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Abstract 

Climate change, defined as long-term changes in global temperature and weather patterns 

primarily due to anthropogenic activities, affects ecosystems, biodiversity, and human health. As 

a result, urban populations are particularly at risk of heat-related illnesses, exacerbated by the 

Urban Heat Island (UHI) effect. Most UHI studies have utilized remotely sensed temperature data 

due to their easy availability and accessibility, but they only detect surface temperature differences 

and have been shown to portray urban areas as warmer than they actually are. In contrast, in-situ 

sensors can measure ambient air temperature, which impacts thermal comfort and is directly 

related to cardiovascular mortality. Currently, UHI can only be accurately measured using 

conventional in-situ weather stations, such as those operated by Environment and Climate Change 

Canada (ECCC). However, newer crowdsourced and Volunteered Geographic Information (VGI) 

approaches, such as using low-cost sensors, when combined with geographic technologies, have 

the potential to usher in a new era of micro-scale climate studies. 

This thesis aims to assess the effectiveness of in-situ sensors in capturing and estimating 

UHI intensity within Canada. Through an extensive review of literature, the advantages of 

conventional and crowdsourced in-situ temperature data sources over other sources are identified. 

Furthermore, the challenges of utilizing data from in-situ sensors for UHI studies are also analysed. 

The analysis highlights the importance of considering spatial representativeness of in-situ sensors, 

whether conventional or crowdsourced, due to its influence on estimating UHI intensity. Overall, 

this thesis expands the current understanding of utilizing in-situ sensors to study UHI dynamics, 

which benefits policy-making and urban planning initiatives that aim to mitigate the adverse 

impacts of UHI and improve the resilience of cities to climate change. 
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Résumé 

 

Le changement climatique, défini comme les changements à long terme de la température 

mondiale et des régimes climatiques principalement dus aux activités anthropiques, affecte les 

écosystèmes, la biodiversité et la santé humaine. En conséquence, les populations urbaines sont 

particulièrement exposées aux maladies liées à la chaleur, exacerbées par l'effet d'îlot de chaleur 

urbain (UHI). La plupart des études sur l'UHI ont utilisé des données de température télédétectées 

en raison de leur disponibilité et de leur accessibilité, mais elles ne détectent que les différences 

de température de surface et il a été démontré qu'elles donnent une image des zones urbaines plus 

chaudes qu'elles ne le sont en réalité. En revanche, les capteurs in situ peuvent mesurer la 

température de l'air ambiant, qui influe sur le confort thermique et est directement liée à la mortalité 

cardiovasculaire. Actuellement, l'UHI ne peut être mesurée avec précision qu'à l'aide de stations 

météorologiques conventionnelles in situ, telles que celles exploitées par Environnement et 

Changement climatique Canada (ECCC). Cependant, de nouvelles approches basées sur la 

participation de la population et l'information géographique volontaire (VGI), telles que 

l'utilisation de capteurs à faible coût, combinées à des technologies géographiques, ont le potentiel 

d'ouvrir une nouvelle ère d'études climatiques à micro-échelle. 

Cette thèse vise à évaluer l'efficacité des capteurs in-situ dans la capture et l'estimation de 

l'intensité de l'UHI au Canada. Grâce à un examen approfondi de la littérature, les avantages des 

sources de données de température in-situ conventionnelles ou issues du crowdsourcing par 

rapport à d'autres sources sont identifiés. En outre, les défis liés à l'utilisation des données 

provenant de capteurs in situ pour les études sur les UHI sont également analysés. L'analyse 

souligne l'importance de la représentativité spatiale des capteurs in-situ, qu'ils soient 

conventionnels ou crowdsourcés, en raison de son influence sur l'estimation de l'intensité de l'UHI. 

Dans l'ensemble, cette thèse élargit la compréhension actuelle de l'utilisation des capteurs in-situ 

pour étudier la dynamique des UHI, ce qui profite aux initiatives d'élaboration de politiques et de 

planification urbaine qui visent à atténuer les impacts négatifs des UHI et à améliorer la résilience 

des villes face au changement climatique. 
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1. Introduction 

The term "climate", derived from the Greek word "klima" which means inclination, describes the 

weather of a region averaged over a significant period of time (Heshmati, 2020). A change in either 

the average climate or the variability of the climate that continues for an extended period is referred 

to as "climate change". During the 1760s and 1840s, the Industrial Revolution changed rural 

agrarian societies into industrialised urban ones, as a result, the amount of carbon dioxide 

emissions started to increase with increased usage of fossil fuels (Britannica, 2023; Vries, 2008). 

All the carbon dioxide measurements taken over a century were later compiled in 1938 by British 

engineer George Callendar (Callendar, 1949), who discovered that carbon dioxide levels were 

rising along with temperatures. At that time, it was believed that this increase in temperature would 

be advantageous because it would prevent glaciers from returning and allow humanity to live in 

the future under a brighter sky and less barren landscape (History of Climate Science Research, 

2023). 

However, the amount of carbon dioxide in the air which was about 280 parts per million 

(ppm) before the Industrial Revolution, has now risen to over 400 ppm (NOAA, 2022). This 

increasing trend is confirmed by the Keeling Curve, a graph that records the daily changes of 

carbon dioxide concentration in Earth’s atmosphere (Monroe, 2024). In the geological past, such 

extremely quick environmental shifts were often accompanied by mass extinctions because 

ecosystems could not adjust to the new conditions in time (The History of Climate Science, 2020). 

And contrary to earlier beliefs, more recent scientific evidence suggests that this warming might 

exacerbate the situation by melting permafrost and releasing trapped greenhouse gases from the 

oceans, which could amplify the warming. Amid such realizations of how things could go wrong 

disastrously, the Intergovernmental Panel for Climate Change (IPCC) was established in 1988. 

1.1. Urban climate and Urban Heat Island effect 

As stated above, industrialization changed the focus from agriculture to manufacturing and other 

industrial activities. This shift created more job opportunities in urban areas, drawing individuals 

from rural regions in search of employment. As a result, this increase in population helped to 

facilitate the development and spread of cities, a phenomenon known as urbanization (Berry, 

2008). Since urban activities are significant contributors to greenhouse gas emissions, it is asserted 

that cities have a considerable role in climate change. According to estimates, cities account for 
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75% of all carbon dioxide emissions, with transportation and construction being the two biggest 

sources (Bazrkar et al., 2015). By 2050, 68% of the world's population, up from 55% today, is 

anticipated to reside in cities (UN DESA, 2018). This means that by 2050, an additional 2.5 billion 

people could live in urban regions due to urbanisation, with about 90% of this increase occurring 

in Asia and Africa (UN DESA, 2018). Further, people of lower social classes and racial and ethnic 

minorities are more likely to reside in warmer neighbourhoods than privileged ones, which causes 

a problem of environmental and climatic injustice (Fan & Sengupta, 2022; Schlosberg & Collins, 

2014). Moreover, since climate change disrupts farm based livelihoods, it will continue to drive 

more climate refugees into urban areas  (DePaul, 2012). These trends clearly demonstrate the 

importance of researching urban climate dynamics. 

The local energy balance of a geographic space as well as its microclimatic characteristics 

and thermal environment are impacted by the alteration of a “natural” space to an urban space 

(Peng et al., 2020). When it comes to urban climate, the term ‘Urban Heat Island’ figures 

prominently. Urban Heat Island (UHI) effect is a climatic phenomenon characterized by 

temperature difference between the urban and the rural zones. The urban areas experience a higher 

temperature relative to their rural surroundings, especially at night (X. Yang et al., 2020; D. Zhou 

et al., 2019). UHI occurs due to heat accumulation resulted by the physical properties of urban 

landscape and anthropogenic heat released into the atmosphere (Oke, 1973). With recent 

developments in cities, there is no distinct borderline between ‘urban’ and ‘rural’ areas, therefore, 

the UHI can be considered in terms of the difference between the central parts of the city and its 

surrounding areas (Ngie et al., 2014). And it has been shown to exacerbate the effects of heatwaves, 

which relates it directly to global warming (Founda & Santamouris, 2017; Khan et al., 2021) 

adding to already important impacts of UHI such as higher energy use, exacerbation of energy 

poverty of vulnerable social groups during the hot months, and impaired air and water quality 

(Kousis et al., 2021).  

The differences in the urban and rural temperatures were first observed by Luke Howard 

(1833) in the early 19th century, when studying the urban climate of London. The term ‘Urban Heat 

Island’ was later coined by Gordon Manley (1958) when he was investigating changes in snowfall 

patterns between urban London and its surrounding rural areas. UHI is measured by Urban Heat 

Island intensity (ΔUHI), which is the nocturnal difference between background the urban 
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temperature and the background rural temperature (Oke, 1973). The intensity increases near sunset 

and is maintained until sunrise (X. Yang et al., 2020) and is usually used as an indicator for the 

magnitude of UHI (Jaber, 2022). The UHI effect is generated by a combination of factors, 

including the night-time release of heat absorbed by dark coloured rooftops, changes in shade and 

airflow brought on by urban architecture, and a lack of green space in the city (Fadhil et al., 2023). 

It is directly associated with the degradation of public health and well-being due to 

increased urban temperatures. High temperatures have a variety of effects on human health, with 

mortality being the most severe. For instance, sixty-six casualties were reported in the city of 

Montreal in 2018 due to excessive urban heat (Lamothe et al., 2019). Other health implications 

include higher rates of asthma, complication of pre-existing medical condition of vulnerable 

populations and increased spread of diseases like malaria and dengue (Phelan et al., 2015). The 

ability to adapt to excessive heat exposure is essential to achieving improved health outcomes, and 

this ability is determined by the person's demographics, socioeconomic level, and geographic 

location. People of lower social classes and of racial and ethnic minorities are more likely to reside 

in warmer neighbourhoods than privileged ones, which causes a problem of environmental and 

climatic injustice (Fan & Sengupta, 2022; Schlosberg & Collins, 2014). It is important to identify 

the vulnerable populations at the community level, when developing policy interventions for this 

issue (Phelan et al., 2015).  

Further, it has also been observed that energy consumption for residential cooling in the 

state of Texas increased due to UHI effect (Rong, 2006). A similar study was done for the 

residential area in Phoenix, Arizona found that urbanization has led to an increase in energy 

consumption from 7,888 kWh per year in the 1950s to more than 8,873 kWh per year in the 1990s 

(Golden et al., 2006). Extensive review of literature on the energy impacts of UHI by (Santamouris 

et al., 2015) identified the statistically significant role of UHI, which represents nearly 13% 

increase in energy consumption for cooling. This increased energy demand is tied with many other 

facets of society, thus impacting the economy, the environment and health (Phelan et al., 2015). 

Therefore, understanding the UHI effect is important for developing effective plans and policies 

to mitigate its impacts, promote public health, and build resilient and sustainable urban 

environments. 
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Currently, the only way to properly measure UHI is the use of conventional in-situ 

professional weather stations, such as those operated by Environment and Climate Change Canada 

(ECCC). These in-situ weather stations continuously measure near-surface (at a fixed 1.2m height) 

air temperatures and provide the data on an hourly basis (https://climateatlas.ca/important-data-

notes-and-limitations). However, newer citizen science and Volunteered Geographic Information 

(VGI) approaches, for example through the Netatmo sensors (https://www.netatmo.com/) 

purchased from e-commerce sites like Amazon, combined with use of geographic technologies, 

has the potential to usher in a new era of micro-scale climate studies. 

1.2. Geographic technologies in climate studies 

With the ability to instantly plot, interpolate, and animate weather data across any level of the 

atmosphere, Geographic Information Systems (GIS) has emerged as a key management 

component in weather processing systems (Chapman & Thornes, 2003). It can be used as a 

decision support system because it i) offers a platform for displaying and analysing a vast 

combination of data from other sources (Chapman & Thornes, 2003); ii) aids decision makers in 

understanding the uncertainty of climate change impacts and managing the associated risks; and 

iii) helps in the planning and implementation of mitigation and adaptation strategies (Hassaan, 

2021). Generally, geographic analysis and spatial visualization are valued in climate modelling as 

they help users evaluate results more accurately for a given area (Liu et al., 2011). The spatial 

variability of climatological and meteorological phenomena makes GIS an effective tool for 

managing enormous spatial climate datasets for a variety of purposes (Chapman & Thornes, 2003). 

