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Abstract

In this thesis, we develop a first principle technique to study linear AC and the

nonlinear OC quantum transport in diifusive conductors. Starting from Büttiker's

theory for AC and De transport, the emittance and nonlinear DC conductance are

found in terms of the scattering matrix and it's functional derivative. New theoretical

tools are developed to compute the functional derivative of the scattering matrix,

which would otherwise be unaccessible. These results allows us to compute the linear

AC and the nonlinear DC conductance for a diffusive conductor from first principles,

for the first time in literature. The sample-to-sample AC conductance fluctuations

are computed for a diffusive conductor. In this regime the dynamic response of the

conductor can either be capacitive or inductive, depending on impurity configuration.

Our results also suggest a crossover for the AC conductance distribution, from a

symmetric to a non symmetric distribution function as the numher of impurities

increases. A degree of generic hehavior is discovered, in that the AC fluctuation

amplitudes become independent of the strength of the impurities, although it depends

on the impurity density. A sample-to-sample analysis of the nonlinear conductance

fluctuations, in the diffusive regime, is also reported. In this situation the distribution

function is found to he a symmetric Gaussian like function for small disorder and a

symmetric exponentially decaying function for large disorder. An interesting result

is that the conductance fluctuations increase in an exponential fashion with N, the

number of impurities.

We also considered in this thesis the magneto-conductance fluctuations oÏ a quasi

ID quantum wire with artificial impurities (antidots). This problem can only he

solved numerically because of the finite size of the artificial impurities. We develop

a novel transfer matrix technique to solve the quantum scattering problem by com

puting the scattering wave function, as a function of the external magnetic field. The

Landauer-Büttiker equation is used to compute the magneto-conductance. This work

is motivated by the experimental study [1], where several conductance fluctuations

anomalies were reported. Our numerical results give good quantitative agreement

with the experimental data and confirms the physical picture obtained from the ex

periment.
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Résumé

Dans cette thèse on développe une technique à partir de principes fondamentaux

pour l'étude du transport quantique linéaire AC et non linéaire DC dans des con

ducteurs diffusifs. En partant de la théorie de Büttiker pour le transport AC et

DC, la conductivité linéaire AC et non linéaire DC sont exprimées en fonction de la

matrice de diffusion et de sa dérivée fonctionnelle. Des nouveaux outils théoriques

ont été développés pour calculer la dérivée fonctionnelle de la matrice de diffusion,

sans lesquels celle-ci serait difficilement accessible. Ces résultats nous permettent de

calculer la conductivité linéaire AC et non linéaire DC pour des conducteurs diffusifs

à partir de principes fondamentaux et ceci pour la première fois dans la littérature.

Les fluctuations d'un échantillon à l'autre de la conductivité AC sont calculées pour

des conducteurs diffusifs. Dans ce régime, la réponse dynamique du conducteur peut

être ou capacitive ou inductive, dépendant de la configuration des impuretés. Nos

résultats suggèrent un changement de régime pour la fonction de distribution de la

conductivité AC~ d'une distribution symétrique à une distribution asymétrique avec
l'augmentation du nombre d'impuretés. L'amplitude des fluctuations AC deviennent

indépendantes de la force des impuretés mais dépendent de la densité des impuretés.

Une analyse des fluctuations de la conductivité non linéaire, d'un échantillon à l'autre,

dans le régime diffusif, est aussi étudié. Dans ce cas-ci la fonction de distribution se

trouve à etre une fonction symétrique gaussienne quand le désordre est petit et une

fonction symétrique qui décroit exponentiellement quand le désordre est grand. Un

résultat intéressant qu'on a obtenu c'est que les fluctuations augmentent exponen

tiellement avec N, le nombre d'impuretés.

Nous avons aussi considéré dans cette thèse les fluctuations de la conductivité en

fonction d'un champ magnétique dans un fil quantique quasi-ID avec des impuretés

artificielles (antidots) . Ce problème ne peut etre résolu que numériquement à cause

de la largeur finie des impuretés artificielles. Nous avons développé une nouvelle

technique de transfert matricielle pour résoudre le problème de diffusion quantique

en calculant la fonction d'onde de diffusion, en fonction d'un champ magnétique

externe. L'équation de Landauer-Büttiker est utilisée pour calculer la conductivité

en fonction du champ magnétique. Ce travail est motivé par l'étude expérimentale
[1], ou plusieurs anomalies dans la conductivité ont été rapportées. Nos résultats

numériques sont en accord avec les résultats expérimentaux.

vii



Statement of Originality

In this thesis, 1 develop a novel theoretical technique for first principle studies of

linear AC and nonlinear DC quantum transport, for mesoscopic conductors. In par

ticuIar, for the first time in literature, 1 analyze the sample to sampIe fluctuations

of the admittance and the first order nonlinear DC conductance, for a diffusive con

ductor in the regime where universal conductance fluctuations are observed. These

studies are facilitated by a number of theoretical developments which 1 make. 1 aiso

investigated the magneto-conductance fluctuations in a ballistic conductor with two

artificiai impurities, by developing a numerical transfer matrix technique.

Specifically, 1 made the following useful contributions:

• The derivation of an expression, from first principles, for the N-th order func
tionai derivative of the scattering matrix. This quantity is crucial for analyzing

AC and nonlinear DC transport coefficients.

• The derivation of a generalized Fisher-Lee relation which relates the scattering

wave functions to the Green's function, and is applicable not only to general

multi-probe conductors with jellium electrodes, but also to those with atomic

electrodes.

• The derivation of exact expressions for the linear AC and nonlinear DC con
ductances which only require the scattering wave functions.

• The derivation of an exact expression for the N-delta impurity Green's function,
wave function, scattering matri'"<, and relevant functionai derivatives. These are

expressed in terms of the impurity free Green's function and wave function, and

valid for any potential, in the presence of a magnetic field and in any dimension.

• The study of linear AC and nonlinear DC conductances in the diffusive regime.
Specifically, the distribution functions of these transport coefficients and their

fluctuations.

• The analysis of the quasi-one dimensional ballistic conductor with artificial

impurities inside a magnetic field ta understand the experimentally observed

magneto-conductance fluctuations.
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1ntroduction

1.1 Mesoscopic Physics

Historically condensed matter physics has primarily focused on the study of systems

which are found in nature. It is only in the last two decades, witb advances in

semiconductor fabrication and lithography technologies, that the study of artificial

nanometer scale systems has appeared [2, 3, 4, 5, 6, 7]. These artificial nanostruc

tures include quantum wires [8, 9], quantum dots [10, Il, 12, 13, 14], and atomic wires

[15, 16, 17, 18, 19, 20, 21, 22, 23], to just name a few. The ability to create and study

these nanostructures is one of the great advances in condensed matter physics. The

central feature of these new systems is tbat their size is typically in the sub-micron

length scale, which leads to important quantum mechanical effects. A deep under

standing of the behavior of electrons in these nanostructures cannot be accomplished

without tackling the quantum mechanics of these systems. In particular, the nature of

electronic conduction properties of nanostructures should be understood with a quan

tum transport theory [5]. On the other band, the "designer" capability to construct

such systems opens the door to exploring new quantum behavior. Indeed, these new

systems are interesting candidates for future generations of electronic devices whose

operational principles are based on quantum effects [7, 24, 25, 26, 27]. This new field

of research is known as mesoscopic physics, a term first coined by van Kampen [28J.

Mesoscopic physics, as the word indicates, lies somewhere between the microscopie

and the macroscopic world. By microscopie we mean systems that are composed of

only a few individual particles, like atoms or small molecules. As for macroscopic,

1



it refers to systems which are composed of a great number of particles (> 1023 ),

which permits the application of the principles of statistical mechanics. The typical

length scale of a mesoscopic system lies somewhere between lOOÀ and IJ1.m. Our

working definition of a mesoscopic system, is one where the phase coherence length

of the electronic carriers is greater than the sample size. Under such conditions

quantum effects will play an important raIe in the electronic transport throught such

systems. In these systems the classical Boltzmann equation is no longer be suited

for understanding transport phenomena. The behavior of resistors and capacitors in

series or parallel are changed hecause of quantum effects. One way to treat mesoscopic

electronic devices is to view them as big quantum objects (large molecules), which are

connected to leads. The leads are important because they connect the nanostructure

to the macroscopic world. A transport theory for a mesoscopic system requires a fully

quantum mechanical treatment of the dynamics of the electrons inside the device.

In these systems of reduced dimensionality there are many length scales that come

into play. In particular, we have the Fermi wavelength, the mean free path, the phase

coherence length, and the systems size. For a more complete description of aH the

relevant length scales which may play a role in quantum transport see [5]. Let us give

a brief overview of the length scales which we are concerned with:

2 1 Introduction

•

• The Fermi wavelength is given by ÀF = 27r/kF , where kF is the Fermi wave

vector which depends on the electron density. For metals we typically find that

ÀF f'J O.3nm. As for 2D electron gases in semiconductors we have ÀF f'J 40nm.

• The elastic mean free path is defined by lm = VFTm , where VF is the Fermi ve

locity and 'm is the momentum relaxation time. The mean free path represents

the distance that the electron travels before it gets scattered elastically. By

elastic scattering we mean a scattering event which changes the momentum but

not the energy of the charge carrier.

• The phase coherence length is defined by ltP = JD1tP, where D is the diffu

sion constant and 'tP is the phase relaxation time. The phase coherence length •



represents the distance traveled by an electron before encountering an inelastic

scattering event. An inelastic scattering event is when the phase information

of the wave function is lost, for example, by a scattering event which changes

the energy of the carrier from one energy Ievel to another. In contrast to elas

tic scattering, inelastic scattering destroys the phase information that the wave

function was carrying before being scattered. The temperature dependence of

14J is determined by the behavior of the inelastic relaxation time. One usually

writes ,tjJ "'J T-P (p = 1 "V 2) as T -7 0 [29]. As we approach the zero tem

perature limit the phase coherence Iength tends to infinity, l,p -7 00 as T --+ o.
However, this behavior has been challenged by the recent experiment of [30,31].

Typically, when T = lK the phase coherence length is several microns. When

14J > L the system is said to be phase coherent. This means that the electron

travels through the system without loosing its phase. Phase coherence is a key

ingredient to obtain interesting quantum phenomena.

•
1.1 Mesoscopic Physics 3

•

• The systems size is represented by its linear dimensions in aIl three spatial

directions: Lx, Ly , and Lz. From these three parameters we define four cases:

- ÀF « Lx "'J Ly "V Lz, usuai bulk case

- ÀF "'J Lx «: Ly "V Lz , two dimensional film

- ÀF "'J Lx "'J Ly « L z , quantum wire

- ÀF "V Lx "'J Ly "'J Lz , quantum dot

By fixing the above length scales we generate many interesting regimes. In this

work we are interested in two particular physical situations. First, the diffusive regime

which corresponds to a system where ÀF "V Lx < Ly "'J lm « Lz < l,p. In this situation

the electron diffuses quantum mechanically through a quantum wire keeping its phase

coherence. In other words, the electron suffers many elastic scattering events but it

preserves its phase coherence.

The second situation of interest is the ballistic regime, where ÀF "'J Lx < Ly «
lm "V Lz < 14>. In this case the electron goes through a quantum wire without, on



average, suffering any impurity scattering while keeping its phase coherence. Most

of the scattering in this regÏme cornes from the boundaries of the device. In both

cases the electrons maintain phase coherence which leads to interesting quantum

interference effects.

4 1 Introduction

•
One of the key developments that has led to the fabrication of exceptionally pure

2D electron systems is a technique known as modulation doping [32, 33]. This simple

trick permits the spatial separation of charge carriers in the conducting channels from

the dopant atoms in a semiconductor heterostructure. Using semiconductors of high

purity and crystalline perfection, a thin layer ofhighly mobile electrons can be created.

In this thin layer the motion of the electron is quantized in the perpendicular direction

and thus the electrons are essentially constrained te live in a 2 dimensional system.

Such a two dimensional electron gas (2DEG) has many interesting features, including

a low electron density which can be varied with an electric field. The low density

leads to a large Fermi wavelength, which is responsible for many interesting quantum

transport phenomena. In contrast, thin metal films have a high electron density which

is difficult to change because of the very small screening length for e - e interactions.

In a metal film the charge carriers have a very small Fermi wavelength.

A 2DEG can be constructed at the interface of a GaAs/AlGaAs heterostructure.

The electrons are confined to the GaAs layer by a potential weil created at the

interface with AlGaAs. This potential well originates from the repulsive barrier

which arises from the conduction band offset of the two semiconductors ('" O.3el/).

Note that the band gap of GaAs is 1.4eV, whereas that of Alo.3GaO.7As is 1.7eV.

Therefore, electrons migrate ta the GaAs sicle because of the lower conduction band

energy. This results in an accumulation of positive charges in the AlGaAs side, which

generates an attractive force that further confines the electrons in the GaAs side of

the interface. In order to reduce the boundary scattering due to the donors from the

AlGaAs, a spacer layer of several hundred angstroms of undoped AlGaAs is usually

added at the interface. Because of the confinement of the electrons at the interface

the motion perpendicular to the interface is quantized. This leaves us with a discrete •



series of 2D electronic states which are called "subbands". Typical1y, the potential

weIl is sufficiently narrow (about 10nm) that only one or two subbands are occupied.

Due to this quantization, in one of the three directions, the transport is essentiaIly

two dimensional.

•
1.1 Mesoscopic Pbysics 5

•

A central reason for using GaAs/ AlGaAs heterostructures is that Ga..4s and

AlGaAs have approximately the same lattice constant and thermal expansion co

efficient. This leads to a significant reduction of boundary roughness scattering at

the interface, and thus an increase in the electrons mobility J.L (J.L = âVd/âE). For

GaAs/AlGaAs one typically finds IL l''J 106cm2/Vs, as compared to 104cm2 /Vs for

silicon inversion layers. The electrons mobility is also high in GaAs/AlGaAs be

cause of the low effective mass of the charge carriers, m. = O.067me1 as compared to

m. = O.19me for silicon inversion layers.

The degrees of freedom of the electrons in a 2DEG can be further constrained.

We can create a narrow channel in the 2DEG such that a quasi-ID system is formed.

This is accomplished by selectively depleting electrons in aIl the regÏons outside a ID

channel. A popular approach to create this lateral confinement is called the split gate

technique [2, ?]. In this technique, a negative voltage is applied to a split metallic

gate, fabricated on top of the 2DEG. The negative voltage repels (depletes) electrons

under the gate area, leaving only a narrow channel undepleted in which the electrons

are free to move. The most appealing feature of this approach is that the width of the

quasi-ID channel can be varied continuously by changing the applied negative gate

voltage, which is typically in the range of zero to one volt. The electron carrier density

is also affected by changes in the gate voltage. The most weIl known application of the

split-gate technique is in the fabrication of quantum point contacts [34, 9]. These are

small constrictions which are used to control the current of carriers from one 2DEG

to another 2DEG.

This new confinement leads to further quantization of the charge carriers: each of

the 2D subbands of the 2DEG are split into ID subbands. The bottom of the energy

bands is denoted by En, where n = 1,2, .... The total energy of an electron in the



6

quasi-1D channel in the n-th subband can he written as,

fi2k2

E= -2-+En ,
m.

1 Introduction

(1.1) •
where h is the reduced Planck constant, m. the effective mass, and k the momen

tum along the free 1D direction. The energy En corresponds to one of the discrete

energy levels created by the presence of the new transversal confinement potential.

These energy levels depend on the details of the confinement. For instance, for hard

wall confinement, the potential is infinite at the boundary of the quasi-1D channel,

and the energy levels are simply En = (n1rfi) 2/(2m.W2
), where W is the width of

the quasi-1D channel. One may also consider a soft wall confinement, where a step

potential with a finite height confines the charge carrier inside the wire. In this case,

quantum mechanical effects allows the wavefunction of the charge carrier to leak into

regions outside of the wire, but its amplitude decays exponentially in these regions

which make the confinment effective. Another commonly used confinement is the

parabolic potential, V(x) = m.n2x2/2, where n is the confinement parameter, and

the energy levels are En = (n + 1/2)hO. From a theoretical calculation point of

view, one major advantage of using hard wall confinement potential is that the corre

sponding transverse eigenfunction are simple sine functions which are mathematically

convenient to deal with. Clearly, the detailed form of confinement potential of a real

device depends on material properties and fabrication procedures of the system, and

therefore is non u9}iversal. But for a qualitative analysis of the main features of quan

tum transport, which is the focus of this thesis, we will apply both hard wall and soft

wall confinement potentials.

In the next section we review one of the most significant features of quantum

transport in the mesoscopic regime, namely the phenomenon of universal conductance

fluctuations (UCF). We outline the theoretical model used to analyze this interesting

phenomenon. This was first carried out by Al 'tshuler, Lee, Stone, and Fuckuyama

[35, 36, 37, 38]. In their approach, the linear response theory is used to obtain the

Kuho-formula for a diffusive conductor of infinite size for which the electrodes (leads)

do not play a role. Feynman diagrams are then used to evaluate the expression for •



the conductance fluctuations. For a muiti-probe conductor, where electrodes are very

lInportant, the transport analysis can be carried out using the Landauer-Büttiker

scattering matrix theory[39, 40, 41, 42]. We will discuss scattering matrix theory

and outline two of the main focus of this thesis: how to analyze the conductance

fluctuation when the external driving force (bias voltage) is time dependent; and

how to analyze DC conductance fluctuation at a nonlinear level. The linear OC

conductance of a system is the zero frequency limit of the linear AC admittance

GQ {3(w), where w is the frequency. Since for a diffusive conductor Gn{3(O) exhibits

UCF, it is very interesting and natural to ask: what are the statistical properties of

the AC admittance? The same question can be asked for nonlinear DC conductance

as well. These quantities are however very complicated 50 that the diagrammatic

approach of Al'tshuler, Lee, Stone, and Fuckuyama [43] does not seem to be easily

applicable. In this chapter we will also very briefly outline our investigation on an

experimental situation where quantum transport in quasi-ID wires in which artificial

scattering centers are introduced to control the flow of charges [l, 44, 45, 46]. With

a uniform magnetic field, the transport properties can he tuned to produce very

interesting conductance fluctuations. The understanding of this device forms the

third topic of this thesis.

•
1.2 Universal Conductance Fluctuations 7

•

1.2 Universal Conductance Fluctuations

Perhaps the most striking phenomena of electron transport in the mesoscopic regime

is the observed sample-to-sample universal conductance fluctuations [47, 48]. These

fluctuations are not time dependent noise but are reproducible signatures of quantum

interference. The physics of the sample-tû-sample DC conductance fluctuations and

its universal behavior have been the subject of active research for more than a decade

[3] and is now well understood.

The UCF is completely a quantum phenomenon, because for classical systems the

sample-tû-sample conductance fluctuations are negligible. The root-mean-square of

the classical conductance is given by < (~Gclassical)2 >~ lmlL < Gclassical >2, where



lm is the elastic mean free path, L is the linear size of the sampIe, and lm « L

for macroscopic conductors. This estimate is obtained by the following arguments.

First, we split up the classical conductor into N = L/lm small independent conductors

connected in series, each of which has some random value of conductance G i , due to

the random distribution of impurities inside. Applying the central limits theorem to

these random numbers {Gi }, it follows that the fluctuations go as < (~Gi)2 > / <

G i >2~ liN. This implies < (âGclassicat}2 > / < Gclassical >2~ lm/L, therefore

approaches zero as L ~ 00. An underlying assumption for the above arguments is

that the phase coherence length l</J of the conductor is smaller than lm. If this condition

is not satisfied, we cannot say that the small pieces of the conductor are independent

classical conductors, since quantum coherence effects persist over distances that are

greater than the size of each small conductor. In this situation, one can no longer

break up the system into Lilm independent classical conductors. It is, however, still

possible to split up the conductor into L/lcP small quantu.m pieces. Assuming that

each of these quantum conductors has sorne random value {G i } for their conductance,

we can apply the central limits theorem, once again, and find that the conductance

fluctuations are given by < (~Gquantum)2 >~ l",/L < Gquantum >2. Therefore, the

fluctuation vanishes when L ~ 00.

8 1 Introduction
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Now, consider the case where the phase coherence length is larger than the samples

size, L < ll/J: the above arguments break clown. We can no longer split the system into

small pieces that can he treated independently. Due to the quantum coherence over

the entire sample, one must treat the conductor as a whole. For instance, a change

in the position of a scattering center at one end of the device causes a change in the

scattering wave function "p(r) at the other end. Thus, when L < l", the conductance

fluctuations need not he negligible for large L, and the fluctuation can therefore

contain information about the physics of the entire system.

Experimental measurements have shown that the conductance of a phase coherent

conductor in the diffusive regime (lm « L < lt/J) fluctuates in a seemingly random

but reproducible manner, as a function of external parameters such as bias voltage •



and magnetic field [47. 49, 50, 51, 52, 53]. Similar conductance fluctuations are

observed from one sample to another. These fluctuations exhibit unexpected features,

for example, as the temperature decreases (T ~ 0) the conductance fluctuations

increase. However, the central feature that has stimulated the most research is that

these fluctuations seem to be universal, i.e. the value of the rms of conductance, ~G,

is independent of the value of the conductance itself, independent of systems size, and

independent of the type of impurities - as long as the transport is in the mesoscopic

diffusive regime. Moreover, the universal value of these conductance fluctuations are

of the order ~G "-1 e2 / h, at very low temperatures.

•
1.2 Universal Conductance Fluctuations 9
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Since the universal fluctuations are round in the diffusive regime (lm « L < lt/)),

one suspects that this effect is due ta quantum interference. Recall that changes in

magnetic field, bias voltage, or impurity configuration (positions of elastic scattering

centers) lead to changes in the interference pattern of the wave function, because dif

ferent quantum "paths" in a conductor are altered by these parameters. For exampIe,

the interference pattern is expected to be different from one sample to another due

ta the different positions of the impurities. This leads to a difference in the conduc

tance between these samples. Why are the fluctuations universal? This is due to the

fact that the conductance is not only affected but is actually dominated by quantum

interference effects in this regime. Therefore, as long as the interference pattern is

altered - regardless by what means, similar conductance fluctuations occur. This

leads to an ergodic assumption [38], that fluctuations due to a change in the magnetic

field, bias voltage, or impurity configuration, are a11 equivalent and lead to similar

values for ~G. It turns out that the actual value of iJ.G depends on the time reversaI

symmetry (TRS) of the system [38, 54]. If TRS is broken then the value of ~G is

reduced by a factor yf2, but the general physics of the fluctuations are still caused by

quantum interference effects. Theoretical analysis of UCF has largely come from two

directions. One is analytical work within the linear response thcory [37, 38], and the

other is by direct numerical simulations [54, 55, 56]. Both confirm the above physical

picture.
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Figure 1.1: Single bubble diagram, which represents the impurity averaged conductance. The two
vertical lines with the three dashed lines between them represent the contribution from the impurity
averaging and is called the diffusion propagator.

The theory of Al'tshuler, Lee, Stone, and Fuckuyama [35, 36, 37, 38] is perhaps

the most successful in understanding UCF. Their approach consists of using Feynman

diagrams to evaluate the expression for < (~G)2 > in the mesoscopic diffusive regime.

