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ARCTRACT

This thesis presents a variational finite clement
formulatiorf for bounded, logs-free electromégnetjc field
problems, The treatment is ¢geoneral, encompassing any time-
harmonic field in an infinite‘Wavéguide structure filled
with sourcesfree media, A stétionary cnergy functional is
constructed for gither of the th}ee components of the
electric or of the mignetic field vector, In Cartesian
coordirates this funetional is speciazlized to linearly
polarized travelling waves while in cylindrical coqrdinates
it is specialized to circularly polarized circulating waves,
\

Solution of the functional isc accomplished'by the high-order
polynomial tridnauiaf Tfinile elemenl melhod wnicn Lcduugs
the functional to a matrix form. Two finite element computer
progrars are presented, one for the solution of linearly

F

polarized travelling waves in anisotropic waveguides and

another for the analysis of linear accelerator ¢avities,
{:
Very Tast matrix assembly is obtained by using[pre-calculated,

universally constant finite element matrices flor Up to and

W
4 .
including 6th-order polynomial approximation. Various
‘ v
exa™plés are given and the program results are analyzed in

4+

. detail,
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o C RESUME ', |
- + (/
I'objet de cette thése est la formulation variationelle

des problémes de champs electromagnetigues non dissipatifs dans
des domains bornés, en vue d'utiliser 1la wméthode des €léments
e finis. Cecte opproche générale permet de traiter tous les
’ probldmes rclatifs a des champs stationnaires dans des guldes

d'ohdes constitués par yn milieu sans sources. Une fonctionelle

énergétique stationnaire est ccnstruite pour chacune des trois

7
composantes des vecteurs représentant les champs electriques

ou magnétiques. En ccordonnées cartésiennes cette fonctionelle
N

j

est appliquée a la propagation des ondesgs é‘polarisation lineaire,
tandis au'en coordonndes cy&indriques on étudie les ondes 2
polarisation circulaire. La résolution de cette fonctionelle

est effectuéde par une méthdde des éléments finisg trianguiai?es
d'ordre supérieure gui permet de mettre le problime sous forme

ratricielle., Deux programmes de calculs utilisant les éléments
N

finis sont annexés; 1'un pour la propagation des ondes 2

i
9

polarisation linéaire dans des guldes d'ondes anisotropes, .
¥
l1'autre pour 1l'analyse des cavités d'un accélérateur linédaire,
i

& \ N
L'assemblage matriciel est obtenu itrés rapidement grdce A
s \

.

1'emploi de\@atrices universelle calculées a l'avance pour des

i é1éments finis allant jusqu'@ l'ordre (6). Les résultats. de
f L !

divers éxemples précentés dans la thése sont amlysds en détail,

L TN o




\\\ ACKNOWLEDGEMENTS /

\
i® N

l

Above all, tge autho%.would like to express his gratitud

towards his thesis advisor, Dr. P. Silvester, who skillfully

guided the resedgch work contained in this the51s. His numeraus -
invaluable co@Ments and ability to generate enthusiasm are

respernisible for channeling the author's efforts in the positive

direction, *
;

The qyﬁhor is indebted to Dr. Z. Csendes. for the time

spent on carefully reading and constructively criticising the
thesis Qanuscript.
Special thanks are due to all of the author's former and

preseﬁt colleagues for providing a pleasant and cheerful

atmosphére to work in,

Flnan01a1 support by the Natlonal Research Council of

Canada is greatfully acknowledged.



#

e
® b | TADLE OF CONTENTS -
"’ Pare
ABSTRACT g 1
RESUME ii
ACKNOWLEDGEMENTS - iii
o TABLE OF CONTENTS iv
CHAPTER I INTRODUCTION 1
, 1721 Nature of the Problem 1
1.2 State of the Art 2
1.3 The Original Contributions 8
1.4 OQutline of the Thesis 9
/
CHAPTER II THE .CONSTRUCTION OF AN ENERGY FUNCTIONAL
JBASED ON MAXWELL'S EQUATIONS 12
2 ! ~
' Summary 12
241 Dérivation of the Curlcurl Eguation 12
_ 2%2 TFufictional Formulation 18
. 2.3 Boundary Conditions 22
X 2.4 Uniqueness 28
2.5 Eaplicit Forms c¢f thc Functionol 31
) CHAPTER III‘ DISCRETIZATION OF THE FUNCTIONAL
. BY APPROXIMATION OF VECTOR FIELDS »>
WITH HIGH-ORDER POLYNOMIAL TRIANGULAR . o
. FINITE ELEMENTS | 36
) Sumﬂary 36
3.1 . Types of Waves and Thelr Mathematlc;;
‘Representations 37
> 3.2. Explicit Form® of the Functional for
. "+ Travelling and Circulating Waves . 5!
:3.3 Discretization., - 4g
T4 The Element Matrices 58
3.5° Minimization of the Discretized Functionals .
- over 4 Compound Triangular Region 68

CHAPTER v COMPUTER PROGRAM, RESULTS AND APPLICATIONS 75

t+ Summary 75

b,1 The Three-Component Magnetic Field Vector
Program n 75

bh,2 Solution to a Homogeneous, Isotropic
Waveruide Problem 78
e 4,3 An Inhomogeneous, Isotropic Waveguide

(" Problem 92
- 4,4 A Micrestrip Problem 100
L.5 The Origin of the Spurious Modeqr/ . 105

q ,




s

7
/

/

\ , Pupre
4,6 A Homorencous, MimebticallyVAnisotropic
. Waveeuirde Problem 115
L,7 Homoreneous and -1nhomogeneous, Eléectrically
Anisotropic Wavepnide Problems 129
CHAPTER V LACC: A LINEAR ACCELERATOR CAVITY CODE
BASED ON THE FINITE ELEMENT METHQD 144
Summary 144
5.1 Introduction . 144
! 5.2 The Linac Cavity Electromagnetic Field
Problen 145
5.3 Finite Element Method for the Computation e
of the Magnetic Field Intensity 151
5.4 Special Quantltlns Related to Linac Cavity
Design : 155
5.5 Numerical Methods Used in the LACC
Computer Program 160
5.6 Input/Outvut Features of thé LACC
Computer Program 170
- 5.7 Accuracy, Speed, Convergence and
a Comparison witn the LALA Program 191
5.8 Field Computation for Otbher Types of
Cavities by the LACC Progrdm 206
CHAFTZR™VI ~ CONCLUSIONS AMND RECOMMENDATIONS . 217 4
6.1 Summary 217
6.2 Advantarces and Disadvantaces of the Metnod 218
6.3 Recommendations for Further Research 223
REFERENCES 225
APPENDIX I Formac Programs {UsYM, U3YM, YSYM, QANT,
(fiche 1) UANT) for the Computatlon of the rlement L
Matrices .. 238 e
APPENDIX .II Block Data Generator Progn‘hm (V3BG) 238 -
(fiche %/ i ’ :
APPENDXX III Block Data Generator Program (V3XY) . 238
(fiché 3) . ,
7, L
APPENDIX IV Three-Component Magnetic Field Vector
(f¥che &) Program (XY3D) : 239
Afiche 5) . '
APPENDIX V  Linear Accelerator Cavity Code (LACC) and
(fiche 6) Block Data Generator Program (V1BG) 239
{fiche 7) 240~
inche 8) \
,APPENDIX V1 LinacPLbThProgram (LPLT) 240

(fiche 9)




g x

( f
" CHAPTER I
» )

INTRODUCTION

1.1 UNature of the Problem

Due to the broad variety of practical applications of
waveguides, resonators and other microwave devices, the
development of methods to solve the associated electromagnetic
field problems hag néceived a great deal of attention in the
past two decades. At the beginping, attention was focused on
analytical methods, but with thesadvent of electronic computers,,
numerical methods have gained p;ominonce. Of these, finite
difference methods were the first to grain acceptance anong: -

[y s
microwave engineers. In recent years however, finite clement

- /"w‘

. methods have been recgﬁgfzod to be more readily suited to solve

waveguide problems [1,16-187. This thesis presents a general
finite elemerit mothod for such problems,
The electromagnetic boundary value problems treamted in

this thesis are those associated with:

1

homogenrous, isotropic waveguides; e

inhomogeneous, isotropic waveguides; ,

homogeneous, anisotropic waveguides; i

inhomogeneous, anisotropic waveguides;
L

‘axisymmetric rescnant cavities for linear accelerators.
These problems, with the exception of homogeneous isotropic )

PESeE

waveguides, require a formulation in which the eiééfiahigﬁéffé*7

. fields are treated as vector quantities, With a few exceptions

(2,3,13,19-217, the tendency in recent years has been to



forrlate %he inno-o - ~.0us 1 -clocple wivel'ride rroblem in
. 1 . . -
' torng of ' Tre longatucioal electric ard mametic 3i1:2la corponents
' T4
wnicn saticfy tne hLel-.oltz eguilion L&—lf,lu,l5]. This thesiu-

ontains a urified for:; ulation of the abov

of a1l three components of the

re finite element

v

vector, 3y e-ploying t e

allows thre

crogs-section, Furt!eriore, it allows gene

- -

even if he is unfamiliar with the detalls

L)

teary o

/
/ 1.2 State of the Art
!

Iin a review parer [17] wnich appeared
the follconing rerar!s in connecticon with th
of electromagnetic flield problems:

4 -

"Alth ox*n there are some indica ions

the outhor has not seen Lendral ¢

. fields with all six COTUonen*c'(f ele
fiela present, ..ouch fields rojuire 00

o ranetie vector potentinl function to
- nars it would we Jjust ag well to solv

Ny ey A
rasnetis

fields directly ratrer tnan
tial functiong," -4

i In his concluding rc#arks(he adds that
o

"In tihe&immediate future,. ewphq is sh
placed upon ihc Hevelgpvont of Tinite
variational tecinig for solwvirs fi
co~pen ehts of olevtrlc and ma?“bulc
wrere, To_date, with a few exceptiong
1887), most ~ethods appear to permit
¢1eluy derivable from a single ccala
not difficul% to formulate and solve
a multidielectiric recion, but 1t
: tne actual electroragnetic problern,
A the continuine discussion of "quasl-T.:

o~

™
A

r
-~

treatment of wavecuide gegmatrie

programs to be written which can be used by a microw:

S

¢ problems in terms -

:
B

mafFnetic or of thowlectric field

th&d, the formulation
s witn an arbitrary

14

ral purpose computer
ave engineer

of tne wetnod,.

.

in 19¢92, wexler Aakes

o yvariationsl cnlntion

e

e
W

5
-

of how to proceed,
omputer metnods for
ctric ond rrgnelic
tn on electric and
genorate them, Per-
e the ¢lectric and
throuéh two potcn—

ould perhaps be
difference and
elds naving all
1eld vresent very-
(e,8.,[59,pp.172-
solution only of
potential, It is
field problems in
not correspond to
nic is indicated by
1" microstrip waves.,"
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7o exception referred to by sewxler 1o Horrington'o well known

-

mov.cgraph [2] which apneared in 1966 and contains a chapter on

>

field solution in resonant cavities Tilled with inhomogeneous
and/or anisotropic medium, In essence, this chapter contains

the results vresented in a doctoral dissertation by?!Gupta [3]

& 3

in 1765, The moment method 1s applicable to cavities and wave-
guides of arbitrary cross-section and arbitrary linear media,

rrovided that the empty cavity or waverulde modes are known.
-

Tne field c¢omponents in a cavity or waveguide filled with

~

¢

anisotropic material are expanded in terms of the field compon-
ents of the empty cavity or waveguide modes to obtain’a matrix

equation; the order of this matrix equation depends upon the

3

number of empty cavity or waveguide modes used in the expansion,

In princivle, the accuracy of the solution can be of any degree

but is in practice limited bty the sizc of the computer. In the |

formulation used, the matrix equations are developed for a - |
" o

’

general anisotropic mediur and then spetialized for rectangular
cavities containing plasmas and ferrites; the frequency depend-
ence of the material property tensors is not included and hence
the rodes obtained do not exist simultaneously.

In 1067, harrnaford [U7] deccribed a finite differerce/vari- ,
ational ~ethod for homogercous isotroplc waveguldes of arbitrary
shape, lils formulation ig based upon the solution of the Belmhol%z
equation in terms of the longi?udinal electric and magnetic field
components and the der;vationtof a variatioﬁal expression, A

) p;ziigngffeature of his work is iﬁat'he deals with complex

functions for E, and Hz even after the removal of the z-depend-
ence from the expressions, The ‘finite difference formulae used

are obtained from a Taylor series expansion in which terms of

N

L ~
e 4



arder U ov higher are 1ynorod, Althow a the -body of thoe wl%”in

’

deaks witn isotropic medis, iinnatord brieflly ditcusses the

extension of the method to plasma-lo.ded wavepuides ard vave-
guldes';ontainina transversely magnelized ferrites. The proposed
rethod for the solution of {ran§Veféely magnetised ferrite-
loaded waveguide pfoblems involves a finite difference matrik
which is not symrmetric, Concequently, according to Hanniford,
the physical interpretation of the resulting corplex elgenvalues
18 diffxculf. Further, the material property tensors used by.s
Hannaferd are restricted in bthe sense that null eleiments are
includéﬁ and the frcquehcy'gependencedo§~thevﬁéteriaL property
tensors is not taken into consideration during computatlion. For
.

lvd
inhomefFeneous 1uotroplc media, the resulting coefficient matrix

in Hannaford's formulation becomes indefinite jabove the 45 degree
'air;line' o1 the dispersion diagr.at, Since 1967, this short-
coming of- two-component fo rmulltlono has reoccured in a number
of other 'finite difference and finite element variational methods
[5—12] %efefring to the vector variational integrals deduced
by Berk [1)] Hannaford dismisses thr ee- and six-component vector
formulations as bplnﬁ more CompllCﬂted than Lhe EZ-HZ formulation,
; Berk's variational exvressions have been referred to many
times since the publicatiS% of referenicé {137 in 1956, In this
work, which is based on his doctoral dissertation at‘th in 1954;
Berk derived three- and six-component vector variational express-

o

ions in the form of Rayleigh quotients for the’resonance

frequencies of a resonator filled with loss-free, anisotlropic,

i

homogeneous or inhomogeneous media, His eAp1e551ons are elther
4

in terms of the electric field E or of ihe magnetic field H or

both, HoweVer,“oﬁly the magnetic field expressions have natural
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boundary conditions at perfect electric oo ductors in a three-

-~

{

component vector formulotion, linving worked prior Lo the

development of finite c¢lements, one of Berk's principal concerns

is the choice of the trial fields used. lle points ont that.-

. ,.one shiould maXe every offort to seleet-trial fietde

which satisfy ac many of the known folures of the solution

as j.0ds5ible, In particular, one should atierpt to devisce

trial fields which, at curfaces ol discontiyuity, not only
have continuous tanfential compon=nts, dbut conlinuous normal
components of (e€.12) and (p.H) as wall, This in because the

last set of boun uirj conddi tiong does not follow from the

first set un]e s the trial fields odLlofJ Maxwell's .
equations.' T =

An impressive effort on more.or 1ebs _the same theme is

- PP

evident 1n the work“~of Thomas [14 157 in 1969 However, his - ;
N .
work is basically a scaR?r formulation of the 1sotropic wave-
guide problem based on the Raylelgh-Ritz apngXimation tmethod
using pc!ynémials in polar coordinates as a trial set [15].
Since 1969 a variety of other methods for the solution of
isotEOpic wavegulde problems appecared 1n the literature; these
have been reviewed in recent papers by Silvester and Csendes

(167, by h\vlev [17T and by Nz [187.

The only three- component-vbctor VdrlatLonql me thod wappear-

.

ng in recent years 1s due to iEnglish and Young [19] in 1971.

v

In thelr _paper the authors state [19] -

ok

"The ;%ctor variational formulations of  the Maxwell.,
equations which have been presented in the literature

are expressed_in terms of all six electromapnetic field
components [47-[6]. This paper deveclops and applies a
vector variational formulation of the Maxwell equations

in terms of the electric .fleld E vector (a three-component )
formulation) by expressing the magnetic field vector in

the Maxwell equatdons in terms of the electric field
vector, An alternative formulation in terms of the magnetic
field H vector is also possible, However, the electric
field formulation has more assoclated Dirichlet guide-wall
boundary conditions than the magnetic field Iormulatlon

and thus has a faster solutlon convergence rate,”




’ 6

-
Tius 'ngtish and Youns celect tﬁ%ﬂkuflv ld formulation on the
tisis of the mumber of Diflcble+ boundary conditions Lo be
satisfied, They list thp(adVlnbﬂ”O“ of the threc-conponent
vector formulation as reduced matrix size and denser coefficient
ratrices in comparison to the‘sixﬁcompongnx,ermulation given
by “nglish in his doctoral dissertation [20] in 1969 and in a
vaper by znglish [21] which appeareaqim 1971, However, they
find that with this formulation the“ﬁaégix elements are more
~complicated to calculate, the guide~wall boundary Conaitigns

on the trial functioas are more restrictive and thé,fﬁ%osition
of continuity constraints on the trial field components is less
straightforward. English and Young apply their method to
inhomogeneously filled isotropic parallel plate waveguides and
to rectangular waveguides, Unfortunately, in their formulation
the condition nxE=0 must be satisfied exactly by the trial

1 . , \
functions, so that waveguide shapes other than clircular or

rectangular cannot be treated. The authors enforce the continuity

of the normal component of the electric flux density vector at
dielectric interfaCﬂs. This means that the trial-function choice

depends upon ithe made under consideration and therefore each

Ls

particular éfqblem requires separate treatment. Finally, with

regard “to anisotropic media, English and Young conclude that

7

the coefficiént matrix will be Hermitian: that this statement

is not true is evident from the present work.

v
'

}" ~Interesting enough, %he six-component vector formulation,
although criticized by many 1nclud1ng English [197], still has
neN proponents. Very reoently, a six- compopent formulation has
been presented by Satomura, Matsuhara and Kumagai [22] in

connection with the analysis of anisotropic slab waveguides.

(4



" computed independently by Csendes {7,127 and by Daly [9,25]

7

Tney rropresent the fleld ot waves propagating 1n the lonritudinal

i .

direction in terms of a linear combinilion of elementary plane
waves, In the course of the analysis they arrive at a dispersion
relation from which they conclude that in order to obtain a
solution, the tensor components must satiéfy certain propagation
conditions, This leads them to incorrectly state that only when
these propagation conditions are saticsfied are anisotropic
matorinis capable of transmitting waves which propagate in the
z-direction, In fact, the conditions they derive are only valid
for linearly polarized travelling waves,

It is interesting to note that the foﬁgulation given in
this thesls is more closely related to a paper presented by
Stone [23] in 1973 for the solutigm of acoustic wave propagation,
than to the methads 1isted above for electromagnetic wave
pTUpaﬁdth;. Stone's forwulation is based upon Silvester's
high-order finite-element formulation of potential problems [24],
as is the method in this thesis, although he considers acoustic
wave propagation., In connection with the dielectric waveguide
problem Stone says that "the variational principle must be
modified to accomodate-the -required interface conditions”,
apparently not realizing that an analogous three-component
formulation of electromagietic wave problems is akso possible, =
Remarkably, the fin;te element matrices used by Stone [23] are
precisely the same€ as the ones computed in this thesis for the
travelling wave problem, ff'wo of these matrices have been given

previously in Silvester's work [247, a thirg/one has been

and the remaining two have been computed by Stone [23,26].

