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ABSTRACT

In this research the dynamics of a non-reactive and a reactive gas bubble under
various pressure fields are studied. Comprehensive mathematical models have been
developed to simulate the dynamic behavior of different gas bubbles. On the basis of
these models several features of thermo-fluid mechanical behavior of gas bubbles are
then discussed and their applications for the metals processing operations are described.
The mathematical models form a set of coupled, highly nonlinear and stiff differential
equations, which have been solved numerically by a modified Gear method.

The first part of this study is concerned with the transient dynamic behavior of a
hydrogen gas bubble in a solidifying aluminium-3.4 wt pct copper alloy melt under
various ultrasonic pressure fields. During the process of bubble collapse, the melt
pressure surrounding the bubble is seen to increase very rapidly. The varations of
pressure and supercooling in the melt surrounding the bubble can cause bulk
crystallization. If the pressure in the vicinity of the dendrites exceeds a threshold value,
dendrite fracturing takes place. Dendrite fragments become nuclei during metal
crystallization in an ultrasonic field, which lead to the refined crystalline structure of the
metal. The results show that adjacent to the bubble surface, the peak pressure generated in
the melt is in the order of several hundreds to thousands atmospheres depending on the
initial bubble size, pressure of undisturbed melt and the ultrasonic’s specifications.
Moreover, the results, which are obtained for pre-resonant, resonant and post-resonant
frequencies, show that the ultrasonic frequencies, beyond the resonance frequency of the
bubble, do not have any useful effect on the meit.

The second part of this study is related to the dynamics of a stable bubble under
various ultrasonic pressure fields. When the imposed pressure field is beyond a threshold
value, dissolved gas in the liquid flows into the gas bubbles by rectified diffusion. In this
case, the bubbles grow sufficiently to float to the surface due to the hydrodynamic
buoyancy force. The threshold pressure and the effects of bubble size and ultrasonic

specifications on rectified diffusion of the dissolved air in water with different initial



concentrations are studied. The results show that the air bubble grows and the time-
averaged bubble volume reaches several times of its initial value when the ultrasonic
pressure amplitude is more than the threshold pressure. Also, the numerical results show
that, above the threshold pressure a hydrogen bubble grows and the bubble volume
increases several times its initial value by rectified diffusion of dissolved hydrogen
present in a molten aluminium alloy.

In order to validate the mathematical model of bubble growth by rectified
diffusion, an aqueous physical modelling has been developed. The experimental-setup
was designed to carry out a physical study concerning the bubble growth under an
ultrasonic pressure field. The results of aqueous physical modelling for bubble growth are
compared with the results of the mathematical model, which show a reasonable
agreement between the experiments and the predictions.

The final part of this study consists of the complex dynamic behavior of a reactive
gas bubble immersed in a nonreactive liquid under various liquid impulse pressures.
Numerical investigations are conducted into the collapse and explosion of an isolated
oxygen-hydrogen bubble immersed in water and in glycerin. The results show that, if the
imposed pressure field is strong enough, the bubble is seen to explode. The maximum gas
temperature and gas pressure that the bubble attains depends directly upon the initial
oxygen-hydrogen content. Also, in the liquid with high viscosity, the amplitude of bubbie
radius oscillation clearly decreases due to high level of viscous damping. A comparison
of the numerical results with the available experimental data shows a good agreement

between the mathematical model and the experiment.



RESUME

Dans ce projet de recherche, la dynamique de bulles de gaz réactif et non réactif
sous des champs de pression variables a été étudiée. Des modéles mathématiques ont été
développés pour simuler le comportement dynamique des différentes bulles de gaz. Sur la
base de ces modeéles, plusieurs caractéristiques du comportement thermo-fluide
meécanique des bulles de gaz sont discutés et leurs applications durant les opérations de
production sont décrites. Les modéles mathématiques forment une série couplée,
hautement non-linéaire et inflexible d° équations différentielles, qui ont été résolus
numériquement par une méthode modifiée de Gear.

La premiére partie de cette étude concemne le comportement dynamique en régime
transitoire de bulles d'hydrogéne lors de la solidification d'un alliage d’aluminium
contenant 3.4% poids de cuivre sous différents champs de pression ultrasonique. Durant
le processus d'effondrement, la pression dans la région liquide entourant la bulle
augmente rapidement. Les variations de pressions ainsi que le refroidissement super
rapide du liquide autour de la bulle peut causer une cristallisation de masse. Si la pression
a I'interface des dendrites excéde la valeur seuil, les dendrites fissurent. Les fragments de
dendrites deviennent des sites de germination pour la cristallisation dans un champ
ultrasonique, ce qui méne a un raffinement de la structure cristalline du métal. Les
résultats montrent que la pression maximale générée dans le bain, adjacent a la surface de
la bulle, est de I'ordre de centaines & milliers d'atmosphéres, dépendant de la dimension
initiale des bulles, pression du bain non troublé et des spécifications ultrasoniques. De
plus, les résultats obtenus avant, apres et a les fréquences des résonances montrent que les
fréquences ultrasoniques au dessus de la fréquence de résonance des bulles n’ont aucuns
effect utiles sur le bain.

La deuxiéme partie de cette étude ayant rapport a la dynamique d"une bulle stable
sous différents champs de pression ultrasonique. Lorsque que le champ de pression
imposé est en dessus du seuil, le gaz dissous dans le liquide s'écoule dans les bulles de
gaz par diffusion rectifiée. Dans ce cas, les bulles grossissent et deviennent capables de

flotter 2 la surface due aux forces hydrodynamiques de flottabilité. Le seuil de pression et
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I'effet de la dimension des bulles et des spécifications ultrasoniques sur la diffusion
rectifiée de I'air dissous dans I'eau sous différentes concentrations initiales été étudi€. Les
résultats montrent que les bulles d’air grossissent et que le volume moyen de celle ci en
fonction du temps des bulles atteint plusieurs fois sa valeur initiale lorsque 1'amplitude de
la pression ultrasonique est supérieure a la pression seuil. De plus, les résultats
numériques montrent qu'en dessus de la pression seuil, une bulle d’hydrogéne grossit et
que le volume de la bulle augmente plusieurs fois sa valeur initiale par diffusion rectifiée
d’hydrogéne dissout présent dans un alliage d aluminium fondu.

Dans le but de valider le modéle mathématique du grossissement de bulles par
diffusion rectifiée, une modélisation physique en milieu aqueuse a été développée.
L'appareillage expérimental a été con¢u pour pouvoir produire une €tude physique
concernant le grossissement des bulles sous des champs de pression ultrasonique. Le
résultat de la modélisation physique en milieu aqueuse pour le grossissement des bulles
est comparable avec les résultats des modéles mathématiques, ce qui démontre une
similarité raisonnable entre les expériences et les prédictions.

La demniére partie de cette étude consistait a |'analyse du comportement
dynamique complexe d'une bulle de gaz réactive immergé dans un liquide non-réactif
sous différentes impulsions de pression de liquide. Des investigations numeériques ont été
conduites lors de I'effondrement et I'explosion de bulles isolées d’un mélange d oxygéne
et hydrogéne immergées dans 1'eau et la glycérine. Les résultats démontrent que si la
pression imposée est assez puissante, la bulle explose. La température du gaz maximale
ainsi que la pression atteinte dans la bulle dépends directement de la quantité initiale
d’oxygéne et d'hydrogéne. De plus, dans le liquide & viscosité plus élevée, I'amplitude de
I’atténuation de 1 oscillation du rayon des bulles diminue clairement dii au haut niveau de
viscosité. La comparaison des résultats numériques avec les données expérimentales

disponibles démontre un bon accord entre le modéle mathématique et les expériences.
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Chapter 1

INTRODUCTION

1.1. Bubble Dynamics

1.1.1 Non-reactive Bubble Dynamics

A gas bubble in liquid, when subjected to a time varying (usually acoustic)
pressure field, undergoes a radial motion of the interface of gas and liquid. The response
of the bubble to the external pressure field has been called bubble dynamics. Generally,
two distinct types of bubble interface motion are possible: in the first category are
transient bubbles that exist for less than one, or at most a few, acoustic cycles, whereas in
the second category are stable bubbles that oscillate for many periods of the applied
sound field. The basic problem of bubble dynamics is to determine the pressure,
temperature and velocity fields in the two-fluid medium, together with the motion of the
bubble wall when subjected to an external time-dependent pressure field. The problem to
be solved represents a complex nonlinear process in which two phases are coupled
through a moving boundary while mass and heat transfer may take place across the
interface of gas and liquid. If the bubble contains a reactive gas mixture, the heat
generation by chemical reactions complicates the bubble dynamics. The latter is taken
into consideration through an additional term in the gas energy balance equation. Bubble
dynamics is a relatively very fast process and is governed by complex physico-chemical
phenomena. Due to having significant different time and length scales in the bubble
dynamics problem, it would be a difficult task indeed to solve the complete set of

governing equations for the variables of interest within and surrounding the bubble.
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The word ‘Cavitation’ refers to the formation and the subsequent dynamic life of
bubbles in liquids. These bubbles can be either gas or vapor filled and form in a wide
variety of liquids under a wide range of conditions. Cavitation occurs in water, organic
solvents, biological fluids, liquid helium, and molten metals, as well as many other fluids.
It may be hydrodynamic, thermal, or acoustic in origin. This study solely deals with the
acoustic cavitation. Acoustic cavitation can affect a liquid through two possible avenues.
The first is the bubble itself. The liquid is disrupted by the inhomogeneous presence of
the bubble. The second avenue through which cavitation affects a fluid is bubble
dynamics. The bubble’s interior and the liquid immediately surrounding the bubble are
regions that undergo continual change. The bubble’s diameter continually changes; the
gas pressure within the bubble and the liquid pressure surrounding the bubble fluctuate
rapidly; concentration of dissolved gas in the liquid at the bubble interface varies and the
dissolved gas in the liquid diffuses into and out of the bubble during each cycle. The
bubble radiates acoustic energy as it oscillates; thermal and viscous damping hinder the
bubble oscillations. Each of these processes manifests itself differently, but they all lead
to changes in the properties of the liquid surrounding the bubble.

Two important characteristics of acoustic cavitation should be mentioned here.
The first is that generally it is a nonlinear process in that the change in the radius of the
bubble is not proportional to the sound pressure. The second is that the high
compressibility of the gas bubbles means that potential energy is obtained from the sound
waves when the bubbles expand and that kinetic energy is concentrated when the bubbles
collapse. In transient cavitation, this transformation of a low energy density sound wave
into a high energy density collapsing bubble occurs since the motion is nonlinear.
Because it concentrates the energy into very small volumes it can produce very high
pressures and temperatures, which can erode or break solids, initiate chemical reactions
and produce luminescence.

When a gas bubble is caused to pulsate by an acoustic pressure field, gas will
diffuse in and out of the bubble during each cycle. There exists a threshold for which
more gas diffuses in than out over an acoustic cycle and the stable gas bubble is caused to

grow as a result of the sound field. This concept is called ‘rectified diffusion’ and the



words are an adequate description of the phenomenon. It is a slow process, however,
requiring thousands of cycles. In degassing, the process of rectified diffusion is continued
for some 20,000 times per second or above, therefore large gas bubbles can be formed

rapidly which can float to the surface due to the buoyancy force.

1.1.2 Reactive Bubble Dynamics

A bubble is called a reactive gas bubble when the bubble contains a reactive gas
mixture. In addition to treating the common features of bubble dynamics, the chemical
reaction of the gas mixture has to be taken into account in the mathematical formulation.
A reactive gas bubble, when subjected to an impulse pressure of sufficient strength, will
undergo compression. The temperature of the gas mixture in the bubble increases and
can reach the ignition point of the reactant. When the ignition point is reached the bubble
gas explodes. The pressure and the temperature of the gas within the bubble increase very

rapidly.
1.2 Practical Motivations

Many phenomena can arise from bubble dynamics. It can be useful and it can also
be a nuisance. Two of the useful applications of bubble dynamics are: their effects on a
solidifying melt under an ultrasonic pressure field (grain refinement) and ultrasonic
degassing. Both of these aspects of dynamics of transient and stable bubbles will be
studied in detail in the present work. Bubble dynamics can also cause harmful and
destructive effects, as in sonar propagation, in oil drilling and in erosion of ship
propellers.

In the case of reactive bubbles, the shock waves generated by an explosion inside
the water (underwater explosion) are used in various metal processing applications, such
as forming, welding, consolidation and compaction of powders and punching holes in
pipe walls. Usually, this phenomenon takes place in a suitable pressure vessel, which is

designed to focus shock waves for practical metal processing usage. Another motivation
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to study the reactive bubble phenomenon is the fact that in nuclear power plant accidents,
oxygen-hydrogen bubbles, which may develop in abnormally high-temperature water, can

constitute an explosion hazard.

1.3 Objectives

The main objective of the present study is to develop comprehensive
mathematical models, which will enable us to predict qualitatively and quantitatively the
behavior of a gas bubble and associated dynamics and transport processes in a solidifying
melt and in a gassy liquid (melt) when they are subjected to an ultrasonic pressure field.
Theoretical as well as aqueous experimental studies are carried out in order to elucidate
the physical aspects of these complex physico-chemical phenomena. Specifically, the
following objectives are followed:

(1)  To simulate numerically the effects of bubble dynamics on a solidifying melt
under various ultrasonic pressure fields in order to achieve grain refinement.
2) To model uitrasonic degassing of a gassy liquid through the study of the

dynamic behavior of a single gas bubble. .

3) To validate the mathematical model of bubble growth by rectified diffusion
through an aqueous physical modelling.

@ To develop a mathematical model for the complex dynamic behavior of a
spherical reactive bubble in a nonreactive liquid and compare the theoretical

results with the available experimental measurements.

1.4 Thesis Outline

This study is presented in the eight subsequent chapters. The second chapter
involves a review of some important aspects of bubble dynamics related to this study. A
brief literature review as well as explanations in terms of mathematical formulations and

physical understanding of the phenomena are provided.
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Chapter 3 is concemned with the models development and the numerical solution
methods. A detailed description about the nonlinear and stiff specifications of the
governing equations is presented and the numerical schemes employed to solve them are
introduced.

In Chapter 4, the effect of a hydrogen bubble in a solidifying Al-Cu alloy melt
under various ultrasonic pressure fields is studied. The work is carried out to demonstrate
the possibility of the dynamic grain refinement of aluminium alloys by utilizing externally
applied high-powered ultrasonic waves and the hydrogen bubbles present in the melt. In
this regard, a mathematical model is developed to simulate the dynamic behavior of a
hydrogen gas bubble present in the mushy region of a solidifying aluminium-3.4 wt pct
copper alloy melt under various applied ultrasonic pressure fields.

Chapter 5 deals with the mathematical modelling of bubble growth by rectified
diffusion in gassy liquids under various ultrasonic pressure fields. The threshold pressure
and the effects of ultrasonic specifications on rectified diffusion of the dissolved air in
water as well as dissolved hydrogen in a molten aluminium alloy with different initial
concentrations are studied.

In chapter 6, a brief review of the basic theory of ultrasound, and uitrasonic
technology is first provided. Then, an aqueous experimental investigation is carried out to
study bubble growth by rectified diffusion under an ultrasonic pressure field. The
experimental results of aqueous physical modelling for bubble growth are compared to
the results of the mathematical model which is already presented in Chapter 5.

Chapter 7 presents a numerical study of the complex dynamic behavior of a
reactive bubble in a non-reactive liquid. In this study, numerical investigations are
conducted into the collapse and explosion of an isolated oxygen-hydrogen bubble
immersed in water and in glycerin. The mathematical model of the bubble’s radial
motion is based on the modified Rayleigh-Plesset equation of the bubble dynamics. The
exothermicity of the bubble’s gas content is varied by changing the mole fraction of the
mixture of stoichiometric oxygen-hydrogen with the inert gas, argon, as a diluent. The

numerical results are compared with the experimental data.



. Chapter 8 provides a summary of the important findings made, contributions to

knowledge and some suggestions and recommendations for future work.
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Chapter 2

A REVIEW OF SOME IMPORTANT ASPECTS
OF BUBBLE DYNAMICS

2.1 General Equations of Bubble Dynamics

Consider a spherical bubble in an infinite domain of liquid. Every parameter then
depends on one space variable, r, the distance from the bubble center and, t, time. We
now have a hydrodynamic problem of a moving spherical bubble wall separating gas
and/or vapor from a liquid.

This can be solved to find the pressure, velocity and temperature at any point in.
the gas or liquid when the bubble is excited by a time-varying pressure field, by applying
the laws of conservation of mass, momentum and energy for both gas and liquid. We
also need a set of equations to express the physical laws like the equation of state for the
gas and liquid, gas diffusion equation in liquid as well as time-dependent boundary
conditions.

The equation of state for the gas is the perfect gas law and the equation of state for
liquid is constant density while the liquid is assumed to be incompressible. If this
assumption is not valid, a more complicated equation of state involving compressibility
of the liquid has to be used.

The task of solving this set of nonlinear and coupled differential equations with a

fast moving boundary is very complex. In its generality, the problem is only amenable to



numerical calculations. It can only be carried out analytically for small-amplitude motion

in which the equations can be linearized.

2.2 Rayleigh-Plesset Equation

In modelling bubble dynamics problems, for the sake of generality, it is
occasionally assumed that a gas bubble contains some small quantity of vapor. Although
in most practical cases, the amount of vapor inside the gas bubble is negligible. At 20 °C
the vapor pressure of water is about 0.02 bars, which is very small compared with the
partial pressure of the gas.

We now consider a spherical gas bubble of radius, R(t) (where t is time), in an
infinite domain of liquid whose temperature and pressure far from the bubble are T. and
P.(t), respectively ( Figure 2.1 ). The temperature, T., is assumed to be a simple constant.
On the other hand, the pressure, P.(t), is assumed to be a known (and perhaps controlled)
input which regulates the growth or collapse of the bubble. Though compressibility of the
liquid can be important in the context of bubble collapse, in the present study it will be
assumed that the liquid density, p,, is a constant. Furthermore, the dynamic viscosity, {,,
is assumed constant and uniform. It is also assumed that the gas temperature, T,(t), and
the gas pressure, Pg(t) within the bubble are uniform that is independent of the radial
position. These assumptions may not be justified in all the circumstances studied here and
will be identified and relaxed as the analysis proceeds.

Conservation of mass for the liquid requires that:

F(t) @)

U(l', t) =T
)

where F(t) is related to R(t)-by a kinematic boundary condition at the bubble surface. In
the idealized case of zero mass transport across this interface, it is clear that u(R.t) =

dR/dt and hence:
&R

” 2.2)

F(t)=R



But this is often a good approximation even when mass transport is occurring at the
interface.

Assuming a Newtonian liquid, the Navier-Stokes equation for motion in spherical
coordinate is:

18p du du [13 , du 2uJ
+Uu—~V,| 55—

=_-+u =)=
p, Oor 4t or r"or Or r

After substituting for u from u = F(t) / r* in the above equation, one gets:
18p 1dF 2F

———a 2.4)

p,or r*dt r’
Note that the viscous terms vanish; indeed, the only viscous contribution to the Rayleigh-
Plesset comes from the dynamic boundary condition at the bubble surface. Equation (2.4)
can be integrated to give:

P-P, 1dF 1F® <
p, rdt 2r 23)

after application of the condition P - P_asr —» «.

To complete this part of the analysis, a dynamic boundary condition on the bubble
surface must be constructed. For this purpose consider a control volume consisting of a
small, infinitely thin lamina containing a segment of interface ( Figure 2.2 ). The net force

on this lamina in the radially outward direction per unit area is:

force 20
= +P —— 2.6
area (Tﬂ)sz g R ( )
Ju
where (To)eeg =—P5(1)+2 H1‘4 2.7)
or R

By using Equations (2.1), (2.2), (2.6) and (2.7), the force per unit area is:

force 4u, dR 20
=P, -P(t) - ——-— 2.8
wea s(t) R & R (2.8)




where P;(t) =P[r =R(1),t] is the pressure exerted by the liquid on the “wet” side of the
bubble surface. In the absence of mass transport across the boundary this force must be
zero. Therefore we have:

P,() =P, - —L—-= (2.9)

Applying Equations (2.9) and (2.2) in Equation (2.5) yields the generalized Rayleigh-

Plesset equation for the bubble dynamics:

—_ 2.10
Y (2.10)

—+
P, e 2

dt

P(t)-P(t) _d°R 3(&)2 4v,dR 20
=R L
R dt

Given P(t) this represents an equation that can be solved to find R(t) provided P.(t) is
known. In the absence of the surface tension and viscous terms, it was first derived and
used by Rayleigh (1917).

In order to obtain P,(t) values accurately, one is required to solve the coupled
mass, momentum and energy equations for the gas combined with the appropriate
boundary conditions which will include a thermal boundary layer at the bubble wall.

In the absence of any significant thermal effects, it might be assumed that the

behavior of the gas in the bubble is polytropic so that:

2c \f R, n
Pg(t)=(Po +I—{:)(R(t)) (2.11)

where n is approximately constant. Clearly 1 =1 implies a constant bubble temperature

(isothermal) and ; =y would model adiabatic behavior where v is ratio of specific heats.

With the above assumptions the Rayleigh-Plesset equation becomes:

3n 2 - 2
i PD +_2£ (&) _ Pm(t) = Rd ]2'{_{_3(3) +i\ig§+£ (2.12)
mU° R, AR P, d 2{dt) R dt pR
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Equation (2.12) without the viscous term was first derived and used by Notingk and
Neppiras (1950,1951); the viscous term was investigated first by Poritsky (1952). He
integrated this equation by a combined graphical and numerical procedure for cases both
with and without surface tension. He found the rate of growth and collapse to be strongly
affected by both viscosity and surface tension. Viscosity tends to decrease both the
growth rate and collapse rate, whereas surface tension tends to decrease the growth rate
but increase the collapse rate. During the growth phase, surface tension decreases the
expansion rate in the early stages but not in the later stages. Similarly, the later stages of
collapse show the greatest effect of surface tension.

Equation (2.12) can be readily integrated numerically to find R(t) given the input
P.(t). Initial conditions are also required. Analytic solutions to Equation (2.12) are
limited to the case of a sustained step function change in P,. With a constant value of P,
it is integrated by multiplying through out by 2R’R and forming time derivatives. Only
the viscous term cannot be integrated in this way, and what follows is confined to the
inviscid case.

When a sound field exists in the liquid, the bubble expands and contracts in
response to the pressure sound field. For acoustic excitation, P, (t)=P, - P, sin2=ft
can be used in Equation (2-12) where P,, P4 and f are the pressure of undisturbed liquid,
amplitude and frequency of the driving pressure, respectively.

A spherical bubble in a liquid can be viewed as a nonlinear oscillator that can be
set into radial oscillations by the sound field. For very small pressure amplitudes the
response is linear. At larger oscillation amplitudes this oscillation must become nonlinear
because the bubble can be expanded from its equilibrium radius to arbitrary large radius
values, and also can be compressed down to near zero radius. Bubbles of different radius

at rest (R, ) respond differently to the same sound field.



2.3 Apfel’s Derivation for a Gas Bubble

An interesting and simple derivation of Eq. (2.10), which is worth mentioning
here, has been provided by Apfel (1981). The Kinetic energy of the mass of liquid

surrounding a pulsating spherical bubble of radius R is given by 1/2M_;R?, where
R =dR /dtand M. is the effective mass * felt’ by the bubble, given by three times the
mass of liquid that would fill the bubble; that is M =3p,(4n/3)R’. This kinetic

energy minus the energy dissipation at the bubble surface due to the viscous effects is

equal to the work done by the surface tension &, gas pressure P, and the far field pressure

in the liquid P, .

1 22 f 4p, dR 2m f 20 2 -
FM,R? - Rj (—TI]MR dR = ! P, ~P, -~ 4nR’dR  (2.13)

By differentiating the above equation with respect to R and dividing by 4R’ p, one gets:

. 3. 4p, R P,-P
RR+R?+ R 20 £ -0 (2.14)
2 p R pR P

. . N
inertial terms  effectof surface  pressure
viscous tension effect

stressat  effect
surface

where P, is given by Eq. (2.11).

2.4 Nucleation and Cavitation Inception

The theoretical tensile strength of water at room temperature is about 1000 atm.
This might suggest that acoustically induced cavitation would require a sound pressure
amplitude of at least 1000 atm. However, cavitation is observed with pressure amplitude
of the order of 1 atm, implying the presence of pre-existing nuclei within the liquid. The

most obvious nucleus to consider is a small free spherical bubble in the liquid. Such a



free small bubble, however, will diffuse into the liquid. Epstein and Plesset (1950)
estimate that a 10 um radius air bubble in air-saturated water will take about 7s to
dissolve.

The fact that a micro-bubble should dissolve within seconds leaves unresolved the
question of why cavitation nuclei persist indefinitely. In the literature, various
stabilization mechanisms have been proposed and still are the object of investigations.
One possible explanation is that the interface of a gas bubble is immobilized by the
effects of surface contamination. Another is an “organic skin” that gives the free surface
of the bubble sufficient elasticity to withstand a high pressure. The most favored is that
put forward by Harvey et al. (1944) which suppose that a pocket of gas is trapped in a
small-angled crevice or crack in the container surface or in an imperfectly wetted particle.
Ordinary tap water may contain thousands of solid particles per cubic centimeter of
liquid. By careful filtration most of these can be removed, allowing the highly purified
water to withstand negative pressures of about 200 atm as reported by Greensan and
Tschiegg (1967).

