
 

 

 

 

 

 

 

 

 

 

 

 

 

New perspectives on the aging brain 

Roni Setton 

Integrated Program in Neuroscience 

McGill University, Montreal 

August, 2021 

 

 
 

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree 

of Doctor of Philosophy. 

 

© Roni Setton, 2021 

 

 

 

 

 

 



 

 

2 

Table of Contents 

Abstract ................................................................................................................................................................................ 7  

Résumé .................................................................................................................................................................................. 9  

Acknowledgements ........................................................................................................................................................... 11  

Contribution to Original Knowledge ............................................................................................................................. 12  

Contribution of Authors .................................................................................................................................................. 14  

Chapter 1: General Introduction ................................................................................................................................... 16  

Literature Review ............................................................................................................................................................. 16  

Age Differences in Global Patterns of Brain Function and Cognition ............................................................... 18  

Age Differences in Local Brain Function and Cognition: Autobiographical Memory as a Test Case.................. 18  
Autobiographical Memory ........................................................................................................................... 18  
Brain Activity Associated with Autobiographical Memory ........................................................................... 20  

Rationale ......................................................................................................................................................... 21  

Chapter 2: Age differences in the functional architecture of the human brain ...................................................... 23  

Abstract .............................................................................................................................................................................. 23  

Introduction ....................................................................................................................................................................... 24  

Materials and Methods .................................................................................................................................................... 29  

Participants ..................................................................................................................................................... 29  

Cognitive Assessment ....................................................................................................................................... 31  

Neuroimaging .................................................................................................................................................. 31  
Image Acquisition ....................................................................................................................................... 31  
Image Processing ........................................................................................................................................ 32  

Analysis ........................................................................................................................................................... 36  
BOLD Dimensionality................................................................................................................................. 36  
Gradients & Manifold Eccentricity .............................................................................................................. 36  
Edge-Level Connectomics ........................................................................................................................... 37  
Network-Level Contributions ...................................................................................................................... 39  



 

 

3 

Spring-Embedded Plots ............................................................................................................................... 40  

Results ................................................................................................................................................................................. 41  

BOLD Dimensionality ...................................................................................................................................... 41  

Gradient Analyses ............................................................................................................................................ 42  

Edge-Level Connectomics ................................................................................................................................ 45  
PLS (whole brain) ....................................................................................................................................... 45  
PLS (sub-network) ...................................................................................................................................... 47  

Connectomics Site Replication ......................................................................................................................... 49  

Cognition......................................................................................................................................................... 49  

Discussion ........................................................................................................................................................................... 49  

BOLD Signal Dimensionality and Global Network Dedifferentiation ................................................................ 50  

Gradients and Macroscale Connectomics ......................................................................................................... 52  

Edge-level Connectomics ................................................................................................................................. 53  

Cognitive Function .......................................................................................................................................... 56  

Conclusion .......................................................................................................................................................................... 57  

References .......................................................................................................................................................................... 59  

Bridge to Chapter 3 .......................................................................................................................................................... 72  

Chapter 3: Anterior hippocampus and temporal pole volumes are associated with episodic autobiographical 
memory in healthy older adults ...................................................................................................................................... 73  

Abstract .............................................................................................................................................................................. 73  

Introduction ....................................................................................................................................................................... 74  

Methods .............................................................................................................................................................................. 76  

Participants ..................................................................................................................................................... 76  

Neuroimaging .................................................................................................................................................. 80  

Autobiographical Interview .............................................................................................................................. 81  

Analyses .......................................................................................................................................................... 82  



 

 

4 

Software .......................................................................................................................................................... 82  

Results ................................................................................................................................................................................. 83  

Age Group Differences in Internal/External Density of Recollections from the Autobiographical Interview ....... 83  

Age Group Differences in Hippocampal Volumes and Associations with Internal/External Density ................... 84  

Age Group Differences in Temporal Pole Volumes and Associations with Internal/External Density ................. 87  

Discussion ........................................................................................................................................................................... 88  

Younger and Older Adult Recollections Systematically Vary in Episodic and Semantic Detail Recollection ....... 89  

Hippocampus Volumes Differ by Age Group but Show Little Association with AM ............................................ 89  

Temporal Pole Volumes Relate to Episodic AM in Older Adults ........................................................................ 91  

Concluding Remarks ........................................................................................................................................ 93  

References .......................................................................................................................................................................... 94  

Bridge to Chapter 4 ........................................................................................................................................................ 107  

Chapter 4: Age effects and individual differences in episodic and semantic autobiographical memory relate to 
resting-state functional connectivity of the hippocampus and temporal pole with the default network .......... 108  

Abstract ............................................................................................................................................................................ 108  

Introduction ..................................................................................................................................................................... 110  

Results ............................................................................................................................................................................... 115  

RSFC of AHIPP, PHIPP, and TP with the DN ................................................................................................ 115  

Age Group Differences in RSFC ..................................................................................................................... 116  

RSFC Associations with AM ........................................................................................................................... 120  
An Age Invariant Pattern of RSFC Dissociates Internal from External Density ........................................... 120  
A Specific Pattern of RSFC Younger Adults for Internal and External Density ........................................... 121  

Discussion ......................................................................................................................................................................... 124  

Age Group Differences in RSFC of AHIPP, PHIPP, and TP ........................................................................... 124  

An Age-Invariant Pattern of RSFC Dissociates Episodic From Semantic Autobiographical Recollection ......... 126  

A RSFC Pattern Associated with Autobiographical Recollection in Young Adults............................................ 129  



 

 

5 

Conclusions ...................................................................................................................................................................... 129  

STAR Methods ................................................................................................................................................................ 131  

KEY RESOURCES TABLE ............................................................................................................................. 131  

RESOURCE AVAILABILITY .......................................................................................................................... 131  
Lead contact .............................................................................................................................................. 131  
Materials availability ................................................................................................................................. 131  
Data and code availability.......................................................................................................................... 131  

EXPERIMENTAL MODEL AND SUBJECT DETAILS .................................................................................... 132  

METHOD DETAILS ...................................................................................................................................... 132  
Autobiographical Memory ......................................................................................................................... 132  
Neuroimaging ........................................................................................................................................... 133  

QUANTIFICATION AND STATISTICAL ANALYSIS ...................................................................................... 134  
Image Processing ...................................................................................................................................... 134  
Functional Connectivity ............................................................................................................................ 136  
Analysis .................................................................................................................................................... 136  

References ........................................................................................................................................................................ 140  

Chapter 5: General Discussion ..................................................................................................................................... 152  

Adaptation is More Than a Response to Decline ............................................................................................. 153  

Functional Integration as a Principle of Adaptive Brain Reorganization in Healthy Aging .............................. 154  

Crystallized Capacities as a Principle of Adaptive Cognitive Reorganization in Healthy Aging ....................... 156  

Leveraging Functional Integration and Crystallized Capacities in the Aging Brain ......................................... 157  

The Importance of Sex in Healthy Aging ......................................................................................................... 158  

Limitations of Resting State Functional Connectivity ...................................................................................... 159  

Conclusions ...................................................................................................................................................................... 160  

Master References ........................................................................................................................................................... 161  

Appendix A: Supplementary Material to age differences in the functional architecture of the human brain 170  

Appendix B: Supplementary Material to anterior hippocampus and temporal pole volumes are associated 
with episodic autobiographical memory in healthy older adults ............................................................................ 194  



 

 

6 

Appendix C: Supplemental Material to age effects and individual differences in episodic and semantic 
autobiographical memory relate to resting-state functional connectivity of the hippocampus and temporal 

pole with the default network........................................................................................................................................ 216  

  



 

 

7 

Abstract 

According to popular literature, late life development progresses along a linear trajectory 

of monotonic age-related decline. Emerging research on brain and cognitive aging is now 

challenging this view. Healthy aging comprises a complex set of functional, structural, and 

cognitive changes marked by gains and losses. These complex patterns suggest that human 

development continues as an active process into later life, yet how they intersect remains poorly 

understood. In three cross-sectional studies, deep behavioral phenotyping and novel 

neuroimaging techniques were used to examine age differences in brain function, structure, and 

their relationships to cognition at both the whole-brain and smaller systems levels. The 

overarching goal was to characterize these interactions against a backdrop of late life 

development that involves both adaptive and maladaptive change. 

 Study 1 adopted a whole-brain, data-driven approach to examine whether functional 

network dedifferentiation, a defining feature of functional brain aging, is a global property of 

brain aging or a network-level phenomenon, and how this could inform cognitive differences. 

Multi-echo resting state functional images and cognitive assessments were collected from 181 

younger and 120 older healthy adults. We found evidence for both global and network-specific 

dedifferentiation in older versus younger adults, with direct implications for aging cognition.  

Through the lens of autobiographical memory (AM), studies 2 and 3 involved more 

targeted assessments of age differences to brain structure and function in association with 

cognition (158 younger, 105 older adults). Study 2 tested for differences in grey matter volume 

of regions implicated in AM—anterior/posterior hippocampus (AHIPP/PHIPP) and temporal 

poles (TP)—and whether volume differences were associated with AM performance in each 

cohort. Older adults had smaller PHIPP volumes compared to younger adults, but episodic AM 

was positively related to AHIPP and TP volumes in older adults.  

Study 3 examined age group differences in resting-state functional connectivity of a local 

circuit implicated in AM and its association to AM. Older adults’ connectivity profile was 

marked by TP integration with regions across the default network, and were associated with 

smaller PHIPP volumes. An age-invariant pattern dissociated connectivity related to episodic and 

semantic AM, suggesting a preservation of functional circuits related to AM. Younger adults 

also demonstrated a unique pattern of connectivity related to overall recollection. These results 
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provided strong evidence that variance in a local functional circuit is sensitive to systematic 

variation in recollection that coincides with shifts in older age. 

These studies advance our understanding of the complex contours of brain aging, 

underscoring that structural and functional changes may index both adaptive and maladaptive 

processes associated with cognition in older adulthood. Taken together, the findings from these 

studies offer initial support for an adaptive neuroplasticity account of neurocognitive aging, and 

bear import on outlooks for real-world functioning in late life. 
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Résumé 

Selon la littérature populaire, le développement en fin de vie progresse le long d'une 

trajectoire linéaire de déclin monotone lié à l'âge. Les recherches émergentes sur le vieillissement 

cérébral et cognitif remettent aujourd'hui en question cette vision. Le vieillissement sain 

comprend un ensemble complexe de changements fonctionnels, structurels et cognitifs qui est 

marqué par des gains et des pertes. Ces modèles complexes suggèrent que le développement 

humain se poursuit comme un processus actif jusqu'à un âge avancé, mais la façon dont ils 

s'entrecroisent restent mal compris. Dans trois études transversales, un phénotypage 

comportemental approfondi et de nouvelles techniques de neuro-imagerie ont été utilisés pour 

examiner les différences d'âge dans la fonction et la structure du cerveau, ainsi que leurs relations 

avec la cognition, tant au niveau du cerveau entier que des systèmes plus petits. L'objectif 

principal était de caractériser ces interactions dans le contexte d'un développement tardif de la 

vie qui implique des changements adaptatifs et inadaptés. 

 La première étude a adopté une approche axée sur les données pour l'ensemble du 

cerveau afin de déterminer si la dédifférenciation du réseau fonctionnel, une caractéristique du 

vieillissement cérébral fonctionnel, est une propriété globale du vieillissement cérébral ou un 

phénomène au niveau du réseau, et comment cela pourrait influencer les différences cognitives. 

Des images fonctionnelles multi-écho au repos et des évaluations cognitives ont été recueillies 

auprès de 181 jeunes adultes et 120 adultes plus âgés en bonne santé. Nous avons trouvé des 

preuves d'une dédifférenciation à la fois globale et spécifique au réseau chez les adultes plus âgés 

par rapport aux adultes plus jeunes, avec des implications directes sur le vieillissement cognitif.  

À travers le prisme de la mémoire autobiographique (AM), la deuxième et la troisième 

étude ont consisté en des évaluations plus ciblées des différences d'âge au niveau de la structure 

et de la fonction cérébrales en association avec la cognition (158 adultes plus jeunes, 105 plus 

âgés). La deuxième étude a testé les différences de volume de matière grise des régions 

impliquées dans la AM - hippocampe antérieur/postérieur (AHIPP/PHIPP) et pôles temporaux 

(TP) - et a vérifié si les différences de volume étaient associées aux performances de la AM dans 

chaque cohorte. Les adultes plus âgés avaient des volumes de PHIPP plus petits que les adultes 

plus jeunes, mais la AM épisodique était positivement liée aux volumes du AHIPP et du TP chez 

les adultes plus âgés.  
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La troisième étude a examiné les effets différentiels de l‘'âge sur la connectivité 

fonctionnelle d’un circuit local lié à la AM, ainsi que son association avec la AM. Les profils de 

connectivité des adultes plus âgés étaient marqués par une intégration étendue du TP avec les 

régions du réseau par défaut et était associée à une réduction du volume de la PHIPP. Un modèle 

invariant en fonction de l'âge a dissocié la connectivité liée à la AM épisodique de celle lié à la 

AM sémantique, suggérant une préservation des circuits fonctionnels associés à la AM. Les 

jeunes adultes ont également démontré un modèle unique de connectivité lié au souvenir global. 

Ces résultats fournissent des preuves solides que la variance dans la connectivité fonctionnelle 

d’un circuit local est sensible à la variation systématique du souvenir qui coïncide avec des 

changements dans âge avancé. 

Ces études font progresser notre compréhension des contours complexes du 

vieillissement cérébral, soulignant que les changements structurels et fonctionnels peuvent 

indexer les processus adaptatifs et inadaptés associés à la cognition chez les adultes âgés. Dans 

l'ensemble, les résultats de ces études offrent un support initial pour un compte rendu de la 

neuroplasticité adaptative du vieillissement neurocognitif, et sont importants pour les 

perspectives de fonctionnement du monde réel à un âge avancé. 
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Contribution to Original Knowledge 

 Adults aged 65 and above are projected to make up nearly 30 percent of the population 

by 2068 (World Bank Data), yet surprisingly little is understood about the aging brain beyond 

decline. Distinguishing between adaptive and maladaptive change is extremely important to 

better characterize mechanisms of vulnerability, appropriately tailor interventions, and perhaps 

most critically, optimize well-being and quality of life. The studies contained within this thesis 

used novel neuroimaging techniques to employ a comprehensive multi-scale investigation of 

brain function, structure, and cognition differences between younger and older adults. Across 

three studies, we characterize brain differences that offer initial evidence for an adaptive 

neuroplasticity account of late life brain development. 

 Study 1 examined whether reduced specialization in older age is a global property of 

older brain function or if it emerges from specific network changes. Global integration increased 

with age, but large-scale functional connectivity profiles were relatively preserved. Specific 

integration of visual, somatomotor, and dorsal attention networks across the brain were 

prominent features of older adult connectomes, with tentative links to better executive 

functioning. Findings from Study 1 demonstrated that global age-related trends may not 

sufficiently characterize age-related cognitive change. Functional coupling of specific brain 

networks may offer an adaptive benefit to declining complex cognition. 

 In Studies 2 and 3 we describe localized structural and functional differences between 

younger and older adults in the hippocampus and temporal pole that may support 

autobiographical memory in older age. In line with general declines to complex cognition, 

episodic autobiographical memory was lower in older versus younger adults. However older 

adults recalled more semantic details about their personal pasts. At the level of the brain, older 

adults had smaller posterior hippocampus volumes, but this was unrelated to the amount of 

episodic detail they recalled. Instead, older adult episodic detail was related to volumes of 

regions associated with semantic processing in younger adults. These findings suggested an age-

related shift in how regional grey matter may impact cognitive functioning in older adulthood. 

Study 3 provided supporting evidence for this shift within the functional connectivity profiles of 

the hippocampus and temporal poles. A distinct pattern of integration with regions across the 

default network distinguished older adult functional connectivity from young, and was associated 

with posterior hippocampus volumes. Shared and unique age group patterns of functional 
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connectivity associated with AM were identified. These indicated an overall preservation in how 

the default network may be readily recruited for AM across the lifespan, most highly influenced 

by systematic variation in the balance of episodic versus semantic details. Yet, an age-related 

shift in this balance distinguished connectivity associated with recollection as a whole in younger 

adults. Together, Studies 2 and 3 showed that local structural changes may alter both the 

functional brain architecture underpinning AM and the contents of autobiographical recall. This 

suggests that age-related functional brain adaptation may emerge to support complex cognition 

in later life. 

 Results across the three studies demonstrated that patterns of decline cannot be examined 

in isolation. On both global and local levels, age-related changes that could be conceived as 

decline may in some ways reflect adaptive plasticity to support cognitive abilities in older age. 

The present thesis highlights the need to consider the intersection of age-related functional, 

structural, and cognitive gains and losses to better understand and accommodate an ever-growing 

segment of the population. 
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Chapter 1: General Introduction 

 Normal aging encompasses both gains and losses in brain and cognitive function: 

Functional brain networks degrade while cross-network connections proliferate; global grey 

matter atrophy occurs in the context of preserved regional volumes; fluid abilities decline while 

crystallized capacities accrue over the lifespan. How these complex changes in brain and 

behavior intersect is poorly understood. The present thesis examines brain-behavior relationships 

in healthy younger and older adults to better characterize differences in associations among brain 

function, structure, and cognition in normative neurocognitive aging.  

 

Literature Review 

 Mounting evidence suggests that age-related functional, structural, and cognitive changes 

do not follow a uniform pattern of decline. Rather, the aging brain is marked both by losses, 

preservation, and gains in each of these domains. Functional brain activity and connectivity show 

a widespread pattern of dedifferentiation, or reduced specialization, of brain regions during task 

and at rest. Yet reduced differentiation is driven, at least in part, by increased functional 

integration. This is seen in task-evoked fMRI studies as less asymmetrical activity (Cabeza, 

2002) and more prefrontal activity (Davis et al., 2008). Properties of brain structure, including 

grey matter volume, cortical thickness, and white matter integrity, follow a net pattern of decline 

as increasing brain age incurs cell death and shrinkage, loss of dendritic spines, and deterioration 

of myelin (see Raz et al., 2005 for a review). Yet, some regions are more susceptible to atrophy 

and thinning while others remain stable over the lifespan (Raz et al., 2005; Salat et al., 2004; 

Fjell et al., 2009; Ziegler et al., 2010). White matter hyperintensities, distributed lesions to the 

white matter signaling a range of possible neuropathologies or cerebrovascular risk factors (see 

Raz et al., 2005 for review), also accrue with age, but disproportionately affect frontal region 

microstructure and generally have less impact on the rest of the brain. Lastly, fluid cognitive 

abilities including attention, inhibition, working memory, and episodic memory, worsen (Park & 

Reuter-Lorenz, 2009). Complementary to these losses, crystallized cognition, including 

vocabulary and world knowledge accumulated over one’s lifetime, peaks in older age (Li et al., 

2013). Yet, much of the attention in aging research is focused on how brain change abets 

cognitive decline.  
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 Two frameworks of neurocognitive aging propose an account to relate and resolve these 

multiplex changes: adaptive plasticity. The Scaffolding Theory of Aging and Cognition (STAC; 

Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Park, 2014) is a lifespan theory outlining age-

related functional change as compensatory neural scaffolding in response to structural 

impairment. The STAC model predicts that individuals with less degeneration will age more 

successfully and will require less compensation (subject to other neural enrichment and depletion 

factors). With inevitable age-related changes, older adults with a greater ability to recruit 

compensatory resources, indicative of a greater propensity for adaptive plasticity, will fare better. 

The STAC model also notes that at some critical point in the aging trajectory, pathology may 

overtake the brain’s capacity for compensation.  Growing of Lifelong Differences Explains 

Normal aging (GOLDEN aging; Fabiani, 2012) is a developmental continuity framework that 

views healthy aging as the amplification of individual differences, present in early adulthood, 

over the course of one’s lifetime. Drawing on some of the same ideas as STAC, the crux of 

GOLDEN is that maturation, in the absence of disease, is a process that continues to shape and 

transform brains. Despite their emphasis on adaptive change, both STAC and GOLDEN attempt 

to explain brain change in the context of cognitive losses. 

