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ABSTRACT

In this research the dynamics of a non-reactive and a reactive gas bubble under

various pressure fields are studied. Comprehensive mathematical models have been

developed to simulate the dynamic behavior of different gas bubbles. On the basis of

these models severa! features of themlo-fluid mechanical behavior of gas bubbles are

then discussed and their applications for the metals processing operations are described.

The mathematical models form a set of coupled, highly nonlinear and stiff differential

equations, which have been solved numerically by a modified Gear method.

The tirst part of this study is concemed with the transient dynamie behavior of a

hydrogen gas bubble in a solidifying aluminium-3.4 wt pct copper alloy melt under

various ultrasonic pressure fields. During the process of bubble collapse, the melt

pressure surrounding the bubble is seen to increase very rapidly. The variations of

pressure and supercooling in the melt surrounding the bubble can cause bulk

crystallization. If the pressure in the vicinity of the dendrites exceeds a threshold value,

dendrite fracturing takes place. Dendrite fragments become nuclei during metal

crystaIlization in an ultrasonic field~ which lead to the refined crystalline structure of the

Metal. The results show that adjacent to the bubble surface, the peak pressure generated in

the melt is in the arder of severa! hundreds to thousands atmospheres depending on the

initial bubble size, pressure of undisturbed melt and the ultrasonic's specifications.

Moreover, the results, which are obtained for pre-resonant, resonant and post-resonant

frequencies, show that the ultrasonic frequencies, beyond the resonance frequency of the

bubble, do not have any useful effeet on the melt.

The second part of this study is related to the dYQamics of a stable bubble under

various ultrasonic pressure fields. When the împosed pressure field is beyond a threshold

value, dissolved gas in the liquid flows into the gas bubbles by rectified diffusion. In this

case, the bubbles grow sufficiently to float to the surface due to the hydrodynamic

buoyancy force. The threshold pressure and the effects of bubble size and ultrasonic

specifications on rectified diffusion of the dissolved air in water with different initial
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concentrations are studied. The results show that the air bubble grows and the time­

averaged bubble volume reaches severa! times of its initial value when the ultrasonic

pressure amplitude is more than the threshold pressure. Also, the numerical results show

that, above the threshold pressure a hydrogen bubble grows and the bubble volume

increases severa! rimes its initial value by rectified diffusion of dissolved hydrogen

present in a molten aluminium alloy.

In order to validate the mathematical model of bubble growth by rectified

diffusion, an aqueous physical modelling has been developed. The experimental-setup

was designed to cany out a physical study conceming the bubble growth under an

ultrasonic pressure field. The results of aqueous physical modelling for bubble growth are

compared with the results of the mathematicai model, which show a reasonable

agreement between the experiments and the predictions.

The final part ofthis study consists of the complex dynamic behavior of a reactive

gas bubble immersed in a nonreactive liquid under various liquid impulse pressures.

Numerical investigations are conducted ioto the collapse and explosion of an isolated

oxygen-hydrogen bubble immersed in water and in glycerin. The results show that, if the

imposed pressure field is strong enough, the bubble is seen to explode. The maximum gas

temperature and gas pressure that the bubble attains depends directly upon the initial

oxygen-hydrogen content. AIso, in the liquid with high viscosity, the amplitude of bubble

radius oscillation clearly decreases due to high level of viscous damping. A comparison

of the numerical results with the available experimental data shows a good agreement

between the mathematicai model and the experiment.

ii
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RÉsUMÉ

Dans ce projet de recherche, la dynamique de bulles de gaz réactif et non réactif

sous des champs de pression variables a été étudiée. Des modèles mathématiques ont été

développés pour simuler le comportement dynamique des différentes bulles de gaz. Sur la

base de ces modèles, plusieurs caractéristiques du comportement thenno-fluide

mécanique des bulles de gaz sont discutés et leurs applications durant les opérations de

production sont décrites. Les modèles mathématiques forment une série couplée,

hautement non-linéaire et inflexible d'équations différentielles, qui ont été résolus

numériquement par une méthode modifiée de Gear.

La première partie de cette étude concerne le comportement dynamique en régime

transitoire de bulles d'hydrogène lors de la solidification d'un alliage d'aluminium

contenant 3.4% poids de cuivre sous différents champs de pression ultrasonique. Durant

le processus d"effondrement, la pression dans la région liquide entourant la bulle

augmente rapidement. Les variations de pressions ainsi que le refroidissement super

rapide du liquide autour de la bulle peut causer une cristallisation de masse. Si la pression

à l"interface des dendrites excède la valeur seuil, les dendrites fissurent. Les fragments de

dendrites deviennent des sites de germination pour la cristallisation dans un champ

ultrasonique, ce qui mène a un raffinement de la structure cristalline du métal. Les

résultats montrent que la pression maximale générée dans le bain, adjacent à la surface de

la bulle, est de l'ordre de centaines à milliers d'atmosphères, dépendant de la dimension

initiale des bulles, pression du bain non troublé et des spécifications ultrasoniques. De

plus, les résultats obtenus avan~ après et à les fréquences des résonances montrent que oies

fréquences ultrasoniques au dessus de la fréquence de résonance des bulles n'ont aucuns

effect utiles sur le bain.

La deuxième partie de cette étude ayant rapport à la dynamique d'une bulle stable

sous différents champs de pression ultrasonique. Lorsque que le champ de pression

imposé est en dessus du seuil, le gaz dissous dans le liquide s'écoule dans les bulles de

gaz par diffusion rectifiée. Dans ce cas, les bulles grossissent et deviennent capables de

flotter à la surface due aux forces hydrodYnamiques de flottabilité. Le seuil de pression et

Hi
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l'effet de la dimension des bulles et des spécifications ultrasoniques sur la diffusion

rectifiée de l'air dissous dans l'eau sous différentes concentrations initiales été étudié. Les

résultats montrent que les bulles d'air grossissent et que le volume moyen de celle ci en

fonction du temps des bulles atteint plusieurs fois sa valeur initiale lorsque l'amplitude de

la pression ultrasonique est supérieure à la pression seuil. De plus, les résultats

numériques montrent qu'en dessus de la pression seuil, une bulle d'hydrogène grossit et

que le volume de la bulle augmente plusieurs fois sa valeur initiale par diffusion rectifiée

d'hydrogène dissout présent dans un alliage d'aluminium fondu.

Dans le but de valider le modèle mathématique du grossissement de bulles par

diffusion rectifiée, une modélisation physique en milieu aqueuse a été développée.

L'appareillage expérimental a été conçu pour pouvoir produire une étude physique

concernant le grossissement des bulles sous des champs de pression ultrasonique. Le

résultat de la modélisation physique en milieu aqueuse pour le grossissement des bulles

est comparable avec les résultats des modèles mathématiques, ce qui démontre une

similarité raisonnable entre les expériences et les prédictions.

La dernière partie de cette étude consistait à l'analyse du comportement

dynamique complexe d'une bulle de gaz réactive immergé dans un liquide non-réactif

sous différentes impulsions de pression de liquide. Des investigations numériques ont été

conduites lors de l'effondrement et l'explosion de bulles isolées d'un mélange d'oxygène

et hydrogène immergées dans l'eau et la glycérine. Les résultats démontrent que si la

pression imposée est assez puissante, la bulle explose. La température du gaz maximale

ainsi que la pression atteinte dans la bulle dépends directement de la quantité initiale

d'oxygène et d'hydrogène. De plus, dans le liquide à viscosité plus élevée, l'amplitude de

l'atténuation de l'oscillation du rayon des bulles diminue clairement dû au haut niveau de

viscosité. La comparaison des résultats numériques avec les données expérimentales

disponibles démontre un bon accord entre le modèle mathématique et les expériences.

iv
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Chapter 1

INTRODUCTION

1.1. Bubble Dynamics

1.1.1 NOD-reactive Bubble Dynamics

A gas bubble in liquid, when subjected to a time varying (usually acoustic)

pressure field, undergoes a radial motion of the interface of gas and liquid. The response

of the bubble to the extemal pressure field bas been called bubble dynamics. Generally,

two distinct types of bubble interface motion are possible: in the fust category are

transient bubbles that exist for less than one, or at most a few, acoustic cycles, whereas in

the second category are stable bubbles that oscillate for Many periods of the applied

sound field. The basic problem of bubble dynamics is to determine the pressure,

temperature and velocity fields in the two-fluid medium, together with the motion of the

bubble wall when subjected to an extemal time-dependent pressure field. The problem to

be solved represents a complex nonlinear process in which two phases are coupled

through a moving boundary while mass and heat transfer May take place across the

interface of gas and liquid. If the bubble contains a reactive gas mixture, the heat

generation by chemical reactions complicates the bubble dynamics. The latter is taken

into consideration through an additional term in the gas energy balance equation. Bubble

dynamics is a relatively very fast process and is govemed by complex physico-chemical

phenomena. Due to having significant different time and length scales in the bubble

dynamics problem, it would be a difficult task indeed to solve the complete set of

goveming equations for the variables of interest within and surrounding the bubble.
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The word 'Cavitation' refers to the formation and the subsequent dynamic life of

bubbles in liquids. These bubbles cao he either gas or vapor filled and fonn in a wide

variety of liquids under a wide range of conditions. Cavitation occurs in water, organic

solvents, biological fluids, liquid helium, and molten metals, as weIl as many other fluids.

It may he hydrodynamic, thermal, or acoustic in origin. This study solely deals with the

acoustic cavitation. Acoustic cavitation can affect a liquid through two possible avenues.

The tirst is the bubble itself The liquid is disrupted by the inhomogeneous presence of

the bubble. The second avenue through which cavitation affects a fluid is bubble

dynamics. The bubble's interior and the liquid immediately surrounding the bubble are

regioDS that undergo continuai change. The bubble's diameter continually changes; the

gas pressure within the bubble and the liquid pressure surrounding the bubble fluctuate

rapidly; concentration of dissolved gas in the liquid at the bubble interface varies and the

dissolved gas in the liquid diffuses into and out of the bubble during each cycle. The

bubble radiates acoustic energy as it oscillates; thermal and viscous damping hinder the

bubble oscillations. Each of these processes manifests itself differently, but they aIl lead

ta changes in the properties of the liquid surrounding the bubble.

Two important characteristics of acoustic cavitation should be mentioned here.

The first is that generally it is a nonlinear process in that the change in the radius of the

bubble is not proportional to the sound pressure. The second is that the high

compressibility of the gas bubbles roeans that potential energy is obtained frOID the sound

waves when the bubbles expand and that kinetic energy is concentrnted when the bubbles

collapse. In transient cavitation, this transformation of a low energy density sound wave

into a high energy density collapsing bubble occurs since the motion is nonlinear.

Because it concentrates the energy into very small volumes it can produce very high

pressures and temperatures, which can erode or break solids, initiate chemical reactions

and produce luminescence.

When a gas bubble is caused ta pulsate by an acoustic pressure fielcL gas will

diffuse in and out of the bubble during each cycle. There exists a threshold for which

more gas diffuses in than out over an acoustic cycle and the stable gas bubble is caused to

growas a result of the sound field. This concept is called 'rectified diffusion' and the
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words are an adequate description of the phenomenon. It is a slow process, however,

requiring thousands ofcycles. In degassing, the process of rectified diflùsion is continued

for sorne 20,000 times per second or above, therefore large gas bubbles can he formed

rapidly which can float to the surface due to the buoyancy force.

1.1.2 Reactive Bubble Dyoamics

A bubhle is called a reactive gas bubble when the bubble contains a reactive gas

mixture. In addition to treating the common features of bubble dynamics~ the chemical

reaction of the gas mixture has to he taken into account in the mathematical formulation.

A reactive gas bubble, when subjected to an impulse pressure of sufficient strength, will

undergo compression. The temperature of the gas mixture in the hubble increases and

cao reach the ignition point of the reactant. When the ignition point is reached the bubble

gas explodes. The pressure and the temperature of the gas within the bubble increase very

rapidly.

1.2 Practical Motivations

Many phenomena can arise from bubble dynamics. It can be usefuI and it can also

be a nuisance. Two of the useful applications of bubble dynamics are: their effects on a

solidifying melt under an ultrasonic pressure field (grain refinement) and ultrasonic

degassing. Both of these aspects of dynamics of transient and stable bubbles will be

studied in detail in the present work. Bubble dynamics can also cause harmful and

destructive effects, as in sonar propagation, in oil drilling and in erosion of ship

propellers.

In the case of reactive bubbles, the shock waves generated by an explosion inside

the water (underwater explosion) are used in various metal processing applications, such

as forming, welding, consolidation and compaction of powders and punching holes in

pipe watls. Usually, this phenomenon takes place in a suitable pressure vessel, which is

designed to focus shock waves for practical metal processing usage. Another motivation
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to study the reactive bubble phenomenon is the fact that in nuclear power plant accidents,

oxygen-hydrogen bubbles, which May develop in abnonnally high-temperature water, can

constitute an explosion hazard.

1.3 Objectives

The main objective of the present study is to develop comprehensive

mathematical models, which will enable us to predict qualitatively and quantitatively the

behavior of a gas bubble and associated dynamics and transport processes in a solidifying

melt and in a gassy liquid (melt) when they are subjected to an ultrasonic pressure field.

Theoretical as weil as aqueous experimental studies are carried out in order to elucidate

the physical aspects of these complex physico-chemical phenomena. Specifically, the

following objectives are followed:

(1) To simulate numerically the effects ofbubble dynamics on a solidifying melt

under various ultrasonic pressure fields in order to achieve grain refinement.

(2) Ta model ultrasonic degassing ofa gassy liquid through the study ofthe

dynamic behavior ofa single gas bubble.

(3) To validate the mathematical model of bubble growth by rectified diffusion

through an aqueous physical modelling.

(4) To develop a mathematical model for the complex dynamic behavior ofa

spherical reactive bubble in a nonreactive liquid and compare the theoretical

results with the available experimental measurements.

1.4 Thesis Outline

This study is presented in the eight subsequent chapters. The second chapter

involves a review of sorne important aspects of bubble dynamics related to this study. A

brief literature review as well as explanations in tenns of mathematical fannulations and

physical understanding of the phenomena are provided.
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Chapter 3 is concemed with the models development and the numerical solution

methods. A detailed description about the nonlinear and stiff specifications of the

governing equations is presented and the numerical schemes employed to solve them are

introduced.

In Chapter 4, the effect of a hydrogen bubble in a solidifying Al-Cu alloy melt

under various ultrasonic pressure fields is studied. The work is carried out to demonstrate

the possibility of the dynamic grain refinement ofaluminium alloys by utilizing extemally

applied high-powered ultrasonic waves and the hydrogen bubbles present in the melt. In

this regard, a mathematical model is developed to simulate the dynamic behavior of a

hydrogen gas bubble present in the mushy region of a solidifying aluminium-3.4 wt pet

copper alloy melt under various applied ultrasonic pressure fields.

Chapter 5 deals with the mathematical modelling of bubble growth by rectified

diffusion in gassy liquids under various ultrasonic pressure fields. The threshold pressure

and the effects of ultrasonic specifications on rectified diffusion of the dissolved air in

water as weil as dissolved hydrogen in a molten aluminium aIloy with different initial

concentrations are studied.

ln chapter 6, a brief review of the basic theory of ultrasound, and ultrasonic

technology is fust provided. Then, an aqueous experimental investigation is carried out ta

study bubble growth by rectified diffusion under an ultrasonic pressure field. The

experimental results of aqueous physical modelling for bubble growth are compared to

the results of the mathematical model which is already presented in Chapter 5.

Chapter 7 presents a numerical study of the complex dynamic behavior of a

reactive bubble in a non-reactïve liquide In this study, numerical investigations are

conducted into the collapse and explosion of an isolated oxygen-hydrogen bubble

immersed in water and in glycerin. The mathematical model of the bubble's radial

motion is based on the modified Rayleigh-Plesset equation of the bubble dynamics. The

exothennicity of the bubble's gas content is varied by changing the mole fraction of the

mixture of stoichiometric oxygen-hydrogen with the inert gas, argon, as a diluent. The

numerical results are compared with the experimental data.
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Chapter 8 provides a summary of the important findings made, contributions to

knowledge and sorne suggestions and recommendations for future work.



•

Chapter2

A REVIEW Of SOME IMPORTANT ASPECTS

Of BUBBlE DYNAMICS

2.1 General Equations of Bubble Dynamics

Consider a spherical bubble in an infinite domain of liquid. Every parameter then

depends on one space variable, r, the distance from the bubble center and, 1, tÏme. We

now have a hydrodynamic problem of a moving spherical bubble wall separating gas

and/or vapor from a liquid.

This can he solved to find the pressure, veloeity and temperature at any point in

the gas or liquid when the bubble is excited by a time-varying pressure field, by applYing

the laws of conservation of mass, momentum and energy for both gas and liquid. We

aIse need a set of equations to express the physieal laws like the equation of state for the

gas and liquid, gas diffusion equation in liquid as weIl as time-dependent boundary

conditions.

The equation of state for the gas is the Perfeet gas law and the equation ofstate for

liquid is constant density while the liquid is assumed to he incompressible. If this

assumption is not valid, a more complicated equation of state involving compressibility

of the liquid has to be used.

The task of solving this set of nonlinear and coupled differential equations with a

fast moving boundary is very complex. In its generality, the problem is ooly amenable to



numerical calculations. It can ooly be carried out analytically for small-amplitude motion

in which the equations can he linearized.

2.2 Rayleigb-Plesset Equation

In modelling bubble dynamics problems, for the sake of generality, it is

occasionally assumed that a gas bubble contains sorne small quantity of vapor. Although

in most practical cases, the amount of vapor inside the gas bubble is negligible. At 20 oC

the vapor pressure of water is about 0.02 bars, which is very small compared with the

partial pressure of the gas.

We now consider a spherical gas bubble of radius, R(t) (where t is time), in an

infinite domain of liquid whose temperature and pressure far from the bubble are T_ and

P.(t), respectively ( Figure 2.1 ). The temperature, T., is assumed to he a simple constant.

On the other hand, the pressure, P.(t), is assumed to be a known (and perhaps controlled)

input which regulates the growth or collapse of the bubble. Though compressibility of the

liquid can be important in the context of bubble collapse, in the present study it will be

assumed that the liquid density, PI' is a constant. Furthermore, the dynamic viscosity, f.L1'

is assumed constant and uniform. It is aIso assumed that the gas temperature, Ig(t), and

the gas pressure, Pg(t) within the bubble are uniform that is independent of the radial

position. These assumptions may not be justified in all the circumstances studied here and

will be identified and relaxed as the analysis proceeds.

Conservation of mass for the liquid requires that:

F(t)
u(r,t) =-,

r-
(2.1)

•

where F(t) is related to R(t). by a kinematic boundary condition at the bubble surface. In

the idealized case of zero mass transport across this interface, it is clear that u(R,t) =

dR/dt and hence:

(2.2)
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But this is often a good approximation even when mass transport is occurring at the

interface.

Assuming a Newtonian liquid, the Navier-Stokes equation for motion in spherical

coordinate is:

After substituting for u from u = F(t) / ~ in the above equation, one gets:

1 ap l dF 2F2

-p;- ar = r 2 "dt-7

(2.3)

(2.4)

Note that the viscous tenns vanish; indeed, the ooly viscous contribution ta the Rayleigh­

Plesset cornes from the dYnamic boundary condition at the bubble surface. Equation (2.4)

can be integrated to give:

(2.5)

(2.6)

after application of the condition P~ Pce as r~ <Xl •

To complete this part of the analysis, adynamie boundary condition on the bubble

surface must be constructed. For this purpose consider a control volume consisting of a

small, infinitely thin lamina containing a segment of interface ( Figure 2.2 ). The net force

on this lamina in the radially outward direction per unit area is:

force = () p _ 2er
't rr r::R + s

area R

where (T" )'=R = -Pa (t) + 21L, ~:LR

By using Equations (2.1), (2.2), (2.6) and (2.7), the force per unit area is:

force = p _ PaCt) _ 4~( dR _ 2er
area g R dt R

(2.7)

(2.8)
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(2.9)

where PB (t) =P[r = R(t), t] is the pressure exerted by the liquid on the '·wet" side of the

bubble surface. In the absence of mass transport across the boundary this force must be

zero. Therefore we have:

P (t) =P _ 4J.11 dR _ 20'
B g R dt R

Applying Equations (2.9) and (2.2) in Equation (2.5) yields the generalized Rayleigh­

Plesset equation for the bubble dynamics:

(2.10)

Given Pcc(t) this represents an equation that can be solved ta find R(t) pravided Pg(t) is

known. In the absence of the surface tension and viscous terms, it was first derived and

used by Rayleigh (191 7).

In arder ta obtain Pg(t) values accurately, one is required to solve the coupled

mass, momentum and energy equations for the gas combined with the appropriate

boundary conditions which will include a thermal boundary layer at the bubble wall.

In the absence of any significant thermal effects, it might be assumed that the

behavior of the gas in the bubble is polytropic 50 that:

P (t) =(p + 20')(~)3"
g 0 Re R(t)

(2.11 )

where TI is approximately constant. Clearly " =1 implies a constant bubble temperature

(isothermal) and Tl = Ywould model adiabatic behavior where y is ratio ofspecifie heats.

With the above assumptions the Rayleigh-Plesset equation becomes:

•
(2.12)
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Equation (2.12) without the viscous term was first derived and used by Notingk and

Neppiras (1950,1951); the viscous term was investigated tirst by Poritsky (1952). He

integrated this equation by a combined graphica! and numerical procedure for cases both

with and without surface tension. He found the rate of growth and collapse to be strongly

affected by both viscosity and surface tension. Viscosity tends to decrease both the

growth rate and collapse rate, whereas surface tension tends to decrease the growth rate

but increase the collapse rate. During the growth phase, surface tension decreases the

expansion rate in the early stages but not in the later stages. Similarly, the later stages of

collapse show the greatest effect of surface tension.

Equation (2.12) can be readily integrated numerically to fmd R(t) given the input

P:tl(t). Initial conditions are also required. Analytic solutions to Equation (2.12) are

limited to the case of a sustained step function change in Poo. With a constant value of Pce,

it is integrated by multiplying through out by 2R2 R and fonning time derivatives. Ooly

the viscous term cannot be integrated in this way, and what follows is confined to the

inviscid case.

When a sound field exists in the liquid, the bubble expands and contracts in

response to the pressure sound field. For acoustic excitation, Poc (t) =Po - PA sin2 7t ft

can be used in Equation (2-12) where Po' PA and f are the pressure of undisturbed liquid,

amplitude and frequency of the driving pressure, respectively.

A spherical bubble in a liquid cao be viewed as a nonlinear oscillator that can be

set into radial oscillations by the sound field. For very small pressure amplitudes the

response is linear. At larger oscillation amplitudes this oscillation must become nonlinear

because the bubble cao be expanded from its equilibrium radius to arbitrary large radius

values, and also cao be compressed down to near zero radius. Bubbles of different radius

at rest (R> ) respond differently ta the same sound field.
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2.3 Apfel's Derivation for a Gas Bubble

An interesting and simple derivation of Eq. (2.10), which is worth mentioning

here, bas been provided by Apfel (1981). The Kinetic energy of the mass of liquid

surrounding a pulsating spherical bubble of radius R is given by 1/ 2M etTR2
, where

R=dR 1dt and Met! is the effective mass ' felt' by the bubble, given by three times the

mass of liquid that would fill the bubble; that is M etT = 3 PI (41t / 3) R3
• This kinetic

energy minus the energy dissipation at the bubble surface due to the viscous effects is

equal to the work done by the surface tension 0", gas pressure Pg and the far field pressure

in the liquid P~ .

1 ·2 JR( 4f.11 dR) 2 fR( 20") 2-M R - --- 41tR dR= P -P -- 41tR dR2 cff R dt g 00 R
Ra Ru

(2.13)

By differentiating the above equation with respect to R and dividing by 41tR2 PI one gets:

.. 3. 2 4J.11 R 2er Poo -PgRR+-R +--+ - + =0
2 PI R p,R PI

--..-- "-v-" -..- ..
ineniaJ tenns effect of surface pressure

viscous tension effect
stress at effect
surface

where Pg is gÏven by Eq. (2.11).

2.4 Nucleation and Cavitation Inception

(2.14)

The theoretical tensile strength of water at room temperature is about 1000 atm.

This might suggest that acoustically induced cavitation would require a sound pressure

amplitude of at least 1000 atm. However, cavitation is observed with pressure amplitude

of the arder of 1 atm, implying the presence of pre-existing nuclei within the liquid. The

most obvious nucleus to consider is a small free spherical bubble in the liquid. Such a
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free small bubble, however, will diffuse into the liquid. Epstein and Plesset (1950)

estimate that a 10 J.IlIl radius air bubble in aïr-saturated water will take about 7s to

dissolve.

The fact that a micro-bubble should dissolve within seconds leaves unresolved the

question of why cavitation nuclei persist indefinitely. In the literature, various

stabilization mechanisms have been proposed and still are the object of investigations.

One possible explanation is that the interface of a gas bubble is immobilized by the

effects of surface contamination. Another is an "organic skin" that gives the free surface

of the bubble sufficient elasticity to withstand a high pressure. The most favored is that

put forward by Harvey et al. (1944) which suppose that a pocket of gas is trapped in a

small-angled crevice or crack in the container surface or in an imperfectIy wetted particle.

Ordinary tap water May contain thousands of solid particles per cubic centimeter of

liquid. By careful filtration most of these can be removed, allowing the highly purified

water to withstand negative pressures of about 200 attn as reported by Greensan and

Tschiegg (1967).

2.5 Acoustic Cavitation

On this subject Neppiras (1980) provided a critical review with many references.

Prosperetti (1984) has given an excellent account on this subject. In acoustic cavitation a

sound wave imposes a sinusoidally varying pressure on the steady ambient pressure. The

effect on the bubbles (cavities) may be rather gentle or quite violent. These two types of

bubble behavior are called stable and transient cavitation. Although we imply that these

two situations follow with increasing the acoustic pressure amplitude, it is important to

note that other factors are important in determining the kind of response a bubble will

deliver for a given oscillating pressure field. One of the factors in this regard is the

relationship between the frequency, f~ of the imposed oscillations and the resonance

frequency, fr, of the bubble. Another important factor in detennining whether the

response is stable or transient is the relationship between the pressure oscillation

amplitude, PA, and the pressure ofundisturbed liquid, Po .
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2.6 Stable Cavitation

Stable bubbles oscillate, often non-linearly, around some equilibrium size. They

may continue oscillating for many cycles of the sound pressure ( Figure 2.3 ). In a stable

bubble, the time-scale is typically so long that mass-diffusion of gas as well as thermal

diffusion, can occur, resulting in significant long-term. effects. Stable bubbles may evolve

into transients in the course of time. This is significant in gassy liquids like water where

stable gas bubble can grow by a second-order effect called " rectified diffusion".