2.5 Acoustic Cavitation

On this subject Neppiras (1980) provided a critical review with many references.
Prosperetti (1984) has given an excellent account on this subject. In acoustic cavitation a
sound wave imposes a sinusoidally varying pressure on the steady ambient pressure. The
effect on the bubbles (cavities) may be rather gentle or quite violent. These two types of
bubble behavior are called stable and transient cavitation. Although we imply that these
two situations follow with increasing the acoustic pressure amplitude, it is important to
note that other factors are important in determining the kind of response a bubble will
deliver for a given oscillating pressure field. One of the factors in this regard is the
relationship between the frequency, f, of the imposed oscillations and the resonance
frequency, f;, of the bubble. Another important factor in determining whether the
response is stable or transient is the relationship between the pressure oscillation

amplitude, P,, and the pressure of undisturbed liquid, P, .
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2.6 Stable Cavitation

Stable bubbles oscillate, often non-linearly, around some equilibrium size. They
may continue oscillating for many cycles of the sound pressure ( Figure 2.3 ). In a stable
bubble, the time-scale is typically so long that mass-diffusion of gas as well as thermal
diffusion, can occur, resulting in significant long-term effects. Stable bubbles may evolve
into transients in the course of time. This is significant in gassy liquids like water where

stable gas bubble can grow by a second-order effect called “ rectified diffusion”.
2.6.1 Damping of Stable Bubbles

There are three ways in which the bubble oscillations can be damped:
1. Viscosity acts at the bubble surface as a brake, whether the bubble is expanding or
contracting. Consequently, more energy is required to compress the bubble than is

regained in the subsequent expansion.

2. Sound radiation damping occurs because an oscillating bubble radiates spherical

waves thereby expending some of its energy.

3. Thermal damping, thermal conduction from the gas within the bubble to the liquid
will tend to lower any increase in the temperature and pressure in the bubble. Thermal
damping is the most important source of damping in most cases. Theoretical discussions

on thermal damping of stable bubbles can be found in Plesset and Hsieh (1960) and Hsieh
(1965).

Chapman and Plesset (1971) have presented a useful summary of the three
primary contributions to the damping of bubble oscillations, namely that due to liquid
viscosity, that due to liquid compressibility through acoustic radiation, and that due to

thermal conductivity. It is particularly convenient to represent the three components of
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damping as three additive contributions to an effective liquid viscosity, pg, which can

then be employed in the Rayleigh-Plesset equation in place of the actual liquid viscosity:
Mg =M +Hr+U, (2.15)
where the acoustic viscosity, u, , is given by:

_ B mzRos

Ha ac, (2.16)

where C, is the velocity of sound in the liquid. The thermal viscosity, p., is given by:

(P, +2c/Ry)
;=2 o °* Im{r} (2.17)
. 3y
where A is: A= T — (2.18)
1-3(y - Dy (l) coth(iJ -1
4 X
and . 1=a,/oR,’ (2.19)

The relative magnitudes of the three components of damping (or effective
viscosity) can be quite different for different bubble sizes. This is illustrated by the data
for air bubbles in water at 20°C and atmospheric pressure, which is taken from Chapman
and Plesset (1971) and is reproduced as Figure 2.4. Note that the viscous component
dominates for very small bubbles, the thermal component is dominant for most bubbles of

practical interest, and the acoustic component only dominates for large bubbles.
2.7 Nonlinear Effects

Plesset and Prosperetti (1977) in their study of the subject have shown that single
bubbles exhibit a number of interesting and important nonlinear phenomena. When a

liquid that will inevitably contain microbubbles is irradiated with a sound wave of a given



frequency, @, the nonlinear response results in harmonic dispersion, which not only
produces harmonics with frequencies that are integer multiples of ® (superharmonics)
but, more unusually, subharmonics with frequencies less than @ of the form ‘me/n’
where m and n are integers. Both the superharmonics and subharmonics become more
prominent as the amplitude of excitation is increased. The production of subharmonics
was first observed experimentally by Esche (1952), and possible origins of this nonlinear
effect were explored in detail by Noltingk and Neppiras (1950,1951), Flynn (1964),
Borotnikova and Soloukin (1964), and Neppiras (1969), among others. Neppiras (1969)
also surmised that subharmonic resonance could evolve into transient cavitation. These
analytical and numerical investigations use numerical solutions of the Rayleigh-Plesset
equation to explore the nonlinear characteristics of a single bubble excited by an
oscillating pressure with a single frequency, . As might be expected, different kinds of
responses occur depending on whether o is greater or less than the resonance frequency
of the bubble, @ _.

Lauterborn (1976) examined numerical solutions for a large number of different
excitation frequencies and was able to construct frequency response curves of the kind
shown in Figure 2.5. In this figure the numbers above the peaks indicate the order of the
resonance, m/n, which means m cycles of the oscillations take place during n cycles of the
driving pressure field. Notice the progressive development of the peak responses at
subharmonic frequencies as the amplitude of the excitation is increased. Nonlinear effects
not only create these subharmonic peaks but also cause the resonant peaks ( both the main
resonance near ® /@, = 1 and the subharmonic resonances) to be skewed to the left,
creating the discontinuities indicated by the dashed vertical lines. These correspond to
bifurcations or sudden transitions between two valid solutions, one with a much larger
amplitude than the other. Prosperetti (1977) has provided a theoretical analysis of these
transitions. More review of the subject can be found in Brennen (1995) and Feng and Leal
(1997).
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2.8 Bjerknes Forces

A different nonlinear effect is the force experienced by a bubble in an acoustic
field due to the finite wavelength of the sound waves. In an acoustic field where a
pressure gradient VP exists, a body of volume V is acted on by a force -V(t) V P(x,t).

Since V and P vary with time, it is necessary to consider a time-averaged (vector) force:
(F) =-(VOVPx.1)) (2.20)

where bracket ( ) indicates the average over a cycle. Consider now a bubble located at

position x in a standing wave pressure field of the form:

P(x,t) =P, + 2P, sinkx coso t (2.21)

where k is the wave number (2r/ 1) of the sound field and P, is the pressure amplitude
of the incident wave. Gravity will be ignored, enabling us to treat P, as a constant.
Further, it will be assumed that 2P, <<P,, so that a bubble of radius R (well removed
from the resonant radius) will oscillate linearly with R = R + &, cos(w t + a), where the
phase angle o allows for the fact that the oscillation of the radius may not be in phase
with the oscillation of the pressure, and where the amplitude of oscillation £, is much

less than R,.The volume V =4/3nR’ of the bubble may now be written as:

V= VOI:I + %cos (ot+ a)] (2.22)

[+

where V, =4/3 nR,’ is the initial volume of the bubble.
Now for the bubbles driven with © <, (implying R, > R ), the sound pressure

and volume are out of phase ( the volume is largest when the pressure is least ) and so
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a = 7 in Equation (2.22). For bubbles driven with ® >, (implying R, < R,), the sound

pressure and volume are in phase and a = 0 in Eq. (2.22).
In this study, the bubble resonance size, R, is obtained by inserting the frequency of the
applied sound field into the resonance frequency equation. The resonance frequency

equation for small amplitude oscillations is given by:

, Tin
- 2
®, = 1 _ [3},(1)0 +2_°)_:2__4“_'2] (2.23)
R.p R, R, pR
Substituting Equations (2.21) and (2.22) into Equation (2.20) leads to:
F, =-2 P, kV,|cos kx|<[l - ’;{icosm t)(cosco t)> (2.24)
0
leading to
3P, kC,V |coskx
F =—2 QOROI | for bubbles with R, >R, (2.25)
0
and to
F =M|coskx| for bubbles with R, <R, (2.26)

x
]

Comparing Equations (2.25) and (2.26) with the sin kx variation of the amplitude of the
pressure field [Eq. (2.21)] leads to the conclusion that large bubbles (compared to those
of the resonant size) will experience a force directed from a pressure antinode towards a
pressure node. Conversely, small bubbles will experience a force directed from a pressure
node towards a pressure antinode. This also means that the direction of the radiation force
depends on the relative frequency ®/w,. Thus, a relatively small bubble whose
resonance frequency o, is greater than the driving frequency @ will be driven from a
pressure node to a pressure antinode. Bubbles of subresonant sizes are important
biologically. Since they move to maxima of P they are set into vibration of high

amplitude, and cause alterations in cells and other structures in these regions. Blake



(1949a) was probably the first person to give a satisfactory account of the origin of this
force. His explanation draws on principles first formulated by Bjerknes in 1906, and the
force is often called the primary Bjerknes force.

2.9 Rectified Mass Diffusion

A different nonlinear effect arises under appropriate circumstances involving the
mass transfer of dissolved gas between the liquid and the bubble. This important
nonlinear diffusion effect occurs in the presence of an acoustic field and is known as
“rectified mass diffusion” (Blake 1949b). The threshold pressure from which the tiny gas
bubbles, oscillating around some equilibrium radius, start growing by rectified diffusion
is appropriately called the threshold for rectified diffusion. Analytical models of this
phenomenon were first put forward by Hsieh and Plesset (1961) and Eller and Flynn
(1965), and reviews of the subject can be found in Crum (1980, 1984) and Young (1989).

A complete mathematical description of the general diffusion problem for a gas
bubble in a liquid and in the presence of an acoustic field would require an equation of
motion, diffusion equation, and heat-conduction equations, in both the liquid and the
bubble, with appropriate boundary conditions at the bubble wall. The problem is further
complicated by the fact that these equations are coupled and the boundary conditions at
the bubble wall must be applied at the moving boundary. The equation of motion is
nonlinear and is coupled with the diffusion equation in two ways. First, and most
important, the diffusion equation depends on the equation of motion through the
convective term u.VC. Second, the equation of motion depends on the diffusion through

P,, which is a function of n, the amount of gas in the bubble.

As has been customary, the problem is simplified in different ways. A relatively
simple application of these equations is to solve the static diffusion problem for a bubble
in the absence of an applied sound field. This problem was treated by Epstein and Plesset

( 1950 ) in the following manner. A gas bubble is initially at rest in an infinite solution.
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As gas begins to diffuse either into or out of the bubble, the bubble wall and the
surrounding liquid will move. However, this motion will be very slow and may be
neglected by omitting the convective term in the diffusion equation, which is then written
as 9C/at=DV*C. The diffusion equation no longer depends on the equation of motion
and may now be solved independently.

The first solution of the dynamic diffusion problem was obtained by Blake
(1949b). He avoided the nonlinearities of the equation of motion by assuming very small
sinusoidal oscillations of the bubble. To avoid the problem of the moving boundary in the
diffusion equation, he assumed the bubble wall to be fixed in space, but allowed the
concentration of gas at the bubble wall and the area of the wall to vary as they would if
the bubble wall were moving.

Hsieh and Plesset (1961) obtained a solution that does include the shell effect.
The problem of the moving boundary was solved by expanding the boundary condition in
a Taylor series about the equilibrium position of the bubble wall. One of the limitations of
their solution is that it is restricted to small sinusoidal oscillations.

Eller and Flyyn (1965) divided the general problem into an equation for the
motion of the bubble wall and a diffusion equation for the concentration of the gas
dissolved in the liquid. They pointed out that the convective term in the diffusion
equation should not be neglected. They assumed that the number of moles of gas in the
bubble was approximately constant during a single oscillation as well as invoked
isothermal or polytropic relation for the gas pressure within the bubble. The equation of

motion for the gas bubble is given by:

. 3., 1 20 R, )™ :
RR+5R +— (P°+R_) I- R ~P, cosot+p,Rj0 bRy =0 2.27)
! 0

where R and R, are the instantaneous and initial values of the bubble radius. Also, n is
the polytropic exponent of the gas contained within the bubble, o the small amplitude

resonance frequency and ‘b’ a damping term applied to the bubble pulsations. Notice that
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the damping term in Eq. (2.27) will be accurate when the bubble is driven near the
resonance frequency.
The diffusion equation for the gas in the liquid is governed by Fick’s law of mass

transfer and is given by:

aa—'f +uwVC=DV*C (2.28)

where C is the concentration of dissolved gas in the liquid, u is the velocity of the liquid
at a point and D is the mass diffusion constant. They found an approximate solution of
the diffusion equation which was solved by the method of successive approximations.
The expression for the flux of gas at the bubble wall was obtained and integrated over the
surface of the bubble to give the rate of change in the number of moles of gas in the

bubble.

12
(R/R,)*
dn_, e (R r [{RB)) 1y 229
dt R, nDt

where C, is the saturation concentration of the gas in the liquid in moles per unit volume.
The pointed brackets in equation (2.29) imply time average, t is the time and H is defined
by:

<(R/ R,)"(P, /Po)>
(R/R)")

C.
H=—L-
CO

where C, is the concentration of dissolved gas in the liquid far from the bubble.
The values of R/ R, to be used in the above equations are obtained by assuming

a series solution of Eq. (2.27) in the form:

2
—R—=1+a 7Y cos(ot+8)+a’K L% F o .31
RO PO PO

where



0

al = (E’FRQiJ[(mZ ~m,2)2 +{w co,b)zjlu2 (2.32)

_ Gn+1-B*)/4+(c /4R P} 6n+2-4/37)

K 2:\‘\
1+ (26 /R P, )1 -1/3m) (2.33)
&= m“(ﬁ”—'b—ZJ (2.34)
0" -0,
p@°Ry’
d 2 T —— --\
an 3P, (2.35)

In order to use the above set of equations, one needs to know the damping of the
bubble pulsations when the bubble is driven near resonance. The expression given below
is due to Eller (1970) which expresses the total damping constant b in terms of the
contributions due to thermal, viscous and radiation effects:

b=b,+b, +b, (2.36)

where b, is given by:

T 3
b, = 3(y—1)| = x(smh,(-l-smx)ﬂ ..(coshx. cosx). 237
%~ (coshy —cosy) +3(y —1)x(sinhy - siny)
" 12
and x=R0[£]
aﬂ
dou,
b =——L 2.38
= 3np, (2.38)
b, =B & (2.39)
3nPk,C, ‘

2.9.1 Degassing Process

Consider a gas bubble in a gassy liquid. It will grow in the acoustic field by the
process of rectified diffusion until it becomes large enough to separate out by the
hydrodynamic buoyancy force. This illustrates the degassing process, a well-known effect

of stable cavitation. It is used industrially in such applications as degassing metal melts,

2-16



optical glass, resins and photographic emulsions. It is clear that degassing occurs within a

restricted range of R, and P, and its rate can be maximized by choosing appropriate

values of P, and frequency for the expected bubble size distribution.

2.10 Transient Cavitation

The pioneer studies of Noltingk and Neppiras (1950, 1951) showed that a small
change in either Py, f or R, could sometimes have a dramatic effect on the character of the
radius-time curve calculated from Eq. (2.12). For instance, it was found that for small
bubbles R, << R, the change in radius occurred as P, was increased above P, This
change is characterized by a growth of the bubble to at least double, and often many times
its original size. In other words, the bubble expands to a radius much greater than the
maximum radius reached during stable cavitation, followed by a rapid and violent
collapse during which the speed of the bubble wall reaches at least the speed of sound in
the liquid ( Fig. 2.6 ). This is called a transient bubble. Transient bubbles generally exist
for less than one, or at most a few, acoustic cycles. They often disintegrate into a mass of
smaller bubbles. For a transient bubble, it is usual to assume that there is no time for any
mass-flow by diffusion of gas into or out of the bubble. On collapse, transient bubbles
produce very high pressures and temperatures, which cause such phenomena as erosion,
sonoluminescence, sonochemical and biological effects. In the ultrasonic treatment of a

solidifying melt, transient bubbles can cause breakdown of the dendrite arms.

2.10.1 Transient Cavitation Thresholds

The generation of transient bubbles for small increases in the acoustic pressure
amplitude of a stable bubble is unexpected, but Flynn (1964,1975) explains how this
transformation comes about by writing the acceleration of the bubble interface R in
terms of two acceleration functions:

R = IF+PF (2.40)



where

3R?
L 2.41)
and
1 20 (R, " 20
PF = p—R-I:(PO + R—o](?) —? —(Po + P(t)):l (2.42)

We have ignored P(t) = —P, sinot, which is small at the start of the collapse. Flynn calls
IF the inertial function because it represents the part of the acceleration due to spherical
contraction of the liquid. It is always an inward acceleration except at the maximum
radius R when it vanishes. As R decreases in magnitude fromR_, , IF rapidly

increases in magnitude and is, of course, negative. IF is a function of both R and R and
hence for each R-t curve there corresponds a different IF function as a function of R.

On the other hand, Flynn calls PF the pressure function because it is a function
only of R and hence is the same for all R-t curves for a given bubble in a specific liquid.
It is a net pressure at the interface divided by the radius. At the maximum radiusR ,,, , the
function PF is a small inward acceleration but eventually becomes a large outward
acceleration that ultimately arrests the inward motion of the bubble. At some radius Ry
betweenR _, and R, the function PF will have a minimum. The essential characteristic
of PF is that this function changes very little for all radii between the maximum
radius R, and the position Ry of the minimum of PF. Over this range of R, the pressure
at the interface is almost constant and the bubble behaves as a Rayleigh cavity (bubble)
between R . and R.

Whether a bubble becomes a transient bubble on collapse depends on the
competition between IF and PF. If R, is large enough, a bubble will accelerate to a high
inward speed under the influence of IF before PF takes effect and decelerates it. Flynn
(1964) states that it is possible to show if IF lies below PF at Ry, then the bubble will be
transformed into a transient bubble. The condition for this transformation is that the



relative maximum radius R, /R, on expansion should be greater than a minimum value

7.4 3
(Rl{w‘ J = ( :P‘° ) (2.43)
0 0

where P, is the initial pressure of the gas in the bubble and P, is the ambient pressure in

given by:

the liquid.
2.11 Liquid Compressibility Effects

For rapid bubble collapse, the compressibility of the liquid must be taken into
account and the simplest way to account for the compressibility effect is to consider a
constant stiffness ( i.e. constant sound velocity C, ). This is called *“acoustic

approximation” and can be used as the equation of state dP/8p=C*. It limits the

analysis to cases where the bubble wall velocity R is always small compared to C and
introduce a loss of energy by sound radiation. By using this approximation, Flynn (1964)

showed that the compressible form of bubble dynamics equation is:

s 3pa_ 1 R _R\dP(®) _ '
RR+2R —pl|:PB(t)+Cl(l C.J n Pm] (2.44)

where Py (1) = P[r = R(1),t].

Herring (1941) included a better description of the storage of energy through

compression of the liquid as well as sound radiation, and obtained:

2R).. 3 4RY,, 1 R R )dP,(v) -
-— 2|{1-— |R*=—|P —|l-—|—2—=-P 2.4
e G e LR (o e B
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Gilmore(1952) was able to account for the formation of shock waves when the
bubble wall velocity approaches the velocity of sound using Kirkwood-Bethe (1942)
approximation, which states that the waves are propagated with a velocity equal to the

sum of the sound velocity and the fluid velocity. This leads to:

R).. 3 R )., R R(. R)dH
I-— RR+3|1-— R = 1+— [H+—|1-— |== 2.46
Gt e e i G ()

where H is the difference in the liquid enthalpy between the bubble wall and infinity.
Both H and C, are functions of the motion, thus giving a complex equation but a very
accurate one. More details of the subject can be found in Knapp (1979).

Trilling (1952) presented another equation for the collapse and rebound of a gas
bubble in a slightly compressible liquid based on the acoustic approximation. He assumed

that the velocity potential ¢ would satisfy approximately the acoustic equation for

diverging spherical waves:

0 5
{a-l-C,a—r-)rd):O (2.47)

This expresses the condition that the quantity r¢ is propagated through the liquid with
sonic velocity C,. If gravity and viscosity are neglected, the equation of motion for the
radial liquid flow is:

Ou o ou, 1P (2.48)

ot or o} ar

which integrates to:

2 P(r)
_0¢ uw | LA (2.482)
ot 2 J p

where P(r) is the local pressure in the liquid, P, is the pressure at infinity in the liquid,

and ¢ and u equal zero at infinity.
Combining Eq. (2.47) with Eq. (2.48a) one gets:
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2 P(r)
ru—a—u-!-ia—P-i-C‘u +C, J' fi——-i—C,ruau C,roP _
ot p, Ot 2

—+———=0 (2.49)
2P ar p, or
The pressure and velocity at the bubble wall will satisfy the equations:
£ - é.g + Ua_P.
dt ot or 550
du_ou  du =
dt a8t or

flow can be written as:

where the capital letters refer to bubble wall values. The conservation of mass in radial

1 0P u
=+ s—+—+—=0
pC~ ot pC~ or

(2.51)
where C,2 =dp/dp. Solving the four simultaneous equations (2-48), (2.50) and (2.51)

for four partial derivatives of P and u at the bubble wall and using them in Eq. (2.49) one

gets the motion of the liquid at the bubble wall as:

2 3 4
rU(,_2U), 3ppfy 4U) R APIU U UG (4B (559
il "¢ )2 i¢,)Tpudt(c crTer)

In the last term, variations in p from its mean value are proportional to(U/C,)*. If we
neglect higher-order terms and use dR = U dt, the approximate result is:

duf, 2U). 3 4U) RU
RUSS|1-Z= 1+ 202 1- =
w2l

P, -P
3C, P C,

]

(2.53)
(o

dp
—+
dR
or
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Keller and Kolodner (1956) took into account the compressibility of water in the
case of an underwater explosion when a bubble of gas is formed at high pressure. This
bubble expands rapidly until its pressure falls to that of the surrounding water, but inertia
causes it to overexpand. After it ceases to expand, the pressure of the surrounding water
compresses it again to a high pressure. This cycle of expansion and contraction continues
with oscillations of diminishing amplitude. If the water is treated as incompressible,
theory yields undamped oscillations of constant period. However, by treating the water as
slightly cbmpressible, Keller and Koloner predicted damped oscillations with diminishing
period. Comparison of predicted and observed radius-time curves showed good
agreement.

Prosperetti (1993) introduced a general Keller-Herring equation as the equation of

spherical bubble dynamics in a slightly compressible liquid:

[l+(7\,+1)cg] RR+%[1—(R+%)£j| R? =|:1+(A—I)ER-+—§—C%] P -P (2.55)
I I

where P must be regarded as the pressure at the position occupied by the bubble center in
the absence of the bubble. For A = 0, this equation reduces to the form given by Keller in

1956, while with A =1, it becomes the equation suggested by Herring in 1941.
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Nomenclature

b
C

o

C
C
C

D

-

f
f;
k

P
P

(=]

P
R.R,
"

8

R,

r

damping constant
concentration of dissolves gas in liquid

saturation concentration of dissolves gas in liquid
concentration of dissolves gas in liquid far from bubble
sound speed of liquid

mass diffusion constant

frequency

resonance frequency

wave number

pressure

static pressure in liquid

far field pressure in liquid

bubble radius and initial bubble radius
bubble wall velocity and bubble wall acceleration

distance from bubble center
temperature

time

bubbie volume

density of gas

density of liquid

thermal diffusion constant for the gas
phase angle

wave length

polytropic index of gas
ratio of specific heats of gas
surface tension of liquid

kinematic and dynamic viscosity of liquid

w

Kg/m
Kg/m’
Kg/m

(™)

m/s
l/s
1/s

Pa
Pa

Pa

m/s, m/s’

m%/s

N/m
mZ/s, (N -s)/m2
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O

Subscripts

angular velocity

resonance angular velocity

normal stress

gas
liquid

initial state

1/s
1/s
Pa
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Chapter 3

MODEL DEVELOPMENT AND NUMERICAL
SOLUTION METHODS

3.1 Introduction

Bubble dynamics is a very fast moving boundary phenomenon and variables
change rapidly with time. In transient bubble dynamics, the pressure waves generated in
the liquid adjacent to the bubble surface can be in the order of several hundreds to
thousands atmospheres. For accurate computations of the high pressure waves generated
due to violent collapse of the bubble, a special numerical procedure is required to capture
the high pressure waves. On the other hand, in reactive bubble dynamics, the reactive gas
mixture explodes when it reaches the ignition point of the gas mixture. The chemical
reactions that occur in this case are very fast and the time scale for exothermic reactions
are very small. Therefore, due to having significantly diﬁ'eren‘t time and length scales in
the mathematical models, the problems are stiff. Stiffness is one of the most difficult
aspects of these types of problems and often controls the method of solution of the
modeled differential equations.

The task of solving comprehensive mathematical models in bubble dynamics is
very complex. A comprehensive mathematical model, which is free of any unrealistic
assumptions and restrictions, is only amenable to the specific numerical methods. Almost
invariably a numerical solution method is required for this class of problems and
solutions can only be carried out analytically for small-amplitude motions in which the

equations can be linearized.



This chapter first gives an overview of the models development and then
describes the numerical methods used for solving the comprehensive mathematical
models which are presented in the following chapters. The solution method is based on
using a FORTRAN subroutine, LSODE, the Livermore Solver for Ordinary Differential
Equations (Hindmarch, 1980 and 1981). In the computational solution, the main program
and the associated subroutines that define the ODE system, the analytical Jacobian matrix

and other necessary subprograms required by the main program have been written.

3.2 Models Development

Comprehensive mathematical models have been developed to simulate the
dynamic behavior of different gas bubbles. The mass, momentum and energy equations
have been taken into account for both gas and liquid regions. In the case of reactive gas,
the chemical reaction has been modeled by using a two-step Arrhenius-type reaction
model. The physical phenomena occurring at the interface have been considered
including heat and mass transfer. The mathematical models include the constitutive
equations of state for the gas and the medium surrounding the bubble. The equation of
state for the gas is perfect gas law. The liquid surrounding the bubble is assumed to be
slightly compressible with constant sound speed. The mathematical models form a set of
coupled, highly nonlinear and stff differential equations. The equation for bubble
dynamics is an ordinary differential equation while the other equations concerning heat
and mass transfer are partial differential equations. In order to convert the PDEs into a
system of stiff ODEs, the partial differential equations are discretized only in space
direction using a semi-discrete method. Generally, this technique is based on the
Lagrangian solution method.

For the ease of numerical work, it is convenient to have a fixed rather than a
moving boundary of the bubble. Therefore, the model equations are transformed using an
appropriate variable [£ =r/R(t)] to freeze the moving boundary of the bubble. Also, in
order to decrease the number of parameters and minimize computational errors, the

governing equations are non-dimensionalized. The transformed and non-dimensional



form of the mathematical model equations, which constitute an initial value problem,

have been solved numerically.
3.3 Numerical Solution Methods

3.3.1 Inmitial Value Problem

An initial value problem in the form of a system of first-order ordinary differential
equation is shown in Equation (3.1). Second or higher order equations can almost always

be reduced to systems of first order equations.