Additionally, to promote understanding, awareness, and action on climate change, it is 

essential to engage the general public in climate science. VGI represents a transformative approach 

to data collection compared to conventional methods typically employed by the government 

agencies. VGI platforms like Open Street Maps and eBird, provide opportunities for general public 

to contribute geospatial data voluntarily for mapping and environmental monitoring. It highlights 

life on a local level and draws attention on what often goes unnoticed in this huge world 

(Goodchild 2007). With a network of approximately eight billion people worldwide, VGI has the 

potential to provide dense and high-resolution datasets crucial for atmospheric observations. 

However, concerns about the data quality and reliability of VGI arise since the contributions are 

made by nonprofessional individuals. 
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1.3. Objectives 

When measures are taken to reduce the UHI effect, it also helps address the effects of climate 

change and improve the quality of urban areas. This thesis is structured with the following 

objectives, each of which addresses certain research questions. The research objectives and 

questions are as follows,  

i. To understand the abilities of in-situ sensors to capture the UHI phenomena 

• What are the abilities of in-situ sensors to capture the UHI phenomenon? 

• Can meteorological data volunteered by people be utilized in estimating UHI 

intensity (ΔUHI)?  

ii. To identify the challenges associated with using in-situ sensors for UHI studies 

• How representative are the crowdsourced sensors compared with the conventional 

sensors? 

• What implications does representativity of in-situ sensors have on estimating 

UHI? 

By accomplishing these objectives, this thesis provides a thorough understanding of using 

volunteered temperature datasets for quantifying ΔUHI, and contribute to the advancement of 

knowledge in the field. 
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2. Literature Review 

This chapter of literature review is organized into two main sections related to the thesis: (i) a 

comprehensive review of Urban Heat Island (UHI) phenomena and (ii) Crowdsourcing/ 

Volunteered Geographic Information (VGI). The section on UHI delves into the types of UHI and 

global research initiatives on this phenomenon. The second section on Crowdsourcing/VGI begins 

with a summary of its origins and growth, followed by its application across various disciplines, 

and concludes with the issues associated with it. 

2.1. Urban Heat Island 

2.1.1. Methods to estimate intensity 

Based on the surface or region of atmosphere being observed, three different types of UHI are 

identified namely Surface Urban Heat Island (SUHI), Canopy Layer Urban Heat Island (CUHI) 

and Boundary Layer Urban Heat Island (BUHI) (Branea et al., 2016). SUHI is based on the surface 

or skin (including grass, roofs, trees, and roads) temperatures (Martin et al., 2015), whereas CUHI 

and BUHI are based on the air (screen) temperatures (Mills et al., 2022). The air layer found 

between the ground and the roof of the building or the tops of the trees is referred to as the Urban 

Canopy Layer, and the air layer above this canopy layer is referred to as the Urban Boundary Layer 

(Bahi et al., 2019). 

There are two common methods of obtaining temperatures to estimate the Canopy-level 

UHI (CUHI) identified above: i) in-situ sensors fixed at a stationary point (weather station) or as 

a traverse with the sensor fixed on a vehicle; and ii) model simulations (B. Zhou et al., 2020). 

Although expensive, the in-situ sensors provide accurate and continuous data and it has been found 

that the low-cost sensors are capable of monitoring weather conditions at high spatial and temporal 

resolutions (Fan & Sengupta, 2022). On the other hand, in-situ point measurements are limited by 

the number of locations monitored simultaneously and they are highly dependent on the 

interpolation parameters or techniques applied (B. Zhou et al., 2019). Whereas, data from mobile 

traverse comes with an advantage of spatial continuity in data but are highly influenced by the 

methodological design like route planning and mounting platform. For instance, at stop lights, the 

value recorded by the temperature sensors in mobile traverse is higher since exposed to the fumes 

of the adjacent vehicles’ exhaust (B. Zhou et al., 2019). 
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On the other hand, SUHI is better captured by remote sensing, which uses information 

recorded in images from sensors that capture the ascending short and long wavelength radiation 

energy reflected from the earth’s surface and measures the ground radiometric temperature which 

is based on the energy emitted and reflected from a surface (B. Zhou et al., 2019). The surface 

temperature of the permeable and impermeable materials of a landscape can be obtained from 

Stefan-Boltzmann’s law that uses emissivity (Bahi et al., 2020). This surface temperature affects 

the air temperature along with other parameters like wind, moisture and turbulent mixing. Thermal 

remote sensing is capable of covering large geographic area at higher spatial resolution from tens 

of meters to several kilometers, yet they are limited to clear-sky conditions and to the complex 

physical structure of the buildings in urban area (B. Zhou et al., 2019). However, measurement in 

cities is difficult because of the complex structure of the urban–atmosphere interface since the 

surface temperature is influenced by surface slope and aspect, shading, and variations in surface 

thermal and radiative properties (Voogt & Oke, 1997). Moreover, there is no clear correlation 

obtained between surface temperatures obtained from satellites and the CUHI effect of higher 

nocturnal air temperatures in cities, and is the topic of ongoing research (Bechtel et al., 2014). 

In general, therefore, SUHI is detected using surface temperature observed by airborne or 

satellite remote sensing (Martin et al., 2015), whereas, CUHI and BUHI are detected with air 

temperatures observed by in-situ sensors. While temperature observations for CUHI is typically 

obtained from in-situ sensors at standard meteorological height or from traverses of vehicle-

mounted sensors, for BUHI, temperature observations are made from more specialized sensor 

platforms such as tall towers, radiosonde or tethered balloon flights, or from aircraft-mounted 

instruments. Due to the difficulty of placing sensors/instruments in the boundary layer, very few 

BUHI studies exist (Voogt & Oke, 2003). Moreover, we human beings exist within SUHI and 

CUHI, which is why more emphasis is given for these two phenomena and their impacts on human 

well-being in particular. 

Finally, modelling of CUHI is also done at various scales like building scale, micro-scale 

and city scale models, according to the functions a model must perform (e.g., ENVIMet) (Tsoka 

et al., 2018). While, building and micro-scale models are accurate with higher resolution and are 

computationally expensive, city-scale models are easy to compute and covers a vast area, but do 
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not have enough accuracy to provide details. So, spatially and computationally efficient models 

are needed to use them in the research of large urban area temperature anomalies (Mirzaei, 2015). 

2.1.2. Research initiatives around the world 

There have been a large number of studies on SUHI due to the relative ease of obtaining and using 

satellite data.  In Canada, Rinner and Hussain (2011) used thermal images from Landsat sensor to 

identify SUHI for the city of Toronto and correlated the findings with land use density and land 

use type. Researchers from Montreal estimated SUHI intensity for the city with climatic models 

and validated the results with SUHI intensity found using Moderate Resolution Imaging 

Spectroradiometer (MODIS) Land Surface Temperature (LST) data (Roberge & Sushama, 2018). 

SUHI was also studied in several arctic cities with MODIS LST data, and the intensities were 

rather large in smaller arctic cities than those in significantly larger low- and mid-latitude cities 

(Esau et al., 2021). However, the seasonal differences in the intensities are not large, since the high 

incoming solar radiation is absorbed and stored by darker and dryer urban surfaces in summer; and 

in winter, snow cover and low solar angles make the Arctic cities insignificant energy source (Esau 

et al., 2021). Note that there exists a scarcity of research on CUHI with in-situ measurements in 

these cities (Esau et al., 2021; D. Zhou et al., 2019).  

Outside of North America and Europe, the Middle East is a unique geographic area with 

different sociodemographic and geopolitical identities. Increased oil profit growth drove 

migrations into the region, resulted in the evolution of existing highly populated areas into 

megacities  (Mirzaei & Aghamolaei, 2021). Surface temperature distribution studies of eight desert 

cities in the Middle East with MODIS data found that the urban temperature in general is cooler 

than the surrounding desert soils – giving rise to the Urban Cool Island (UCI) effect (Lazzarini et 

al., 2015). This occurs because the temperature is reduced further in daytime in cities with 

vegetation, due to the evapotranspiration of vegetation (oasis effect). Instead, the classic SUHI 

pattern, where cities are warmer than the surroundings rural areas, were exhibited during night 

time, since bare soil surfaces cool faster than man-made and vegetated surface. So hot desert cities 

are characterized by diurnal UCI phenomenon and nocturnal UHI phenomenon (Lazzarini et al., 

2015). UHI studies using LST was also done for the time period from 2003 to 2018 in the countries 

participating in Gulf Cooperation Council (GCC). The night time temperatures were addressed but 

not the significant Urban Cool Island phenomenon of the arid zones (Al Fazari et al., 2021). Using 
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a novel spatial correlation representative pixel approach, the association between different forms 

of land cover and LST was looked at in order to evaluate the Surface Urban Cool Island (SUCI) 

intensity in Isfahan. In arid environments, SUCI intensity is higher in the summer than in the 

winter, similar to SUHI in non-arid places (Masoodian & Montazeri, 2021). Since there were no 

meteorological station in Isfahan, surface temperature method was used to study the SUHI because 

MODIS LST data showed high correlation with the air temperature in the Iranian meteorological 

stations. At night, the urban area was about 3.5℃ warmer than the non-urban areas, and temporal 

analysis showed that SUHI intensified in January and weakened in July (Montazeri et al., 2022). 

Despite these observations, the study of UHI is still in its infancy in the Arab world and further 

studies are needed (Jaber, 2022). 

Researchers have consistently shown interest in understanding the dynamics of the CUHI. 

Oke's (1973) study investigates the relationship between city size and CUHI by recording air 

temperatures using a mobile traverse that extended across the St. Lawrence River in Quebec. City 

population served as a proxy for city size, and the traverse covered ten different settlements, 

including Montreal, each with a wide range of population sizes. The resulting ΔUHI values and 

population sizes of these ten Quebec settlements were then compared with other North American 

and European settlements. The analysis revealed that the size of a city is directly proportional to 

its UHI intensity (Oke, 1973). A study conducted in Detroit, U.S.A. examined the correlation 

between air temperature and factors including imperviousness and distance-to-water. 

Subsequently, kriging and linear regression techniques were utilized to predict air temperatures at 

unsampled locations and all kriging techniques outperformed the regression models. The results 

of this study when integrated with socio-demographic data helps identify population that are 

vulnerable to the impacts of UHI (K. Zhang et al., 2011). Eastin et al., (2018) studied the variability 

of CUHI in Charlotte, U.S.A at different temporal scales. On the diurnal scale, the intensity was 

maximum during night time due to the considerable influence of local weather conditions and air 

quality. When ideal conditions are present, CUHI is more pronounced in weekdays compared to 

weekends, and the elevated nitrogen dioxide concentrations indicate that this can be due to 

vehicular emissions. Seasonally, the intensity is greater during dry winter months, and annually, it 

continues to increase in accordance with increasing urbanization and anthropogenic activities 

(Eastin et al., 2018). Meanwhile, the CUHI of Berlin was simulated and higher intensity values 

were observed during night time as observed in Charlotte. This increased intensity is attributed to 
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the differences in surface temperature and sensible heat flux between impervious and vegetated 

surface (H. Li et al., 2019). Similar seasonal and diurnal patterns of CUHI were observed in 86 

major cities across China (D. Zhou et al., 2023). However, a significant uncertainty in studying 

CUHI in the Chinese context arises from the limited and uneven distribution of weather stations, 

most of which are situated neither in urban areas nor in rural areas. This may result in an 

underestimation of UHI intensity (D. Zhou et al., 2023).  

While the majority of UHI research focuses on the summer or heat wave period, J. Yang & 

Bou-Zeid, (2018) examined CUHI in twelve U.S cities during the 2014 North American cold wave. 

The heat islands intensified during extreme cold periods, especially at nights. This is due to the 

release of heat stored in the urban fabric during warmer months and anthropogenic activities like 

regular snow removal in urban area and increased energy usage by residents for indoor heating. 

This heat can be advantageous during extreme-cold events and it is important to consider this 

aspect of UHI for developing effective heat action plans to mitigate the impacts of UHI during 

warmer times (J. Yang & Bou-Zeid, 2018). 