2.6.1 Damping of Stable Bubbles

There are three ways in which the bubble oscillations can he damped:

1. Viscosity acts at the bubble surface as a brake, whether the bubble is expanding or

contracting. Consequently, more energy is required to compress the bubble than is

regained in the subsequent expansion.

2. Sound radiation damping occurs because an oscillating bubble radiates spherical

waves thereby expending sorne of its energy.

3. Thermal damping, thermal conduction from the gas within the bubble to the liquid

will tend to lower any increase in the temperature and pressure in the bubble. Thermal

damping is the most important source of damping in most cases. Theoretical discussions

on thermal damping ofstable bubbles can be found in Plesset and Hsieh (1960) and Hsieh

(1965).

Chapman and Plesset (1971) have presented a useful summary of the three

primary contributions to the damping of bubble oscillations, namely that due to liquid

viscosity, that due to liquid compressibility through acoustic radiatio~ and that due to

thermal conductivity. It is particularly convenient to represent the three components of
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damping as tbree additive contributions to an effective liquid viscosity, J,LE, which can

then he employed in the Rayleigh-Plesset equation in place of the actualliquid viscosity:

(2.15)

where the acoustic viscosity, J.1 A ' is given by:

(2.16)

where CI is the velocity of sound in the liquid. The thermal viscosity, fl.T' is given by:

(2.17)

(2.18)
3y

A= 1-3(Y-l)iX[(:fco~~r -1]

where Ais:

and (2.19)

The relative magnitudes of the three components of damping (or effective

viscosity) can be quite different for different bubble sizes. This is illustrated by the data

for air bubbles in water at 20
0

C and atmospheric pressure, which is taken from Chapman

and Plesset (1971) and is reproduced as Figure 2.4. Note that the viscous component

dominates for very small bubbles, the thermal component is dominant for most bubbles of

practical interest, and the acoustic component only dominates for large bubbles.

2.7 Nonlinear Effects

Plesset and Prosperetti (1977) in their study of the subject have shown that single

bubbles exhibit a number of interesting and important nonlinear phenomena. When a

liquid that will inevitably contain microbubbles is irradiated with a sound wave ofa given
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frequency, co, the oonlinear response results in harmonic dispersion, which not only

produces harmonics with frequencies that are integer multiples of Cl) (superharmonics)

but, more unusually, subharmonics with frequencies less than Q) of the form 'mco/n'

where m and n are integers. Both the superharmonics and subharmonics become more

prominent as the amplitude of excitation is increased. The production of subharmonics

was first observed experimentally by Esche (1952), and possible origins ofthis nonlinear

effect were explored in detail by Noltingk and Neppiras (1950,1951), Flynn (1964),

Borotnikova and Soloukin (1964), and Neppiras (1969), among others. Neppiras (1969)

aIso surmised that subharmonic resonance could evolve into transient cavitation. These

analytical and numerical investigations use numericaJ solutions of the Rayleigh-Plesset

equation to explore the nonlinear characteristics of a single bubble excited by an

oscillating pressure with a single frequency, co. As might be expected, different kinds of

responses occur depending on whether co is greater or less than the resonance frequency

of the bubble, 0) r •

Lauterbom (1976) examined numerical solutions for a large number of different

excitation frequencies and was able ta construct frequency response curves of the kind

shown in Figure 2.5. In this figure the numbers above the peaks indicate the order of the

resonance, min, which means m cycles of the oscillations take place during n cycles of the

driving pressure field. Notice the progressive development of the peak responses at

subharmonic frequencies as the amplitude of the excitation is increased. Nonlinear effects

oot only create these subharmonic peaks but aIso cause the resonant peaks ( both the main

resonance near Q) / co r = 1 and the subharmonic resonances) to be skewed to the left,

creating the discontinuities indicated by the dashed vertical lines. These correspond to

bifurcations or sudden transitions between two valid solutions, one with a much larger

amplitude than the other. Prosperetti (1977) bas provided a theoretical analysis of these

transitions. More review ofthe subject can be found in Brennen (1995) and Feng and Leal

(1997).
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• 2.8 Djerknes Forces

A different nonlinear effect is the force experienced by a bubble in an acoustic

field due to the finite wavelength of the sound waves. In an acoustic field where a

pressure gradient VP exists, a body of volume V is acted on by a force -V(t) V P(x,t).

Since V and P vary with time, it is necessary to consider a ùnle-averaged (vector) force:

( F) = - ( V(t) V P(x~t) ) (2.20)

where bracket ( ) indicates the average over a cycle. Consider DOW a bubble located at

position x in a standing wave pressure field of the fonn:

P(x, t) = Po + 2PA sinkx cosro t (2.21)

where k is the wave number (2m.l) of the sound field and PA is the pressure amplitude

of the incident wave. Gravity will be ignored~ enabling us to treat Po as a constant.

Further, it will be assumed that 2PA «PO' so that a bubble of radius R (weIl removed

from the resonant radius) will oscillate linearly with R = R o + Ço cos(ro t + a), where the

phase angle a. allows for the fact that the oscillation of the radius may not be in phase

with the oscillation of the pressure, and where the amplitude of oscillation Ço is much

less than Ra. The volume V =4/31tR3 of the bubble may now be written as:

(2.22)

•

where Va = 4 i 3 1t R o
3 is the initial volume of the bubble.

Now for the bubbles driven with ro < C1) r (implying R o > R r ), the sound pressure

and volume are out of phase ( the volume is largest when the pressure is least) and so
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a = 1t in Equation (2.22). For bubbles driven with C1) > co r (implying Ra < R r ), the sound

pressure and volume are in phase and a =0 in Eq. (2.22).

In this study, the bubble resonance size, Rr • is obtained by inserting the frequency of the

applied sound field ioto the resonance frequency equation. The resonance frequency

equation for small amplitude oscillations is given by:

(2.23)

Substituting Equations (2.21) and (2.22) into Equation (2.20) leads to:

(2.24)

leading to

3P kÇ V jcoskxl
Fx = A a 0 for bubbles with Ra > Rr (2.25)

Ra

andto

3P kÇVI.F:t = A 0 0 1cos kx for bubbles Wlth Ra < Rr
Ra

(2.26)

•

Comparing Equations (2.25) and (2.26) with the sin kx variation of the amplitude of the

pressure field [Eq. (2.21)] leads to the conclusion that large bubbles (compared ta those

of the resonant size) will experience a force directed from a pressure antinode towards a

pressure Dode. Conversely, small bubbles will experience a force directed from a pressure

node towards a pressure antinode. This aIso means that the direction of the radiation force

depends on the relative frequency C1) / co r' Thus, a relatively small bubble whose

resonance frequency c.o r is greater than the driving frequency co will be driven from a

pressure node to a pressure antinode. Bubbles of subresonant sizes are important

biologically. Since they move to maxima of P they are set into vibration of high

amplitude, and cause alterations in cells and other structures in these regions. Blake
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(l949a) was probably the tirst person to give a satisfactory account of the origin of this

force. His explanation draws on principles tirst formulated by Bjerknes in 1906, and the

force is often called the primary Bjerknes force.

2.9 Rectified Mass Diffusion

A different nonlinear effect arises under appropriate circumstances involving the

mass transfer of dissolved gas between the liquid and the bubble. This important

nonlinear diffusion effect occurs in the presence of an acoustic field and is known as

"rectified mass diffusion" (Blake 1949b). The threshold pressure from which the tiny gas

bubbles, oscillating around sorne equilibrium radius, start growing by rectified diffusion

is appropriately called the threshold for rectified diffusion. Analytical models of this

phenomenon were tirst put forward by Hsieh and Piesset (1961) and Eller and Flynn

(1965), and reviews of the subject can be found in Crum (1980, 1984) and Young (1989).

A complete mathematical description of the general diffusion problem for a gas

bubble in a liquid and in the presence of an acoustic field would require an equation of

motion, diffusion equation, and heat-conduction equations, in both the liquid and the

bubble, with appropriate boundary conditions at the bubble wall. The problem is further

complicated by the fact that these equations are coupled and the boundary conditions at

the bubble wall must be applied at the moving boundary. The equation of motion is

nonlinear and is coupled with the diffusion equation in two ways. First, and most

important, the diffusion equation depends on the equation of motion through the

convective term u. VC . Second, the equation of motion depends on the diffusion through

Pç , which is a function ofn, the amount ofgas in the bubble.

As has been customary, the problem is simplified in different ways. A relatively

simple application of these equations is to solve the static diffusion problem for a bubble

in the absence ofan applied sound field. This problem was treated by Epstein and Plesset

( 1950 ) in the following manner. A gas bubble is initially at rest in an infinite solution.



As gas begins to diffuse either into or out of the bubble, the bubble wall and the

surrounding liquid will move. However, this motion will be very slow and may be

neglected by omitting the convective tenn in the diffusion equation, which is then written

as ac 1at = DV2C. The diffusion equation no longer depends on the equation ofmotion

and May DOW he solved independently.

The first solution of the dynamic diffusion problem was obtained by Blake

(1949b). He avoided the nonlinearities of the equation of motion by assuming very small

sinusoidal oscillations of the bubble. To avoid the problem of the moving boundary in the

diffusion equation, he assumed the bubble wall to be fixed in space, but allowed the

concentration of gas at the bubble wall and the area of the wall to vary as they would if

the bubble wall were moving.

Hsieh and Plesset (1961) obtained a solution that does include the shell effect.

The problem of the moving boundary was solved by expanding the boundary condition in

a Taylor series about the equilibrium position of the bubble wall. One of the limitations of

their solution is that it is restricted to small sinusoidal oscillations.

ElIer and Flyyn (1965) divided the general problem ioto an equation for the

motion of the bubble wall and a diffusion equation for the concentration of the gas

dissolved in the liquid. They POinted out that the convective tenn in the diffusion

equation should not be neglected. They assumed that the number of moles of gas in the

bubble was approximately constant during a single oscillation as weil as invoked

isothermal or polytropic relation for the gas pressure within the bubble. The equation of

motion for the gas bubble is given by:

(2.27)

•
where R and Ra are the instantaneous and initial values of the bubble radius. Also, Tl is

the polytropic exponent of the gas contained within the bubble, CJ) r the small amplitude

resonance frequency and 'b' a damping tenn applied to the bubble pulsations. Notice that
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the damping term in Eq. (2.27) will he accurate when the bubble is driven near the

resonance frequency.

The diffusion equation for the gas in the liquid is govemed by Fick's law of mass

transfer and is given by:

ac 2
-+u.VC=DV Cat (2.28)

where C is the concentration of dissolved gas in the liquid, u is the velocity of the liquid

at a point and D is the mass diffusion constant. They found an approximate solution of

the diffusion equation which was solved by the method of successive approximations.

The expression for the flux ofgas at the bubble wall was obtained and integrated over the

surface of the bubble to give the rate of change in the number of moles of gas in the

bubble.

cl n = 41tD R C [(~) + R (((RI RO)4 )Jl
/
2] H

d t 0 0 R o 0 1t Dt
(2.29)

where Co is the saturation concentration of the gas in the liquid in moles per unit volume.

The pointed brackets in equation (2.29) imply rime average, t is the time and H is defined

by:

((RI RO)4(pg 1po))

((RI Ra)')
(2.30)

(2.31)

where Ci is the concentration ofdissolved gas in the liquid far from the bubble.

The values of R / Ra to be used in the above equations are obtained by assuming

a series solution of Eq. (2.27) in the form:

~ =1+ a (PA) cos«(J) t +ô) +a.2 K(PA)2 + ....
Ra Po Po

where
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(2.32)

K = (311 + 1- ~2) /4 +(0' / 4RoPo)(611 +2 -4/ 311)

1+ (20' / RoPo)(1-1/ 3T1)

(5 = tan- t
( ~OOrb 2 J

ID -OOr

(? ...... )
_.~~

(2.34)

(2.35)and
'R 2

~2 = PtC)· 0

3TlPo

In order to use the above set of equations, one needs to know the damping of the

bubble pulsations when the bubble is driven near resonance. The expression given below

is due to ElIer (1970) which expresses the total damping constant b in tenns of the

contributions due to thermal, viscous and radiation effects:

b = b t + b v + br (2.36)

and

where br is given by:

b =3( _ 1) [ X(sinh X+ sin X) - 2ecosh X- cos X) ]
r Y X2(cosh X- COSxJ + 3(y -l)X(sinhX - sin xJ

X=R.(::f

(2.37)

b = 400 J.11
v 3" Po

(2.38)

(2.39)

2.9.1 DegassÎng Process

•
Consider a gas bubble in a gassy liquid. It will grow in the acoustic field by the

process of rectified diffusion until it becomes large enough to separate out by the

hydrodYnamic buoyancy force. This illustrates the degassing process, a well-known effect

of stable cavitation. Il is used industrially in such applications as degassing metal melts,
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optical glass, resins and photographie emulsioDS. It is clear that degassing occurs within a

restricted range of Ra and PA and its rate can be maximized by choosing appropriate

values of PA and frequency for the expected bubble size distribution.

2.10 Transient Cavitation

The pioneer studies of Noltingk and Neppiras (1950, 1951) showed that a small

change in either PA, for Ro could sometimes have a dramatic effect on the character of the

radius-time curve calculated from Eq. (2.12). For instance, it was found that for small

bubbles Ra «R r the change in radius occurred as PA was increased above Po- This

change is characterized by a growth of the bubble to at least double, and often Many times

its original size. In other words, the bubble expands to a radius much greater than the

maximum radius reached during stable cavitation, fol1owed by a rapid and violent

col1apse during which the speed of the bubble wall reaches al least the speed of sound in

the liquid ( Fig. 2.6 ). This is called a transient bubble. Transient bubbles generally exist

for less than one, or at most a few, acoustic cycles. They often disintegrate into a mass of

smaller bubbles. For a transient bubble, it is usual to assume that there is no rime for any

mass-flow by diffusion of gas into or out of the bubble. On collapse, transient bubbles

produce very high pressures and temperatures, which cause such phenomena as erosio~

sonoluminescence, sonochemical and biological effects. ln the ultrasonic treatment of a

solidifying melt, transient bubbles can cause breakdown of the dendrite anns.

2.10.1 Transient Cavitation Thresholds

The generation of traIlsient bubbles for small increases in the acoustic pressure

amplitude of a stable bubble i~ unexpected, but Flynn (1964,1975) explains how this

transformation cornes about by writing the acceleration of the bubble interface R in

terms of two acceleration functions:

• R=IF+PF (2.40)
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where

and

3 R.2
IF=---

2 R
(2.41)

(2.42)

•

We have ignored P(t) =-PA sin ID t, which is small at the start of the collapse. Flynn caUs

IF the inertial function because it represents the part of the acceleration due to sphericaI

contraction of the liquide It is always an inward acceleration except at the maximum

radius R max , when it vanishes. As R decreases in magnitude frornR max , IF rapidly

increases in magnitude and is, of course, negative. IF is a function of both R and Rand

hence for each R-t curve there corresponds a different IF function as a function ofR.

On the other band, Flynn calls PF the pressure function because it is a function

only of R and bence is the same for ail R-t curves for a given bubble in a specific liquide

It is a net pressure at the interface divided by the radius. At the maximum radius R max , the

fonction PF is a small inward acceleration but eventually becomes a large outward

acceleration that u1timately arrests the inward motion of the bubble. At sorne radius Rk

between R max and Ra, the function PF will have a mjnimum. The essential characteristic

of PF is that this function changes very little for ail radii between the maximum

radius R
max

and the position Rte of the minimum of PF. Over this range of R, the pressure

at the interface is aImost constant and the bubble behaves as a Rayleigh cavity (bubble)

between R max and R.

Whether a bubble becomes a transient bubble on collapse depends on the

competition between IF and PF. If R max is large enough, a bubble will accelerate to a high

inward speed under the influence of IF before PF takes effect and decelerates it. Flynn

(1964) states that it is possible to show if IF lies below PF at ~, then the bubble will be

transformed mto a transient bubble. The condition for this transformation is that the
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relative maximum radius Rmax 1Ra on expansion should he greater than a minimum value

given by:

(2.43)

where Pgo is the initial pressure of the gas in the bubble and Po is the ambient pressure in

the liquid.

2.11 Liquid Compressibility Effects

For rapid bubble collapse, the compressibility of the liquid must be taken into

account and the simplest way to account for the compressibility effect is to consider a

constant stiffness ( Le. constant sound velocity CI ). This is called "acoustic

approximation" and can be used as the equation of state 8P / 8p = C ,2 • It limits the

analysis to cases where the bubble wall velocity R is always small compared to C and

introduce a loss of energy by sound radiation. By using this approximation, Flynn (1964)

showed that the compressible form of bubble dYnamics equation is:

(2.44)

where PB(t) = P[r =R(t),t].

Herring (1941) included a better description of the storage of energy through

compression of the liquid as weil as sound radiation, and obtained:

•
(

2R) .. 3( 4R).2 1 [ R( R)dPB(t) ]1-- RR+, 1-- R =- PB(t)+- 1-- PlCl

CI - 3e, PI CI CI dt
(2.45)
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Gilmore(1952) was able to account for the fonnation of shock waves when the

bubble wall velocity approaches the velocity of sound using Kirkwood-Bethe (1942)

approximation, which states that the waves are propagated with a velocity equal to the

sum ofthe sound velocity and the fluid velocity. This leads to:

( RJ .. 3 ( R J.' ( RJ R ( RJdH1-- RR+- 1-- R- = 1+- H+- 1-- --
CI 2 3el CI C CI dt

(2.46)

where H is the difference in the liquid enthalpy between the bubble wall and infinity.

Both H and CI are functions of the motion, thus giving a complex equation but a very

accurate one. More details of the subject ean be found in Knapp (1979).

Trilling (1952) presented another equation for the collapse and rebound of a gas

bubble in a slightly compressible liquid based on the acoustic approximation. He assumed

that the veloeity potential cP would satisfy approximately the acoustic equation for

diverging spherieal waves:

(~+C ~Jr$=oat 1 ar (2.47)

This expresses the condition that the quantity ccP is propagated through the liquid with

sonie velocity CI. If gravity and viscosity are neglected, the equation of motion for the

radialliquid flow is:

which integrates to:

au au 1 8P
-+u-+---=Oat ar PI ar

(2.48)

(2.48a)
aep u2 Perl d P

--+-+ J-=0at 2 Pa: P

where P(r) is the local pressure in the liquid, P(0 is the pressure at infinity in the liquid,

and cP and u equal zero at infinity.

Combining Eq. (2.47) with Eq. (2.48a) one gets:
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Bu r BP C Ju
2 C PJ(r) dP C au CI r ap 0

ru-+---+--+ J -+ 1rU-+--=
at PI at 2 Pc PI ar Pl ar

The pressure and velocity at the bubble wall will satisfy the equations:

dP=ap+UBP
dt at Br

dU=8u+ U 8u
dt at Br

(2.49)

(2.50)

where the capital leners refer to bubble wall values. The conservation of mass in radial

flow can be written as:

(2.51)

where CI
2 =dp/dp. Solving the four simultaneous equations (2-48), (2.50) and (2.51)

for four partial derivatives of P and u at the bubble wall and using them in Eq. (2.49) one

gets the motion of the liquid at the bubble wall as:

In the last term, variations in P from its mean value are proportional to(U / C I)2 • If we

neglect higher-order tenns and use dR = U dt, the approximate result is:

or

•
(2.54)
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Keller and Kolodner (1956) took into account the compressibility of water in the

case of an underwater explosion when a bubble of gas is formed at high pressure. This

bubble expands rapidly until its pressure faIls to that of the surrounding water, but inertia

causes it to overexpand. After it ceases to expand, the pressure of the surrounding water

compresses it again to a high pressure. This cycle of expansion and contraction continues

with oscillations of diminishing amplitude. If the water is treated as incompressible,

theory yields undamped oscillations of constant period. However, by treating the water as

slightly compressible, Keller and Koloner predicted damped oscillations with diminishing

period. Comparison of predicted and observed radius-time curves showed good

agreement.

Prosperetti (1993) introduced a general Keller-Herring equation as the equation of

spherical bubble dynamics in a slightly compressible liquid:

[ R].. 3[ ( 1) R] .2 [ ) R Rd] PB - P1+(À.+l)- RR+- 1- À.+~ - R = l+p.. -l -+-- ~-
CI 2 .J Cl CI CI dt PI

(2.55)

•

where P must be regarded as the pressure at the position occupied by the bubble center in

the absence of the bubble. For À. = 0, this equation reduces to the form given by Keller in

1956, while with À = 1, it becomes the equation suggested by Herring in 1941 .
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Nomenclature

b damping constant

C concentration ofdissolves gas in liquid Kglm3

Co saturation concentration ofdissolves gas in liquid Kg/m3

Ci concentration ofdissolves gas in liquid far from bubble Kg/m3

C, sound speed of liquid mis

0 mass diffusion constant m2/s

f frequency 115

fr resonance frequency lis

k wave number

p pressure Pa

Po static pressure in liquid Pa

PClQ far field pressure in liquid Pa

R,Ro bubble radius and initial bubble radius m

R,R bubble wall velocity and bubble wall acceleration mis, m/s2

r distance from bubble center m

T temperature K

t time s

V bubble volume m3

P density of gas kglm3

PI density of liquid kg/m3

a g thennal diffusion constant for the gas m2/s

a phase angle

À. wave length m

TI polytropic index ofgas

y ratio ofspecifie heats ofgas

cr surface tension of liquid N/m

u"f.l, kinematic and dynamic viscosity of liquid m2/s, (N-s)/m2
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Subscripts

g

1

o

angular velocity

resonance angular velocity

normal stress

gas

liquid

initial state

1/s

1/s

Pa
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Chapter3

MODEl DEVELOPMENT AND NUMERICAL

SOLUTION METHOOS

3.1 Introduction

Bubble dynamics is a very fast moving boundary phenomenon and variables

change rapidly with time. In transient bubble dynamics, the pressure waves generated in

the liquid adjacent to the bubble surface can he in the order of severa! hundreds ta

thousands atmospheres. For accurate computations of the high pressure waves generated

due ta violent collapse of the bubble, a special numerical procedure is required ta capture

the high pressure waves. On the other hand, in reactive bubble dynamics, the reactive gas

mixture explodes when it reaches the ignition point of the gas mixture. The chemical

reactions that occur in this case are very fast and the time scale for exothermic reactions

are very smalt. Therefore, due ta having significantly different rime and length scales in,
the mathematical models, the problems are stiff Stiffuess is one of the most difficult

aspects of these types of problems and often controls the method of solution of the

modeled differential equations.

The task of solving comprehensive mathematical models in bubble dynamics is

very complex. A comprehensive mathematical model, which is free of any unrealistic

assumptions and restrictions, is ooly amenable ta the specific numerical methods. AImost

invariably a numerical solution method is required for this class of problems and

solutions can ooly be carried out analytically for small-amplitude motions in which the

equations can he linearized.
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This chapter first gives an overview of the models development and then

describes the numerical methods used for solving the comprehensive mathematicaI

models which are presented in the following chapters. The solution method is based on

using a FORTRAN subroutine, LSODE, the Livermore Solver for Ordinary Differentiai

Equations (Hindmarch, 1980 and 1981). In the computationaI solution, the main program

and the associated subroutines that define the ODE system, the analytical Jacobian matrix

and other necessary subprograms required by the main program have been written.

3.2 Models Development

Comprehensive mathematical models have been developed to simulate the

dynamic behavior of different gas bubbles. The mass, momentum and energy equations

have been taken into account for both gas and liquid regions. In the case of reactive gas,

the ehemical reaction has been modeled by using a two-step Arrhenius-type reaction

model. The physical phenomena occurring al the interface have been considered

including heat and mass transfer. The mathematical models include the constitutive

equations of state for the gas and the medium surrounding the bubble. The equation of

state for the gas is perfeet gas law. The liquid surrounding the bubble is assumed to be

sIightly compressible with constant sound speed. The mathematical models fonn a set of

coupled, highly nonlinear and stiff differential equations. The equation for bubble

dynamics is an ordinary differential equation while the other equations concerning heat

and mass transfer are partial differential equations. In order to convert the PDEs into a

system of stiff ODEs, the partial differential equations are discretized only in space

direction using a semi-discrete method Generally, this technique is based on the

Lagrangian solution method.

For the ease of numerical work, it is convenient to have a fixed rather than a

moving boundary of the bubble. Therefore, the model equations are transfonned using an

appropriate variable [Ç =r / R(t)] to freeze the moving boundary of the bubble. Also, in

order to decrease the number of parameters and minimize computational errors, the

governing equations are non-dimensionalized. The transfonned and non-dimensional
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forro of the mathematical model equations, which constitute an initial value problem,

bave been soIved numerically.

3.3 Numerical Solution Methods

3.3.1 IDitial Value Problem

An initial value problem in the fonn ofa system of fust-arder ordinary differential

equation is shown in Equation (3.1). Second or higher order equations can aImost always

he reduced to systems of tirst order equations.

r =< :~ =f(r(l;),Ç)j
l(Ço) = la = Given

(3.1 )

where y, y , y, and f are column vectors with N (~ 1) components and ç is the__0 -

independent variable, time. In component fonn, equation (3.1) May be written as:

i =1,... ,N (3.2)

•

The above set of equations form what is called the initiai value problem. In this problem,

it is required to find the solution function l at one or more values of ç in a prescribed

integration interval U~o ,Çend]' when the initial value of y, y , at ç=Ça is given. The_ _0

endpoint, Çcnd' May not he known in advance as, for example, when asymptotic values of

r are required as ç~ ex> •
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In order to solve this class ofproblems, it is normally assumed that the problem is

weIl posed and possesses a solution tbat is unique in the interval of interest. Solution

existence and uniqueness are guaranteed if, in the region of interest, f is defined and

continuous and for any two vectors randr· in that region there exists a positive constant

L such that (Shampine, 1975 and Lambert, 1973):

(3.3)

which is known as a Lipschitz condition. Here " Il denotes a vector norm, and the

constant L is known as a Lipschitz constant of f with respect ta y .

