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Abstract 

Spectral analysis (primarily in terms of spherical 

harmonies) is applied to the atmospheric dynamical equations 

in general, to truncated barotropic systems in particular and, 

in addition, to the global geopotential height field of the 500 mb 

surface for September 1957. 

viii 

The complete set of equations governing adiabatic 

frictionless flow transform into the spectral domain, and are 

energetically consistent under practically any truncation pro­

cedure. Analysis of truncated barotropic systems leads to a 

reinterpretation of barotropic instability in terms of the frequency 

of momentum transport. 

There is no evidence that the fluctuations of spherkal 

harmonie waves at 500 mb are global in char acter, but the lack 

of data in the southern hemisphere limits the validity of this con­

clusion. Hemispheric analysis of the geopotential height field at 

500 mb for the northern hemisphere indicates that the planetary 

waves are composed of a quasi-stationary component and a rapidly 

retrogressive component whose phase speeds are a large fraction 

of the theoretical Rossby-Haurwitz phase speeds. 
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1. INTRODUCTION 

The systematic investigation of the properties of the 

meteorologically. significant wave motions in the atmosphere has 

proceeded apace since the pioneer work of Rossby, Haurwitz and 

Bilinova in the la te 19 30 1 s and earl y 1940' s. By introducing the 

1 

"beta plane" approximation, Rossby {1939) formulated the vorticity 

principle which governs the motion of long waves in a barotropic 

atmosphere. Haurwitz (1940} and Bilinova (194~) extended this work 

without the "beta plane 11 approximation, using spherical harmonies, 

and obtained the corresponding phase speed formula for barotropic 

waves on a spherical earth. Craig ( 1945) and Neamtan ( 1946) found 

a particular solution of the non-linear vorticity equation in terms of 

spherica1 harmonies. Kuo ( 1949) considered the barotropic problem 

more realistically by permitting variations of zonal wind with latitude, 

which introduced the possibility of developing unstable waves in this 

current. Extensions of the physical madel from one which conserved 

abso1ute vorticity to orie which conserved ·potential vorticity led to the 

classic studies of the baroclinic problem by Charney (1947), Eady (1949) 

and Fjortoft ( 1950). In the se studies the essential physical relationships 

between energy conversion from potential to kinetic, and the correspond­

ing motions necessary to achieve the conversion, were demonstrated. 

As well, the vertical wind shear was shawn to be the predominant para­

meter for the stability of such motions. 

A major limitation of these studies was the mathematical 
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necessity of linearizing the equations of motion. This process consists 

of choosing a dyna,mic and thermodynamic state which is a solution of 

the equations; then considering small deviations from this state, 

determining whether these deviations tend to grow, decay, or remain 

the same. In principle one is interested in the deviations and their 

behaviour, since they constitute the greater part of the day-to-day 

variability of the atmosphere. In fact, however, linearization shifts 

the emphasis of the study to the basic state, and as soon as the 

deviations from the state become large (e. g., for an unstable basic 

state) the linearized equations break down. Also, there appear to 

be many physical systems which are stable to small perturbations, 

but unstable for large perturbations, and hence beyond the scope of 

linearized equations. 

One solution to this difficulty is to abandon the analytical 

study of the equations of motion and to integrate them by numerical 

grid-point techniques. The fact that the equations are non-linear does 

not present any fundamental difficulty. This approach was initiated 

by Charney and collaborators in the late 1940' s, in order to do actual 

forecasting of upper level wind patterns. Since then, the technique 

of numerical integration has been applied to many physical models 

of the atmosphere, both from a forecasting and a general circulation 

point of view. These models have done remarkably well in reproducing 

the atmosphere' s complex motions, at least in a statistical sense. 

However, most of the models simulate the atmosphere in having very 

many degrees of freedom, so that the physical processes represented 
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by the non-linear terms in the equations are not subject to much 

more particular scrutiny than if one looked at ~ctual atmospheric 

data. 

There is another approach to the problem. In 1954, 

Silberman presented a method by which the advection term (a non­

linear term) in the barotropic vorticity equation may be evaluated 

3 

in the form of a Fourier transform. In his method, the fields of 

dynamic variables, rather than being represented by a finite number 

of grid points, are represented by the amplitudes of a finite number 

of functions; in his case spherical harmonies. The most obvious 

advantage of this method is the explicit continuity in space of the 

dynamic fields. The disadvantages lie in the necessity of computing 

the initial amplitudes from the original grid of data and the computat­

ion of the so-called "interaction matrices" which represent the non­

linear advection term. 

Lorenz (1960a}used Silberman's idea to study barotropic 

motion on a flat earth. He discovered the remarkable property that, 

if one transformed the equations into a spectral form (i.e. , to a set 

of equations describing the variations of the amplitudes of specified 

spatial functions), then not only were the conservation theorems 

(i.e., conservation of kinetic energy and mean square vorticity) valid 

for an infinite set of amplitudes, but also for a highly truncated set of 

amplitudes. Further, by considering only the very minimum number 

of degrees of freedom necessary to representa physical process, one 
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could integrate the non-linear equations of motion analytically. 

Platzman ( 19 60, 19 62) applied spherical harmonies to the barotropic 

vorticity equation in the manner of Silberman and proved that the 

conservation theorems for truncated systems hold in this function 

domain as well. He also did a s.ystematic delineation of those 

truncated systems (applied to the barotropic vorticity equation) which 

could be integrated analytically. By applying the spectral method to 

a system of equations governing the rotating dish-pan experimenta 

Lorenz ( 19 62) was able to reproduce the curve of transition from a 

Hadley to a Rossby regime obtained experimentally by Fultz ( 1959), 

and also explain to some extent the hysteresis effect of the transition 

by a non-linear process. 

The method of spectral representation of the equations 

of motion, because of its conservation properties, was recognized 

as being very useful in the field of numerical weather prediction. 

Baer (1964) integrated a spectral barotropic model from generated 

initial conditions and demonstrated the feasibility of this process. 

RecentlyEllsaesser {1965) has integrated a spectral barotropic model 

from actual initiaî conditions with good resulta. 

The spectral method has also found its way into general 

circulation experimenta. Bryan ( 1959} considered a highly truncated 

spectral version (13 degrees of freedom) of a two-level baroclinic 

model with heating and friction, but found that the number of degrees 

of freedom was not sufficient to produce a definite life cyçle in the 
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disturbances. However, his analysis of the horizontal momentum 

transport in the model pointed out the importance of the 11differential 

j3-effect" in determining the direction of momentum transport ( see 

chapter 3). Robert (1965) applied the technique to a primitive 

equation mode!, to demonstrate its feasibility for this type of 

equation, and Peng (1965) was able to provide a reasonable explanation 

for the up-gradient heat transport in the lower stratosphere by con­

sideration of a truncated spectral form of the equations of motion. 

There are two major applications of the spectral method. 

One may take advantage of its conservation properties and apply it 

with high resolution to produce better prediction or generai circulat­

ion models. More importantly, one may also apply this method with 

very low resolution to specifie physical models to gain insight into 

the non-linear processes inherent in the equations. 

The application of spectral representation to observational 

studies of the atmosphere has proceeded at a much slower pace than 

the theoretical studies because of the lack of adequate data coverage. 

One-dimensional Fourier analysis at latitude circles has been used 

by many authors, Boville (1961). Eliasen (1958}, etc., to determine 

the distribution of horizontal kinetic energy as a function of wave­

length as well as to measure the contribution of various scales to 

the maintenance of the atmosphere 1 s budgets (e. g., heat, momentum). 

Whether this approach can adequately define the dominant scales of 

motion is questionable, because it lacks the determination of a wave-
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length in the north- south direction, In fact, in most studies the 

large variation of the phase angle of a given wave with latitude 

indicates that the dominant scales of motion are considerably 

smaller than those which would be determined by counting the 

6 

number of waves around a latitude circle (Phillips, 1963, pp. 161-162). 

One of the first attempts at representing atmospheric 

fields by two-dimensional waves was made by Haurwitz and Craig 

( 195 2). Lac king data even for a single hemisphere they resorted to 

a statistical best fit method of analysis in terms of spherical harmonies. 

The results were disappointing in the sense that no simple model could 

account for the behaviour of the waves. However, they did show how 

remarkably few waves were necessary to represent the large scale 

features. Apart from isolated attempts at using Chebyshev poly­

nomials for the :representation in the north-south direction, spherical 

harmonies have been used to analyze data fields into two dimensional 

waves. ' Most recent observational studies (Elias:en and Machenhauer 

{1965), Deland {1965)) have used data from the Northern Hemisphere 

and assumed either symmetry or antisymmetry for the missing 

SouthernHemisphere data. One attempt has been made at a global 

analysis of the 500 mb height field, using the data obtained during 

the IGY {Steinberg, 1965). {A detailed comparison of the last three 

studies referred to will be made in a subsequent chapter; suffice 

here to say that a reasonable picture of the behaviour of spherical 

harmonie waves is emerging.) 
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The present study is divided into four sections: 

1. The transformation of the general dynamical equations 

into spectral form, and a study of the truncation properties 

of the energy equations. 

2. A detailed study of highly truncated systems representing 

barotropic motion with a view to providing sorne insight 

into barotr opic instability. 

3. A study of spherical harmonie analysis techniques and their 

application to global, as well as hemispheric, analysis. 

4. An attempt to applythe concepts formulated in ( 2) concerning 

the non-linear behaviour of waves to the observed behaviour 

of these waves. 



8 

2. THE DYNAMICAL EQUATIONS IN SPECTRAL FORM 

ln this chapter the dynamical equations of atmospheric 

flow will be transformed into their spectral form using spherical 

harmonies. The corresponding energy equations in spectral form 

will be studied to determine the conditions imposed on a truncated 

system in order that energy (potential plus kinetic) be conserved. 

The Spectral Transformations 

By Helmhotz' theorem any horizontal wind field may be 

represented as the sum of anirrotational field and a non-divergent 

field, i.e. 

2. 1 

where Wc; : _,k. X "V tf 2. 2 

Here 'f is a stream function, X is a velocity potential and .fi. 

is the unit vertical vector. From these definitions it follows that 

the vertical component of relative vorticity (hereafter referred to 

simply as vorticity) and the horizontal divergence are given by 

2.3 

D 
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The components of the horizontal wind field are then 

U..x. = 
J li X. 

L<v-- :::. 1 ;:;if.; - èJe tt sit-.. e ())... a.. 

2.4 

V x 
_ _j_ dx v $L' 

1 ()if-' 
:::: ae - a.s~e jJ.. a., 

where e is colatitude, À is longitude and Q.. is the radius of 

the earth. 

U sing this wind representation, the horizontal equations 

of motions in a relative coordinate system (À,e,p,t) 

may be transformed into the vorticitY' equation and the divergence 

equation, 

d) = 
"dt 

2. 5 

-17"('\o/,) -v'( ~·Wx) + \71f/. l7 .5 

- w ";)D 
?Jp 

- ~xvx.,.vf + vtp.vf + s~ + fS 
2.6 
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where t is the Coriolis parameter ( 2.!2. cos 8) UJ is 

( , . , -- f;o ) ':' the vertical motion in pressure coordinates .......... .:::.t-
~t 

and l is the geopotential of a constant pressure surface. These 

two equations coupled with the continuity equation, 

+ 0 2.7 

the adiabatic therm~dynamic equation ( e is potential temperature); 

2. 8 

and the hydrostatic equation 

() i _,.. - 0 2.9 
'Jp 

forma complete set of equations governing adiabatic, frictionless 

flow. 

These equations willnow be transformed term by term 

into the spectral domain in terms of sphericë~:l harmonies. It will 

become apparent that the expressions obtained in this process depend 

entirely on the geometrie configur-ation of the individual terms. So 

that, having worked through each term in the vorticity equation, most 

of the terms in the ether equations can be transformed by inspection. 

As a first step, sorne elementary properties oïthe 

>!< it is the total derivative; while ~t is used to denote the horizontal 

derivative, i.e. at constant pressure. 
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spectral functions will be considered. Let 

denote a spherical harmonie of degree '"Y\ and rank "rn Th en, 

if )... and e denote longitude and colatitude respectively, and a., 

is the radius of the earth; 

where V''l. -= 1 ( d (s~ e d ) + 
o.?- .seM. e ae ae 

and P.: is a normalized associated Lengendre function; 

-,.,., ( )nt p:: p ..,..._ = -1 ... 

The are othornormal in e 

--

so that the corresponding spherical harmonies are orthogonal over 

the surface of a sphere; 
'}Jr7( 

;/;. j f y*:, yj s(.... ed&d.À 

0 0 

2. 10 

2. 11 

2. 12 



where the asterisk denotes the comp1ex conjugate. The index "">'t 

may be any positive integer or zero; -m may be any integer. 

P;::: However, as can be se en from the definition of the ,~ , if 

P?;; 5 o So that 7Yl is usually restricted 

to range from - 1'1 to +'l'( 

The notation may be simp1ified by following Platzman 

{1962) in defining a comp1ex wave vector '( = "Ylr +.Î. Ï"Y'\}{ 

In this notation equation 2.10 and 2.12 become 

V 2 Yr = - 11.y ( "Ylr + J) Yo a..2 

l7T' 7T 

2~!1 * ~c( yc( ~ s~ a d.a dJ.. -- ft 

c 0 

Further properties of these functions are given in Appendix A. 

12 

The expansion of the stream function and the potential 

function in terms of spherical harmonies gives 

x 
where the spectral amplitudes are defined as, 

2. 13 

2. 14 
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21! rr 

= 1 Jf x Yo"* sV,. e J.e dÀ X;r 27Ta?-
0 0 

Because of equations ( 2. 3) the vorticity and divergence are simply 

related to these amplitudes. 

D 

where 

The spectral amplitudes are in general complex. In order that the 

representation be real the amplitudes m-ust satisfy, 

where 

* tfr = 

-rn~. 

= (- 1) x 't* 

This result is obtained by taking 

the complex conj.ugate of equations (2. 14). 

Other derived parameters of the flow can be represented 

simply in terms of the spectral amplitudes. 

2. 15 

2. 16 

2. 17 



The mean zonal angular momentum M 
:JJï rr 

M = 4~1 fa. usi...e) si.... ede d).. 

0 0 

the mean horizontal kinetic energy E 
2iT" 1r 

Ë = 4~ J f f(~·'o/) si.... ade dÀ = 
0 0 

-the mean square vorticity :s2. 

l.'TT 7T 

~:: ilrf f Y s<...ed.e.O. 
0 0 

14 

2. 18 

2. 19 

2.20 

In non-divergent barotropic flow all of these quantities are conserved 

(P1atzman 19 60). 

Integration of equation (2. 7) with respect to pressure 

from p = 0 to p with the boundary condition that W = 0 at 

p=o res u1ts in, 

f f V'>X dp 
0 

'r12x so that substituting v 

w-

from 2. 16~ 2. 21 becbmes, 

2. 21 

2. 22 



15 

where the bar denotes integration from p = o to p 

The process of t'ransformation consists of expressing 

the quantity in terms of its spectral amplitudes; multiplying by 

and integrating over a sphere. 

Hence, 

Transforming, we obtain 
'):1(' ,.,... 

,~ J rA Y~"s""-B<Le d.).. = 
0 0 c 0 

which, in view of the orthogonal relations 2. 12,becomes 

A't = 2. 23>!< 

Substituting for lf ·in the above expression, we obtain 

E = 

Transforming as before, we have 

:!,< See footnote p. 10 
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2. 24 

F := -\lX· V{= -(-d_ ;;)(-~ ;:) = 

Substitution for )( yields 

which, under transformation, becomes 

As shown in Appendix B, the integral in the square brackets is non-

zero only when 'Yiot::: nt:! 1 

Thus, 

2. 25 
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Transforming, we have 

11'Ylot À 
2Jl .2 co< )(c{ Ct;s e Po< e 

o( 

17 

As in the previous ~erm the integral in the square brackets reduces 

to two terms ( see Appendix B), 

The above components constitute what may be considered 

as linear terms, in the sense that no products of amplitudes are 

involved. 

Substituting the expansions for if/ and .5 we have 

B = 



By renaming dummies 0( , (3 ; adding and dividing by ty.ro, the 

following symmetric form is obtained; 

. 
B= .J.. 

Transformation of the above expression leads to 

By 
. ~.2_ Yo< 'f;S H«~f3 = ..1-

..: t3 

rr 
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2. 27 

where H"'~~ - Co~- Cg J Pr (mo~. p<>< d. p~ mtB /1:; d Pot) dB; ,..,.,(l(+'n?_. =ln)" - dB .2. 0 dB 

/-1 c(. 'lr' p = 0 otherwise. 

In 2. 27 the summatioh takes place over all possible 

values of c< , (3 The Ho<. 'lf p for. any particular corn-

ponent measures the "effectiveness" of an interaction of components 

~ , tj ~ in producing a change in a third component 'f;r 

through non-divergent advection of vorticity. This transformation 

was first performed by Silberman (1954) and later extended by 

Platzman (1960). Silberman has presented analytic formulae for 

the evaluation of H ~ 'Il f3 ('see Appendix B). 

Application of the same technique as above results in 

2.28 



19 

where Ic<Yts= 

I ct r (J = 0 otherwise 

and, 

= 2. 29 

Tf' 

where Jo( '11f - Cc< C;s f po( Py Prs .s:.,.,.e d.e 
0 

~Y~ = 0 otherwise; 

and as before, the bar denotes integration from p:: o to p 

Both I ct 'll"f1 and ~y 13 are subject to calculation using 

analytic formulae and their evaluation is presented in Appendix B. 

Kubota ( 19 60) fir st considered the se transformations. His evaluation 

of I o1. -r j3 is somewhat different however. 

Thus far, three different forms of interaction matrices 

have appeared, i. e. Ho<~ j3 :J I ~ Yf3 , .Tc< l( f3 The se three, it 

will be seen, are sufficient to describe all of the terms in the 

dynamic equations. These three interaction matrices, in fact, 

repre sent the geometrical configuration of the three types of products 

in the equations, i.e. the scalar triple product, the scalar product, 

and the ordinary product. So that it is evident that G:: - (V2 <.}')(v7.X) 
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transforms into 

G" - 2.30 

/ ( dW J _ dW d ) d')( 
- a.'l. .s~8 n ae ;;;; al. J p 

Substituting for w > X we obtain 

which through transformation becomes, 

2. 31 

.,.. 

where L o1. 'lffJ =!·. P'lf ( W« ~ d.f?g _ 'WI;S P; d. Pot) d.a ; m « +- m,..s = m,-
o dB d.B 

otherwise 

This is not a new interaction matrix because in fact 

• 
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substituting and transforming, we obtain 

2. 32 

It has now been shown how each of the terms in the 

vorticity equation can be transformed into the spectral domain. 