  Losses, maintenance, and gains in brain function, structure, and cognition suggest that 

plastic mechanisms may respond to and potentially buffer against decline. Distinguishing 

between plastic changes that confer benefits rather than vulnerabilities may seem intractable 

given the heterogeneity across individuals, functional networks, functional regions, gross 

anatomy, and cellular composition. This thesis takes a two-pronged approach by looking at both 

whole-brain and smaller-systems brain change in relation to cognitive gains and losses. At the 

whole-brain level, we can ask how large-scale functional network patterns across the brain differ 

in older age, and whether specific differences impact cognition more than others. At the smaller-

systems level, we can examine function and structure within regions implicated in domain-

specific cognitive gains and losses to narrow in on age-related brain-behavior differences that 

may be imperceptible at a larger scale. In this way, we can begin to characterize age differences 

in brain function that help or hurt cognitive function in older age.  
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Age Differences in Global Patterns of Brain Function and Cognition 

Resting-state fMRI studies, which measure the low frequency spontaneous oscillations in 

BOLD signal underlying large-scale functionally distinct brain networks (Biswal et al., 1995), 

demonstrate an analogous pattern of functional gains and losses as task-fMRI studies. Less 

asymmetrical and more prefrontal brain activity during task (Davis et al., 2008) is paralleled by 

reduced connectivity within networks and more connectivity between networks at rest (Chan et 

al., 2014; Geerligs et al., 2015; Wig, 2017). In combination, these connectivity changes are 

interpreted as a pattern of dedifferentiation, whereby networks become less associated with 

discrete functions (e.g., visual network in occipital cortex and visual perception) and are 

rendered less specialized. Although age-related dedifferentiation occurs in most networks, 

higher-order organization is relatively preserved compared to younger adults. This has been 

demonstrated with global efficiency, which quantifies how efficiently distant information is 

transmitted across the brain, and gradients of connectivity, which identify functional connectivity 

similarity profiles across the brain (Cao et al., 2014; Bethlehem et al., 2020). More prominent 

age-related changes have been observed in association networks including the default, 

frontoparietal control, and dorsal attention networks. Older adult association networks show less 

local efficiency and are less modular, suggesting more long-range between-network connectivity 

(Cao et al., 2014; Geerligs et al., 2015). Reduced segregation of association networks has even 

been related to declining episodic memory across the adult lifespan (Chan et al., 2014). The 

default network is particularly susceptible to age-related change, with its core regions the first to 

be afflicted by amyloid plaques in Alzheimer’s Disease (Buckner et al., 2005). Thus far, 

measures of functional dedifferentiation, and the gains and losses that characterize it, summarize 

non-specific properties of the aging connectome and associate with more global measures of 

cognitive losses. It is unclear whether and/or how specific network connectivity changes 

contribute, and whether quantitative measurement of such changes would reveal more subtle 

relationships to cognitive gains and losses. 

 

Age Differences in Local Brain Function and Cognition: Autobiographical Memory as a 

Test Case 

Autobiographical Memory 
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Autobiographical memory (AM), the repository of our past experiences, is one domain in 

which both age-related cognitive gains and losses are observed. AM recollections naturally 

contain information that varies in level of detail. This information can be categorized into more 

event-specific, episodic versus more general, semantic detail. Age-related changes to episodic 

and semantic components of AM mirror general cognitive trends: older adults recount fewer 

episodic and more semantic details compared to younger adults (e.g., Levine et al., 2002).  

A leading model of AM posits that memory details are stored within hierarchical levels of 

specificity (e.g., lifetime periods, general events, and event-specific knowledge), and that access 

to successive levels is constrained by a “working self,” a combination of working-memory 

control processes and self-schemas that direct our beliefs and goals at any given point in time 

(Conway & Pleydell-Pearce, 2000). AM is naturally dynamic: a hierarchical organization 

enables personal memories to be reconstructed in a variety of ways (Addis et al., 2009), with a 

“working self” exerting top-down control to construe memories according to an individual’s 

current goals and beliefs (Prebble et al., 2013). Changes to older adult recollections may reflect 

limited retrieval to more specific levels within an AM hierarchy, in parallel with other executive 

control declines. Some evidence suggests that individuals, and more so older adults, offer 

additional semantic information when episodic specificity is impoverished (Devitt et al., 2017). 

Alternatively, age-related AM changes may reflect an updated belief system, newfound goals, 

and an altogether different outlook on life. Indeed, shifting perceptions of time horizons are 

predicted to guide motivations and goals (Carstensen, 2006). Young adults, who view time as 

more open-ended, are motivated to gather information, experience novelty, and expand their 

knowledge base in the service of knowledge acquisition goals. Older adults, who view time as 

more limited, are motivated to regulate their emotional states and optimize psychological 

wellbeing in the service of meaning-making goals. Constrained time horizons may also motivate 

older adults to seek a sense of self-continuity. Semantic AM is important for the formation and 

maintenance of a coherent self-concept in the present moment and a continuous mental 

representation of self over time (although the relationship is thought to be bidirectional; Prebble 

et al., 2013). In contrast, episodic AM contributes to present self-awareness and the ability to 

mentally travel into the past and future. Inclusion of more semantic detail in older adults’ AM 

recollections may therefore reflect an inclination toward semantic continuity. As such, semantic 

AM need not be characterized merely as a consequence of declining episodic abilities. As 
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discussed below, examining age-related brain change in relation to episodic and semantic AM 

separately will be critical for understanding how brain reorganization may impact both cognitive 

gains and losses. 

Brain Activity Associated with Autobiographical Memory 

When individuals recall specific memories during AM, a form of internally-directed 

cognition, they reliably engage regions of the default network (Benoit & Schacter, 2015; 

Svoboda et al., 2006; Spreng et al., 2009). Similar AM activation is observed in older adults, 

with notable differences in the temporal lobe (Addis et al., 2011; Viard et al., 2007; Martinelli et 

al., 2013). One representative study found that younger adults activated posterior hippocampus 

and parahippocampal cortex more than older adults during earlier stages of an AM task (Addis et 

al., 2011). Older adults recruited lateral temporal regions, including the temporal pole, and 

anterior hippocampus later on and more than younger adults, who recruited these regions in a 

semantic control condition. These findings highlighted two key considerations for understanding 

how AM changes into older age: 1) different regions of the hippocampus offer unique support to 

AM, which may change as a function of age, and 2) lateral temporal activity may be an 

important feature of older adult AM. Until recently, in-scanner AM tasks have involved silent 

elaboration on past experiences, leaving researchers to infer the interpretation of differential age 

group activations. Late recruitment of anterior hippocampus during AM was interpreted as 

differential hippocampal recruitment of younger and older adults during construction versus 

elaboration stages of AM. A plausible alternative is that mnemonic specialization of anterior and 

posterior hippocampus (e.g., Brunec et al., 2018; Sheldon et al., 2019) differs in older adults. 

Older adult recruitment of the temporal pole was speculated to contribute to their more semantic 

AM recollections, as the temporal pole is widely associated with semantic aspects of memory 

(e.g., Lambon Ralph et al., 2017). Similar reverse inference has been applied to findings of older 

adult repetition suppression in the temporal pole for negative, but not positive future episodic 

simulations (Devitt et al., 2020). As per an age-related positivity bias, older adults preferentially 

attend to and remember more positive information (see Carstensen & DeLiema, 2018 for a 

review). This result was therefore construed as older adults distancing themselves from more 

unpleasant mental simulations by processing them in a more semantic way. Clarification is 



 

 

21 

needed on how age-related structural and functional differences in AM-associated regions—

namely the hippocampus and temporal pole— map onto differences in AM performance. 

Specifically, how brain changes in these regions each associate with semantic and episodic 

aspects of AM will provide a better understanding of how local brain change supports cognitive 

gains and/or losses. 

Rationale 

 Across three cross-sectional studies, novel neuroimaging techniques were used to 

examine age differences in i) whole brain function and cognitive associations as well as targeted 

ii) structure-cognition and iii) function-cognition associations. Multi-echo resting-state fMRI, 

anatomical neuroimages, and an in-depth collection of cognitive measures were collected from a 

large sample of healthy younger and older adults. Multi-echo fMRI affords a boost in BOLD 

signal detectability, particularly within regions that are prone to signal drop-out, such as the 

temporal pole. An individualized parcellation approach was implemented on functional data to 

account for person-specific shifts in functional boundaries. An automated segmentation protocol, 

developed specifically for use in older adult populations, was applied to anatomical images to 

segment each participant’s hippocampus. Deep behavioral phenotyping enabled us to obtain 

global composite measures of cognition, including episodic memory, semantic memory, and 

executive function. Finally, the Autobiographical Interview (Levine et al., 2002) was 

administered as a rich measure of AM that yields separate metrics for episodic and semantic 

recollection. The methodological steps taken here, which respect individual differences in 

functional and structural regional boundaries, paired with behavioral data from a well-powered 

sample, made it possible to confidently test for whole-brain and systems-level brain-behavior 

relationships. The overarching goal of these studies was to better characterize age differences in 

these associations at each level and explore whether brain reorganization could support cognition 

in older age, in line with adaptive plasticity. Support for an adaptive plasticity account would 

have a number of implications for the field of neurocognitive aging, with the potential to redefine 

the current loss of integrity, loss of function approach to healthy aging research (Andrews-Hanna 

et al., 2019). Such evidence will offer valuable insight into how plasticity can be leveraged for 

better health, well-being, and quality of life in older age. 

 Study 1. A multiscale comparison of younger and older functional connectomes was 

conducted to investigate whether dedifferentiation of brain networks is a global or network-
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specific phenomenon of functional brain aging. To this end, we calculated a global metric of 

network dedifferentiation, gradients of functional connectivity, and whole-brain functional 

connectivity matrices and quantitatively compared them across groups. At each level of analysis, 

metrics were correlated to cognition. Results from this study will provide a backdrop for global 

functional age change, its effect on systems throughout cortex, and potential links to global 

measures of cognition.  

 Study 2.  Here we take a more targeted approach by investigating brain-behavior 

associations with AM and AM-associated regions. It remains to be determined how age-related 

differences in hippocampal and temporal pole activity during AM speak to episodic versus 

semantic detailed recollections. The aim of Study 2 was to first identify whether involvement of 

these regions in AM was rooted in structure. We first tested for age group differences in anterior 

hippocampus, posterior hippocampus, and temporal pole grey matter volumes. We then tested 

whether episodic or semantic AM could predict grey matter volume in each of these regions. 

Findings from this study will reveal which structures show volume differences in older age. 

Moreover, we will observe whether volume differences, or the lack thereof, predict better 

episodic or semantic AM performance in each age group. 

 Study 3. In a direct follow-up to Study 2, we asked how resting-state functional 

connectivity may differ between these regions and the rest of the default network, due to its role 

in AM, as a function of age. We also conducted a multivariate analysis to examine how these 

connectivity differences covaried with episodic and semantic AM separately. Results from this 

study will reveal functional connectivity differences in a local circuit, which may be 

overshadowed by whole brain differences in Study 1. Critically, covariance patterns with 

episodic and semantic AM will shed light on how functional connections in each age group may 

be readily recruited for different aspects of AM in the context of AM performance differences. 

This latter result will extend our current understanding of how age-related brain change supports 

cognition, amid gains and losses.  
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Chapter 2: Age differences in the functional architecture of the human brain 

Adapted from: Setton, R.*, Mwilambwe-Tshilobo, L.*, Girn, M. Lockrow, A.W., Baracchini, G., 

Hughes, C., Lowe, A.J., Cassidy, B.N., Li, J., Bzdok, D., Leahy, R.M., Ge, T., Margulies, D.S., 

Misic, B., Stevens, W.D., Bernhardt, B.C., Kundu, P., De Brigard, F., Turner, G.R., & Spreng, 

R.N. (Under Revision). Functional architecture of the aging brain. Cerebral Cortex. 

 

Abstract 

The intrinsic functional organization of the brain changes into older adulthood. Age differences 

are observed at multiple spatial scales, from global reductions in modularity and segregation of 

distributed brain systems, to network-specific patterns of dedifferentiation. Whether 

dedifferentiation reflects an inevitable, global shift in brain function with age, circumscribed, 

experience dependent changes, or both, is uncertain. We employed a multi-method strategy to 

interrogate dedifferentiation at multiple spatial scales. Multi-echo (ME) resting-state fMRI was 

collected in younger (n=181) and older (n=120) adults. Cortical parcellation sensitive to individual 

variation was implemented for precision functional mapping of each participant, while preserving 

group-level parcel and network labels. ME-ICA denoising and gradient mapping identified global 

and macroscale network differences. Multivariate functional connectivity methods tested for 

microscale, edge-level differences. Older adults had lower ME-ICA derived BOLD signal 

dimensionality, consistent with global network dedifferentiation. Gradients were largely age-

invariant. Edge-level analyses revealed discrete, network-specific dedifferentiation patterns in 

older adults. Visual and somatosensory regions were more integrated within the functional 

connectome; default and frontoparietal control network regions showed greater connectivity; and 

the dorsal attention network was more integrated with transmodal regions. These findings highlight 

the importance of multi-scale, multi-method approaches to characterize the architecture of 

functional brain aging.  
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Introduction 

Spontaneous oscillations in brain activity provide the basis for characterizing large-scale 

functional networks (Biswal et al., 2010; Fox and Raichle, 2007; Yeo et al., 2011). This intrinsic 

functional network architecture is determined by both genetic factors and experience-dependent 

neuroplastic changes occurring across timescales, from moments to decades (Stevens and Spreng, 

2014). Studying these networks in older adulthood can yield important insights into the aging 

brain. Key organizational features of the aging connectome include reduced within- and greater 

between- network connectivity (Chan et al., 2014; Geerligs et al., 2015), resulting in a 

dedifferentiated, or less segregated, network architecture (Wig, 2017). However, the specific 

nature of age-related network dedifferentiation remains uncertain.  

There are (at least) two tenable hypotheses. First, network dedifferentiation may represent 

a global feature of functional brain aging. Global shifts may result from systemic structural, 

neurophysiological or metabolic alterations, paralleling domain-general changes in cognitive 

aging. Second, the aging connectome may comprise experience-dependent, network specific 

patterns of dedifferentiation, paralleling domain-specific changes in cognitive abilities in later life 

(Stevens and Spreng, 2014; Spreng and Turner, 2019a). Examples of network specific changes 

include greater connectivity between default and frontoparietal control networks, associated with 

age differences in autobiographical memory (Spreng et al., 2018); or, reduced segregation among 

distributed association networks predicting decline in processing speed (Ng et al., 2016; 

Malagurski et al., 2020). Testing these hypotheses presents significant methodological and 

conceptual challenges. Mitigating persistent and pervasive methodological limitations that 

confront resting-state functional connectivity (RSFC) investigations is critically necessary to fully 

leverage the value of this imaging modality as an indicator of brain, and ultimately cognitive, 

health in older adulthood. 

Here we adopted a multimethod data acquisition and analysis protocol to interrogate 

patterns of network dedifferentiation in younger and older adults across multiple spatial scales 

from global to edgel-level differences. We implemented three novel approaches to characterize the 

functional network architecture of the aging brain. First, we examined global differences in 

spatiotemporal patterns of BOLD signal covariance across the cortex. We refer to this metric as 

BOLD dimensionality, or the number of BOLD signal components derived from multi-echo fMRI 

(ME-fMRI) data acquisition and multi-echo independent components analysis (ME-ICA) 
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processing (Kundu et al., 2017). Second, we investigated age differences in the macroscale 

connectivity profile of the brain using functional connectivity gradient analyses (Huntenburg et 

al., 2018; Margulies et al., 2016; Paquola et al., 2019; Vos de Wael et al., 2020). Third, we 

identified age differences in edge-level connectomics using partial least squares analyses (PLS, 

Krishnan et al., 2011; McIntosh and Misic, 2013). PLS enables whole-brain contrasts of 

unthresholded connectivity matrices, allowing more precise mapping of age differences. 

Combined, these techniques offer a broad window into the functional architecture of the aging 

brain, spanning global covariance patterns across the cortex to precision-mapping of edge-level 

connections. Below we briefly summarize each methodological approach, and associated age-

related predictions.       

Innovations in ME-fMRI data acquisition protocols, combined with a TE-dependence 

model of BOLD signal denoising using ME-ICA, enables one to reliably separate BOLD from 

non-BOLD (i.e. noise) signals into different components (Kundu et al., 2017). ME-ICA processing 

eliminates distant-dependent motion confounds (Power et al., 2018) and the need for multiple 

confound regression, including the global signal (Spreng et al. 2019). These analytical features are 

critical for cross-group comparisons, where it is difficult to adjudicate between group differences 

in noise versus non-noise components in the BOLD signal. Further, eliminating the need for mean 

signal regression denoising allows for valid between-group comparisons of the full range of 

positive and negative RSFC values. ME-fMRI processed data provides excellent reliability and 

temporal signal-to-noise, sufficient for individual-subject precision mapping (Lynch et al., 2020; 

Lynch, Elbau, and Liston, 2021).  While this metric has not heretofore been examined in older 

adulthood, we predict that BOLD dimensionality, as a proxy for differentiated brain networks, will 

be significantly lower for older versus younger adults. This prediction is consistent with previous 

reports of age-related network dedifferentiation (Betzel et al., 2014; Chan et al., 2014; Geerligs et 

al., 2015; Madden et al., 2020; Malagurski et al., 2020; Ng et al., 2016; Stumme et al., 2020; 

Zonneveld et al., 2019) and previously reported declines in BOLD dimensionality from childhood 

into middle-age (Kundu et al., 2018). 

Gradient mapping identifies transitions in regional connectivity patterns across the cortical 

mantle (Margulies et al., 2016). Age differences in connectivity gradients would signal macroscale 

functional brain reorganization. As gradients are robust, phylogenetic features of the connectome 

(Margulies et al., 2016), we predict that these patterns would be resistant to normal ontogenetic 
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changes. However, changes may emerge for regionally-specific connectivity profiles within the 

macroscale gradient architecture, reflecting network or node specific shifts in connectivity 

patterns. We are aware of only one previous investigation of connectivity gradients in older adults. 

The authors reported that the organization of functional communities (networks) within gradient 

space was generally stable, while the communities themselves became more dispersed with 

increasing age, particularly within frontoparietal and default network regions (Bethlehem et al., 

2020). Consistent with these previous findings, we predict that the overall gradient architecture 

will be similar between younger and older adults. However, given the increase in signal to noise 

associated with ME-EPI and ME-ICA denoising, we predict that additional age-related differences 

in regional connectivity profiles will emerge that reflect network specific patterns of 

dedifferentiation, consistent with our previous works (Spreng et al., 2016; Turner and Spreng, 

2015).       

Edge-level precision to detect age differences in the organization of functional brain 

networks is enabled by PLS. This multivariate approach analyzes the full edge-level connectivity 

matrix in a single statistical step, eliminating the need for additional thresholding within an a priori 

defined network parcellation scheme, and resulting in reliable age differences across the full 

matrix. Here, we first examined edge-level connectomics within a canonical seven-network 

solution (Yeo et al., 2011). Next, based on previous work, we conducted an a priori analysis of 

the sub-network topography for the default, frontoparietal and dorsal attention networks, derived 

from the 17-network solution by Yeo and colleagues (2011). Based on our own work and others 

(Chan et al., 2014; Geerligs et al., 2015; Grady et al., 2016; Spreng & Schacter, 2012; Spreng et 

al., 2016; Sullivan et al., 2019; Turner and Spreng, 2015), we predicted a global pattern of age-

related network dedifferentiation, marked by integration of default and frontoparietal regions and 

reduced anti-correlations between the default and dorsal attention networks.     

