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ABSTRACT 

Aicardi-Goutières syndrome (AGS) is a genetic inflammatory disease. The classic neuroradiological 

picture mimics that of congenital infections in that Aicardi-Goutières syndrome is characterized by 

leukoencephalopathy, brain atrophy and intracranial calcifications. To date, bilateral striatal necrosis has 

not been reported in patients with AGS. 

We report two patients with clinical diagnosis of Aicardi-Goutières syndrome in which brain MRI 

and CT scans demonstrated bilateral striatal necrosis. The diagnosis of Aicardi-Goutières syndrome in 

these two patients was genetically confirmed after the recent discovery that mutations in the ADAR1 

(AGS6) gene may cause Aicardi-Goutières syndrome.  

This is the first report of bilateral striatal necrosis in association with Aicardi-Goutières syndrome. 

These results expand the neuroradiological phenotype of Aicardi-Goutières syndrome. 
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INTRODUCTION 

Aicardi-Goutières syndrome (AGS) (OMIM 225750) is a genetic inflammatory disease due to 

mutations in any one of six genes discovered to date (AGS1-AGS6). These genes are all involved in 

nucleic acid metabolism that can result in intracellular overload of nucleic acids activating TLR-IFN-alpha 

pathways.[Crow et al. 2006a; Crow et al. 2006b; Pulliero et al. 2011; Rice et al. 2009; Rice et al. 2012] In 

particular, the most recently described gene, ADAR1 (AGS6), is involved in the suppression of type I 

interferon (IFN) signalling.[Riceet al. 2012] 

The diagnosis of AGS is suspected when a child presents in the first year of life with acquired 

microcephaly, irritability, psychomotor delay or regression, unexplained fevers, and laboratory tests 

showing raised CSF IFN-α levels, lymphocytosis, and negative TORCH serology. Neuroradiological 

criteria - leukodystrophy, brain calcifications, and cerebral atrophy - have been crucial for the diagnosis of 

AGS since its very first description.[Aicardi and Goutieres 1984; Lebon et al. 1988] Although some 

recurring patterns seem to characterize the neuroradiological picture, significant variability in the above-

mentioned criteria has been observed.[Uggetti et al. 2009] For example, a fronto-temporal gradient often 

associated with cystic degeneration is considered the classical pattern of leukoencephalopathy in 

AGS.[Uggettiet al. 2009] However, cases with more diffuse white matter involvement have also been 

described.[Rice et al. 2007; Uggettiet al. 2009] Brain calcifications in AGS are usually, but not always, 

bilateral and symmetric, and can be either punctate or gross, and either sparse or widely diffuse. 

Heterogeneity in localisation is also evident: calcifications can be present in the basal ganglia, dentate 

nuclei and/or in the white matter.[Uggettiet al. 2009] This heterogeneity is also seen in congenital 

infections whose phenotypes are mimicked by AGS. 

As opposed to what observed in AGS, infantile bilateral striatal necrosis (IBSN) is a unique and 

very distinctive neuroradiological phenotype.[Goutieres and Aicardi 1982] IBSN is characterized by a 

specific involvement of the striata, with initial swelling of the putamina and caudates followed by 

degeneration, leading ultimately to cellular necrosis.[Goutieres and Aicardi 1982; Mito et al. 1986] IBSN 

has been associated with different genetic conditions, including mitochondrial disorders.[Aniello et al. 

2008; Barel et al. 2008; Basel-Vanagaite et al. 2006; Dale and Brilot 2012; Lal et al. 2013] To date, IBSN 
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has not been associated to AGS. The aim of our study is to describe two patients with clinical diagnosis of 

Aicardi-Goutières syndrome and neuroradiological findings compatible with bilateral striatal necrosis. 

CLINICAL REPORTS  

Patient 1 

An eight month-old male child, born at term after an uneventful pregnancy to healthy unrelated 

mixed Italian-Cuban parents, presented with extreme irritability and unexplained episodes of fever. The 

perinatal period was uneventful and the parents reported normal psychomotor development.  

At the age of eight months, progressive psychomotor regression and generalized involuntary 

movements were evident. When referred to our clinic at the age of nine months, the neurological 

examination was characterized by bradykinesia, rigidity, spasticity and microcephaly. The head CT scan 

demonstrated bilateral and symmetric calcifications at the level of the posterior aspect of the putamina 

(Figure 1A). The brain MRI (Figure 1D-E) showed diffuse white matter abnormalities compatible with 

leukodystrophy. Highly abnormal hyperintense signal - inhomogeneous in T2-weighted images (partly due 

to calcifications) and more homogeneous in T1-weighted images - was visible in both putamina, mainly in 

their posterior aspect. The T2-hyperintense signal was also observed in the body of the caudate nuclei 

bilaterally, with relative sparing of the heads, and, to a lesser extent, in the pallida nuclei (Figure 1D) 

The follow up MRI examination performed three months later (Figure 1F) showed that the T2 

hyperintense signal at the level of the putamina was more prominent. A marked atrophy of both putamina 

and caudate nuclei was observed. Consequently, the lateral ventricles appeared significantly enlarged. 