Their results show that conductance fluctuations are independent of the impurity

scattering strength and the impurity density, and depend only weakly on the geometry

of the system. In the rest of this section, we briefly outline this theory, following its

original development [38].

Consider an infinitely large diffusive conductor in the mesoscopic regime where

localized impurities provide elastic scattering for the charge carriers. The impurity

potential is chasen ta be,

V(r) = L 1'a(r - rd , (1.2)

where '"Y is the strength of the impurities, which are assumed to he the same for aIl

impurities. The linear DC conductance is obtained from the conductivity, which is

given by Kubo's formula:

uzz(r, r') = - 4~ (~r [GIl(r, r') - GA(r, r')] (V.)(V•.) [GIl(r', r) - GA(r', r)] ,

(1.3)
H ... ~ ( )

where (Vz) = 1/2(Vz- V z) and the function GR A (r, r') is the retarded (advantaged)

Green's function. The average conductance is equal to, < G >= 1/L2 f dr f dr' <

O"zz(r, r') >, where < ... > is an average over random impurity configurations. This •



•
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(a) (b)

(c) (d)

Figure 1.2: Conductance fluctuations diagrams, which include: (a) single, (b) double, (c) triple, and
(d) quadruple, bubble-bubble diffusion connectors.

can be expressed in terms of Feynman diagrams [38], which are shown in Fig. 1.1.

The diagram reads as follows: the wiggle Hnes represent the current vertices, the

two lines connected to the two wiggles are Green's functions, and the rectangle with

the dashed Hnes is the diffusive propagator which represents the averaged impurity

scattering.

The conductance fluctuations are measured by:

(1.4)

•

The Feynman diagrams which represent the rms of the conductance, ~G=J< (~G) 2 >,

are of great complexity, but can still be evaluated using standard diagram techniques

[57]. In the language of Feynman diagrams, < GG > includes both connected and

disconnected diagrams, but since the disconnected ones are canceled by the term

< G >< G > in Eq. (1.4), we only need to compute the connected ones.

Using Eq. (1.3), the expression for the conductance, and Fourier transforming the



< GG >connected = (41r:2P)2 / / (:~3 (:~>zpzp~p~
< [GR(p) _ GA(p)] [GR(p) - GA(p)]

[GR(p/) - GA(p/)] [GR(p/) - GA(p/)] >connected' (1.5)

12

Green's functions, we find [43]:

1 Introduction

•
A typical term in the above expression is:

(41r:2L2 ) 2// (:~3 (:~;3PZPZP~P~ < GR(p)GR(p)GR(p')GA(p') >connected

(1.6)

From a Feynman diagram point of view, these expressions correspond to all the

possible ways to connect two conductivity diagrams using one, two, three or four

impurity diffusion propagators, which are represented by the ladders connecting the

two conduction bubbles (see Fig. 1.2). The first, diagram in Fig. 1.2(a), can be

shown to be negligible in the weak scattering limit [38]. This leaves us \Vith the

task of evaluating the last three Feynman diagrams in order to compute the total

conductance fluctuations. vVe give a brief review of how to compute these diagrams

by evaluating the diagrams corresponding to Fig. 1.2(b).

The expression for Fig. 1.2(b), which we denote by Fa, is given by:

Fa = (m:pr/dr / dr' / dr" / drillP(rlll, r")P(r', r)J(r, rlll)J(r', r") , (1.7)

where the two P(r, r') represent the two ladders connecting the conductivity bubbles

and the two J(r, r') are the current functions which connect the two ladders together.

Let us evaluate this expression.

The current contribution for this diagram, which represents one of the term ob

tained from Eq. (1.6), is given by,

To evaluate the current function J(r, r') we note that < GR(r, r') > decays exponen

tially on the length scale of the mean free path lm in the diffusive regime. Since this •



is the shortest length in our system and lm -< L, we may approximate the CUITent

function with its totally localized Corm,•
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J(r, r') = Jo8(r - r') = (~ / dr / dr'J(r, rI») 8(r - r') , (1.9)

where V is the volume of the sample. After tedious manipulations [43], we find the

following expression for Jo:
J _ 1rmv}NE

o - 6c)3 , (1.10)

where cS is the imaginary part of the self-energy, NE is the total density of states at

energy E, vF is the Fermi velocity, and m the mass of the charge carriers.

The diffuse propagator, which we denote by P(r, r'), satisfies the following partial

differential equation [43],

(1.11)

where Ni is the impurity density and D =v}1i/(2cS) is the diffusion constant. This

equation has a general solution given by

P(r, r') = L Q:n(r/)Qm(r) ,
m Àm

(1.12)

where Qm(r) are the eigenfunctions and Àm are the eigenvalues obtained from the

eigenvalue equation,

(1.13)

The boundary conditions are hard wall in the transverse directions x and y, and

periodic in the direction of propagation z. This leads to the following expression for

Q ( ) _ JLxLyLz (mz1rz). (mx1rx) . (my1rY )
m r - 8 cos Lz sIn Lx sIn L

y
,

with the eigenvalues:

(1.14)

•
(1.15)

Ta evaluate Fa we substitute Eq. (1.9), Eq. (1.10), Eq. (1.12), Eq. (1.14), and

Eq. (1.15), inta Eq. (1.7). This leads ta an expression, where the integrals are easily



evaluated using the orthonormality conditions of Qm(r). The final result is,

14

1 (D)2 1
Fa = L4 T LA2'

z m m
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(1.16) •
This expression represents the contribution from one of the diagrams that is topo

logicaIly represented by Fig. 1.2(b). Evaluating aIl diagrams that are topologically

equivalent to Fig. 1.2(b), we find that the total contribution from this type of Feyn

man diagram to be [43],

1(D)2 00 00 00 ( 1)2
Fa = 2L4 T L L E Re(~)

z m:=l mz=O mS/=O m

(1.17)

Similarly, the contributions from the other Feynman diagrams, Fig. 1.2(c) and Fig. 1.2(d),

which are denoted by Fb and Fe, respectively, are given by [43],

(1.18)

and

(1.19)

where fnm = 4mn/rr(m2
- n2

). The total conductance fluctuations are given by,

(1.20)

where the factor 2 is to account for the particle-hole channels which have the exact

same contribution as the particle-particle channels [38]. AlI that is left is to evaluate

numerically the summations in Eq. (1.17), Eq. (1.18), and Eq. (1.19). For a 2D square

conductor, Lx « Ly ,...." Lz, one finds that the value of the conductance fluctuations is

~G = 0.86e2
/ h, where e is the electron charge and h the Planck constant. Notice that

the impurity density and the scattering strength 'Y of the impurities do not appear in

~G (see Eq. (3.52)): these non universal parameters are canceled out. One therefore

use the term universal to describe these conductance fluctuations.

As already mentioned above, we are interested in analyzing conductance fluctu

ations beyond f)"G in the mesoscopic diffusive regime. However, as we will discuss •



in the next section, the AC and nonlinear DC transport coefficients are more diffi

cult to analyze due to several factors, the most prominent one is the raIe played by

electrodynamics. While the diagrammatic technique reviewed above can be formally

applied to these situations [58], it is extremely difficult to obtain concrete predictions

even for the dynamic conductance itself, let alone its fluctuations. In the following

section we discuss the basic considerations for AC and nonlinear DC transport.

•
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1.3 General considerations of quantum transport

In the last section we have reviewed linear response analysis of UCF, using Kuho's

formula, for infinitely large mesoscopic diffusive conductors. Another approach to

quantum transport, equivalent to the linear response theory, but much more conve

nient to apply when the electrodes of a conductor must be considered, was proposed

by Landauer in 1957[39]. The idea is that since conduction measures how easy (or

how difficult) it is for an electron to traverse a system, the conductance should be

related to the probability of the electron to go from one side of the conductor to the

other. In other words, conductance should he expressed in terms of the transmission

and reflection coefficients of a conductor. The Landauer formula expresses this point

of view,
2e2

GO {3 = hTO!3, (1.21)

where Go !3 is the linear DC conductance for a two-Iead conductor, with the leads

labelled by 0', (3, and Ta {3 is the transmission coefficient from lead {3 to 0'. For example,

if a conductor is c1assical, one can calculate its conductance by solving a drift-diffusion

equation for the transmission coefficient To {3, while for quantum coherent conductors

one can obtain TO /3 by solving the quantum scattering problem. Landauer's approach

has given a clear view and a very simple way ta understand conduction of a two-Iead

conductor. Inspired by Landauer's idea, Büttiker in 1986 derived a result for linear

DC conductance for general phase coherent multi-Ieads device [42], using scattering

matrices. In this section, we discuss sorne general considerations of quantum transport

in AC and nonlinear DC situations using the scattering matrix approach. It will



become clear why the diagrammatic approach reviewed in the last section does not

seem to be applicable.

So far the Landauer-Büttiker formalism has been successfully applied to under

stand a wide variety of experimental observations [5]. In particular, it has been

applied to study weak localization phenornenon in a diffusive conductor [59], the

Aharonov-Bohm effect in rnetaIlic rings [60, 61], and universal conductance fluctu

ations [43]. AlI these systems were studied at equilibrium. Very recentIy, it has it

become possible to measure linear AC and nonlinear DC conductance coefficients in

nanostructures [62]. These new experimentai investigations have demanded that the

theoreticai approaches be extended ta these new and complicated situations. Indeed,

in clear contrast to the linear DC transport theory where, the Landauer-Büttiker for

rnalism has been very successfuI, the status of AC and nonlinear DC theory is far frorn

satisfying. For example, it was only until recentIy that sorne fundamental issues of

AC and nonlinear DC quantum transport theory have been identified [63,64, 65, 66]

and only very few have been solved [67, 68, 69, 70J.

For a muiti-probe coherent conductor, the transport coefficients are defined by the

current-voltage (1 - V) curve:

16 1 1ntroduction
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l Q (w) = L GoJ3 (w )VJ3 + L Golh' (w )VJ3 V-y + ... , (1.22)
!J !J,-y

where the subscripts {a} indicates lead a, Go{3(w) is the linear frequency dependent

conductance, Go{3-y(w) is the second order nonlinear conductance, and so on. 50 far,

there is no first principles theory which can predict the general nonlinear coefficients,

uniess w -+ O. From a theoretical point of view, there are two fundamental principles

which are very important. First, the total current fiowing through aIl the leads must

be conserved. Therefore, from Eq. (1.22), we must have

This gives rise to the SUffi rules, such as:

E Ga{3(w) = L Gof3-y(w) = 0 .
Q Q

(1.23)

(1.24) •



The sum rules put severe constraints on the form of these transport coefficients.

Second, a theory must be gauge invariant, meaning that the predicted current cannot

change if the potential at all the leads are shifted by the same constant amount.

This is simply the statement that the definition of the potentials zero cannot change

physics. Therefore, setting {~~} ---+ {Va + ~}, where ~ is a constant, we find from

Eq. (1.22) the sums rules:

•
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L Ga{3(w) = L Ga{J1(w) = L Ga13-y(w) = 0 (1.25)
13 13 -y

Again, these further sum rules constrain the form of the transport coefficients. It

turns out that the linear DC conductance coefficient Ga {3(O), given by Eq. (1.21)

satisfies these sum rules automatically.

However, a difficulty for AC transport theory, even at the linear order, is the

current conservation Eq. (1.24), i.e. how to guarantee La Ga{3(W) = O. As shown

by Büttiker [64, 65, 66, 71), eurrent is not eonserved unless the displaeement eur

rent, which is induced by the AC field, is taken into account. Displacement eurrent

arises because of induction byelectrodynamics, therefore it is related to interactions.

Therefore, a correct AC theory must include interactions at sorne level, usually at

the Hartree level [72), but this complicates matters significantly. For a nonlinear De
theory, the difficulty is to make sure that gauge invariance is satisfied, for example

the second order nonlinear coefficient LI3 Ga13-y(O) must be made to satisfy Eq. (1.25).

Again, one can prove that gauge invariance is not satisfied unless interactions are

included [73]. Therefore, to correctly analyze AC and nonlinear DC transport coeffi

cients, a necessary condition is to solve quantum scattering problem self-consistently,

including electrodynamics [58), which is, unfortunately, a very difficult problem. Re

calI the analysis of last section: no interaction is necessary in understand the basic

physics of UCF, because it is a result of linear DC transport. In addition, it seems

very difficult ta generalize the diagrammatic approach of the last section by adding

the self-consistent electrodynamics, in order to investigate AC and nonlinear DC

transport coefficients. Clearly, these coefficients are important physical quantities as

they help to provide a general and more complete picture of quantum transport in
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nanostructures.

1.4 Outline of thesis
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In this thesis we use both exact analytieal techniques [74] and a numerieal transfer

matrix approach [75] to solve quantum scattering problems in mesoscopic conductors.

First, we develop new theoretical tools that will allows us to compute the func

tional derivative of the scattering matrix in terms of the scattering wave function:

these derivatives appear naturally in AC and nonlinear DC theory. This is a very

important step which allows us to compute the linear AC and the nonlinear DC con

ductance for a diffusive conductor from first principles, for the first time in literature.

Second, we will investigate the zero temperature linear AC conductance fluctuations,

and discover that the sample-to-sample fluctuations indieate the fact that a diffusive

conductor can have a capacitive or a inductive dynamic response, whieh is sensitive

to the impurity configuration. Our results also suggest a crossover for the AC conduc

tance distribution, from a symmetric to a non symmetric distribution as the impurity

density increases. A degree of generie behavior is discovered in that the AC fluctu

ation amplitudes become independent of the scattering strength, although depends

on the impurity density. Third, we report an analysis of the sample-to-sample fluc

tuations of the nonlinear DC transport coefficient, in the conventional UCF regime.

Very interesting behavior is discovered for the first time in literature as weIl.

The final topie of this thesis considers a seemingly simpler situation where magneto

conductance fluctuations occur in a quasi-ID quantum wire where artificial impurities

(anti-dots) are placed. However, this problem can only he solved numerically because

of the finite size of the artificial impurities. This drastically complicates the scattering

analysis and renders the analytieal approach non applicable. vVe therefore developed

a novel numerical transfer matrix technique to solve the quantum scattering problem

by calculating the transmission coefficients as a function of the external magnetic field.

Vve apply the Landauer's formula Eq. (1.21) to predict the conductance. Our work is

motivated by the experimentaI study of the same system, where several conductance •



fluctuation anomalies were reported [1]. Our numerical results give good quantitative

agreement with the experimental data and we confirm the physicaI understanding

inspired by the experiment.
•
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The rest of the thesis is organized in the following way. In chapter 2 we review

the scattering matrix theory for quantum transport. We derive expressions for the

emittance EOI/3' which is defined by Ga /3(w) = Ga {3(O) - ie2wEa{3, and the nonlinear

DC conductance GQ {3..,(O). AlI three of these transport coefficients, GO{3, EQ {3, and

GaP"" are expressed in terms of the scattering matrix sQn,/3ml its functionaI derivative

fJsQn,/3m/fJU(r), and the internaI response potential uQ(r), also known as the character

istic potential. In chapter 3 we derive a series of new theoretical results which greatly

simplify our computation of the emittance and the nonlinear conductance, including

a general formula for the N-th order functional derivative of the scattering matrix.

We also derive the Generalized Fisher-Lee relation, which relates the scattering wave

function to the Green's function for multi-probe conductors. Such a relationship is

expected but, to the best of our knowledge, we do not know of any such formula in

literature. required These results combined, greatly reduce the computational effort

required when we calculate the linear AC and nonlinear DC transport coefficients. In

chapter 4 we derive an exact expression for the N-delta impurity Green's function,

C(N) (r, rI), in terms of the impurity free Green's function, C(O) (r, rI). Using this result

we obtain an analogous result for the wave function 'l/J'c!n (r), the scattering matrix

s~:/3m' and its functional derivative fJs<:'n:/3m/fJU(r). Using our general formulas we

reproduce the exact analytical results found in [76] and [77], which were obtained

for the case of a single impurity. In the latter part of chapter 4 we study the UCF

regime for the usuallinear DC conductance, Ga /3(O) , using our formalisme We then

study the emittance and nonlinear DC conductance fluctuations in the UCF regime.

In chapter 5 we develop an extended transfer matrix technique to study the effects of

artificial impurities in a magnetic field on the linear DC conductance, in the ballistic

regime. These numerical simulations are used to explain recent experimental results

[l, 44, 45]. Finally, in chapter 6 we summarize our work and provide a brief outlook
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for future research.
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2

Gauge invariant transport theory

In the last decade quantum transport under a time dependent field has been the

subject of many studies [78, 79, 80]. The problem of nonlinear DC quantum transport

has also, in recent years, been a subject of new experimental and theoretical work

[62, 63, 64, 65, 66, 69, 70, 81]. A great theoretical challenge is ta predict, for a

general phase coherent conductor, the transport coefficients as a function of the AC

field frequency w and the bias potentials {V..,}. In particular, one desires to obtain

general expressions for the emittance, Ea {3, and the first nonlinear DC conductance,

Ga{3'"f' as defined in Eq. (1.22) .

A system which is subjected to a time dependent field, provided by an AC nias

voltage, produces a total current composed of two parts: a particle current and a

displacement current. The displacement current is an essential ingredient in AC

transport since without it the total current is not conserved. Therefore, any realistic

theory for AC transport must contain a displacement current. The origjn of the

displacement current is electrodynamic induction, which is related ta electron-electron

interactions. Hence, e - e interactions are at the heart of any physically plausible

theory of time dependent transport.

Similarly, nonlinear DC transport requires gauge invariance: the physics of the

system does Dot change when the electrostatic potential is changed everywhere by

the same constant amount. This requirement put severe restrictions on any theory

of nonlinear quantum transport, as discussed in the last chapter. In particular, any

realistic theory needs ta contain information about the internaI potential distribution

in order to preserve gauge invariance. Thus, AC and nonlinear DC transport contain

21



more ingredients than the familiar linear DC theory.

The original scattering matrix theory for quantum transport was developed to

study the linear DC transport, Le. the first term of Eq. (1.22) at w = O. The approach

consists of computing the particle current using the scattering matrix. Büttiker and

his co-workers have developed an extended scattering matrix theory which deals with

linear AC transport and nonlinear DC transport [29, 64, 65, 66, 69, 70, 71, 73]. To

solve the AC problem the scattering matrix approach is applied in two steps. First,

the particle current is calculated and one finds that the current is not conserved

in the AC regime. Second, the e - e interactions are considered which change the

potentiallandscape, and thus generates an internai response (induction) that cancels

exactly the non-conserved piece. Similar considerations are applied to the nonlinear

OC transport problem, which leads to a gauge invariant scattering matrLx theory of

nonlinear transport at the 2nd order.

A new ingredient that is found in the linear AC and nonlinear DC transport theory

is the characteristic potentials. The characteristic potentials describe the changes of

the electrostatic potential inside the quantum conductor during transport, Le. when

the electro-chemical potentials of the electron reservoirs are changed externally. In

particular, the first arder characteristic potential, u..." describes the change of the

electrostatic potential to first order in the bias potentials {V...,}. It is the first order

characteristic potential which enters into the expressions of the emittance, Ea/Jl and

the 2nd order nonlinear DC conductance Ga13...,. Higher order transport coefficients

require the knowledge of higher order characteristic potentials, u-YQ' u"'Q/J, ....

In this chapter, we follow [82] to review these concepts, and to develop the neces

sary theoretical framework for our work. Let us once again emphasize that our theory

of quantum transport respects current conservation and gauge invariance.

22 2 Gauge invariant transport theory

•

2.1 Expansion DE the current operator

ln this section we derive an expansion for Büttikerts current operator [73]. The

current operator is defined in terms of creation and annihilation operators, which •
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Figure 2.1: Schematic drawing of a general quantum conductor. In this situation we have 5 leads
that connect the device to the extemally controlled electron reservoirs. We chose the scattering
region such that it extends ioto the lead regions.

are denoted by àln (E) and àan (E), where these operators represent the creation and

the annihilation of an incoming mode in the n-th subband from the a-th lead with

incoming energy E. \Ve also define the creation and annihilation operators bln(E)

and ban (E) for outgoing charge carriers in the n-th subband leaving from the a-th

lead \Vith energy E.

The operators for incoming and outgoing modes are related by the scattering

matrix:

(2.1)

•
This relation simply states that the probability amplitude that a charge carrier leaves

the device (see Fig. 2.1) through the a-th lead in the n-th mode is given by the

sum over incoming aIl incoming modes â1m (E) multiplied by the scattering matrix.

Recall that the scattering matrix San,{Jm is the probability amplitude that an incoming



mode from the ,B-th lead in the rn-th subband leaves in the a-th lead in the n-th

subband. The above relation gives the partitioning of the outgoing states in terms of

the incoming states.

Using these operators it can be shown that the total enrrent operator to first arder

in w is given by [73]:
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Îa(t) = *" L!dEdE' [àln(E)àan(E') - bln(E)bon (E')] ei(E-E')t/tl (2.2)

n

This equation states that the total current going through the a-th lead at time t is

given by the sum over aIl incoming modes from the Q-th lead minus the sum over aIl

outgoing modes leaving through the a-th lead, with the appropriate averaging.

Typically one assumes that the operators àln(E) and lÏan (E) are time independent,

which is correct for a DC bias potential. But for an AC potential the creation and

annihilation operators are no longer time independent. In general they have a non

trivial time dependence because of the oscillating external bias. They are the solutions

to the equations of motion generated from the time dependent Hamiltonian, wbich

includes the AC external potential as a perturbation. In order to obtain a eurrent

conserving expression for the operator Eq. (2.2) we need expressions for iiln(E) and

àan(E) which take into aceount the internaI potential U(r, {V-y}).

We now follow the work of [82]. The model Hamiltonian for a system in the

presence of an externai oscillating potential is given by,

fI = L (Ëam + eVa cos wt) âlm(Ëom , t)âam(Ëam , t)
am

(2.3)

In this equation âam(Ëam , t) is the time dependent annihilation operator for an in

coming carrier from region a in mode rn. eVa cos wt is the shift in the electro-chemicai

potential away from equilibrium, i.e. Ila(t) = J.Leq + eVa cos wt, where J.Leq is the equi

librium electrO-chemical potential of the leads. The eigen-energy levels Ëam have a

funetionai dependence on the internaI potentiallandscape U(r, {Va})' The potential

U includes the internaI response to the external perturbation which generates the

displacement eurrent. Note that the potentiai U should aiso be a function of time •



but since we are only interested in the response to first order in w we can neglect this

dependence.

The creation operator âQm(EQm, t) represent the incoming electrons which are

"dressed" by the oscillating bias potential. The operators aln(E) in Eq. (2.2) are

the Fourier transform of âlm(EQm , t). Usually, the operators in Eq. (2.2) are taken to

be the "bare" creation and annihilation operators, Le. the creation and annihilation

operators for incoming modes in the presence of a static infinitesimal bias potential.

When bare operators are used for AC transport, current conservation is violated [64].