Finally, we implemented a novel, individualized functional parcellation approach to 

identify person-specific functional network nodes (Chong et al., 2017). These individualized 

parcellations were used in both the gradient and edge-level connectivity analyses. This is an 

innovative approach designed to facilitate comparisons of RSFC between younger and older 

adults. Poor registration to standardized templates may fail to capture individual variability in 

functional organization of the cortex, and these registration problems may systematically differ 

across age groups  (Braga and Buckner, 2017; Chong et al., 2017; Gordon, et al. 2017; Kong et 
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al., 2019; Kong et al., 2021; Laumann et al., 2015; Wang et al., 2015). Deriving functionally-

defined, person-specific cortical parcellations can account for differences at the level of the 

individual, thereby mitigating systematic registration biases in between-group comparisons. 

Adopting an individualized parcellation approach may also lessen the impact of noise artifacts that 

can obscure small yet reliable group differences, increasing power to detect  reliable brain-

behavior associations (Kong et al., 2021).  

Leveraging a multifaceted analysis protocol (see Figure 1), this study addressed two core 

aims towards advancing our understanding of functional brain aging. The first was to identify age 

differences in the resting-state connectome, with a specific focus on discerning global, macroscale 

and edge-level connectivity patterns of network dedifferentiation. A second, supporting aim was 

to apply a series of novel methodological approaches to (i) reduce the impacts of common 

confounds in network neuroscience research and (ii) conduct a spatial multiscale (whole-brain to 

region- and edge- specific) analysis of functional connectivity differences in the aging brain. In 

light of aims one and two, a third exploratory aim was to ascertain whether functional 

dedifferentiation, either at global or local levels, was associated with age differences in cognition.  
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Figure 1 

 
Figure 1 Caption: Workflow of study methods. (A) Processing of multi-echo resting-state fMRI images. For each 

functional run, three echoes (TE1, TE2, TE3) were combined and denoised using multi-echo independent component 

analysis (ME-ICA). The denoising process involved removing components with non-BOLD signal (noise) and 

retaining the BOLD components. MEFC images are made up of the BOLD component coefficient sets. (B) 

Individualized parcellations were generated. The MEFC data for all participants were resampled to a common cortical 

surface. All participants were first initialized to a pre-defined cortical parcellation atlas (Schaefer atlas). Parcellations 

were then refined by participant (subject-specific parcellation). For each participant, MEFC data were extracted from 

and correlated with each parcel to create a subject-specific functional connectivity matrix. These matrices were used 

to (C) compute cortical gradients in younger and older adults and (D) assess age-related differences in functional 

connectivity using partial least squares, which performs a singular value decomposition (SVD). 
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Materials and Methods 

Participants  

Participants were 181 younger (Mage=22.59y, SD=3.27; 57% female) and 120 older 

(Mage=68.63y, SD=6.44; 55% female) healthy adults from Ithaca, New York, and Toronto, Canada 

(Table 1), rendering a total sample size of 301. Standard inclusion and exclusion criteria were 

implemented to ensure all participants were healthy without evidence of neurological, psychiatric 

or other underlying medical conditions known to impact brain or cognitive functioning. 

Specifically, participants were screened to rule out individuals with acute or chronic psychiatric 

illness, those undergoing current or recent treatment with psychotropic medication, and those 

having experienced significant changes to health status within three months of the eligibility 

interview. Younger and older participants were screened for depressive symptoms using the Beck 

Depression Inventory (Beck et al., 1996) or the Geriatric Depression Scale (Yesavage et al., 1982), 

respectively. Two older adults were excluded due to a rating of “moderate depression”. Older 

adults were additionally administered the Mini-Mental State Examination (MMSE; Folstein et al., 

1975) to rule out mild cognitive impairment or sub-clinical dementia. Participants with MMSE 

scores below 27/30 were excluded if fluid cognition scores (Gershon et al., 2013) also fell below 

an age-adjusted national percentile of 25%. All participants were right-handed with normal or 

corrected-to-normal vision. Procedures were administered in compliance with the Institutional 

Review Board at Cornell University and the Research Ethics Board at York University. 
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Table 1 Note: Episodic Memory, Semantic Memory, and Executive Function are index scores. Processing Speed is a 

z-score on Symbol Digit Modalities Task, Oral. * significant group differences. Education was not recorded for 14 

participants. Age group differences in MMSE, episodic memory, semantic memory, executive function, and 

processing speed were tested in 283 participants. Positive T values reflect higher scores in younger adults, negative 

values reflect higher scores in older adults. Statistical results were nearly identical when including sex, education, site, 

and estimated whole brain volume as covariates in an ANCOVA. 
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Cognitive Assessment 

We first characterized our sample with a deep cognitive assessment. 283 of 301 individuals 

(163/181 younger adults, 120/120 older adults) underwent cognitive testing prior to brain 

scanning. Index scores were created for cognitive domains of episodic memory, semantic memory, 

executive function, and processing speed (descriptives in Table 1). Episodic memory tasks 

included Verbal Paired Associates from the Wechsler Memory Scale-IV (Wechsler, 2009), the 

Associative Recall Paradigm (Brainerd et al., 2014), and NIH Cognition Toolbox Rey Auditory 

Verbal Learning and Picture Sequence Memory Tests (Gershon et al., 2013). Semantic memory 

tasks included Shipley-2 Vocabulary (Shipley et al., 2009), and NIH Cognition Toolbox Picture 

Vocabulary and Oral Reading Recognition Tests (Gershon et al., 2013). Executive function 

comprised the Trail Making Test (B-A; Reitan, 1958), the Reading Span Task (Daneman & 

Carpenter, 1980), NIH Cognition Toolbox Flanker Inhibitory Control and Attention task, 

Dimensional Change Card Sort, and List Sort Working Memory Tests (Gershon et al., 2013). 

Processing speed was tested with the Symbol Digit Modalities Test, Oral (Smith, 1982).  

All data were z-scored. Index scores represent the average z-score for all measures included 

within a cognitive domain. Across the four domains, higher scores represent better performance. 

Brain-behavior product-moment correlations were conducted at an alpha level of .05 with 95% 

confidence intervals. Bonferroni adjustments for multiple comparisons  were set at p < .013 for 

the four index score tests. 

Neuroimaging 

Image Acquisition 

Imaging data were acquired on a 3T GE750 Discovery series MRI scanner with a 32-

channel head coil at the Cornell Magnetic Resonance Imaging Facility or on a 3T Siemens Tim 

Trio MRI scanner with a 32-channel head coil at the York University Neuroimaging Center in 

Toronto. Scanning protocols were closely matched across sites. Anatomical scans at Cornell were 

acquired using a T1-weighted volumetric magnetization prepared rapid gradient echo sequence 

(TR=2530ms; TE=3.4ms; 7° flip angle; 1mm isotropic voxels, 176 slices, 5m25s) with 2x 

acceleration with sensitivity encoding. At York, anatomical scans were acquired using a T1-

weighted volumetric magnetization prepared rapid gradient echo sequence (TR=1900ms; 
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TE=2.52ms; 9° flip angle; 1mm isotropic voxels, 192 slices, 4m26s) with 2x acceleration and 

generalized auto calibrating partially parallel acquisition (GRAPPA) encoding at an iPAT 

acceleration factor of 2. Two 10m06s resting-state runs were acquired using a multi-echo (ME) 

EPI sequence at Cornell University (TR=3000ms; TE1=13.7ms, TE2=30ms, TE3=47ms; 83° flip 

angle; matrix size=72x72; field of view (FOV)=210mm; 46 axial slices; 3mm isotropic voxels; 

204 volumes, 2.5x acceleration with sensitivity encoding) and York University (TR=3000ms; 

TE1=14ms, TE2=29.96ms, TE3=45.92ms; 83° flip angle; matrix size=64x64; FOV=216mm; 43 

axial slices; 3.4x3.4x3mm voxels; 200 volumes, 3x acceleration and GRAPPA encoding). 

Participants were instructed to stay awake and lie still with their eyes open, breathing and blinking 

normally in the darkened scanner bay. 

Image Processing 

Anatomical images were skull stripped using the default parameters in FSL BET (Smith, 

2002). Brain-extracted anatomical and functional images were submitted to ME independent 

component analysis (ME-ICA; version 3.2 beta; https://github.com/ME-ICA/me-ica; Kundu et al., 

2011; Kundu et al., 2013). ME-ICA relies on the TE-dependence model of BOLD signal to 

determine T2* in every voxel and separates BOLD signal from non-BOLD sources of noise. Prior 

to TE-dependent denoising, time series data were minimally preprocessed: the first 4 volumes were 

discarded, images were computed for de-obliquing, motion correction, and anatomical-functional 

coregistration, and volumes were brought into spatial alignment across TEs. The T2* maps were 

then used for anatomical-functional coregistration. Grey matter and cerebrospinal fluid 

compartments are more precisely delineated by the T2* map than by raw EPI images (Speck et al., 

2001; Kundu et al., 2017), which is an important consideration in aging research where these 

boundaries are often blurred by enlarged ventricles and greater subarachnoid space. Volumes were 

then optimally combined across TEs and denoised. The outputs of interest included: 1) spatial 

maps consisting of the BOLD components, 2) reconstructed time series containing only BOLD 

components, and 3) the BOLD component coefficient sets.  

Image quality assessment was performed on the denoised time series in native space to 

identify and exclude participants with unsuccessful coregistration, residual noise (framewise 

displacement > .50 mm coupled with denoised time series showing DVARS  >1, Power et al., 
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2012), temporal signal to noise ratio < 50, or fewer than 10 retained BOLD-like components (see 

Supplementary Figure 1 for the group temporal signal to noise map).  

The denoised BOLD component coefficient sets in native space, optimized for functional 

connectivity analyses (Kundu et al., 2013), were used in subsequent steps. We refer to these as 

multi-echo functional connectivity (MEFC) data.  Additional measures were taken to account for 

variation in the number of independent components from ME-ICA once connectivity matrices 

were estimated, as detailed below. MEFC neuroimages were mapped to a common cortical surface 

for each participant using FreeSurfer v6.0.1 (Fischl et al., 2012). To maximize alignment between 

intensity gradients of structural and functional data (Greve & Fischl, 2009), MEFC data were first 

linearly registered to the T1-weighted image by run. The inverse of this registration was used to 

project the T1-weighted image to native space and resample the MEFC data onto a cortical surface 

(fsaverage5) with trilinear volume-to-surface interpolation. This produces a cortical surface map 

where each vertex, or surface point, is interpolated from the voxel data. Once on the surface, runs 

were concatenated and MEFC data at each vertex were normalized to zero mean and unit variance.  

Individualized Parcellation. We generated participant-specific functional parcellations 

to examine individual differences in functional brain network organization using the Group Prior 

Individual Parcellation (GPIP; Chong et al., 2017). This approach enables a more accurate 

estimation of participant-specific individual functional areas (Chong et al., 2017) and is more 

sensitive to detecting RSFC associations with behavior (e.g. Kong et al., 2019; Mwilambwe-

Tshilobo et al., 2019). The main advantage of this approach is that the correspondence among 

parcel labels is preserved across participants, while the parcel boundaries are allowed to shift 

based on the individual-specific functional network organization of each participant—thus 

providing  a similar connectivity pattern that is shared across the population. Starting from an 

initial pre-defined group parcellation atlas, GPIP first refines each individual’s parcel boundaries 

relative to their resting-state fMRI data. Next, the concentration (inverse covariance/partial 

correlation) matrices from all subjects are jointly estimated using a group sparsity constraint. 

GPIP iterates between these two steps to continuously update the parcel labels until convergence, 

defined as no more than one vertex changing per parcel or 40 iterations. Compared to other 

group-based parcellation approaches, GPIP has shown to improve the homogeneity of the BOLD 

signal within parcels and the delineation between regions of functional specialization (Chong et 

al., 2017). 
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We extracted MEFC data from each vertex and applied the above parcellation across the 

entire cohort of 301 participants at resolutions of 200 and 400 parcels. For each resolution, MEFC 

data were initialized to a group parcellation atlas developed by Schaefer et al. (2018). We use this 

cortical parcellation scheme both as the initialization reference for our individualized cortical 

parcellation maps, as well as for our edge-level connectomic analyses described below. We 

selected the Schaefer atlas for three reasons: (i) It is functionally-derived, and thus more closely 

aligned with the current study aims, (ii) it has high spatial resolution and can offer different 

granularities (we report findings from both 400 and 200 node parcellations here), and (iii) it is 

among the most commonly reported cortical parcellation atlases in the literature, and provides an 

intrinsic partitioning of nodes within Yeo 7- and 17- network solutions used in our edge-level 

connectomics analyses (Yeo et al., 2011).  

Following initialization with the Schaefer parcellations, the two-step iterative process was 

repeated 20 times to produce a final parcellation representing the optimal partition with respect to 

the entire cortical surface. We calculated homogeneity by taking the average correlation coefficient 

of all pairs of vertices in a given parcel and then averaging across all parcels. This was repeated at 

each repetition to observe the incremental change in homogeneity as the iterative parcellation 

proceeded. Homogeneity was calculated first at the participant level and then averaged across the 

entire cohort for a group estimate. For a subset of participants, some parcels from the final partition 

merged into the medial wall (where no data existed) or into parcels belonging to the contralateral 

hemisphere. Because partitions likely reflect participant-specific neurobiological variations in 

functional organization, parcels assigned to the contralateral hemisphere were allowed to retain 

their original group atlas label. With the 400-parcel resolution, parcels merging with the medial 

wall occurred in 69 older adults and 35 younger adults, averaging 2-3 parcels in these participants; 

parcels migrating to the contralateral hemisphere occurred in 62 older adults and 24 younger 

adults, averaging 2-3 parcels. With the 200-parcel resolution, parcels merging with the medial wall 

occurred in 18 older adults and 10 younger adults, averaging 1 parcel in these participants. No 

parcels migrated to the contralateral hemisphere at this resolution. 

Functional Connectivity Matrix. A connectivity matrix was constructed for each 

participant according to their individualized parcel solution. We extracted and spatially averaged 

the resulting MEFC data from each parcel and computed the product-moment correlation between 

each pair, resulting in a nparcels × nparcels functional connectivity matrix (Ge, Holmes, Buckner, Smoller, 
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& Sabuncu, 2017). In this approach, RSFC was calculated as the correlation of the ICA coefficients 

across parcels, rather than a correlation across BOLD signal time-series, as is typically done (see 

Kundu et al., 2013). The canonical Fisher’s r-to-z transformation was then applied to normalize 

the distribution of correlation values and account for variation in MEFC data degrees of freedom, 

or the number of denoised ICA coefficients (i.e. number of BOLD components), across individuals 

(Kundu et al., 2013): 

 

Z = arctanh(R)･!𝑑𝑑𝑑𝑑 − 3 

 

where R is the product-moment correlation value and df is the number of denoised ICA 

coefficients. Computing functional connectivity with approximately independent component 

coefficients rendered global signal regression unnecessary (Spreng et al., 2019). Critically, ME-

ICA effectively removes distance-dependent RSFC motion confounds from fMRI data (Power et 

al., 2018). As shown in Supplemental Figure 2 (see also Supplemental Material), framewise 

displacement had a comparable impact on younger and older adult RSFC, ruling out motion as a 

potential confound in the results reported below. 
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Analysis 

BOLD Dimensionality 

A unique advantage of ME-fMRI and the ME-ICA processing framework is that BOLD- 

and non-BOLD-like signals are separated into independent components. A novel metric of “BOLD 

dimensionality,” the number of BOLD components identified by ME-ICA, may then be examined 

(e.g. Kundu et al., 2018). We assessed the test-retest reliability of BOLD dimensionality across 

two runs of data. Total BOLD dimensionality was then compared between groups with an 

independent samples t-test and an ANCOVA controlling for sex, education, site and estimated 

whole brain volume (eWBV; sum of grey and white matter divided by total intracranial volume, 

derived from FreeSurfer). To observe the trajectory of BOLD dimensionality with increasing age 

across the lifespan, BOLD dimensionality data from an independent developmental sample (N = 

51, 10 female; Mage=21.9 years; age range, 8.3 – 46.2 years; see Kundu et al., 2018 for details) 

were pooled with the current data. To render the samples comparable and account for differences 

in acquisition across datasets, BOLD dimensionality was scaled by the number of timepoints 

acquired. The relationship between age and BOLD dimensionality was then fit to a power law 

function (see Supplemental Figure 3 for unscaled version). Further characterization of BOLD 

signal dimensionality, including associations with graph analytic measures of participation 

coefficient, modularity and segregation, and BOLD signal dimensionality’s relationship to whole 

brain RSFC are reported in Supplemental Material (Supplemental Table 1, Supplemental Figures 

4 & 5)  

Gradients & Manifold Eccentricity  

Cortical gradients were computed using functions from the BrainSpace toolbox 

(https://github.com/MICA-MNI/BrainSpace; Vos de Wael et al., 2020), as implemented in 

MATLAB. For each participant, the 400 x 400 GPIP functional connectivity matrix was 

thresholded row-wise to the upper 10% of connections to retain only the strongest positive 

connections (Hong et al., 2019; Margulies et al., 2016). Cosine similarity was computed on the 

sparse matrix to input to the diffusion map embedding algorithm employed below, generating a 
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matrix that captures similarity in whole-brain connectivity patterns between vertices (Hong et al., 

2019; Margulies et al., 2016).  

We then applied diffusion map embedding, a non-linear dimensionality manifold learning 

technique from the family of graph Laplacians (Coifman et al., 2005), to identify gradient 

components at the individual participant level. Each gradient represents a low-dimensional 

embedding estimated from a high-dimensional similarity matrix. In the embedding space, vertices 

that feature greater similarity in their whole-brain functional connectivity patterns appear closer 

together, whereas vertices that are dissimilar are farther apart. Each embedding axis can thus be 

interpreted as an axis of variance based on connectivity pattern similarity/dissimilarity. Euclidean 

distance in the embedded space is equivalent to the diffusion distance between probability 

distributions centered at those points, each of which is equivalent to a difference in gradient score. 

The algorithm is controlled by a single parameter α, which controls the influence of density of 

sampling points on the manifold (Margulies et al, 2016). We used α = 0.5 in this study, which 

differentiates diffusion map embedding from Laplacian eigenmaps, and allows the inclusion of 

both global and local relationships in the estimation of the embedded space. An iterative Procrustes 

rotation was performed to align participant-specific gradient components to a young-old group 

average template and enable group comparisons. Group contrasts were conducted using surface-

based linear models, as implemented in Surfstat (Worsley et al., 2009; http://www. 

math.mcgill.ca/keith/surfstat/) controlling for sex, education, site and eWBV. 

We calculated a metric of manifold eccentricity to quantify the diffusivity of vertices in 

gradient space. More diffuse vertices within a network indicates more variable and dedifferentiated 

functional connectivity profiles. Following Bethlehem et al. (2020) and Park et al. (2020), we 

summed the squared Euclidean distance of each vertex from the whole-brain median in a 2-

dimensional gradient space for each participant. Mean manifold eccentricity was then compared 

across age groups. Statistical significance was determined with spin-test permutation testing, 

which overcomes biases in the test statistic due to the spatial autocorrelation inherent to BOLD 

data (Alexander-Bloch et al., 2018). An ANCOVA on manifold eccentricity was also conducted 

controlling for sex, education, site and eWBV. 

Edge-Level Connectomics 
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Inter-regional functional connectivity group differences were tested with PLS. PLS is a 

multivariate method that determines the association between two sets of variables by identifying 

linear combinations of variables in both sets that maximally covary together (McIntosh and 

Lobaugh, 2004; McIntosh and Misic, 2013). In our analyses, one set of variables was individual 

RSFC matrices, while the other set represented group assignment or individual difference metrics 

(e.g., BOLD dimensionality; see Supplemental Material).  