The white matter abnormalities were unchanged. No MR spectroscopy was performed. 

Extensive laboratory and metabolic tests (including serology for TORCH, HIV-1 and -2, serum α-

IFN, CSF lactate and pyruvate, and CSF lymphocyte count) were all normal, except for raised CSF alpha-

IFN (12 UI/l; normal values <2). Reduction in the activity of the respiratory chain complexes (residual 

activity ranging from 45 to 63%, except for 27% for complex III) was documented on muscle homogenate. 

Southern Blot hybridisation, real-time PCR, and molecular analysis of UQCRB, UQCRQ, and BCS1L 

were normal. 

The identification of two mutations in ADAR1 (p.Pro193Ala (c.577C>G) and p.Lys359Argfs*14 

(c.1076_1080del) on exon 2) established the diagnosis of AGS. 
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Patient 2 

The second patient was a male infant born at 36th week of gestation after an uneventful 

pregnancy from non-consanguineous Italian parents. Birth weight and head circumference were in the 50-

75th percentiles. At the age of one month, he presented with increasing irritability, as well as sleep and 

feeding difficulties. No recurrent fevers were reported. In the following months, psychomotor delay was 

noticed, as head control was never achieved. At the age of eight months, a thorough clinical and 

diagnostic workup was performed. The head CT scan revealed bilateral calcifications at the level of the 

putamina (Figure 1B) and enlarged ventricles, probably secondary to white matter atrophy. AGS was 

suspected based on the clinical and CT findings; however, the CSF analysis showed no lymphocytosis 

and mild elevation of alpha-interferon (3UI/ml; normal values <2). The CSF lactate was also moderately 

elevated (5.4mg%; normal values <3.5). The activity of the respiratory chain complexes was not 

measured for the patient. Blood tests for the TORCH complex were negative.  

At the age of three years, the brain MRI demonstrated diffuse white matter abnormalities 

suggestive of leukodystrophy, loss of posterior periventricular white matter, and mild cerebral atrophy 

(Figure 1C). Abnormal T2-hyperintense signal was evident at the level of the putamina. Severe atrophy of 

the putamina and caudate nuclei with consequent enlargement of the lateral ventricles was also observed. 

Another brain CT scan was performed at the age of 10 years and confirmed the presence of 

punctate bilateral and symmetric calcifications localized exclusively at the level of the putamina, mainly in 

their lateral aspect. In comparison to the previous exam, the calcium deposits appeared less prominent. 

The identification of mutations in ADAR1 (p.Pro193Ala (c.577C>G) on exon 2 and p.Ala870Thr 

(c.2608G>A) on exon 8) confirmed the clinical diagnosis of AGS.  

DISCUSSION 

We observed two patients for which the diagnosis of AGS was first clinically suspected, and then 

genetically confirmed based on mutations in ADAR1, despite neuroradiological findings not reported 

before in large series of AGS cases.[Crowet al. 2006b; Uggettiet al. 2009] In particular, the 

leukodystrophy and cerebral atrophy were not as remarkable as commonly observed, while the bilateral 

involvement of the putamina – and in Patient 1 the caudate as well - was present since the disease onset 

in the first year of life. The striatal involvement was characterized by signal alteration, volume loss, and 



La Piana et al.   Striatal Necrosis in AGS due to ADAR1 Mutations. 6 

calcification. In Patient 1 we could observe the evolution from the subacute phase and, hence, document 

the initial swelling of the striata nuclei. These neuroradiological findings (and, in Patient 1, their evolution 

over time) are fully compatible with bilateral striatal necrosis. Noticeably, we observed bilateral 

calcifications in the putamina. While this feature is not always present in IBSN, brain calcifications in AGS 

are seldom limited to a single structure.[Uggettiet al. 2009] Although we cannot exclude absolutely that 

IBSN and AGS represent a casual association,  it is possible that the two subjects here reported 

represent a new distinct pattern of disease sharing the same imaging and genetic features.  

IBSN was originally classified into two distinct entities.[Dale et al. 2002; Goutieres and Aicardi 

1982] In the first subgroup, patients present subacutely in the first year of life, no relation with infections is 

found, and the pathogenesis is thought to be metabolic/heredodegenerative. Mitochondrial disorders – 

and among these complex III deficiencies[Barelet al. 2008] – may present with IBSN.[Anielloet al. 2008; 

Basel-Vanagaiteet al. 2006; Dale and Brilot 2012] In the second subgroup, the disease onset is more 

acute and clinical or serological evidence of an infectious process that preceded the neurological 

symptoms is commonly documented.[Goutieres and Aicardi 1982] Both AGS patients reported here 

presented features overlapping the two subgroups. Consistent with the second subgroup of IBSN, we 

observed an acute disease onset. However, no evidence of infection was found and the disease course 

appeared to be progressive, suggestive of the first subgroup of IBSN. Moreover, no familiarity for similar 

neurological conditions was reported.  