The non-linear terms are represented as infinite sums of selected 

spectral amplitudes multiplied by an element of an interaction matrix. 

All of these interaction matrices are' subject to calculation using 

analytical formulae. The remainder of the dynamic equations may 

be transformed into the spectral domain using the same techniques 

as above with the following expansions for the geopotential and 

potential temperature, 

2.33 

e -

The only term in these transformations that requirès further analysis 

is the Laplacian of kinetic en er gy. In equation 2. 6 \} 2 
( ~ o/ • 'V/) 

has been split into three parts which will be considered separately. 
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or written in terms of lf , X. using 2. 4, 

Now suppose ·• then it follows that 

= - ~ '" {x}., Y'~ 
}.( 0.. <:1. • 

2.34 

now, substitution for x from 2. 14 gives 

Transforming, we obtain 

Substitution of the above expression into 2. 34 leads to 

• > 
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2. 35 

Similarly, we obtain 

2. 36 

Using similar arguments as above, the cross terms 

may be expressed as 

= 2. 37 

or finally, we have 

tv> (f ( u; + v.tJ~ '1 = ..L c 't ~~ tf~~ I cK .,tt 
2:3s 2 o<. t- C,a 

[-v{t ('-'i + v,n~ ~ - ..L Cv ~~ x"' -x~ 1 ot 'lt /! 2.39 - 2. a( 13 Cp 

[ -v•( "'"~- ux + v'l- v"~ ~ = -.i c~ Z Z. ')( <)( ~ L oq( f> 2.40 
0( l' . 
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TABLE 2.1 

SPECTRAL FORM OF THE VOR TICITY EQUATION 
·-·---

TERM SPECTRAL REPRESENTATION GLASS 
-

~ - c 'li' ol. 1/J~ -l}t dt 

-~xvtp.v 5 l 2.. ~ 'fe( 'Pl' 
..c Il 

Hœv! 2, 2, 2 

-\J'X.·'l 5 -z.~ x"'~ I"'YfJ 2, 2, 3 . ~ 
-w~ 2~ 

df cl ~ 

)ZD( d '111 :r~ 'If tJ 
?Jp 2,2,3 

i -.,.kxv 'f.v-f -1. 2 .!l-rn Y '-?r 2,2 

-\7 x. '\l.f 2.Cl.B11r-•)€y )(y .. , -(11r+'l.) E~,.., XY-t ~ 2,3 

--so - 2 ~ 'X.oe '16 .To( 'If ,8 
'"' IJ 

2, 2, 3 

-fD 2 n [ 11r(1\y-') ~}' Xr-1 -l{rt r+l)('nr.,.2.) et ... , 'Xr~] 2,3 

d'X. i ~ Z. Coe X.o( 'd X.p L o( ~ jS 2,3,3 -.)e. \lw x V ap 
o<. "' ?t p 

- \lW• V È.J:' .2~ .X co< d tf~ I f1 r ol. z, 2, 3 
àp -< 13 ;;p 
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TABLE 2. 2 

-
SPECTRAL FORM OF THE DIVERGENCE EQUATION 

TERM . SPECTRAL REPRESENTATION GLASS 

an -Cr cl.. Xr -at d.:t. 

-v,.('Yt ~o/<f) ..L Cy ~ z_ if«~ Iot. Y/J 2, 2, 3 
~ Do( tS c,~~ . 

-v'-( Wx ~ \Yx.) .LCyz2. 
2. 0( /J 

x« x, I"' 'lit 3, 3, 3 
<;t 

-Vl. (o/o;.~x.) -1. Cr~ '2.. x.,( ~ L o( 'lft' 2, 3, 3 
ol.~ . 

V'tf-V5 ~ ~ iflo< 'f1 I 11(,. ,-4 2, 2, 3 
'"' Il 

..-(AJ~ - dX. :z. ~ x<'( ~ .Trs. r ~ 3, 3, 3 
ap oc. /J ?ip 

-~xvx-vf - ...i. .2 ..n 1'l'1 ~ x 'lr 3,3 

V'~· vf -2nE>-tr-•)éN '+'r-1 -(lt..--t-2.) Er""' Y'Y+,] 2,3 

52. 2 2. Y'e< cf,s Jo( 't ,& 2, 2, 3 
'"' /:1 

fS -2.n[ 1tv(11r-1)Elf lft-1 +61r1"1X'7tr+2)él+l'ft+J 2,3 

..k. • "V w )( v 2!1! z:Z 
- ~y, 

.,.. 1 C oi 'X-f1( '!.::!:} L oOf p 2, 3, 3 
iJp IIi tJ . qp . 

-vw•vax z~ - 7JXt I x<O( fJ Yoe 3, 3, 3 'dp « 13 'dp . 

-vl..f '~ fy 1, 3 
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TABLE 2. 3 

SPECTRAL "FORM OF THE THERMODYNAMIC EQUATION 

TERM SPECTRAL REPRESENTATION GLASS 

~e d. el( --'at dt 

-A'< Y.V'f.VS 1.~ z y..« e~' L ol. )f ,s 2,3 
oe. IS 

-v x.. 'Ve :E.:Z:. X"' e,4 I"' >1~ 1,3 
1104, Il c~ 

-W :?,9 -~:Z 'dp o(t:J 
x~ d e_.a ::r~ -._& 

~p C,s 
1, 3 

SPECTRAL FORM OF THE CONTINUITY EQUATION 

TERM. SPECTRAL REPRESENTATION GLASS. 

D -CrXY -

~w ~)( -- -ap d-p -

SPECTRAL FORM OF THE HYDROSTATIC EQUATION 

TERM SPECTRAL REPRESENTATION GLASS 

-:?J!P a.:J. di 't -- ap t?p 
K-1 

- R P 
tt:.•l _(?p e e'l( --Pol( f'oH 

• 
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In Tables 2. 1, 2. 2, 2. 3 the transformations of the complete set of 

dynamical equation as well as the class of éach term according to 

Lorenz (1960J:::iare presented. 

The tables are to be read as follows: the indicated 

equation is formed by equating the first line of the table to the sum 

of the remaining lines. Neither friction nor heating have been 

considered, but these may be added to the right band sides of the 

equations in their spectral forme. 

The Energy Equations 

In this section the energy equations in spectral form 

are studied with the view of determining under .what truncation 

conditions the energy conservation theorem holds. Following 

Lorenz (196<h)total potential energy P + I is defined as 

P+I 

where el M indicates the i.ntegration performed over the entire 

mass of the atmosphere. Separation of the integration over mass 

into an integration over the surface of a sphere plus an integration 

with respect to pressure, and substitution for e in terms of its 

speètral amplitudes gives 

2. 41 
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211 .,. 

p +I = !:1. p.-"f J J p • ( f e • Y.) a! sû<fJ .t.a t0. d. f' 
ft p 0 0 . 

where Cl = · 'f'Tra. '4 

Then the time rate of change of P + I is given as 

. 1.. ( P+ I) -
dt 

using the spectral form of the thermodynamic equation. 

can be determined from their definitions, 

0 

L-< o' : o 
. 
.) 

Thus it follows that Z. 43 becomès 

Now, as 

2.42 

2. 43 
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Application of the condition of reality of the representation results 

in 

.1 (P+I) 
dt 

Now , therefore it follows that 

Substitution of this expression and integration by parts results in 

l. ( P+I) -
dt . 

where o( has been replaced by Y as the dummy index. 

The integrated horizontal kinetic energy, 

.K = f -j (W·V) d.M 

may be expressed as an integral over pressure of equation 2. 19 

K= 

29 

2.44 

2.45 

2.46 

2. 47 
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The problem now is the determination of As Lorenz 

(1960b) shows, the logical independence of the thermodynamic 

variables (class 1), non-divergent wind (class 2) and the divergent 
. 

wind {class 3) requires that terms classified in this manner {see 

Tables 2. 1, 2. 2, 2. 3) must cancel each other identically in a closed 

system. One can therefore consider each class separately and 

determine the conditions imposed on the truncation of the represent-

ation in order to achieve this result. Differentiating 2. 47 with 

~espect to time, we have 

"JK­
dt 

The contribution made by each class to "dK 
4-t:. 

, {which 

will be denoted as 'dt<. (2.> ?.) , 'iB (3J3), · etc.) will now be 
'dt: Jt 

considered. , 
Firstly, 

~ ' tp, * + J. 2.!2. m~ ·tp/ tfK =o 'dK (2>2) = -.J. 2 ..a. -m .r r c;~ 
at 't 

* + 1.2.n -m r -x.: x)' 
'JK (3,3) = ~ -..i.l!l ?'11.r X-r 'X .r =0 

;)t 'if 

2.48 

2.49 

2.50 



The vanishing of these terms simply requires that any wave present 

in the truncation must be free to propagate (Platzman 196·0)., In 

the remaining discussion this condition will be implicitly assumed. 

Now consider class (2, 2, 2). 

By renaming dummy indices twice, adding and dividing .by three 

we have, 

Since the waves have been assumed to be free to propagate, for 

in the summation there is a corresponding 

So that we may at any time change an index 

to its conjugate without affecting the summation. This process 

will be referred to as conjugation. 

Conjugating j3 and C( respectively in the last two 
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terms of the above expression, we obtain 

'd K (2 2 2.) =-
- 2) 

at 

Now (see Appendix B) 

and 

so that 

* * '* )L where Q = ( '-k.,. ~ 'f1 - 'fd. lf/J ~Y « 1t 1 

This form of energy term illustrates the Fjortoft blocking theorem 

(Fjortoft 1953.). This equation also shows that if any three corn-

ponents can exchange energy, i.e. Lot 'tf~ ~ 0 

in the manner of the Fjortoft theorem . 

, then they do so 

2.51 

·' 
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The contribution from class ( 2, 3) is 

if we let '!= 
)':J't' 

= 

.F :z., v = 7ty (1t~+2.) ~1+1 [ tfit:, x~ + 'Î'r+' x:J 
and 'since 71.

11
_

1 
= .,

1
-1 we have 

33 

For a summation to infinity, all terms except the first 

cancel in pairs so that since 1'lo = o 

2. 52 
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For a truncated system, say truncated at '1 = 'fo , we have 

2.53 

Now f 1 >Y., and { 2.J Yo involve components 'f/~.+-1 and 

-x. ~0 + 1 
so to preserve the property 'dk (2.)'3) :::: 0 

a-t 
one con-

eludes that any components outside the truncation must be considered 

to be identically zero. This implies that although the spectral form 

of the terms of class (2, 3} may indicate a non-zero time derivative 

1 for a component outside the truncation, it must be ignored in order 

to preserve energy. 

By similar techniques to above, the expressions for the 

contributions of the remaining cl,asses of terms may be obtained. 

Thus one finds that 

2. 55 

2.56 

• 
---------------------------------~---~~...;..--....;.-~_~'...;_·_· ·_...·-;;_·-.::...--=----=-=~~.:_.c·-=----'~-=-=--=-==--=-----====---
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Ir 

where M o( 'tl' = J P<~< Pr P1 s~a J.a 
0 

Remembering equation (Z. ZZ), i.e. w)' = Cr Xy , it is evident 

that Z. 54 and 2. 56 represent the divergence of the vertical flux of 

divergent kinetic energy and non-divergent kinetic energy respect-

ively. In a closed system, therefore, their contributions would be 

zero. Otherwise they rèpresent a boundary flux of kinetic energy. 

Equation 2. 55 also represents a vertical flux of kinetic energy and 

arises because the vertical motion may be corr·elated with the term 

in the expression for the kinetic energy, although 

does not enter the expression for the hçrizontal. mean 

of kinetic energy. 

The final clas s considered is ( 1, 3), 

From the hydrostatic equation we have 

K-1 

- R P e)( 
po'' 

so that we may derive 

( 
---;. ;r ) + X~ Rp;c-1 ,e"" a.. "J.. 2 . )(}( ';!:: '( . 0 0 

àp f• 1< 

--

z. 57 
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Hence, 

The fir st term represents the divergence of the vertical flux of 

geopotential, and the second the w) e covariance. For a 

closed system integration of equation 2. 58 with respect to pressure 

leads to 

Substituting this expression into 2. 48 we find 

)K - -
~t 

By conjugating ~ in 2. 60 we may obtain 

ll = 
at 

2.58 

2. 59 

2. 60 

2. 61 
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Comparing 2. 61 with 2. 45 it is found that 

0 

To summarize, if the set of equations used is an 

energetically consistent one (deletions of terms are made class by 

class), then a truncated spectral version of the equations will be 

energetically consistent as long as i) the waves are free to propagate 

2. 62 

and ii) any wave outside the truncation is considered to be identically 

zero. Continuity in pres sur.e bas be en assumed, so that any division 

into pressure levels must modify those terms whose vanishing depends 

on an integration over pressure (Lorenz 1960b.). 



e. 
3. THREE-COMPONENT BAROTROPIC SYSTEMS 

One of the most important properties of spectral forms 

of the dynamic equation is that very highly truncated versions of 

the equations satisfy the same conservation theorems as the full 

set of equations. Further, the se truncated forma have the ability 

of representing in a very simple manner the non-linear effects 

38 

inherent in the full dynamical equations. In this section we will 

study three truncated systems representing barotropic flow. The 

first model waspresented by Lorenz (1960a) and considera barotropic 

motion on a flat earth where the Coriolis parameter is constant 

(the ''f-plane"); the second is the extension of Lorenz' s model to 

the "j3-plane 11
; the third is an equivalent three component system in 

spherical harmonies which accounts for the sphericity of the earth. 

Because of the geometry of the first two models the relevant functions 

to be used in the spectral representation of the. dynamic equ~tions are 

trigonometrie functions of X. , '/ • Where .X is distanc.e measured 

in an east-west direction, (f 

direction. 

is distance measured in a north-south 

Model 1 - Motion on the "f-plane 11 

The equation governing the first model is 

3. 1 

1 



where lf/ is a stream function and Jk is the unit vertical vector. 

Lorenz shows that by considering flows which are doubly-periodic 
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in X and ~ equation 3. 1 may be transformed into spectral form in 

ter ms of trigonometrie functions of the form e ..i. ( m...kx -r-n. L'!-) 

where ?11 , ""ft are integers; and Lx= J ., Ly := 'j__.,- define the 

fundamental region. Further, by truncating the representation he 

shows that the minimum system capable of reproducing the non-linear 

effect of the advection term in 3. 1 is given by the following equations 

. 3. 2 

Then the harmonie tendencies equation obtained by substituting 

in 3. 1 are 

dA 1 FG - - oé{el..l+t) dt 
3.3 

d..F - o<J/. AG - -di ol. ( o(2·+ 1) 

. d.G ~IJ.- J AF 
dt :2o<(rJ.2.+J) 

where 0{ = ....k.J..L 

The expression for the horizontally averaged kinetic 
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energy and square vorticity are given by 

. 
' 

and they are bath conserved under this truncation, as may be 

verified by using 3. 3. 

The three differentiai equations 3. 3 .can be solved 

analytically and the solution can'be expressed in terms of elliptic 

functions. They may also be solved by numerical integration, and 

it is perhaps somewhat easier to do so, especially .if we wish to 

change parameter s and initial conditions ta obtain a variety of 

solutions. 

The A in the equations 3. 2 , 3. 3 represents a zonal flow 

with a sinusoïdal profile, F and G being waves superimposed on 

the zonal flow. Let us then consider a basic zonal flow A = A 

' G' and perturbations F = F , G = • Then, linearizing equations 

3. 3, i.e. neglecting products of perturbation quantities, we have 

elA -d.i 

= 

0 

o< 2. (o~. 2.- ') A 2. F ' 
2.(o(,._,.l) 

Gl. with a similar expression for The above equation is of the 

form d}· X =.C.X 
d. --~.-. 

and solutions to this equation are exponential 

3. 4 

3.5 
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1·0 t-------------------.w-----
TIME 8TEP • 8 hr. 

ALPHA •l.t78rsl 

Figure 3. la: Fluctuations of components of Model 1 for a linearly dtable case. 

1·0 t------- TIME 8TEP • 8hr. 

0·8 

ALPHA • O. 94280 

Figure 3. lb: Fluctuations of components of Model 1 for a linearly unstable 
case. 



if ...C > o and sinusoïdal if ,C..::. 0 . Thus for stable oscillations 

o< 2
- 1 > 0 

ol..l.-1 .t..O 

or since o< ~ 0 , o( > 1 ; for unstable oscillations 

or o( .(.. 1 At this point most analyses of the 

42 

dynamic equations stop. In this system one is not so limited. One 

may in fact study the non-linear behaviour of the system in con­

junction with at worst a simple numerical integration with respect 

to time. 

In figures 3. la and 3. lb we present the results of two 

numerical integrations of equations 3. 3. Time is measured in 

units of 3 hours, so that ü A = 1 , the vorticity of the zonal flow 

is of the order of f in middle latitudes. The time step used was 

2 units or 6 hours. The initial conditions were chosen to be per-

turbation conditions, that is, so that the linearized equations would 

be val id initial! y. The curve s are labelled l..f , V , U.. V 

according to the wind components they imply, i.e. V = A 

u.v = 6 . 

Instability of small perturbations 

a) Stable case, ex> 1 Figure 3. la 

,v = F , 

The perturbations (V , U..V )initially tend to die out, feeding 

kinetic energy into the zonal flow. The perturbations then take back 

their kinetic energy, the net result being that the perturbations Il?-OVe 

with sorne fraction of the maximum wind. 
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TJME STEP • 6hr. 

0.2 

-o.2 

· ALPHA • 1.41421 

Figure 3. Za: Fluctuations of component of Model 1 for a linearly stable 
case with subcritical initial perturbations. 

0·3 TIME STEP • 6hr. 

-0·1 

ALPHA • 1.41421 

Figure 3. Zb: Fluctuations of components of Model 1 for a linearly stable 
case with supercritical initial perturbations. 
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b) Unstable case, o( .t:.. 1 Figure 3. lb 

The perturbations grow r ight from the start, initially 

growing expo~entially, taking energy from the zonal current. The 

growth does not proceed without limit but is slowed down as the 

zonal flow be come s weaker, finally ceasing altogether when the 

zonal flow becomes zero. The perturbations then decay and feed 

energy back into the zonal flow which now changes sign. The 

process of growth and decay then repeats itself. 