However, in each of these cases, the matrices are given only




up to fourth order, not six as in this thesig, First- and
second~order finite element solutions to elastic surface waves
have a2lso been fiven by others [27,287], but tliese fermulations
are less intimately related to the present method,

It is evideni from the foregoing literature survey that

the need for a unified thrce-gomponpnt vector variational

formulation of thé loss-free boundgd electromagnetic field

problem has long been recognized. Although the necessyéﬁ

ingredients for a general formulation have éxisted; the EZ—HZ,
approach has been favoured over three-component and six- '/f
component E-H .vector formulations. Furthermore, the finite ’
element method [29-357] has. been applied dnly to E,-H, formula- (
tions [7-9,127. It is hoped that the work presented in this

thesié will both complement and provide an alfernative to

oxistine methods,

3

1,3 The Orisinal Contributions

. ¢
Briefly, the original contributions contained in this
- .

thesis can be summarized as follows:

i

a) A unified, general, three-component vector variational
formulation of electromagrietic field problems 1ls presented

using the high-order polynomial triangular finite element

methods

b) Specialized functionals are introduced for various wave
types depending on the electromagnetic properties of the media,

without recourse to complex arithmetic;
e



c) Finite elerent watrices are derived und conputed for
A
threc-corponen®t vector fisld problems in crylindrical coordinates

. . * . N\,
for polynomial approximations of orders 1 ta 6 inclusive;
4

d) A three-component magnetic field vector solving computer
program is pregented whilcn permits the analysis of linecarly
polarized travelling waves in waveguldes of arbitrary cross-

section and includes the anisotropy of the medium;

e) The occurrence of non-physical (spurious) solutions in

variational formulations is explained; i

f) A linear accelerator cavity field analysis computer
program based on the high-order polynomial triangular finite

element method is presented.

1.4 Outline 0o° the Thesis -

Starting in Chapter II, the curlcurl équation is derived
from Vaxwell's ecguations and an energy functional with station-
ary properties ét the solution of this-equaﬁion.iglgpnstructed
for non-conductiveg anisotropic media, Tnis functional is then
specialized tofi fferent wave types in Cneanter III1 and special

forms of the functiogpal are discretized by using the finite

- # .
A -

The computer programming of the special functional forms

element method.

is included in the Appendices. In these, Fortran programs are .

presented ‘which return the components of the magnetic field
intensity vecter and the wave-number for a given value of the .

propagation constant, A description of the program for linearly

Y

¥ a




10
polarived travelling wives ig contained in Chapler IV where a
. s .- -
‘ dedicated cffort is mude to prove that the computer program

4 ) . »
urns correct (and accurate) solutions. The examples presented

hapter IV illustrate the generality of the method and of
the computer program and indicate poténtial applica%iqns.
As is pointbted .out, the program returns not only the expected
‘physically meaningful solutions but algo eigenveétors and
gigenvalues void of physical medning. It is shgwn by an examble
in Chapter IV that these non-physical solutions-.are duc to a
larger than ekpected set of natural boundary conditions,

A corresponding computer program fér the solution' of
circulating waves in cyﬁindrical geomctry has not been

prrovmn

impiemented in this thesis, although the corresponding .finite LT

<

element mafﬁices have been computed and are made %Xailable.
VY
Hewever, a computer program for a more restricted cldcs of
axisymmetric problems, namely those with only an azimuthal
Y vector component present, has béen written [36]. A wery
specialized version of this program for linear accelerator
cavity applications is included in the Appendices and is

described fully in Chapter V. This conmputetr program illustrates

’ ‘the power of the present method if the prograrming is carried

far enough. It may be noted that the program is now being used

O —— e
-

T

for acceleratorf%avity design at the Karlsruhe Nuclear Reseakch -

Centre,
This thesis touches on¥ variety of topics held together
! by the generality of the fini?e element formulation given in
.Chapters II and III, The programming done by the author is qﬁite
‘ . extensive, However, because d¢f the wealth of solution techniques

discovered, much of the brogramming can be regarded as a pilot

!‘ /



work for the developnent of even more eflficient and moge

-

N
versatil9 computer programs in the future.
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. CHAPTER I1
THY CO.LSTRUCTION OF Ad ¥UZRGY FULCTTONAL
N BASED ON MAXWELL'S EQUATTONS
. summary
N
- “ The behaviour of electromacsnetic fields is governed by

Maxwell's equations. The objective of this chapter is to cast
.these equations into a form whigk lends itself casily to
variational treatment. The basic differential operator equation ..
derived ig referred to as the curlcurl equation; vario&s forms

of this equation are associated with a hos{\of physical problems
of practical importance, The derivation is kept as general as
possible and it includes the treatment of anigotfopic media,

The boundary conditions associabed wilh physical prob%ems are

also treated in detail and a discussion of the uniqueﬁé%s of

the solution appears as well. A functional related to energy

is derived for the curlcurl equation in Cartesian and cylindrical

coordinates, ' .
g’ .
2.1 Derivation of the Curlcur] Eaguation
- Consider Maxwell's equations for time-harmonic fieldsgs [37,
’ 387]: o
curl E = -jwB ) ) ' (2.1)
curlH = +jwD+J (2,2)
_divD = 3 : (2.4)
. The &ectors E and H are known as the electric and magnetic
] . J
m\‘:;}



| a}
i

T

field intensities and the yec%ors D and §;nre referrcd fo,ns
electric and magnetic flux densities rospectively.‘ﬁﬂaenotes
current dencity and it;nncl%ges impressed currents (Fi) as well
as induced condyc}ion currents (30). Charge density 1is
represeq@ed by‘ $ . The imaginary unit j in equations (2.1)
and (2.2) can be interpreted as a phase difference of g in time
(or space) between the électric and magnetic field vectors, It

originates from the assumption that the electromagnetic fields

are time=harmonic with angular frequency w.

Siince the divergence of the curl of any vector is idenfic—
ally équal to zero, it is immediately obvious thét equations
(5.3) and (2.4) are implicit in equations (2,1) and (2.2)
respectivel&. Equation (2.2) yields

- /
divJ v (205)

divD = ~j%;
where the right-hand side is equal to the charge density g
by the principle o% the conservation of charge. Consequently,
attention will'be focused on equation (2.1) and (2.2) in the
following,

Let G, é and & be the tensor permeability, Tensor

permittivity and tensor conductivity functions respectivély.

These tensors describe the medium and in general they are

-~

functions of the spatial coordinates, frequency, ond the fields

themselves., The constitutive relationships for anisotropic

media’ can be written as follows

- Al (2.6)
D =¢E - - 1 (2.7)
<. aE - (2.8)
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r7 substituling ejquations (2.6) through (2.8) in‘oquétions
(?7.1) and (2.2) resocctively and then taking curl of both

sides, one obtains .

- jwcurl K —(2.9)

curl(@“lcuhlﬁ)

P

+jocurl E + curl(€715E +&717;) (2.10)

il

curt(é tcurl H)

Now, substituting for curlH in*equation (2%.9) from equation

(2.2) and for curlE in equation (2.10) frop equation 12.1)
[ .
gives
cdrl(@"lcurl'ﬁ)-uuﬁéﬁ + jwOE = - Jwdy

curl(é'lji) (2.12)

(2.11)

cur](é'lcurlif)-uﬁpﬁ - curl(e~1gE)

i

Fquations (2.11) and (2.,12) are equivalent to Maxwell's

—
equations (2.1) tnrough (g,k#f For any particular problem,

|

{, Howcver,

3

both of thece cquations can te colved to give E and

equation (2.11) depends only on E whereas equation (2.12)

involves both E and H. For nonconductive media, i,e., where o

ig identically zero, the equations reduce to the more attract-

ive form
curl(g-lcurl<§)- WREE = —jwji ' ) (2.13)
—_ — 7 —
curl(é"lcurlI{)— W?GH = curl(é“lJi) (2.14)

S
s "t

For conductive media in which displacement currents can be

neglected, equation (2.11) becomes

¥ i _ -
curl(@'lcurl‘E)-+ju)6E = = Jwdy (2.15)

v

whereas equation (2,12) reduces to

curli - gE = ji : R (2.16)
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Reponting the manipulalions performed proviously Lo arrive at

{ .
eruation (2.12), one can obtain from (2.10), (2.1) and (2.6) .

b 4
an cquation similar to (2.15) E
|
| | |
curl (& leurl H) + jwgH = curl(§713,) (2.17) |

1 I
i

The divergenceless character of the magnetic flux density -

'

B can be exploited by inventing the concept of a magnetic
vector potential A and an electric scalar potential 4. Thus,

gince divcurl of any vector and curl grad of any scalar are

identically zero. B may be written as

B = curl(A + - grad 4) (2.18)

Jw

According to equation (2,1), E can then be oﬁpained by removing

the curl operator

E = -jwA - grad g (2.19)

Making use of equations (2.4), (2.7) and (2.19) one now obtains

»

divD = -jwdiv(éA) - div(égradgd) = § - (2.20)

1t should be noted from equagions (2,19) and (2.11) that when
the frequency w is gzero, i.e. in the case 9vf static fields,
equation (2.,11) is satisfied identically and therefore it cannot

be used to solve for E. Instead, one must use equation (2,20)

with w set to zero
div(é grad g) = ~§ (2.21)

Thus one can solve for g and then obtain E from equation
E

(2.19): this solution will be valid both in conductive and in

nonconductive media. In a conductive medium, the conduction

< i
|
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currand ch GE will chuse a ~ v tic fields H to appear,
If 30 is the only cuarrent flowins, then equation (2.2) gives
° o
curl H = J, . (2,22)

N

This compinéd with equations (2.12) and (2.0) Pecngs////
.. . \ ,\
- -1 ) =7 g
curl (g™ “curl A)—-JC (2.23)
T
A rore general forn of this equation is obtained by substituting

for I in equation (2.11) from equation (2.19)

curl(fteurl &) - P& X + jwiA = J;-(&+ jwélgrad 4 (2.24)

This eauation can only be useful if g 1is eliminated. The
traditional procedure, if the permeability u 1s a scalar,

is to apply the vector identity

ax (bxc) = bdvla.c) - (2.B)c ~(2.25)
to the first term on the left-hand side of (2.24)., This yields

p~legrad(div a) - (div.g'lgrad) A - wWéA + JwoA =
Ji- (8 + jwé) gradg  (2.26)

A

Since the cdivetgence of A is urspecified up to this point,
one ¢an now éh%fse div A such tnat the following relationship

is satisfied

grad(div &) = -(ud + jwué)erad g \ (2.27)

1 |

] j
Equation (2.27) 1is a generalizeq Lorentz condition for -

{
electrically anisotropic media characterized by the tensors

w L8

¢ and & and the scalar permeability m. Hence equétion (2.26)
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assures the sinpler form

(Hlv.y"lgrud)'ﬂ + wPé A - JWGA = ji- (2.28)
~ A

LY

Here the vector potential A has both iés curl agdgits
diverrconce fixed., When the permeability ié a tensor*quantity,
one must use équatiog (2,24) and must make other siwplifying
assunptions to eliminate the elec%ric scalar potential - g
fror the equation, ; /
One should mention here in passing that Maxwell's ]
equations maj‘be extended if one accepts the mathematical /
concepts of electric vector potential F, masnetic scalar |
potéhtial Yo mnﬁnet%c charge m and magnetic current deﬁsity
M. Essentially, thisnamoun%s to the observation that equation
(2,20) remaings satisfied 1f one adds to the right-hand side
of {2,19) the curl of the electric vector potential ?:,Since
Aand F, g and?#, ¢ and m and J and M are dual quantities,
it is quite easy to write analogous equations to the ones
derived here for F and 7.

The primary concern of this thesis 1s the solution of

equations (2.13), (2.,14) and (2+23) in bovnded regiofis. The

diffegrential operators in these equations are seff—adjoint and
theréfdre lend themselves readily to a Rayleigh-Ritz type of

finite element method. The operators in equations (2.15) and
- ; » R .

¢

(2.,17) are not delf-adjoint due to the presence of the
v

&)

multiplier Jjw and are thus not amenable to the same treatment.

Pinite element matrices derived for the operators of equations

(2.13), (2.14) and (2.23) can however.be used without v,

modification in a Galerkin type solution of equations (2.15)

and (2.17) [39]. The operators in equations (2.21) and (2,28)



contzin the Lavlaci~n operator, Thi . operator has been widel

. © treated by the variational finite element method for the case‘;\\
of isotropic media [29-35]7. Provided‘that the tensors are
" Hermitian, extension to anlgsotropic media is straightlorward
(a4,
y vquations (2.13), (2.14) and (2.23) are sp

[

n

ial cascs of

~ @

~N
E)

the following general equation depending on the interpretation
of , 4, V and g -

— ¥

curl(pcurl V) - WV = -g ] (2.29) .

' In the next section an enerpgy related functional which 1is
variationally stationary at the solution point will be given
for the operator in equation (2.29)., It will be sho¥n that

‘. for lossless media p and 4§ are Hermitian tensors and thus

2.2 Functional Formulation

: An energy functional EEBjmhssociated wilith the operator

- -, R 1

of equation (2.29) is given by-

| P(V) = <curl(p curl v),vs> -w2<iv,v> +<g,v> +<v,g> (2,30)

J

In view of the fact that the electric and masnetic field

intensities vary harmonically in time, and therefore have

Bl

i both magnitudes and’ﬁﬁaseé} the following inner product should

be used

-adjoint property of the curlcurl oporater is preserved



The asterisk here denoles complex conjugate., With this

‘~- definition of inner product, the functional in (2.30) can be

L

e e e e e e e o e SO

"

a

rewritten as

F(V) = JSS[V*.curl($ curl v)JdU - w2 LS (V*.4V)dU
+ SOP(V*.E)AU + SPS(E*.V)aU (2.32)
; a : a -

O

Consider now the following vector identity:

~
<

div(a x b) = (curla).b - a.curlb (2.33)

Intecrating both side,s" and then applying the divergeaoe

S

*

theorem to the 1eft hand side ylelds Y

-

g (axb).dS = JSS[(curl 5).5-§.cur1f5]dU ®(2,34)
a ¢ \ .

/\”/
With a replaced by v* and b replaced by (pcurlv) one

obtainsg *a ¢

-

SIS[v*ocurl(p curl v) JdU = f:{,j’[curl(;*) Apcuriv)Jau
. :

o - & (v x(Pourlv)lunds  (2.35)
r

e '

Note that '(2."35) is merely the application of Green's first

identity in vector form, Since the curl operator is linear,

o«

one. can write

curl(v*) = (curl v)* . (2,365

Now, substituting (2.35) into (2.32) one obtains

F(V) -J‘J'f[(curl V)¥* . (P curl v)]du - m’fff(v*.qv)dU
+fff(V* g+g* v)du - ﬁ’é‘[v*x(p curl v)] ndS (2.37)

e —
—_—

By denoting the compone&:\sﬁﬁ‘\%}ﬁm'}? _dnde curlv
h ~ T r—

by 8 4 and (curl V). i=1,2,3 , and the tomponents of

l ?
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tne tensors p and 4 by p. . and q y 193 1,2,3 .
: i) 1,8
reapectively, qhercan rewrite the functional in lhe following

Form

"§<;)::iflfff[pi.il(curlv)ir +pi’i+i(cur1§)§(cmrlv)l+1

Ly

W

2 3
+pl+1 l(curlv) (curlv) +1 (U(qi,iivﬂ

‘ ,Ad*
C T, i YV T, 1 Vi
: : o 7 o
+121f3g[1 JE Pi+1, 3 1+2 " Pi4p, 5Vi+ (Curlv)j],nds

A ' t

L L (2.38) _

The subscripts in (2.38) are cyclic wmodulo 3. The unit vector

)+vg +gv:]dU

et

in the i-th coordinate direction is denoted by Ii . The volume p
integral is defined over some volume f bounded by a su%facex

r. The surface integral is carried out over P. The unit vector

5 is outward ndrmal everywhere to|the surface r.

The functional F(v) 1is an energy related quantity. This
relationship arises from the fact that all the terms in the
integrand of the volume integral are proportional to volume
energy density. For instance, if ? represents the electric
field intensity ‘Ew_and ., D represents the inverse of the
permeability tensor é; then the term (curl?)*.(ﬁcurlb) is
eoui?a]ent to -w?B* .| s the dot product B¥.H has the

dlmcnﬂlonallty of volume energy density.

[
If one assumesg that the medium is lossless, then by its

Y
i

relation to energy, the functional F(v) must be g real

number. Consequently, one can immediately establish that the

8

diagonal elements of the tensors p and q must be real, \

i.e, P; i and a3, must be real, Now, if p and ¢ have
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'S
co.ntes of T=di . anil elements, tnen the oaly woy in s.oalch '
e s

F(V) con o he real ig 16 D and ¢| are coaplex conn "‘t >
J
syreotric tencosns (1 2, Heruitian 'L(,ﬂ‘)OT“S) . ''o show this
. ’

ron,idar ror iv- beonece twe followin,m term in the functional

4

(2,38):
q. vy + q. v v = . v
i, l+1 1 l%l 141,11 i+41 -t
» .
R Re{vy)Re(v?: ). - Im(v )I * g+

(q1.1+1 qi+1,i)[ ‘((i)\ <Vi+1) m i) mgvi+1)ll ,

(a4, 57 93, 349 [ImOVIR(V] )+ Re(vy)In(v )]
b
o S . (R2.39)

Equation (2.39) can also be written in the following way

k]

+#+ 3
a. . .v¥v. .+ q. v, v? =
i1 Viviet” Q41,171 Vi

[Re(qi’i+1» qi+1,1 VF“'pn(qL 1+1 9; i+, ][RP V 1Y3 )J'+

[imCay 5h1= gaq, 1) TR Ay, 4= gy 50 J0I0(v] vy ) )
(2.40)

If 4 1igs Hermiticon, then the following reclations hold true:
Re(ayyq,5) = Relay 3490, : (2.41)
(2.42)

o

Im( ) mImay yq)

1 41,1

Using (2.,41) arnd (2.42), equation (2,40) becomes

#* *
. . A . -+ . eV A
q1,1+1vlvlr1 q1+141 ivVi+

\ . # —
2[Relay ,q7Rel l+1l ) + Im(Ll,i+1)Im(v. =
S -
“((ql §+17) 173) = 2Re (41,1vinYs) - \\\ ‘ )
- ,_,,u% * 2
Re((ay g of 1 an Vi Vi (2.43)



whgch 1

yields

pi,i+1

Re[(ps4q,3* P

In view of these

rewritten in the

{curt V)I(curl v). +

I

1+1

+#*
i,i+l

p.

fellowiny way

<

2 1\\{‘ T ) _.
‘:?R Lpi+y¢5(curlv)i”(curlv)l:]

)(cur14§)§+l(curl.;)i]

22

5 definitely real. An entirely analogous derivation

(2.44)

results the functional in (§.38) can be

=

Ivi1z*72Re(qi+1,iV.‘1Vi)]~+ 2Re(givz }dU

= iilng{pj’il(curl v)i
‘we[d;’i
; A&ﬁt:%; g ( »
+ v 3 D: sV
io1 P 1j= 141, ]

2.3 Boundary Conditiong

* #
142 pi+2,jvi+l)

“

-

(curl@ﬁj].ﬁds

(2.45)

Up to thisg point,'Q functional associated with the

curlcurl equation has been derived, According to the Minimum

Theorenm [#0] ‘the vector function V which minimizes

F(v) is

a solution of the associated differuntial cquation, There are

infinitely many functions V

which gatisfy a d4ifferential

equation, Of theoe, only the one which satisfies ecertain

boundary conditions is nceded, It is therelore assumed that

the refrion

N

10

bounded by a perfectly conducting curface

3

o : . . . A
P and that there is no net trancier of energy acness 1ta+

Let

v

reprosent the electric fleld intensity E. Then

A=

curl E = 1y»ﬁ

(2.,46)
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and the surface integral term in the functional (2.37) can be
é

s ¥
written as , /

_ - / -
- [Vx (Peurlv)].nds = jw & (E'x H).nds (2.47)
r r ©

The cross 'product E*x H is well known complex Poynting
vector -representing the& density of power flux, The surface
integral in (2.47) thereforejrepresents the net power flow
across the bogndary surface,s If the boundary is a perfect

4
conductor, then no energy As transferred and the Poynting

vector is tangential everyywhere to the surface, Mathematically

this idea Is expressed Yy the equation
[ V'x (p ‘cuer)]'{_ﬁ/= 0 . (2.48)

The boundary conditions that are implicitly enforced by
leaving out the suzjface integral from the functional, i.e.

that correspond td the choice given by equation (2.48), are
called the natural boundary conditions of the functional [29—
357. It is a well known property of scalar trlple products
that ‘shey rerain unchanged under a cyclic permutation of three

vectors, Thus one can write the following equalities:

S

’

[ V'x (pcurl¥)].m = [(Pecurl V) xn].v"

N

I

(nxv*).(pcurl v)

- i # #
= vy v, V3

— ~ \ —
(p curl v)1 (p curl v), (P curl v)3

A (2.49)

It will now be shown that the boundary conditions implicit in

o
’

L4

£ s s

-y

¢
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2,18) are exactly the same as thoge co-monly encountered in
'. t
connection with electromagnetic prodblens,

Let v represent the eleciric ficld E‘ again, Then by v
(2,49) it is obvious that eyuation (2.48) will be satisfied

whenever

nx z=n x & leurlH = 0 on T (2.50)

Now, let Vv represent the mzgnetic field H, Then, again by
virtue of (2,49) it can be seen that equation (2.48) will be
catisfied whenever (2,50) is true., Thé boundgry éonditionl
sxpressed in equation (2.50) is the one commghly used.[j?,jS] R
on perfect electric conductors, It ﬁerely states that the

electric field intensity vector E must be normal everywhere

at the boundary.