3.3.2 Stiff Problems

Initial value, stiff ODE's arise in many fields, such as chemical kinetics, electric

network analysis and any system that displays boundary layer.type behavior. A system

will have boundary layer behavior when there is a smalliength scale that is important in a

small region and a longer scale that is important in the remainder of the system. Many

problems arising from parabolic differential equations. When finite differenced, these

tum out to be equivalent to solving a stiff system of ordinary differential equations

(Ferziger, 1981). Physically, stiffuess occurs when the problem contains widely disparate

time or length scales. Shampine and Gear (1979) discuss sorne fundamental issues related

to stiffness and how it arises. An approximate description of a stiff ODE system is that it

contains both very rapidly and very slowly decaYing terms. AIso, a characteristic of such a

system is that the NxN Jacobian matrix J (= af. /ar), with element Jij defined as:

J.- =8f / rlcr .
IJ 1 VJJ' ij = l,..., N (3.4)

•
has eigenvalues {À j } with real parts that are predominantly negative and aIso vary widely

in magnitude. A quantitative measure of stiffuess is usually given by the stiffness ratio
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max[-Re(Â-J] 1min[-Re(lj)]. A problem with stiffness ratio of order 1000 would he

considered stiff.

The difficulty with stiff problems is the prohibitive amounts of computer time

required for their solution by classicai ODE solution methods, such as the popular explicit

Runge-Kutta and Adams methods. The reason for prohibitive computer tinte

requirements is the excessively small step sizes that these methods must use to satisfy

stability requirements. Because of the approximate nature of the solutions generated by

numericai integration methods, errors are inevitably introduced at every step. For a

numerical method to be stable, errors introduced al any one step should not grow

unbounded as the calculation proceeds. To maintain numericaI stability, classical ODE

solution methods must use small step sizes of order 11 max[- Re(À i )] even after the

rapidly decaying components have decreased to negligible levels. Examples of the step

size pattern used by an explicit Runge-Kutta method in solving stiff ODE problems

arising in combustion chemistry are given by Radhakrishnan (1986). The size of the

integration interval for the evolution of the slowly varying components is of the order

11 min(- Re(lj )]. Consequently, the number of steps required by classical methods to

solve the problem is of the order max(-Re(l)]/min[-Re(À)], which is very large for

stiff ODE's and imply a lot of roundoff (computer related) errors.

3.3.3 Accuracy of the Method

Accuracy ofa numerical method refers to the magnitude of the error introduced in

a single step or, more precisely, the local truncation or discretization error. The local

truncation error ~n at çn is the difference between the computed approximation and the

exact solution, with both starting the integration at the previous mesh point Çn-I and

using the exact solution r(Çn-l) as the initial value. The local truncation error on any step

is therefore the error incurred on that step onder the assumption ofno past errors.

The accuracy of a numerical method is usually measured by its order. A method is

said to be of order q if the local truncation error varies as h nq~l. More precisely, a
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numerical method is of order q if there are quantities C and ho (> 0) such that

(Shampine, 1975 and Dah1qui~ 1974):

for all (3.5)

(3.6)

where hn is the spacing between any two mesh points and I~n1 is an N-dimensional

column vector containing the absolute values of the dl n (i = l~ ... ,N). The coefficient

vector ç may depend on the function defining the ODE and the total integration interval,

but it should be independent of the step size hn • Accuracy of a numerical method refers

to the smallness of the error introduced in a single step; stability refers to whether or not

this error grows in subsequent steps.

3.3.4 Linear Multistep Method (BDF)

The numerical method generates approximate solutions Yn to the stiff ordinary

differential equation at discrete points Çn ( n = 1, 2~ ...). Assuming that the approximate

solutions Yn-j have been computed at the mesh points çn- j (j = 1, 2, ...), this method

advances the solution to the current value çn of the independent variable by using linear

multistep formula of the type:

where \V contains previously computed information and is given by:
-n

q

\Vn=LajYn- J
j=l

(3.7)

(3.8)

•
The term BDF " backward differentiation formula" is used to describe the method

because equation (3.7), upon division by hn Po and rearrangement of terms, can be
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regarded as an approximation for t(çn) in terms of Yn'Yn-p... ,Yn-q (Byme et al.,

1987).

The coefficients {a j } and {J3 j } are detennined such that equations (3.7) will be

exact if the solution to equation (3.1) is a polynomial of degree q or less. Stability

characteristics limit q in equation (3.6) to 6. The coefficients {aJ}and {J3 j} are given by

Gear (1971a) for q ~ 6 and reproduced in Table 3.1.

Table 3.1. Method Coefficients for Backward
Differentiation Formula given by Gear

q 2 " 4 5 6:J

130 2 6 12 60 60- - - - -
3 Il 25 137 147

al 4 18 48 300 360- - - - -
3 11 25 137 147

Q,2 1 9 36 300 450-- -- -- -- --
3 11 25 [37 [47

Q,3 2 16 200 400
- - - -
Il 2S [37 147

Q,4 3 75 225-- -- --
25 137 147

as 12 72- -
137 147

a 6 10--
147

In equation (3.7) the subscript n has been attached to the step size h, indicating

that h n is the step size to be attempted on the current step. When the step size is changed,

the data at the new spacing required to continue the integration are obtained by

interpolating from the data at the original spacing.
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To satisfy accuracy requirements, the BDF method may have to use small step

sizes of the order 1/ max[- Re(Â. i )] in regions where the most rapid exponentials are

active. However, outside these regions, which are usually smaIl relative to the total

integration interval, larger step sizes may be used.

3.3.5 Corrector Iteration Metbod

If J30 =0 in equation (3.7), the method is called explicit because it involves ooly

the known values {Vn_j}and {fn-j}' and equation (3.7) is easy to solve. If: however,

Po "# 0, the method is caIled implicit and, in general, solution of equation (3.7) is

expensive. In equation (3.7), ~o is positive for each q and because fis, in general,

nonlinear, sorne type of iterative procedure is needed to solve equation (3.7).

Nevertheless, implicit method is preferred because it is more stable, and hence can use

much larger step sizes, than explicit method and is also more accurate for the same order

and step size (Lambert, 1973 and Gear, 1971a). Explicit method is used as predictor,

which generates an initial guess for Yn' The implicit method corrects the initial guess

iteratively and provides a reasonable approximation to the solution ofequation (3.7).

The predictor-corrector process for advancing the numerical solution to çn

therefore consists of first generating a predicted value, denoted by Y n[0
1, and then

correcting this initiaI estimate by iterating equation (3.7) to convergence. That is, starting

with the initial guess yn[OI, approximations yn[m] (m = 1,2, ...,M) are generated by

Newton-Raphson iterations until the magnitude of the difference in two successive

approximations approaches zero within a specified accuracy. The quantity Yn[ml is the

approximation obtained on the mth iteration, the integer M is the number of iterations

required for convergence, and we accept Yn[MI as an approximation to the exact solution

~ at çn and therefore denote it by Yn altbough, in general, it does not satisfy equation

(3.7) exactly.
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At each iteration m the quantity ho y o[m), which is defined here, is computed

from Y nlm] by the relation:

y [ml ="1 + h A Y (m)
-n .!..n n 1-'0 -n (3.9)

Now, if Ya (ml converges as m ~ 00, the limit, that is, limm_œ: Yo[ml , must be a solution of

equation (3.7) and yn[m) converges to fo[= f(Yn)], the approximation to ~(çn)' Hence

hnyn[ml is the mth estimate for ho fn and limm_~ ho y n(ml = hnf n• The predicted value

of h
D
fn , denoted by hnyn(0) , is also obtained from equation (3.9) (by setting m = 0). In

practice, we terminate the calculation sequence at a fmite number M of iterations and

accept as an approximation to ho f n the quantity ho y n == hn y n[M], which is obtained

from Y D[MI by using equation (3.9). Note that Yn is only an approximation to fn

because Y n[M) does not, in general, satisfy equation (3.7) exactly. Moreover, because

y n[MI is defined to satisfy the solution method~ in the sense of equation (3.9), it is not

necessarily equal to f(yn[M)). Therefore yn[MI and yn(M) do not necessarily satisfy the

ODE, equation (3.1). Thus, in practice, to advance the solution, the method uses the

{y j } rather than the {fJ } as written in equation (3.7).

After convergence of the estimates Yn[ml , we could defme YD(M] to he equal to

f(Yn[M)) , so that Y0 [Ml and Yo[M) satisfy the ODE exactly.

The predicted values at çn' y n[0
1, is generated by a qth-order explicit fonnula

similar to equation (3.7) (Gear, 1967 and 1969):

q
[0) , • • y.y n = L.... a j Yn-j + hn J31 _0-[

j:c:1

(3.10)
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(3.11)

In the equation (3.10) Yn-j is tPe approximation to f n- j computed on the step

[çn-J-I ,çn-j]. The coefficients {a j.} and {p j.} are selected such that equation (3.10) will

be exact if the solution to equation (3.1) is a polynomial ofdegree q or less.

The predictor step can he generalized as:
y [0] _ •
-n - 0/ n

where \JI • is given by the right-hand sides ofequations (3.10).
-n

Ta correct the initial estimat~ given by equation (3.11), that is, ta solve equation

(3.7), Newton-Raphson iteration metP0d is used.

3.3.6 Newton-Raphson Iteration

Newton-Raphson (NR) iteration converges quadratically and can use much larger

step sizes than other iteration techniqves (Lapidus et al., 1971). Rapid improvement in the

accuracy of the estimates is especi~y important because the corrector is iterated to

convergence. The reason for iterafÏI1g to convergence is to preserve the stability

characteristics of the corrector. If the correction process is terminated after a fixed

number of iterations, the stabi1ity characteristics of the corrector are 10st, with disastrous

consequences for stiffproblems.

To drive the NR iteration procedure, we rewrite equation (3.7) as:

(3.12)

•

so that solving equation (3.7) is equivalent to finding the zero of R. The quantity

R(Yn[m]) is the residual vector on the mth iteration; that is, it is the amount by which

y n[ml fails to satisfy equation (3.7). To obtain the (m+l)th estimate, we expand equation

(3.12) in a Taylor series about th~ mth estimate, neglect the second and higher

derivatives, and set R(Y n[m+l)) =0 b~cause we seek a Yn [m+lJ that produces this resuIt.
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Performing these operations and then rearranging terms give the following relation for the

NR iteration technique:

where the NxN matrix P is given by:

aR
p =~ = 1- h flo Jay otJ

In equation (3.14),1 is the NxN identity matrix and J is the Jacobian matrix.

We now define the vector function ~(~) by:

'4' -y
g(y) = hni(Y) + -0 -

- - - ~o

Comparing equation (3.15) and (3.12) shows that:

RŒ) = -J3o~(Y)

so the equation (3.13) can be rewritten as follows:

y [m+1l = y [ml + fl p-Ig(y [ml)
-0 -0 tJo _-n

(3.14)

(3.15)

(3.16)

(3.17)

The NR iteration procedure for ho yn is derived by subtracting equation (3.9)

from the (m+l) th estimate equation and then using equation (3.17). The result is:

(3.18)

This iteration will converge provided that the predicted value is sufficiently

accurate. The prediction method, equation (3.1 1), provides a sufficiently accurate initial

estimate that the corrector will converge after a few steps (typically three) (Lambert,

1973).
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3.4 LSODE Subroutine

The LSODE bas been designed for the numerical solution of a system of first­

order stiff ordinary differential equations (ODE's) given the initial values. Second or

higher order equations can he reduced ta systems of tirst arder equations. It is based on,

and in Many ways resembles, the subroutine Gear, whicb, in tum, is based on the code

DIFSUB, written by Gear (l971b). AlI three codes use integration methods that are based

on a constant step size but are implemented in a manner that allows for the step size to be

dynamically varied throughout the problem. When the step size is changed, the data at the

new spacing required to continue the integration are obtained by interpolating from the

data at the original spacing (Byme et al., 1987).

The solution method replaces the ODE's with difference equations and then

solves them step by step. Startîng with the initial conditions at Ço, approximations

Yn(= Yi .n, i = 1, ... ,N) to the exact solution r(çn) [= Yi(Çn)' i = 1, ... ,N]of the ODE's

are generated at the discrete mesb points çn (n = 1,2,... ), which are themselves

determined by the subroutine.

For stiff problems, LSODE uses the backward differentiation formula (BDF)

method (Gear, 1971a), which is among the most popular currently used methods for such

problems. The BDF method possesses the property of stiff stability and therefore does oot

suffer from the stability step size constraint once the rapid components have decayed to

negligible levels. In this subroutine, BDF's of order up to only 5 are used because of

additional stability considerations (Shampine et al., 1979). Throughout the integration the

step size is limited only by accuracy requirements imposed on the numerical solution.

The code starts the integration with a fust-order method and, as the integration

proceeds, automatically adjusts the method arder and the step size for optimal efficiency

while satisfying prescribed accuracy requirements. At each step the method employs a

predictor-corrector scheme, wherein an initial guess for the solution is first obtained and

then the guess is improved upon by iteratioo. That is, starting with an initial guess,

3-12



•

•

denoted by yll[O), successively improved estimates yll[m
l (m = 1"... , M) are generated

until the iteration converges, that is, further iteration produces little or no change in the

solution. Here Y Il [ml is the approximation computed on the mth iteratio~ and M is the

number of iterations required for convergence.

A standard explicit predictor formu1~ a Tylor series expansion method devised by

Nordsieck (1962), is used to generate the initial estimate for the solution. A modified

Newton-Raphson iteration technique is used for correcting this estimate.

3.4.1 Program Structure

The double-precision version of the code consists of the main core integration

subroutine, LSODE along with the 20 other subprograms and a black data module for

loading sorne variables. Table 3.2 lists the subprograms in the arder they appear in the

code and briefly describes each subprogram. The structure of the computational solver is

illustrated in Figure 3.1, wherein a line connecting two subroutines indicates that the

lower subroutine is called by the upper one. LSODE has been designed to be used as a

single unit, and in normal circumstances the user needs to communicate with only a

single subroutine. In addition ta input parameters whose values are required by the code,

the user can set values for severa! other parameters to control the solution methods and

the output from the code.

In Figure 3.1, F is a subroutine that computes the derivatives dy i 1d ç Ci = 1,...,

N), whereYi is the ith component of r and N is the number of ODE's. The subroutine

JAC is aIso a subroutine that computes the analyticai Jacobian matrix J (=af /ay),

where f =dy 1dç. Both subroutines have been wrïtten and created in this study. AlI

input parameters and other necessary subprograms (like time-averaged calculations in

Chapter 5 and calculations of temperature-dependent thermodynamic parameters in

Chapter 7) required by the main program have been wrinen.
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Table 3.2. Description ofSubprograms used in LSODE

Subprogram Description

Main core integratioD subroutine. Checks legaIity of input,
sets wode array pointers, initializes work arrays, computes

LSODE initial integratioo step size, manages solutions of ODE's,
and retum to callin~ subroutine with solution and eITors.

INTDY Computes interpolated values of the specified derivative
ofthe depeodent variables.

STaDE Advances the solution of the ODE's by one integratioD
step. Also, computes step size and method order to he
atternpted 00 the next step.

CfODE Sets method coefficients for the solution and test constants
for local error test and step size and method order
selection.

PREPI Computes the iteration matrix and either manages the
subprogram cali for its LU-decomposition or computes its
inverse.

SOLSY Manages solution of linear system arising from chord
iteration.

EWSET Sets the error weight vector.

VNORM Computes weighted root-mean-square norm ofa vector.

SRCOM Saves and restores contents of common blacks LSOOOI
and EHOOOI.

DIMACH Computes unit roundoff ofthe computer.

XERRWV Handles error messages.

XSETF Resets print control flag.

XSETUN Resets logical unit number for error messages.

DGEFA Performs LU-decomposition of a full matrix by Gaussian
elimination.

DGESL Solves a Iinear system ofequations using a previously LU-
decomposed full matrix.

DGBFA Performs LU-decomposition of a banded matrix by
Gaussian elimination.

DGBSL Solves a linear system ofequations using a previously LU-
decomposed banded matrix.

DAXPY Forms the sum ofone vector and another times a constant.

DSCAL Scales a vector by a constant.

DnOT Computes dot product oftwo vectors.

IDAMAX Identifies vector component ofmaximum absolute value.
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Fig. 3.1. Structure of the computational solver
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rNPUTDATA
ISTATE = 1
TOUT= t l

TEND =t:

caU

LSODE

Compute step size for first step 1------...and fonn initial history array

Yes

CaU STODE ta advance
solution by one integration
step and computes step size

and method order for
the next step

Cali EWSET for
error weight vector

Yes

Compute unit roundoff of computer. caU F
for derivatives of initial conditions and

EWSET for error weight veetor

•

Set:
ISTATE =2

TOUT =TOUT+dt

CaU INTDY ta compute
solution Y at TOUT
by interpolated values

Fig. 3.2. General flowchart ofthe computational solver



Chapter4

EFFECT OF A HYDROGEN BUBBlE IN A SOLIDIFYING

AL-CU ALLOY MELT UNDER VARIOUS

ULTRASONIC PRESSURE FIELDS

4.1. Introduction

4.1.1 Hydrogen Bubble Formation

The soundness of any Metal is largely determined by the behavior of gases

entrapped in the solidifying melt. Agas, which dissolves freely in the molten Metal, is

much less soluble in the solidified state of the metal. Therefore, as the metal solidifies,

gas is usually forced out of solution. Once the dendrites have already formed during

solidification, the bubbles of expelled gas become trapped by the dendrite arms and are

prevented from rising to the surface. Most of the aluminium alloys and sorne of the

copper alloys are susceptible to in situ 'gassing , of this type, caused mainly by hydrogen

dissolved from the furnace atmosphere. At the surface of the liquid aluminum there is a

lot of water vapor and new crucibles always contain sorne moisture in their pores. The

ptoducts of combustion of most fuels contain 10% to 20% water vapor. Natural gas will

produce up to 2m3 of water vapor for each cubic Meler of gas bumed. Most hydrogen
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,which finds its way into molten aluminium, comes from the dissociation of moisture

(water vapor).

In order for a sphericaI gas bubble to exist in a melt, its internaI pressure, Pi, must

he sufficient to overcome ail of the external forces which can act to make it collapse.

These are:

• the atmospheric pressure acting on the melt surface Patm ;

• the metallostatic head pressure PH ;

• the forces due to the surface tension of the melt 2 cr / R ;

While Patm and PH are not excessively large in most casting operations, the surface

tensions of metals are very high, and of course when a gas bubble begins to fonn, the

bubble radius is extremely small. Thus, the term 2 cr / R is very large, and high values of

the internai pressure are necessary to form a bubble. This internai pressure is made up of

two components:

1) PG, the interna! gas (hydrogen) pressure. This is significant only in the very last stages

of freezing when large amounts of hydrogen have accumulated in the pockets of

interdendritic liquid due to the decrease in solubility in the solid.

2) Ps, the shrinkage pressure, best viewed as a tensile stress ID the pockets of

interdendritic liquid due to the solidification shrinkage of this liquid, and the inability of

this shrinkage to be fed through the almost completely frozen dendrite mesh.

In order for a gas bubble to be stable and to grow, the following condition must

prevail:

Pg + Ps ~ Pann + PH + 2 cr / R

The above condition can prevail ooly in the final stages of the freezing process. Sïnce

usually the combined sum of the gas pressure PG and the shrinkage pressure Ps is

insufficient to cause bubble nucleation, sorne foreign partie/es (nonwettable by the melt)

are necessary to assist in heterogeneous nucleation of the gas bubbles [see Gruzeleski

(1990)] .
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4.1.2 Ultnsonic Treatment

Conventional methods of casting cannat provide the quality of metal needed for

sorne modem requirements to the properties of alloy products. Among the newer physical

methods for treating solidifying metals, one of the most promising is ultrasonic treatment

(UST) at high intensity [Eskin (1996)].

The high-powered ultrasonic treatment ofa crystallizing aluminium alloy melt can

play an important role in obtaining fine crystals and a greater number of nuclei. The grain

refinement can be achieved by the effect of bubble dynarnics when the solidifying melt is

subjected ta an imposed sinusoidal pressure field of a panicular frequency and amplitude.

In ultrasonic treatment of a solidifying melt, the high pressure waves generated due ta

violent collapse of the entrapped bubbles create special conditions abetting the

crystallization process. The high pressure waves must be taken into account as one of the

factors responsible for breakdown of the dendrites. Dendrite fragments become nuclei

during metal crystallization process in an ultrasonic field, which lead ta the refmed

crystalline structure of the Metal. Figures 4.1 and 4.2 show schematically how the fracture

ofdendrite arms during ultrasonic treatment ofa solidifying melt might take place.

The high pressure waves are aIso a source of local disruption of thermodynamic

equilibrium in the mell. The pressures generated in the melt can effect an upward shift of

the melting point. An increase in the pressure in the melt is analogous to an increase in

the supercooling and can give rise to an increase in the nucleation rate of the

crystallization centers. Grain multiplication mechanisms, such as the effect of ultrasonic

treatment of the mell, result in more equiaxed structures that are more isotropie and

composionally homogeneous. Grain refinement is best when the melt is cooled slowly

with the ultrasonic irradiation continuing until solidification is nearly complete.
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4.2. Literature Review

Metallurgical effects of ultrasonic waves were reviewed extensively by Hiedmann

(1954). Although, he explicitly pointed out the significant reduction in grain size as the

consequence of the ultrasonic treattnent of a melt but he could not explain the real

mechanisms behind the observed effects. Nikolaichik (1958) introduced ultrasonic

irradiation to melts of both gray and white cast Ïron. Modifications were noted to both

structure and mechanical properties. Graphite formations were refined as weIl as the

uniformity in their distribution in the ultrasonically cast product was increased by up to

10 times. Mechanical properties reported included increase in V.T.S. from 150 MPa to

500 MP~ increase in ductility from 0% to 4% and increase in hardness from 1600 HB to

1800 HB. Hunt and Jackson (1966) demonstrated experimentally that nucleation of solid

occurs when a cavity collapses. They found extremely large pressure in the melt due to

the collapse of a cavity. The change of melting temperature with pressure was described

by the Clapeyron equation (1968) which provided the undercooling required for the

nucleation. Campbell (1981) published a review of the available knowledge in this field,

including various experimental results conceming the effects of vibration frequencies and

amplitudes of the imposed ultrasonic field.

The mechanism of Metal solidification in an ultrasonic field and associated

structural changes in ingots was described qualitatively by Abramov (1987). He showed

that when a solidifying melt is treated by ultrasound, fine equiaxed grains are fonned and

colum.nar structure are eliminated (Figure A.l). He reponed that, in the case of ultrasonic

treatment of carbon steels, the grain size reduces from 200 microns to 25 microns. The

columnar structure is eliminated and fine equiaxed grains are formed with corresponding

increases (40%) in ductility and (30%) in mechanical strength of the metals (Table A.l).

Cherepanov and Popov (1986) studied numerically the influence of an altemating

extemal pressure on the evolution of a gas bubble in a melt. They pointed out that, if the

field amplitude and frequency are sufficiently high, equal (or close) to the bubble's

natural frequency, sealing of the bubble might be possible, followed by emission of high

pressure waves near the bubble. Numerical analysis of the dynarnics of variation of a
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bubble's radius and the pressure in the melt near the bubble's surface was carried out by

Sobolev (1985), (1989). He studied the behavior of a gas bubble under an applied

sinusoidal pressure for the resonant, pre-resonant, and post-resonant frequencies.

AIl of the above investigators, for the sake of simplification, have assumed that

the gas pressure inside the bubble changes ~abaticallyduring the collapse and rebound

cycles. They altogether have neglected the energy equation for the gas inside the bubble

as weIl as the energy equation for the melt surrounding the bubble. By ignoring and

neglecting the energy equations in their assumptions these authors have made remarkable

errors in their numerical results. In order to predict the temperature field in the melt

surrounding the bubble it is necessary to incorporate the energy equation in the modeling

of bubble dynamics under the present situation. AIso, the numerical methods used by

these authors ( i.e., Runge-Kutta ) were not appropriate schemes for solving their stiff set

of modeled equations. For the calculations of the temporal variations of the bubble radius

and the pressure in the melt during the rapid collapse and rebound of the gas bubble more

accurate and sensitive numerical schemes are necessary due to the fast motion of the

bubble surface.

Eskin (1994) carried out an investigation of solidification of light alloys in an

ultrasonic field. He observed that cavitation, especially when it is weIl developed in a

solidifying mell, bas a considerable grain refining effect. He studied the influence of

cavitation treatment 00 the impurities, mainly oxide particles, in the aluminium alloy

melts. He pointed out that these particles, less than equivalent to 1.0 f.UIl in size, being

non-wettable by the melt and do not take part in the solidification process. The cavitation

treatment of the melt geoerates high pressure pulses in the melt which effect physical

changes on these particles. The defects on oxide particle surfaces filled with the matrix

melt ensure the transformation of these non-controlled impurities to active solidification

nuclei. Guyon and Yavari (1994) performed experiments on the microstructural effects

of ultrasonic vibrations applied during planar flow casting of steels. They used sound

waves in the frequency range of tens of kilohertz ta the melt crucible during the planar

flow casting of Fe-Cr steels. The 10 mm wide strips were obtained with and without the

application of the ultrasound. The strips obtained from the ultrasonic treatment of the
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melt showed sorne modifications of texture and microstructure as weIl as destruction of

directional solidification pattern.

4.3. Mathematical ModelliDg

In order to mathematically taclde the effect of the ultrasonic pressure field on

bubble dynamics and the resulting affect on the crystallization of a solidifying Al-Cu

melt, a number of reasonable assumptions about the physical characteristics of the

phenomenon are made:

i) The bubble remains spherical and the bubble center is motionless.

ii) The melt surrounding the bubble is quasi-homogenous.

iii) The gas pressure within the bubble is uniform while the gas temperature and gas

density are non-unïform (the characteristic rime of temperature equalization in the bubble

exceeds the time ofpressure equalization).

iv) The bubble gas is thennally perfect but calorically imperfect.