Functional connectivity was assessed at the whole-brain level using the Schaefer atlas 

(Schaefer et al., 2018; Yeo et al., 2011; 400 x 400 matrix; 200 x 200 matrix as supplementary 

analysis, Supplemental Figure 6). Motivated by prior work (e.g., Grady et al., 2016; Sullivan et 

al., 2019; Spreng et al., 2016), we also examined RSFC among sub-networks of the default, 

frontoparietal control, and dorsal attention networks. For the sub-network analysis, we first 

reassigned each of the 400 parcels to the corresponding network of the Yeo 17-network solution 

following the mapping based on Schaefer et al. (2018). Next, we created a matrix for the pairwise 

connections between 8 sub-networks: dorsal attention (DAN-A, DAN-B), frontoparietal control 

(CONT-A, CONT-B, CONT-C), and default (DN-A, DN-B, DN-C), resulting in a 192x192 parcel 

matrix. The full 17-network characterization of the 400x400 parcel results, along with the 17-

network and sub-network characterizations of the 200x200 matrix, can be found in Supplemental 

Figures 7, 8, and 9. At each level, a data matrix X was created using all participants’ parcellated 

functional connectivity matrices. The X matrix was organized such that each row corresponded to 

an observation (each participant, nested in age groups), and the cells in each column corresponded 

to the unique connections from each participant’s connectivity matrix (the lower triangle of the 

matrix). The column means within each group were calculated, and the data in X were mean-

centered. The mean-centered data were then submitted to singular value decomposition (SVD) to 

provide mutually orthogonal latent variables. Each latent variable represents a specific relationship 

(e.g. RSFC x Group) and consists of three elements: (1) a left singular vector consisting of the 

weighted connectivity pattern that optimally expresses the covariance, (2) a right singular vector, 

which represents the weights of the study design variables and can be interpreted as data-driven 

contrast weights between groups, and (3) a scalar singular value, which represents the covariance 

strength between the design variables (Group) and RSFC accounted for by each latent variable. 

Brain connectivity scores were calculated by taking the dot product of the left singular vector and 

each participant’s RSFC matrix. A brain connectivity score, therefore, represents a single measure 
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of the degree to which a participant expresses the connectivity pattern captured by a given latent 

variable.  

All PLS latent variables were statistically evaluated using permutation testing. Rows of X 

were randomly reordered and subjected to SVD iteratively, as described above. This was done 

1,000 times to create a distribution of singular values under the null hypothesis of no existing 

relationships between X and Y for the corresponding PLS analysis: that there is no group 

difference in whole-brain (or sub-network) RSFC. A p-value was computed for each latent variable 

as the proportion of permuted singular values greater than or equal to the original singular value. 

Critically, permutation tests involve the entire multivariate pattern and are performed in a single 

analytic step, so correction for multiple comparisons is not required (McIntosh and Lobaugh, 

2004).  

Bootstrap resampling was used to estimate the reliability of weights for each RSFC edge. 

Participants were randomly resampled (rows in X) with replacement while respecting group 

membership. The matrix was subjected to SVD and the process was repeated 1,000 times, 

generating a sampling distribution for the weights in the singular vectors. To identify individual 

connections that made a statistically significant contribution to the overall connectivity pattern, we 

calculated the ratio between each weight in the singular vector and its bootstrap-estimated standard 

error.  Bootstrap ratios are equivalent to z-scores if the bootstrap distribution is approximately unit 

normal (Efron and Tibshirani, 1986). Bootstrap ratios were, therefore, thresholded at values of 

±1.96, corresponding to the 95% CI.  

Network-Level Contributions 

PLS analyses identified inter-regional connectivity patterns that differed by group and/or 

covaried with individual difference metrics. For each of these analyses, network-level effects were 

also examined. To quantify the network-level contributions to the PLS-derived functional 

connectivity pattern, two separate weighted adjacency matrices were constructed from positive 

and negative RSFC weights. For both matrices, nodes represent parcels defined by the individual 

parcellation, while edges correspond to the thresholded bootstrap ratio of each pairwise 

connection. Network-level functional connectivity contributions were quantified by assigning each 

parcel according to the network assignment reported by Yeo et al. (2011), and taking the average 

of all connection weights in a given network, thereby generating a 7 x 7 matrix (17 x 17 matrix for 
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the 17-network solution; and an 8 x 8 matrix when examining the default, frontoparietal control, 

and dorsal attention sub-networks). The significance of mean within- and between- network 

connectivity was computed by permutation testing. During each permutation, network labels for 

each node were randomly reordered and the mean within- and between- network connectivity were 

recalculated. This process was repeated 1000 times to generate an empirical null sampling 

distribution that indicates no relationship between network assignment and connectivity pattern 

(Shafiei et al., 2019). The significance of the pairwise connections to the network matrix was 

determined by estimating the proportion of times the value of the sampling distribution was greater 

than or equal to the original value.  

Spring-Embedded Plots 

Spring-embedded plots were rendered from group average matrices of RSFC data  using  

Pajek software (Mrvar and Batagelj, 2016). Sparse matrices containing the top 5% of positive 

connections were  entered into Pajek. A partition was assigned based on the Yeo 7- or 17-network 

solution (Yeo et al., 2011) to optimize community (i.e., network) structure for visualization. 
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Results 

To interrogate the intrinsic functional architecture of the aging brain, we implemented a 

multifaceted, multiscale data acquisition and analysis protocol in younger and older healthy adults 

(see Figure 1 and Methods). To identify global patterns of network dedifferentiation with age, we 

first assessed age differences in the dimensionality of the ME-fMRI BOLD signal as output from 

ME-ICA. Next, we examined network-specific dedifferentiation patterns, contrasting macroscale 

gradients and edge-level network connectomics between younger and older adults. At each turn, 

we examined associations between network organization and cognitive functioning for younger 

and older adults. Brain and behavior associations for each analysis are reported in Supplemental 

Materials (Supplemental Tables 2, 3 and 4; Supplemental Figures 10 and 12). All results are 

reported with covariates of site, sex, education, and eWBV where appropriate. 

BOLD Dimensionality  

Two 10-minute runs of resting-state ME-fMRI were collected. BOLD dimensionality, the 

number of independent BOLD components in ME-fMRI signal, was stable across runs (r(299) = 

.79, p < .001 [.75, .83]; Figure 2A). Younger adults showed greater BOLD dimensionality than 

older adults (t(299)=15.38, p < .001; Cohen’s d= 1.81; Figure 2B). This remained true when 

covariates of site, sex, education, and eWBV were included (F(1,281)= 97.07, p < .001; ηp2 = .26). 

In the context of lifespan development, which included an additional sample aged 8-46 (Kundu et 

al., 2018), a power function provided a suitable fit between age and BOLD dimensionality 

(R2=.547; Figure 2C). BOLD dimensionality associations with cognition are in Supplemental 

Tables 2, 3 and 4 and Supplemental Figure 10A.  
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Figure 2 

 
Figure 2 Caption: BOLD signal dimensionality. (A) High test-retest reliability across two ME-fMRI runs. (B) Violin 

plots show distributions of total BOLD signal components across runs in younger and older adults. (C) Scatter plot 

showing BOLD signal dimensionality by age with a power distribution and 95% confidence intervals overlaid. Points 

in white were contributed by Kundu and colleagues (2018). Adjusted BOLD signal dimensionality = Total number of 

accepted BOLD components / number of time points acquired. 

 

Gradient Analyses 

We next characterized macroscale gradients of functional connectivity in younger and 

older adults (e.g., Hong et al., 2019; Margulies et al., 2016). In both groups, the principal gradient 

spanned from unimodal regions to transmodal regions (Figure 3A), suggesting that macroscale 

functional organization of the cortex is generally preserved with age. However, several age 

differences emerged. A whole-brain age group comparison on the principal gradient revealed 

higher gradient values in the right superior parietal lobule and somatosensory cortex for older 

adults (FWE p < .05; cluster defining threshold p < .01; Figure 3A). This suggests that these 

regions exhibited a pattern of functional connectivity that is less similar to unimodal cortices, and 

more similar to heteromodal cortex, in older versus younger adults. In contrast, older adult 

connectivity profiles for occipital and ventral temporal regions were more similar to unimodal than 

heteromodal cortices.  

The second gradient displayed a continuum of functional connectivity profiles spanning 

visual cortex on one end to somatomotor and auditory cortices on the other (Figure 3B). Whole-
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brain group comparisons revealed that temporoparietal junction connectivity patterns are less 

similar to those of visual regions for older adults. Additionally, whole brain connectivity patterns 

for a segment of the superior parietal lobule/intraparietal sulcus (ventral to the region in the first 

gradient) are less similar to the connectivity profiles of somatomotor regions, and more similar to 

visual cortical regions, for older compared to younger adults. 

Finally, we rendered principal-second gradient manifold scatterplots in a 2D gradient 

embedding space in younger and older adults (Figure 3C). Older adults showed more diffuse, and 

thus dedifferentiated vertices. We quantified this diffusivity by calculating manifold eccentricity– 

the sum of Euclidean distance across all vertices from the median– for each participant and 

compared across groups. Results revealed significantly greater manifold eccentricity in older 

adults (t(299 ) = -10.74, pSPIN < 0.01, Cohen’s d = 1.26; F(1,281)= 47.18, p < .001, ηp2 = .14 with 

site, sex, education, and eWBV covariates included). See Supplemental Tables 2, 3 and 4 and 

Supplemental Figure 10B for associations with behavior. 

As BOLD dimensionality and manifold eccentricity both demonstrated significant age 

group differences, we conducted post-hoc product-moment correlations to test whether these 

global measures of brain organization were reliably associated. Negative correlations were 

observed in both younger (r(179)= -.575, p < .001, [-.66, -.47]) and older adults (r(118)= -.255, p 

< .005, [-.42, -.08]), such that higher BOLD dimensionality was related to less diffuse, more 

compact vertices in the manifold. In computing a partial correlation controlling for age, the 

relationship remained when performed on the full sample (pr(298)= -.391, p < .001, [-.48, -.29]). 

Non-overlapping 95% confidence intervals indicated a significantly more negative correlation in 

younger adults. Results were similar when repeated with covariates (young: pr(161)= -.45, p < 

.001, [-.53, -.36]; old: pr(113)= -.23, p < .05, [-.35, -.11]; full sample: pr(280)= -.34, p < .001, [-

.44, -.23]), although confidence intervals overlapped between groups. Supplemental Figure 11 

illustrates the relationship in each age group. 
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Figure 3 

 
Figure 3 Caption: Gradients of cortical connectivity in younger and older adults. (A) The mean principal gradient for 

younger (left) and older (center) adults, representing an axis of functional connectivity similarity variance that ranged 

lowest to highest from unimodal to transmodal cortex. (B) The mean second gradient for younger (left) and older 

(center) adults, representing an axis of functional connectivity similarity variance that ranged lowest to highest from 

visual to somatomotor cortex. Older adults > younger adults contrasts revealing statistically significant clusters at 

FWE p < 0.05, cluster defining threshold p < 0.01 (A & B right). (C) Scatterplots representing the principal-second 

gradient manifold for younger (left) and older (right) adults. Scatterplot colors indicate functional networks as per the 

7-network solution by Yeo et al. (2011). VIS = visual, SOM= somatomotor, DAN= dorsal attention, VAN = ventral 

attention, LIM = limbic, FPC= frontoparietal control, DN= default. 
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Edge-Level Connectomics  

We next examined edge-level, interregional functional connectivity differences between 

younger and older adults. Group mean connectivity matrices are in Figure 4A-B. Qualitative 

differences in the top 5% of positive connections between groups can be observed with a spring-

embedded layout arranged by their network membership (Figure 4C-D). The spring-embedded 

plot displays stronger integration of the dorsal attention and frontoparietal control networks in 

older adults.  

PLS (whole brain) 

Age-related differences in the 79800 interregional connections (i.e., the lower triangle of 

the 400x400 functional connectivity matrix) were quantitatively assessed with PLS. A significant 

latent variable (permuted p = 0.0001) revealed a pattern of age differences in RSFC, with increases 

and decreases observed across the connectome (Figure 4E). Network contribution analysis 

of within- and between- network edges revealed significant age effects. Older adults demonstrated 

lower within-network connectivity across all seven networks, and lower connectivity between 

limbic, frontoparietal control and default networks (Figure 4F). Older adults showed greater 

between-network connectivity across systems for the visual and somatomotor networks (Figure 

4G). The overall pattern of age-related differences was similar when examined with a 200 

parcellation scheme (Supplementary Figure 6). Brain connectivity scores’ association with 

cognition are reported in Supplemental Table 2, 3, and 4, and Supplemental Figure 12. 
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Figure 4 

 
 
Figure 4 Caption: Functional connectomics in younger and older adults. Mean RSFC for the 400-parcellated data in 

(A) younger and (B) older adults. Spring-embedded plots with a 7-network solution (5% edge density) of the mean 

correlation matrices for (C) younger and (D) older adults. (E) Multivariate PLS analysis was used to identify age-

related differences in RSFC between younger and older adults. Red color indicates significantly greater RSFC in 

younger adults, and blue color indicates significantly greater RSFC in older adults. (F-G) Network contributions 

represent the summary of positive and negative edge weights within and between networks in younger (F) and older 

(G) adults. The mean positive and negative bootstrap ratios within and between networks are expressed as a p-value 

for each z-score relative to a permuted null model. Higher z-scores indicate greater connectivity than predicted by the 

null distribution. VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN = ventral attention, LIM = limbic, 

FPC = frontoparietal control, DN = default.  
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PLS (sub-network) 

In an a priori, targeted sub-network analysis we examined age-group differences in 

functional connectivity among sub-networks of the dorsal attention, frontoparietal control and 

default networks. The mean age-group sub-network matrices are shown in Figure 5A-B. The 

spring-embedded representation of the top 5% of positive connections in each group (Figure 5C-

D) suggests that older adults show more integration of the default network (DN-A) and 

frontoparietal control network (CONT-C).  

Quantitative comparison with PLS of the inter-regional functional connectivity revealed a 

distinct pattern of age differences (permuted p < 0.0001; Figure 5E). Younger adults (Figure 5F) 

showed more within-network connectivity. Between subnetwork connections were also seen in the 

young for CONT-A and CONT-B, and between DN-A to DN-B and DN-C. Between network 

connections in the young were also observed for CONT-B and DN-B. Older adults (Figure 5G) 

showed greater between-network connectivity of the dorsal attention network with frontoparietal 

control and default networks (DAN-A to CONT-B and CONT-C; DAN-B to CONT-B, CONT-C, 

DN-A, and DN-B), as well as greater frontoparietal control connectivity with the default network 

(CONT-A to DN-A; CONT-B to DN-C; CONT-C to DN-B). Older adults also showed greater 

connectivity among frontoparietal control subnetworks (CONT-A to CONT-C; CONT-B to 

CONT-C). A similar pattern of connectivity was observed with a 200 parcellation scheme 

(Supplemental Figure 9). Sub-network brain connectivity scores’ associations with cognition are 

reported in Supplemental Tables 2, 3, and 4, and Supplemental Figure 12. 
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Figure 5 

 

 
Figure 5 Caption: Functional connectivity of the dorsal attention (DAN), frontoparietal control (CONT), and default 

(DN) sub-networks following the Yeo 17-network solution. Mean group connectivity in (A) younger and (B) older 

adults. Spring-embedded plots (5% edge density) of the mean correlation matrices for (C) younger and (D) older 

adults. (E) Differences in RSFC between younger and older adults among DAN, CONT, and DN. (F-G) Network 

contributions represent the summary of positive and negative edge weights within and between networks in younger 

(F) and older (G) adults. DAN = dorsal attention, FPC = frontoparietal control, DN = default.  
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Connectomics Site Replication   

To verify that our edge-level results are robust and replicable, and not confounded by 

potential overfitting of the PLS model, the full and sub-network PLS analyses were conducted 

only on the Ithaca sample. Brain connectivity scores were then computed from the Ithaca sample-

derived weights and the Toronto sample individual-subject RSFC matrices, and compared between 

groups. Age group differences were replicated in the held out Toronto sample (t(61)= 6.42, p < 

.001, Cohen’s d= 1.63; F(1,57)= 21.13, p < .001, ηp2= .27 with sex, education, and eWBV 

covariates included). In the sub-network analysis, age group differences were also replicated in the 

held out Toronto sample (t(61)= 7.01, p < .001, Cohen’s d= 1.79; F(1,58)= 24.16, p < .001, ηp2 

=.29 with sex, education, and eWBV covariates included). These site replication analyses 

(Supplemental Figure 13) demonstrate that the PLS results are robust to potential issues of model 

overfitting and that the edge-level effects of functional brain aging observed in the Ithaca sample 

were also observed at the Toronto site.  

Cognition 

Overall, predicted age-group differences in cognition were observed. Younger adults 

performed better on indices of episodic memory (t(281)= 17.51 p < .001; Cohen’s d = 2.11), 

executive function (t(281)= 12.67, p <.001; Cohen’s d = 1.52), and processing speed (t(281)= 

15.03, p < .001; Cohen’s d = 1.81). Older adults had higher semantic memory index scores (t(281)= 

9.18, p < .001; Cohen’s d = 1.10; see Table 1). Effects remained when testing for age group 

differences with ANCOVAs controlling for site, sex, education, and eWBV (Episodic: F(1,277)= 

194.07, p < .001, ηp2 = .41; Semantic: F (1,277)= 37.55, p  < .001, ηp2 = .12; Executive Function: 

F(1,277)= 132.70, p < .001, ηp2 = .32; Processing speed: F(1,277)= 97.21, p < .001, ηp2 = .26). 

 Associations between cognition and BOLD signal dimensionality, manifold eccentricity, 

and brain connectivity scores from the whole brain and sub-network analyses were examined (See 

Supplemental Tables 2, 3, and 4, and Supplemental Figures 10, 12 and 14). While several 

significant brain-behavior associations were observed, all of these fell below statistical 

significance thresholds after site was added as a covariate in the models.  

 

Discussion 

Brain aging is marked by dedifferentiation in patterns of brain activity and functional 

connectivity. Here we adopted a comprehensive, multi-method approach to examine patterns of 
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intrinsic network dedifferentiation across multiple spatial scales.  Specifically, we applied novel 

methods to identify global, macroscale gradient, and edge-level differences in RSFC between 

younger and older adults. BOLD dimensionality, the number of BOLD (i.e., non-noise) 

components in the fMRI signal, was lower for older adults signaling a global shift towards 

dedifferentiated brain networks in older age. In contrast, the organization of macroscale 

connectivity gradients was largely preserved with age. However regional differences in 

connectivity gradients did emerge. The most prominent of these revealed that the whole-brain 

connectivity profiles of visual processing regions more closely resembled those of other unimodal 

cortices in older versus younger adults. Edge-level, multivariate analyses with partial least squares 

also revealed regional and network-specific patterns of dedifferentiation in older adulthood. 

Across the full cortical connectome, visual and somatomotor regions were more functionally 

integrated with other large-scale networks for older versus younger adults. In a targeted, sub-

network analysis including default, frontoparietal and dorsal attention networks, older adults 

showed greater default-executive coupling and reduced anticorrelation between default and dorsal 

attention networks. By examining age differences in the functional connectome across multiple 

spatial scales, we revealed that the intrinsic network architecture of the aging brain is marked by 

both global as well as topographically-discrete, network-specific patterns of functional 

dedifferentiation. These findings offer a comprehensive account of functional brain aging, and 

identify putative shifts in the intrinsic functional architecture of the aging brain that may underpin 

both domain-general and domain-specific cognitive changes that occur over the course of late life 

development.       

 

BOLD Signal Dimensionality and Global Network Dedifferentiation 

Dimensionality in the BOLD signal was significantly lower for older versus younger 

adults, reflecting a generalized pattern of network dedifferentiation continuing into later life. This 

finding builds upon an earlier report of cross-sectional dimensionality reductions from adolescence 

to early and middle adulthood (Kundu et al., 2018; Figure 2). Reductions in dimensionality in early 

adult development, largely attributable to functional integration among prefrontal and other 

transmodal cortices, reflects the transition from local connectivity to longer-range connections and 

the formation of spatially distributed yet intrinsically coherent brain networks (Kundu et al., 2018). 