Another type of instability 

In the linearly stable case A remained practically 

constant. This is because the perturbations· F and G were small 

initially and always remained small. If, however, one starts an 

integration where F and G are no longer small relative to 

we ha~e the possibility of causing large fluctuations in A. 

Figures 3. 2a , 3. 2b. present the results of numerical integration 

of equations 3.3 for a stable case where perturbation conditions no 

longer apply. 

In figure .3. 2a the initial perturbation is not strong 

enough to take all the energy from the zonal flow, but does cause 

a large fluctuation. In figure 3. 2b the initial perturbation has 

-been increased slightly, and the ·zonal flow is completely depleted 

and then reversed in a similar manner to the linearly unstable case. 
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The above constitutes a minimum system of equations, 

as devised by Lorenz ( 1960a), capable of representing non-linear 

barotropic motion. Stability and instability here appear to involve 

the same process, and the particular motion and development of a 

perturbation, stable or unstable in a linear sense, is governed by 

its non-linear interaction with the basic flow. The only difference 

between stability and instability is in the amplitude of the fluctuations 

of the various modes of motion. That this amplitude of _fluctuation 

depends on the relative magnitudes of the perturbations and zonal 

flow illustrates what may be called instability depen.ding on the size 

of the perturbation. 

Model 2 - Motion on the 11 f3-plane 11 

The extension of the Lorenz model to the 11 f3-plane 11 is 

quite straightforward. The governing equation for this system is 

and the simplest possible truncation of the system is 

V :z. 'ft = A co5J.~ + F; (..OS.kx + F:z. sWt....k;x, + G, st#-.1.';1 UJS.-kx 

t- G2 stM..1.y. :s~~x 

3. 6 

3.7 
-~ s~.J.~ eo.s..kx. 
.-k"+.l.Z. 

- G2. sWt.. .1(/ s ~,kx: 
.-k,l-r.l2 
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whereA , .J.. have the same meaning as in the previous model. 

Because of the free phase propagation generated by the Rossby term 

( (3o ;)~ 
dX. 

included. 

) both the amplitude and phase of each wave must be 

The harmonie tendency equations resulting from the 

substitution of the repre s·entation 3. 7 into 3. 6 have the following 

form, 

= 

) 

where o{ = ..h.fR.. 

For reference, A can be identified with the previous 

A , F, with F , G.2. with 2 G . If fe,= Othen Fz and G 1 

being zero initially, would always remain so. Again, A may 

be identifiéd with a zonal flow and F, , F2 , C, , G2. with 

perturbations on this basic current. 

The first step in the discussion of this system will be a 

linear analysis of the equations 3. 8. As before A = A , which is 
1 1 / 1 

large compared to the perturbations F, , F2. , G, ·, G.z. • 

Neglecting products of perturbations equations 3. 8 become 

3. 8 
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.LF;. 
-= 
dt 

d.A 
d..t 

- 0 
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dF/ 
-= 
d..t 

This set of linear equations can be solved by setting each of the 

unknowns equal to an amplitude multiplied by ewt • and solving 

the resulting set of linear equations for the frequencies consistent 

with a non-trivial solution. This process gives the following 

frequency equation; 

w~.~- + Bu./' -1- C z - o 

B-= A :Z ( (ï o(2. )z) ro J+ __ -
.,)::_2 1 +«2.. 

Az 2. 
f""D eX + «2.(1- o<.z.) A 2. 

2..( 1 +c(:Z.) 

In this analysis instability corresponds to real positive 

roots or complex roots with positive real parts. 

The solution of the above equation can be expressed in 

the form 

3. 9 

3. 10 

3. 11 
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CASE I B> o roots are purely 

imaginary, so that the system is stable 

CASE II B > 0 roots are complex and the 

system is unstable 

CASE III B '- 0 82.- i.fC'l. > 0 roots are pur ely real; 

this case is impossible 

CASE IV B <. 0 {3 2.- l..j. c. :z. .::: 0 roots are complex and the 

system is unstable. 

Th us the ne ce ssary and sufficient condition for stability 

This is equivalent to 
• c;( .::: 1 
) 

if c< > 1 then 8 2
- I./-C 2 ~ 0 no matter what the value of A 

The stability criterion is quadratic in o( 1./- so that for given values 

of the zonal flow A , there will be upper and lower wavelength 

bounds on the unstable modes. 

The roots of the frequency equation were found using the 

McGill 7044 computer and a standard library routine for the following 

model of the zonal current, where the amplitude remains. variable. 
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(9 
z 

VM = 24 -----w .1 _J 

w VM =21 > 
<t 
~ 

.8 
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10 ·12 

2 

Figure 3. 4: The linear phase speeds of the components of Model 2. 

Curves are labelled with different maximum zonal winds 

of 90, 24, 21 metres/sec. 
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Figure 3. 3 

Ly = g;![ ) _f. = 2TT -:::::: .fd.. a.. = radius of the earth. 
3 L.y a.. ) 

Time is measured in units of approximately 18 hours such tha~ 

f = 6 and /o = ! Thus it follows that ~o~:: 1 . 

These parameters were also used in the numerical integrations to 

be described later. 

The roots obtained are of the following forms 

a) stable regime .:!::,iw
1 

, + i.wz., b) unstable regime..:!:. w 1 .±. .i.wz . 

Figure 3. 4 shows the phase speeds (i.e. imaginary parts) as a 

function of o< for various maximum zonal winds, while Figure 

3. 5 shows the growth rates for waves in the unstable regime. 

In both of these diagrams only the magnitudes of the roots are 

shown. The linear analysis of this system as presented in 

Figures 3. 4 and • 3. 5 indicatesthe following general features. 

a) Very long waves ( 0( = Ly <:.<:. 1 ) are stabilized by the inclusion 
Lx 

of the Rossby term. The two phase speeds are very widely 

different, being determined primarily by the (E o effect . 
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STABLE CASE 
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20 

Figure 3. 6: The fluctuations of vorticity squared and variation in phase 

angle in degrees of the components of Model 2 for a stable 

short-wave configuration . 
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b) Short waves ( c><.:: !;r > 1 ) are stable as before, and their phase 

'-" 
speeds are determined primarily by the zonal current. 

c) Intermediate wavelengths may be unstable if the zonal current is 

strong enough. 

This picture is consistent with the barotropic analysis of 

Kuo ( 1949), although instability is more difficult to achieve in the 

sense that greater zonal wind shear is required. 

The system of equations may be shown to have solutions 

which are elliptic functions of time (Platzman, 1962), but a gain by 

simple numerical integration we may study the non-linear properties 

of the model. 

ln the following three cases the initial conditions are the 

same and correspond-to perturbation conditions, i.e. A =- (o ; 

at t= 0 The mean square 

vorticity of each component (which in this system is proportional to 

the kinetic ener gy)and the phase angle of the two waves are plotted 

as functions of time. Here again, A is referred to as V ; 

F, , F 2 as the 11 V 11 wa v e, and G 1 , G z. as the 11 u. V 11 wave. 

CASE I o! = 1. 5 LINEARLY STABLE (Figure 3. 6) 

The two waves interchange energy and the zonal current 

undergoes only very slight changes ( <(.. • 001% and th us is not plotted). 

The average angular phase speeds of the waves correspQnd very 
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closely to the results of the linear analysis. The two waves do vary 

their relative positions periodically, but with small amplitude. 

CASE II eX = O. 7 LlNEARL Y UNS TABLE (Figure 3. 7) 

ln this case the waves are linearly unstable and start to 

grow at once, extracting energy from the zonal current. Soon ali of 

the energy is removed from the zonal current which changes sign for 

a short period, and the perturbations have reached their maximum 

intensity. The perturbations then decay, feeding their energy back 

to the zonal current which climbs back to its original value·. The 

"U-V 11 wave lags the "v" wave when the zonal current is decreasing 

westerly and shifts to be leading vihen the zonal current is increasing 

westerly. 

CASE Ill C( = O. 3 LlNEARLY STABLE (Figure 3. a·) 

The zonal current undergoes a weak sinusoïdal fluctuation 

of about l Oo/o of its amplitude. The perturbations oscillate sinusoidally 

as well, both being out of phase with the zonal current. The phase 

progression of the waves is quite different from ·cASE I. Here the 

waves are retrogressing and have phase variations which are similar 

to CASE II. However, because the average phase speeds of the two 

waves are widely different, the amount of time spent in one phase 

configuration is small. 

As in Model l discussed previously, we can cause large 
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fluctuations in a stable zonal current merely by having large enough 

perturbations initiall y. Figures 3. 9, 3. lO illustrate this for both 

long wave and short wave cases. 

The question now is what physical significance or conclusions 

can be drawn from this simple no·n-linear system? Firstly, the non-

linear process in operation here is horizontal momentum transport 

and convergence. The covariance of the convergence of momentum 

transport and the zonal wind is, of course, the measure of the energy 

conversion from eddy kinetic energy to zonal kinetic energy. The 

horizontal momentum transport in this system is given by 

1 

Mr= Lx 

The connection with the rate of change of zonal kinetic ener gy is 

apparent because 

Now, if we let 

!=v 

Gu.. v 

d..A 
d.t 

--

= _L ( Fz. G, - ~ Gz) 
2ol. (J+r;.l) 

.1. 
( F, :z. + Fz 2 )z. and </> ::: tlA.C i:..a-n. Fz v -

F, 

1 

(G,"+ G/)"î and tp u. v ::: a;u::.~ G 2. 

G, 

3. 12 

3. 13 

3. 14 
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then 3. 12 becomes 

1 _/ Fv Guv ..siYL- ( tPv- ~u.v) U)sl.;; 
2o<(t+o< 2) _1.:1. 

3. 15 

thus south of the wind maximum we have southward transport of 

westerly mmnentum if 4->v > cpl..i..V Because of the simplicity of 

the system the momentum convergence has the same profile as the 

zonal current so that no splitting or north-south motion of the wind 

maximum can be produced. The important thing to note is that the 

momentum transport depends on the difference in phase of the 11 y 11 

and 11 l.J...V 11 waves. From this consideration the following physical 

pic ture presents itself. The two waves { 11 v 11
, 

11 v..v ") are moving in 

an east-west direction. Even if they are in phase at one particular 

time, because of their different scales (resulting in different Rossby 

phase speeds), they become out of phase at a later time; and transport 

and converge momentum changing the zonal current. This change in 

the zonal current produces a change in the phase speeds of the two 

waves and an oscillation has been started. The details of the motion 

then depend on how much of an effect the perturbations have on.the 

zonal current. If they have little effect then the oscillation is weak 

and we may consider the system as stable, and if they have a large 

effect we may consider the system as unstable. The effect must be 

on the zonal current, and it is not sufficient just to have large 
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momentum transports. In fact, this is the reason why the inclusion 

of the Rossby term stabilizes the long waves. Because of the large 

difference in Rossby phase speeds of the 11 v 11 and " V-V '' waves, and 

although for this scale of motion the momentum transport is large, no 

significant energy conversion takes place because there is not enough 

time. In other words, although the amplitude of the momentum transport 

is large, its time frequency is also large; so that it changes direction 

before it performs a significant energy conversion. 

In the non-linear system the division between stability and 

instability is not as sharp as in the linearized system. As a measure 

of instability in this non-linear system one may use the amplitude of 

fluctuation of the zonal component for given initial values of the 

perturbations. Figure 3. 11 shows the results of the determination 

of the amplitude of fluctuation as a function of 0( • As the initial 

values of the perturbations are decreased, one may expect that the 

curve may mor·e closely resemble Figure 3. 5 . 

Model 3 - Motion on a Spherical Surface 

The starting point for this model is the same as for 

Model 2, . i.e. the barotropic vorticity equation, but without the 

"13-plane" approximation. This model does have an added complexity, 

since for particular components representing the zonal wind it is 

possible to have a zonal wind which is non-zero when averaged in a 

north-south direction. 
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From Table 2. 1, the spectral equation describing barotropic 

flow is 

- c y d <P~ 
dt. 

3.16 

The simplest truncation which produces non-linear exchange 

is a three-component one. Thus, one component represents the zonal 

!1,~ flow T,.. , and the other two represent perturbations of longitudinal 

',, ?'ns wave number 'Ï'i1. ; y and tl.~ /... r --K. wh er e s :\: A<;. • This carres-

ponds to Platzman 1 s class L3 (Platzman, 1962). In accordance with 

the truncation procedure outlined in the previous chapter the com-

1/, -~ ponents 1 ..... and 
-Yn If' ,Ae must also be included. So that in 

'() o() (3 can take on the set of values ( o,-n }; { .!:-m>4e ); (!-mJs ). 

Performing the indicated summation in 3. 16 the following 

equations are obtained 

- C n cL <f-t;_ 
d..t 

. m -"Yn mo-m 
- ..L !.Jt.-ktt s H.Ae-n s 

n1 -m -rno-m 
+ ..i. <fls ~-le. H s ?t ..k. 
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11~--rn ,;,-"»1
5 The equations for y A<_ , 1 may be obtained by 

taking the complex conjugate of t]?.e last two equations, and so will 

be carried implicitly. 

Using the symmetry and redundancy properties of the H 1s 

(Appendix B) the equations may be simplified to 

d tl, ?Y1 , o { -rn m ) . .f2. 11. '111 - C.s _r_s == .L rn lfn tf4 (cn-t;.R,)'§ - 'Ps (c11 -Cs)o<s -.J. 2 m r.s 
dt 

-C..k d~; = .i.-mlf; ('f;'(cn-Cs)~- tf:;(cn.-C.,I:)o<.A) -.i.2.n-mf:; 
d-t 

where 

0 

= 
0 

P --n1 'Po 
s ~de 

cLe 

2. ci.. p~ 
- d.e 
d.B 

de 

3. 17 
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E. -

The horizontal mean of kinetic energy in this system is 

!!;.2 ( E. ~ + E. ;:. + E ; ) 
'1-

while the mean square vorticity is given by 

( 7z.: ...!. J " 
2. 

+ 

U sing the tendency equations 

exchange in ~his system is described by 

3. 17 the energy 

dE~ (c.s- c,~e) Q 
d ~.l. 0 

C-n (Cs -C:A) Q = 7t. = -d..t dt 

dE~ 
== 

(C-n- Cs) Q d.5z; = C,.~e (C-x -C.s) Q 
dt d.-t 

dE'7 = ( C..J: - c?'l.) Q cl. yz. 711 
Cs (C.,k. -c,.) Q - s = 

dt olt 

where Q - 2.i. tf o ( l.j./n'J If., .,r 7'1? * m -rn) f 
?t ..-leTs -~A:I.f'.s m 

Tliis is again the Fjortoft blocking theorem; and it can 

be seen that ! 

65 

3. 18 

3. 19 
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Linearizing the equations and considering time variations 

.l.. "tri G"t 
of the form e the following frequency equation is obtained 

<52.- ~ ( 'i$+ Y~) + '6 s '(.k - ~ s ~.,../Q. = 0 

where 'ts. = 2SL + tf::, ofs (en- Cs) Ss ::: tf; (e-n- C5 ) ~ 
' 

Cs C,Je 

'(_k = 2Sl +tf~~ (Cn.-C...,~:) 
' S..k = lj/;,. ( Cn- Sk) '5 

C...k C..s 

Thus the necessary and sufficient condition for stability is that 

and the phase speeds are given by 

The physical meaning of the parameters are the following: 

3. 20 

3. 21 

3.22 

'ts !1 rf A<. are the Rossby phase speeds (or convective phase speeds) 

~.s.') ~...k. are non-linear phase speeds (depending on momentum 

transport). 

Now, if $~ ~~0 then waves are stable. From their definitions given 
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Table 3. 1 

POSSIBLE UNSTABLE MODES FOR A GIVEN ZONAL COMPONENT 

L-n-~ 1 z 1 

' 

1 3 4 
1 

5 l 1 

l NONE 1 

-1----
' ' 

1 1 
1 1 

1 1 
1 S, K NONE 2,4 1 2, 5 l 2, 6 
1 

1 v 
. ' 3,6 

1 

3,7 

1 A 1 
! L 1 4,6 

1 
u 1. 

E 4,8 
1 
1 

6 

2,7 

3, 8 

4,7 

4,7 

! 

1 

s 5, 8 

j 

L ___ !...,.. ... __, __ .. ___ 

5, l 0 
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after 3. 20 we have 

thus, it follows that unless the zonal wave scale is intermediate to the. 

other two, and '5 ~ 0 , the waves are stable. Since the equations 

are symmetric in S , ..-k. let .s >-A?. Then waves are stable 

unless 

and 

'!J 
- - -~- L -:rn "YY1 o Now, - s.-k. n 

ÎY1 
= odd 

and J S-n / .tt. ..k .ce s + n 

thus the number of possible unstable modes is quite restricted. 

The combinations of ( S , ..k. } which can be unstable for a given 

zonal component are given in Table 3. 1. 

As indicated previously, this madel has the added feature 

that a purely convective phase speed (one that does not require energy 

exchange) involving the zonal component is. possible. This is 

measured by the parameters · o(s and ol_k • It is instructive 

therefore to compare the case where. ols= ol_..k ::: 0 with the 

stability criterion of Madel 2. Since 

____________ ___;_ _________ .:__ __________ ......... ___ .. 
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it follows that must be even, i.e . . 7t = even; which carres-

ponds to an odd zonal wind field. Assuming that ..Je"' ?'l."" S and 

'f :!ç 0 the condition for instability is 

where 
2..0. 'i1.s =­
C,s 

. , i.e. the Rossby phase 

speeds for a zero zonal wind. Now, the wavelengths of the com-

ponents are defined as etc. where a... is the 

radius of the earth so that 3. 33 becomes 

'2. 
1 }j 0 .!... 
'r'X, -

It may be shawn that the stability criterion in Madel 2 can 

be written as 

where '6v , 0 u..v are the Rossby speeds, and L-u- , Lv , Lv...v 

are the wavelengths of the components. Thus Madel 2 and this case 

of Model 3 are physically equivalent. Model 2 could be made com-

pletely physically equivalent to Model 3 if a constant zonal wind was 

3.33 
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added to the sinusoidal profile since the (3-plane approximation was 

employed. 

