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Abstract

The transition from deflagration to detonation is studied by focusing on the actual
final process, i.e. the onset of detonation itself. The high speed deflagration prior to
transition is obtained by suppressing the oscillatory structure of a detonation first. A
theoretical model is developed to analyze the resulting deflagration complex which shows
that it propagates close to half the CJ detonation velocity with the deflagration slowly
separating from the leading shock. These high speed deflagrations thus obtained just prior
to transition to detonation as well as the highly turbulent fast deflagrations that have been
observed prior to transition in earlier studies are shown to be CJ deflagrations where the
propagation velocities are governed by energetics rather than the flow structure.

To understand how the nonsteady behavior of detonations may affect the transi-
tion process, the one-dimensional pulsating detonation is analyzed by computational stud-
les. The time averaged solution of the non-overdriven detonation over a cycle is found to
recover the steady CJ solution and the independence of the far rearward boundary con-
dition is demonstrated for the activation energies studied. The self-oscillatory nature of
the detonation also plays a key role in the maintenance, failure, and re-establishment of
the detonation structure. To study the onset of detonatica, the high speed deflagration
obtainel by failing the detcnation is subsequently perturbed with periodic disturbances to
stimulate transition. The numerical simulations show that the perturbations undergo a fre-
quency selective amplification process to accelerate transition where the optimal frequency
is related to the chemical reaction time of the detonation. The existence of optimal pertur-
bation frequencies to stimulate transition is also observed in the experimental investigation
carried out, although its value appears to depend on the channel dimension. Based on the
oscillatory and frequency selective nature of the detonation phenomena, an oscillator model
is proposed. An equation that has the basic features of a mechanical oscillator has been
derived for the pulsating detonration. The proposed oscillator concept indicates the need to

examine detonation phenomena from the point of view of a resonant oscillator.



Résumé

La ¢ransition déflagration-détonation a été étudié en se concentrant sur la phase
finale, c’est 3 dire I’établissement de la détonation elle-méme. La déflagration rapide avant
le régime de transition est obtenue en supprimant la structure oscillatoire de la détonation,
Un model théorique a été developpé dans le but d’analyser le mécanisme conmplexe de cette
déflagration se propageant a une célérité proche de la moitié de la célérité de détonation
Chapman-Jougnet (CJ), tout en se découplant de I'onde de choc de téte. I a pu &tre
démontré que les déflagrations rapides et les déflagrations trés turbulentes préctdant Ja
transition vers la détonation sont en fait des déflagrations CJ dont les célérités de propaga-
tion sont determinées par ’énergétique plutdét que par I’hydro-dynamic.

Afin de comprendre 'influence du comportement instable de la détonation sur le
processus de transiiion, une détonation uni-dimensionelle oscillante a été modclisée lors
d'une étude numérique. La moyenne de la solution dans le temps sur un cycle pour une
détonation non-surdétonative tend vers la solution stable CJ et s’avére indépendente des
conditions aux limites loin en amont dans la gamme d’énergie d’activation étudiée. La
nature auto-oscillatoire de la détonation joue un role clé dans 'entretient, I'amortissement,
et le re-éstablissement de la structure de la détonation. Afin d’étudier I’élablissement de
la détonation, une déflagration rapide obtenue en amortissant une détonation est soumise
a des perturbations périodiques pour exciter la transition. Les simulations numériques
ont montré que les perturbations subissaient un processus d’amplification fréquentiellernent
sélectif permettant d’accélerer la transition vers la détonation. La fréquence optimale est
liée au temps de réaction chimique. Les résultats experimentaux ont aussi montré ’existence
d’une fréquence optimale de perturbation stimulant la transition, méme sl apparait que
sa valeur semble dépendre des dimensions du tube. Un model thécrique a été présenté
sur la base d’un mécanisme de détonation oscillatoire et fréquentiellement selectif. Une
équation ayant les caractéristiques d’un oscillateur mécanique a été dérivée dans le cadre
d’une détonation pulsatoire. Le concept oscillatoire proposé indique clairement le besoin

d’examiner le phenomeéne de la détonation d’un point de vue d’un oscillateur résonant.
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Chapter 1

Introduction

1.1 Background

The propagation velocity of combustion waves can vary over a wide spectrum.
A gaseous combustible mixture can propagate as a deflagration or as a detonation. In
the deflagration regime, in the limit it can burn as a laminar flame that propagates at a
velocity of the order of 0.5 m/s, or it may accelerate to a turbulent flame with velocities
potentially orders of magnitude higher. The turbulent flame may also undergo transition to
a detonation wave and propagate at velocities of about 2000 m/s. It is not surprising that
a diverse variety of propagation mechanisms may possibly be involved corresponding to the
observed four orders of magnitude of wave velocity. There are still numerous gaps in the
knowledge of the vast family of combustion waves and every progress in understanding these
phenomena will have considerable theoretical interest. In this thesis, I will concentrate my
study on the high velocity regimes specifically to examine transition to detonation.

The ability to predict the occurrence and characteristics of detonation waves is
also of great practical value. As the fastest mode of combustion and with its large power-
density, detonation poses both a great concern for safety of possible explosion accidents as
well as a challenge in harnessing it for potential future applications in propulsion systems.
The feasibility of using oblique detonation waves in ram-jets is under current investigation

for application to propulsion of a new generation of hypersonic vehicles.



1.2 The Genesis of Detonation

The basic goal of detonation research is to gain insight into the different aspects
of the detonation phenomena, namely, its development, steady propagation, and failure,
By now, it has been established that even the steady propagation of detonation waves
involves periodic formation and failure of individual wavelets. No doubt, advances in the
understanding of the formation process will contribute to a better description of the general
behavior of detonations.

The formation of detonations can be realized in two ways: direct or blast initiation
and transition from deflagration to detonation. Direct initiation will occur il a blast or
shock wave is strong enough to auto-ignite the combustible mixture processed by it to form
a detonation. For direct initiation, the energy of the source plays a key role in determining
whether initiatidn is successful or not. If a sufficient amount of energy is released by the
igniter, rapid auto-ignition takes place immediately behind the generated blast wave and the
reaction coupled shock wave quickly becomes a Chapman-Jouguet (CJ) detonation. Below
a certain critical value of igniter energy, the reaction front decouples from the leading
shock wave and direct initiation is not achieved. For direct initiation, since the initiation is
accomplished directly without first propagating as a deflagration, it has been appropriately
referred to as direct initiation. Bach, Knystautas, and Lee (1969, 1971) have developed
a theoretical model to treat direct initiation using reacting blast waves. A subsequent
theory was later established by Lee, Knystautas, and Guirao (1982) to predict the minimum
initiation energy for direct initiation. A comprehensive review of the blast initiation theory
is given by Lee (1977).

Alternately, the combustible mixture can be ignited by a low energy igniter and
burn as a slow deflagration. Under appropriate conditions, it can accelerate and undergo

transition to detonation. This process is referred to as deflagration to detonation transition,



or DDT. Despite significant progress in studying DDT through many experimental as well

as theoretical efforts, the underlying physics of this complex phenomena remains unclear.

1.3 Previous Works

Deflagration to detonation transition has been a subject of intense study for a
long time.! From previous experimental works, the qualitative description of the processes
of transition are quite well established: starting with weak ignition and the subsequent
acceleration of the laminar flame to turbulent, all the way to the final stage of detonation
onset. The photographic studies by the research group of Oppenheim are particularly
noteworthy in elucidating the genesis of detonation. The details of the actual onset of
detonation in smooth confined tubes have been revealed with unsurpassed clarity by their
stroboscopic laser Schlieren photographic records (Urtiew and Oppenheim 1965, 1966, 1967,
1968; Meyer and Oppenheim 1971). The onset of detonation was observed to originate from
localized regions in the turbulent flame brush (so-called hot spots). Localized explosions
from these hot spots then become spherical detonation “bubbles” which grow to catch up
with the leading shock front of the deflagration (Urtiew and Oppenheim 1965). The effect
of compression waves emitted by the accelerating flame to induce onset was illustrated by
their experiments and by analytical calculations (Laderman and Oppenheim 1961) which
was derived from the work of Chu (1956). A numerical simulation of the flame acceleration
process was later performed by Kurylo et al. (1979). The role of the leading shock in
triggering auto-ignition and subsequent onset of detonation is also revealed where shock
strengthening is accomplished by merging of compression waves and shocks ahead of the
flame front (Urtiew and Oppenheim 1965, 1966), and by shock reflection at the closed end

of a tube (Meyer and Oppenheim 1971, Laderman and Oppenheim 1961).

!The comprehensive review of the gaseous detonation and transition phenomena can be found in the
recent papers by Lee (1991) and Shepherd and Lee (1992),



Although the events that lead to the final onset of detonation may vary, Qppen-
heim pointed out that the transition process observed essentially consists of an *explosion
within explosion”, as he has labeled the localized explosion center. This has remained the
most plausible mechanism that leads to the onset of detonation and many theoretical studies
have evolved around this concept. Modern asymptotic analyses have now been developed to
investigate the formation of the explosion centers (e.g., Clarke 1978, 1979; Jackson, Kapila,
and Stewart 1989; Almgren, Majda, and Rosales 1990). In essence, these analytical sindies
are concerned with the evolution of hot spots due to rapid shock wave development or lo-
calized pressure buildup in an explosive medium. Although these do indicate the possibility
of explosion center formation, their physical interpretations are often handicapped amidst
complex mathematics, and the results are dependent on the initial spatial inhomogeneitics
in the system which must be provided by other means. Moreover, the naturc of these asymp-
totic analyses restricts the predictions to the initial growth, while the final development of
detonation cannot be analyzed.

The physics of rapid shock wave amplification in detonation formation was more
clearly elucidated by the studies of Zel’dovich and independently by Lee. Zel'dovich demon-
strated that by controlling the temperature (or induction time) gradient of an initially
quiescent reactive atmosphere, one can determine whether or not the resulting reaction
wave will evolve into detonation (Zel’dovich et al. 1970, Zel’dovich 1980). Lee pointed oul
that the rapid shock amplification can be explained by the fact that the chemical cnergy
release in the reaction front is synchronized with the propagation of the compression (or
shock) wave (Lee et al. 1978, Yoshikawa 1980). The suggested interpretalion was hased
upon the Rayleigh criterion of instability due to unsteady heat input which stated that “If
heat be given to the air at the moment of greatest condensation, or taken from it at the

moment of greatest rarefaction, the vibration is encouraged”. The Shock Wave Amplifica-



tion by Coherent Energy Release (SWACER)? mechanism was proposed in their study of
photo-chemical initiation of detonation where an induction time gradient field in an initially
quiescent photo-dissociating gas mixture is generated by strong UV light irradiation. These
theories have provided significant insight regarding the role of inhomogeneities and phase
relations between the heat source and the gasdynamic flow field that may lead to rapid
shock development. However, the initial flow conditions investigated in these studies are
clearly different from those observed during transition and it remains difficult to relate these
theories with the generally observed transition phenomena. For instance, the actual flow
before onset is not quiescent, and the question of how the initial inhomogeneities are set
up remains unanswered. In order to analyze the onset of detonation, these analyses must
be advanced further together with realistic initial conditions commonly observed prior to
onset of detonation.

On another front, the use of wall obstacles (or so-called Shchelkin’s spiral) to stim-
ulate transition to detonation has been studied by Laffite (1928) and Shchelkin (1940). The
transition process in similar experiments is largely associated with the intense interaction
between the flame and the obstacles. The mechanism by which transition is facilitated had
been credited to the generation of turbulence by the obstacles, hence promoting flame accel-
eration (Lee and Moen 1980, Lee 1986). However, more recent experiments by Teodorczyk
(1989) have demonstrated that the transition to detonation may have been facilitated by
the transverse pressure waves generated by the obstacles rather than by the turbulence.
By placing acoustic absorbing materials underneath wall obstacles, Teodorczyk observed
that the damping of the transverse pressure waves inhibited transition. Hence turbulence
alone, without transverse pressure waves, has thereby been demonstrated to be insufficient

for detonation to form.

*The acronym SWACER was introduced to emphasize the similarity of the amplification mechanism to
the well known LASER mechanism which is based on light amplification due to coherent energy release by
stimulated emission in a resonant cavity.
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As a whole, the experimental studies performed so far have revealed a variety of
mechanisms for transition to take place, yet the criteria for transition have not been lully
understood. While the qualitative descriptions of the transition process is quite established,
the quantitative understanding of transition is incomplete. It is stifl not possible to predict
“a priori” for a given system, i.e., for a prescribed mixture in a prescribed tube geometry, if
a deflagration can accelerate to detonation or not. Neither is it possible to predict the time
(or distance) it would take for transition to occur for systems where transition is known to
be possible. Experimental measurements in one system (e.g., fixed tube diameter) cannot
be correlated with another, nor can transition data for one mixture be linked to other
mixtures.

It is useful to note that the transition phenomenon can be classilied inle two
phases, the initial flame acceleration and the final onset of detonation (Shephard and Lee
1992). Perhaps foremost amongst the reasons that the transition process remains unclear
is that most of the experiments carried out to study the transition from deflagration to
detonation inevitably mixed the initial flame acceleration phase with the eventual onset
once the maximum deflagration velocity is achieved. The initial phase involves a com-
plex phenomena of flame acceleration mechanisms, from laminar through the compressible
turbulent regimes which are strongly influenced by initial and boundary conditions, 1t is
unlikely that a general quantitative description of this phase may be achieved. Morcover,
due to the random nature of the formation of the explosive centers, it is very difficult 1o
experimentally obtain repeatable and controllable initial conditions at which the onset of
detonation can be studied.

On the other hand, it is important to recognize that the key step of transition is
the onset phase and the phenomenon does appear to have certain universal characteristics.

In general, the deflagration prior to onset always involves a quasi-steady unstable regime



which propagates at a velocity near 1000 m/s, about half the CJ detonation velocity (Lee,
Soloukhin, and Oppenheim 1969), and the onset usually undergoes an abrupt event as
detonation is formed. The onset process is directly associated with the final establishment
of detonation and much clarification is still needed. It thus seems that a fruitful approach
to study transition is to direct attention to the onset phase, yet this had not been feasible
in previous experiments.

In order to progress further in studying the transition process, it is important to
establish clearly the initial conditions at which the onset of detonation will occur, and to
recognize the essential characteristics of detonation which the transition process must es-
tablish. The recent results of Dupré et al. (1988) have provided some directions in fulfilling
these requirements. Their experiments have shown that when the transverse waves of a det-
onation are damped out, the detonation will fail where the leading shock is decoupled from
the reaction zone. The resulting structure is more or less a one-dimensional deflagration
with a shock/reaction-front complex which propagates also at about half the CJ detona-
tion velocity for some distance prior to transition back to detonation. The significance of
Dupré’s results is two fold. First, by removing the transverse waves of a detonation, the
wave will fail and the quenched wave decclerates to a propagation velocity commonly ob-
tained prior to transition to detonation. The shock-flame complex is also very similar to the
quasi-steady regime which occurs at critical conditions in different initiation experiments
such as direct initiation (Bach et al. 1969, Edwards et al. 1978) and critical tube diameter
experiments (Edwards et al. 1979). Lee and Ramamurthi (1976) have concentrated on
this quasi-steady regime to build a theory to describe blast initiation. In the propagation
of galloping detonations, the wave intermittently travels in the failed mode for some time
before re-transition to detonative condition and then decays to repeat the cycle (Dupré et

al. 1990). Just prior to the establishment of the high velocity regime, a shock-deflagration



structure has been observed which has similar characteristics as the quenched wave obtained
by failing a detonation. Thus, the quasi-steady shock-reaction structure just prior to the
establishment of detonation is a well-observed entity. It would be of great theoretical and
practical interest to investigate the nature of the wave and determine whether it recovers
the maximum velocity deflagration. If it does, this simple one-dimensional structure can
be used as a well-defined initial condition to examine detonation onset which is ﬁhen free of
the flame acceleration process so dominant in many previous experiments.

Secondly, detonation is demonstrated to require transverse waves for its propa-
gation. Transverse waves are indeed a manifestation of the unsteady coupling between
the chemical reactions and the gasdynamic flow field, which forms a rather well-organized
cellular structure behind the detonation front., The nonsteady nature of detonations have
been revealed in many experimental and theoretical investigations to be in contrast with
the classical theory of Zel’dovich (1940), von Neumann (1942), and Déring (1943) (ZND)
which postulates a steady “laminar” detonation structure with a shock followed by a re-
action front. Theoretical analyses have shown that for high encugh activation energies,
detonations are inherently oscillatory even in the on~ dimensional framework (Erpenbeck
1662, 1964; Fickett and Wood 1966). Without the oscillatory structure, a detonation will
not sustain itself. The intrinsic oscillatory nature of detonation has therefore suggested that
the transition to detonation can be considered as the establishment of this form of organized
structure. Hence, the understanding of the transition process cannot be complete unless
this aspect has been examined. In this sense, the explosion center or hot spot concept seems
to be incomplete. The amplification of the explosion center may provide a static criterion
for the onset of detonation (e.g., critical temperature gradient, critical shock strength, etc).
What is required, however, may be a dynamic criterion that controls the formation of the

organized cellular pattern. Consequently, the oscillatory behavior of detonation should bhe



examined more closely. It may be fruitful to consider its similarities with classical oscillators
since the properties of classical oscillators are well known—their natural frequencies and
the physical mechanisms for maintaining the periodic behavior can be easily identified. The
excitation or start-up of an oscillator is also closely linked to its frequency. All these should

help to shed light on the formation of detonation which may be likened to an oscillator.

1.4 Current State of the Art

In summary, in spite of the extensive efforts to study the transition from deflagra-
tion to detonation thus far, the understanding remains qualitative. This stems largely from
the fact that the associated phenomena are highly complex and involve many aspects of
combustion and wave processes. It is not always possible to distinguish experimentally the
initial flame acceleration phase from the final onset of detonation. Neither is the possible
influence of the oscillatory nature of the resulting detonation on the transition process fully
understood, since the obtained detonation is not z steady state wave. Hence, it is some-
times difficult to define precisely what the transition process refers to. (In other words, the
transition from what to what?)

The onset phase of detonation is indeed the final establishment of the detonation.
However, because of the difficulty in distinguishing the flame acceleration phase from the
final phenomenon of onset, the initial conditions for the onset of detonation are hard to
control and the quantitative understanding of the process remains unclear. The work of
Dupré et al. (1988) has indicated that when a detonation is quenched, a shock-flame struc-
ture is obtained which has characteristics very similar to the quasi-steady regime observed
in many different experiments just prior to the establishment of detonation. Because of
its apparent universal behavior, the quasi-steady shock-reaction complex just prior to the

establishment of detonation may represent a unique class of combustion wave that deserves



10

better understanding. More importantly, this has given a new imipetus to examine the
transition process by concentrating on the onset phase which can be accomplished by using
the quasi-steady structure as a well-controlled initial condition for the study.

At the other end of the transition process, it is well known that the final detonation
formed is not a steady ZND wave, but one with oscillatory characteristics. However, the
role of the establishment of the organized structure has not been fully realized in the current
understanding of the transition from deflagration to detonation. Existing criteria for transi-
tion to take place usually involve the generation of critical shock strength for auto-ignition
to occur. These qualitative conditions are inadequate since the question of the formation of
the dynamic structure, which may or may not be a stable one, has not been addressed. In
order to better understand the transition of detonation, it may be necessary to incorporale
the oscillatory characteristics attained in the establishment of the final structure.

In the following section, the objective of the present work will be described and a

brief outline of the thesis will be provided.

1.5 Scope and Outline of the Present Work

The principal objective of the thesis is to elucidate on the process ol transition
from deflagration to detonation by focusing on the events during the onset of detonation
where the deflagration prior to transition has already attained a maximum velocity. The
present work aims at achieving a quantitative description of the events that lead to the final
establishment of detonation through theoretical and experimental investigations. To devote
attention to the onset phase, the initial condition for the study will be obtained by inducing
failure of an established detonation wave. The subsequent re-transition to detonation will
be examined to determine the key factors that control the genesis of detonation.

In order to define more clearly the starting and ending conditions for the transition
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process to take place, Chapters 2 and 3 will aim to provide a quantitative description of
the initial quasi-steady shock-flame complex and the final oscillatory detonation.

The thesis will start by examining the high speed deflagration just prior to transi-
tion to detonation. In spite of the fact that the quasi-steady regime is a universal metastable
state that occurs just prior to onset of detonation, it is not well understood. The purpose
of Chapter 2 is to determine the nature of the wave and to develop a quantitative model to
calculate its properties. In view of the approximate one-dimensional shock-flame structure
observed in Dupré’s experiments (Dupré et al. 1988), a quasi-steady one-dimensional model
will be developed to analyze the obtained fast deflagration. The propagation velocity will
be derived and the predicted values will be compared with experiments. These fast de-
flagrations will be shown to be the maximum velocity deflagrations prior to transition fo
detonation and will thus be served as a well-defined initial state for the present examination
of deflagration to detonation transition. The relation between the quasi-steady regime and
other high speed deflagrations observed prior to transition to detonation in various exper-
iments for different boundary conditions (i.e., tube geometries or wall roughness) will be
discussed.

The final product of the transition process, that is the self-sustained detonation,
will be examined in Chapter 3. Since the final detonation obtained is inherently a nonsteady
wave rather than a steady ZND detonation, it is necessary to understand its properties be-
fore proceeding to study the transition process. A one dimensional computational study
will be carried out using the reactive Euler equations to elucidate the dynamic behavior of
the one-dimensional pulsating detonation. Numerical simulations will be performed to ex-
amine how the detonation is initiated using a piston. The periodic and oscillatory behavior
of the established solution and its relation to the steady Chapman-Jouguet solution will be

studied. The similarity of the behavior of the pulsating detonation to other oscillators will
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also be pointed out to indicate the possibility of understanding the oscillatory mechanisms
of detonation waves using classical oscillator concepts. The response of the pulsating wave
to different perturbations and its subsequent failure will be analyzed. The detailed strue-
ture of the resulting metastable wave and its ability for re-transition to detonation will be
examined to help understand the transition process itself.

The transition process will be investigated in Chapter 4 using one-dimensional
computational analysis. The high speed deflagration complex obtained by quenching an
established one-dimensional pulsating detonation will serve as the initia! rondition for tran-
sition to start. This quasi-steady shock-reaction structure will be subsequently perturbed
with periodic disturbances to induce transition to detonation. Numerical experiments will
be carried out to determine the optimal condition for transition using periodic disturbances
and the sensitivity of the process to the frequency of the applied perturbation will be exam-
ined. To support this approach, an experimental investigation will be described in Chapter
5 to examine the formation of real multi-dimensional detonations. The initial condition
for transition will be obtained by damping out the transverse waves of a self-sustained
CJ detonation using acoustic absorbing walls to produce a maximum velocity deflagration.
Transition will be induced by placing periodic wall obstacles along the channel to gener-
ate artificial transverse pressure waves to facilitate the formation of the natural transverse
wave structure of the detonation. The optimal perturbation frequencies that will facilitate
transition to detonation will be examined.

In Chapter 6, an attempt will be made to establish the analogy of the pulsating
detonation to nonlinear oscillators by deriving the equivalent oscillator equation. The os-
cillator concept may provide a means for the mechanism of pulsation and the oscillatory
structure of detonations to be interpreted, The possibility of treating the establishment of

the self-organized pulsating detonation (i.e., transition) as the self-excitation of an oscillator



will be discussed.
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Chapter 2

The Quasi-Steady Regime Prior

to Transition

2.1 Introduction

The purpose of this chapter is to define clearly the high speed deflagration obtained
Jjust prior to the onset of <ctonation. In the present research, we propose to generate the
initial condition for the transition study by inducing failure of an established detonation.
A one-dimensional analytical model will therefore be developed to analyze the quasi-steady
regime and to provide a quantitative description of its properties. The predicted velocities
will be compared with the experimentally obtained quasi-steady waves as well as with other
maximum velocities deflagrations. The nature of the quasi-steady regime will be discussed

in light of the analysis.

2.1.1 Experimentally Observed Quasi-Steady Regime

The generation of the quasi-steady regime by failing an established detonation wave
was first demonstrated by the experimental study of Dupré et al. (1988). The quenching
process is illustrated by the high speed framing photographs taken by Teodorczyk (1989)
from a similar experiment shown in Fig. 2.1. In the figure, a Chapman-Jouguet (CJ)

detonation wave is first generated and enters from the left. As it traverses the damping
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section, the transverse waves are damped out by the acoustic absorbing walls and the
reaction zone gradually decouples from the leading shock while the velocity decreases. The
resulting reaction front is an approximate one-dimensional deflagration which propagates
at a slightly lower velocity than the leading shock. Unlike a detonation, this complex is
uncoupled since the shock slow'y separates from the flame. Nevertheless, each element
seems to be at a quasi-steady state with approximately constant speeds. Furthermore,
this one dimensional shock/reaction-front complex propagates at about half the original CJ

detonation velocity for some distance prior to transition back to detonation.

2.1.2 Other Fast Flames Observed

Many experimental observations have indicated that the maximum propagation
velocity of deflagrations appears to be also at approximately half the CJ detonation velocity.