Consistent with the findings of other studies, CUHI research in India with ground-based 

measurements shows that CUHI intensity is more during night-time, and it is due to increased 

human activities at night (Rajagopalan, 2021). India, one of the most populated nations, is 

anticipated to see the greatest increase in population worldwide in the near future. However, 

compared to China and the United States, UHI research is still underdeveloped in India (D. Zhou 

et al., 2019). Research on UHI is focused mainly on temperate climates and the climatic models 

developed for temperate cities won’t be suitable in countries with unplanned cities like India 

(Rajagopalan, 2021). A meta-analysis reveals that only a small number of Indian cities have had 

UHI research done on them using conventional techniques, without taking seasonal and 

spatiotemporal variations in the tropical environment into account (Khan et al., 2021). In Kolkata 

Metropolitan Area, the usage of land has been significantly increased in central areas while 

simultaneously converting lands towards the periphery for urban uses. Air temperature profile 

obtained with twenty-five micrometeorological field observation sites showed that surface and air 

temperatures are related and correspond to the shape of trapezium, both being high between hour 

13:00 and 15:00 and then drops to the minimum between the hours of 03:00 and 07:00, then later 

continue to increase. This case study in Kolkata is representative of the scenario in other Indian 



20 
 

cities such as Mumbai-Pune and the nation's capital, Delhi. However, the policymakers and 

administrators will need greater understanding on UHI across multiple cities than on a single city, 

to enable them plan for the sustainable growth of metropolitan areas (Khan et al., 2021).  

In Malaysia, researchers examined the seasonal and diurnal variation of UHI in Kuala 

Lumpur using air temperature data obtained from meteorological stations. They further explored 

the influence of meteorological parameters such as relative humidity and wind speed on UHI 

(Ramakreshnan et al., 2019). Jin et al., (2018) established a network of fixed sensors in Singapore’s 

Jurong East area. By incorporating urban morphological parameters such as Sky View Factor and 

the plot ratio of vegetation and built-up areas, they analysed the effects of urban morphology in 

controlling UHI. 

To summarize, UHI intensity is influenced by the data used, study area, weather conditions 

and data acquisition time (Sheng et al., 2017). UHI studies are primarily done in Asia, North 

America, and Europe with relatively fewer studies conducted in Middle East and North Africa 

(MENA) countries, and South and Central America (Mirzaei, 2015; D. Zhou et al., 2019). 

Moreover, studies on SUHI are more prevalent compared to those on CUHI, largely due to the 

widespread availability of satellite datasets. 

2.2. Volunteered Geographic Information 

2.2.1. Growth over time 

Before the internet era, scientific knowledge was often limited to those in positions of power within 

government, prestigious universities, or wealthy countries with advanced technologies. This 

created a monopoly on scientific information generation and as a result, the general public had 

limited exposure to scientific findings. Citizen science represents a collaborative research 

approach that engages members of the general public, including volunteers, amateurs and 

enthusiasts (Goodchild, 2007; Muller et al., 2015). In citizen science, individuals who may lack 

formal expertise in the field they are contributing to, participate in collection, analysis and 

dissemination of scientific data (Haklay, 2013). This engagement of citizens shifts the traditional 

top-down model of science to a more democratized bottom-up approach (Goodchild, 2007; See et 

al., 2016). Although this approach is increasing in popularity in recent years, this form of data 

collection has in fact been around for a very long time. A classic example of this is the National 
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Audubon Society’s longest running bird life survey program, the Christmas Bird Count, which has 

been going on since 1900 (Dunn et al., 2005). Note that the terms ‘crowdsourcing’ and ‘citizen 

science’ are often used interchangeably. Crowdsourcing is the process of information generation 

wherein data collection is outsourced by a company or an institute to a large network of people via 

an open call for voluntary undertaking of the task (Muller et al. 2015; See et al. 2016). While both 

refers to the process of information generation via a large group of individuals, the information 

generated as part of the citizen science programs are always of scientific nature (See et al. 2016).   

With the advent of the internet, especially Web 2.0, an interactive version of Web 1.0 with 

two-way information exchange, and with improved tools like mobile phones with inbuilt Global 

Positioning System (GPS), non-professional individuals began involving in data collection. People 

have thus become ‘produsers’, where they not just use internet, but produce data as well (Haklay, 

2013). This type of data are called User Generated Content (UGC) (Hecht & Stephens, 2014). 

Volunteered Geographic Information (VGI), is special case of UGC produced by crowdsourcing 

(See et al. 2016). The concept of VGI introduced by Michael Goodchild in 2007, refers to the 

voluntary production, gathering, and distribution of geographic data by individuals (Goodchild 

2007). Through VGI, individuals can independently gather information, without having to wait to 

consult scientists or authorities (Hachmann et al., 2018). The prevalence of devices equipped with 

GPS, such as smartphones and personal computers, has enabled people to consume and produce a 

greater amount of VGI. For most of the VGI platforms, contributing to a good cause and/or earning 

a specific benefit from them were identified as the general participation incentives (See et al. 

2016).  

Haklay (2013) has categorized crowdsourced VGI using two main criteria: i) the role of 

volunteers, and ii) the nature of the geographical component. It can be either active or passive 

based on the role of volunteers. VGI is considered active when a volunteer continuously 

contributes it on their own, for example, individuals may actively contribute data by taking images 

of animal species, adding geotags and sharing them online. On the other hand, passive VGI 

involves volunteers serving as observation platforms, allowing their movements or actions to 

passively produce data. For example, volunteers may contribute when they voluntarily enable GPS 

while walking to track their walking pattern. Additionally, depending on the nature of the 

geographical component, VGI can be explicit, such as precise location information of where a bird 
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species is spotted, or implicit, like geotagged images of the bird species. While all forms of VGI 

are capable of providing quantitative information, only active and explicit forms could give 

valuable qualitative information (Haklay, 2013).  

2.2.2. Applications across disciplines 

Major data sources for VGI include Open Street Map (OSM), Instagram, Twitter, Flickr, 

Foursquare, Weibo and Geo-wiki (Cui et al., 2021; Yan, Ma, et al., 2020). Data from these 

platforms are utilized extensively across various disciplines such as ecology, epidemiology, social 

sciences, emergency response, and disaster management. It also has a greater potential in the 

Global South, where rapid urbanization is prevalent since reliable data sources are scarce in these 

dense settlements. For example, using OSM data, Vahidnia (2022) determined the degree of 

deterioration of Iran's urban areas, and identified the worsening of conditions in some areas due to 

poor air quality, water supply, and traffic congestion as a result of the city's population growth. A 

review of literature by Hachmann et al., (2018) on the use of VGI in slums or informal settlement 

monitoring and development, highlights that VGI can provide data to prevent any new informal 

settlements from happening, and helps upgrade the already existing ones. Using data from Weibo 

and OSM, Miao et al., (2021) examined Beijing's spatial composition and found that the city is 

gradually suburbanizing. Forget et al., (2021) developed a machine learning model with OSM data 

and satellite imageries from multiple sensors to map the expansion of urban areas in Sub-Saharan 

Africa.  With text based VGI from Twitter, Salazar-Carrillo et al., (2021) developed a model to 

forecast traffic jams and accidents in Mexico City. 

Uses extend to the developed world as well, particularly in conjunction with existing 

survey or census datasets. For example,  Heikinheimo et al., (2017) identified the preferences of 

visitors to a national park in Finland with the help of geotagged images from Instagram. It was 

found that while surveys provide insights of a specific point of time when they are filled up, social 

media data allows for continuous monitoring of park activities. Basiouka et al., (2015) explored 

the application of OSM data for cadastral mapping in Athens. This approach offers significant 

advantages, such as being user-friendly, widely accessible, and enabling public participation and 

information sharing. However, these benefits can turn into drawbacks if there are no rules in place, 

as it allows anyone to manipulate the cadastral datasets (Basiouka et al., 2015).  
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In urban areas, applications often include smart city development, urban transit, urban 

green space, and urban resilience following disasters (Cui et al., 2021; Olivatto, 2023). Vannoni et 

al., (2020) evaluated the effectiveness of COVID-19 countermeasures in limiting people's mobility 

in 41 global cities using data from Citymapper, a mobile application for public transportation. Data 

from Strava, a fitness tracking application, were utilized to generate elevation profiles for roads of 

Santa Barbara and Washington, DC (McKenzie & Janowicz, 2017). These elevation datasets can 

be frequently updated, unlike traditional expensive datasets, thus are beneficial in scenarios where 

up-to-date and high-resolution data are unavailable. They were also used to add an elevation 

feature to the existing OSM datasets (McKenzie & Janowicz, 2017). Through PhillyTreeMap, an 

open source database of the city’s urban forest that enables the public to inventory trees in their 

neighbourhoods, the use of VGI for urban forest management was examined in Philadelphia  

(Foster & Dunham, 2015). The demographic variables had a significant effect on the coverage of 

VGI data, and recognizing these effects will help address concerns related to social and 

environmental justice (Foster & Dunham, 2015).  

Until 2017, the adoption of VGI in environmental monitoring was at its lowest. However, 

the advent of affordable and portable sensors that exchange meteorological observations over 

Bluetooth and/or the internet, has increased the contributions to this field (Yan, Ma, et al., 2020). 

For example, data from inexpensive in-situ temperature sensors installed by the public were 

combined with satellite-based temperature data to predict the spatial distribution of summer air 

temperatures across Berlin (Vulova et al., 2020). In Norway, Grossberndt et al., (2020) found a 

positive correlation between the air quality modelled by a high-resolution air pollution dispersion 

model and the air quality perceived by people, which was obtained through a mobile application. 

Such emerging studies show that while the varying morphology of urban areas makes it difficult 

to predict temperature and other meteorological variables that change over short distances, it is 

beneficial to have access to data from a large network of these inexpensive sensors (Muller et al., 

2015). 

2.2.3. Potential challenges 

Very recently, VGI based research has seen significant growth (Olivatto, 2023), especially with 

respect to GIS (Wu et al., 2023), due to its open approach in data collection. The majority of VGI 

contribution platforms require very little expertise in order to participate, other than a basic 
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knowledge of Internet and smart phone literacy. Moreover, VGI is sometimes the cheapest and 

oftentimes the only source of geographic information, particularly in areas where access to such 

data is considered as a security concern (Goodchild 2007).  

Because VGI-based data contributions have increased exponentially, this geospatial big 

data comes with its own set of challenges like data quality and uncertainty (Wu et al., 2023). The 

quality of VGI is obviously an issue, since they are voluntarily contributed by a large group of 

non-professionals. And the difficulties associated with assessing the data quality are often 

identified as one of the weakness of VGI (Olivatto, 2023; Yan, Feng, et al., 2020). Measures of 

data quality typically include data completeness, accuracy, and usability; an extensive discussion 

on this can be found in (Antoniou & Skopeliti, 2015). For example, researchers in the Philippines 

used machine learning on satellite images and OSM to develop a model to predict socio-economic 

indicators, since obtaining these through conventional approaches is challenging (Tingzon et al., 

2019). Two different models were built, and when their respective performances were compared 

subsequently, both models were found to be equally efficient. However, due to the difficulties in 

evaluating the accuracy and completeness of the OSM dataset, the reliability of the predicted 

indicators was deemed uncertain.  

This is even more evident with regard to weather-related VGI data, which requires that 

amateurs have knowledge about installation of weather stations, and must be in accordance with 

certain principles in order to satisfy quality concerns (See et al. 2016). The development of 

algorithms such as CrowdQC+ for quality-control of crowdsourced weather data also highlights 

these issues, and is a step in this direction (Fenner et al., 2021). 

2.2.4. Representativeness and Bias 

Much research attention has been directed towards quality and credibility of VGI, with a particular 

focus on OSM (Yan, Feng, et al., 2020). On the other hand, data representativeness, another 

important aspect of VGI, has received very little attention than it deserves and has been identified 

as a research gap (Basiri et al., 2019; G. Zhang & Zhu, 2018). In general, VGI has four key 

components: location (where), time (when), observer’s identity (who), and the specifics of the 

observed attributes or phenomena (what) (G. Zhang & Zhu, 2018). One draws inferences about 

the population based on the sample and for these inferences to be valid, the sample needs to be 



25 
 

representative of the population. Potential biases identified in VGI with respect to its components 

(Haklay, 2013) are: i) spatial bias, defined by the availability of more data in areas with a high 

population or intense outdoor activity; ii) temporal bias, which is defined by, for instance, more 

data availability during the summer months (G. Zhang & Zhu, 2018); and iii) demographic bias, 

characterized by participants who are mainly male and/or who are well-educated, have high 

income, and possess more leisure time (Spielman, 2014). 