In Madel 3 the importance of the difference in the Rossby-

Haurwitz phase speeds ( 't.s , '6.1:. ) in determining the stability of 

the system is much more explicit. In Figures 3. 12 to 3.15 the results 

of the computation of phase speeds and doubling time for zonal currents 

with 7'\...::: 3 to 5 for sorne possibly unstable combinations of ( s,..k } • 

The abscissae represent 71. times the amplitude of the zonal components 

-1 in units of day If is the same for different '11. 's then the 

maximum values of the zonal wind they represent are approximately 

equal. In anticipation of the results of the spherical harmonie analysis 

of the 500 mb surface the range of values of ?1. tf;,_ for the month of 

Septeq1ber 1957 have been indicated on the stability diagrams. 

The picture presented is similar to Madel 2. In the stable 

regime the phase speeds are widely different, as one approaches the 

neutra! point the phase speeds become more nearly equal. While this 

result would occur in any quadratic frequency equation of this type the 

physical interpretation of the difference in linear phase speeds in terms 

of horizontal momentum. èonvergence makes it more meaningful 

( see Madel 2). 

These diagrams show that, at least as far as this model 

describes the situation, the zonal components as observed at 500 mb 

during September 1957 are well into the stable regime. (No zonal 

components up to ït.= 7 ever during the month has an amplitude 
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which is unstable for any combination of .S , .Je. :f:: 1 o ). So 

that if the barotropic motions described by this model are to be 

observed they will probably be of the stable type. 

The integration of equations 3. 17 (because of their 

similarity to equations 3.8 ) produce essentially the same 

results as Model 2. Figures 3.16, 3. 17 show the results of two cases 

3. 17 In one case of numerical integration of equations 

(Figure 3. 16) the initial value of Cf' J. is in the unstable regime, 

the other (Figure 3. 17) is for a stable initial value of <p~ In 

both cases the initial values of F, , F,_ , G, 

hundredth of the initial values of tf' s 
were one 

Thus the same interpretation of the stability diagrams and 

the numerical integrations in terms of horizontal momentum transport 

and convergence as was formulated in Model 2 apply to Model 3. 
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4. DATA ANALYSIS IN TERMS OF SPHERICAL HARMONICS 

In order to study further the application of the spherical 

harmonie representation of the dynamic equation we need to represent 

real observations in terms of these harmonies. Generally speaking, 

both the non-divergent and the divergent parts of the wind field as 

well as the temperature are required in harmonie form. Due to 

the limitations of the data, at least at the present time, the spectral 

representation of the divergent wind must be considered as un-

obtainable, and even the non-divergent wind must be obtained from 

sorne diagnostic equation relating it to the generally observed 

variable, the geopotential height field. 

Given the geopotential height field of sorne constant 

pressure surface there are two ways in which the spectral represent-

ation of the non-divergent wind field (i.e. the stream function) may 

be obtained. The first method consists of analyzing the height field 

into spectral components, then solving a diagnostic equation in the 

spectral domain; the second consista of solving the diagnostic 

equation numerically, then analyzing the resulting stream function. 

Each is not without its problems, sorne of which are discussed 

' below. In this study the first method was used with the linear 

balance equation. ·The second method is being applied by A. Robert 

and his associates (private communication} using the non-linear 

balance equation for the purpose of barotropic forecasting. 
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The Analysis of the Geopotential Height Field 

The geopotential height Z, expanded in a series of 

spherical harmonies, has the form 

2 (a, X) l_ ( A..., ( e) CDS m J.. + 8.., ( e) s.:....,.,).) 
m.:ao 

~ { (A~ cos-ml +B:s~-mÀ) p; 
'l"n::O Tl'='"'m 

where e is colatitude, À is longitude and P?:i denotes the 

normalized associated Legendre function of the first kind as 

defined previously. The first series representa a simple Fourier 

analysis around latitude circles and thus it follows that 

The above expansions are based on the following orthog­

onality condition .,. 
j P;: P;: s.:... ede = 
0 

In accordance with equation 4. 1 and 4. 2 the analysis 

usually proceeds in two stages. Firstly, Fourier analysesare 

performed at latitude circles; then these Fourier amplitudes are 

analyzed in terms of the. Legendre functions. The properties of 

one-dimensional Fourier analysis of grid point data around latitude 

4. 1 

4.2 

4.3 



80 

circles has been fully discussed elsewhere (Godson, 1959, 

Beville, 1959). Here, the problem of transforming the Fourier 

amplitudes into spherical harmonica! amplitudes will be considered. 

. Applying the orthogonality condition 4. 3 to equation _ 

. A"n'' B:' we can determine "'t\ and ... by the following integrals 

7f 

= j A~(e) P;: s~ e d.éJ 
0 

7f' 

B~ = j B-m(e) P;: s~ a d..e 
0 

In order to evaluate these integrals Fourier amplitudes 

from latitudes extending from the north pole to the south pole must 

be available. Failing this, the representation must be restricted 

to either even or odd functions for a hemisphere of data or to sorne 

scheme of a statistical 11best fit" to the data (Haurwitz and Craig 

1952). Even if the data are available over the entire range of 

latitude the integrals on the right hand side of 4. 4 must still be . 

evaluated by numerical quadrature. 

Properties of Numerical Quadrature 

Suppose that Fourier analyses have been performed at 

a set of colatitude circles el ; one may define a numerica1 
. 7f' 

quadrature scheme so that the integral f f(e) d. e is 

approximated by 

'4. 4. 
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j fee) de z 
0 

z: -f(e1) w (el) -
l 

t{8) 

where W ( 8.i) is a weighting function which may correspond to 

Simpson' s rule etc., 
. 
.L is summed over the data latitudes and 

the bar represents the entire quadrature procedure. 

In order to preserve as much as possible the integrity 

of the original data fields especially when regenerating grid point 

data fields from the analyzed components, it is necessary that the 

numerical errors introduced by the analysis scheme be as small 

as possible. Ideally the orthonormality condition (4. 3) in the 

integral domain should be satisfied in the quadrature domain (4. 5) 

as well. Practically speaking, quadrature schemes may be judged 

on how closely they approximate this ideal condition. This question 

will now be considered. 

Assume that the data, i.e. the Fourier amplitudes, are 

exactly represented by the series 

If 4. 6 is multiplied by p:; sm e and the quadrature scheme 

4. 5 is applied the result is 
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where is the estimate of the true amplitude A~ , 
for if orthornormality is preserved the quadrature part of 

equals 1 if..h=n. and z.ero for..-k~n. 

If a matrix G~ is defined s uch that 

1 

then 4. 7 becomes 

-A-: 
If the orthonormality is preserved in the quadrature scheme then 

·G:.k will be identically zero. 

Thus the error introduced itl. the estimate of the 

amplitude depends on the quadrature scheme and the 

distribution of the true amplitudes, A:k 
The form of the data. used in this study is Fourier 

amplitudes at 5° latitude intervals from north pole to ~outh pole. 

To study the effect of the quadrature scheme, the matrices 

were evaluated over this grid. Three quadrature schemes were 

tested; trapezoïdal, Simpson' s rule and Gaussian of order 40. 

The first two are suited to equally spaced grid points, the last 

requires very specifically located grid points so that sorne inter-

polation scheme must be used. Eliasen and Machenhauer (1965)· 

82 

4.8 

4.9 



• • 
Table 4. la: Matrix G_:.k using the trapezoïdal rule (in units of 10- 3) 

k n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 -1.9 o+ -2. 9 0 -3.7 0 -4.3 0 -4.9 0 -5.4 0 -5.9 0 -6.4 0 -6.9 

2 -3. 2 0 -4.3 0 -5.2 0 -5.9 0 -6.7 0 -7.3 0 -8.0 0 -8.6 0 

3 -4.5 0 -5.6 0 -6.b 0 -7. 5 0 -8. 3 0 -9. 1 0 -9.8 0 -11 

4 -5.8 0 -6.9 0 -8.0 0 -9. 0 0 -9.9 0 -11 0 -12 0 

5 -7. 1 0 -8.3 0 -9.4 0 -10 0 -11 0 -12 0 -13 

6 -8.4 0 -9.6 0 -11 0 -12 0 -13 0 -14 0 

7 -9.7 0 -11 0 -12 0 -13 0 -15 0 -16 

8 -11 0 -12 0 -14 0 -15 0 -16 0 

9 -13 0 -14 0 -15 0 -16 0 -18 

10 -14 0 -15 0 -17 0 -18 0 

11 -15 0 -17 0 -18 0 -20 

12 -17 0 -18 0 -20 0 1 " 

13 -19 0 -20 0 -22 

14 -20 0 -22 0 

15 
. 

-22 -24 0 

16 -24 0 1 co 
VJ 

17 -26 

+ Values given as zero are less than 10-7. 
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Table 4. lb: Mat rix 
4 

Gn..k using the trapezoïdal rule (in units of 10- 5). 

k n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

4 -0.3 0+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 -0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 -0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 -0.3 0 O. 0 0 0 0 0 0 0 0 0 0 0 

8 -0.4 0 0 0 0 0 0 0 0 0 0 0 0 

9 -0.4 0 -0. 1 0 0 0 0 0 0 0 -0. 1 0 

10 -0.5 0 -0. 1 0 -0. 1 0 -0. 1 0 -0.2 0 -0. 2 

11 -0.5 0 -0.2 0 -0.2 0 -0. 2 0 -0."2 0 

12 -0.6 0 -0. 2 0 -0.3 0 -0.3 0 -0. 4 

13 -0.7 0 -0.4 0 -0. 4 0 -0.5 0 

14 -0. 8 0 -0.5 0 -0.6 0 -0.9 

15 -0.9 0 -0.7 0 -. 10 0 

16 -. 12 0 -. 11 0 -. 17 

17 -. 16 0 -. 18 0 

18 -. 23 0 -. 29 

19 -.34 0 

20 -. 541 
(X) 

~ 

+ Values given as zero are less than 10-7 . 
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Table 4. 2a: Matrix G~.k using Simpson' s rule (in units of 10-5) 
n 

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 . 67 0+ 3.3 0 9.5 0 20 0 38 0 64 0 100 0 150 0 230 

2 3. 1 0 9.0 0 20 0 39 0 67 0 llO 0 170 0 250 0 

3 8.7 0 19 0 38 0 66 0 110 0 170 0 260 0 380 

4 19 0 36 0 64 0 110 0 170 . 0 260 0 380 0 

5 36 0 63 0 100 0 160 0 250 0 380 0 560 

6 62 0 100 0 160 0 250 0 370 0 550 0 

7 100 0 160 0 240 0 360 0 540 . 0 800 

8 160 0 240 0 360 0 530 0 790 0 

9 240 -0. 1 350 0 520 0 780 0 1200 

10 350 -0.1 520 0 770 0 1200 0 

11 520 -0.1 770 0 1200 0 1800 

12 770 -0.1 1200 0 1800 0 

13 1200 -0. 1 1800 0 3000 

14 1800 -0.1 3000 0 

15 3000 -0. 1 5800 

16 5800 -0.1 
(Xl 
U'l 

17 20000 

+ Values given as zero are less than 10-7. 
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Table 4. Zb: Matrix G~.k using Simpson' s rule (in units of 10-5) 

kn 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

4 -.03 o+ 0 0 0 0 0 0 0 0 -.oz 0 -.04 0 -. 11 0 -. 29 

5 -.03 0 0 0 0 0 -. 01 0 -.04 0 -. 10 0 -. 25 0 -.66 0 

6 -.03 0 0 0 -.02 0 -. 06 0 -. 16 0 -.42 0 -1. 1 0 -3.0 

7 -.04 0 -.03 0 -.09 0 -. 23 0 -.59 0 -1. 6 0 -4.3 0 

8 -.06 0 -. 10 0 -. 29 0 -.75 0 -2.0 0 -5.5 0 -16 

9 -. 15 0 -. 32 0 -.89 0 -2.4 0 -6.7 0 -20 0 

10 -.37 0 -.97 0 -2.7 0 -7.7 0 -23 0 -77 

11 -1. 0 0 -2.9 0 -8.4 0 -25 0 -85 0 

12 -3.0 0 -8.9 0 -27 0 -92 0 -400 

13 -9. 1 0 -28 0 -97 0 -420 0 

14 -29 0 -99 0 -440 0 -4100 

15 -100 0 -450 0 -4200 0 

16 -450 0 -4200 0 24000 

17 -4300 0 24000 0 

18 Z4000 0 -13000 

19 -13000 0 

20 -12000 
oc 

+ Values given as zero are less than 10-7 . "' 
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Table 4. 3a: Matrix G~..k -40 point Gaussian* and 6 point interpolation (in units of 10 -S) 

k n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

1 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

3 

0 

0 

0 

0 

0 

-1.8 0 

4 5 

0 0 

0 0 

0 0 

0 0 

0 0 

. 84 0 

6 7 8 9 10 11 12 13 14 15 16 17 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 -.01 0 

0 0 0 0 0 0 0 0 0 -.01 0 -.01 

0 0 0 0 0 0 -.01 0 -.01 0 -.01 0 

0 0 0 0 0 -.01 0 -.01 0 -.01 0 -.OZ 

-.68 0 . 88 0 -. 81 0 . 38 0 -.03 0 -. 20 0 

s. 9 0 -6.5 0 -1.3 0 1 • .1 0 . 96 0 -3. 1 0 2. 7 0 -1. 4 0 . 22 

0 

36 

0 

78 

0 

32 

0 

10 0 -26 0 14 0 2.2 0 -2.2 0 -4.9 0 5.9 0 -3.3 0 

0 -13 0 -43 0 42 0 -4. 2 0 -5.0 0 -12 0 15 0 -6.6 

21 0 -36 0 -60 0 85 0 -13 0 -21 0 -16 0 36 0 

0 10 0 -65 0 -86 0 168 0 -56 0 -43 0 -12 0 64 

115 0 3.5 0 -122 0 -85 0 260 0 -130 0 -61 0 -7.6 0 

0 173 0 -60 0 -152 0 -119 0 385 0 -233 0 -96 0 43 

88 0 194 0 -74 0 -257 0 -163 0 570 0 -415 0 -78 0 

152 0 90 0 314 0 -198 0 -412 0 -187 0 768 0 -588 0 -50 

0 197 0 239 0 319 0 -409 0 -584 0 -272 0 1133 0 -830 0 

292 0 465 0 247 0 236 0 -673 0 -903 0 -210 0 1593 0 -1159 
Values given as zero are less than I0-7 

*NOTE Je index corresponds to the interpolated function 

00 
-J 
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Table 4. 3b: Matrix G!Jt -40 point Gaussian and 6 point interpolation (in units of 10-5) 

k n 4 5 6 7 8 9 1 0 11 1 2 13 14 15 16 1 7 18 19 20 

4 0+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 -.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 .79 0 -.20 0 .21 0 -.25 0 .15 0 -.03 0 -.04 0 .06 0 -.04 

7 0 2.9 0 .16 0 -.21 0 -.87 0 1.0 0 -.57 0 .15 0 .14 0 

8 -2.4 0 13 0 -2.7 0 -1.2 0 -1.4 0 2.6 0 -1.4 0 .49 0 0 

9 0 3.8 0 25 0 -9.9 0 -1.4 0 -4.7 0 8.8 0 -4.1 0 .56 0 

10 16 0 -4.4 0 50 0 -21 0 -7.9 0 -4.7 0 21 0 -13 0 4.0 

11 0 -4.3 0 -16 0 102 0 -54 0 -9.6 0 -2.4 0 38 0 -23 0 

12 -55 0 -28 0 -12 0 164 0 -96 0 -10 0 -2.6 0 77 0 -54 

13 0 -91 0 -32 0 -38 0 284 0 -162 0 -22 0 23 0 118 0 

14 36 0 -94 0 -94 0 -24 0 464 0 -284 0 -11 0 37 0 177 

15 0 123 0 -190 0 -114 0 21 0 683 0 -411 0 -9. 1 0 64 0 

16 47 0 94 0 -227 0 -114 0 54 0 1049 0 -653 0 -15 0 136 

17 0 -76 0 189 0 -247 0 -167 0 225 0 1441 0 -988 0 25 0 

18 -151 0 -15 0 327 0 -356 0 -73 0 359 0 1920 0 -1379 0 -21 

19 0 -11 0 78 0 370 0 -298 0 -76 0 533 0 2571 0 -2029 0 

20 237 0 104 0 31 0 653 0 -398 0 -82 0 862 0 3161 0 -2654 

+ Values given as zero are less than lo-7 
* NOTE ..k index corresponds to the interpolated function 

C» 
C» 
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used a five point interpolation formula, here a six-point Lagrangian 

interpolation was used. 

Because of the interpolation necessary in Gaussian 

quadrature the expression for the G-matrix must be modified to 

include the interpolation scheme. So that the G.;;, for Gaussian 

guadrature is given by 

- 1 --

where j.i.j are the interpolation weights to convert the field to 

be analyzed from the data latitudes X.i. to the Gaussian latitudes 

X· 
J and vlj are the appropriate Gaussian weights 

In Tables 4. 1, 4. 2 , 4. 3 the G matrices are given for 

the zonal components ( "'Y'r'\. =- o ) and for a typical set of wave coin-

ponents ( "'\"n = + ) . With the exception of the G matrices for 

Gaussian quadrature plus interpolation, the matrices are symmetric 

so that in these cases only half the matrix is presented. 

The first thing to notice about the matrices is that there 

is no parity mixing. That is, for a symmetric component only 

symmetric components produce non-zero effects, and vice versa. 

This is understandable because the set of latitudes used is symmetric 

with respect to the equator, and the numbers obtained for these 

elements, if non-zero, are just a measure of the truncation and 

round-off error in using 29 bit precision. As well, quite generally, 

4. 10 
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Table 4. 4a: Matrix G~.Jt using Gaussian quadrature of order 40 over Gaussian latitudes {in units of 10-7) 

k n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
..... 