To obtain current conserving AC transport coefficients, Büttiker [64, 66, 71] added

an extra term to Eq. (2.1) which is a functional of the internai potential U. Instead

of using this approach we follow [82] to derive an expression for the dressed operators

by solving their equations of motion to the desired order in the bias potential and

AC frequency.

Expanding the total energy in terms of the external perturbation potential {V-y}

we find,

•
2.1 Expansion of the current operator

- A(l) A(2) 2EQm + eVQcoswt = Eam + Da coswt + OQ (coswt) + ... ,
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(2.4)

where the operators Ô~) are given by the spatial integration of the i-th characteristic

potential folded with the i-th order functional derivative of Bom with respect to the

internai potential. In particular1 we have that

where

A(l) _ ~ ( )OQ =~ tSar; + 8vp Eam Vp ,
{3

(2.5)

•

- / ( ) tSËom ( )8v{3EQm = dru{3 r tSU(r) , 2.6

d () aU(r}. th fi cl h t" . 1 tXT than Up r = avp IS e rst or er c arac enstlc potentla. vve can DOW use e

expansion Eq. (2.4) to rewrite the Hamiltonian in the following way,

il = L (Eam +L Ô~)(coswt)i) âlm(Ëam , t)âQm(ËQm , t) (2.7)
am i

The dressed annihilation operators âQm(Ëom , t) satisfy the equation of motion:

(2.8)



•
(2.9)
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Since the time dependence of the Hamiltonian is simple, direct integration can be

performed. Up to linear order in voltage we only need to keep the term ôi1) in the

Hamiltonian. This Ieads us to the following solution for âam(Ëam , t):

- - (i [ eÔ(l) ])âam(Eam , t) = âam(Eam)exp -r;, Eamt +~ sinwt ,

The operator âam(Eam ) is essentially the bare annihilation operator at an energy levei

Bam . Eq. (2.9) provides an explicit expression for the dressed annihilation operators

in terms of the bare operator as a function of time. To obtain the dressed operators

in energy space we perform a Fourier transform:

(2.10)

àam(E) = / dt âam(Eam , t)eirf:t/h

= âam(E)

- _e_Ô(I) [â (E + 1iw) - â (E - hw)]2/iw Q am am
2

e ( A (1»)2 A A+ 8h2
W

2 Oa [aam(E + 21iw) - aam(E - 21iw)] + ...

(
A(l»)n

= ~ ~! -;~ [eAw8E
- e-Aw8Er â"m(E) .

To obtain this expression the continuum limit \Vas taken, Le. we transformed the

discrete energy Ievels Eam into a continuum of energy states labeled by E. The first

term in this expression corresponds to the zero-th order response of the system in w.

This corresponds to the usuai DC transport regime. To obtain the linear and non

linear DC conductances we must put the first term of the above expansion into the

expression for the current Eq. (2.2) and then expand in terms of the bias potentials,

V-y. Similarly, the second term in Eq. (2.10) represents the first arder response in w ta

the oscillating AC potential. To obtain the linear AC conductance we put this term

iota Eq. (2.2) and expand to first order in l/.y. Let us now compute GaP, Ga{3'·p and

Eap .

2.2 Transport

In this section we compute the linear and nonlinear DC transport coefficients. To

obtain an expression for the De current operator we put the first term from the ex- •



pansion Eq. (2.10) into Eq. (2.2). Taking the ensemble average of the DC current

operator leads us ta an expression for the DC current in terms of the bias poten

tials. Expanding this expression in terms of the bias potentials {Va} leads us to the

transport coefficients Ga{3 and GaP""

Putting the first term from Eq. (2.10) into Eq. (2.2) and using Eq. (2.1) we find,

•
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(2.11)

Îa(t) = *L JdEdE'
n

[â~n(E)âQn(EI) - (~S~n.lim(E)â1m(E)) (~SQn.~t<EI)â.,I(EI))] ei(E-E')t/A

= ~L L L JdEdE'â1m(E) [tSaptSa-ytSnmtSnl - S~n,{3m(E)San"Yl(E')] â",I(E')ei(E-E')t/h
n pm ",1

- e JdEdE' "'" ~t (E)A ( E E') ~ (E') i(E-E')tjh- h ~ apm pm",l 0', n, , a...,l e ,
p",lmn

where

To obtain the physical current we take the quantum statistical ensemble average of

the current operator. The ensemble average, at temperature T, of the creation and

annihilation operators deep in the leads is given by,

(2.13)

•

where faCE) is the Fermi function for reservoir Q'. Taking the ensemble average of

the DC current operator Eq. (2.11) we find,

< la > = *" JdEdE' L Apm...,I(O', n, E, E') < â~m(E)â...,I(E') > ei(E-E')t/ft.
{3",lmn

= ~JdEdE' L A{3m...,I(Q, n, E, E')tSm1t5{3...,tS(E - E')f{3(E)ei(E-E')t/h
{3...,lmn

= ~1dE L A{3mfJm(Q, n, E, E)f{3(E)
{3mn

=*JdE L [Oa{3t5nm - s~n,{3m(E, {V...,})san,pm(E, {V...,})] fp(E)
fJmn

= ~JdE L f fJ (E) Aa {3 (E, {v", }) , (2.14)
{J
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where the transmission function Aa .8 (E, {Voy}) is defined by:

AaP(E, {V...,}) =L [6a~8nm - s~n,Pm(E, {V...,})san,Pm(E, {Voy})] .
mn

(2.15) •

(2.16)

Notice that we have explicitly included the scattering matrix dependence on the bias

potentials {Voy}. Notice that, the time dependence has dropped out of Eq. (2.14), as

it should for DC transport.

The DC transport coefficients are formally obtained by Taylor expanding the cur

rent function in terms of the bias potential {V...,}:

< la >= L Go13 Vp+ L Gap...,VpV..., + ....
/3 rh

To accomplish this we expand the Fermi function, fa(E) = f(E - J-leq - eVa/kBT),

and Aa {1 (E, {Voy}) in terms of {V'"Y}:

(2.17)

and

Putting these expressions into Eq. (2.14) we find, to 2nd order in the bias,

< la > = *1dEfo(E) 2: Aop(E, {Y;}) (2.19)
{3

= ~1dEE (f + (ôEJ)(-eV/l) + i(ÔEEJ)(eVd)
.8

( A<>,8(E) +E âv,Ao/l(E)V~ + i E âv,âv. Ao/l (E) VI'V;)
i i~

= *1dEf(E) L AO /3(E) + ~1dE(8Ef) L Ao{3(E)( -eV~)
/3 /3

+ ~1dEf(E) Eâv,AO/l(E)V; + ~1dEf(E)i Eâv,âv.Ao/l(E)VI'V~
Pi 13'Y~

+ ~1dE(ÔEJ) Eôv,Ao/l(E)V~(-eV/l) + ~1dEE i(ôEû)(eV/l)2Ao/l(E) .
P'Y /3

To simplify the above expression notice the sum rule,

L Aap(E) = L [8opdnm - s~n,~m(E)son,l3m(E)] = 0 ,
/3 ~nm

(2.20) •



•
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which follows from the unitarity condition on the scattering matrix,

L s~n,lJm(E)son,Pm(E) = 1 .
pm
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(2.21)

Applying this sum rule ta Eq. (2.19) we find that the first, third and fourth terms in

the expansion vanish, which leaves us ,vith,

(2.22)

We can further simplify the above expression by integrating by parts the last term

on the right hand side, we find,

Let us impose gauge invariance by finding the constraints on Eq. (2.23). Physical

quantities, like the current, are invariant under a global shift of aIl the bias potentials,

Va ~ Va + LlV. This implies that Aop(E, {V')' + ~V}) = Aap(E, {Vi})' In turn, this

leads us to the following constraint,

e8E Aap(E) + L av., Aap(E) = 0
i

(2.24)

•

The above equation simply states that the first arder term of the Taylor expansion

of Aap(E, {V')' + ~V}) in ~V must vanish since a global gauge invariance leaves the

system invariant. Imposing this constraint, Eq. (2.23) becomes,



\tVe replace the partial derivatives with respect to the hias potentials {l7.y} with func

tional derivatives and the characteristic potentials {u..,}. This way the transport co

efficients can he written in terms of quantities which are defined inside the scattering

region. This is accomplished by using the following relation,
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•
where the characteristic potential is defined by,

aU(r)
u..,(r) = av: ...,

(2.26)

(2.27)

The electrostatic potential build-up inside the conductor, due to a change in the

external bias, is denoted by U(r). Eq. (2.25) becomes,

(2.28)

(2.29)

Since we are only interested in zero temperature limit in this work, we take this limit

(T --+ 0) in the above expression:

e
2

e
2 J c5Aop

< la >= h ~ AaoVo + 2h~ dr 8U(r) (2u.,(r) - 811.,) VI1 V., ,

where we have used the identity: aEfo(E) --+ c5(E - EF ) when T --+ 0, where EF

is the Fermi energy of the electron reservoirs at equilibrium. The above expression

is evaluated at the Fermi energy. We can now read off the transport coefficients by

comparing Eq. (2.29) with Eq. (2.16), which leads to,

(2.30)

and

e
2 J c5Aop

Gop.., = 2h dr c5U(r) (2u..,(r) - cSp..,) (2.31)

These expressions will be used in Chapter 4 to study quantum transport in the diffu

sive regime. In particular, linear and nonlinear conductance fluctuations in the UCF

regime will be calculated using these equations. •
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(2.32)

2.2 Transport

Next, we derive an expression for the linear AC conductance. We only give a brief

account of the derivation since it follows the same lines as the one just performed.

The second order term of the expansion of the annihilation operator aon (E) is (see

Eq. (2.10)) is given by,

2~ôi1
) [âam(E + 1iw) - âam(E -1iw)] .

•

(2.33)

Putting this expression into the equation for the current operator (see Eq. (2.2)),

taking the ensemble average, and expanding aIl the terms to first order in V1" we find

after sorne algebra [83],

< 10. > = -ie2w L 1dE(-8E J) d:;fJ VfJ
13

2 '"'1 l '"' dna;(r)+ ie W LJ dE(-8E f) dr LJ dE u{J(r)V/3.
13 l'

Taking the limit T ---+ 0 the expression becomes:

< 10. > = -ie2wLd:;fJ VfJ + ie2wLI dr (L dn~r») u{J(r)v~
{J 13 l'

=-ie2wL E/3a V/3 . (2.34)
/3

(2.35)

Note that the DC eomponent is omitted from the above expression, Le. when w goes

to zero, the eurrent is given by the linear DC formula discussed above. The above

equation uses the following notation. The local partial density of states (LPDOS) is

defined by [29],

dno{J(r) _ l '" [ t tSsan./3m e5s~n./3m ]
dE = - 47ri~ son,/3m e5eU(r) - tSeU(r) son,pm

This then defines the global partial density of states (GPDOS),

dNo{J =1d dnop(r)
dE - r dE . (2.36)

•
The emittanee Eo{J from Eq. (2.34), which is the first order transport coefficient in w

and V1" is given by,

(2.37)



_ / dn(r, ct)
D o13 = dr dE UI3(r) , (2.38)

where dn(r,o:)/dE is known as the emissivity and is defined below. Clearly, DO {3

represents the internaI response of the system to the oscillating AC potential since it

depends on the first order characteristic potential, u.., (r) = au(r)/ av.,.
The physical meaning of the various scattering DOS has been discussed in [29] and

here we include them for completeness of presentation. The quantity dna{J(r)/dE of

Eq. (2.35) is the LPDOS which describes the local density of states of carriers which

enter the device (see Fig. 2.1) at lead a and exits at lead [3. This is the most fundamen

tal quantity of aIl the scattering DOS. We note that pé!.ftitioning a scattering process

using the partial DOS greatly enhances the physical intuition and helps to understand

the complicated quantum scattering problem. Clearly, the GPDGS dNal3/dE, gjven

by Eq. (2.36), is the total partial DOS describing the scattering event of a carrier

entering at lead 0: and leaving at lead [3.

The partial local DOS,
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•

dn(r, a) = L dnal3(r) (2.39)
dE 13 dE '

describes the local density of states of charge carrier which exit the device from lead

Q: regardless of what lead they came in from. We call this quantity the emissivity.

The partial DOS

dn([3, r) = 2: dno l3(r) (2.40)
dE a dE

describes the local probability that an incoming charge carrier enters from lead f3

regardless which lead it exits. This partial local DOS is called the injectivity. It

is obvious that for systems with time reversai symmetry (e.g. no magnetic field),

injectivity is identical ta emissivity. These partial DOS can be ca1culated from their

definition Eq. (2.39) and Eq. (2.40) once the LPDOS is obtained. They can also be

directly computed using the scattering wave functions or the Green's functions. In

particular, [29, 84] has proven the following expression,

dn(f3, r) =L 11/Jl3n(r)l2 , (2.41)
dE n hVl3n •



where Van is the electron's incoming velocity in lead {3 in mode n. Eq. (2.41) provides

a practical means for evaluating the partial DOS once the scattering wave functions

are known. The consistency between the different approaches for evaluating the

injectivity and the emmisivity provide strong constraints on any theoretical prediction

made about these quantities.

FinaIly, we define the total local nos,

•
2.3 Characteristic Potential

dn(r) = L dna {3(r) = L dn(o:, r) = L dn(r, fi)
dE a{j dE a dE {3 dE
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(2.42)

•

The last ingredient that we are missing is the characteristic potential, U Q (r) . Once

we know how to compute them, we will have aIl the required quantities needed to

investigate the transport coefficients.

2.3 Characteristic Potential

In this section we derive an equation for the first order characteristic potential ua(r),

following [82]. The characteristic potential contains aIl the information about the

response of the internaI potential, which we denote by 8U(r), to first order in the

bias potentials {Voy}. We derive an expression for ua(r) within the Thomas-Fermi

and quasi-neutrality approximation which leads to an analytical expression in term

of the LPDOS.

Consider the multi-probe conductor of Fig. 2.1. In the equilibrium situation where

aIl the electro-chemical potentials of the reservoirs are equal to a common value /-LQ =

J.1.{3 = ... = j.L, we denote the potential landscape of this conductor by U([J.LQJ, r). U

contains aIl the contributions due to material properties of the conductor, the external

confining potential of the split gate as discussed in Chap.1, the effective interaction

potential between electrons (e.g. Hartree potential), the electron-ion interactions,

and any other effects. Next, consider the situation when we apply a bias potential

Va to lead 0: 50 that the electro-chemical potential of this lead deviates from /-L by an

amount 8J1.a = eVa , therefore its electro-chemical potential becomes Ji.~ = Ji. + eVQ •

Since J.L~ 1= J.1., an electric current starts to flow through our conductor. In addition,



hecause of the transport of charges and electron-electron interactions, the potential

landscape U will he perturbed hy an amount cSU(r) = U([J.LQ + ,sJlQ]' r) - U([J.LQ] , r).

The presence of cSU reflects the physical phenomenon of electrostatic induction which

is very important for AC and nonlinear DC transport situations. In faet, without

cSU, an AC theory violates eurrent conservation while a nonlinear DC theory violates

gauge invariance. For specifie deviees, ,sU can he numerically computed by solving

a Poisson equation coupled to the quantum transport equations in a self-consistent

fashion [85]. In this work, we are interested in the small bias regime. We therefore

calculate 8U order by order in terms of the perturbation 8J.LQ,
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•

(2.43)

where the functions UQ, Ua:{j, ••• are the charaeteristic potentials which characterize the

change in the potentiallandscape with an external perturbation. Renee, the functions

U Q (r) determines the response of the electrostatic potential inside the device to first

order in 8Jla.

Let's determine the constraints on the characteristic potentials that gauge invari

ance and eurrent conservation impose. Consider an inerease in aIl the electro-chemical

potentials by the same constant amount, 81-lQ = 8J.L. Then aceording to Eq. (2.43) we

have, to first order in ,sil:

,sJ.L = e,sU(r) =~ uQ (r)c5Jl .
o

Therefore the eharacteristic potentials must satisfy the sum rule,

o

(2.44)

(2.45)

The constraints imposed on uo(r) by eurrent conservation appear as boundary

conditions on the electrostatic potential c5U(r). Deep inside the Q-th reservoir, the

interactions are eompletely screened, therefore an increase of the electro-chemical

potential by ,silo raises the electrostatic potential by the same amount, Le. 8U(r) =
8J.Lo/e deep in the Q-th reservoir. This implies, to first order in ,sIlQ:

(2.46) •



•
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This implies that,

ua(r) = 1 for r deep in the a-th lead,

and

ua(r) = 0 for r deep in the {j-th lead where a =1= {j .
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(2.47)

(2.48)

Eq. (2.47) and Eq. (2.48) serve as the boundary conditions for ua(r).

What is the equation for the characteristic potentials? Obviously, since r5U satisfies

a Poisson equation,

V 2cSU(r) = -41rr5p(r) , (2.49)

the characteristic potentials should also satisfy Poisson's equation. To derive such

an equation explicitly, we need the charge density r5p(r) which is established during

transport and generates the change of the potentiallandscape cSU for the conductor.

Clearly, 5P has two contributions: the injected charge, which cornes from external

reservoirs and is due to the external bias, and the induced charge, which is estab

lished throughout the conductor due to the injection of charges via electrodynamics.

To make the discussion simpler, we will further partition these charges by their con

tributions from each lead,

cSPa (r) = cSPinjeeted,a (r) + r5Pindueed,a (r ) (2.50)

where r5Pinjected,a(r) is the injected charge from the a-th lead and cSPindueed,a(r) is the

induced charge because of the injection of charges through lead a. The total charge

density, which enters the right hand side of Eq. (2.49), is

e5p(r) =L 8Pa(r) .
a

(2.51)

•

In the linear response regime, the external injection is proportional to the electro

chemical potential change cSJ.La discussed above, and is given by (82),

dn(a, r)
8Pinjected,a(r) = dE 8J.LQ' (2.52)

This quantity can be easily calculated once the injectivity is known. The physical

meaning of Eq. (2.52) is also very clear: the amount of injected charge depends on



the driving force 8/-Lo as weIl as the partial density of states of injected charges from

the a-th lead.
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•
The induced charge density is much more difficult to obtain because it is a direct

consequence of electron-electron interactions. Within mean field theory, the induced

charge can be formally written as a nonlocal response of the conductor to the local

change of the potentiallandscape 8U:

8Pinduced,o(r) = - f dr' IIo(r, r')e6U(r') . (2.53)

The minus sign simply indicates that the induced charge is opposite in sign cornpared

with the injected charge, and integration is over aIl space where the potential land

scape is varied. The quantity llo(r, r') is the response kernel, commonly called the

Lindhard function, and it is now solely due to the charge injection through the a-th

lead. Therefore the total response function is

II(r, r') = L llo:(r, r') .
0:

(2.54)

Replacing 8U of Eq. (2.53) by Eq. (2.43), to first order in external perturbation, we

have,

8Pinduced,o:(r) = - f dr' llo:(r, r') 2: u,8(r)8/-L,8 . (2.55)
,8

From this equation, for a given model of the response lIo:, the induced charge can be

computed once the characteristic potential is known.

Substituting Eq. (2.43), Eq. (2.51), Eq. (2.52), and Eq. (2.55) into the Poisson

equation Eq. (2.49), we obtain an equation for the first order characteristic potential,

f dn(a, r)
-V2uo(r) + 47T"e dr' ll(r, r')uo(r') = 41re dE . (2.56)

The boundary conditions for this equation are provided by Eq. (2.47) and Eq. (2.48).

This equation is readily solvable, at least numericaIly, if we have a model for the

Lindhard function ll. Unfortunately, ll(r, r') is extremely difficult to obtain and

therefore has never been calculated from first principles for a multi-probe conductor

in the mesoscopic regime. However, the physical meaning of the Lindhard function has •



been well understood in the development of Fermi Iiquid theory [86] as the nonlocaI

charge response, and our kemel fi is the "scattering analog" of the same concept.

In order to put the problem into a solvable form, so that we can compute the

AC and nonlinear DC conductances in the diffusive mesoscopic regime, we will, in

this work, use the Thomas-Fermi approximation for II which drastically simplifies

the calculation. In this approximation, the non-Iocality of II(r, r') is neglected so

that II(r, r') ~ 8(r - r')n(r), indicating that the charge response in our conductor

is rather localized. This is reasonable for metallic or highly doped semi-conducting

samples where interactions are effectively screened. For our purposes, the Thomas

Fermi approximation provides results which give at least a good qualitative physical

picture. By summing over a in Eq. (2.56) and recalling that La ua(r) = l, we obtain,

•
2.3 Characteristic Potential

f d II( ') = '" dn(a, r) = dn(r)
r r, r L- dE dE'

a

Then within the Thomas-Fermi approximation we conclude that,

II( ) ~ dn(r)
r dE'
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(2.57)

(2.58)

Using this approximation, Eq. (2.56) takes on a simpler form whîch is numerically

solvable,

(2.59)

(2.60)•

Clearly, for a general multi-probe conductor there is little hope to solve this ana

lytically in any precise fashion, and therefore it is usually solved numerically. An

example of this is round in [87] where the non-equîlibrium charge distribution and

the electro-chemical capacitance of atomic clusters were analyzed. For theoretical

and qualitative analysis, which is what we are interested in, a further approximation

is usually made [88], which is the condition of local charge neutraIity. This requîres

that the total charge be neutral at every point in space, namely 8p(r) = 0, which

means that the injected charge is exactly balanced by the induced charge. Therefore,

local charge neutrality implies V2ua = 0, and from Eq. (2.59), we obtain

( )
_ dn(a, r) [dn(r)]-1

uQr - dE x dE .



•

(2.61)
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We emphasize that ua(r) can always he directIy solved from Eq. (2.59) as in [85].

For physical situations where charge polarization is not very important (such as con

ductors with good transmission property), local neutrality can he applied. In the

rest of this work we compute the characteristic potential within the Thomas-Fermi

approximation and the local neutrality condition, since these are applicable to our

systems of study.

FinaIly, let us note that the above procedure can he generalized to higher order

characteristic potentials: ua{j, ua{i'Y' .... Within the Thomas-Fermi approximation

the partial charge density from the a-th lead is given by [82J:

dno ( ) 1 lf2no 2
6pa = dE 6j.La - eJU + 2' dE2 (Jj.La - eJU) + ....

(2.63)

(2.62)

Putting this expansion and Eq. (2.43) into Eq. (2.49) we find, after much work [83J:

2 () 2 dna () 2 (d2no d2nf3- V' ua{j r + 41re dE Uof3 r = 41re dE2 Ja{J - dE2 Ua (r)

d2na lf2n )
- dE2 uf3(r) + dE2 uo(r)u{j(r)

This provides an equation for the second order characteristic potential ua{J(r). No

tice that aIl the quantities involved are known from the linear order calculation, thus

uo{J(r) can be numerically computed. Similarly, the third order eharacteristic poten

tial uo f3'Y(r), requires the knowledge of ua(r) and ua{3(r).

2.4 Summary

In this chapter we have elaborated Büttiker's transport theory for linear AC and non

linear DC transport coefficients. The major break through in this quantum transport

theory is that it respects eurrent conservation and gauge invariance, something that

most other transport theories do not satisfy. Moreover, to compute these transport

coefficients aIl that is required is the scattering matrix San,{3m, the functional derivative

of the scattering matrix 6san,{3m/6U(r), and the first order characteristic potential,

ua(r).