The mathematical model, to he developed in the following section, is based on the

differential fonn of the following conservation equations:

1- Mass conservation equations for the gas and the melt surrounding the bubble.

2- Conservation of the momentum of the gas within the bubble and the melt.

3- Conservation of energy for the gas and the melt.

The differential fonn of the above equations in the spherical coordinates cao be written as

follows:

Mass conservation equation for the gas:

ap
-+V.(pu) =0at

Mass conservation equation for the melt:

(4.1)
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1 a 2-,-Cr v)=O
r- ar (4.2)

The mushy zone of the solidifying melt surrounding the bubble was modeled based on the

concept ofporous media formulation.

The momentum equation for the mel~ in the spherical coordinates, can be \Witten in the

following fonn [Sobolev (1985)]:

av av 1 ap J.L Jl a 2 av
-+v-=-------v+--.,[-Cr -)-2v]
at ar Pt ar Pt ID Pt r - ôr ar

(4.3)

In this study, the momentum equation for the melt flow inside the mushy region formed

by the growing dendrites of the solidifying melt is based on the Brinkman-Darcy equation

for a tlow in a porous media. The permeability of the porous media, as a function of

porosity (liquid fraction), was calculated using the well-known Carman-Kozney equation:

(4.4)

where Do depends on the morphology of the porous media. Here it bas been estimated

from the expression given by the experimental results ofDiao et al. (1994):

(4.5)

(4.6)

•

where ~d 'is asswned to be a constant and is in arder of the secondary dendrite arm

spacing (SDAS).

From the continuity equation of the melt one can easily show that:

R2 dR
v=--

r 2 dt
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The equation for the bubble radius is based on the modified Rayleigh-Plesset equation of

bubble dynamics:

3 . ,.. 2er 4~ v .
-p R-+pRR=P -P -------pRR2 lIai) R R m 1

The energy equation for the gas within the bubble is given by:

Oh Op
p---=V.(K VT )

Dt Dt g g

The ideal gas equation ofstate is:

(4.7)

(4.8)

(4.9)

From equations (4.1), (4.8) and (4.9) one can obtain the following expressions for the

velocity field and gas pressure rate within the bubble.

1 arg rI?
u=-«y-I)K---)

yP ar 3

. 3 aTg •
P=-[(y -1)K- -yPR]

R ar R

(4.10)

(4.11 )

•

By using the above equations, the energy equation for the gas (4.8) can be written in the

following form:

ars (y -1)Kg arg r P arg (y -1)Tg • (y -1)Tg Kg 2
-+( --)-- P= \l T (4.12)at y P ar 3y P ar y P y P g

The energy equation for the solidifying melt can be written in the following form [Epstein

(1994)]:
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r~R (4.13)

where E is the liquid fraction (porosity) in the dendritic mushy region, Cm is weighted

average specifie heat and Km is weighted average thennal eonductivity.

Cm =EPI CI +(1-E)PsCs

Km =eKI +(1-E)Ks

4.3.1. Transformed and Non-dimensional Equations

(4.14)

(4.15)

(4.16)

•

For the numerical work, it is eonvenient to have a fixed rather than a moving

boundary of the bubble. Therefore, the goveming equations are transformed ·using a

suitable variable (Ç) that " freezes " the moving boundary of the bubble. Also, in order to

decrease the number of parameters and minimize computational errors, the governing

equations are non-dimensionalized. The transformed and non-dimensional forms of the

mathematical model equations are:

R
O

• = _~R2
__1_ R __1__1_+ 1 P-Pap ~R

2 R Re R 2 We R2 M 2 R mP
m

(4.17)

-:- 3 9g aTg - •
p ==[(y -l)-=-- -y PR] (4.18)

R R aç ':;=1

9.(y-1) 8T. 8T.r 8T (y-I)T.7 9.(y-l)T. 2-
T = (-- r)_+ P+ V T (419)

g P R 2 ar ar ~ ar P P R2 g •y ~ "':: C;.I ":l Y Y
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* 1 •&~ . RR ~- 2~· 81; • R2

11 ==:;[~ -,+(-CI -.,+RRC+--)-+12f.l -]
R- . aç- ç- - ç aç ç6 (420)

where
1 4 J.1 to 1 20' t o

2
1 ta

2
Po r

-= -= -= ç = R(t)Re 2 We PI R0
3 M2 ,

PIRo PoRo-

KgToto C. _ ePI CI Km to . J.Le = .
G Rolpo

(- Km = J.L =
Cm Cm R o

l Cm Ta ta

- R "7" Rt o - Tg - TIR=- R=- T =- ~=-
Ra Ro

g T Taa

t - P - p Cp
t=- p=- p=- y=- (4.21)

. ta Po Po Cv

4.3.2. Initial Conditions

The initial conditions for the set ofequations are:

at t=O

R =1, R= 0, Ji= l, (Tg)j = 1, j = 1 to 150

(~ ) j =l , j =1 to 50 (4.22)

Initially, the bubble is at rest and is in equilibrium with the surrounding melt. In Table

4.1, input parameters for this study are shown. The following equations are used for the

equilibrium condition:

•
Ta = 915.0 K (4.23)
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• Table 4.1. Input Parameters for the Solidifying Melt

Parameter [unit) AI • 3.4 Pet Cu

Ks [W/ (m-K)] 158.0

KI [W/ (m-K)] 100.0

Cs [ J/(kg-K)] 1150.0

CI [ J/(kg-K)] 1250.0

Ps [ kg/m"'] 2590.0

PI [kg/m'; ] 2410.0

Il [(N-s)/m2
] 1.5 x 10-"'

cr [N/m] 0.914

SDAS [ml 90.0 x 10-6

& 0.5

In this study, the pressure of the undisturbed melt, Puis taken as 1.1x lOs Pa. For

the calculation of the characteristic bubble collapse time to' the period of linearized

oscillation due to a small perturbation around Pu with damping decrement Ô is used

[Sobolev (1989)].

where

4.3.3. Boundary Conditions

(4.24)

•
The boundary conditions for equation (4.19) are:
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oSç:$ 1

aTg
-=0 for ç=Oaç

ëfg t~=1 =ëfI L;=I and Tg = ~nt for ç= 1

The boundary conditions for the equation (4.20) are:

1 sç S 1.34

(4.25)

for Ç=l (4.26)

1; = 1 for ç ~ 1.34

In the calculations all physical propenies were considered to be temperature dependent.

The dynamic pressure field in the melt surrounding the bubble can be obtained by

integrating the momentum equation for the melt [Eq. (4.3)] with respect to r and

combining it with the equation ofcontinuity [Eq. (4.2)].

4.4. Numerical Solution Methods

PIR4R1 + J.1R1R
2r4 mr

(4.27)

•

The mathematical model forms a set of coupled, highly nonlinear and stiff

differential equations. In order to convert the PDEs into a system of ODEs, the partial

differential equations were discretized only in space direction using the second order

central difference scheme.

The number of grid points within the bubble and surrounding the bubble (inside

the liquid) were taken to be 150 and 50, respectively. Therefore, the non-dimensional
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inter-grid distance is I/(M-I), where M is the number of equi-spaced grid points within

the bubble. In this case the number of non-linear, coupled ordinary differential equations,

which have been solved in each iteration, was 203. These equatioDS are; equation for the

bubble radius, equation for the bubble wall velocity and equation for the gas pressure.

The gas pressure was considered uniform within the bubble. The gas temperature field

inside the bubble and the liquid temperature field surrounding the bubble constitute 150

and 50 equations, respectively. As described previously, due to having significantly

different time and length scales in the mathematical model, the problem is stiff.

Therefore, the modified Gear method, which is good for solving a set of nonlinear stiff

ordinary differential equations, was applied.

To verify the algorithm, numerical tests were performed to ensure that the

solutions were "grid independent". Four different grid point numbers have been used and

are designated as case A, case B, case C and case D. In case A the number ofgrids within

the bubble and surrounding the bubble (inside the liquid) were taken to be 150 and 50,

respectively. While in case B the number of grids within the bubble and inside the liquid

were considered to he 200 and 100, respectively. In case C the number of grids within the

bubble and inside the liquid were assumed to be 450 and 150, respectively. In the latter

case the number of ordinary differential equations, which have been solved in each

iteration, was 603. In case 0 the number of grids within the bubble and inside the liquid

were assumed to be 20 and 10, respectively. Figures 4.3 to 4.6 show that the results from

the grid distribution for the case A are aImost identical to those from cases B and C.

Therefore, for the sake of computational costs, the case A. grid distribution is used for all

computations reported here.

4.5. Results and Discussion

During the ultrasonic treannent of the aluminium-3.4 wt pet copper alloy melt, the

pressure experienced by the gas bubble is Pap =Pu - Pm Sin(21t ft), where Pu is the

pressure of undisturbed melt and Pm and f are the ultrasonic pressure field' s amplitude

and frequency, respectively. In arder to obtain the most effective use of the bubble
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dynamics onder the ultrasonic pressure field one needs to know how it is affected by the

key process variables namely, Ra. 00, Pu and Pm. In conformity with the bubble sizes in a

typical Al-Cu alloy melt, the initial diameter ofhydrogen bubbles are assumed to he 5, 10

and 20 J.lIIl and the pressure of the undisturbed melt and the ultrasonic pressure amplitude

are considered to he 0.11 and 0.5 MPa, respectively. In Figures 4.3-4.11, the initial

diameter ofbubble is assumed to he 10 J.U1l. For Figures 4.3-4.6, the ultrasonic frequency

is chosen near the bubble's resonant frequency (0.8 MHz) which was calculated from

Eqs. 4.23. Figure 4.3 shows the history of bubble radius. The action of bubble dynamics

is based on the generation of a pressure wave due to the violent collapse of the gas

bubble. As shown in Figure 4.4, the peak pressure near the bubble surface is in the order

ofseveral hundreds to thousands atmospheres. The bigh pressure pulse must be taken iota

account, tirst, as one of the factors responsible for the breakdown of the dendrites and,

second, as a source of local disruption of thermodynamic equilibrium in the melt.

Dendrite fragments become nuclei during Metal crystallization in an ultrasonic field,

which lead to the refined crystalline structure ofthe Metal. The high pressure generated in

the melt can effect an upward shift of the melting point. An increase in pressure in the

melt is analogous to an increase in the supercooling and can give rise to an increase in the

nucleation rate of the crystallization centers. It is to be noted that under an alternative

pressure field, the temperature within the bubble rises (Figure 4.6) due to compression

work on the bubble and the assumption of ideal gas. The heat energy from the gas inside

the bubble is transformed into the melt, which tends ta heat up the zone immediately

adjacent to the collapsing bubble. But as shown in Figure 4.5 due ta thennal boundary

layer in the melt side of the bubble the amount of temperature increase is not remarkable,

compared to the increase of supercooling, to inhibit the nucleation of new crystallization

centers. Figure 4.6 shows that due to violent collapse of hydrogen bubble the gas

temperature at the bubble center reaches a maximum value ofabout 3050 K.

Figures 4.7 and .4.8 show the bistory of the melt pressure adjacent to the bubble

surface for ultrasonic frequencies of 100 kHz and 2 MHz, respectively. In the case of

ultrasonic frequency of 2 MHz the peak pressure reaches about 0.5 MPa, which is not an

effective value for the microstructural refinement. In fact, the gas bubble can not collapse
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deeply if the frequency of the ultrasonic wave is more than its resonant frequency. In

Figures 4.9 and 4.10 the history ofbubble radius as weil as the ultrasonic pressure cycles

of 100 kHz and 2 MHz are shawn. Figure 4.10 shows that the gas bubble does not

collapse deeply but the bubble radius oscillates around its initial radius in a complex

manner. In other words, the bubble does not reach its minimum radius before the

ultrasonic pressure field bas changed sufficiently to cause it to expand. This statement is

aIso true for the expansion cycles of the gas bubble.

ln Figure 4.11 variations of the melt pressure with distance from the bubble

surface for different instants in rime during the violent collapse of the bubble is shown. In

this figure the conditions correspond to those of Figure 4.4. It is to be noted that the

vertical axis is in a logarithmic scale and the distance frOID the bubble is non­

dimensionalized with the initial bubble radius. As shown, the high pressure generated in

the melt is in the range of235 MPa al very close to the bubble surface and reduces rapidly

to 2.5 MPa al the non-dimensional distance of 20 al the lime instant of 0.0036 msec.

Figures 4.12-4.17 are ploned to portray the effects of the initial bubble diameter

on bubble dynamics and the high pressure generated in the melt surrounding the bubble.

In Figures 4.12-4.14 the initial bubble diameter is chosen to be 5 J.1Ill which is half of the

previous cases. AIso, the ultrasonic frequency is assumed to be 800 kHz while the

resonant frequency of the bubble is 21 70 kHz ( pre-resonant case). The pressure of the

undisturbed melt and the ultrasonic pressure amplitude are considered ta be 0.11 and 0.5

MPa, respectively. As shown in Figures 4.13 and 4.14, the pressure generated in the melt

is in the range of 340 MPa al very near the bubble surface and drops down to 3.5 MPa at

the non-dimensional distance of20 at the rime instant of 0.001 ms.

In Figures 4.15-4.17, the initial bubble diameter is chosen to be 20 flIll. In Figures

4.15 and 4.16, the ultrasonic frequency is assumed to be 800 kHz while the resonant

frequency of the bubble is 332 kHz (post-resonant case). Figure 4.15 shows that the gas

bubble does not collapse deeply and in this case the peak pressure reaches only about 0.8

MPa (see Figure 4.16). As shown in Figure 4.17, when the ultrasonic frequency is chosen

to be 100 kHz ( pre-resonant case), the peak pressure in the melt surrounding the bubble

reaches 18 MPa.
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In order to obtain the tensile strength of dendrite arms, a regression analysis was

used to establish the relationship between the tensile strength of the aluminium cooper

alloy and temperature ( see Figure 4.18 ). The data used in plotting the graph were

obtained fram the Metals Handbook (1990). By using the equation shown in Figure 4.18,

the calculated tensile strength of dendrite anns is found to be around 1.027 MPa. The

dendrite arms are subjected to the impulsive pressure produced during the violent

collapse of the bubbles. Figures 4.11 and 4.14 demonstrate that even far from the bubble,

the impulsive pressure is sufficiently high to fracture the dendrite arms.

4.6. Concluding Remarks

In this study, a mathematical model, along with a nwnerical scheme, has been

developed to predic! the dYQamic behavior of a spherical hydrogen bubble in an

aluminium-3.4 wt pet copper alloy melt under an ultrasonic pressure field. The radial

motion of the bubble is considercd to be govemed by the modified Rayleigh-Plesset

bubble dynamics equation. The mushy zone surrounding the bubble was modeled based

on the transport equations for a porous medium. The thermal energy exchange between

the bubble and the surrounding melt is taken into account by solving both energy balance

equations for the gas within the bubble as weIl as the melt surrounding the bubble. In

order to demonstrate the concept of the model, the ultrasonic treatment of the aluminium­

3.4 pet copper alloy melt with hydrogen bubbles is studied for pre-resonant, resonant and

post-resonant frequencies. It is found that the ultrasonic frequencies beyond the resonance

frequency of bubbles do not have any useful effect on the melt. AIso, the computed

dynamic pressure in the melt surrounding the hydrogen bubble demonstrates that even far

from the bubble surface, the melt pressure is sufficiently high and can cause the dendrite

anus to fracture. The action of bubble dynamics on the solidifying melt is based on the

generation of high pressure waves due to the violent collapse of the gas bubble. The high

pressure waves must be taken into account, firs!, as one of the factors responsible for

breakdown of the dendrites. Dendrite fragments become nuclei during metal

crystallization in an ultrasonic field, which can lead to the refined structure of the cast.



•

The high pressure waves are also a source of local disruption of thennodynamic

equilibrium in the melt. The high pressure generated in the melt can effect an upward

shift of the melting point.

The history of bubble radius and pressure and temperature history of the melt

adjacent to the bubble surface have been obtained for different frequencies of the

ultrasonic pressure field. The results show that the peak pressure generated in the melt

may reach severa! hundreds to thousands atmospheres depending on the initial bubble

size and the characteristics of the imposed ultrasound field.
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• Nomenclature

Cv, Cp specific heat at constant volume and constant pressure J/(kg-K)

K thermal conductivity W/(m-K)

Mw molecular weight ofgas g/mole

penneability ofmelt in the mushy zone
.,

m m-

P pressure ofgas inside the bubble Pa

Po initial pressure ofgas inside the bubble Pa

Pap applied pressure in melt Pa

Pu pressure ofundisturbed melt Pa

Pb melt pressure adjacent to the bubble surface Pa

R,Ro bubble radius at any time and initial bubble radius m

R,R bubble wall velocity and bubble wall acceleration mis, rn/s2

r distance from bubble center m

SOAS secondary dendrite arm spacing m

T temperature K

To initial temperature K

t time 5

E porosity ofmelt in the mushy zone

Ps solidus density kg/m3

PI liquidus density kg/m3

cr surface tension of melt N/m

dynamic viscosity ofmelt
.,

~
(N-s)/m-

~ universal gas constant l/(kg-mole-K)

•
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Superscripts

Subscripts

g

int

o
1

s

variable non-dimensionalized by reference parameter

gas-mixture

interface

initial-state

liquid

solid
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Fig. 4.3. History ofbubble radius in an aluminium...3.4
pct copper alloy melt under an ultrasonic pressure field
Pap= 1.1-5.0 Sin(21tft), f= 0.8 MHz and do = 10 J.Ull.
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Fig. 4.4. High pressure waves generated
in the melt near the bubble surface. The
conditions correspond to those ofFig. 4.3
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Fig. 4.5. Temperature history in the melt
adjacent to the bubble surface. Conditions
correspond ta those of Fig. 4.3
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Chapter5

MATHEMATICAL MODElllNG OF BUBBlE GROWTH BV

RECTIFIED DIFFUSION IN GASSY LIQUIDS UNDER

VARIOUS UlTRASONIC PRESSURE FIELDS

S.l. Introduction

By subjecting a gassy liquid to an imposed sinusoidal pressure field of a particular

frequency and amplitude, cavitation bubbles can be formed in the presence of nucleation

sites. An inhomogeneity in the liquid in the form of microscopie gas bubbles is thought to

be the most likely candidate for nucleation sites. If the imposed pressure field is beyond a

threshold value, the tiny gas bubbles repeatedly expand and eompress and dissolved gas

in the liquid flows into the gas bubbles by rectified diffusion. Figure 5.1 shows

schematically how the process of rectified diffusion takes place. Rectified diffusion

consists of two effeets. The fast effect is an "area" effect. During bubble pulsation, the

surface area of the expanded bubble is much higher than that of the compressed bubble.

Therefore, the amount of gas that enters the bubble during its expansion is higher than the

amount of gas leaving the bubble during its compression and sa the bubble will gain

considerable amount of gas over many cycles. The second effect is the "shell" effect. The

gas diffusion is controlled by the thickness of a diffusion layer or a shell that is

formed in the liquid surrounding the bubble ( take a constant mass of liquid surrounding

the bubble). When the bubble is expanded, the shell becomes thinner and the
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concentration gradient increases. In this case, the flow rate of gas to the bubble aIso

increases. When the bubble is compressed, the shell is thicker and, as a result the

concentration gradient decreases. The combination of the "area effect" and the "shell

effect" is that under certain conditions, a small quantity ofgas is pumped into the bubble

in each acoustic cycle. These effects are opposed by the normal tendency of a bubble

existing in a gassy liquid to dissolve. Because of surface tension, the pressure inside the

bubble ( Pg ) is higher than that in the liquid immediately adjacent to the bubble ( PI)' This

so-called Laplace pressure, given by the expression, Pg - PI =2 cr / R, where cr is the

surface tension and R is the radius of the bubble, can he quite large for very small

bubbles. The end result of the above competing diffusion effects is that for a particular

frequency ofthe sound field there is a threshold acoustic pressure amplitude, above which

a bubble of a given size will grow, and helow which it will tend to dissolve. The

threshold pressure is quite sensitive to the dissolved gas concentration in the liquid and

the ultrasonic frequency. In degassing, the process of rectified diffusion cao be continued

for sorne 20,000 times per second or above, and large gas bubbles can he formed quite

rapidly, which can then easily float to the surface due to the hydrodynamic buoyancy

force ( Figure 5.2 ).

5.2. Literature Review

In the mathematical modelling, the convective-diffusion equation for the

dissolved gas concentration in the liquid depends strongly on the equation of bubble

radius. The equation of bubble radius is nonlinear and to solve the convective-diffusion

equation, the boundary condition at the bubble wall must he applied which is a moving

boundary. Both the above equations are couple through the convective term in the

diffusion equation and the gas pressure term in the equation of bubble radius. The tirst

solution of these problems was obtained by Blake (1949). He avoided the nonlinearities

of the equation of bubble radius by assuming very small sinusoidal oscillations of the

bubble. To avoid the problem of moving boundary in the convective-diffusion equation,
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he assumed the bubble wall to he fixed in the place, but a1lowed for the variations of

concentration of gas at the bubble wall and also allowed the area of the wall to vary as

they would ifthe bubble wall were moving.

Hsieh and Plesset (1961) obtained a solution that does include the shell effect.

The problem ofthe moving boundary was solved by expanding the boundary condition in

terms of a Taylor series about the equilibrium position of the bubble wall. One of the

limitations oftheir solution is that it is restricted to small sinusoidal oscillations. ElIer and

Flynn (1965) divided the general problem into an equation for the motion of the bubble

wall and a diffusion equation for the concentration of gas dissolved in the liquid. They

obtained a numerical solution of the nonlinear equation of bubble radius after simplifying

the governing equation and invoking some drastic assumptions. They assumed that the

number of moles of gas in the bubble was approximately constant during a single

oscillation as weil as invoked an isothermal or a polytropic relation for the gas pressure

within the bubble. They aIso found an approximate solution of the convective-diffùsion

equation, which was solved by the method of successive approximations. The expression

for the flux of gas at the bubble wall was obtained and integrated over the surface area of

the bubble to account for the rate of change in the number of moles of gas in the bubble.

The theory of Elier and Flynn has been widely used in the literature for rectified diffusion

of large amplitude bubble oscillations (see section 2.9). Later, in the study of bubble

growth under an Il kHz sound field, Elier (1972) pointed out that the calculated

threshold for growth is consistent with their experimental observation, but the ca1culated

rimes of growth exceeded the observed times by factors ofabout 10-100.

A history of the graduai development of the theories of rectified diffusion was

given by Crum (1984). His modeling approach is similar to that of Eller and Flynn.

Experiments carried out by Crum (1980) have shown that threshold values of the pressure

amplitude for bubble growth match those given by the Eller-Flynn theory for saturated

conditions. However, away from saturation, sorne differences were found. Furthennore,

the growth rate seemed to be underpredicted by the theory. It is to be noted that in the

limited number of experiments sc far appeared in the literature, the bubble radius was

obtained by allowing the bubble to rise through a known distance. Actually, for obtaining
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the bubble radius, measuring the time required to transverse a known distance and using

an approximate drag law inherently imply lots oferrors.

Crum and Prosperetti (1983) demonstrated that gas bubbles that were caused to

pulsate in a liquid onder the action of an acoustic pressure field could display nonlinear

properties such as the presence of hannonic resonances in their oscillations. They studied

the pulsation amplitude of an individual air bubble that was levitated in a glycerin-water

mixture by a stationary acoustic wave operating at a frequency of 22.2 kHz. Fyrillas and

Szeri (1994) perfonned a theoretical study of rectified diffusion without invoking the

limiting assomptions inherent in the ElIer and Crum formulations. They split the

convection-diffusion problem into two parts: the oscillatory and the smooth problems.

Both problems were treated by singular perturbation methods: the oscillatory problem

was solved through the boundary-layer analysis, and the smooth problem was solved by

the method of multiple scales in time. Recently, Roberts and Wu (1998) made a

theoretical attempt to refine Eller-Flynn's solution scheme. They evaluated an additional

term over that of Eller & Flynn's model and used an asymptotic method for solving the

radius vs. time of an oscillating bubble. They pointed out that the extra term they

intI'oduced is significant if the radius of the bubble is small or if the amplitude of its

oscillations is large.

In liquid metals power ultrasound can he used for the rapid degassing of molten

metal prior to solidification. The degassing of liquid metals under the action ofultrasOWld

was tirst revealed in the 1930's. Hiedmann (1954) studied the metallurgical effects of

ultrasonic waves, including the degassing. Investigations on the mechanism and the

industrial applications of ultrasonic degassing of light alloy melts began in the 1960s.

Cavitation mechanism of ultrasonic degassing of light alloy melts bas been studied by

Eskin (1995). He found that under cenain conditions, the ultrasonic degassing reduced

the hydrogen content in ingots and casts by about fifty percent. He also found that

degassing of the melt resulted in improvements in the density and plasticity of as·cast

metal, which retained higher strengths and increased the service reliability of deformed

semifinished products.
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In this cbapter, a comprehensive mathematical model has been presented for

rectified diffusion of dissolved gas in the liquid. The mass conservation equation for the

gas, the energy conservation equations for the gas and the liquid along with the equation

of state for the gas have been solved simultaneously. The bubble radius has been

calculated from the Trilling (1952) equation and the mass transfer of dissolved gas into

the bubble bas been computed from the generai convective-diffusion equation. It is to be

noted that these equations are coupled and boundary conditions must be applied at a fast

moving boundary of the bubble. By using appropriate variables, the model equations have

been transfonned into the new coordinates system. In this way the moving boundary of

the bubble bas been immobilized with respect to the time variable. In order to validate the

mathematical model, a set ofexperiments have been carried out and the theoretical results

for the bubble growth have been compared with the experiments. The experimental set up

as weil as the experimental results obtained will be presented in the next chapter.