1 .93 -.48 -.02 -.04 -.02 -.02 -.14 -.01 -.27 0 -. 38 0 -.57 0 -. 89 -. 01 -. 96 

2 . 59 -. 40 -. 07 0+ -.04 0 -. 27 0 -.42 0 -. 72 0 -.97 0 -1. 1 0 

3 .33 -.41 -.10 -.05 -.15 0 -.44 0 -.75 0 -1. 1 0 -1. 2 0 -1.3 

4 .30 -.45 -.16 -.05 -.32 0 -. 75 0 -1. 1 0 -1. 3 0 -1.4 0 

5 .04 -.42 -.30 -.04 -.62 0 -1. 1 0 -1. 3 0 -1.5 0 -1. 6 

6 -.24 -.30 -.63 -.04 -.93 -.02 -1.3 0 -1. 5 0 -1.7 0 

7 -.72 -.41 -.86 -.07 -1.2 -.01 -1.5 0 -1.8 0 -1. 6 

8 -1.0 -. 44 -1. 2 -. 03 -1.4 -. 03 -1.8 -. 01 -1.7 0 

9 -1.4 -.41 -1.4 -.02 -1.7 -.01 -1.7 0 -1.5 

10 -1.6 -.42 -1.6 -.04 -1.7 -.03 -1.6 0 

11 -2.4 -.46 -1.6 -.03 -1.7 -.03 -1.9 

12 -2.7 -.42 -1.4 -.06 -1.9 0 

13 -2.5 -.45 -1.8 -.05 -2.3 

14 -2.9 -.41 -2.3 -.05 

15 -3.6 -.43 -2.6 

16 -4.1 -.46 

-4. 61 
-J:) 

17 0 

+ Values given as zero are les s than 1 o-9. 
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Table 4. 4b: Matrix G~Jt using Gaussian quadrature of order 40 over Gaussian latitudes (in units of 10-7) 

k n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

4 -.57 -.18 -.07 0+ -.16 0 -.07 0 -.01 0 -.01 0 -.03 0 -. 02 0 -.20 

5 -.44 -.27 -.16 -.02 -.09 0 -. 03 0 -.04 0 -.01 0 -. 14 0 -. 29 0 

6 -.96 -.35 -.26 0 -.20 -.01 -.03 0 -.06 0 -. 18 0 . 18 0 • 07 

7 -1.2 -.27 -.41 -.02 -.24 0 0 0 -. 25 0 • 17 0 . 09 0 

8 -1.5 -.34 -.53 -.01 -,37 0 -.21 0 -.04 0 .08 0 -.30 

9 -1.7 -.33 -.75 -.04 -.67 0 . 01 0 -.06 0 -. 33 0 

10 -2.1 -.38 -1.1 -.02 -.49 0 -.02 0 -.50 -.01 -.25 

11 -2.6 -.36 -.96 -.04 -.66 0 -. 51 0 -.46 0 

1~ -2.5 -.42 -1.1 -.03 -1.2 0 -.56 0 -. 13 

13 -2.9 -.38 -1.7 -.02 -1.3 0 -. 27 0 

14 -3. 6 -. 36 -1. 9 -. 02 -1. 1 0 -.49 

15 -3.9 -.40 ~1.7 -.04 -1.3 0 

16 -4.0 -.36 -2.1 -.04 -1.8 

17 -4.2 -.45 -2.6 -.05 

18 -5.1 -.43 -2.4 

19 -5. 3 -. 43 1 ...0 
...... 

20 -5.4 

·+ Values given as zero are lese than 10-9. 



the higl;ter the order of the function to be integratèd the larger the 

element of the G matrix. As far as the zonal components are 

concerned, the Gaussian plus interpolation G matrix is closest to 

zero, whereas for the wave components the trapezoïdal G matrix 
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is closest to zero. Another feature of the Gaussian plus inter­

polation is that it is very accurate as long as the function to be 

integrated is of a lower order than the interpolation scheme. This 

illustrates how the interpolation scheme degenerates the Gaussian 

quadrature. Table 4. 4 shows the G matrices for Gaussian 

integration over Gaussian latitudes and the difference is striking. 

These resulta also show that if one wishes to minimize the purely 

numerical errors introduced into an analysis the data should be 

obtained at Gau ssian latitudes. However, if the data are at 

regularly spaced intervals of latitude, then Gaussian plus inter­

polation should be used for the zonal components, and trapezoïdal 

integration for the wave components. 

Thus far only the numerical properties of different 

quadrature schemes has been considered; the data has been con­

sidered precise and independent at each data point required. This 

of cours·e is not true. In fact the data in original form are full of 

errors, both systematic and rand?m· As well, in order to obtain 

the data at the grid points, interpolations over at least 5° latitude 

are performed either by a numerical process in the case of 

objectively analyzed fields or by eye in the case of subjectively 
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analyzed fields. In view of this, discussion of the merits of 

various quadrature schemes becomes questionable. However, 

one may take the attitude that any numerical operation performed 

on the data fields which has internal errors only serves to 

degenerate the information content in the data and thus one should 

be as careful as possible about any numerical operation, i.e. 

minimize sources of error which are controllable. 

The Linear Balance Equation. 

The linear or geostrophic balance equation is 

+ 

where "f is a stream function, Z is the geopotential height 

field, j is the Coriolis parameter 2n c.os 8 , ...n.. is the angular 

velocity of the earth1 s rotation, J- is the acceleration due ta 

gravity. Equation 4. 11 may be rewritten ta the following form 

where If t.f is expanded in terms of spherical 

harmonies 

93 
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and this expansion, as well as the expansion for the height field 

is inserted into the balance equation, the following recurrence 

relation is obtained 

..,z 
where € 71. = (n.- "'h1) ( 11. + "'m 2 

(2n-1)(2n.+J) 

·Equation 4. 13 is the same (apart from constants) as obtained by 

Elias en and Machenhauer ( 1965). 

ln practice the representation of the height field must 
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be truncated at sorne point. ln this study the truncation was such 

that each set of waves corresponding to a given value of ""n1. 

contained 17 components. So that for nt= 0 ranges from 

ltol7; for"h"t~O, ï't rangesfrom '1'11. to "i'11.+16. Foranti-

symmetric non-zonal components ('Yl-'YY\ = odd) and symmetric zonal 

components ( 'Y\. = even, 'n'l: o ·) of the stream function, the recurrence 

relation is self-starting and the only problem is the truncation. For 

symmetric non-zonal components ( -n-'YYl = even) and antisymmetric 

zonal components ( "V'l = odd, Yt"'= 0 ) sorne condition must b.e applied 

to obtain a solution. 

There are two physical properties of horizontal stream 

flow that are easily expressed in terms of the spherical harmonie 

4.13 
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Table 4. 5: Solution of linear balance equation in the spectral domain. 

TYPE MODE BOUNDARY RECURRENCE RELATION IMPLIED CONDITION 
CONDITION AND RANGE OF INDEX ON HEIGHT FIELD 

o o Ao 

o o 2Ao 'Yl(T\+2) E'\1-t'l CX .. 1'\+I = "Y'I("Y'\+1) Y\ 
0 Q 0 

Zonal Symmetric 3Ezo<2= 1 17A,7 = GE,'To<,, 

for "Y\= 3,S, ..... 15 
~ o a - ("Y\- i)( Y\+ 1 ~'T'I o<n-t 

0,-•)(n+O é~ o<~_, = Y\(n+•) A<;, 
Zonal An ti- o_o 

symmetric 
O(IT -

0 0 

+o..- "Y\.: 16, If,.···· .2. 
-1'1(î"\+2)E"n+l o(n+t 

('>-D(n+~t~ { ";} = n(nTl)f A:} 
Non- t~''}:o 

\3,_, B'Y\. 
zonal Symmetric '" [ «~,1 (3"' ..... , --n("Y\+2)E'T\+t (?>.:, 

for "f\.: m + 15 •... YY'I + 1 

r~:··J - 11('>+2)C" ~ ~.:;:.} : "(MI)~:;J fA~"} = -
(3'W\41 

Y\+1 ~'"t"n 
B'W\+IG. 

Non- Anti-
'\1.+1 

zonal symmetric 
-rn+ r [A~] l Tn 1 l ~~ } "''Y\ o(. 'l\- 1 "'f'Y\+15 'W\•15 

tm+l) €.;:., a.:; . -(-n-\)(Y\+1)€")'\ ..,..... (')on+t') ~.;' ... ,5 ~.::.s 
f 0 r 'Yl : 'Yl"\+"2. .... '"Y'Y\+ \ + ~ "'1\ -1 

-

! 

...0 
U1 



amplitudes of the stream function. They are the mean horizontal 

kinetic energy E and the mean square vorticity .:52. 

where â-: = 1 if '1'Y\ = 0; rr;; = 0 otherwise, and ~~ = 0 

where CL is the radius of the earth. 

In barotropic flow both these quantities are conserved. 

It seems reasonable to expect that, in any representation of the 

horizontal wind field, these quantities should be well defined. It 

can be shown that neither the series for E nor the series for 

32. (4. 14) converges without a zero in the recurrence relation 

beyond the last of the height components. This then gives us a 

condition that may be applied to the non-starting recurrence set 

and a modification that must be made (implicitly or· explicitly) to 
• 

the height field in the self-starting recurrence set. 

The system and the boundary condition are summed up 

in Table 4. S. The system is, reversible in the sense that once 

having modified the last component of the height field (for a given 

vall;le ofm ), then to solve the balance equation for Ï: from the 

computed stream function components regenerates the initial height 

field components. 

96 
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The system and boundary conditions have a simple 

physical interpretation for the zonal components. For symmetric 

zonal components the condition imposed on the height field is that 

d. Z = o at the equator {where 2 denotes the longitudinal 
de 

mean at a given latitude), so that geostrophy for the zonal current 

can be applied everywhere. For antisymmetric zonal components 

the boundary condition can be shown to be equivalent to requiring 

that the mean angular momentum of the zonal current (measured 

0 . 
by ol. 1 } be eq ual to the mean angular momentum of the geo-

strophically computed zonal current. (This condition was used by 

Eliasen and Machenhauer in an explicit manner for the northern 

hemisphere). Presumably equivalent conditions hold for non-

zonal components but their precise nature has not yet been determined. 

There is another feature of the solution to the linear 

balance equation which can cause difficulty; error progation from 

smaller scales to larger scales during the determination of symmetric 

non-zonal components and antisymmetrical zonal components. Say 

the balance equation has been solved for a given set of height field 

components. One may consider any one value of"n"t, as the ar gu-

ment still holds. ' A' Consider 111. equal to 1. Then ( o( n , t"'"-

are the stream functions corresponding to the set ( A!t_ , 8 :._ ) of 

height components and they are related by the recurrence relations 

given in Table 4. 5. If a small change, l:;. , is made in A :1 (or 

1 . . 1 1 
8 17 ) , then the stream functions amplitudes o{ -n. (or (J'X ) will be 
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changed. If d.~ denotes the change in o(~ we have 

cL,~ - 1/.f. lb 
1 

cl.,~ 1 1~ Ll • - éts 
d..,s - - etc. - - ) , 

15 1 15 ·13 lE 1 
1
1f é,s 

. or in general d 1 = -n(?t.+2) 
11-1 

.Now > 1 for all '11. 

. Thus 
1 

cL 'Yl-1 - > 1 for all i1. 

cl.~+ 1 

. so that a change in the last component of the height field is propagated 

to the larger scale components and amplified. In the case of the 

total amplication to component is approximately by a 

factor 25. In simpler terms it means that each of the stream 

functions so computed is just a linear combination of the height field 

components of a smaller scale, but that the weight that a particular 

height field component has in determining the stream component 

increases for an increasing difference in scale (as represented by 

the index 7t ). In contrast; for antisymme~ric stream fields corn-

ponents, an error in one of the height field components is damped 

in the iteration. 
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Hemispheric Analyses 

The above methods which apply to global analysis may 

be easily specialized to perform hemispheric analyses. The 

simplest way to modify the analysis is to assume that the height 

field is either symmetric or antisymmetric with respect to the 

equator. This may be done explicitly in a general analysis 

programme or implicitly in a purely hemispheric analysis pro-

gramme. If the symmetric mode is chosen there are no difficulties. 

If the antisymmetric mode is chosen, Gibbs phenomenon can arise 

because antisymmetry implies the vanishing of all Fourier corn-

ponents at the equator. This may be avoided by subtracting the 

equatorial value of A 0 
from the A 01

5 at the rest of the latitudes 

. A~ B"''Y'\ and setting and equal to zero at the equator. The 

Fourier amplitudes are small in the equatorial regions and thus 

this process does not generate rouch error. Indeed, one may 

interpolate the Fourier amplitudes linearly to zero from sorne 

higher latitude without seriously affecting the results. 

The Details of the Method U sed 

The data points were spaced at every five degrees of 

latitude ( except latitudes.±. 85°) including the equator and every ten 

degrees longitude including the Greenwich meridian. The data 

consisted of geopotential height values in decametres at each of 

the grid points of the 500 millibar surface for the month of September 



1957. The data source and methods of synoptic analysis and 

extraction are described by Luistro (1964) and Steinberg (1965). 

Fourier analyses were performed at all data latitudes; 

the amplitudes at+ 85 degrees latitude were obtained by averaging 

tho se at the poles and..± 80 degrees. These Fourier amplitudes 

were then analyzed into coefficients of the associated Legendre 

functions using the trapezoidal rule for -yn~ o and Simpson' s rule 

for Yn = 0 . The Legendre functions were generated at the data 

latitudes using the following set of rec ur sion formulae. 

where 

P "'Yn+l :::. 
m+-1 

. 
) 

J. m 
(2m+3)2.sü-te P1-n 

-m>n 

The Fourier analysis (for this data grid) permits the 

definition of seventeen waves and a mean height around a latitude 

circle. Since there are 37 data latitudes (35 for non-zonal com-
~ 

ponents because the values at the poles are identically zero) the 

system permits a maximum of 37 zonal components and 35 non-

zonal components to be defined for each Fourier wave number. 

In this study each wave was analyzed into seventeen coefficients 

of the Legendre functions. All of these waves are not, of course, 

significantly above the noise level; but presumably a complete 

lOO 

4.15 
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Table 4. 6: The distribution of the variance of the mean of a height analysis of 100 sets of random fields. 

. rn 
J 

0 

Theoretical variance of the mean =O. ; values have been multiplied by 104 . 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 3 7 12 5 1 16 1 1 5 4 6 12 14 16 4 2 16 4 

2 12 10 5 4 10 6 4 32 9 4 5 2 0 4 2 5 13 11 

3 3 20 3 5 1 7 10 5 4 2 0 9 17 21 1 0 10 7 

4 4 5 4 11 7 2 34 4 6 11 1 8 7 30 2 12 3 12 

5 6 4 1 8 16 31 3 2 7 0 8 18 10 8 7 3 13 0 

6 1 32 4 3 12 9 1 2 1 6 18 5 2 7 1 9 2 1 

7 10 12 11 9 6 1 8 5 2 6 3 7 1 12 3 6 3 1 

8 52 1 0 0 5 15 6 5 8 17 1 2 3 2 5 1 2 5 1 2 1 2 

9 10 11 12 6 12 0 7 10 1 1 7 7 6 10 6 16 5 7 

1 0 19 5 0 1 1 1 6 5 1 0 9 11 1 3 1 7 15 25 8 9 3 1 

11 2 5 2 3 13 8 2 1 3 1 9 17 15 11 18 22 8 6 

12 751 0 23 1 4 10 9 3 .5 8 0 8 7 8 0 7 9 5 

13 31 9 1 z 2 1 7 4 3 2 6 0 1 0 2 7 1 0 

~ 4 1 29 5 0 zo 24 4 1 11 13 3 1 0 3 5 2 2 4 5 5 

1 5 11 5 7 3 2 6 6 8 7 9 9 1 3 9 1 0 20 9 5 

16 2542 2 1 3 1 2 10 6 1 1 9 0 4 0 33 10 6 13 

17 2 7 3 2 11 4 8 4 5 7 3 5 4 21 1 2 17 20 

..... 
0 ..... 
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Table 4. 7: The distribution of the mean variance of a height anal y sis of 100 sets of random fields. 

. m 
J 

Theoretical mean variance::: 39. 2; values have been multiplied by_ 104. 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

e 

16 17 

1 540 843 851 932 921 959 906 959 826 985 1015 942 884 1029 972 825 804 936 

2 502 732 826 677 844 888 1009 869 941 806 919 895 949 1044 855 856 862 835 

3 688 618 798 809 699 839 911 838 861 726 762 960 940 814 877 881 917 918 

4 800 600 615 740 715 805 852 733 750 798 939 638 916 897 959 761 931 935 

5 600 627 512 624 807 850 658 706 797 873 1034 748 840 792 757 884 836 807 

6 634 571 595 679 700 782 759 795 708 734 725 788 806 766 771 795 781 846 

7 624 714 695 661 605 736 661 660 770 769 711 680 879 709 873 704 908 661 

8 730 647 563 629 637 819 745 708 698 665 795 800 776 649 845 828 747 1015 

9 751 579 582 636 648 755 759 602 797 790 847 653 886 831 657 822 812 687 

10 708 625 604 535 645 757 588 715 713 723 626 770 583 744 722 845 763 863 

11 555 580 524 652 556 754 660 745 732 633 714 698 715 599 812 902 688 810 

12 486 508 634 569 690 795 748 656 736 679 646 754 824 651 698 849 781 774 

13 675 611 644 604 680 701 684 691 708 713 755 636 772 795 772 791 732 784 

14 659 556 599 464 546 753 652 631 716 670 514 816 767 641 686 693 798 832 

15 779 608 632 713 582 587 692 603 708 849 784 700 582 739 721 596 823 644 

16 667 601 605 581 631 725 632 727 562 558 682 633 780 576 734 745 713 750 

17 1252 593 574 583 619 553 684 682 802 640 766 826 673 593 751 665 728 739 

...... 
0 
N 
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analysis will thus aid in the determination of the noise level. 

The Random Error Noise Level 

It has been shown (Godson 1959) that random errors 

tend to produce a "white" spectrum when subjected to a Fourier 

analysis. (A "white" spectrum is one in which the variance is 

constant for aU wave numbers). It seems reasonable that this 

103 

same property shou1d hold in the case of spherical harmonie analysis. 