Some of the examples will be pointed out below.

Fast Deflagrations Just Prior to Transition

The fast deflagrations observed just prior to the transition from deflagration to
detonation in smooth tubes have generally attained this velocity before the final onset (Lee,
Soloukhin, and Oppenheim, 1969). Above a velocity of approximately 1000 m/s, transition
to detonation is imminent. In smooth tubes, these high speed deflagrations consist of a
shock (or a family of compression waves) ahead of a reaction zone. The separation distance
between the leading shock and the flame front is much larger than that for detonations,
indicating that the propagation mechanism is not one of shock-induced auto-ignition. The
fast deflagration prior to the onset of detonation has been obtained in the computational
studies by Clarke et al. {1986, 1990). Using a one-dimensional Navier-Stokes model with
the addition of large amount of thermal power at z = 0 to the half space z > 0, a strong

precursor shock wave followed by a fast deflagration was obtained that propagates in a
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metastable state for some time before the appearance of a ZND detonation {Clarke ct al.
1986, 1990).

In galloping detonations, the combustion wave intermittently propagates in a failed
mode before re-transition to detonative condition and then decouples again to repeat the
process {Dupré et al. 1990). The shock-deflagration complex in the failed mode shares
similar characteristics as fast deflagration obtained by damping out the transverse waves of

a detonation.

Quasi-Steady Regime Under Critical Blast Initiation

Although direct or blast initiation of detonation does not involve the acceleration
of a deflagration to undergo transition to detonation, a quasi-steady regime that also has a
similar shock-reaction front structure has been observed to occur at the critical conditions
just before the initiation of detonation and is found to propagate at about half the CJ
detonation velocity (Bach et al. 1969; Edwards et al. 1978). The quasi-steady regime has
also been observed in computational studies. A quasi-steady shock-reaction front complex
in a slowly evolving configuration was obtained when the energy input to initiate the det-
onaiion is supplied by a mechanical piston (Singh and Clarke 1992). The nature of this
metastable regime has not been fully clarified although it has sometimes been referred to
as “low velocity detonation” because of its sub-CJ propagation velocity. The low velocity
has been speculated to be a result of incomplete combustion which decreases the effective
energy available to sustain the wave at the CJ detonation velocity (Edwards et al. 1978).
This conjecture was based on the experimental observations that unburnt gas can escape the
more intense combustion regions at the transverse shocks (Edwards et al. 1978). lfowever,
all experimental evidences have shown that the transverse wave system is absent in these

quasi-steady regimes, it is unlikely that the low velocity detonation with a partial energy
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release can provide a meaningful explanation of the sub-CJ wave.

Turbulent High Speed Deflagrations—Choking Regime

In general, the propagation velocities of high speed deflagrations can range from
about 600m/s to 1000m/s which are dependent on the turbulent transport rates, and thus
the detailed flow structure. However, for turbulent high speed deflagrations in rough tubes,
it is found possible to obtain a steadily propagating deflagration at about 1000 m/s without
it undergoing transition to detonation, whereas in smooth tubes transition to detonation
usually occurs when the deflagration has accelerated to such velocities. This maximum
deflagration velocity is again close to half the CJ detonation velocity, although the detailed
flow structure is far more complex than that observed in other conditions (i.e., the quasi-
steady regime and fast flames in smooth tubes, etc). The flow structure of a turbulent
high speed defiagration is illustrated in Fig. 2.2, which is a time sequence of high speed
framing schlieren photographs of such propagation for a hydrogen-oxygen mixture in a
channel where the walls are roughened with obstacles. The structure consists of a series of
compression waves in the front, followed by a highly turbulent reaction zone. The leading
compression waves are not strong enough to cause auto-ignition so that the trailing reaction
zone propagates at a slightly lower velocity than the leading compression waves.

Figure 2.3 displays a streak photograph obtained by Wagner (1981), which is a
trace of the trajectory of a deflagration where equally-spaced orifice plates are placed along
the wall. The deflagration is seen to accelerate initially and eventually attains a steady
velocity. The important feature to note from the photograph is that the trajectory of
the steady state deflagration front is quite parallel to the the ¢ characteristics in the
product gases, which can be identified by the streak lines that propagate in the direction

of the deflagration. These steady high speed turbulent deflagration velocities are found



to be quite close to the sound speed in the burnt gases and has prompted lLee (1986)
to refer to this regime of combustion as the “choking” regime. Since the sound speed
is only a function of temperature, it indicates that thermodynamics play a key role iu
these deflagrations. Comparing the velocities of the quasi-steady regimes just prior to the
establishment of detonation (in direct initiation, in transition, and in galloping detonations),
and the highly turbulent choking regime, it appears that they are similar and depend mainly
on the energetics of the mixture rather than on the details of the flow structure.

In the following section, the analytical model for the quasi-steady regime will be
developed and the predicted theoretical propagation velocities will be compared with the

extensive experimental data that is available for soine of these high speed deflagrations.

2.2 Analytical Model

The high speed photographs in Fig. 2.1 have thus indicated that the quasi-steady
regime resulting from failing a detonation can be modeled by a one-dimensional shock
followed by a reaction front as shown in Fig. 2.4, Upstream of the complex, the gas is
stationary so the initial velocity ug vanishes. The velocity behind the flame, uq, is assumed
to vanish to satisfy the end-tube boundary condition. We shall assume that the deflagration
is a maximum velocity wave that propagates at the sound speed of the burnt gas, that is it
satisfies the Chapman-Jouguet (CJ) condition. This kind of configuration has always heen
a topic for theoretical study, not least because of the availability of elementary solutions for
its component parts, in this case, a shock wave and a subsonically-propagating deflagration.
The text by Shchelkin and Troshin (1964) contains a lengthy chapter under the heading of
“Double Discontinuities”, and refers to an earlier work by Oppenheim (1953). Shchelkin
and Troshin describe the propagation of separate discontinuities as dictated by the relevant

Hugoniot relationships, either adiabatic or nonadiabatic as the case may be. Oppenheim
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derived the locus of possible states 2 that may exist downstream of a given upstream region
0 on the hypothesis that the deflagration is of the CJ-type (i.e., it is propagating at exactly
sonic speed relative to the burnt gas in region 2). Oppenheim called this particular locus a
Q-curve, while Shchelkin and Troshin described it as a generalized Hugoniot curve.

There is one particular point on Oppenheim’s Q-curve that corresponds to us = 0
in Fig. 2.4. Since the form of this special result, which was not noted by the earlier
writers, is particularly relevant to the present study we derive it here from first principles.
Deflagrations in the experiments travel along tubes in the direction away from a solid end
wall. While uy is certainly equal to zero at such an end wall, observations suggest that the
condition u; = 0 will also be encountered throughout the domain between the wall and the
flame. In the one-dimensional numerical computations made by Clarke et al. (1986, 1990) of
the Navier-Stokes model of events that follow from the initial addition of thermal power to
a simple combustible gas, the shock wave and the fast-flame predicted by the Navier-Stokes
solution prior to the appearance of a ZND detonation follow paths on an z,t-diagram that
are very similar to the ones sketched in Fig. 2.4 here, and the computed gas velocity in
region 2 is, for all practical purposes, equal to zero, as proposed in the present case.

A further indication that u; vanishes is illustrated by the streak photograph ob-
tained by Wagner (1981) in Fig. 2.4. Since the velocity of the deflagration front is close to
the sound speed of the burnt gas (cy), while the ¢t characteristics propagate with velocity
u2 + ¢z and are parallel to the deflagration front, the photograph demonstrates that the
particle velocity in the burnt gas is indeed small.

The key fact in the present study is the insensitivity of the broad flow-field pat-
tern (of shock followed by deflagration) to any details of behavior within any particular

deflagration.



2.2.1 Governing Equations

The governing equations for the deflagration model is derived as follows. The

conservation laws across the shock may be writien as

polts = pi(Rs —w) (2.1)
PotmRE = pi4p(Rs—w)? (2.2)
ho + E-?S_, = h+ (Rs =)’ (2.3)

2 2

and similarly for the flame

pi(Br—u1) = pRr (2.4)
ptp(Rr—w) = potpaliy (2.5)
h1+m%3’-‘-)f+@ = hz+%2’3 (2.6)

Assuming a perfect gas, the enthalpy A can be expressed as a function of p and p as

{2.7)
In the above equations, subscript 0 denotes the initially undisturbed stale ahead of che
shock, subscript 1 denotes the shocked gas between the shock and the flame, and subscript
2 denotes the burned products behind the flame.

Let us first consider the solution for the flame. From the conservation of mass

(2.4) the density ratio can be expressed in terms of the velocity ratio as

M R

== 2.8
P2 Rp-—uy (28)

Using the conservation of mass and momentum (2.4) and (2.5) the pressure ratio can be

expressed in terms of the density ratio and the flame velocity as:

-2 2 _
y=1+m (RF) L (29)

€ z2
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where y = py/p:1. Equations (2.8) and (2.9) can be used to eliminate the velocities in the

energy equation (2.6). By using equation (2.7) for &, the energy equation becomes

(r—e)y+a)=25 (2.10)
where
_Ye -1 =72—1[(71+1 27162)_72—1]
Y2+ 1 +1l\n-1" ¢ Y241

with ¢? = v,p1/p1 being the sound speed of the reactants immediately ahead of the flame
front. Equation (2.10) represents the Hugoniot curve on a pressure-density plot which is
the locus of downstream states (p2, p2) for a given initial state (p1, 1) and chemical energy
release (} of the mixture. For a perfect gas, the Hugoniot curve is a rectangular hyperbola
as illustrated by equation (2.10).

The locus of possible solutions across the shock can be obtained similarly from the
conservation equations (2.1) to (2.3). Since the mixture is non-reactive across the shock

(i.e., @ = 0), the Hugoniot equation for yg = y; = « is then

(& -a)G+a)=p (2.11)
. __ Po . M
xr=—— = —
P1 v Po
N Ak T 4y
o= — = ——
7+l P (r+1)?

Furthermore, the downstream state across the shock can be obtained using equations (2.1)

to {2.3) to give the usual Rankine-Hugoniot relations for a normal shock in a perfect gas,

% - 'r_j_li%%; (2.12)
T o
% _ \/[27—(7—(’:)_'1_7]1[?1:(7—1)] (2.14)
*:_; = %1,;_1’7)”% (2.15)
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where
nMi=1;  cMs = Rs; (2.16)
Ms is the shock Mach number.

The solution to the conservation equations for the shock/reaction-zone complex
can be represented graphically using a Hugoniot diagram, which is a plot of pressure versus
the specific volume (i.e., 1/p) as displayed in Fig. 2.5. Given an initial state 0, the shocked
state 1 lies on the Shock-Hugoniot given by equation (2.11). The straight line that connects
the initial state and intersects the Shock-Hugoniot at state 1 is the Rayleigh line, which
is given by the conservation of mass and momentum equations. Since there is no energy
addition across a shock (@ = 0), both the initial and shocked states lie on the Shock-
Hugoniot. The solution behind the deflagration (state 2) lies on the Hugoniot for the
deflagration given by equation (2.10). For a Chapman-Jouguet deflagration, the solution

is obtained by the intersection of the Rayleigh line from the shocked state to the lower

tangency point on the Hugoniot curve.

2.2.2 Approximate Solution for Constant v

If v is further considered to be constant across the flame as well as across the
shock, then the downstream states across the flame front can be solved for in terms of the

upstream conditions using equations (2.8), (2.9) and (2.10). For example the density ratio

can be written as

P2 v+1
e _ L l- 2.17
pr YtnpxS (217)
where
5= \ﬂw 1y -2 -1 (2.18)
1
and

neME =1 eoMp = Rr - uy. (2.19)
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Similar expressions can be written for the other quantities (e.g. pressure ratio). The two
signs in front of S in equation (2.17) denote the two possible solutions for a given flame
speed. For a Chapman-Jouguet deflagration, the two solutions coincide, i.e. § = 0, and we

obtain

&z 741
[ o 1) 3

(2.20)

where 777 (for the Chapman-Jouguet condition) is now given by equation (2.18) for § = 0.
Thus, the Mach number of the deflagration relative to the flow between the shock and

reaction front is related to the energy release by:

From the conservation of mass across the shock and the flame (i.e., eqns. 2.1 and
2.4) the flow Mach number relative to the deflagration can be related to that behind the

shock:

Mp (% - 1) = M, (% - ) (2.22)

where M, = EL;I—"l is the Mach number of the flow behind the shock relative to the shock.
Utilizing the Rankine-Hugoniot relationships across a normal shock (eqns. 2.12, 2.14) equa-
tion (2.22) can be expressed as the following relationship for the Mach number My of the

flow in front of the flame with respect to the flame, and the shock Mach number Mg:

1 £ €o 1 )
— Mp) =2 (=) =22 (o - M) .
(MF F) y le MI) 201 (MS Ms (2:23)

Substituting equation (2.14) for ¢p/c;, equation (2.21) can be reduced to

(_L_M)z._l (2.24)
Ms  5) T3t '

Mi=1+1+ 1+ 9y -1 (2.25)

The solution for M} is



-

For ¢ >» 1, which in general is the case for explosive gas mixtures (since ¢ is typically of

order 20) the approximate value of My is

q .
Mg, /2 2.
s 9 (2 2())

The propagation velocity of the flame can be obtained using the mass conservation

across the flame and the shock to yield

RF = (RF—H1)+U1
kr

€o

= Mply Mg (1 - 39) (2.27)
€o P

Using the Rankine-Hugoniot relations across the normal shock (i.e., eqns. 2.12, 2.14) and

equation (2.21}, for g 3> 1, the flame velocity relative to the fixed tube can be approximated
by:

B, 20142041 4

o 207+ 1)2 (2.28)

The CJ detonation Mach number Mp = RD/CD for the same mixture can be
expressed as a function of the heat release ¢ as:

("j'fl_g - Mp)z =2q (2.29)

The solution for the quadratic equation for M3 is

ME=14q++(1+¢?%-1 (2.30)

For ¢ >» 1, the CJ Mach number is approximately

Mp ~ \/2q (2.31)

Upon comparing equations (2.26) and (2.31), we see that

S
12

or Rs =~ =Rp (2.32)
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The precursor shock velocity of a CJ deflagration is thus about one half the corresponding
CJ detonation speed for the same mixture. For v = 1.4, the flame velocity of the CJ

deflagration is

R
—CE ~ 0.655,/7 (2.33)
0

and from equation (2.31), we obtain
Bp ~ 0.465Rp (2.34)

The comparison of Rp with Rp for various v is given in Table 2.1. It can be seen that the
CJ deflagration velocity (relative to 2 fixed coordinate) is about one half the corresponding
CJ detonation velocity Bp. Tkis is precisely what the experimental results of Dupré et al.

(1988) showed.

Table 2.1: Comparison of CJ deflagration with CJ detonation velocities for various v

5 % - ‘v(‘v;l?)i§§1+12
1.4 0.465
1.3 0.472
1.2 0.479
1.1 0.489

2.2.3 Exact Solution for Arbitrary q

In order to compare quantitatively the theoretical model with experimental results,
a more exact analysis is required. In this analysis, the assumption that v is constant across
the flame is relaxed, although the change in v across the shock is still assumed negligible.
The assumption that g 3> 1 is not necessary as ¢ will be computed directly in the analysis.
Because y changes across the flame front, the state downstream of the flame can no

longer be represented by the simple expression of equation (2.17), although the numerical
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values can still be computed. The solution across the flame will be obtained using the
Hugoniot equation. Given the state upstream of the flame, for a perfect gas, the Hugoniot
equation for the downstream state is represented by equation (2.10) which can be rewritten

in the following forms:

__h )
T = y+a+a (2.35)
__8 .
Y=o ¢ (2.36)

The unknowns across the flame are the density and pressure ratios (z,y) and the flame

velocity BRp. The pressure ratio y can be solved for in the following manner. The mass

conservation equation (2.8} is first rewritten as:

Uy

ot

Bp= (2.37)

z—=1
Using the alternate form of the Hugoniot equation (2.35), the density ratio z can be elimi-

nated:

. Buy+ou(y+ )
Br = gt a-Dta)

(2.38)

Substituting equation (2.35) for =, and equatjon (2.38) for Rp into the momentum equation

(2.9), the pressure ratio across the flame is:

p, B- \/32 +4(a - 1)+ ala - 1)~ an(E)]
Yy=—=

21 2(1-a)

(2.39)

where B = B4 (e —1)* + ‘)’1(%})2. If the coefficients @ and 3 are known, the pressure ratio
y can be determined. Equations (2.35) and (2.38) can then be used to calculate the density
ratio and the flame speed, respectively.

Note that since the Hugoniot equation (2.10) contains only two coefficients {a, 3),

if any two states on the Hugoniot curve are known, a and § can be evaluated and the
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downstream state can be determined. The two states chosen here are the constant volume
combustion and the Chapman-Jouguet detonation. Standard equilibrium combustion codes
{e.g. STANJAN) are available to calculate these states so that & and 3 are obtained. Once
the coefficients are known, for a given state ahead of the flame, equation (2.39) will give
the general solution for the pressure ratio that satisfies the boundary condition ug = 0.

Because the condition ahead of the flame front depends on the strength of the
precursor shock, the Chapman-Jouguet deflagration must be solved as an interdependent
shock-flame complex. The Chapman-Jouguet complex can be solved by finding the unique
shock velocity Rs that would satisfy the Chapman-Jouguet condition. The procedure for
computing the flow field is illustrated as follows. The calculation proceeds from an assumed
value of the shock velocity R,. The shocked state 1 is calculated using the Rankine-Hugoniot
relations for the shock, i.e. equations (2.12}, (2.13), (2.14) and (2.15). To relate the states
across the flame, the Hugoniot relation across the flame and the solution for the pressure
are applied (i.e., eqns. 2.39, 2.35, and 2.37).

The coefficients (@, 8) in these equations are evaluated using the chemical equilib-
rium code STANJAN (Reynolds 1987) to fit the Hugoniot equation to two states—constant
volume combustion and CJ detonation, for the given shocked state. The entire flow field is
then calculated for the assumed shock velocity. The flame velocity is tested to see whether
the Chapman-Jouguet condition is satisfied. If it is not, a new shock velocity is assumed

and the iteration continues until the CJ deflagration is obtained.

2.3 Results and Discussion

Following the calculation procedures for CJ deflagration, the propagation velocity
of the reaction front is calculated. The theoretical velocities will be compared with the

approximate one-dimensional deflagration obtained by damping out the transverse waves
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of an established detonation (Dupré et al. 1988) and with the rough tube experiments in

Lee (1986).

2.3.1 The Quasi-Steady Regime Following Failure

In Figs. 2.6 to 2.8, the theoretical CJ deflagration velocities are compared with
the velocities of the quasi-steady shock-reaction complex from Dupré. In the figures, the
flame velocities are plotted against the initial pressure for three different mixtures—ethylene
(C2Hy), acetylene (Cy Hz), and hydrogen (H3) in stoichiometric concentration with oxygen.
For CoHy, Fig. 2.6 shows that the calculated flame velocity is about 1100 m/s which
increases slightly with the initial pressure. The theoretical values of flame velocity agree
quite well with the experimental data. For acetylene (Fig. 2.7), the theoretical deflagration
velocity is about 1000m/s which also increases slizhtly with initial pressure. The calculaied
flame velocities again exhibit good agreement with the measured values. The calculated
flame velocity for the hydrogen-oxygen mixture (Fig. 2.8) is about 1400 m/s and is slightly
higher than the measured data, which are at about 1200 m/s. Note that because hydrogen
is a very light gas, it has a high sound speed. As a result it is difficult to maintain strong
shocks in hydrogen so that the transverse waves in the original detonation are more casily
damped than for the other mixtures. It is possible that the hydrogen deflagration may have
decayed further to propagate at a sub-CJ deflagration velocity.

Although the structure of the approximate one-dimensional deflagration from
Dupré’s experiments may seem very similar to the idealized model so that the agreement
between the theoretical and experimental propagation velocities is expected, there is never-
theless some fundamental difference between the two structures. The idealized deflagration
is in effect a steady “laminar” reaction front that is free of any flow fluctuations. On the
other hand, the experimental deflagration, although quite one-dimensional, can still be seen

to contain turbulence. Thus, even for the one-dimensional case, the agreement between



29

theoretical and experimental results indicates that these high speed deflagrations are quite
independent of the detailed flow structure.

As a whole, the theoretical flame velocities are very close to the measured flame
velocities. It is important to note that for the same energy input ¢, the CJ deflagration
obtained exhibits a velocity decrease of approximately 50 percent from that of the original
detonation. This sub-CJ detonation velocity wave is thus not due to a partial heat release as
may have previously been suggested (Edwards et al. 1978), but to the change in propagation
mode. Moreover, the observed quasi-steady shock-reaction front structure is also not that
of an induction process as it is for detonation waves. Otherwise the separation distance
between the shock and the deflagration front would have remained constant, as it is dictated
by a constant velocity leading shock. The presented deflagration model clearly demonstrates
that the quasi-steady regime obtained by damping the transverse waves of a detonation is
not that of detonation, but one that is equivalent to a Chapman-Jouguet deflagration.

Thus by removing the transverse waves of a detonation, the detonation fails and
the maximum velocity deflagration is obtained. This maximum velocity deflagration is a
Chapman-Jouguet deflagration which lies on the tangency point of the Hugoniot curve (Fig.
2.5), as is well established from classical theory.! Yet, CJ deflagrations had been believed
previously not to be readily observable in reality, Such a deflagration was unachievable
in previous experiments of flame propagation in smooth tubes because deflagrations usu-
ally undergo a transient state of acceleration due to turbulent interaction which inevitably
destroys the one-dimensional structure and also quickly leads to transition to detonation.
Thus, the high speed deflagrations observed in previous experiments would likely undergo

a highly transient passage through the CJ state.

!For example, see the discussion of the CJ deflagration by Taylor and Tankin (1958) and the analysis of
steady flames by Kuhl, Kamel, and Oppenheim (1973).
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2.3.2 The Highly Turbulent Choking Regime

Although the structure of the high speed deflagrations observed in rough tube
experiments (Lee 1986) are much more complex than the one dimensional deflagration of
Dupré, the fact that the flame velocities are also about one half the CJ detonation ve-
locity, and that the flame propagates at about the sound speed of the burnt gas indicate
that energetics, rather than the detailed flow structure, is the key factor. Thus, when the
deflagration has achieved the maximum possible velocity without undergoing transition to
detonation in rough tubes, the velocity obtained would be insensitive to the detailed flow
structure and the deflagration would be equivalent to a Chapman-Jouguet deflagration, Let
us investigate this by calculating the CJ deflagration velocities for the rough tube exper-
iments and see how they compare with the measured flame velocities. The experimental
results in Lee (1986) are obtained for five different mixtures—Cy Hy, Ho, CaHg, Cofly and
CH,, all in air and initially at atmospheric pressure and room temperature, where the
measurements are taken for tube diameters of 15cm and 5cm, with the respective blockage
ratio (B.R.=obstacle area over channel area) of 0.39 and 0.43.

The calculated CJ deflagration velocities and the measured terminal flame veloci-
ties, which are near the maximum velocities achieved in the rough tube without undergoing
transition to detonation, are compared in Figs. 2.9 to 2.13. In the figures, the flame veloci-
ties are plotted against mixture concentration expressed in terms of equivalence ratio. Also
plotted in the figures are the corresponding CJ detonation velocities for reference. From
these figures, it can be seen that the calculated flame velocities are about one half the CJ
detonation speed and are indeed very close to the measured flame velocities. Note that even
though there is a large change in the tube diameter and blockage ratio (B.R.), which repre-
sents drastically different turbulent transport rates in the flow, the measured flame speeds

are not significantly affected. The agreement between theoretical and experimental flame
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velocities are especially good for CoHy, Ho, and C3Hs (Figs. 2.9, 2.10, 2.11). For C:H,
and CH4 (Figs. 2.12, 2.13), the measured flame velocities are near, but consistently below
the maximum possible velocities prior to transition to detonation. Therefore, the measured
flame velocities for CoH2 and CHy are slightly lower than the calculated CJ deflagration
velocities. Also to be noted in Figs. 2.12 and 2.13 is that the measured flame velocities
for the smaller tube diameter and larger blockage ratio are slightly lower than those for
larger tube diameter and smaller blockage ratio, since the losses associated with the former
condition are expected to be larger so that the velocities are decreased. This effect is more
pronounced for Co Ho and C Hy because their velocities are below the maximum deflagration
velocity so the influence due to the different transport rates becomes more apparent.

Because the theoretical CJ deflagration velocity is simply the sound speed of the
burnt gas which depends only on the temperature (sound speed is proportional to T or
/@, the square root of energy addition) the agreement between the theoretical results with
the experimental data strongly supports the premise that the propagation velocities of these
multi-dimensional high speed deflagrations are determined by energetics rather than the de-
tailed flow structure. Indeed, these combustion processes are governed by thermodynamics
and are quite independent of the flow structure.