Interestingly, the pathogenesis of AGS is both immune-mediated and inflammatory. Similarly, 

IBSN has been associated with either immune-mediated reactions triggered by the interaction between 

self-antigens selectively present in the striata and exogenous agents.[Daleet al. 2002; Goutieres and 

Aicardi 1982] Among these agents, several viruses[Cambonie et al. 2000; Goutieres and Aicardi 1982; 

Murakami et al. 2005; Voudris et al. 2002; Yamamoto et al. 1997] were reported and notably AGS is 

described as mimicking viral infections. As reported by Rice et al., ADAR1-deficient cells may lead to an 

increase in immunoreactive dsRNA with consequently impaired suppression of IFN induction.[Riceet al. 

2012] We hypothesize that the putamina and caudate nuclei of children with ADAR1 mutations have a 

selective vulnerability, perhaps caused by the presence of self-antigens, that ultimately leads to IBSN. 

Moreover, metabolic changes occurring in the developing basal ganglia at disease onset may play a role 
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in the final clinical and neuroradiological picture.[Mitoet al. 1986] Interestingly, the striatum is particularly 

susceptible to neurotoxicity associated with HIV infection [Nath et al. 2000] and the metabolism of 

retroelements is central in the pathogenesis of both AGS and HIV.[Riceet al. 2012]  

A mitochondrial dysfunction – in particular, a marked reduction of complex III activity - was 

documented in Patient 1. Previous reports of genetically-confirmed AGS patients have also noted 

mitochondrial respiratory chain deficiencies or mitochondrial involvement.[Barnérias et al. 2006; 

Leshinsky-Silver et al. 2011] In these reports, mitochondrial dysfunction was hypothesized to be 

secondary to the pathogenetic process of AGS. We speculate that in our patients, at least in Patient 1, 

the mitochondrial dysfunction could contribute to IBSN. 

The diagnosis of AGS has always been based upon clinical and neuroradiological criteria, and 

then genetically confirmed.[Riceet al. 2007] Regarding the most classical laboratory diagnostic criteria for 

AGS, we observed normal CSF lymphocytes count, yet elevated CSF alpha interferon in both our patients. 

Although these features have already been described [Crow and Livingston 2008; Riceet al. 2007], we 

cannot exclude that this discordance between elevation of white cells and alpha interferon could be 

characteristic of AGS6 patients [Riceet al. 2012]. Our report demonstrates that the classical 

neuroradiological criteria are not sufficient to describe the complex spectrum of AGS. However, we 

believe that some similarities are shared. In fact, both the classical neuroradiological picture and the one 

here reported resemble viral or immune-mediated disease. In addition, it is well known that genes 

involved in AGS are all related to metabolism of retroelements that, when not functioning, give rise to 

immune reactions similar to those triggered in response to viral stimulation.[Crowet al. 2006a; Crowet al. 

2006b; Riceet al. 2009; Riceet al. 2012] In this regard, the neuroradiological picture observed in our two 

AGS patients with IBSN is in keeping with the notion that AGS mimics viral/immune-mediated processes 

due to an aberrant immune response consequent to impaired metabolism of nucleic acids. Finally, as 

mentioned above, the mitochondrial dysfunction documented in one case could have contributed to IBSN. 

A limitation of our study is that the findings we reported were observed in only two patients. Therefore, the 

hypotheses regarding the association between the two conditions (AGS and IBSN) and their 

pathogenesis need to be confirmed with further observations. Nevertheless, we can speculate whether 

other cases of IBSN of unexplained origin (i.e. no evidence of previous infection) could represent 
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undiagnosed cases of AGS and consequently whether the analysis of ADAR1 should be suggested in 

those circumstances. 
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FIGURE LEGENDS 

Figure 1: Infantile bilateral striatal necrosis in AGS. A, B. Axial head CT scan of Patient 1 (A) and Patient 

2 (B), performed at the age of 8 months in both cases, showing bilateral punctate calcifications at the 

level of the putamina, particularly in their lateral aspect. In Figure 1B a posterior ventricular enlargement 

is also visible C. Axial TSE T2-weighted MR image of Patient 2 at age 3 years showing hyperintense 

signal at the level of putamina bilaterally and enlargement of the lateral ventricles as a result of caudate 

atrophy. D, E. Coronal T2-FLAIR (D) and axial T2 (E)-weighted MR images of Patient 1 at age 8 months 

showing inhomogeneous hyperintense signal at the level of the putamina bilaterally and white matter 

abnormalities in the deep frontal and parieto-occipital regions. To a lesser extent, the caudate and the 

pallida nuclei appear affected as well. F. Axial T2-weighted MR image of Patient 1 at age 11 months 

showing progressive atrophy of the striata and consequent ventricular enlargement.  