To test this property, lOO sets of Fourier coefficients at all data 

latitudes were generated from a standard random number generator 

programme. The random numbers had a normal distribution with 

a standard deviation of 25/17 units. Five hundred was added to the 

mean values at latitude circles (i.e. the A0
). These generated 

Fourier data were then analyzed into Legendre polynomials (. using 

the same analysis scheme as was used on the real data). The 

variance of the mean and the mean variance of the 100 samples were 

computed for each wave component and are shown in Tables 4. 6 and 

4. 7. The results indicate that the spectrum is quite closely 11 white 11
• 

The bias to higher variances and mean values for large values of 

is due to the increasing bias in the analysis programme for large 

values of71. . This bias in the analysis is especially large for the 

zonal components w}lere for some components the mean variance is 

smaller than the variance of the mean. Theoretically, if the 

spectrum is exactly white then the mean variance in any component 
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Table 4. 8: Variance of mean values of streamfunction amplitudes obtained from 100 sets of random height 

fields. Values have been multipliee! l:lv 10
2

. 
. m 
J 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

0 1 2 3 4 56 7 8 9 10 

7415 255 45 76 52 7 115 28 24 6 40 

0 0 0 0 0 2 0 0 1 1 1 

1115 26 11 21 14 4 35 18 7 1 16 

0 1 0 1 0 0 0 0 0 1 1 

424 9 5 7 5 1 16 11 6 0 11 

1 1 0 1 1 2 1 0 1 1 0 

231 2 4 4 2 0 1 0 8 5 0 3 

0 0 0 2 1 1 1 0 1 1. 1 

114 0 3 3 0 0 6 3 1 1 1 

0 0 1 0 2 1 1 1 1 1 1 

130 0 1 3 0 1 2 4 0 0 1 

1 1 1 1 4 2 1 1 0 0 0 

21 0 

0 1 

116 0 

1 1 

0 0 

1 

1 

0 

1 

0 

2 

1 

0 

1 

0 

0 . 0 2 2 0 0 1 

3 2 2 2 0 0 1 

0 0 0 0 0 0 0 

4 1 3 3 0 0 2 

0 0 0 0 0 0 0 

11 12 13 14 15 16 17 

3 2 7 19 18 83 32 

3 3 4 1 1 5 1 

3 1 2 10 3 21 5 

1 7 9 0 0 0 3 

1 2 2 9 2 12 4 

1 7 9 1 0 l 2 

2 1 3 8 3 8 4 

2 4 6 0 l 0 3 

2 1 2 6 1 4 2 

2 5 5 1 4 1 4 

2 0 0 3 1 4 1 

4 4 7 1 4 2 6 

0 1 0 2 0 1 1 

3 3 6 1 5 2 5 

0 0 0 2 1 0 1 

2 2 3 2 9 1 4 

0 0 0 0 0 0 0 

...... 
0 

"" 
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Table 4. 9: Distribution of mean variance of stream function amplitudes obtained from 100 sets of random 

height fields. Values have been multiplied by 10 

. m 
J 

1 

2 

0 1 2 3 4 5 6 7 8 9 

1994 2552 107 2 

1 2 3 

571 

5 

490 

7 

488 404 404 393 340 

9 11 13 13 17 

10 11 12 13 14 15 16 17 

317 393 357 308 393 293 415 320 

20 20 21 26 24 27 25 31 

3 289 272 224 147 142 157 134 140 138 130 108 152 121 118 149 112 156 124 

4 2 3 4 6 7 9 11 12 13 15 17 20 22 24 27 26 30 30 

5 106 102 95 70 72 82 71 74 . 75 72 58 87 68 65 86 69 85 73 

6 4 4 5 6 8 10 10 11 12 15 16 18 21 20 26 27 31 25 

7 53 51 47 39 43 47 41 45 48 44 36 53 44 41 55 46 50 46 

8 6 6 6 7 9 11 10 12 13 14 17 18 22 20 20 22 32 24 

9 30 28 26 22 27 28 27 28 28 28 23 36 29 27 34 28 31 30 

10 8 . 7 7 8 10 13 11 12 15 16 19 18 23 22 25 20 30 26 

11 17 16 14 14 16 17 17 17 16 17 14 21 19 15 22 18 21 19 

12 . 9 8 8 8 9 13 13 15 15 17 18 17 24 23 30 2 2 3 2 29 

13 10 9 7 8 8 10 8 10 9 8 8 11 12 8 11 10 12 13 

14 1 0 9 1 0 9 10 15 15 16 15 19 1 9 16 25 24 31 23 31 29 

15 3 3 3 3 3 3 3 4 3 3 4 3 4 3 4 4 4 5 

16 13 11 11 11 10 16 15 17 17 22 22 16 25 26 30 23 31 32 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
.... 
0 
U1 
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should be the same, and then we can compute this value by the 

following consideration. 

There are 37 data points entering into the analysis of 

each Fourier wave. For all non-zonal waves, the polar values are 

not considered since the representation has no degrees of freedom , 

at the poles (i.e. P:'(o):. p:;(1r) .= 0 if -m :i 0 ) • Thu s the total 

number of degrees of freedom in the field is 35 X 17 + 37 = 632. 

For a 11 white 11 spectr um then the theoretical field variance will be 

divided equally into each degree of freedom, so that the variance in 
. -4 

any component should be = 39.2/632 = 620 X 10 . 

This number agrees quite well with the values given in 

Table 4. 7. The error level in the analysis of real data can be 

estimated then by considering the distribution of variance in the 

smaller scales. This involved the estimation of the point where the 

spectrum becomes 11 white 11 so that the error level obtained must be 

considered as only an estimate. 

It is also of great interest to determine the effect of 

random errors in the geopotential height field on the stream functions 

obtained through the linear balance equation. To determine this 

effect the sample of random height fields was put' through the linear 

balance equation. The statistics of the stream functions obtained 

are given in Tables 4. 8, 4. 9. The zero values in the Tables for 

J = 17 are just the boundary condition imposed on the solution of 

the linear balance equation. Generally the tables show that the 
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Table 4. 10: Distribution of the variance of the mean height field in DM

2
. 

by 10 2 

. m 0 1 2 3 4 5 6 7 8 9 10 11 
J 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

11110 102 28 1 8 0 

52761 140 0 3 14 26 

1194 133 57 5 30 3 

2416 213 158 17 23 20 

52 27 10 

396 32 45 

2 78 25 

2 135 85 

92 51 27 

13 36 36 

0 5 3 

5 11 18 

2 3 1 

19 3 0 

2 3 0 

21 1 0 

0 2 0 

15 68 5 

2 22 11 

1 39 7 

11 

3 

5 

1 

2 

2 

0 

0 

0 

1 

5 

7 

2 

0 

0 

0 

0 

0 

0 

0 

4 

0 

1 

0 

0 

1 

0 

0 

0 

0 

0 

9 

6 

5 

7 

1 

4 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

4 

2 

4 

0 

0 

1 

2 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

• 
Values have been multiplied 

12 13 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

14 15 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

16 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

17 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

...... 
0 ..... 
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Table 4. 11: Distribution of mean variance of the height field in DM
2

. Values have been multiplied by 10 2 

. rn 
J 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

0 1 2 3 4 5 6 7 8 

11287 135 52 17 22 15 10 8 3 

52792 193 52 36 67 62 37 24 11 

1283 197 130 80 120 60 47 37 15 

2452 311 268 106 207 87 60 45 17 

85 106 78 140 157 82 41 27 17 

420 79 195 67 127 

33 145 84 76 80 

29 174 134 39 28 

125 79 54 31 31 

33 60 7 2 21 19 

29 30 28 15 15 

12 30 35 15 10 

6 20 12 10 6 

24 12 8 4 7 

4 9 8 5 3 

24 5 4 4 4 

1 5 4 4 3 

59 40 27 12 

33 27 19 9 

24 19 12 7 

16 9 12 4 

13 10 5 4 

10 5 6 2 

6 4 3 3 

5 3 3 2 

5 1 1 2 

4 2 2 1 

3 1 1 1 

2 1 1 0 

9 

1 

9 

9 

16 

14 

7 

9 

4 

4 

4 

2 

2 

1 

1 

1 

1 

0 

10 11 12 

1 

3 

7 

6 

7 

5 

4 

2 

3 

2 

1 

2 

1 

1 

0 

1 

0 

0 

2 

3 

3 

4 

4 

2 

3 

1 

1 

1 

1 

0 

1 

0 

1 

0 

0 

1 

3 

2 

3 

3 

2 

1 

1 

1 

1 

1 

0 

1 

0 

1 

0 

13 

0 

1 

2 

2 

2 

1 

z 

1 

1 

0 

1 

0 

1 

0 

1 

0 

0 

14 

0 

0 

1 

1 

1 

1 

1 

1 

l 

0 

1 

0 

1 

0 

0 

0 

0 

15 

0 

0 

1 

1 

1 

l 

0 

1 

1 

0 

1 

0 

1 

0 

0 

0 

1 

16 17 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

..... 
0 
CP 
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variance of the mean of the stream function is approximately 100 

times greater than for the height field. However, the mean 

variance is also different by the same factor, so that this is con-

sistent with the numerica1 values of the stream field components 

being on the average 10 times greater than the height amplitudes. 

However, the distribution of variance is quite different. 

The most obvious feature is the dependence on parity. 

The variance in symmetric components is generally much larger 

than the variance in the antisymmetric components. The feature 

of error amplification in the symmetric components is thus well 

illustrated in these tables. On the basis of these tables an estimate 

of the noise level in each of the components may be obtained, and at 

the very least applied to the long term statistics of the flow. 

The Statistics of the Flow at 500mb for Sept. 1957 

The Geopotential Height Field 

In Tables 4. 10, 4. 11 the variance of the mean and the 

mean variance of the geopotential height field for the month of 

September 1957 are shown as distributed over the components. In 

these tables (as in ethers of the same type in this section) index 

These tables 

' show that the great majority of the variance is contained in the zonal 

components; 97% for the mean field and 91% f<;>r the mean variance. 

However, the zonal components contribute very little to the transient 



Figure 4. 1: Di~:>U·ibution of variance of height field for eddy comp~ncnts 

as a !unction of the threc wave numbers (decameL"'es) . 
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part of the variance since the variance of the mean is 99% of the 

mean variance, and in fact the contribution of the zonal components 

to the transient part of the variance is only about 140/o. 

Disregarding the zonal components, the main contri-

butions of variance come from the low wave numbers or large scale 

waves. In a spherical harmonie representation there are three 

wave numbers one may consider. The wave number 71. and its 

2: corresponding wavelength L = is the two dimension wave-

length that enters as the dynamically significant wavelength in any 

analysis based on spherical harmonies. The wave number, ?71. , 

measures the wavelength of a disturbance around a latitude circle, 

and 'ï'l-'ï'l1. measures the wavelength in a north-south direction. 

For example, for a given 1"'l {i.e. two-dimensional wavelength) one 

may have a system which is elongated along a latitude circle {low ?n.., 

high n-1'Yl. ) or elongated along a meridian {low 7l-7f't , high m ). The 

wave number 'lt- "'h'\ also measures the symmetry or as.ymmetry of 

the flow with respect to the equator according to whether it is even 

or odd respectively. 

In Figure 4.1 the distributions of variance for the 

standing (monthly mean} and the transient (mean square minus square 

of the mean) parts of the height field ( excluding the zonal components} 

are shown as a function of the three wave numbers. The distribution 

over n shows a broad maximum in the transient part ranging from 

i1.;::. 4- -10 which corresponds to a wavelength range of approximately · 
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9000 km to 4000 km. The standing part shows maxima at ?'(. = ~ 

and n. = 8 and a relative minimum at 1"1.::.. 6 

The distribution over "YYY shows that the variance of the 

mean field is largely contained in waves with 'Yl1.= l. and ;t • The re 

is a secondary maximum at'1'V\: 4. The transient part is much 

more equally distributed over the first five wave numbers. 

The distribution over the north- south wave number 

indicates that the mean field is more large1y asymmetric than 

symmetric with respect to the equator (maxima at Y\.-1""i:: 3 , and 

11. -m = 7 } . Even the transient part has its largest variances m 

odd components but the general picture is not one of dominance. 

These results are in agreement with those of Steinberg 

(1965) who analyzed the same data using a different analysis technique. 

Noise Level in the Height Field Analysis 

In accordance with the experiment described in the 

previous section one may expect that random errors will contribute 

equally to the mean variance of each component in the system. Thus 

if one can determine where the variance approaches sorne constant 

value, then an estimate of the random noise level may be made. An 

inspection of Table 4. 7 shows that although the mean variance 

shows a tendency to level off the values are still monotonically 

decreasing. This may indicate that the noise level from purely 

random errors is less than O. 01 DM 2. Indeed the random noise 
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level consisted with a standard deviation of an individual grid point 

4 2 value of+ 2 DM (+ 65 feet) is given by t:)3'"2 :: • 006 DM . This is 

not to say that these components whose variance is greater than 

. 006 DM 2 are significant, but rather that the noise level may be 

determined by another cause. 

Each spherical harmonie wave is in principle a global 

entity. Real highs and lows, especially on the smaller scale, are 

not global entities, but in this context localized perturbations (e. g. 

a hurricane). The process of analysis will misinterpret these 

perturbations and form global waves which when added together 

reproduce the localized variations. As far as the distribution of 

variance of the amplitudes necessary to represent a localized 

perturbation is concerned, one may expect that those components 

whose wavelengths are similar to the scale of the localized 

perturbation will have a large part of it, and the variance will 

decrease for smaller and larger scales. This process would tend 

then to produce a distribution of variance which decreases mono-

tonically for decreasing wavelength since it would add little to the 

variance contained in the large scale waves. Thus one might 

expect that if the energy spectrum of the waves was obtained that 

the energy contained in the smaller scales of motion would be 

approximately equal. Thus seems to be the case as will be shawn 

from the energy spectrum derived through the linear balance equation. 

A determination of the noise level on this basis is 
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Table 4.12: Distribution of kinetic energy of the mean (metres/sec) 2 ; zonal values X10 2
; other X 103 

j rn 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1555 212 33 73 336 116 20 11 4 19 35 25 28 0 5 

619 76 76 6 100 11 8 5 10 6 40 5 4 28 2 

7 

7 

7 4 

7 13 

2595 83 27 130 271 329 208 100 70 117 67 38 26 15 5 4 21 13 

37 237 115 38 274 29 132 120 48 46 16 15 18 47 17 9 0 1 

295 824 920 93 44 41 0 1 12 11 21 90 15 12 2 6 

0 27 341 73 503 207 23 112 7 20 3 49 10 8 4 1 

5 1310 413 100 277 150 74 

2 1060 145 188 139 60 78 

2 8 

8 35 

0 163 549 79 68 14 3 86 32 

228 8 201 92 31 17 58 73 13 

39 569 320 24 9 26 2 10 0 

238 150 28 15 22 10 37 44 7 

4 30 89 90 13 4 7 18 13 

159 389 88 104 7 20 50 18 1 

1 3 2 53 1 0 2"8 49 ' 4 14 1 0 6 

251 73 55 90 2 7 60 42 8 

0 0 0 0 0 0 0 0 0 

8 1 25 

0 5 36 

3 1 14 

8 2 35 

5 11 10 

8 2 17 

6 1 8 

1 1 17 

2 10 9 

4 0 23 

0 0 0 

6 5 1 1 

1 21 10 3 

9 12 12 4 

8 25 3 23 

1 4 4 4 

0 11 0 13 

5 1 0 1 

3 10 10 11 

2 2 1 0 

1 10 4 3 

0 0 0 0 

2 

2 

1 

5 

0 

3 

0 

8 

4 

1 

2 

1 

0 

2 

0 

4 

1 

3 

9 

2 

4 

4 

1 

5 

6 

0 

--~· 



• e 

Table 4. 13: Distribution of mean energy (metres/sec) 2 ; zonal values X 10 2; ether X 10 3 

. m 
J 17 16 6 0 8 13 14 15 1 2 3 4 5 7 9 10 11 12 

1 1590 622 403 371 865 521 399 519 355 412 308 363 314 275 241 227 247 277 

2 629 100 137 113 277 344 381 394 243 141.194 128 117 96 71 54 95 99 

3 2626 442 420 459 1110 1096 987 823 543 642 294 284 244 237 213 200 171 161 

4 53 354 341 474 1007 676 601 634 404 391 267 207 188 177 126 92 80 85 

5 346 1571 1862 904 1662 808 780 678 403 386 340 306 305 208 165 156 145 116 

6 18 352 891 779 1076 947 456 465 309 342 255 215 126 134 97 65 100 101 

7 35 1758 1371 559 928 708 569 441 279 237 172 260 136 142 117 125 136 120 

8 14 1338 489 634 629 335 396 392 234 174 131 154 125 133 96 77 116 86 

9 27 724 884 441 452 415 396 426 256 184 130 181 134 113 117 138 93 122 

10 270 524 656 465 411 379 309 308 168 188 124 115 124 142 104 125 134 119 

11 

12 

13 

14 

15 

16 

17 

64 974 1193 297 387 253 192 167 124 158 145 141 7 2 80 86 105 86 83 

257 591" 452 253 256 255 177 310 184 133 115 106 82 90 74 87 83 90 

18 380 391 434 325 249 157 197 135 125 101 104 83 80 75 100 71 

171 732 475 376 235 227 214 187 165 123 102 84 99 109 83 

146 307 294 303 359 232 139 130 117 85 68 75 57 54 41 

89 107 

82 5.5 

58 

89 

61 

260 463 366 422 186 174 202 165 123 136 85 128 96 136 96 96 105 92 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

.... .... 
\J1 



Figure 4. 2: Distribution of the horizontal mean kinetic energy per unit 
mass over the three wave numbers (metres/sec)2. 
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essentially equivalent to deciding on a noise level by requiring 

continuity intime. Steinberg (1965) used continuity intime to 

estimate the noise level at O. 6 DM
2 

which is consistent with a 

random error with a standard deviation of+ 6 DM or + 200 feet! 

This hardly seems reasonable; so that sorne process similar to 

that described above must occur in the analysis. 

The Stream Function 

In Tables 4. 12, 4. 13 the horizontal mean kinetic 

energies per unit mass are shawn as distributed over the corn-

ponents. Table 4.12 gives the kinetic energy of the mean and 

Table 4.13 mean kinetic energy in metres 2 sec- 2 In the meal\ 

117 

flow the energy is split between zonal flow and eddies in the ratio of 

4 to 1 while in the total flow (i.e. mean energy) the ratio is 3 to 4 

respectively. The bulk of the energy of the zonal flow (94%) is 

contained in the mean flow. Figure .4. 2 illustrates thè distribution 

of kinetic energy for the standing and transient parts of the eddies 

over the three wave numbers "tl. , m , and 7l-1'Yï. • The distributions 

are not too different in shape from the distributions of the variance 

of the height field, but the maxima are shifted t"o higher wave number s. 