The similarity between the seemingly different forms of high speed deflagration can
obtain further support upon consideration of the Chapman-Jouguet detonation. The latter
is widely known to be inherently three-dimensional and unsteady due to the propagation
of transverse waves normal to the direction of propagation of the detonation. Yet, the
average wave velocity agrees well with one dimensional theory. For a CJ detonation, which
is the minimum velocity detonation, it is not the detailed flow structure, but the energetics
that plays the dominant role. For the CJ deflagration, which is the maximum-velocity

deflagration, a similar argument applies.
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Since the high speed deflagrations under examination are energetics dependent,
it is worthwhile to examine the possible energy losses associated with the turbulent de-
flagrations in rough tubes to see whether they can affect the propagation velocity. Firsi,
there may be heat transfer from the deflagration complex because the combustion process
will generate significantly higher temperatures than its surroundings. However, the time
scale associated with the diffusion of heat from the gas to the tube is several orders of
magnitude larger than the characteristic time associated with the propagation of the defla-
gration. Therefore, the energy loss due to heat transfer should be quite negligible. Another
mechanism for energy deficit involves the turbulent nature of the deflagration. The turbu-
lence generated by the rough walls will cause scattering of the kinetic energy of the main
propagation to velocity fluctuations in the other dimensions. Strictly speaking, no energy
is lost from the deflagration complex, yet the distribution of the multi-dimensional velocity
fluctuations does “lock up” part of the useful kinetic energy. However, because the propa-
gation velocity is only proportional to the square root of the energy (eqns. 2.26 or 2.28),
it is insensitive to such deficit. Hence, although the high speed deflagrations in the rough
tubes are highly turbulent and multj-dimensional, their propagation velocities still exhibit
good agreement with the theoretical values.

Therefore, the turbulent high speed deflagrations in the choking regime, as classi-
fied by Lee (1986), are indeed Chapman-Jouguet deflagrations. One can now identily these
on the Hugoniot curve as one of the four combustion processes (together with constant
volume combustion, constant pressure combustion, and CJ detonation) that are uniquely
determined by thermodynamics. And in contrast to previous belief, Chapman-Jouguel
deflagrations can be readily observed in the propagation of fast deflagrations in rough chan-

nels.
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2.4 Summary

In the present research, it is proposed that a maximum velocity deflagration can
be used for the study of onset of detonation by inducing failure of an established detona-
tion. To clearly define the initial condition, the resulting approximate one-dimensional fast
deflagration is analyzed using a simple model that satisfies the Chapman-Jouguet condi-
tion. The analytical solution obtained for constant 7y and large heat release demonstrates
that the propagation velocity is close to one half the CJ detonation propagation velocity
corresponding to the same mixture, as have been shown by previous experiments. The
numerical calculations of the propagation velocities and the comparison with experimental
data have successfully demonstrated that the quasi-steady regime obtained by damping out
the transverse waves of a detonation is a Chapman-Jouguet deflagration.

Moreover, the propagation velocity of the seemingly very different form of high
speed deflagration—the highly turbulent deflagration in the choking regime observed in
rough tube experiments, is also found to have excellent agreement with their one-dimensional
counter-part. The comparisons with the extensive experimental data that are available have
demonstrated that these maximun velocity deflagrations, which propagate at the sound
speed of the product gases, are energetics governed and are insensitive to the detailed flow
structure. The present analysis strongly indicates thai the the quasi-steady deflagration just
prior to the establishment of detonation and the highly turbulent choking regime, are indeed
Chapman-Jouguet deflagrations where the propagation velocities are uniquely determined
by thermodynamics.

The success in generating a one-dimensional fast deflagration has also opened up
new opportunities to study the onset of detonation. Because the fast deflagration obtained
by removing the transverse waves of a detonation is a CJ deflagration, one can perturb

this and study the reverse process of the re-establishment of the transverse wave structure
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and the re-birth of the detonation. In many previous experimental studies of the transition
process, the deflagration under observation is generated from ignition and undergoes an
acceleration phase prior to transition. In such studies, the observations are always compli-
cated by the wide variation of propagation velocity and flow structure of the deflagration
prior to the onset of detonation. By using a CJ deflagration to study the transition process,
one can have a clear control of the initial condition of transition that is free from the effects

due to the acceleration process and can thus concentrate on the onset phenomenon.
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Chapter 3

The One-dimensional Pulsating

Detonation

The purpose of this chapter is to examine the final product of the transition pro-
cess, 1.e., the detonation. Unlike the classical steady state ZND model, real detonation waves
are inherently nonsteady and this behavior may influence the establishment of the detona-
tion itself. It is therefore important to examine the properties of the unsteady detonation
before proceeding to study how this entity is formed during transition.

The characteristics of one-dimensional detonations, in particular, the intrinsic os-
cillatory behavior, will be reviewed through direct numerical simulation. The initiation
of the detonation using a piston and its self-sustained propagation will be analyzed. The
study of the response of the oscillatory wave tc perturbations, its failure and the subsequent
natural re-transition will also provide insight for understanding the transition problem.

The usefulness of numerical experiments cannot be over-emphasized. There are
limitations as to what can be experimentally measured in order to describe the events of the
formation, steady propagation, and failure of the highly transient detonation phenomena.
Numerical experiments can, on the other hand, provide the freedom to probe the unsteady
process to obtain detailed and insightful information that may otherwise be difficult to

measure in real experiments.
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3.0.1 The One-Dimensional Representation

Unlike deflagrations, the combustion process in a detonation is coupled with the
shock wave that it generates. The system propagates as an integral structure with the
same velocity. The one-dimensional ZND model is the simplest description of detonation
propagation. It comsists of a steady-state structure with a leading shock coupled with u
fast reaction front. The ZND model provides a mechanism for the propagation of the
detonation wave where gas particles are adiabatically compressed and heated by the leading
shock. Following an induction period, intense chemical reaction occurs and the expansion
of the products provide the feedback of energy to maintain the shock propagation. A
unique feature of the steady state wave is that the products in the wake of the detonation
satisfies the Chapman-Jouguet (CJ) condition with the burnt gas particles travel at sonic
velocity relative to the wave. The sonic CJ plane isolates the detonation from the products
and permits the detonation to be independent of back boundary and initial conditions
once the steady state wave is established. However, the ZND model is unstable and the
coupling between chemical reactions and the gasdynamic flow field is invariably nonsteady.
Experimental and theoretical studies have shown that, in general, detonation waves possess
a three dimensional oscillatory structure which manifests itself as a complex pattern of
transverse shock waves at the detonation front. Hence, it is necessary to recoguize that
the resulting detonation following transition will not be a steady ZND wave, but one that
involves an oscillatory and unstable structure.

Although direct numerical simulations are now capable of reproducing two- and
three-dimensional detonations (e.g., Oran and Boris 1987, Taki and Fujiwara 1978, 1981,
1984, Bourlioux et al. 1992), the one dimensional dynamics of the reactive Euler equations
remain a simple and powerful tool to study the underlying physics that governs the os-

cillatory propagation. The dynamic structure in the one-dimensional treatment manifests
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as a longitudinal pulsating wave that, in essence, maintains the same unstable behavior as
obtained in multi-dimensions.

The first computational investigation of the instability of piston driven (or so-called
overdriven) detonations was carried out by Fickett and Wood (1966). Using the method of
characteristics and a single-step Arrhenius law for the reaction rate, they demonstrated that
the unstable one-dimensional detonation evolves into an oscillatory wave for higii encugh
activation energies. The calculated stability boundary and the frequency of the oscilla-
tions obtained by varying the activation energy agreed well with the linearized theory of
Erpenbeck (1962, 1964). Similar nonlinear oscillatory behavior was again obtained when
the simple Arrhenjus law was replaced by a chain branching reaction mechanism (Fick-
ett et al. 1972). In a later study, Abouseif and Toong (1982) used the first order finite
difference method of Rusanov and a simple Arrhenius law to examine the instability of
one-dimensional detonations. By decreasing the degree of piston overdrive, while holding
the activation energy constant, they demonstrated that the shock pressure is transformed
from a regular periodic pattern into irregular oscillatory motion in which the dominant
mode is distorted and overlapped by higher modes. Moen et al. (1984) used a second
order MacCormack algorithm with FCT anti-diffusion scheme and fine mesh resolution to
perform similar computations as those of Abouseif and Toong. They reported that the
periodic pattern breaks up completely into an irregular pattern before the degree of over-
drive approaches one. Large pockets of unburnt gas was found in the product region and
they speculated that the explosions of these pockets may provide the flow perturbations
resulting in the high level of instability patterns observed. More recently, Bourlioux et al.
(1991) used a second order extension of Godunov’s method (PPM) with conservative shock
tracking and adaptive mesh refinement to examine the effects of the degree of piston over-

drive on the unstable detonation. Near the instability boundary, the pulsating detonation
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oscillates at a well defined frequency as predicted by the more recently developed linearized
theory of Lee and Stewart (1990). As the instability pattern grows, their results seem to in-
dicate that the transformation process follows a period doubling sequence before the higher
modes appear as the degree of overdrive is reduced. Naturally, the detailed features of the
oscillatory behavior and their subsequent break up would depend on the specifics of the
numerical methods and the resolution used. Nevertheless, the numerical results obtained
have indicated that the nonsteady one-dimensional detonation manifests itsell in an oscil-
latory manner controlled by chemical kinetics and gasdynamics (such as activation energy,
the degree of piston overdrive, heat of reaction, and specific heats ratio).

The previous works have clearly shown that the pulsating detonation manifests as
an self-organized oscillatory wave. In this chapter, we will attempt to provide an overview
of the different aspects of the pulsating wave to help understand how the self-oscillatory
behavior may influence the formation of the detonation itself. We will first describe the

governing equations used to carry out the direct numerical simulation of the pulsating

detonation.

3.1 Governing Equations

The detonation to be studied will be obtained in a manner similar to that treated
by Fickett and Wood (1966) and by Abouseif and Toong (1982). Consider the space initially
filled with a quiescent combustible mixture bounded at z = 0 with a piston. The piston
moves with velocity u,(t) generates a strong shock wave to initial a detonation (see Fig.
3.1). After the detonation has established a regular oscillatory pattern, its detailed behavior
will be analyzed.

Dissipative processes such as viscous and heat losses are assumed negligible in

the present analysis. The chemical reaction is assumed to take place in a one-step ir-
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reversible process that follows the Arrhenius law. In a piston-fixed reference irame, the
one-dimensional equations of motion describing the reactive flow can be expressed as fol-

lows:

9 _ 8(pu) _
5t o =0 (3.1)
Ou du _ 1dp

Mass Conservation:

Momentum Conservation: n + uE == "EEE - ap (3.2)

Energy Conservation: g—f + ug—g + 7p% = p(y-1)g (3.3)

Reactant Consumption: 9a + ua—a = —hae EIRT (3.4)
ot Oz

State Equation:  p= pRT (3.5)

The above symbols are defined as follows: £ is time, = distance, p pressure, T temperature,
u velocity, p density, a reactant mass fraction, v and R are the specific heats ratio and the
specific heat constant, respectively, and E the specific activation energy, k the reaction rate
constant, a, is the piston acceleration du,/dt, and ¢ is the heat release rate where the (')
signifies time derivative.

The flow variables are then nondimensionalized with respect to the initial undis-
turbed state (po, po, 7o), and the velocity with respect to the initial sound speed (cp), while
the energy quantities are nondimensionalized with respect to R7y. The independent vari-
able of time is nondimensionalized with respect to the half-reaction time (%/5), which is
defined as the time for half of the reactants to be consumed (i.e., o depleted from 1.0 before
reaction starts to 0.5 when half reacted) in the steady-state ZND detonation. The space
variable is nondimensionalized with respect to coty/;, while the pre-exponential constant

(k) is also normalized with respect to t, 5. Thus:

p* o= ,',r-"‘-_--—‘p—-,T"’:-]l,u"‘:-f‘i
Do Po To Co
E q
E. -— _____’ L g (S S, .
B ! T RT, (3.6)
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t T
=z = e ) 3.7
t1/2 oty 2 12 (3.7)

Accordingly, the acceleration of the piston in equation (3.2) is nondimensionalized as:

- hjzduy
P Ca dt

(3.8)
The normalized value of &* supplies the correspondence of t* = 1 to the time for hall of the
reactant mass to react and form products for the ZND solution. In the present work, all
time units are measured in half-reaction times.

Furthermore, the governing equations are written in the Lagrangian form. This
procedure has two advantages, first, it permits the history of each gas particles to be followed
to facilitate the examination of shock-reaction interactions. Numerically, the Lagrangian
approach of following the gas particles also allows an accurate description of the flow near
shock waves—as particles are compressed behind shocks, the grid spacing is decreased di-

rectly with the gas volume. This characteristic alleviates the need (to some extent) of using

adaptive grids. The nondimensionalized governing equations in Lagrangian form is given

as follows:
Mass Conservation: %% - g—; =0 (3.9)
Momentum Conservation: %% %'Z = —a, {3.10)
Energy Conservation: %? + —6-%1-2—/1 = ——Q——d: — apt (3.11)
Reactant Consumption: &= cji_c: = —w(a,t), wle,t)=kee ®T  (3.12)
State Equation: p=pT (p= —11;) (3.13)

where e is the sum of the internal and kinetic energies given by:

(3.14)
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() is the nondimensional heat of reaction and £ is the Lagrangiar. space coordinate defined
by d¢ = p(dz — udt). Note that all variables are now expressed in the nondimensional form,
and hence the (*)’s will be omitted in all subsequent expressions.

The algorithm of the present computation is originally developed by Yoshikawa
(1980) and laier by Moen et al. (1984) and has been adapted for more detailed investigation
of the flow structure in the present work. The governing equations are solved using a 2-step
MacCormack algorithm with the flux-corrected transport anti-diffusion scheme. A detailed
description of the numerical scheme is given in Appendix A. In order to start the calculation,
the steady one-dimensional ZND detonation is first calculated to obtain the time scale and
the shocked and burned gas velocities which are used to prescribe the initial motion of the
piston in the unsteady problem. The present results are calculated using a spatial resolution
that is equivalent to 50 numerical cells for determining the half-reacted region in the steady
ZND solution. It should be stressed that the overall resolution is amongst the highest used

compared with previous works. The Courant number used is 0.5.

3.1.1 Parameters used in the studies

In the present calculations, the gas mixture is taken to have a nondimensional
heat of reaction @ of 50, and - is assumed constant at 1.2. The so-called degree of piston

overdrive f, as defined in Fickett and Wood (1966) to be:

f= (-b%)z (3.15)

is taken to be 1, where D is the detonation velocity. Thus, f = 1 corresponds to a CJ
detonation wave at steady state. For the parameters chosen in the present study, the ZND
detonation is characterized by a shock pressure of 42.06, shock temperature of 4.813, while
the pressure and temperature in the burnt products are 21.53 and 12.00, respectively. The

detonation velocity is at 6.216, the shocked gas velocity at 5.505 , and the products are at
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2.752, all measured in the absolute laboratory frame. The activation energy will be varied

in the study while keeping the degree of overdrive at 1.

3.2 Initiation and Oscillatory Characteristics

The formation of the pulsating detonation by the action of a piston will first be
examined. In the following caiculations, the velocity of the piston to initiate the detonation
is given in Fig. 3.2. At time zero, the piston is set to move into the fresh mixture {z > 0)
at the von Neumann shocked gas velocity (u, = u,,) and is maintained for 1.8 half-reaction
times (¢ = 1.8), after which it decelerates linearly to the steady state CJ burnt gas velocity
(ucy) at 2 half-reaction times (¢ = 2), and remains at this level afterwards. The value of
g, and ugy is obtained from the steady ZND solution.

The transient initiation of the detonation for activation energy ranging from 20 to
30 is displayed in Fig. 3.3 where the evolution of the shock pressure is plotted with time.
Due to the sudden and high initjal velocity of the piston, the gas near the piston surface is
compressed rapidly to form a shock wave which initiates a strongly overdriven detonalion
with a shock pressure typically about twice the steady value of 42. As the piston decelerates
to its final velocity, the shock pressure begins to evolve towards the steady state value. For
activation energies at and below 25, the shock pressure approaches the steady state value
and a steady ZND detonation is obtained. For activation energies above 25, the detonation
begins to exhibit oscillatory behavior. Slightly beyond the stability limit (e.g., £ = 26),
the shock pressure oscillation is quite regular and close to being sinusoidal with a well
defined frequency (period = 12.7). As E is increased to 27, the oscillation deviates from the
sinuscidal appearance and becomes nonlinear, although the frequency is unchanged. When
the activation energy is increased further to 28, regular oscillatory pattern begins to break

up and eventually a new periodic pattern appears near t = 80. Instead of the single mode
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appearance for £ = 26 and 27, the cycle now contains a lower maximum in addition to the
largest one, with the overall period being almost doubled to 25.6. For even higher E of 30,
the oscillation pattern becomes quite irregular and no repeatable cycle is captured within
the time calculated.

The resulting temporal behavior of the detonation front indicates a period doubling
type of bifurcation pattern which can be observed for a more general class of nonlinear
dynamical system where the sequence of break-up would quickly lead to highly irregular
behavior (Feigenbaum 1978, Guckenheimer and Holmes 1983). Figure 3.4 shows in more
detail the break-up sequence for F = 27, 28, and 28.5 where the shock pressure oscillations
are displayed after repeatable cycles have been obtained. For E = 27, the period of the
oscillation is 12.7 which becomes doubled at E = 28, and iripled at £ = 28.5. Higher order
bifurcation sequence has not been obtained in the present numerical simulation due to the
rapid approach teo irregular behavior and the increasing difficulty to accurately capture the
highly transient events. As irregular behavior is approached, the solution becomes highly
sensitive to initial conditions and hence numerical noise would render the appearance of
repeatable cycles irreproducible. Nevertheless, the results obtained have demonstrated the

resemblance of the pulsating detonation to a broader class of nonlinear oscillators.

3.2.1 Dynamic Structure of the Pulsating Wave

Let us examine more closely the large amplitude oscillations during a periodic cycle
by considering the structure of the one-dimensional detonation when repeatable cycles have
been developed.

The detailed spatial profiles for £ = 28 at different times is displayed in Fig. 3.5.
The events cover the first half of the cycle as shown in Fig. 3.4 with the detonation front
initially reaching a minimum pressure (at ¢t = 175) and its subsequent acceleration to the

maximurmn value, followed by a decay to a second (higher) minimum.
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At the minimum state (¢ = 175), the shock pressure, temperature, and velocity are
below the steady state values (cf. the steady ZND profiles on the right of the figure). The
pressure behind the leading shock continuously decrease (in space) while the temperature
rises as chemical reaction proceeds. When the reaction is complete (cf. the reaction rate
curves also plotted in the figure) the profiles approach the CJ burnt gas values. At a later
time level (2 = 178), the detonation has begun to accelerate and the flow properiies behind
the shock increase accordingly. The pressure profile shows that there is a pressure build
up behind the leading shock which is similar to that obtained for piston driven detonations
(Fickett and Wood 1966). As a result, the maximum pressure is no longer at the shock
front. The pressure build up is responsible for the acceleration of the detonation through
compression waves that propagate towards the leading shock. In the third curve plotted, the
detonation has almost reached its peak value with the shock pressure attaining close to twice
the steady state value. The pressure behind the shock drops dramatically (in space) while
the temperature rises sharply indicating very rapid chemical reaction immediately following
the shock front. As the detonation decays in the subsequent curves, the shock pressure falls
off with time, However, a region of relatively high pressure and velocity remains near the
end of the reaction zone. The large pressure and velocity generated behind the shock during
the peak value of the detonation produces large disturbances and therefore require a longer
distance to equilibrate with the downstream flow.

It is interesting to note that during the acceleration of the detonation (from ¢ = 175
to 178), the temperature behind the reaction zone continues to decrease. Moreover, the
highest temperature in the reaction zone is only attained at ¢ == 184 when the shock has
begun to decay. These events indicate that there is a time lag for the flow conditions to be
transmitted between the leading shock and its downstream elements. Since no heat loss is

assumed in the present analysis, the large increase in temperature due to the fluctuation
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in heat release remain visible downstream of the reaction zone, providing a “permanent”
record of the oscillatory history.

Note also that while the shock pressure exhibits large fluctuations during the
dynamical event, the pressure and velocity at the trailing end remain quite close to the
mean burnt gas values. This effect has been made observable by having the piston moving
at the steady burnt gas velocity, otherwise a nonsteady expansion fan would appear behind
the detonation as the produce gas would decelerate to zero velocity at the left end boundary.
The present results clearly indicate that the dominating events of the evolution of the
pulsating detonation occur within a self-contained hydrodynamic structure. It seems that
the {ar field boundary behind the detonation does not play a significant role in the problem.
We will return to investigate this further later in the chapter.

The qualitative features of the particle velocity distributions (Fig. 3.5c) are quite
similar to the corresponding pressure profiles. Since the velocity is measured relative to
the piston, the downstream velocity approaches zero, i.e., it satisfies the piston boundary
condition, which is at the burnt gas velocity for the steady state propagation. It is interesting
to note that the trailing velocity is slightly larger than zero (i.e., higher than the piston
velocity) when the detonation is at the lowest velacity (at t = 175). However, the velocity
then decreases below zero (i.e., flow towards the piston surface) as the shock approaches
the maximum state at t = 181. It is clear that a dynamic flow field exists in the detonation
complex before reaching equilibrium downstream of the structure.

The gasdynamic interaction in the detonation complex can be more clearly illus-
trated by examining the distribution of Mach number (M) measured relative to the leading
shock. In the profiles plotted in Fig. 3.5d, the Mach number in front of the shock represents
the velocity of the shock wave measured in the laboratory frame waich fluctuates with the

instantaneous speed of the detonation front. Across the shock, the Mach number decreases
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to a subsonic value and then rises to a value near 1 downstream of the structure. In the
steady state solution, the Chapman-Jouguet condition dictates that the trailing end of the
detonation must approach a sonic condition (M = 1) so that small flow perturbations from
downstream are incapable of penetrating the detonation complex and hence isolating it
from the downstream flow field. In the nonsteady propagation studied here, the trailing
Mach number is subsonic when the detonation velocity is at its minimum (¢ = 175) and
gradually increases to a supersonic value with the increase in detonation velocity (¢ = 181),
before decreasing back to subsonic again. Thus, in the subsonic regime, the flow field behind
the detonation would be able to influence the detonation until the trailing Mach number
becomes supersonic.

In order to further investigate its relation to the steady state CJ solution, the time
averaged flow quantities over a cycle is computed. It is found that the averaged shocked
quantities (i.e., shock pressure, temperature, etc.) agree with the steady state ZND solution
to within 2 percent. Moreover, the time averaged quantities at the end of the detonation
complex, where the reactant mass fraction is depleted to 10~7, also agree with the CJ
burnt gas solution, and in particular, the relative Mach number recovers a value of one.
Thus, although the wake of the pulsating structure traverses through both subsonic and
supersonic regimes, the averaged flow at the trailing end of the complex satisfies the ClJ
sonic condition. These time averages have been computed for activation energies of 25.5,

26, 27, and 28, all having good agreement with the steady state solution.

3.2.2 Independence of Back Boundary

The nature of the nonsteady one-dimensional detonation is significantly deter-
mined by its relation with the back boundary condition. The fact that the time averaged
pulsating detonation satisfies the CJ sonic condition suggests that the structure may in-

deed be independent of the flow field behind the detonation as in the steady state case. To
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examine this, calculations have been carried out where the flow field behind the detonation
complex (taken at & = 1077) is “cut off” and replaced by (spatially) uniform quantities
obtained at the beginning of the cut. This is equ:valent to enforcing a “radiation condi-
tion” where flow perturbations originating from downstream of the detonation complex are
removed, allowing only the perturbations generated within the complex. The numerical
calculation is restarted from the full solution by enforcing this condition at all subsequent
times. Figure 3.6 shows the resulting detonation for £ = 28 and 27, where calculations are
carried out for 2 and 4 cycles, respectively. The obtained detonations reproduce remarkably
the full solutions and the shock pressure trace with time for £ = 27 is indistinguishable
from the original solution seen in Fig. 3.4. This confirms that the detonation complex is
a self-contained system where the dynamic behavior is generated. It is important to note
that the detonation complex defined here contains both the chemical reaction zone and the
hydrodynamic equilibrium zone. For the parameters considered, the chemical reaction is
essentially completed within a length of between 2 and 6 (when o = 0.05) from the shock.
Thermodynamic and hydrodynamic equilibrium, howaver, requires a longer length to be
achieved. As already seen in Figs. 3.5a and 3.5¢, as the detonation reaches a maximum
velocity, the large flow disturbances generated within the complex requires a longer distance
to equilibrate to the downstream value, even though the strong shock implies that high tem-
perature and hence very rapid chemical reaction can be accomplished within a very short
distance. In the present calculation, when the reactant mass fraction decreases to 1077,
the zone length from the shock is approximately 10, the pressure and particle velocity both
approach the steady state (or time averaged) values. Thus, the results indicate that the
pulsating detonation can be characterized by a “hydrodynamic thickness” within which the
mechanisms for sustaining the oscillatory detonation is contained.