The shift in functional brain organization parallels cognitive development over this period, which 



 

 

51 

is marked by the emergence of more integrative and complex cognitive functions (Zelazo and 

Carlson, 2012), and is also evident within the structural connectome (Park et al., 2020).  

Declines in the dimensionality of the BOLD signal, which begin in adolescence, continue 

unabated throughout adulthood and into later life. In younger adults, lower dimensionality reflects 

greater functional integration and the emergence of large-scale brain networks (Kundu et al., 

2018). However, our observation of continued reductions in BOLD signal dimensionality into 

older adulthood suggests that network integration may reach an inflection point in middle age 

(Zonneveld et al., 2019). After this point, continued reductions in dimensionality may no longer 

be driven by network integration, but rather global network disintegration, and associated loss of 

coherent network components in the BOLD signal. Critically, our findings using this novel metric 

of BOLD signal dimensionality are consistent with earlier reports of age-related decreases in 

network modularity (Geerligs et al., 2015) and network segregation (Chan et al., 2014). Indeed 

these measures are reliably and positively correlated with dimensionality in our sample (see 

Supplemental Table S1). However, unlike these two global measures of network organization, 

BOLD signal dimensionality is agnostic with respect to the selection of cortical parcellation 

schemes, network definitions or specific network metrics. As such, we suggest that dimensionality 

may serve as a useful, data-driven marker of functional brain health in later life. An important next 

step in this regard will be to improve our mechanistic understanding of dimensionality reductions 

with age. Such global shifts may result from systemic structural, neurophysiological, metabolic or 

cerebrovascular changes known to occur with advancing age (e.g., Tsvetanov et al., 2020).  

Finally, as a novel metric applied to a healthy aging sample, we acknowledge that there are 

important future directions to more fully interrogate the validity and applicability of BOLD signal 

dimensionality as an informative measure or marker of functional brain aging. While beyond the 

scope of the current review, work is underway in our laboratory to conduct a comprehensive 

validation of this metric, following the roadmap outlined by the original validation studies in 

younger and middle-aged adults (Kundu et al., 2013, 2017, 2018). However, as a physical property 

of T2* signal decay, the TE-dependence of BOLD signal (the fundamental component of ME-ICA 

BOLD signal denoising) should be largely robust to age differences. Directly testing this 

assumption will be an important direction for future research. Taken together, the TE-dependence 

of the BOLD signal as well as the comprehensive validation studies conducted in healthy younger 
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samples, give us confidence in BOLD signal dimensionality as a reliable, informative marker of 

brain aging.     

 

Gradients and Macroscale Connectomics  

Reductions in BOLD signal dimensionality into older age suggest a global shift towards a 

dedifferentiated network architecture. We investigated whether this global shift may comprise 

more precise topographical patterns, reflected as greater similarity in connectivity profiles among 

brain regions. We tested this hypothesis by examining macroscale connectivity gradients in 

younger and older adults. While this is the first report of gradient analyses using ME-fMRI and 

individualized parcellation methods, our findings largely recapitulate connectivity gradients 

observed in young adults (Margulies et al., 2016). Coherent transitions in functional connectivity 

patterns were observed from unimodal to transmodal association cortices (principal gradient) and 

from visual to somatomotor cortices (second gradient). This gradient architecture was similar for 

young and old, suggesting the macroscale organization of the gradients is preserved with age, as 

has been observed previously (Bethlehem et al., 2020). However, specific age-related regional 

differences did emerge in both gradient maps.   

For the first gradient, visual processing regions showed connectivity profiles that were 

more similar to the unimodal gradient anchor for older versus younger adults. This finding appears 

incongruent with our edge-level results (discussed below) which show greater age-related 

integration of visual and somatomotor cortices with heteromodal association regions.  Importantly, 

gradients do not index functional connectivity strengths per se, but rather patterns of connectivity 

between specific regions and the rest of the brain. Thus, the shift in connectivity profiles for visual 

regions towards greater similarity with other unimodal cortices does not address functional 

integration of these regions. Instead, we suggest that thresholding the connectivity matrices before 

gradient mapping may have contributed to the age-related shift of visual cortices towards the 

unimodal anchor of the first gradient. While speculative, we suspect that matrix thresholding may 

have biased the suprathreshold connections towards an over representation of stronger local versus 

weaker long-range functional connections. This would be consistent with relative age-related 

reductions in volume and integrity of long-association fiber pathways versus local connections in 

primary sensory regions (Kochunov et al., 2012; Raz et al., 2005). These age-related structural 

differences would, in turn, bias functional connectivity profiles towards more local processing, 
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yielding an age-related shift in the gradient map towards the unimodal anchor. Nevertheless, these 

findings highlight the importance and potential impact of thresholding decisions, a point we return 

to in our discussion of edge-level connectivity below.   

Age-related difference clusters across both gradients included regions within somatomotor 

and attentional networks. Of note, changes within these clusters all indicate a movement towards 

zero along the gradient and therefore suggest a reduction in differentiation with respect to their 

corresponding gradient anchor (unimodal or transmodal in the case of the principal gradient, 

somatomotor or visual in the case of the second gradient). Specifically, both the superior parietal 

lobule, a node of the dorsal attention network implicated in externally-directed attention and 

visuomotor control processes, and somatomotor regions showed greater similarity in connectivity 

profiles to transmodal regions. This is consistent with earlier reports, and patterns observed in the 

present edge-level analysis, of reduced anticorrelation between the dorsal attention and default 

networks in later life (Spreng et al., 2016).  

It is important to note that we applied diffusion map embedding, a non-linear 

dimensionality manifold learning technique from the family of graph Laplacians (Coifman et al., 

2005). This approach is among the most widely cited in the literature. However, given the novelty 

of  gradient mapping in older adult populations, a direction for future research will be to critically 

evaluate the full range of approaches, including incorporation of repulsion properties in the 

gradient analysis. This emerging technique could yield greater clarity into the segregation of 

discrete networks and changes with age (Böhm et al. 2021).  

 

Edge-level Connectomics  

To more precisely investigate edge-level connectivity patterns, we adopted a multivariate 

analytical approach. As PLS uses singular value decomposition to test age differences across all 

edges in a single analytical step, we report RSFC differences across the full functional connectome, 

eliminating the need to apply functional connectivity strength or density thresholds. Visual 

inspection of the full connectomes for younger and older adults (Figure 4, Panels A-D) reveals a 

global pattern of network dedifferentiation for older adults, consistent with our dimensionality 

findings and previous reports (Betzel et al., 2014; Chan et al., 2014; Geerligs et al., 2015; 

Malagurski et al., 2020; Stumme et al., 2020). These qualitative differences were statistically 

validated in the group analysis (Figure 4, Panel E) and aggregate network matrices (Figure 4, 
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Panels F-G). As predicted, younger adults showed a robust pattern of within-network connectivity, 

as well as connectivity between transmodal networks (Bullmore and Sporns, 2009; Gratton et al., 

2012).  

Despite preserved macroscale gradients, edge-level analyses revealed striking age 

differences in network-specific connectivity patterns. First, within-network connectivity was 

lower for older adults across the seven canonical networks investigated here. Reduced within-

network functional connectivity is a hallmark of normative aging (Damoiseaux, 2017 for a review). 

As such, we speculate that degraded within-network coherence is likely a key determinant of 

reduced BOLD signal dimensionality, and global network dedifferentiation, in older adulthood. In 

addition to lower within-network coherence, edge-level analyses also revealed three distinct, 

network-specific dedifferentiation patterns. The most striking of these revealed greater integration 

of visual and somatomotor regions with all other networks for older adults (Figure 4, Panel G). 

Functional integration of visual and somatosensory regions has been observed previously. Chan 

and colleagues (2014) reported reduced segregation of visual cortices from other brain networks, 

although this was not explicitly quantified in their analyses. Similarly, age-related increases in 

node participation, a graph analytic marker of functional integration, were limited to visual and 

somatosensory networks in a large study of age differences in RSFC (Geerligs et al., 2015). 

Further, Stumme and colleagues (2020) reported that age differences in RSFC were most 

prominent in visual and somatosensory cortices. While previous studies reported patterns of 

sensorimotor integration with age, these have not gained prominence as a central feature of 

functional brain aging. As discussed above with regards to the gradient analysis results, statistical 

thresholding of the gradient matrices might significantly impact these findings. Threshold-based 

approaches highlight age-related differences among the most robust connections, often associated 

with heteromodal cortices, potentially obscuring less robust age differences in other networks. This 

is particularly evident in our findings, where somatomotor and visual networks show small age 

differences relative to those observed for association networks in the thresholded, spring-

embedded plots (Figure 4, panels C-D). In contrast, analysis of the unthresholded matrices 

revealed integration of sensorimotor networks to be among the most striking features of the aging 

connectome (Figure 4, panels E-G).         

Our findings of greater visual network integration parallel task-based studies identifying 

greater top-down modulation of visual association cortices by transmodal regions as a central 
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feature of functional brain aging. Greater activation of transmodal cortices, in the context of age-

related declines in the fidelity of sensory signaling, has been interpreted as increased demand for 

top-down modulation of early sensory processing (Clapp et al., 2011; Li and Rieckmann, 2014; 

Payer et al., 2006; Spreng and Turner, 2019b). Indeed, sensory declines and motor slowing account 

for much of the individual variability in cognitive functioning among older adults (Baltes and 

Lindenberger, 1997; Salthouse, 1996). This suggests that greater modulation of these primary 

sensorimotor regions (and visual attention and visuomotor control regions of the superior parietal 

lobule, see ‘Gradient analyses’ above) may be necessary to sustain complex thought and action in 

later life. While beyond the scope of the current study, we speculate that such task-driven demands 

for greater cross-talk between transmodal and sensorimotor cortices may, in turn, shape the 

intrinsic functional architecture of these networks in older adulthood (Stevens and Spreng, 2014).  

We also conducted a targeted analysis of edge-level age differences in the frontoparietal 

control, dorsal attention, and default networks. Previous work has demonstrated that these 

networks interact during goal-directed cognitive tasks (Spreng et al., 2010; Dixon et al., 2018; 

Murphy et al., 2020), show similar connectivity profiles during both task and rest (Spreng et al., 

2013) and undergo significant changes into older adulthood (Grady et al., 2016; Sullivan et al., 

2019; Ng, et al., 2016). For this a priori analysis, we adopted the sub-network topography for the 

three networks derived from the 17-network solution (Yeo et al., 2011). This enabled us to 

investigate age-related changes with greater precision. Importantly, as we observed for the full 

connectome analysis, the thresholded spring-embedded plots (Figure 5, panels C-D) failed to 

reveal the robust age-differences in connectivity among default, control and dorsal attention 

regions that emerged from the edge-level analyses (Figure 5, panels E-G). While the predicted 

pattern of reduced within-network connectivity was recapitulated across the sub-networks, we 

observed two additional network-specific dedifferentiation patterns in this sub-network analysis. 

As predicted, there was greater age-related coupling of default and frontal brain regions, a pattern 

we have described as the Default to Executive Coupling Hypothesis of Aging (DECHA; Turner 

and Spreng, 2015; Spreng and Turner, 2019a). This pattern did not emerge in the seven network 

analysis (Figure 4). However, when applied to the edge-level sub-network matrices (Figure 5, 

panels E-G) a clear DECHA pattern emerged for CONT-A to DN-A, CONT-B to DN-C, and 

CONT-C to DN-B sub-networks (Figure 5, panel G). We have posited that this dedifferentiation  

pattern may reflect the shifting architecture of cognition in later life (Turner and Spreng, 2015; 
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Spreng et al., 2018) with both adaptive and maladaptive consequences for cognitive aging (Spreng 

and Turner, 2019a).  

A second dedifferentiation pattern emerged in this sub-network analysis. Older adults 

showed greater connectivity between the dorsal attention and the two other association networks. 

This pattern was particularly pronounced for the DAN-B sub-network which includes the superior 

parietal lobule. Previous reports have shown reduced anti-correlation between dorsal attention and 

default networks (Keller et al., 2015; Spreng et al., 2016) in older adulthood. These edge-level 

findings also converge with our gradient analyses where the superior parietal lobule, a node of 

DAN-B, showed an age difference in connectivity gradient, with a functional connectivity profile 

more similar to that of other transmodal regions. The DAN-B sub-network encompasses regions 

of the putative frontal eye fields and precentral gyrus implicated in top-down, or goal-directed, 

attentional control. This is again consistent with a neuromodulatory account of neurocognitive 

aging, wherein greater allocation of attentional resources may be engaged to sharpen perceptual 

representations in later life (Li et al., 2006; Li and Rieckmann, 2014).  

 

Cognitive Function 

Our findings suggest that both global and network-specific dedifferentiation are core 

features of the functional aging connectome. In a final series of analyses we investigated whether 

these network changes were associated with cognitive functioning. We observed significant 

behavioral correlations with BOLD signal dimensionality and edge-level connectivity. 

Intriguingly however, all observed associations fell below statistical significance thresholds when 

site was included as a covariate in the statistical models. This was the case even though both brain 

and behavioral age effects replicated across both sites (see Supplemental Figure 13 and 

Supplemental Table 5).  As a result we do not interpret the brain and behavior associations further 

here and report all uncorrected and partial correlations in Supplemental Tables 2, 3 and 4 (see site-

specific scatter plots Supplemental Figure 14). While we took extraordinary care to match data 

collection protocols and core demographics, study site encompases many additional moderating 

factors that may have influenced brain and behavioral associations across the two sites (e.g., 

socioeconomic status, see Chan et al., 2018). While increases in statistical power enabled by multi-

site investigations permit greater sensitivity to detect brain-behavior associations, it also comes at 
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the potential cost of structured noise related to population differences. Understanding these 

differences will be an important direction for future research.     

 

Conclusion 

We employed an innovative, multi-method data acquisition and analysis protocol to study 

functional brain aging across multiple spatial scales, with a specific emphasis on age-related 

patterns of intrinsic network dedifferentiation. Reduced BOLD signal dimensionality suggested a 

global, age-related shift towards dedifferentiated network organization in older versus younger 

adults. Limitations of a cross sectional study design restrict interpretations with respect to lifespan 

shifts in brain function. However, we speculate that network integration across the adult lifespan 

may include an inflection point in middle adulthood, beyond which network integration in early 

adulthood shifts to a pattern of network dedifferentiation, and the dissolution of a segmented and 

modular network architecture.  

The methodological and analytical innovations adopted here were selected to, at least in 

part, overcome several of the most enduring and pervasive challenges in lifespan network 

neuroscience. These include age-related variability in noise profiles within the BOLD signal, as 

well as distortions introduced by group-wise spatial alignment to standardized templates. Of 

course the methods implemented here cannot address the totality of confounds that complicate 

RSFC analyses. Among the most critical of these, and an important direction for future research,  

is resolving, or at least accurately modeling, age differences in neurovascular coupling. Altered 

neurovascular coupling with age can introduce spurious RSFC differences that are difficult to 

detect with standard imaging protocols (Tsvetanov et al., 2020). While ME-ICA methods, which 

separate neural from non-neural sources in the BOLD signal, are a significant advance, 

implementation of multimodal methods such as simultaneous arterial spin labeling and echo-

planar imaging may be necessary to resolve this issue (Tsvetanov et al., 2020). Additionally, 

residual motion-related noise was still observed in the BOLD signal, which could be attributable 

to respiration (e.g. Power et al., 2018; Lynch et al., 2020). While this noise did not confound our 

age effects, its persistence requires additional consideration and points to a need for further 

advances to improve signal-to-noise with ME-fMRI data. Despite these limitations, we suggest 

that the multifaceted approach adopted here offers a comprehensive account of age differences in 

the functional network architecture of the brain, including both novel and previously observed 
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patterns of network dedifferentiation and integration. Taken together, these findings add further 

clarity and precision to current understanding of how functional networks are formed, shaped, 

and shifted into older adulthood.   
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Bridge to Chapter 3 

 Findings from Study 1 suggested that dedifferentiation in healthy aging is characterized 

both by global and network-specific properties. BOLD dimensionality systematically decreased 

across the lifespan, marking a non-specific property of global brain function. Dimensionality 

decreases from adolescence through middle adulthood are thought to reflect the formation of 

long-range connections that help to establish coherent, large-scale brain networks (Kundu et al., 

2018). Indeed, younger adults had more modular, segregated networks compared to older adults. 

Further integration in older age, as indicated by reduced BOLD dimensionality, was reflected in 

reduced connectivity within networks and widespread integration of visual, somatomotor, and 

dorsal attention networks. Network integration may therefore contain an inflection point in 

middle adulthood where network differentiation transitions to dedifferentiation. Prior work has 

implicated age-related dedifferentiation, particularly of association networks, with declining 

episodic memory and processing speed (Chan et al., 2014; Malagurski et al., 2020). Although 

further replication is needed, we found initial evidence to suggest that specific between-network 

increases observed may support older adult complex cognition. 

 In a set of more targeted studies, we ask whether functional and structural differences 

may support domain-specific cognition. Autobiographical memory is an ideal lens through which 

to test this as it measures episodic and semantic aspects of recollection, which follow age-related 

cognitive trends of losses and gains (Levine et al., 2002). Autobiographical memory is also 

associated with the default network (Svoboda et al., 2006; Benoit & Schacter, 2015), a set of 

regions particularly vulnerable in aging. In Study 2 we focus our inquiry on two regions of the 

default network that are well-studied in healthy aging and disease, the hippocampus and 

temporal pole. We examine how structural differences in these regions may differentially impact 

structure-cognition relationships in younger and older adults. Results from this study will inform 

whether local brain-behavior relationships may be rooted in structure. 
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Chapter 3: Anterior hippocampus and temporal pole volumes are associated with episodic 

autobiographical memory in healthy older adults 
 

Adapted from: Setton, R., Sheldon, S., Turner, G.R., & Spreng, R.N. (Under Revision). Anterior 

hippocampus and temporal pole volumes are associated with episodic autobiographical memory 

in healthy older adults. Hippocampus. 

 

Abstract  

Autobiographical recollection differs for younger and older adults. Older individuals recall fewer 

episodic details and convey more semantic information than young. Here we examine how 

neuroanatomical differences in temporal lobe grey matter volumes are related to recollection in 

older versus younger adults. The present study obtained grey matter volume measurements for 

the hippocampus and temporal poles– regions integral to episodic and semantic autobiographical 

memory– as predictors of memory differences in healthy younger (n=158) and older (n=105) 

adults. The hippocampus was segmented into anterior and posterior regions with an automated 

pipeline to test for regionally specific effects. Temporal pole volumes were extracted from 

FreeSurfer. The Autobiographical Interview was administered to measure episodic and semantic 

autobiographical memory. As predicted, older adults recalled fewer episodic details. Posterior 

hippocampal volumes were smaller for older compared to younger adults. No age-related volume 

differences were observed for the anterior hippocampus or temporal poles, yet both of these 

volumes were related to more episodic autobiographical recall in older adults. Temporal pole 

volumes were positively associated with episodic recollection, whereas the association with 

anterior hippocampus volumes depended on sex. Episodic recollection was positively associated 

with anterior hippocampus volumes in older females, but negatively in older males. These 

findings provide a novel account for the involvement of anterior hippocampus and temporal 

poles in episodic autobiographical memory later in life. 
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Introduction 

Autobiographical memory (AM) changes with age, often presenting as a shift from 

highly episodic to semantic-laden recollections (e.g., Levine et al., 2002). This shift in AM co-

occurs with age-related brain changes to temporal lobe structures implicated in episodic and 

semantic memory function, namely the hippocampus and temporal pole. However, there is 

considerable variation in the extent to which older adults express changes in AM recollection 

(e.g., Wilson et al., 2002) and regional grey matter volumes of these regions (e.g., Sele et al., 

2020). Here we leverage a large sample of healthy younger and older adults with AM data to test 

for age group differences in hippocampal and temporal pole volume relationships to episodic and 

semantic AM. In doing so, we determine how individual differences in grey matter volume in 

select regions relate to episodic and semantic AM differences in younger and older. 