In particular the absolute maximum shifts from l1. = 7 in the case of 

the height field to11.= 8 • As well, the distribution over '"'r'Y\. of the 

transient kinetic energy shifts the ab solute maximum from "nt= 1to 
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Figure 4. 3: Distribution of the horizontal mean kinetic energy per unit 
mass over wave number (metres/sec) 2. (FromEliasen and 
Machenhauer, J 965). 
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The distribution of kinetic energy over 11.-1-11... shows 

relative maxima for even values of 1t- "nt , which indicates that the 

circulation is asymmetric with respect to the equator from an 

energetic point of view as well. 

The tails of these distribution indicate (as can be seen 

in the Table of mean kinetic energy} that for large wave numbers 

each component has approximately the same energy. .(This appears 

as a horizontal line for the distribution of YY\ and n- "nf\. since 

each '1"n and n-'1'\'\. has 17 components. In the distribution over 

n however it will appear as a line sloping negatively towards 

zeroatn='35 ) . 

. Eliasen and Machenhauer have performed similar cal­

culations for the northern hemisphere {assuming a symmetric 

southern hemisphere) for the month of January 1957. From their 

published results the distributions of kinetic energy were calculated 

and are presented in Figure 4. 3. (The distribution over 'n-"rY'' was 

~ot calculated since the only permitted values in their scheme are 

the odd values). The main features of the distributions of the 

transient component compare quite closely, except that the January 

values are about twice as large as those for September. However, 

the standing eddies have quite a different distribution of kinetic 

energy over wave length. In particular, in January the energy in 

components "YYY= 2. and 3 is five or six times that in September. 

Also the distribution over 'Y\ shows a large maximum at 'Yf= S) b 



Figure 4. 4: Distribution of horizontal mean kinetic energy per unit mass 
corrected for an equal energy noise level (metres 1 sec) 2 . 
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Table 4. 14: Mean zonal wind profiles (metres/ sec) including components up to the indicated wave number. 

n 1 
Lat 
90 0 

2 

0 

3 4 

0 0 

5 6 7 8 

0 0 0 0 

9 10 11 12 13 14 15 16 

0 0 0 0 0 0 0 0 

80 1.19 -0.46 5.06 5.90 2.55 2.54 1.88 1.42 1.58 7.29 4.83 -1.28 -0.54 4.18 0.19 -4.76 

70 2.34 -0.76 8.88 10.35 5.63 5.61 5.02 4.72 4.78 5.47 5.77 7.88 7.48 4.24 7.39 11.52 

60 3.41 -0.76 10.59 11.99 8.81 8.80 8.85 9.03 8.94 5.51 6.70 8.29 8.31 9.85 7.55 3.96 

50 4.39 -0.35 9.91 10.69 10.66 10.67 11.12 11.37 11.34 12.24 11.19 8.14 8.39 8.54 9.90 12.98 

40 5.23 0.49 7.23 7.15 9.68 9.69 9.89 9.79 9.87 12.21 12.05 13.91 13.57 12.12 11.72 9.18 

30 5.91 1.74 3.53 2.75 5.59 5.59 5.30 5.06 5.08 3. 21 4.24 4.89 5.12 7.20 6.72 8.67 

20 6.42 3.32 o. 10 -0.91 0.00 -0.01 -0.33 -0.28 -0.36 -1.57 -2.25 -4.63 -4.63 -6.59 -5.39 -6.71 

10 6.73 5.08 -1.82 -2.51 -4.13 -4.14 -4.04 -3.81 -3.81 -1.46 -1.88 0.16 -0.05 1.12 -0.55 0.12 

0 6.83 6.83 -1.42 -1.42 -4.18 -4.18 -3.81 -3.81 -3.74 -3.74 -2.74 -2.74 -2.44 -2.44 -0.61 -0.61 

-10 6.73 8.37 1.47 2.16 0.54 0.54 0.64 0.41 0.41 -1.95 -2.37 -4.41 -4.62 -5.79 -7.47 -8.14 

-20 6.42 9.51 6.29 7.30 8.21 8.22 7.89 7.85 7.78 8.99 8.32 10.70 10.70 12.66 13.86 15.18 

-30 5.91 10.09 11.87 12.65 15.49 15.48 15.20 15.43 15.45 17.33 18.36 17.72 17.95 15.87 15.38 13.43 

-40 5.23 9.98 16.71 16.79 19.32 19.31 19.51 19.61 19.68 17.34 17.17 15.30 14.96 16.40 16.00 18.53 

-50 4.39 9.13 19.39 18.61 18.58 18.57 19.02 18.77 18.74 17.83 16.78 19.84 20.09 19.95 21.32 18.24 

-60 3.41 7.59 18.93 17.53 14.35 14.35 14.40 14.21 14.12 17.54 18.73 17.14 17.16 15.62 13.32 16.90 

-70 2.34 5.43 15.07 13.60 8.88 8.89 8.30 8.60 8.66 7.97 8. 27 6.17 5.77 9.01 12.17 8.04 

-80 1.19 2.83 8.35 7.42 3.98 4.00 3.34 3.81 3.97 -1.74 -4.19 1.91 2.65 -2.07 -6.06 -1.12 

-90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-N -
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Figure 4. 5: Comparison of mean zonal wind profiles (metres 1 sec) obtained by 

successive inclusion of components of the stream function from the 
linear balance equation. Curves include components up to (0, 3), 
(0, 5), {0, 11). 
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which is absent in the September curves. The January distributions 

also appear to have constant energy in the large wave numbers but at 

a somewhat lower value. 

This last observation appears to be confirmed in Table 4, 13 

where the components of even symmetry appear generally to have 

higher energies. This is consistent with the error propagating 

feature of the solution of the linear balance equation (pp 97, 98) 

so that the jagged appearance of Figure 4. 2 may be somewhat 

spurious. (This does not imply that the conclusion about the anti-

symmetry of the height field is invalid). 

Considering the equal energy distribution as a "noise 

level" on the remainder of the distributions, corrections were made, 

and the final distributions of the transient pa.rt are shown in Figure 

4. 4 . The shape of the distributions hardly changes, but the absolute 

2 2 
values are reduced by 1 to 2 metres 1 sec . 

Representation of the Mean Zonal Flow 

The mean zonal flow for the month was calculated from 

the mean values of the zonal components of the stream function. 

The calculation was ·performed for each component sep~rately, then 

thése results were added successively to see the effect of each term 

of the resulting profile (Table 4. 14). In Figure 4. 5 the profiles of 

zonal wind obt ained by adding components up to and including the 

indicated number are presented. The two jet structure, with a 
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Fig:4.6: Compariaon of mean zonal winds for the month of September 1957. 

-10 

Stream function winds include components up to and including {0, 11). 
Tropical zonal wind values obtained from De Las Alas ( 1966). 
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stronger jet in the southern hemisphere, is determined mainly by 

components up to 'YI.= 3 The jet maxima are too far north and 

t/,~ south however, and thus components r.,. 
. 

1 ~; take car e of this 

by shifting the maxima towards the equator without affecting the 

maximum values. Components with ?Z= b; 7, 8 > 9 add ver y little 

to this prof~le because their mean values are very small. Com-

ponents 'f,: ; tf,~ add detail to the jet maxima, actually producing 

two maxima in the southern hemisphere and a secondary maximum 

in the northern hemisphere. They also add structure to the profile 

in the tropical regions. 

The mean geostrophic zonal wind profile was calculated 

by finite differences over 5° of latitude from the mean height profile. 

Figure 4. 6 shows the comparison between the geostrophically com-

puted winds and the stream function winds (for n.: Il.). The agreement 

between the two is very good north and south of 20° latitude. The 

stream winds give a small region of easterlies near the south pole, 

but since the analysis gives equal weights to equal area this is probably 

spurious. As might be expected the geostrophic winds behave ·rather 

badly near the equator, being -40 J?etres per second at 2. 5°S and 

0 + 8. 5 metres per second at 2. 5 N. The stream function winds are well 

behaved near the equator, and agree fairly well with the observed mean 

zonal winds in this region. (The observed zonal winds were taken from 

a study by De Las Alas (1966) of the tropical region for the same period .) 

This is not too surprising because one of the conditions for solution 

' 

of the linear balance equation is that the derivative of the zonal height 
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Figure 4. 7: 

Daily values of ~onal stream function components for the month of 
September 1957. 
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Figure 4. 8: 

Daily values of zonal stream function component for month of September 19 57. 
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field be zero at the equator. Since the height field is implicitly 

modified to reach this condition, geostrophy could be applied 

everywhere. It was found that the best agreement was obtained 

by only including zonal components of the stream function up to 

lt.=/1 The remaining components seemed to just add noise 

to the profile. 

The Fluctuations of Large Scale Components of the Stream Field. 

Zonal Components 

The variation of the largest scale zonal components 

} as a function of time is shown in Figure 4. 7 

These components determine to a large extent the total structure 

of the zonal flow, and thus do not change very much over the month. 

The symmetric component 'f: (giving a stronger jet in the southern 

hemisphere) does show a tendency to decrease during the course of 

the month in accordance with increasing zonal flow in the northern 

hemisphere and decreasing in the southern hemisphere. Any 

LL/
0 

tL1
3
° secular changes in T 1 and T are masked by what appears to 

be a high noise level in these components. 

The components ~; , 'f'; (Figure 4. 7}, undergo 

fluctuations at least as large as their mean values with a dominant 

period of the order of a month. · Their values are predominantly of 

. (/j: ,,,o one sign however, T 'T being negative for 28 days and y S' positive 

for the 30 days. The smaller scale components <f:)·'f;,tf1°,<f;,{Fig.4. 8) 



129 

3 

2 
:E 
0 

1-
z 
Ill 
..J 

~ . 
;:) ' 31 a \ 

' 
, 

Ill ' 
, 

- 1 \ 1 ..... v 

1 9 Il 13 15 17 1$ 21 23 25 21 29 
SEPTEMBER 1957 

Ill -2 0 
;:) 

1-
:::; 
Q. -3 
2 
c 

-4 

.:s 

Figure 4. 9: Daily values of zonal stream function components for month of 

September 1957. 



• 

130 

essentially fluctuate about zero with amplitudes of the order of 

1 - 3 equivalent decametres. >:• The components </'1~ , ~~.(Fig. 4. 9) 

behave in the same manner as tf; ) 'f: undergoing relatively 

large fluctuations but remaining predominantly of the same sign. 

The components with 'YI> JI have not be en considered for 

two reasons. Firstly the analysis program is such that numedcal 

errors of the order of the mean amplitudes of the components with 

Ï1 > J 1 can be produced; second! y the se components add nothing 

but noise to the computed mean zonal wind profile. 

Non-zonal or wave components 

In their studies of the fluctuations of the planetary scale 

waves both 'Eliasen and Machenhauer (1965) and Deland (1965} have 

demonstrated ( using spherical harmonie analysis over the northern 

hèmisphere) that there is a component of barotropic, or more 

precisely equivalent barotropic, motion on this scale. These 

planetary waves are composed of a relatively stationary component 

plus a moving component which moves westward with phase speeds 

of up to 40 degrees longitude per day for the largest scale. Recent 

evidence indicates that these fast moving components extend to great 

heights. Hemispheric analysis in terms of spherical harmonies at . 

* Equivalent decametre - the stream function has been reduced to 
approximate geopotential height in decametres. For proper 
units of m 2sec-1 multiply by the .constant Sj-j.!).. in M. K. S. units • 
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Fig.· 4. 10: Daily values of amplitudes and relative phase angle ;of stream 
function component { 1, 1) for month of September 19 57. 
Amplitude in equivalent decameters. 
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Fig. 4. 11: Daily values of amplitudes and relative phase angle of stream 

function component ( 1, 2) for month of September 19 57. 

Amplitude in equivalent decameters. 
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180 0 

Fig. 4. 12: Daily values of amplitudes and relative phase angle of stream 

function component ( 2, 2) for month of September 1957. 

Amplitude in equivalent decameters. 
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Figure 4. 13: Daily values of amplitude and relative phase angle of stream 
function component ( 1, 3) for month of September 1957. 
Amplitude in equivalent decameters. 
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Figure 4. 14: Daily values of amplitude and relative phase angle of stream 

function component ( 2, 3} for month of September 19 57. 

Amplitude in equivalent decameters. 
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Figure 4. 15: Daily values of amplitude and relative phase angle of stream function 

component (3, 3) for month of September 1957. Amplitude in 

equivalent decameter s. 



three levels, 500mb, 100mb, 25 mb, indicate that the moving 

parts are consistent in the vertical. (Baville, to be published). 

One of the most striking ways of illustrating this behaviour is on 

a phase diagram. This is a plot of the amplitude and phase on a 

polar diagram, each point representing the wave at a given time. 

If a wave behaves according to the madel above, the trajectory of 

137 

the point representing it will tend to be circular about sorne mean 

value. This trajectory may or may not enclose the origin depending. 

on the relative magnitudes of the moving part and the st~tionary part. 

In the phase diagrams to follow the positive abscissae is 

the Greenwich meridian; motion from east to west is in a dock-

wise sense. As well, the plotted points represent the amplitude and 

relative phase of the waves so that to determine angular phase speeds, 

the relative phase changes must be divided by the zonal wave number 

Figures 4.)0 to 4. 15 are the phase diagrams (in 

equivalent decametres) for the very largest scale waves (Jt~3 ) in 

the stream field at 500mb for September 1957. These diagrams 

indicate that there is little if any coherence in the time variations 

of the amplitudes and phase of these components. (This is not 

primarily due to the properties of the linear balance equation because 

the same incoherence in time · is observed for the height field com­

ponents for the globe). Certainly there appears to be no evidence 

of any retrogressive barotropic mode. 
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Figure 4. 16: Daily values of amplitude and relative phase angle of south<::rn hPmi-

spheric height field component ( l, 2) for month of September 19 57. Antisymmetry 

with respect to the equator is assumed. Amplitude in decameters. 
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. Figure 4. 17: Daily values of amplitude and relative phase angle of northern 
hemispheric height field component ( 1, 2) for month of September 19 57. 
Antisymmetry · with respect to the equator is assumed. Amplitude in 
decameters. 
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Figure 4. 18: Daily values of amplitude and relative phase angle of southern hemispheric height field componen 

(2, 3)for month of September 1957. Antisymmetr.y with respect to the equator is assumed. Amplitude in dm. 
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Figure 4. 19. Daily values of amplitude and relative phase angle of 
northern hemispheric height field component ( 2, 3). for month of 
September 1957. Antisymmetry ~ with respect to the equator is 
àssumed. Amplitude in decameters. 
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In order to account for this rather incoherent behaviour 

the original global height field was split into two hemispheres and 

analyzed separately assuming antisymmetry. Figures 4.16, 4.17, 

4.18, 4.19 are the phase diagram (in decametres) for the largest 

components ( ?t .= .3 ) for the northern hemisphere and the southern 

hemisphere. The difference between their behaviour in the two 

hemispheres is quite striking. The waves in the northern hemi­

sphere follow quite closely the model of a standing perturbation 

plus a rapidly retrogressing component, whereas those in the 

southern hemisphere show little consistency from day to day. As 

well the stationary parts of these waves have different amplitudes 

and widely different phase positions in the two hemispheres. This 

points up a serious difficulty that occurs when one is trying to define 

the behaviour of waves on a global scale. If in fact the stationary 

parts of the waves are generated by friction and/or heating, then 

there is every reason to expect these components to be unrelated 

in the two hemispheres. Thus even if there exist oscillations which 

are planet-wide, when they are superimposed on the standing parts · 

they will be extremely difficult to detect. This may well be a factor 

in the time variation of the stream components. However, the large 

scale southern hemisphere height field components themselves behave 

in an erratic manner which indicates that the fluctuations of these 

waves are poorly defined by the data. 

Generally speaking, the smaller scale waves are more 
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9 w 
Figure 4. 20: Daily values of amplitude and relative phase angle of !)outhern 
hemispheric height field component (4, 7) for the month of September 1957. 
Antisymmetry with respect to the equator is assumed. Amplitude in 
decameters . 
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Figure 4. 21: Daily values of amplitude and relative phase angle of northern 

hemispheric height field component (4, 7) for month of September 1957. 

Antisymmetry with respect to the equator is assumed. Amplitude in 

decameter s. 
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Figure 4. 22: Daily values of amplitude and relative phase angle of southern 
hemispheric height field component {4, 9) for month of September 1957. 

Antisymmetry with respect to the equator is assumed. Amplitude in 
decameters. 
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90E 

Z~ NH 

90W 

Figure 4. 23: Daily values of amplitude and relative phase angle of northern 

hemispher1c height field component ( 4, 9} for month of September 1957. 

Antisymmetry ,with respect to the equator is assumed. Amplitud~ in 

decameters . 
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well defined than the large ecale waves in the southern hemisphere 

(at least in the sense that their time behaviour is reasonably co-

herent). Figures 4. 20, 4. 22 show the phase diagrams for the 

largest components of zonal wave number 4 i.e. + ':2'4 r.. 7 and c. 9 • 

Bath the waves move from west ta east throughout the month with 

fairly constant phase speeds, and smoothly varying amplitudes. 

lt can be argued that this regularity has been forced on the data 

through its distribution, and the use of time continuity for its 

analysis. However, as can be seen from the phase diagrams, the 

phase goes through almost three cycles; which means that a fair 

part of the system will be in good data areas at least three times 

during the month. This rather etrange idea that the short scale 

waves are more well defined than the large scale waves can perhaps 

be supported by the following argument. In arder ta detect a fairly 

rapid retrogressive component superimposed on a stationary one the 

phase position must be determined very accurately.- Notice in 

Figure 4.17 that the range of phase angles for Z~ in the northern 

hemisphere is only .±. 45° for the entire month. The smaller the 

amplitude of the moving part relative ta the stationary part the more 

accurate must be the phase determination. The synoptic analyst in 

the southern hemisphere must resort to a combination of time con-

tinuity and what he can determine about 500 mb from the surface 

observations when working in poor data areas. The very large 

scale waves (such as zonal wave number one which measure the 

eccentricity of the flow about the pole) are not obviously apparent 
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on a synoptic chart. As well, their vertical structure is most 

probably such that they have very low amplitudes near the surface. 

Thus one may expect that fluctuations of the type observed in the 

northern hemisphere for the. very large scale waves would be lost 

through lack of definition in the southern hemisphere. 