In summary, we have the following results: •



•
2.4 Summary

• Linear De conductance:

• Second order Nonlinear OC conductance:

• Linear AC conductance (emittance):

E = Id dnaP(r) -Id dn(r, a) ()
ap r dE r dE Up r .
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(2.64)

(2.65)

(2.66)

•

These expressions are at the heart of our study of linear AC and nonlinear DC quan

tum transport phenomena.



3

Scattering matrices, Green's functions, and functional derivatives

In the previous chapter we reviewed the scattering matrix approach for computing

quantum transport coefficients. The key quantities that are required to compute

these quantum transport coefficients are the scattering matrbc S~m,Qn' it's functional

derivative 6s{Jm,Qn/8U(r) and the characteristic potentials uo(r). While s(3m,on can

be readily calculated, in contrast we have that 6s{Jm,on/8U(r) is extremely difficult to

compute.

A direct way to compute 8sQn,fJm/8U(r) for a multi-probe conductor is to follows

the procedure in [77]. First, we calculate the scattering matrix Son,fJm for the conduc

tore Next, we add an extra localized scattering potential 8U(r) = 8U8(r - r') inside

the conductor at position r', where 8U is infinitesimal. We then evaluate the new

scattering matrix, s~n,{Jm under the perturbation of 8U(r). The functional derivative

is then given by the limit 8U 4' 0: 8sQn,Pm/8U(r) = (8~n,{Jm - son,~m)/8U. This

procedure is then carried out for each spatial point r of the multi-probe conductor.

Clearly, this method of computing functional derivative is extremely time consuming,

and thus quickly becomes impractical when dealing with 2D systems.

In our work, we derive from first principles an expression for the functional deriva

tive of the scattering matrix for a multi-probe conductor. The analytical expression

for the functional derivative is expressed in terms of the Green's function and the

wave function, which are quantities that are directly computable. Combining this

result with a new relation between the wave function and the Green's function leads

us to a simple expression for the 6sQn,{Jm/8U(r) in terms of 'l/JQn(r).

In this chapter we derive an expression for the emittance, EQ{J, and the nonlin-
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ear conductance, GaP.." which only requires the scattering matrix and the scattering

wave function. These results are used later when we study emittance and nonlinear

conductance fluctuations in the diffusive regime. In Section 3.1 we derive expressions

for the functional derivatives of the Green's function, the wave function, and the

scattering matrix. In Section 3.2 we review the Fisher-Lee relation [89]. This sets up

the work in Section 3.3, where we derive the generalized Fisher-Lee relation, which

relates the Green 's function to the wave function in a way which is similar to the

usuai Fisher-Lee relation. In Section 3.4 a generalized proof is used to extend the

result to Bloch states and multi-probe systems. In the final section we combine the

results from the previous sections with those from Chapter 2. This leads us to new

expressions for EQP and GolJ.." which are easy to evaluate.

•
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(3.1)

•

3.1 Functional Derivatives

In the previous chapter we derived expressions for the quantum transport coefficients

for AC and OC transport. To compute these expressions we must first calculate the

functional derivative of the scattering matrix fJspm,Qn/fJU(r). This quantity arises

from the derivative of the scattering matrix with respect to the bias potential via the

chain ruIe,

8spm ,on = f dr fJs[3m,Qn aU(r) .
av.., tSU(r) av..,

One can understand this equation in the following way. The scattering matrLx Sl3m,on

corresponds to a solution 'l/Jon to Schrodinger's equation. The electrostatic potential

U(r) in Schrodinger's equation is a solution to Poisson's equation with boundary

conditions given by the bias potentials {V..,}. This implies that a small change in the

bias potentials tSlt~ leads to a change in the electrostatic potential fJU(r) , which in

turn induces a change in the scattering wave functions ?/Jan, which leads to a change

in the scattering matrix tSs{Jm,Qn.

Note that the integration in the above equation is nothing more than the contin

uous version of the chain mIe. In the discretised version of this system we replace

the function U(r) with a collection of variables {Ui}, which represent the value of the



electrostatic potentiai in the discretised scattering region. This leads to the following

substitution: S,8m,an[U(r)] -t s,8m,an({Ui }). Applying the usual chain mIe we find,

cSS,8m,on({Uk }) = L cSSf3m ,an({Uk }) aUi -t /dr cSS,8m,on[u(r)] 8U(r) , (3.2)
cS~ i cSUi a~ cSU(r) 8l7.y

where we have taken the continuous Iimit in the last step.

In the following section we derive a general formula for the functionai deriva

tives of the scattering matrix. This is accompIished by first computing the functional

derivatives of the Green's function using Dyson's equation. The Lippmann-Schwinger

equation is then used to obtain an expression for the functional derivatives of the scat

tering wave functions. Finally, the previous results are used to obtain an expression

for the functional derivatives of the scattering matrix. To summarize, we compute in

the following order: 8G/cSV -t cS'l/Jan/cSU -t 8sPm,an/8U.
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3.1.1 Functional Derivatives of the Green 's function

By definition the functional derivative of any physical quantity is its response to an

infinitesimal delta-function perturbation, cSU(r) = CSV8(r-r), where r is located inside

the scattering region. Formal1y, the functional derivative of the Green 's function is

given by

cSG(r, ri) _ Iim G[U(r) + tSUcS(r - r)](r, ri) - G[U(r)](r, ri) ,
cSV(r) t5U~O cSV

(3.3)

(3.5)

where we explicitly show the Green's function dependence on the potential, U(r).

The Taylor expansion of the Green 's function provides a way to obtain the functional

derivative,

G[U(r) + dU(r)](r, ri) = G[U(r)](r, ri) + O;~~~') dU + ... . (3.4)

To obtain such an expansion Dyson's equation is used.

Let the Hamiltonian il represent a free system and G(r, ri) be its corresponding

Green's function. We add a perturbation potentiai V(r) to this system which leads

ta a new Hamiltonian ilv = fI + V{r) and a new Green's function Gv{r, ri). Dyson's

equation relates Gv(r, ri) to G(r, ri) and V(r) via,

Gv(r, r') = G(r, r') + / dr"G(r, r")V(r")Gv(r", r') . •
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It is straight forward to show that

iIvGv(r, r') = -c5(r - r') .
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(3.6)

Applying Dyson's equation Eq. (3.5) to the situation where Ver) = c5U(r) = c5Uc5(r

l'), we find

G6U (r, r') = G(r, r') +1dr"G(r, r')8U(r")G6U (r", r')

= G(r, r') + 1dr"G(r, r")c5U8(r" - l')G6u (r", r')

= G(r, r') + c5UG(r, l')G6U (l', r') (3.7)

Setting r = l' we obtain an equation for G6u(l', r'),

G6u (l', r') = G(r, r') + c5UG(r, r)G6u(l', r') .

Solving for G6u (r, r'),

GliU(r, r') = [1 - c5U1]]-l G(r, r')

= G(r, r') + c5UT]G(r, r') - ... ,

(3.8)

(3.9)

(3.11 )

•

where we have set 1] = G(l', r) and we have expanded [1 - c5U1]]-l. Putting this

expansion into Eq. (3.7),

G6U (r, r') = G(r, r') + c5UG(r, r)G6U(r, r')

= G(r, r') + c5UG(r, r) (G(r, r') + c5UTJG(r, r') - ... )

= G(r, r') + c5UG(r, r)G(r, r') - ... (3.10)

Comparing this equation with Eq. (3.4), we find,

tSG(r, r') (_) _ ')
c5U(l') = G r, r G(r, r

This expression has been derived for ID cases [90].

We now obtain an expression for the second order functional derivative of the

Green's function. This is obtained by the following:

82G(r, r') c5 (c5G(r, r'))
c5U(r2)t5lJ(rd - 8U(r2) t5U(rr)
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dU~r2) (G(r, rl)G(r" r'»

= (dU~r2)G(r, rd) G(rt, r') + G(r, rd (dU~r2)G(r" r'»)

= G(r, r2)G(r2, rdG(rI, r') + G(r, rr)G(rl 1 r2)G(r2, r') .

•
This last equation can be cast into the following form:

(3.12)

where S2 is the group of aIl permutations of two elements and P(i) is the i-th element

of the group. In this notation it is straight forward to show, by induction, that the

N-th order functional derivative of the Green's function is given by:

where SN is the group of aU permutations of N elements. 'vVe DOW have an explicit

expression for ail the functional derivatives of the Green's function. Let us now

compute the functional derivatives of the scattering wave functions.

3.1.2 Functional Derivatives of the Scattering Wave function

To compute the functional derivative of the wave function we use, once again, the

Taylor expansion,
67j;(r)

1/J6U(r) = 1/J(r) + 6U(r) 6U + .... (3.13)

In the previous section we obtained an explicit expression for the Taylor expansion by

using Dyson's equation, which related G(r, r') to G6U (r, r'). The analogous equation

for wave function is the Lippmann-Schwinger equation. Let 'l/J(r) be the wave function

for a Cree system, 1/Jv(r) be the wave function for the perturbed system, and \/(r) be

the perturbation potential. Then the Lippmann-Schwinger equation is given by,

where Gv(r, r') is the Green's function of the perturbed system. It is not diflicult to

show that t/lv(r) satisfies Schrodinger's equation for the Hamiltonian Hv = Ho + V.

1/Jv(r) = 1/J(r) + f dr'Gv(r, r')V(r')1/J(r') , (3.14)

•
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Setting V(r) = l5U(r) = c5Ul5(r - r), we obtain

1/J6U(r) = 1/J(r) + / dr'Gôu(r, r')6Ul5(r' - r).,p(r')

= 1/J(r) + 6UG6U(r, r)1/J(r) .

Substituting Eq. (3.10) into Eq. (3.15),
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(3.15)

1/J6U(r) = 1/J(r) + c5UG6U(r, r)1/J(r)

= 1/J(r) + oU (G(r, r) + oUG(r, r)G(r, r) + ...)1/J(r)

= 1/J(r) + oUG(r, r).,p(r) + ... . (3.16)

Comparing Eq. (3.13) and Eq. (3.16), we conclude,

tS1/J(r) __
cSU(r) = G(r, r)1/J(r) . (3.17)

•

We can now compute higher order functional derivatives. The second order functional

derivative of the wavefunction is given by,

621j;(r) c5 ( c51/J(r) )
tSU(r2)tSU(rd tSU(r2) c5U(rd

cS
- 6U(r2) (G(r, rd1/J(rd)

= (e5U~r2) G(r, rd) 1/>(rd + G(r, rd (e5U~r2)1/>(rd)
= G(r, r2)G(r2, rd'll'(rd + G(r, rdG(rl' r2)7P(r2) (3.18)

This last expression can be written in the fol1owing form:

where, once again, 82 is the group of permutations of two elements and pei) is the

i-th element of the group. Finally, by induction we find the N-th order functional

derivative:

ON.,p(r)
e5U(rN ).•.e5U(r2)e5U(rd = P~N G(r, rp(I})G(rp(I}' rp(2}) ...G(rp(N-l)' rp(N»)1/>(rp(N)) .

We will now obtain a general expression for the functional derivatives of the scattering

matrix.
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•
Up to now we have not worried about the type of leads for our quantum conductor.

Theoretically, the leads of a eonductor are mostly modeled by jellium leads where

there is no atomic structure: a lead is a perfeet quasi-ID quantum wire where the

eonfining potential of the wire is assumed to be either hard or soft. A hard wall

potential means the confining potential has a step funetion profile whieh is infinitely

high at the wall. A soft wall, on the other hand, is modeled by a potential of finite

height whieh spatially extends to infinity away from the wall. Jellium leads are easy

to model because the electrons wavefunction along the leads are plane waves, as we

have assumed so far. More recently, quantum transport measurements on atomic and

moleeular seale nano-electronic systems have received great attention [91, 92, 93, 94,

95, 24, 96, 97J because they represent the ultimate size limit of funetional devices.

The eurrent-voltage (/- V) characteristics of these atomic and molecular systems have

promising characteristics for device applications, including high nonlinearity, negative

differential resistance, eleetro-mechanie and eleetrostatic eurrent switching [92, 93,

94, 95, 97J. Demonstrations of moleeular based logic gates [92] and non-volatile

random access memory device [93, 95J have already been made, and clearly point to

the exciting possibility of molecular computing machinery [92]. For these molecular

devices, the leads are atomic: they have their own discrete translational symmetry,

represented by a collection of atoms at positions {RI}. Therefore, it is useful ta

consicler atomic leads as weIl as the simpler jellium leads.

AlI the equations derived so far are valid for jellium as weIl as atomic leads. In

contrast to the Green's function and the wavefunction, the functional derivatives of

the scattering matrix depends on the details of the leads that we are modeling. In

this section we first derive an expression for the N-th order functional derivative of

the scattering matrix for jellium leads. We will then derive the analogous result for

a system with atomie leads.

The scattering matrix for a quantum conductor with jellium leads is defined by •
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[73],

,,1. ( ) ,,[~ ~ At. ( ) ikon ·Xo + ~an At. ( ) -ik{Jm oX13 ]'flan rl3 = L.J upaUmn'Pan Ya e -Sl3m,an'Y{Jm YI3 e ,
l3,m Vl3m

47

(3.20)

where rl3 = (X{J, YfJ) are local coordinate systems such that x[3 = 0 is the position of the

boundary between the scattering region and j3-th lead, V{Jm is the Fermi velocity for

the rn-th subband in the j3-th lead, and 4Jl3m(YP) is the rn-th transverse eigenfunction

in the ,B-th lead. This relation between "pan and s[3m,an can he inverted to obtain an

expression for the scattering matrix in terms of the wavefunction,

where C[3 is the boundary surface between the ,B-th lead and the scattering region,

in order to simplify the notation. From now on, XI3 represents the position of the

boundary between the the ,B-th lead and the scattering region.

The strategy for computing the e5s{Jm.an/e5U(r) is to apply the results of the two pre

vious sections in combination with Eq. (3.21). Note that the transverse eigenfunction

in the leads, {4Jl3m}, are unaffected by the presence of a delta function perturbation,

tSU(r) = e5Ue5(r - l'), in the scattering region. Thus, it is a constant from the point of

view of the functional derivative. This leads to the following result,

•

e5S[3m,an _ e5 (tlim ( , (') ( 1))
tSU(r) - e5U(r) Van lc{J dy 4Jl3m y "pan X{3, y

= tlim ( dy'r/Jlim(y') (e5"pan (XI3' yi))
Van lc{J e5U(r)

= t lim ( dy'r/Jlim(y') (G(XIi' y'; r)tPQn(r))
Van lC(3

= JViJm ( inVf3m ( dy'4Jf3m(y')G(X{3, yi; r)) 1/J(r)
Van lCI3

-i -
= liJ

V
l3mVan 1/Jl3m (r )"pan (r) ,

where we have introduced the function iPPm(x, y):

(3.22)

(3.23)
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To compute the higher order derivatives first notice that,

8ijjPm(r) cS (·li { 1 ( ') ( 1))
8U(r) = c5U(r) t vpm lCfJ dr l!JPm xp, y G x{3, y ; r

= ihvPm Ic
s

dr',ppm(xp, y') (5~r) G(xp, y'; r))

=ilivPm ( dr'l/Jpm(XIJ, y') (G(xp, y'; r)G(r, r))
lCfJ

= (ihVpm Ic
s

dr',pPm(Xp, y')G(Xp, y'; l')) G(r, r)

= ~IJm(r)G(r, r) . (3.24)

•

Let us now compute the second order functional derivative of the scattering matrix,

62
S{3m,an 8 (8S pm,an )

8U(r2)8U(rd = 6U(r2) c5U(rd

= 5U~r2) (h";V~:VQn ~pm(rdt/JQn(rd)
-i [ c5iïJl3m (rd - 81/Jan (rd]

= 11,JvPmvan c5U(r2) 1/Jan(rd + Wl3m(rr) 6U(r2)

= 11, -z [ijjpm(r2)G(r2' rr)1Pan (rI) + ijjPm (rdG(rl, r2}Wpm(r2)]
JVPmVan

This last equation can be rewritten in the fol1owing form:

(3.25)

Finally, by induction we find that the N-th order functional derivative of the scatter

ing matrix is given by,

(3.26)
-z6N San,pm

-r5U-(-r-N-).-..c5-U-(:.;"....r2-)r5-U-(-r-r) - -;-fiv--;V;:;:P=m::;;::va=n

~ ijjan(rP(l))G(rP(l), rp(2») ...G(rp(N-lb rp(N»)'l/JPm(rp(N») .
PESN

Let us derive the analogous result for a quantum device attached to atomic leads.

The scattering matrix for a system with asymptotic states given by Bloch states is

defined by,

(3.27) •
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(3.28)

3.2 The Fisher-Lee Relation for Jellium leads

where {4>~::)} are the incoming Bloch states in the n-th subband in the a-th lead and

{4>~o:t)} are the outgoing Bloch states in the rn-th snbband in the ,a-th lead. This

relation can he inverted to obtain an expression for the scattering matrix in terms of

the scattering wavefunction,

- ~ l t Pm lr d 'A,.(out)t( '),,1, (')sfjm,an - -Ufja nm + - r o/fjm r 'Pan r ,
VQn C{J

•
where

Inm =r dr4>~::l (r/)4>~~t)t (ri) , (3.29)
lcp

where Cfj is the first unit cell outside the scattering region at the boundary with the

,B-th lead region and 4>~o:t)t is the dual of the n-th subband Bloch state in the ,B-th

lead. With this expression it follows from our previous derivation that first order

functional derivative of the scattering matrix is given by,

(3.30)

where

if;fjm(r) = invfjm ( dr'4>~o,:t)t(r')G(r',r) . (3.31)
lep

Ta obtain the higher order functional derivatives it suffices to notice that Eq. (3.24)

is valid for Bloch states. It then follows that the N-th order functional derivative of

the scattering matrix for such a Bloch system has the same form as Eq. (3.26) except

that 1P{3m(r) is replaced by Eq. (3.31).

To summarize, we have derived a general expression for the functional derivatives

of the scattering matrix from first principles. These results provide a systematic

way to compute the functional derivatives of scattering matrbc. Next, we find an

expression for the scattering wavefunction in terms of the Green's function. This

will allow us to express the first order functional derivative of the scattering matrix,

8san,fjm/8U(r), in terms of the wavefunction, 'ljJ{3m(r).

•
3.2 The Fisher-Lee Relation for Jellium leads

The scattering matrix tells us the response at one lead given an excitation by an

incoming carrier at another. The Green's function, on the other hand, has much more



information. It knows the response of the system at an arbitrary point x in space

given an excitation originating at x'. Since the Green's function has full knowledge of

how a conductor reacts to an arbitrary excitation, it must also contain the scattering

matrix. Then we should be able to extract the scattering matrix from the Green's

function. The equation that relates the scattering matrix to the Green's function is

known as the Fisher-Lee relation [89]. We now give an informaI derivation of this

relationship following [5].

Consider a device connected to a set of leads. We use a local coordinate system

where the boundary of the scattering region with the ,a-th lead is located at x{3 = O.

We express the Green's function evaluated at the boundaries in the following notation,
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(3.32)

We now express the above Green's function in terms of the scattering matrix. To

simplify the situation, for the moment, we ignore the transverse degrees of freedom

and treat the system as if it was one dimensionaI. We know that a unit excitation

at X Q = 0 gives rise to an wave amplitude A~ moving away from the conductor and

a wave amplitude At moving towards to conductor. The wave going towards the

conductor will be scattered into different leads, which leads us to,

It can be shown [5J, using the Green's function continuity equations, that

A+- -_ t
{3 - A{3 ---

fiv[3

The conventional normalization for the scattering matrix is

Combining the above equations we find the following result,

This is the Fisher-Lee relation in one dimension.

(3.33)

(3.34)

(3.35)

(3.36)

•



Ta obtain the multi-mode version of this equation first notice that Eq. (3.33)•
3.3 The Generalized Fisher-Lee Relation for Jellium leads

becomes,

Gpo(Yp; Yo) = L L cPQn(YQ) [&PQ6nmA~n + Spm,anAtm] cPf3m(YP) ,
nEQ mEf3
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(3.37)

when the transverse degrees of freedom are taken into account. From the Green's

function continuity equations it can be shown [5],

A+ - A- _ tpm - (jm - --/i- .
Vpm

The conventional normalization for the multi-mode scattering matrix is,

S tPmpm,Qn = -8pm,on •
Von

Therefore,

(3.38)

(3.39)

(3.40)

•

To obtain an equation for the scattering matrLx in terms of the Green's function, we

invert Eq. (3.40),

This is the higher dimensional version of the Fisher-Lee relation.

3.3 The Generalized Fisher-Lee Relation Eor Jellium leads

In general, we may consider G(r, r') to be the electron probability amplitude at po

sition r given a delta-function excitation at another position r'. The wavefunction,

on the other hand, is the probability amplitude for an electron to be at a position r

given sorne initial probability amplitude. Therefore, the information contained in the

wavefunction is also contained in the Green's function.

Let us now prove the following relation between the wavefunction and the Green's

function:

(3.42)



where r is located inside the scattering region. We caU this equation the Generalized

Fisher-Lee relation.

To prove Eq. (3.42) we will first show by direct computation that the relation is

true for a perfect 2D quantum wire. Having shown this we will next construct systems

which consist of a perfect 2D wire with an arbitrary potential in the scattering region~

which can contain both a local and a non-local term. Dyson's equation is then used to

obtain an expression for the Green's function for the new system in terms of G(O)(r, r'),

the Greens function for a perfect 2D wire, and the potential. Similarly, we use the

Lippmann-Schwinger equation to get an expression for the wave functions for the new

system in terms of t/J(O) (r) and the potential. With these expressions in hand we use

our previous results to show that the Generalized Fisher-Lee relation is true.

First, let us consider a perfect 2D wire with an empty scattering region located in

the region x E [0, L]. The lead to the left of the scattering region is denoted as lead-l

and to the right as lead-2. The scattering wavefunction for an incoming mode from

lead-l in the n-th subband
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(3.43)

where cPn (y) is the transverse eigenfunction which depends on the choice of confining

potential of the ,vire. Similarly, the scattering wavefunction for an incoming wave

from lead-2 in the rn-th mode is given by

(3.44)

Next, the Green's function for a perfect 2D quantum wire is given by [5],
eiknlx-x'l

G(O)(r, r') = L cPn(Y)cPn(Y') .fi' (3.45)
n Z Vn

where kn is the n-th eigen-momentum and Vn is the Fermi velocity of the carrier in

the n-th subband.

Using Eq. (3.43), Eq. (3.44), and Eq. (3.45) we now show that the Generalized

Fisher-Lee relation is true for a perfect 2D wire. For x inside the scattering region

we have that

•
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Similarly,
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We absorbed the phase factor eikmL into the definition of the scattering wavefunction

since it has no physical effect. Notice that if we use a local coordinate system such

that X2 = 0 corresponds ta the position of the boundary of the scattering region with

lead-2, then the phase factor would be absorbed by the local coordinate system.