In geography, representativeness means how well the spatial variation of attributes 

captured by a sample represents the spatial variation of attributes over an entire study area. 

Volunteered ecological data reported for a lake monitoring program in Ontario were biased towards 

recreational sites and other places accessible from the population centers. This is referred to as the 

‘cottage effect’, because density of sampling efforts was higher in the lakes close to cottages  

(Millar et al., 2018). Similar trends are observed in birdwatching programs, with increased 

instances reported in places easily accessible to birdwatchers and/or located close to highly 

populated areas (G. Zhang, 2020). Other VGI sources such as Twitter and Flickr exhibit a bias 

towards high-density urban areas, while Foursquare, which recommends places to visit based on a 

user’s current location, completely fails to represent rural areas  (Hecht & Stephens, 2014). This 

happens as a result of people’s tendency to contribute data for locations where they reside (Haklay, 

2016). This also holds true for OSM. Haklay et al., (2010) evaluated the validity of Linus’ law 

(more the contributors, higher is the quality of a platform) with respect to the data accuracy of 

Open Street Maps (OSM). The maps of rural areas were found to have more positional errors, 

compared with those of urban areas (Haklay et al., 2010).  

Temporal bias is also evident in VGI data.  L. Li et al., (2013) examined the temporal 

patterns in georeferenced text and image data from Twitter and Flickr collected within the United 

States. The number of tweets peaked twice in a day at around 13:00–14:00 and 20:00–21:00, 

throughout a week. Conversely, Flickr users were more active during weekends, and the majority 

of photos were taken during the afternoon hours. When it comes to OSM, the majority of 

contributions were made in the evening, peaked between 20:00 and 21:00 hours. As previously 

seen, these contributions were also mostly made on Sundays (Neis & Zipf, 2012). This weekend 

bias is also observed in the field of ecology. G. Zhang (2020) observed that the eBird platform had 

the highest number of sampling events, globally during the bird migratory and breeding seasons. 
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While a large number of bird species were reported, it is advised not to assume that more birds 

were present during these seasons. Because of the limited sampling efforts outside this timeframe, 

it is meaningless to assume without considering the effects of the inconsistent sampling. 

Furthermore, compared to weekdays, weekends had a higher number of active birdwatchers who 

reported more species and sampling events. Furthermore, most observations in biodiversity 

monitoring are done at noon, which may cause the nocturnal species go unnoticed (Arazy & 

Malkinson, 2021).  

Finally, understanding the demographic representation (and any demographic bias) of VGI 

is important to better reflect the perspectives of all demographic groups and create an inclusive 

decision-making environment. The availability of internet service in a particular area with a 

specific number of people is referred to as internet penetration; however, penetration does not 

imply extensive internet usage. This may be due to lack of knowledge, resources, infrastructure, 

technophobia and other factors (Pandita, 2017). While North America and Europe exhibit higher 

percentages of internet penetration, Asia and Africa have the least penetration percentage (Pandita, 

2017; Sui et al., 2012). A country’s population affects its overall internet penetration; the higher 

the population of a country, the lower its internet penetration (Pandita, 2017). Although the overall 

number of internet users increased by 2022, this digital divide between developed and developing 

countries still exists according to the report by United Nations’ International Telecommunication 

Union (Measuring Digital Development, 2023) and this evidently impacts the VGI contribution 

from these countries. Apart from this, diverse sources of VGI are developed in Europe and North 

America, thus making VGI a Global North phenomenon. OSM, which started off in 2004 at 

University College London, is the most popular source of VGI data (Neis & Zielstra, 2014). At 

the individual level, the concept of participation inequality, as described by the 90-9-1 rule, applies 

to VGI data sources as well (Basiri et al., 2019; Haklay, 2016). This suggest that ninety percent of 

users are lurkers who only read or observe without contributing, nine percent of users occasionally 

contribute and, only one percent of users contribute regularly, accounting for the majority of 

contributions. Moreover, people who are educated with higher income and more leisure time are 

the major contributors, as it requires investing time and money in activities such as bird tracking 

or setting up weather stations (Haklay, 2013). Since most men have more leisure time and fewer 

caregiving responsibilities, they are the leading contributors, especially with respect to OSM 
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(Haklay, 2016). This causes some groups to be overrepresented while the under-represented groups 

who may already be nominally present, get completely neglected. 
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3. Spatial Representativeness of Weather Stations and Their Impact on Urban Climate 

Research: A Case Study of the Urban Heat Island Effect in Canada 

Given the breadth of work on UHI and VGI as presented in the previous chapter, I next investigated 

the representativeness of both conventional and crowdsourced in-situ temperature sensors across 

Canada. The results highlight the importance of sensor representativeness in estimating UHI 

magnitude and the complementarity of both sensor types in urban climate research. The text 

maintains its original format as submitted to the journal “Urban Climate”, from the abstract to the 

discussion and conclusion section. 

3.1. Contribution of Authors 

This work is co-authored by two people: Professor Raja Sengupta and myself. As the first author, 

I obtained necessary data from multiple sources, wrote Python scripts to process the acquired 

datasets, identified specific sensors for further analysis, estimated UHI intensity, analysed the 

results, prepared figures and tables, and drafted the manuscript. 

Professor Raja conceptualized and supervised the work. He supported the development of 

research objectives, helped in data collection, and mentored the interpretation of the results. He 

also helped with structuring the manuscript, offered constructive feedback on its draft versions, 

and revised them. 
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3.2. Abstract 

Citizen Weather Stations (CWS) are a source of Crowdsourced Geographic Information for urban 

climate research, which can provide extensive datasets in areas where data are scarce or 

unavailable. In this article, we explore the efficacy of using meteorological data from CWS in 

studying the Urban Heat Island (UHI) effect across Canada during late spring and summer of 2022. 

In particular, we evaluate the representativeness of CWS before relying on them for UHI intensity 

estimates, since potential spatial biases of these sensors can greatly affect canopy-level 

measurements. We compared the spatial distribution of Netatmo CWS with conventional sensors 

from Environment and Climate Change Canada (ECCC), and found that while the ECCC sensors 

better represented rural areas, the Netatmo sensors had wider representativeness for urban areas. 

We then computed UHI intensity using urban temperature from Netatmo sensors and peri-urban 

temperature from ECCC sensors. The resulting intensity values were higher than those estimated 

using either the Netatmo or the ECCC sensors individually, thus highlighting the influence of 

sensor representativeness in estimating UHI magnitude. Overall, our research explores the 

representativeness of both ECCC and CWS sensors, and highlights their potential complementarity 

in urban climate research.  

Key Words: air temperature, crowdsourcing, spatial representativeness, urban climate, Urban Heat 

Island 

3.3. Introduction 

3.3.1. Urban Heat Island (UHI) and its variability 

As climate change accelerates there is likely to be an increased occurrence of extreme weather 

events. Thus, spatially dense and temporally continuous observations are required to observe such 

phenomena, both in populous regions to mitigate risks and in less populous regions where essential 

data is insufficient (Muller et al., 2015). For example, the phenomenon of Urban Heat Islands 

(UHI) is accelerating globally with increased urbanization coupled with climate change (Chen et 

al., 2023). UHI, measured as the UHI intensity, is the difference after sunset between a temperature 

measured at the core of an urban space when compared to the temperature measured at a nearby 

rural reference (Oke, 1973). It is generated by a combination of factors, including increased heat 

absorption by dark coloured rooftops, changes in shade and airflow brought on by urban 
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architecture, and a lack of green space in the city (Fadhil et al., 2023). Moreover, at a regional 

scale, it has been shown that the magnitude of UHI intensity is directly correlated to population 

size of the city (Oke, 1973). 

However, a simple understanding of UHI intensity as the nocturnal urban-rural difference 

in canopy level air temperatures underestimates the complexities involved in urban climate, i.e., it 

does not accurately reflect the local conditions around each station (Fenner et al., 2017). A UHI 

study in London with citizen science sensors found that there is no single UHI core but instead a 

series of localized hot and cold anomalies (Chapman et al., 2017). To address this problem of 

oversimplification, Stewart & Oke (2012) proposed a climate-based classification of urban and 

rural areas, popularly known as ‘Local Climate Zones’ (LCZs). They identified seventeen LCZs, 

which are split into ten built-type zones and seven land cover-type zones. As a result, UHI is no 

longer the urban-rural air temperature difference; instead, it is the difference in temperature 

between LCZs.  Thus, different sizes of in situ sensor networks are needed to capture this intra-

city variability (Meier et al., 2017; Muller et al., 2013). Conventional weather stations are suitable 

for macro-scale synoptic observations, and hence not usually appropriate for intra-urban studies. 

These sensors are in a coarse array network, and most of the sensors in these networks are installed 

outside cities, and close to airports, to prevent urban temperature biases in weather forecasting and 

climate monitoring caused by the UHI effect (Castro Medina et al., 2024; Puche et al., 2023). 

Urban climate and UHI studies fall under city-scale, and requires dense sensor networks since they 

cannot be precisely captured by a single sensor (Muller et al., 2013). 

Personal weather monitoring devices sold by third-party companies that individuals can 

install in their homes to record temperature and rainfall (i.e., Citizen Weather Stations or CWS) 

can thus be an important a source of data for use in urban climate research. These low-cost sensors 

are capable of monitoring weather conditions at high spatial and temporal resolutions (Fan & 

Sengupta, 2022) and provide a high spatial density of data continuously over a long time (Benjamin 

et al., 2021). They are useful to study weather patterns that change over short distances, particularly 

in urban areas with heterogeneous morphology (Muller et al., 2015). Due to the presence of a dense 

network of sensors, CWS effectively capture the variability in UHI intensity seen within cities, 

which opens the way to explore the relationship between temperature variation and other factors 

like land cover and urban morphology (Feichtinger et al., 2020; Meier et al., 2017). 
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However, since they are volunteered, there is a need to understand the presence of bias in 

their representativeness of the UHI phenomenon.  For example, it has been noted that CWS don’t 

represent urban greenspaces, and natural landscapes are not covered well since they are densely 

concentrated in the built-up areas (Chapman et al., 2017; Fenner et al., 2017; Meier et al., 2015). 

This bias has resulted in an overestimation of air temperature in vegetated areas away from the 

city center (Venter et al., 2020; Vulova et al., 2020). Thus, the impact of spatial biases on the 

reliability of data collected by the CWS largely depends on the objectives of every individual study 

(Geldmann et al., 2016). This can be due to the fact that scientific geographic sampling requires 

the careful selection of sites in a manner that the samples are representative. This is unlike 

volunteered sampling, where observations are ad hoc and opportunistic (G. Zhang & Zhu, 2018). 

So, carrying out any UHI intensity analysis only with CWS can be problematic due to the presence 

of bias. 

3.3.2. Crowdsourced Geographic Information 

In recent years, there has been a surge in the production of data from non-governmental sources 

(Wu et al., 2023).  The development of Web 2.0, together with the exponential growth in 

processing power and performance of devices, has led to a scenario where people not just 

consumed data from the internet but contribute to it as well. These contributed data are referred to 

as User Generated Content (UGC) (Hecht & Stephens, 2014), with motivations to contribute 

ranging from incentives, gamification, a desire to share information publicly, or to a collective 

cause (See et al., 2016). Similarly, crowdsourcing is the process of information generation wherein 

data collection is outsourced by a company or an institute to a large network of people via an open 

call for voluntary undertaking of the task (Muller et al., 2015; See et al., 2016). Over the years, a 

variety of terms have evolved to describe these contributions, e.g., crowdsourced data, Citizen 

Science, and Volunteered Geographic Information (VGI) (See et al., 2016). Specific to geospatial 

data, VGI can be considered to be a special case of UGC produced by crowdsourcing that comes 

with an additional locational element. The term VGI was first used by Goodchild (2007), where 

the idea of people as mobile sensors was presented, each with five senses and an intelligence of 

their own to gather and process information. VGI thus throws light on what goes unnoticed in this 

huge world; it highlights life on a local scale, and it is at this that VGI is of great value to 

geographers (Goodchild, 2007). Research interest in the theme of VGI accounted for merely 1 
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percent and 2 percent in 1991 and 2001, respectively (Wu et al., 2023). However, more recently, 

it has surged to 13 percent in 2020. Thus, a network with more than 8 billion people (sensors) 

forms a useful source of data that can address data gaps in domains where there are few or no 

datasets available. This vast network can generate massive datasets that can be utilized in different 

scenarios. VGI thus should be understood in the context of "big data" that has gained much 

popularity very recently (Sui et al., 2012). Coincidentally, climate and atmospheric scientists, as 

well as geospatial scientists, have been acquainted with big data since its early stages, due to the 

processing of huge volumes of model outputs, both using raster and vector data (Muller et al., 

2015). The difference, of course, is that VGI is considered as a non-conventional source of 

information, with concerns about whether it can achieve acceptable levels of accuracy, certainty 

and reliability. 