For real cellular detonations, the boundary of the so-called “hydrodynamic thick-
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ness” is where the energy associated with the transverse wave oscillation is assumed io be
dissipated (Soloukhin 1969, Edwards et al. 1976). Experimentally, this thickness is esti-
mated to be of the order of a few detonation cell lengths (Vasiliev et al. 1972, Edwards
et al. 1976), although the chemical reactions are essentially completed within a fraction of
a cell cycle. For the steady one-dimensional ZND detonation, the hydrodynamic thickness
corresponds to the reaction zone length since there are no gasd&namic fluctuations. For
the pulsating detonation, the hydrodynamic thickness is also greater than the reaction zane
length. Therefore, it is not sufficient to require the termination of chemical reactions to
define the self-contained detonation. A meaningful autonomous structure must include the
thermodynamic and hydrodynamic equilibrium within it.

In summary, the structure of the pulsating detonation illustrated in the present
study is qualitatively similar to that obtained by Fickett and Wood (1966).! However, with a
piston overdriving the detonation, Fickett and Wood’s solutions are open to interaction with
the piston, since the flow field behind the detonation is everywhere subsonic. By removing
the piston overdrive in the present study, it is now possible to clarify the autonomous
nature of the detonation complex and its independence of the back boundary, even in the
nonsteady case. This information is invaluable as well for understanding the propagation
of real multi-dimensional detonations which are always nonsteady and where the existence
of the sonic CJ plane is yet to be demonstrated. The present result suggests the existence

of a CJ plane in the time-averaged sense.

!The oscillatory behavior obtained in the simulation is also closcly related to the oscillations obscrved
when a sphere or blunt body is fired through a combustible riixture at velocities close to the Chapman-
Jouguet value (Alpert and Toong 1972; Lehr 1972). A detailed account of the experimental and theorctical
treatment can be found in Toong (1983). This result has also been successfully simulated recently, see, for
example, the work by Wilson and Sussman (1991).
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3.3 Response of the Detonation to Perturbations—Failure

An important conclusion from the above analysis is that the pulsating detonation
is not a stable wave propagation, but one that oscillates around the time-average steady
state solution. To further explure the stability of the pulsating detonation and its ability
to sustain perturbations, the response of the oscillatory wave to perturbstions and the
quenching process will be studied in this section.

To remove the piston support subsequent to the establishment of the self-oscillatory
wave, the piston motion will be brought to stop shortly after the initial driving process. The
initial motion of the driving piston is given as follows. At time zero, the piston is set to move
at the particle velocity obtained behind the shock wave for the steady state detonation. This
velocity will be maintained for 1.8 half-reaction times (?;/,), which then decreases linearly
to zero at 2¢;/;. In the subsequent times, the piston will remain motionless to avoid any
interference with the wave motion.

The parameters used are heat of reaction ¢ = 50, activation energy E = 27 and

26, and a constant specific heat ratio v = 1.2.

3.3.1 Metastable State Following Failure

Figure 3.8 shows the shock pressure evolution with time of the resuiting detonation
wave and its failure for different amplitudes of density perturbations as sketched in Fig.
3.7. The activation energy used is £ = 27. For the undisturbed detonation, Fig. 3.8 shows
that the shock pressure oscillates with a well defined periodic pattern. The positive density
perturbations applied (i.e., negative temperature perturbations for the same pressure) serve
as a quenching process which breaks down the chemical reaction of the detonation. The
wave form of the density perturbation is described by the positive portion of a sine wave.

The amplitude of the perturbation is given with respect to the initial density in the quiescent
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undisturbed mixture ahead of the wave (i.e., Ap/pg). The wavelength is given by the period
of the unperturbed detonation (v = 12.7) multiplied by the average (or CJ) detonation
velocity (Dey = 6.216).

The perturbation is applied at ¢ = 46, which is closed to the minimum pressure
of the pulsating detonation. Due to the positive density, the perturbation has an initial
effect of increasing the shock strength. However, the temperature deficit soon becomes
dominant and the shock pressure starts to cecrease. The decrease in shock strength can be
understood in the following simple model. In the unperturbed detonation, the shock serves
to compress the initial gas mixture to a high pressure and temperature. Subsequent to this
compression, the temperature is high enough for chemical reaction to take place. As the
mixture reacts, the burnt product increases in temperature and expands. The expansion
of the product in turn acts like a piston to support the shock propagation. The velocity
of the effective piston is given by the rate of increase in volume of the product gas and
would be proportional to the rate of chemical reaction. As the detonation is perturbed, the
temperature perturbation decreases the temperature behind the shock. Since the Arrhenius
chemical reaction law dictates a high temperature sensitivity, the lower temperature would
drastically decrease the reaction rate and hence the rate of expansion of the burnt particles.
This then leads to a lower effective piston velocity to support the shock and its velocity will
decrease. As the shock strength drops, the temperature behind the shock decreases further
and for large enough temperature deficit, this would causes a perpetual effect to eventually
weaken further the chemical reaction and decouple the detonation complex. As a whole,
the application of the temperature deficit perturbation in the one-dimensional analysis can
be likened to a thermal energy extraction from the initial mixture. For the actuzl multi-
dimensional cellular detonation, an energy deficit is also imposed due to the absorption

of the energy of the transverse shock waves upon collision with the walls. In both cases,
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the effect is to drastically reduce the ability to sustain the fast chemical reaction that is
necessary to support the detonation propagation.

By t ~ 50 (Fig. 3.8), the wave has passed over the perturbation. For a small
perturbation (i.e., 10 percent), the shock decays to a pressure above 20 but is insufficient
to decouple the detonation structure and it accelerates back to a detonation at £ ~ 60. For
larger density perturbations, the shock pressure is observed to decay to a value of between
10 and 15, which then stays at about a constant level before re-transition to detonation.
Ior very large perturbations (i.e., 50 percent and higher), the shock pressure continues to
decay slowly and re-transition is not observed for the time calculated.

Thus, after the detonation is quenched, Fig. 3.8 demonstrates that a metastable
state exists where the shock pressure, and hence the shock velocity, remains approximately
constant for some time before undergoing re-transition to detonation. For the conditions
considered (i.e., @ = 50, = 1.2), the CJ detonation has a velocity (or Mach Number)
of Mp = 6,216 and a shock pressure of p,, = 42.06. The corresponding CJ deflagration
solution, as can be calculated following Section 2.2.2, has a shock pressure of 12.1, shock ve-
locity of 3.33, and flame velocity 3.08, corresponding to 0.53Mp and 0.496Mp respectively.
The burnt gas properties for the CJ deflagration has p» = 5.8,p; = 0.61, and T35 = 9.5.
Thus, the shock pressures obtained in the quenched waves (Fig. 3.8) are close to the the-
oretical CJ deflagration solution as presented in Chapter 2. Moreover, in the nonsteady
analysis, pressure jumps can be observed from time to time during the metastable prop-
agation regime. These may in fact be the one-dimensional manifestation of the so-called
hot-spots formations due to the localized excited chemical activities which can eventually
cause re-transition to detonation. Also plotted in Fig. 3.8 is the solution for no heat input
which is in effect from ¢ = 69.6 after a 50 percent perturbation is applied to quenched the

detonation. This calculation shows that without the heat release (i.e., no chemical reac-
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tion}, no pressure jumps are observed and the shock pressure decays to a lower level and at
a faster rate that for the reactive solutions.

Let us now examine the flow profiles during the propagation of the resulting fast
deflagration. Figure 3.9 displays the spatial profiles of pressure, temperature, velocity,
and density at different times for 50 percent density perturbation. Also plotted with the
temperature profiles are the reactant mass fraction distributions o to indicate the location
of the reaction front. The first curve at ¢t = 47.8 is obtained close io the initial application
of perturbation, and a typical detonation wave profile is obtained. For this time, chemical
reaction is rapidly completed behind the leading shock, which has pressure of about 42,
and a CJ burnt gas pressure of about 21 is achieved. A so-called Taylor expansion [lan
then brings the particle velocity down to zero at the left boundary (i.e., z = 0) so that the
pressure also decreases. At a subsequent time, (¢ = 69.6), the detonation is quenched, and
the shock pressure, temperature, velocity and density all decrease to lower values. It can
also be observed that the Taylor expansion wave has penetrated ahead of the reaction zone
as the pressure drops continuously behind the shock to the reaction front (the location of
the reaction front is indicated in Fig. 3.9b, where the mass reactant fraction is plotted with
the temperature. The mass reactant fraction a is equal to 1 before reaction starts, and
drops to zero when the reactants are consumed, The location where the rapid decrease in o
indicates the location of the reaction front). Note that the the Taylor expansion wave has
also decreased in strength as the pressure levels behind the shock are all lowered. By { = 100,
an approximate shock-flame structure similar to the CJ deflagration model has emerged.
The curves for ¢ = 110 and later times show a leading shock followed by a relatively uniform
region, and then a fast reaction zone that leads to a rapid decrease in pressure, velocity and
density, while the temperature increases. The shock pressure obtained is approximately 14,

slightly higher than the CJ deflagration solution, however. the solution is still transient and
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localized pressure jumps are destroying the uniformity from time to time. The properties
behind the wave (at z ~ 300 for curve ¢ = 110} alsc approaches the Chapman-Jouguet
condition where the pressure, temperature, velocity and density is practically equal to the
CJ deflagration burnt gas solution that satisfies the sonic criterion. The flame velocity is
very close to half the CJ detonation velocity, which propagates at a slightly lower speed
than the leading shock. Because of this, the separation between the two increases slowly

with time.

3.3.2 Mechanisms for Sustaining the CJ Deflagration Structure

Thus, the numerical simulations carried out have shown that when the detonation
fails, the reaction zone separates from the leading shock so that the resulting complex is no
longer a coupled system. By applying a lower ambient temperature, the Arrhenius reaction
rate would drastically decrease where the reaction front can no longer support the shock
at the detonation level. The rapid decay in shock pressure is thus due to the decrease
in reaction rate. The Taylor expansion fan, however, would take a much longer time to
penetrate into the wave complex to influence it during the initial failure.

On the other hand, the profiles shovn in Fig. 3.9 indicate that the level of the
shock pressure after the initial failure may depend on the Taylor expansion wave behind
the initial detonation. This expansion wave initially supports a velocity equal to the CJ
detonation burnt gas velocity (ugy; = 2.75), which can also act as a piston to support
the propagation of the leading shock at approximately half the CJ detonation velocity. To
ensure that the propagation of the reaction front is not merely due to the effect of convection
of the gas which could be rpported by the Taylor expansion wave, the propagation velocity

is further checked by evaluating the mass flux across the reaction front, which is given by:

p1(RF —u1) X At = py(Rp — ug) x At
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The theoretical CJ deflagration solution yields a mass flux of 18.5, while the numerical
simulation yields approximately 15.4 between time ¢ = 100 and ¢ = 110. Thus, the obtained
reaction front indeed appears to propagate closely at the theoretical value. Furthermore,
as the Taylor expansion wave decays with time (e.g., for ¢ > 100), the shock pressure (and
velocity) only decreases slowly. This indicates that chemical reaction is required for the
propagation of the deflagration structure.

To illustrate the insensitivity of the flame velocity to the downstream flow field
due to the residual Taylor expansion wave, the following steady state analysis has been
performed. For a given shocked state (state 1), the flame velocity for different downsiream
conditions can be derived using the Hugoniot analysis (eqns. 2.4, 2.5, 2.6) to give:

. 2 _ .2
Rp = ! [_1_ (E% — i’i) P Sl Q] (3.16)
up—ur [7-1\p2 pu 2 v

Consider a shock velocity (i.e., state 1) which is approximately fixed at the CJ deflagration
value, and using the same heat release @, the flame velocity can be computed for various
downstream conditions, such as the pressure p;. Table 3.1 illustrates the solution when
the downstream pressure deviates from the theoretical CJ deflagration value. For the CJ
deflagration solution, the downstream state falls at the CJ point on the Hugoniotl curve as
shown in Fig. 3.10. If the downstream pressure is higher than the theoretical value, the
flame velocity remains very closed to the CJ deflagration solution of 3.07. Even when the
downstream pressure is as large as 70 percent of the theoretical value, the flame propaga-
tion velocity is hardly changed. The decaying Taylor expansion wave would therefore not
drastically alter the flame propagation velocity.

Thus, the heat release plays a key role in sustaining the propagation of the de-
flagration complex. Due to the lower shock temperature, the reaction rate for the CJ
deflagration would be orders of magnitudes smaller than thai for detonation so that the

deflagration cannot depend on the induction type mechanism for its propagation. How-
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Table 3.1: Insensitivity of the flame velocity to the downstream pressure

Pressure | Flame velocity | Relative Mach No. | Burnt gas velocity | Burat gas sound speed
1.0 (CJ) 3.0745 1.0 (sonic) 0 3.0748
1.06 3.0745 0.955 0.1232 3.0903
1.10 3.0736 0.912 0.2441 3.1017
1.20 3.0656 0.831 0.4738 3.1220
1.30 3.0628 0.755 0.6908 3.1397
1.40 3.0530 0.683 0.8987 3.1553
1.50 3.0396 0.612 1.1008 3.1691
1.70 2.9995 0.486 1.5036 3.0768

ever, the temperature gradient field which still exists even when the detonation fails will
facilitate the propagation of the flame front. Without the temperature gradieut, that is
if the temperature is uniform behind the leading shock, the shock temperature would not
be sufficient to cause ignition of the gas. In actual deflagrations, the effects of transport
are present to further support the propagation of the reaction front. Although these are
absent in the present model, the velocities of the flame and the shock still agree well with
the theoretical values.

Moreover, the pressure jumps resulting from localized chemical excitation appears
to provide important support for the propagation of the metastable structure. Figure
3.9 has indicated that there are occasional pressure buildups ahead of the main reaction
front. In the quasi-steady shock-reaction structure, the competition between the effects of
a decaying reaction front and the generation of localized perturbation in chemical reaction
that exists behind the leading shock therefore constitutes the metastable structure. The
preconditioned field behind the shock will play a key role in determining the growth of

possible perturbation and the subsequent re-transition to detonation.



3.3.3 Natural Re-Transition to Detonation

The shock pressure evolution displayed in Fig. 3.8 has shown that there exists
a range of perturbation amplitudes which will lead to failure of the detonation where the
resulting deflagration would subsequently undergo re-transition to detonation. If the per-
turbation is too small, the shock pressure is still high enough to cause auto-ignition and the
CJ deflagration state is not obtained. If the perturbation is too large, the localized pressure
jumps produced are weak and the fast deflagration continues to decay slowly.

Figure 3.11 displays the profiles when a 30 percent density perturbation is applied
to the detonation where natural re-transition is possible. In comparing Figs. 3.9 and
3.11, the pressure decay for the 30 percent perturbation is slower than that for the larger
perturbation. At ¢ = 110, large pressure jumps are already observable in the profile, which
eventually lead to re-transition to detonation. The reactant mass fraction « in Fig. 3.11b
shows that as re-transition occurs, reactants are consumed (as o decreases to zero) at several
locations in the region between the leading shock and the flame front. These localized
chemical activities are thus a key mechanism for the natural re-transition to detonation,
a8 is observed in the previous experimental studies of Oppenheim (Urtiew and Oppenheim
1965, 1966, 1967, 1968; Meyer and Oppenheim 1971).

However, for a large perturbation (50 percent), the magnitudes of the localized
pressure rise become smaller with time. After ¢ = 160, Fig. 3.8 shows that the shock
pressure jumps become negligible and re-transition is not achieved. Note that for the 50
percent amplitude perturbation, the disappearance of the pressure jumps coincides with the
time when the shock pressure just decreases below the CJ deflagration value of p,, = 12
(at t = 160). Similar result is also observed for perturbations larger than 50 percent. This
suggests that when the deflagration has decayed below the CJ deflagration value (i.e., the

maximum velocity deflagration), natural re-transition is less likely, if not impossible. This
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again reinforces the metastable nature of the CJ deflagration state as a regime just prior to

the transition to detonation.

3.3.4 Effect of Activation Energy

The activation energy is a key parameter that governs the stability of the detona-
tion wave. To understand the influence of activation energy on the ability of the detonation
to sustain perturbations, similar calculations have been repeated when the activation en-
ergy is decreased to 26. Figure 3.12 displays the evolution of the shock pressure when the
detonation is perturbed with perturbation amplitudes ranging from 50 to 80 perceni. The
unperturbed detonation is a slightly more stable detonation as it fluctuates with a smaller
amplitude than that obtained for £ = 27. To minimize the difference between the flow
structures for the two cases studied, the initial point of application of the perturbation is
chosen at approximately the same time and the same shock pressure as those for E = 27.
Comparing Figs. 3.12 and 3.8, it can be seen that by decreasing the activation energy,
a larger perturbation is required to induce failure, furthermore, re-transition can be ac-
complished even for a larger amplitude. For 50 percent and larger perturbations, Fig. 3.8
showed that the resulting wave remains as a fast deflagration for £ = 27, but this is not
so when E = 26, where re-transition is possible even for an 80 percent perturbation. Since
the Arrhenius law dictates that the reaction rate for high activation emergy mixtures is
more temperature sensitive than for low activation energy, when E is high, a small ampli-
tude deficit can have a large effect in decreasing the reactivity behind the shock to cause

decoupling of the detrnation structure.

3.4 Summary

The numerical simulation carried out have shown that the one-dimensional deto-

nation is a self-organized structure that manifests as a longitudinal oscillatory wave. The



o
(v

resulting oscillatory pattern depends strongly on the activation energy of the gas. For the
set of parameters studied, the one-dimensional detonation evolves into a steady ZND struc-
ture for activation energy at and below 25. As F increases from this stability limit, a regular
periodic structure is obtained. When F is increased further, the periodic pattern is seen to
break up that follows a period-doubling type of sequence. For very high activation energics,
the oscillation pattern becomes quite irregular.

The puisating detonation is found to agree with the steady Chapman-Jouguet
solution when averaged over a cycle of the pulsation. In particular, the time averaged trailing
flow satisfies the CJ sonic condition. The computations also indicated that the structure is
autonomous in that it is quite independent of the far rearward boundary condition. The
self-contained structure consists of the chemical reaction zone and a gasdynamic equilibrium
region characterized by a hydrodynamic thickness within which chemical reaction terminates
and thermodynamic and hydrodynamic equilibrium has been attained.

The stability of the pulsating wave to density or temperature perturbations and its
subsequent failure is analyzed. By decreasing the chemical reactivity through the decrease
in initial temperature, the fast reaction necessary for supporting the propagation of the
detonation structure breaks down. The self-oscillatory coupling between the shock and
the chemical reaction is destroyed together with a decrease in wave velocity. The results
indicate that the properties of the obtained quasi-steady regime agree quite well with the
CJ deflagration solution proposed in Chapter 2, The fast deflagration then propagates in
a metastable manner for some time before undergoing re-transition to detonation. The re-
transition process appears to be facilitated by the occurrence of localized random pressure
rise in the wave structure,

The one-dimensional pulsating detonation is thus shown to be a self-organized

structure and the transition process can be considered as the formation of an oscillatory
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structure rather than the steady ZND detonation. Furthermore, the oscillatory behavior
and the break-up sequence exhibited by the pulsating wave indicate that the detonation
is analogous to classical oscillators. In order to further understand the mechanisms for
sustaining and establishment of the pulsating structure, it would be of great value to develop

an oscillator model to describe the detonation.
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Chapter 4

Transition from CJ Deflagration

to Detonation

In the preceding chapters, the quasi-steady regime just prior to the onset of det-
onation has been analyzed. The properties of the detonation wave is also examined and it
is shown that the one-dimensional detonation is inherently oscillatory for large activation
energies. In this chapter, the transition of the quasi-steady maximum velocity deflagration
to the nonsteady detonation will be examined. As opposed to the initiation of detonation
with a piston, which is an externally driven event and is strongly dependent on the piston
condition, the present study will concentrate on the transition process which is the natu-
ral development of the self-sustained structure. Since the ﬁﬁal obtained detonation is an
oscillatory entity, period perturbations will be used to stimulate transition by helping to
regenerate the detonation structure.

The fast deflagration complex as obtained in Section 3.3 will be used as the initial
condition for analyzing the transition process, where the left end boundary consists of a
closed end non-moving piston. The gas mixture properties will also be identical to those
described in that section. The deflagration chosen for the initial condition will be the ones
that remain as fast deflagrations (i.e., no natural re-transition} unless otherwise stimulated
by perturbations so that any subsequent transition is due purely to external excitations

on the structure. For this reason, the deflagrations generated initially with large density
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perturbations will be used here. The sequence of falling the established detonation with
a 50 percent density perturbation for E = 27 is described in Fig. 3.8 and with an 80
percent perturbation for E = 26 is displayed in Fig. 3.12. To stimulate re-transition, the
deflagration complex will be systematically perturbed using a wave train of flow disturbance
of different frequencies.

The governing equations used in the study are again the one-dimensional reactive
FEuler equations written in the Lagrangian form and the numerical method for solving them

is presented in Chapter 3.

4.1 Periodic Flow Perturbation to Induce Transition

The flow disturbance consists of a stationary wave train of sinusoidal density per-
turbation, but constant pressure, of fixed length placed just in front of the leading shock at

a specified time ¢ = t5. The wavelength A of the flow perturbation is given by:

D
A= %TP (4.1)

where Dey is the steady CJ detonation velocity, and T, is the period of the applied excitation
which can be scaled with the unperturbed pulsating detonation period . Since the fast
deflagration propagates at about D¢ s/2, the spatial wavelength of the imposed perturbation
would be approximately equal to that for the unperturbed pulsating detonation if 7, =
t. The period of the perturbation will be varied to generate perturbations of different
wavelengths. The total length of the perturbation is fixed at four wavelengths that have

period T

Dey

[=4 5

T (4.2)

The perturbation amplitudes of Ap/py = 0.2 and 0.4 of the original density will be studied.

In the present work, two activation energies (£ = 27 and 26} will be examined. For E = 27,
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the resulting detonation would be a large amplitude pulsating detonation with a single
dominant frequency. As E decreases to 26, the detonation would be more stable with a

smaller amplitude oscillation.

4.2 Effect of Perturbation Frequency c¢n Re-Transition

We will first examine the re-transition process for £ = 27 when the period per-
turbations are applied at time tp = 100. Figure 4.1 displays the pressure, density, and
temperature profiles for £ = 27 at ¢ = 100 when the flow perturbation with an amplitude
of 20 percent of the initial density is applied.

The shock pressure subsequent to the application of the periodic perturbation
is displayed in Fig. 4.2 where the period of the perturbation varies from 7, = 0.635 to
25.4. As the shock propagates into the sinusoidal perturbation, the shock pressure exhibits
oscillations which persist until the end of the perturbation near ¢ = 150 (I'ig. 4.2). Due to
the overplotting of the solutions for various disturbance frequencies, the detailed fluctuation
in pressure cannot be distinguished from the figure. Nevertheless, because of the relatively
low amplitude of the perturbations, their growth has not been fed back to the shock so that
the shock pressure does not rise until the wave has propagated pass the disturbance.

The application of periodic flow perturbations does appear to be able to stimulate
deflagration to detonation transition. The re-transition process consists of abrupt sharp rise
in the shock pressure to values of about twice the CJ shock pressure (pcy = 42). The sirong
detonation then decays gradually towards the CJ value while oscillations begin to grow. For
the time calculated, the resulting detonations have not established the oscillatory pattern
as observed in the unperturbed detonation yet. However, the solution for 7, = 3.81 does
appear to evolve towards the natural detonation period of 12.7. The pulsating detonation,

therefore, seems to have the capability to select the final frequency o excite the system. In
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contrast to the pressure spikes or hot spots as seen in the natural transition in Fig. 3.8, which
represents the selection from a wide spectrum of random flow perturbation frequencies for
amplification, the application of well defined frequencies seems to bring out the frequency
dependence nature of the transition process, as is so common in many nonlinear oscillators.

For perturbations with periods around 3, Fig. 4.2 indicates that the transition
process takes place within the shortest time. For periods larger than 8 and less than 2,
transition is much slower. For 7, = 25.4, 0.635, and 0.127, transition is not observed within
the times studied, and it is not likely to occur in the latter two cases since the shock

pressures are found to remain very close to that corresponding to the fast deflagration.

4.2.1 Frequency Selectivity of Perturbation Growth

The frequency selective process of the growth of the perturbations can best be
illustrated in the spatial profiles of temperature where the spatial distribution and the
history of the gas particles are represented in the Lagrangian (i.e., particle fixed) spatial
coordinate £ as the wave propagates over the perturbation (Fig. 4.3). Four perturbation
periods, 1, = 1.27,3.175,12.7, and 25.4, are plotted in Figs. 4.3a-d. At ¢t = 100 when the
perturbation is imposed, the figure shows the sinusoidal temperature perturbation ahead
of the leading shock, which is represented by the temperature jump at £ ~ 510. As the
shock propagates into the perturbation, the temperature of the particles rises according
to the same Lagrangian wavelength of the perturbation. In other words, the temperature
perturbation is convected downstream of the shock. Since the gas particles are compressed
behind the shock, the actual wavelength of the temperature distribution behind the shock
would be smaller than that ahead of the shock. The compression of the spatial variation is
given directly by the density ratio across the shock.