(3.1)

where y, y., ¥, and f are column vectors withN(=1)components and & is the

independent variable, time. In component form, equation (3.1) may be written as:

dyi(g) _
~E =L@y @) LN (G.2)

¥i(§o) =¥, = Given

The above set of equations form what is called the initial value problem. In this problem,

it is required to find the solution function y at one or more values of £ in a prescribed
integration interval [&,,8,,,], when the initial value of y, y , at £ =&, is given. The
endpoint, &_,, may not be known in advance as, for example, when asymptotic values of

y are required as £ — .



In order to solve this class of problems, it is normally assumed that the problem is
well posed and possesses a solution that is unique in the interval of interest. Solution

existence and uniqueness are guaranteed if, in the region of interest, f is defined and
continuous and for any two vectorsyandy" in that region there exists a positive constant

L such that (Shampine, 1975 and Lambert, 1973):
Il £(y.8)-£(y" ) " <L|y-y’| G.3)

which is known as a Lipschitz condition. Here || | denotes a vector norm, and the

constant L is known as a Lipschitz constant of f with respecttoy.

3.3.2 Stiff Problems

Initial value, stiff ODE’s arise in many fields, such as chemical kinetics, electric
network analysis and any system that displays boundary layer-type behavior. A system
will have boundary layer behavior when there is a small length scale that is important in a
small region and a longer scale that is important in the remainder of the system. Many
problems arising from parabolic differential equations. When finite differenced, these
tum out to be equivalent to solving a stiff system of ordinary differential equations
(Ferziger, 1981). Physically, stiffness occurs when the problem contains widely disparate
time or length scales. Shampine and Gear (1979) discuss some fundamental issues related
to stiffness and how it arises. An approximate description of a stiff ODE system is that it
contains both very rapidly and very slowly decaying terms. Also, a characteristic of such a
system is that the NxN Jacobian matrix J (= 9f / dy), with element J;; defined as:

J;=¢f /oy;, ij=1,.,N (G4
has eigenvalues {ki} with real parts that are predominantly negative and also vary widely

in magnitude. A quantitative measure of stiffness is usually given by the stiffness ratio



max[—Re(A;)]/ min[—-Re(A,)]. A problem with stiffness ratio of order 1000 would be
considered stiff.

The difficulty with stiff problems is the prohibitive amounts of computer time
required for their solution by classical ODE solution methods, such as the popular explicit
Runge-Kutta and Adams methods. The reason for prohibitive computer time
requirements is the excessively small step sizes that these methods must use to satisfy
stability requirements. Because of the approximate nature of the solutions generated by
numerical integration methods, errors are inevitably introduced at every step. For a
numerical method to be stable, errors introduced at any one step should not grow
unbounded as the calculation proceeds. To maintain numerical stability, classical ODE
solution methods must use small step sizes of order 1/ max[— Re(A,)] even after the
rapidly decaying components have decreased to negligible levels. Examples of the step
size pattern used by an explicit Runge-Kutta method in solving stiff ODE problems
arising in combustion chemistry are given by Radhakrishnan (1986). The size of the
integration interval for the evolution of the slowly varying components is of the order

1/ min[-Re(%,)]. Consequently, the number of steps required by classical methods to
solve the problem is of the order max[—Re(;)]/ min[—Re(A;)], which is very large for

stiff ODE’s and imply a lot of roundoff (computer related) errors.

3.3.3 Accuracy of the Method

Accuracy of a numerical method refers to the magnitude of the error introduced in
a single step or, more precisely, the local truncation or discretization error. The local
truncation error d, at & is the difference between the computed approximation and the
exact solution, with both starting the integration at the previous mesh point & _, and

using the exact solution y(,_, )as the initial value. The local truncation error on any step

is therefore the error incurred on that step under the assumption of no past errors.

The accuracy of a numerical method is usually measured by its order. A method is

said to be of order q if the local truncation error varies as hn"". More precisely, a



numerical method is of order q if there are quantites C and h,(>0) such that
(Shampine, 1975 and Dahlquist, 1974):

ld.|<Ch,*" forall 0<h, <h, (3.5)

h, =&, —&,., (3.6)
where h, is the spacing between any two mesh points and |d,| is an N-dimensional
column vector containing the absolute values of the d ,(i=1....,N). The coefficient
vector C may depend on the function defining the ODE and the total integration interval,
but it should be independent of the step size h,. Accuracy of a numerical method refers

to the smallness of the error introduced in a single step; stability refers to whether or not

this error grows in subsequent steps.
3.3.4 Linear Multistep Method (BDF)

The numerical method generates approximate solutions Y, to the stiff ordinary
differential equation at discrete points £_( n =1, 2, ...). Assuming that the approximate
solutions Y, _; have been computed at the mesh points §__; (j =1, 2, ...), this method
advances the solution to the current value & of the independent variable by using linear

multistep formula of the type:
Y,=y +h,Bf, =y +h,Bf(Y,) G.7)

where v, contains previously computed information and is given by:

q
v, =2aY,, (3.8)
=t

The term BDF “ backward differentiation formula” is used to describe the method

because equation (3.7), upon division by h B, and rearrangement of terms, can be



regarded as an approximation for y(§,) in terms of Y,.Y, ,...,Y, . (Byme et al,
1987).

The coefficients {a j}and {B j}are determined such that equations (3.7) will be
exact if the solution to equation (3.1) is a polynomial of degree q or less. Stability
characteristics limit q in equation (3.6) to 6. The coefficients {a J}and {B j}are given by

Gear (1971a) for q < 6 and reproduced in Table 3.1.

Table 3.1. Method Coefficients for Backward
Differentiation Formula given by Gear

q | 2 3 4 5 6
Bo 2 6 12 60 60
3 1 25 137 147
a, 4 18 18 300 360
3 1 25 137 147
a, 1 9 36 300 450
3 1 25 137 147
o, 2 16 200 400
1 25 137 147
o, 3 7 25
25 137 147
a, 12 7
137 147
% _1o
147

In equation (3.7) the subscript n has been attached to the step size h, indicating
that h_ is the step size to be attempted on the current step. When the step size is changed,
the data at the new spacing required to continue the integration are obtained by

interpolating from the data at the original spacing.



To satisfy accuracy requirements, the BDF method may have to use small step
sizes of the order 1/max[—Re(%;)] in regions where the most rapid exponentials are

active. However, outside these regions, which are usually small relative to the total

integration interval, larger step sizes may be used.
3.3.5 Corrector Iteration Method

If B, =0 in equation (3.7), the method is called explicit because it involves only
the known values {Xn_j}and {f n_j}, and equation (3.7) is easy to solve. If, however,
B, # 0, the method is called implicit and, in general, solution of equation (3.7) is
expensive. In equation (3.7), B, is positive for each q and because f is, in general,

nonlinear, some type of iterative procedure is needed to solve equation (3.7).
Nevertheless, implicit method is preferred because it is more stable, and hence can use
much larger step sizes, than explicit method and is also more accurate for the same order
and step size (Lambert, 1973 and Gear, 1971a). Explicit method is used as predictor,

which generates an initial guess for Y,. The implicit method corrects the initial guess
iteratively and provides a reasonable approximation to the solution of equation (3.7).

The predictor-corrector process for advancing the numerical solution to &,
therefore consists of first generating a predicted value, denoted by Y,'”, and then
correcting this initial estimate by iterating equation (3.7) to convergence. That is, starting
with the initial guess Y., approximations Y '™ (m = 1,2, ..,M) are generated by
Newton-Raphson iterations until the magnitude of the difference in two successive
approximations approaches zero within a specified accuracy. The quantity Y, ™ is the
approximation obtained on the mth iteration, the integer M is the number of iterations
required for convergence, and we accept Y™ as an approximation to the exact solution

y at &, and therefore denote it by Y, although, in general, it does not satisfy equation

(3.7) exactly.



At each iteration m the quantity h, Y '™, which is defined here, is computed

from Y, ™ by the relation:
Y ™=y +hB, Y™ (3.9)

Now, if Y. "™ converges as m — oo, the limit, that is, lim___ Y, "™, must be a solution of
equation (3.7) and ¥, converges to f,[=f(Y, )], the approximation to ¥%(&,)- Hence
h, Y™ is the mth estimate for h, f, and lim___h, Y "™ =h_ f_ . The predicted value
of h f,,denoted by h, Y., is also obtained from equation (3.9) (by setting m = 0). In
practice, we terminate the calculation sequence at a finite number M of iterations and
accept as an approximation to h_ f, the quantity h, ¥, =h Y ™!, which is obtained
from Y ™ by using equation (3.9). Note that Y, is only an approximation to f,
because Xn[M] does not, in general, satisfy equation (3.7) exactly. Moreover, because
Y.™ is defined to satisfy the solution method, in the sense of equation (3.9), it is not
necessarily equal to f(xn”‘”) . Therefore Y,™ and Y,"™ do not necessarily satisfy the
ODE, equation (3.1). Thus, in practice, to advance the solution, the method uses the
{X j}rather than the {_ﬁ J}as written in equation (3.7).

After convergence of the estimates Y,'™, we could define ¥, to be equal to
f(Xn[M]), sothat Y™ and Y ,™ satisfy the ODE exactly.

The predicted values at &, Xnm, is generated by a qgth-order explicit formula

=

similar to equation (3.7) (Gear, 1967 and 1969):

q -
anoi = aj Xn—j +hn Bl Xn-—l (3'10)



In the equation (3.10) Xn_j is the approximation to f, _;, computed on the step
[€,.,1:E,.,]. The coefficients {o.'} and {B,"} are selected such that equation (3.10) will

be exact if the solution to equation (3-1) is a polynomial of degree q or less.

The predictor step can be generalized as:
Y%=y @311

where y ° is given by the right-hand sides of equations (3.10).
To correct the initial estimat¢ given by equation (3.11), that is, to solve equation

(3.7), Newton-Raphson iteration method is used.

3.3.6 Newton-Raphson Iteration

Newton-Raphson (NR) iteration converges quadratically and can use much larger
step sizes than other iteration techniqves (Lapidus et al., 1971). Rapid improvement in the
accuracy of the estimates is especially important because the corrector is iterated to
convergence. The reason for iterafilg to convergence is to preserve the stability
characteristics of the corrector. If the correction process is terminated after a fixed

number of iterations, the stability characteristics of the corrector are lost, with disastrous

consequences for stiff problems.
To drive the NR iteration procedure, we rewrite equation (3.7) as:

R(Y,)=Y,~Vy, —hBof(¥,)}=0 (3.12)

so that solving equation (3.7) is equivalent to finding the zero of R. The quantity

B(Xn[ml) is the residual vector on the mth iteration; that is, it is the amount by which

Y, "™ fails to satisfy equation (3.7). T obtain the (m+1)th estimate, we expand equation
(3.12) in a Taylor series about th¢ mth estimate, neglect the second and higher

derivatives, and set B_(Xn[“"”) =0 because we seek a Y, '™} that produces this result.

3-10



Performing these operations and then rearranging terms give the following relation for the

NR iteration technique:

P(Y,"™ -Y,™)=-R(Y,™) =y, +hBf(Y,")-Y,™  (G.13)

where the NxN matrix P is given by:

6R
P=—=]- J 3.
aY hnBO (J 14)

In equation (3.14), I is the NxN identity matrix and J is the Jacobian matrix.
We now define the vector function g(y) by:

D
g(y) =h,f(y) + —‘é = (3.13)

0

Comparing equation (3.15) and (3.12) shows that:
R(Y) = -B,g(¥) (3.16)

so the equation (3.13) can be rewritten as follows:
Y ™=y g, Prg(Y, ™) (3.17)

The NR iteration procedure for h Y, is derived by subtracting equation (3.9)

from the (m+1) th estimate equation and then using equation (3.17). The result is:
h, Y, " =h ¥, +P gy, ™) (3.18)

This iteration will converge provided that the predicted value is sufficiently
accurate. The prediction method, equation (3.11), provides a sufficiently accurate initial
estimate that the corrector will converge after a few steps (typically three) (Lambert,

1973).



3.4 LSODE Subroutine

The LSODE has been designed for the numerical solution of a system of first-
order stiff ordinary differential equations (ODE’s) given the initial values. Second or
higher order equations can be reduced to systems of first order equations. It is based on,
and in many ways resembles, the subroutine Gear, which, in turn, is based on the code
DIFSUB, written by Gear (1971b). All three codes use integration methods that are based
on a constant step size but are implemented in a manner that allows for the step size to be
dynamically varied throughout the problem. When the step size is changed, the data at the
new spacing required to continue the integration are obtained by interpolating from the
data at the original spacing (Byrne et al., 1987).

The solution method replaces the ODE’s with difference equations and then

solves them step by step. Starting with the initial conditions at &,, approximations

Y.(=Y,,, i=1L...,N)to the exact solution y(§,) [=y,(§,), i =1,...,N]of the ODE’s

nt
are generated at the discrete mesh points £ (n=12,...), which are themselves

determined by the subroutine.

For stiff problems, LSODE uses the backward differentiation formula (BDF)
method (Gear, 1971a), which is among the most popular currently used methods for such
problems. The BDF method possesses the property of stiff stability and therefore does not
suffer from the stability step size constraint once the rapid components have decayed to
negligible levels. In this subroutine, BDF’s of order up to only 5 are used because of
additional stability considerations (Shampine et al., 1979). Throughout the integration the
step size is limited only by accuracy requirements imposed on the numerical solution.

The code starts the integration with a first-order method and, as the integration
proceeds, automatically adjusts the method order and the step size for optimal efficiency
while satisfying prescribed accuracy requirements. At each step the method employs a
predictor-corrector scheme, wherein an initial guess for the solution is first obtained and

then the guess is improved upon by iteration. That is, starting with an initial guess,



denoted by _\_f,,"”, successively improved estimates Xn["" (m=1,,...,M)are generated
until the iteration converges, that is, further iteration produces little or no change in the
solution. Here Xn["'] is the approximation computed on the mth iteration, and M is the
number of iterations required for convergence.

A standard explicit predictor formula, a Tylor series expansion method devised by
Nordsieck (1962), is used to generate the initial estimate for the solution. A modified
Newton-Raphson iteration technique is used for correcting this estimate.

3.4.1 Program Structure

The double-precision version of the code consists of the main core integration
subroutine, LSODE along with the 20 other subprograms and a block data module for
loading some variables. Table 3.2 lists the subprograms in the order they appear in the
code and briefly describes each subprogram. The structure of the computational solver is
illustrated in Figure 3.1, wherein a line connecting two subroutines indicates that the
lower subroutine is called by the upper one. LSODE has been designed to be used as a
single unit, and in normal circumstances the user needs to communicate with only a
single subroutine. In addition to input parameters whose values are required by the code,
the user can set values for several other parameters to control the solution methods and
the output from the code.

In Figure 3.1, F is a subroutine that computes the derivatives dy, /d& (i = 1,...,

N), wherey; is the ith component of y and N is the number of ODE’s. The subroutine
JAC is also a subroutine that computes the analytical Jacobian matrix J (=0f/dy),
where f=dy/d&. Both subroutines have been written and created in this study. All

input parameters and other necessary subprograms (like time-averaged calculations in
Chapter 5 and calculations of temperature-dependent thermodynamic parameters in

Chapter 7) required by the main program have been written.
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Table 3.2. Description of Subprograms used in LSODE

Subprogram Description
Main core integration subroutine. Checks legality of input,
sets work array pointers, initializes work arrays, computes

LSODE initial integration step size, manages solutions of ODE’s,
and return to calling subroutine with solution and errors.

INTDY Computes interpolated values of the specified derivative
of the dependent variables.

STODE Advances the solution of the ODE’s by one integration
step. Also, computes step size and method order to be
attempted on the next step.

CFODE Sets method coefficients for the solution and test constants
for local error test and step size and method order
selection.

PREPJ Computes the iteration matrix and either manages the
subprogram call for its LU-decomposition or computes its
inverse.

SOLSY Manages solution of linear system arising from chord
iteration.

EWSET Sets the error weight vector.

VNORM Computes weighted root-mean-square norm of a vector.

SRCOM Saves and restores contents of common blocks LS0001
and EHO001.

DIMACH Computes unit roundoff of the computer.
XERRWV Handles error messages.

XSETF Resets print control flag.

XSETUN Resets logical unit number for error messages.

DGEFA Performs LU-decomposition of a full matrix by Gaussian
elimination.

DGESL Solves a linear system of equations using a previously LU-
decomposed full matrix.

DGBFA Performs LU-decomposition of a banded matrix by
Gaussian elimination.

DGBSL Solves a linear system of equations using a previously LU-
decomposed banded matrix.

DAXPY Forms the sum of one vector and another times a constant.

DSCAL Scales a vector by a constant.

DDOT Computes dot product of two vectors.

IDAMAX

Identifies vector component of maximum absolute value.




 IDAMAX]

Fig. 3.1. Structure of the computational solver



INPUT DATA
ISTATE =1
TOUT = ¢,
TEND =¢,

[ 2
call
®_" LSODE

Write error
message

Call STODE to advance
solution by one integration
step and computes step size
Yes and method order for
the next step

A

No

Compute unit roundoff of computer, call F
for derivatives of initial conditions and
EWSET for error weight vector

Y

Compute step size for first step
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Too much
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for computer,
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error weight vector

Set :
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Write error
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number of steps
taken on this call

to LSODE
?

Passed
next output
station

No

Call INTDY to compute
——————— ] solution Y at TOUT

by interpolated values

Fig. 3.2. General flowchart of the computational solver



Chapter 4

EFFECT OF A HYDROGEN BUBBLE IN A SOLIDIFYING
AL-CU ALLOY MELT UNDER VARIOUS
ULTRASONIC PRESSURE FIELDS

4.1. Introduction

4.1.1 Hydrogen Bubble Formation

The soundness of any metal is largely determined by the behavior of gases
entrapped in the solidifying melt. A gas, which dissolves freely in the molten metal, is
much less soluble in the solidified state of the metal. Therefore, as the metal solidifies,
gas is usually forced out of solution. Once the dendrites have already formed during
solidification, the bubbles of expelled gas become trapped by the dendrite arms and are
prevented from rising to the surface. Most of the aluminium alloys and some of the
copper alloys are susceptible to in situ ‘gassing * of this type, caused mainly by hydrogen
dissolved from the furnace atmosphere. At the surface of the liquid aluminum there is a
lot of water vapor and new crucibles always contain some moisture in their pores. The
products of combustion of most fuels contain 10% to 20% water vapor. Natural gas will

produce up to 2m® of water vapor for each cubic meter of gas burned. Most hydrogen



,which finds its way into molten aluminium, comes from the dissociation of moisture
(water vapor).

In order for a spherical gas bubble to exist in a melt, its internal pressure, P;, must
be sufficient to overcome all of the external forces which can act to make it collapse.
These are:

e the atmospheric pressure acting on the melt surface Py ;

e the metallostatic head pressure Py ;

o the forces due to the surface tension of the melt 26 /R ;

While Py, and Py are not excessively large in most casting operations, the surface
tensions of metals are very high, and of course when a gas bubble begins to form, the
bubble radius is extremely small. Thus, the term 2o /R is very large, and high values of
the internal pressure are necessary to form a bubble. This internal pressure is made up of
two components:

1) Pg, the internal gas (hydrogen) pressure. This is significant only in the very last stages
of freezing when large amounts of hydrogen have accumulated in the pockets of
interdendritic liquid due to the decrease in solubility in the solid.

2) Ps, the éhrinkage pressure, best viewed as a tensile stress in the pockets of
interdendritic liquid due to the solidification shrinkage of this liquid, and the inability of
this shrinkage to be fed through the almost completely frozen dendrite mesh.

In order for a gas bubble to be stable and to grow, the following condition must
prevail:

P +P 2P, +P; +20/R
The above condition can prevail only in the final stages of the freezing process. Since
usually the combined sum of the gas pressure Pg and the shrinkage pressure P; is
insufficient to cause bubble nucleation, some foreign particles (nonwettable by the melt)

are necessary to assist in heterogeneous nucleation of the gas bubbles {see Gruzeleski

(1990)].
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4.1.2 Ultrasonic Treatment

Conventional methods of casting cannot provide the quality of metal needed for
some modern requirements to the properties of alloy products. Among the newer physical
methods for treating solidifying metals, one of the most promising is uitrasonic treatment
(UST) at high intensity [Eskin (1996)].

The high-powered ultrasonic treatment of a crystallizing aluminium alloy melt can
play an important role in obtaining fine crystals and a greater number of nuclei. The grain
refinement can be achieved by the effect of bubble dynamics when the solidifying melt is
subjected to an imposed sinusoidal pressure field of a particular frequency and amplitude.
In ultrasonic treatment of a solidifying melt, the high pressure waves generated due to
violent collapse of the entrapped bubbles create special conditions abetting the
crystallization process. The high pressure waves must be taken into account as one of the
factors responsible for breakdown of the dendrites. Dendrite fragments become nuclei
during metal crystallization process in an ultrasonic field, which lead to the refined
crystalline structure of the metal. Figures 4.1 and 4.2 show schematically how the fracture
of dendrite arms during ultrasonic treatment of a solidifying melt might take place.

The high pressure waves are also a source of local disruption of thermodynamic
equilibrium in the melt. The pressures generated in the melt can effect an upward shift of
the melting point. An increase in the pressure in the melt is analogous to an increase in
the supercooling and can give rise to an increase in the nucleation rate of the
crystallization centers. Grain multiplication mechanisms, such as the effect of ultrasonic
treatment of the melt, result in more equiaxed structures that are more isotropic and
composionally homogeneous. Grain refinement is best when the melt is cooled slowly

with the ultrasonic irradiation continuing until solidification is nearly complete.
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4.2. Literature Review

Metallurgical effects of ultrasonic waves were reviewed extensively by Hiedmann
(1954). Although, he explicitly pointed out the significant reduction in grain size as the
consequence of the ultrasonic treatment of a melt but he could not explain the real
mechanisms behind the observed effects. Nikolaichik (1958) introduced ultrasonic
irradiation to melts of both gray and white cast iron. Modifications were noted to both
structure and mechanical properties. Graphite formations were refined as well as the
uniformity in their distribution in the ultrasonically cast product was increased by up to
10 times. Mechanical properties reported included increase in U.T.S. from 150 MPa to
500 MPa, increase in ductility from 0% to 4% and increase in hardness from 1600 HB to
1800 HB. Hunt and Jackson (1966) demonstrated experimentally that nucleation of solid
occurs when a cavity collapses. They found extremely large pressure in the melt due to
the collapse of a cavity. The change of melting temperature with pressure was described
by the Clapeyron equation (1968) which provided the undercooling required for the
nucleation. Campbell (1981) published a review of the available knowledge in this field,
including various experimental results conceming the effects of vibration frequencies and
amplitudes of the imposed ultrasonic field.

The mechanism of metal solidification in an ultrasonic field and associated
structural changes in ingots was described qualitatively by Abramov (1987). He showed
that when a solidifying melt is treated by ultrasound, fine equiaxed grains are formed and
columnar structure are eliminated (Figure A.1). He reported that, in the case of ultrasonic
treatment of carbon steels, the grain size reduces from 200 microns to 25 microns. The
columnar structure is eliminated and fine equiaxed grains are formed with corresponding
increases (40%) in ductility and (30%) in mechanical strength of the metals (Table A.1).

Cherepanov and Popov (1986) studied numerically the influence of an alternating
external pressure on the evolution of a gas bubble in a melt. They pointed out that, if the
field amplitude and frequency are sufficiently high, equal (or close) to the bubble’s
natural frequency, sealing of the bubble might be possible, followed by emission of high

pressure waves near the bubble. Numerical analysis of the dynamics of variation of a
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bubble’s radius and the pressure in the melt near the bubble’s surface was carried out by
Sobolev (1985), (1989). He studied the behavior of a gas bubble under an applied
sinusoidal pressure for the resonant, pre-resonant, and post-resonant frequencies.

All of the above investigators, for the sake of simplification, have assumed that
the gas pressure inside the bubble changes adiabatically during the collapse and rebound
cycles. They altogether have neglected the energy equation for the gas inside the bubble
as well as the energy equation for the melt surrounding the bubble. By ignoring and
neglecting the energy equations in their assumptions these authors have made remarkable
errors in their numerical results. In order to predict the temperature field in the melt
surrounding the bubble it is necessary to incorporate the energy equation in the modeling
of bubble dynamics under the present situation. Also, the numerical methods used by
these authors ( i.e., Runge-Kutta ) were not appropriate schemes for solving their stiff set
of modeled equations. For the calculations of the temporal variations of the bubble radius
and the pressure in the melt during the rapid collapse and rebound of the gas bubble more
accurate and sensitive numerical schemes are necessary due to the fast motion of the
bubble surface.

Eskin (1994) carried out an investigation of solidification of light alloys in an
ultrasonic field. He observed that cavitation, especially when it is well developed in a
solidifying melt, has a considerable grain refining effect. He studied the influence of
cavitation treatment on the impurities, mainly oxide particles, in the aluminium alloy
melts. He pointed out that these particles, less than equivalent to 1.0 pm in size, being
non-wettable by the melt and do not take part in the solidification process. The cavitation
treatment of the melt generates high pressure pulses in the melt which effect physical
changes on these particles. The defects on oxide particle surfaces filled with the matrix
melt ensure the transformation of these non-controlled impurities to active solidification
nuclei. Guyoﬁ and Yavari (1994) performed experiments on the microstructural effects
of ultrasonic vibrations applied during planar flow casting of steels. They used sound
waves in the frequency range of tens of kilohertz to the melt crucible during the planar
flow casting of Fe-Cr steels. The 10 mm wide strips were obtained with and without the
application of the ultrasound. The strips obtained from the ultrasonic treatment of the



melt showed some modifications of texture and microstructure as well as destruction of

directional solidification pattern.

4.3. Mathematical Modelling

In order to mathematically tackle the effect of the ultrasonic pressure field on
bubble dynamics and the resulting affect on the crystallization of a solidifying Al-Cu
melt, a number of reasonable assumptions about the physical characteristics of the
phenomenon are made:

i) The bubble remains spherical and the bubble center is motionless.
ii) The melt surrounding the bubble is quasi-homogenous.
ili) The gas pressure within the bubble is uniform while the gas temperature and gas
density are non-uniform (the characteristic time of temperature equalization in the bubble
exceeds the time of pressure equalization).
iv) The bubble gas is thermally perfect but calorically imperfect.
The mathematical model, to be developed in the following section, is based on the
differential form of the following conservation equations:

1- Mass conservation equations for the gas and the melt surrounding the bubble.