Nevertheless, applications of crowdsourced Geographic Information (a term preferred by 

See et al., 2016), have become numerous over time, with applications in diverse fields such as 

ecology, epidemiology, social sciences, emergency response, and disaster management (Yan, 

Feng, et al., 2020). A study conducted by Millar et al., (2018) examined the nature of 

crowdsourced information about lakes, contributed by individuals for the Ontario Lake Monitoring 

Program in Canada. Using data from popular citizen science platforms such as iNaturalist and 

eBird, researchers have studied the spatial distribution of colour polymorphism in animal species 

(Farquhar et al., 2023), monitored the seasonal distribution and abundance of insects (Braz Sousa 

et al., 2022; Cull, 2022), analysed the online trade of birds (Fink et al., 2021), and developed 

models to predict the occurrence of protected bird species (Lin et al., 2022). 

 Meanwhile, Heikinheimo et al., (2017) utilized social media data to investigate the 

preferences of visitors to a national park in Finland. Benjamin et al., (2021) utilized crowdsourced 

air temperature datasets to examine temperature variations across London. They later used this 

dataset to analyse building energy consumption during summer and winter, based on the city’s 

morphology. (Chow et al., 2023) mapped the streets that were flooded after Hurricane Harvey 

struck Texas, in the United States. They then modelled a floodplain and compared it with the one 

that was modelled using the conventional dataset from the government. Researchers from Norway 

compared perceived air quality data collected through two crowdsourcing smartphone apps with 

the outputs from a high-resolution air quality model (Grossberndt et al., 2020). The results showed 

a positive correlation between the perceived air quality reported by app users and the modelled air 
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quality. This indicates that the crowdsourced data accurately reflects the actual pollution levels, 

highlighting its reliability for monitoring air quality.   

3.3.3. Measuring Urban Heat Island (UHI) intensity 

Based on the surface or region of the atmosphere being observed, three different types of urban 

heat islands have been identified: Surface Urban Heat Island (SUHI), Canopy Layer Urban Heat 

Island (CUHI) and Boundary Layer Urban Heat Island (BUHI). SUHI is based on differences in 

the surface or skin (including grass, roofs, trees, and roads) temperatures, while CUHI and BUHI 

are based on the air temperatures in the Urban Canopy Layer and Urban Boundary Layer, 

respectively (Mills et al., 2022). The Urban Canopy Layer is the air layer found between the ground 

and the roof of the building or the tops of the trees, and the Urban Boundary Layer is located above 

the canopy layer (Bahi et al., 2019). 

There are three common methods of obtaining temperatures to detect UHI of the three types 

identified above: i) in-situ measurements of air temperatures; ii) remote sensing from satellites and 

more recently, drones; and iii) model simulations (B. Zhou et al., 2020). Generally, CUHI and 

BUHI are detected by in situ sensors, whereas SUHI is estimated with remotely sensed data 

(Martin et al., 2015). In-situ or field measurements are either recorded at a stationary point 

(weather station) or as a traverse with the sensor fixed on a vehicle (B. Zhou et al., 2020). Although 

expensive and required in large numbers, they provide accurate and continuous data. Airborne 

remote sensing uses the information recorded in images from sensors that capture the ascending 

short and long wavelength radiation energy reflected from the earth’s surface (B. Zhou et al., 

2020). Although this method is capable of covering large geographic areas at higher spatial 

resolutions, from tens of meters to several kilometers, it is limited to clear-sky conditions and to 

the complex physical structure of the buildings in urban areas (B. Zhou et al., 2020). Due to the 

difficulty in placing sensors in the boundary layer, very few BUHI studies exist (Voogt & Oke, 

2003). Besides, we human beings exist within SUHI and CUHI, which is why more emphasis is 

given to these two phenomena and their impacts on human well-being in particular.  Additionally, 

studies on SUHI are more in number than CUHI, owing to the easy availability and accessibility 

of remotely sensed data (Mirzaei & Aghamolaei, 2021). However, airborne sensors record the 

surface temperature of the roofs of buildings and the ground, rather than the ambient air 

temperatures, thus representing the urban area as warmer than it normally is, and failing to 
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recognize the different scales of climatic phenomena (Roth et al., 1989). Simulation of CUHI is 

also possible via models, and according to their function they can be at multiple scales, i.e., at the 

building scale, micro-scale and city scale models (Mirzaei, 2015). Building and micro-scale 

models are accurate with high resolution but are computationally expensive. Envi-Met, a three-

dimensional micro-scale model based on the laws of fluid dynamics and thermodynamics, is a 

well-known example (Bruse & Fleer, 1998). It allows users to simulate complex interactions 

between built environment, vegetation, and atmosphere at a resolution of 0.5 to 10 m, and it is 

widely used to gain insights on UHI and thermal comfort of urban areas (Chatterjee et al., 2019; 

Cortes et al., 2022; Faragallah & Ragheb, 2022). On the other hand, city-scale models are easy to 

compute and cover a vast area, but their accuracy is not enough to provide details about the Urban 

Canopy Layer (Mirzaei, 2015). Moreover, simulations require data from in-situ sensors for model 

calibration and validation (Chatterjee et al., 2019). 

Here, we explore the potential bias present in the use of CWS and traditional government-

installed weather station data to estimate UHI Intensity. 

3.3.4. Bias in VGI 

Ideally, one draws conclusions about a population on the basis of a given sample, with the 

understanding that the sample is representative of the population in order to draw valid 

conclusions. In geography, representativeness means how well the spatial variation of attributes 

captured by a sample represents the spatial variation of attributes over an entire study area. 

Evaluation of crowdsourced Geographic Information’s quality and reliability has received a lot of 

research attention (Basiri et al., 2019; See et al., 2016; Yan, Feng, et al., 2020), with a particular 

focus on Open Street Map (OSM) (Neis & Zielstra, 2014; Spielman, 2014). The widespread 

adoption of such crowdsourced information, whose primary contributors are non-professionals in 

a variety of disciplines, is the reason for this increased interest. Examining their representativeness 

has been recognized as a research gap (Basiri et al., 2019; Cui et al., 2021; Yan, Feng, et al., 2020; 

G. Zhang & Zhu, 2018). In general, crowdsourced Geographic Information has four key 

components: location (where), time (when), observer’s identity (who), and the specifics of the 

observed attributes or phenomena (what) (G. Zhang & Zhu, 2018). Potential biases identified with 

respect to these components (Haklay, 2013) are: i) demographic bias, characterized by participants 

who are mainly male and/or who are well-educated, have high income, and possess more leisure 
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time (Spielman, 2014); ii) spatial bias, defined by the availability of more data in areas with a high 

population or intense outdoor activity; and iii) temporal bias, which is defined by, for instance, 

more data availability during the summer months (G. Zhang & Zhu, 2018). Urban climate involves 

various spatial scales, so to effectively utilize crowdsourced data, it is crucial to understand which 

scales the data represent (Muller et al., 2015). The objectives of this paper are to examine the 

spatial representativeness of Citizen Weather Stations (CWS) as well as conventional government-

installed weather stations across Canada, and to explore the potential influence of spatial 

representativeness on the estimation of CUHI intensity (hereafter ΔUHI). This study fills a 

research gap by being the first to investigate the data representativeness of CWS across Canada 

and its influence on estimating ΔUHI, which has been previously unexplored. 

3.4. Research methodology 

3.4.1. Study Area 

With its vast territory spanning the upper half of North America, Canada is the second-largest 

country in the world, with ten provinces and three territories. Within this expanse, Census 

Metropolitan Areas (CMAs) are geographical units encompassing urban areas created by Statistics 

Canada to facilitate the collection and analysis of demographic data. According to Statistics 

Canada, “a CMA must have a total population of at least 100,000, based on data from the current 

Census of Population Program, of which 50,000 or more must live in the core based on adjusted 

data from the previous Census of Population Program” (Government of Canada, 2021). As of the 

2021 census, Canada has forty-one CMAs distributed across its nine provinces, and these CMAs 

serve as study areas for this research (Table 1).  
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Table 1. CMA distribution across Canada. 

Province/Territory 
CMA 

(n) 

Alberta 4 

British Columbia 7 

Manitoba 1 

New Brunswick 3 

Newfoundland and 

Labrador 
1 

Northwest Territories 0 

Nova Scotia 1 

Nunavut 0 

Ontario 16 

Prince Edward Island 0 

Quebec 6 

Saskatchewan 2 

Yukon 0 

Total 41 

Nearly 74 percent of the country's population resides in these forty-one CMAs, with the 

top ten CMAs alone accommodating more than half of the country's total population (Statistics 

Canada, 2022). The census boundaries for CMAs and downtown areas were downloaded as a 

shapefile from Statistics Canada's 2021 census data (Statistics Canada, 2021). It was found that 

there were 42 CMA polygons, with Ottawa split into two parts—one on the Ontario side and the 

other on the Quebec side. They were then merged to get 41 CMAs. 

3.4.2. Data sources, acquisition and processing 

This study utilizes air temperature data from two different sources: conventional sensors installed 

across the country by Environment and Climate Change Canada (ECCC) and from Netatmo CWS. 

Temperature data collected by ECCC sensors owned and maintained by the government are openly 

available to the public at hourly, daily, and monthly time scales. Netatmo is engaged in the business 

of developing, manufacturing and selling electronic devices connected to the Internet, developing 

software and related data processing architecture including but not limited to artificial intelligence 

and learning algorithms. Netatmo especially products and distributes personal connected weather 

stations. Netatmo’s devices have the capability to measure, monitor, record, collect, transmit, store 
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and analyse data, related to temperature, wind speed, precipitation, air pressure, humidity, air 

quality, carbon dioxide content in the air (https://www.Netatmo.com/company). Each weather 

station records instantaneous air temperature at approximately five-minute intervals which can be 

retrieved in limited quantities via its Application Programming Interface (API). Both ECCC and 

Netatmo sensors across Canada that worked during the late spring and summer months of May to 

August 2022 (Budhiraja et al., 2021; National Research Council Canada, 2020) were considered 

for this study.  

For the ECCC sensors dataset, data from three different government sources 

(https://climate.weather.gc.ca, https://www.canada.ca/en/environment-climate-

change/services/climate-change/canadian-centre-climate-services.html, and 

https://climatedata.ca/) were combined. With more than 8500 sensors, the initial dataset had 

sensors that worked as early as 1840, that observed air temperature at different temporal scales. A 

Python script was created for cleaning this dataset. Sensors that recorded hourly temperature data 

throughout 2022 were extracted and were subsequently filtered based on their unique station IDs. 

After eliminating redundant sensors that were located within a distance of less than fifty meters 

from each other, a total of 1043 ECCC sensors were acquired. For Netatmo, the data file of all 

sensors and their locations across Canada was acquired through the Netatmo Weather Program for 

Education, which is a programme that gives university researchers access to the data to enable 

them to carry out specific analysis. These sensors have been reported to have an accuracy up to 

0.3°C (Coney et al., 2022). Based on their unique station IDs, close to 3000 unique Netatmo CWS 

were identified for the year 2022. As mentioned earlier, on average, these sensors recorded air 

temperature at five-minute intervals. It was observed that some sensors operated under one ID for 

a specific period and then under a different ID for the rest of the period, in the same location. Either 

a device must have been replaced with another device or the ID of the original device must have 

been changed for this to happen. To address this issue, sensors that operated continuously under 

the same station ID during all 12 months of 2022 were extracted; 68 percent of the total Netatmo 

sensors were obtained as a result.  
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Figure 1. Overall distribution of (A) ECCC and (B) Netatmo sensors across Canada. 