The boundary condition given by

)

=n x @l_lcur1§ = 0 on I (2.51)

oo}

n x

is ecually correct and satisfies (2.48), but it is only
neaningful i1f one zccepts tne idea of perfect magnetic )
:conductor. This i\\éeflned as a raterial for which H must
be norr al everywhere at its surface,
The toundary qonditions (2,50) and (2.51) can also be
obtained in terms of the magnetic vector potential A, For

perfect electric conductors, by virtue of equation (2,19),

one can write
nxE=nxA=0 on I . (2.52)

while for perfect magnetic conductors one obtains

nx H.=n x gx’lcurlx = 0 on I (2.53) ¢
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The boundary condition for E on a perfect elcctiric conductor

U . _ - %
must be examined more closely. The cross product n x E

i

by
roduces a vector with three components., cLach component must
p I P

vanish individually. If the components of n -are n;,» n, and

ny and those of E are Ei' ‘E, ard .E3, then the following
o . o oo . X ‘ ; - ——
three equations will result i \ - x.
; SN .
E, =0 iscyclic mod 3 (2.54)

MEie T My
1 ¢
The solution to th%isystem of three equations given by (2454)
is

i -

-ny#A 0 3 Eparbitrary — - {2.55) -
nlf 0 3 Eq arbitrary (2.56)

ies}
d

1
4o
o

= (ny/ng )y
By = (n3/n1)E1
E2 = (n2/n3)E3

-.

-

=0; E, arbitrary {(2.57)

-

nB% 0 ; E1=O PNy 3

EI:E3= 0 n1=n3=0 (2.58)

n.=1

arvitrary 2

(23]
I

Therefore nxE=0 does not specify E in ﬁagnitgge; it
only specifies its direction, i.e, E has folbe everywhere
normal to the boundary surface,

A very similar reasoning can be carried out for.the
components of ¢"lcurlH. The solution of these'equations
result in three impedpnce type boundary conditions, one for
each component of H ., These boundary conditions are given
here in rectangular coordinates (x,y,z) and in cylindrical
coordinates (r,6,z). The symbols v and P are used
. instead of H and &-1 in order to preserve generality. In
rectangular coordinates (x,y,z), the following is obtained

by setting each component of the vegtor (Pcurlv)xn to

z2eros

PR

!
!
)

x

2
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01% _ v

X x dx -
on dx dn .
1 -1 dv v dv., dv dv. v
b [o. o fap, Y4 RN AN X 2ydy
+(pyy+p22/ [?¥3'6y 22 9% Pkl dy Oz )*p;y( dz  Ox )]dn
+(p ) [ AVZ Oy b (EZE”_EXI\_D (éfx__fiz)]gz
Pyy? Jy dx Prz r)z ¥yx. dy Oz “yz'dx dy “-dn
I (2.59) \)
dn dy dn
-1 v dv., 7 dv., dv v,
v X_ Vg z
+(pxx"-pzz) DX I Py 3y pzx( dy —5%) pzy( () )]
-1 ov, dv dv, dv
N v, X 2 __ 9%«
+(p; zg)’ {:pxx dy S pff:y‘( dz & )+ Px ( '] -
(2.60)"
vy _ %z g
dn dz dn .
-1 v ov dv, Ov dv,, v
z x s oy - Z7x)ydx
o tPyy) [P g 2y Py "5 Py o " 3y Jan
1 ov dv v, dv v
A N d
+ XX pY‘J) [pwxa p}'y oy -pxb bzx bxz) P ﬁ_ﬁ)]ﬁ

(2.61)

¢ -

Tnege eruaztions appear to be aquite complicated. Note however,

that for two-éimensional problems defined in the x-y plane,

dz/dn 1is zero and thg equations become somewhat simplified,
In cylindrical coordinates (r,8,z) the above equations

take on a sirilar form:

L
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and will be automatically satisfied by the function which

;e K 27
7. OV 4, -
3n dr dn
L dvi  drvy : o dv,  dv dv,.
+(pgp*Pyz) [Pgg 30 Pzz3p zrth}')'o_ T3z P2 (7)7: ) ]
71 dv dv v Da,, 0TV
+(pee+pzz) [D0062+p22rar per(rbg bze) Oz 3 ® - )]dz
. o , (2.62)
\ ——
e gs ]
on de dn
-1 dv v, Ov v v
B .~ (.6 _ " "ry_ -8y - d
+(prr+pzz) [prrﬁﬁ? pZZ(]F ;SE) pzr(;S% ”—“) pzecél: ]‘E
’ Sl e BV, o Ovg dvyp OV, rz O rvy
+<prr+pzz)~£prr;gg T pre(jg_'_ A T )]
| o
o ; (2.63)
6vz 6VZ dz ’ -
EYE ~
-1 dv dv dv, dv p.. drvy OV
_Z.a rs Z e 8z e _ r dr
+(prr 6) [pr‘rb Peos per(rbe bz) r 5 or ]
dv dv bvr sz brve

-8 _Z _ T ___Zy_ - L yase
+(prr ) [prr EYRLEY prer(bz ér) prz( or d6 )Jdn

(2.64)
N
Notice again that for axisymmetric problems defined in the
r-z plané db8/dn=0 and the expressions above become less
comnplicated,
The boundary conditions (2.59) to (2.64) are ¢alid for
E, H and X at perfect electric and magnetic CSEductSrs.
These boundary conditions are natural boundary conditions

of the functional when the surface integral is set to zero

> s
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rinirirzes the functional., In otmer words one does not need

. to restrict the set fro= which the function Vv Vis taken.,
/

Dirichlet boundary conditions such as the ones contaijped“in
L4 o Tt

L8 »

eg&ations (2.55%) through (2.58) have, of course, to -be
» <

taven care of explicitly. This is usually ecasy to accomplish.

L2

One question in connection with boundary conditions
rerains unanswered: Are the boundary conditions derived here
sufficient to guarantee a unigue solution? The answer to this
aquecstion 1s not at £11 obvious since one is dealing with
vector quantities., Tnus, if one is solving for E: is it
sufficient-to-specify nxE=0_or docs one also have to . _
specify another condition? At least one well known teitbook

on electromasnetic theory states that two conditions must be

specified in the case of a vector function [417.

2.4 Unicucness

It will now be shown that the boundary gonditions given
in (2.50) tnrough (2.53) for perfect electric or magnetic
conductors do indeed guarantee unique solutions to the

Sk

curleurl equation (2.29), Suppose that twb distinct solutionts

exist for the saweib@gpdary value problem and denote them by

vy and VZ: Electromagnetic%lly; Vl and Vz could be

either electric\field intensity vectors or magnetic field !
vectors., It is required that the curls.of tge two solutions

V, and V, be equal so that V, and V, both have the same

volume sources, Due to -the linear nature of the curl operator

. the difference solution Vd:vl" 72 also satisfies the

§ s “*
’ -
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differential eiuation (2,29), but with a vanishing sourece term,

Moreover, the curl of V4 is zero, "
The energy aorm of the vector field V w#ill be defined by
the following intecral ‘

) I S x
[9]] = [ fs07*.47 au ]  (2.65)

b d

where the integration is over a volﬁme £ bounded by a
~surface . The norm of V as given by (2.65) is a number
assigned to V wnich is in the energy sense a measure of the
magnitude of V, The vector function V belongs fo a linear

space S, The norm given in (2.65) is valid provided that -

the following cornditions are met

(1) ||lz]]l =0 aes

(2) ”c E‘l = lcl‘\gll where ¢ is any real number

(3) HZ+5” < HEH r lEH (triangle inequality) Y €S
(4) HEH = 0 iwplieg a=0

If the 3 by 3 non-singular rpitian matrix representing the
material property tensor Q@ 1is positive definite, then the
Hermitian form [V]*[q]{V] 1is strictly positive for all
non-trivial [V]., This is the only requirement needed to meet
the four conditions above, Permittivity and permeability
tensors of passive media are all positive definite 3 by 3

matrices,

One would like to finéﬂjﬁﬁ/;ggﬂixions under which the

square of the ene 5tm of V vanishes, If the energy norm
,//’”JxQPﬂT » d N
is zefgﬂthéﬁ’by property number (4) above Vg itself will ve
,,,, - 1

zerd 'almost everywhere'®, By substituting for 4 V4 fromK\

1 va1most everywnere' implies ederywhere except on a denumerable
subset of Q such ag the surface IM.

f
L
'




the curlcurl eqguation and then using.Green's first i1dentity

. in vector form (see equation (2.35%)), the encrgy norm of Vd

can be transformed as follows
\,"J‘J‘V;. (4 Vd)dU = (1/w?) fffvg.[curl(ﬁ curl VA)] du
= (1/w?) JJJ [curl(V]). (P curi V;) ] au
a
- (1/w?) .,:_-§ [V;x(fi curl Vd)].HdS ‘_(2.‘66) y

The volure inbtegral over gfn vanishes because the curl of Vd
is zero within the.volume. In.order to make the surface

e - integral wvanish one requires that the integrand be zero. L

(2.67)

[V;x(ficurlvd)].ﬁ=0 ,
) This is true w'ne_never either
: T nxVy =0 . (2.68) ,
.~ or
) nx (P curlvd) =0 ] (2.69)

¥

Obviously, if Vl and VZ both satisfy either of these
conditions at the boundary surface, then Vd also satisfies
them and (2.66) is equal to zero. ;I‘heresfore Vl and V, are
one and the same unique solutior{ of the curlcurl equation,
Note that the proof breaks down when the frequency w 1is
zer®y

The situation is quite different for the magnetic vector
potential A. The boundary conditions given in (2.,52) «and
. (2.53) in terms o.f‘ A for perfect electric and magnetic

conductoz"s. respectively, guarantee that the electric and

4
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marietic fields E and H derived from the golution of

* . eaquation (2,237 will be unique. However, ualess the duvergence

- of A iz somehow fixed, A 1itsell 1s not uunique, It the .
Coulomb convention ls adopted, the divergence of A "will be

x

zero and equation (2.23) will reduce to the vector Poisson

Lo ejuation, Kven g0, the golution is not unjque if,ﬂﬂTY‘ﬁhe
| ~ ‘ t \\

boundary condition H){@~lcuri_x = 0 1is applied to all parts

' of the boundary. .

4

A
2.5 Explicit-Forms of the Functional

If a region of space is bounded by a perfect electric
conductor with no magnetic currents flowing on its surface,

i,e. if nxE 1is zero, then equation (2.13) can. be solved

>
! 7

The corresponding vector H can be obtained for the same

for the vector E by using the boundary condition nxk=0,

problem by solvine cquation (2,14) with tne bouﬁdary condition

xé‘lcurliq = 0, The electric current induccd on the surface

31

of the ﬁerfect electric conductor can be obtained by evaluating

. nxH., The induced electric curface charge density is glven
-~ 3

< ’ :
If the boundary of the region behaves like a perfect

' magnetic conductor with no electric currents flowing on its
e

p

)

- surface, i.e. if nxH 1is 7nero, then equation (2,14) can be
solved for the maesnetic field vector H Dby uslné the boundary
condition nxH=0 . The corresponding vector E can be
obtained for fhe saine problem by solving equation (2,13) with

‘ the boundary condition ﬁ:(@—lourl E = 0 . The nafnetic current

inducéd on the surface of the perfect ~ muetic conductor is

S

o

T
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. Tne induced fletitious raone it surface

i}

;miven byem s

cnarse aencity 1s <iven by n.(@H) . Nc eleciric charges

are found on the -4 metbtic conductor.

If the boundary consicts partly of a perfect electric
conductor qndrpartqy of a parfect magn2tic conductor, then
the vector E can te obtained by solving egquation (2.13)

with the boundary condition nxE =0 on the electric

~

conductor and with the bouniiry condition H){@'lcurlE =0
L . . 1 - . ' 13
on the marmetic condactor., [he corresponding vector H 1s
obtainaed by solving aquation (2,14) with the boundary

~-1

— — Al “"’ "
condition nxe€ ~c¢curlH = 0 where the electric conductor 1is

located 2nd witn the boundary condition nxH =0 where the
&

e

magnetic conductor i1s found.
8

Tno solutionz are unique in all of the above cases. The

. .
modium is of coureae locclecc, nonconductive and feor many

<

oractical problemc it can also be considered to be source-

free (i.e, Jy is zero)., The sources most often met in practical

problems are of the conduction current type in which case 1t

i¢ easier to selve eaguation (2.23) Tor tne magnetic vector
potehtigl. It will be assured-from here on that the medium'
is linear and that the frejuency dependence of the material
proverty tgnsors can be nerlected.

For an abrupt discoAtinuity in the permittivity € in
an innhomogeneous mediun thére is an abrupt change in the
electric field E as well, In such cases it is advantageous
to solve fdr the magnetic field from equation (2.14). Similarly,
for an inhomogeneous medium with discontinuities in. the -
permeability @, H displays discontinuities and it is easier

194

to solve for E from equation (2.13) than for H from
Q
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emnition (2,14) L.

of inhororeneities is rare,

.?h

v

~
~

\
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The sirultaneous occurren c? of both types

e solution of the curlcurl equation is achleved by

»

minimizing the associated functional., The bounduary conditions

(2.59) througn (

neclected from the functional.

nxvs=

0

2.04) ore natural if the surface integral is

For the boundary condition

, wnich must be taken care of explicitly, the surface

intefsral still vaniches,

Without. the

surface integral, the

functional given in (2!45) takes on the following form in

«

rectangular coordinates (x,y,z):

_ dv_ ov¥ dv. OV ® dv dv. ovE
F(v) =fJJRe[ p_ (& Z - £ - QR Y A S
XX dy Oy dy dz Oy 0z dz oz 'f
LR . * . "
b (xS | Y B AnTdy g by
Yy oz va 0z Ox Oz dx 0x  Ox
C\)’f KBV* l};'v' v 'v* 2 *
. . (___.J[ v Yy bvx ) N N b\/x . (?VX va
zz Ox OX dx Oy dx oy dy Oy
v # # o #
+Zo (-. OV _ ov, dvy i dv, dv, . bvy OVZ)
yx oy Oz 0z Oz Oy  oOx 0z Ox
3t S S #
sop* ov; bvy ) V! bvy ) dv bvx N évy évx
zX Ay dx dz  dx dy  dy dz. dy 3
v, dvE  dv. dvE dv, v v dv*
+2p _( A Z . S, G X
A% éz 0% dOx  OX *67 oy 0x Ay
2 * v o
@ (QXA xvx-*qyyvy y +qzzvz z 2%yx Xy
3t #*
; +2qzxvzv +“qzy yvz)4'2(ngx'+gy v bsz)]dxdydz

For the two-dimensional, homogeneous,
ri

(2.70)

isotropic waveguide

problem the above expression reduces to the familiar form [29]

F(Vv)

= Jf(grad v . grad v,

w3y, €, v; + 2 gzvz) dx dy

(2.71)



. 3

“n cylindrieal coor:iinates (r,9,z) e functional given

in (2.45) takwes on the fellowing form:

bv bv* dv bvg 6v éze éve dv

F R Yy
(v) =JJJRe[ prr 706 be 06 Az 68 Oz réz

dv,. dvi dv. dvi ovE dv, ov bvo

)

r OVp OVy OV, OV z z
* Pt (3. 32 T3z or " o r T om o)
] - * * 3
‘o (réve bve o bve_+v_ bve eve bvr EZQ
2% dr br Ve or 8 or o6 dr .

v dvg Vy bvr V95V~ dv bv

. r_ v r
39 dr r 06 r 09 réG XD )
dv. dvr dvy bvr dv_ dv*  dv, dv* -

+2 —Z . -z Z +yp__9 A
Poy 36 2z oz dz %8 Br 8z ér)
» OVh dvg vy dVE L dvE dvg dvg

YPur'd Br T B0 T® o 0dm
bvg dv dvy Ov

r r
- +
B rod a9 Az 59)
* =
- (rbvr OV bvr % OV, ovy
287 3z or 8 3z 9 ér dr Or
%
) dv,. OVl _ bvz v
oz 06 or 06
- w r(qrrv VRt QggVeVht q,,V, Vot 2q6rvrv;
J * 3t P 3 '
+ Zq;l\ Z r"' ?qée ) + Zr(grvr-+ 56V0T gzv;) ]dr dz do

.

(2.72)
Notice the factor 1/r 1in some of the term éﬂ(the integrand.
The 1r arises from tne Jacobian of the conforral transform-
ation from rectangular to cylindrical §oor;inétes. The singular-
ity at r=0 1is potentially troublespme as far as the

"

integration is concerned, Although one cannot make the assertion
from examining the above expreq31on, one can state from an
understanding of the ph¥ysics of theuproblem that the singularity

is integrable [37,38,427. The 11m¥y of the terms with the 1/r



sinratarisy as r  tends to rero is indeterminate; this
sufggects that L'H6-pital's-rule can be applied. In such
aﬁaly?is the 1irits'of these quantities are finite instead
of blowins up, succesting that the singularity can be

A 2embrenenes

removed, This point will be discussed in more detail in a

later chapter, . ' D ///
| At this point one could easily ask: How does one know ;

if the functionals &2.45), (2.70)§ﬁpd (2.72) are correct?

There is a way of checking the functional, and this has been

done, If the ihtegrand of the volume integral part of the

functional F(Vv) 1is denoted by L, then according to the

calculus of variations, the first Variation’of F will be

zero vrovided that the following equations are satisfied:

3 oy e . L
T ___Q_L___ = jﬁL i=1,2,3 (2,73)
=1 . CV- aV'
VTS 3a.d(—2%) 1 ‘
37 da , .

These enuations are referred to as thé‘Euler equations
associated with the Lagrangian L [43]. ‘The aj represent
spatial coordinates, It has, been verified that (2.73) reduces

(2.45), (2.70) and (2.72) to the curlcurl equation,



¢ CHAFTER III

s

DISCRETIZATION OF THE FUNCTIONAL o
BY APPRCXIMNATICN OF VECTOR FIELDS

WITH HIGH-ORDER POLYNONIAL TRIANGULK? FINITE ELEMENTS

\
, \
summary \

This chapter discusses the solution of glectromagnetic

-

|
vector field probdblems in cases where traVelfiﬁg, circulating

or evanescent waves occur in a bounded environment., Variation-
ally stationary functiopalé are derived for specific wave

types in planar and axisymmetric two-dimensional geometries.

The singularities encountered in the functional for axisymmetric
geometries are eliminated by a transformation of}the field
canponenis, The transformed Tields are expressed as a lincar
cﬁmbination of local high-order, interpolation polynomials over
triangular reegions in the x-y and r-z coordinate planes, The
coefficients of t?e expansion are equivalent to the numerical
values of the fields at the interpoiation nodes over-the
triangie. By substituting the polynomial approximations of the
fields into the functional, a matrix expression is obtained
which is the discretized equivalent of tﬁéﬁoriginal functional.
The matrix expression is assembled from unive}sally constant
element matrices and geometric factors relatihg to triangle
shape, sizé and position, Tne necessary elerent matrices have
been computed and tabulated with the aid of a PL/I FORMAC \

. preprocessor. Additional element matrices are obtained from
these by simple row and column permutations. The procedure for

9

assemﬁ]ing a global problem is stated. Finally, a matrix.