For very small periods, the amplitude of the temperature perturbaiion is seen to

decay behind the shock (7, = 1.27, Fig. 4.3a). As the period decreases these diminishing
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disturbances therefore have a negligible effect on the deflagration complex and transition
would require a much longer time to accomplish. For 7, = 3.175, Fig. 4.3b shows that the
perturbation grows in amplitude behind the shock and at ¢ = 140, the temperature pertur-
bation has increased significantly for a large amount of gas (£ = 510 to 560). The increase
in temperature would drastically accelerate chemical reaction to result in transition to det-
onation. For this perturbation period, re-transition is observed within the shortesi time.
As the period is increased to 12.7, the perturbation amplitude is also capable of giuwing
behind the leading shock. However, the larger wavelength here leads to a larger separation
between the temperature peaks and confines the temperature increase to a smaller amount
of gas than that for 7, = 3.175. When the period is increased further to 25.4 (Fig. 4.3d),
the growth rate is drastically reduced. Hence, the quasi-steady regime scts up a flow field
behind the leading shock where the growth rate of the perturbation amplitude is lrequency
selective.

The distributions of pressure and density in physical {Fulerian) space z are shown
in Figs. 4.4 to 4.6 for 7, = 1.27,3.175, and 12.7 respectively. In these figures, the pressure
and density profiles are plotted for three times as the wave propagates into the sinusoidal
perturbation. Since the pressure is assumed constant in the perturbation field, the distur-
bance anead of the leading shock is only observable in the density profile. The eflect of
compression of the perturbation wavelength by the shock can be seen in the density dis-
tributions at ¢t = 120 and 140 in all the figures. Ior a period 7, = 1.27, the pressure and
density profiles continue to decay to lower values. For 1, = 3.175, the density perturbations
grow behind the leading shock (Fig. 4.5b). Note alsc that as the disturbances react {at
t = 140,z ~ 620), the expansion of the burnt gas causes the wavelength of the disturbance
to increase accordingly. The induced reactions are accompanied with a region of higher

pressure which propagates towards thz leading shock (Fig. 4.5a, t = 140). These pressure
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waves will feed back to the leading shock to help amplify it and accelerate the transition
process. Similar events can be observed in Fig. 4.6 for 7, = 12.7, although the region of
induced reaction and pressure increase is not as severe as for 7, = 3.175.

Note that as the wavelength of the perturbation decreases, and therefore the spa-
tial gradient of the flow perturbation increases, the time for transition to take place does
not decrease indefinitely. Indeed, there is an optimal perturbation period near 7, = 3.175
that favors re-transition the most. The existence of an optimal period for transition to
detonation is closely related to the the critical temperature gradient necessary for the de-
velopment of detonation first investigated by Zel'dovich et al. (1970) and later by Zel'dovich
(1980) and also by Yoshikawa (1980). In their study, Zel’dovich et al. (1970) examined the
formation of detonation waves in a non-uniformly preheated gas. They considered a finite
length of gas in an initially quiescent container with an adiabatic wall. The initial tem-
perature distribution is assumed such that the temperature decreases linearly from a fixed
high temperature at the wall with a prescribed gradient to the ambient level. The higher
temperature near the wall would increase the rate of cheniical reaction and the expansion
of the burnt gas would produce a shock wave. The flow field for different initial temper-
ature gradients were analyzed and they demonstrated that there exists a range of initial
temperature gradient which could facilitate the amplification of the shock to detonation.
Since the rate of chemical reaction is a strong function of temperature, if the temperature
gradient is too steep so that the reaction proceeds in the neighborhood of the hot wall
only, then the shock formed would rapidly separate from the reaction zone and the shock
cannot amplify and transition to detonation does not take place. On the other hand, if the
temperature distribution is nearly uniform, the reaction proceeds at about the same rate
throughout the entire space and the condition of constant volume thermal explosion arises.

If the temperature gradient is intermediate between the two extremes, then the shock wave
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generated cau, in turn, induce intensive reaction to produce a closely coupled system of
shock-reaction complex leading to the development of a detonation wave. In the present
study, the wavelength of the imposed perturbation can be considered as having an effective
prescribed gradient in the shock processed gas. Hence, the existence of an optimal pertur-
bation wavelength to induce transition to detonation is also expected. Moreover, the law
condition considered in the present study is far more relevant to the transition problem.
The frequency sensitive amplification of flow perturbations observed here also appears to
be connected to the random generation of “hot spots” observed in previous transition ex-
periments, which would correspond to the competition for amplification of a wide frequency
spectrum of flow perturbations.

The above calculation shows that the optimal period for re-transition to take place
is of the order of the reaction time for the steady detonation solution (recall that the time
units used are the half-reaction time calculated for the steady ZND detonation, thus the
reaction time is of the order of 2¢;/;). In the natural detonation, the characteristic time for
chemical reaction to take place is proportional to the steady value of half-reaction time ¢y ,.
This is the time required for rapid chemical reaction to occur in order to maintain the crucial
interaction between the leading shock and the chemical reaction so that they propagate in
a closely coupled manner. In order to have transition to detonation, the perturbation must
also promote the close coupling between the shock and the chemical reaction that grows
with the temperature disturbance. Hence, the perturbation with a period of the order of
the detonation reaction time will best facilitate the coupling between the iwo elements and
promote transition. The reaction (or induction) time of the detonation wave is therefore a
key parameter that controls the transition process.

The frequency selective amplification of flow nonuniformities has been recognized

in other combustion processes, one of which is the chemical-acoustic amplification in a
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constant volume gas. The behavior of small amplitude acoustic amplification in a constant
volume reacting gas has been analyzed by Riley (1984) and the frequency selectivity of
the amplification rates has been established. Using a linearized analysis, the period of
the fastest growing acoustic perturbation 7,_, can be computed. By curve-fitting the
numerical results, an empirical expression was obtained (Riley 1984) which also indicates
that the fastest growing perturbation has a period proportional to the chemical reaction
time, and hence the induction time, of the gas.

In a more related confext, the works of Majda and Rosales (1987) and Almgren
et al. (1990) have studied the high frequency wave interaction in chemically reacting gases
during the induction period. Using asymptotic techniques, they examined the effects of high
frequency waves on the acceleration of the burning rate that is related to the generation
of “hot spots™ due to the presence of nonuniformities in the medium. These analyses have
demonstrated several results that are of direct relation to the present work. First, it was
shown that any spatial inhomogeneity in the temperature will enhance temperature growth
so that the gas can explode in a time earlier than the homogeneous explosion time as
predicted by the induction mechanism. Second, high frequency simple waves will always
contribute to additional temperature rise of the mean field than when only low frequency
waves are present. The high frequency temperature waves studied which are convected with
the gas particles are similar to the temperature perturbations examined in this chapter.
These so-called “entropy wave” due to the particle-fixed nature (as opposed to the acoustic
pressure waves) are demonstrated mathematically to interact with the mean flow to enhance
combustion. Their findings seem to support the notion of inducing transition to take place
by periodic perturbations. However, the frequency selectivity of the growth rate has not

been explored in their studies which is also confined to small amplitudes.



4.3 Effect of Time of Application of Perturbation

To examine the effect of the time of application of perturbation, the computational
study is repeated when the flow perturbation is applied at a later time at ¢ = 125.5. The
profiles for the deflagration complex at this moment are shown in Fig. 4.7 which are very
similar to those obtained at fg = 100 in Fig. 4.1, although the separation beiween the
leading shock and the reaction zone is increased. Moreover, since the deflagration complex
considered is a continuously decaying wave, its properties (i.e., pressure, temperature, ctc.)
would decrease to a lower level at ¢35 = 125.5 so that transition is expected io require a
longer time to accomplish.

The shock pressure evolution subsequent to the application of the flow perturbation
at {p = 125.5 is shown in Fig. 4.8. The times for transition to take place (t*) can be
seen to be larger than those where the flow perturbations are applied at an earlier time.
Nevertheless, the optimal perturbation period to induce transition remains around 1, ~ 3,
while a slight deviation from this value would drastically change the time for transition
to take place. Figure 4.9 plots the time required for transition to occur versus different,
periods of perturbation applied, where the time required for re-transition ¢* is delined to
be the time when the leading shock has reached the steady-state detonation pressure (i.e.,
Psh = 42) minus the initial time of application of the perturbation ty. The figure illustrates

clearly the existence of an optimal frequency (or period) for transition to occur.

4.4 Effect of Perturbation Amplitude

The amplitude of the sinusoidal flow perturbation Ap/pg has so far been restricted
to 20 percent of the initial density. In this section, the re-transition process is examined for
a larger perturbation amplitude of 40 percent of the initial density.

The shock pressure evolution due to the stimulation of the larger amplitude per-
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turbation for £ = 27 is shown in Fig. 4.10. Perturbation period of 1, = 1.016 to 12.7 have
been calculated. For these perturbaticns, re-transition is found to be facilitated and requires
much less time than when 20 percent perturbations were used. Indeed, the shock pressure
traces in Fig. 4.10 show that the perturbations grow after a short delay upon the initial
application of the perturbation. Unlike the smaller amplitude perturbations studied above
where the shock remains near a relatively low pressure of 14 before undergoing a rather
abrupt jump, the shock pressure here grows gradually to values around the CJ detonation
shock pressure of 42. Superimposiug on the shock pressure rise are the imposed fluctua-
tions due to the external source, which have undergone rapid growth to larger amplitudes.
Subsequent to the termination of the externally applied perturbations, the pulsating wave
rapidly evolves into one with frequency and amplitude very close to the unperturbed deto-
nation. The rapid adjustment of the detonation once the imposed oscillation has terminated
can be clearly seen for 7, = 1.905, as the shock has propagated passed the high frequency
perturbation (at ¢ ~ 130), the period of the detonation pulsation is quickly increased to its
natural value of 12.7.

Note that the re-transition observed in Fig. 4.10 is not accompanied by abrupt
shock pressure jumps which usually lead to overpressures near twice the CJ shock pressure
for the smaller perturbations and for natural transitions. Except for 7, = 1.016, where the
applied perturbation appears to have little effect on the wave, and hence when re-transition
does occur, the effect of the applied perturbation would be small so that it resembles the
natural re-transition due to a wide spectrum of perturbation frequencies. The re-transition
for this extremely small period occurs after a much longer time and is accompanied with
an abrupt pressure jump.

‘The pressure trace for 7, = 1.905 shown in Fig. 4.10 is found to have the fastest

amplification to detonation. Although the shock pressure does rise gradually for 7, = 12.7
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to the detonation value, its growth rate is clearly not as rapid. The {requency selective
amplification of the flow perturbation within the wave complex for the large amplitude
perturbation is shown in Fig. 4.11. As in Fig. 4.3, the temperature profiles for four dif-
ferent perturbation periods, and at different times, are plotted with the Lagrangian spatial
coordinate £. Again, perturbations of very small poiind (7, = 1.016) appears to decay
within the wave complex. Thus, although the gradient generated by the large frequency
perturbation is large, the perturbation cannot grow. For period 7, = 1.905, which is closed
to the optimal value to induce re-transition, the flow disturbances appear to grow rapidly.
At time ¢t = 120, the temperature perturbations near £ == 520 to 580 has alrcady increase
to the CJ burnt gas temperature of 12. As 7, is increased, the amplification rate is shown
to be reduced (Figs. 4.11c-d).

The effects of perturbation magnitudes on the time of re-transition is summarized
in Fig. 4.12, where the time required for re-transition is plotted for different periods of
perturbation for the two amplitudes studied. Since the shock pressure fluctuates widely
during the transition process of the larger amplitude perturbations, the time required for
re-transition is estimated from a local time-averaged pressure (to filter out the oscillatory
components) which has attained the steady detonation pressure of 42. The figure indicates
that the qualitative trend of the frequency selectivity for the two amplitudes are quite simi-
lar, with the larger amplitude perturbation requiring consistently less time for re-transition
to take place. The optimal perturbation period to facilitate re-transition is again of the
order of the reaction time, and is obtained to be near 1.6 for the 40 percent amplitude.
This is about half the value obtained for the smaller amplitude case. Since the reaction
rate is highly temperature sensitive, the larger temperature perturbation can influence the
chemical reaction rate more rapidly, and with a shorter wavelength perturbation the reac-

tion rate can increase shortly after as the gas particle passes the leading shock. Thus, the

"
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larger amplitude temperature perturbation with short wavelength (or period) will promote
amplification of the disturbance and hence facilitates transition. Consequently, the optimal
wavelength (or period) to induce transition for the large amplitude perturbation is expected
to be smaller. However, it should be noted that if the amplitude is too large, an abrupt
shock pressure can result which can lead to transition regardless of the frequency of the per-
turbation. This would not be a natural development process but an externally driven one.
It is the small amplitude perturbation that will bring out the intrinsic frequency selectivity

of the transition process.

4.5 Effect of Activation Energy

The activation energy is known to play a key role in determining the nonsteady
response of the detonation wave. It is therefore necessary to investigate the effect of different
activation energies on the transition process, which have thus far limited to the case for
FE = 27. The computations are repeated for £ = 26 which would correspond to a more
stable pulsating detonation. Figure 4.13 shows the shock pressure evolution of the re-
transition process when the wave is originally failed using a large density perturbation (80
percent, see Fig. 3.12), As already pointed out in Fig. 3.12, the more stable wave is capable
of achieving natural re-transition even when a larger perturbation is applied (compared to
that for E = 27) to induce failure. Fig. 4.13 shows that natural re-transition is attained
near ¢ = 200.

Artificially applied perturbations with 20 percent afnplitude and different periods
were calculated. Similar to the events observed in Fig. 4.2, Fig. 4.13 shows that transi-
tion can be stimulated at a much faster rate than when no flow perturbation is applied.
Comparing Fig. 4.13 with 4.2, it appears that the shock pressure requires less time to rise

when the activation energy is decreased. Chemical reactions with low activation energies
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are sometimes referred to as fast kinetics as reaction is less temperature sensitive so that
it will proceed more uniformly at different temperatures. Thus, for lower values of &, after
the mixture is processed by the leading shock, chemical reaction proceeds at a more uni-
form rate and the feedback of the amplification of the perturbation can be felt at an earlier
time. On the other hand, if E is high, the chemical reaction rate is more temperature
sensitive. Reactivity will initially be very slow, only as the temperature begins to build up
will reaction abruptly accelerate. Thus, for high F, a longer time is required to feedback
the information regarding the growth of the perturbation to the shock.

Due to the relatively small amplitude of the applied perturbation, as transilion oc-
curs, abrupt shock pressure rise is again observed while oscillatory patterns begin to develop
with the period of oscillation approaching that of the natural unperturbed detonation.

The time for re-transition for different perturbation periods is plotted in Fig. 4.14
for both F = 27 and 26. The faster re-transition for the lower activation energy is again
apparent, iadicating that as the stability boundary is approached (i.e., for a more stable
wave with low E) transition is accomplished within less time. The minimum re-transition
time calculated for E = 26 is about half that for £ = 27. Tor 7, larger than about 3,
the time for re-transition for £ = 26 is typically about 3 detonation periods (7). Since
the detonation period 7 remains almost identical (7 ~ 12.7)} for both aclivalion energies,
transition takes place within a shorter time for the lower value of E.

Furthermore, Fig. 4.14 indicates that the period that will induce transition fastest
is quite similar for the two activation energies calculated, and has value close to 7, = 3,
which is of the order of the chemical reaction time. As the period decreases from this value,
the time for re-transition increases drastically. However, the results for £ = 26 in Iig.
4.14 show that perturbations with periods larger than the optimal value have less influence

on the rapidity of re-transition as t* does not increase as drastically as for £ = 27 when
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the perturbation period increases. Since the temperature sensitivity of the reaction rate is
lower for small activation energies, it is expected that there is less sensitivity toward different
wavelengths of the perturbation which essentially provide a variety of spatial temperature

disturbances behind the shock to accelerate chemical reactions.

4.6 Summary

The one-dimensional analysis carried out illustrates that the flow condition set up
just prior to the transition to detonation provides a preconditioned environment for which
a frequency selective process for perturbation amplification takes place. The calculations
showed that there exists an optimal perturbation frequency (or period) that can induce
re-transition within the shortest time. The optimal period appears to be of the order of the
reaction time of the detonation wave itself. This is the characteristic time required for the
close coupling between the leading shock and the fast reaction zone in the integral detonation
structure and hence should also be the time scale for controlling the coupling required for
the formation of the detonation itself. For perturbations with periods close to the optimal
value, the perturbation amplitudes are observed to grow rapidly behind the shock which
would generate a region of high pressure to amplify the leading shock further. The transition
process also appears to be highly frequency selective since the newly formed detonation can
adjust rapidly from the imposed frequency to the natural detonation frequency once the
perturbation terminates.

The results therefore indicate that the transition from deflagration to detonation
can indeed be considered as the formation of a self-organized system. The oscillatory
character of detonation observed in Chapter 3 have indicated its similarity to oscillators.
The existence of an optimal frequency to induce transition to detonation further supports

the possibility to treat the transition process as the excitation of the oscillator, which would
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be strongly dependent on the characteristic frequency of the final oscillator. This aspect
has not been fully recognized in previous research which has thus far treated the transition
as mainly a process of attaining the required shock strength for auto-ignition to take place.
The oscillatory nature of detonation points out that its propagation and its formation should
be considered as dynamic processes which may depend on the response of the final system
and the mechanisms that govern its intrinsic frequency. In order to further understand the
basic mechanisms for sustaining and development of detonations, it would be of great value

to formally establish the analogy between the pulsating wave with classical oscillators,
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Chapter 5

Experimental Studies of

Transition

5.1 Introduction

The one-dimensional investigation carried out in the previous chapter have indi-
cated that the transition phenomenon can be described as the selective amplification of
perturbations which depends on the frequency. While the random generation of localized
explosion centers previousiy observed between the leading shock and the reaction zone in
actual transition experiments (Urtiew and Oppenheim 1965) may have indicated similar
mechanisms for a spectrum of random frequencies, the frequency selective character of the
transition process have not been explored. An experimental investigation has therefore been
carried out to support the computational study in order to further examine the frequency
sensitivity of the transition process.

In this chapter, we will investigate experimentally the transition from high speed
deflagration to detonation. It should be emphasized that the present study will concentrate
ou the onset of detonation once the maximum velocity deflagration (i.e., the quasi-steady
regime) is attained. The initial condition used for the transition experiments will be ob-
tained by damping out the transverse waves of the detopation using acoustic absorbing

materials at the channel wall to general an approximate one-dimensional shock-flame com-
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plex.

Because real detonations are inherently three-dimensional, there will be sone difli-
culties in performing experiments identical to the conditions of the idealized one-dimensional
theoretical model. The oscillatory nature of the detonation would manifest itself as a pat-
tern of transverse shocks or pressure waves. In general, the behavior of the detonation
and its failure can also be functions of the tube size. Furthermore, it would be difficult to
generate relatively simple one-dimensional longitudinal waves to perturb the high speed de-
flagration complex which would, in turn, undergo transition to a multi-dimensional cellular
detonation rather than a one-dimensional entity.

In view of these differences, the present investigation will follow a similar concept,
but using a different technique to carry out the study. The experiments of Dupré et al.
(1988) have shown that when the transverse pressure waves of a detonation are damped,
the detonation will fail. To induce re-transition, artificial transverse pressure waves will be
applied to the decoupled shock-deflagration structure to simulate the re-establishment of
the natural transverse wave pattern. The artificial transverse pressure waves are generated
by placing periodic obstacles along the channel walls where the obstacle spacings are varied
to change the frequency of the transverse perturbations. However, no attempt has been
made in the present study to vary the amplitude of the pressure perturbation by changing

the obstacle height.

5.2 Experimental Details

The experiments are performed in a rectangular detonation tube of approximaltely
140 cm in length with a cross section of 2.8 x 1.6 cm. Two large glass windows extending
over the entire length of the detonation tube are mounted on the side walls to facilitate

flow visualization. The tube consists of three sections: the ignition section where a CJ
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detonation is formed, followed by a damping section to remove the transverse waves to
obtain a fast deflagration, and the obstacle-filled test section to perturb the deflagration
to stimulate re-transition to detonation. The beginning of the damping section is located
approximately 40 cm from the ignition source. The length of the damping section in the
present experiments is 12 cm. The obstacle section has a length of 30 cu. The initiation of
the detonation is achieved using a powerful spark discharge through a gap at the tip of an
igniter rod. The electrical energy is stored in a 100uf capacitor charged to 4 kV using a high
voltage supply. The energy release in the discharge triggers direct initiation of detonation
in the ignition section. The acoustic absorbing walls of the damping section are constructed
with layers of wire screen (nine layers of 1- x 1 mm mesh) to simulate a porous medium,
The transverse pressure perturbations in the transition section are generated by periodically
spaced obstacles on the walls. The obstacles are made of small sections of round solid rods
of 3 mm diameter, and the spacings of the obstacles are varied to change the perturbation
frequency. A sketch of the damping and obstacle sections is shown in Fig. 5.1.

The phenomencn of transition to detonation is observed using laser stroboscopic
Schlieren photography as well as streak Schlieren photography. The laser pulses for the
framing photographs are generated at 18.6 usec between frames using a ruby laser. The
streak photographs are taken with a Cordin 330 camera using a »enon flash tube as the
light source. Figure 5.2 displays the schematic of the experimental setup, which is similar
for the two camera systems, showing the double-pass Schlieren system and the triggering
system used in the study. For streak photography the image is taken along the centerline
of the channel. The field of view for photographing the transition process covers about, 20
cm of the obstacle-filled test section and also the end of the damping sectiun so that the
initial structure of the deflagration prior to re-transition can be confirmed. As a further

diagnostic, photodiodes are employed to check the velocity of the deflagration hefore being
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perturbed by the obstacles as well as at the end of the obstacle section (beyond the field of

view for photography) to monitor the resulting detonation velocity.

5.3 Experimental Results and Discussions

In the present study, three different mixtures were used: stoichiometric oxy-
acetylene with 75 percent argon dilution, stoichiometric propane-oxygen, and stoichiometric
methane-oxygen. These represent typical mixtures that exhibit, respectively, regular-, ir-
regular, and highly irregular detonation cellular patterns. The cell size of the combustible
mixtures represents the natural oscillatory wavelength of the detonation and can be con-
trolled using the initial pressure for a given mixture. For the first two mixtures used, the
cell size is approximately equal for the same initial pressure, and provides a comparison of

the effects of cell regularity on the transition process.

5.3.1 Transition Induced by Transverse Pressure Waves

The perturbation of the quasi-steady regime using periodic wall obstacles will be
examined using the high speed Schlieren framing photographs. Figure 5.3 shows the framing
photographs as the quasi-steady shock-reaction complex propagates through the section
with obstacles (obstacle spacing equal to the channel height, 28 mm). The mixture used
{or this figure is stoichiometric acetylene-oxygen with 75 percent argon dilution initially at
100 Torr. In the first frame, the approximately one-dimensional structure of the decoupled
detonation can be observed. Between the leading shock and the reaction zone, a region
of relatively uniform state can be seen to separate the two fronts. As the wave complex
propagates to the right, the separation distance increases slowly. This shock-reaction zone
complex serves as the initial condition for re-transition to occur when it is stimulated by
transverse pressure perturbations. In the subsequent frames, the leading shock interacts

with the wall obstacles, reflected transverse pressure waves are generated and propagate
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away from the obstacles as a pair of circular fronts (e.g., third and fifth frames). The
forward propagating fronts of these reflected waves intersect with the leading shock while
the rearward portion propagates into the reaction zone. These events are repeated as the
leading shock interacts with a new pair ot wall obstacles. At the same time, the reaction zone
becomes more turbulent as it enters the cbstacle section and interacts with the transverse
pressure waves. The transverse pressure perturbations can increase the rate of brcning by
the production of vorticity through two mechanisms. The three-shock Mach interaction of
the transverse pressure waves with the leading shock produces shear layers in the unburned
mixture ahead of the turbulent flame brush. Also the pressure gradient from the transverse
pressure perturbations interacts with the density gradient in the {lame zone and generates
vorticity through the baroclinic mechanism (Vp x V1/p). Note that these mechanisms
are to be distinguished from the shear flow turbulence generated by the wall roughness
and obstacles, as pointed out in the introduction. The increase in burning rate of the
mixture will then generate pressure waves of its own. If the self-generation of the pressure
waves is coherent with the induced perturbation, then coupling is facilitated and transition
to detonation occurs. The conditions for coherence are a function of the sensitivily of
the mixture (i.e., initial pressure) as well as the frequency of the induced perturbation.
For the initial pressure tested in Fig. 5.3 coherence is not achieved and the deflagration
complex remains unaccelerated with the leading shock and reaction zone propagating at
constant velocities. Since the reaction zone propagates at a slightly lower velocity than
the leading shock, the relatively uniform region separating the shock and the reaction zone
grows continuously.