2- Conservation of the momentum of the gas within the bubble and the melt.

3- Conservation of energy for the gas and the melt.
The differential form of the above equations in the spherical coordinates can be written as
follows:

Mass conservation equation for the gas:

op _
E-{»V.(pu) =0 (4.1)

Mass conservation equation for the melt:



1 4
;E-E(I'ZV) =0 (4'2)

The mushy zone of the solidifying melt surrounding the bubble was modeled based on the
concept of porous media formulation.
The momentum equation for the melt, in the spherical coordinates, can be written in the

following form [Sobolev (1985)]:

(r2 2V 2v] (4.3)
r 6r

ﬂ“_ év__10p [
3t ar p ér pm p[ 2t a

In this study, the momentum equation for the melt flow inside the mushy region formed
by the growing dendrites of the solidifying melt is based on the Brinkman-Darcy equation
for a flow in a porous media. The permeability of the porous media, as a function of
porosity (liquid fraction), was calculated using the well-known Carman-Kozney equation:

3

€

X 4

where Dy depends on the morphology of the porous media. Here it has been estimated

from the expression given by the experimental results of Diao et al. (1994):
D, =—~ 4.5)

where ‘d ’is assumed to be a constant and is in order of the secondary dendrite arm

spacing (SDAS).
From the continuity equation of the melt one can easily show that:
R’ dR
= 4.6
vE T dt (4.6)



The equation for the bubble radius is based on the modified Rayleigh-Plesset equation of
bubble dynamics:

3 ) = 2c 4].LR v -
3P R*+pRR=P -P, —i__R__;pIRR 4.7)

The energy equation for the gas within the bubble is given by:

Dh _Dp _
PS5 o= V(K VT (4.8)

The ideal gas equation of state is:
pﬁ‘l;l'g
M

P (4.9)

From equations (4.1), (4.8) and (4.9) one can obtain the following expressions for the

velocity field and gas pressure rate within the bubble.

1 0T, rP
=—({(y-DK—-— 4.10
u YP((1( ) Py 3) (4.10)
. 3 oT .
P==[(y -DK—% -yPR] (4.11)
R or

R

By using the above equations, the energy equation for the gas (4.8) can be written in the

following form:

oT -)K, oT p 0T, -NT, . -DT, K
g+((v K, 0T, P 0T, (=DL, G-VLK .. @.12)
ot YP ér 3yP" or YP yP 8

The energy equation for the solidifying melt can be written in the following form [Epstein
(1994)]:
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where ¢ is the liquid fraction (porosity) in the dendritic mushy region, C_ is weighted

average specific heat and K , is weighted average thermal conductivity.

Cn =£p, C,+(1~-8)p,C, (4.14)

K,=¢K +(1-g)K, (4.15)
Vv 2

¢=12—- (4.16)

4.3.1. Transformed and Non-dimensional Equations

For the numerical work, it is convenient to have a fixed rather than a moving
boundary of the bubble. Therefore, the governing equations are transformed ‘using a
suitable variable (£) that “ freezes ™ the moving boundary of the bubble. Also, in order to
decrease the number of parameters and minimize computational errors, the governing
equations are non-dimensionalized. The transformed and non-dimensional forms of the

mathematical model equations are:

—— =+ -~ R (417)
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4.3.2. Initial Conditions

The initial conditions for the set of equations are:

at t=0
R=

1, R=0, P=1, (T)=1, j=1t0150

(T); =1, j=1150

Initially, the bubble is at rest and is in equilibrium with the surrounding melt. In Table

equilibrium condition:

(420)
_r
R(t)
-___H
: C,.Tot,
T2
TO
e (4.21)
- C - o—

4.22)

4.1, input parameters for this study are shown. The following equations are used for the

W

Po =

POM E] PO Pu+2-o-. L}
RT, R

915.0K

(4.23)
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Table 4.1. Input Parameters for the Solidifying Meit

Parameter [unit] Al -3.4Pct Cu
Ks [ W/ (m-K)] 158.0

K [ W/ (m-K)] 100.0

Cs [J/(kgK)] 1150.0

C [ J(ke-K)] 1250.0

p. [kgm’] 2590.0

p, [kg/m’] 2410.0

g [(N-sym®] 1.5x 107
¢ [ N/m] 0914
SDAS [m] 90.0 x 10
£ 0.5

In this study, the pressure of the undisturbed melt, P, is taken as 1.1x 10° P.. For

the calculation of the characteristic bubble collapse time t,, the period of linearized

oscillation due to a small perturbation around P, with damping decrement & is used
[Sobolev (1989)].

2n a ,
to e —— , 0 =( 1 3 5-)0.5
0 P K,
- 26 (1—3y)
a,=3yP, -
R,
where 5 R.2 (4.24)
§=—tr(1+4=2)
PRy 4m

4.3.3. Boundary Conditions

The boundary conditions for equation (4.19) are:
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L for £=0 4.25
ac T0 foré (4.25)
Tl =T md =T, forg=
The boundary conditions for the equation (4.20) are:
1< < 134
;. =5g|c=. and T=T, for {=I (4.26)

T =1 for{=>134

In the calculations all physical properties were considered to be temperature dependent.
The dynamic pressure field in the melt surrounding the bubble can be obtained by
integrating the momentum equation for the melt [Eq. (4.3)] with respect to r and

combining it with the equation of continuity [Eq. (4.2)].

@27

52 25 4p?2 15
+2p,RR +p,R R pR'R +uR R
r

Pr.u =P, r 2rt mr

4.4. Numerical Solution Methods

The mathematical model forms a set of coupled, highly nonlinear and stiff
differential equations. In order to convert the PDEs into a system of ODEs, the partial
differential equations were discretized only in space direction using the second order
central difference scheme.

The number of grid points within the bubble and surrounding the bubble (inside

the liquid) were taken to be 150 and 50, respectively. Therefore, the non-dimensional
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inter-grid distance is 1/(M-1), where M is the number of equi-spaced grid points within
the bubble. In this case the number of non-linear, coupled ordinary differential equations,
which have been solved in each iteration, was 203. These equations are; equation for the
bubble radius, equation for the bubble wall velocity and equation for the gas pressure.
The gas pressure was considered uniform within the bubble. The gas temperature field
inside the bubble and the liquid temperature field surrounding the bubble constitute 150
and 50 equations, respectively. As described previously, due to having significantly
different time and length scales in the mathematical model, the problem is stiff.
Therefore, the modified Gear method, which is good for solving a set of nonlinear stiff
ordinary differential equations, was applied.

To verify the algorithm, numerical tests were performed to ensure that the
solutions were “grid independent”. Four different grid point numbers have been used and
are designated as case A, case B, case C and case D. In case A the number of grids within
the bubble and surrounding the bubble (inside the liquid) were taken to be 150 and 50,
respectively. While in case B the number of grids within the bubble and inside the liquid
were considered to be 200 and 100, respectively. In case C the number of grids within the
bubble and inside the liquid were assumed to be 450 and 150, respectively. In the latter
case the number of ordinary differential equations, which have been solved in each
iteration, was 603. In case D the number of grids within the bubble and inside the liquid
were assumed to be 20 and 10, respectively. Figures 4.3 to 4.6 show that the results from
the grid distribution for the case A are almost identical to those from cases B and C.
Therefore, for the sake of computational costs, the case A grid distribution is used for all

computations reported here.

4.5. Results and Discussion

During the ultrasonic treatment of the aluminium-3.4 wt pct copper alloy melt, the
pressure experienced by the gas bubble is P, =P, - P, Sin(2nft), where P, is the

pressure of undisturbed melt and P, and f are the ultrasonic pressure field’s amplitude

and frequency, respectively. In order to obtain the most effective use of the bubble



dynamics under the ultrasonic pressure field one needs to know how it is affected by the
key process variables namely, Ry ®, P, and Pp. In conformity with the bubble sizes in a
typical Al-Cu alloy melt, the initial diameter of hydrogen bubbles are assumed to be 5, 10
and 20 um and the pressure of the undisturbed melt and the ultrasonic pressure amplitude
are considered to be 0.11 and 0.5 MPa, respectively. In Figures 4.3-4.11, the initial
diameter of bubble is assumed to be 10 um. For Figures 4.3-4.6, the ultrasonic frequency
is chosen near the bubble’s resonant frequency (0.8 MHz) which was calculated from
Eqgs. 4.23. Figure 4.3 shows the history of bubble radius. The action of bubble dynamics
is based on the generation of a pressure wave due to the violent collapse of the gas
bubble. As shown in Figure 4.4, the peak pressure near the bubble surface is in the order
of several hundreds to thousands atmospheres. The high pressure pulse must be taken into
account, first, as one of the factors responsible for the breakdown of the dendrites and,
second, as a source of local disruption of thermodynamic equilibrium in the melt.
Dendrite fragments become nuclei during metal crystallization in an ultrasonic field,
which lead to the refined crystalline structure of the metal. The high pressure generated in
the melt can effect an upward shift of the melting point. An increase in pressure in the
melt is analogous to an increase in the supercooling and can give rise to an increase in the
nucleation rate of the crystallization centers. It is to be noted that under an alternative
pressure field, the temperature within the bubble rises (Figure 4.6) due to compression
work on the bubble and the assumption of ideal gas. The heat energy from the gas inside
the bubble is transformed into the melt, which tends to heat up the zone immediately
adjacent to the collapsing bubble. But as shown in Figure 4.5 due to thermal boundary
layer in the melt side of the bubble the amount of temperature increase is not remarkable,
compared to the increase of supercooling, to inhibit the nucleation of new crystallization
centers. Figure 4.6 shows that due to violent collapse of hydrogen bubble the gas
temperature at the bubble center reaches 2 maximum value of about 3050 K.

Figures 4.7 and 4.8 show the history of the melt pressure adjacent to the bubble
surface for ultrasonic frequencies of 100 kHz and 2 MHz, respectively. In the case of
ultrasonic frequency of 2 MHz the peak pressure reaches about 0.5 MPa, which is not an

effective value for the microstructural refinement. In fact, the gas bubble can not collapse
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deeply if the frequency of the ultrasonic wave is more than its resonant frequency. In
Figures 4.9 and 4.10 the history of bubble radius as well as the uitrasonic pressure cycles
of 100 kHz and 2 MHz are shown. Figure 4.10 shows that the gas bubble does not
collapse deeply but the bubble radius oscillates around its initial radius in a complex
manner. In other words, the bubble does not reach its minimum radius before the
ultrasonic pressure field has changed sufficiently to cause it to expand. This statement is
also true for the expansion cycles of the gas bubble.

In Figure 4.11 variations of the melt pressure with distance from the bubble
surface for different instants in time during the violent collapse of the bubble is shown. In
this figure the conditions correspond to those of Figure 4.4. It is to be noted that the
vertical axis is in a logarithmic scale and the distance from the bubble is non-
dimensionalized with the initial bubble radius. As shown, the high pressure generated in
the melt is in the range of 235 MPa at very close to the bubble surface and reduces rapidly
to 2.5 MPa at the non-dimensional distance of 20 at the time instant of 0.0036 msec.

Figures 4.12-4.17 are plotted to portray the effects of the initial bubble diameter
on bubble dynamics and the high pressure generated in the melt surrounding the bubble.
In Figures 4.12-4.14 the initial bubble diameter is chosen to be 5 um which is half of the
previous cases. Also, the ultrasonic frequency is assumed to be 800 kHz while the
resonant frequency of the bubble is 2170 kHz ( pre-resonant case). The pressure of the
undisturbed melt and the ultrasonic pressure amplitude are considered to be 0.11 and 0.5
MPa, respectively. As shown in Figures 4.13 and 4.14, the pressure generated in the melt
is in the range of 340 MPa at very near the bubble surface and drops down to 3.5 MPa at
the non-dimensional distance of 20 at the time instant of 0.001 ms.

In Figures 4.15-4.17, the initial bubble diameter is chosen to be 20 um. In Figures
4.15 and 4.16, the ultrasonic frequency is assumed to be 800 kHz while the resonant
frequency of the bubble is 332 kHz ( post-resonant case). Figure 4.15 shows that the gas
bubble does not collapse deeply and in this case the peak pressure reaches only about 0.8
MPa (see Figure 4.16). As shown in Figure 4.17, when the ultrasonic frequency is chosen
to be 100 kHz ( pre-resonant case), the peak pressure in the melt surrounding the bubble
reaches 18 MPa.
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In order to obtain the tensile strength of dendrite arms, a regression analysis was
used to establish the relationship between the tensile strength of the aluminium cooper
alloy and temperature ( see Figure 4.18 ). The data used in plotting the graph were
obtained from the Metals Handbook (1990). By using the equation shown in Figure 4.18,
the calculated tensile strength of dendrite arms is found to be around 1.027 MPa. The
dendrite arms are subjected to the impulsive pressure produced during the violent
collapse of the bubbles. Figures 4.11 and 4.14 demonstrate that even far from the bubble,

the impulsive pressure is sufficiently high to fracture the dendrite arms.

4.6. Concluding Remarks

In this study, a mathematical model, along with a numerical scheme, has been
developed to predict the dynamic behavior of a spherical hydrogen bubble in an
aluminjum-3.4 wt pct copper alloy melt under an ultrasonic pressure field. The radial
motion of the bubble is considercd to be governed by the modified Rayleigh-Plesset
bubble dynamics equation. The mushy zone surrounding the bubble was modeled based
on the transport equations for a porous medium. The thermal energy exchange between
the bubble and the surrounding melt is taken into account by solving both energy balance
equations for the gas within the bubble as well as the melt surrounding the bubble. In
order to demonstrate the concept of the model, the ultrasonic treatment of the aluminium-
3.4 pct copper alloy melt with hydrogen bubbles is studied for pre-resonant, resonant and
post-resonant frequencies. It is found that the ultrasonic frequencies beyond the resonance
frequency of bubbles do not have any useful effect on the melt. Also, the computed
dynamic pressure in the melt surrounding the hydrogen bubble demonstrates that even far
from the bubble surface, the melt pressure is sufficiently high and can cause the dendrite
arms to fracture. The action of bubble dynamics on the solidifying melt is based on the
generation of high pressure waves due to the violent collapse of the gas bubble. The high
pressure waves must be taken into account, first, as one of the factors responsible for
breakdown of the dendrites. Dendrite fragments become nuclei during metal
crystallization in an ultrasonic field, which can lead to the refined structure of the cast.



The high pressure waves are also a source of local disruption of thermodynamic
equilibrium in the melt. The high pressure generated in the melt can effect an upward
shift of the melting point.

The history of bubble radius and pressure and temperature history of the melt
adjacent to the bubble surface have been obtained for different frequencies of the
ultrasonic pressure field. The results show that the peak pressure generated in the melt
may reach several hundreds to thousands atmospheres depending on the initial bubble
size and the characteristics of the imposed ultrasound field. '
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Nomenclature

B E

specific heat at constant volume and constant pressure

thermal conductivity

molecular weight of gas

permeability of melt in the mushy zone

pressure of gas inside the bubble

initial pressure of gas inside the bubble

applied pressure in melt

pressure of undisturbed melt

melt pressure adjacent to the bubble surface
bubble radius at any time and initial bubble radius
bubble wall velocity and bubble wall acceleration
distance from bubble center

secondary dendrite arm spacing

temperature

initial temperature
time

porosity of melt in the mushy zone

solidus density

liquidus density

surface tension of melt

dynamic viscosity of melt

universal gas constant

Ji(kg-K)
W/(m-K)
g/mole

Pa
Pa

Pa

Pa
Pa

m/s, m/s’

~ A~ B

kg/m’

kg./m3

N/m
(N-s)/m’
J/(kg-mole-K)
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‘ Superscripts

- variable non-dimensionalized by reference parameter

Subscripts

g gas-mixture
int interface

0 initial-state
1 liquid

s solid
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Fig. 4.3. History of bubble radius in an aluminium-3.4
pct copper alloy melt under an ultrasonic pressure field
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the melt adjacent to the bubble surface under
the ultrasonic frequency of 2 MHz.
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Fig. 4.13. High pressure waves generated in the melt
near the bubble surface. The conditions correspond to
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Chapter 5

MATHEMATICAL MODELLING OF BUBBLE GROWTH BY
RECTIFIED DIFFUSION IN GASSY LIQUIDS UNDER
VARIOUS ULTRASONIC PRESSURE FIELDS

5.1. Introduction

By subjecting a gassy liquid to an imposed sinusoidal pressure field of a particular
frequency and amplitude, cavitation bubbles can be formed in the presence of nucleation
sites. An inhomogeneity in the liquid in the form of microscopic gas bubbles is thought to
be the most likely candidate for nucleation sites. If the imposed pressure field is beyond a
threshold value, the tiny gas bubbles repeatedly expand and compress and dissolved gas
in the liquid flows into the gas bubbles by rectified diffusion. Figure 5.1 shows
schematically how the process of rectified diffusion takes place. Rectified diffusion
consists of two effects. The first effect is an “area” effect. During bubble pulsation, the
surface area of the expanded bubble is much higher than that of the compressed bubble.
Therefore, the amount of gas that enters the bubble during its expansion is higher than the
amount of gas leaving the bubble during its compression and so the bubble will gain
considerable amount of gas over many cycles. The second effect is the “shell” effect. The
gas diffusion is controlled by the thickness of a diffusion layer or a shell that is
formed in the liquid surrounding the bubble ( take a constant mass of liquid surrounding

the bubble). When the bubble is expanded, the shell becomes thinner and the
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concentration gradient increases. In this case, the flow rate of gasto the bubble also
increases. When the bubble is compressed, the shell is thicker and, as a result the
concentration gradient decreases. The combination of the “area effect” and the “shell
effect” is that under certain conditions, a small quantity of gas is pumped into the bubble
in each acoustic cycle. These effects are opposed by the normal tendency of a bubble
existing in a gassy liquid to dissolve. Because of surface tension, the pressure inside the

bubble (P, ) is higher than that in the liquid immediately adjacent to the bubble (P,). This
so-called Laplace pressure, given by the expression,P, -P, =20 /R, where o is the

surface tension and R is the radius of the bubble, can be quite large for very small
bubbles. The end result of the above competing diffusion effects is that for a particular
frequency of the sound field there is a threshold acoustic pressure amplitude, above which
a bubble of a given size will grow, and below which it will tend to dissolve. The
threshold pressure is quite sensitive to the dissolved gas concentration in the liquid and
the ultrasonic frequency. In degassing, the process of rectified diffusion can be continued
for some 20,000 times per second or above, and large gas bubbles can be formed quite
rapidly, which can then easily float to the surface due to the hydrodynamic buoyancy
force ( Figure 5.2 ).

5.2. Literature Review

In the mathematical modelling, the convective-diffusion equation for the
dissolved gas concentration in the liquid depends strongly on the equation of bubble
radius. The equation of bubble radius is nonlinear and to solve the convective-diffusion
equation, the boundary condition at the bubble wall must be applied which is a moving
boundary. Both the above equations are couple through the convective term in the
diffusion equation and the gas pressure term in the equation of bubble radius. The first
solution of these problems was obtained by Blake (1949). He avoided the nonlinearities
of the equation of bubble radius by assuming very small sinusoidal oscillations of the

bubble. To avoid the problem of moving boundary in the convective-diffusion equation,



he assumed the bubble wall to be fixed in the place, but allowed for the variations of
concentration of gas at the bubble wall and also allowed the area of the wall to vary as
they would if the bubble wall were moving.

Hsieh and Plesset (1961) obtained a solution that does include the shell effect.
The problem of the moving boundary was solved by expanding the boundary condition in
terms of a Taylor series about the equilibrium position of the bubble wall. One of the
limitations of their solution is that it is restricted to small sinusoidal oscillations. Eller and
Flynn (1965) divided the general problem into an equation for the motion of the bubble
wall and a diffusion equation for the concentration of gas dissolved in the liquid. They
obtained a numerical solution of the nonlinear equation of bubble radius after simplifying
the governing equation and invoking some drastic assumptions. They assumed that the
number of moles of gas in the bubble was approximately constant during a single
oscillation as well as invoked an isothermal or a polytropic relation for the gas pressure
within the bubble. They also found an approximate solution of the convective-diffusion
equation, which was solved by the method of successive approximations. The expression
for the flux of gas at the bubble wall was obtained and integrated over the surface area of
the bubble to account for the rate of change in the number of moles of gas in the bubble.
The theory of Eller and Flynn has been widely used in the literature for rectified diffusion
of large amplitude bubble oscillations (see section 2.9). Later, in the study of bubble
growth under an 11 kHz sound field, Eller (1972) pointed out that the calculated
threshold for growth is consistent with their experimental observation, but the calculated
times of growth exceeded the observed times by factors of about 10-100.

A history of the gradual development of the theories of rectified diffusion was
given by Crum (1984). His modeling approach is similar to that of Eller and Flynn.
Experiments carried out by Crum (1980) have shown that threshold values of the pressure
amplitude for bubble growth match those given by the Eller-Flynn theory for saturated
conditions. However, away from saturation, some differences were found. Furthermore,
the growth rate seemed to be underpredicted by the theory. It is to be noted that in the
limited number of experiments so far appeared in the literature, the bubble radius was

obtained by allowing the bubble to rise through a known distance. Actually, for obtaining



the Bubble radius, measuring the time required to transverse a known distance and using
an approximate drag law inherently imply lots of errors.

Crum and Prosperetti (1983) demonstrated that gas bubbles that were caused to
pulsate in a liquid under the action of an acoustic pressure field could display nonlinear
properties such as the presence of harmonic resonances in their oscillations. They studied
the pulsation amplitude of an individual air bubble that was levitated in a glycerin-water
mixture by a stationary acoustic wave operating at a frequency of 22.2 kHz. Fyrillas and
Szeri (1994) performed a theoretical study of rectified diffusion without invoking the
limiting assumptions inherent in the Eller and Crum formulations. They split the
convection-diffusion problem into two parts: the oscillatory and the smooth problems.
Both problems were treated by singular perturbation methods: the oscillatory problem
was solved through the boundary-layer analysis, and the smooth problem was solved by
the method of multiple scales in time. Recently, Roberts and Wu (1998) made a
theoretical attempt to refine Eller-Flynn’s solution scheme. They evaluated an additional
term over that of Eller & Flynn’s model and used an asymptotic method for solving the
radius vs. time of an oscillating bubble. They pointed out that the extra term they
introduced is significant if the radius of the bubble is small or if the amplitude of its
oscillations is large.

In liquid metals power ultrasound can be used for the rapid degassing of molten
metal prior to solidification. The degassing of liquid metals under the action of ultrasound
was first revealed in the 1930’s. Hiedmann (1954) studied the metallurgical effects of
ultrasonic waves, including the degassing. Investigations on the mechanism and the
industrial applications of ultrasonic degassing of light alloy melts began in the 1960s.
Cavitation mechanism of ultrasonic degassing of light alloy melts has been studied by
Eskin (1995). He found that under certain conditions, the ultrasonic degassing reduced
the hydrogen content in ingots and casts by about fifty percent. He also found that
degassing of the melt resulted in improvements in the density and plasticity of as-cast
metal, which retained higher strengths and increased the service reliability of deformed

semifinished products.
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In this chapter, a comprehensive mathematical model has been presented for
rectified diffusion of dissolved gas in the liquid. The mass conservation equation for the
gas, the energy conservation equations for the gas and the liquid along with the equation
of state for the gas have been solved simultaneously. The bubble radius has been
calculated from the Trilling (1952) equation and the mass transfer of dissolved gas into
the bubble has been computed from the general convective-diffusion equation. It is to be
noted that these equations are coupled and boundary conditions must be applied at a fast
moving boundary of the bubble. By using appropriate variables, the model equations have
been transformed into the new coordinates system. In this way the moving boundary of
the bubble has been immobilized with respect to the time variable. In order to validate the
mathematical model, a set of experiments have been carried out and the theoretical results
for the bubble growth have been compared with the experiments. The experimental set up

as well as the experimental results obtained will be presented in the next chapter.

5.3. Mathematical Modelling

In order to mathematically tackle the bubble growth in a gassy liquid under the
ultrasonic pressure fields a number of reasonable assumptions about the physical
characteristics of the phenomenon are made:

i) The bubble remains spherical and the bubble center is motionless.

ii) The gas in the bubble is thermodynamically uniform except in a thin layer near the
interface.

iii) The bubble gas is thermally perfect (ideal gas) but calorically imperfect (heat
capacities are temperature-dependent)

The mathematical model is based on the following equations:

i) Mass conservation equation for the gas

ii) Equation for the bubble radius

iii) Equation of state for the gas

iv) Conservation of energy for the gas and the liquid

v) Convective-mass diffusion equation for the dissolved gas in the liquid
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The differential form of these equations in the spherical coordinates can be written as

follows:

Mass conservation equation for the gas within the bubble:

d .
a(P%ﬂRs) =,

where m, =4nR’D ¢
or|.r

The equation for bubble radius is based on the Trilling equation:

4 R 1
1- 2———-RR—1————-R =—|P,(t)~P,
( C) ( 3C) P,[ s(t) — +C
26 4pR
h P.()=P, - ————
where sg(t) =P, R R
and P, =P, =P, Sin2r ft)

(3:3)

(54)

(5.5)

The Trlling equation has been chosen because it accounts for the bubble acoustic

damping. In order to obtain Eq. (5.3), Trilling assumed that the liquid surrounding the

bubble is slightly compressible and the sound speed is constant. The derivatives of the

density have been replaced by corresponding derivatives of the pressure with the help of

the sound-speed relationship, C,” =dP /dp.
The ideal gas equation of state is:

pﬁT
P, = 2

w

The overall energy balance for the bubble gas is given by:

=-W+Q,+m,C T,

p “int

where E=pVC T,

W=p, I
at

(5.6)

(5.7)
(5.8)

(5.9
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: 2y OT,
Q =4nR’K,— (5.10)
or| .