L+

4
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ea.ibion 1o generabLed by mininizing the discretlized functionel,
. 4
. Solutions of the matrix equation yleld approxinate solutions of

1

the original field equations,

VI ey B

* 3.1 Types of YWaves and Their Mathemntical Representations

In this section, the types of guided waves which may exist
in btounded, lossless media will be discussed, In the (x,¥,2)
coordinate system, it will be assumed that the behaviour of the
function which describes the waves in‘the z-direction is known,
In the (r,0,2) system, the same condition is assumed with
ragpect to the 6-direction, These assumptlons are neéessary in
order to reduce the cquations to two dimensional spaces,

Altheurh waves may exist over the entire frequency .
apectrum, they will propagate only if the frequency is above

- the cutoff frequency, At and above cutoff, a guided wave 1in the
reclangular coordinate system (x,y,2) is characterized by the
relotive phases of its field vector components and by a
propagation constant § . Below the cutoff frequency the
propiration constant 8 is replaced by an attenuation constant
a characterizing an evanescent wave decuying in the z-direction,
The finctions describineg the field corponents in Ehe X~y plane
and the frequency w at which the wave occurs in a medium
described by the naterial property tensors é."and g., are in
general unknown, Similarly, in lhe axisyrmetrie case the relative
phases and the circulation constnt m of a guided wave are
known 6ut the functions describirg the field components in the

&, .
r-y plane and the frequercy are unknown., In this case the

]
pot arlit¥ary but is related to the azimuthal

-

coastant m  is

&
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38 .
per;%dicity of the wave. in axisymmetric geometry attenuation )
" . in ;che 6-direction cannot exist.
It is Jery important to realize that the character of*é‘
wave that can be supported in any given medium depends upon P
the form of the material property tensors describing the medium, ¢
In order for the equality in Maxwell's equations (2.1) and (2.2)
to hold, there must exist a precise balance between the relative
phases of the field vector components and the phases of the |

off-diagonal elements of the tensors & and [ . For example,

e consider the threce components of equation (2,1) in (x,y,z)

B

coordinates, assuming that in the z-direction the wave varies

as exp(—yz)u

OB, _ ’ ‘
"'g‘y" + 'YEy - —Jw(“xx}{x + nyHy + PXZHZ) (3'1)
JE, ) . |
-YE, - <2 = _Jw(yyXHx L Pysz) (3-?)
OE dE :
- X = L
52 % Jw’(yzx}{x s+ 8, ,H) (3.3)
K%
If y 1is replaced by an attenuation constant « , then in a

medium with real and symmetrif permeability and permittivity

AY
tensors evanescent waves mus be of the form \

om -

B = [T,5,00v) + T8 (oy) +T,E, (0,3 Jexpliutaa)  (3.4)

= _rT - - - S T
H=[1H (x,y) +1y.Hy(x,y) +1H (x,y)]exp(juwt aZiJZ)(B(-5)
In other media, other types of evanescent waves may exist,

If y -is replaced/by JB, then only travelling waves of the ,

_. - Torm

E::[T%Ex(x,y)-+T&Ey(x;§)3+TéEz(x,y)exp(tjg)]exp(jwt-jez)
(3.6)

>
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F=[TH(x,y) +'1'yHy(x,y) +Tsz(x,y)exp(ijg)j exp( jwt-jpz)
(3.7)
may'exist’in media characterized by permeability and permittiv-
ity tensors of the following forms

Hyx ny x|

o

Q= | 8yy  Yyy Tyl | (3.8)
~lyx -szy 2z
o ]
| Cux Syx i

€ = %yx €,y +i€sy (3.9)
~J€,x -jezy v € e

respectively. These tensors are éharacteristic of transversely
magnetized ferromagnefic materials and plasma [38,45-477. The
magnetization may be in any direction, but restricted to the 1
x-y plane [487]. The waves described by (3.6) and (3.7) are
linearly polarized with respect to the transverse plane.
Circu}arly polarized waves are glso possible in wavegﬁides
[50}.'For example, in an anisotropic waveguide with dongitud-
inal magnetization [38,457, «the medium is usually described

by material property tensors of the form a -

'

|

n Pyex +j“yx Yox 4 ‘
e L Y g (3.10)
‘sz +jyzy Pzz oS
I €xx TI€yx ezg- .
€ = |leg, €y ~iy (3.11)
€zx +j€zy ezgﬂ




ko

The field veptors of circularly polariz€a traveiiing waves

. can bga descriibed as follows

x(x.y)'+T E (%, eXp(ijg)-fTZEZ(x,y)]exp(jwt-js;)
' (3.12)

H_(x,y)exp(£j%) +I&Hy(%.y)'*TZHZ(x,y)exp(&jg)].
exp( jwt-jpz)
(3.13)

\
\
\
k) \‘
Waves wikth complex propagation constanis o+jp are also
S )
possible in lossless media [49], though they are usually/
considered only with lossy media.
/' 1In the following, only propagating waveg of the¢ type
given in (3.6) and (3.7) and media described by tensors such
‘ /
‘ as (3.8) and (3.9) will be considered. A similar/ analysis can
| /
| - be performed for other tynes of waves, In diredt analogy with

travelling waves in (x,y,29Y coordinates, circulating waves in

the (r,0,z) coordinate system are taken to be of the form

E=[1.E.(r,z2) + T Eq(r,2) +Tin“‘(~r-.rz)exp( +37) 7 exp( jwt?jme)

| . X (3.14)
; ﬁ==[f}Hr(r,z)-+I6He(r,z)-+FéHz(r,z)exp(tjg)jexp(jam-jme)
7 « . . (3.15)

‘ ( and the permeability and permittivity tensors are tagen to

i " e [51]

Uer Uor +jPzr
p = Yo Yog +jpze = Cartesian tensor (3.16)

. . at the plane 6 =0
[JEZr “le U2z

el .- , [
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‘ ° €rr €or i€,y
4 € = € - €,, +J€ = Cartesian tensor (3.17)
}/, Or- ) 08 29 at the plane @ =0
: “JE, . T ezzJ i

| Note that circulating waves are linearly polarized with
respect to the r-6 plane and circularly polarized with
respect to the r-z plane, The circulation constant m wmust .

be an integer (including zero).

3,2 Explicit Forms of the Functional for

Travelling and Circulating Waves

Substituting a vector function u(x,y,z) of the form

given in (3 6) or (3.7) and tensors p and 4 of the form
o (3,8) or (3 9) into the functional (2.70), an cxplicit ferm
4
§§§§\\\\ for F(v) 1is obtained for travelling waves hiﬁh'afe\lineégly
“~-_polarized: "
\\IL\\\\
\\\\\\\L A 1
— : 6\\ du ) Yy du,
- 2N 2
F = £ [ [ x + 2 L . 2
(u) =< IJ‘,&[p v Bu ) pyy(—a—iau ) +pzz( ay) |
du bu N
-2 —2 % —2 % Bu.
pyx( 3 Bu, ) ( 5o Buy)
° d 6u du
i2p lfv ) ZiBu ) -
dy éy ~.
iZPZy(T TM (T—iﬁu )
J?J
—_ )R + % a, b
» @ (qxx X qyyuy BT qu uxuy $2qzx x z qzy ¥ z)
WL .
+2 f + +
(fou, fyuy £, u) 1dxdy

’ : (3.18) — —



.2 vector componeht may either lead or %9g the other two

/uz

he conaztant 2n/B arises from the integ ratlon with respect -
o z, where the limits of integration are 0 and 2u/8
ii. e, th? beginning and the end of a period in the direction
of travel. The source function g=T1(x,y,2) is assumed to be
of the same form as the wave function v=u(x,y,z).
A similar procedure for circulating waves produces the

following functional form ‘ . .

_ d ") -
P = 200 01 (Do (Vg 2)? roggrL(RE)® 4 ()3
° du bue
+pZZ[ \/]_"—6—-‘ 7—-)2 + (7— ] + 2per b (thu bz )
du, mu du bu du

+2p, ity (52 F 2) + 20 o [ (0 *fr)‘m“ 32

- 2 2 2
uﬁr(qrrur~+qeeue-+qzzgz-+2qerurue=¥2q u_u :quze”e”z)

2r r 2
) +2r(f u,. ffeue’wfzuz)}dr dz m=0,41,%2,%3,...
. (3.19)

The #* and ¥ terms in the above arise from the fact that the

components by a time phase of g radians., All quantities in

(3.18) and (3.19) are real and the material property tensor
elements that appear now designate ma*nltudeo only,

It is clear from the expression (3.19) that when n=0
there i% a 1/r singular%ty in terms involving Ug alone,

”

but not in terms involving wu,. or wu, . When m#0 the .

singularity also affects terms involving u, and u, . The
fhysical significance of the singularities is that the -

azimuthal componpnt of the fleld must always vanish along the

z-axis 1if the ax1§ is to be source-fren [UZJ. The u, and u,

I~



terms in the fGnctional (3.19) later, the singularities will
be re%oVed by transforming the components of the vector

function [52]; In the case m=0 onhe introduces

and consequently the functional given in (3.,19) becomcs

only §g;tq§%§_fqumedia in which Pop» DP,g¢ qer and q

- ‘ | 43

1

Y

componénts however, must vanish at r =0 only when they vary

with-the 6-coordinate. In such case there is at l%ast one null

9 =.constant for these field components arld again they

must vanish at r =0 1f the z-axis 1s to remain source-free.

On the other hand, when there is no variation with 6 (i.e.

finite non-zero values at r=0 are permitted for wuj |

and provided that they are continuous functions with

[~
continuous first derivatives, the z-axis will stay source-free.

In' order to avoid difficulties in trying to integrate the

[

i

Jrh (r,2) (3.20)

Jrdg(r,2) (3.21) .

bhe ) bur s bu bh 3
the) = %ﬂff{prr(r"b—g‘) +p«99r[(—b—g~) +(—2 br ]+p -—6—1—:--?’ h ) )
- du, dh dh,
u, 3h )

or TV 5o -——Z 2pzef—<é—— T
3 2 2 2
w r(qrrur+q9erhemzzuz*’zqer*ﬁgurhe*Zqzruruz

%2, 47 Ngu, ) + 22 (T u.+ T dghy + £ u )} drdz

. - (3.22)

As can be seen, the l/J; singularity has disappeared. For

reasons which will become clear later on, this form of F 1is

20 .

are zero [52]., Unfortunately the discrctizét}on~procedure

\
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employed requires that factors of the form Jr  cnould not
appear in the functional. The only way out of tnis dilemma

is to use the transformation

u, = r‘he(r.z) (3.23)

Vi

instead of the one given by (3,20). It then becomes possible

to carry out the discretization, though the procedurg\{sﬁfffi\

involved and wil% not be pursued here,

]

When m#0, in addition to the transformation given in

(3.20) for u, and f4, the following trangformations will

also be used

u, = JFhr(r.z)' (3.24)

f. = Jrd.(r,z) . o (3.25)

uZ th (r,z)— - | (3.26)

£ = Fay(r.) R 2
A The functional given in (3.19) now takes on the following

form

= dh dh >
F(h)°=2ﬂff{Prr(r?E?4=th)3+p [(r )3+(r75§)2+rh ;E‘+lh3]

6h 3 2L 2 (\ hr bhe
+pZZ[ ey 2he) +m hrj'+2p6fr7§f(*mh”-r75f) !
bhe P . bhz 3 bhe
+2pzrmhr(r755x;mhz) +2pze[¥(§hz+r?ﬁf)(éhefrbr ) - mxh

~w3p2 2
w” (qrr +qee +qzzhz+2q0rhrh€FZqzrhrhz$2qz0hehz)

2 = .
+2r2(d_h_ +dghg +d,h,) ) drdz m= k152,43, 000

(3.28)

L}
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In the following, only the funétional forms giyen in
. (3,18) and (‘*3_.28) will be considered, The integrations involved
will be performed over an arbitrary triangular region in t7e
x-y' or the r-z plane, Over this region the magnitudes of
the elements of the material property tensors are assumed to

be constant.

3.3 Discretization

The objective of this section'is to discretize the two
functionals which appear in equations (3.18) and (3.28) so
that they can be written in matrix form., In the proceés, the
vector fielde are approximated by interpolation polynomials

e .over a general triangular region in such a way that all

geometrical information is separated from the process of

integration. In other words, the integrations are performed

once and only once, and geometrical information is added only
: when a specific problem is solved [24].

Examining each term in the integrands of the two
functionals, one finds that many of the terms are similar

i to each other in form, There are six representative terms in
’ ‘ each functional whiéh must be discretized, The 'six representazive

-

integrals for the functional (3.28) are

dh, e .. oh,
—_— raze . h d
oz 3. Jlrhy gt drdz

1
b, ffr2Y 2 drdz 5 ffrgéfl EEE drdz 6. [fr?h,h,drdz *
-@ S ' 3 dr ' 12

1. JSh;hydrdz 2, ffrh
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. X ,
functional for circulating waves 1f the phasgs of the field

=Y
»

- 6
!
The subscripts 1 .and 2 appear on’“the componentc of the

PR

vector h to signify that there may be two distinct compoﬁbnts

— . e ey '3 . . . 3
of h 1inyolved-in the integration, The six represcentative
‘et

integrals for the -functional (3.18) are °

ou du :
1. JJuju,dxdy 2. JSuy -2 dxdy 3e S uy 5= dxay

oy
du, Ou du, Ou '
1 2 ' 1 2 2

The representative integrals 1 through 5 for ecach functional
are analogous to one another, The sixth integral for travelling
waves has no counterpart., This term would arise, however, in a

components were different and the form of the material property

tensors were altered. The form encountered then would be

2. e bhl bhz drd
. r<* — —*% drdz

dz Or
It turns out that one needs to work only on the representative
integrals associated with the functional for circulating waves;
the integrals in the functional for travelling waves can be

+

derived from these integrals quite simply. .
6gnsider now an axisymmetric electromagnetic field problem,

The solutién region in the r-z plane ﬁay haye an arbitrary

shape. In the triangular finite element mctﬁbd, one approximates °

the boundary of this region by a polygon as closely.as poééibig\

and divides the interior of the polygon into triangléé. This

process is indicated in Figure 3.1 ., The triangles may be of

hod . ot




)
!

i
i

' | Figure 3.1

’

’ . An arbitrary solution region approximated by’a polygon
- and divided up into triangulay subregions in the r-z
plane. v ’ “




di fterent shapes and sizes., By selecling a genaral triangle

and approximating each component of the vectors h and d
‘N : . : :
by a cofplete set of n interpolation polyncnials {ai 1 1= R
N te

1,2.3,;.2,n} each of degpgé N, the components of h and
2 ¥ -

d iaré written in the fobm [24]

) .
. n . . ,
hT} = lfl V; ai(51)‘§2’ %) . A'zg)
% n .
hZ = .E V; ai(710§2i$3) ) (30306‘
1=1 5, * *\
n
i= - - v
n .
4 = G 03 (511550 %) (3.32)
n . ‘ -
4, = I, Gy @3(510%50 ) (3.33)
L= P
n i

13

The ifiterpolation polynomials a;

; are such that they evaluate

to 1 at the i-th interpolation node and arc zero at all

other n-1 nodes [24]. Conséquently, the coefficients ‘V}

.and Gt of the linear combinations represent the values of

the components of h and d at each of the n interpolation
nodes in the triangle. The interpolation polynomials are given
as a function of the triangle area coordinates 31, ‘72. ‘33.
Thase local coordinates are related to the global coordinates

r and 2z ' by the following expression

95 = 2= (ay * byr +c;z) iz1,2,3 (3.35)

2A

where A is the area of the triangfé and the coefficients

a., b, and c; are given by

1 1

a3 T Ti4%i42 T Fis2Z%in »1eyelic mod 3 (3.36)



~

b9
b =2 - %42 i cyclic mod 3 (3.37)
¢y = Tip - Ting | i cyclic mod 3 (3.38)

*

g -~

Hére r; and zy are the radial and axial coordinates of
the triangle vertices, Figure 3.2 sho a typical triangle
and the n==(N+1)(N+2)/2//;ssociated'interpolation nodes and
their local coordinates for the case N=5,

It should be noted %?at the radial coordinate r within

a triangle can be expressed in terms of the local coordinates

Si and the vertex radial coordinates as the simple sum

3 ¥
r = .21 r. s f (3.39)
l =

i

1t turns out that this is a very convenient expression to
eyploy. No similar form exists(for the square-root of r
this condition explains the stated difficulty with the factor
Jr in the functional (3.22) .

In order to discretize the six representative integrals
in tHe two functiohals, the expression for r? and the partidl
derivatives of the components of h with respect to r and

z_ are needed

3 3

- . .. )
= I 351 rs 933 | (3.40)
dn, 3 dh, 3 n oy da
Sl vy op. 2 =21 % op, o p v, kK (3.41
dr 2A j=1 Y é?‘;j 2A j=1 J k=1 MJ )
dh. 3 °  dh, 3 n da
1 = ._.1__ ) . 1 = ,__J;_ . Vk K .1}

L5, -51 %5 k§1 1 5_‘53 (3.42)
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\ 1(5,0,0)
S
¥ 3(“’9011)
- 6(3,0,2)
‘/ 2(1,1,0) 10(2,0,3) .
5(3,1,1) ] 15(1,0,4)
~49(2,1,2) ,21(0,0,5)
‘4(3.\2.0) 1471,1,3) /
8(%,2,1) ' o
k2
13(1,2,2) 20(0,1,4)
"19(0,2,3)
18(0,3,2)
%
\ 17(0,4,1)
16(0,5,0) o
Figure 3.2

Thé 21 interpolation nodes in a 5-th order triangle
(N = 5), The numbers in, brackets represent the
triangle area coordinates multiplied by N, i.e.

(NS NS, N%)

p—t



Consider first the discretization of integral number 6. One

~obtains ;
£7 77 hyhy ardz [v1]t[T][vz] . . (3.43)

where the column matrices [V,] and [V,] contain the n

.coefficients V; and Vé , respectively, associated with

the linear combinations of interpolation polynomials given © e
in (3.29) through {3.31). The superscript t denotes
transpose, The, symmetric, n by n matrix [T] is given by
3 3 . :
[T7= £ r. T r, 2|a] (Y, - (3.44)
i=1 1 j:l J 1] ’
where the universally constani element matrices [Yij]' have -
n® elements, of which the (m,k)-t@//;s given by the integral
/// "
(mak) 1 - = N
Yij = 'é—l-ﬂ ff3173 & ak% (3.45)
The integration is carried out over a triangular region, . }\
\
Integral number 1 has the discretized form 'ﬁ
t
JJ hyh,drdz = 2[Al[_v1] (rR1[v,] (3.46)

where the symmetric, n by n matrix [R] is universally

constant and has the following elements

ROV ol I g 0 (3.47)

where the integration is over a triangle. One nice property
of triangle area coordinates is that their sum is always
equal to 1

3
z sl =1 (3.48)
1=1

as can be seen from equations (3,35) through (3.39). Due to

)

- \
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this property of the local coordinates, if the nine element

matrices [Yij] are given, the element matrix [R] can be
obtained from them by simply summing over the subscripts i
and ]

3 3 ,
[R] = r [¥;] : (3.49)
i= 1 j=1 .

This property explains the earlier remark that only the
representative integfals associated with the functional

for circulating waves need to be evaluated; the déscretized
forms of the representative integrals associated with the
functionaf:for travelling waves are derived from these values X
using equation (3.48). .

Integral number 2 can be discretized as follows

dn,, N
J'J'rhl—éz— drdz > [V,] £a30v,] | (3.50

The non-symmetric, n by n matrix [J] is assembled from
symmetric and antisymmetrie constant element matrices [Uij]

and [gij] , respectiVely, "according to the rule

3 3
£y £ (rgppmry) {050 4 ;1) s
The (m,k)-th element of the symmetric matrix [Uij] are

given BY the following integral

(m, k) oa "Oa ,
i3 wy I S (e 3;;-“- + ap 6%‘) ds (3.52)

The antisymmetric matrices [gij] have elements given by

U

3
!

plmek) _ 1

“w
Notice that (3.51) contalns coefficients given in terms of

the radial coordinates of the triangle vertices. The sign




of the coefficients -depends on the order of-the vertices.