Let us now consider a general situation described by the Hamiltonian,

(3.46)

where HO is the Hamiltonian for a perfect 2D quantum wire, and V is sorne scattering

potential that describes our quantum device. The potential has two pieces, one local

and one non-local l,

where

VNL (r)7/J(r) = L Z~vXIl(r) f dr'Xv(r')1/J(r') .
~'v

(3.47)

(3.48)

•
The functions Xv(r) form a basis for the non-local potential. The matrix Z~v for the

non-local part of the potential is symmetric, Z~II = ZIlIl' Because of the general form

of the potential, the system can represent a wide variety of quantum device connected

1A non-local potential is often necessary in defining atomic cores in a typical density functional

analysis of molecular devices.



to two jellium leads, like an atomic cluster, a quantum dot, or an atomic wire. The

only assumption we make about the potential is that it is Time ReversaI Symmetric

(TRS), which implies that G(r, ri) = G(r/, r).

Before moving on with our derivation let us notice the following,

! dr7{J(r)VNL(r)G(r, r") =! dr7{J(r) (~zpvxp(r) ! dr'Xv(r')G(r', r"))

= ! dr' ! dr E Z/lv1/J(r)X/l(r)Xv(r/)G(r', rll)
IJo,V

=! ! drdr' E Z/lvG(rll , r')Xv(r')X/l(r)1/J(r)
/l,V

=! dr'G(r", r') (~zvpxv(r')! drxl' (r)7{J(r))
= ! dr'G(r", r') (~zvpxv(r')! drxp(r)7{J(r))

= ! dr/G(r", r')VNL (r')1/J(r') , (3.49)
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(3.51)

where we have used G(r, r') = G(r', r) and ZIJoV = Z"'/l" This resuit will be used in our

derivation of the Generalized Fisher-Lee relation.

Using Dyson's equation we obtain an expression for the Green's function in terms

of the potential V and G(O) (r, r'),

G(r, r') = G(O)(r, r') +! dr"C(O}(r, r')V(r")G(rll
, r') (3.50)

Similarly, the Lippmann-Schwinger equation gives us,

1/Jon(r) = 1/Ji~(r) +! dr'G(r, r')V(r')1/Ji~(r')

Next, we evaluate the right hand side Eq. (3.42) using Eq. (3.50), we find,

invon ( dy'4Jon(y')G(xo, y'; r)
lco

= ihvan le. dy'tPon(Y') ( G(O) (xo, yi; r) +! dr"G(O) (xo, y'; r")V(r")G(r", r))

= invon ( dy'4Jon(y')G(O) (xa , y'; r)
lco

+ le. dr" (ihVan! du'tPon(y')G(O) (xo , y'; r")) li(r")G(r" , r)

= 1/Ji~(r) +! dr"1/Ji~(r")V(r")G(r", r)

= 1/Ji~(r) + f dr"G(r, r")V(r")1/Ji~(rll) , (3.52) •



where we have used Eq. (3.49) to get the final result. Comparing Eq. (3.52) with

Eq. (3.51) we conclude that•
3.4 GFL Relation for Multi-Probe and Atomic systems

.,pon(r) = ifivon [ dY'cPon(y')G(xo, y'; r) ,JCa

which is precisely the Generalized Fisher-Lee relation.
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(3.53)

3.4 CFL Relation for Multi-Probe and Atomic systems

One limitation of the above result is that it does not apply to multi-probe quantum

conductors and/or conductors that are connected to atomic leads. Let us extend

the proof of the Generalized Fisher-Lee (GFL) relation to include such systems. We

first we prove the GFL for a multi-probe with jellium leads. This is accomplished by

using the usual Fisher-Lee relation. We assume, as before, that the systems are time

reversaI symmetric.

Using the Fisher-Lee relation we compute the functional derivative of the scattering

matrix. From Eq. (3.41) and Eq. (3.11) we find,

8s/3m,on = on. / / / d 'd ",1., (') G(x/3' y'; xo, y"),I., (")
8U(r) Z v vtJmvon Y Y lf'/3m Y 8U(r) If'on Y

= inv'V/3mvon / / dy'dy"ifJ/3m(y')G(X/3, y'; r)G(r; X Ol Y")cPon (y")

= fi -i (iliVmfJ / ifJ/3m(y')dy'G(xp, y'; r)) (invno / dy"G(xo, y"; r)(jJo:n(yll))
v'vtJmvon

-i - -
= fiv' 7/;/3m(r)1/Jon(r) , (3.54)

v/3mvon

where we have assumed TRS and used Eq. (3.23) to obtain the final result. Comparing

Eq. (3.54) with Eq. (3.22) we conclude:

VJo:n (r) = "fian (r) = inv/3m { dy'cPtJm (y')G(X{3, y'; r) , (3.55)
lCI3

which is the Generalized Fisher-Lee (GFL) relation. To extend this result to Bloch

states we simply use the Fisher-Lee relationship for atomic leads and repeat the above

procedure. The final result is:

• VJan(r) = 1Pon(r) = ifivtJm ( drltP~~t)t(r')G(r/; r) ,
lCI3

(3.56)



where Cp is the first unit cell outside the scattering region in the .a-th lead and

4>~~t)t(r) is the dual of an outgoing Bloch states. With these results we only require

the wavefunction to compute 6sPm,an/6U(r). This greatly reduces the complexity

and computation time required ta obtain the functional derivative of the scattering

matrix, since there is no need to compute the Green's function.

In this section we proved that the Generalized Fisher-Lee relation is true for aIl

TRS systems. We then rigorously derived the Fisher-Lee relation for systems with

atomic leads. Finally, we argued that to compute the first order functional derivative

of the scattering matrix we only require the wavefunction.

56 3 Scattering matrices, Green's functions, and functional derivatives
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(3.57)

3.5 Transport Coefficients and LPDOS

We now apply the results from the previous sections to the quantum transport coef

ficients discussed in Chapter 2. In particular, we obtain equations for the first order

nonlinear DC conductance, Gap..." and linear AC conductance, Eo{3. We assume, once

again, time reversaI symmetry.

We first find an equation for Gap..., in terms of the scattering wave functions, 'l/Jon (r)

and the characteristic potentials, ua(r). From Eq. (2.65) we have,

e
2 ! 6Ao {3Gap..., = h dr 6U(r) (2u...,(r) - c5{3..,) ,

where

Ao{J(E, {V..,}) = L [6o{J6nm - shm,on(E, {V..,})S(3m,on(E, {v~})]
n,m

Let us express 6AO {3 / 6U(r) in terms of "pan (r),

:~(:) = o~r) ~ [Oal10nm - s1m,an(E, W7})sl1m,Qn(E, (Vy})]

= - o:(r) L [shm,on S{3m,on]
n,m

~ [ t 6S(Jm an ]
= - ~ S{Jm,on 6U(~) + c.c.

~ [ t 6spm ,on]= -2~ Re s{Jm,an 6U{r)

(3.58)

•
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(3.59)

(3.60)

•

where we have used Eq. (3.22). Using this expression for 5Ao.{j/6U(r) we now have

an equation for Go/h , which is expressed in terms of tPon(r) and uo.(r). This result

is used in Crrapter 4 when we study nonlinear OC conductance fluctuations in the

diffusive regime.

To obtain the emittance, EO{j, we must first derive expressions for the local partial

DOS. From Eq. (2.35), the LPOOS is given by,

dno{j(r) 1 '" [ t 8s{jm,on _ ]
dE - . ~ s{jm,on ~ U() C.C.4z7r n,m ue r

= - 2~ ~ (lm [S~n,~m ~:;;êr)])

= -2
1 L (lm [4m'Qn h.J-i .p~m(r).pQn(r)])
7r n,m e V{jmVon

= -~ L (Re [tPf3m(r)Shm,ontPon(r)]) .
27r n,m en';V/3mVon

With this result the emittance can be expressed in terms of the scattering matri..x,

scattering wavefunction, and the characteristic potentials. In Chapter 4 we use this

result to study emittance fluctuations in a diffusive conductor in the mesoscopic

regime.

To summarize, in this chapter we have developed theoretical tools which we will use

to study nonlinear OC and linear AC quantum transport coefficients. In particular,

we have found from first principles an expression for the functional derivative of the

scattering matrix, 6s{jm,an/8U(r), in terms of the wavefunction, tPo.n(r). This greatly

reduces the computational effort required to caIculate Go.{j'Y and Eo{3 •
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Exact N-impurity Solution: Admittance Fluctuations

In Chapter 2 we reviewed a quantum theory for linear AC and nonlinear DC quan

tum transport, which conserves current and is gauge invariant. In particular, we

derived expressions for the emittance, Eo{J, and the nonlinear conductance, G o{3;.

In Chapter 3 we derived a new expression for the functional derivative of the scat

tering matrix, 8so.n,/3m/8U(r) , expressed in terms of the scattering wave functions,

'l/Jon (r). This leads ta equations for E o{3 and Go{3; in terms of the son,{3m, 'l/Jo:n (r),

and ua(r). Within the Thomas-Fermi and local neutrality approximations, we can

express ua(r) in terms of .,pan(r). This leaves us with expressions for the emittance,

EO {3, and the nonlinear conductance, Ga {3"", in terms of the scattering matrix and the

wave function. We now apply these results to investigate conductance fluctuations.

In particular, we are interested in emittance and nonlinear conductance fluctuations

in the diffusive regime, where universaI conductance fluctuations are found for linear

OC conductance.

Our approach is to generate a disordered conductor in the diffusive regime using

an impurity potential which consists of localized elastic scattering centers given by,

V(r) = Ei "'f8(r-rz), as used by Al'tshuler, Lee, Stone, and Fuckuyama [43]. vVith this

choice of impurities we can exactly solve Dyson's equation. This leads us ta an exact

expression for the N-delta impurity Green's function, which we denote by C(N)(r, r').

The Lippmann-Schwinger equation is then used to obtain an exact expression for

1/Ji~)(r), the N-delta impurity scattering wave function. Combining these results with

the results from Chapter 3 we obtain exact expressions for the scattering matrix,

s't,1,an' and it's functional derivative, 8s't,1,on/tSU(r). Once aIl these results are derived
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we use them to compute the transport coefficients Ea {3 and Ga{3,.,. We then study

the sample-to-sample emittance fluctuations, t::.Ea {3, and the nonlinear conductance

fluctuations, t::.Go{3'"'(. These quantities are computed by evaluating numerically our

exact expressions for EaIJ and GO {3'"'( and then performing statistical analysis. But

first, we compute the fluctuations of the usuaI linear DC conductance, Go{3, in order

to locate the UCF transport regime. Moreover, since we have an exact solution for

the N-delta impurity problem, we can probe the full parameter space, N and "(, where

N is the number of impurities and 'Y the strength of the impurities. This allows us

to study the crossover from one regime to another, for instance, from the ballistic

regime to the UCF regime.

In Section 4.1, we derive expressions for GCN}(r, r'), 1/Jit;;)(r), r5s~,an/r5U(r), and

s~,an' In Section 4.2 these general results are applied to the specific case of l-delta

impurity in a perfect quasi-ID quantum wire, for which the scattering matrix and it's

functional derivative has heen found using a mode matching method [76, 77]. Our

results are compared to these, and are found to he consistent. In Section 4.3 we apply

our technique to the N-delta impurity situation for a perfect 2D quantum wire. \Ve

then study t1Go {3, t1Ea {3, and ÂGa {3"Y for different values of N and -y. In particular,

we find values for N and "Y which leads to ÂGo {3 in the UCF regime.

•
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4.1 Exact Solution to the N-impurity problem

In the next section we derive exact expressions for the N-delta impurity Green's func

tian, wave function, scattering matrix and it's functional derivative. These theoretical

results are crucial for our later work on emittance and nonlinear conductance fluctua

tions. Similar results can he ohtained for the N-delta magnetic impurity Green's func

tion and wave function (see appendices). The essential ingredient in these derivations

is that the delta-function impurities can always he integrated out of our equations.

This simplifies the integral equations, which provide exact expressions for GCN)(r, r')

and 1/JCN) (r), to algebraic equations which are easily solved. Once expressions for

GCN)(r, r') and 'l/JCN)(r) are found the results from Chapter 3 are used to compute
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(N) ~ (N) /~ ()
Son,{1m and uSon,{1m UUr.

4 Exact N-impurity Solution: Admittance Fluctuations

•4.1.1 The N-delta impurity Green's function

Let us consider a system described by an "unperturbed'; Hamiltonian H(O). For

example, the system can be a quantum wire, a 4-probe Hall bar, or a molecular

device. The Green's function corresponding to this system is denoted by G(O) (r, r').

We add to this system N-delta impurities, which leads to the new Hamiltonian,

Î/(N) = n(O) + V{N)(r) ,

where the impurity potential is given by,

N

V(N)(r) = ~ 'Yil5(r - rd .
i=l

(4.1)

(4.2)

The strength of the impurities are represented by {'Yi} and their positions by {ri}'

To obtain the Green's function for this new system, G(N)(r, r'), we use the following

approach. First, we view the system described by H(O) as a free system and the

one represented by H(N) as "the perturbed one. The potential V(N)(r) is treated

as the perturbation potential. Using Dyson's equation we express the perturbed

Green's function, G(N)(r, r'), in terms of the free Green's function, G(O)(r, r'), and the

perturbation potential V(N)(r). Finally, we solve Dyson's equation exactly.

Dyson's equation is given by,

Integrating out the delta function impurities we find,

N
C(N)(r,r') = C(O)(r,r') + ~G(O)(r,ri)'YiG(N)(ri,r')

i=l

(4.4)

Setting r = rj, for j = 1, ... , N in Eq. (4.4), we generate a system of N equations for

the N unknowns {C(N) (ri, r')}, given by,

N

C{N)(rj,r') = G(O)(rj,r') + EG(O)(rj,ri)'YiG{N)(ri,r')
i=l
N

= G{O) (rj, r') + L 1]ji'YiG(N) (ri, r') ,
i=l •
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(4.5)

4.1 Exact Solution to the N-impurity problem

where we have set T/ji = G(O) (rj, ri). Solving this set of equations we find:
N

G(N) (ri, r') = L [c5ij - T/ijij]-L G(O) (rj, r') .
j=L

Finally, substituting Eq. (4.5) into Eq. (4.4) we find,

C(NJ(r, r') = C(O)(r, r') +~ C(O)(r, rihi C~ [5ij - 1Jij')'X' c(O) (rj, rI»)
N

= C(O) (r, r') + L G(O)(r, ri)iiMijG(O) (rj, r') , (4.6)
iJ=L

•

where

(4.7)

Thus, we have found how to add N delta impurities to any system. Note that the

only ingredient required in this derivation was Dyson's equation.

4.1.2 The N-delta impurity scattering wave function

We are now ready ta obtain an expression for the N-delta impurity wave functioD,

tPi~)(r). This is accomplished by expressing the wave function, tP~)(r), in terms of

the free wave function, tPio,l (r), the N-impurity Green's function, C(N) (r, r'), and the

potential V(N)(r), via the Lippmann-Schwinger equation. Using the results from the

previous section we find an exact expression for the wave function.

Let 'lj;(N)(r) be the perturbed wave function, tP{O)(r) the free wave function, G(N)(r, r')

the perturbed Green's function, and V(N) (r) is the perturbation potential. The

Lippmann-Schwinger equation is given by,

tP(N)(r) = tP(O)(r) + f dr'G(N)(r, r')V{N) (r')?/J(O) (r')

Integrating out all the delta-functions impurities we obtain,
N

?/J(N)(r) = 7j;(O)(r) + L G(N)(r, rk)ik7j;(O) (rk)
k=L

(4.8)

(4.9)

•
Substituting Eq. (4.6) inta Eq. (4.9), we find,

1/>(N)(r) = 1/>(0) (r) +E(G(O)(r, rk) + i~' C(O)(r, rihMijG(O) (rj, rk») ')'k1/>(O)(rk)

N N
= ?/J(O)(r) + E G(O)(r, rk)"Yk'lj;(O) (rk) + L G(O)(r, ri)ii 1\{ijT/jkrk?/J(O) (rk) .

k=L iJ~=l



•

(4.10)
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This is an exact expression for the N-impurity wave function in term of 7P(O)(r),

G(O)(r, r), and Mij (see Eq. (4.7)).

It would appear that the N-impurity wave function, 'l/J(N) (r), depends on three

center interactions, i.e. terms that depends on 3 different impurity positions. But

since the N-impurity Green's function depends only on two center interactions it is

reasonable to suspect that the 3 center term in 'ljJ(N) (r) is artificial.

Let us now turn the 3 center term into a 2 center terrn:
N N

'ljJ(N)(r) = 'ljJ(O)(r) + L G(O)(r, rl.)'lk"p(O) (rk) + L G(O)(r, ri) 'li M ij1]jklk'ljJ(O) (rk)
k=l i,j,k=l

N N

= "p(O)(r) + L G(O)(r, ri)'li (8ik ) 1/J(O) (rk) + L G(O)(r, ri)'li (JlijTJjk'lk) "p{O)(rk)
i,k=l i,j,k=l

N
= "p(O)(r) + L G(O)(r, ri)'li (cSij6jk + M ij1]jk"fk) 'ljJ(O) (rk)

i,j,k=l
N

= 1jJ(O)(r) + L G(O)(r,ri)'liMij (lvIJï/ + TJjklk) "p(O) (rk)
i,j,k=l

N

= 'ljJ(0) (r) + L G(O) (r, ri)'liMij (8jk - 1]jk'lk +1]jklk) "p(0) (rk)
i,j,k=l

N
= "p(O)(r) + L G(O)(r, rd'liMij (cSjk ) 'l/J(O) (rk)

i,j,k=l
N

= 'ljJ(O)(r) + L G(O)(r,rd'liMij"p(O)(rj) .
i,j=l

Thus, the N-delta impurity wave function is simply given by,
N

'ljJ(N)(r) = 1jJ(O)(r) + L G(O)(r, ri)'Yik1ij.,p(0) (rj)
i,j=l

(4.12)

Before moving on let us check the above result by re-deriving it using a different

approach. This new derivation simply reuses the method that was employed to obtain

G(N) (r, r') from Dyson's equation. An alternate form of the Lippmann-Schwinger

equation is given by,

'ljJ(N)(r) = "p(O)(r) + / dr'G(O)(r,r')V(N)(r').,p(N)(r') . (4.11)

Integrating out the delta-functions we find,
N

1jJ(N)(r) = .,p(O)(r) + L G(O)(r, ri),i1fJ(N) (rd .
i=l •



Setting, r = rj for j = 1, ... , N, we generate a system of N equations for the N

unknowns {1P(N) (rj)}:•
4.1 Exact Solution ta the N-impurity problem

N

'ljJ(N)(rj) = 'ljJ(O)(r) + L G(O) (rj, ri),i'ljJ(N) (ri) .
i=l

Solving this system we find,

'ljJ(N)(ri) = LMijt/J(O)(rj) .
j=l

63

(4.13)

(4.14)

where Mij is given by Eq. (4.7). Putting this result into Eq. (4.12) we obtain the

final result,
N

t/J(N)(r) = t/J(O)(r) + L G(O)(r, ri}'Yi.i\{ijt/J(O) (rj)
i,j=l

(4.15)

(4.16)

•

Thus, we have found consistent expressions for the N-delta impurity wave function,

from two different approaches.

4.1.3 The functional derivative for the N-impurity problem

Now that we have an equation for the scattering wave function, 'l/.'~)(r), we are in

position ta find an expression 6s~,Qn/6U(r). It was shown in Chapter 3 that the

functional derivative of the scattering matrix cao he expressed in the following \Vay:

Using Eq. (3.22) we have,

6 (N) . ( )
s/3m,on = -1, ( dy'4>l3m(y')G(N) (x{j, y'; r) 'ljJi~)(r)
6U(r) n,jVl3mVan lCt3

where G(N)(r,r') and 1/J~)(r) are given by Eq. (4.6) and Eq. (4.10), respectively.

Substituting these equations into the above expression,
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+ fi. -i (inV13m f dY'l/J/1m(Y')G(O)(xP,Y';r)) (t G(O)(r,ri)'YiMij1/Ji~(rj)) •
...jv/1mVon lCfJ i,j=l

+ fi. -i (inV13m f dy'l/Jpm(Y') t G(O) (xlJ' y'; ri)'YiMijG(O) (rj, r))
...jvPmvon lCfJ i,j=l

(.t G(O)(r,rihiMij1/J~(rj)) .
1,]=1

where 1/j~~ (r) is given by Eq. (3.23). The contributions to the functional derivative

from the impurities are clearly seen.

4.1.4 The Scattering Matrix of the N-impurity problem

Let us find the effect of the N-delta impurities on the scattering matrix. Recall that

the scattering matrix is obtained from the wave function. In particular, the scattering

matrix for an impurity free system, which we denote by s~~,on' has the following form,

(0) - • ~ JVfJm Ir d'A. (')'1/,(0) ( ')s/1m,on - -'Jl3oUnm + - y o/pm Y 'fion Xp, Y .
Von CfJ

Similarly, the N-impurity scattering matrix, s~,on' is given by

(N) - ~ ~ JVfJm Ir d 'A. (,),,/,(N) ( ')
spm,on - -Uf3oUnm + - y o/l3m Y 'flan Xp, Y .

Von CI3

Substituting Eq. (4.10) inta the above equation we find,

(4.17)

(4.18)
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where we have used the definition of tÏÏ1~(r) (see Eq. (3.23)).

If the underlying system is time reversaI symmetric (TRS) then the system with N

impurities is also TRS, since elastic scattering does nat break TRS. The Generalized

Fisher-Lee relation, Eq. (3.53), then implies,

. N
(N) _ (0) -'l ~ ..1.(0) ( .) . ~ ,1".. (0) ( _)spm,an - sPm,an + li L- o/pm ri 'Y'lJ.YJ I]1/Jan r]

v'VPmVan i,j=l
(4.19)

Notice that we only need the free wave function, 'l/Ji~, in arder to obtain the N

impurity scattering matrix s~~Pm.

4.1.5 Summary

In these last four subsections we have shawn how ta obtain the N-delta impurity

Green's function, wave function, scattering matrix, and it's functianal derivative, in

terms oftheir impurity free caunter parts: G(O)(r, r'), 'l/Ji~(r), s~%,an' and c5s<;:,!,an/c5U(r).

In summary, we have found:

• The N-impurity Green's function:

•

N
G(N)(r, r') = G(O)(r, r') + L G(O) (r, ri)'YiMijG(O) (rj, ri) .

i,j=l

• The N-impurity wave function:

N

1/Ji~)(r) = 1/Ji~(r) + L G(O)(r, ri)'Yi1Vlij'l/Ji~(rj) .
i,j=l

(4.20)

(4.21)
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• The N-impurity scattering matrix: •. N
(N) _ (0) -z" -(0) ( .). .. (0) ( .)spm,an - spm,an + ft L- 'l/JPm ri 'Y"MtJ'l/Jan r} .