5.3. Mathematical Modelling

ln order to mathematically tackle the bubble growth in a gassy liquid under the

ultrasonic pressure fields a number of reasonable assumptions about the physical

characteristics of the phenomenon are made:

i) The bubble remains spherical and the bubble center is motionless.

ii) The gas in the bubble is thermodynamically uniform except in a thin layer near the

interface.

iii) The bubble gas is thermally perfeet (ideal gas) but calorically irnperfect (heat

capacities are temperature-dependent)

The mathematical model is based on the fol1owing equations:

i) Mass conservation equation for the gas

ii) Equation for the bubble radius

iii) Equation of state for the gas

iv) Conservation ofenergy for the gas and the liquid

v) Conveetive-rnass diffusion equation for the dissolved gas in the liquid
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(5.1)

The differential form of these equations in the spherical coordinates can he written as

follows:

Mass conservation equation for the gas within the bubble:

d ( 4 R3 ) •- p-1t =mdt 3 t

where ID =4ltR
2
0

aCI
t ar r=R

(5.2)

The equation for bubble radius is based on the Trilling equation:

(5.4)where

(l-2-.!.) Ri + 3 (1- 4 -.!.)R? =_1[PaCt) _ P
ap

+ R dPB(t)] (5.3)
Co 2 3 Co Pro Co dt

20' 4 J.L R
PB(t) =Pg-R-~

and (5.5)

The Trilling equation bas been chosen because it accounts for the bubble acoustic

damping. In order to obtain Eq. (5.3), Trilling assumed that the liquid surrounding the

bubble is slightly compressible and the sound speed is constant. The derivatives of the

density have been replaced by corresponding derivatives of the pressure with the help of
,

the sound-speed relationship, Co- =dP 1dp .

The ideal gas equation ofstate is:

p91TgP =-~
g M

w

The overall energy balance for the bubble gas is given by:

dE ..
-= - W+QI +rit t Ci' Tint
dt

(5.6)

(5.7)

•
where E =p'v'Cv Tg

W=P d'v'
B dt

(5.8)

(5.9)
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(5.10)

Here, Wis the rate of work done on the gas bubble during the collapse of the bubble or

the rate of work against the pressure in the liquid during the bubble growth. AIso in the

above equation, PB is the liquid pressure at the bubble boundary, QI is the rate of heat

loss between the gas bubble and the surrounding liquid and mt is the rate ofmass transfer

across the bubble interface. The differential energy balance equation for the liquid is:

where the viscous dissipation function is:

r>R (5.11 )

(5.12)

The velocity of liquid Vr can be found from the continuity equation ID spherical

coordinates to be:

(5.13)

The differential equation goveming the convection and diffusion of the dissolved gas in

the liquid outside the spherically symmetric bubble is:

5.3.1. Transformed and Non-dimensional Equations

r>R (5.14)

For the numerical work, it is convenient to have a fixed rather than a moving

boundary of the bubble. Therefore, the governing equations are transfonned using a

suitable variable (Ç) that "freezes" the moving boundary of the bubble. AIso, in order to

decrease the number of parameters and minimize computational errors, the goveming
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equations are non-dimensionalized. The transformed and non-dimensional forms of the

mathematical model equations are:

7 _ mt.c. acl 3Rp
P- -., 2 ---

Po R- Ra aç C:;=J R
(5.15)

.,- -=-- • - -=-.,-=- 1 • ~1; RR -=-- 2a. a1; • R-
L ==-(0. -+(--+RRl;+-)-+12fJ. -]1 R2 ac/ ç2 ç aç ç6

(5.17)

(5.18)

(5.19)

(5.20)

_ R ""7" R10 - Tg - TI - P _ P - 1
R-- R=- T=-I' L1=-,P=-,p=-,t=--R' R' g T P 1o 0 0 10 0 Po 0•

where:
1 4 Jl ta
-=
Re P1Ro

2

1 20' 10
2

-=
We PIR03

2
1 la Po

M2 = PoR
0

2

rc=­
- R(t)

(5.21)

5-8



5.3.2. Initial Conditions

Initially the bubble is at rest and is in equilibrium with the surrounding liquid. The

following equarions are used for the equilibrium condition.

t=O
2er

Ta =293 K Po Mwat P =Pb +- Po =o R 9iTo0

p= 1, R=1 R=ü, (-r.)j = 1 , j = 1 to 20 (5.22),

(5.23)The characteristic time is:

CC) J =1 , j =1 to 20

21t 1
t =-=-
o CO f

where, fis the frequency ofthe ultrasound.

Table 5.llists the various physical properties ofwater and AI-3.4 pct Cu alloy melt.

5.3.3 Boundary Conditions

The interface temperature (Tint) is obtained from the interfacial boundary

condition, which states that at each instant of rime the rate of energy transfer from the gas

side of the gas-liquid interface is equal to the rate of energy transfer from the liquid side

ofthe interface.

(5.24)

More details about the temperature profile at the phase boundary are available in the

paper published by Naji Meidani and Hasan (1997).

Putting the relevant expressions in equation (5.24), one can easily show:
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(5.25)

The liquid temperature far from the bubble is assumed to remain unchanged:

(5.26)

In the water modelling, the boundary condition for concentration of dissolved gas

in the liquid at the bubble interface is obtained from Henry's law:

c p
C. = K-1 P = 53t g

Int g p
b

(5.27)

Here, K is the constant of Henry's law.

In the case of liquid metals, the interfacial concentration of dissolved gas in the

liquid metal has been obtained from Seivert's law:

C int = q.JP: (5.28)

where q is Seivert's constant and Pg is the gas pressure in the bubble (atm). In the

following, the relevant expressions used in this work to obtain Seivert's constant q is

discussed.

The nondimensional mas::; diffusion layer in the liquid is proportional to the following

expression which satisfies the shell effect:

- l ~2~f
Ô :::--=--

m R(t) R(t)
(5.29)

•
The concentration ofdissolved gas in the liquid far from the bubble is assumed to remain

unchanged:
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C(00, t) = Ci (5.30)

For the calculation of temperature and dissolved gas concentration gradients in the liquid

at the bubble interface, which appear in the continuity and energy equations of the gas, a

second-order forward difference discretization method was applied. In this study, in

addition to the rectified diffusion of dissolved air in water, the rectified diffusion of

dissolved hydrogen in Al-3.4 pct Cu alloy melt has been theoretically studied.

Table 5.1. Input Parameters for Computations

Parameter [unit] Water Al-3.4 Pct Cu

Cl [m2/sec] 1.44x10-7 3.78x10-s

cr [N/m] 0.0729 0.89

PI [kg/m
3

] 998.0 2300.0

Il [(N-s)/m2
] 1.053xl0-3 1.4x10-3

CPl [J/(kg-k)] 4186.0 1265.0

KI [W/(m-k)] 0.602 110.0

o [mL/sec] 2.0xl0·9 0.5xI0-6

Co [mis] 1480.0 4650.0

To [K] 293.0 973.0

Pb [KPa] 101.0 105.6, 110.2, 114.8

The solubility of hydrogen in Al-3.4 pct Cu liquid alloys is determined by the

following relations presented by Poirier (1987):

Log ,o S=-A/T+B (5.31)

where S is the solubility in cm3 of H2(g) al standard pressure and temperature per 100 g

of alloy, A and B are parameters that depend only on the concentration of copper in the

Al-Cu alloys, and T is temperature in K. Using a regression analysis, the values of A and

B obtained by Opie and Grant (1950) are:
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A =2550+ 358.9Ccu 112 -54.48C cu +O.6241C cu
3/2 (5.32)

and

B =2.620+03043CçuI/2 -0.08072Ccu +0.004484C cu
312 (5.33)

with Ccu as the wt pet ofcopper in the liquid.

From Equations (5.31), (5.32) and (5.33), the solubility of hydrogen in AI-3.4 pet Cu

alloy at 973 K is ealculated as:

S = 0.661 cm3/100g (5.34)

The amount of hydrogen in liquid aluminium aIloys is usually measured in cubic

centimeters at standard conditions of pressure and temperature per 100 g of Metal. Using

the gas law, the following equivalence is found:

10-3

--x?a
lec H., ?24 -0 _

STD - = - . =8.9 x 10 5 wt pet (5.35)
100 g IOOg

Using Eq. (5.35), Seivert·s constant q in Eq. (5.28) can be determined as:

q = 8.9 x 10-5 S

5.4 Numerical Solution Methods

(5.36)

The mathematical model fonns a set of coupled, highly non1inear and stiff

differentiaJ equations. In order to convert the PDEs into a system of stiff ODEs, the

partial differential equations were discretized only in space direction using the second

order central difference scheme. Due to having significantly different time and length

scales in the mathematical model, the problem is stiff. Therefore, the modified Gear
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method, which is good for solving a set ofnonlinear stiff ordinary differential equations,

was applied. The code, as explained earlier in section 3.4, is based on a variable-step,

variable-order backward differentiation formula (BOF) method of order 1 ta 5. It started

the integration with a first order method and as the integration proceeded, the program

automatically adjusted to a higher order method (and the step size) for optimal efficiency

while satisfying prescribed accuracy requirements. The integration method was a step-by­

step method and started with the known initial conditions. At each time-step the method

employed a predictor~orrector scheme, wherein an initial guess for the solution was first

obtained and then the initial guess was progressively improved uPOn by iteration until the

solution converged, that is, further iteration produced little or no change in the solution.

5.5 Results and Discussion

During the ultrasonic degassing of a gassy liquid, the pressure experienced by the

gas bubble is Pap = Pb - Pm Sin(21t ft), where Pb is the pressure of undisturbed liquid

andPm and fare the ultrasonic pressure field's amplitude and frequency, respectively. In

order to ascertain the most effective parameters that govem the process of rectified

diffusion, we need to know how the results are affected by the key variables such as, Ra .

Ci' Pm, t: and Pb. Therefore, in the mathematical model, the initial bubble radius, the

initial concentration of the dissolved gas in the liquid, the ultrasonic pressure amplitude

and frequency and the pressure of undisturbed liquid are parametrically varied. It is to be

noted that the instantaneous bubble radius and the mass of gas contained in the bubble are

averaged over the time intervals equal to the period of the ultrasound. Because of this

averaging process, the curves in all the figures discussed below are rather jagged. Also, in

the figures, the time variable is non-dimensionalized by the period of~e ultrasound.
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S.S.1 Results aBd DiseussioD for Water ModeUing

In Figure 5.3, the calculated temporal variations of the average mass contained in

an air bubble and the average bubble radius are shown. The left axis represents the

average mass in the bubble and the right axis represents the average bubble radius. The

ultrasonic frequency and the ultrasonic pressure amplitude are 35 kHz and 0.2 bar,

respectively. As shown, the air bubble with the initial radius of0.07 mm does not grow in

an air-saturated water because the ultrasonic pressure is lower than the threshold pressure.

The average size of the bubble and the average mass of gas within the bubble are

decreased and the bubble becomes smaller than its initial size. In Figure 5.4 the temporal

variations of the average bubble radius for two different ultrasonic pressure amplitudes

are shown. The initial radius of the bubble and the ultrasonic frequency are 0.07 mm and

35 kHz, respectively. For the ultrasonic pressure amplitude of 0.3 bar, the bubble starts to

grow in an air-saturated water. As shown in the figure, with increasing the ultrasonic

pressure amplitude to 0.5 bar, the air bubble grows more than the previous case and the

bubble volume reaches about five times of its initial value. It is to be noted that the

nondimensional bubble volume is proportional to the cubic power of the nondimensional

bubble radius. The corresponding time-averaged mass of gas contained in the bubble for

two different ultrasonic pressure amplitudes is shown in Figure 5.5. This figure shows

that the increase of the ultrasonic pressure amplitude promotes the process of rectified

diffusion. Sïnce the intensity of the ultrasonic pressure wave is proportional to the square

of the ultrasonic pressure amplitude, therefore an increased ultrasonic pressure amplitude

means an increased intensity of the ultrasonic wave which in turn increases the rate of

bubble growth.

In Figure 5.6 the effects of the initial concentration ofdissolved air in water on

the time-averaged mass of air contained in the bubble are shown. The initial radius of the

bubble is 0.1 mm and the ultrasonic pressure amplitude and frequency are 0.6 bar and 25

kHz, respectively. The results show that with increasing the initial concentration of

dissolved air in water the average mass of gas contained in the bubble increases. In fact,
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the rate of mass ttansfer into the bubble in a liquid with a large initial concentration of

dissolved gas is greater compared to that of in a liquid with a small initial concentration.

Figures 5.7 and 5.8 are plotted to portray the effects of the ultrasonic frequency

on rectified diffusion. Figure 5.7 demonstrates the time-averaged mass of gas contained

in the bubble for three different ultrasonic frequencies, namely 35, 25 and 20 kHz. The

initial radius of the bubble and the ultrasonic pressure amplitude are taken to he 0.07 mm

and 0.3 bar, respectively. The figure shows that when the ultrasonic frequency is

decreased from 35 kHz to 20 kHz, the average amount of gas contained in the bubble

increases significantly. For an ultrasonic frequency of 20 kHz, the air bubble grows

rapidly in an air-saturated water and the average mass of gas contained in the bubble

reaches more than seventeen times of its initial value. The reason for this increase is that

the subharmonic resonance frequency causes the bubble's pulsation amplitude to

increase, which in tum results in the more rectified mass transfer per ultrasound cycle. In

Fig. 5.8, the results are depicted for the ultrasonic pressure amplitude when it is increased

to 0.5 bar. Sïmilar to the previous figure, the initial radius of the bubble and the initial

concentration of dissolved air in water are 0.07 mm and 100% of saturation value,

respectively. This figure shows that with increasing the ultrasonic frequency from 25 kHz

to 45 kHz, the average amount of gas contained in the bubble decreases from 12 to 2.3

tintes of its initial value.

In Fig. 5.9, the initial bubble radius and the ultrasonic pressure amplitude are

considered to he 0.1 mm and 0.5 bar, respectively. The ultrasonic frequency is 25 kHz.

The air bubble grows in an aïr-saturated water and the average mass of gas contained in

the bubble reaches more than four times oÎ its initial value. The bubble expands rapidly

and the average bubble volume reaches about 4.5 times of its initial value.

Figure 5.10 demonstrates the history of average mass of gas contained in the

bubble for different initial bubble radii. The initial concentration of dissolved air in water

is considered to he 100% of the saturation value. The ultrasonic pressure amplitude and

frequency are 0.5 bar and 25 kHz, respectively. The results show that for decreasing the

initial bubble radius from 50 J.UIl to 30 J.1ll1 the average mass of gas contained in the

bubble increases from about 30 to 140 limes of its initial value. It is noted that the
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average mass of gas contained in the bubble is nondimensionalized by the initial mass of

gas within the bubble. It is to he recognized that, for a small bubble the initial mass of gas

inside the bubble is smaller than that offor a big bubble.

5.5.2 Resulu aBd DiscussioB for Liquid Metal

Figure 5.11 shows the results of rectified diffusion of dissolved hydrogen in a

molten Al-3.4 pet Cu alloy. The pressure of the undisturbed melt and the ultrasonic

pressure amplitude are considered to be 1.056 and 1.3 bars, respectively. The ultrasonic

frequency is 25 kHz and the initial concentration of dissolved hydrogen in molten

aluminium is 100% of its saturation value. A hydrogen bubble, with the initial radius of

15 J.Ull, grows and the average mass of gas contained in the bubble reaches about 400

times of its initial value. The average bubble radius increases rapidly to more than 9 times

of its initial value. In Fig. 5.12 the initial bubble radius is increased to 20 J.11ll. In this case,

due to rectified diffusion, the average bubble radius increases to around 7 times of its

initial value. The average mass of gas contained in the bubble reaches about 200 tintes of

its initial value.

Figures 5.13-5.17 are plotted to demonstrate the effects of the variables Ro•f, Co,

Pm, and Pb on rectified diffusion of dissolved hydrogen in the Al-3.4 pct Cu alloy melt. In

Figure 5.13, the bistory of the average mass ofhydrogen gas contained in the bubble for

different initial bubble radii are shown. The pressure of the undisturbed melt and the

ultrasonic pressure amplitude are 1.056 and 1.3 bars, respectively. The ultrasonic

frequency is considered to he 25 kHz. The initial concentration of dissolved hydrogen in

molten aluminium is 100% of its saturation value. The results show that with decreasing

the initial bubble radius from 25 f.UIl to 15 J.LIIl, the average mass of hydrogen gas within

the bubble increases (by rectified diffusion) from 115 to 400 rimes of its initial value.

Figure 5.14 shows the history of average mass of hydrogen gas contained in the

bubble for different ultrasonic frequencies. The other conditions are the same as the

previous figure. The results show that with decreasing the ultrasonic frequency from 35
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kHz to 25 kHz, the average mass of hydrogen gas within the bubble increases from 65 to

195 tintes of its initial value.

In figure 5.15 the rime variations of the average mass of hydrogen gas contained

in the bubble for different ultrasonic pressure amplitudes are shown. The other conditions

are the same as the previous case. As seen in the figure, with increasing the ultrasonic

pressure amplitude from 1.2 bar to 1.5 bar the average mass of hydrogen gas within the

bubble increases from around 120 to more than 150 rimes of its initial value. AIso, the

results show that the same bubble under the ultrasonic pressure amplitude of 1.1 bar does

not grow.

The threshold pressures (minimum ultrasonic pressure amplitude required to start

the bubble growth) for bubbles with initial radius of 15 JlD1, 20 J.U1l and 25 fJIl1 were found

to be 1.18, 0.9 and 0.87 bars, regpectively. These results were obtained for the bubbles in

the aluminium 3.4 pet cu alloy melt with the initial hydrogen concentration of 100%

saturation. The ultrasonic frequency was taken to be 35 kHz. The reduction of the initial

concentration to 50% of saturation value causes the threshold pressures to increase to

1.26, 1.15 and 1.08 bars, respectively, with all other conditions remaining the same as the

previous case.

The history of average mass of hydrogen gas contained in the bubble for different

initial concentrations ofdissolved hydrogen is shown in Figure 5.16. The other conditions

are the same as the previous figure ( Fig. 5.15). The results show that, increasing the

initial concentration from 30% to 100% of saturation, the average mass of hydrogen gas

contained in the bubble increases from 80 to near 200 rimes of its initial value. Figure

5.1 7 represents the history of average mass of hydrogen gas contained in the bubble for

different hydrostatic pressures at the bubble position. The initial bubble radius is

considered to he 15 ~. The ultrasonic pressure amplitude and frequency were kept at 1.3

bar and 25 kHz, respectively. The initial concentration of dissolved hydrogen in the

molten aluminium is 100% of its saturation value. The figure shows that a change of the

hydrostatic pressure from 1.056 bar (20 cm below the liquid Metal surface) to 1.148 bar

(60 cm below the liquid Metal surface) does not have any significant effect on rectified

diffusion of dissolved hydrogen. In other words, the rectified diffusion effect is found to
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he almost independent of the hydrostatic pressure of the melt for this range of variations

in hydrostatic pressure.

S.6. Concluding Remarks

In this study, a generaI mathematical model has been developed to simulate the

ultrasonic degassing ofa gassy liquid. The radial motion of the bubble was considered to

he govemed by the compressible form of the Rayleigh-Plesset bubble dYDamics equation.

The analysis considered isolated micron size gas bubbles inside the liquid which initially

contains sorne dissolved gas. The overall energy balance for the gas bubble is govemed

by the tirst law of thermodynamics. The gas pressure within the bubble was calculated by

using ideal gas equation of state. The mass and the thennal energy exchange between the

bubble and the surrounding liquid were taken into account by solving the relevant

differential equations. For the air-water system, the boundary condition for concentration

ofdissolved gas in the liquid at the bubble interface was obtained from Henry's law while

for the hydrogen-aluminium aIloy system it was obtained from Seivert's law.

The model equations were suitably transformed to immobilize the moving

boundary of the bubble. The transfonned and non-dimensionalized fonn of the set of

coupled, highly nonlinear and stiif ODE's was solved by the modified Gear scheme. It

was found that the bubble growth rate depends on the initial bubble size, the initial

concentration of dissolved gas in liquid and the ultrasonic specifications. A parametric

study for the bubble growth by rectified diffusion was carried out for both water and

liquid Al-3.4 pct Cu alloy. For sorne defined conditions, the time variations ofthe average

bubble radius and the average mass contained in the air bubble were computed. The

mathematical model results showed that for decreasing ultrasonic frequency, the time­

averaged bubble radius and the average mass of gas contained in the bubble increases.

Also, with decreasing of the initial bubble radius, the bubble growth rate increases. The

theoretical results showed that, with the decrease of the initial concentration of dissolved

gas in the liquid, the threshold pressure for bubble growth increases, while the amount of
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bubble growtb decreases. The modelling results for both air-water system and hydrogen­

aluminium alloy system were qualitatively similar.

5-19



.1 Nomenclature

C concentration ofdissolved gas in liquid kg/m3

Ci initial concentration ofdissolved gas in liquid kg/m3

Cv, Cp specifie heat at constant volume and constant pressure J/(kg-K)

Co speed of sound in liquid mis

D mass diffusivity m2/s

E internal energy of gas mixture J

f frequency of the ultrasound Hz

K thermal conductivity of liquid W/(m-K)

Mw molecular weight ofgas g/mole

P pressure Pa

Po initial pressure Pa

Pap applied pressure in liquid Pa

Pb pressure of undisturbed Iiquid Pa

Q, heat loss rates W

R,Ro bubble radius at any time and initial bubble radius m

R,R bubble wall velocity and bubble wall acceleration
.,

mis, m/s-

r distance from bubble center m

T temperature K

To initial temperature K

t time s

VI work rate W

PI density of liquid kg/m3

Po initial density ofgas kg/m3

9l universal gas constant J/(kg-mole-K)

Cl thermal diffusivity m2/s

surface tension and dynamic viscosity of liquid
.,.' (j,f.l N/m, (N-s)/m-



• 6 m mass diffusion layer thickness m

Superscripts

variable non-dimensionalized by reference parameter

Subscripts

g gas

sat saturation

int interface

0 initial-state

1 liquid

•
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Fig. 5.1. Rectified diffusion



Fig. 5.2. Formation ofa large gas bubble from a tiny gas bubble
by the process of rectified diffusion.
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Chapter6

AN AQUEOUS EXPERIMENTAL INVESTIGATION OF

BUBBlE GROWTH BV REeTIFIED DIFFUSION

UNDER AN ULTRASONIC PRESSURE FIELD

6.1 Basic Theory of U1trasound

6.1.1 Historical Prospective

The history of the generation of ultrasound dates back 100 years to the work of F.

Galton who was interested in establishing the threshold levels of hearing both in animals

and in humans. He produced a whistle which generated sound of known frequencies and

was able to determine that the normal limit of human. hearing is around 16000 to 18000

cycles 5.
1 (16-18 kHz). The whistle is an example of an ultrasonic transducer~ a device

that converts one form ofenergy ( in this case gas motion) into another (ultrasound).

The tirst commercial exploitation of ultrasound came after the Titanic disaster of

1912 when a competition, organized to find methods of avoiding icebergs, received a

suggestion from L. F. Davidson that the distance of an iceberg from a ship could be

estimated from the rime lapse between emitting a sound from a ship and receiving an

echo from il. From this the pulse/echo ranging technique developed to produce the depth

gauge and, during the First World War, ASDIC (Allied Submarine Detection

Investigation Committee) for the location of submarines. Between 1920-1960 there were

improvements in pulse/echo techniques, which led to SONAR (SOund Navigation And

Ranging) and flaw detection in metals and other materials. More recent progress in

electric detection measurement techniques bas given us the ability to use ultrasound in
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diagnostic Medicine for foetal imaging. Also diagnostic ultrasound can be used for

chemical analysis panicularly for remote sensing in flow systems. Concurrently, the

potentialities of high-intensity ultrasound, including cleaning, emulsification, drilling and

the various methods ofprocessing materials, were realized.

Power ultrasound bas been used successfully in metallurgy. Ultrasonic treatment

of a melt and a solidifying melt results in two beneficial effects: degassing and a

reduction in grain size. The smaller grain size results from the ultrasonic fragmentation of

developing dendrites of the crystallizing Metal.

To date a number of researchers have carried out investigations ioto the effect of

power ultrasound on the solidification of non-ferrous and ferrous metals and alloys. For

the latter, the investigations appear largely to have been aImost exclusively located in the

newly formed countries from the fonner Soviet Union. The reason for this is aImost

certainly the fact that the high power necessary to treat ferrous melts, typically 2.5 to 3.5

kW per kg of material, could only be achieved (until recently) by ultrasonic technology

employing magnetostrictive transducers. In the West such technology has been phased

out and replaced by the more electrically efficient piezoelectric systems especially for

commercial applications such as ultrasonic cleaning and plastic welding. In the countries

of the former Soviet Union the oider methods are still in operation and have proved

particularly useful in high temperature applications. With the new freedom of information

which now exists there is a marrying of the two technologies so that what might have

been regarded as "dated" equipment can now be rejuvenated and made more efficient

with western know-how.

6.1.2 Ultrasonic Waves

mtrasonic waves are stress waves, and for this reasoo they can exit only within

mass media. They are transmitted from one mass to another by direct and intimate contact

between the masses. In this respect, they differ from Iight and other fonns of

electromagnetic radiation which travel freely through vacuum. In other respects, these

two fonns ofenergy obey similar laws ofpropagation.
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• Ultrasonic waves also are termed elastic waves since it is the elastic property of

the medium which is responsible for the sustained vibration required for ultrasonic wave

propagation. Ultrasonic waves, which have been discussed in the present study, are

longitudinal waves where vibrations of the particles in the material take place in the

direction of motion of the sound. The imaginaIy !ayers in the materials of propagation

are subjected to altemate compressional and tensile (rarefactional) stresses by the waves

(see Figure 6.1).

The broad classification of ultrasound between 18 kHz and 100 WIz has been

divided into two distinct regions; power between 20 and 100 kHz and diagnostic between

1 and 10 MHz. Essentially this division arises because of the fact that a much greater

sound energy can be transmitted into a system at the lower frequencies.

In acoustic cavitation, to create and grow a bubble in a non-homogeneous liquid

requires a finite time and it May be that the tinte required is less than that available during

the rarefaction cycle. For example at 20 kHz, one cycle occurs every 20000th ofa second,

i.e. 50 Jl5ec. For 20 MHz, the rarefaction period lasts ooly 2S nsec (l nsec = 10-9 second ),

which may be insufficient for bubble growth. Thus as frequency increases the production

of cavitation becomes less likely. This difficulty, however, can be partially compensated

by applying higher intensity sound waves.