Here, W is the rate of work done on the gas bubble during the collapse of the bubble or
the rate of work against the pressure in the liquid during the bubble growth. Also in the
above equation, Pg is the liquid pressure at the bubble boundary, Q, is the rate of heat
loss between the gas bubble and the surrounding liquid and rh, is the rate of mass transfer

across the bubble interface. The differential energy balance equation for the liquid is:

8T R2R
__¢+R_2erl=avzr,+ E_ 4 r>R (5.11)

ot r P Cpl '

where the viscous dissipation function is:
V2
¢, =12— (5.12)

2
r

The velocity of liquid V, can be found from the continuity equation in spherical
coordinates to be:

2
v-2r (5.13)

r

The differential equation governing the convection and diffusion of the dissolved gas in

the liquid outside the spherically symmetric bubble is:

aC R?R
+

2 2ve=Dv3c >R (5.14)
ot r-

5.3.1. Transformed and Non-dimensional Equations

For the numerical work, it is convenient to have a fixed rather than a moving
boundary of the bubble. Therefore, the governing equations are transformed using a

suitable variable (£ ) that “freezes” the moving boundary of the bubble. Also, in order to

decrease the number of parameters and minimize computational errors, the governing
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equations are non-dimensionalized. The transformed and non-dimensional forms of the
mathematical model equations are:

— -= (5.15)
P R*R, 85|, R
R= 3. 4R R 1P-P, 1 1 1R
1-2=—=—) R+—-(-——=)—=—= 3 g_ - _——-—— — T T
2RSSR R Wl Re B M2 wee, PL L
1 R 11 RR-R?
‘== 516
We C,LR*  Re Co( R” ) .
P=pT, (5.17)
T 3SR T,p 3ETE'<.E+ 6cR__  12pR’
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3DC.t, T
L 2 TG 3K, 1, 2 oT| 5.18)
C,pp, 2R, agl C, PR’ R, 86|,
= 1 5’1: = 20 07, R
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‘ 5.3.2. Initial Conditions

Initially the bubble is at rest and is in equilibrium with the surrounding liquid. The

following equations are used for the equilibrium condition.

at t=0 P, =P -r-ES T, =293K p, = PE_M‘"
R, R,
p=1, R=1, R=0, (T)=1, j=1t020 (5.22)

(©),=1,j=11w020

The characteristic time is: ty = (5.23)

where, f is the frequency of the ultrasound.
Table 5.1 lists the various physical properties of water and Al-3.4 pct Cu alloy melt.

5.3.3 Boundary Conditions

The interface temperature (Tiy) is obtained from the interfacial boundary
condition, which states that at each instant of time the rate of energy transfer from the gas
side of the gas-liquid interface is equal to the rate of energy transfer from the liquid side

of the interface.
[h +q],| _ =[mh+a]]_, (5.24)

More details about the temperature profile at the phase boundary are available in the
paper published by Naji Meidani and Hasan (1997).

Putting the relevant expressions in equation (5.24), one can easily show:



T,((KpC,), - \/ECFD% )+T,((KpC,), + ,[t:c,D%f- )
T = =k =R (5.25)
JKpC,), +/(KpC,),

The liquid temperature far from the bubble is assumed to remain unchanged:
T, (e0,t) =T, (5.26)

In the water modelling, the boundary condition for concentration of dissolved gas

in the liquid at the bubble interface is obtained from Henry s law:

= ¢ (5.27)

Here, K is the constant of Henry’s law.
In the case of liquid metals, the interfacial concentration of dissolved gas in the
liquid metal has been obtained from Seivert s law:

Cu =94, (5.28)
where q is Seivert's constant and P, is the gas pressure in the bubble (atm). In the

following, the relevant expressions used in this work to obtain Seiverts constant q is
discussed.
The nondimensional mass diffusion layer in the liquid is proportional to the following

expression which satisfies the shell effect:

D |D
5 ~4Q 2nf (5.29)
R(1) R(1)

The concentration of dissolved gas in the liquid far from the bubble is assumed to remain

unchanged:
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C(eo,t) =C, (5.30)
For the calculation of temperature and dissolved gas concentration gradients in the liquid
at the bubble interface, which appear in the continuity and energy equations of the gas, a
second-order forward difference discretization method was applied. In this study, in
addition to the rectified diffusion of dissolved air in water, the rectified diffusion of
dissolved hydrogen in Al-3.4 pct Cu alloy melt has been theoretically studied.

Table 5.1. Input Parameters for Computations

Parameter [unit] Water Al-3.4Pct Cu
o [m?/sec] 1.44x107 3.78x107
6 [N/m] 0.0729 0.89
p, [kg/m’] 998.0 2300.0
p [(N-s)/m?] 1.053x107 1.4x107
Cp: [J/(kg-k)] 4186.0 1265.0
K, [W/(m-k)] 0.602 110.0
D [m*/sec] 2.0x10° 0.5x10°®
Co [mV/s] 1480.0 4650.0
To [K] 293.0 973.0
P, [KP,) 101.0 105.6,110.2, 114.8

The solubility of hydrogen in Al-3.4 pct Cu liquid alloys is determined by the
following relations presented by Poirier (1987):
Log,S=-A/T+B (5.31)
where S is the solubility in cm’ of Hy(g) at standard pressure and temperature per 100 g
of alloy, A and B are parameters that depend only on the concentration of copper in the
Al-Cu alloys, and T is temperature in K. Using a regression analysis, the values of A and

B obtained by Opie and Grant (1950) are:
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A =2550+3589C_"* -54.48C_ +06241C_*" (5.32)

and

B =2620+03043C_"* —0.08072C_, +0.004484C_*" (5.33)

with C, as the wt pct of copper in the liquid.
From Equations (5.31), (5.32) and (5.33), the solubility of hydrogen in Al-3.4 pct Cu
alloy at 973 K is calculated as:

S =0.661 cm’/100g (5.34)
The amount of hydrogen in liquid aluminium alloys is usually measured in cubic

centimeters at standard conditions of pressure and temperature per 100 g of metal. Using

the gas law, the following equivalence is found:

1072 ,
leccgp Hy 224 X8
STD "2 _ 22 =89x107° wt pct (5.35)
100 g 100g

Using Eq. (5.35), Seivert s constant q in Eq. (5.28) can be determined as:
q=89x10"S (5.36)
5.4 Numerical Solution Methods
The mathematical model forms a set of coupled, highly nonlinear and stiff
differential equations. In order to convert the PDEs into a system of stiff ODEs, the
partial differential equations were discretized only in space direction using the second

order central difference scheme. Due to having significantly different time and length
scales in the mathematical model, the problem is stiff. Therefore, the modified Gear
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method, which is good for solving a set of nonlinear stiff ordinary differential equations,
was applied. The code, as explained earlier in section 3.4, is based on a variable-step,
variable-order backward differentiation formula (BDF) method of order 1 to 5. It started
the integration with a first order method and as the integration proceeded, the program
automatically adjusted to a higher order method (and the step size) for optimal efficiency
while satisfying prescribed accuracy requirements. The integration method was a step-by-
step method and started with the known initial conditions. At each time-step the method
employed a predictor-corrector scheme, wherein an initial guess for the solution was first
obtained and then the initial guess was progressively improved upon by iteration until the

solution converged, that is, further iteration produced little or no change in the solution.

5.5 Results and Discussion

During the ultrasonic degassing of a gassy liquid, the pressure experienced by the
gas bubble is P, =P, —P_Sin(2nft), where P} is the pressure of undisturbed liquid

and P, and f are the ultrasonic pressure field’s amplitude and frequency, respectively. In

order to ascertain the most effective parameters that govern the process of rectified
diffusion, we need to know how the results are affected by the key variables such as, R, .

C,, Pn, f, and P,. Therefore, in the mathematical model, the initial bubble radius, the

initial concentration of the dissolved gas in the liquid, the ultrasonic pressure amplitude
and frequency and the pressure of undisturbed liquid are parametrically varied. It is to be
noted that the instantaneous bubble radius and the mass of gas contained in the bubble are
averaged over the time intervals equal to the period of the ultrasound. Because of this
averaging process, the curves in all the figures discussed below are rather jagged. Also, in

the figures, the time variable is non-dimensionalized by the period of the ultrasound.



5.5.1 Results and Discussion for Water Modelling

In Figure 5.3, the calculated temporal variations of the average mass contained in
an air bubble and the average bubble radius are shown. The left axis represents the
average mass in the bubble and the right axis represents the average bubble radius. The
ultrasonic frequency and the ultrasonic pressure amplitude are 35 kHz and 0.2 bar,
respectively. As shown, the air bubble with the initial radius of 0.07 mm does not grow in
an air-saturated water because the ultrasonic pressure is lower than the threshold pressure.
The average size of the bubble and the average mass of gas within the bubble are
decreased and the bubble becomes smaller than its initial size. In Figure 5.4 the temporal
variations of the average bubble radius for two different ultrasonic pressure amplitudes
are shown. The initial radius of the bubble and the ultrasonic frequency are 0.07 mm and
35 kHz, respectively. For the ultrasonic pressure amplitude of 0.3 bar, the bubble starts to
grow in an air-saturated water. As shown in the figure, with increasing the ultrasonic
pressure amplitude to 0.5 bar, the air bubble grows more than the previous case and the
bubble volume reaches about five times of its initial value. It is to be noted that the
nondimensional bubble volume is proportional to the cubic power of the nondimensional
bubble radius. The corresponding time-averaged mass of gas contained in the bubble for
two different ultrasonic pressure amplitudes is shown in Figure 5.5. This figure shows
that the increase of the ultrasonic pressure amplitude promotes the process of rectified
diffusion. Since the intensity of the ultrasonic pressure wave is proportional to the square
of the ultrasonic pressure amplitude, therefore an increased ultrasonic pressure amplitude
means an increased intensity of the ultrasonic wave which in turn increases the rate of
bubble growth.

In Figure 5.6 the effects of the initial concentration of dissolved air in water on
the time-averaged mass of air contained in the bubble are shown. The initial radius of the
bubble is 0.1 mm and the ultrasonic pressure amplitude and frequency are 0.6 bar and 25
kHz, respectively. The results show that with increasing the initial concentration of

dissolved air in water the average mass of gas contained in the bubble increases. In fact,
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the rate of mass transfer into the bubble in a liquid with a large initial concentration of
dissolved gas is greater compared to that of in a liquid with a small initial concentration.

Figures 5.7 and 5.8 are plotted to portray the effects of the ultrasonic frequency
on rectified diffusion. Figure 5.7 demonstrates the time-averaged mass of gas contained
in the bubble for three different ultrasonic frequencies, namely 35, 25 and 20 kHz. The
initial radius of the bubble and the ultrasonic pressure amplitude are taken to be 0.07 mm
and 0.3 bar, respectively. The figure shows that when the ultrasonic frequency is
decreased from 35 kHz to 20 kHz, the average amount of gas contained in the bubble
increases significantly. For an ultrasonic frequency of 20 kHz, the air bubble grows
rapidly in an air-saturated water and the average mass of gas contained in the bubble
reaches more than seventeen times of its initial value. The reason for this increase is that
the subharmonic resonance frequency causes the bubble’s pulsation amplitude to
increase, which in turn results in the more rectified mass transfer per ultrasound cycle. In
Fig. 5.8, the results are depicted for the ultrasonic pressure amplitude when it is increased
to 0.5 bar. Similar to the previous figure, the initial radius of the bubble and the initial
concentration of dissolved air in water are 0.07 mm and 100% of saturation value,
respectively. This figure shows that with increasing the ultrasonic frequency from 25 kHz
to 45 kHz, the average amount of gas contained in the bubble decreases from 12 to 2.3
times of its initial value.

In Fig. 5.9, the initial bubble radius and the ultrasonic pressure amplitude are
considered to be 0.1 mm and 0.5 bar, respectively. The ultrasonic frequency is 25 kHz.
The air bubble grows in an air-saturated water and the average mass of gas contained in
the bubble reaches more than four times of its initial value. The bubble expands rapidly
and the average bubble volume reaches about 4.5 times of its initial value.

Figure 5.10 demonstrates the history of average mass of gas contained in the
bubble for different initial bubble radii. The initial concentration of dissolved air in water
is considered to be 100% of the saturation value. The ultrasonic pressure amplitude and
frequency are 0.5 bar and 25 kHz, respectively. The results show that for decreasing the
initial bubble radius from 50 pm to 30 um the average mass of gas contained in the

bubble increases from about 30 to 140 times of its initial value. It is noted that the
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average mass of gas contained in the bubble is nondimensionalized by the initial mass of
gas within the bubble. It is to be recognized that, for a small bubble the initial mass of gas
inside the bubble is smaller than that of for a big bubble.

5.5.2 Results and Discussion for Liquid Metal

Figure 5.11 shows the results of rectified diffusion of dissolved hydrogen in a
molten Al-3.4 pct Cu alloy. The pressure of the undisturbed melt and the ultrasonic
pressure amplitude are considered to be 1.056 and 1.3 bars, respectively. The ultrasonic
frequency is 25 kHz and the initial concentration of dissolved hydrogen in molten
aluminium is 100% of its saturation value. A hydrogen bubble, with the initial radius of
15 pm, grows and the average mass of gas contained in the bubble reaches about 400
times of its initial value. The average bubble radius increases rapidly to more than 9 times
of its initial value. In Fig. 5.12 the initial bubble radius is increased to 20 um. In this case,
due to rectified diffusion, the average bubble radius increases to around 7 times of its
initial value. The average mass of gas contained in the bubble reaches about 200 times of
its initial value.

Figures 5.13-5.17 are plotted to demonstrate the effects of the variablesR, f, C,,
Pn,and Py, on rectified diffusion of dissolved hydrogen in the Al-3.4 pct Cu alloy melt. In
Figure 5.13, the history of the average mass of hydrogen gas contained in the bubble for
different initial bubble radii are shown. The pressure of the undisturbed melt and the
ultrasonic pressure amplitude are 1.056 and 1.3 bars, respectively. The ultrasonic
frequency is considered to be 25 kHz. The initial concentration of dissolved hydrogen in
molten aluminium is 100% of its saturation value. The results show that with decreasing
the initial bubble radius from 25 pm to 15 um, the average mass of hydrogen gas within
the bubble increases (by rectified diffusion) from 115 to 400 times of its initial value.

Figure 5.14 shows the history of average mass of hydrogen gas contained in the
bubble for different ultrasonic frequencies. The other conditions are the same as the

previous figure. The results show that with decreasing the ultrasonic frequency from 35
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kHz to 25 kHz, the average mass of hydrogen gas within the bubble increases from 65 to
195 times of its initial value.

In figure 5.15 the time variations of the average mass of hydrogen gas contained
in the bubble for different ultrasonic pressure amplitudes are shown. The other conditions
are the same as the previous case. As seen in the figure, with increasing the ultrasonic
pressure amplitude from 1.2 bar to 1.5 bar the average mass of hydrogen gas within the
bubble increases from around 120 to more than 150 times of its initial value. Also, the
results show that the same bubble under the ultrasonic pressure amplitude of 1.1 bar does
not grow.

The threshold pressures (minimum ultrasonic pressure amplitude required to start
the bubble growth) for bubbles with initial radius of 15 um, 20 um and 25 um were found
to be 1.18, 0.9 and 0.87 bars, respectively. These results were obtained for the bubbles in
the aluminium 3.4 pct cu alloy melt with the initial hydrogen concentration of 100%
saturation. The ultrasonic frequency was taken to be 35 kHz. The reduction of the initial
concentration to 50% of saturation value causes the threshold pressures to increase to
1.26, 1.15 and 1.08 bars, respectively, with all other conditions remaining the same as the
previous case.

The history of average mass of hydrogen gas contained in the bubble for different
initial concentrations of dissolved hydrogen is shown in Figure 5.16. The other conditions
are the same as the previous figure ( Fig. 5.15). The results show that, increasing the
initial concentration from 30% to 100% of saturation, the average mass of hydrogen gas
contained in the bubble increases from 80 to near 200 times of its initial value. Figure
5.17 represents the history of average mass of hydrogen gas contained in the bubble for
different hydrostatic pressures at the bubble position. The initial bubble radius is
considered to be 15 pm. The ultrasonic pressure amplitude and frequency were kept at 1.3
bar and 25 kHz, respectively. The initial concentration of dissolved hydrogen in the
molten aluminium is 100% of its saturation value. The figure shows that a change of the
hydrostatic pressure from 1.056 bar (20 cm below the liquid metal surface) to 1.148 bar
(60 cm below the liquid metal surface) does not have any significant effect on rectified
diffusion of dissolved hydrogen. In other words, the rectified diffusion effect is found to
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be almost independent of the hydrostatic pressure of the melt for this range of variations
in hydrostatic pressure.

5.6. Concluding Remarks

In this study, a general mathematical model has been developed to simulate the
ultrasonic degassing of a gassy liquid. The radial motion of the bubble was considered to
be govemed by the compressible form of the Rayleigh-Plesset bubble dynamics equation.
The analysis considered isolated micron size gas bubbles inside the liquid which initially
contains some dissolved gas. The overall energy balance for the gas bubble is governed
by the first law of thermodynamics. The gas pressure within the bubble was calculated by
using ideal gas equation of state. The mass and the thermal energy exchange between the
bubble and the surrounding liquid were taken into account by solving the relevant
differential equations. For the air-water system, the boundary condition for concentration
of dissolved gas in the liquid at the bubble interface was obtained from Henry's law while
for the hydrogen-aluminium alloy system it was obtained from Seivert’s law.

The model equations were suitably transformed to immobilize the moving
boundary of the bubble. The transformed and non-dimensionalized form of the set of
coupled, highly nonlinear and stiff ODE’s was solved by the modified Gear scheme. It
was found that the bubble growth rate depends on the initial bubble size, the initial
concentration of dissolved gas in liquid and the ultrasonic specifications. A parametric
study for the bubble growth by rectified diffusion was carried out for both water and
liquid Al-3.4 pct Cu alloy. For some defined conditions, the time variations of the average
bubble radius and the average mass contained in the air bubble were computed. The
mathematical model results showed that for decreasing ultrasonic frequency, the time-
averaged bubble radius and the average mass of gas contained in the bubble increases.
Also, with decreasing of the initial bubble radius, the bubble growth rate increases. The
theoretical results showed that, with the decrease of the initial concentration of dissolved

gas in the liquid, the threshold pressure for bubble growth increases, while the amount of
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. bubble growth decreases. The modelling resuits for both air-water system and hydrogen-
aluminium alloy system were qualitatively similar.
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Nomenclature
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concentration of dissolved gas in liquid

initial concentration of dissolved gas in liquid

specific heat at constant volume and constant pressure

speed of sound in liquid

mass diffusivity

internal energy of gas mixture
frequency of the ultrasound
thermal conductivity of liquid
molecular weight of gas
pressure

initial pressure

applied pressure in liquid
pressure of undisturbed liquid

heat loss rates

bubble radius at any time and initial bubble radius
bubble wall velocity and bubble wall acceleration
distance from bubble center

temperature

initial temperature

time

work rate

density of liquid

initial density of gas

universal gas constant

thermal diffusivity

surface tension and dynamic viscosity of liquid

W/(m-K)
g/mole

Pa
Pa

Pa
Pa

J/(kg-mole-K)

2
m/s

N/m, (N-s)/m>



Om mass diffusion layer thickness m

Superscripts

- variable non-dimensionalized by reference parameter

Subscripts

g gas

sat saturation
int interface

0 initial-state
1 liquid
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Fig. 5.1. Rectified diffusion



Fig. 5.2. Formation of a large gas bubble from a tiny gas bubble
by the process of rectified diffusion.
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Fig. 5.3. Time variations of average bubble radius and
average mass contained in the bubble under an ultrasonic
pressure field of P,,=1.01-0.2 Sin (2nf't), f=35kHz,
Co = 100 % Saturation, Ry = 0.07 mm.

2
19 +
° 18+ Pm=0.5bar
=}
-]
(]
@
£
®
=2
T
[}
(4
a 131
1.2 1
11+ .
1 + : +—t 4
0 2000 4000 6000 8000 10000
Time*

Fig. 5.4. Time variations of average bubble radius for different
ultrasonic pressure amplitudes of P, = 1.01-Py, Sin (2nf't),
f=35kHz, Co = 100 % Saturation, Ry =0.07 mm.
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Fig. 5.5. Time variations of average mass contained in
the bubble for different ultrasonic pressure amplitudes,
Pap = 1.01-Py, Sin 2nf't), £=35kHz, Ro=0.07 mm,
Co = 100 % Saturation.
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Fig. 5.6. Time variations of average mass contained
in the bubble for different liquid concentrations under
an ultrasonic pressure field of P,,=1.01-0.6 Sin (2nf't)
f=25 kHz, Rg=0.10 mm.
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Fig. 5.7. Time variations of average mass of gas contained
in the bubble for different ultrasonic frequencies under an
ultrasonic pressure field of P, =1.01-0.3 Sin (2nf't),
Ro =0.07 mm, Co= 100 % Saturation.
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Fig. 5.8. Time variations of average mass of gas contained
in the bubble for different ultrasonic frequencies under an
ultrasonic pressure field of P,,=1.01-0.5 Sin (2nf 1),
Ro=0.07 mm, Co= 100 % Saturation.
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Fig. 5.9. Time variations of average bubble radius and
average mass of gas contained in the bubble under an
ultrasonic pressure field of Pa, =1.01-0.5 Sin (2nf't),
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Fig. 5.10. History of average mass of gas contained in the bubble
for different bubble initial radii under an ultrasonic pressure field
of Py, =1.01-0.5 Sin (2nf't), f=25 kHz, Co = 100 % Saturation.
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Fig. 5.11. Time variations of average bubble radius and average
mass of hydrogen gas contained in the bubble under an ultrasonic
pressure field of P,;=1.056-1.3 Sin (2nft), f =25 kHz, Ry = 0.015
mm and Cy = 100 % Saturation.
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Fig. 5.12. Time variations of average bubble radius and average
mass of hydrogen gas contained in the bubble under an ultrasonic
pressure field of P,,=1.056-1.3 Sin (2nft), f=25 kHz, Ro =0.020
mm and Co = 100 % Saturation.
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Fig.5.14. History of average mass of hydrogen
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frequencies, P,,=1.056-1.3 Sin (2nf't), Co = 100%
Saturation and Rg = 0.020 mm.
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Fig. 5.16. History of average mass of hydrogen gas contained
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hydrogen, P,,=1.056-1.3 Sin (2nf't), f =25 kHz and Ry = 0.020
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Fig.5.17. History of average massof hydrogen gas
contained in the bubble for different hydrostatic pressures,
P2,=Py-1.3 Sin (2nf't), Pp = 1.056 bar, 1.102 bar, 1.148 bar
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Chapter 6

AN AQUEOUS EXPERIMENTAL INVESTIGATION OF
BUBBLE GROWTH BY RECTIFIED DIFFUSION
UNDER AN ULTRASONIC PRESSURE FIELD

6.1 Basic Theory of Ultrasound

6.1.1 Historical Prospective

The history of the generation of ultrasound dates back 100 years to the work of F.
Galton who was interested in establishing the threshold levels of hearing both in animals
and in humans. He produced a whistle which generated sound of known frequencies and
was able to determine that the normal limit of human hearing is around 16000 to 18000
cycles s (16-18 kHz). The whistle is an example of an ultrasonic transducer, a device
that converts one form of energy ( in this case gas motion) into another (ultrasound).

The first commercial exploitation of ultrasound came after the Titanic disaster of
1912 when a competition, organized to find methods of avoiding icebergs, received a
suggestion from L. F. Davidson that the distance of an iceberg from a ship could be
estimated from the time lapse between emitting a sound from a ship and receiving an
echo from it. From this the pulse/echo ranging technique developed to produce the depth
gauge and, during the First World War, ASDIC (Allied Submarine Detection
Investigation Committee) for the location of submarines. Between 1920-1960 there were
improvements in pulse/echo techniques, which led to SONAR (SOund Navigation And
Ranging) and flaw detection in metals and other materials. More recent progress in

electric detection measurement techniques has given us the ability to use ultrasound in



diagnostic medicine for foetal imaging. Also diagnostic ultrasound can be used for
chemical analysis particularly for remote sensing in flow systems. Concurrently, the
potentialities of high-intensity ultrasound, including cleaning, emulsification, drilling and
the various methods of processing materials, were realized.

Power ultrasound has been used successfully in metallurgy. Ultrasonic treatment
of a melt and a solidifying melt results in two beneficial effects: degassing and a
reduction in grain size. The smaller grain size results from the ultrasonic fragmentation of
developing dendrites of the crystallizing metal.

To date a number of researchers have carried out investigations into the effect of
power ultrasound on the solidification of non-ferrous and ferrous metals and alloys. For
the latter, the investigations appear largely to have been almost exclusively located in the
newly formed countries from the former Soviet Union. The reason for this is almost
certainly the fact that the high power necessary to treat ferrous melts, typically 2.5 to 3.5
kW per kg of material, could only be achieved (until recently) by ultrasonic technology
employing magnetostrictive transducers. In the West such technology has been phased
out and replaced by the more electrically efficient piezoelectric systems especially for
commercial applications such as ultrasonic cleaning and plastic welding. In the countries
of the former Soviet Union the older methods are still in operation and have proved
particularly useful in high temperature applications. With the new freedom of information
which now exists there is a marrying of the two technologies so that what might have
been regarded as “dated” equipment can now be rejuvenated and made more efficient

with western know-how.

6.1.2 Ultrasonic Waves

Ultrasonic waves are stress waves, and for this reason they can exit only within
mass media. They are transmitted from one mass to another by direct and intimate contact
between the masses. In this respect, they differ from light and other forms of
electromagnetic radiation which travel freely through vacuum. In other respects, these

two forms of energy obey similar laws of propagation.



Ultrasonic waves also are termed elastic waves since it is the elastic property of
the medium which is responsible for the sustained vibration required for ultrasonic wave
propagation. Ultrasonic waves, which have been discussed in the present study, are
longitudinal waves where vibrations of the particles in the material take place in the
direction of motion of the sound. The imaginary layers in the materials of propagation
are subjected to alternate compressional and tensile (rarefactional) stresses by the waves
(see Figure 6.1).