"/VPmVan iJ=l

• The N-impurity scattering matrix functional derivative:

(4.22)

8s~,an _ -i (. Ir ' (') (N)( ,.)) (N) ()8U() - n znvPm dy 4Jpm y G xp, y, r 'l/Jon (r). 4.23
r "/VPmVan Cfj

Using these results we can study emittance fluctuations, ~Eaf3' and nonlinear

conductance fluctuations, ~Gof3'Y' in the diffusive regime. Note that our results are

perfectly general. They are valid in any dimension, for any confinement potential,

and in the presence of a magnetic field. Thus, we have a general set of tools to study

quantum interference effects in phase coherent conductors. Note that in the presence

of a magnetic field one cannot use the generalised Fisher-Lee relation to simplify the

expression for the functional derivative of the scattering matrix, and thus one must

compute the Green's function.

4.2 One impurity in a 2D pipe: An Analytical Solution

In this section we reproduce the results found in [76J and [77]. In [76J an exact

expression for the wave function 'l/J(r) was obtained for a perfect quasi-ID wire with

one delta impurity placed in the scattering region. The wave function 'l/J(r) was

computed using a mode matching technique. The scattering matrix was then obtained

from 'l/J(r). The electrons incoming energy was chosen such that only one mode

propagates through the wire. In [77J the functional derivative of the scattering matrix

was computed, by adding an extra infinitesimal delta-function perturbation, 6U(r) =

6U6(r - r), where 8U -4 Q. Let's use our results from the previous section to obtain

expressions for the wave function, the scattering matrix and its functional derivative.

This exercise serves as a confirmation of our results.

Let us first compute the scattering matrix elements S~~,ln and S~~,ln' To accom

plish this we require the free scattering wave functions, 'l/J~~(r) and 'l/J~~(r). For a •



perfect quasi-ID quantum wire, these are given by [5],

1/J~~(r) = cPn(y)e+iknx and 1/J~~(r) = cPn(y)e-iknX . (4.24)
•
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(4.26)

(4.25)

•

From Eq. (4.22) we have,

(1) (0) -~ ( ) ( )s2m,ln = s2m,ln + fi, 'l/J2m r "Y1 M ll 'l/J1n rJV2mV ln

=seO) + -~ (..Jo (y )e-ikmxl) "V M (..Jo (y )e+iknxl)
2m,ln n- J 'fJm 1 fI Il 'fJn 1

V V2m V ln

_ ~ + -i "Y1cPm(ydcPn(yd i(kn-km)Xl
- umn e,nJV2mV ln 1 - 'Y17'711

where we have used S~~,ln = dmn , for a perfect quasi-ID quantum wire, and AtIll =
[1 - "'!l1]ll]-l. Let us set Xl = 0, Yi = Yo, rI = ;, 1Jl = 1], and Vn = 2kn in the above

equation 50 that we have the same notation and units as in [76]. We then find

sel) _ cS + -i 'YcPm (YO)t/Jn (Yo)
2m,ln - nm 2Vk

m
k

n
1 - "Y1]

_ cS -i r nm
- nm + 2Vk

m
k

n
0'

where r nm = "YcPn(YO)<Pm(YO) and Q = 1 - 'Y1]. Following [76], we have that

(1) ifII
Cl = 821 11 = 1 - -k- ,

1 2 la

which is exactly their result. Following the same procedure we find,

_ (1) -irll
bl = sU,u = 2k

l
O' '

which is also in agreement.

We now compute the functional derivative of the scattering matrbc using Eq. (4.23).

To do this we must compute the wavefunction. The first ingredient needed is the

impurity free Green's function for a perfect quasi-ID ,vire is given by [5],
eikn/x-x'l

C(O)(r,r') = LcPn(Y)4>n(Y') "Ii' (4.27)
n ~ Vn

From Eq. (4.21) we have

1/J~~(r) = 'l/J~~(r) + C(O)(r, rd'YIMll1/J~~(rd

= cPn(y)eiknX + (2: cPm(Y)cPm(yd eik~/X-Xtl) ( ;1 cPn(Yl)eiknXl)
m ~1ivm 1 - 'Y11]1l

= cPn(y)eiknX + L "Yl~n(YdcPm(Ydeiknxl cPm(y)eikmIX-xd
m 'thvm (1 - 'Y17'711)
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Using the same notation and units as in [77], we find,

7/1(1) ( ) = 4J ( ) +iklX + "" -i'Yl4Jl (ydl/Jm(yd 4J ( ) ikmlxl
11 X, Y 1 Y e ~ 2k

m
(1 _ {11'111) mye

= l/Jl(y)e+ik1X +L -irlml/Jm(y)eikmlxl .
m 2km a

Similarly,

(4.28)

•

(4.33)

(4.34)

t/J~~) (x, y) = tPl (y)e-ik1r. + L ~~r lm tPm(y)eikm 1r.1 . (4.29)
m mO!

The functional derivative of the scattering matrix is given by (see Eq. (4.23)),

c5s~~,an _ -i (1) ( ) (1)
c5U(r) - 2~7/1pm r 7/1Qn (r) , (4.30)

where we have used the Generalized Fisher-Lee relation. Using Eq. (4.25), Eq. (4.28),

Eq. (4.29), and Eq. (4.30), we find, for x < Xl = 0,

c5el 8s~i\1
c5U(r) = 8U(~) (4.31)

-z (1) ( (1) ) ( )= 2k
l

'l/J2l X, y)7/111 (x, y 4.32

= 2i~1 (~emtPm(y)e-ikm%) t/J(x, y) ,

where we have set 'l/J(x, y) = 'l/Ju(x, y) and Cm = 8lm -ir1m/(2km a). This is the result

found in [77]. Similarly, we have that,

~ _ 8Sg~11
8U(r) 8U(r)

= ;: t/Jn)(r)t/J[~)(r)

1
= 2ik

1
'l/J(r)"p(r) ,

which is also consistent with the results in [77]. Now that we have verified our formal

ism against known results, we move anto the heart of our work, studying emittance

and nonlinear conductance in diffusive conductors.

4.3 Admittance Fluctuation in the UCF regime

We now study emittance fluctuations, llE2l , and nonlinear conductance fluctuations,

llGUl ' in the Universal Conductance Fluctuations (UCF) regime. For a disordered •
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(4.35)

4.3 Admittance Fluctuation in the UCF regime

conductor described by the elastic mean free path lm and conductor linear size L,

the quantity lmlL has been considered [98} as the fraction of aIl the Nf transmission

channels in the disordered sample (e.g. in 2D) for which the transmission probability

is of order unity, i.e. these MeIl ~ M(lmlL) channels are the open channels respon

sible for conduction. Then the conventional UCF phenomenon can be viewed as a

reflection of the sample-to-sample fluctuation of MeIl t which is related to a single

parameter lm.

In our study, we take advantage of the fact that we have access to the full parameter

space t N and {,à. This allows us investigate the crossover from the ballistic regime

to the UCF regime, and from the UCF regime ta the insulating regime. This willlead

us to gain a better understanding of the physics behind the crossover from one regime

to another. We start by studying the fluctuations of 0 21 in order to find where the

UCF regime is located.

To start, let us compute the N-delta impurity scattering matrix for a quasi-ID

quantum wire. The free scattering wavefunction for this system, 1Pi~ and 'rP~~, are

given by Eq. (4.24). Putting these expression into Eq. (4.22) we find t

(N) _ (0) -i ~ (0) ( ) M, (0) ( )
s2m,ln - s2m,ln + nJ L. 1P2m ri 'Yi ij1Pln rj

V2m V ln iJ=l

. N

=Onm +h~ L tPm(Yi)e-ikmX''YiMijtPn(Yj)eiknxj
VmVn iJ=l

. N
_.r + -z '" M, A.. ( )A.. ( ) i(knXj-kmXi)
- unm li.~ L. "Yi ijo/m Yi o/n Yj e ,

V VmVn iJ=l

•

and

•

. N
(N) _ (0) + -z '" ,,/.(0) ( ) M ,,/,(0) ( )

Slm,ln - Slm,ln li. J L. If/lm ri 'Yi ijo/ln rj
v VlmVln iJ=l

. N

=h~ L 'Y;MijrPm(Yi)rPn(Yj)ei(knXj+kmX;) . (4.36)
VmVn iJ=l

These expressions for the scattering matrix are used to compute the linear DC con-

ductance, with the help of the Landauer-Büttiker formula Eq. (1.21).

Let us now compute the functional derivative of the N-delta impurity scattering

matrix. To do this we first obtain expressions for the wave functions 'l/J~~) and 'rP~~).



Putting Eq. (4.24) and Eq. (4.27) into Eq. (4.21) we find,
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•

and

Now that we have expressions for 1jJf~) (r) and 'l/J~~}(r), we use equation Eq. (4.23)

to obtain an explicit expression for tSs<;:J,on/6U(r). We can now use the results frorn

Chapter 3 to obtain exact expressions for E2l and GUl .

4.3.1 Linear De conductance G21

Our first objective is to find the UCF regime. Our parameter space is given by the

variables that control the strength of the impurity potential. These are, the number

of impurities, N, and the strength of each impurity, {'i}. To simplify our analysis,

without changing any of the essential features, we set aIl the impurity strengths equal

to one cornmon value "i.e. 'i = 1 for i = 1, ... , N. With this simplification the

impurity potentiaI strength is fixed by only two parameters N and ,.

We are DOW ready to compute G2l for different random impurity configurations.

We choose the transverse eigenfunction, cPn (y), to be the usual sine functions, cPn (y) =

J2/W sin(ntry/W) , where W is the width of the quantum \Vire. We fix the incoming

energy of the electron such that there are 18 propagating modes in the wire, whose

contributions are summed up. Our procedure is the following: first we generate

a random impurity configuration, {ri}, where i = 1, ... , N, which we then use to

evaluate the quantity Mij , by direct matrix inversion. The impurity positions are •
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Figure 4.1: Plot of the linear OC conductance G21 versus sample number, for N =300 and 'Y =100.
Each data point corresponds to the conductance for a fixed random irnpurity configuration {ri}. The
large fluctuations seen in this graph corresponds to quantum interference effects. \Vith this choice
of parameters the system is in the UCF regime, where AG21 :::::: O.86e2 /h. As the figure indicates,
1000 samples were used. The choice of units for the conductance is Go =e2 / h.
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Figure 4.2: Plots of < G21 > versus '"'( for a variety of values of N, from N = 75 to N = 150.
Each data point on each of the curves is obtained by averaging over a 1000 random impurity con
figurations. As the number of impurities is increased the computation time increases as N2, which
effectively limits the range of values that we can explore in a reasonable time. We clearly see that
the conductances dependence on '"'( is weak for high values of '"'( > 40. The choice of units for the
conductance is Go = e2 / h.

chosen to be randomly and uniformly distributed throughout the scattering region.

Once we have the matrix Mij , we use Eq. (4.36) to obtain the scattering matrix,

which is then used ta compute the conductance for this impurity configuration using

Eq. (2.64). Finally, sample-to-sample statistical analysis is carried out by averaging

over many random impurity configurations for fixed values of N and "(. We have

checked numerical convergence for the conductance fluctuations.

In Fig. 4.1 we plot the conductance versus the sample number. We have fixed

the number of impurities ta be N = 300 and set the impurity strength equal to

"( = 100. This graph is very reminiscent of typical data from numerical studies

of universal conductance fluctuations [54, 55, 56}. For these values of N and "( we

find that the conductance fluctuations is equal ta L\G21 ~ 0.86e2 /h, where L\G21 =

J< G~l > - < G21 >2, which is the expected value of conductance fluctuations for

the UCF regime in 2D systems [55]. •
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Figure 4.3: Plots of aG21 versus 'Y for a variety of values of N, from N =75 to N =150. The data
points for each curves are obtained by averaging over a 1000 impurity configurations. We clearly see
that the conductances fluctuations become independent of the disorder parameters, N and ;, and
have the universal value ~G21 :::::: 0.86e2 / h (within 5% error), when N 2:: 100 and ; > 10. The unit
of conductance is Go =e2

/ h.

In Fig. 4.2 we plot the average conductance < G21 > versus the impurity strength,

'Y, for a variety of values for N. Over 1000 impurity configurations were used to

average. The decrease of < G21 > is vary rapid for smaller values of f but it becomes

quite slow when , is large. The sample is metallic even for the largest ,(==100),

as eighteen incoming channels add up to a conductance of the order lOGo, where

Go == e2/h. At large " < G21 > depends on N very sensitively as Fig. 4.2 shows.

In Fig. 4.3 we plot the conductance fluctuations versus the impurity strength for

different values of N. First, note that for N ~ 100 and r > 10 the conductance

fluctuations are independent of the disorder parameters, N and" and have the usual

universal value for 2D diffusive conductors, ~G21 ~ 0.86e2/h (within 5% error). This

behavior persists aIl the way up to N == 325 (and 'Y > 10), after which point the

conductance fluctuations start to decrease as N is further increased. For N == 75 the

conductance fluctuations are slightly under the universal value, for the full range of



values for "'(. When the value of N is too low (N < 75) the transport is not in the UCF

regime, no matter the value for " i.e. the disorder is not strong enough to generate

maximal interference effects. Therefore, LlG21 is less than the UCF value. Indeed,

in the limit N = 0, our conductor is a perfect quasi-ID wire for which LlG21 = 0

identically. On the other hand when N is high (N > 350) the conductor approaches

the insulating state. In this situation the wavefunction starts to he localized 50

that the conductance Buctuations are again reduced from the UCF value. Therefore,

between N = 100 and N = 325 (and l > 10) we have the UCF regime, for our choice

of incoming energy E. Note that UCF also exists for larger values of N but with

smaller values of l < 10.
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Now that we have identified a region of the parameter space where the UCF regime

is, let us move our attention ta the actual distribution funetions of G21 , which we de

note by P(G2d. In Fig. 4.4 and Fig. 4.5 we show the histogram of the conductance

for different values of N, from N = 50 to N = 500 with "'( > 80. These are, es

sentially, the distribution funetions of G21 • When N is small, e.g. N = 50, the

distribution resembles a narrow Gaussian like function, whose rms is smaller than

the universal value. As the number of impurities is increased, the Gaussian like dis

tribution becomes wider until the UCF regime is reached around N = 100. As N is

inereased from 100 ta 300 the distribution remains unchanged exeept that it's average

value, < G21 >, decreases. This is the UCF regime. As the average value of G21 de

creases, with increasing value of N, the distribution approaches the insulating regime

(G21 = 0), i.e. when no eurrent Bows through the system. As N increase beyond 300

the tail of the Gaussian like distribution starts to accumulate against the G21 = 0

limit. The distribution beeomes narrower, which leads ta a reduced value for ÂG2h

the rms of the distribution. Therefore, the end of the UCF regime starts when the

tail of the distribution P(G21 ) starts to accumulate against the hard wall at G21 = O.

We now have identified a region in the parameter spaee where the UCF regime is

loeated. We have also obtained a good understanding of G21 and LlG21 dependence

on N and "'(. In the following sections we investigate the transport coefficients E21 •
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Figure 4.4: Histograms for G21 for different values of N, from N = 50 to N = 150. The value of the
impurity strength is i =80. As the value of N increases from N =50 to N =100, the Gaussian like
distribution increases in width, Le. it rms increases. Already at N = 75 the distribution function
P(G21 ) is almost identical to the N = 150 distribution. This is expected since ~G21 ~ 0.80 for
N = 75 and ~G21 ~ 0.86 for N = 150. We have used OVer 10000 different random impurity
configurations to obtain each histogram. The units for the conductance is Go = e2 / h .
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Figure 4.5: Histograms for G21 for different values of N, from N =200 ta N =500. The value of
the impurity strength is again chosen ta be "Y = 80. As the value of N increases from N = 200 ta
N = 300 the Gaussian like distribution retains it's shape and simply moves towards the G21 = 0
limit. At N =400 the distribution function P(G2d starts ta accumulate against the G21 =0 Iimit,
which reduces the value of ÂG21 • For N =500 the distribution has lost it's original shape and it's
nns is significantly reduced. The units for the conductance is Go =e2 / h.
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4.3.2 Linear AC conductance E21

In this suhsection we report the hehavior of emittance E21 • In particular, we will

study the emittance fluctuations in the UCF regime. The procedure for this study

follows the same line as the one in the previous section. We use expressions for the

scattering matrix Eq. (4.36), the wavefunction Eq. (4.37), and the characteristic po

tential Eq. (2.60), to evaluate the expression for E21 Eq. (2.66) for a given random

impurity configuration {ri}' This procedure is repeated for many impurity configura

tions, typically 1000 to 10000. One major difference between computing G21 and E21 ,

is that the emittance requires the scattering wavefunction, 1/Jan(r), while the conduc

tance only requires the scattering matrix, san,{Jm' On a numericallevel this make the

computation of E21 much more intensive than G21 , even with an exact expression for

the scattering wavefunction.

For highly disordered sampie lm « L, we expect a capacitive-like dynamic re

sponse hecause of the large resistance. On the other hand, when the degree of disorder

is reduced the response can he inductive-like. Hence, we expect the distribution func

tion for E2lt which will he calculated helow, to change as the degree of disorder

changes, indicating a crossover from a capacitive response to an inductive response.

In Fig. 4.6 we plot typîcal sample-to-sample fluctuations for the emittance. We

have used the same parameter as in Fig. 4.1 from the previous subsection, lV = 300

and 1 = 100. For this degree of disorder it is apparent that E21 fluctuates hetween

negative and positive values, indicating that the dynamic response of the disordered

conductor depends on impurity configuration. Recall that a system is said to have

an capacitive response when E21 = -Eu < 0 and an inductive response when E21 =

-Eu> O. We see from Fig. 4.6 that depending on the impurity configuration, the AC

current can either he leading or lagging the AC voltage. Thus, a simple rearrangement

of impurity positions can change the dynamic nature of conduction in the diffusive

regime. Therefore, the AC current can he leading or lagging quite randomly from

sampie ta sample.
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Figure 4.6: Plot of E21 versus sample number for N = 300 and 1 = 100. With this choice of
parameters, the system is in the UCF regime. The graph clearly shows that depending on positions of
the impurities, the dynamic response orthe conductor can either he inductive (E21 > 0), or capacitive
(~1 < 0). Thus, the dynamical nature of the response depends on the impurity configuration. The
unit for emittance is Eo = l/hw.
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Figure 4.7: Plots of ~~l versus "y for a several values of N, from N = 75 to N = 150. Each data
point was computed by averaging over 1000 random impurity configurations. We clearly see that
the emittance fluctuations depend only weakly on ; for large values of"'f > 25. On the other hand,
the emittance fluctuations are very sensitive to the Dl1Inber of impurities, N. The unit for emittance
is Eo = Ijhw.

In Fig. 4.7 we plot the emittance fluctuations as a function of the impurity strength

'Y for several different impurity number N. For each data point, 1000 random impu

rity configurations were averaged. Fig. 4.7 clearly shows that when T is large enough

(T > 25), D.E21 seems to be independent of T, showing sorne generic behavior \Vith

respect to the impurity scattering strength. However, because E21 depends on the

electrostatic potential build-up inside the conductor [64, 82J, as reflected by the func

tionai derivative in LPDOS (see Eq. (2.35)), .üE21 is thus expected to be a sensitive

function of the degree of disorder determined by impurity number N. Our results

indeed confirms this picture as shown in Fig. 4.7.

•
Let us now turn our attention to the distribution functions P(E2d. Of the two

contributions to E21 , namely the external charge injection due to the time depen

dent disturbance and the internai response due to Coulomb interactions, the externai

contribution is given by global partial density of states. This is related to the elec-



tron dwell time of the scattering region [84, 29]. The distribution function of dwell

time has been anaIyzed within the random matrix theory [99, 100] for chaotic cavi

ties, and within the invariant embedding formalism for ID disordered system [101].

Their universal properties have been well studied [102, 103]. However, the statistical

properties of the internai response is much more complicated and it has only been

included within the very crude constant capacitance charging model for chaotic cavi

ties [99, 104]. Here we nunterically investigate P(E2d from first principles where the

internaI response is calculated through the LPDOS. Fig. 4.8 shows P(E2d obtained

from our numericai analysis for different values of N. Each of the graphs were ob

tained by generating over 10000 data points, each of which corresponds to a random

impurity configuration. \Vhen N is small, e.g., N = 50, P(E2d is centered around

a positive value of E21 , which indicates a predominantly inductive dynamic response

(see Fig. 4.8). This is consistent with the fact that the system is rather conductive

for this degree of disorder. Aiso note that the distribution function is quite sym

metric. As N is increased ta 300, the larger degree of disorder makes the system

less conductive, and the center of the distribution is shifted ta center near zero (see

Fig. 4.9). While the distribution is still quite symmetric, it is now wider indicating a

larger fluctuation amplitude 6.E21 , as seen in Fig. 4.7. When N is increased further,

P(E2d not only shifts its center to a negative value of E21 , it becomes asymmetric

(see Fig. 4.9). For large N the disordered system is less conductive, therefore we

expect a capacitive dynamic response (e.g. a parallel plate capacitor has zero DC

conductance). This is clearly shown by the shift of the distribution toward negative

values of emittance. For N = 500 the body of the distribution is located on the

capacitive side while the right tail of P(E2d extends far inta the inductive side. vVe

note that the random matrix theory predicts a capacitance distribution which is also

asymmetric, for an one-probe chaotic cavity [99].
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This study of emittance demonstrates the fundamental differences between trans

port coefficients that only depends on the external response versus transport coef

ficients which also depend on the internaI response. The internaI response for the •
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Figure 4.8: Histograms of ~l for different values of N, from N = 50 to N = 150. The value of the
impurity strength is chosen to be ""( = 80. As the value of N increases from N =50 to N = 150, we
have a Gaussian like distribution whose width increases with N. Moreover, the average value of E21

approaches zero, as N is increased. The distribution becomes more and more capacitive, which is
consistent with the system becoming less and less conductive as N is increased. We have used over
10000 different random impurity configurations to obtain each histogram. The unit for emittance is
En = l/hw.
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the impurity strength is set equal ta "Y = 80. As the value of N increases from N = 200 ta N =500,
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the distribution is in the capacitive side while its taiI extends far into the inductive side. We have
used over 10000 different random impurity configurations for each graph. The unit for emittance is
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Figure 4.10: Plot of the nonlinear conductance GUI versus sample numher for N = 300 and 'Y =100.
The graph shows that depending on the position of the impurities, the current going through the
system can either he increased (GUI> 0) or decreased (GUI < 0), by the nonlinear current term.
The unit for GUI is G~ = e2 jhV.

emittance, for example, leads to an asymmetric distribution function P(E2d, which

is in contrast to the perfectly symmetric distribution for the G2l (away from G2l = 0).

\Ve now turn our attention to the nonlinear conductance Glli .

4.3.3 Nonlinear De conductance GIll

•

In this subsection we study the behavior of the nonlinear De conductance. We choose

G lll as our nonlinear transport coefficient. This is equivalent to any other of the

nonlinear conductances, Ga{3...,. From gauge invariance we have, GIll + G112 = 0 and

GUI + G12l = 0, which implies GUI = -GU2 = -GI2l . As for current conservation

it imposes the condition GUI + G211 = 0, which leads to GUI = -G211 • The rest of

the coefficients are related to GlU using the other gauge invariance conditions.