Other ancillary datasets were also utilized in this research. A shapefile with boundaries of 

primary and secondary downtowns of Canada was obtained from Statistics Canada (Sergerie et al., 

2021); only primary downtowns were considered for this research. The most recent land use and 

land cover data for Canada at a 30 m spatial resolution was obtained through the Open Government 

Portal (Government of Canada, 2022; Latifovic et al., 2017). In order to facilitate analysis, sixteen 

land cover classes in the original dataset were reclassified into eight classes, namely, forest, 

grassland, wetland, cropland, barren, built-up, water, and snow. The building footprint dataset 

from Microsoft (2019) was also obtained. This dataset had nearly 12 million building footprint 

polygons extracted by Deep Neural Network (DNN) from aerial images and had a precision rate 

of 98.7%. Since this dataset had more building footprint polygons, it was chosen over the publicly 

available dataset provided by the Canadian government. All datasets were processed and then 

reprojected to Spherical Web Mercator projection (EPSG: 3857) in ArcGIS Pro 3.1.0.   
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Table 2. Distribution of ECCC and Netatmo sensors across Canada. 

Provinces/Territories ECCC (%) Netatmo (%) 

Alberta 23.59* 16.1 

British Columbia 12.75* 17.46* 

Manitoba 5.27 2.99 

New Brunswick 2.01 1.52 

Newfoundland and Labrador 4.12 0.6 

Northwest Territories 5.66 0.05 

Nova Scotia 4.51 2.99 

Nunavut 7.86 0 

Ontario 11.51 21.91* 

Prince Edward Island 0.77 0.44 

Quebec 12.85* 31.92* 

Saskatchewan 6.04 3.75 

Yukon 3.07 0.27 

  * Top three provinces with the highest share of sensors. 

3.4.3. Analysis of spatial representativeness 

 In this study, the CMAs were considered as urban areas, and the entire sensor dataset was clipped 

to extract ECCC and Netatmo sensors located within these CMAs, thereby obtaining urban sensors 

to estimate ΔUHI. Additionally, 25 km buffers were created around each CMA to represent peri-

urban areas located in the vicinity of each corresponding CMAs (i.e., the rural reference for 

measuring ΔUHI). Subsequently, the overlapping areas of CMA polygons were erased from these 

buffer polygons to get buffer rings that represent peri-urban areas. Sensors representing peri-urban 

areas were obtained by clipping the entire sensor dataset with these 25 km buffer rings, thereby 

providing peri-urban sensors to enable ΔUHI estimations (Figure 2). A 500 m buffer around each 

urban and peri-urban sensor, was created to calculate the percentage of each of the eight land cover 

classes within this area, as this distance has been shown to affect the measurement of heat islands 

by in-situ weather stations (Theeuwes et al., 2017).  

A Python script was developed to compute these percentages and determine the dominant 

land cover surrounding each sensor. The quantity of ECCC as well as Netatmo sensors located 

within urban and peri-urban areas (as defined above) was tabulated. Graphs and charts were made 

to illustrate the distribution of sensors based on the predominant land cover class present within 
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the 500 m radius. These were later used for analysing the spatial representativeness of the two 

temperature sensor categories. 

3.4.4. Effect of spatial representativeness on UHI intensity 

To explore the impact of the sensors’ spatial representativeness on ΔUHI, a pair of sensors—one 

urban and one peri-urban—were selected from both ECCC and Netatmo sensor networks for every 

CMA. A reference sensor for the core urban area was selected from among the urban sensors based 

on its proximity to the downtown area, distance from large water bodies, and higher building ratio 

within its 500 m radius. For a peri-urban reference sensor, preference was given to the one located 

closer to the respective CMA, distant from large water bodies, and having a lower building ratio. 

Then, for every CMA, the distance between the urban reference sensor and the primary downtown 

area was estimated. CMAs that had (i) both urban and peri-urban sensors from ECCC and Netatmo 

and (ii) had their urban reference sensors located in downtown or within a distance of 2.5 km from 

downtown, were selected for further analysis. 

  

Figure 2. Urban and peri-urban extents of Montreal Census Metropolitan Area (CMA). The 

white region represents urban area and the green region represents peri-urban area. 

The warmest day of each month, from May to August, was identified for each ECCC urban 

reference sensor. ΔUHI is greatest when skies are cloudless and winds are absent (Mills et al., 

2022; Roth et al., 1989). Hence, the day that had the highest air temperatures, with minimum winds 

© 
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and with no precipitation in 48 hours prior was chosen. This is because atmospheric heat islands 

are best expressed under calm and clear conditions at night, when radiative cooling differences are 

maximized between urban and surrounding rural locations (Voogt & Oke, 2003). Since CUHI is 

more pronounced at night after sunset, ΔUHI was calculated using air temperature recorded by 

ECCC and Netatmo sensors at 1 a.m. for each CMA on their respective warmest days as identified 

above.        

3.5. Results: 

3.5.1. Spatial representativeness 

Since bias could have a significant impact on the conclusions drawn from a sample, the 

representativeness of VGI has to be evaluated before utilizing it for any geographic application. 

One way of assessing it is to compare it with a reference dataset, which is considered representative 

of the population (G. Zhang & Zhu, 2018). It was observed that the ECCC sensors were widely 

distributed across Canada, while the Netatmo sensors were highly concentrated in the southern 

regions of the country (Figure 1). This spatial disparity highlights the need for a detailed 

understanding of the distribution pattern of these two sensor categories. On examining the overall 

distribution of sensors across each of Canada’s provinces, Alberta, British Columbia, Quebec, and 

Ontario were found to have the highest number of both ECCC and Netatmo sensors (Table 2). 

Alberta, Quebec, and British Columbia were the top three provinces with the highest number of 

ECCC sensors at 23.59 percent, 12.85 percent, and 12.75 percent, respectively. However, with 

respect to Netatmo sensors, Quebec had the highest number of sensors (31.92 percent), followed 

by Ontario with 21.91 percent, and British Columbia with 17.46 percent of sensors. It is 

noteworthy that, while Netatmo sensors were scarce or not present in the Canadian territories of 

Northwest Territories, Nunavut, and Yukon, ECCC sensors were widely found in these areas. 

With respect to the CMAs, 13 percent of the total ECCC sensors were within the CMAs as 

urban sensors, 5 percent were inside the 25 km buffer rings around the CMAs as peri-urban 

sensors, and the remaining 82 percent sensors were located beyond the 25 km buffer zone, 

classified as truly rural sensors. On the other hand, of the 69 percent of the total Netatmo sensors 

were urban sensors located within CMAs boundaries, 8 percent were peri-urban sensors were 

located inside the 25 km buffer rings, with only 23 percent of sensors located beyond the 25 km 
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buffer zone. Thus, the majority of the ECCC sensors were located beyond the CMAs and their 25 

km buffer zones, whereas most of the Netatmo sensors were located within the CMAs.  

Of the forty-one CMAs, only twenty-three had both urban and peri-urban ECCC sensors 

(Figure 3). In the remaining CMAs, sixteen had either urban or peri-urban sensors, while two 

CMAs, namely Barrie and Guelph, lacked both urban and peri-urban sensors. On the other hand, 

thirty-one CMAs had both urban and peri-urban Netatmo sensors, and the remaining ten CMAs 

only had urban sensors. This already suggests a rural bias for ECCC sensors, and an urban bias for 

Netatmo sensors. This bias is further confirmed by analysing land cover distribution within a 500 

m radius of each sensor (Figure 4). In urban areas, 37 percent of the ECCC sensors had built-up 

class as the primary land cover within their 500 m radius, slightly surpassing the cropland class in 

31 percent of sensors, followed by water, grassland, and forest in 13 percent, 11 percent, and 8 

percent of the sensors, respectively. In peri-urban areas, cropland was the dominant land cover 

class among 41 percent of the ECCC sensors, followed by water in 23 percent, forest in 13 percent, 

grassland in 11 percent of the sensors, and finally, built-up land cover prevailed only among 9 

percent of the sensors. On the other hand, Netatmo sensors had a different distribution: an 

overwhelming 88 percent of the sensors were surrounded by built-up land cover, while a smaller 

portion of the urban sensors had forest (6 percent), cropland (3 percent), water (2 percent), and 

grassland (1 percent) as the primary land cover. Moreover, built-up cover was also the primary 

land cover class surrounding 45 percent of the peri-urban Netatmo sensors, with the prevalence of 

other land cover classes such as forest, cropland, water, and grassland in 23 percent, 18 percent, 9 

percent, and 5 percent of the sensors, respectively. It was observed that, except for a few peri-

urban ECCC sensors (4 percent) that had barren land cover, neither the ECCC nor the Netatmo 

sensors had any presence of barren, wetland, or snow classes as the dominant land cover. 
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Figure 3. Distribution of urban and peri-urban sensors across forty-one Census Metropolitan 

Areas (CMAs) of Canada. 
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Figure 4. Percentage of dominant land cover classes within a 500 m radius of urban and peri-

urban sensors. 

3.5.2. Effect of representativeness on UHI intensity: 

Twenty-one of the forty-one CMAs that were examined had both urban and peri-urban ECCC as 

well as Netatmo sensors. Among these, UHI intensity analysis was conducted only for seven 

CMAs namely, Toronto, Montreal, Vancouver, Quebec, Winnipeg, Halifax, and Victoria, where 

the urban reference sensors were either ideally located downtown, or at a distance of ≤2.5 km from 

the designated downtown areas (Table 3a). UHI intensities for these seven CMAs were estimated 

on the warmest days identified at their respective ECCC urban reference sensor location (Table 

3b). 

The estimated ΔUHI from just the ECCC sensors (∆𝑈𝐻𝐼𝐸𝐶𝐶𝐶) across the seven selected 

CMAs varied between -1.9 °C and 5.7 °C during the four months of 2022 (Table 4). The data 

indicated that on the warmest days in at least one of the four months, Halifax, Toronto and 

Vancouver's urban areas were cooler than their peri-urban surroundings, and Victoria was cooler 

during all four months. ΔUHI estimated using just the Netatmo sensors (∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜) ranged 

from -1.7 °C to 10.1 °C across the same seven CMAs, and all of them exhibited a noticeable UHI 

effect during all four months, except Victoria (Table 4). In June 2022, Victoria's urban area was 

observed to be 1.7 °C cooler than its peri-urban surroundings on the warmest day. 

© 
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Table 3a. Sensor distribution of top seven Census Metropolitan Areas (CMAs) that had both 

urban and peri-urban sensors, with their urban reference sensors located ≤2.5 km from 

downtown area. 

CMA 

ECCC  Netatmo 

Urban 

(%) 

Peri-

urban 

(%) 

Urban reference 

to downtown 

distance (km) 

  
Urban 

(%) 

Peri-

urban (%) 

Urban reference 

to downtown 

distance (km) 

Toronto 60 40 0  99 1 0 

Montreal 80 20 0  90 10 0 

Vancouver 73 27 0.77  98 2 0 

Quebec 63 37 1.5  94 6 0 

Winnipeg 75 25 0  92 8 0.02 

Halifax 72 28 0  94 6 0 

Victoria 78 22 0   81 19 0 

Table 3b. Dates of warmest days identified for the seven selected Census Metropolitan Areas 

(CMAs) at their respective ECCC urban reference sensor location. 

CMA May June July August 
Toronto 15 22 17 7 
Montreal 26 15 21 1 
Vancouver 23 27 29 19 
Quebec 14 22 17 6 
Winnipeg 24 11 9 22 
Halifax 20 30 24 27 
Victoria 22 26 26 7 

Analysis of the CMA-wise mean (𝜇𝐶𝑀𝐴) of ∆𝑈𝐻𝐼𝐸𝐶𝐶𝐶 revealed that of the seven CMAs, 

three – Victoria, Vancouver and Toronto - were colder during the four months and Montreal had 

the highest ∆𝑈𝐻𝐼𝐸𝐶𝐶𝐶. Conversely, the overall mean of ∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜 for each of the seven CMAs 

showed that, all CMAs exhibited UHI effect, with Toronto, Vancouver, and Winnipeg as the top 

three CMAs with the most pronounced UHI effect. On examining the monthly averages, it was 

observed that the mean ∆𝑈𝐻𝐼𝐸𝐶𝐶𝐶 was highest in June, whereas the mean ∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜 was 

highest in July. Overall, except in the month of June, ∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜 was consistently higher than 

∆𝑈𝐻𝐼𝐸𝐶𝐶𝐶 throughout the late spring and summer months from May to August.  
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Table 4. UHI intensity (ΔUHI) estimated with ECCC and Netatmo sensors. A positive value 

indicates that the Census Metropolitan Area (CMA) was warmer compared to its peri-urban 

surroundings. 