The broad classification of ultrasound between 18 kHz and 100 MHz has been
divided into two distinct regions; power between 20 and 100 kHz and diagnostic between
1 and 10 MHz. Essentially this division arises because of the fact that a much greater
sound energy can be transmitted into a system at the lower frequencies.

In acoustic cavitation, to create and grow a bubble in a non-homogeneous liquid
requires a finite time and it may be that the time required is less than that available during
the rarefaction cycle. For example at 20 kHz, one cycle occurs every 20000th of a second,
i.e. 50 psec. For 20 MHz, the rarefaction period lasts only 25 nsec (1 nsec = 10” second ),
which may be insufficient for bubble growth. Thus as frequency increases the production
of cavitation becomes less likely. This difficulty, however, can be partially compensated

by applying higher intensity sound waves.
6.1.2.1 Specific Acoustic Impedance

There is similarity between the variations of ultrasonic wave characteristics and
those of certain quantities used in electrical A.C. theory. Thus acoustic pressure may be
regarded as being analogous to electrical voltage, particle velocity to electrical current,
and particle displacement to electrical charge. Using the acoustic equivalent of Ohm’s
law, a quantity known as the specific acoustic impedance Z,, equivalent to electrical
impedance, may be defined as:

P.z, (6.1)
u
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where u and p are the particle velocity and the acoustic pressure, respectively. Like
electrical impedance, Z, is, in general, a complex quantity but, for plane progressive
waves, the imaginary component disappears leaving a real quantity. This real quantity can
be shown to be equal to the product of the density p and the velocity ¢ of the sound for
the material and is called the characteristic impedance:

R=pc 6.2)

The value of the characteristic impedance for a given material can be seen to depend only
on its physical properties and thus it is independent of the wave characteristics and the
frequency. Values of characteristic impedances for a number of familiar materials are

given in Table 6.1.
6.1.2.2 Acoustic Intensity

The power at any point in an acoustic field may be conveniently expressed in
terms of the intensity, defined as the rate of flow of acoustical energy through unit area of
an imaginary plane surface drawn about the point in question and orientated at right
angles to the direction of wave-motion. The intensity “ I ” may be expressed in watts per

square meter (W m), and its relationships with other acoustical quantities are as follows:

P.Y, _u pc_p,’ 63)

[=
2 2 2pc

where u,. and p, are the particle velocity amplitude and the acoustic pressure amplitude,
respectively. The intensity should remain constant at all points within unattenuated plane

progressive waves.
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Table 6.1 Acoustic velocities and characteristic impedances

for some commonly used materials at room temperature

Longitudinal  Density  Characteristic

Material Wave velocity (kgm™)  impedance
(ms) (kgm?’s!)
Aluminium 6400 2700 1.7 x 107
Brass 3500 8600 3.0 x 107
Copper 4700 8900 42 x10’
Gold 3700 10500 3.9x 10’
Iron 5900 7900 4.7 x 10
Lead 1200 11300 1.4 x 107
Nickel 5600 8900 5.0 x 107
Platinum 3900 21450 8.4 x107
Silver 3200 19300 6.2 x 10’
Steel 6000 7800 4.7 x 10’
Barium titanate 5000 5400 2.7 x 10
Quartz 5700 2600 1.5 x 10’
Acrylic 2670 1180 32 x10°
Nylon 2700 1140 3.0 x 10°
Perspex (Lucite) 2700 1200 3.2 x 10°
Glycerol 1900 1260 2.4 x 10
Lubricating oil 1400 800 1.1 x 108
Olive oil 1400 900 1.3 x 10°
Water 1500 1000 1.5 x 10°
Air 330 1.3 430
Hydrogen 1300 0.90 110

Oxygen 320 1.4 450




6.1.2.3 Wave Reflection and Transmission

When plane waves strike a plane boundary separating two materials, some of the
sound energy is transmitted forward and the remainder reflected backward (see Figure
6.2). The relative amounts of reflected and transmitted intensities are expressed by the

reflection and transmission coefficients. It can be shown that:

Re flection Coefficient = Mﬁ:— (6.4)
(R, +R;)"

Transmission Coefficient = —4&&7 (6.5)
(R, +R;)

where R, and R, are the characteristic impedances for the two materials. Using the
values of the characteristic impedances given in Table 6.1, reflection and transmission
coefficients can be calculated for pairs of different materials. The equations show that the
transmission coefficient approaches unity and the reflection coefficients to zero when R,
and R, have approximately similar values. The materials are then said to be well
matched or coupled. On the other hand, when the two materials have substantially
dissimilar characteristic impedance, e.g. for a solid or liquid in contact with a gas, the
transmission and reflection coefficients tend to zero and 100 percent, respectively. The

materials are then said to be mismatched or poorly coupled.

6.1.2.4 Attenuation of Plane Waves

Ideally, the intensity of the progressive plane waves should remain constant at all
distances from the source. In practice this is not so because of the attenuation of
ultrasound as it progresses through the medium. Several factors contribute to attenuation.

Diffraction, scattering and absorption are three major causes of attenuation. The extent of
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attenuation is inversely related to the frequency. This can be shown by using the example
of sound attenuation through pure water. Sound at 118 kHz is reduced to half of its
intensity after passing through 1 km of water. The distance required to achieve the same
reduction of intensity for 20 kHz sound is much greater, at 30 km (this explains why

submarine communications are carried out at very low frequencies).

6.1.3 Standing Acoustic Waves

When sound waves are reflected, the incident and reflected waves interfere with
one another and a standing wave pattern is formed. If, after a single reflection, the
acoustic pressure or particle velocity amplitudes A at various distances from the reflecting
surface are measured, the amplitude variation is obtained (see Figure 6.3 ). It is seen that
the neighbouring maxima (antinode) and minima (partial nodes), respectively, are one
half-wavelength apart and that the distance between a maximum and its neighbouring
minimum is a quarter-wavelength. The ratio of the amplitude at the maximum to that at
the minimum is called the standing wave ratio, a quantity dependent on the reflection
coefficient at the boundary and the attenuation coefficient for the material. For high
standing wave ratios, the amplitudes at the minima tend to zero. When this phenomenon

is observed, it is said that the material is in a state of resonance (see Figure 6.4).

6.1.4 Bubble Entrapped in Standing Waves

It has long been realized that bubbles can be trapped in a liquid by a standing
acoustic field. Experiments for rectified diffusion of an individual gas bubble have been
carried out by acoustically levitating an air bubble in a standing wave formed in a water
column. When a longitudinal wave encounters the interface of water and air (free-
surface), it is reflected. Wave reflection takes place whenever waves in one medium try to
enter another medium where acoustic impedances are not identical. The greater the
difference between the acoustic impedances, the higher the reflectivity. It is to be noted

that, the characteristic impedance of air is 430 kg/m? while the characteristic impedance



of water is 1.5x10° kg/m? at room temperature ( see Table 6.1). Using the equations (6.4)
and (6.5), the reflection and transmission coefficients for the interface of water and air
can be calculated which are 0.999 and 0.001, respectively. These coefficients show that
almost all ultrasonic waves are reflected from the interface of water and air. Incident and
reflected waves form a standing wave which does not propagate. In fact, a standing wave
is formed when two sinusoidal waves of the same frequency (and thus the same
wavelength) propagating in opposite directions are superposed. It is essentially an
oscillator with a spatial spread. The stationary points are called nodes (in the resonance
case), and the points of maximum amplitude are called antinodes. Therefore, the interface
of water-air in the water column is a pressure node.

If a bubble is small compared to the wavelength of sound, then at any instant the
translational force exerted on the bubble by the sound field ( Bjerknes force) is equal to
the bubble volume times the negative gradient of the acoustic pressure (see Sec. 2.8). The

average acoustic force on a bubble located at a distance ‘Z’ is then given by:
(Fa(z,1))=—( V(1) VP(z,1)) (6.6)

where V(t) is bubble volume and P(z,t)is time and space varying pressure field which

can be closely approximated along the axis of the column by:
P(z,t) =P, — P, (z) cos(2nft) (6.7)

Here, P,, P, (z) are pressure of undisturbed liquid and space-dependent amplitude of the

stationary wave, respectively. The coordinate z is measured vertically along the axis of

the column. For a spherical bubble of equilibrium radiusR, and instantaneous radius
R(t), the magnitude of the average acoustic force, obtained by inserting Eq. (6.7) into
Eq. (6.6):

F, =4/37R,’[VP,[([R®) /R, ]’ cos@nf 1)) (6.8)
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When the bubble maintains a fixed position in the column, this force is balanced by the
magnitude of the average buoyancy force:

F, =4/37R,’p, g([R(t) /R, ]’) (6.9)

where p, is the liquid density and g is the acceleration of the gravity. Upon equating
these two forces one gets:

(R/R) cos@nft) o
(R/R,’)  [VR,] o

where|VP,| is evaluated at the position of the bubble. The ratio of pg to |[VP,]| is

essentially the ratio of the hydrostatic pressure gradient to the acoustic pressure gradient.
The translational force exerted by a standing wave on a bubble smaller than the
resonance size is directed from regions of low-pressure amplitude to regions of high-
pressure amplitude. For a bubble bigger than the resonance size, this force is directed
from the regions of high-pressure amplitude to the regions of low-pressure amplitude.
Therefore, in a standing wave field, a bubble moves toward pressure maxima (antinode)

or minima (partial nodes) if it is smaller or larger than the resonance size, respectively.

6.2 Ultrasonic Technology

6.2.1 Ultrasonic Transducers

An ultrasonic transducer is an instrument designed to generate the disturbance
from which the ultrasonic energy emanates. Therefore, any device capable of generating
ultrasound is an ultrasonic transducer. The device may be a whistle, a piezoelectric plate,
a magnetostrictive stack driving a piston, a diaphragm driven electromagnetically, a siren,
or any of the various types of mechanical devices such as rotating eccentric. All of these

methods have been used to generate ultrasonic energy. The effect, in which a voltage



impressed across two surfaces of a piezoelectric crystal induces stresses in the material, is
presently the most common method of generating ultrasonic energy in commercial
systems.

The performance of a transducer depends on its acoustical matching to the
medium under investigation. Matching the impedance of a transducer to both the
electrical circuitry and the sample is important to the success of any experiment, because
if this is not achieved, then power transfer from an energy source in an electrical form
will not be transmitted into the sample. This is because an impedance mismatch causes

reflection of the ultrasound wave.
6.2.1.1 Magnetostrictive Transducers

Magnetostriction refers to a change in the dimension of a suitable ferromagnetic
material, e.g. nickel or nickel alloy, by the application of a magnetic field. Historically
magnetostrictive transducers were the first to be used on an industrial scale to generate
high power ultrasound. A magnetostrictive transducer is usually in the form of a rod (or
bar) acting as the magnetic core within a solenoid. Applying a varying current to the coil
produces a variation in the dimensions of the bar. In typical cleaning applications the
nickel core is silver brazed to the stainless steel plate, which couples the uitrasonic
vibrations to the liquid. The unit is thus very resistant to mechanical damage since there is
no obvious mode of degradation. Such transducers offer a very high driving force, are
very robust and can routinely stand temperatures of up to 180°C. The allowable frequency
shift for a typical magnetostrictive transducer is much larger than it is for a power-type
piezoelectric transducer. Traditionally they are still employed in situations where
continuous high powers are required in rugged processing applications, e.g. in melt
degassing and metal crystallization. They have the additional property of being water-
cooled. In Figure 6.5 a typical magnetostrictive transducer used for degassing of
aluminium melts is shown.

The major drawback to magnetostrictive transducers is that they are not

particularly efficient in terms of electrical power consumption. However, the advent of
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non-metallic, ceramic-based, ferrite materials ( MFe2O4, M = divalent metal, e.g. Ni, Zn,
or Pb) has led to an increased electrical efficiency. However, a general disadvantage of all
such transducers is that their useful frequency ranges do not exceed 100 kHz.

6.2.1.2 Piezoelectric Transducers

The most common types of transducers used for both the generation and the
detection of ultrasound employ piezoelectric materials. Such materials have the following
two complementary properties:

(a) The direct effect - when pressure is applied across the large surfaces of the section a
charge is generated on each face equal in size but opposite in sign. This polarity is
reversed if tension is applied across the surfaces.

(b) The inverse effect- if a charge is applied to one face of the section and an equal but
opposite charge is applied to the other face, then the whole section of crystal will either
expand or contract depending on the polarity of the applied charges.

Thus on applying rapidly reversing charges to a piezoelectric material, fluctuations in
dimensions will be produced. This effect can be hamessed to transmit ultrasonic
vibrations from the crystal section through whatever medium it is in contact with.

Early piezoelectric devices were based on quartz transducers, but quartz is not a
particularly good material for this purpose because of its mechanical properties: it is a
somewhat fragile material and is difficult to machine. Three substitutes are commonly
used: barium titanate (BaTiOs), lead metaniobate (PbNb,Og) and the mixed crystal lead
zirconate titanate. These materials cannot be obtained as large single crystals and so,
instead, they are ground with binders and sintered under pressure at above 1000°C to form
a ceramic. The crystallites of the ceramic are then aligned by cooling from above the
ferroelectric transition temperature in a magnetic field.

It is not possible to drive a given piece of piezoelectric material efficiently at
every frequency. Optimum performance will only be obtained at the natural resonance
frequency of the particular sample, and this depends upon its dimensions. To reinforce the

rather fragile ceramic transducers it is normal practice to clamp piezoelectric elements
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between metal blocks, which serve both to protect the delicate crystalline material and to
prevent it from overheating by acting as a heat sink. Usually, two elements are combined
so that their overall mechanical motion is additive. The block modifies, by sheer size, the
nature of the ultrasonic vibrations generated. In this way, a rugged reliable transducer is
obtained. In Figure 6.6 the construction of such a piezoelectric sandwich transducer is
shown. It is generally one half-wavelength long (although muitiples of this can be used).
The peak to peak amplitudes generated by such systems are normally of the order of 10-
20 um and they are electrically efficient. Generally, piezoelectric devices are not suitable
for continuous usage at high temperatures. This is because the ceramic material will
degrade under these conditions. For continuous use under high temperature conditions a

magnetostrictive device may prove to be more reliable.

6.2.2 Piezoelectric Probe Receivers (Hydrophones)

The piezoelectric probes receivers are used principally for measuring ultrasonic
pressure amplitude and frequency in different parts of acoustic fields in fluids, or for
determining the intensity distributions in front of transmitting transducers. The
requirements of their design are that the dimensions of the sensitive element should be
small compared with the wavelength (typically less than one-tenth), that the frequency
response be constant over the whole of the required range, and that the sensitivity of the
piezoelectric element be constant for all directions.

Ideally, for an omnidirectional response, the receiver should be spherical in shape.
Cylindrical transducers, in the forms of tubes, are more easily constructed and are quite
suitable if one is concerned only with measurements in a single plane. They are capable
of vibrating in a number of different modes, i.e. radial, length, and wall-thickness, and
there is usually enough overlap between these modes to give rise to a fairly flat response
over a wide band of frequencies. Ceramic tubes of outside diameter 1.5 mm, length 1.5
mm, and wall thickness 0.3 mm are easily obtained commercially and can be used to

measure intensities at frequencies of up to 100 kHz in liquids and 25 kHz in gases,
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without disturbing the acoustic fields. In Figure 6.7 the schematic construction of a
hydrophone with piezoelectric hollow cylinder transducer is shown.

Another type of transducer is formed out of a disc of piezoelectric ceramic that its
construction is shown schematically in Figure 6.8. The disc used is 0.48 mm in diameter
and 0.1 mm in thickness. The hydrophone converts acoustic power incident on its face
into an electrical signal. The sensor element is polarized in the thickness direction. The
undesired radial modes of vibration of the disc have effectively been eliminated using an
absorbing backing material consisting of a composite of epoxy and tungsten attached to
the back electrode. This type of hydrophone is suitable for the measurement of plane sine

waves.
6.2.3 Types of Sonicator System

There are various types of sonicator system, which may be used for applying the
ultrasonic energy to a system. Two of them, which have been used extensively, are the
probe and the cleaning bath systems. It is clear that, in their construction, both types of

piezoelectric or magnetostrictive transducers can be used.

6.2.3.1 Ultrasonic Probe

In order to increase the amount of ultrasonic power available, it is desirable to
introduce the energy directly into the system rather than rely on its transfer through the
water of a tank and then the container wall. The simplest method of achieving this would
be to have the face of an ultrasonically vibrating transducer immersed in the liquid
system. It is possible to amplify this vibrational amplitude by attaching a specially
designed length of metal rod to the end of the transducer. This rod extension is more
correctly termed a sonic hom or velocity transformer, and it not only magnifies the
acoustic energy available but also allows the transducer to be kept clear since only the tip
of the rod needs to be immersed in the liquid. It is the complete assembly of transducer

plus horn which is referred to as an ultrasonic probe system.
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6.2.3.2 Ultrasonic Cleaning Bath

The construction of an ultrasonic cleaning bath is simple. A laboratory model
generally consists of a stainless steel tank of rectangular cross-section with transducers
firmly attached underneath the flat base ( piezoelectric transducers are normally bonded
with epoxy). Some tanks also have some form of thermostatted heater. A few modern
laboratory-scale models have adjustable power but these are in a minority. The frequency
and power of an ultrasonic bath depends upon the type and number of transducers used in
its construction. Generally, the ultrasonic power available in a bath using modern
piezoelectric transducers is of quite low intensity (of the order of 1-5 W cm™), with an
operating frequency of approximately 40 kHz. In the experimental set up (see section
6.3.1) this type of the ultrasonic bath with one operating transducer was used. It was
originally provided with two transducers in which the second one was kept inactive by

disconnecting its electrical power.

6.3 Experimental Investigation

In order to lend credibility to the mathematical model developed in Chapter 5, an
aqueous physical model was developed. The experimental work was conducted to
simulate the single bubble growth by the process of rectified diffusion. It consisted of a
small water column which was placed in an ultrasonic bath. A small air bubble was
injected into the water column and it was levitated by the generated standing waves.
When the ultrasonic pressure amplitude was higher than the threshold pressure, the air
bubble was seen to grow. The bubble-growth predictions from the mathematical model

are compared with the experimental measurements.
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6.3.1 Experimental Apparatus and Procedure

The schematic diagram of the experimental set up is illustrated in Figure 6.9. A
transparent acrylic square column ( 6 cm x 6 cm x 30 cm) with wall thickness of about 3
mm was used. A square cross-section was chosen to avoid optical distortion. The column
containing distilled water with a depth of around 23 cm was positioned in a stainless steel
tank. The steel tank was filled with distilled water up to about 7 cm and the water acted as
a coupling fluid. The coupling fluid was used to avoid the formation of an air gap. The
latter would have caused a very high attenuation of the imposed ultrasound waves. It was
also used to provide the possibility of varying the intensity of the transmitted sound
waves into the column. The highest intensities are obtained when the column bottom is
located in the coupling fluid at vertical intervalis of one half-wavelength above the tank.

A standing acoustic longitudinal wave was excited in the column by a single
piezoelectric transducer attached to the bottom of the tank. The piezoelectric transducer
was connected to a function generator with adjustable power levels. The maximum power
of the transducer was 35 W with the emitting face of about 10 cm?. The intensity of the
ultrasonic waves generated by the transducer was changeable from a maximum value of
3.5 Wem? to ten different lower levels.

Using the value of the characteristic impedances of water and acrylic given in
Table (6.1), the reflection and transmission coefficients for the interface of water and
acrylic were calculated and found to be 0.131 and 0.869, respectively. It showed that
most ultrasonic plane waves (%87) were transmitted into the water column through the
bottom of the acrylic column.

A small air bubble was injected by a syringe connected to a modified thin needle
from the top of the column. To prevent floatation of the bubble before the implementation
of the acoustic waves, the bubble was held on a thin 0.2 mm diameter wire which was
coated with a thin film of paraffin wax (see Figure 6.10). The initial diameter of the small

bubble was measured by a scaled microscope.
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The generated sine wave in water had the frequency of 38.5 kHz and had a series
of minima (partial nodes) and maxima (antinodes) along the axial direction of the
column. During the irradiation of the ultrasound, the air bubble was levitated at a position
about 1.9 cm below the free surface of the liquid. It was observed that the distance
between the two neighbouring bubbles levitated at the axial direction was around 2 c¢m
(about one half-wavelength). The generated bubble had a radius of 0.3 mm which was
larger than the resonance size. The calculated resonance bubble radius for the ultrasonic
frequency of 38.5 kHz is around 0.085 mm. It was verified that the bubble was levitated
near the pressure minima. The ratio of the hydrostatic pressure gradient to the acoustic
pressure gradient (see Eq. 6.10) at the bubble position was computed which was about
0.002.

At first (t = 0), the ultrasdund was turmned on and simultaneously the stop watch
was started. The gas bubble grew by the process of rectified diffusion of dissolved air in
water since the ultrasound pressure amplitude was beyond the threshold value. During the
irradiation of ultrasound, the wire was far from the air bubbie. After irradiation of the
ultrasound waves for a certain period of time and in order to measure the diameter of the
bubble by the microscope, the wire was used again to hold the bubble. During the
measurement of the bubble diameter, the ultrasound and stop watch were turned off. The
sound field was then turned back on and the process was continued. In Figure 6.11, the

photograph of the experimental set up is shown.
6.3.1.1 Preparation of Water ( in the column )

The high concentration of dissolved air in water was maintained by bubbling air
through distilled water according to the following method. The distilled water was first
cooled and then put in a 2 L insulated jug. A compressed air line from the main air line in
the laboratory was used through a partially opened needle valve. The air tube was
connected to an air diffuser (used in a fish tank) and was placed in the distilled water

inside the jug. The air was then bubbled through the liquid for a few hours.
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6.3.2 Measuring System

The measuring system included systems to measure the bubble diameter, the
ultrasonic pressure amplitude and frequency and the dissolved oxygen in water. A
detailed description for each of the measurement systems is given in the following

sections.
6.3.2.1 Bubble Diameter Measurement

In order to measure the bubble diameter, a built-in scale microscope with working
distance of 79 mm (Specwell, M830-S) was used. Adjustable focus provided clear
viewing of the bubble. In Figure 6.11, the microscope employed in the experimental set

up is shown.
6.3.2.2 Ultrasonic Pressure Amplitude and Frequency Measurement

In order to measure the applied acoustic pressure amplitude and frequency in
water, a ceramic hydrophone (Mode! SPRH-S-1000) was used. The hydrophone was of
the needle type with a flat tip made of a ceramic disk which worked as an active element.
A needle type ceramic hydrophone is suitable for monitoring negative and positive
pressures and because of the small size, its effect on the acoustic field is small. Figure
6.12 shows the hydrophone employed in the present experiment. In order to compare its
small size a pencil is also shown in the figure. During the measurement, the calibrated
hydrophone was connected to a pre-amplifier and a digital oscilloscope (Tektronix,
TDS210). By using an extension module (interface), the oscilloscope screen display was

printed. In Figure 6.13 a typical print out of the oscilloscope screen is shown.
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6.3.2.3 Measurement of Dissolved Oxygen in Water

The initial concentration of dissolved oxygen in water was measured using a
dissolved oxygen meter (ORION-Model 810). The oxygen probe consists of an
anode/cathode electrode system and a KCL based electrolyte separated from the
environment by an oxygen-permeable membrane. When a polarizing voltage is imposed
across the electrode it reduces dissolved oxygen at the cathode, causing a measurable
current to flow. The higher the oxygen content of the sample, the more current flows. A
thermistor is built into the probe measurement system and compensates for the membrane
temperature. The Orion meter uses this data to calculate the dissolved oxygen content of
the sample in either parts per million (ppm) or percent saturation (% Sat) whichever mode
display is required and selected. The meter simultaneously displays water temperature
along with the measurement results.

To measure directly the dissolved oxygen in water, the probe was dipped in the
water column. During the measurement the sample was stirred with moving the probe
back and forth. Another way of the measurement was using a standard 300 ml B.O.D.
bottle, a funnel with a built-in magnetic stir bar and a magnetic stirrer. The BOD bottle
was first filled with the water sample and then the funnel was put in the bottle. The probe
was inserted into the funnel and they were all together placed on the magnetic stirrer. In
Figure 6.11 the photographs of the dissolved oxygen meter and the magnetic stirrer are

shown.

6.3.3 Experimental Results and Comparison with Mathematical

Model predictions

In the experiment, the initial bubble radius was 0.3 * 0.02 mm which was
measured using the microscope. By means of a needle type hydrophone connected to a
pre-amplifier and a digital oscilloscope, the ultrasonic pressure amplitude and frequency

were measured which were 0.9 £ 0.03 bar and 38.5 + 0.5 kHz, respectively. The initial
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concentration of dissolved air in water was measured, as mentioned earlier, which was
95% + 1% of the saturation value at the experimental conditions. The temperature of
water inside the column was 20°C + 1%. In Figure 6.14, the bubble growth predictions
are compared with the experimental results. The time-averaged bubble radius versus time
for both cases are shown. The average bubble radius and time are non-dimensionalized
using the initial bubble radius and the period of the ultrasonic wave, respectively. After
5x10° oscillations of the transducer (after more than 2 minutes) the average bubble
radius reached around 1.7 times of its initial value. The figure shows a quite reasonable
overall agreement between the theoretical predictions and the experimental results. The
experimental results approach the mathematical model predictions although the computed
bubble growth rate was a little bit more than the experimental measurements especially at
the early stage of the experiment. The difference may be justified from the analysis of the

errors which is discussed in the next section.

6.3.4 Experimental Error Analysis

Errors always creep into all physical experiments, regardless of the care exerted.
It is better to speak of uncertainty instead of experimental errors because the magnitude of
an error is always uncertain. But the term error rather than uncertainty is used extensively.
In this section we have mostly used the former definition whenever we have talked about
uncertainty.

One of the types of errors comes from the apparatus or instrument construction
which affects the results. Another type of errors arise due to the observer for not being
consistent when estimating reading such as the amplitude or frequency on analog meters.
The third type of errors result if the process involved includes certain uncontrolled or
poorly controlled variables that results in changing conditions.