We now study the nonlinear conductance fluctuations. The procedure for this

follows the same Hnes as what was used to obtain emittance fluctuations. We use

expressions for the scattering matrix Eq. (4.36), the wavefunction Eq. (4.37) and the



characteristic potential Eq. (2.60), to evaluate the expression for GUI (see Eq. (2.65)),

for a given random impurity configuration {ri}. We repeat this procedure for many

impurity configurations, usually 1000 to 10000. Computing GUI is much more com

putationally intensive than G21 since it requires the wavefunction.

In Fig. 4.10 we plot the fluctuations of GUI from sample-tû-sample. We use,

once again, the same values for the disorder parameters that were chosen in the

previous subsections, N = 300 and "( = 100. From Fig. 4.10 we see that conductance

fluctuations are centered around GUI = O. This is understood by the following. Using

Eq. (2.16) we can evaluate the current going through the first lead, Il. Combining

this with the identities GUI = -G1l2 = -GI2l = G122 and Gu = -G12 , we arrive at

the equation,
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(4.39)

Therefore, for a conductor with a symmetric potentiallandscape, U(x, y) = U(-x, y),

the current Il must be equal to -Il when we interchange the bias Vi with \12. This

implies that the expression for the current cannot have a quadratic term, and hence

the nonlinear conductance must vanish, GUI = o. For our diffusive conductors, on

average the random impurity configurations is symmetric, it then follows that the

average conductance feels a symmetric potentiallandscape, whieh implies < GUI >=

0, which is what is seen in Fig. 4.10. For a specifie sample, however, depending on the

impurity configuration the we ean have either GUI> 0 or GUI < O. This implies that

the nonlinear current contribution can either increase or decrease the total eurrent

depending on the impurity configuration.

In Fig. 4.11 we plot the nonlinear conductance fluctuations ~GUI versus the num

ber of impurities N. This graph clearly shows that ~Gl1l depends very sensitively

on the number of impurities. This behavior for ~Glll originates from its dependence

on the internaI response of the device, which is characterized by the characteristic po

tential, ua(r). To better understand the nonlinear conductance and its fluctuations,

we turn to the distribution functions P(GlU ).

In Fig. 4.12 and Fig. 4.13 we show the distribution functions for GUI for different •
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Figure 4.11: Plot of ~Glll versus N, the number of impurities. The nonlinear conductance fluctu
ations depends very sensitively on N. When the value of N is low (N < 150) the increase of ~G111
is approximately linear. As N goes from 150 to 500 the curve is looks like an exponential. The
fluctuations grow very quickly with N for large N > 150. The unit for GUI is G~ = e2 /hV.

values of N. AIl the distributions functions are symmetric and centered around zero,

since < GUI >= O. When the value of N is low, around 50 (see Fig. 4.12), the

distribution is a narrow Gaussian like function. As N increases from 50 to 150 the

body of the distribution spreads symmetricaIly so that the P(Gud slowly becomes

a wider Gaussian like function. This is consistent with the slow increase in ~GIU,

as IV is increased from 50 to 150, as seen in Fig. 4.11. As N is increased from 200

to 500 the distribution function change from a Gaussian like function to a symmetric

exponentially decaying function centered around < GUI >= O. The width of the

distribution increases dramatically, which indicates that a wide range of values for

the nonlinear conductance is reached. This picture is consistent with Fig. 4.11 which

shows that the conductance fluctuations, i.e the rms of P(G IU ), increases in an

exponential like fashion as N increases.

In summary, we have analyzed the sample-to-sample fluctuations for linear DC,

linear AC, and nonlinear DC conductance, in two dimensional disordered mesoscopic

conductors. We round that the distribution function for G21 is a Gaussian like func-
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Figure 4.12: Histograms for GUI for different values of N, from N = 50 to N = 150. The value of
the impurity strength is chosen to be "Y =80. As the value of N increases from N = 50 to N = 150
we have a Gaussian like distribution whose body spreads symmetrically around GUI = o. The v.;dth
of the distribution increases proportionally with N, which is consistent with Fig. 4.11. We have used
over 10000 different random impurity configurations to obtain each distribution function. The unit
for GUI is G~ = e2/hV.

•



•
4.3 Admittance Fluctuation in the UCF regime 87

200 impurities 300 Impurities
8 8

6 ~ 6
1

4 4

2 2

0 a
-0.01 -0.005 0 0.005 0.01 -0.01 -0.005 0 0.005 0.01

400lmpurities 500lmpurities
8 8

6 ~ 6

4 4

2 2

0 0
-0.01 -0.005 0 0.005 0.01 -0.01 -0.005 0 0.005 0.01

G111 G111

Figure 4.13: Histograms for GUI for different values of N, from N == 200 to N = 500. The value
of the impurity strength is chosen to be 'Y == 80. As the value of N increases from N == 200 to N ==
500 the distribution changes its shape from a Gaussian like function to a symmetric exponentially
decaying function. The width of the distribution grows very rapidly from N = 200 to N == 500,
which is consistent with what is seen in Fig. 4.11. We have used over 10000 different random impurity
configurations to obtain each of these functions. The unit for GUI is Go == e2 /hV .
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tion for values of N and 'Y in the diffusive regime. When the taïl of the Gaussian

distribution starts to accumulate against the G21 = 0 limit, the value of ~G21 is

reduced from it's universal value O.86e2/h. In contrast to the distribution function

for G21 , we found that P(E2d is symmetric for small disorder and asymmetric for

strong disorder. When the value of N is low, the distribution P(E2d is symmetric

and centered around a positive value of E21 , which corresponds to an inductive be

havior. But when the value of N is high the distribution P(E2d becomes asymmetric:

the body of the distribution is in the capacitive side E21 < 0, while having a long

tail which extends deep into the inductive side. This type of asymmetry has been

shown for chaotic cavities [99, 103]. Thus, the distribution function of the emittance

depends on the dynamic response of the conductor: for an inductive like response the

distribution is symmetric while for an capacitive response it is asymmetric.

We found that the distribution function for the nonlinear conductance at low dis

order is Gaussian like. The average value of the distribution is < Gill >= O. As

the degree of disorder iDcreases the width of the Gaussian like distribution increases

in a linear fashion. At high values of disorder, P(Gud looks like a symmetric ex

ponentially decaying function, the body of the Gaussian distribution has speared

symmetrically into two long tails. The fluctuations, at large values for the disorder,

increase in an exponential manner. Thus, the distribution function of the nonlinear

conductance depends on the internaI response of the conductor: for small disorder the

distribution is symmetric and Gaussian like, while for strong disorder the distribution

is a symmetric exponentially decaying function.

To explore our theoretical predictions experimentally one needs to assume ergod

icity. Experimentally, one cannot average over impurity configurations since it would

imply performing experiments on thousands of samples, which were aIl prepared the

same way. This of course is not feasable. Instead one should use perform the aver

aging over the bias potential or magnetic field and invoke the ergodicity principle,

which says that is equivalent to averaging over impurity configurations.
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Extended Transfer Matrix study of an Antidot system

So far we have investigated conductance fluctuation phenomena in diffusive quantum

conductors using mainly analytical techniques. In our model, used in the previous

chapter, the diffusive scattering is provided by localized impurities, which are repre

sented by delta-functions. Physically, the existence of such impurities can either he

intentional or accidentaI. For example, a semiconductor can be doped intentionally

while defects occur randomly during the fabrication process of a conductor. These

impurities can effectively limit the number of conducting quantum channels which

connect the electrodes for the incoming charge carriers to the electrodes for outgo

ing carriers. Sample-to-sample conductance fluctuations occur because the impurities

are distributed randomly from one sample to another, and UCF occurs because of

interference effects due to coherent scattering in diffusive conductors.

In the last decade or so, artificial impurities can he carefully fahricated and placed

in a coherent quantum conductor to control the fiow of charge (1, 44, 45]. Very

interesting quantum interference phenomena can be produced in a controlled fashion

using these artificial structures. Perhaps the most interesting artificial impurity is

the antidot, which is simply a potential peak in an otherwise fiat potentiallandscape.

In a quantum device, such as a multi-probe quantum dot, if one antidot whose size

can he controlled by an external voltage is placed inside the dot, the device shows

important characteristics of quantum chaotic scattering, as shown in the experimental

study of [1, 44, 45]. The presence of antidots inside a conductor may also cause weak

localization, meaning a decrease of conductance with respect to the classical value [5J.

More complicated weak localization phenomenon is also observed for arrays or for
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random distributions of antidots which "dope" a conductor [59]. Quantum transport

properties of a four-probe quantum dot, in which an antidot is confined, has been

found [105], in a magnetic field, to cross over from the quantum Hall regime to a

regime dominated by quantum interference, as the antidot size is increased. Such a

crossover is accompanied by a set of approximate but interesting micro-symmetries

between elements of the scattering matrix [106].
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There are many ways of fabricating an artificial impurity, but up to now two

methods seem to dominate. The first approach, known as etching, consists of drilling

a hale in the 2DEG. The region where the hole is becomes a forbidden zone where the

charge carriers cannot enter. In this region we effectively have a hard wall potential.

The second method is the split gate technique discussed before, which consists of

depositing a metallic disk on top of an insulating layer which is resting on the 2DEG

and then applying a negative electric potential on the disk. When the negative electric

potential is on, it creates a repulsive potential in the 2DEG beneath the disk, which

prevents the electrons from entering that regjon. One major advantage of the latter

approach is that the size of the antidot can be tuned by simply changing the applied

electric potential. An increase in the (negative) potential will increase the effective

size of the restricted area for the charge carriers.

In this chapter we develop and apply an extended transfer matrix technique ta in

vestigate the experimental results in [1]. We use this numerical technique to compute

the magneto conductance, Le. the linear De conductance G(B) as a function of the

magnetic field B, for the experimental device reported in [1]. In this experirnental

study, a 2D device was fabricated using an AIGaAs/GaAs heterostructure, which con

tained a 2D electron gas with mobility l06cm2IVs and Fermi wavelength ÀF= 330À.

The device consists of six electrostatic gates: four of the gates are used to define the

wire's boundaries, and the two other gates are used to define two antidots which are

placed symmetrically inside the wires boundaries. The electrostatic potential applied

to the antidots can be adjusted so that many configurations can be generated using

thp same device, as seen in Fig. 5.1. In particular, for small gate voltage on the anti- •
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Figure 5.1: Schematic diagrams of the experimental system studied. Each of the configurations are
realized by adjusting the (negative) potential bias on the split gates which define the antidots and
the boundaries.



dots, the configuration seen in Fig. 5.1(a) is established. In this configuration three

quantum point contacts are formed, two of them are between the antidots and the

walls, and the third is between the two antidots. Recall that a quantum point con

tact (QPC) is a constriction which limits the number of subbands that can propagate

through the contact region. For larger voltages, the space between the two antidots

can be pinched off, this effectively produces a larger antidot and eliminates one of the

QPC's (see Fig. 5.1(b)). Finally, a large voltage can be applied to one of the antidots

and the nearby wall. In this situation, seen in Fig. 5.1(c), the quantum point con

tact between the lower antidot and the wall is closed. The experimental system in[l]

was cooled down to about lOOmK and a uniform magnetic field was applied in the

direction perpendicular to the device. Using this device, "molecular orbits" around

the antidots were created and investigated using a magnetic field.
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In contrast to the work from the previous chapter, we will now use a numerical

scheme to solve the quantum scattering problem. Because of the finite size of the

artificial impurities, we can no longer use Dyson's equation to obtain an exact solution

for the Green's function. Moreover, in the presence of a magnetic field, there is no

known analytical expression for the Green's functionfunction for a perfect 2D quantum

wire. Thus, we need a numerical technique to solve the transport problem. For this

purpose~ we have developed an extended transfer matrix approach to obtain the wave

function and scattering matrix. They provide us with aIl the required information ta

compute the linear DC conductance, which we will compare with the experimental

results.

In the following we discuss in detail the extended transfer matrix technique. This

includes the solution to the generalized eigenvalue equation, which arise when a finite

magnetic field B is applied. We then discuss the properties of the wave function in the

scattering regjon and in the lead region. The presence of the magnetic field changes

the usual form of the wave function, and thus care must be taken to construct it. The

current associated with the scattering wave function is also discussed. Finally, we

apply the transfer matrix technique to the experimental device of [1]. These results •
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Figure 5.2: Schematic plot of a 2 dimensional quantum wire. The region of width W between the
two solid lines is the wire region, the shaded region in the middle is the quantum scattering region,
the un-shaded region on both ends are the leads. The two thick dashed lines indicated the two
auxiliary hard walls (see text).

are then compared to the experimental data.

5.1 The Generalized Eigen-Momentum Equation

The first step of our calculation is ta determine a proper basis set for expanding the

scattering wave function. When B = 0, the basis set is just sine functions for a hard

wall confinement. But when B i= 0, we must compute the basis functions. Consider

an infinitely long perfect 2D quantum wire shown in Fig. 5.2. Instead of using the

usual hard wall boundary conditions to modei the lateral confinement, we use, this

time, a soft wall potential. By soft wall potential we mean a step potential whose

height is not infinite, but is much greater than the electrons incoming energy.



In the presence ofa magnetic field the wave function satisfies the following Schrodinger

equation:
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(5.1)

where the vector potential is A= B(O, x, 0) and V(x, y) is the confinement potential.

We chose V to be a soft wall potential away from the wires boundaries. To simplify our

theoretical work we add to V a hard wall potential far away from the boundaries, such

that the wave function is essentially zero at the hard wall. Recall that in the region

where the soft wall potential is the wave function decays exponentially. Adding a hard

wall potentialleads us naturally to use sine functions as a basis for decomposing the

transverse part of the wave function. A represents a uniform magnetic field pointing

in the z direction, which is the direction perpendicular to the 2D plane (see Fig. 5.2).

In contrast to the zero B field case, Schrodinger's equation Eq. (5.1) is no longer

trivially separable. The anzats 'l/J(x, y) = eikmYum(x) does not lead ta an equation for

um(x) which is independent of km. We can nevertheless break up the wave function

into a longitudinal and a transversal piece: a plane wave along the transport direction,

and a transverse part describing the modes. The priee for such a decomposition is

that we no longer have a simple eigenvalue equation for the transversal eigenfunction.

Therefore, a generalized eigenvalue problem must be solved.

In the left lead region we use the following anzats for the wave function: 'l/J(x, y) =

exp[ik;y]u~(x), where L denotes the left [ead. Putting this expression into Eq. (5.1)

we find,

(5.2)

For later convenience, let us rewrite the above equation in a more compact form:

wbere k2 = 2m./n2E, li: = 2m./11,2V, and L~ = ';ch/qB is the magnetic length.

Notice that a new length scale, the magnetic length LB, bas been introduced. This

[
82 ( )2 ]L X L 2 L

- 8x2 + km - L1 + Y: (X) um(x) = k Um(x) , (5.3)
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length scale represents the spatial extension of the wave function in the presence of a

fini te magnetic field B. Note that for a fixed value of the electrons energy E, Eq. (5.3)

is a quadratic eigenvalue equation for kn . One important consequence of having to

deal with a general eigenvalue equation is that the solutions are going to be complex.

Thus, the longitudinal eigen momentums, kn , are general complex numbers.

Let us now cast the generalized eigenvalue equation into a matrix form. First, we

neecl to decompose the eigen functions u~(y) onto a fixed basis. This is accomplished

by expressing u~(y) as a sum of sine functions, which naturally from a basis for our

hard wall boundary conditions far away from the soft wall confinement potential.

Decomposing u*(x) onto the sine basis 4Ja(x) = /2/Dsin[a;(x + D/2)] we write:
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(5.4)

We drop the superscript L for um(x) and km, to simplify the notation and for later

convenience. We choose N large enough such that we obtain numerical convergence.

Putting this equation into Eq. (5.3) we find,

We can simplify this last expression by multiplying it by 4>p(x) and integrating over

the transverse direction, x. We find,

Next, we rewrite the above equation,

We are now ready to express the generalized eigenvalue equation in terms of matrices.

To this end we introduce the following vectors and matrices:• Xn = ( Xln ,X2n , ... ,XNn ) , (5.8)
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and

Ê=

k 2 - (~)2 0

o k 2 _ (~)2

V:Q~ = 1dxcPp(X) V. (x)cPo(x) .

(5.9)

(5.10)

(5.11)

•

Using these matrices we obtain a compact expression for the generalized eigenvalue

equation Eq. (5.7),

(5.12)

Finally, we introduce the effective Hamiltonian ÎI = Ê - X2 - V:, to obtain a simple

form for the generalized eigenvalue equation,

(5.13)

which can be solved numerically. Thus, Eq. (5.13) gives us the transverse eigenvectors.

Before moving on let us take a moment to see what happens to the usual orthog

onality conditions for our generalized eigenvalue equatian. By taking the adjoint of

Eq. (5.13) and multiplying it by Xn from the right we find,

(5.14)

Ta obtain the above result we have used the fact that Îl and X are both symmetric

matrices. Similarly, by multiplying Eq. (5.13) from the left with X~ we obtain,

(5.15)

Therefare,

This can he rewritten in the following form,

(5.16)

(5.17) •



This last equation says that X~ [k:n + kn + 2X]Xn =1= 0, only when kn = k:n. This

orthogonality condition will come in handy when simplifying the expression for the

current. Finally, our choice of normalization for the generalized eigen vectors is,

•
5.1 The Genera1ized Eigen-Momentum Equation 97

(5.18)

This choice of normalization will also he useful when camputing the particle eurrent

assaciated to the wave function.

As discussed already, in general kn is a complex number. We will therefore divide

the kn into two groups in order to identify which solutions represent charge carriers

moving from left to right and vice versa. The two groups are defined as follows:

• First group: Right moving modes, Im(kn ) = 0 and Re(kn ) > 0, and local

evanescent modes, which are right decaying, Im(kn ) > o.

• Second group: Left moving modes, lm(kn ) = 0 and Re(kn ) < 0, and local

evanescent modes, whieh are left decaying, lm(kn ) < O.

Note that sorne of the solutions from the first group are related to the solutions

from the second graup. To see this, let us first notice that for any given solution Xn

af the generalized eigenvalue equation, the complex conjugate X~ is a solution to,

(5.19)

•

This means that (Xk,J* = Xk~, where we have explicitly written out the dependenee

of Xn on the eigen momentum kn. Notice that for a real eigen momentum, k~ = knl

the associated eigen-vector is therefore real, (Xkn )* = Xk~ = Xkn • Thus, real solutions

from the first or second group are unrelated. Next, let us consider complex solutions

kn . In this case we have far a given complex kn that its conjugate k~ is the eigen

momentum for the eigenvector Xk~ = (Xkn )·. Thus, for a complex solution kn from

the first group, it's complex conjugate k~ is a solution from the second group, and

vice versa. For this reason, we say that the complex solutions come in conjugate

pairs.



5.1.1 Current in the presence of a magnetic neld
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•The current in the presence of a magnetic field can he measured in either the left or

the right lead (see Fig. 5.2) and is given hy,

1 = 2~. t dx [,p. (x, y)(-i~ + l~ ),p(x, y) - ,p(x, y)(-i~ - l~ )tP'(x, y)]

(5.20)

where the wave function 1/J(x, y) is evaluated in one of the leads. For example, the

wave function in the right lcad has the following form,

N

1/J(x, y) = L L tkneiknYXQn4>Q(x),
kn Q:1

(5.21)

where the sum over the generalized eigen momentum, kn , only includes right mov

ing states, tkn represents the transmission amplitudes, and XQn are solutions to the

generalized eigenvalue equation for the right lead. Putting Eq. (5.21) into Eq. (5.20),

In the ahove equation, the only non-zero terms are those with real kn 's, Le. those

with k:n = kn . This follows from the orthogonality condition Eq. (5.17). Therefore,

(5.23)

This expression is essentially the Landauer-Büttiker equation for charge carriers in

the presence of a magnetic field.

5.2 Extended Transfer Matrix Algorithm

Let us DOW solve the quantum scattering problem for a two probe deviee. To compute

the wavefunction everywhere inside the sY"item we will use a transfer matrix technique.

Let us briefiy give an overview of the transfer matrix technique. To he specifie,

consider the device shown in Fig. 5.2, where we specified the left lead, the scattering

region, and the right lead. The first step is to solve Schrodinger's equation in the •



leads. This is accomplished by solving the transverse eigenvalue problem in each lead

using using our basis set obtained in the last section, Eq. (5.4). We next find aH the

wave functions in the scattering region. To do this we divide the scattering region

into small slices such that in each slice the potential is approximately constant along

the direction of propagation, V(x, y) :::::: V(x, Yi), where Yi is the position of the i-th

slice. Schrodinger's equation in each slice is then solved. The wave functions are then

related using the continuity equations. The continuity equations simply express the

fact that the wavefunction and it's first derivative are both continuous. This way, the

total wavefunction in the scattering region is obtained.

•
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5.2.1 The wavefunction in the leads

To he specific, we take the incoming electron to he in the left lead in the n-th mode.

The scattering wavefunction in the left lead has the following form:

N

1/J(x, Y < 0) = Ineik*Yu~(x) + L Tnmeiq!nYv~(x) ,
m=l

(5.24)

where {q;;'} are the left moving eigen momentums and {v:;'} are the corresponding left

moving eigen vectors, for the left lead region. Similarly, {k:;'} are the right moving

eigen momentums and {u;;J are the corresponding right moving eigen vectors, in the

left lead. These were obtained in the last section. The incoming wave amplitude

In uses right moving eigen solutions. Recall that in the zero B situation there is no

difference betwecn right moving and left moving eigen vectors, and a right moving

eigen nlomentum kn is related to a left moving eigen momentum by the transformation

kn --+ -kn . Finally, Tnm is the probability amplitude for an incoming electron in the

n-th channel to be reflected into the rn-th channel.

Similarly, the scattering wavefunction in the right lead has the following form:

where {k~} are the right moving eigen momentums and {u~} are the corresponding

right moving eigen-vectors, in the right lead. The coefficients tnm represent the proh-•
N

1/J(x, Y > L) = L tnmeik*,yu~(x) ,
m=l

(5.25)



ability amplitude for an incoming electron in the n-th channel scatters through the

systems and leaves in the rn-th channel by the right lead.
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5.2.2 The wavefunction in the scattering region

Let us now develop the transfer matrix technique to solve Schrodinger's equation

every where inside the scattering region. The first step is to divide the scattering

region into M small slices such that the potential is essentially constant along the

y direction in each slice, 0 = YI < Y2 < Y3 < ... < YM < YM+I = L, where we

have chosen {Yi} such that Yi+1 - Yi = d = LINf « 1. When d is small enough,

V(x, Yi < Y < Yi+d ~ V(x, Yi) =\;i(x). Using this approximation we can solve

Schrodinger's equation in each slice, the same way it was done for the leads. Therefore,

the wavefunction in the i-th slice, Y E [Yi, Yi+d, has the following general farm,

1/J(i) (x, y) = f. [A!:)eik~)(Y-Y;)ur:.>(x) + B~i)eiq~)(y-y;)vr:.>(x)] , (5.26)
m=1

where i = l, ... , Nf and the sum is over the transverse eigen modes. The coefficients

A~ and B~) are unknown, which we will find later. As before, k~) is a right moving

eigen momentum, u~ (x) is the corresponding right moving eigen vector, q~) is a left

moving eigen momentum, and v~)(x) is the corresponding left moving eigen vector,

in the i-th slice.