6.1.2.1 Specifie Acoustic Impedance

There is similarity between the variations of ultrasonic wave characteristics and

those of certain quantities used in electrical A.C. theory. Thus acoustic pressure May he

regarded as being analogous to electrical voltage, particle velocity to electrical current,

and particle displacement to electrical charge. Using the acoustic equivalent of Ohm's

law, a quantity known as the specifie acoustic impedance Za, equivalent to electrical

impedance, May be defined as:

•
~=Za
U

(6.1)
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where u and p are the partîcle velocity and the acoustic pressure, respectively. Like

electrical impedance, Za is, in general, a complex quantity but, for plane progressive

waves, the imaginary component disappears leaving a real quantity. This real quantity can

be shawn to he equal to the product of the density p and the velocity c of the sound for

the material and is called the characteristic impedance:

R=pc (6.2)

The value of the characteristic impedance for a given material can be seen to depend only

on its physical properties and thus it is independent of the wave characteristics and the

frequency. VaIues of characteristic impedances for a number of familiar materials are

given in Table 6.1.

6.1.2.2 Acoustic Intensity

The power at any point in an acoustic field may be conveniently expressed in

terms of the intensity, defmed as the rate of flow of acoustical energy through unit area of

an imaginary plane surface drawn about the point in question and orientated at right

angles to the direction of wave-motion. The intensity " 1" may be expressed in watts per

square meter (W m-2
), and its relationships with other acousticaI quantities are as follows:

') ')

1= Pa Ua = ua-Pc = Pa-
2 2 2pc

(6.3)

•

where Ua and Pa are the particle velocity amplitude and the acoustic pressure amplitude,

respectively. The intensity should remain constant at ail points within unattenuated plane

progressive waves.
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Table 6.1 Acoustic velocities and characteristic impedances

for sorne commonly used materials at room temperature

Longitudinal Deosity Cbaracteristic

Material Wave velocity (kg m-J) impedance
(m 5.1 ) (kg m'z 5.1 )

Aluminium 6400 2700 1.7 x 107

Brass 3500 8600 3.0 x 107

Copper 4700 8900 4.2 x 107

Gold 3700 10500 3.9 x 107

Iron 5900 7900 4.7 x 107

Lead 1200 11300 1.4 x 107

Nickel 5600 8900 5.0 x 107

Platinum 3900 21450 8.4 xl07

Silver 3200 19300 6.2 x 107

Steel 6000 7800 4.7 x 107

Barium titanate 5000 5400 2.7 x 107

Quartz 5700 2600 1.5 x 107

Acrylic 2670 1180 3.2 x 106

Nylon 2700 1140 3.0 x 106

Perspex (Lucite) 2700 1200 3.2 x 106

Glycerol 1900 1260 2.4 x 106

Lubricating oil 1400 800 LI x 106

Olive oil 1400 900 1.3 x 106

Water 1500 1000 1.5 x 106

Air 330 1.3 430
Hydrogen 1300 0.90 110
Oxygen 320 1.4 450
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6.1.2.3 Wave Reflection and Transmission

When plane waves strike a plane boundary separating two materials, some of the

sound energy is transmitted forward and the remainder reflected backward (see Figure

6.2). The relative amounts of reflected and transmitted intensities are expressed by the

reflection and transmission coefficients. It can he shown that:

Re flectionCoefficient = (RI - R 2 ):

(RI + R2 )-

T .. C ffi· 4R I R.,ransmJsslon oe clent = - 2

(RI +R2 )

(6.4)

(6.5)

•

where RI and R2 are the characteristic impedances for the two materials. Using the

values of the cbaracteristic impedances given in Table 6.1, reflection and transmission

coefficients can he calculated for pairs of different materials. The equations show that the

transmission coefficient approaches unity and the reflection coefficients to zero when RI

and R2 have approximately similar values. The materials are then said to be weil

matched or coupled. On the other band, when the two materials have substantially

dissimilar characteristic impedance, e.g. for a solid or liquid in contact with a gas, the

transmission and retlection coefficients tend to zero and 100 percent, respectively. The

materials are then said to be mismatched or poody coupled.

6.1.2.4 Attenuation of Plane Waves

Ideally, the intensity of the progressive plane waves should remain constant at all

distances from the source. In practice this is not so because of the attenuation of

ultrasound as it progresses through the medium. Severa! factors contribute to attenuation.

Diffraction, scattering and absorption are three major causes of attenuation. The extent of
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attenuation is inversely related to the frequency. This can be shown by using the example

of sound attenuation through pure water. Sound at 118 kHz is reduced to half of its

intensity after passing through 1 km of water. The distance required to achieve the same

reduction of intensity for 20 kHz sound is much greater, at 30 km (this explains why

submarine communications are carried out at very low frequencies).

6.1.3 StandiDg Acoustic Waves

When sound waves are reflected, the incident and reflected waves interfere with

one another and a standing wave pattern is formed. If: after a single reflection, the

acoustic pressure or partiele velocity amplitudes A at various distances from the reflecting

surface are measured, the amplitude variation is obtained (see Figure 6.3 ). It is seen that

the neighbouring maxima (antinode) and minima (partial nodes), respectively, are one

half-wavelength apart and that the distance between a maximum and its neighbouring

minimum. is a quarter-wavelength. The ratio of the amplitude at the maximum to that at

the mjnjmum is called the standing wave ratio, a quantity dependent on the retlection

coefficient at the boundary and the attenuation coefficient for the material. For high

standing wave ratios, the amplitudes at the minima tend to zero. When this phenomenon

is observed, it is said that the materia! is in astate ofresonance (see Figure 6.4).

6.1.4 Rubble Entrapped in Standing Waves

It bas long been realized that bubbles can he trapped in a liquid by a standing

acoustic field. Experiments for rectified diffusion of an individual gas bubble have been

carried out by acoustieally levitating an air bubble in a standing wave formed in a water

column. When a longitudinal wave encounters the interface of water and air (free­

surface), it is reflected. Wave retlection takes place whenever waves in one medium try to

enter another medium where acoustic impedances are not identical. The greater the

difference between the aeoustic impedances, the higher the reflectivity. It is to be noted

that, the cbaracteristie impedance of air is 430 kg/m2 while the eharacteristic impedance
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ofwater is 1.5xl06 kg/m2 at room temperature ( see Table 6.1). Using the equations (6.4)

and (6.5), the refl~tion and transmission coefficients for the interface of water and air

can he calculated which are 0.999 and 0.001, respectively. These coefficients show that

almost aIl ultrasonic waves are retlected from the interface of water and air. Incident and

reflected waves form a standing wave which does not propagate. In fact, a standing wave

is fonned when two sinusoidal waves of the same frequency (and thus the 3ame

wavelength) propagating in opposite directions are superposed. It is essentially an

oscillator with a spatial spread. The stationary points are called nodes (in the resonance

case), and the points ofmaximum amplitude are called antinodes. Therefore, the interface

ofwater-air in the water column is a pressure node.

If a bubble is small compared ta the wavelength of sound, then at any instant the

translational force exerted on the bubble by the sound field ( Bjerknes force) is equal ta

the bubble volume limes the negative gradient of the acoustic pressure (see Sec. 2.8). The

average acoustic force on a bubble located at a distance 'z' is then given by:

(FA (z, t» =-( V(t) W(z, t» (6.6)

where V(t) is bubble volume and P(z, t) is lime and space varying pressure field which

can be closely approximated along the axis of the column by:

Here, Pb' PA (z) are pressure ofundisturhed liquid and space-dependent amplitude of the

stationary wave, respectively. The coordinate z is measured vertically along the axis of

the column. For a spherical bubble of equilibrium radius Ra and instantaneous radius

R(t), the magnitude of the average acoustic force, obtained by inserting Eq. (6.7) into

Eq. (6.6):

•

P(z, t) =Pb - PA (z) cos(21tft)

FA =4/ 31t Ra 31V PA 1([R(t) / Ra f cos(21tf t»)

(6.7)

(6.8)
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When the bubble maintains a fixed position in the column, this force is balanced by the

magnitude of the average buoyancy force:

(6.9)

where PI is the liquid density and g is the acceleration of the gravity. Upon equating

these two forces one gets:

(RI RO)3 cos(21tft») Plg

(RI Ro)3) = I\?pAI (6.10)

where IV PA 1 is evaluated at the position of the bubble. The ratio of pg to /vpAI is

essentially the ratio of the hydrostatic pressure gradient to the acoustic pressure gradient.

The translational force exerted by a standing wave on a bubble smaller than the

resonance size is directed from regions of law-pressure amplitude ta regions of high­

pressure amplitude. For a bubble bigger than the resonance size, this force is directed

from the regions of high-pressure amplitude ta the regions of law-pressure amplitude.

Therefore, in a standing wave field, a bubble moves toward pressure maxima (antinode)

or minima (partial nodes) ifit is smaller or larger than the resonance size, respectively.

6.2 Ultrasonic Technology

6.2.1 Ultrasonic Transducers

An ultrasonic transducer is an instrument designed ta generate the disturbance

from which the ultrasonic energy emanates. Therefore, any device capable of generating

ultrasound is an ultrasonic transducer. The device may be a whistle, a piezoelectric plate,

a magnetostrictive stack driving a piston, a diaphragm driven electromagnetically, a siren,

or any of the various types of mechanical devices such as rotating eccentric. AlI of these

methods have been used to generate ultrasonic energy. The effeet, in which a voltage
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impressed across two surfaces ofa piezoelectric crystal induces stresses in the material, is

presently the MOst common method of generating ultrasonic energy in commercial

systems.

The performance of a transducer depends on its acoustical matching to the

medium under investigation. Matching the impedance of a transducer to both the

electrical circuitry and the sample is important to the success of any experiment, because

if this is not achieved, then power transfer from an energy source in an electrical fonn

will not he transmitted into the sample. This is because an impedance mismatch causes

reflection ofthe ultrasound wave.

6.2.1.1 Magnetostrictive Transducen

Magnetostriction refers to a change in the dimension of a suitable ferromagnetic

material, e.g. nickel or nickel alloy, by the application of a magnetic field. Historically

magnetostrictive transducers were the first to be used on an industrial scale to generate

high power ultrasound. A magnetostrictive transducer is usually in the fonn of a rod (or

bar) acting as the magnetic core within a solenoid. Applying a varying current to the coil

produces a variation in the dimensions of the bar. In typical cleaning applications the

nickel core is silver brazed to the stainless steel plate, which couples the uitrasonic

vibrations to the liquid. The unit is thus very resistant to mechanical damage since there is

no obvious mode of degradation. 8uch transducers offer a very high driving force, are

very robust and can routinely stand temperatures ofup to 180°C. The allowable frequency

shift for a typical magnetostrictive transducer is much larger than it is for a power-type

piezoelectric transducer. Traditionally they are still employed in situations where

continuous high powers are required in rugged processing applications, e.g. in melt

degassing and metal crystailization. They have the additional property of being water­

cooled. In Figure 6.5 a typical magnetostrictive transducer used for degassing of

aluminium melts is shown.

The major drawback ta magnetostrictive transducers is that they are not

particuJarly efficient in tenns of electrical power consumption. However, the advent of
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non-metallic, ceramic-based, ferrite materiaIs ( MFe204, M = divaIent metal, e.g. Ni,~

or Pb) bas led to an increased electrical efficiency. However, a general disadvantage ofall

such transducers is that their useful frequency ranges do not exceed 100 kHz.

6.2.1.2 Piezoeleetrie Tnnsducers

The most common types of transducers used for both the generation and the

detection of ultrasound employ piezoelectric materials. Such materials have the following

two complementary properties:

(a) The direct effect - when pressure is applied across the large surfaces of the section a

charge is generated on each face equal in size but opposite in signe This polarity is

reversed if tension is applied across the surfaces.

(b) The inverse effect- if a charge is applied to one face of the section and an equal but

opposite charge is applied to the other face, then the whole section of crystal will either

expand or contract depending on the polarity of the applied charges.

Thus on applying rapidly reversing charges to a piezoelectric material, fluctuations in

dimensions will be produced. This effect can be harnessed ta transmit ultrasonic

vibrations from the crystal section through whatever medium it is in contact with.

Early piezoelectric devices were based on quartz transducers, but quartz is not a

particularly good material for this purpose because of its mechanical properties: it is a

somewhat fragile material and is difficult to machine. Three substitutes are commonly

used: barium titanate (BaTi03), lead metaniobate (PbNb206) and the mixed crystal lead

zirconate titanate. These materials cannat he obtained as large single crystals and 50,

instead, they are ground with binders and sintered under pressure at above 1000
0

C ta fonn

a ceramic. The crystallites of the ceramic are then aligned by cooling from above the

ferroelectric transition temPerature in a magnetic field.

It is not possible to drive a given piece of piezoelectric materiaI efficiently at

every frequency. Optimum performance will ooly be obtained at the natura! resonance

frequency of the particular sample, and this depends upon its dimensions. To reinforce the

rather fragile ceramic transducers it is normal practice ta clamp piezoelectric elements
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between Metal blacks, which serve both ta protect the delicate crystalline material and to

prevent it from overheating by acting as a heat sink. Usually, two elements are combined

so that their overall mechanical motion is additive. The block modifies, by sheer size, the

nature of the ultrasonic vibrations generated. In this way, a rugged reliable transducer is

obtained. In Figure 6.6 the construction of such a piezoelectric sandwich transducer is

shown. It is generally one half-wavelength long (although multiples of this can he used).

The peak to peak amplitudes generated by such systems are normally of the order of 10­

20 JlDl and they are electrically efficient Generally, piezoelectric devices are not suitable

for continuous usage at high temperatures. This is because the ceramic materia! will

degrade under these conditions. For continuous use under high temperature conditions a

magnetostrictive device May prove to be more reliable.

6.2.2 Piezoelectrîc Probe Receivers (Hydrophones)

The piezoelectric probes receivers are used principally for measuring ultrasonic

pressure amplitude and frequency in different parts of acoustic fields in fluids, or for

detennining the intensity distributions in front of transmitting transducers. The

requirements of their design are that the dimensions of the sensitive element should be

small compared with the wavelength (typically less than one-tenth), that the frequency

response be constant over the whole of the required range, and that the sensitivity of the

piezoelectric element be constant for all directions.

Ideally, for an omnidirectional response, the receiver should be spherical in shape.

Cylindrical transducers, in the forms of tubes, are more easily constructed and are quite

suitable if one is concemed only with measurements in a single plane. They are capable

of vibrating in a number of different modes, Le. radial, length, and wall..thickness, and

there is usually enough overlap between these modes to give rise to a fairIy flat response

over a wide band of frequencies. Ceramic tubes of outside diameter 1.5 mm, length 1.5

mm, and wall thickness 0.3 mm are easily obtained commercially and cao he used to

measure intensities at frequencies of up to 100 kHz in liquids and 25 kHz in gases,
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without disturbing the acoustic fields. In Figure 6.7 the schematic construction of a

hydrophone with piezoelectric hollow cylinder transducer is shown.

Another type of transducer is formed out ofa disc ofpiezoelectric ceramic that its

construction is shown schematically in Figure 6.8. The disc used is 0.48 mm in diameter

and 0.1 mm in thickness. The hydrophone convens acoustic power incident on its face

into an electrical signal. The sensor element is polarized in the thickness direction. The

undesired radial modes of vibration of the dise have effectively been eliminated using an

absorbing backing material consisting of a composite of epoxy and tungsten attached to

the back electrode. This type of hydrophone is suitable for the measurement of plane sine

waves.

6.2.3 Types ofSonieator System

There are various types of sonicator system, which May be used for applying the

ultrasonic energy to a system. Two of them, which have been used extensively, are the

probe and the cleaning bath systems. It is clear that, in their construction, both types of

piezoelectric or magnetostrictive ttansducers can be used.

6.2.3.1 Ultrasonic Probe

In order to increase the amount of ultrasonic power available, it is desirable to

introduce the energy directIy into the system rather than rely on its transfer through the

water of a tank and then the container wall. The simplest method ofachie\'ing this would

he to have the face of an ultrasonically vibrating transducer immersed in the liquid

system. It is possible to amplify this vibrational amplitude by attaching a specially

designed length of metal rod to the end of the transducer. This rod extension is more

correctly tenned a sonic hom or velocity transformer, and it Dot only magnifies the

acoustic energy available but aIso allows the transducer to be kept clear since only the tip

of the rod needs to be immersed in the liquid. It is the complete assembly of transducer

plus hom which is referred ta as an ultrasonic probe system.
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6.2.3.2 Ultrasoaic Cleaoing Bath

The construction of an ultrasonic cleaning bath is simple. A laboratory model

generally consists of a stainless steel tank of rectangular cross-section with transducers

finnly attached undemeath the fiat base ( piezoelectric transducers are nonnally bonded

with epoxy). Some tanks also have sorne form of thennostatted heater. A few modem

laboratory-scale models have adjustable power but these are in a minority. The frequency

and power ofan ultrasonic bath depends upon the type and number of transducers used in

its construction. Generally, the ultrasonic power available in a bath using modem

piezoelectric transducers is of quite low intensity (of the order of 1-5 W cm-2
), with an

operating frequency of approximately 40 kHz. In the experimental set up (see section

6.3.1) this type of the ultrasonic bath with one operating transducer was used. It was

originally provided with two transducers in which the second one was kept inactive by

disconnecting its electrical power.

6.3 Experimental Investigation

In order to lend credibility to the mathematical model developed in Chapter 5, an

aqueous physical model was developed. The experimental work was conducted to

simulate the single bubble growth by the process of rectified diffusion. It consisted of a

small water column which was placed in an ultrasonic bath. A small air bubble was

injected into the water column and it was levitated by the generated standing waves.

When the ultrasonic pressure amplitude was higher than the threshold pressure, the air

bubble was seen to grow. The bubble-growth predictions from the mathematical model

are compared with the experimental measurements.
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6.3.1 Experimental Apparatus and Procedure

The schematic diagram of the experimental set up is illustrated in Figure 6.9. A

transparent acrylic square column ( 6 cm x 6 cm x 30 cm) with wall thickness of about 3

mm was used. A square cross-section was chosen to avoid optical distortion. The column

containing distilled water with a depth ofaround 23 cm was positioned in a stainless steel

tank. The steel tank was filled with distilled water up to about 7 cm and the water acted as

a coupling fluid. The coupling fluid was used to avoid the fonnation of an air gap. The

latter would have caused a very high attenuation of the imposed ultrasound waves. It was

aIso used ta provide the possibility of varying the intensity of the transmitted sound

waves into the column. The highest intensities are obtained when the column bottom is

located in the coupling fluid at vertical intervals ofone half-wavelength above the tank.

A standing acoustic longitudinal wave was excited in the column by a single

piezoelectric transducer attached to the bottom of the tank. The piezoelectric transducer

was connected ta a function generator with adjustable power levels. The maximum power

of the transducer was 35 W with the emitting face of about 10 cm2
• The intensity of the

ultrasonic waves generated by the transducer was changeable from a maximum value of

3.5 W cm-2 ta ten different lower levels.

U3ing the value of the characteristic impedances of water and acrylic given in

Table (6.1), the reflection and transmission coefficients for the interface of water and

acrylic were calculated and found to be 0.131 and 0.869, respectively. It showed that

most ultrasonic plane waves (%87) were transmitted into the water column through the

bottom of the acrylic column.

A small air bubble was injected by a syringe connected to a modified thin needIe

from the top of the column. To prevent floatation of the bubble before the implementation

of the acoustic waves, the bubble was held on a thin 0.2 mm diameter wire which was

coated with a thin film ofparaffin wax (see Figure 6.10). The initial diameter of the smali

bubble was measured by a scaied microscope.
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The generated sine wave in water had the frequency of 38.5 kHz and had a series

of minima (partial nodes) and maxima (antinodes) along the axial direction of the

column. During the irradiation of the ultrasound, the air bubble was levitated at a position

about 1.9 cm below the free surface of the liquid. It was observed that the distance

between the two neighbouring bubbles levitated at the axial direction was around 2 cm

(about one half-wavelength). The generated bubble had a radius of 0.3 mm which was

larger than the resonance size. The calcuJated resonance bubble radius for the ultrasonic

frequency of 38.5 kHz is around 0.085 mm. It was verified that the bubble was levitated

near the pressure minjma The ratio of the hydrostatic pressure gradient to the acoustic

pressure gradient (see Eq. 6.10) at the bubble position was computed which was about

0.002.

At tirst (t = 0), the ultrasound was tumed on and simultaneously the stop watch

was started. The gas bubble grew by the process of rectified diffusion of dissolved air in

water since the uJtrasound pressure amplitude was beyond the threshold value. During the

irradiation of ultrasound, the wire was far from the air bubbie. After irradiation of the

ultrasound waves for a certain period of time and in arder ta measure the diameter of the

bubble by the microscope, the wire was used again to hold the hubble. During the

measurement of the bubble diameter, the ultrasound and stop watch were tumed off. The

sound field was then tumed back on and the process was continued. In Figure 6.11, the

photograph of the experimental set up is shawn.

6.3.1.1 Preparation of Water ( in the column )

The high concentration of dissolved air in water was maintained by bubbling air

through distilled water according ta the following Methode The distilled water was first

cooled and then put in a 2 L insulated juge A compressed air line from the main air line in

the laboratory was used through a partially opened needle valve. The air tube was

connected to an air diffuser (used in a fish tank) and was placed in the distilled water

inside the juge The air was then bubbled through the liquid for a few hours.
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6.3.2 Measuring System

The measuring system included systems to measure the bubble diameter, the

ultrasonic pressure amplitude and frequency and the dissolved oxygen in water. A

detailed description for each of the measurement systems is given in the following

sections.

6.3.2.1 Bubble Diameter Measurement

In order to measure the bubble diameter, a built-in scale microscope with working

distance of 79 mm (Specwell, M830-S) was used. Adjustable focus provided clear

viewing of the bubble. In Figure 6.11, the microscope employed in the experimental set

up is shown.

6.3.2.2 Ultrasonic Pressure Amplitude and Frequency Measurement

In order to measure the applied acoustic pressure amplitude and frequency in

water, a ceramic hydrophone (Model SPRH-S-I000) was used. The hydrophone was of

the needle type with a flat tip made of a ceramic disk which worked as an active element.

A needle type ceramic hydrophone is suitable for monitoring negative and positive

pressures and because of the small size, its effect on the acoustic field is small. Figure

6.12 shows the hydrophone employed in the present experiment. In order to compare its

small size a pencil is aIso shown in the figure. During the measurement, the calibrated

hydrophone was connected to a pre-amplifier and a digital oscilloscope (Tektronix,

TOS210). By using an extension module (interface), the oscilloscope screen display was

printed. In Figure 6.13 a typical print out of the oscilloscope screen is shown.
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6.3.2.3 Measurement of Dissolved OxygeD in Water

The initial concentration of dissolved oxygen in water was measured using a

dissolved oxygen meter (ORION-Model 810). The oxygen probe consists of an

anode/cathode electrode system and a KCL based electrolyte separated from the

environment by an oxygen-permeable membrane. When a polarizing voltage is imposed

across the electrode it reduces dissolved oxygen at the cathode, causing a measurable

current to flow. The higher the oxygen content of the sample, the more current flows. A

thermistor is huilt into the probe measurement system and compensates for the membrane

temperature. The Orion meter uses this data to calculate the dissolved oxygen content of

the sample in either parts per million (ppm) or percent saturation (% Sat) whichever mode

display is required and selected. The meter simultaneously displays water temperature

along with the measurement results.

To measure directly the dissolved oxygen in water, the probe was dipped in the

water column. During the measurement the sample was stirred with moving the probe

back and forth. Another way of the measurement was using a standard 300 ml B.O.D.

bottle, a funnel with a built-in magnetic stir bar and a magnetic stïrrer. The BOO bottle

was first filled with the water sample and then the funnel was put in the bottle. The probe

was inserted into the funnel and they were aIl together placed on the magnetic stïrrer. In

Figure 6.11 the photographs of the dissolved oxygen meter and the magnetic stirrer are

shown.

6.3.3 Experimental Results and ComparisoD with Mathematical

ftlodelpredictions

In the experiment, the initial bubble radius was 0.3 ± 0.02 mm which was

measured using the microscope. By means of a need1e type hydrophone connected to a

pre-amplifier and a digital oscilloscope, the ultrasonic pressure amplitude and frequency

were measured which were 0.9 ± 0.03 bar and 38.5 ± 0.5 kHz, respectively. The initial
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concentration of dissolved air in water was measured, as mentioned earlier, which was

95% ± 1% of the saturation value at the experimental conditions. The temperature of

water inside the column was 200e ± 1%. In Figure 6.14, the bubble growth predictions

are compared with the experimental results. The time-averaged bubble radius versus rime

for bath cases are shown. The average bubble radius and rime are non-dimensionalized

using the initial bubble radius and the period of the ultrasonic wave, respectively. After

5 x 106 oscillations of the transducer (after more than 2 minutes) the average bubble

radius reached around 1.7 rimes of its initial value. The figure shows a quite reasonable

overall agreement between the theoretical predictions and the experimental results. The

experimental results approach the mathematical model predictions although the computed

bubble growth rate was a little bit more than the experimental measurements especially al

the early stage of the eXPeriment. The difference may he justified from the analysis of the

errors which is discussed in the next section.

6.3.4 Experimental Error Analysis

Errors always creep into all physical experiments, regardless of the care exerted.

It is better to speak ofuncertainty instead ofexperimental errors because the magnitude of

an error is always uncertain. But the term error rather than uncertainty is used extensively.

In this section we have mostly used the former definition whenever we have talked about

uneertainty.

One of the types of errors cornes from the apparatus or instrument construction

which affects the results. Another type of errors arise due to the observer for not being

consistent when estimating reading such as the amplitude or frequency on analog meters.

The third type of errors result if the process involved ineludes certain uncontrolled or

poody controlled variables that results in changing conditions.

Most of the foregoing errors have oceurred in the present experimental

investigation. One of the errors was due to the bubble size measurement by the

microscope during the bubble growth. AIso, the bubble held on the thin wire was not of a

perfeet spherical shape. In the literature, bubble sizing was obtained by allowing the
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bubble to rise through a known distance. Actually, for obtaining the bubble radius,

measuring the lime required to transverse this distance and using an approximate drag law

imply many errors.