The hippocampus plays a central role in AM retrieval (Svoboda et al., 2006), binding 

together information across a number of cortical systems (e.g., Moscovitch et al., 2016) and 

invoking a sense of re-experiencing (e.g., Thakral et al., 2020). Mounting evidence suggests that 

the hippocampus, rather than being a uniform structure, exhibits functional specialization along 

the longitudinal axis (Poppenk et al., 2013; Strange et al., 2014; Brunec et al., 2018). Anterior 

and posterior portions of the hippocampus have also been functionally related to different aspects 

of the autobiographical retrieval process (Moscovitch et al., 2016; Sheldon & Levine, 2016). 

Anterior hippocampus is associated with generalized or gist-based representations of past events 

(semantic AM) while the posterior hippocampus is associated with more fine-grained 

recollections (episodic AM; see Sheldon et al., 2019).  

Long-axis specialization is also reflected in structure. Larger posterior and smaller 

anterior volumes have been related to better recollection and spatial memory in healthy adults 

(Poppenk & Moscovitch, 2011; Maguire et al., 2006; Brunec et al., 2019). It is likely that age-

related vulnerability to the hippocampus alters these selective relationships to memory. 

However, mixed evidence on age-related volume change within the hippocampus renders it 

difficult to draw conclusions about continued specialization into older age (see Ta et al., 2011 

and Bettio et al., 2017 for reviews). Cross-sectional findings comparing younger and older adults 

have found smaller volumes in both anterior (e.g., Rajah et al., 2010) and posterior (e.g., Driscoll 

et al., 2003; Malykhin et al., 2008; Stark et al., 2021) portions of the hippocampus. Mixed 

findings have also been observed with age-volume relationships in adult lifespan samples, with 
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age sometimes imparting a stronger effect on anterior volumes (e.g., Jack, 1997; Hackert et al., 

2002; Gordon et al., 2013), and at other times a stronger effect on posterior volumes (e.g., 

Kalpouzos et al., 2009). Longitudinal findings in older samples are more unified around greater 

volume loss in the anterior hippocampus with age (e.g., Chen et al., 2010). It has also been 

suggested that variability in hippocampal volumes does not differ across age groups and that 

volume loss may be a heritable trait (Lupien et al., 2006). This overall disparity suggests that 

findings on age-related volume differences in the hippocampus highly depend on the sample 

under study and the individuals, or group of individuals, carrying the variance (Buckner, 2004). 

Within-subject volume loss is undoubtedly of interest to some researchers, but cohort studies 

may be useful to determine how volume-behavior relationships differ. Indeed, hippocampal 

volume relationships to memory in healthy aging are still unclear (Van Petten, 2004).  

The temporal poles are also implicated in AM (Svoboda et al., 2006; Renoult et al., 

2019), particularly in the processing and retrieval of schematic and personal semantic 

information (Graham et al., 2003; Renoult et al., 2012). Individuals with semantic dementia, 

which often presents with lesion to the temporal poles (e.g., Chan et al., 2001), show 

impairments to both semantic and episodic AM (Irish et al., 2012). Semantic processes may 

therefore be necessary for AM, shaping and constraining information encoded and subsequently 

retrieved. Young adults show similar activation patterns within the anterior temporal region 

while viewing video clips with shared prior knowledge, suggesting that amodal conceptual 

representations may be involved during encoding of naturalistic scenes (Raykov et al., 2021; 

Murphy et al., 2017; Patterson et al., 2007; Binder & Desai, 2011). Memory integration during 

associative inference paradigms is also enhanced with prior knowledge (Miller-Goldwater et al., 

2021). Since preservation of semantic memory is a hallmark of healthy aging (e.g., Park & 

Reuter-Lorenz, 2009), it has been put forward that prior knowledge may facilitate better 

recollection particularly for older adults (Umanath & Marsh, 2014; Spreng & Turner, 2019). As 

a semantic memory hub (Lambon Ralph et al., 2017), the temporal pole may therefore associate 

with AM differently in younger and older adults, but a direct relationship between temporal pole 

volume and AM has not been directly tested. 

Unlike the hippocampus, both cross-sectional and longitudinal findings are mixed with 

regard to age-associated change to temporal pole volumes. Across two healthy adult lifespan 

samples, one study found the temporal pole to be reliably stable with increasing age (Bergfield et 
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al., 2010).  In a separate investigation of 116 older adults split into younger and older groups, the 

younger elderly participants had larger temporal pole volumes (Resnick et al., 2000). 

Longitudinal studies examining one year regional volume change have found significant 

reductions (Fjell et al., 2009) and no significant reductions (Resnick et al., 2000) in the temporal 

pole. One study with a larger sample and additional timepoints resolves some of these findings 

(Sele et al., 2020). Temporal pole volumes demonstrated accelerated decline with advancing age 

over a four-year period relative to other regional volumes, but the extent of temporal pole 

volume decline was highly variable across participants.  

Sex is an important consideration in volumetry, particularly with respect to the 

hippocampus. Males and females tend to have comparable hippocampal volumes after adjusting 

for total brain volume (Tan et al., 2016). Young adult females, however, have shown larger 

posterior hippocampal volumes than males in association with unique patterns of structural 

covariance with the rest of the brain (Persson et al., 2014). Rates of age-related hippocampal 

atrophy are steeper in females, which may contribute to an increased susceptibility to 

Alzheimer’s disease (e.g., Fisher et al., 2018). Sex differences have also been reported in 

temporal pole volume (Lotze et al., 2019). We therefore explore whether sex impacts grey matter 

volume relationships to AM in both the hippocampus and temporal poles. 

Volume measurements were obtained for anterior hippocampus, posterior hippocampus, 

and the temporal pole, and associated with AM in a well-powered sample of healthy younger and 

older adults. The aim of our study was to determine how individual differences in episodic and 

semantic AM in younger and older adults relate to grey matter volumes of these key temporal 

lobe regions, and how these associations differ between younger and older adults. A secondary 

aim was to explore possible sex effects on the interactions between age and AM on volume in 

each of the regions under study.  

 

 

Methods 

Participants 

Participants were 158 younger (91 female) and 105 older (57 female) healthy adults from 

Ithaca, New York and Toronto, Canada (Table 1). Behavioral and functional neuroimaging data 

from these participants have been reported elsewhere (Setton & Mwilambwe-Tshilobo, Under 
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Revision; Setton et al., 2021; Spreng et al., Under Revision) and are summarized briefly below. 

This study was carried out in accordance with the Institutional Review Board at Cornell 

University and the Research Ethics Board at York University. 

Standard inclusion and exclusion criteria were carried out to ensure that all participants 

were healthy and without evidence of neurological, psychiatric, or other medical illness known 

to impact cognition. Specifically, participants were asked about acute or chronic psychiatric 

illness, current or recent treatment with psychotropic medication, and significant changes to 

health status within three months of the eligibility interview. Individuals with the presence of any 

one of these were not eligible to continue.  

Further exclusions were made post data collection on the basis of cognitive status and 

depressive symptoms. Participants with scores below 27/30 on the Mini-Mental State 

Examination (Folstein et al., 1975) and an age-adjusted national percentile of 25 on the NIH 

Fluid Cognition measure (Gershon et al., 2013) were excluded. Of the 214 participants who 

completed either the Beck Depression Inventory (Beck et al., 1996) or the Geriatric Depression 

Scale (Yesavage et al., 1982), participants with scores at or above the cutoff for “moderate 

depression” were not included. 

Assessments of physical and mental health status were also collected as part of the 

battery. We include these data to rule out other potential differences that could influence the 

results reported here. The Health Buffer Questionnaire had participants rate how difficult it was 

to engage in day-to-day activities due to physical and emotional problems with a 5-point Likert 

scale (“Interference”, n = 250), check off any current experiences with physical health conditions 

(including migraines and persistent back pain; “Physical Symptoms,” n = 230), and list how 

many times a doctor had been visited for a health concern in the last four months. Separately, 

Physical Activity Level was a single question asking participants to choose one response that 

best described their usual pattern of daily activities (n = 188). Responses ranged from “Level 1: 

Inactive or little activity other than usual daily activities” to “Level 5: Participate in aerobic 

exercises such as brisk walking, jogging or running at a comfortable pace or other activities 

require similar levels of exertion for over 3 hours per week.”   
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Composite measures of episodic and semantic memory were derived from laboratory-

based tasks to characterize the sample (Supplementary Methods). Statistics and tests for 

differences across groups are presented in Table 1. 
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Neuroimaging 

T1-weighted volumetric magnetization prepared rapid gradient echo sequences were 

acquired at the Cornell Magnetic Resonance Imaging Facility (TR=2530ms; TE=3.4ms; 7° flip 

angle; 1mm isotropic voxels, 176 slices, 5m25s) with 2x acceleration and sensitivity encoding, 

and at the York University Neuroimaging Center (TR=1900ms; TE=2.52ms; 9° flip angle; 1mm 

isotropic voxels, 192 slices, 4m26s) with 2x acceleration and generalized auto calibrating 

partially parallel acquisition (GRAPPA) encoding at an iPAT acceleration factor of 2. 

 Automatic Segmentation of Hippocampal Subfields (ASHS; Yushkevitch et al., 2015) 

segmented each participant’s hippocampus along the longitudinal axis in native space. ASHS 

uses multi-atlas label fusion to segment the medial temporal lobes into subfields, and has been 

well-validated among manual and other automated approaches (Bussy et al., 2021). ASHS was 

run with the ASHS-PMC-T1 atlas (Xie et al., 2016) in all participants. Given the relatively low 

resolution of T1-weighted images, we limited our inspection to anterior (head) and posterior 

(body and tail) regions of the hippocampus (Wisse et al., 2020). All ASHS outputs were visually 

inspected for gross errors and to confirm the presence or absence of the uncal apex in anterior 

and posterior segments, respectively (Poppenk et al., 2013; see Figure 2A). No errors were 

observed (see Supplementary Figure 1 for examples). 

Temporal pole volumes were extracted from cortical reconstruction and volumetric 

segmentation performed in FreeSurfer version 6.0.1 (Fischl et al., 2002; Reuter et al., 2012). 

Whole hippocampal volume was also extracted. Measurements of estimated total intracranial 

volume (eTIV), grey matter, and white matter volume were used for volumetric adjustment. 

Specifically, the residuals of a linear regression between each volume and eTIV were used to 

calculate an adjusted volume (Jack et al., 1989; Buckner et al., 2004; Stark et al., 2021). 

Compared to volumes as a proportion of eTIV (Voevodskaya et al., 2014), this approach 

removes the influence of head size on regional volumes, an important consideration when 

examining structural changes in healthy aging where age becomes a confounding variable  

All regional volumes were adjusted for head size prior to analysis (Tables S1-S2). Two 

younger and two older adults were excluded for outlying volume measurements after adjustment. 

Whole brain tissue volume is known to decrease in older age with the expansion of cerebrospinal 

fluid volume, even without marked change to total intracranial volume (Matsumae et al., 1996). 

Estimated whole brain volume (eWBV) was calculated as (grey matter + white matter)/(eTIV) 



 

 

81 

and included as a covariate where indicated to narrow in on regionally specific effects (see 

similar approach in Schmitz et al., 2016). 

 

Autobiographical Interview 

The Autobiographical Interview (AI; Levine et al., 2002) served as our measure of AM to 

examine relationships to brain volume. Participants completed the interview as part of a larger 

set of cognitive assessments during a separate experimental session. Trained research assistants 

conducted the interviews, providing thorough instructions and ensuring comprehension prior to 

the start of each interview. Participants were asked to describe a specific episode from each of 

three (younger adults) or five (older adults) time periods: childhood, teenage years, young 

adulthood, middle adulthood, and late adulthood. For each memory, participants first described 

the episode in as much detail as possible (free recall). When recollection came to a natural end, 

participants were lightly prompted to recall any additional details (general probe). After 

memories were recalled from all time periods, participants went through each memory once 

more and were questioned with specific cues to encourage further episodic remembering 

(specific probe). Self-reported ratings of vividness, emotional change, significance at the time, 

significance now, and rehearsal were also collected for each memory. All interviews were 

recorded and transcribed prior to scoring.  

In brief, scoring involved categorizing text into episodic-like (internal) and non-episodic 

(external) details. Internal details included those involving the sequence of events, location, time, 

sensory information, emotions, and thoughts related to the event chosen. External details 

included specific information about unrelated events, semantic information (general and 

personal), repetitions, and other non-scorable verbiage. Updated scoring protocols have recently 

been published (e.g., Strikwerda-Brown et al., 2017), but scoring on our high volume of 

interviews commenced prior to their publication. For the purpose of this study, we consider only 

scores from free recall and general probe cueing stages of the interview, which reflect 

spontaneous recollection tendencies. 

The transcribed interviews were scored by two trained researchers (Inter-rater reliability 

internal: r(261)=.91, p < .001; external: r(261)=.82, p < .001). Counts of internal and external 

details were averaged across memories to provide stable measures of episodic and semantic 

memory. Notably, we divided detail counts by total word count to control for verbal output, 
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which may arbitrarily underestimate or inflate detail counts if not considered. Word count was 

not different across groups: (F(1,257)= 1.03, p=.310 controlling for site, sex, and education), 

suggesting verbosity did not confound density scores. Internal and external density scores were 

therefore our AM metrics of interest (Spreng et al., 2018; Lockrow et al., In Preparation).  

 

Analyses 

Our aim was to determine how individual differences in AM within younger and older 

cohorts relate to grey matter volume in the anterior and posterior hippocampus and temporal 

poles. In other words, we tested for an interaction between age group, AI detail density, and 

regional volume. Analyses proceeded in three parts to test for: 1) age group differences in detail 

density as an initial replication of prior work; 2) age group differences in hippocampal volumes 

and associations with detail density on the AI; 3) age group differences in temporal pole volumes 

and associations with detail density on the AI.  

ANCOVAs were used to examine age group differences and Generalized Estimating 

Equations (GEE) were used to explore interactions with AM. GEEs are a semi-parametric 

version of the general linear model which can accommodate correlated repeated measurements 

(e.g., left and right volumes, anterior and posterior segments) by modeling the within-subject 

covariance structure and treating it as a nuisance variable (Liang & Zeger, 1986). GEEs, 

modeled as normal positive (gamma) distributions with exchangeable correlation matrices, were 

conducted with volume as the predicted variable to test for effects of age group, hemisphere, 

segment (anterior/posterior in the hippocampus only), detail density (internal and external 

separately), and their interaction (see Supplementary Results for GEEs with laboratory-based 

composites of episodic and semantic memory). Follow-up GEEs were carried out within age 

group or hemisphere subsets of the data for marginal and significant age group interactions. 

Finally, general linear models (GLM) were used to detect simple effects of detail density on each 

regional volume. Sex, site, education, and eWBV were included in each model.  

 

Software 

Statistical analyses were carried out in python 3.6.3 and R version 3.3.3. In python, 

descriptive statistics were tabulated with pandas and visualizations were created with seaborn. 



 

 

 

Statsmodels was used to model GEEs and GLMs. In R, ANCOVAs were run with lme4 and 

nlme, and emmeans was used for post-hoc paired t-tests with a Tukey HSD adjustment. 

 

Results 

Age Group Differences in Internal/External Density of Recollections from the 

Autobiographical Interview 

We first tested for age group differences on the AI to replicate established findings. Age 

group, detail category (internal, external), sex, and the interaction between them were entered 

into a mixed ANCOVA on density scores. Education and site were included as covariates. 

Significant main effects of age group (F(1,258)=10.22, p < .005, ηp
2=.02) and detail category 

(F(1,261)=1463.17, p < .001, ηp
2=.74) were qualified by a significant interaction 

(F(1,261)=167.57, p < .001, ηp
2=.24). Compared to younger adults, older adults recalled a lower 

density of internal details (t(258)=11.06, p < .001,  Cohen’s d=1.38) and a higher density of 

external details (t(258)=6.32, p < .001, Cohen’s d=.79), corroborating prior work (Levine et al., 

2002; Figure 1). A main effect of sex was also observed (F(1,258)=3.98, p < .05, ηp
2 = .01), such 

that females had more internally and externally dense recollections than males overall.  
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To rule out the possibility that older adults’ density scores were disproportionately 

influenced by recall of temporally distant events (e.g., Linton, 1975; Rubin & Wenzel, 1996; 

Wagenaar, 1986), additional ANCOVAs were run testing for the influence of temporal distance 

on internal or external density. Age group, temporal distance (recent, remote), sex, and the 

interaction between them were modeled with sex and education as covariates. Recent memories 

were defined as the last memory recalled for each group: young adulthood for younger adults 

and late adulthood for older adults. Remote memories were defined as childhood memories for 

younger adults and young adulthood memories for older adults to equate temporal distance 

across groups. As above, age group differences were present for both internal (F(1,258)= 50.10, 

p < .001, ηp
2 = .12) and external density (F(1,258)= 66.19, p < .001, ηp

2 = .14). No interactions 

with temporal distance were observed. This suggests that internal and external density are stable 

individual difference measures with distinct age-related patterns. 

Age Group Differences in Hippocampal Volumes and Associations with Internal/External 

Density 
Next, we tested for age group differences in hippocampal volume. Older adults were 

found to have smaller posterior hippocampus volumes than younger adults. Specifically, main 

effects of age group (F(1,258)=4.65, p < .05, ηp2=.01), hemisphere (F(1,782)=16.18, p < .001, 

ηp2=.01), and segment (F(1,782)=27.66, p < .001, ηp2=.03) on volume were observed. These 

were qualified by a number of significant interactions. A hemisphere by segment interaction 

(F(1,782)=59.21, p < .001, ηp2=.07) showed that right anterior segments were larger than right 

posterior segments (t(782)=9.78, p < .001, Cohen’s d=.70), left anterior segments (t(782)=8.09, p 

< .001, Cohen’s d=.58), and left posterior segments (t(782)=7.32, p < .001, Cohen’s d=.52). A 

sex by segment interaction (F(1,782)=11.91, p < .01, ηp2=.01) indicated that males had larger 

anterior compared to posterior segments (t(782)=6.50, p < .001, Cohen’s d=.46). Segments were 

comparable in females. Critically, an age group by segment interaction (F(1,782)=16.97, p < 

.001, ηp2=.02) showed that older adults had smaller posterior, but not anterior, hippocampus 

volumes compared to younger adults (t(258)=3.71 p < .005, Cohen’s d=.46; Figure 2B), leaving 

older adults with larger anterior compared to posterior segments (t(782)=6.79, p < .001, Cohen’s 

d=.49). Converging results were obtained when testing for differences in the ratio of posterior to 

anterior hippocampus volumes (see Supplemental Results). We determined that this result was 
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not driven by the oldest of the older cohort as the same pattern was found when splitting older 

adults into 60-69 and 70+ age categories (Supplementary Figure 2).  

In order to examine age group differences in the relationship between density scores and 

hippocampal volumes, we ran GEEs on hippocampal volumes modeling age group, hemisphere, 

segment, density score, and their interaction. Sex interaction terms with density and segment 

were included based on the above ANCOVAs.  

The GEE with internal density yielded a significant interaction between age group, 

hemisphere, segment, and internal density (Wald 𝛘𝛘2 (1)=8.53, p < .005; Figure 2C; Table S3). 

