquatic environments: oceans, lakes, and inside 

the pores of sea ice? 
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ii. When microbes lose the ability to swim, what will make them swim again--temperature, 

amino acids, sugars, or a combination of any these? How long does it take to go from 

motile to non-motile? 

iii. Is microbial motility substantially different in extremely cold and nutrient poor 

environments (such as the Arctic) than in more temperate environments? 

iv. How can motility be a biosignature that complements biochemical biosignatures of life 

on other planets? 

5.3 Conclusion 

 In conclusion, this thesis presents a machine-learning approach to object identification 

within a DHM dataset. Machine-learning techniques are becoming much more prevalent now 

thanks to a massive proliferation of computing power within the last few decades. The 

identification algorithm presented in this thesis was able to accurately locate unstained 

microorganisms within a variety of noisy DHM phase image reconstructions, by adapting and 

“learning” the properties of the objects of interest. It is simple to implement and does not require 

explicit programming, making it flexible for a large variety of different types of datasets. Further 

development into learning algorithms seems promising, and these types of algorithms are 

expected to be found more frequently and within multiple disciplines in the near future.    
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