Another source of error might he due to the air absorption from the top surface in

the water column. Since the bubble was far enough from the top surface of the water and

the initial concentration ofdissolved air in water was near saturation condition, this effect

can be ignored. In general, argon gas can be blown from the upper part of the column to

prevent the possible dissolution of air from the top. Although this was not done in the

present experiments.

Ideally, the liquid should he clean and liquid surrounding the bubble should have

the same initial concentration ofdissolved gas as the bulk liquid. In practice this is not so

because of the non-uniformity of the concentration of the liquid and the small size of the

bubble compared to the size of the bulk liquid. In other words, the initiai concentration of

dissolved gas in the liquid surrounding the bubble might have differed frOID the initial

concentration of the bulk liquid which was measured by the dissolved oxygen meter.

Calibration of the hydrophone and the measurements of the ultrasonic pressure amplitude

and frequency usually have sorne errors.

6.3.4.1 General Uncertainty in the Experimental Results

The measurements of the variables (bubble radius, concentration of dissolved gas

in liquid, ultrasonic pressure amplitude and frequency, etc.) have uncertainties associated

with them. The values of the material properties tbat were obtained from reference

sources aIso have uncertainties. The uncertainties in the individual variables propagate

into the results through a data reduction equation. Equation (6.11) is such an equation that

relates the desired experimenta1 result R (bubble radius growth) to measured variables

and to quantities that were obtained from reference sources. Although sorne of the

quantities like the gas constant for air is known with a great degree ofcertainty.
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(6.11)

Equation (6.11) is the mathematical expression for the rate of change of equilibrium

bubble radius obtained by Eller (1972) through a perturbation solution.

In this analysis only the influence of uncertainties of the measured parameters to the

experimental results are studied:

(6.12)

where R, Co ,Ta' f, PA' Ra and t are the bubble radius~ initial concentration of dissolved

gas in liquid, liquid temperature, ultrasonic pressure frequency and amplitude, initial

bubble radius and time, respectively.

The nondimensionalized form ofthe uncertainty in the results is given by:

U~2 =(s.~J2(Uco J2 +(To ~J2(UTO J2 +(!. aRJ2(~)2 +
R- R aco Co R aTo To R af f

(
PA ~J2(UPA J2 +(~~J2(~J2 +(~ aRJ2(~)2
R aPA PA R aRo Ra Rat t

(6.13)

where UR / R is the relative uncertainty ofthe experimental results. The factors Ux, 1Xi

are the relative uncertainties for each variable.

Figure 6.15 shows the relative uncertainty of the experimental results obtained

from using Equation (6.13) and the relative uncertainties of each variable, which were

already introduced in section 6.3.3. It is noted that, for the calculation of derivatives in

equation (6.13), the data reduction equation (Eq. 6.11) was used.
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Fig. 6.5. Magnetostrictive transducer used in an ultrasonic degasifier,
1) water-cooled œIl; 2) magnetostrictive transducer; 3) aluminum..
melt; 4) titanate bit; 5) degassing automation block; 6) telpher.
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Fig. 6.10. Bubble anached to the wire coated with paraffin wax
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Fig. 6.11. Photograph ofthe experimental set up.
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Chapter7

A NUMERICAL STUDY OF THE COMPLEX DYNAMIC

BEHAVIOR Of A REACTIVE GAS BUBBlE

IN A NON-REACTIVE LIQUID

7.1. Introduction

It is weIl known that a bubble containing a chemically reactive gas, when

subjected to an impulse pressure of sufficient strength, will undergo compression and can

eventually explode. In a bubbly liquid the properties of the individual phases are

combined in snch a way that, essentially, the liquid contains the kinetic energy and the

gas contains the potential energy. If the bubble gas is a reactive mixture, heat generation

by chemical reactions is suPerimposed on the basic bubble's dynamic behavior and

unexpected hazards may occur, mostly because of the action of the accumulated high

kinetic energy of the liquide In the present wor1e, a strong motivation for studying the

reactive bubble phenomenon is that in a nuclear power plant, oxygen-hydrogen bubbles

may develop in abnormally high-temperature water and can constitute an explosion

bazard.

7.2. Literature Review

The fust analysis ofbubble dynamics ofa non-reactive gas-filled cavity, under the

assumption that the gas undergoes isothermal compression, was made by Rayleigh
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(1917). The mecbanism of the explosion of a single reactive gas bubble in a liquid was

first studied by Soloukhin (1961). An experimental and theoretical investigation on a

Iinear array of reactive bubbles was made by Hasegawa and Fujiwara (1982), who

observed that the explosion of one bubble caused the next to explode, and, consequently,

a sequential explosion of bubbles was produced. They studied the behavior of a single

exploding gas bubble in glycerin, whieh was photographed bya high-speed camera and

compared with theoretical caleulatioDS. Kedrinskii and Mader (1987) studied numericaIly

a reaetive bubbly liquid. They performed a numerical simulation of an equi-molar

acetylene-oxygen gas bubble immersed in water. They found that the pressure threshold

decreases with the increase of the initial bubble radius, while the induction period

Încreases.

Gülhan and Beylich (1989) aIso performed both experimental and numerical

studies of the effect of impulse pressure on a single reactive gas bubble and a nonreactive

argon bubble. They round that the light emission during the explosion inside the reactive

gas bubble is much more intensive than that of a collapsed nonreactive argon bubbie.

They showed that the temporal behavior for reactive and nonreaetive gas bubbles is

different. They pointed out that, for a fixed set of parameters, there is a lower limit of

impulse pressure beyond which no explosion ofthe bubble occurs.

Prosperetti (1991) studied numerically the thermal behavior of oscillating mert

gas hubbles. In bis theoretical model he assumed a uniform gas pressure inside the bubble

but aliowed for the variations of temperature and density of the gas mixture. The unifonn

gas pressure assumption is valid when the magnitude of the radial velocity of a bubble

interface is much less than the velocity of sound in the gas. His study showed that under a

low liquid impulse pressure, the effect of conductive heat transfer inside the bubble is

considerable.

Kang and Butler (1993) theoretically studied the collapse and ignition of reactive

gas-filled bubbles. Their study showed that the effeet of heat transfer at the gas/liquid

interface can play an important role on bubble behavior especiaIly in the later stages of

bubble collapse. Ta account for this effect an approximate solution for the interface
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temperature was developed using an assumed temperature profile for the integral form of

the liquid energy balance equation.

In this chapter, a mathematical model is developed to simuJate the nonlinear

volume and thermal oscillation characteristics ofa single reactive gas bubble in water and

in glycerin. The dynamics of reactive gas bubbles with different exothermicities are

studied theoretically by solving the coupled momentum and energy equations for the

liquid surrounding the bubble. The effects of the exothermicity of the gas inside the

bubble, the initial bubble diameter, and the liquid impulse pressure on the bubble

dynamics and explosion limits are specifically investigated. It is noted that the

exothennicity of the bubble gas is varied by changing the mole fraction of the mixture of

stoichiometric oxygen-hydrogen with the inen gas, argon, as a diluent.

7.3. Mathematical Modelling

In order to mathematically tacIde the effect of impulse pressure on a gas bubble, a

number of reasonable assumptions about the physical characteristics of the phenomenon

are made:

i) The bubble remains spherical and the bubble center is motion1ess. Physical experiments

show that the former assumption is valid for bubbles under 4 mm in diameter. The radial

velocity of the bubble surface under an imPQsed liquid pressure field is generally high,

usually of the order of 50 mis, which is about three orders of magnitude larger than the

translational velocity of the bubble in the liquid. Therefore, the bubble inside the liquid

can be assumed stationary.

ii) The gas in the bubble is tbermodynamically uniform except in a thin layer near the

interface.

li) The bubble gas is thermally perfect but calorically imperfect.

iv) Mass transfer at the interface (condensation, evaPOration, and dissolution) is

neglected.

The mathematical model is based on the differential form of the following conservation

equations:

i-3



(7.1)

1- Mass conservation equation

2- Conservation ofmomentum for the liquid surrounding the gas bubble

3- Conservation ofenergy for the gas mixture and the liquid

The above conservation equations, along with the equation of state for the gas

mixture and the reaction rates for the reactants mixture, form the closed set of modeled

equations. The differential form of the above equations can be written as follows:

Mass conservation equation for the gas mixture:

d 4 ~-(p-:-1tR.) = 0
dt .)

The equation for bubble radius is based on the Trilling equation:

(7.2)

(7.3)

where PB is the pressure exerted by liquid on the wet side of the bubble surface.

20' 4 J.L ft
Pe(t) = Pg-R-~

In order to obtain Eq. (7.2), Trilling (1952) assumed that the liquid surrounding the

bubble is slightly compressible with constant sound speed. The derivatives of the density

have been replaced by corresponding derivatives of the pressure with the help of the

sound speed relation ( Co2 = dP / dp ).

The energy equation for the liquid is of the form:

where the viscous dissipation function is:

r2: R (7.4)

(7.5)
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The velocity of liquid Vr can he found from the continuity equation in spherical

coordinates and is:

The ideal gas equation of state is:

p9tTgP =-­
g M

w

(7.6)

(7.7)

For the modeling of the chemical reaction of the gas mixture, a two·step reaction model

based on the Korobeinkov induction-exothermic model (1972) is used. Therefore, the

reaction rate ci> is split into two stages:

i) Nonexothennic induction reaction; the rate of reaction is given by:

. dl1 1 el
ID I = - =--= -al P exp(---)

dt 't ind 9tTg

ii ) Exothermic reaction; the rate of reaction is given by:

o

(7.8a)

for 11 > 0

. d~
0>, =-=

- dt
(7.8b)

forll~ 0

The overall energy balance for the bubble gas is given by:

dE . -0. -w (7.9)-=Q
dt p 1

where E = p'v'C v Ts (7.10)

W= P d'V (7.11 )
B dt

Q =-41tR2 K a-r. (7.12)
1 1 ar

r=R
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(7.13)

(7.14)

Here, VI is the rate ofwork done on the gas bubble during the collapse of the bubble or is

the rate ofwork done against the pressure in the liquid during the bubble gro~1h. Also, in

the above equation, Pa is the Iiquid pressure at the bubble boundary, QI is the rate ofheat

loss between the gas bubble and the surrounding liquid't and Qp is heat production rate,

respectively.

7.3.1. Transformed and NOD-dimensionai Equations

For the numerical work, it is convenient to have a fixed rather than a moving

boundary of the bubble. Therefore, the goveming equations are transfonned using a

suitable variable (Ç) that ''freezes'' the moving boundary of the bubble. Also, in order to

decrease the number of parameters and rninimize computational errors, the governing

equations are non-dimensionalized. The transformed and non-dimensional forros of the

mathematical model equations are:

P=-3 P R
R

R -::- 3 4 R R2 1 Pg - liCIJ 1 1 1 RI-=-- .
(1-2 C )R+ 2 (1-3 c ) R =M 2 R - We R 2 - Re R2 + M2C (pTg + Tg p)
000

1 R 1 1 RR-R2

+WeC
o
R2 -ReC

o
( R2 ) (7.15)

,- .,- -=-- -. -=-.,
R2 a-1; - a-l; ( RR Dur 2a-) 8l; 12 A- R---=a --+ --+.L~~+----+ t-'-ail ar./ ç2 ç aç ç6

(7.16)

•
t =

g
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where

r
ç = R(t) ,

1 20' to
2

-=
We PIR0

3

• a. t oa. =-­
R 2

o

(7.18)

(7.19)

t - R -;- Rto Tg
Tg - ~t=- , R=- R=- =- ~=-

to Ro Ro To Ta

- Pg - P C = Co top=- P=-
Po Po Ro

The initial conditions for the set of equations are:

t=O

R = 1, R. = 0, il= l , P= l , 11 = l , ~ = l , Tg = 1, ~ = 1 (7.20)

The non-dimensionai thermal boundary layer thickness in the liquid is of the order:

eSl 1
Ro ::= .JPë

where Pe is the peclet number

RRoPe=--
al

(7.21 )

(7.22)

(7.23)

Taking into account the order of magnitude of the variables in Eq. (7.22), R=:: 50 mis,

Ro== 2.0 xl0 -3 m and al =::1.0 x 10-7 m2/s, and putting their values in Eq. (7.21) one can

show that:

~ =:: 10-3
Ro

From the above estimation the number ofgrid points in the surrounding liquid was

taken to be 10 equidistant grid points with a non-dimensional inter-grid distance of 10-4.

To ensure that the results were not sensitive to the number and distribution of grid points,

numerical tests were performed with various numbers of equidistant grid points above 10
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and the results were found to he insensitive ( varied less than 0.1 %) to the inter-grid

distance below 10-4.

7.3.2. laitial CoaditioDs

Initially, the bubble is at rest and is in equilibrium with the surrounding Iiquid. In

this study, the following equations are used for the equilibrium condition:

Po =0.1 MPa, Ta =298 K

(7.24)

For the calcuJation of the characteristic bubble collapse time ta the half period of

linearized oscillation due to a small perturbation around Po =0.1 MPa is used, where

(7.25)

7.3.3. Boundary Conditions

The boundary conditions for equation (7.16) are:

1~ç ~ 1.0011

~ = Tint for ç= 1

~ = 1 for ç ~ 1.00Il

(7.26)

Note that for the calculation of the heat flux at the interface the energy equation for liquid

(Eq. 7.16) is solved numerically using the coordinate ç that "freezes" the moving

boundary of the bubble.

The interface temperature (Tint) is obtained approximately from the interfacial

boundary condition, which states that the rate ofheat conducted fram the gas side ioto the
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gas-liquid interface is equal to the rate of heat conducted out al the liquid side of the

interface. Figure 7.1 shows schematically how the interface lemperature Tint is obtained.

More details about the temperature profile at the phase boundary are available in the

paper published by Naji Meidani and Hasan (1997).

(7.27)

i = g or 1

where Ô is the thermal boundary layer tbickness, a. is thennal diffusivity (K / pep) and

~t is a characteristic time (e.g., to) common to the gas and the liquide

Putting the Bg and Blin Eq. (7.27), one can easily show:

(7.28)

For the calculation of the temperature gradient at the interface, which appears in

the energy balance equation, a second·order forward difference discretization method is

applied using three equispaced points, namely Tint , TI' and T 2 • Therefore, the gradient of

temperature al the bubble interface can be written in a discretized form as:

8J; 1 1 1- - 3-=- --T +2T --Taç !!.ç ( 2 2 1 2 tnt)
ç = 1

(7.29)

•
The relationship between the liquid pressure at transducer location (in a shock tube) and

PGO which appears in Equation (7.15) is:
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4 • 2
PI . 2 2·· R R

Ptdc =P(t)lnansducer = Pcc +-(2 RR +R R-? 3
rm -rm

(7.30)

•

It is noted that R must he evaluated at t - rm / Co where rm is the distance between the

transducer location and the bubble position in the shock tube.

7.4. Numerical Solution Method

The mathematical model fonns a set of coupled~ highly nonlinear differential

equations (Eqs. 7.14-7.18). Due to significantly different time scales in the mathematical

model the problem is stiif. Therefore the modified Gear method, which is good for

solving a set of nonlinear, stiff, ordinary differential equations, is applied. The code is

based on a variable-step, variable-order backward differentiation fonnula (BOF) method

of arder 1 to 5. It starts the integration with a first arder method and as the integration

proceeds, automatically adjusts the method arder (and the step size) for optimal efficiency

while satisfying prescribed accuracy requirements. The integration method is a step-by­

step method and starts with the known initial conditions. At each step, the method

employs a predictor-corrector scheme, wherein an initial guess for the solution is fust

obtained and then the guess is progressively improved upon by iteration until the iteration

converges, that is, further iteration produces little or no change in the solution.

Note that Eqs. 7.14, 7.15 and 7.17 are ordinary differential equations, while

Equation (7.16) is a partial differential equation. In arder ta solve Eq. (7.16) by the

modified Gear method, it was discretized explicitly using the central difference scheme.

The discretized fonn of Eq. (7.16) was written for ten equidistant grid points having a

non-dimensional inter-grid distance of 10-4 . Thus, at each time step, Eqs. 7.14, 7.15 and

7.17, along with the 10 discretized equations, representing temperatures at 10 grid points

from the boundary of the bubble to a non-dimensional distance of 10-3 into the liquid

were simultaneously solved using the Gear scheme. For the set of stiff ordinary
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differential equations the independent variable is time and the dependent variables

(unknowns) are:

j=l to n

where "n" is the number of grid points employed in the radial direction. Initial conditions

for the gas bubble were introduced in Eq. (7.20). Initial and boundary conditions for the

liquid energy balance equation are:

I.C. {Tj (j=l,n)=1

{
T . =T

B. Cs. ~Ç=I.~ 1

Ta...1 -1

7.5. Results and Discussion

at t =0

at t:;ëO

(7.31)

•

The ignition of chemically reactive gases in a bubble cao occur upon bubble

compression if the liquid impulse pressure is of sufficient strength. This is due to the fact

that a rapid pressure pulse causes the bubble to undergo essentially adiabatic

compression, resulting in a temperature cise up to the ignition point of the gas mixture.

The goal of the present study is to clarify the effects of the exothermicity of the gas

mixture, the initial bubble diameter and the liquid impulse pressure on bubble behavior

inside water and glycerin. The chemical composition of a gas mixture is a useful

parameter for classifying the explosion hazards ofnon-reactive liquids containing reactive

gas bubbles of a specific size that are subjected to impulse pressure loadings. In order to

investigate this issue properly, stoichiometric oxygen-hydrogen gas mixtures are

considered with different ratios of argon as a diluent. In Table 7.1, input parameters used

in computations are shown. For detennining the chemical thermodynamics of different

reactive gas mixtures the STANJAN (Stanford university V3.93) package was used. The

rate constants for a diluted stoichiometric oxyhydrogen mixture were selected from the
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work of Taki et al. (1978). For the temperature dependence of gas properties in

polynomial fonn the reader is referred to Andrews et al. (1981).

Table 7.1. Input parameters for computations

Parameter [unit] Glycerin Water
a [m2/s] 0.95 x 10-7 1.47 X 10-7

Cp [J/(kg-K)] 2427.0 4179.0

PI [kglm3
] 1260.0 997.0

Il [(N-s)/m~] 1.49 1.002 x 10-3

cr [N/m] 0.063 0.0715
Co rmis] 1986.0 1500.0
K rw/(m-K)] 0.286 0.613

To IKl 298.0 298.0

Po fMPal 0.1 0.1

m[J/(kg-mole-K)] 8314.5 8314.5

al [mJ/(kg-s)] 3.0 x 108 3.0 X 108

a2 rm4/(N:l-s)] 1.5 x 10-5 1.5 x 10-~

el/9t fk] 9800.0 9800.0

e2/9t fk] 2000.0 2000.0

Figures 7.2-7.29 are plotted to portray the effects of exothermicity of the gas

mixture, the initial bubble diameter, the liquid impulse pressure profile and viscosity of

the liquid on ignition threshold and bubble dynamics. In the combustion model [Equation

(7.8a,b)] the value of 11 = 0 marks the ignition point, which is the end of the induction

period and the start of the exothennic reaction. If a bubble undergoes an ignition, there

will be a sharp increase and subsequent rapid fall of temperature of the gas in the bubble.

In arder ta have a better understanding of the exothennicity effects, the strengili of the

extemal liquid impulse pressure is also varied. The liquid impulse pressure May have

different shapes. It can be assumed in the fonn of an instantaneous jump of the liquid

pressure (at t = 0) to a specified level that is sustained for the duration of the event. In

other words, the impulse pressure can be modeled as a step function when its duration is

much longer than the period of the radius oscillation cycle of the bubble. Also, the liquid

impulse pressure May have a gaussian profile. One should note that in a shock tube
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• experiment, the liquid impulse pressure is measured by a pressure transducer located at

the shock tube walL

7.5.1 Sustained Liquid Impulse Pressure

In all figures reported in this section, the bubble radius bas been non­

dimensionalized with the initial radius. In the figures, where the temporal variations of

bubble radius and the temperature of the bubble are provided, one notes that the thermal

oscillation cycle is opposite to the radius oscillation cycle of the bubble. This is to be

expected theoretically. Under an imposed impulse pressure, with the compression of the

bubble, the temperature within the bubble must rise due to compression work on the

bubble.

In Figures 7.2-7.7 the bubble is assumed to have an initial diameter of 5 mm. In

Figure 7.2 the bistory of the gas temperature within the bubble under 0.8 MPa sustained

liquid pressure profile is shown. The gas mixture is a stoichiometric oxygen-hydrogen

with the remaining 90% by volume of argon as a diluent. In order to get a clear view of

the temperature history along with the bubble size the temporal bubble radius profile is

aIso superimposed. The figure shows that liquid pressure surrounding the reactive bubble

is high enough to compress the bubble to the ignition point. It is noted that the ignition of

the reactive gas mixture occurs after the first compression cycle. The gas temperature

inside the bubble sharply increases up to about 2420 K in a few microseconds. The

bubble expands to about 1.2 tintes its initial radius in order to release the thermal energy,

which is generated due to the reaction and compression work, in the fonn ofexpansion

work. As the bubble starts to expand the gas temperature and the gas pressure decrease

rapidly due to the increase in gas volume. For the case shown in Figure 7.2, the period of

pulsation is around 220 J.15ec.

Figure 7.3 shows the history of bubble radius and gas temperature under 0.4 MPa

sustained pressure. The ignition of the gas mixture occurs near the end of the second

bubble compression cycle. Note that in the tirst compression cycle the bubble reaches

about 900°1(, which is lower than the ignition temperature. The maximum bubble radius
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after explosion for this condition is larger than in the previous case due to the lower

sustained imposed liquid pressure. It is to be recognized that the sustained liquid pressure

acts as a retarding force during the bubble's expansion cycle. In Figure 7.4 the liquid

pressure is considered to he 0.2 MPa. The gas inside the bubble attains a maximum

temperature of 51Oo~ which is far lower than the ignition temperature. It is to be noted

that in the present analysis the bubble was assumed to attain a uniform temperature

instantaneously during its oscillation. In other words it was assumed that no temperature

gradient develops within the bubble except at the thin thermal boundary layer near the

interface.

In Figures 7.5-7.7 the history of gas temperature within the bubble, aIong with the

bubble size for a gas mixture with more exothermicity, 70% Ar + 30% (2H2+02), are

shown. In Figure 7.5 the bubble is compressed to about 42 % of its original size under

0.8 MPa imposed liquid pressure. The gas temperature within the bubble reaches the

ignition point near the end of the tirst compression cycle. After explosion the bubble

expands to about 1.4 times the initial radius. The gas temperature within the bubble

rapidly increases to around 331O°K, and the period of radial oscillation reaches

around 260 f.lsec. Figure 7.6 shows the history of gas temperature and bubble radius for a

0.4 MPa sustained liquid pressure. The ignition of the gas mixture occurs near the end of

the third bubble compression cycle. Note that in the first and second compression cycles

the gas temperature within the bubble reaches about 840oK, which is lower than the

ignition temperature. The maximum bubble radius after explosion for this condition is

larger than in the previous case due to less strength of the imposed liquid pressure. In

Figure 7.7 the bubble behavior under 0.2 MPa liquid pressure is shown. Due to the

insufficient strength of the sustained liquid pressure the gas mixture attains a maximum

temperature of ooly 495°1(, which is well below the ignition temperature. Therefore, the

bubble radius never exceeds its initial value.

Another case of interest is the reactive gas bubble with an initial diameter of 2.5

mm. The gas mixture is a stoichiometric oxygen-hydrogen with 70% argon as a diluent.

Figures 7.8-7.10 are plotted to show the behavior of a gas bubble with smaller (hait)

diameter compared to the previous cases, and under different liquid impulse pressures. In
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Figure 7.8 the liquid pressure is 0.8 MPa, which is sufficient to compress the bubble to

the ignition point. After explosion the bubble gas temperature sharply increases to around

330soK and the bubble rapidly expands to about 2.7 times of its initial volume. It is noted

that the nondimensional bubble volume is equal to the cubic of the nondimensional

bubble radius.

Figure 7.9 shows the history of gas temperature and bubble radius under a 0.4

MPa sustained liquid pressure profile. It is interesting to note that the ignition of the gas

bubble occurs not at the tirst cycle but near the end of seventh compression cycle. The

comparison of Figures 7.6 and 7.9 indicates that with the decrease in the initial bubble

diameter, the liquid threshold pressure for bubble explosion ïncreases. In Figure 7.10 the

history of gas temperature along with bubble radius under 0.2 MPa liquid pressure are

shown. The gas mixture within the bubble attains a maximum temperature around 490°1(,

which is weIl below the ignition temperature.

A comparison of Figures 7.4 and 7.7 shows that the gas temperatures are well

below the ignition point. In these figures the liquid impulse pressure is the same but the

exothermicity is different. They show that the maximum value of the gas temperature

decreases with increasing exothermicity of the gas mixture. It is to be noted that a higher

exothemicity means a low argon / oxygen-hydrogen ratio. Therefore, due to the relatively

low heat capacity of argon compared to that of oxygen and hydrogen, increasing the

exothennicity (decreasing the argon ratio) results in a decrease in the maximum gas

temperature.

Figures 7.2-7.7 indicate that, with increasing exothermicity, the threshold pressure

increases because of the relatively low heat capacity of argon. Figures 7.2 and 7.5

demonstrate that with increasing exothennicity the maximum bubble radius increases and

the period of oscillation becomes longer. This is due to the release of a relatively greater

amount of thermal energy upon the reaction of gases within the bubble. As rime

progresses the bubble continues to oscillate with a small damping effect due to the

relatively low viscosity ofwater.

Figures 7.5 and 7.8 show that with a decrease in the initial bubble diameter, the

period of bubble oscillation decreases. The period of bubble radius oscillation in Figure
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7.s is 260 J.1SeC, while the period ofpulsation in Figure 7.8 is 125 ~c. It can be seen aIso

from these figures that for the smaller bubble, the bubble pulsations are more damped.

The damping effect is due more to using the compressible (acoustic) bubble dynamics

equation, which is more effective for the smaIler bubble with the higher frequency of

oscillations.