This suggested that the difference in hippocampal volume relationships to internal density 

differed as a function of age group. To decompose the interaction, follow-up models within each 

age group indicated hemisphere by segment by internal density interactions in both younger 

(Wald 𝛘𝛘2 (1)=3.84, p = .05) and older (Wald 𝛘𝛘2 (1)=4.94, p <.05) adults. This result suggested 

that there was an overall difference in slope between internal density and each of the volumes in 

both younger (purple in Figure 2C) and older (yellow in Figure 2C) adults. In younger adults, 

follow-up GLMs on each of the four hippocampal volumes showed that internal density was not 

significantly related to any volume (Supplementary Figure 3). In older adults, a sex by internal 

density interaction (Wald 𝛘𝛘2 (1)=12.78, p <.001) was observed in the right anterior hippocampus 

(Figure 2D). Internally dense recollections were associated with smaller volumes in older males 

(b= -2.60, SE=.81, p < .005). A trending association with larger volumes was present in older 

females (b=1.27, SE=.71, p = .075). Complementary results were obtained when the ratio of 

posterior to anterior hippocampus volumes was replaced as the dependent variable (see 

Supplemental Results & Supplementary Figure 5). Here, internal density was associated with a 

smaller volume ratio across sexes in the left hemisphere, but was dependent on sex in the right 

hemisphere.  
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The GEE on external density in the hippocampus showed a marginal main effect of detail 

density (Wald 𝛘𝛘2 (1)=3.77, b= -2.05, SE=1.06, p = .05; Supplementary Figure 6A), such that 

greater volume across all hippocampal segments was associated with less externally dense 

memories in all participants (see Table S4 for full results). A sex by density interaction (Wald 𝛘𝛘2 

(1)=4.36, p < .05) indicated that the negative association between external density and 

hippocampal volumes was driven by females (b=-3.02, SE=1.55, p = .052; Supplementary 

Figure 6B). External density was not related to any of the four hippocampal volumes in males. 

External density was not a significant predictor of volume ratio scores (see Supplementary 

Results).  

Age Group Differences in Temporal Pole Volumes and Associations with Internal/External 

Density 
Turning to the temporal pole, we found that volumes were similar across age groups 

(Figure 3B), but males had larger volumes than females (F(1,258)=4.18, p < .05, ηp2=.01).  

The GEE with internal density revealed a significant main effect of internal density 

(Wald 𝛘𝛘2 (1)=6.18, p < .05) and an age group by internal density interaction (Wald 𝛘𝛘2 (1)=4.56, 

p < .05; see Table S5). In older adults, more internally dense recollections were related to larger 

temporal pole volumes bilaterally (Wald 𝛘𝛘2 (1)=5.54, b=2.12, SE=.90, p < .05; Figure 3C). 

Internal density was not related to temporal pole volumes in younger adults.  

The GEE with external density on temporal pole volume showed a marginal main effect 

of density (Wald 𝛘𝛘2 (1)=3.42, b= -3.02, SE=1.633, p  = .065) and a significant age group by 

density interaction (Wald 𝛘𝛘2 (1)=7.91, p  < .005; Table S6). Figure 3D illustrates volume-density 

slopes going in opposite directions for each age group. Although external density was not a 

significant predictor of volume within each age group alone, the slope in younger adults was 

highly similar to that between semantic index from laboratory-based measures and temporal pole 

volume (Supplementary Figure 7). 

 



 

 

 

 

 

 

Discussion 

We investigated age group differences in AM, hippocampus and temporal pole volumes, 

and AM-volume associations in a large sample of healthy younger and older adults with 

Autobiographical Interviews. We replicated the long-standing finding that younger adult 

recollections contain more episodic (internal) information while older adult recollections contain 

more semantic (external) information. Posterior hippocampus volumes were smaller in older, 

compared to younger, adults (Figure 2A). Temporal pole volumes, which were comparable in 

size across groups, were positively associated with episodic AM only in older adults (Figure 3C). 

In contrast, temporal pole volumes were more strongly related to laboratory-based semantic 

abilities in younger adults (Supplementary Figure 7). We speculate that in the face of posterior 

  

Figure 3. Age Group Interaction with Density in the Temporal Poles. (A) A surface rendering of the left temporal 

pole from FreeSurfer. (B) Mean volumes of left and right temporal poles plotted by age group depict no differences. 

(C) Scatterplots demonstrating contrasting relationships between internal detail density and volume (top) as well as 

between external detail density and volume (bottom) across age groups. Older adults with more internally dense 

recollections had larger temporal pole volumes. All volumes were adjusted for eTIV. Sex was included in the model. 

Site, education, and estimated whole brain volume were included as effects of no interest in each model. * denote 
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hippocampal volume atrophy, episodicity of AM becomes more reliant on the temporal pole in 

older adulthood.  

 

Younger and Older Adult Recollections Systematically Vary in Episodic and Semantic 

Detail Recollection  

As previously reported (e.g., Levine et al., 2002), older adults included fewer episodic 

and more semantic details when recalling past events on the AI. Studies using the AI typically 

report detail counts, whereas here we report on detail density, a metric that controls for the 

overall verbal output of recollections. We have previously introduced density scores as a novel 

dependent variable from the AI (Spreng et al., 2018), and have recently found that they are more 

sensitive to age effects than detail counts, and provide more reliable and valid estimates of 

individual differences in AM (Lockrow et al., In Preparation). In controlling for verbal output, 

density scores, to some extent, reflect the efficiency that one conveys episodic or semantic detail. 

Arguably, this more accurately captures the recollective process, which involves top-down 

control mechanisms to retrieve relevant details and hold them in mind (Piolino et al., 2010). 

Indeed, density scores, but not counts, associate with performance-based laboratory tasks of 

episodic memory and executive function (Lockrow et al., In Preparation). As the AI was 

administered to the present sample without an imposed time constraint, density scores are also 

less influenced by narrative length. Critical to the findings reported here, density scores for both 

episodic and semantic detail had significantly different distributions in younger and older adults. 

This suggests that the overall differences in episodic and semantic information generated during 

recollection cannot be explained by individual differences in recollective style, and reflects a 

shift as a function of older age. 

 

Hippocampus Volumes Differ by Age Group but Show Little Association with AM  

Older adults had smaller posterior hippocampal volumes, in line with recent longitudinal 

work from healthy adult lifespan samples showing greater microstructural change to the posterior 

hippocampus in older age (Langnes et al., 2020). Significant age-related reductions in older 

adults have also been observed in nearby parahippocampal white matter, which includes axons of 

the perforant pathway (Stoub et al., 2012). In terms of macrostructure, both anterior and posterior 

grey matter volumes shrink with age, but show slightly different trajectories, with the posterior 
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region showing an earlier inflection point and steeper decline thereafter (Langnes et al., 2020; 

Chauveau et al., 2021). Different trajectories of atrophy may partially explain why other 

longitudinal findings have demonstrated more robust anterior hippocampal volume change over 

time in older age (Chen et al., 2010); the years sampled may disproportionately impact the rate of 

change observed. Similarly, the results reported here are situated among other cross-sectional 

studies with both converging and diverging results. While we cannot rule out that our findings 

reflect cohort effects, we contend that they serve as a necessary backdrop for comparing volume-

AM associations across age groups. 

Neither anterior nor posterior hippocampal volumes were related to AM in younger 

adults. Our study is not the first to report null relationships between hippocampal grey matter 

volume and hippocampal-dependent tasks including AM, imagery, and navigation in larger 

samples of healthy young adults (Clark et al., 2020; Weisberg et al., 2019). Using higher 

resolution scans to examine hippocampal subfields, such as CA2,3/DG and subiculum, may be 

more appropriate to capture specific relationships to hippocampal-dependent processes, such as 

AM (Palombo et al., 2018; Barry & Maguire, 2019). It is also possible that more extreme 

conditions, such as expertise (Clark et al., 2020) or pathology (Van Petten, 2004) are needed to 

detect associations.   

Older adults’ smaller posterior hippocampus volumes could speak to their recollection of 

fewer specific, episodic details, but no association between posterior hippocampus volumes and 

episodic AM was observed. According to one framework, tasks which require the recollection of 

specific episodic details—like the AI—recruit the posterior hippocampus to generate context and 

recreate the remembered scene (see Sheldon & Levine, 2016 and Sheldon et al., 2019 for 

reviews). Smaller volumes may impair these abilities, as suggested by findings that age-related 

atrophy to parahippocampal white matter volume predicts episodic memory performance in older 

adults (Stoub et al., 2014). Yet, our results suggest that typical aging may not sufficiently alter 

hippocampal volumes to detect relationships with hippocampal-dependent tasks. Indeed, strong 

positive associations with episodic memory scores have been observed for individuals with mild 

cognitive impairment and Alzheimer’s disease, who often have more pronounced atrophy to the 

hippocampus than cognitively healthy older adults (Chauveau et al., 2021). 
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An association between anterior hippocampus volumes and episodic AM was detected in 

older adults. The anterior hippocampus has been widely observed to play a role in the 

construction, compared to elaboration, of both past and future autobiographical events (e.g., 

Benoit & Schacter, 2015). Forming part of a network of regions that has been referred to as the 

dorsomedial subsystem of the default network (Andrews-Hanna et al., 2014), anterior temporal 

memory network (Ranganath & Ritchey, 2012), or semantic memory network (Chapleau et al., 

2019), the anterior hippocampus is thought to play a role in retrieval of AMs more generally, and 

the conceptual components on which more specific details later build (Sheldon & Levine, 2016). 

In the current study, older adults reported more semantic recollections and had better laboratory-

tested semantic memory abilities, in agreement with the relative preservation of semantic 

knowledge in older age (Parker & Reuter-Lorenz, 2009). Anterior hippocampus activity has also 

been implicated in silent elaboration of AMs in older adults (Addis et al., 2011). Given the 

implicit nature of the task, the authors speculated that this finding was related to more 

semanticized AMs in older participants. However, anterior hippocampal volumes were 

associated with episodic, rather than semantic, AM in our sample of older adults.  

Unexpectedly, the relationship between anterior hippocampus volumes and episodic AM 

was qualified by an interaction with sex in older adults. Larger right anterior hippocampus 

volumes were associated with less episodic AM in males and the opposite pattern in females. 

Younger adult females have previously been found to have larger posterior hippocampal 

volumes than younger males, along with unique patterns of structural covariance with the 

anterior hippocampus (Persson et al., 2014). Sex differences are also robustly observed in verbal 

versus spatial memory abilities (e.g., Weiss et al., 2003), which draw on anterior and posterior 

hippocampus respectively (Poppenk et al., 2013). It is conceivable that age amplifies sex 

differences in cognition and/or brain structure. However, we refrain from interpreting this sex 

interaction in older adults as it is likely underpowered and should be replicated in a larger 

sample. The ability to detect these interactions in healthy aging samples presents an exciting 

future direction given that older females are inordinately vulnerable to Alzheimer’s disease (see 

Fisher et al., 2018 for review). 

 

Temporal Pole Volumes Relate to Episodic AM in Older Adults  
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Our final set of analyses tested for age group differences in temporal pole volumes and 

corresponding associations with AM. We specifically targeted the temporal pole as this region 

serves as a semantic processing hub (e.g., Hoffman & Morcom, 2018; Lambon Ralph, 2017) 

associated with prior knowledge during encoding of naturalistic stimuli (Raykov et al., 2021). 

Differential relationships with cognition emerged across age groups despite no discernible 

volume difference. Younger adult volumes were positively related to laboratory-tested semantic 

memory abilities, whereas older adults showed no such relationship. Rather, temporal pole 

volumes in older adults were positively related to episodic AM. A meta-analysis of age-related 

functional brain change has demonstrated that older adults recruit the anterior temporal region 

more than younger adults across a number of cognitive domains including memory retrieval 

(Spreng et al., 2010). In fact, older adults showed coactivation of the temporal pole with anterior 

hippocampus during an in-scanner AM task (Addis et al., 2011). The magnitude of anterior 

temporal activity in older adults was positively related to episodic details recalled from a 

separate session.  

We speculate that age-related volume differences in posterior hippocampus, a region 

implicated in specific detail generation (Sheldon & Levine, 2016), may result in additional 

recruitment of intact areas such as the anterior hippocampus and temporal poles. The anterior 

hippocampus forms preferential connections to the temporal pole (Kahn et al., 2008) via the 

uncinate fasciculus (Kier et al., 2004), laying the groundwork for greater functional connectivity 

at rest (Honey et al., 2009) and during semantic processing (e.g., Hoffman & Morcom, 2018). 

Indeed, patients with semantic dementia often demonstrate damage and altered intrinsic 

functional connectivity to both of these regions (e.g., Chan et al., 2001; Schwab et al., 2020). If 

these regions are recruited to support episodic AM recollection in older adults, memories might 

necessarily be “semanticized,” or imbued with more semantic information (Spreng et al., 2018). 

While speculative, this view emphasizes the significance of regional integrity and supports 

frameworks of neurocognitive aging that describe functional reorganization in relation to 

structural change as a form of adaptive scaffolding (Park & Reuter-Lorenz, 2009; Spreng & 

Turner, 2019; Andrews-Hanna et al., 2019). Further longitudinal inquiry involving both 

functional and structure measures is needed to test these claims. Future work would also benefit 

from inspecting other lateral temporal regions, which show increased involvement during older 

adult cognition (Spreng et al., 2010). 
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Concluding Remarks 

Here we report on hippocampal and temporal pole grey matter volume relationships to 

AM in a well-powered sample of healthy younger and older adults. Older adults had smaller 

posterior hippocampus volumes, yet stable anterior hippocampus and temporal pole volumes, 

which may support better episodic AM in older age. Mixed findings of age-related grey matter 

vulnerability within the hippocampus across cross-sectional and longitudinal studies may not be 

entirely incompatible, with cross-sectional findings likely capturing different snapshots along the 

aging trajectory. While it is prudent to consider cohort effects when comparing younger and 

older adults, within-group brain-behavior relationships offer important insight into how age-

related brain change—including atrophy—may support cognition in later life. Our findings also 

underscore the importance of considering sex differences in lifespan developmental research. 

Mapping out the complex interplay of structural, functional, and cognitive change in late life will 

be imperative to better understanding the brain mechanisms that continue to support complex 

cognition like AM. 
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Bridge to Chapter 4 

In Study 2, we first replicated findings that older adults recount past experiences with less 

episodic and more semantic detail. Older adults also had smaller posterior hippocampus, but not 

anterior hippocampus nor temporal pole volumes. Leading frameworks of autobiographical 

memory posit that posterior hippocampus plays a role in retrieval of specific, episodic 

autobiographical details (Sheldon et al., 2019). Smaller posterior hippocampus volumes in older 

adults could therefore be linked to less episodic recollection. However, we found no evidence 

that this was the case. Anterior hippocampus and temporal pole volumes were associated with 

older adults’ episodic recollections, whereas temporal pole volumes were related to domain-

general semantic abilities in younger adults. These results tentatively suggest that structures once 

associated with semantic processing become associated with episodic processing in the transition 

from younger to older adulthood. Reduced structural specialization of these regions may 

represent an adaptive change to preserve access to episodic memory as it declines in older age. 

Study 3 examined whether age-related functional connectivity differences of the 

hippocampus and temporal pole establish differences engrained in structure-cognition 

relationships. We also investigate whether local structural differences observed in the posterior 

hippocampus contribute to functional connectivity changes in older adults. Results from Study 3 

will inform how local brain functional and structural change intersect to support cognitive gains 

and losses in older adulthood. 
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Chapter 4: Age effects and individual differences in episodic and semantic 

autobiographical memory relate to resting-state functional connectivity of the 
hippocampus and temporal pole with the default network 

 

Adapted from: Setton, R., Mwilambwe-Tshilobo, L., Sheldon, S., Turner, G.R., & Spreng, R.N. 

(In Preparation). Age effects and individual differences in episodic and semantic 

autobiographical memory relate to resting-state functional connectivity of the hippocampus and 

temporal pole with the default network. Current Biology. 
 

Abstract 

Recollection of one’s personal past, or autobiographical memory (AM), involves the retrieval of 

both episodic and semantic details and is thought to be supported by the default network. Here we 

take an individual differences approach to examine resting-state functional connectivity of the 

anterior hippocampus, posterior hippocampus, and temporal pole with the default network and test 

for associations with episodic and semantic AM. T1-weighted anatomical images, 20 minutes of 

multi-echo resting-state fMRI, and Autobiographical Interviews were collected for 263 healthy 

adult participants (158 younger, 105 older). We first examined resting-state functional connectivity 

profiles for each region of interest across all participants. Multivariate partial least squares was 

then used to test for age-group differences. Finally, behavior partial least squares was used to test 

for individual difference associations between resting-state functional connectivity and AM 

(episodic and semantic) across groups. Compared to younger adults, older adults had lower 

connectivity within anterior hippocampus, posterior hippocampus, and temporal pole, but greater 

connectivity across distributed regions of the default network. This pattern was positively related 

to posterior hippocampal volumes in older adults, which were smaller compared to those of 

younger adults. Behavior PLS examining associations between functional connectivity and AM 

identified two significant patterns. The first was an age-invariant dissociation of connectivity 

related to episodic versus semantic AM. Episodic AM was related to anterior hippocampus and 

temporal pole connectivity with orbitofrontal cortex as well as connectivity within posterior 

hippocampus. Semantic AM was related to temporal pole connectivity with regions across lateral 

temporal cortex. This association was stronger in older adults, who recalled more semantic 

information in their AMs compared to younger adults. In the second pattern, younger, but not 
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older, adults displayed a pattern of connectivity related to both episodic and semantic AM, as 

reflected in temporal pole connectivity with regions throughout the default network. Our findings 

add precision to age-related differences in the functional organization of the default network and 

provide strong evidence for discrete network ensembles that scale with systematic variation in 

episodic and semantic AM across the healthy adult lifespan. 
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Introduction 

The recollection and re-telling of personal past experiences varies across individuals and 

changes over the lifespan (Palombo et al., 2018; Levine et al., 2002). Some recall the rich 

spatiotemporal context of a prior experience, while others remember relatively few specific 

details. Similarly, some individuals recount experiences within a deeper semantic context, while 

others provide little background information. This autobiographical form of recollection 

systematically shifts with advancing age, as the episodic quality of memory diminishes and 

semantic features become more prominent (Levine et al., 2002). Neuropsychological studies 

have identified the hippocampus and temporal pole as necessary for episodic and semantic 

aspects of autobiographical memory (AM; e.g., Eslinger, 1998; Herfurth et al., 2010; see also 

Irish & Piguet, 2013). Meanwhile, task activation studies have found AM to involve a more 

distributed set of brain regions within the default network (Svoboda et al., 2006; Spreng et al., 

2009; Rugg & Vilberg, 2013; Benoit & Schacter, 2015). Little is known about how the 

hippocampus and temporal pole specifically interact with the default network and whether these 

interactions relate to individual differences in AM recollective styles. 

The hippocampus and temporal pole form part of the default network (Buckner et al., 

2008). The default network can be broken down into a core set of regions and two-subnetworks, 

each of which loosely maps onto the anterior temporal and posterior medial cortical systems that 

support different forms of memory-guided behavior (Andrews-Hanna et al., 2014; Ranganath & 

Ritchey, 2012). The dorsal medial default network, corresponding to the anterior temporal 

system, is made up of regions functionally affiliated with the dorsomedial prefrontal cortex, 

including the temporal pole (Andrews-Hanna et al., 2014). This sub-network is implicated in 

semantic-like tasks such as abstract processing, mentalizing, and language comprehension 

(Andrews-Hanna et al., 2019). The medial temporal default network, corresponding to the 

posterior medial system, is comprised of regions functionally affiliated with the medial temporal 

lobe, including the hippocampus (Andrews-Hanna et al., 2014). This sub-network is associated 

with more episodic abilities such as mental simulation, future thinking, scene construction, and 

situating items within a spatial context (Andrews-Hanna et al., 2019). The functional architecture 

of hippocampus and temporal pole with these discrete network ensembles is not well-

characterized. It also remains to be determined whether variability within these ensembles scales 

with variability in AM across people. 



 

 

111 

An age-related shift in the quality of AM recollection coincides with robust changes to 

the functional integrity of the default network. Specifically, connectivity within the default 

network is reduced in older adults, and more integrated with other large-scale networks (see 

Damoiseaux, 2017 for a review). Compared to younger adults, older adults show specific 

reductions within core regions and the dorsal medial sub-network, but relative preservation of 

connectivity within the medial temporal sub-network (Campbell et al., 2013). An open question 

is whether the shift to semantic-laden AMs in older age is related to functional reorganization of 

the default network. Here, we determine whether individual differences and age effects in one’s 

tendency to recall more detailed AMs is related to functional ensembles that comprise the default 

network. 