CMA 
∆𝑼𝑯𝑰𝑬𝑪𝑪𝑪  ∆𝑼𝑯𝑰𝑵𝒆𝒕𝒂𝒕𝒎𝒐 

May Jun Jul Aug 
mean 

(μ
CMA

)  May Jun Jul Aug 
mean 

(μ
CMA

) 

Toronto -1.5 -1.9 2.2 1.1 -0.025  6.4 2.1 10.1 7.1 6.425 
Montreal 5.1 4.9 1.2 3.4 3.65  3.7 0.7 1.1 1.7 1.8 
Vancouver 1.1 -2 -1.9 -2.3 -1.275  3.2 2.4 5.2 2.8 3.4 
Quebec 0.6 1.6 3.5 0.6 1.575  1.7 0.3 2.3 1.6 1.475 
Winnipeg 2.4 2.6 0.3 1.8 1.775  2.6 0.4 1.5 3.3 1.95 
Halifax 0.2 5.7 -0.7 1.9 1.775  1.1 0.5 0.7 0 0.575 
Victoria -2 -4 -1.4 -4.1 -2.875   0.9 -1.7 0.5 1.8 0.375 

mean (μ) 0.843 0.986 0.457 0.343   2.800 0.671 3.057 2.614  
S.D. (σ) 2.403 3.711 1.967 2.622     1.901 1.347 3.491 2.236   

To further explore the reasons for the results obtained above, the land cover percentages 

within a 500 m radius around the urban and peri-urban reference sensors of the seven selected 

CMAs were examined (Figure 5). In addition to the built-up class, urban ECCC sensors had 

significant portions of other land cover classes such as water and grassland. But nearly all the 

seven urban Netatmo reference sensors were surrounded by 100 percent built-up land cover. In 

peri-urban areas, ECCC reference sensors of the seven CMAs had a mixture of various land cover 

classes in different proportions, while except in Winnipeg, Netatmo reference sensors in the other 

six CMAs predominantly had built-up land cover class. Thus, regardless of their urban or peri-

urban location, the Netatmo sensors had a higher presence of the built-up class compared to the 

ECCC sensors. This is most probably due to people’s tendency to install their sensors in 

conveniently accessible locations with Wi-Fi access that are inevitably surrounded by buildings, 

like their backyards.  
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Figure 5. Land cover classes within a 500 m radius around both the urban and peri-urban 

reference sensors of the seven chosen Census Metropolitan Areas (CMAs). 

Given that Netatmo sensors have extensive coverage in urban areas (Figure 6) and ECCC 

sensors better represented peri-urban areas, we also calculated ΔUHI by subtracting the 

temperatures observed by ECCC sensors in peri-urban areas from the temperatures observed by 

urban Netatmo sensors (∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜−𝐸𝐶𝐶𝐶 ). From the estimated values of ∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜−𝐸𝐶𝐶𝐶, it 

was observed that during the warmest days of each of the four months from May to August 2022, 

all seven CMAs experienced higher temperatures compared to their peri-urban counterparts, 

indicating the presence of the UHI effect (Table 5). Furthermore, the 𝜇𝐶𝑀𝐴 of ∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜−𝐸𝐶𝐶𝐶 

were greater than the 𝜇𝐶𝑀𝐴 of both ∆𝑈𝐻𝐼𝐸𝐶𝐶𝐶 and ∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜 in almost all the seven CMAs. 

When the inverse is considered, UHI intensity (∆𝑈𝐻𝐼𝐸𝐶𝐶𝐶−𝑁𝑒𝑡𝑎𝑡𝑚𝑜) values were all mostly 

negative and close to zero. And as expected, Vancouver, Toronto, and Quebec exhibited the most 

significant UHI effects (Oke, 1973). Among the four months, May had the highest mean 

∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜−𝐸𝐶𝐶𝐶, while June had the lowest.  
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Table 5. UHI intensity (ΔUHI) estimated with air temperatures from both ECCC and Netatmo 

sensors. A positive value indicates that the CMA was warmer compared to its peri-urban 

surroundings. 

CMA 
∆𝑼𝑯𝑰𝑵𝒆𝒕𝒂𝒕𝒎𝒐−𝑬𝑪𝑪𝑪 (°C)  ∆𝑼𝑯𝑰𝑬𝑪𝑪𝑪−𝑵𝒆𝒕𝒂𝒕𝒎𝒐 (°C) 

May Jun Jul Aug 
mean 

(μ
CMA

)   May Jun Jul Aug 
mean 

(μ
CMA

) 

Toronto 3.8 0.3 11 8.6 5.925  1.1 -0.1 1.3 -0.4 0.475 
Montreal 6.4 7 1.2 4.8 4.850  2.4 -1.4 1.1 0.3 0.600 

Vancouver 6.5 6.1 9.4 5.2 6.800  -2.2 -5.7 -6.1 -4.7 -4.675 
Quebec 12.6 3 4.4 2.8 5.700  -10.3 -1.1 1.4 -0.6 -2.650 

Winnipeg 5.4 4 2.9 5.2 4.375  -0.4 -1 -1.1 -0.1 -0.650 
Halifax 0.8 5 1.2 1.8 2.200  0.5 1.2 -1.2 0.1 0.150 
Victoria 2.3 1.5 2.9 2.6 2.325   -3.4 -7.2 -3.8 -4.9 -4.825 

mean (μ) 5.400 3.843 4.714 4.429   -1.757 -2.186 -1.200 -1.471  
S.D. (σ) 3.816 2.421 3.934 2.296     4.248 3.069 2.860 2.294   

 

3.6. Discussion and Conclusion 

The aim of this study was to explore the efficacy of using meteorological data volunteered by 

individuals via Netatmo CWS for studying the UHI effect across Canadian CMAs, particularly 

with respect to bias that may be present due to the location of the sensors. As a first step, we 

assessed the spatial representativeness of Netatmo CWS by comparing it with conventional ECCC 

sensors, with the finding that ECCC sensors have equitable distributions nationally, which leads 

them to have better coverage in peri-urban and rural areas. Conversely, Netatmo sensors are more 

concentrated in urban regions, thus providing a better coverage for these areas (i.e., CMAs). 

Further, ECCC sensors were distributed across all provinces and territories but not all CMAs, 

whereas the Netatmo sensors were present in all CMAs but not across all provinces and territories. 

And a general observation from analysis of this distribution is that the number of peri-urban 

Netatmo sensors decreased with smaller CMA population.  This suggests that there is geographic 

bias in both ECCC and Netatmo sensor locations. 
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Figure 6. Land cover map with locations of (A) ECCC and (B) Netatmo sensors of Montreal 

Census Metropolitan Area (CMA). Compared to the ECCC sensors, a greater number of 

Netatmo sensors are found inside the CMA. 

Additionally, we investigated how this spatial variability in the representativeness of 

sensors for both urban and peri-urban areas that represented the rural reference, affected the 

estimation of ΔUHI. Our findings revealed discrepancies in ΔUHI estimates with the ECCC and 

Netatmo sensors throughout late spring and summer from May to August 2022. The ∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜 

was consistently higher than ∆𝑈𝐻𝐼𝐸𝐶𝐶𝐶 during all four months, and a higher magnitude of UHI 

intensity (∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜−𝐸𝐶𝐶𝐶) was observed when the Netatmo sensors served as the ‘urban 

reference’, and the ECCC sensors as the ‘rural reference’. Conversely, ∆𝑈𝐻𝐼𝐸𝐶𝐶𝐶−𝑁𝑒𝑡𝑎𝑡𝑚𝑜 was 

much lower.  This is obviously due to the representativeness of each of the sensor categories.  

Netatmo sensors, installed by individuals in easily accessible locations such as their backyards, 

represented urban areas better; whereas ECCC sensors, installed outside the urban centers by the 

Canadian federal and a few provincial governments were distributed uniformly across the country, 

better represented peri-urban and rural areas. Moreover, as expected from previous research (Oke, 

1973), the highly populous CMAs exhibited higher ∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜−𝐸𝐶𝐶𝐶.  

These findings highlight the importance of taking bias into consideration when evaluating 

data from weather stations.  As has been reported in the literature, bias has a significant impact on 

the conclusions drawn from a sample, potentially leading to inaccurate results. Therefore, as with 

© 
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other spatial data, it is essential to evaluate the representativeness of a dataset before using it for 

any geographic application. For example, launched in the UK in 2004, OSM is the most widely 

used crowdsourced geographic information, closely followed by Twitter, Instagram, Flickr, 

Weibo, and Geo-Wiki (Cui et al., 2021; Yan, Feng, et al., 2020). Research indicates that OSM is 

biased towards high-density urban areas (Hecht & Stephens, 2014; Neis & Zielstra, 2014), as 

contributors predominantly provide data for the cities where they live (Haklay, 2016). Twitter and 

Flickr also exhibit a similar bias toward urban perspectives. Consequently, studies and applications 

relying on these sources may have oversampled the urban population (Hecht & Stephens, 2014). 

Here, the same urban bias was observed with Netatmo data.  More intriguingly, there was a rural 

bias present in the ECCC data, thus requiring the use of both Netatmo and ECCC sensors to obtain 

a balanced picture of UHI intensity. 

Additionally, spatial bias has been extensively studied in other disciplines. For instance, 

Geldmann et al., (2016) examined spatial bias in ecology, analysing the influence of human 

infrastructure and land cover on observations from four different crowdsourcing programs in 

Denmark. The data provided by volunteers were highly representative of the areas where they 

resided or could commute, such as parks, hiking trails in woods, and fishing lakes. Similar findings 

were reported by Millar et al., (2018), who examined bias in the aquatic monitoring program in 

Ontario and termed the bias as ‘Cottage effect’. Volunteers sampled lakes closer to their cottages 

and other recreational sites due to their attractiveness as a leisure spot and accessibility from 

population centers. This, taken with the fact that environmental monitoring demonstrated the 

lowest level of VGI adoption (Yan, Feng, et al., 2020), suggests the presence of bias in weather 

station data. 

However, and as stated earlier, the urban bias of Netatmo data may be useful for UHI 

studies, particularly because there is significant intracity variability in UHI intensity, as 

demonstrated by the LCZ approach (Stewart & Oke, 2012).  It is important to capture this 

variability and identify localities with higher UHI intensities as it is directly associated with the 

degradation of human health and well-being due to increased city temperatures. High temperatures 

have a variety of effects on human health, with mortality being the most severe. Moreover, people 

of lower social classes and of racial and ethnic minorities are more likely to reside in warmer 

neighbourhoods than privileged ones, which causes a problem of environmental and climatic 

injustice (Fan & Sengupta, 2022; Schlosberg & Collins, 2014). But while urban areas are exposed 



51 
 

to a variety of meteorological phenomena, yet at least in the Canadian context, the presence of 

high-quality urban meteorological networks (i.e., ECCC sensors) is limited. This is due to the fact 

that installing conventional sensors in densely populated areas is not only expensive and 

challenging but also constrained by factors such as the need for approvals and concerns about 

vandalism (Muller et al., 2013). Crowdsourcing provides researchers with extensive datasets on 

environmental quality indicators in areas where monitoring is either scarce or non-existent 

(Grossberndt et al., 2020). 

Thus, despite the presence of bias, CWS are well suited for obtaining air temperature from 

dense built-up city centers with urban canyons and reduced tree cover, where heat risk is high. 

Apart from air temperature, these CWS can observe other meteorological parameters, and hence 

it is a good idea to combine both conventional and CWS for urban climate studies. Conventional 

datasets are also biased in a certain way, but the bias may be complementary to the bias in 

crowdsourced datasets, as we see with the example of ECCC and Netatmo sensor locations. Hence, 

crowdsourcing can be used as an additional and complementary source of information to 

conventional methods of data collection (Chow et al., 2023; Cui et al., 2021; Heikinheimo et al., 

2017; Millar et al., 2018), especially in studying temperature differences at a local scale (Fenner 

et al., 2017). As noted by See et al., (2016), this conflation is the key area of future research. 