Figures 7.11-7.13 are plotted to demonstrate. the effects of viscosity of liquid on

bubble dynamics and bubble explosion limît. In this regard, the liquid is changed from

water to glycerin because of the high viscosity of glycerin (1500 rimes as large as that of

water). In Figure 7.11 the hiS10ry ofbubble radius and gas temperature under a sustained

liquid pressure of 0.2 MPa are shown. The initial bubble radius is 2.5 mm and the gas

mixture is a stoichiometric oxygen-hydrogen with 70% argon as a diluent. As one can

see, the liquid impulse pressure is below the threshold pressure to initiate the reaction.

Comparison of Figure 7.11 with Figure 7.10 clearly shows the effect of viseous damping

on the bubble radius oscillations. In the case ofusing glycerin, the amplitude ofthe radius

oscillation cycle decreases with a high rate of decay.

The history ofbubble radius onder different sustained liquid pressures of 0.8 MPa

(case A), 0.4 MPa (case B), and 0.2 MPa (case C) are shown in Figure 7.12. The initiai

bubble diameter is 5 mm and the gas is a stoiehiometrie mixture of oxygen-hydrogen

(10%) with 90% argon as a diluent. For the case of A = 0.8 MPa, the calculated bubble

radius shows that the ignition occurs at near the end of the first collapse cycle. Then the

bubble rapidly expands to about 1.7 rimes of its initial volume. For the case B (0.4 MPa),

as shown in the figure, the explosion is not initiated at the first cycle but it occurs at the

second cycle. Then the bubble expands to about 2.2 times of its initial volume, which is

more than the previous case A. This is due to the fact that higher sustained liquid pressure

suppresses the bubble expansion more. Figure 7.12 aIso shows that under the sustained

liquid pressure of 0.2 rvfPa (case C), no explosion occurs and the bubble behaves like a

nonreactive gas bubble. For the same bubble size and exothermicity as Figure 7.12, the

calculated threshold pressure for explosion (explosion limit) was found to be 0.37 MPa

and occurred at the second and third compression cycles while the liquid was water and

glycerin, respectively. Comparison of Figure 7.12 with Figures 7.2-7.4 shows that the
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viscous damping affects the bubble radius history and the bubble explosion limite

Decrease of the amplitude ofbubble radius oscillations and time-Iag of the explosion are

the results ofthe viscous damping effects.

The history of bubble radius for a bubble with the initial diameter of 2.5 mm is

shown in Figure 7.13. The other conditions correspond to Figure 7.12. It shows that the

bubble explosion is only initiated for the bubble under the sustained liquid pressure of0.8

MPa. The threshold pressure to initiate the reaction for this size of bubble (2.5 mm

diameter) was 0.41 MPa. AIso, the calculated threshold pressure for the bubble with the

initial diameter of 2 mm was 0.43 MPa. It is seen that as the initial bubble diameter

decreases, the threshold pressure for explosion ( explosion limit) ïncreases.

7.S.2 Gaussian Liquid Impulse Pressure

In general, the dynamic response of a reactive gas bubble is dependent on the

liquid pressure history, bubble size, properties of the fluid medium, and initial conditions.

In Figures 7.14-7.27 the applied liquid pressure bas gaussian profiles with peak values of

1.0 and 0.5 MPa and rise rimes of 0.2 and 0.1 msec. The Tise rime is the rime lapse that

the liquid pressure takes to reach from the base pressure (atmospheric pressure) to the

peak pressure. The reactive gas mixtures within the bubble are 90% Ar +10% (2H2+02)

and 70% Ar +30% (2H2+02). The initial bubble diameters are considered to he 2.5 and 5

mm. The history of bubble radius and gas temperature for each different bubble size and

exothermicity of the gas mixture under different applied liquid pressure profiles are

shown in these figures. It is noted that water and glycerin are modeled as the liquid

surrounding the bubble.

Figure 7.14 shows the history of bubble radius and gas temperature for a 5 mm

bubble in glycerin. The gas within the bubble is a mixture of 90% Ar +10% (2H2+02).

The applied liquid pressure has a gaussian profile with a rise rime of O. 1 msec and a peak

value of 0.5 MPa as shown in the figure. The calculated results show that the minimum

bubble radius coïncides with the maximum gas lemperature. The gas temperature within

the bubble increases al the end of the tirst collapse phase and reaches around 680oK,
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which is below the ignition point After the compression, the bubble expands and its

volume increases to more than 2.7 times of its initial volume due to the characteristics of

the gaussian liquid pressure profile. Effect of the liquid pressure on the bubble is similar

to the action of a weight on a spring. When the weight is eliminated., the compressed

spring rapidly expands. Figure 7.15 shows the history of bubble radius and gas

temperature for the same conditions as Figure 7.14 but the rise time of the liquid pressure

profile is changed to 0.2 msec. In this case, the pulse width, which is twice of the rise

rime (0.4 msec), is near the half period of the bubble resonance frequency (0.38 msec).

Therefore, the bubble is compressed more than the previous case and the gas temperature

reaches the ignition point of the gas mixture. After the explosion the bubble expands to

more than 10 rimes of its initial volume during 1 msec to release its internai energy

generated due to the reaction and compression work. As the bubble starts to expand., the

gas temperature within the bubble rapidly decreases from 19000 K and reaches 3000 K

within about 1 msec.

Figure 7.16 shows the history of bubble radius and gas temperature for the same

conditions as Figure 7.15 but the peak value of applied liquid pressure profile is changed

to 1 MPa. After explosion the bubble expands and its volume increases to more than 4

rimes of its initiai vaIue and gas temperature decreases from 24300 K to 4400 K in about

0.7 msec. In Figure 7.17, Pa, the pressure exerted by the liquid (glycerin) on the wet side

of the bubble surface is shown. In order to get a clear view of the history of this pressure

and the corresponding instantaneous bubble size, the temporal bubble radius is aIso

superimposed in the figure. The parametric conditions for this figure correspond to Figure

7.16. As shown, Pa bas a peak value of 7.2 MPa at the end ofbubble collapse. It rapidly

decreases to near zero and then increases to around 0.3 MPa. This figure shows that the

variations of Pa are consistent with the bubble radius history.

In Figures 7.18 and 7.19 the peak value of the applied liquid pressure is 0.5 MPa

and the initiai bubble diameter is 2.5 mm. The gas mixture is the same as the previous

figures (90% Ar + 10%(2H2+02)). In Figure 7.18 the history of bubble radius and gas

temperature are shown. It is noted that water is considered as the liquid surrounding the

bubble. The gas temperature within the bubble increases at the end of the first collapse
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phase and reaches a maximum value of around 730°1(, which is below the ignition point.

After one oscillation cycle, the bubble expands more than its initial size due ta the

characteristics of the gaussian liquid pressure profile. The temperature of the bubble

oscillates between 21OaK and 480 oK in subsequent cycles. Figure 7.19 shows the history

of bubble radius and gas temperature. The conditions are the same as in Figure 7.18 but

glycerin is considered as the tluid surrounding the bubble. The ignition of the gas mixture

does not occur because the gas temperature reaches around 7700 K which is below the

ignition point. The expansion of the bubble to more than its initial size is due to the

characteristics of the imposed gaussian liquid pressure profile. A comparison of Figures

7.18 and 7.19 shows that, when the bubble is in glycerin, the amplitude of bubble radius

oscillations is progressively damped due to the higher viscosity of glycerin compared to

water.

Figures 7.20 and 7.21 show the history of bubble radius and the pressure exerted

by the liquid on the bubble surface (PB). The parametric conditions for these figures

correspond to Figures 7.18 and 7.19. In Figures 7.20 and 7.21 the liquids are considered

to be water and glycerin, respectively. In Figure 7.20, after the first bubble collapse, PB

rapidly decreases from the peak value of 1.05 rvœa to about 0.23 rvœa and then it

oscillates between 0.32 and 0.04 MPa. In Figure 7.21, PB rapidly decreases from the peak

value of 1.0 MPa to 0.2 MPa and then it oscillates around 0.1 MPa. Both figures show

that with the increase of PB, the amplitude of the radius oscillation cycle of the bubble

decreases and vice versa. AIso, as indicated in Equation (7.3), with the increase of the

liquid viscosity, PB decreases.

In Figures 7.22-7.23, the reactive gas mixture within the bubble is changed from

90%Ar + 10%(2H2+02) to 70%Ar+30% (2H2+02). As shown in these figures, the

applied liquid pressure bas a gaussian profile with a peak value of 1.0 MPa and rise rime

of 0.2 msec. The initial bubble diameter is assumed to be 5 mm and the liquids are

considered to be water and glycerin, respectively. A comparison ofthese two figures with

Figures 7.16 and 7.1 7 shows that, after explosion, the gas temperatures increase more

than the previous cases due to using a gas mixture with more exothennicity. Also, the
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release of a relatively greater amount of thermal energy upon explosion, causes the

bubble to expand more.

In Figures 7.24 and 7.25 the peak value of the applied liquid pressure is changed

from 1.0 to 0.5 MPa. The initial bubble diameter is 2.5 mm and the gas mixture is

70%Ar+30% (2H2+02). In Figures 7.24 and 7.25 water and glycerin are modeled as the

liquid surrounding the bubble, respectively. In both cases, due to insufficient strength of

the liquid impulse pressures, the gas mixtures attain maximum temperatures of only

6900 K (water) and 7200 K (glycerin), which are weIl below the ignition temperature. The

bubble radii are seen to exceed their initial values because of the characteristics of the

gaussian liquid pressure profile. In Figure 7.25, the attenuation of bubble radius

oscillation cycle indicates the high damping effect of glycerin. Also, comparison of

Figures 7.24 and 7.25 with Figures 7.18 and 7.19 show that the maximum value of the

gas temperature decreases with increasing exothennicity of the gas mixture. A higher

exothemicity means a low argon / oxygen-hydrogen ratio. Therefore, due to the relatively

low heat capacity of argon compared to that of oxygen and hydrogen, increasing the

exothermicity results in a decrease in the maximum gas temperature. It is noted that this

is true for a nonignited gas mixture.

7.5.3 History of Gas Pressure

Figures 7.26-7.29 are plotted to demonstrate the history of gas pressure within the

bubble for different liquid impulse pressure profiles. In order to get a clear view of the

gas pressure bistory along with the instantaneous bubble size, the temporal bubble radius

is also superimposed. In all these figures, the initial diameter of the bubble is taken to be

2.5 mm and the liquid surrounding the bubble is considered to be glycerin. The gas

mixture is a stoichiometric oxygen-hydrogen with 70% argon as a diluent. Figure 7.26

shows the history of bubble radius and gas pressure. The liquid pressure bas a gaussian

profile with a peak value of 1.0 MPa as shown in the figure. It is interesting to note that

the gas pressure curve bas two peak values of 2.0 and 5.5 MPa. The tirst one is due to the

compression work on the bubble but the second one is due to the compression work plus
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the explosion of gas mixture. In Figure 7.27, the liquid pressure bas a gaussian profile

with the peak value of 0.5 MP~ which is below the tbreshold pressure (see Figure 7.25).

The other conditions are identical to Figure 7.26. As shown in the figure, the gas pressure

bas only one peak value of 1.05 MPa and this is mainly due to the compression work on

the bubble.

In Figure 7.28, the bubble is under a sustained liquid pressure of0.8 MPa which is

above the threshold pressure for the explosion of the gas mixture. As one can see, the gas

bubble expIodes at the ignition point and the bubble expands to near 2.7 times of its

initial volume. Because of the explosion, the gas pressure within the bubble reaches 10.0

MPa rapidly. In Figure 7.29, the bubble is under a sustained liquid pressure of 0.4 MPa

which is below the threshold pressure. It is noted that the gas pressure cycle is opposite to

the radius oscillation cycle of the bubble. This is to be expected theoretically. During

collapse of the bubble, the gas pressure within the bubble must rise due to the

compression work on the bubble. As shown in the figure, the peak of gas pressure within

the bubble reaches near 1.4 MPa which is far less than the gas pressure in Figure 7.28.

7.6. Comparison with Experiments

Hasegawa and Fujiwara (1982) carried out bubble explosion experiments using an

argon-diluted stoichiometric oxygen-hydrogen gas bubble inside liquid glycerin. Using a

high-speed photographic technique they demonstrated the events of explosion and

subsequent bubble dynamics. In their experiments the bubble was 10 mm in diameter and

the pressure pulse profile in glycerin al the transducer location was triangular in shape.

The mathematical model discussed earlier in this chapter was used to simulate the results

. of the Hasegawa and Fujiwara's experiments. The temporal behavior of the bubble radius

obtained in their experiments and that predicted by the present model are compared in

Figure 7.30. The theoretical model used as input the same experimental conditions

reported by the authors. The figure shows a good agreement between the mathematical

model and the experiment. Although the theoretically predicted bubble dynamics period

quite clearly matches the experiment a small difference in amplitude is evident. This
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difference cao he justified by the fact that in Hasegawa and Fujiwara's experimeots, the

pressure profile recorded at the transducer location is oot an exact triangular shape due to

the interaction among adjacent bubbles and tube wall, especially after ignition. AIso, for a

bubble with a 5 mm initial radius, which is a relatively large ~ubble, the deviation of the

bubble from a spherical shape was quite considerable in the experiment.

7.7. Concluding Remarks

In this study, a mathematical model is developed to simulate the nonlinear

volume and thermal oscillation characteristics of a single reactive gas bubble in water and

glycerin. The radial motion of the bubble is considered to be govemed by the

compressible form of the Rayleigh-Plesset bubble dynamics equation. The bubble is

assumed to be spherical and contains a stoichiometric mixture of oxygen and hydrogen

gas with the inert argon gas as a diluent. The thermo-tluid mechanics interaction of the

gas inside the bubble is considered by assuming a thin thermal boundary layer inside the

bubble near the bubble interface. The thermal eoergy exchange between the bubble and

the surrounding liquid is taken into account by solving a differential energy balance

equation for the liquid surrounding the bubble. The chemical reaction of the oxygen­

hydrogen gas mixture is modeled by using a two-step Arrhenius-type reaction scheme

suggested by Korobeinkov. The model equations are suitably non-dimensionalized, and

the resulting coupled stiff set of highly nonlinear ODE's is solved by the modified Gear

scheme. A parametric study on the present model has been specifically carried out to

ascertain the effects of exothermicity of the reactive gas mixture and the initial bubble

diameter on bubble dynamics under various liquid pressure profiles. The results from the

model show that the incident liquid pressure on the bubble wall must be of sufficient

strength to compress the bubble and ignite its reactive gas content. If ignition does not

occur, the bubble is seen to oscillate below its initial equilibrium radius. For a nonignited

bubble, due to the low heat capacity of the argon gas compared to the oxygen-hydrogen

mixture, the maximum gas temperature increases with the decrease of the initial oxygen­

hydrogen content. When the liquid pressure is of sufficient strength the bubble ignites and
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the maximum temperature that the bubble attains during its thermal oscillation depends

upon its equilibrium mole fraction of the stoichiometric oxygen-hydrogen mixture. For an

ignited bubble, with the increase of exothennicity, the maximum radius that the bubble

attains during its radial oscillation increases. With the decrease of the initial bubble

diameter the liquid threshold pressure for bubble explosion încreases. The results aIso

show that when the imPOsed liquid pressure profile is gaussian the radius ofa nonreactive

bubble May exceed its initial value. This is due to the characteristics of the gaussian

liquid pressure profile. For a bubble in a liquid with high viscosity (like glycerin), the

amplitude of the bubble radius oscillations decreases due to the high level of viscous

damping effect. The mathematical model's results for the bistory of bubble radius were

compared with the experimental data, which show a good agreement between the

mathematicaI model and the experiment.
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7.8. Nomenclature

al induction reaction rate constant m3/(Kg-s}

a2 exothermic reaction rate constant m4/(N2-s}

Cv, Cp specifie heat at constant volume and constant pressure J/(kg-K)

Co sound speed of liquid mis

E internai energy of gas mixture J

el, e2 activation energies per mass ofgas mixture J/kg

K thermal conduetivity W/(m-K)

Mw molecular weight of gas mixture g/mole

p pressure Pa

Po initial pressure Pa

POlO far field pressure in liquid Pa

Ptdc liquid pressure at transducer location Pa

Qp ,QI heat production and heat loss rates W

q heat of reaction of gas mixture J/kg

R,Ro bubble radius and initial bubble radius m

R,R bubble wail velocity and bubble wall acceleration mis, mJs2

r distance from bubble center m

T temperature K

To initial temperature K

t rime s

to characteristic rime for bubble collapse s

Vi work rate W

'd volume ofbubble m3

P density ofgas mixture kg/m3

Po initial density of gas mixture kg/m3

Pl density of liquid kg/m3
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9{

9l

Ô

Superscripts

Subscripts

g

o

thermal diffusivity

surface tension and dynamic viscosity of liquid

reaction progress variables

reaction rate

gas constant

universal gas constant

thermal layer thickness

variable non-dimensionalized by reference parameter

gas mixture

interface

liquid

initial state

Ils

J/(kg-K)

J/(kg-mole-K)

m
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Fig. 7.1. Schematic oftemperature profile at the phase boundary.
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for a mixture of90% Ar + 10% (2H2 + 02) under a gaussian liquid pressure
profile in water, Pmax = 5 bar (do = 2.5 mm).
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Chapter8

SUMMARY AND CONCLUDING REMARKS

8.1 Overall Conclusions

The research carried out in the present work is concemed primarily with the

mathematical modelling of the complex phenomenon of bubble dynamics. Specifically,

two applications of bubble dynamics in metals processing operations have been studied

which clarify the mechanisms of ultrasonic grain refinement and ultrasonic melt

degassing. The modelling studies accomplished and the new results obtained during the

course of this research comprise four parts, which are summarized below along with

sorne general conclusions:

1. The fust part of this study is concemed with the transient dynamic behavior of a

hydrogen gas bubble in a solidifying aluminium-3.4 wt pct copper alloy melt under

various ultrasonic pressure fields. A theoretical study was carried out ta demonstrate the

possibility of the dynamic grain refinement of aluminium alloys by utilizing extemally

applied high-powered ultrasonic waves and the hydrogen bubble present in the melt. The

results showed tha~ during the process of bubble collapse, the melt pressure surrounding

the bubble increases very rapidly. If the pressure in the vicinity of the dendrites exceeds a

threshold value, dendrite fracturing takes place. The peak pressure generated in the melt

is in the order of severa! hundreds to thousands atmospheres depending on the initial

bubble size, the pressure of the undisturbed melt and the ultrasonic's specifications.

Moreover, the results, which were obtained for pre-resonan~ resonant and post-resonant
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frequencies, showed that the ultrasonic frequencies, beyond the resonance frequency of

the bubble, do not have any useful effect on the melt. The computed dynamic pressure

field in the melt surrounding the hydrogen bubble demonstrated that, even far from the

bubble's surface, the melt pressure is sufficiently high to fracture the dendrite arms and

produce nuclei for equiaxed crystal growth.

2. The second part of this study models the dynamics ofa stable bubble in a gassy

liquid (melt) imder various ultrasonic pressure fields. A comprehensive mathematical

model bas been developed to simulate the bubble growth by rectified diffusion. The

model was used to detennine the threshold pressure and the effects of ultrasonic

specifications on rectified diffusion of the dissolved air in water. The results show that an

air bubble grows in water when the ultrasonic pressure amplitude is more than the

threshold pressure. In this case, the bubble volume rapidly reaches severa! limes its initial

volume and the gas bubble can achieve sufficieot POtential to float to the surface under

the action of the hydrodynamic buoyancy force. The mathematical model with sorne

modifications was also used to simulate a hydrogen bubble growth in an aluminium 3.4%

cooper alloy melt. A parametric study was carried out to demonstrate the effects of initial

bubble size, the initial concentration of dissolved hydrogen gas in the molten aluminium

alloy and the uItrasonic's specifications 00 the process ofrectified diffusion. The obtained

results for the hydrogen-aluminium alloy system are qualitatively similar to that of the

air-water system.

3. An aqueous physical modelling was carried out to investigate the bubble

growth by the process of rectified diffusion. The experimental set up and the

measurement system were developed and the experimental procedure was described. The

results ofaqueous physical modelling for a single air bubble growth were compared to the

results of the mathematical mode!. The comparison showed an overall reasonable

agreement between the experiments and the predictions.
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4. A mathematical model was developed to simulate the nonlinear volume and

thermal oscillation characteristics of a reactive gas bubble in water and in glycerin. The

results showed that the applied liquid pressure must be of sufficient strength ta compress

the bubble and ignite its reactive gas content. Under a sustained liquid pressure, if

ignition does not occur, the bubble is seen to oscillate below its initial equilibrium radius.

When the imposed liquid pressure is of sufficient strength, the bubble ignites and, for a

fixed sustained liquid pressure, the maximum temperature that the bubble attains during

its thermal oscillation dePends upon its equilibrium mole fraction of the stoichiometric

oxygen-hydrogen mixture. For an ignited bubble, with the inccease of exothermicity, the

maximum radius that the bubble attains during its radial oscillation increases and the

period of radial oscillation aIso increases. With the decrease of the initial bubble

diameter, the liquid threshold pressure for bubble explosion increases, while the period of

bubble oscillation decreases. The results aIso showed that, under a gaussian liquid

pressure profile, the bubble radius exceeds its initiai value for a non-reactive mixture

because of the characteristics ofthe gaussian liquid pressure profile. Moreover, in a liquid

with high viscosity (like glycerin), the amplitude of the bubble radius oscillations clearly

decreases due to the high level ofviscous damping effect.

The mathematical models, developed from first principles in the present research,

fonn a set of coupled, high1y nonlinear and stiff differential equations. The task of

solving the comprehensive mathematical models conceming bubble dynamics is very

complex. The equation for bubble dynamics is an ordinary differential equation while the

other equations are partial differential equations. In order to convert the PDEs into a

system of stiff ODEs, the partial differential equations were discretized ooly in space

direction using a semi-discrete method. For the numericaI work, the model equations

were transformed to freeze the fast moving boundary of the bubble. The transformed and

non-dimensional forms of the mathematical model equations have been solved

numerically by the modified Gear method.
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8.2 Contributions to Knowledge

The major and novel contributions of the present work are summarized by the

following statements:

1. A comprehensive mathematical model for the transient dynamic behavior of a

hydrogen gas bubble in a solidifying aluminium alloy melt under an ultrasonic pressure

field has been presented. The effects of bubble size and ultrasonic frequency on bubble

dynamics and the pressure field generated in the melt surrounding the bubble have been

numerically studied.

2. Numerical simulations for the growth of an air bubble in water as weIl as the

hydrogen bubble growth in a molten aluminium alloy have been carried out. The effects

of the characteristics of ultrasonic pressure field, initial bubble size and initial

concentration ofdissolved gas on the evolution ofbubble have been studied.

3. A physical study ofan air bubble growth inside water due to rectified diffusion

ofdissolved air was carried out.

4. A mathematical model for the reactive bubble in an inert liquid has been

developed. The effects of exothennicity of gas mixture, initial bubble size, liquid

viscosity and liquid impulse pressure profile on bubble dynamics and temperature­

pressure fields within the bubble have been investigated. The results of the mathematical

model were compared with the available experimental data.

S. The mathematical models and the experimental set up presented in this study

are novel. Ail the results generated using the present modeis are new. AIso, ail the

models and associated computational codes developed in this work are generic in nature

and cao he easily implemented for other gases and liquids not considered in the present

study.
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8.3 RecommendatioDs for Future Work

1. A laboratory scale experimental work is suggested to study the ultrasonic grain

refinement of a solidifying light alloy melt.

2. For the water modelling experiments, the following refinements are suggested:

i) Sorne modifications of the experimental set up are necessary to study the

rectified diffusion for micron size bubbles. For exampIe, a bubble generator that cao

produce reproducible micron size bubbles is necessary and a powerful microscope is

also required. The theoretical results presented in Chapter 5 showed that under the

same ultrasonic specifications, with decreasing of the initial bubble radius the bubble

growth rate increases. Also, in the experiment, the bubbles of subresonant size move

to the maximum point of the standing pressure waves. Therefore, the rate of bubble

growth for micron size bubbles is large. AlI the above statements could he verified

by the suggested experimental set up.

ü) In arder ta study the bubble growth continuously a high speed digital camera

with a very fast framing speed and equipped with a powerful leos is required ta take

clear and precise pictures ofthe bubble at various instants of time.

3. It is recommended to investigate the effect ofa surfactant to the rate of bubble

growth during the process ofrectified diffusion.

4. The present study for the bubble growth under an ultrasonic pressure field can

be used as a basis for the development of a model representing multi-bubbles and

their interactions. This model can be used to predict ultrasonic degassing of a gassy

liquid. A laboratory scale experimental work can he carried out to study the

ultrasonic degassing ofa light alloy mell.

5. Modelling of the dynamics of a reactive gas bubble can be used to develop a

theoretical investigation of wave propagation in reactive bubbly liquids. A
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numerical simulation of shock propagation in a chemically reactive two-phase

liquid containing explosive gas bubbles would be a challenging undertaking.
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APPENDIX A

Table A.I. The effect ofultrasound on mechanical properties of steels (Abramov, 1987).

Steel Metal Crystallization Test Yleld Tensile ReJatiw Relative Impact
slaœ condition tempe,.ture stress. strength. eIongation. contraction. suength

rC) a.(MPa) ab (MPaI cf ("1 • ("t (MJ m-2)

50 Cast C 20 490 10 15 0.15
(0.5"Cl US 20 630 18 28 0.28
U10 Cast C 20 400 489 2 5
(1.0~q US 20 410 850 3 9
40KhN Cast C 20 560 880 9 14
(O.4~C. 1"Cr. O.5~Ni) US 20 570 900 12 25
40KhNS5 Deformed and C 20 2300 2380 4 40 0.38
(C".4~C. 1"Cr. 5"Ni) heat treated US 20 2430 2530 4 50 0.57
Kh20N20M3 Cast C 20 490 42 40
(20CJ6Cr. 20~Ni. 3%Mo) US 20 550 54 68

C 900 140 22 18 1.1
US 900 170 28 26 1.7

Kh18N15R3 Cast C 900 180 3 0
(1896Cr. 15~Ni. 3~B) US 900 240 11 14

Deformed C 900 180 7 25
US 900 220 11 40

Fig. A.I. Elimination ofcolumnar structure and fonnation of

fine equiaxed grains in ultrasonically treated of a steel (H2ST)

(Abramov, 1987).
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