When the initial pressure is increased to above 130 Torr, the deflagration complex
is observed to undergo re-transition to detonation. Figure 5.4 displays the time sequence

of framing photographs of the transition process for the mixture at an initial pressure of
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140 Torr. The initial interaction of the leading shock with the obstacles is very similar to
that illustrated in Fig. 5.3, however, the interaction of the transverse pressure waves with
the mixture behind the leading shock results in the intensification of reaction as indicated
by the progressively smaller separation between the leading shock and the reaction zone.
The relative position of the reaction zone from the shock is much closer than that observed
in Fig. 5.3 for the same time. The stronger interaction of the pressure waves with the
fast deflagration also results in a more turbulent structure behind the leading shock. The
resulting region of intense chemical reaction in the otherwise uniform field of separation
immediately behind tle shock is very similar to that obtained in the one-dimensional com-
putational studies. At the 10th frame transition is observed to occur as the reaction zone is
confined to a thin region attached to the leading shock. In the last two frames, a detonation

is generated which propagates at about the CJ detonation velocity of the mixture.

5.3.2 The Effect of Initial Pressure

The effect of initial pressure on transition can be further demonstrated in the
streak photographs shown in Fig. 5.5. The orientations of the time and distance axes are
indicated in the figure. The thin vertical dzrk line on the left of each streak photograph
marks the beginning of the obstacle section. In the photographs, the trajectories of the
leading shock and flame front can be clearly identified and they propagate at quite constant
velocities (i.e., slopes of the trajectories) as they exit from the damping section. For an
initial pressure of 100 Torr (Fig. 5.5a), as the deflagration enters the obstacle region, the
reflections of the leading shock at the obstacles generate a series of transverse pressure
waves propagating away from the locations of reflection (at the obstacles). The forward
and backward propagating waves form a thick band of V-shaped trajectories near each
obstacle. The average velocity of the structure remains fairly constant throughout the

distance traveled and transition to detonation is not observed. As the initial pressure is
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increase o 135 Torr (Fig. 5.5b) the initial deflagration appears very similar to the previous
case for 100 Torr. However, as time progresses, the reaction zone becomes more intensified
and extends much closer to the shock trajectory. A thick dark region then appears which
covers a wide length behind the leading shock indicating the formation of an intensified
chemical reaction zone that forms a V-shaped trajectory on the streak photograph. The
forward traveling front rapidly overtakes the leading shock and cause an abrupt change in
slope of the shock trajectory.

A series of tests were performed systematically for each of the three mixtures at
different pressures. The initial pressure tested for stoichiometric acetylene-oxygen with 75
percent argon ranges from 100 to 160 Torr, for stoichiometric propane-oxygen the initial
pressure tested ranges from 28 to 46 Torr, and for stoichiometric methane-oxygen the pres-
sure tested ranges from 60 to 160 Torr. The results clearly indicate that high initial pressure

(i.e., high mixture sensitivity) favors transition, as would be expected.
5.3.3 Effect of Obstacle Spacing

To examine the effect of obstacle spacing or frequency of the transverse pressure
perturbation on re-transition to detonation, the experiments are performned for obstacle
spacing of 10, 20, and 28 mm, correspondiug to spacing over channel height ratio (s/10)
of 0.36, 0.71, and 1. To further compare the results for no pressure perturbations, the
experiments are repeated when the obstacles are removed, that is, when the quasi-steady
regime propagates into a smooth channel. Figure 5.6 shows a series of streak photographs
for the Co Hy-0Oo~Ar mixture for different obstacle spacings. Figures 5.6a-c are oblained
at approximately the same initial pressure near 125 Torr. By comparing Iig. 5.6a and
5.6b, it can be seen that the frequency of the generated reflected waves for s = 10 mm
is doubled over that for s = 20 mm due to the decrease in obstacle spacing. Although

there are more obstacles to perturb the deflagration for s = 10 mm, the mixture remains



82

as a steady deflagration with a propagation velocity of about 790 m/s. When the obstacle
spacing is increased to 20 mm, transition is observed (Fig. 5.6b). The figure shows that,
amongst the different spacings tested, the obstacle spacing of 20 mm is the most favorable
for transition to occur. When no obstacles are present, no transition was observed for the
mixture at the pressures tested. Figure 5.6d illustrates the shock-flame structure of the
fast deflagration with the leading shock and flame front having quite constant velocities (or
slopes) in the streak photograph obtained at the maximum test pressure. The thick dark
trajectory behind the shock indicates that it is indeed an active flame propagating in the
channel.

Figure 5.7 displays a similar set of streak photographs for the propane-oxygen
mixture with different obstacle sections used. These photographs are taken at approximately
the same initial pressure of 35 Torr. Again, by comparing Figs. 5.7a and 5.7b, which have
cbstacle spacings of 10 mm and 20 mm, respectively, it appears that although there are
more obstacles to perturb the deflagration, the rapidity of transition is decreased for s = 10
mm as transition appears to take place at the end of the field of view. When the obstacles
are removed, Fig. 5.7c¢ shows that transition is not achieved. However, the flame is seen
to accelerate to about the same velocity as the shock as indicated by the almost parallel
trajectories of the two fronts. A closer examination of the streak photograph reveals the
acceleration of localized chemical reaction zones that catch up with the shock front, as
indicated by the fine dark trajectories in the thin reaction zone that joint with the shock
trajectory from time to time. These localized activities are analogous to the local intensified
reaction regions and pressure jumps obtained in the one-dimensional computation of the
quasi-steady structure in Chapters 3 and 4. The shock-flame complex is indeed a quasi-
steady CJ deflagration as discussed where the localized enhancement of reaction may lead to

natural re-transition to detonation, which would be quite possible to occur given sufficient
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distance. When the initial pressure is increased to 44 Torr, transition is achieved within
the test section, although the transition distance is drastically increased when there are no
obstacles.

In comparing the transition processes for 2C3Hg + 502 + 75% Ar and Cy Hg + 504
in Figs. 5.6 and 5.7, it appears that the transition process for the argon-diluted mixture
(a mixture that has regular detonation cell structure) is accompanied with a rather abrupt
change in slope of the leading shock trajectory. For propane-oxygen (a mixture with irreg-
ular cell structure), instead of a sharply defined onset, the transition is accomplished over

several “steps,”

as the shock trajectory experiences a series of more gradual accelerations.

The minimum initial pressures above which transition is observed for the three
mixtures tested and for different obstacle spacings are tabulated in Table 5.1. The minimum
pressure required for transition to occur in the available tube length for the configurations
tested is lowest (i.e., lowest sensitivity) for obstacle spacing of 20 tam, indicaling that an
optimal spacing for transition for the present experiment lies near s/D = 0.71 (i.e., of
order 1). In all of the conditions tested, the generation of transverse pressure waves with
obstacles always leads to transition at a lower initial pressure than the smooth wall case.

This clearly demonstrates the influence of transverse pressure perturbation in the formation

of detonation.

Table 5.1: Minimum injtial pressure above which transition is observed

Minimum pressure for transition, Torr
Obstacle spacing, mm

Mixture 10 | 20 | 28 No
obstacle
209 H, 4+ 509 + 75%Ar | 125 | 110 | 130 —
CaHg + 504 40 34 34 44
CHy+ 20, 100 | 60 | 65 125

The above results are summarized in Fig. 5.8 which plots the transition distance
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for the various cases. The transition distance L* is estimated from the streak photographs
where the location of transition is calculated from the intersection of the initial and final
slopes of the wave trajectories. In the fignre, L* is plotted against the mixture sensitivity as
characterized by the cell size A, both being normalized with respect to the channel height D.
Several aspects can be observed from the figure. First, it shows that the transition distance
is strongly dependent on the mixture sensitivity. As the cell size increases (or equivalently,
decreasing the initial pressure), the transition distance increases. Secondly, the results show
that above a certain sensitivity (e.g., about A/D < 0.16, for 2C2Hy + 504 + T3%Ar with
s = 10 mm) transition occurs consistently after about one channel height (L*/D ~ 1). This
distance seems to be the minimal distance for onset to take place. However, there appears to
be no correlation between the transition with A/ D as it is clearly dependent on other factors,
such as obstacle spacing and the detonation cell regularity of the mixture. Furthermore, the
transition distance is influenced by the obstacle spacing, which corresponds to the frequency
of the transverse wave perturbaticn. Thirdly, the transition distance for the obstacle spacing
of 20 mm (s/D = 0.71) is consistently lower than for the other obstacle spacings tested
and when no obstacles are used. This again indicates that there is an optimal transverse
perturbation frequency for transition to occur. Another important feature noted is that
for the same transition distance, the cell size for the propane-oxygen and methane-oxygen
mixtures (Figs. 5.8b and 5.8¢) is generally an order of magnitude higher than that for the
argon-diluted acetylene-oxygen mixture (Fig. 5.8a). Propane-oxygen and methane-oxygen
are known to have much more irregular cell structure than the argon-diluted mixture. It
indicates that transition is greatly influenced by the regularity of the detonation cell pattern

of the mixture.
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5.3.4 Relation of Cell Regularity with Detonation Instability

Two of the main parameters for characterizing detonation waves are the cell size
and the regularity of the cell pattern. The relationship between cell size and the sensi-
tivity of the combustible mixture is well established, For a mixture with given chemical
composition, a smaller cell size implies a shorter chemical reaction time and hence higher
sensitivity. Thus, high initial pressures would promote rapid chemical reaction to facilitate
transition from deflagration to detonation, as demonstrated by the present experimental
results. On the other hand, the relations of the regularity of the detonation cell pattern
with the detonation characteristics are not so clearly understood.

Experimental observations of detonation cell structure have indicated that irregu-
lar cell patterns are associated with frequent local failure and re-initiation in the gas mix-
ture. It appears that cell irregularity is due to the ease of local failure, while the detonation
propagation is sustained through local re-initiation. Complete failure of the detonation
propagation is brought about by the inability to achieve local re-initiations (Lee 1993). For
detonations with regular cell structure, the oscillatory pattern is quite “stable” and the
cell pattern is maintained. This is in fact supported by the existence of galloping waves
which are more readily observed in irregular systems than in regular ones. Ior the highly
argon-diluted mixtures, the galloping mode (i.e., failure and re-initiation) is very diflicult,
if not impossible, to observe as demonstrated in the near limit detonation study of Dupré
et al. (1990).

The relationship between cell regularity and activation energy was first pointed out
by UP’yanitski (1981) who observed that mixtures with low activation energies have more
regular cell structures. This is in accord with the temperature sensitivity of the chemical
reaction time which depends on the value of E. The higher temperature sensitivity for high

E implies a more non-uniform reaction process as chemical reaction is initially quite slow
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but awaits the temperature to build up before quickly accelerating the chemical reaction.
As discussed in Chapter 3 for the one-dimensional detonation, low activation energies are
associated with regular oscillatory patterns while high activation energies would correspond
to more irregular patterns. The theoretical analyses of Erpenback (1962, 1964) and Lee
and Stewart (1990) have also shown that high activation emergy is associated with a wide
spectrum of unstable frequencies and hence a more compiex oscillatory pattern. Thus, high
activation energy seems to be associated with irregular detonation cell structure whereas
low activation energy would be associated with regular cell structure.

Shepherd et al. (1987) later demonstrated that activation energy may not be an
appropriate parameter and the complete characterization of cell regularity has not been
achieved to date. Nevertheless, the connection between the stability of the detonation
and the regularity of the cell pattern is clear. Mixtures with regular cell pattern would
correspond to stable detonations. These mixtures would be more capable of sustaining
detonation propagation and require less time to undergo transition from deflagration to
detonation. Mixtures with irregular cell structure would correspond to unstable detonations
which are easier to fail. Moreover, irregularity is related to a wider spectrum of unstable
frequencies which would imply the requirement to establish different kinds of conditions
in order for transition to occur. Thus a longer time would be needed to accomplish re-
transition in irregular mixtures. These properties are supported by the results in Chapters
3 and 4.

On the other hand, the results from Fig. 5.8 have shown that for the highly argon
diluted mixture (a regular cell mixture), a value of A\/D of the order of 0.1 is needed for
transition to occur, whereas for the irregular mixtures of propane-oxygen and methane-
oxygen, transition can occur with a A/D of order 1. Thus, it appears that irregular cell

mixtures can achieve re-transition under a less sensitive condition (larger cell size). This can



W

be attributed to the fact that irregular cell structure is associated with the ability to amplify
perturbations of a wide spectrum of {requencies. However, as pointed out recently by Lee
(1993), the mechanisms responsible for the failure of detonation are different for regular
and irregular cell mixtures. Consequently, one may not be able to use the same parameter
(i.e., cell size) to measure the ability to sustain and re-initiate detonation propagation.

It can be remarked that the relationship of cell regularity and its characterization

of detonation has not been fully understood and requires further studies.

5.4 Concluding Remarks

In the present experimental investigation, the results show that transverse pressure
waves play an important role in the transition from deflagration to detonation. There is
a strong indication that there is an optimal obstacle spacing, or alternatively an optimal
transverse wave frequency, that facilitates transition the most. The optimal obstacle spacing
obtained for the present experimental condition is of the order of the tube dimension {wall
spacing). This seems to be consistent with near limit detonations in tubes since the intrinsic
frequency for excitation will be related to the fundamental acoustic mode oscillation in
the tube. While the acoustic interaction of detonation with the channel is absent in the
one-dimensional model, the experimental results do support the existence of an optimal
perturbation frequency as predicted by the one-dimensional simulation. This suggests that
the transition phenomenon is one of resonance coupling between the gasdynamic processes
and the chemical reactions that drive the pressure oscillation.

The results also show that sensitivity with respect to transition is strongly affected
by the mixture’s cell regularity. However, a complete understanding of the relations of
cell regularity with the ability to sustain detonation propagation and to achieve transition

requires further studies. Nevertheless, since cell regularity is related to the ease in which
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pressure perturbations can be amplified, the results therefore reinforce the notion that the
formation of a detonation is a consequence of generating a self-organizing structure from the
gasdynamic and chemical processes. Thus, the experimental results for iransition further
support the need to construct a model in order to understand the self-organizing nature of

detonations.



Chapter 6

Pulsating Detonation as an

Oscillator

In Chapter 3, the oscillatory characteristics of the one-dimensional detonation and
the period doubling type break-up sequence as the activation energy increases have indicated
its similarity with many nonlinear oscillators. The apparent existence ol optimal frequency
to stimulate transition observed in Chapters 4 and 5 indicates further that the formation
of detonation is the excitation of a self-organized oscillatory system. These results point
out the possibility to model the pulsating detonation as an oscillator which would provide
insight for understanding the mechanisms responsible for developing and sustaining the
oscillatory behavior.

Yet, the remarkable resemblance of the pulsating detonation with classical nonlin-
ear oscillators has not been fully realized and discussed in previous literature. This chapter
will hence attempt to establish more clearly the analogy of the one-dimensional detonation
with classical nonlinear oscillators hy formally deriving an analogous oscillator equation to
describe the one-dimensional pulsating detonation.

It should, however, be noted that the purpose here is not to develop an alternate
formulation to solve the pulsating detonation problem, but to provide a framework to

interpret the results obtained by direct numerical integration of the governing equations

of gasdynamics.
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We will first discuss seme of the simple oscillator concepts that may be useful in
understanding the instabilities of the pulsating detonation. We then return to the governing

equations to formulate a nonlinear oscillator model.

6.1 Instabilities in Simple Oscillators

The question regarding why detonations behave in a nonsteady manner has been
studied for a long time. The small perturbation analyses of Erpenbeck {1962, 1964) had
demonstrated that for high enough activation energies, the one-dimensional ZND structure
is unstable to small perturbations. However, the physical mechanisms that lead to insta-
bility are not clear from these studies. Neither can these analyses describe the behavior of
the detonation subsequent to the initial instability. It is also unclear why the unsteady det-
onation should propagate in an oscillatory manner (i.e., rather than simply grow or decay
exponentially, which could be another form of instability).

To provide the proper perspective io examine the obtained numerical results, it
is useful to review some of the basic concepts of instability and oscillatory behavior in
the general sense. We will consider i) static versus dynamic instabilities in an oscillator,
ii) instability causing elements—such as negative spring constant, negative damping, and
time lag, and, iii} to revisit the Rayleigh criterion of combustion instability for unsteady
heat input to illustrate the possible role of phase relations in an oscillating system, and
finally, iv) to provide some simple examples of nonlinear oscillators and their characteristic
behavior. These basic concepts are, of course, the most simplified version of real systems,
nevertheless, they may provide a guide for a meaningful interpretation of the numerical
detonation results.

Consider a simple oscillator that can be described by the second order equation:

d*z dz
Eﬁ"‘?bg{‘l‘kz: 0 (6.1)
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This may represent a mechanical oscilistor with unit mass, spring constant &, and damping
coefficient 2b. Confining the discussion first to linear theory (i.e., for small x with constant

b and k), the response of the oscillator can be readily obtained as follows:

:L'(t) — Ae(—b+\/H)t +Be(-*b—m—_k)t ((}'2)
From this solution, the instability can be classified into two categories:!

1. k£ < 0 (i.e., a negative spring constant). This instability leads to exponential growth
of the solution z(t), but no oscillatory behavior is obtained. This is thercfore labeled

as static instability.

2. b < 0 and k& > b? (i.e., negative damping). This instability is oscillatory with expo-
nential growing amplitude. Because the behavior of this instability is dynamic, it has

been termed dynamic instability.

Static instabilities can be inferred from viewing the transient evolution of the
system as a sequence of (quasi-) steady states. Hence steady-state consideration is enough to
define the instability. In the prediction of dynamic instahbility, on the other hand, parameters
such as inertance and capacitance must be included since they play an essential role in
determining the transient response of the system to disturbances. These parameters are
not part of the information needed to describe the steady-state system. Hence knowledge of
steady-state characteristics alone are not sufficient for prediction of dynamic instability, and
additional information about quantities such as zone length and system volume (associated
with the inertance and storage capacity, respectively), etc., must also be included.

Many unstable oscillatory fluid dynamic and combustion systems have been found

to be associated with dynamic instabilities and elements of “negative damping” can be

}The distinction between the two types of instability appears to have been first recognized by Maxwell
(1868)



92

identified {(Greitzer 1981). For detonations, the linear stability theories of Erpenbeck (1962,
1964) and Lee and Stewart (1990) have demonstrated that the instability is associated with
a spectrum of unstable frequencies. The existence of these unstable frequencies implies that
the instability of detonatien is dynamic and oscillatory behavior can be expected near the
stability boundary. The description of the dynamic behavior of the detonation must also
involve a dynamic parameter, the hydrodynamic thickness, which, as pointed out in Section

3.2.2 is quite different from the steady-state chemical reaction zone thickness.

6.1.1 Role of Phase Relation

In many simple oscillators where the behavior is dynamic but yet there may be
no damping elements in the systems. One way negative damping may arise is through the
concept of time lag (or delay). For example, consider a simple spring oscillator with unit

mass and unit spring constant:

d*z

function of ¢
Now, if the action of the restoring force has a time delay of ¢;, then

diz

d—ti + I(t - i]) = (64)

function of  — 1;

Expanding the restoring force in a Taylor series in powers of #;, and retaining only the first

terin, we get:

d?z dz
N e’

negative damping

This is the equation for a system with negative damping, in other words, a system that will
exhibit oscillatory (or dynamic) instability.
Through the concept of time delayed action, it is possible to understand why an

induction-type detonation is dynamically unstable. The induction process behind the shock
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front of a detonation is essentially a time delay before rapid combustion occurs. A second
delayed action takes place for the effect of products expansion to be propagated back to the
shock to maintain its propagation.

The concept of time delay is an indication that the “phase™ of action can place
an important role in dynamic instabilities. The most simple and illustrative example is
perhaps the original one by Lord Rayleigh (Rayleigh 1878), who established the Rayleigh
criterion stating that: “If heat be given to the air at the moment of greatest condensation,
or taken from it at the moment of greatest rarefaction, the vibration is encouraged.” In
other words, the criterion for the maintenance of oscillations by an unsteady heat input is
that the heat input is “in phase” with the pressure rise.

The Rayleigh criterion can be demonstrated using the simplified Helmholtz oscil-
lator derived in Appendix B. Consider the unsteady heat input to a plenum (volume) that
experiences pressure fluctuation. The fluid under consideration is assumed to be a perfect,
gas, and the inertial and flow storage are lumped into two elements, with the mass under
flow oscillation given by that in the inlet duct pAL (see Appendix B), and the storage being
due to the compressibility in the plenum of volume V. For a small heat release rate ) which

is proportional to the pressure fluctuation P in the oscillator,
Q=¢P

where ¢ describes the phase relationship between ) and P, an eguation for the pressure

fluctuation P is found to be

d’°P -1 dP c*A ,
v gt (6.6)

which is an oscillator equation with a damping coefficient proportional to the phase of the
heat input rate with respect to the pressure. For ¢ > 0, Q is in phase with the pressure

fluctuation and dynamic instability is most favored. If ¢ < 0, Q is 180° out of phase with
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the pressure oscillation, the system is positively damped and no oscillation will result. This
describes the phase relationship as stated by the Rayleigh criterion.

Note also that the “spring constant” of (6.6) is proportional to square of the sound
speed of the gas inside the system. The compressibility of the gas therefore corresponds to

the compressibility of the spring in an analogous mechanical oscillator.

6.1.2 Simple Nonlinear Oscillators

For systems that exhibit finite amplitude “limit cycle” oscillatory behavior, it
will be necessary to consider the effects of nonlinearity associated with them. The second
order equation in (6.1) illustrates a simple linear oscillator during the initial growth of the
instability and will not be sufficient to describe real nonlinear systems. In general, the
system mass m, spring constant k, and damping coeflicient b, are not constant. Indeed, the
spring restoring force kz and the damping term —2bdz/dt are general functions of time.
However, by making some slight modifications to the linearized equation, the characteristics
of nonlinear “limit cycle” type oscillators can be obtained.

For a mechanical autonomous system with mass m, the standard nonlinear oscil-

lator equation can be written in the form of
mi + kz = pf(z, ) (6.7)

where 2 is in general a small positive parameter. The term on the left hand side of equation
(6.7) has their usual meaning of inertia force {m#) and spring or restoring force (kz). The
linear natural frequency of the system is wg = \/&/m. The right hand term (uf) refers to a
self-excited driving force since f(x,Z) is not an explicit function of time. As examples, for
ptf = —2bi, the simple damping term of (6.1) in classical system is recovered. For u > 0,
pf can provide a negative damping that is responsible for a self-excited oscillation of the

system. For f = (1 — @#®)%, « being a small positive parameter, equation (6.7) would



describe a Rayleigh or van der Pol oscillator, a common nonlinear oscillator studied.
Nonlinearity can also be manifested through the addition of a nonlinear spring

force. For instance, the simple structure of the Duffing’s equation has embedded in it the

necessary ingredients through which the transformation of the oscillatory patierns hy period

doubling and tripling can be manifested. Duffing’s equation can be written as:
i+ Bt + otz + §2° = acoswt (6.8)

(8,0,6,a,and w are constants) which describes the nonlinear interaction between the cubic
restoring force (62°) and the periodic driving force (see Fig. 6.1). Due to the explicit
time dependence of the external driving force, the Duffing oscillator is not autonomous.
However, replacing the external forcing term with a self-excited force retains the general
transformation features of the Duffing equation.

The above given examples of oscillators, although oversimplified, can provide the
proper perspective to understand the oscillatory behavior of detonations. To achieve this,
it will be necessary to express the governing equations in a particular convenient form
and to lump some of the flow parameters into definite elements in order to overcome the

overwhelming information generated from the continuum description.

6.2 Nonlinear Oscillator Model for Detonation

The analogy of the one-dimensional structure to classical nonlinear oscillators will
now be formally demonstrated. In this section, an equation that has the fundamental
properties of a nonlinear oscillator will be derived from the basic conservation laws of gas
dynamics. The analysis will be based on the conservation of energy since the “driving force”
for the pulsating detonation is provided by the chemical energy release. This equation will
be derived from the integral form of the conservation equation so that the flow variables can

be lumped into more meaningful components of an analogous system. The key elements
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that constitute the oscillator will be identified and compared with those for a mechanical

nonlinear oscillator to illustrate the analogy.

6.2.1 Theoretical Model

Consider a control volume that moves with the detonation complex. The system
begins at the leading shock front and is bounded by a rear boundary shown in Fig. 6.2. The
rear boundary is taken to be some constant distance {;, from the shock front where equilib-
rium CJ condition is assumed to prevail. Physically, such a rear boundary corresponds to
the hydrodynamic thickness. In the present model, knowledge of the exact hydrodynamic
thickness is not necessary. It is sufficient to assume that such a rear boundary exists. In
general, an unsteady flow region follows behind the hydrodynamic thickness or the rear
boundary. However, one can assume that a uniform flow created by a piston moving at
the equilibrium CJ particle velocity follows the rear boundary, as will be the case in the
numerical simulation carried out. This assumption again does not alter the main result,
but simplifies the formulation of the analogous oscillator equation.