However, the sign of the area vector A cahcels this sign

di%ference producing an ekpression which is invariant with

[N

respeét to the ordering of the triangle vertices.,
\
Discretization of the third integral prioduces results

very similar to that of. the second one

‘ dh
rthy 2 draz = [v;]7[N][V,] (3.54)

Again, [N] is a non-symmetric, n by n matrix Mich is

assembled from [Uij] and [gij] in the following manner

)= B 2 r Dy {[0y] ¢ D 1} 3uss)
T 2A j=1 1 5=1 Jfl j+2 ij 1j 3.55

W

The fourth integral can be transformed into the

.following matrix form

. bh bh
2
JJIr? 75; 7;_ drdz <> [Vlj [DI[V,] (3.56)

where [D] 1is a symmetric, n by n matrix given by

[D]=gis Sr 2r P 2 [NS k% g 1(3.57)
= r. r. C S
A% 52t g2 0 L poy 1% 67 A

[

The symmetry of [DJ] is not obvious from (3.57)., It appears

however that the summation over the index t can be eliminated

and the expression cast into the more revealing form

3 3 3
[D]-:-—-]:--—l f lerJ lzl(rl - I‘1+2)(rl - rl;l)[Qij‘lj (3.58)

where [Q;3;] are constant, symmetric matrices. The elements
of [Q;:7] are ‘ '
i)l J
e




bam ) dqy

(m k) 1 ) bak '

e ~hy
where the integration is over a triangle, The subscript 1 is-

cyclic modulo 3.

An entirely analogous procedure for the fifth integral

yields ;
bh oh .
P Wi I WU o 1°LEIY,) (3.60)
dr Or ) =1

where [E] is given by the same expﬁess1on as [Déﬂ‘i"

(3.57) but w1th the consgants c)Cy replaced by lbt' ?hishm

expression again reduces to »

3
[E]=51- T r,

3 3
zlAI i L r. E(Zl 1+2)(Z1"Zl+1)~[Qijl] (3061)

1 =1 311

4

The discretization of the seventh integral requires more

algebraic manipulation than the previous ones. As befbre. 6n1y

“the final result is reproduced here

]

dh, dh 4.,
/ J‘J’r"‘_gzl _8.;? drdz <> [\/!1] (z]0v,] (3.62)

anre the non-symmetric,; n by n matrix [2] 4is given by -

[3

-

3 3 ba
[Z:':E%F Ir Iry I I 1o+l 8055 'SJ 571 b{ds] (3.63)

The matrix (2] can ve split into syégetric and antisymmetric

parts and the summation over the index -t can be eliminated.

JiﬁThen the following formula is obtained "

5
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\;)

3

“[z] = h—-[ ::1 ry R £ Ty lz (w [Qy 507 + %0955, 1 (3.64)

where w, and %, are coefficients given by

| Wi = =08 10 4% Pyl -

(rp4q-79) (2927450 +(ry- r1+2.) (z)41-21) (3.65)

"

. T = biey - b1 S

@

w8 ot

= (Zl+1" zl+2) (rl- rl+2) - (zl+2— zl) (rl.’.z" rl+1)(3-*66)

.The elements of the constant, symmetric matrices [Q..,] have

ijl
already been defined in equation (3.59).:The (m,k)-th element
of the constant, antisymmetric matrices [gijlj is given by

da da_ da
gﬁfglk’mmﬁ A (3.67)

J a’%1+1 7

The subscript 1 1is cyclic modulo 3.
One can now write down the discretized equivalent of the
functional for circulating waves given in (3,28). The following

matrix form is obtained .

: F(V) =2n[[vr]t(pae[nj-+2m9hUpZZ[R]-2mpze[J])[vr]

+[v, 1" (a2mp | [33+4m2(alp, [[R])[V,]
+Lv;, ik (pee[E]wee[N]+zlAlpee[R]+2mEIAlprr[R]>[V i
+Hv, ] (2mp, [37%-2py [D])[V,.]
¥[V9] (ﬂAh>e[R]-+3p [N]-fpze[N] +2p, [E]'*Zmprr[J] v,
+[v T (p_ [D]+p [E]+3pZZ[N]+9lAlpzz[RJ [Ve]
- w? ( qrr[‘f ik [TJ[V ]*2qzr[V 1° [T ]+qzz[V ik Lrliv, ]

® +2q, [Ve] [TI0v,. ¥ 29 [V, 1L ]+qee[V 1P (1I0ve] )

| v 20 (6T 20,0 + [0, TPV, 0+ (6700006 1 2} (5. gay

' v 12
. -
B P
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Using the properties 6f\triang1e area coordinates given

in equation (3.48), the discf&pized forms of the six

representative integrals in fhe\functional for travelling

‘waves are as follows

Juju,dxdy = 2l[v; ] [RI[V,]

3
[3] = g—ﬁ\ljfl(
3
00 = B & 05mvsa0) (0957 + T,
®] = 5t Ij“.(x—x Y (xy~%,.) [Q]
2l 2 2 i
(=1 = 2, &

2] = 7k 3: o [0,] + £508,7)

du '

5 dxdy <> [Vijt[ﬁj[vzj
._.;2. dxdy > [V, V2]
32 axay = [V, T ®IV,] .
o1 _g;.é dxdy . e> [Vljt[EJ[sz

Sl 2 axay o [v;T°[Z]0V,)

xj+2'xj+1){[ujj * [gj]}

2 Y1) (¥ 4) (9]

(3.69)
(3.70)
(3.71)
(3.72)
(3.73)

(3.74)

(3,75)
(3.76)
(3.,77)
(3.78)

(3.79)

X (3.80)
(3.81)

(3.82)
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3 3 |
[Q.lj = 151 jfl [Qijl] (3.83)
9 = (x) 4y %)) (9 7¥140) ¥ (7% ) () 449y (3.84) ¢

1= a1 V142) (XX 4p) = (V=¥ N (xp pmxy 4y)  (3.85)

Again, the subscripts are cyclic modulo 3 and the subscripted
x and y coordinates represent the vertex coordinates of
the triangle. Using these results, the matrix form equivalent

of the functional (3.18) can be written as

P(V) =—§I{[v ] (p,,[B] +28° lAlp y[RDLV, ]
Ly, T° (280, (3] 5° IAIp ([R1+ 20, (210 + 280, 4] )V, ]
+[v, 1k (pzz[8]+2sp [Jf] +2p2 lAlpxx[R])[V ]
#v, 1" (Zprx[?J *+2p,x[B] - 2pry[Jf’J - 2p, [Z] YLV, ]
*[v, 1" (2p, INT" +2p, [€] - 28p,,, [#7° -2pzx[2]>[Vy]
+{v, T (5l +pyy[83 2p, [V, ]
~w? (2lal)(q,, [V, LRIV, Jw2a,, [V, T°[RILY, mey[v T°[RILV, ]
v2q, [V, T (R0, Je2a,, O, TRy y 195 T° LRIV, )
+4lal (L6, 1" [RICV, J+[G T°IRILVy 1+ 06,1 [RICV, D)
(3.86) - |

, ‘
The column matrices [V_ ], [Vy], vl (6,0 [Gy] and

[GZ] in (3.86) contain ‘the coefficients of the linear

expansions /
n $ (\ / I
ux = 151 ani (3'87)
% v: (3.88)
= a 3.
By 7o v
J i
u = I V_.a, (3.89)

Ha
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no i

f = ¢ Gla ' (3.90)
x T gmp XA ,
‘f n i ( 1)
= G . ) .
y 151 yal 3.9
f rﬁ ¢l (3.92)
! = o N .
z  y=1 21

The discretized fuﬁbtionals (3.68) and (3.86) can be
constructed for a triangle of arbitrary shape provided that
the vertex coordinates are known and the constant matrices
[¥;57s [u; 53 [Us;3s [Q55,] and (9311 areﬁgiVen.
There are 81 such constant m;trices. 211 involving various
integrals of the interpolation polynomials a; e In the next
section, it will be demonstrated that only 14 of these
matrices are independent, the remaining 67 being obtainable

by row and column permutations, and the procedure for

computing these 14 matrices will be indicated.

3.4 The Element Matrices

In order to compute the element matrices, an explicit
definition of the interpolation polynomials oy must be |

given, The polynomials

%7 %(5k,0) =Pj($1\)Pk($2) P %) Jrkl =N </3}37/
where -
p_(9) = nz,l(.Ni:;r.l-_‘Ll) for m>1 (3.9%)
= 1 for “'m=0

. |
have been used extensively .in retent years to generate
v

s

A
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high-order polynomial triangular finite elements [24]. The

triple set of subscripts (j,k,1) in (3.93) correspond to
the product of N times the triangle area coordinates at
the i-th interpolation node, i.e. (Nﬁi.N*%,NFB) . Figure 3.2
demonstrates the case N=5.,

Substituting these interpolationapélynomials into the
right-hand sides of eqdétions (3.45), (3.52), (3.53), (3.59)
and (3{67), yvields expressions in which the integrands are
polynomials in triangle area coordinates. A typical term in

Q

these polynomials is of the form
MeJ eP
0515233

where C 1is a different constant for each term. The integral

of this monomial over a triangle of area A is given by [53,54]

2IesisiBas = 2ca] Bindips (3.95)

m+j+p+2) !

Although straightforward, the integrations in equations (3.45),

(3.52), (3.53), (3.59) and (3.57) cannot be carried out by

hand, except in the case N=1 or 2, due to the large number of

‘\‘aﬁgebraic operations required. However, using an IBM PL/I FORMAC

cémpiler the polynomial exprecsions may be manipulated and
%;tegrgﬁgd symbolically rather than numerically [55] ( see
Appendix I). Even so, it has required several hours of computing
time on an IBM 360/75 computer to obtain the independent
matrices for polynomial orders up to and including 6.

From equations (3.45), (3.59) and (3.67) it is apparent
that there is symmetry of the elements with respect %o the

indeces i and j in the matrices [Yijﬂ, [Q..,] and

ijl
[Qijlj' Exploiting this symmetry property reduces the required

-

i
»
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number of matrices from 81 to 5S4, Furthermore, it is apparent
from Figure 3.? that a\thpee-fold symmetry exists between the
triplet (Nﬁi.Nﬁé,Nﬁg). For examplef;ézde numbers 3, 11 a;d 20
in Figure 3.2 are all permutations of (4,0,1). This symmetry
diminishes the Fequired number of matrices further by a factor
of 3; instead of 54 only 18 matricés are now required, In
addition, two additional matrices may be removed from each of
the sets EQile and [gijl] due to a symmetry with respect
to the subscript 1. Therqfo;e only the following 14 independ-

¥ {
ent matrices remain - \\

Symmetric matrices: (@41 Q4511 [Qup s [Q231J’

o (U] Quped s DYy [¥py]

“Antisymmetric matrices: [9111]’ [gllzj, [9121]' [Q2jlj’

(Y111 » (U]

The numerical values of the symmetric matrices appear in

Table 3,1 for N=1 and N=2, These were obtained in connection

. with the formulation of triangular finite elements for the

generalized Bessel equation of order m and have been
published glsewhere [527]. The pgrmutation operations which
must be applied to obtain the entire set ©f symmetric element
matrices, appear in Table 3,3 . The numerical values of the
independent, antisymmetric matrices are listed in Table'P.}
for N=1 and N=2 , ®The permutation rules for generating the
entire set are shown in Table 3.4, Higher-order matrices
(N=3 through 6) are not reproduced here since they requireJ

considerable space. In actual practice, the numbers are

+handled by two computer programs called block data generators,




T,

. ) .
?1rst—order matrices

AN

Q11 Q21 %21 %231 Y11 1. U U21
0 0 -0 0 — 12 3 4 2 ;
01 0 1 0 1 g 3 2 2 3 1 0 2 0
0 -1 1 0 -1 1 0 -1 1 -1 1 3 1 2 1 1 1 i 0 0 i 0 0

’

denom =12 denom =24 Genom =12 \|denom=24 denom =360 denocm= 360 denom=24 denom=24
. . $

-

Second-order matrices
.

R J
Q11 ¥ Q21 QP21 Q31
0 0 0 &»—\ 0 .
0o 96 - h 0 A48 0 16 0o 16 ‘ -
0 -96. 96 0 -48 48 0 -16 16. 0 -16 16 . - =
0 -12 12 7 0 8 -8 /15 0 12 =12 39 . 0 4 -4 15
o 0 0 -816 0 -16 16 -20 32 0 -16.K§6 -L8 64 0 0 0 -16 32
0 12 -12 1 -8 7 0 8-8 5-12 7 0 L4 b 9 -16 7 0 -4 4 1 -16 15
denom =1&0 denom = 360 denom = 180 | denom = 360
Y94 ‘ Y1 - Uyq Uz
ol b 3 ‘ 36 , -6 E
12 48 _ .0 36 : 24 6L N 0 96
12 24 48 - v 012 12 2L 32 64 0 32 32
-3 6 =6 2 1 0-27"3 Zs 0 -k 0O 624 0 0
12 12 -2 8 -2 12 8 =0 42 L 16 16 0 0 " - -8 4832 0 O

3 -6 -6 1 -2 2 0 -4 -2 0-2 1 -5 -4 0 0 0 © -1 -8 © 000

denom = 2520 denon = 2520 | denom = 360 denom = 360 -
* ‘4f<JK' . < Table 3 1

The first- and second-order, 1ndependent, symmetric element matrices are given as integer
quotients brought to a common denominator, Only the lower triangle portlons are reproduced.
The wapping operations to obtain the remaining symmetric matrices are given in Table 3.3 .

-
¥
k4

19
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First-order matrices ’ i ’
911 912 8121 Q231 U1y U
0 -1-0 0 0 O 0 -1 -0 0-1 0 0 1 1 0 .2 1
1 0 O 0 0 -1 10 0 1 0 0 -1 0 0 -2 0 0
0 0 0 0 1 0 - 0 0 0 0 0 0 -1 0 0 -1 0 0
denom =12 denom =12 denom = 24 denom = 24 denom = 24 _ denom =24
Second-order matrices ‘ fk
T, : - 7 >
Q4 . 8112 9121 8531 o
0-60 0 9 -12 O o .0 0: 0 0 O 0-24 0 1 =4O O -4 0 5 80 .
60* 024 -4 -8 0 0 0 -96 0 -24 12 24 .0 16 -24 -16 0 4L 016 -24 -32 0 °
0 =34 "0 4 -16 0 0 96 0 -12 24 0 0 -16 9 -4 -160 0 -16 0 -8 -48 0
-9 4 -4 0 00 o 0 12 0 -4 1 -1 24 4 0 00O -5 24 8 0 00
12 816 0 00 -~ 0 24 244 0 -4 4 16 16 0 00 -8 3248 0 .00
.0 0 0 0 00 .0 -12 0 -1 4 0 0 0 0 _ 0 00 0. 0 0 0 ©U-0
denom = 180 deron = 180 denom = 360 /l denom = 360 oA
Uig U1 _
0 24 24 -5 L -5 0 16 8 -6 -8 -1 '
-24 0 0 016 -4 -16 0 O 24 48 -8 .
“34, 0 0 -4°16 O -8 0 -0 032 O
5 0 4 0 0 0 6 -24 0 0 0 O
-4 -16 -16 0 0 © 8 =48 =32 0 O O . ;
ly 0.0 0 0 1 8 0O 0 0 O
denom = 360 - denom = 360
Table 3.2 -

T#e. first- and second-otder, independent, antisymmetric element matrices are given as
integer quotients brought to a common denominator. The mapping operations to obtain the
remaining antisymmetric element ratrices are given in Table 3.4 .

(RO

[N

4‘-

€9




Matrix j =1 j=2 . J = 3
%51 1=1] 1=2 ] 1=3 1=1]1-=2]1-=3 1=1] 1=21 1=23
PR BTN B SR B S Ua1 | Y1227 | Y1p5” 3T Y3t | U3s”
given | BFQyyy | R%Qpp given | %9Qi5y | Q3 FQi21 | %Qz3; | 2%Qyp1
(o p | Ja117 | 92127 G217 Q21 922 = Q§‘23 = Q231 Q32=| Q233°
,— 2 - - 3
Q29 2FQ151 | RQpy given | RQqq | RFQpyy | given | RQu,y | RFQ 5
peg | BT BT | 99137 Y217 | 93227 | 93237 33307 | 93327 | 93337
FQ21 7| RQp3p | R%Qqp Q231 %151 | A7Qqp4 Q221 Q21 | ®Qyqy
Matrix ) ] Matrix ) -
Yij J =1 J =2 J =3 Uij J =1 J =2 J =3
Y. Y = Y = U U = U = o
11 12 13 . \ 11 12 13
i =1 " R: Rotation i=1 : 3
' . g1ven Y21 le permutation . given ITU21 % U21
operator
Y Y., = | Y., = U Uy = | Uy =
21 22 23 . _ 21 22 23
i=2 . F: Flip. i=2 - <
given | R¥yy | Y3 permutation given | RUyy | ®3Up
Y , g operator
= Y = Y = U = U = U =
- 31 32 33 = 31 32 33
i=3 - R RR i=3
Ty | Ry | RYpy | FUyy | RUy R4
¢
. Tgble 3.3

Permutation operations ¥for the symmetric element matrices

€9
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Matrix j=1 / j =2 : J =3 s
.Q-iﬁjl 1 =1 1l = 2 1:3 1 =1 1 =2 ]_:3 1 =1 11._._:2 1=3
_ 8111 8112 8113~ Q121 Qi22= | 8123° S131= | 8132= | 9133°=
i1=1 . given given "?_Q_lll given —RB?Q'ZBJ- +RQ_Q_231 ’2?—9_231 "'RQ_231 +x2Q121 -
» 9211 9&212 = | Sa13° Qo1 = | Q22= | Q223° 9231 Q232 | Q233°
Qipy | ~R%FQpqq| +#%Qp51 | ~FQyqq | ¥RQqqq | *RQyq5 given | +RQ:51 | -Flp34
3| 311 83127 | 83137 Q321 = | 93225 | Q3237 9-231 = 93327 | 8333
RFQpmq | ¥RQpyq | *RQgp0 |0 Qp3p | RAyp | Tl tR°Q112 | “RFQy11] YR8y
. \_/ Natrix . - L
L; ; =1 =2 =3
- ¢
U Uy = | Ujq =
. 211 Y12 Y13
R: Rotation i=1 :
permutation given +2?]J_21 +28y-21
operator U - — 7 =
. =21 =22 -23
F: Flip 1 =2 .
permutation given +7?-LJ_11 +JZ’?‘_U_21
operator - ~ U 0
a2, = =31 T | =32 T | =33 °
KRR LR arl,, | 4Ry | +2%0p,
Table 3.4

Permutation operations for the antisymmetric element matrices
" :

9

[
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‘which store all 14 independent matrices as integer quotients
with: common denominators and generate single precision block
data statqunts containing the matrices. The block data
generator programs are listed in Appendix II and Appendix 111,
The block data generator program in Appendix IIX also ‘performs
the summations indicated in equations (3.49) and (3.80) through
(3.83)., Thus, the element matrices required by the discretized
functional (3.86) Tor travelling wavee.-ére also produced., The
permutation rules'fo} these element matrices may be derived
from the rules in Tables 3.3 and 3.4 . It should be noted heré
that the element matrices [R] a;d [Q;] have originally been
given for polynomial orders 1 through 4 by Silvester [247], the
antisyﬁmetrib matrix [Q;] has been given independently by
Csendes [7,12] and by Daly [9,25] and the matrices [U;] and
[Ql] iéve been computed by Stone [23,26] for N=1 through 4.

The permutation rules in Tables 3.3 and.3.4 haye been
discussed i; detail el%ewhere [24,55-57]. A brief explanation
‘of these rules will however be given for sake of completeneés.