Most of the foregoing errors have occurred in the present experimental
investigation. One of the errors was due to the bubble size measurement by the
microscope during the bubble growth. Also, the bubble held on the thin wire was not of a
perfect spherical shape. In the literature, bubble sizing was obtained by allowing the
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bubble to rise through a known distance. Actually, for obtaining the bubble radius,
measuring the time required to transverse this distance and using an approximate drag law
imply many errors.

Another source of error might be due to the air absorption from the top surface in
the water column. Since the bubble was far enough from the top surface of the water and
the initial concentration of dissolved air in water was near saturation condition, this effect
can be ignored. In general, argon gas can be blown from the upper part of the column to
prevent the possible dissolution of air from the top. Although this was not done in the
present experiments.

Ideally, the liquid should be clean and liquid surrounding the bubble should have
the same initial concentration of dissolved gas as the bulk liquid. In practice this is not so
because of the non-uniformity of the concentration of the liquid and the small size of the
bubble compared to the size of the bulk liquid. In other words, the initial concentration of
dissolved gas in the liquid surrounding the bubble might have differed from the initial
concentration of the bulk liquid which was measured by the dissolved oxygen meter.
Calibration of the hydrophone and the measurements of the ultrasonic pressure amplitude

and frequency usually have some errors.

6.3.4.1 General Uncertainty in the Experimental Results

The measurements of the variables (bubble radius, concentration of dissolved gas
in liquid, ultrasonic pressure amplitude and frequency, etc.) have uncertainties associated
with them. The values of the material properties that were obtained from reference
sources also have uncertainties. The uncertainties in the individual variables propagate
into the results through a data reduction equation. Equation (6.11) is such an equation that
relates the desired experimental result R (bubble radius growth) to measured variables
and to quantities that were obtained from reference sources. Although some of the

quantities like the gas constant for air is known with a great degree of certainty.
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Equation (6.11) is the mathematical expression for the rate of change of equilibrium
bubble radius obtained by Eller (1972) through a perturbation solution.
In this analysis only the influence of uncertainties of the measured parameters to the

experimental results are studied:
R =R(X;) =R(C,.T,.f,P,,R,t) (6.12)

where R,C,,T,.f,P, ,R, and t are the bubble radius. initial concentration of dissolved
gas in liquid, liquid temperature, ultrasonic pressure frequency and amplitude, initial
bubble radius and time, respectively.

The nondimensionalized form of the uncertainty in the results is given by:
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are the relative uncertainties for each variable.

Figure 6.15 shows the relative uncertainty of the experimental results obtained
from using Equation (6.13) and the relative uncertainties of each variable, which were
already introduced in section 6.3.3. It is noted that, for the calculation of derivatives in

equation (6.13), the data reduction equation (Eq. 6.11) was used.
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Fig. 6.5. Magnetostrictive transducer used in an ultrasonic degasifier,
1) water-cooled cell; 2) magnetostrictive transducer; 3) aluminum-
melt; 4) titanate bit; 5) degassing automation block; 6) telpher.
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Fig. 6.6 Sandwich transducer with ceramic piezoelectric
elements.
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Fig. 6.12. Photograph of the needle type hydrophon.
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Chapter 7

A NUMERICAL STUDY OF THE COMPLEX DYNAMIC
'BEHAVIOR OF A REACTIVE GAS BUBBLE
IN A NON-REACTIVE LIQUID

7.1. Introduction

It is well known that a bubble containing a chemically reactive gas, when
subjected to an impulse pressure of sufficient strength, will undergo compression and can
eventually explode. In a bubbly liquid the properties of the individual phases are
combined in such a way that, essentially, the liquid contains the kinetic energy and the
gas contains the potential energy. If the bubble gas is a reactive mixture, heat generation
by chemical reactions is superimposed on the basic bubble’s dynamic behavior and
unexpected hazards may occur, mostly because of the action of the accumulated high
kinetic energy of the liquid. In the present work, a strong motivation for studying the
reactive bubble phenomenon is that in a nuclear power plant, oxygen-hydrogen bubbles
may develop in abnormally high-temperature water and can constitute an explosion
hazard.

7.2. Literature Review

The first analysis of bubble dynamics of a non-reactive gas-filled cavity, under the

assumption that the gas undergoes isothermal compression, was made by Rayleigh



(1917). The mechanism of the explosion of a single reactive gas bubble in a liquid was
first studied by Soloukhin (1961). An experimental and theoretical investigation on a
linear array of reactive bubbles was made by Hasegawa and Fujiwara (1982), who
observed that the explosion of one bubble caused the next to explode, and, consequently,
a sequential explosion of bubbles was produced. They studied the behavior of a single
exploding gas bubble in glycerin, which was photographed by a high-speed camera and
compared with theoretical calculations. Kedrinskii and Mader (1987) studied numerically
a reactive bubbly liquid. They performed a numerical simulation of an equi-molar
acetylene-oxygen gas bubble immersed in water. They found that the pressure threshold
decreases with the increase of the initial bubble radius, while the induction period
increases.

Giilhan and Beylich (1989) also performed both experimental and numerical
studies of the effect of impulse pressure on a single reactive gas bubble and a nonreactive
argon bubble. They found that the light emission during the explosion inside the reactive
gas bubble is much more intensive than that of a collapsed nonreactive argon bubble.
They showed that the temporal behavior for reactive and nonreactive gas bubbles is
different. They pointed out that, for a fixed set of parameters, there is a lower limit of
impulse pressure beyond which no explosion of the bubble occurs.

Prosperetti (1991) studied numerically the thermal behavior of oscillating inert
gas bubbles. In his theoretical model he assumed a uniform gas pressure inside the bubble
but allowed for the variations of temperature and density of the gas mixture. The uniform
gas pressure assumption is valid when the magnitude of the radial velocity of a bubble
interface is much less than the velocity of sound in the gas. His study showed that under a
low liquid impulse pressure, the effect of conductive heat transfer inside the bubble is
considerable.

Kang and Butler (1993) theoretically studied the collapse and ignition of reactive
gas-filled bubbles. Their study showed that the effect of heat transfer at the gas/liquid
interface can play an important role on bubble behavior especially in the later stages of

bubble collapse. To account for this effect an approximate solution for the interface



temperature was developed using an assumed temperature profile for the integral form of
the liquid energy balance equation.

In this chapter, a mathematical model is developed to simulate the nonlinear
volume and thermal oscillation characteristics of a single reactive gas bubble in water and
in glycerin. The dynamics of reactive gas bubbles with different exothermicities are
studied theoretically by solving the coupled momentum and energy equations for the
liquid surrounding the bubble. The effects of the exothermicity of the gas inside the
bubble, the initial bubble diameter, and the liquid impulse pressure on the bubble
dynamics and explosion limits are specifically investigated. It is noted that the
exothermicity of the bubble gas is varied by changing the mole fraction of the mixture of

stoichiometric oxygen-hydrogen with the inert gas, argon, as a diluent.

7.3. Mathematical Modelling

In order to mathematically tackle the effect of impulse pressure on a gas bubble, a
number of reasonable assumptions about the physical characteristics of the phenomenon
are made:

i) The bubble remains spherical and the bubble center is motionless. Physical experiments
show that the former assumption is valid for bubbles under 4 mm in diameter. The radial
velocity of the bubble surface under an imposed liquid pressure field is generally high,
usually of the order of 50 m/s, which is about three orders of magnitude larger than the
translational velocity of the bubble in the liquid. Therefore, the bubble inside the liquid
can be assumed stationary.

ii) The gas in the bubble is thermodynamically uniform except in a thin layer near the
interface.

iii) The bubble gas is thermally perfect but calorically imperfect.

iv) Mass transfer at the interface (condensation, evaporation, and dissolution) is
neglected.

The mathematical model is based on the differential form of the following conservation

equations:

~!
'
w



1- Mass conservation equation
2- Conservation of momentum for the liquid surrounding the gas bubble
3- Conservation of energy for the gas mixture and the liquid
The above conservation equations, along with the equation of state for the gas
mixture and the reaction rates for the reactants mixture, form the closed set of modeled
equations. The differential form of the above equations can be written as follows:

Mass conservation equation for the gas mixture:
—(p%nR’) = (7.1)
: psnR 0 7.

The equation for bubble radius is based on the Trilling equation:

R... 3. 4R_. 1 R dP. (1)
1-2—)RR+=(1-=——)R* =—|P,(t)-P_ +——B1 7.2
( Co) 2( 3C0) pa[s() =t . dt] (7.2)

where Pg is the pressure exerted by liquid on the wet side of the bubble surface.

-

Py(t) =B, - > ——o— (73)

In order to obtain Eq. (7.2), Trilling (1952) assumed that the liquid surrounding the
bubble is slightly compressible with constant sound speed. The derivatives of the density

have been replaced by corresponding derivatives of the pressure with the help of the

sound speed relation (Cc,2 =dP/dp).

The energy equation for the liquid is of the form:

oL +R-R6T‘ =m(a.Tl +30T')+ B 9, r2R (7.4)

ot 2 or ar: ror pCp

™~

where the viscous dissipation function is:
V2
9, = 121_—’2 7.5)
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The velocity of liquid V,can be found from the continuity equation in spherical

coordinates and is:

V. =5;R
r

The ideal gas equation of state is:
pﬁTg

P=—%

fF M

w

(7.6)

(7.7)

For the modeling of the chemical reaction of the gas mixture, a two-step reaction model

based on the Korobeinkov induction-exothermic model (1972) is used. Therefore, the

reaction rate o is split into two stages:

1) Nonexothermic induction reaction; the rate of reaction is given by:

0:)[ =d—rl-=-——=—a

de Tig

ii ) Exothermic reaction; the rate of reaction is given by:

®,=—L=
: 74t [

The overall energy balance for the bubble gas is given by:

dE

—= -W

it Q Q
where E=pvCT

W=P, av

dt
), =-4nR*K,
Q, T a

(7.8a)

forn>0

(7.8b)
forn<0

(7.9)

(7.10)

(7.11)

(7.12)



Q, =Vpqa, (7.13)

Here, W is the rate of work done on the gas bubble during the collapse of the bubble or is
the rate of work done against the pressure in the liquid during the bubble growth. Also, in
the above equation, P, is the liquid pressure at the bubble boundary, Q, is the rate of heat

loss between the gas bubble and the surrounding liquid, and Qp is heat production rate,

respectively.
7.3.1. Transformed and Non-dimensional Equations

For the numerical work, it is convenient to have a fixed rather than a moving
boundary of the bubble. Therefore, the governing equations are transformed using a
suitable variable () that “freezes” the moving boundary of the bubble. Also, in order to
decrease the number of parameters and minimize computational errors, the governing
equations are non-dimensionalized. The transformed and non-dimensional forms of the

mathematical model equations are:

(1~2%{-)E+§(1-%=-)
0

e (e 715
WeC,R’ ReC, R ) (713)
-, T .&#T , RR 3=, 20°.0T . R
2l &'5 f BB RRE+2% %N 0 2 (716)
ot oc 4 € " og g
- 3RT R R R? oT
= __laé, R, 60 R _12p R Ky | -
s C, T, CMR TpRC,R*P pteTC, R%p C,pRep R ac|§=l
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P =pT, (7.18)

2 2
where _I_=4;,1tg ’ 1 _2 to3 ’ Lzz to P(,7
Re pR, We pR, M®  poR,’
€=—£_ 4 a. = ato ’ B. =__l‘1____ (7.19)
R(1) Roz PC Tyt
_ — = R = T =
i-L R=2  g-Rb T=2 , T-n
tO R‘O RO 4] TO
-l 5= gLt
Py Po R,
The initial conditions for the set of equations are:
t=0
R=1, R=0, p=1,P=1,n=1,p=1,T=1, T, =1 (7.20)

The non-dimensional thermal boundary layer thickness in the liquid is of the order:

8 1
—_ = 721
R, JPe 2D
where Pe is the peclet number
pe = XRo (7.22)
a,

Taking into account the order of magnitude of the variables in Eq. (7.22), R =50 m/s,
Ro~2.0 x10 > m and & =1.0 x107 m%s, and putting their values in Eq. (7.21) one can

show that:
S 2107 (7.23)

0

From the above estimation the number of grid points in the surrounding liquid was
taken to be 10 equidistant grid points with a non-dimensional inter-grid distance of 10™.
To ensure that the resulits were not sensitive to the number and distribution of grid points,

numerical tests were performed with various numbers of equidistant grid points above 10



and the results were found to be insensitive ( varied less than 0.1 %) to the inter-grid
distance below 10™.

7.3.2. Imitial Conditions

Initially, the bubble is at rest and is in equilibrium with the surrounding liquid. In

this study, the following equations are used for the equilibrium condition:

P, =0.1MPa, T,=298K

= P_O_.Mw , ty=mR, il
RT, 37P,

(7.24)

Po

For the calculation of the characteristic bubble collapse time t, the half period of

linearized oscillation due to a small perturbation around P, =0.1 MPa is used, where

y=GCp/Cy (7.25)

7.3.3. Boundary Conditions

The boundary conditions for equation (7.16) are:

1<¢ < 1.0011
T=T, forg=1 (7.26)
T=1 for&=10011

Note that for the calculation of the heat flux at the interface the energy equation for liquid

(Eq. 7.16) is solved numerically using the coordinate { that “freezes” the moving

boundary of the bubble.
The interface temperature (T, ) is obtained approximately from the interfacial

boundary condition, which states that the rate of heat conducted from the gas side into the
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gas-liquid interface is equal to the rate of heat conducted out at the liquid side of the
interface. Figure 7.1 shows schematically how the interface temperature T, is obtained.
More details about the temperature profile at the phase boundary are available in the
paper published by Naji Meidani and Hasan (1997).

T, -T T -T
nt ~ K int 0
5 ) .(——8l

E

Siz,fa, At 1=gorl

K, ( ) (7.27)

where 5 is the thermal boundary layer thickness, a is thermal diffusivity (K/pC, ) and

At is a characteristic time (e.g.,t,) common to the gas and the liquid.

Putting the 8, and &, in Eq. (7.27), one can easily show:

{ KpC
T, +T, ———((KpCp))[
T, = = g L (7.28)
1+ ( p p)l
(KpC,),

For the calculation of the temperature gradient at the interface, which appears in

the energy balance equation, a second-order forward difference discretization method is
applied using three equispaced points, namely T, , T, and T, . Therefore, the gradient of

temperature at the bubble interface can be written in a discretized form as:

oT 11
=—(——
2, % 2

T +2T ->T,) (7.29)

| W

The relationship between the liquid pressure at transducer location (in a shock tube) and

P_ which appears in Equation (7.15) is:



L RR? JRIR 4 RORE
Ptde = PO rransqucer = Po + - (2RR? +R?R————— SRR +RRRy  (730)

3 3
' 2r, Cory

It is noted that R must be evaluated at t—r_ /C, where r_ is the distance between the

transducer location and the bubble position in the shock tube.

7.4. Numerical Solution Method

The mathematical model forms a set of coupled, highly nonlinear differential
equations (Eqs. 7.14-7.18). Due to significantly different time scales in the mathematical
model the problem is stiff. Therefore the modified Gear method, which is good for
solving a set of nonlinear, stiff, ordinary differential equations, is applied. The code is
based on a variable-step, variable-order backward differentiation formula (BDF) method
of order 1 to 5. It starts the integration with a first order method and as the integration
proceeds, automatically adjusts the method order (and the step size) for optimal efficiency
while satisfying prescribed accuracy requirements. The integration method is a step-by-
step method and starts with the known initial conditions. At each step, the method
employs a predictor-corrector scheme, wherein an initial guess for the solution is first
obtained and then the guess is progressively improved upon by iteration until the iteration
converges, that is, further iteration produces little or no change in the solution.

Note that Eqs. 7.14, 7.15 and 7.17 are ordinary differential equations, while
Equation (7.16) is a partial differential equation. In order to solve Eq. (7.16) by the
modified Gear method, it was discretized explicitly using the central difference scheme.
The discretized form of Eq. (7.16) was written for ten equidistant grid points having a
non-dimensional inter-grid distance of 10~ . Thus, at each time step, Eqgs. 7.14, 7.15 and
7.17, along with the 10 discretized equations, representing temperatures at 10 grid points
from the boundary of the bubble to a non-dimensional distance of 10~ into the liquid

were simultaneously solved using the Gear scheme. For the set of stiff ordinary
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differential equations the independent variable is time and the dependent variables
(unknowns) are:
Rv Ra P, naB’Tg, Pv(—r|)j j=l to n

where “n” is the number of grid points employed in the radial direction. Initial conditions
for the gas bubble were introduced in Eq. (7.20). Initial and boundary conditions for the

liquid energy balance equation are:

LC {T(j=Lm=1 att=0 (7.31)

T -1

n+l

Tons =T, _
B. CS.{ G=.o at t#0

7.5. Results and Discussion

The ignition of chemically reactive gases in a bubble can occur upon bubble
compression if the liquid impulse pressure is of sufficient strength. This is due to the fact
that a rapid pressure pulse causes the bubble to undergo essentially adiabatic
compression, resulting in a temperature rise up to the ignition point of the gas mixture.
The goal of the present study is to clarify the effects of the exothermicity of the gas
mixture, the initial bubble diameter and the liquid impulse pressure on bubble behavior
inside water and glycerin. The chemical composition of a gas mixture is a useful
parameter for classifying the expiosion hazards of non-reactive liquids containing reactive
gas bubbles of a specific size that are subjected to impulse pressure loadings. In order to
investigate this issue properly, stoichiometric oxygen-hydrogen gas mixtures are
considered with different ratios of argon as a diluent. In Table 7.1, input parameters used
in computations are shown. For determining the chemical thermodynamics of different
reactive gas mixtures the STANJAN (Stanford university V3.93) package was used. The

rate constants for a diluted stoichiometric oxyhydrogen mixture were selected from the
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work of Taki et al. (1978). For the temperature dependence of gas properties in
polynomial form the reader is referred to Andrews et al. (1981).

Table 7.1. Input parameters for computations

Parameter [unit] Glycerin Water
o [m?/s] 0.95x10~" | 1.47x 10~
C, [J(kg-K)] 2427.0 4179.0

p, [kg/m’] 1260.0 997.0

g [(N-s)/m‘] 1.49 1.002 x 10~
o [N/m] 0.063 0.0715

Co [ mV/s] 1986.0 1500.0

K [W/(m-K)] 0.286 0.613

To [K] 298.0 298.0

P0 a] 0.1 0.1

R [J/(kgmole-K)] | 83145 8314.5

a; [m’/(kg-s)) 3.0x10° [3.0x10°
a [ m*/(N*-s)] 1.5x10° |1.5x10°
/R [k] 9800.0 9800.0
ex/R [Kk] 2000.0 2000.0

Figures 7.2-7.29 are plotted to portray the effects of exothermicity of the gas
mixture, the initial bubble diameter, the liquid impulse pressure profile and viscosity of
the liquid on ignition threshold and bubble dynamics. In the combustion model [Equation
(7.8a,b)] the value of n = 0 marks the ignition point, which is the end of the induction
period and the start of the exothermic reaction. If a bubble undergoes an ignition, there
will be a sharp increase and subsequent rapid fall of temperature of the gas in the bubble.
In order to have a better understanding of the exothermicity effects, the strength of the
external liquid impulse pressure is also varied. The liquid impulse pressure may have
different shapes. It can be assumed in the form of an instantaneous jump of the liquid
pressure (at t = 0) to a specified level that is sustained for the duration of the event. In
other words, the impulse pressure can be modeled as a step function when its duration is
much longer than the period of the radius oscillation cycle of the bubble. Also, the liquid

impulse pressure may have a gaussian profile. One should note that in a shock tube
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experiment, the liquid impulse pressure is measured by a pressure transducer located at
the shock tube wall.

7.5.1 Sustained Liquid Impulse Pressure

In all figures reported in this section, the bubble radius has been non-
dimensionalized with the initial radius. In the figures, where the temporal variations of
bubble radius and the temperature of the bubble are provided, one notes that the thermal
oscillation cycle is opposite to the radius oscillation cycle of the bubble. This is to be
expected theoretically. Under an imposed impulse pressure, with the compression of the
bubble, the temperature within the bubble must rise due to compression work on the
bubble.

In Figures 7.2-7.7 the bubble is assumed to have an initial diameter of 5 mm. In
Figure 7.2 the history of the gas temperature within the bubble under 0.8 MPa sustained
liquid pressure profile is shown. The gas mixture is a stoichiometric oxygen-hydrogen
with the remaining 90% by volume of argon as a diluent. In order to get a clear view of
the temperature history along with the bubble size the temporal bubble radius profile is
also superimposed. The figure shows that liquid pressure surrounding the reactive bubbie
is high enough to compress the bubble to the ignition point. It is noted that the ignition of
the reactive gas mixture occurs after the first compression cycle. The gas temperature
inside the bubble sharply increases up to about 2420 K in a few microseconds. The
bubble expands to about 1.2 times its initial radius in order to release the thermal energy,
which is generated due to the reaction and compression work, in the form of expansion
work. As the bubble starts to expand the gas temperature and the gas pressure decrease
rapidly due to the increase in gas volume. For the case shown in Figure 7.2, the period of
pulsation is around 220 usec.

Figure 7.3 shows the history of bubble radius and gas temperature under 0.4 MPa
sustained pressure. The ignition of the gas mixture occurs near the end of the second
bubble compression cycle. Note that in the first compression cycle the bubble reaches

about 900°K, which is lower than the ignition temperature. The maximum bubble radius
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after explosion for this condition is larger than in the previous case due to the lower
sustained imposed liquid pressure. It is to be recognized that the sustained liquid pressure
acts as a retarding force during the bubble’s expansion cycle. In Figure 7.4 the liquid
pressure is considered to be 0.2 MPa. The gas inside the bubble attains a maximum
temperature of 510°K, which is far lower than the ignition temperature. It is to be noted
that in the present analysis the bubble was assumed to attain a uniform temperature
instantaneously during its oscillation. In other words it was assumed that no temperature
gradient develops within the bubble except at the thin thermal boundary layer near the
interface.

In Figures 7.5-7.7 the history of gas temperature within the bubble, along with the
bubble size for a gas mixture with more exothermicity, 70% Ar + 30% (2H,+0,), are
shown. In Figure 7.5 the bubble is compressed to about 42 % of its original size under
0.8 MPa imposed liquid pressure. The gas temperature within the bubble reaches the
ignition point near the end of the first compression cycle. After explosion the bubble
expands to about 1.4 times the initial radius. The gas temperature within the bubble
rapidly increases to around 3310°K, and the period of radial oscillation reaches
around 260 usec. Figure 7.6 shows the history of gas temperature and bubble radius for a
0.4 MPa sustained liquid pressure. The ignition of the gas mixture occurs near the end of
the third bubble compression cycle. Note that in the first and second compression cycles
the gas temperature within the bubble reaches about 840°K, which is lower than the
ignition temperature. The maximum bubble radius after explosion for this condition is
larger than in the previous case due to less strength of the imposed liquid pressure. In
Figure 7.7 the bubble behavior under 0.2 MPa liquid pressure is shown. Due to the
insufficient strength of the sustained liquid pressure the gas mixture attains a maximum
temperature of only 495°K, which is well below the ignition temperature. Therefore, the
bubble radius never exceeds its initial value.

Another case of interest is the reactive gas bubble with an initial diameter of 2.5
mm. The gas mixture is a stoichiometric oxygen-hydrogen with 70% argon as a diluent.
Figures 7.8-7.10 are plotted to show the behavior of a gas bubble with smaller (half)

diameter compared to the previous cases, and under different liquid impulse pressures. In
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Figure 7.8 the liquid pressure is 0.8 MPa, which is sufficient to compress the bubble to
the ignition point. After explosion the bubble gas temperature sharply increases to around
3305°K and the bubble rapidly expands to about 2.7 times of its initial volume. It is noted
that the nondimensional bubble volume is equal to the cubic of the nondimensional
bubble radius.

Figure 7.9 shows the history of gas temperature and bubble radius under a 0.4
MPa sustained liquid pressure profile. It is interesting to note that the ignition of the gas
bubble occurs not at the first cycle but near the end of seventh compression cycle. The
comparison of Figures 7.6 and 7.9 indicates that with the decrease in the initial bubble
diameter, the liquid threshold pressure for bubble explosion increases. In Figure 7.10 the
history of gas temperature along with bubble radius under 0.2 MPa liquid pressure are
shown. The gas mixture within the bubble attains a maximum temperature around 490°K,
which is well below the ignition temperature.

A comparison of Figures 7.4 and 7.7 shows that the gas temperatures are well
below the ignition point. In these figures the liquid impulse pressure is the same but the
exothermicity is different. They show that the maximum value of the gas temperature
decreases with increasing exothermicity of the gas mixture. It is to be noted that a higher
exothemicity means a low argon / oxygen-hydrogen ratio. Therefore, due to the relatively
low heat capacity of argon compared to that of oxygen and hydrogen, increasing the
exothermicity (decreasing the argon ratio) results in a decrease in the maximum gas
temperature.

Figures 7.2-7.7 indicate that, with increasing exothermicity, the threshold pressure
increases because of the relatively low heat capacity of argon. Figures 7.2 and 7.5
demonstrate that with increasing exothermicity the maximum bubble radius increases and
the period of oscillation becomes longer. This is due to the release of a relatively greater
amount of thermal energy upon the reaction of gases within the bubble. As time
progresses the bubble continues to oscillate with a small damping effect due to the
relatively low viscosity of water.

Figures 7.5 and 7.8 show that with a decrease in the initial bubble diameter, the

period of bubble oscillation decreases. The period of bubble radius oscillation in Figure
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7.5 is 260 psec, while the period of pulsation in Figure 7.8 is 125 usec. It can be seen also
from these figures that for the smaller bubble, the bubble pulsations are more damped.
The damping effect is due more to using the compressible (acoustic) bubble dynamics
equation, which is more effective for the smaller bubble with the higher frequency of
oscillations.