Since the numerical results in Section 3.2.1 have shown that the time-averaged
shock velocity agrees with the steady state Chapman-Jouguet value, the instantaneous shock
front location z,(t) is assumed to be composed of a time-averaged part and a fluctuating

displacement F(t) from this mean trajectory:
z5(t) = Doyt + F(t) (6.9)
and the shock velocity
Z5(t) = D(t) = Dog + F(2) (6.10)

where D¢y is the CJ detonation velocity which equals to the mean speed of the oscillatory

detonation over the period 7, i.e.,

1 7
Dey = ;A D(t)dt (6.11)
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Thus, the shock front displacement F{(t) satisfies

1 T
= f F(t)dt = 0 (6.12)
T Jo

from (6.10). The fluctuation of the shock trajectory F(¢) is chosen as the dependent variable
in the oscillator equation to be formulated.

Using the control volume that follows the instantaneous motion of the shock front,
the reactive Euler equation (eqns. 3.1-3.3) can be cast in the integral form. The conservation

of mass, momentum, and energy can respectively be rewritten as:

d fin
Ef[, pdz + poy(D ~ uos) — pol) = 0 (6.13)
d i W dD
d—f p(D — u)dz + pos(D — uc1)? ~ poD* = —pcy + po +f p—dz (6.14)
tJo 0 dt
d [ D — u)? D —u)?
d_/ P [ei + -(—-—ul"] dz + pci(D - ucr) [ew + (D—u) + ch]
tJo 2 2 pcJ
~poD (e, +—+ ) Qf pwdz + / P (D~ u)dz (6.15)

These equations are expressed in their dimensional form and the velocities are measured
in the absolute laboratory frame. Here, e; is the internal energy, subscript 0 refers to the
initial unperturbed state, and subscript CJ denotes the CJ equilibrium (downstream) state.
The last integral term on the right hand sid= of equation (6.14) represents the pseudo-force
term for the moving control volume. The first term on the right hand side of equation (6.15)
denotes the rate of the chemical energy release, while the second term denotes the rate of
work done by the pseudo-force. Using the continuity and momentum equations (6.13, 6.14),

the energy equation (6.15) can be manipulated to the following form

d fin n ‘1
-d_t.[o pedz + poyeci(D — ucy) — poeoD — peyucs = Q/D pwiz (6.16)

where e is, again, the total energy term defined to be the sum of the internal and kinetic

energy, i.e., e = e; + u*/2.
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For a steady ZND detonation where D(t) = D¢y, the unsteady integral term drops

and (6.16) reduces to

i
pcreci(Dcs — ucy) — poeoD — poruct = th; P uwdz (6.17)

where superscript 0 refers to the steady ZND wave. The integral term in the above equation

is obtained from the conservation of reactant mass to be

by
/ pPwldz = poDeys (6.18)
0

which simply states that the rate of reactant depletion inside the control volume is equal to
the unburned mass flux entering the control volume for the steady ZND wave. Subtracting

the steady state equation (6.17) from equation (6.16), one obtains

d i . In
E.[) pedz + poyecs F' = Q_/(; pwdz — QpoDey (6.19)

where the term poegF has been neglected since ppep/perecy is of the order of 1/MZ; << 1
(Mg is the CJ detonation Mach number).
Two nondimensional volume-averaged quantities, the reaction rate W and the

energy I, will be defined for the system under consideration:

1
W = f P g 6.20
o poDosl?! : (6:20)
1
pe
£ 4 6.21

where £ = z/lj,. Defining W7 = W —~ 1 to be the fluctnation of the dimensionless mean rate

of the reactant depletion and I:

. d d{ pe 1 p0el
f==-1% = _j_ _j________d
dt( ) dt ( 0 pgD2/2d€ 0 poD%J/Q 3

d {1 pe
= E—t,/o _—_poD2/2d§ (6.22)
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as the rate of fluctuation of the dimensionless mean internal-kinetic energy inside the control

volume, the energy equation (6.19) can be reduced to

s, poiecs n WD Dgy@Q o
WIF + PR F + ST = ZE W, (6.23)

where the (") convention denotes time derivative. Thus, equation (6.23) states a balance
relation of the rate of energy fluctuation for the control volume. The first term on the left
hand side denotes the energy fluctuation rate associated with the shock velocity oscillation.
The second term corresponds to the unsteady exit condition at the rear boundary. The third
term represents the rate of the energy fluctuation within the control volume itsell, and the
term on the right hand side denotes the fluctuation of the chemical energy release rate inside
the control volume. Note that equation (6.23) has the form of a second order nonlinear
differential equation in terms of the variable F' similar to that describing a mechanical

oscillator.

6.2.2 Analogy to Nonlinear Mechanical Oscillators

Equation (6.23) is in essence the energy conservation equation recast in a form to
model the mathematical behavior of a nonlinear oscillator. The remaining task here is to
identify the elements that constitute an analogous oscillator.

In exariining the results from the numerical simulation of the fully developed

pulsating detonation, it appears that the oscillatory characteristics can best be described

by:

1. The fluctuation of the volume-averaged reaction rate has the same frequency as the
shock velocity fluctuation with a small phase shift due to the ignition delay. Thus,

W1 can be expressed in the form of

Wy = g(F, F)F + ph(F) (6.24)
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where 4 is a small parameter and A%(F) = 0.

2. The rate of fluctuation of the volume-averaged total energy is in phase with the fluc-
tuation of the shock trajectory, because the variation of the shock front displacement
(F) from the mean trajectory represents the temporal change of the system potential

energy. Hence DI in equation (6.23) would be proportional to F, and has the form of
DI = s(F,F)F (6.25)
Its Taylor expansion with respect to the steady ZND state can be expressed as

DI

[>T, /) n - 0
FSY % $C’(n,m) [M] prom pm

el meo ™ Oz ™aim
cQ 7 A
= boF+ Y 3 bmpnomElfm (6.26)
n=1 m=0
where
820
bo = 1“02 (6.27)

with 7o being the period obtained from the linearized limit. The period r should
scale with the hydrodynamic thickness (i.e., {; ~ Dggt). Hence, the coefficient by in
equation (6.26) is proportional to D%}, i.e., to c%; (the CJ equilibrium sound speed).
Therefore, the coefficient b exhibits the acoustic compressibility of the system inside

the control volume similar to that obtained in equation (6.6).

Based on the above considerations, equation {6.23) can now be expressed in a more
analogous form of a nonlinear oscillator:
. 4’,‘1‘2 0 Ih. *® hi _m+1 . .
WIF + —LI°F + 5 DD b ErTUET = uf(FF) (6.28)
0 n=1m=0

where

pf(FF) = % (QDCJWI - %QCJF) (6.29)
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denotes the net energy input to the system, i.e., the difference between the unsteady part of
the chemical energy release and the energy fluxed out of the system. Comparing equation
(6.28) with those for a mechanical oscillator, i.e. (6.7, 6.8), one notes that the pulsating
detonation can be modeled as a self-organized nonlinear oscillator. The energy [, stored
in the system, the system compressibility embedded in the term I and the net energy input
uf correspond, respectively, to the mass, spring, and damper elements in a mechanical
oscillator. These are the key components responsible for the mechanism of self-sustained
nonlinear oscillatory detonation and the transformation of temporal patterns via period
doubling and tripling in the first bifurcation steps. The linear natural frequency for the

detonation system is given by wg = 27/70.
6.2.3 Numerical Verification of the Oscillator Model

The oscillator model derived for the pulsating detonation is verified by numeri-
cally computing the various terms in the oscillator equation. The numerical solutions are
calculated using the method described in Chapter 3 after which the various terms in the
oscillator equation are evaluated. The solutions considered are confined to the [ully de-
veloped detonations that have established repeatable cyclic oscillations. To eliminate the
nonsteady expansion flow field that exists between the wake of the detonation and the back
boundary, the detonation is supported by a piston which propagates at the steady CJ burnt
gas velocity. The parameters used for the calculations are again those used in Chapters 3
and 4, where ) = 50, v = 1.2, while the activation energy will be varied.

The hydrodynamic thickness required to define the detonation structure is ob-
tained by examining the spatial profiles of the pulsating structure. The particle velocity
profile for £ = 27 with period r = 12.7 is displayed in Fig. 6.3. As the particle velocity is
approaching the steady burnt gas velocity ugy at z = 405, an inert acoustic disturbance is

created by the mismatch of the sonic choking condition and running away from the deto-
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nation wave system into the far field. Its amplitude does not attenuate since there are no
physical diffusion terms in the governing equations. This disturbance is in reality dissipated
and its amplitude maintenance in the far fleld has never been observed. Thus, in the follow-
ing analysis the hydrodynamic thickness [}, is chosen ahead of, but close to, this disturbance
origin, l.e., I = 20, that gives a small velocity deviation of |u ~ ugs|/ucs = 0.03. The
solution of the oscillator equation (6.23) with the chosen [, agrees well with the full direct
numerical solution {see Fig. 6.4).

The terms in (6.23) and (6.28) are obtained from the numerical values of the flow
variables and their derivatives. E = 27 is chosen as the first example because the onset
of a period doubling from the limit cycle of 7 = 12.7 occurs at this activation energy (see
the phase portrait of W) — Dy in Fig. 6.5 where D; = I:’/Dg.]) and the nonlinearity is
well developed. The evolution of the four terms in (6.23) over 27 is displayed in Fig. 6.6.
The two terms associated with F' and W, are evaluated directly from the flow variables,
while the other two terms concerning F and [ are calculated from the flow variables and
their derivatives. Although the derivatives are locally oscillatory as the numerical data
are insufficiently smooth, the frequency and the phase of the pulsating detonation are not
influenced.

Except for the small phase shift, the main part of the fluctuation of the chemical
energy release rate (i.e., the Wy term) varies in phase with the energy out-flux fluctuation
(i.e., the term F). Moreover, this value of the phase shift is of the order of 2f, /2> Or about
the induction delay, as is expected. This verifies the first statement (i.e., eqn. 6.24) that
the fluctuation of the chemical energy release rate has the same frequency as that of the
shock velocity fluctuation with a small phase shift, since the energy out-flux fluctuation is
proportional to the shock velocity fluctuation. Figure 6.7 illustrates that the rate of the

fluctuation of the total energy (i.e., the I term) is in phase with the fluctuation of the
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shock trajectory (i.e., F) in spite of the large nonlinearity obtained in the present example.
This agreement can also be seen in Fig. 6.6 where the stationary points of the [ term
corresponds to the maxima and minima of the term F. Therefore, the second statement
(i.e., eqn. 6.25) is also verified. Note the close symmetry between the [ and the I terms
with the same transient magnitudes but opposite signs, which is a clear indication of the
sign change between the analogous m# and kz terms in a mechanical system.? However,
unlike the restoring force and the inertia term in the linear mass-spring oscillation system,
the symmetry of the two terms with respect to the time abscissa is broken due to the
nonlinearity and their sum equals the value of the net energy input uf(F, F), displayed
in Fig. 6.8. uf can be regarded as a damping with an alternating value which is of
one order less than the restoring force caused by the term /. This indicates that the
damping coefficient  is indeed small and that the comparatively large restoring force plays
a significant role in the dynamic instability of the oscillatory behavior.

Tc verify the linear acoustic compressibility coefficient of (6.27) in the restoring
force term with I, we consider the case of E = 25.5 since it is closer to the neutral boundary
(i.e., E = 25) below which the steady ZND wave is recovered. The periodic pattern for
F = 25.5 is a limit cycle (its period 7 = 12.7) just bifurcated from the steady ZND state
and therefore weakly nonlinear (see Fig. 6.9). The evolution of the four terms in {(6.23)
over two periods is shown in Fig. 6.10 which indicates the same features as in those in Fig.
6.6. Figure 6.11 clearly demonstrates that the J term of (6.23) is well in agreement with the
linear compressibility term F' of (6.28) for the weakly nonlinear oscillatory detonation. Thus

expression (6.27) for by is justified. Adding a cubic power of F improves the agreement.

“For a linear mechanical response z = zosinwl,mi = —mzow” sinwl, kz = kxrgsinwl, hence a sign
change occurs between the inertia and the restoring force terms.
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6.2.4 Mechanisms for Sustaining the Oscillations

The analogy to nonlinear :aechanical oscillator indicates that the net energy input
and the fluctuation rate of th= internal-kinetic energy inside the system which correspond,
respectively, to an alternating damping and a restoring force, are the key components of
the self-sustained pulsating detonations. The self-excited driving force is initiated by a
negaiive damping, i.e., the unsteady part of the chemical energy releasc is greater than
the energy out-flux fluctuation at first. Thus, the system gains the energy to increase the
fluctuation amplitude. However, without the restoring force the flictuation of the system
can only undergo a monotonic increase. With sufficient restoring force the system is able
to behave in an oscillatory manner, but the fluctuation amplitude would continuously grow
if the damping remains negative. Thus, an alternating damping, i.e., an alternating net
energy input whose integral over the oscillatory cycles equals zero, is required to maintain
the oscillatory detonation with repeated cycles.

The alternating net energy input is a result of the coupling between the unsteady
part of the chemical energy release (i.e., Q1 = poDcsQW;) and the shock velocity fluctua-
tion (i.e., Dy = F/Dcy), since Dy is proportional to the energy out-flux fluctuation. Note
that @, has the same frequency as D; by a small phase lag associated with the ignition
delay. Thus, the coupling is almost resonant,

According to the Rayleigh criterion for instabilities associated with unsteady heat
inputs (Rayleigh 1878), resonant oscillation can result when the unsteady heat release is in
phase with the pressure oscillation. If the pressure oscillation for the oscillatory detonation
is characterized by the shock velocity perturbation Dy, the Rayleigh resonant criterion
requires @ fully in phase with D so that Qy.Dy > 0 holds over the entire period and that
the temporal evolution of QD is located above the time abscissa. This is not the case in

the present result. In fact, the temporal evolution of Q1.D; has a small negative part below
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the time abscissa because of the phase lag between the two (see Fig. 6.12). The detonation
for £ = 28 displayed in the figure is a fully developed quasi-periodic oscillation by period
doubling. Note that the integral of the product of Q, and D over a cycle would still be

greater than zero. Thus, a generalized resonance coupling criterion can be expressed as

1 /7 .
J= —f Oy Dydt > 0 (6.30)
T Jo

where J has units of jm~%s~!, and vJ > 0 refers to the net excess energy (over the steady
ZND value) needed for the maintenance of a one-dimensional oscillatory detonation. This
energy concept can be clearly elucidated by the nonlinear oscillator model described by
(6.23). The product of the self-excited “driving force” (i.e., the term po Dcy@W,/D on the
right hand side of (6.23)) and the “velocity” of the dependent variable (i.c., F') denotes
the “power” input to the system. The integral of this power over a cycle provides the self-
excited energy required for the oscillating motion of the shock front. Thus, from the energy
point of view, the criterion (6.30) describes a basic mechanism of the shock perturbation by
the resonance-excited chemical energy release for the self-sustained pulsating detonations.

It is also implied in (6.30) that the rusponse of the nonlinear restoring force to the
driving force provides a mechanism for transition of the instability patterns. The restoring
force, i.e., the rate of the fluctuation of the total system energy, is in phase with the fluctua-
tion of the shock trajectory (F') by equation (6.25), whereas dJ ~ Q1dF from (6.30). Thus,
expression (6.30) states the integral relation between ()1 and F over a cycle as well. The
value of J remains constant as the detonation propagates with a fixed oscillatory structure.
When J increases from zero to some threshold, it describes the variety of instability pat-
terns ranging from the steady ZND state (E = 25}, regularly periodic motion (L = 25.5),
onset of the first period doubling (£ = 27), quasi-periodic motion (e.g., £ = 28) to strong

irregular motion (see Fig. 6.13). Although it must be further studied how the threshold

value of J behaves for the highly irregular motion, it is conclusive that the higher level the
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detonation instability pattern, the more energy is required to maintain the propagation of

its oscillatory wave,

6.3 Transition as the Excitation of the Oscillator

The formation of the pulsating detonation and its relation to the excitation of an
oscillator will be discussed in the following sections. The qualitative influence of nonlinearity
on the excitation process will be briefly examined to point out the differences from linear

oscillators.

6.3.1 Frequency Selectivity for Transition

In analyzing the transition from the quasi-steady regime to the pulsating detona-
tion in Chapter 4, the frequency selectivity for amplification of flow perturbations is rec-
ognized. In general, the intrinsic frequency for a gaseous system is related to the acoustic
frequency, which should agree with the natur.l detonation frequency when the detonation
is established. The relation of the acoustic compressibility with the natural frequency of
the detonation oscillator has already been illustrated in Section 6.2.2. In reactive flows,
the work of Riley (1984) on constant volume chemical-acoustic interaction suggests that
the acoustic time scales of the order of the chemical reaction time could most efficiently
promote amplification of acoustic perturbations. There is thus a clear connection between
the establishment of the pulsating detonation with the excitation of an equivalent oscillator.

However, the transition from deflagration to detonation represents a distinct change
in the propagation mechanism of the combustion wave. In the initial state, the quasi-steady
regime is quite different from the final detonation since it is not a coupled system of shock
and reaction complex. The thermodynamic and flow properties (e.g., shock velocity and
temperature) are also much lower than the final detonation values. Therefore, the chemical

and gasdynamic time scales as well as the equations describing the initial system will be
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quite different from the final ones. The iutrinsic {frequency would then be variable during
the highly transient transition process. Nonetheless, the characteristic time scale of a det-
onation is one that is necessary to accomplish rapid chemical reaction after a gas particle
has been compressed by the leading shock. To achieve this, the reaction time must be of
the order of the reaction time of the detonation, which is represented by its hall reaction
time t;/5. This is therefore the intrinsic time scale of the coupling required for detonative
propagation. Thus, perturbations with periods of the order of #;/; are expected to promote
transition to detonation. This is indeed the case as ~hown in Chapter 4.

When the initial development of rapid chemical reaction is achieved, the detonation
level of pressure and other flow properties are approached and the shock-reaction coupling
ie attained. The intrinsic frequency selectivity of the pulsating detonation then takes over

and provides the adjustment or evolution to the final natural frequency.

6.3.2 Excitations in Nonlinear Oscillator

From linear oscillator theory, the frequency of perturbations that can best promote
excitation of the oscillator is of course the natural frequency of the oscillator. While the
numerical results in Chapter 4 does seem to indicate that the optimal period is within
the order of the natural period of the final detonation (7 = 12.7), it is not conclusive
that it is due to the effect of linear resonance. Indeed, the nonlinearity associated with
the pulsating detonation solution can intensify rapidly as the activation energy increases
beyond the neutral stability limit. Hence, the effect of nonlinearity may play an important
role in the frequency selectivity for the excitation of the nonlinear oscillator.

An important additional consequence of nonlinearity is the facility for interaction
among perturbations of different frequencies and the generation of new frequency compo-
nents. For a nonlinear oscillator under an external excitation, resonance may occur at

frequencies other than the natural frequency of the free (i.e., unforced) oscillator. To illus-
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trate this, let us return to the Duffing’s equation (6.8) which has a cubic nonlinear restoring
force term. For small amplitude oscillations, the oscillator is approximately linear and an
excitation frequency w equal to the natural frequency ¢ would lead to resonant excita-
tion. For finite amplitude oscillations, the nonlinear system described by Duffing’s equation
can be excited (i.e., can have a relatively large amplitude response) under three different

conditions (Nayfeh and Mook 1979):

1. Primary resonance: the system is excited when the forcing frequency of the free

oscillator is close to the natural frequency (w = &),

2. One-third subharmonic resonance: the system is excited when the forcing frequency

is one-third the natural frequency (w = 1/3¢), and

3. Superharmonic resonance of order 3: the system is excited when the forcing frequency

is three times the natural frequency (w = 30),

where the response of the nonlinear system is, in general, a function of the forcing term as
well as the initial condition. Nonlinearity can therefore have a significant influence on the
frequency sensitivity for exciting the oscillatory system.

Since real systems (such as the pulsating detonation under consideration) will
generally have finite amplitude fluctuations and hence nonlinear interactions among different
frequencies will alter the frequency selectivity for excitation of the system, the ability to
select and amplify disturbances and to excite the final system is common. It therefore
appears that the present proposed oscillator model may provide a useful framework to
examine the dynamic behavior of detonation waves.

The establishment of the oscillator concept for detonation propagation indicates
that the transition process can be considered as the formation of an oscillatory structure

rather than the steady ZND detonation. The results obtained in the present work strongly
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support the need to examine the propagation and formation of the detonation as one that

is analogous to the response of a nonlinear oscillator.
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Chapter 7

Conclusions

The transition from high speed deflagration to detonation has been studied the-
oretically and experimentally in this thesis. The present investigation was motivated by
the need to better understand the detailed events during the final phase of deflagration to
detonation transition. The ability to obtain a maximum velocity deflagration which is the
quasi-steady regime quite universally observed just prior to transition to detonation has
provided an excellent opportunity to achieve our objective. This has permitted the study
to be focused on the physical processes that occur during the final onset of detonation.

To define clearly the initial condition for onset to occur, an analytical study has
been carried out to examine the quasi-steady regime that occurs just prior to onset. This
high speed deflagration can be obtained by damping out the transverse waves of an es-
tablished detonation. Previous experimental observations have indicated that its structure
can be represented by a one-dimensional shock-reaction front complex. A theoretical model
has been developed and the velocity of propagation of the quasi-steady one-dimensional
complex has been derived. It is found that both the leading shock and the deflagration
front propagate at about half the detonation velocity of the mixture, with the shock wave
traveling at a slightly higher velocity than the reaction front. The deflagration propagation
is not due to an induction type process since it slowly separates from the leading shock. The

propagation velocity of the quasi-steady structure is found to be governed by energetics and
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quite insensitive to the detailed flow structure. This has great implications for the predic-
tion of propagation velocities for high speed deflagrations, which can have a highly complex
flow structure and are difficult to predict. Comparisons of the theeretical propagation ve-
locity with that of the high speed deflagration experimentally obtained by damping out the
transverse waves of a detonation, and with the highly turbulent high speed deflagrations
in the choking regime showed good agreement and demonstrated that these maximum ve-
locity deflagrations obtained before transition to detonation are indeed Chapman-Jouguet
deflagrations which can be readily observed in experiments.

Previous experimental and theoretical observations have shown that real deto-
nations are inherently oscillatory and thus it may be necessary to examine the transition
process from the point of view of the formation of a self-sustained system. The final product
of the transition process, that is the detonation itself, is therefore analyzed to help under-
stand how the nonsteady behavior may affect the transition process. A one-dimensional
computational analysis has been carried out using the Lagrangian form of the reactive Eu-
ler equations. In order to examine non-overdriven detonations, which are more useful than
overdriven ones for understanding real detonations, the piston support is limited to veloci-
ties no more than the burnt gas velocity of the steady CJ detonation wave. The nonsteady
one-dimensional detonation is manifested as a longitudinal pulsating wave. In spite of the
oscillatory behavior, the time-averaged properties of the pulsating detonation is found to
agree well with the steady Chapman-Jouguet detonation solution for the range of activa-
tion energies studied. Moreover, the wake of the detonation also satisfies the sonic condition
over a cycle, This indicates strongly that the oscillatory detonation is quite independent of
the far rearward boundary condition as it is for the steady CJ wave. Numerical “radiation
conditions” are implemented to confirm this.

The characteristics of the oscillatory patterns of the pulsating detonation is ex-
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amined by varying the activation energy. It is observed that when the activation energy is
below the neutral stability limit, a steady ZND detonation is obtained. When the activation
energy is slightly above the neutral stability limit, regular oscillatory solution occurs. As
the activation energy is increased, the periodic pattern breaks up in a period doubling type
sequence. A: the activation energy is increased further, the periodic pattern becomes quite
irregular and repeatable cycles were not obtained within the time of computation. The
break-up sequence of the periodic pattern appears to be similar to those observed in many
nonlinear oscillator systems. The stability of the pulsating detonation when perturbed with
a density (or temperature) disturbance has also been analyzed. Due to the high tempera-
ture sensitivity of the reaction rate dictated by the Arrhenius law, the imposed temperature
deficit can result in a rapid decoupling of the fast reaction zone from the leading shock. The
failed wave then evolves into a quasi-steady high speed deflagration structure quite simi-
lar to that studied in Chapter 2. This metastable structure also propagates at about half
the CJ detonation velocity. Localized pressure build-ups are observed in the deflagration
complex which are similar to the so-called “hot-spots” observed in previous experiments
and can lead to re-transition to detonation. The numerical results showed that the high
temperature sensitivity associated with high activation energy will result in decoupling of
the detonation wave for a smaller amplitude temperature disturbance, and requires a longer
time to undergo re-transition to detonation, whereas low activation energy gas can sustain
larger amplitude disturbances before failure and is capable of re-transition to detonation
within a shorter time.