Thére are éwo basic kinds oflpermutation rules for element
matrices., One corresponds to a mapping of the interpolation
nodg numbers by a rotation of the triangle counter-clockwise
until the last node number bccupi?s the relative locatiod of
the first one, For a second-order triangle, the required
mapping is shown in Figure 3.3 . The permutation rule associéted
‘with this m%pping operation is called the Yrotation permutation
rule and is denoted by the letter . In Figure 3.3, the

relative positions of the nodes of the triangle in the rotated

position match the relative positions of the nodes of the

t)///‘"] , . 0 < .
[

3, \
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) triangle 6 triangle
. " in standard in rotated
position position
2
3
n .
_—., !/ 6 1 2
S _ <]
Figgre 3.3
Mapping of the inte ation nodes of a second-
/// order itriangle by a counter-clockwise rotation.
i
. L : .
triangle lap) 1 triangle
in standard | ‘ in flipped
position | position
i 1[

| ™
| Figure 3$4_
. Mapping of the interpolation nodes of a second-order .

triangle by a flip-over about an axis in its plane. 4
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triangle in the standard positidh.'The node numbeéﬁﬂgfsequence

of the triangle in the standard position corresponds to the

row and column sequence of the independent element matrices

of Tables 3.1 and 3.2 . In the rotated position, the séquence
becomes 6,3,5,1,2,4 . For example, if the rows and columns of
the 0111 matrix are permuted in the sequence‘in which the
nodes of the rotated triangle match the nodes of the triangle
in the standard position, the resulting matrix is Qo052

Therefore, one obtains

r N
¢ 0 L U M N S Cc 0 L U M N S
6 7-12 -8 0 12 1 1 0 0+0 0 Y00 I
R|3 {-12 96 O 0-96 12 R|2 0 96-96-12 0 12
o/ { -8 0 16 0 0 -8 2524 0|3 0-96 96 12 0-12 |
Wil O 0 0O 0O 0 0 W4 |°© 0-12 12 7 -8 1
sl2 | 12-96 0 0 96-12 S|5 0O 0 0 -8 16 -8
L 1 12 -8 0-12 7 6 0 12-12- 1 -8 7 J

(3.96)
Th%s result appears in Table 3,3 , When applied twice to th?
same matrix, tﬁ; permutation operation %R results in a second
counter-clockwise rotation of the rotated triangle in Figure

3,3 . The doubly rotated triangle's node sequence is 4,5,2,

6!3l1~' t B g

1

The‘gecond type of permutation rule corresponds'to the
mappiﬁg#pf the interpolation node numbers by *flipping' the
triangle about an axis inﬂﬁtﬁ plane, as illustrated in Figure
3.4 . The flip permutation ruI;\iQNdenoted by the letter ¥,

™~
As an example,_consider the Q113 matrix w

ich according to

Table 3.4 is equal to —?9111 . One obtal ollowing:

-



)

C 0 L U M N s C_ 0 L-U M N s)
943/ 1 3 2 6 5 4 Q41| 1 2 3 4 5 6
1 0 0 60 O 12 =9 1 0-60 0 9-12 O
R|3 0 0 24 O 16 -4 Rj2 | 60 0 24 -4 -8 0
0{2 |-60-24 0 0 8 & _ 0O 2 0-24 0 4-16 0

W6 0O 0 0 0 0 0 W -9 4 -4 o0 0 O ¢(
S{s (-12-16 -8 0 0 0 S|5 {12 8 .16 0 0 0
L 9 4 -4 0 0 0 k§ 6 O 0 0 0O O O

; P

(3.97)

It can be seen from Tables 3,3 and 3.4 that the permutation ,

rules are<also needed for the ;ombinations R¥ and R3*7.

In these cases, the R and J: permd%ation Qules are applied
consecutively., Fortran function subroutines implemeﬁting the

permutation rules and their combinations have appeared
v 3

elsewhere [56].

3.5 Minimization of the Discretized Functionals

over a Compound Triangular Region

With the independent element matrices, the matrix forms
(3.68) and (3.86) representing the discretized equivalents
of the Tfunctionals (3.,18) and (3.28), can %e constructed for
any given triangular region. In any collection of connected
triangles such as the one in Figure 3.1, the discrete matrix
equation for each triangular subregion can be generated.
Assuming contin&ity of the electromagnetic vettor fields
from triangle to triangle,; the local functionals can be

assembled into a global mafrii form. In order to achieve this, -

1

Nem

it is required that contributions from each triangle be
properly identified and connected together. The trial functions

must have céﬁt;nuity from element to element in order to

*
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safiéfy the functional and, therefore, the adjacent potential
or wave funétion values are set equal,

The assembly process is usually performed theoreticaﬂiy
wi?h connection matrices [31.58].,Ln most applications however,
they are seldom needed explicitly [57]. It is sufficient to
employ a global numﬁéring sequence for the interpolation nodes
in a compound region. Proviaed that the local functionals are
constructed using the global node identifiers, the proper
1ocatioﬁ of the element in the global matrix is determined.
In form, the ﬁaérices in (3.68) and (3.86) are unchanged in
global interpretatioh. For example, the column matrix [Vr]
of quation (3.68) in gldmﬁg"form simply contains the
coefficients V% from all of the trianglgs in the sequence ~
in which the nodes are numbered., Similarly, the matrices [D],
(R], (3], (E]s [N] and [T] are in global form the sum
of the individual contributions of each tri;ngle assembled by
the connection matrices. n

‘ Under a global interpretation of the discretized functionals
13.68) and (3.86), one can proceéd to minimize them by ’ .
differentiating the functionals with respect to each of tze;/

i

i i i i .
VZp V9 and Vx’ Yy, VZ respectively,

and equating each of the results to zero, Three matrix equations

coefficients V;,

with three unknown column matrices E@sult for each functional;

t

the three equations can be combined into a single large matrix

equation with a single unknown column vector,

For the functional for circulating waves, equation (3.68),

L
7

one obtains - 7 ) .
e

[5c30Ve] - @[T I0Ve] = -[TeqllCc] (3.98)
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where the column matrices [V ] and [Gc] are given by
[v.]
vl = y0v Ip (3.99)
([Ve)
and
\
[, ,
[c.J = f'[Goz]r , (3.100)
|G ]]
and the symmetriglmatric;é [s.]. [T.] and [T 4] are
given by
, :’ t ;
2p4o[D] E 2mp, [J]" - | 2mpzr[J]
sp?|Alp, [R] 1 +4m®[a]p, [R] | -2py [D] «
t, |
-2mp, ([J]+[3] ) :
E r E
....................... J:,__--_____-_-_____,:,-_-_-________-__,-
x2mp g, [J] | 2Pg,[E] } %3] A]p, 4 [R]
' t,! . t -
m? [alp_ [R] 1} +pga(IN]+[N]7)i *3p,0[N]
[s.]= | +alpgolR] : FPyo[N]
; +Uma‘A|prr[R] , ¥2p e[E]
N e . . i_f?’f?zzgf_] _______
2mp,..[J] t ¥3|A|p, o [R] : 2p,..[D]
_ZPGr[D] g ¥3pze[N] 5 +2pzz[E]
| + [ t
o | ¥P,lN] \ +3p,, ([N +[N]")
) “ g ¥2p,o[E] . \ +9|a|p,, [R]
' g2mp_ [J) 'y
L ) ¥ "err (7] Vo _—
\ (3.101)

©
R
.
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20, [T] | *2q,.[T]
5
————————————— s--.-—c—n————-——
i
2q9r[T] :*Zqzﬁ[T]
L 1
2[T] - 0 i 0
[Peqd= ] 0 j2L0k: O
| 0 { 0 :2[T]

L S LT T U g SIS,

(3.102)

(3.103)

For the functional for travelling waves, equation (3.86),

one obtains

L5007 - eR[T, 00V, ] = ~[744 206, ]

where the column matrices

L

N

and

i}

| [Gy]

and the symmetric coefficient matrices

v, 1)
<[Vy]
v, 3}

[, ]
()]
Lz

are given by %

[V ]

and

{sy] . [T,] and

(3.104)
N

[G,] are given by

(3.105)

(3.106)

[Ttd]
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2p, (o]  -2pp, (9] %260y, [7]
+4p? A [p  [R] . | -48? |A|py [R] §=F2pzx[o93 ‘
+28p,, ([1)+ (3] | -2p,,[=] | 260, (V]
| -26p,y (] | 22p,, [2]
S oo e ]
28D, (Y] \ 2p, [&]  F2Bpy (V]
- ; t 1
-4g?|a]py [R] ; +28p, (V] + M) )y w2p,  [E]
' |
R e
-ZBpZy[W']t i 5 *szx[’?]t
R hhSh—_—_—_ L
¥28p,,, [7] | 728D, ] i 2p, [#]
|
¥2p, [2] | =2p, [£] . | +2p, (8] .
£2pp__ [V] » +2pp_  [] § -2p, ([Z]+[=])
t ! ' ]
#2p, . [Z] | *2p, (] | 4
(3.107)
29,4 [R] | 29, [R] gﬂqzx[R]
(4] = (2laD) |20, [R] | 2a,,[R]  #2q, [R] (3.108)
............ Y S
r_?-qzx[R] 172q, [R] | 2q,,[R]
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) [tR]i 0 E 0 ‘
[r,,J= (4D { o {[R]} 0 | - (3.109)
B s St DY SEREES g
o i o |[RrR]

CThe matrix equations (3.98) and (3.104) reduce to matrix
eigenvalue equétions whenever the right-hand sides are source-
free. The eigenvalues of the equa?idns are w® and the eigen-
vectors are the nodal values Gf”the vector fields. For every
value of tﬁe p{gpagation constant B , or of the circulation
constant m , an eigenvalue-eigenvector spectrum set can be
obtained., When the fregquency w is set to zero, and the right-
hand sides are non-zero, a system of linear equations results
for the vector potential function., In the eigenvalue problemn,
the eigenfunctions represent either.the magnetic or the electric
field intensity vectors depending on the choice of P and 7§
and the boundary conditions. The size of the éoefficient
matrices for a single triangle fitted with polynomials of degree
N and having n interpolation nodes, is 3nx3n; for an
assembly of triangles with a total of n interpolation nodes,
the size of the coefficient matrix will be 3ntx Bnt.

The solutions of equation (3.98) must be retransformed
into the originallvariabLe§ in accordance with equations (3.20),
(3.24) and (3.26).

Finally, it shouldr%e pointed out that although the
material property tensors are assumed to be independent of the
frequency w in the formulation given here, there is no
theoretical reason why the w dependence could not be taken
care of. With the maﬁerlal property tensor elements given in

, 4

terms of the freguency, the matrix sigenvalue equation can be

3

» 5
i

~
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1

rewritten as a)matrix polyn%mial equation in w, The solution
’\of such an equation is a problem in numerical analysis, not in
‘elgctromagnetic theory. Moreover, the problemocan fe turned
aroaﬁd by‘assuming that w is given and thg propagation
constant B or the circulation constant m is unknown, In
’ the coefficient matrix [sy] there are terms with B and B2,
Tﬁus the‘ééu&tion coufd‘bé written right away as a second deéreea

matrix polynomial equation in the propagation constant.
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CHAPTER IV L

[

-~*“;“””““CUN?UTERkPROGRAM, RESULTS AND APPLICATIONS

Q ' N
Saurdz(ﬂr! P : v

N

A compute} program is presented which implementsy the

v

triangular finite element method for lihearly pelarized

»

travelling waves, For demonstrative purposesy the first ' .

) problem solved 1s that of an empty square waveguide. 1n

.
¢

. .
addition, more complicated problems such as the half-filled

N

dielectric loaded rectangﬁlar waveguide, enclosed Eingle

mlcroatrlp and anisotropic waveguides are also solved in

order to 1llustrate potential bppllcatlons. A detailed’

" analysis of the,results is carried out in each case.

#,

v ) e .. j
'equation° (3,107) and (3.108). The surmations in equation" - J
(3.80) threuﬁg (3.83) have been performed by the block ddta{) ﬁ'
‘4

‘routine is a Fortran languagé equivalent of equations (3.75)

i

v L - - o
Kl
\ -

5

L,1 The Three-Component Mipnetic Field Vector ?rorrem
: #

. A computer program whikh astembles the matrices [St]
and [Tt] (given by equatﬂons (3.107) *and (3.108) -respectively) /
for a collection of triang¥es in the X-y plane'has been wriﬁton.

A double prec1°10n vervlon 'of this’ prégram is listed in L“

v

Appendix IV, The baqlc conpShents of the matrix assembly are . Pl

carried out in the subroutine ASSEMB. In essendge, this sub-

“

through (3.79).<(3.8Q)‘andl(3.85), Tables 3.3 and 3.4, and

generator program 1ven 1n'ApDend1x 111, Thuo,“the matrices . e -

’ »
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[Ulj.’ [_1_11], [01] jgnd [gl;] , together with the matrix,
(r], are storgd in five bléck data subprograms (BLOCK1,
BLOCK2, BLOCK3, BLOCKA4, BLOCKS) inch are accessible to the
subroutine ASSEMB, The permutationirdles rgquired in Fhe
assembly procégs g%efperférmed by the function sqggpétines
ROTAT1 and ROTATZ2. The maﬁfices are stored in line%r arrays
by rows their lower triangle; thae, function subroutine
LOCATE provides the necessary addréss conversion.

All ecessary geometric informa%ion'about triangle

' coordinates‘and"interpolatioﬁ node locations are supplied
to ASSEMB by the subroutine READIN. This subroutine processes
the inpht data consistiﬂg of a list of the triangle vertices
and coordinates and altso g last‘of the triangles. Using this
information, READIN generates additional points corfésbondﬁng
to the desired polynomial approximation over each triangle®’

The relative locations of these peints are mapped approximately

;on.%he line printer by tne subroutine MAP, ° .

AN

After’assembl%ng the global ([S¥] and [TEJ matrices,

the MAIN program calls subroutine EIGVAL and EIGVEC to solve

N

the matrix eigenvalue eguation y
¢ o + N ‘k’

/

[St][Vt] = kQ[Tt][Vt] where k- w./t,(—o_e_o_A Ay 1)
R ! / D

b

for all of the elgenvalues and eigenvectors desired. Subroutine
! .

> EIGVAL uses the Choleskli method to decgmpose the positive

. A
definite matrix [Tt] into.lower %75 upper triangular factors

and “to cast the matrix‘eigenvalye/équation (4.1) into standard

I‘§brm}. Householder's method gnd a modified Sturm sequence
Al i ‘'

A}

lsee also section 5 in Chapter V.,




. procedure are employed to compute the eigenvalues. Th?
' eigenvectors are computed in the subroutine EIGVEC by -
Wielandt iteratjon and are properly transformed to give the
eigenvectors of equatlon“(&“i)‘
The eigenvectors of equation (4.1) can be interpreted’
l either as the approximate nodal valuesﬁof the magnetic field
f within a region bounded by a perfect electric conductor

° or as the approx1mate nodal values of ~the electric field E

in a region bpunded by a perfect magnetlc conductor. Since

{
5

“-the curlcurl equation in terms of E or H does not ) &P

represent Maxwell's equations at zero freguency, solutiors

at k=0 are not possible, 3 Noe "

With the eigenvector interpretef as a magnetic field,
‘ {.r ‘ the material property tensor ﬁ‘ in equation (3.167) represents
the inverse of the permittivity tensor. On the other hand, the
Ic tensor § in the expression for [Tt] in equation (3.108),
| ‘ fmgst be taken to be the permeability tensor of the medium.

e
| These tensors must be constant in every triangular subregion,

although different triangles may have different permittiwitiess
\«) Boundary cohditions are not enforced by the computer

9 . ! P
program since the condition

i nxé&leurifi = O ; y (4,2)
&

-~

is a natural ore for the functional and it will be satisfied
n b S

' A —‘autOmatically by the eigenvectors,
oW
Due to the generality of the finite element farmulgtion

on which the program is based, solutions can be obtained for -

. a variety of problems that normally are given special treatment.

~

v
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The s1mp1est category is the 1sotr0p1c. homogoneous waveguide
problem, In the next sectlon solutlon is given to the empty
square waveguide in order to demonstrate how the program worko
and also to illustrate the generality of the o;thod. Risuits

have beénfobfé}med with both a single precision version of

'the program and with a double précision version, Compar%son

of results helpspto ascertainm the amount of round-off error

in the single precision results,
"N i .

s RpY von

4,2 Solution to.a Homogeneous, Isotropic Waveguide Problem

Consider the square.wavegulde shown in Flgure 4 1 . The

1reg10n has been divided into two trlanvles whose vert1c7$

have been numbered. The input data cards to the program have
been rep@bduced in Figure. 4.2 . The first card contains an
asterisk in column 1, followed.by the problem titIeé. The X
after the title specifies that no punched output}.is désireg
(a P would cause the program to punch out the eigenv;lues and
eigenvectors on‘cérds) Tho‘two nuymbers following the X arc

the x and Yy coordlnate scale factors (taken here as unity).

The -2,000 after the scale factors is the starting value of

"the desired propagation constant g . This value of Bu*is_ﬁo.

&

be ;ncfomented by 1,000 (the next number on the d"a Card)

until 8 different values of B  (ranging frory/ -4.00d to +5,000)

are used, as indicated by the last nomber on a card number 1.

e minus sign in cquTn 72 signifies-that the H magnetic

2z
j2) relative

oI

field component should have a phase factor exp(-

to the other Lwo field componen%s(
. /.\" N

n
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*____ ./ ___ENPTY SOUARE WAVEGUICE_________ X 1.C0 1.CC -2.CCC Y.CCC
% 1.€CCC c.cccc 1.cCCC c.ccce C.CCCO . 1.CCCO ceCOCO  2C
o1 -C.SCCCC c.5CCCC
2 -C.5CACC% -0.5CC00 -
2 c.sccce -c.éccce A
4 C.8CCC(C C.5CCCC

-t . - \ . _"’”“
Y 4 1 2 4 1.(CCC c.CCCC 1.CCCO-  C.CCCC
3. 2 4 - )

~ Figure d.z

Input data cards which describe the empty square waveguidé

C.CCCC . l.CCCC

<

Ny

H

3

£E~-CARCCCC)
2t CARPGLCY, -

CARCCCO?
CaRCCCC4
CARCCCOS
CARCCQCS
carcccc?
cAPCCCCS
CARTCCCY
CARTCC1GC

' &

problem to the three-component magnetic field vector program.,

o

08
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The second data card again contains an asterisk in column
1. JThe purpose of these asterisks is to provide tHe program
with a means of detecting the first two cards of a data set

in a long stream-of data. The six numbers following the
%
asterisk on ﬁhe second data card are the xx, yX, yy, zx, z¥y
N gt

and zz q\m?onents of the magnitudes of the permeablllty tensor

. of the medlum filling the waveguide., The figures given

represent'ihe relative permeability tensor of free space. .

=,

The ffnal numbérﬁ 0,0000 ,. following the tensor componeﬁts has
£ g .
no bearing on an empty waveguide_problem, In a ferrite filled

waveguide problé%, it %gﬁused to indicate thes direction of the
external magnetiz%ng field with respect to the y-coordinate
axis. The }ast two inpegér numbersg on tﬂ%S'data card request
the program to compute 25 modes stﬁrting with mode number 20,
:It turns out that the first 21 modes returned by the program
fop thisrprbbléh are non-physical solutions associated with
zero freqtiency. Their nuﬁber can ge'estimated from the nﬁmber

of boundary nodes; hence the flgure 20 used on the.data card

~
~

to specify the flrst mode to be returned.
The next four data cards Ccards No.3 through No.6) contain
fhé X~y cdordinates of the trigngle verticég“and the numbérskg
assigned to theﬁ in'Figure 4,1, The blank card following these
1nd1cates the end of the input point list to the program. y
’ Cards. nurbér 8 aﬁa 9 constitute a llst of the trlangleo ,/
defiding the :¥ob1em reglon as well as information perta1n1n5

-G

to the type of triangle employed The first figure on card

©

number 8 indicates that the triangle'is to be fitted with a

_b4-th order iqﬂerﬁblation polynomial for all field components.,

o L]
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The mext three numbers, 1, 2 and 4, define a triangle with

.vertex numbers 1, 2 and 4. The six numbers after that are

4 ¢

the magnitudes of the xx, yx, Y¥, zXy 2¥ and zz components
of the relative permittivity tensor of the medium contained .

by the.region defined by the trlangle. As was the case with |

- the permeability tensor, the nuhbers here represent the

permittivity tensor for free space. Card number 9 contains
similap information for a triangle whose vertices are. numbered’
3, 2 and 4. The polynom&al order and the perm;%tivity tensor
elements have not been punched since the prcgram automatically

uses the values from the previous card. The list of triangular

, elements 1s terminated by a blank card (card No.10).