Broadly speaking, the behaviour of the waves in the two 

hemispheres (even if well-defined individually) is different. 

(Compare Figures .4. 20, 4. 214. 22 ,4. 23 ). When the two hemi-

spheres are combined then the time behaviour of the waves becomes 

less coherent. For example (as was shawn by Steinberg (1965) for 

zonal wave number 4) if there exist two independent perturbations of 

the same zonal wave number in the northern and southern hemi­

spheres which are imbedded in zonal currents of different speeds, 

then variance (or energy} will be shifted from even Legendre com­

ponents to odd Legendre components of that wave as the two independent 

perturbations come into and go out of phase. This may be interpreted 

as a non-linear interaction of waves with an odd zonal flow, but this 

appears to add little to the understanding of the system. 

Because of the variability of the phase changes from day 

to day of a large number of the components it was decided that com­

putations and comparison of phase speeds of the components in 

general would be meaningful only as regards to sign (i.e. whether a 

particular component' s motion was dominantly retrogressive, pro­

gressive or neither). For those components which do have well-

.1 
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Table 4. 15: CHARACTER OF THE FLUCTUATIONS OF SPHERICAL HARMONIC WAVES. 

R = RETROGRESSIVE P = PROGRESSIVE X= NOT DOMINANTLY ONE OR THE OTHER 
--· 

m -,"!Il> 1 2 3 4 5 

n 
NH SH ~LO- NH SH GLO- NH SH GLO- NH SH GLO- NH SH GLO- NH ~ !BAL BAL BAL BAL BAL 

-
1 - - x 

-
2 -72 x x - - R . 

3 - - R -25 R x - -
4 R x x - - R R x x - - x 

5 - - p R R R - - x R +9 x - - x 
. 

6 x p R - - R p p p - - p R p p -

7 - - R R p p - - p x +9 p - - p p 

8 R p x - - x p p p - - p x p p -

9 - - x x p x - - p p +9 p - ·- p +5 

10 x p x - - x p p p - - p p p p -

-·---- -··· -~--·#-·-· _.,_._,_.,.-_,. .. .,---_.,.......,.._...,---------

' 

6 
' 
' 

SH GLO-
BAL: 

- x 
' 

p p 

- p 

p p 

- p 

•• 
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defined and consistent phase variations over the period of the 

month phase speeds in degrees longitude per day were computed. 

The se determinations were made for the three sets of components; 

i.e. the global stream function; the northern and southern hemi-

sphere height components; and are presented in Table 4. lS. No 

distinction was made between those components which had little 

coherent behaviour ( such as lf ~ ) and those which were progressive 

for one part of the month and retrogressive for the other. 

The stream function components even under this very 

rough classification do not show any pattern save that short .waves 

are progressive. On the other hand the nor.thern and southern 

hemisphere components do show a pattern of long retrogressive 

waves, intermediate quasi-stationary components and short pro-

gressive waves. The wavelength of the quasi-stationary waves 

appears to be longer in the southern hemisphere, which is con-

sistent with a stronger zonal flow. 

1 
Components Z~ and in the northern hemisphere 

retrogress very rapidly during this period (September 1957) at 

speeds which are approximately twice as large as those obtained 

by Deland for January 1957. It is noteworthy that components 

z. ~ ' z; ' :2: in the southern hemisphere all appear to 

progress at the same speed, approximately 9° per day. 

This last observation may shed sorne light on the meaning 

of the time variations of the components, especially for the smaller 
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Figure 4. 24: Daily values of amplitude and relative phase angle of northern 

hemispheric height field component (6, 9) for month of September 1957. 

Antisymmetry with respect to the equator is assÙmed. Amplitude in 

decameters. 
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90W 

Figure 4. 25: Daily values of amplitude and relative phase angle of northern 
hemispheric height field component ( 6, 11) fo~ month of September 19 57. 
Antisymmetry with respect to the equator is assumed. Amplitude in 
decameters. 

.. 
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scale components. If a particular perturbation with a given zonal 

wave number (e. g. Yf'\ :: 4 or 6) has a latitudinal shape which is 

characteristic to itself and is largely maintained as the wave is 

advected by the zonal flow, then the Legendre components repres­

enting the latitudinal structure of the wave may be expected to 

maintain their relative phase positions as the perturbation is 

advected. This appears to be well-illustrated by wave number 

four in the southern hemisphere and wave number six in the northern 

hemisphere (Figures 4. 20 ~ 4, 21, 4. 24, 4, 25). 

On this basis one can account for the resulta of Deland 

(1961). He found that the waves without exception "showed greater 

eastward, or less ràpïd westward, motion than would be predicted 

from the Rossby-Haurwitz wave speed''. 

For the large scale retrogressive components this result 

can be explained by a very small amount of divergence as illustrated 

by Eliasen. and Machenhauer (1965). If the smaller scale waves 

correspond to the model above. then being largely located in the 

region of strong westerlies, their phase speeds and thus the observed 

phase speeds of the Legendre components representing their latitudinal 

profile will be much lar ger than the corresponding Rossby-Haurwitz 

phase speeds of Legendre components. This indicates that for small 

scale perturbations the Legendre components individually have little 

meaning in terms of the dynamic equations and linear phase speeds. 

This is presumably what Deland means when he says 11it is possible 



they are all carried along by the faster-moving smaller-scale 

waves, by means of non-linear interactions11
• 
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S. SUMMAR Y AND CONCLUSIONS 

The broad aim of this investigation was to study the 

application of spectral techniques {primarily in terms of spherical 

harmonies) to the dynamical equations in general, to highly truncated 

systems in particular, and then to observed motions in the atmosphere 

with the vie·w of delineating the non-linear behaviour of waves. 

On this basis the following conclusions can be drawn: 

1. The full dynamical equations transform straightfqrwardly into 

the spectral domain; the non-linear terms appearing as sums 

of products of amplitudes modified by interaction coefficients. 

2. The main advantage of the spectral forms is that they conserve 

energy under only mildly restrictive truncation; the main dis­

advantage is the necessity of computing large numbers of 

interaction coefficients in the application of the spectral forms 

to modela with many degrees of freedom. 

3. Highly truncated spectral forms of the dynamical equation may 

be studied in a quasi-analytic manner with fruitful resulta. In 

particular, the resulta of previous stability analysis of barotropic 

motion can be interpreted in terms of the non-linear behaviour of 

the waves in simplified modela. 

4. In a non-linear system the distinction between stability and in­

stability is not as clearly defined as in a linear system. In fact, 

zonal current systems which are linearly stable may undergo 
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large fluctuations if subjected to finite perturbations. 
' 

5. The comparative study of simplified barotropic motion on the 

j3-plane and on a sphere indicates that they are essentiaUy 

equivalent. 

6. There is no evidence in the September 1957 data at 500mb that 

fluctuations in the large-scale vorticity patterns are global in 

character, but rather that the two hemispheres behave independ-

ently. This means that although the statistics derived from a 

global analysis ( such as the distribution of kinetic energy over 

wavelength} are probably meaningful, the individual behaviour of 

the waves is not. On the other hand, hemispheric analysis 

produces a reasonable picture of the fluctuations of the large-

scale components. 

7. There is little evidence of non-linear behaviour of the type dis-

cussed in terms of three component systems. This fact is not 

inconsistent with the following observations. Firstly, as was 

indicated previously, the large-scale zonal components are well 

into the stable regime. Since the zonal components are large 

compared to the perturbations, the large-scale waves may be 

expec ted to behave linear 1 y. That is, they un der go little en er gy 

exchange with the zonal flow. Secondly, the existence of a 

quasi-stationary part of a wave (which is presumably thermally 

or frictionally forced) violates the basic of the truncated model. 

Thirdly, for shorter wavelengths the large number of possible 



• interactions limits the possibility of any three component 

e?Cchange being dominant and thus observable. Fourthly, 

the behaviour of the shorter waves indicates that they may 

have latitudinal structures which are characteristic to 

themselves and not related to the spherical harmonies. 

This last observation, coupled with (5), suggests that 

the study of smaller scale motions may be more profitable and 

more simply done on the (3-plane. 
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The definition of the large-scale motions in the atmo­

sphere is far from being complete. However, as this work suggests 

(in agreement with Deland (1965}, Eliasen and Machenhauer {1965} ), 

the use of spherical harmonies to specify these large-scale motions 

seems promising. The discovery that the large -scale waves do 

behave approximately in accordance with the Rossby idea is 

significant, not only for the understanding of these motions but also 

for the purpose of extended range forecasting. If spherical 

harmonie analysis is able to separate out significant motions, then 

the study of the spectral forms of the dynamic equations becomes 

very important. Here only extremely simple barotropic motion 

has been studied. This work should be extended to more com­

plicated physical systems which are able to convert potential to 

kinetic energy and also respond to the forcing produced by large­

ecale heating and friction. 
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• APPENDIX A 

The functions 

P 't'Yl _ 1 ( 2n + 1 (n.- m) !) i (l 2)Î ""md. n rm 1 
71 

. ")'t - -;;-' 2 . '/" t~ 'il.-') ; m ~ o A l z 11. (71. +1i7) .' ~ ?t+?n • 

where ~ = c.o.s a ' -n.."" 0;) 1) 2 ' •••. 
..;. + 

' ??? =- o.~ - :1 • • • • - n. ' 

are orthonormal in e over the range ( 0 ' ..,.,. ) and satisfy the 

equations (Rojanski, p 532) 

m m pm m "Wl 

ces & P -n = A-n n+t + B-n P-n-1 A. 2 

Pm C?nPm+l _D-m Pm+/ 
sin. B . ?t , = ?t n. -r 1 n -n -1 A. 3 

.s?rt-8 p; 
?:n -m-1 m p 7'Y1-I - -E-n. P?t+' - Fn A. 4 - 7?,- 1 

d.P-m - 1 G m p rn+J J Hm p m-1 71. -- - n '?t +- n A. 5 
ci.B 2 2 ~ 

-m "n'\ -m -m m si,.,. B d P n n A i1 p n+t - (71.+1) B-n. P 11.- 1 A. 6 -dB 

mc.ot B P;: 1 G -m p m+J 1 H'Yrl pm-' - - 1t. ?t. -+ - '11. 7l A. 7 2 2 

• 
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where the expansion coefficients are 

A~ 'l = C-n+"m+ I)('Y\--m+l) 

(2..'1\.+1) (2."1'\.+3) 

(2"Yl+ 1) (2'Yt-t 3) 

( 'YI-1'YI + r) ( "l'\-m +'l.) 

(2.-n + 1) (2-n. + 3) 

G~ï.. -- '( ) .. ('"11..-"'MJ 1t+'Wl+l 

-ml. 
F'\1 = 

(v\t'Yr\ ) ("l'\ - 'YI1) 

(2'Yl - l) ( 2 'Yl + 1) 

frl- "m) ( 'h -'l'YI- 1) 

(2'Yl-•)(2n+ 1) 

(1"\ +'Y"r'l)(-n+m-•) 

(2."Y1 -•) (2-n-rr") 
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APPENDIX B 

In view of equation A. 5 .,. 

J '1t1r . • my 

P ?ly SVH..& oi..Pn"' s~ 8c/..8 
0 d8 . 

which, upon application of the orthogonal relations 2. 11 

gives 

Thus equation 2, 25 may be written as 

r 

:g. -x,.JP,s:... a~~,;.. 8 J.e = (x,-1) <::;X,_, - (>t,+2) E,;:, x,.., 
0 

where 
2. 

E "n'l,r -
7ty 

Similarly, using A. 6 it can be shown that 

l 
The following integrais of triple products of Legendre 

function arise naturally from the spectral transformation of the 
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B. 1 

B. 2 

B. 3 
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vorticity and divergence equations 

B. 4 

7r 

where - J Pr ( mr~. P~ d. Pt - m~ ~ c!:!!.ct) d. a 
o dB d.e 

B. 5 

where 

1r 

,T.I'rl' - C.,C(J f p"' P~r P,- s;.._ BJt! B. 6 

0 

Here Q( > (3 > ){ are wave vectors defined as o(:: ït~ +.i.mo< etc., 

and the Po~. are the normalized associated Legendre functions of 

the first kind. 

The symmetry properties of the interaction matrices may 

be obtained from the above equations. 

B. 7 

• 
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Further by integration by parts gives (Silberman, 1954) 

so that in consideration of the evaluation of L« >t (J one need only 

consider positive values of "Ynol) -m;s > Î"t7 li'. 

Following essentially the development of Silberman 

(loc. cit.) the following expression of LC( ~l' 

integrals of the type B. 6 may be obtained. 

where 

Consider now K o< Y /3 · 

in terms of 

The Po< satisfy the following differential equation 

B. 8 

B. 9 

B. 10 

B. 11 
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Integrating the following expression by parts gives 
1r 7! 

- Py 0 Po~ si.< 81 j?.. d ( P, 0 sH<O) dJJ 
d.8 0 0 J.8 d.f) 

Since dP;J can be expressed as a linear combination of Py 1 s 
d8 

and no p.~ has singularities at the poles, the first term on the 

right hand side i& equal to zero; 

;r 

! Py tf.:!! rLP~ siK.Bd8 = 
() de de 

Differentiating through the right hand side of B.12 gives 
71 

~ . " 

f p
1 
d~ dPc{.s""8J.8:: -f~Py d. {siM. e rift) d.8- jR< ::yf/ si.c.Bd8 
de J..e dtJ ds o 

() 0 . 

Using B. 11 resulta in the following expression 

~ ~ . 

1 Py d f1g J~ .s~8 d8 ::: f~ Py ( -n1;(n1 + 1) - :na2 

) s~B Pp d.B 
da d8 s1.+1. -z.a 

0 0 

7T' _ J d. fy Po~. oLI'f .s~ ede 
0 d8 d.8 

Similarly, expansion about the other term gives 

~ ~ f p~· d P! J.fq SIÀt.lidB ::: !11 P1 {no( (?t.t.t-1)- ~«;t) sH-t..B Po< J.e 
0 

de J.8 D svn.e 

..,---f !!!} P;.s d p(J( s~ 8 d. e 
t/.8 d.B 

0 

B. 12 

B.l3 

B. 14 
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Tl 

gives 
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TT 

2 J Py J.. ft J. fe~. :.Ût. e de = 
o de dB 

{izodn"' +1) -1-11.1 (7ll +'il !Pc< Pr P,6 sÜt8 ri~ 
0 

., 
- JPr.:!: (~fi) sindJJ. 1} 

0 df} 

Thus Z K oi ~ ~ is· given by 
7(' 

2 K, 'fS = - [n• (?l•+t) ·Htp (-np +t)J fp., Py Pp s.:... Bd!! 
0 

Integrating the last term on the right hand side by parts and using 

equation B. 11 one obtains 

B. 15 
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for non vanishing of the interactions, 

can be expres sed as 
1f' 

7l 'If ( '~~t+ ') - ne~. (n" .,., )- 7lfi { 'Ylf'.,. 1) J Plll P~ pt- sitc.ed 8 

or more simply 

c"~- co< - c~ 

:z. 

· Thus all of the interaction matrices are expressible in terms of • · 

integrafs of the product of three Legendre polynomiale. An 

expression for integrais of the type ]Pc(, P;r Pf shc. e da has 
. 0 

also been presented by Silberman (loc. cit.) 
.L 

/ '"",., P, Fp sÙt.B d.B = (n ~ + n • - "~ -t)!! [{t "' r1 ){zn., H )( 2 "1 + tj} 
2 

o fnt> +nr --nd).'! ( 1l«-~"nl' +?l" + 1).~1 ( n" r nr- rt~) .'.' 
1 x[ {rty+1'Yir)! (rzy-my)! (-np-ïnf>)! (no~•'rr141()/7 i 

2 [n. ci+ 'YYJQI.)! ( ?1.f3 + '"m(S)! J . 

where .Ae. !! = ....k (~-2)(-k-11-) ••• • 2 or-/> and O.'/= (-/)!! -:: 1 

as well,any terms with the single factorial of a negative number 
. 

are considered equal to zero. It is also implicitly asslimed .that 

171r~.+Yn..p.::: 711~ • The above integral vanishes unless the following 

B. 16 
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conditions are fulfilled 

These selection rules result in similar selection rules for the 

interaction matrices which are summarized in the following table .. 

SELECTIONS RULES 

Interaction Hri'I!J Lot. ){;; Ic~-~11 K <X 'lf/J J'oc 'tf/" 
Matrix 

Wave Rulet 'WitJ.+m!= my ?rJ d. -t Î1l,8 :: ?n i" , ?no<+m;tt=?ny l'ne( -t -mt!: mi" mc<+~ =m)' 

Triangle ln~~o-~/<:.ny /11«-?1;3/ ~ 11y ln,.- "~,a 1 t:c 11;,- ht.« -ït.,s/11 ?1~ /?1 o~-rl,4/:1: 114' 

Rttle L. 71111. + 11,19 ~ 71.J, + 'l"l,g .ft 7t cA + ?t.j> 1= 71"" + '11f?. 6: 11(/.1- "~& 

Parity 
1111{+n,.s +11r=odd 71.a+ 7t;;+ rlft>Ddc/. ?(<li ~+'ny=e.ten. 1lll(-f'f.g·t1lY: eVfl"A. ?" .... +"'+ 'l!.r"' eV€1(. Rùle --

Additional 
1l<X .:\: n~ ~;;.+~1..~0 7/..x * 0; ?tp * 0 Rules 1t.x f:o; 11,6 ~ o ?lo~~o; ~ :to 

The quantity vanishes unless the speeified condition is fulfilled 

The symmetry and redundancy relations for the interaction 

matrices are as follows 

Lot.'tf1 -

LeX. 'If 1 = C -1)"Wj"" Lo~.*; r = ( _, )-mp L li o.f .,( 

• 
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where tX~ = n« - .i.. mo< etc. , 

J-1 o( ){ fJ - H/3 '~~ 0( = -Hc<>f'lftt/'* 

Ko("'f/3 .:: K;t '( D{ ::. K Ci( it t~~ ~-~~ 

Joi'll'f3 :: Jf Y v. = Jo(. il yK f'* 

Since all of the interaction matrices can be expressed in terms of 
7r 

integrals of the type Mot. y~ == j ~ Pr f;s .s~ a de , they can be 
0 

· evaluated by taking advantage of not only their own symmetry and 

redundancy relations, but also those of 11 o( tr,.S 

Thus in computing the interaction matrices only positive wave 
' vectors .need be considered . 
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