The high speed deflagration resulting from failing the pulsating detonation is then
used as the initial condition to examine the onset of detonation using the computational
analysis. Since the final detonation is a self-organized oscillatory structure, periodic per-

turbations are placed ahead of the wave to stimulate the re-generation of the detonation
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structure. The periodic wave train of temperature perturbations used is observed to convect
with the gas particles after being processed by the leading shock. The temperature peaks
in the disturbance can grow rapidly as they convect behind the shock. The amplification of
the temperature level and the a-celeration of the chemical reaction then generate regious
of high pressure which would propagate towards the leading shock to increase the shock
strength and further intensifies the chemical activities. The eflect of different periods or
frequencies of the perturbations were investigated and it is observed that the amplifica-
tion of the perturbations and the subsequent acceleration of the transition process is quite
frequency dependent. Re-transition was found to be most rapid when the period of the per-
turbation is of the order of the chemical reaction time of the detonation wave. When the
amplitude of the temperature perturbation is increased, the numerical results show that the
disturbances grow at a faster rate and re-transition is accomplished within a shorter time.
The observed rapid re-adjustment of the oscillation period to the natural detonation period
once the perturbation has terminated demonstrated the strong frequency selective nature of
the formation of the self-oscillatory detonation. The optimal perturbation period that can
stimulate re-transition within the shortest time for the larger amplitude perturbations is
also of the order of the chemical reaction time. Furthermore, the rapidity of the transition
process is found to be a strong function of the activation energy. For mixtures with a low
activation energy, and hence a more stable detonation wave, transition is observed to occur
within a shorter time than that for a higher activation energy. However, the optimal period
obtained for both cases are quite similar. The frequency selective character of the transi-
tion process has demonstrated the importance of viewing transition as the establishment
of a self-organized system and the process may be quite analogous to the excitation of an

oscillator.

An experimental investigation has been carried out to further examine the onset
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of detonation from the quasi-steady regime, which is obtained by damping out the trans-
verse waves of an established detonation. Since the oscillatory structure of real detonations
is manifested as an organized pattern of transverse pressure waves, the experiments are
performed by stimulating the transition process using artificially generated transverse pres-
sure waves. Periodic wall obstacles are placed along the channel to interact with the fast
deflagration complex and the transverse pressure waves generated are observed to promote
re-transition to detonation. The distance required for transition has been measured for
different obstacle spacings (and hence frequency) and the results indicate the existence of
an optimal spacing to facilitate transition. The optimal spacing obtained for the present
configuration is of the order of the channel height which may be related to the acoustic
interaction of the detonation with the tube as has been previously observed in near limit
detonations. The frequency sensifive nature of the experimentally observed transition pro-
cess again supports the notion that the establishment of detonation is analogous to the
excitation of an oscillatory system, It is also observed that the regularity of the detonation
cell pattern of the mixture plays a significant role in the transition process. Since cell regu-
larity is directly related to the oscillatory characteristics of the detonation as well as to the
ability to amplify perturbations of different frequencies, the results further indicate that the
transition process is a strong function of the final oscillatory structure. However, the rela-
tionship of cell regularity with the formation and self-sustaining propagation of detonation
is still not fully understood. Indeed, it is still not possible to characterize cell regularity
with physical parameters. The success of establishing such characterization would provide
the crucial information for future analytical treatment and would thus greatly facilitate
the understanding of the mechanisms responsible for the complex oscillatory behavior of
detonation waves.

The oscillatory characteristics of the pulsating detonation, the period doubling
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type break-up sequence of the oscillation pattern, and the frequency selective character
of the transition process all indicate that the pulsating detonation can be modeled as a
nonlinear oscillator. By reformulating the energy equation in the integral form, which
should contain all the energy sources that lead to the unsteady interaction necessary in
the solution, a second order differential equation was obtained for the one-dimensional
pulsating detonation which has the characteristics of a nonlinear mechanical oscillator. The
equivalent “mass” is given by the total energy in the detonation complex, the “spring force”
is associated with the rate of change of this energy, while the “damping” or “driving”
force is provided by the chemical energy input minus the energy flux out of the control
volume. The terms in the model equation are verified using the numerical data {rom direct
numerical simulations of the regular oscillatory detonation. The solutions very close to the
neutral stability limit are shown to agree with the linear limit of the equivalent oscillator
model. However, the derivation of the explicit expression for the restoring force term and its
rapid deviation from linear behavior will require further work. Nevertheless, the proposed
oscillation model does seem to provide a useful framework to interpret the numerical results
of the pulsating detonation and supports the notion that the transition process is analogous
to the excitation of a self-excited oscillatory system. Further analytical verification of the
equivalent oscillator model should concentrate on deriving the full relationships between
the equivalent oscillator component terms from the governing equations. A useful approach
would be to utilize the information from the linearized description of the detonation solution
as obtained by Lee and Stewart (1990). The linearized analysis should provide a tool
to calculate explicitly all the terms related to the oscillator equation near the stability
limit, as well as a basis from which nonlinear analyses can be derived. The establishment
of a full analytical nonlinear oscillator model for detonation should greatly facilitate the

understanding of the mechanisms for developing and maintaining the oscillatory structure
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of the detonation wave,

The present thesis has provided a clear quantitative description of the physical pro-
cesses during the onset of detonation. The oscillatory properties of the resulting detonation
has been recognized as a significant feature for which the {ransition process must achieved.
This aspect has not been fully realized in previous studies on transition which had mainly
concentrated on the generation of strong enough local explosion centers or shock strength
for auto-ignition to occur. The present results serve to emphasize the need to understand
detonation from the point of view as a self-organized system. Indeed, the formation, steady
propagation, and failure of detonation waves are all related to the self-excited nature of the
oscillatory structure, and a unified understand of detonative combustion must address the

dynamic oscillatory nature of the wave.



Contributions to Original

Knowledge

The theoretical and experimental studies carried out in the present research has
contributed to the understanding of high speed deflagrations and the transition from della-

gration to detonation by:

1. providing a quantitative description of the high speed deflagration observed just prior
to the onset of detonation. This quasi-steady regime is quite universally observed
in many transition and detonation initiation experiments. The present work has
also elucidated on the nature of this maximum velocity deflagration—it is in fact a
Chapman-Jouguet deflagration where the propagation velocity is governed by cner-
getics rather than the detailed flow structure. This has great implications for the
prediction of propagation velocities for high speed deflagrations which are in general
highly turbulent and difficult to predict. The agreement between the predicted CJ
deflagration velocities with the velocities of the highly turbulent deflagrations in the
choking regime confirms the existence of CJ dellagrations, which had been previously

believed to be quite difficult to observe in experiments.

2. analyzing in detail the osciilatory characteristics of the one-dimensional pulsating
detonation. While the oscillatory behavior of detonations is not new, the relationship
between the pulsating structure and the steady Chapman-Jouguet solution, and the
existence of a time-averaged CJ plane are, to the author’s opinion, brought out clearly
for the first time. The identification of the period doubling type break-up sequence

as the activation energy gradually increases beyond the neutral stability limit also
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demonstrales the similarity of pulsating detonation to a more general class of nonlinear
oscillators. The results point out the importance of viewing detonation as a self-

organized structure.

3. elucidating on the physical processes of transition to detonation by focusing on the
final phase of onset of detonation. This is made possible in the present studies by
using the quasi-steady regime, which is a maximum velocity deflagration, as the initial
condition for transition to occur. In previous studies, the occurrence of the initial
flame acceleration phase would lead to a highly random flow structure prior to the
onset of detonation and would often render the detailed study of the final phase
difficult. The computational and experimental studies carried out have shown that
the essential mechanism responsible for transition is the preferential amplification
of perturbations of certain resonant modes that can result in the formation of the

self-organized structure of the detonation wave.

4. developing an equivalent oscillator model to describe the propagation of the pul-
sating detonation. The establishment of the oscillator model can greatly assist the
understanding of the mechanisms responsible for the oscillatory propagation and the
formation of the detonation, and thus will facilitate a unifled description of the birth

and life of detonations.

The results have indicated the importance to examine detonations from the point
of view of an organized oscillatory system rather than the classical view of one with a critical

shock strength necessary for auto-ignition to take place.
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Appendix A

Numerical Methods

The numerical method used to solve the set of time dependent governing equa-
tions is a second order MacCormack explicit finite difference algorithm (MacCormack 1976,
Hung and MacCormack 1976) combined with the Boris-Book flux-corrected transport (FCT)
scheme (Boris and Book 1973, Book and Boris 1975, Boris and Book 1976). The present
computational code is based on the work of Yoshikawa (1980) and Moen et al. (1984). The
basic algorithm used is identical to that used by Moen et al. (1984), and has been further
tested and compared with the previous results of Fickett and Wood (1966) and Bourlioux
et al. (1991). The code has been adapted for the different boundary and initial conditions
under consideration in the present work.

The nondimensional governing equations in Lagrangian form obtained in Chapter

3 can be expressed in the following flux form:

oF 0G
a7 + P § (A.1)
where
v -t 0
re|® G- P/ . —dp (A.2)
e pu/y —%d — apl
a 0 —kaeEIT

The procedure for solving this equation is given below.
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MacCormack Predictor-Corrector Algorithm

The MacCormack scheme is a two-step predictor-corrector algorithm with non-
centered spatial differences. In the predictor step, the forward spatial difference is calculated
as follows:

Exf = B Jp(Ghas — G2) + SmAM (A3

where m denotes the spatial location mA£, and n represents the n* time level. The
predicted value of F’;ﬁl is then corrected ir the second (corrector) step using the backward

spatial difference:
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i = §[Fm L A_E(Gm’l - Goly )+ S A (A.4)
where G":n"'ll and 5’;",'11 have been obtained from the predicted value ﬁ:;,"ll .

Flux Corrected Transport Scheme

The Boris-Book FCT antidiffusion scheme is then applied to the conservation
equations to improve the accuracy of the solution near shock waves. The scheme is carried
out in the following procedure:

i) Diffuse the solution

Fpito= F;"'zl + Mt/ Fopr — Fi) = Mmyy2(F 7 — Frly) (A.5)
Apyry = Fpti - Fpv (A.6)
¢m+1/2 = TMmyr/2- Am+1[2 (A7)

ii) Limit the anti-diffusion fluxes

Km41/2 = Sg0 Am+1/2 max{0, miﬂ[Am-uz sgn Am+1/2: |¢m+1/2| ’

Amias2 580 Apyr/0l} (A.8)



iii} Antidiffusion step

Fr?1+1 = Frf:l-l — Km41/2 + Kmot/2 (AQ)

where 7,11/, is the diffusion-antidiffusion coefficient given by:

1 Ui ul 1
kT ) + _'E‘LI. ) Nmt1/2 S e

Tnt1/2 = iz ( “mer | I l) el ‘;’ (A.10)
G Mmxi/2 = §

with ¢ being the local nondimensional sound speed. The solution F*+! at the next time

level is thus given by equation (A.9).

Resolution used

In the present analysis, the grid size A{ is chosen such that there are 50 numerical
cells in the half reaction zone for the steady ZND detonation profile. Preliminary calcuia-
tions have also been carried out using 20 and 70 numerical cells in the half reaciion zone for
a relatively high activation energy of 28. It was found that ali three resolutions can repro-
duce the same qualitative results, that is a pulsating detonation with the same frequency
and amplitude. Detail quantitative features during the initial formation of detonation do
differ slightly with 20 numerical cells, but the final oscillatory solution is not affected. The
solutions for 50 and 70 cells showed good agreement indicating that the former is sufficient
for describing the oscillatory detonation phenomena. Higher activation energies were also
tested (up to E = 50) and it was found that the low resolution used (20 cells) may not be
sufficient for capturing the high frequency pressure fluctuations prior to the formation of
detonation. The resolution of 50 numerical cells is thus chosen in the present simulation to
ensure the ability to capture the spectrum of flow fluctuations for the study of deflagration
to detonation transition.

The time step Atf is obtained for a Courant number of 0.5.
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Appendix B

Derivation of the Helmholtz

Oscillator

The Rayleigh criterion will be demonstrated in the following simplified analysis.
Consider the unsteady heat input to a volume (plenum) that experiences pressure fluctu-
ation. For simplicity, the fluid under consideration is assumed to be a perfect gas; the
inertial and flow storage will be lumped into two elemments—inlet duct and plenum volume,
and small flow perturbations are considered only (see Fig. B.1). Note that this simple
model is commonly referred to as a Helmholtz oscillator.

In the inlet tube, the mass and the mass flow rate are given by:

Mass in tube: m=pAL

Mass flow rate:  m = pdu

where p,u are the density and velocity of the incoming fluid, and A, L are the area and

length of the inlet duct. The inertial force in the inlet tube is:

du 1 drmn dm

The pressure force exerted on the tube is A(pp — p1), where py and p, are, respectively,

the constant ambient pressure outside the system and the instantaneous pressure inside the



131

plenum which is assumed to be uniform. The momentum balance across the tube is:

i
A(Po-px)=L—;? (B.2)

Writing the thermodynamic first law for the plenum:

dE : .
E{ = Q + hinﬂlin

where E is the internal energy inside the ccatrol volume, @ is the heat release rate, fi iy,

is the enthalpy flux entering the system. For small changes,

—0 =MMin
dF . ———
E =Q'+ h:-n‘m,'n +hin ?‘h:-n

Here, the (*) denotes the time-mean quantity and ( ) denotes the perturbation component.

The internal energy of the system for a perfect gas is given by

E=pVCT = ——p.
71
Thus, the First Law can be expressed as:
Vv dpl Nt .
y— 1 dt Q + CpTlmm

Upon relating C,T3 to the sound speed ¢, 7h;, becomes:

Vip _ @
c? di CpTl

(B.3)

Let the heat input Q' be described by:
Q' = ¢P

where P is defined to be the py — pp and ¢ is a constant. For ¢ > 0, the unsteady heat
input is in phase with the pressure fluctuation. For ¢ < 0, they are 180° out of phase.
Upon substituting the expression for Q' and the First Law into equation (B.1}, an oscillator
equation is obtained:

dP -1 dP ¢4

&P y=1dP A, B.4
w2 v STyl =0 (B.4)
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Far this equation, ¢ plays the role of the damping coefficient of the oscillatory system.

Thus, for Q and the pressure to be “in phase” (i.e., ¢ > (), the dynamic instability is most

favored. If Q is “out of phase” with the pressure rise (¢ < 0), the system is damped and
no oscillation will result. This demonstrates the role of phase relation as stated by the

Kayleigh criterion.
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Figure 2.1: Time seguence of Schlieren photographs of the damping of transverse waves

of an established detonation by an 2coustically abscrbing wall. Stoichiomeiric Hy — U

w

mixture at 120 Torr. channel height is 63 mm. width iz 65 mm, the Ume interval betw

frames is approximately 3.3 psec.



2H, +0, . 150 Torr S k;
u

Figure 2.2: Time sequence of Schlieren photographs illustrating the complex structure of
the propagation of a turbulent high speed deflagration in a rough channel. Stoichiometric
H: — O, mixture at 150 Torr.
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C2H4 + 302

2000 ; - - ' '
1800 7
1 | -
600 CALCULATED
§ 1400 - C-] DEFLAGRATION VELOCITY i
E 1200 o ® T
0 - Q
0 0 %o °
Q 1000} I
23]
>
w800+ N
=
5 600t I
400+ h
200 o EXPERIMENTAL DATA 4
0 1 ] L 1 1
5 10 15 20 25 30 35

INITIAL PRESSURE - Torr

Figure 2.6: Comparison of theoretical CJ deflagration velocity with the approximate one-
dimensional deflagration velocity from Dupré’s experiment (1988). Stoichiometric ethylene-
oxygen mixture at initial temperature of 298K.
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Figure 2.7: Comparison of theoretical CJ deflagration velocity with the approximate one-
dimensional deflagration velocity from Dupré’s experiment (1988). Stoichiometric acetylene-
oxygen mixture at initial temperature of 298K.
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oxygen mixture at initial temperature of 298K.
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Figure 2.9: Comparison of theoretical CJ deflagration velocity with the turbulent high
speed deflagration terminal velocity in rough tubes (Lee 1986), plotted against chemical

concentration. Ethylene-air mixture initially at 1 atm. and 298K. The corresponding ClJ
detonation velocity is also shown for reference.
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Figure 2,10: Comparison of theoretical CJ deflagration velocity with the turbulent high
speed deflagration terminal velocity in rough tubes (Lee 1986). Hydrogen-air mixture ini-
tially at 1 atm. and 298K.
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Figure 2.11: Comparison of theoretical CJ deflagration velocity with the turbulent high

speed deflagration terminal velocity in rough tubes (Lee 1986). Propane-air mixture initially
at 1 atm. and 298K.
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Figure 2.12: Comparison of theoretical CJ deflagration velocity with the turbulent high
speed deflagration terminal velocity in rough tubes (Lee 1986). Acetylene-air mixture ini-
tially at 1 atm. and 298K.
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Figure 3.1: Schematic of the piston generated detonation.



sh

— W e mme em AR A e e e e e e

[—
o0
by - - - o =

Time

Figure 3.2: Initial piston velocity for initiating the one-dimensional detonation.
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Figure 3.3: The oscillatory shock pressure pattern of the pulsating detonation for different
activation energies.
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Figure 3.4: The bifurcation of the shock pressure pattern of the pulsating as E increases
from 27 to 28.5.



80 T T T Y T T T T T

T0 end of chemical reaction ]
3
60F : ]
ss ZND solution
s | 1
o 40+F i i T
2. T |
i i |
30 llll E u"!:: i
I T
% FE ",':"' nn :
20 W?:U\. """" i -1
i
10+ 5 ? ’
! i
| |
. 1 l‘.-.-...... ‘TL

200 610 620 630 640 650 660 670 680 690 700

T

=)
4_/
|
LI
]

0.5F

-2

dAlpha/dt

15} . :

'l

600 610 620 630 640 650 660 670 680 690 700

X
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Figure 3.5: (b) Temperature.
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Figure 3.10: Hugoniot diagram for different possible steady deflagrations with the same @
assuming a fixed leading shock state calculated from the CJ deflagration solution.
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Figure 4.1: Spatial profiles of the quasi-steady shock-reaction at g = 100 when periodic
density perturbations are applied to induce transition. The form of the perturbations are
shown in the density and temperature plots, where the amplitude is 20 percent of the initial
density, periods of 12.7 and 3.175 are displayed. (a) Pressure, (b) density, (c) temperature.
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Figure 4.2: Re-transition of detonation using periodic density perturbations for E = 27.
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Figure 4.6: Distributions of pressure and density in physical (Eulerian) space at different
times after perturbation is imposed. E = 27,20 percent density perturbation, T, = 12.7.
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Figure 4.7: Spatial profiles of the quasi-steady shock-reaction at tg = 125.5 when periodic
density perturbations are applied to induce transition. The form of the perturbations are
shown in the density and temperature plots, where the amplitude is 20 percent of the initial
density, periods of 12.7 and 3.175 are displayed. (a) Pressure, {b) density, (¢} temperature.
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Figure 4.10: Re-transition of detonation using 40 percent periodic density perturbations
applied at tp = 100. Perturbation periods shown are 7, of 1.016, 1.905, 12.7.
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Figure 4.13: Re-transition of detonation using periodic density perturbations for £ = 26.
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Figure 5.1: Sketch of the damping and test sections: channel width is 1.6 cm, and s is

obstacle spacing.
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Figure 5.2: Schematic of the experimental set-up and the optical system.
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Figure 5.3: Laser stroboscopic Schlieren photographs of the propagation of the fast defla-
gration in the obstacle section, obstacle spacing equals channel height (28 mm), 2C2H; +
505+ T5%Ar at 100 Torr, transition not observed: black vertical marker at the left denotes

~the beginning of the obstacle section, 18.6 usec between frames, the first frame is arbitrarily
labeled as time 0.
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Figure 5.4: Laser stroboscopic Schlieren photbgra,phs of the transition of the fast deflagra-

tion in the obstacle section as initial pressure is increased to 140 Torr. See Fig. 5.3 for

legend.



(b)

Figure 5.5: Streak photographs illustrating the effect of initial pressure on transition,
- 2C9Hy + 305 + 75%Ar at (a) 100 Torr and (b) 135 Torr. The thin black vertical line
on the left of each photograph denotes the heginning of the obstacle section (os).



(b) (c) (d)

Tigare 5.6: Streak photographs illustrating the effect of obstacle spacing on transition,
2CoHy + 502 + 75%Ar: (a) s = 10 mm at 122 Torr, (b) s = 20 mm at 125 Torr, (c) s =
28 mm at 127 Torr, (d) no obstacles at 160 Torr. The thin black vertical line on the left of
each photograph denotes the beginning of the obstacle section {0s).



(a) (b) (c)

Figure 5.7: Streak photographs illustrating the effect of ohstacle spacing on transition,
C3Hs + 504y near the initial pressure of 35 Torr; (a) 8 = 10 mm at 38 Torr, (b) s = 20
mm at 35 Torr, (c) no obstacles at 35 Torr. The thin black vertical line on the lelt of each
photograph denotes the beginning of the obstacle section {os).



T T 'I_I T BT

| BN M |
6~I'I'llllli I

'I'_I_I i
2C H +50 +75%Ar 1
22 2 g .
5 F 2 e E
A, o0 ;
4 - / '/o =
P 4 /. 1 Regular cell
(a) 3F , 7 mixture
2 | v ]
o /.’ ‘.D/ 0. ]
o — ® .
1 - g g O ?
o :l ] L l 1 L.l I L ] 1 f 1 1 1 l '] ' L 1 1 ] !-
0.12 0.14 0,16 0.18 0.2 0.22 0.24
AD
5 K T T L] l T L] L] IC'lI{I ISIOI L] 1 ¥ T I 1 L L] l-
o sgtol, ]
4 , ® -
g /O . .
3 L D/ _/ E
v e ,/,’ s ] Irregular cell
(b) 5 b Y . E mixture
L ° Ve Vs ® ' B
N :
17 ]
0 :l i ] 1 ] l [l L L 1 l A 1 L [l I Il 1 1 '] l;l J_l:
0.7 0.8 0.9 1 1.1 1.2
AD
5 5 R L] T L] T [ 1] T T L3 ' T | B ) T l L L T
[ CH4+202 ]
[ o :
3 [ o .:
L'/D o ]
(c) b o 4 . Irregular cell
o s o ] mixture
. g -7 —A— §=28mm
1k ﬂl‘ ,,." —@ - 5=20mm
SR e -~ 8 — s=10mm
i ® ¢ noobstacles ]
0 [ 1 1 3 1 l L 1 1 1 J i 1 L 1 l i L i 1 ]
0.5 1 1.5 2 2.5
AD

Figure 5.8: Transition distance L* versus mixture sensitivity (cell size A), nondimensional-
ized with channel height D: (a) 2C2H, + 50 + 75%Ar, regular detonation cell structure,

(b) C3Hg + 50,, irregular detonztion cell structure, (¢) CHy + 20,, irregular detonation
cell structure.
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Figure 6.1: z — % phase portrait and temporal evolution of the Duffing equation. 8 =
0.35,02 = 0,6 = L,w = 1. 2(0) = 2(0) = 0. (a) a = 6.5, limit cycle occurs, (b) a = 8.0,
period doubling has occurred, (¢) & = 6.5, period is now four times larger than the original
cycle in (a).
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Figure 6.2: Schematic of an open system for the one-dimensional detonation bounded by

the shock front and the Chapman-Jouguet surface,
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Figure 6.3: Spatial profile of particle velocity with respect to the CJ surface at ¢ = 124.3,
f=1,7=12,Q =50,FE = 2T.
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Figurs 6.4 Temporal evolution of shock Mach number. f =1,y = 1.2,Q = 50,F = 27.
~—— full solution from direct numerical simulation; - - - - solution of oscillator equation
(6.23) with I = 20.
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Figure 6.5: Phase protrait of shock velocity fluctuation D; versus fluctuation of reactant
depletion rate Wy, Dy = F/Dgos, Wi =W -1, W given by eqn. (6.20). f=1,y=1.2,Q =
50, F = 217.
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Figure 6.6: Temporal evolution of the four terms in the oscillator equation (6.23). f
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Figure 6.7: Temporal evolution of rate of internal-kinetic energy fluctuation (i.e., —— DI,

- - - - 4F).



Figure 6.8: Temporal evolution of net energy input (i.e., uf) and terms of oscillator equation
(6.23). f=1,7=12,Q =50,E =27. — I, IDF, - - - - 1,D*[/2,----- wf(F, F).
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Figure 6.9: Temporal evolution of shock Mach number for E = 25.5.
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Figure 6.10: Temporal evolution of the four terms in the oscillator equation (6.23) for
E =255 — L,IDF, - -- - 1,Di/2,---.. Lien P, Doy QWh.
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Figure 6.11: Comparison of temporal evolution of term [ of oscillator eqn. (6.23) and F of
eqn. (6.28). E=25.5. —— I, - ---kF, --... kF —0.75F3, where k = bg/D.
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Figure 6.12: Temporal evolution of product of unsteady chemical energy release and shock
velocity fluctuation (i.e., @1D;). (a) E = 255, (b) +.--- E=255----FE =27, —

. E =28.
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Figure 6.13: Integral value of unsteady chemical energy release and shock velocity fluctua-
tion over a cycle (i.e., J) with respect to E. J* = J/(poDcs RTy)-
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Figure B.1: Schematic of the Helmholtz Oscillator.