Let us now relate aIl the wavefunction of ~q. (5.26) together. Recall that the

wavefunction and it 's first derivative are continuous across the boundary between the

i-th slices and the (i - l)-th slice. This implics that at y = Yi,

and

~ 1/J(i-l) (x, Yi) = ~1/J(i)(x, Yi) .

Putting Eq. (5.26) into Eq. (5.27) and Eq. (5.28) we find,

f. [A~-l)eik!.'-l)~ U~-I)(X) + B~i-1)eiq~;-I)~ V~-I)(X)] =
n=1

N

L [A~)u~)(x) + B~i}V~i)(X)] ,
n=1

(5.27)

(5.28)

(5.29) •



t [~-L)(ik~-l»)eik~i-l).o. u~-l)(X) + B~i-l)(iq~i-l))eiq~-l).o. V~i-l)(X)] =
n=l

N

E [A~)(ik(i»)u~)(x) + B~i)(iq~i})V~i}(x)]. (5.30)
n=l

•
5.2 Extended Transfer Matrix ..41gorithm

and
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We decompose the above equations onto the sine basis ta eliminate their spatial

dependence. First, we expand the right moving modes, u~}, and left moving modes,

V~i), on the sine basis functions,

and

u~)(x) = ~ V~~4>o(x) ,
a

V~i)(X) = E W~~4>o(x) .
a

(5.31)

(5.32)

AIl the information of the eigenfunctions u~) and v~i) is contained in the matrices V~~

and W~~. Using these expressions we find,

and

~ [A(i-l}eik~i-l)aV(i-l} + B(i-l}eiq~i-l)aW(i-l)] =
~ n on n an
n=l

N
" [A(i) Veil + B(i) lV(i)]LJ n an n an'
n=l

t [A~-l) (ik~i-l»)eik~i-l) aV~~-l) + B~i-l} (iq~i-l»)eiq~i-l) aW~~-I)] =
n=l

N

~ [A~)(ik(i»)\t~~ + B~i)(iq~i»)W~~] .
n=I

(5.33)

(5.34)

Next, we define vectors and matrices in order ta express Eq. (5.33) and Eq. (5.34) in

matrix form. Let:

(i) _ (B(i) B(i) B(i})X2 - l' 2' ... , N ,

(i) _ (A(i) A(i} A(i»)
Xl - l' 2' ... , N ,

•
[D(i)] _ e(ik~i)~)..\

1 nm - Unm,

[K(i)] 'k(i)..\
1 nm = ~ n Unm'

and [D(i)] _ e{iq~i)a)..\
2 nm - Unm, t

(5.35)

(5.36)

(5.37)

(5.38)
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Eq. (5.33) and Eq. (5.34) become,
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[Veil] = V(i)
nm nm' and [l'v(i)] = Wei)

nm nm' (5.39) •
V(i-l)D(i-l) (i-lj + W(i-I)D(i-l) (i-l) _ Veil (i) + wei) (i)

1 Xl 2 X2 - Xl X2 ,

and

(5.40)

V(i-l)D(i-l)K(i-l) (i-l) + W{i-l)K(i-I)D(i-l) (i-I) _ V(i)K(i) (i) + W(i)K(i) (i)
I I Xl 2 2 X2 - l Xl 2 X2 ,

(5.41 )

where i = 1, ... , M + 1. We have added the continuity equations between the last

sUce and the right lead. We are now faced with the problem of solving a system of

2(M+1) equations with 2(M+1) unknowns, xli) and X~i). We could solve this system

iteratively, by expressing the unknowns in the i-th slice, X~i) and X~i), in terms of the

unknowns in the (i -1)-th slice X~i-l) and X~i-l). Once iterated this would lead to an

equation relating the variables from the first slice, lm and Tnm , to the one from the

last slice, tnm . This final equation could be solved and an expression for rnm and tnm ,

in terms of lm, could be obtained. The problem with this procedure is that it is not

numerically stable, because of the repeated multiplication of the exponential factors

exp[iq~i)] 2: 1 (when the imaginary part of q~i) is negative).

To get around this problem that conventional transfer matrbc approaches run into,

we must reformulate our equations in such a way that avoids multiplying the divergent

factors over and over. To this end we group the vectors xii) and X~i) into a 21V vector

given by,

(

(i) )
(i) _ Xl (5.42)

X - X~i-l} D~i-l) .

Using these new vector XCi) we can now rewrite the continuity equations in a tridiag

onal matrix form. The continuity equation, Eq. (5.40) and Eq. (5.41), are now given

by,

(5.43)

where

(5.44) •



•
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(i) (V(i) -W(i-l) )
L2 = .

V(i-l~ D~1-1) _ W(i-l) D~i-l) ,

and
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(5.45)

(5.46)
. ( 0 W(i)(D(i))-1 )L(I) _ 2

3 - 0 W(i)K~i)(D~i))-l .

There are no amplifying factors in Eq. (5.43), thus it can he iterated without danger.

At the start of the iteration, we have X(I) = (xP), fb~L)), where f is the reflection

amplitudes (see Eq. (5.24)) and ÎJ~L) is the matrix from Eq. (5.37) for the left lead.

The corresponding equation is

(5.47)

where lm is the incoming wave amplitude in the n-th mode, (lm)n == c5nm • At the

end of the iteration, we have X(M+l) = (i, X~M) ÎJ~M)), where i are the transmission

amplitudes (see Eq. (5.25)). The last equation is,

(5.48)

•

Eq. (5.43), Eq. (5.47) and Eq. (5.48) form a complete set of tri-diagonal matrix

equations, which can he iteratively solved by standard routines. In particular, we can

solve this tridiagonal system of matrix equations without any divergences, hecause

they are no amplifying factors being repeatedly multiplied.

5.3 Numerical Results

We now apply the extended transfer matrix technique to investigate the quantum

wire reported in [1]. Recall that the experimental device is a 1j.1.m wide by 5J..Lm long

quantum wire, fahricated on an AlGaAs/GaAs heterostructure, with two antidots

with a diameter of O.2j.1.m placed inside. The Fermi wavelength of the charge carriers

is Àp == 330À. In our theoretical study, we use the same parameters as those of the

experiment, except for the Fermi energy, we discuss this helow. The different antidot

configurations are shown schematically in the Fig. 5.3. The step like potentials used
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Figure 5.3: Conductance G(B) as a function of the magnetic field. The corresponding arrangements
of the antidots are indicated in the insets.
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to mimic the confinement due to the wires boundary and the repulsion of the antidots,

has a height of 2.8 electron volt (eV). The electron energy is equivalent to a wavelength

À = 21r x Àj-.. We consider a lower energy in order to minimize the computation

time, but this doesn't change the main features of the transport coefficients. In

aIl our calculations, we assume an electron effective mass m. = 0.067me , which is

appropriate for AlGaAs/GaAs interfaces, where me is the bare electron mass. Our

numerical results are presented in the form of the magneto conductance G(B) as a

function of the magnetic field B. Here, G(B) is related to the transmission amplitudes

tnm via the Landauer-Büttiker formula, G = e2
/ h En,m Itnm l2•

•
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In the calculation shown in Fig. 5.3(a), the centers of both antidots are placed at

a distance of 0.3J.L from the nearby boundary, thus three 0.2j.L wide QPC's are formed

between the boundaries of the confinement and the antidots. The magneto conduc

tance plot show interesting resonance behavior. The valley in conductance marked

by the letter X corresponds to the "X" peak, which is experimentally observed in

the magneto resistance [1]. The X peak is due to the coupling of the local states

caused by cyclotron trapping. This happens when the cyclotron orbit is commensu

rate with the size of the "molecule" formed by the two antidots. The radius of the

cyclotron orbit is estimated by Re = nkc/(eB) ~ OAJ.L. Assuming that the typical

molecular orbit is roughly a constant for different energies, which is reasonable since

the molecular orbit is largely fixed by the geometry of the arrangement of antidots

inside the wire. This implies the position of the X peak in B found in the experiment

should be different than what we find numerically, but the ratio k/B should remain a

constant. Since the experimental kp is a factor 21r larger than the wave vector k used

in our simulation, we expect that the experimental X peak position be at a higher

value of the magnetic field than what we find in our theoretical work, by the same

factor. The experimental X peak occurs at about B = 0.24 T [1] while our result

is at around B = 0.045 T. Hence, taking into account of the 21r difference in the

k values, good agreement between our numerical simulations and the experiment is

found. One source for the small difference of the k/B ratio could be due to the fact



that the molecular orbit changes slightly for different energies.

On top of the X peak, there are extra modulations which are due to the Aharonov

Bohm (AB) effect. The peaks showing here are due to the coupling of the local orbits

that circumvent both antidots. The modulation period is proportional to the inverse

of the area enclosed by the local orbits. The period obtained from our calculation is

LlB ~ 8.2 mT, corresponding to a AB area ~A ~ 1rR~ ~ 0.5JL2, which also agrees

reasonably weIl with the experimental result[l] of 7 mT.

At magnetic field greater than 0.1 T, Fig. 5.3.(a) shows 3 more peaks, which

corresponds to the AB oscillations induced by the electron circumventing a single

antidot. The distance between the first two peaks is 28 mT, corresponding to a AB

area ~A' ~ 1rR~ ~ 0.14J.L2, which is again in excellent agreement with experimentally

observed AB period of 27 mT in this range of the field strength [1]. Furthermore~

one can see that the AB period has a trend of getting larger at higher magnetic field.

This effect is also observed in the experiment [1].

ln the calculation shown in Fig. 5.3.(b), we move the two antidots closer such that

there is now only a 0.1Jl. gap between them. The other two gaps between the antidots

and the boundaries are now 0.25JL wide. It cao be seen that in this case the X peak

appears at approxirnately the same position as the situation of Fig. 5.3.(a). However,

since the gap between the antidots is now narrower, it is harder for the electron to

pass through there. Therefore the AB oscillations due ta the single antidot orbit

are suppressed. We are left with AB oscillations which are only due ta the larger

"molecular" orbits, Le. orbits that circumvent both antidots. As shown in Fig. 5.3.(b),

one finds a smaller period oscillations all the way up to 0.2 T. The period found in

Fig. 5.3.(b), on average, is about 8 mT, which is consistent with a "molecular" orbit

AB effect. It is worth noting that other than the AB peaks, there seems to be sorne

extra resonances in Fig. 5.3.(b). The cause of these extra peaks is likely to be due to

quantum resonances caused by the QPC's.

In the device geometry shown in Fig. 5.3.(c), we put an additional antidot in the

structure of Fig. 5.3.(a). The additional antidot is placed in between the lower bound-
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ary and the lower antidot, 50 that the lowest gap is effectively closed. Experimentally

this situation was established by adjusting the negative potential on the wires bound

ary which pinches off the lower QPC, as discussed in detail in [1]. For this case the

orbits which surround two antidots cannot exist, only those surrounding one antidot

remains. Indeed, as shown in Fig. 5.3.(c) the valley that corresponds to the X peak

disappears. On the other hand the three AB peaks at B greater than 0.1 Tesla still

remains at the same position. This clearly demonstrates that the X peak is caused by

the "molecular" orbits that surround the two antidots. The results from Fig. 5.3.(c)

agree with those found experimentally when the device has the same configuration

[1].

•
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•

5.4 Conclusion

In order to simulate the experimental situations of [1], we developed an extended

transfer matrix technique which solves the full quantum scattering problem in the

presence of a magnetic field. The experimental device was used to study the classi

cal and quantum transport features as a function of a uniform magnetic field. The

resonance behavior in the magneto conductance, observed experimentally, was reprû

duced and understood. The peak positions and spacings agree quantitatively with

the experimental data. In particular, the classical focusing effect is responsible for

the anomalous X peak; and the AB oscillations account for the near regular magnetû

conductance peaks at higher magnetic field strength. The simulation results of this

work thus confirms the physical picture established by the experimental measure

ments. In contrast to other model studies [46, 107] our work provides a full quantum

mechanical analysis and our results agrees quite weIl with the measurements.

As discussed in the text, while good quantitative agreement has been obtained be

tween our simulation and the measurements, there do exist slight differences regarding

to the precise values of the X peak position and the AB periods: our simulation values

are slightly larger. This can he understood in the following way. When comparing

numerical results with experimental values, we have assumed that the "molecular"



orbit which surrounds the two antidots remain the same for different electron ener

gies. While this is a reasonable assumption for the particular system we have studied

(because the electron motion is confined by the walls and QPC's), in reality, the

"molecular" orbit size is weakly dependent on the electron energy. We find that the

small discrepancy between the numerical values and the experimental data can he

accounted for if we assume that the radius of the trapped "molecular" orbit in the

numerical study is a few percent smaller than the corresponding experimental one.

However1 this energy dependence is indeed very weak since the energy chosen for our

numerical calculation is a factor 41T'2 smaller than the experimental Fermi energy.
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Conclusion

In this thesis, we have developed and applied a first principle approach to study emit

tance and nonlinear conductance fluctuations, in disordered quantum conductors. In

particuIar, we studied quantum transport fluctuations in the Universal Conductance

Fluctuations (UCF) regime in a diffusive conductor. We aiso developed a numerical

transfer matrix technique in order to study the magneto conductance of an antidot

system which was experimentally realized and reported in Ref.[l]. These develop

ments form the bulk of our work.

To study linear AC and nonlinear DC conductance, Büttiker's quantum transport

theory was used. In contrast to the linear DC quantum conductance, the linear AC

and the nonlinear DC transport coefficients require internaI response terms in order to

satisfy gauge invariance and current conservation, essentiai physicai requirements for

any realistic theory of quantum transport. The internaI response of the emittance and

the nonlinear conductance, in the scattering matrix approach, requires the knowledge

of the functional derivative of the scattering matrix. To compute this, from first

principles, we used Lippmann-Schwinger equation to derive an explicit expression for

the functionai derivative of the wave function. This resuit was then used to obtain

an expression for the functional derivative of the scattering matrix. This led us

to an equation which depends on the wave function and the Greens function. Ta

eliminate the functional derivatives dependence on the Green function we introduced

the Generalized Fisher-Lee (GFL) relation, which expresses the wave function in terms

of the Green's function. Putting these results together we obtained an equation

for the functional derivative of the scattering matrix, which only depends on the

109



scattering wave functions. This eliminated the need to calculate the Green's function T

which drastically reduced the computational time required to obtain the functional

derivative, and thus EolJ and Gol3'Y'

110 6 Conclusion

•
Once the expressions for the transport coefficients were obtained in terms of the

scattering matrix and the wave function, we next turned our attention to computing

the wave function for a diffusive conductor. We use the same model for disordered

conductor as Al'tshuler, Lee, Stone, and Fuckuyama for their study of UCF [38]. The

model uses N localized elastic scattering centers of strength !, represented by delta

functions, to generate an impurity potentiallandscape for the disordered conductor

in the diffusive regime. We derived exact expressions for the Green 's function and

the wave functicn. Solving Dyson's equation, we obtained an expression for the N

delta impurity Green's function. Then using the Lippmann-Schwinger equation the

N-delta impurity wave function was obtained. The final expression for the wave

function was expressed in terms of the impurity free Green's function, wave function,

and the matrix Mij (see Eq. (4.7)), which contained the information of the localized

scattering centers. This exact solution was used to obtain expressions for all the

transport coefficients of interest.

With aIl these theoretical developments, we analyzed the sample-to-sample fluc

tuations for the linear DC, linear AC, and nonlinear DC conductance coefficients in

two dimensional disordered conc.1uctors in the diffusive regime. vVe found that the

distribution for G21 is a Gaussian like function for values of N and 'Y away from the

insulating regime G21 = O. The usual UCF regime was found for a range of values of

N and ;, where ~G21 ~ O.86e2/h, which is the expected value for UCF in 2D. The

boundary of the UCF regime was identified with the accumulation of the tail of the

Gaussian distributions against the G21 = 0 limit, which led to a narrower distribution

and thus a reduced value for ~G21. In contrast to P(G21 ), we found that P(E2d is

symmetric for smaIl disorder and asymmetric for strong disorder. When the value of

N is low, the function P(E2d is symmetric and centered around a positive value of

E2h which corresponds to an inductive behavior. But when the value of N is high •



•

•
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the distribution P(E2d becomes asymmetric: the body of the distribution is in the

capacitive side E21 < 0, while having a long tail which extends into the inductive

side E21 > O. Finally, we also computed the distribution function for Gnl . At low

value for the disorder P(Gud is a Gaussian like function, and its width increases in a

linear fashion with N. When we have strong disorder, P(Glld looks like a symmetric

exponentiai and the width of the distribution increases exponentially with N. This

picture is confirmed when plotting ~Glli versus N. Thus, distribution function of

the nonlinear conductance depends sensitively on the internaI response of the con

ductor: for small disorder the distribution is symmetric and Gaussian-like, but for

strong disorder the distribution is symmetric exponential-like.

The theoretical results that were developed can be applied to a wide range of

physical systtms. In particular, the linear AC and nonlinear DC quantum conduc

tance through atomic wires can he efficiently computed numerically using our results.

Conventionally, one requires the Green's function to compute the emittance and the

nonlinear conductance. Computing the Green's function for an atomic system with

open boundary conditions can be a very tedious process [72], but computing scatter

ing wave function can often be much easier. Using our results. One ooly needs the

wave function to compute the linear AC and nonlinear DC conductances. Therefore,

for example, the second order transport coefficients can now be studied for the first

time for atomic and molecular systems using our theoreticai formalism. This has

not been carried out 50 far, but will he investigated in the near future. As for our

exact solution for the N-delta impurity Green's function and wave function, they can

be used to explore the quantum transport in different regimes, one very interesting

situation is the the "mixed" regime [108] where both diffusive and ballistic trans

port characteristics play an important role. Moreover, using the same technique we

can obtain exact solutions for the N-magnetic impurity Green's function and wave

function (see appendices), which can then he applied to study the 50 called Giant

Magneto Resistance (GMR) phenomenon [109, 110, 111, 112] .

Our numerical work on transfer matrices was aimed at simulating the experiment



reported in [1]. In this experiment the magneto conductance of a 2D wire with two

antidots, with adjustable diameters, was measured. The aim of the measurements

was to understand the classical and the quantum transport features in such ballistic

systems using a magnetic field. The transfer matrix technique was developed to make

full quantum scattering calculations in the presence of a magnetic field. We found

that the experimentally observed resonance behavior in the magneto conductance was

reproduced and understood. In particular, our numerical results exhibit the classical

focusing effect that causes the X-peak to appear. The spacing of the peaks due ta

AB oscillations were, approximately, in quantitative agreement with the experimental

data. Our results confirmed the physical picture which arises from the experimental

measurements, and our work provided the first full quantum mechanical approach

which gave good quantitative agreement with the experimental results. Finally, we

point out that our numerical transfer matrix technique is very useCul in its own right:

it can be applied to a variety of 2D quantum coherent conductors in the presence

of magnetic field. Especially, it can be efficiently applied to systems with irregu

lar potentiallandscape, and with the more realistic soft device confinement. There

have been extensive experimental studies on transport of 2D electrons in semicon

ductor systems in both low and high magnetic fields [106, 113, 114], our technique is

applicable to simulate these measurements.
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• Appendices

A.l N-Magnetic Impurity Green's Function

In this appendix we derive an expression for the N-nlagnetic impurity Green's function

using Dyson's equation. In matrix notation Dyson's equation is given by

The N-magnetic impurity potential is,

N

V(N) (r) = L Ûid(r - ri)
i=l

where

(A.2)

•

The angles (Ji and <Pi, with the magnitudes l'Yil, completely characterize the magnetic

impurity vectors ~Îi. The free Green's function has the general form,

Once we have integrated out the aIl delta functions Dyson's equation b~comes an

algebraic equation,

N
â(N}(r, r') = G(O}(r, r') + L â(O}(r, ri)ÛiG(N}(rù r') . (A.3)

i=l

Using this equation we generate a system of N matrix equations with N unknowns

{G(N) (ri, r')}:

N
â(N)(rl' r') = G(O}(rl, r') + L â(O)(rl, rdÛiG(N) (ri, r')

i=l

113
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N
beN) (r2' r') = ê(O) (r2, r') + ~ ê(O) (r2' ri)Ûiê(N) (ri, r') •

N

ê(N) (rN, r') = ê(O) (rN, r') + L ê(O) (rN, ri)Ûiê(N)(rï, r')
i=1

In matrix notation we find:

ê(N) (rI, r')

ê(N) (r2, r')

êCN)(rN, r')

6(0) (ri, r')

6(0) (r2, r')

êCO) (rN, r')

+

iiu ÛI r,12Û2

ii2I ÛI r,22Û2

ê(N) (rI, r')

ê;(N) (r2, r')

where 1Jij = êCO)(Ti, Tj). The solution to this system of equation is given by

êCN)(rl, r')

êCN) (r2' r')

Nlu M12

k/21 M22

ê(O)(ri' r')

6(0) (r2, r')

(A.4)

ê(N)(rN' r') MNI MN2 MNN ê(O) (rN, r')

where the matrices M ij are defined by,

-1

NIl 1 Nfl2 MlN Î - 1JUÛI -1J12Û2 -1JINÛN

Nf2I M22 1\12N -1J2IÛI Î - iJ22Û2 -r,2NUN

(A.5)

Putting aIl these results together we find,

N

ê(N)(r, r') = êCO)(r, r') + L êCO)(r, ri)ÛiMùê(O) (rj, r') .
iJ=1

(A.6) •



This is an exact expression for the N-magnetic impurity Green's function for any free

Green 's function 0(0) (r, r').•
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A.2 N-magnetic impurity Wave function

In this appendix we use the Lippmann-Schwinger equation ta derive an expression for

the N-magnetic impurity scattering wave function. The strategy that was used in the

previous appendi:< will once again he employed. The Lippmann-Schwinger equation

is given by

Integrating out the delta functions we find,

N

tÎ;(N)(r) = "p(O)(r) + L ê(O)(r, rj)Ûj"p(N) (rj)
j=l

(A.ï)

(A.8)

Using the above equation we generate N matrix equ3tions for the N unknowns

tÎ;(N) (rj):
N

;jJ(N)(rj) = ~(O)(rj) + L ê(O) (rj, ri)Ûi7ÎJ(N) (ri)
i=l

(A..9)

Following the same mathematical procedure that was used in the previous appendix,

we easily find,
N

~(N) (rj) = L Nlji"p(N) (ri)
i=l

Finally, putting this result i~to Eq. (A.8) we find,

N
~(N)(r) = ~(O)(r) + L ê(O)(r, rdÛiMij~(O)(rj)

iJ=l

(A. 10)

(A.11)

•

This is an exact expression for the N-magnetic impurity wave function for any free

wave function "p(0) (r) .
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