The program supplements the list of 1nput p01nts with a
full set of interpolation nodes which 1t generates in each
trlangle. In this rase, since there are 15 interpol tlon nodes
in each 4= -th order triangle, of whlch 5 nodes are commbn. the
total number of points obtained is 25. Since three compponents
of the\magnetic field vector are associated with!eaeh node,
the huﬁber of unknowns, and henee the matrix size, for this
problem will be 75x 75

. The output from the program consists first of all of a
restetement of'%he input point and triangle lists. This is
foLlowpd by an approximate map -of theﬁinput points, assembled |
point and triangle lists, a .second q&p{zﬁhis time of the
assembled pointeﬁ a ﬁage“providiﬂg an érror code and p obleh
size information, -and finally, the wave-numbers and eigznvectors‘

requested. A portion of the output from, the 51ngle precision

version of the program appears in Flgu:ég L,3 through 4.7 .-
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Output from the three-component magnetic field vector
program - list of the input points and triangles.
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The eigenvalues k obtained from the program are plotted
in Figure 4,8 as a function of tge propagation coﬁstanf B .
It is apparent from thls plot that the TE and TM -modes
familiar from analytical solutlon of the empty square waveguide
problem [38] are correctly returned by the program bath for
posi{ive and forqnegative va;ueq of the propagation constant,
Table 4,1 shows the errors in the wawe-numbers computed for ‘the

waveguide modes. Degenerate modes (e.g. TE; and TE, ).produce

10
a single curve on the k-B diagram, but, although the program

returns two almost identical eigenvalues, the eigenvectors are

1

a linear comﬁination‘of the associatedfeigonfunctions. The TE

and TM modes can be eqvlly distingu 1shed by 1nspect1ng the

¢

eigenvectors returned for s=:0: for TM modes the HZ compong
. @
is zero while the H, and *Hy components vanish for TE modes.

The waveguide modes described above are not the first

LY

eigenfunctions of the matrix eigenvalue equation. In this-'tase

. for examble, the TEO1 and TElO modes are the thirty-secong\\

and thirty-third respectively., The first 31 modes repreéent
*spurious' sqlutions of the waveguide problem, M™e present
method is not the flr t to generafe more modes, than deqfred
[5.7-12] : many other formulatlons [5-12, 59] partlcularly
those involving 1Q,nggeneou~ wavegulde ‘and mlcrostrlp problems,

are p]agued by the occurrence of spurious modes.)

¢

Y
It can be seen from Figure 4.8 thag modes No..26 through

31 have. k-B. curves which are straight lines at x45 degrees

“with respect to the axis, with'the hyperbolas déscribing'the

©

behav1our of the wavetuige modes being asymptotic te thes

f*/#¢45

modes, The occurrence of these modes in the solution is
N - ‘

11nes. k-B curves a angle are characteristic of TEM .

{
\
%

-

t

P .
) ar N .
.
»
-
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k-p diafram for the empty,

cauare waveguide problem prepared

from the output of the cinrle preclicion version of the three-

component magnetic field vectoy«program.




Mode

F=0

p = 2

No

Type K

HerTor

%error

32,

TEqq 3.14206

0.01L49

3.29736

il
o

0137

k
3.72459

0.0107

33.

TE1g| 3. 15236

0.0238

3.29764

5,052

3.72481

0.0166

3%,

TEq 4 L, 44650

0.0827

L.55763

0.0790

L,87562

0.,0683

35.

™

Ty (TS5

0.379%

I, 57047

0.3609

T, BE766

36.

TE,~|6.30530

20

0. 3615

6.38472

0.3529

6.,H61548

0.3285

37.

T, 16.30590

02

0.3621

6.38h7h;o.3532

6.61550

0.3288

38.

™y 5 7.054732

0.4200

7.12k79

10,4109

7433213

0.3855

\ :
0.3155

39.

™ 7.17106

21

2.0818

72004 3

;2.0&06

7. 044077

1.9271

Lo,

TEyp | 718927

2.3011

7.25850

2.2953

7.46225

2.1674

41,

TE21 ’ ?! 5956(}

8.129h

§7.66031

7.9581

7.85053

7.4830

42,

Tiy, 9. 30165

L,6803

9.35523

L,6229

9,51h22

L L5973

h3.

9, 568560

7.0568

9.62021(

75862

977285

7.2989

Mode

E =3

g =10

l o=

No.

Type X

Jerror

k Jorror

| k

32,

TEOl[h.B@H§3‘O.OO72

5. 0837

0.0049

5.90526

L-erToT

0.0036

33.

TEqp . 30500

EO.0132

5.06669 10,0093

5,90546

0.0069

3k,

TEllzB.BEBQT

0.0562

| }
5.9809010.0Eu7

6.69110

0.0353

35,

TMlll

*5-37M8810.2608

5.99075

0.2095

6,69993

iO.lb?B

36,

Ti,o  0.98317

0,29L8

7.46756

0.2575

8.04763

!
10,2215

37.

|
T}LO‘?? .98318

0.29L49

7.h575510-25?9

‘8.0&763

10,2217

380

TM12i7.6652h

10,3489

l

' 8.10866

iO.jOﬂf

j8.6h550

0,206k

39.

TM21E7-77329

1.7634

8.2]121;1.5759

B.74207

1. 3864

Lo,

TE12 7.79010

i1'9835

8.22712

1.7728

8.75702

.
1.5598

b1,

Tf,, 8.15808 6.86009

i

18.57076

6.02737

5. 0767

15.2437

L2,

TE,, 9.773L5

L,2109 110.1252

3.9059

10.56033.5737
-

b3,

Th,, 10,0221 16,8621
5 |

[10.3612

6.3278

110,7816

5.7442

|

Table 4,1 .

Percent errors in the wave-numbers k
modec computed by the minele precicion version of the
three-component manctic field vector program for the

homogencous, sqguare wavegulde problem,

’

of the waveguide

e

50
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»
puzzling since TEM modes are known to exist on transmission

>

lines but may not exist in hollow waveguides.

o « o s

v r
N ~

s In order to explain tﬁ% o?b:currence of modes No, 26 through
£

. :
31, the behaviour of the fiéLdMsolutions-must be examined§ The

4
p .

magnetic field vectors returred by the progra%/for these modes

o »

have a constant H; component 4 =0 and a vanishing one at
other B values. The HX and Hy components display an

]
unusual spatial dependencg and do not resemble any known field

configuration; it appears from the output that the eigen-

y
i

functione wscociated with these modes do not satisly the
requirenent that the magnetic field be tangential to the

boundary surface. Tt therefore appeare that modes No. 26 to

No, 31 do not repre.ent a dic solution of the waveguide

problem, only a mathemat) of the eigcnvalue problern,

»
.

Moreover, the number of such modes which occur in the output

varies wath the number of degrees of freedom in the finite

elament mo‘el,
¥
A similar gsituation exicts for modes Wo. 22 through No. 25,
”

which have k-B curves that are characteristic of slow waves,

o

The lalter are known to exist only in periodic homogencous
structurcs, not in hollow wavesuides, Modes No, 1 through No,
21 are a,on spurious, althouch in tale case they may be casily

dismiassed on the erounds that the curleurl cguation does not

N

R4 34 g
reprecent Maxwell's equations at zero frequency,

-

To obtain the values plotted an Fipgure 4,8 the computer

3

programl required 2 minutes and 41 seconds of CPU (Central

Procescin- Unit) c%ge to exccutlef, 182K bytes of dynamic core

Ipn 1200 emiroon IV H comprler gencrated object code was uced,

-

2pn TTH 500/75 computer was uscd,

P

g
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is required by the program, although the program is dimensioned
for much largersproblems than-this example, In view of the
complexity 5f the method andthe program, the computing*time'
given here and the accuracy shown in Table 4.1 compare quite
favourabk% with those of other numerical methods [17,18].

The empty, square wavegulide problem has also been solved
with the double precision version of the program. There was no
sigﬁificant increase in computing time, but storage requirements
were' nearly doubled, Comparison of the results showed that
round-off errors in the sihgle precision results are of the

order of 0,001 9% . The errors shown in Table 4.1 may therefore

be attributed to discretization error,

4,3 An Inhomoscneous, Isotropiq Javeruide Problen
ro

Figure 4,9 shows the dirensions, trianfulation and partial
solution of a rectangular waveguide half-filled with a )
dielectric material of relative permittivity 2.45 f‘Flgurc .

4,10 displays the data cards for thas problem and the program ff

-

output for the TM,,. mode (the 54-th CIgpnvectorb/fE‘B%produced
in Figure 4,12 ., The k-B diagram appgﬁrs in Figure ULI} .

The modes in Figure 4,11 and 4,16 have been designatedt
TE and TM according to. the field wvector components]presont at

cut-off. Tt %5 underctood ithat these desipnations do not have . |

v |

the same meaning as in the case of the empty waveguide modes L
' T e - s ®

. . o : . . ; - |
since above cut-off arl electric and magnetic field components -

o . .\ . it |
are precent, The 56-th and 58-th eigenfunctions are difficult |
to classify since thay possess three non-vanishing vector
components even at cut-off, The k- curv¥e corresponding to

B
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Dimensions ahd triaggulation of a rectarcular waveguide half-filled with a dielectric.
The intervolation node_numbers generated by the program are shown together with the
rrenetic field vector H for the T¥qq7 —ode at cut-off obtained from the program (see
Fieure 4.12)., Tre concentration of the field in the dielectric material is noticeable.
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Figure 4,11

k-p diagram for the rectangsular waveguide half-filled with
a dielectric material of relative permittivity 2.45., Tne
diagram was prepared from the output of the three-component
magnetic field vector program listed in Appendix IV.
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Output from the single precision version of the
progxam: the 54-th eigenvector corresponding to
Fuidel half-filled with a dielectric material of
maegnetic

Figure Lk.,9,
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40 0.10116E£¢C0 O.76601E40) -0.16802¢-00
Ale QuZBTIAEGOC O0.64577Ce01 =0.23745€-83
42, 0.58%aCEeTL  0,43170£400 G .,00685E-94
43, 0.42751E401 0.,543863E+01 0,42757€-08 L
4a. 0.104CBE0C2 0.119632¢00 04316968 ~04
4B ~0.394326-01 0.,44043£+0} -0.33471E-08
48. 0.B334PES0L ~0,48287E~01 0.2708PE-04
4T7. -0.18068E4C0 OQ.TSITEECOL ~0. 4931 SE-84
A8, O.FIBTSEe0l 0.32039E 401 O.263a1E-0&
4% 0.12118£402 ~0.32923¢-00 ©.19974E-04
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field veator H presented here is plotted in Figure

three-component magnetic field vector
the TMll
relative permittivity 2.45 as in- ¢

mode of the rectangular wqye-(,

k9.
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the TE,q, dominant waveguide mode (curve 52 in Figure 4.11)
agrees very well with the analytical selution [37,41,597]. The
k- curve of the dominant mode is obtained by solving the

following transcendental equation [59,60]

kotan(i(l) = -k, tan(k,) » (%.3)

where | |
k2 = k - g2 (k)

and
kj = ke - B> ‘ ’ (4.5)

Table 4.2 contains the analytical solution as well as "the
values of k obtained from the single and the double precicion

versions of the three-component magnetic field vector program.

=

Two singlef/ precision results are given in Table 4,2 ; the
second sefy was gb replacing the four third-order .
causing the ma Size to increase from 147 to 210. According

L4
to established theory, the accuracy of the solution should
improve witﬂvgncreasing order and increasing matrix size [58].
The percent errors in Table 4,2, however, indicate a decline
in the accuracy. This can only be attribuvted to accumulated
round-off error in the single precision version of the program,
an error which may be expected to increase with larger matrix
size, Th;s gpsérVation is further substantiated since the douple
precision results are the most daccurute, i

- N )
Spurious modes appear in this problem as they had before

in the homogeneous waveguide proﬁlemf The k-p diagram in

/S

- o -
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B k k % k / % k %
analytical double error single error single error
solution N=3 in k N=3 in k N = 3&6 in k
n =147 n=147 ) n=210
0.0 1.1716905 1,17179 +0.008492 1.17209 +0.034096 1.16948 -0,188659
1.0 |- 1.3787439 | 1.37885 40.007695 | 1.3791L +0.028729 | 1.37687 -0.13591k
L~ '
2.0 | 1.8473069 | 1.,84745 +0,007746 1.84761 +0,016408 1.84250 -0,260211
3.0 2luoz597u 2.40266 +0,002606 | 2.40275 +0,006351 2.40001 -0,107692
L,0 | 2.9837841 | 2,98362 -0.005500 ;\Qﬁjéé -0,004159 2.98245 ~0,044732
D
5.0 3.57565880 3.57612 -0.013085 3.57615 -0,012246 3.57587 -0,020075

"

N: the degree of the interpolation polynomials used

n: matrix size

Values of k

Table 4,2

obtained from the sincsle and the double_ precision

versions of the three-component masznetic field vector program
for the dominant mode of the rectangular waveguide half-filled
with a dielectric material of relative permittivity 2.45 .

U
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Figure 4.11 shows that the waveguide mode k-Bp curves No, 52
through 58 intersect’with curves No, 28 through No, 51 thch
represent spurious modes., These intersections result in a change
in the sequence in which the eigenvalues and eigenvectors appear
for different{gglues of B. The eigenfunctions chafge &ery slowix//
with schanges in g and it is therefore g\;dent which discrete
values of the output in the k-B plane should be joined. Note s
that th}ikproblem can only occlUr in inhomogeneous waveguides
since the k-B curves intersect only in the region between the
air and the dielectric lines.

The magnetic field for the TM;, mode plotted in Figure 4.9
illustrates %re accuracy with;whiﬁh/thé natural boundary
conditions are.satisfied., The mode pattern presented there
preserves its character above cut-off, but the H field ‘-
component grows as \B increases,

To obtain all of the points plotted on the k-B diagran,

9 minutes 3% seconds of computer time was required with the
double precision program and 10 minutes 11 seconds with the
single precision program, Storage requiremen%s were 100K and
50K single preeision words respectiveXy. The Fortran IV H
compiler and the IBM 360 Model 75 computer were used. When

the ma%rix size was }ncreased from 147 to 210, the single
precision program requided 31 minutes 45 seconds (CPU) to solve

g <
the same problem, While .these computing times are consideraple,

[

the results are necessary in order to understand the method.

~
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4,4 A Microstrip Problem

The problem of an enclosed microstrip supported by a
dielectric clab is essentially just another form of the NG
inhomogeneous isotropic waveguide problem. However, a micro-
strip can suppo}t low frequency propagation due to the presence
of two tonductors and has generated considerable interest in
recent years [5,6,9-11,61-647,

In order to illustrate how a microstrip problem can be
solved by the finite element method presented\here consider
the. microstrip treated by Daly [9]. The dimensions and
triangulﬁ%ion are shown in Figure 4.13; the data cards are
listed in Figure 4,14 ,

Daly has also solved this problenm by.a high-order poly-
nomial triansular finite element method [9,24,58], ﬁsing a
longitudinal electric and marnetic ficldgvector Comoonents'

(EZ and Hz) formulation, None of the modes reported by Daly ;
are labé;ed non-physical, although he presents results for
three different mode types: the quasi-TEM mode, a "low-loss
surface wave" and the firet waveguide mode. His result; using
a 4-th order polynomial approximation have becn Riptted in
Figure 4.15 in order to cempare fhem with the results obtained
by this method. Daly's surface wave has been dismissed by
Corr and Davies [5], By Bird [65] and by Krage and Haddad [10]
as. a "spurious mode". The results shown in Figure 4,15
substantiate this finding since no k=g curves appear which
match Daly's points for the surface Qaye.

It is apparent from Figure 4,15 that Daly's gquasi-TEM

solution is fairly close to mode number 38 obtained, by this
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Figure 4.13

The dimensions and triangulation of Daly's closed, supported, single
[ ) microstrip problem., The encircled node numbers-.represent the input
s points., The strip is of zero thickness and is located between nodes
- 9 and 12 . The relative permittivity of the dielectric support is 4. .
The uncircled pode numbers are generated by the program using a
_second-order polynomial approxiration, L .
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CLOSED,y SINGLE MICRCSTRIP.eeeX

‘.‘..DALY'S 4 IoCC 1000 O.COO 00500 II'CARCOCOl
* " 1.CCCC 0.CCOC 1.CCCO0  C€.0000 O0.CCCC 1.CCCC 0.CCCO 17 83 CARCCO02 "
. 1 -1.CCCCC © C.5CCCC ) CARCOCC3
2 -1.CCCCC c.ccocc s CARCO004
3 -l.CCCCC ~C.50CCC CARCCOOS
4" c.ccCCC ~C.5CCCC < CARCCCCe
5 l1.CCCCC ~C.5CCCC CARCOQCT
6 l.CCCCC C.CCCCC . CARCOCO8
7 1.CC0CO 0.50CCC CARCCCCY
g c.ccccc c.5cCcCCC CARCOC1G
9 -C.5CCCC C.CCCCC N , CARLCQO11 ~ -
(.10 -C.01CC0 C.cCoce % CARCCC12 3
h 11 c.ciccc c.ccccc ) ; . CARCOQ13
12 c.scccc c.cocce I - ) CARCOO14 )
13 o . C.5CCCC 0.50CCC . CARCOOL1S B
14~ -C.5CCCC 0.5CCCC : - CARCCO16 - o
15. ~0.5CCCC -C.5CCCC . CARCOOLT" - .
16 c.5CCCC -C.5CCCC CARCCOL8 _ .
~ , CARCCClS - ,
2 15 *2 g 4.CCCO "~ C.COCC 4.0000 0.0000 0.0000 4.,0000 CARCCC20 f
15 2 "3 ’ CARCQO021
15 11 9 ] CaRCCC22
.15 11 4 - ‘ - ) CARCQO23
. 1€ 11, 4 , N CARCOO024
16 11 12 » S CARCCO25
1€ €& 12 ) N\ CARCCO26 ¥
Ry é 5 : ) CARCO027 = - L
7 & 13 1.CCCO  C.0CCC 1.CCCC  0.CCCO C.C0CC  1.C€000 - CARCO028 >
12 6 13- S CARCCO29 ~
12 °1C 13 ) ) . CARCCOIG-
8, ,1C 13 : CAR[CCO3]
8 1C. 14 . . ) CARLCO032°
§ 71C 14 . . 'CARCCO023 L
9 2 14 , ; e CARCCO034 Y
.1 2 14 N . CARLCO3S _ .
. ‘ . g CARCCO26 -
Figure 4:14 S

Data cards used with the program of Appendix IV to solve Daly's microstrig problem, -
F
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Figure 4.15

k-8 diacram for Daly's microstrip problem prepared from the

output of the double precision version af the three-component
magnetic field vector prosram. Some of the non-physical modes
have been left out for clarity. The,solution obtained by Daly

has also been plotted for comparisorﬁ. :
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method. However, the eigenfunction associated with this mode

has all of the features of a non-physical mode, e.g. the

boundary condition n.H=0

evidence
obtained

spurious

is not satisfied. Conclusive

that this mode is not the quasi-TEM wave can be

by proceeding on theoretical grounds; the number of

modes with non-zero eigenvalues (32 in this problem)

always equals the number of boundary nodes (32 in this problem)

whigh in this case imcludes the nodes on the microstrip.