Note that this study has a few limitations. First, only the initial steps of data cleaning 

procedures identified in previous research (Coney et al., 2022; Meier et al., 2017) were done on 

the Netatmo dataset. As a result of this, sensors that did not record air temperature for all 24 hours 

of a day and on every day of a month were still considered for the analysis. Secondly, the study 

focused on volunteered meteorological datasets from a single source, Netatmo, which may restrict 

the breadth of the insights gained. Despite these limitations, this study provides a comprehensive 

understanding of the representativeness of CWS and highlights their potential in urban climate 

research. By including data from additional sources and implementing rigorous data cleaning 

procedures, these limitations will be addressed in the future. Despite these limitations, however, 

data from CWS remain a valuable complementary source for urban air temperature measurements 

for estimating UHI intensity. 
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4. Discussion 

Urbanization as a phenomenon is unavoidable in the near future. As a result of the increase in 

impervious surfaces, a surface energy imbalance between urban and rural areas is created, 

commonly known as Urban Heat Island effect, wherein the urban areas exhibit a higher 

temperature than their rural counterparts (Oke, 1973). Given that an increasing proportion of the 

population resides in urban areas, the residents are at risk of heat-related illnesses due to the 

elevated urban temperatures. Therefore, studying the UHI effect is important for understanding 

and mitigating the impact it has on public health and well-being.  

Through the extensive literature review, three distinct types of UHI are identified based on 

the surface or atmospheric region being observed, i.e., Surface UHI (SUHI), Canopy-level UHI 

(CUHI) and Boundary Layer UHI (BLUHI). Further, these identified UHIs can be studied with 

data from different sources such as, in-situ sensors, remotely sensed data, and model simulations. 

In-situ sensors installed at a fixed location or mounted on a platform for traverse, are capable of 

providing accurate and continuous data on various meteorological parameters. Only they can 

measure ambient air temperature which has an impact on thermal comfort, which is directly related 

to health concerns such as cardiovascular mortality (Woeckel et al., 2023). While modeling can 

simulate ambient air temperatures on a larger city-scale, required for UHI research, the level of 

accuracy may not be sufficient to capture necessary nuances. Moreover, the accuracy of the 

simulated temperatures is dependent on the quality of the model’s input parameters; this is known 

as the ‘Garbage In, Garbage Out’ problem of computational models (Hall, 2014). On the other 

hand, temperature measurements from airborne platforms can provide global data coverage at a 

spatial resolution of at least 60 m and are not affected by problems of input data quality. However, 

they can only detect the surface temperatures of roads, pavements, and building rooftops, thus 

portrays urban areas as warmer than they actually are. Thus, the in-situ sensors stand out as a 

reliable source for measuring ambient air temperature, which is important for understanding its 

implications on human health and well-being. 

With the advent of advancements in Information and Communication Technology, a new 

era has emerged where individuals from the general public contribute data to the scientific 

community. Crowdsourced in-situ weather sensors are a prime example of this innovation. Unlike 

the conventional sensors, which are often always installed and maintained by the government, 
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crowdsourced sensors are inexpensive and are often installed by the general public at their cost 

(e.g., Netatmo sensors can be purchased online from Amazon.ca). This approach not only expands 

the geographic coverage of temperature monitoring but also democratizes data collection and 

distribution, enabling communities to actively participate in environmental observation. However, 

since these datasets are volunteered by a diverse range of individuals, from amateurs to experts, it 

is important to assess their quality and representativeness. Moreover, bias could significantly 

influence the conclusions drawn from a sample, so the representativeness of these in-situ sensors 

has to be evaluated before utilizing them for any geographic application (G. Zhang & Zhu, 2018). 

In this thesis, the spatial representativeness of conventional (Environment and Climate 

Change Canada or ECCC) and crowdsourced (Netatmo) in-situ sensors installed across Canada is 

assessed by comparing them with each other. The conventional ECCC sensors are found to have 

equitable distributions nationally, ensuring better coverage in peri-urban and rural areas. 

Conversely, crowdsourced Netatmo sensors are more concentrated in urban regions, thus providing 

a better coverage for these areas (i.e., CMAs). Further, ECCC sensors are distributed across all 

provinces and territories but not all CMAs, whereas the Netatmo sensors are present in all CMAs 

but not across all provinces and territories. This suggests that there is spatial bias in both in-situ 

sensor locations. These biases can affect the validity and generalizability of study findings, 

especially when attempting to understand larger geographical trends. For instance, almost all 

studies on data representativeness of OSM showed similar levels of data completeness and high 

data quality for densely populated urban areas compared to the conventional mapping datasets 

(Neis & Zielstra, 2014). However, this pattern does not apply to cities outside the European 

Context (Neis et al., 2013). 

Furthermore, this thesis explores how the spatial representativeness of in-situ sensors 

affects the ΔUHI estimation in seven selected CMAs. The ∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜 was consistently higher 

than ∆𝑈𝐻𝐼𝐸𝐶𝐶𝐶 during all four months from May to August 2022. A larger magnitude of UHI 

intensity (∆𝑈𝐻𝐼𝑁𝑒𝑡𝑎𝑡𝑚𝑜−𝐸𝐶𝐶𝐶) was observed when the Netatmo sensors served as the ‘urban 

reference’, and the ECCC sensors as the ‘rural reference’. Needless to say, the representativeness 

of each of the in-situ sensor categories is the reason for this. Moreover, a more accurate 

representation of urban areas (including intra-city variability of temperatures) is provided by 

Netatmo sensors, since the volunteers tend to set up these sensors in easily accessible locations, 
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such as their own backyards. Meanwhile, ECCC sensors, installed outside urban centers at regular 

intervals by the Canadian federal and select provincial governments, offered better coverage of 

peri-urban and rural areas. This spatial bias is also seen in a study in Germany on air temperature 

modeling (Vulova et al., 2020). The crowdsourced sensors were densely concentrated in the built-

up areas, resulting in inadequate coverage of natural landscapes. Consequently, the air 

temperatures of vegetated areas away from city centers were overestimated.  

Apart from the sensor representativeness, another challenge identified from the literature 

is sensor overheating. Installing sensors in certain locations, such as proximity to a wall, leads to 

overheating of sensors during daytime (Varentsov et al., 2020). However, the temperature biases 

diminish at night, since the UHI effect becomes more pronounced during these hours. This problem 

arises due to inadequate protection from solar radiation and insufficient ventilation (Meier et al., 

2015). The findings of this thesis emphasize accounting for bias when utilizing data from in-situ 

weather sensors, since bias has a significant impact on the conclusions drawn from a sample, 

potentially leading to inaccurate results. Despite the biases of crowdsourced sensors, they are 

useful for UHI studies, particularly due to the intra-city variability observed in UHI intensity, as 

highlighted by the LCZ approach (Stewart & Oke, 2012). These low-cost sensors are capable of 

monitoring weather conditions at high spatial and temporal resolutions (Fan & Sengupta, 2022), 

offering a dense and continuous stream of data over a long time (Benjamin et al., 2021). They are 

useful to study weather patterns that change over short distances, particularly in urban areas 

characterised by heterogeneous morphology (Muller et al., 2015).  

More importantly, this intra-city variability in urban temperatures has to be monitored since 

rising urban temperatures are directly linked to decline in public health and well-being. High 

temperatures have a variety of effects on human health, with mortality being the most severe. 

Furthermore, it raises the need for energy, particularly during the summer, for cooling purposes, 

which results in higher electricity costs. As a result, individuals from marginalized communities, 

including those of lower social classes and racial and ethnic minorities, are more likely to reside 

in warmer neighbourhoods compared to the privileged ones. This causes a problem of 

environmental and climatic justice (Fan & Sengupta, 2022; Schlosberg & Collins, 2014), since the 

consequences of urban heat are more severe for these vulnerable populations. Urban green spaces 

serve as effective nature-based solutions for mitigating the heat impacts caused by UHI effect (W. 
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Zhou et al., 2023). They can significantly contribute to the urban micro climate, since they absorb 

incoming solar radiation, reduce the heat island effect through shading and evapotranspiration, and 

naturally filter dust and air pollutants, thereby reducing air pollution (Phelan et al., 2015).  

Thus, despite the urban issues of health and energy demand linked to UHI effects, there is 

a dearth of professional urban meteorological sensor networks (i.e., ECCC sensors), in Canada. 

This is because installing conventional sensors in densely populated areas is difficult and 

expensive, and is also limited by obtaining approvals and potential vandalism concerns (Meier et 

al., 2017; Muller et al., 2013). Moreover, these sensors form a coarse observational network, since 

they are installed at uniform distances outside the urban centers to avoid the influence of urban 

core temperatures on synoptic weather observations. In contrast, crowdsourcing provides 

researchers with extensive datasets on environmental quality indicators in areas where monitoring 

is either scarce or non-existent (Grossberndt et al., 2020). It is cost-effective as it relies on volunteer 

contributions rather than expensive infrastructure and the volunteers always contribute for places 

which are easily accessible by them, often focussing on urban centers. 

Therefore, crowdsourced sensors are well suited for predicting air temperature in built-up 

city centers where heat risk is high (Vulova et al., 2020). In addition to temperature, these in-situ 

sensors can observe other meteorological parameters like humidity and pressure, and hence it is a 

good idea to combine both conventional and crowdsourced sensors for urban climate studies 

(Chapman et al., 2017). Conventional datasets are also biased in a certain way, but the bias may 

be complementary to the bias in crowdsourced datasets, as we see with the example of ECCC and 

Netatmo sensor locations. To get a balanced picture of UHI intensity, both of these in-situ sensor 

categories have to be used together. Hence, crowdsourcing can be used as an additional and 

complementary source of information to conventional methods of data collection (Chow et al., 

2023; Cui et al., 2021; Heikinheimo et al., 2017; Millar et al., 2018), especially for studying 

temperature differences at a local scale (Fenner et al., 2017). Specifically, conflating multiple data 

sources is a key area of research, since it enables researchers to leverage the advantages of various 

data sources (See et al., 2016). 

Despite promising advances, this study has few limitations. Only the initial steps of data 

cleaning procedures identified in previous research (Meier et al. 2017; Coney et al. 2022) were 

done on the Netatmo dataset i.e., the sensors that did not record the air temperature every day of 
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the month and for all 24 hours of the day were nonetheless taken into account for the analysis. This 

made it more difficult to estimate the UHI on the warmest days that were identified since, in the 

event that a Netatmo sensor is determined to have malfunctioned, the next warmest day was 

selected. As a result, the entire intensity estimation process had to be redone all again. Additionally, 

the scope of insights obtained may be limited, since the study was restricted to volunteered 

meteorological datasets from a single source. Despite the acknowledged limitations, this study 

provides a comprehensive understanding of the representativeness of in-situ sensors and highlights 

their potential in urban climate research. By including data from additional sources and 

implementing rigorous data cleaning procedures, the accuracy and reliability of intra-city UHI 

estimates will be improved in the future. 
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5. Conclusion 

In this thesis, the efficiency of in-situ sensors of conventional (ECCC) and crowdsourced 

(Netatmo) sensor networks in capturing and estimating the UHI intensity has been investigated. It 

identifies the advantages of these in-situ temperature data sources over other sources through an 

extensive literature review. Furthermore, the analysis of these two datasets shows how important 

it is to consider representativeness when utilizing data from weather stations, whether conventional 

or crowdsourced. Although conventional sensors provide reliable measurements of the ambient 

temperature, their geographic coverage is limited and thus the intra-city variability of UHI cannot 

be effectively captured. On the other hand, crowdsourced sensors offer dense coverage in urban 

areas, but their placement by volunteers, introduce biases. 

The inherent spatial bias of these two in-situ sensor categories influences the estimation of 

UHI intensity. When using crowdsourced sensors exclusively, the intensity values were higher 

compared to those obtained from conventional sensors. Crowdsourced sensors provide better 

representation of urban areas, while conventional sensors are more representative of peri-urban 

areas. Consequently, the UHI intensity calculated using these two datasets was higher than 

previously estimated values. This confirms that spatial representativity of sensors has an influence 

on the estimation of UHI intensity. 

Moreover, this thesis highlighted the complementary nature of the spatial bias in both in-

situ sensor categories and the potential of integrating data from both sources to obtain a 

thorough understanding of UHI intensity. The accuracy and reliability of UHI estimations can be 

improved by leveraging the strengths of each data source and by implementing rigorous data 

cleaning procedure. This approach captures the complexities of urban environments and 

policymakers can utilize these insights to design more effective mitigation and adaptation 

strategies. Overall, this thesis thus expands the current understanding of utilizing in-situ sensors to 

study UHI dynamics, which benefits policy-making and urban planning initiatives that aim to 

mitigate the adverse impacts of UHI and improve the resilience of cities to climate change. 
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