Figures 7.11-7.13 are plotted to demonstrate_the effects of viscosity of liquid on
bubble dynamics and bubble explosion limit. In this regard, the liquid is changed from
water to glycerin because of the high viscosity of glycerin (1500 times as large as that of
water). In Figure 7.11 the history of bubble radius and gas temperature under a sustained
liquid pressure of 0.2 MPa are shown. The initial bubble radius is 2.5 mm and the gas
mixture is a stoichiometric oxygen-hydrogen with 70% argon as a diluent. As one can
see, the liquid impulse pressure is below the threshold pressure to initiate the reaction.
Comparison of Figure 7.11 with Figure 7.10 clearly shows the effect of viscous damping
on the bubble radius oscillations. In the case of using glycerin, the amplitude of the radius
oscillation cycle decreases with a high rate of decay.

The history of bubble radius under different sustained liquid pressures of 0.8 MPa
(case A), 0.4 MPa (case B), and 0.2 MPa (case C) are shown in Figure 7.12. The initial
bubble diameter is S mm and the gas is a stoichiometric mixture of oxygen-hydrogen
(10%) with 90% argon as a diluent. For the case of A = 0.8 MPa, the calculated bubble
radius shows that the ignition occurs at near the end of the first collapse cycle. Then the
bubble rapidly expands to about 1.7 times of its initial volume. For the case B (0.4 MPa),
as shown in the figure, the explosion is not initiated at the first cycle but it occurs at the
second cycle. Then the bubble expands to about 2.2 times of its initial volume, which is
more than the previous case A. This is due to the fact that higher sustained liquid pressure
suppresses the bubble expansion more. Figure 7.12 also shows that under the sustained
liquid pressure of 0.2 MPa (case C), no explosion occurs and the bubble behaves like a
nonreactive gas bubble. For the same bubble size and exothermicity as Figure 7.12, the
calculated threshold pressure for explosion (explosion limit) was found to be 0.37 MPa
and occurred at the second and third compression cycles while the liquid was water and

glycerin, respectively. Comparison of Figure 7.12 with Figures 7.2-7.4 shows that the
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viscous damping affects the bubble radius history and the bubble explosion limit.
Decrease of the amplitude of bubble radius oscillations and time-lag of the explosion are
the results of the viscous damping effects.

The history of bubble radius for a bubble with the initial diameter of 2.5 mm is
shown in Figure 7.13. The other conditions correspond to Figure 7.12. It shows that the
bubble explosion is only initiated for the bubble under the sustained liquid pressure of 0.8
MPa. The threshold pressure to initiate the reaction for this size of bubble (2.5 mm
diameter) was 0.41 MPa. Also, the calculated threshold pressure for the bubble with the
initial diameter of 2 mm was 0.43 MPa. It is seen that as the initial bubble diameter

decreases, the threshold pressure for explosion ( explosion limit) increases.

7.5.2 Gaussian Liquid Impulse Pressure

In general, the dynamic response of a reactive gas bubble is dependent on the
liquid pressure history, bubble size, properties of the fluid medium, and initial conditions.
In Figures 7.14-7.27 the applied liquid pressure has gaussian profiles with peak values of
1.0 and 0.5 MPa and rise times of 0.2 and 0.1 msec. The rise time is the time lapse that
the liquid pressure takes to reach from the base pressure (atmospheric pressure) to the
peak pressure. The reactive gas mixtures within the bubble are 90% Ar +10% (2H2+02)
and 70% Ar +30% (2H2+02). The initial bubble diameters are considered to be 2.5 and 5
mm. The history of bubble radius and gas temperature for each different bubble size and
exothermicity of the gas mixture under different applied liquid pressure profiles are
shown in these figures. It is noted that water and glycerin are modeled as the liquid
surrounding the bubble.

Figure 7.14 shows the history of bubble radius and gas temperature for a 5 mm
bubble in glycerin. The gas within the bubble is a mixture of 90% Ar +10% (2H2+02).
The applied liquid pressure has a gaussian profile with a rise time of 0.1 msec and a peak
value of 0.5 MPa as shown in the figure. The calculated results show that the minimum
bubble radius coincides with the maximum gas temperature. The gas temperature within

the bubble increases at the end of the first collapse phase and reaches around 680°K,
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which is below the ignition point. After the compression, the bubble expands and its
volume increases to more than 2.7 times of its initial volume due to the characteristics of
the gaussian liquid pressure profile. Effect of the liquid pressure on the bubble is similar
to the action of a weight on a spring. When the weight is eliminated, the compressed
spring rapidly expands. Figure 7.15 shows the history of bubble radius and gas
temperature for the same conditions as Figure 7.14 but the rise time of the liquid pressure
profile is changed to 0.2 msec. In this case, the pulse width, which is twice of the rise
time (0.4 msec), is near the half period of the bubble resonance frequency (0.38 msec).
Therefore, the bubble is compressed more than the previous case and the gas temperature
reaches the ignition point of the gas mixture. After the explosion the bubble expands to
more than 10 times of its initial volume during 1 msec to release its internal energy
generated due to the reaction and compression work. As the bubble starts to expand, the
gas temperature within the bubble rapidly decreases from 1900°K and reaches 300°K
within about 1 msec.

Figure 7.16 shows the history of bubble radius and gas temperature for the same
conditions as Figure 7.15 but the peak value of applied liquid pressure profile is changed
to 1 MPa. After explosion the bubble expands and its volume increases to more than 4
times of its initial value and gas temperature decreases from 2430°K to 440°K in about
0.7 msec. In Figure 7.17, Pg, the pressure exerted by the liquid (glycerin) on the wet side
of the bubble surface is shown. In order to get a clear view of the history of this pressure
and the corresponding instantaneous bubble size, the temporal bubble radius is also
superimposed in the figure. The parametric conditions for this figure correspond to Figure
7.16. As shown, Pp has a peak value of 7.2 MPa at the end of bubble collapse. It rapidly
decreases to near zero and then increases to around 0.3 MPa. This figure shows that the
variations of Pg are consistent with the bubble radius history.

In Figures 7.18 and 7.19 the peak value of the applied liquid pressure is 0.5 MPa
and the initial bubble diameter is 2.5 mm. The gas mixture is the same as the previous
figures (90% Ar + 10%(2H2+02)). In Figure 7.18 the history of bubble radius and gas
temperature are shown. It is noted that water is considered as the liquid surrounding the

bubble. The gas temperature within the bubble increases at the end of the first collapse
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phase and reaches a maximum value of around 730°K, which is below the ignition point.
After one oscillation cycle, the bubble expands more than its initial size due to the
characteristics of the gaussian liquid pressure profile. The temperature of the bubble
oscillates between 210°K and 480 °K in subsequent cycles. Figure 7.19 shows the history
of bubble radius and gas temperature. The conditions are the same as in Figure 7.18 but
glycerin is considered as the fluid surrounding the bubble. The ignition of the gas mixture
does not occur because the gas temperature reaches around 770°K which is below the
ignition point. The expansion of the bubble to more than its initial size is due to the
characteristics of the imposed gaussian liquid pressure profile. A comparison of Figures
7.18 and 7.19 shows that, when the bubble is in glycerin, the amplitude of bubble radius
oscillations is progressively damped due to the higher viscosity of glycerin compared to
water.

Figures 7.20 and 7.21 show the history of bubble radius and the pressure exerted
by the liquid on the bubble surface (Pg). The parametric conditions for these figures
correspond to Figures 7.18 and 7.19. In Figures 7.20 and 7.21 the liquids are considered
to be water and glycerin, respectively. In Figure 7.20, after the first bubble collapse, Pg
rapidly decreases from the peak value of 1.05 MPa to about 0.23 MPa and then it
oscillates between 0.32 and 0.04 MPa. In Figure 7.21, Pg rapidly decreases from the peak
value of 1.0 MPa to 0.2 MPa and then it oscillates around 0.1 MPa. Both figures show
that with the increase of Pg, the amplitude of the radius oscillation cycle of the bubble
decreases and vice versa. Also, as indicated in Equation (7.3), with the increase of the
liquid viscosity, Pg decreases.

In Figures 7.22-7.23, the reactive gas mixture within the bubble is changed from
90%Ar + 10%(2H2+02) to 70%Ar+30% (2H2+02). As shown in these figures, the
applied liquid pressure has a gaussian profile with a peak value of 1.0 MPa and rise time
of 0.2 msec. The initial bubble diameter is assumed to be 5 mm and the liquids are
considered to be water and glycerin, respectively. A comparison of these two figures with
Figures 7.16 and 7.17 shows that, after explosion, the gas temperatures increase more

than the previous cases due to using a gas mixture with more exothermicity. Also, the
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release of a relatively greater amount of thermal energy upon explosion, causes the
bubble to expand more.

In Figures 7.24 and 7.25 the peak value of the applied liquid pressure is changed
from 1.0 to 0.5 MPa. The initial bubble diameter is 2.5 mm and the gas mixture is
70%Ar+30% (2H2+02). In Figures 7.24 and 7.25 water and glycerin are modeled as the
liquid surrounding the bubble, respectively. In both cases, due to insufficient strength of
the liquid impulse pressures, the gas mixtures attain maximum temperatures of only
690°K (water) and 720°K (glycerin), which are well below the ignition temperature. The
bubble radii are seen to exceed their initial values because of the characteristics of the
gaussian liquid pressure profile. In Figure 7.25, the attenuation of bubble radius
oscillation cycle indicates the high damping effect of glycerin. Also, comparison of
Figures 7.24 and 7.25 with Figures 7.18 and 7.19 show that the maximum value of the
gas temperature decreases with increasing exothermicity of the gas mixture. A higher
exothemicity means a low argon / oxygen-hydrogen ratio. Therefore, due to the relatively
low heat capacity of argon compared to that of oxygen and hydrogen, increasing the
exothermicity results in a decrease in the maximum gas temperature. It is noted that this

is true for a nonignited gas mixture.
7.5.3 History of Gas Pressure

Figures 7.26-7.29 are plotted to demonstrate the history of gas pressure within the
bubble for different liquid impulse pressure profiles. In order to get a clear view of the
gas pressure history along with the instantaneous bubble size, the temporal bubble radius
is also superimposed. In all these figures, the initial diameter of the bubble is taken to be
2.5 mm and the liquid surrounding the bubble is considered to be glycerin. The gas
mixture is a stoichiometric oxygen-hydrogen with 70% argon as a diluent. Figure 7.26
shows the history of bubble radius and gas pressure. The liquid pressure has a gaussian
profile with a peak value of 1.0 MPa as shown in the figure. It is interesting to note that
the gas pressure curve has two peak values of 2.0 and 5.5 MPa. The first one is due to the

compression work on the bubble but the second one is due to the compression work plus
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the explosion of gas mixture. In Figure 7.27, the liquid pressure has a gaussian profile
with the peak value of 0.5 MPa, which is below the threshold pressure (see Figure 7.25).
The other conditions are identical to Figure 7.26. As shown in the figure, the gas pressure
has only one peak value of 1.05 MPa and this is mainly due to the compression work on
the bubble.

In Figure 7.28, the bubble is under a sustained liquid pressure of 0.8 MPa which is
above the threshold pressure for the explosion of the gas mixture. As one can see, the gas
bubble explodes at the ignition point and the bubble expands to near 2.7 times of its
initial volume. Because of the explosion, the gas pressure within the bubble reaches 10.0
MPa rapidly. In Figure 7.29, the bubble is under a sustained liquid pressure of 0.4 MPa
which is below the threshold pressure. It is noted that the gas pressure cycle is opposite to
the radius oscillation cycle of the bubble. This is to be expected theoretically. During
collapse of the bubble, the gas pressure within the bubble must rise due to the
compression work on the bubble. As shown in the figure, the peak of gas pressure within
the bubble reaches near 1.4 MPa which is far less than the gas pressure in Figure 7.28.

7.6. Comparison with Experiments

Hasegawa and Fujiwara (1982) carried out bubble explosion experiments using an
argon-diluted stoichiometric oxygen-hydrogen gas bubble inside liquid glycerin. Using a
high-speed photographic technique they demonstrated the events of explosion and
subsequent bubble dynamics. In their experiments the bubble was 10 mm in diameter and
the pressure pulse profile in glycerin at the transducer location was triangular in shape.
The mathematical model discussed earlier in this chapter was used to simulate the results

. of the Hasegawa and Fujiwara’s experiments. The temporal behavior of the bubble radius
obtained in their experiments and that predicted by the present model are compared in
Figure 7.30. The theoretical model used as input the same experimental conditions
reported by the authors. The figure shows a good agreement between the mathematical
model and the experiment. Although the theoretically predicted bubble dynamics period

quite clearly matches the experiment a small difference in amplitude is evident. This
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difference can be justified by the fact that in Hasegawa and Fujiwara’s experiments, the
pressure profile recorded at the transducer location is not an exact triangular shape due to
the interaction among adjacent bubbles and tube wall, especially after ignition. Also, for a
bubble with a S mm initial radius, which is a relatively large bubble, the deviation of the

bubble from a spherical shape was quite considerable in the experiment.

7.7. Concluding Remarks

In this study, a mathematical model is developed to simulate the nonlinear
volume and thermal oscillation characteristics of a single reactive gas bubbie in water and
glycerin. The radial motion of the bubble is considered to be govemed by the
compressible form of the Rayleigh-Plesset bubble dynamics equation. The bubble is
assumed to be spherical and contains a stoichiometric mixture of oxygen and hydrogen
gas with the inert argon gas as a diluent. The thermo-fluid mechanics interaction of the
gas inside the bubble is considered by assuming a thin thermal boundary layer inside the
bubble near the bubble interface. The thermal energy exchange between the bubble and
the surrounding liquid is taken into account by solving a differential energy balance
equation for the liquid surrounding the bubble. The chemical reaction of the oxygen-
hydrogen gas mixture is modeled by using a two-step Arrhenius-type reaction scheme
suggested by Korobeinkov. The model equations are suitably non-dimensionalized, and
the resulting coupled stiff set of highly nonlinear ODE’s is solved by the modified Gear
scheme. A parametric study on the present model has been specifically carried out to
ascertain the effects of exothermicity of the reactive gas mixture and the initial bubble
diameter on bubble dynamics under various liquid pressure profiles. The results from the
model show that the incident liquid pressure on the bubble wall must be of sufficient
strength to compress the bubble and ignite its reactive gas content. If ignition does not
occur, the bubble is seen to oscillate below its initial equilibrium radius. For a nonignited
bubble, due to the low heat capacity of the argon gas compared to the oxygen-hydrogen
mixture, the maximum gas temperature increases with the decrease of the initial oxygen-

hydrogen content. When the liquid pressure is of sufficient strength the bubble ignites and



the maximum temperature that the bubble attains during its thermal oscillation depends
upon its equilibrium mole fraction of the stoichiometric oxygen-hydrogen mixture. For an
ignited bubble, with the increase of exothermicity, the maximum radius that the bubble
attains during its radial oscillation increases. With the decrease of the initial bubble
diameter the liquid threshold pressure for bubble explosion increases. The results also
show that when the imposed liquid pressure profile is gaussian the radius of a nonreactive
bubble may exceed its initial value. This is due to the characteristics of the gaussian
liquid pressure profile. For a bubble in a liquid with high viscosity (like glycerin), the
amplitude of the bubble radius oscillations decreases due to the high level of viscous
damping effect. The mathematical model’s results for the history of bubble radius were
compared with the experimental data, which show a good agreement between the

mathematical model and the experiment.
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7.8. Nomenclature

Po
Py

induction reaction rate constant

exothermic reaction rate constant

specific heat at constant volume and constant pressure

sound speed of liquid
internal energy of gas mixture

activation energies per mass of gas mixture
thermal conductivity

molecular weight of gas mixture

pressure

initial pressure

far field pressure in liquid

liquid pressure at transducer location

heat production and heat loss rates

heat of reaction of gas mixture
bubble radius and initial bubble radius

bubble wall velocity and bubble wall acceleration
distance from bubble center

temperature

initial temperature

time

characteristic time for bubble collapse

work rate

volume of bubble

density of gas mixture

initial density of gas mixture

density of liquid

m/s, m/s®
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Superscripts

Subscripts
g
i

l

thermal diffusivity

surface tension and dynamic viscosity of liquid
reaction progress variables

reaction rate

gas constant

universal gas constant
thermal layer thickness

variable non-dimensionalized by reference parameter

gas mixture
interface
liquid

initial state

m?/s

N/m, (N-s)m*

/s
J/(kg-K)
J/(kg-mole-K)

m
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a mixture of 90% Ar + 10 % (2H; + O,) under a sustained liquid

pressure of 8 bars (dp = Smm).

0.0013

1] -+ + + + + + + + + + +
0 0.0007 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 00008 0.0009 0.001 00011 0.0012
Time (s)

Fig. 7.3. History of bubble radius and gas temperature in water
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liquid pressure of 4 bars (dg = 5 mm).
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Fig. 7.7. History of bubble radius and gas temperature in water
for a mixture of 70% Ar + 30% (2H> + O,) under a sustained
liquid pressure of 2 bars (dg = 5 mm).
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Fig. 7.8. Temporal behavior of bubble radius and gas temperature in
water for a mixture of 70% Ar + 30% (2H, + O,) under a sustained
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Fig. 7.13. History of bubble radius in glycerin under different sustained liquid
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of 90% Ar +10% (2H; + O;) under a gaussian liquid pressure profile
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Fig. 7.23. History of bubble radius and gas temperature in glycerin
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Fig. 7.25. History of bubble radius and gas temperature in glycerin
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Chapter 8

SUMMARY AND CONCLUDING REMARKS

8.1 Overall Conclusions

The research carried out in the present work is concerned primarily with the
mathematical modelling of the complex phenomenon of bubble dynamics. Specifically,
two applications of bubble dynamics in metals processing operations have been studied
which clarify the mechanisms of ultrasonic grain refinement and ultrasonic melt
degassing. The modelling studies accomplished and the new results obtained during the
course of this research comprise four parts, which are summarized below along with

some general conclusions:

1. The first part of this study is concerned with the transient dynamic behavior of a
hydrogen gas bubble in a solidifying aluminium-3.4 wt pct copper alloy melt under
various ultrasonic pressure fields. A theoretical study was carried out to demonstrate the
possibility of the dynamic grain refinement of aluminium alloys by utilizing externally
applied high-powered ultrasonic waves and the hydrogen bubble present in the melt. The
results showed that, during the process of bubble collapse, the melt pressure surrounding
the bubble increases very rapidly. If the pressure in the vicinity of the dendrites exceeds a
threshold value, dendrite fracturing takes place. The peak pressure generated in the melt
is in the order of several hundreds to thousands atmospheres depending on the initial
bubble size, the pressure of the undisturbed melt and the ultrasonic’s specifications.

Moreover, the results, which were obtained for pre-resonant, resonant and post-resonant



frequencies, showed that the ultrasonic frequencies, beyond the resonance frequency of
the bubble, do not have any useful effect on the melt. The computed dynamic pressure
field in the melt surrounding the hydrogen bubble demonstrated that, even far from the
bubble’s surface, the melt pressure is sufficiently high to fracture the dendrite arms and
produce nuclei for equiaxed crystal growth.

2. The second part of this study models the dynamics of a stable bubble in a gassy
liquid (meit) under various ultrasonic pressure fields. A comprehensive mathematical
model has been developed to simulate the bubble growth by rectified diffusion. The
model was used to determine the threshold pressure and the effects of ultrasonic
specifications on rectified diffusion of the dissolved air in water. The results show that an
air bubble grows in water when the ultrasonic pressure amplitude is more than the
threshold pressure. In this case, the bubble volume rapidly reaches several times its initial
volume and the gas bubble can achieve sufficient potential to float to the surface under
the action of the hydrodynamic buoyancy force. The mathematical model with some
modifications was also used to simulate a hydrogen bubble growth in an aluminium 3.4%
cooper alloy melt. A parametric study was carried out to demonstrate the effects of initial
bubble size, the initial concentration of dissolved hydrogen gas in the molten aluminium
alloy and the ultrasonic’s specifications on the process of rectified diffusion. The obtained
results for the hydrogen-aluminium alloy system are qualitatively similar to that of the

air-water system.

3. An aqueous physical modelling was carried out to investigate the bubble
growth by the process of rectified diffusion. The experimental set up and the
measurement system were developed and the experimental procedure was described. The
results of aqueous physical modelling for a single air bubble growth were compared to the
results of the mathematical model. The comparison showed an overall reasonable

agreement between the experiments and the predictions.



4. A mathematical model was developed to simulate the nonlinear volume and
thermal oscillation characteristics of a reactive gas bubble in water and in glycerin. The
results showed that the applied liquid pressure must be of sufficient strength to compress
the bubble and ignite its reactive gas content. Under a sustained liquid pressure, if
ignition does not occur, the bubble is seen to oscillate below its initial equilibrium radius.
When the imposed liquid pressure is of sufficient strength, the bubble ignites and, for a
fixed sustained liquid pressure, the maximum temperature that the bubble attains during
its thermal oscillation depends upon its equilibrium mole fraction of the stoichiometric
oxygen-hydrogen mixture. For an ignited bubble, with the increase of exothermicity, the
maximum radius that the bubble attains during its radial oscillation increases and the
period of radial oscillation also increases. With the decrease of the initial bubble
diameter, the liquid threshold pressure for bubble explosion increases, while the period of
bubble oscillation decreases. The results also showed that, under a gaussian liquid
pressure profile, the bubble radius exceeds its initial value for a non-reactive mixture
because of the characteristics of the gaussian liquid pressure profile. Moreover, in a liquid
with high viscosity (like glycerin), the amplitude of the bubble radius oscillations clearly

decreases due to the high level of viscous damping effect.

The mathematical models, developed from first principles in the present research,
form .a set of coupled, highly nonlinear and stiff differential equations. The task of
solving the comprehensive mathematical models concerning bubble dynamics is very
complex. The equation for bubble dynamics is an ordinary differential equation while the
other equations are partial differential equations. In order to convert the PDEs into a
system of stiff ODEs, the partial differential equations were discretized only in space
direction using a semi-discrete method. For the numerical work, the model equations
were transformed to freeze the fast moving boundary of the bubble. The transformed and
non-dimensional forms of the mathematical model equations have been solved

numerically by the modified Gear method.



8.2 Contributions to Knowledge

The major and novel contributions of the present work are summarized by the
following statements:

1. A comprehensive mathematical model for the transient dynamic behavior of a
hydrogen gas bubble in a solidifying aluminium alloy melt under an ultrasonic pressure
field has been presented. The effects of bubble size and ultrasonic frequency on bubble
dynamics and the pressure field generated in the melt surrounding the bubble have been
numerically studied.

2. Numerical simulations for the growth of an air bubble in water as well as the
hydrogen bubble growth in a molten aluminium alloy have been carried out. The effects
of the characteristics of ultrasonic pressure field, initial bubble size and initial
concentration of dissolved gas on the evolution of bubble have been studied.

3. A physical study of an air bubble growth inside water due to rectified diffusion
of dissolved air was carried out.

4. A mathematical model for the reactive bubble in an inert liquid has been
developed. The effects of exothermmicity of gas mixture, initial bubble size, liquid
viscosity and liquid impulse pressure profile on bubble dynamics and temperature-
pressure fields within the bubble have been investigated. The results of the mathematical
model were compared with the available experimental data.

5. The mathematical models and the experimental set up presented in this study
are novel. All the results generated using the present models are new. Also, all the
models and associated computational codes developed in this work are generic in nature
and can be easily implemented for other gases and liquids not considered in the present

study.
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. 8.3 Recommendations for Future Work

1. A laboratory scale experimental work is suggested to study the ultrasonic grain
refinement of a solidifying light alloy melt.

2. For the water modelling experiments, the following refinements are suggested:
i) Some modifications of the experimental set up are necessary to study the
rectified diffusion for micron size bubbles. For example, a bubble generator that can
produce reproducible micron size bubbles is necessary and a powerful microscope is
also required. The theoretical results presented in Chapter 5 showed that under the
same ultrasonic specifications, with decreasing of the initial bubble radius the bubble
growth rate increases. Also, in the experiment, the bubbles of subresonant size move
to the maximum point of the standing pressure waves. Therefore, the rate of bubble
growth for micron size bubbles is large. All the above statements could be verified
by the suggested experimental set up.
ii) In order to study the bubble growth continuously a high speed digital camera
with a very fast framing speed and equipped with a powerful lens is required to take

clear and precise pictures of the bubble at various instants of time.

3. It is recommended to investigate the effect of a surfactant to the rate of bubble
growth during the process of rectified diffusion.

4. The present study for the bubble growth under an ultrasonic pressure field can
be used as a basis for the development of a model representing multi-bubbles and
their interactions. This model can be used to predict ultrasonic degassing of a gassy
liquid. A laboratory scale experimental work can be carried out to study the
ultrasonic degassing of a light alloy melt.

5. Modelling of the dynamics of a reactive gas bubble can be used to develop a
. theoretical investigation of wave propagation in reactive bubbly liquids. A



numerical simulation of shock propagation in a chemically reactive two-phase

liquid containing explosive gas bubbles would be a challenging undertaking.
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APPENDIX A

Table A.1. The effect of ultrasound on mechanical properties of steels (Abramov, 1987).

Steel Metal Crystallization Test Yieid Tensile Relative Relative Impact
state condition temperature  stress. strength,  elongation, contraction. strength
(o] o,(MPa) o,(MPa}  §(%) ¥ (%) (MJ m*)
50 Cast c 20 4390 10 15 0.15
(0.5%C) us 20 630 18 28 0.28
u10 Cast c 20 400 489 2 ]
(1.0%C) us 20 410 850 3 9
40KhN Cast C 20 560 880 9 14
{0.4%C. 1%Cr. 0.5%Ni) us 20 870 900 12 25
40KhNSS Deformed and C 20 2300 2380 4 40 0.38
(C.4%C. 1%Cr. 5%Ni}  heat treated us 20 2430 2530 4 50 057
Kh20N20M3 Cast c 20 490 42 40
(209%Cr. 209%Ni. 3%Mo) us 20 550 54 68
c 800 140 22 18 1.1
us 900 170 28 26 1.7
Kh1BN15R3 Cast c 800 180 3 0
(18%Cr. 15%Ni, 3%8) us 900 240 11 14
Deformed (o 9200 180 7 25
us 900 220 1 40

Fig. A.l. Elimination of columnar structure and formation of

fine equiaxed grains in ultrasonically treated of a steel (H25T)

(Abramov, 1987).
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