This number corresponds to the number of rows and columns that

would be eliminated from the
if the boundary condition

the boundary nodes,

n.H=0

3

assembled finite element matrices

-

were rigfdly imposed at all

The agreement between the first waveguide mode obtained

by this method (curve number 50 in Figure 4.15) and the four

points plotted by Daly is very good. Geometrically, the problem

is a difficult one [66] since second-order interpolation poly-

nomials cannot easily approximate the true fields which are

singular at the edges of the microstrip. For higher values of

B and

to ascertain which points are to be_ joined on the k-8

k it is very difficult, indeed at times impossible

di agl"am )

Where the curve is doubtful, the k-B curves have been drawn

as a dotted line in Figure #.15 . In all probability, this
-

—

—_

___problem would not arise with a more accurate discretization.

However, increasine the matr%g size from second to thifd order
,‘ 'P

is prohibitive since with second-order triangles used ‘there

were 48 nodes, reculting in a matrix size of 144 and an

execution time-of 20 minutes and 39 seconds (CPU), with tgird—

order triangles the matrix order would have been 288.

/
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It is interesting to note that the first two waveguide
modes of the microstrip problem have k-B curves which cross
at about g=1 ., Both of these modes have only a longitudinal
magnetic field #omponent at cut-off and are therefore labeled
as TE modes, Thé difference between tHe two modes is that H,
is antisymmetric about the y-axis for the first one (curve
number 50 in Figure 4.15) and symmetric for the second one
(curve number 51). The next three higher-order modes are also

characterized as TE modes at cubt~off.

b,5 The Oricin of the Spuriouc llodes

The results shown in Figure 4,11 for the dielectric loaded
waveguide have been replotted as B/k versus 'k in Figure
4,16 , Axis of this type are commonly used in the literature
since B/k is a less sensitive parameter than g . In the

\ ,
present case, notice that in addition to crossing the wavefuide
mode curves in the rétion 1.0 < (g/k) < (1/42.545) , the curves
associated with the spurilous modes are nearly parallel to each
other and are closely spaced,

Several finite difference and finite element formulations

»

1
w

of the inhomosfeneous, isotropic waveguide and microstpip
problems have been established [5-127] some of which give rise
to spurious modes similar to those obtained by the finite
element method presented in this thesis., In most cases, the
formulation is given in terms of the EZ and Hz field
components, It is an)annéying feature of all of these formula-

tions (including the present one) that the spurious modes are
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O O— Ce- ~Or dielectric line
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™ 7
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01
TE> 11
) ~ Figure 4,16
. Plot of B/k versus k for the rectansular waveguide half-
filled with a dielectric material of relative permittivity 2.45.,
The diagram was prepared {rom tne output of the three-component v

magnetic field vector vrogram listed in Appendix IV, The curves
. are desifnated as in Figure 4,11,
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$
difficult to separate from the physical solutions since the

dispersion curves contain two intersecting classes of modes,

‘According to Corr and Davies [5]

"The cause of these spurious solutions is believed
to be in the indefinite nature of the variational
expression, (7). Similar extraneous-solutions are
reported by Harrington [347 that occur for an indefinite
system but not for a definite system, The identification
of the Spurious mode class was made by investigation of
slab-1loaded waveguide structures. The modes which
propagate on this type of structure are well known[j&Q"
however using the formulation described, it was found
that as well as these physical modes, spurious modes
were also present of identical appearance to those in
Fig. 11, It was found that the number of these modes
was equal to the number of mesh points on the air-
dielectric in%erface, and that each mode could be charact-
erized by the number of chanses of sien of the values of
g across the interface. Again, this number of spurious
solutiong asrees with Harrington's findings [34 y wWhere ,
one free' boundary vpoint gave rice to one spurious solution,
and two points to two spurious solutions.," 1

"Apart from the considerations siven, it would be very
difficult to account for these modes pnysically; their
number, absence of low-~frecuency cutoff, and their rapid
spatial dependence of field components along the dieclectric-
air interface all point to their being nonphysical.,"”

Corr and Davies derived finite difference equations from "the
variational pression for an inhomogeneously filled structure"
originally é?%?ﬁ\by Berk [13]; Berk's variational expression
is in fact an energy furictional in terms of the longitudinal
field components E, and HZ. This functional is then modified
by applying the "divergence theorem" [5]2 in order to remove
the éecond dérivative terms. Although not mentioned by the
authors, the procedure involve€>the sgpting of a surface

) . , .

integral to zero, and hence\introduces natural , boundary -
{

conditions into the finite éifference equations.

1equat10n numbers, figure numbers and reference numbxrs refer
to those given 1n the paper by Corr and Davies™ ref rence [5])
2a slip of the tongue by the authors; it is in fqgt Green's
first identity that as applled




The results in {%is thesis do not sup orr #nd Davies'

. conclusion that the cause of spurious modes 1 fridefinite

\ nature of the functionall. The functional used in the present
method is clearly definite, or possibly positive semidefinite,

for isotropic media., The number of spurious modes emerging
from the solution of the matrix eigenvg}ue equation varies with
the matrix size regardless of the formulation used. Since the
spurious modes have no low frequency cut-off, one possibility
is that they are non-unique solutions. On the other hand, one
accepts without hesitation the increase in the number of
emgrging waveguide modeg. The reader is reminded here of the . .
uniqueness proof given in section 4 of Chapter I1. According
to this section all solutions are unique, except the ones for
which the frequency is zero, provided that the surface integral

in equation (2,66) vanishes for certain boundary conditions. .
.These conditions were given in equations (2.67) through (2.69)

L

and were obtained under the assumption that the surface integral
vanishes if the integrand vanishes, In the functional (2.37) - Q
for.the curleurl equation, a similar surface integral was set
to zero and resulted in the natural boundary conditions given
in section 3 of Chapter fl. These natural boundhry“conditfgns
were the same as those which gccured in the analysis of
uniqueness, However, it should be pointed out that in order for
the relevant surfacé integral term to vanish over the boundary
surface as a whole,-the integrand need not be identically zero

everywhere on the boundary, 1t is possible to have a non-zero

‘integrand and still obtain an integral of zero, providing of

1the indefinitness in the E_,H_ formulations arises in

conjunction with a singularity at the air and dielectric lines-

on the dispersion diagram,
\\
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4]

course that the integrand changes sigﬁ. In such a situation,
the‘solution would be unique, but would satisfy some boundary
conditions which are not desired. Physically, the solutlons
obtained with such boundary conditions would satisfy the
condition that no net power may floypacross the boundary surface,
but that power may flow inward ®¥r outward ovér partial sections
of the boundary. Solutions of this type satisfy Maxwell's
#uations and the curlcurl equation, of course, but they do not
- satisfy the electromagnetic boundary conditions associated wigﬁ
perfect conductgrs.
Te: illustrate the above argument, consider for example
mode No, 22 obtained for the empty sguare waveguide problen

discusred in section 4,2, The H H and HZ values at the ;

x' Ty
interpolation nodes for eigenfunction ko, 22 at B=1 (see
curve b in Figure 4.,8) are shown in Figures 4.17a through 4.17c
as they were produced by the three-comrponent magnetic field
ector program of Appendix IV. The magnitude and direction of
//{;e transverse component of H at the interpolation nodes are
v shown in Figure 4.18, It is clear that H is not tangential
at the side walls of the guide.

Consider now the surface integral S.I. "around the guide

walls which was {set equal to zero in derivimng the rnatural

boundary condifions, For a unit length in the z-direction one

S.I. = & [Tx (& teur1 H)].0as

=2 ¢ [7 x (& Tcur1 ) ].H A2 q (4.6) 1;

. . . . ot "
Since the medium in this problem is two-dimensional empty space
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Figure 4.17a

Values of H_ returned by the three-component f)
masnetic field vector oprocram for mode No,22

of the empty sauare wavefuide problem. The
values are shown at the interpolation nodes,
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0.02 9.33
0.07 =5.06
5,43 3.53
Q "14’030 -O.,'l.()
-11,53 12.49
e,

(R

Values of H

y

T

18,94
-3.79

1,92
-3.79

18.95

{

12.“’9 -11-53

-0,19  -4,30
3.53 | 543
-5.,06 0,07
ﬂ;!?; 0.02

Figure 4,170 »

returned by the three-component
magnetic fj%ld vector program for mode No,22
of the empty square waveguide problem. The

values are shown at the interpolation nodes,
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Figure 4.,17c
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"2.00

returned by the three-component

magnetic field vector program for mode 10,22
of the empty square wavecruide problem, The
values are shown at the interpolation nodes.
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Figure 4.18 '
‘ Magnituée and__direc‘tion’of the transverse

>

component of H at the interpolation nodes

for mode No,

22 of the ewrpty square wave-

guide problem, See also Figures 4.17a & b,
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and since Hx(x, ==Hy(y.x) accord;dg to the results shown in
in Figures 4.17a and 4.17b, the z-component of curlH and
hence Ez‘ must vanish at the boundary. Therefore, the surface

integral can be rewritten as
OH OH
= _Z —2
S.I. =+ ¢ [n,(pH + S ) +n ( 5y 5}5’)]1{2 dl (4.7)

In order to evaluate this integral, the partial derivatives of
Hz need ta be evaluated at the interpolation nodes by
differentiating the interpolation polynomials over each tri-
angle; the results of such differentiation are shown in

Figures 4:19a and 4.19b, Notice that there is a diécontinuity
in the first derivative of the solution at the common triangle
edge., The intepration can be carried out for each side of the
square by using the 4~th order Newton-Cotes quadrature forrulae
for one-dimensional integration., Startting with the corner

labeled a in Figure 4.18 and going clockwise, one obtains

b b}{z c éHZ
-f(}{x+ 3?(”) H,dy +£(—C? + Hy) H,dx

H

S.1.

a
a . oH a dH

2 -f(—2 4 d
+£(Hx+ Y )I{Zdy' g( 5y Hy) HZ X

[t}

+6.,43 +6,43 6,43 -6,43
= 0 ” (4.8)

Therefore it can be seen that the surface integral vanishes
for the entire boundary but not for each fndividual triangle
edge., The integrals on the common triangle edge have been

N L

found to be equal, i.e.

T+ Sy on (M2 g )gn a1 -

Ay (et 5B -y (2 + )T, 41 =

c d3H, dH, , ‘

e 550 Tyl IR, Al (4.9)
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Values of bHZ/bx at the interpolation nodes for
the empty equare waveguide problem, The derivative
is discontinuous at the common triangle edge and
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The higher order spurious modes returned by the progrém
have similar properties in this case as well as for thg
diglectric loaded waveguide problem of section 4.3 . There
is no doubt that these modes are non-physical solutions,oand
they appear only as mathematical solutions, It appears -
however, that not enough is known about the variational finite
element method with respect to the ways in which natural
boundary conditions are derived. No treatment of the finite
element method [29735,67] known to this author mentions the
possibility of non-physical solutions arising from the dropping
of the surface integral term In the way indicated above., It is
likely that in E, and HZ finite differgpce and finite
element formulations of %he dielectric loaded waveguide and
microstrip problems the spurious modes reported by the authors
occur for reasons similar to that given here [16].

Assuming that the occu?ronce of spurious modes is caused’
by the reason given above, it should be a relatively easy task
ucto filter out the non-physical solutions., In the present method

one could enforce the boundary condition n.,B=0 explicitly
a% each boundary point by eliminating rows and columns from
}he matrix eirenvalue eguation. Thus, for the,empty square
waveguide problem with 16,boundary interpolation nodes,{10 .
independent conditiong can be added due to the symmetry of the
problem, Ten rows and columns and hence 10 modes would be
eliminated, In this way the spurious modes No. 22 through o,

31 could be eliminated from the spectrum since they do not

»

satisfy these conditions., @

The elimination of spurious modes No. 1 through No, 21

requires a different treatment, These solutions satisfy the
]
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condition curlH=0 on the boundary and belong to the null
space of the curlcurl operator, but are not valid solutions
since they occur with zero corresponding eigenvalue. They may
therefore be eliminated by finding the rank of the coefficient
matrix [St] in equation (4,1) and rétaining only the
independent rows and\columns.

It is interesting to note that non-physical modes have
not been reported in vector variationpl fofmulations using a
restricted set of trial functions which satisfy the boundary

conditions over rectangular and circular regions [19-217,

La

hL,6 A Homog&neous,‘Mdgnetjcally Anicotropic Waveguide Problem

Consider a.rectangular waveguide with a 2:1 width to
height ratio completely filled with a ferrite mﬁierial
characterized by & relative permittivity of 2,0 and a relative
permeability tensor @, given by

3.0 0,0 +j0.8
fp=| 0.0 1.0 +j0.0 . (4.10)

-j0.8 -j0.0 3.0

It is assumed here that the electromagnetic properties of the
materigl do not vary with frequency, although this assump%ionf
is not valid in general for ferrites [45-477,

Data cards to solve this problem using the computer
program in Appendix IV are shown in Figure 4.20. A map of the
“assembled points is presented in Figure 4.21 1indicating the
relative locations of the interpolation nodes in the two

sixth-order triangle finite element model. The program output

aq
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" \ *aoFERRITE-FfLLED RECTANGULAR WAVEGUIDEee X 1400 MloOO ~1+ 000 1000 T-

* _ 3.0700 CelHGD 10000 * Ce8I0C Ce 0000 30000 00000 44 25
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- Data cards for the ferrite-filled rectangular waveguide problem,
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THe map, of the assembled points returned by the three-component

> magnetic, field vector program showing the approximate locations
of the ¥nterpolation nodes. The problem solved is a ferrite-
filled rectancular waveguide using two sixth-order triangles,
The circled nodes lie on the x-axis.
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for the 58-th eigenvector is reproducéd in Figure 4.22 for
B=1, The complete k-p diagram prepared from the program
output is shown in Figure 4,23,

Analytical solution can be obtained for the dominant =
waveguide mode and also for some of the higher-order modes.
A characteristic of these modes is the lack of an Hy field

component, On the k-p diagram these modes are gymbered 58,

* 60 and 64 respectively. The procedure to obtain the analytical .

solution for these modes follows,
The curlcurl equation in terms of the magnetic field H

is given by
curl (e lcurl f) - w?gH = 0 (4.11)

The followiry assumptions may be made:

*

H =0 ;
a) y

b) no variation occurs with respect to y ;
c) the fields vary as exp(-jpz) in the z-direction;
d) H, has a phase factor exp(—jg) relative to H,  and H_.

y
The relative permittivity is 2.0 and the relative permeability

-

tensor is given in equation (4.10), Equation (4.11) then

%
reduces to ’
B2H. - Béﬁg - k?z(}H 4+0.8H ) = 0 (4.12%°
X dx x e .
OH d2H y )
gbi(— bxgi- k?sz8ﬂx+y%) =0 (4.13)

Substituting for H, in equation (4.13) from equation (4.,12)

and collecting termz, yields the following second-order

_differential eauation in Hz

ba Z 16 2 2 ] ‘

A D - H =0 . .1 ' k2
}{ET + (——Ez—ﬁ B2)H, ‘ (B,14)
]
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Figure 4.22
Output from the three-component magnetic fipld vector program o?
Appendix IV showing the 58-th eigenvector at =1 for the ferrite-
filled rectangular waveguide problem. The circled point numbers

correspond to the circled nodes in Figure 4.21, H and H at
these points are plotted in Figures 4,24 and 4,25 respectively,
{
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k-8 diaeram prepared from the output of the three-component magnetic
field s~ector program for the ferrite-filled rectangular waveguide problem.
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o

The boundary condition on H 1is given by equation (4.2);

under the assumptions,listed above, this reduces to
~= + 5" 8H, =0 (4.15)

and must be satisfied at x=x1, Assuming a solution of

the fellowing form

H, = Asin(2nnx) + Bcos ($nmx) n=1,2,3,... (4.,16)

in equation (4,14}, the foliowing dispersion relation is

obtained

k2=T6'?—7—2-[82+ (ng)2] Q n=1,2,3, ---- (4'17)

A comparison of the analytic solution with the finite
element solution K has been made. The percent errors in the
wave-numbers computed by the finite element method are given
in Table 4,3 for the dominant mode (n=1) and two higher-
order modes (n=2 and 3).

The values of H, at the interpolation nodes which have
been circled in Figures 4.21 and 4,22 are listed in Table 4.4
for various values of the propagation constant. To obtain thé
analytical solution, substitute for H, in equation (4.15)

from equation (4,16) and set x=x1; one obtains

B = (1.6B/3m)A for n=1 (4,18)
B = ~(37/0.88)A for n=2 (4,19)
"B - (1.6B/9m)A for n=3 (4,20)

v

where A. is an arbitrary constant. Thus, for n=1 (dominant

mode) the longitudinal magnetic field is given by




—

B kq ~ % error* k, % error# k3 % error#
1 '0.788758 1.74x107 " | 1.39655 1.64x107° | 2.06006  0.956

0| 0.665367 2.56x10-4 1.33076 1.7Ox10—3 2.01606 . 0999
+1 | 0.788758 1.74x10-4 1.39655 1.6L;x10"3 2.06006 0.956
+2 1 1.07723 2.42x10-4 1.577554 1.35x10-3 2..8662 0.838
+3 | 1.43441 3.89x1o:LL 1.84005 1.32x10° | 2.38326  0.717
11,8209 0.06x10 | 2.15648 1.17x107° | 2.62255  0.164
+5 | 2,21999 0.59x10—u 2.50133 1.15x10°° | 2.92135  0.378"

#analytical solution: k;? T :22[52+ hqg)ZJ

The wave-numbers
component magnetic
64 respectively in Figure 4,23) for the ferrite-filled
The percent errors are given.

and No.,
rectangular waveguide problen.

Table 4.3

%ield ve 2

returned by the three-
ctor pfocgram (modes No. 58, No, 60

2

cet
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H, = A[sin(3nx) + (1.68/3m)cos(dmx)] (k.21)

The arbitrary constant A may be chggen in such a way thét
the finite element solution matches the analytical solution
at x==;-1. The percent errors so obtained are also given in
Table 4,4 , The agreement of the two solutions is quite ggod.
The Hx and Hz‘ values at the interpolation nodes
circled in Figure 4,21 have been plotted in Figures 4.24 and
4,25 from the program output. Apparently H is not tangential
at the metal boundary and shows a reciprocal behaviour for \
B=+1., Fields of tﬁis type are expected from ferrite-filled

waveguides with transverse magnetization [u5j.

The magnetic flux density vector components are given by

9

BX = 3,0H, + 0.8 H, (4,22)
“H =0 | i,

By v (4.,23)

B, = -j(0.8H, + 3.0 HZ) - (4,24)

Using the results from the finite element program, Bx and

4

Bz” have been calculated from Hx and HZ at the interpolation
nodes and the results are plotted in Figures 4,26 and 4,27 .
Note that B is zero at x=#£1, i.e. the condition R.B=0
is satisfied at the metal boundary.

The matrix size for the ferrite-filled rectangular wave-

4 .
guide problem was 147 and required 9 minutes-43 seconds to

‘obtain all of the points en the k-p diagram,

The example given here shows thut the three-component

magnetic fleld vector program is capable of solving homogeneous,



HyGeem1) | Hp(x=-2) [ H (x=-2) | H (x= 0) | H(x=43) | H,(x=+3) | H,(x=+1)

B and and and and and and and .
% error®*| % error®*| % error®*| % error®*| % error*| % error*| % error* .

-4 .3323 -4,1199 -2,8028 -0.73543 | +1.5289 +3,3845 +4,3323

- 0.000 -0.007 0.010 0.006 0.020 -0.010 |-  0.000
-5.1357 -, 4480 -2.5674 +0.,00006 | +2.5676 +H, 4081 45,1358

° 0.002 -0,006 0.019 | ----- 0.012 -0.008 0.000

- -4,3323 -3.3845 -1;;289‘ +0,73546 | +2.8028 +,1199 +4,3323

+1 0.000 -0.010 0.020 | 0.002 0.010 -0.007 0,000
-3.1721 -2.,2089 -0.65313 | +1.0771 +2.5187 +3,2859 +;.1721

2 0.000 -0.013 0.029 -0.007 0.003 -0.008 0,000
-2.3821 -1.4568 ~0.14028 | +1.2133 +2.2418 +2.6700 | +2.13821

*3 0,000 ~0.,030 0,081 -0.009 0.001 -0.017 0.000
-1.8767 -0.98929 | +0.16511 | +1.2757 +2., 0424 +2,2640 +1.8775

ad 0.043 -0.,080