One approach to answering this question is to examine how resting-state functional 

connectivity (RSFC) of this circuit covaries with AM. RSFC reflects a combination of genetic 

and experience-dependent changes to functional interactions (e.g., Stevens & Spreng, 2014). 

Individual differences in these functional dynamics may map onto individual differences in 

behavior, including the propensity to retrieve certain details when describing past experiences. 

Indeed, self-reported appraisals to recall one’s personal past with more episodic detail has been 

associated with RSFC between the hippocampus and posterior visual regions, a pattern similar to 

functional connectivity during visual episodic memory tasks (Sheldon et al., 2016; Petrican et al., 

2018). Self-reported semantic-based remembering has been associated with hippocampus RSFC 

to prefrontal cortex (Sheldon et al., 2016). A distinction between these ensembles in relation to 

objective AM performance has yet to be made. 

We first characterized anterior hippocampus (AHIPP), posterior hippocampus (PHIPP), 

and temporal pole (TP) RSFC with the extended default network (see Table 1 for affiliations and 

abbreviations) in healthy younger and older adults. Second, we applied multivariate partial least 

squares to test for age group differences in RSFC. We predicted that younger adults would show 

more differentiated default sub-networks than older adults, reflected in stronger RSFC between 

the temporal pole and the dorsal medial sub-network and between hippocampus and the medial 

temporal sub-network. We also predicted relative de-differentiation of sub-networks in older 

adults. Finally, we used behavioral partial least squares to examine how these RSFC profiles 

related to individual differences in episodic and semantic AM, and whether these associations 

differed between younger and older adults. We predicted that episodic AM would associate with 
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RSFC between regions of the hippocampus and the medial temporal sub-network. Conversely, 

we predicted that semantic AM would relate to temporal pole RSFC with the dorsal medial sub-

network. Evidence for this dissociation across all participants would fit into a broader framework 

of separable distributed network ensembles (or “process-specific assemblies”; Moscovitch et al., 

2016), discernible at rest, configured to support different dimensions of AM (Ranganath & 

Ritchey, 2012; Cooper & Ritchey, 2019). We also hypothesized that RSFC associations with 

episodic and semantic AM may differ by age group, reasoning that RSFC differences may 

underlie the age-related shift in episodic and semantic detail generation. The overarching goal 

was to link RSFC of an AM circuit with variability in AM performance across individuals. 
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   Figure 1 

 
Figure 1. Schematic of Functional Connectivity Analytical Workflow. (1) BOLD data were extracted from left 

and right anterior and posterior hippocampal segments, as output from Automatic Segmentation of Hippocampal 

Subfields (ASHS). (2) BOLD data were extracted from temporal pole parcels, as defined by each participant’s 

individual-specific parcellation solution. Inset shows temporal signal-to-noise map, thresholded to 50-400 for 

visualization purposes. The group temporal signal-to-noise ratio map was masked with the right and left hippocampus 

probability maps using the Harvard-Oxford Subcortical Structural Atlas in FSL for display only. Temporal signal-to-

noise values were sufficiently high to examine RSFC within all regions included in the present analysis. (3) Functional 

connectivity between temporal pole, anterior hippocampus, and posterior hippocampus parcels and limbic, default, 

and temporoparietal sub-network parcels were constructed for each participant, resulting in a 17 x 123 rectangular 

matrix. (4) Matrices were submitted to Partial Least Squares to examine patterns of maximal covariance with group 

assignment or AI detail density. The resultant matrix of regional pairwise connections was summarized by network 

contribution plots illustrating the most reliable within- and between-network connections. 
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Table 1     
  
Regions of the Default Network and Sub-network Affiliations   
    
Sub-network   Regions  
AHIPP   Left and right anterior hippocampus  
PHIPP   Left and right posterior hippocampus  
LIM-A   Temporal poles (TP)  
LIM-B   Orbitofrontal cortex (OFC)  
DN-A (core)   Inferior parietal lobule (IPL), dorsal prefrontal cortex (dPFC), medial 

prefrontal cortex (mPFC), precuneus and posterior cingulate cortex 

(Prec/PCC), and right inferior temporal cortex (iT)  
DN-B (dorsal medial 

sub-network)  
Lateral temporal cortex (lT), anterior temporal cortex (aT), anterior 

inferior parietal lobule (aIPL), dorsal medial prefrontal cortex (dmPFC), 

lateral prefrontal cortex (lPFC), and ventral prefrontal cortex (vPFC)  
DN-C (medial temporal 

sub-network)  
Posterior inferior parietal lobule (pIPL), retrosplenial cortex (RSC), and 

parahippocampal cortex (PHC)  
TEMP-PAR   Temporal parietal cortex  
Note. Sub-network is used to refer to bilateral hippocampal regions as well as sub-networks from 

the Yeo 17-network solution (2011).  
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Results 

In the largest sample of AM and RSFC reported to date, we examined hippocampus and 

temporal pole RSFC with the default network and its relationship to episodic and semantic AM 

(Figure 1). We collected multi-echo resting-state fMRI from a cohort of healthy younger and 

older adults, and applied individualized cortical parcellations to test network and region-specific 

connectivity patterns. These innovations boost fMRI signal-to-noise ratios (Kundu et al., 2017; 

Raimondo et al., 2021), reduce age confounds associated with spatial normalization to a standard 

template (Setton & Mwilambwe-Tshilobo et al., Under Revision), and account for individual 

variability in default network sub-networks (e.g., Braga & Buckner, 2017). We implemented a 

hippocampal segmentation protocol, optimized for use in older adult brains, to investigate the 

separable contributions of anterior and posterior hippocampus to AM (Moscovitch et al., 2016; 

Sheldon & Levine, 2016; Sheldon et al., 2019) while accounting for age-related variability in this 

region. Finally, the Autobiographical Interview (Levine et al., 2002; Lockrow et al., In 

Preparation) was administered as a gold standard measure of episodic and semantic AM. 

Combined, these steps enhanced our power to detect how RSFC of the anterior hippocampus, 

posterior hippocampus, and temporal pole with the default sub-networks (see Table 1) associated 

with individual differences in AM. Our analysis proceeded in three steps: characterizing RSFC 

of the circuit, testing for age group differences, and identifying associations with episodic and 

semantic AM as a function of age group. At each turn, regional effects are summarized by 

network-level effects, reflecting the most reliable within- and between-network connections. 
 

RSFC of AHIPP, PHIPP, and TP with the DN 

We first established how each region of interest was functionally connected with regions 

across the extended DN. A surface representation of each region’s RSFC pattern across all 

participants is shown in Figure 2A. TP showed strong positive connections with itself and lateral 

temporal cortex. AHIPP and PHIPP showed strong positive midline connections to anterior and 

posterior structures respectively. Weak negative connections were also observed between ventral 

PFC and AHIPP and PHIPP. 

Average RSFC matrices in younger and older adults provide more detail at the parcel and 

hemisphere level (Figure 2B). Patterns were similar across groups. All three regions of interest 

showed broad correspondence to their sub-networks: TP showed strong positive connection to 
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lateral temporal regions within DN-B and TEMP-PAR; AHIPP/PHIPP showed positive 

connection to midline regions including OFC and mPFC, as well as regions within DN-C. Of 

these, ipsilateral connections were often stronger than contralateral.  

 

Age Group Differences in RSFC 

Quantitative comparison of the 2091 pairwise connections revealed a pattern of 

connectivity that distinguished younger and older adult RSFC (permuted p < .001; Figure 3A,C). 

Network contribution analyses summarize the significant contributions of within- and between-

network edges to this pattern (Figure 3B). Significant regional connectivity differences are 

discussed in the context of network-level effects.  

Younger adults showed greater connectivity within TP, AHIPP, and PHIPP, reflected in 

connections across hemispheres within each region. Younger adults expressed stronger 

connectivity along the longitudinal axis of the hippocampus, showing both ipsilateral and 

contralateral connections between AHIPP and PHIPP. Although intra-TP connectivity was most 

reliable, TP connectivity with regions throughout DN-B and temporoparietal cortex in both 

hemispheres was more prominent in younger adults. Anterior medial TP parcels, specifically, 

also showed selective connection to DN-A and DN-C regions in younger compared to older 

adults. Greater AHIPP— TP connectivity was observed via bilateral AHIPP connections to 

anterior medial TP parcels. Greater AHIPP—DN-C connections were reflected in bilateral 

AHIPP connectivity to PHC and right posterior IPL. PHC, as part of DN-C, is more often 

associated with PHIPP as part of a posterior medial temporal lobe pathway (Kahn et al., 2008). 

PHIPP connectivity to PHC was also observed, but to a lesser extent. Greater PHIPP—OFC 

connections reliably contributed to the overall pattern, although AHIPP—OFC connections were 

also observed with different parcels. 

Older adults had a distinct pattern of greater between-network RSFC compared to 

younger adults. The first of these was higher TP connectivity, marked by TP —DN-A and TP —

DN-C at the network-level. At the regional level, this result emerged as bilateral TP connectivity 

with precuneus/PCC, right dorsal PFC and RSC. The most reliable AHIPP RSFC differences in 

older compared to younger adults were with prefrontal DN-B regions including dorsal medial 

and lateral PFC. Similar connections were observed with PHIPP. Similarly greater AHIPP and 

PHIPP connectivity were observed with left precuneus/PCC. Overall, older adults showed 



 

 

117 

greater hippocampal connectivity across regions within DN-A and DN-B, whereas younger 

adults had stronger hippocampal connections with DN-C. Hippocampus may therefore bind 

posterior cortex to the DN in younger age (e.g., Spreng et al., 2016) but not into older adulthood. 

Indeed, older adults showed a striking pattern of greater PHIPP—TEMP-PAR connectivity 

emerging from bilateral PHIPP connections to right temporal parietal cortex.  

We next tested whether this pattern was influenced by grey matter volumes of the three 

regions of interest. As seen in Figure 3C, larger PHIPP volumes in both hemispheres were 

associated with higher brain connectivity scores in older adults only (Left: pr(100)=.28, p < .005, 

[.09, .45]); Right: pr(100)=.21, p < .05, [.02, .39]). Older adults with larger PHIPP volumes had a 

pattern of RSFC more similar to that expressed by younger adults. This relationship was 

statistically attenuated when site was included as a covariate (Left: pr(99)=.14,  p = .155, [-.05, 

.32]; Right: pr(99)=.060, p = .546, [-.13, .25]). AHIPP and TP volumes were not related to RSFC 

(all p’s > .05). 
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Figure 2 

 
Figure 2. RSFC of AHIPP, PHIPP, and TP with the DN. (A) RSFC for each region of interest across the 

extended default network, collapsed across younger and older adults. For each region, BOLD data were averaged 

across parcels from both hemispheres to construct a new 1 x 109 RSFC matrix.  Z values were averaged across all 

participants. The significance of each cell was determined with a one-sample t-test. P values below .05 were masked 

out. Hippocampal regions are not shown on the surface. For visualization purposes, all TP parcels on the TP surface 

were assigned the maximum value in the matrix to indicate self-connection. (B) Average RSFC in younger (top) and 

older (bottom) adults shown in full. Bootstrap resampling (resampling rate=10,000) was implemented to obtain a 

95% confidence interval and determine reliable connections. Connections whose confidence intervals crossed zero 

were masked out. TP = temporal pole; AHIPP = anterior hippocampus; PHIPP = posterior hippocampus; OFC = 

orbitofrontal cortex; IPL = inferior parietal lobule; aIPL = anterior inferior parietal lobule; pIPL = posterior inferior 

parietal lobule; dPFC = dorsal prefrontal cortex; mPFC = medial prefrontal cortex; dmPFC = dorsomedial prefrontal 

cortex; lPFC = lateral prefrontal cortex; vPFC = ventral prefrontal cortex; Prec = precuneus; PCC = posterior 

cingulate cortex; iT = inferior temporal; lT = lateral temporal; aT = anterior temporal; RSC = retrosplenial cortex; 

PHC = parahippocampal cortex. 
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 Figure 3 

 
Figure 3. Age Group Differences in RSFC. (A) One pattern distinguished pairwise connectivity expressed more by 

younger adults, shown in warmer colors, from pairwise connectivity expressed more by older adults, shown in cooler 

colors. The matrix was thresholded at a bootstrap ratio = 1.96, representative of a 95% confidence interval. (B) 

Network contributions summarizing network-level differences. (C) A surface representation of (A). For each region 

of interest, unthresholded results were averaged across parcels in the left and right hemispheres and then thresholded 

to an average bootstrap ratio of 1.96. Hippocampal regions are not shown on the surface. (D) Brain connectivity scores 

from (A) plotted as a function of PHIPP volume in younger and older adults. In older adults, higher brain connectivity 

scores were related to larger bilateral PHIPP volumes. YA = younger adults; OA = older adults; TP = temporal pole; 

AHIPP = anterior hippocampus; PHIPP = posterior hippocampus; OFC = orbitofrontal cortex; IPL = inferior parietal 

lobule; aIPL = anterior inferior parietal lobule; pIPL = posterior inferior parietal lobule; dPFC = dorsal prefrontal 

cortex; mPFC = medial prefrontal cortex; dmPFC = dorsomedial prefrontal cortex; lPFC = lateral prefrontal cortex; 

vPFC = ventral prefrontal cortex; Prec = precuneus; PCC = posterior cingulate cortex; iT = inferior temporal; lT = 

lateral temporal; aT = anterior temporal; RSC = retrosplenial cortex; PHC = parahippocampal cortex. 
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RSFC Associations with AM 

 Autobiographical memory was tested with the Autobiographical Interview (Levine et al., 

2002). As part of the interview, participants chose a single memory, specific in time and place, to 

describe in detail for a series of different time periods (e.g., childhood). Descriptions were scored 

for episodic-like “internal” details (i.e., order of events, location, time information, sensory 

descriptions, emotions, thoughts) and semantic-like “external” details (i.e., general semantic 

information about oneself and the world, repetitions, metacognitive statements, specific details 

about unrelated memories). A full subcategory listing is detailed in Tables S1-2. The number of 

internal and external details are typically tallied and averaged across events. Work from our 

laboratory has shown that measures controlling for verbosity, which we refer to as internal and 

external density scores, are more reliable and valid metrics of episodic and semantic AM 

(Lockrow et al., In Preparation).  

 We have previously examined how internal and external density scores in this sample 

were associated with grey matter volumes of AHIPP, PHIPP, and TP (Setton et al., Under 

Revision). We reported  that older adults had less internally dense and more externally dense 

recollections than younger adults (Internal density: Myoung: .09, SDyoung: .02; Mold: .07, SDold: .02; 

t(258)=11.06, p < .001,  Cohen’s d=1.38; External density: Myoung: .02, SDyoung: .01; Mold: .04, 

SDold: .01; (t(258)=6.32, p < .001, Cohen’s d=.79; Setton et al., Under Revision).  

Here we test for RSFC patterns associated with internal and external density. To do so we 

used behavior PLS to identify patterns of RSFC in younger and older adults that covaried with 

internal and external density scores. PLS was carried out in the same 2091 pairwise connections 

between our three regions of interest—TP, AHIPP, and PHIPP—and regions of the extended 

DN. Two significant latent variables emerged. 

An Age Invariant Pattern of RSFC Dissociates Internal from External Density 

 The first pattern revealed a main effect of detail density, separating RSFC associated with 

internal versus external density in both younger and older adults (18.77% covariance explained, 

permuted p < .001; Figure 4A). In both age groups, greater internal density of AM recollection 

was associated with higher RSFC between a number of regions (Figure 4A, warmer colors). 

First, internal density was positively associated with greater TP—LIM-B, AHIPP—LIM-B, and 
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bilateral PHIPP RSFC. Widespread TP connectivity was observed at the regional level, with left-

lateralized connections throughout the extended DN and right TP connections to medial PFC 

regions including OFC, mPFC, and dmPFC, as well as temporoparietal cortex. Bilateral AHIPP 

connections to OFC were most reliable, although AHIPP connections across hemispheres and to 

right mPFC were also observed. Internal density was also associated with RSFC between right 

PHIPP and PHC.  

In both younger and older adults, more externally dense memories were related to higher 

TP —TEMP-PAR connectivity. This included contralateral connections between TP and 

temporoparietal cortex. Contralateral connections were also observed between right TP and left 

DN-B regions including lT, lPFC, and vPFC.  

RSFC associations with density scores were highly similar when controlling for sex, 

education, eWBV, and site, although the association with external density in younger adults was 

attenuated (p = .296; Table S2).  

We conducted a post hoc analysis to explore which categories of internal and external 

details most contributed to the RSFC-density associations in each age group. RSFC associations 

with internal density were driven by internal event details in younger adults, and internal event, 

perceptual, and emotion/thought details in older adults (see Table S1). RSFC associations with 

external density were driven by external place, semantic, repetition, and other details in younger 

adults, and external event, place, time, perceptual, and emotion/thought details in older adults. 

Sex, education, and eWBV were included as covariates. Including site as an additional covariate 

reduced the magnitude of RSFC associations with external density, but results remained 

qualitatively similar (see Table S2). 

A Specific Pattern of RSFC Younger Adults for Internal and External Density 

The second pattern was an association with RSFC where internal and external density 

covaried together in younger adults (1.97% covariance explained, permuted p < .05; Figure 4C). 

Older adults did not reliably contribute to this pattern. Internal and external density in younger 

adults were positively associated with TP —LIM-B, TP—DN-C, and AHIPP—TEMP-PAR 

connections at the network level (Figure 4C, warmer colors). Regionally, left TP showed both 

ipsi- and contralateral connections to OFC, RSC, and PHC. Left AHIPP was connected to 
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temporoparietal cortex both ipsi- and contralaterally, while right AHIPP connectivity to 

temporoparietal cortex remained ipsilateral. AM in younger adults is thus associated with left 

intra- and interhemispheric RSFC within an extended DN. Internal and external density in 

younger adults were negatively associated with TP connectivity to DN-B. Specifically, younger 

adult AM was associated with less connectivity between left-lateralized TP connectivity to aIPL, 

dmPFC, lPFC, and vPFC (Figure 4C, cooler colors). Notably, internal and external density in 

younger adults was also negatively associated with hippocampal connectivity to anterior midline 

regions including OFC and mPFC, as well as right PHIPP connectivity throughout the extended 

DN. RSFC associations with density scores were nearly identical when controlling for sex, 

education, eWBV, and site.  

Post hoc associations with AI subcategories were again conducted to determine which 

details contributed to the shared density association with RSFC in younger adults. Internal event, 

place, and time details along with external event, place, time, perceptual, repetition, and other 

details drove the RSFC-density association (see Table S1). When site was included as a 

covariate, RSFC associations with internal detail categories were nearly identical. Only external 

event and emotion/thought detail categories significantly contributed to the pattern (see Table 

S2). 
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Figure 4  

 
Figure 4. Individual Differences in Internal and External Density Related to RSFC. Two significant patterns of 

functional connectivity associated with internal and external density as a function of age group were identified by 

Behavior Partial Least Squares analysis. (A) A main effect of detail density distinguished pairwise connections related 

to internal (warmer colors) and external (cooler colors) density in both younger and older adults. (B) A main effect of 

age group shows pairwise connections associated with both internal and external density in younger adults (warmer 

colors). Cooler colors reflect pairwise connections negatively associated with density in younger adults. Network 

contribution plots characterize network-level effects. YA = younger adults; OA = older adults; TP = temporal pole; 

AHIPP = anterior hippocampus; PHIPP = posterior hippocampus; OFC = orbitofrontal cortex; IPL = inferior parietal 

lobule; aIPL = anterior inferior parietal lobule; pIPL = posterior inferior parietal lobule; dPFC = dorsal prefrontal 

cortex; mPFC = medial prefrontal cortex; dmPFC = dorsomedial prefrontal cortex; lPFC = lateral prefrontal cortex; 

vPFC = ventral prefrontal cortex; Prec = precuneus; PCC = posterior cingulate cortex; iT = inferior temporal; lT = 

lateral temporal; aT = anterior temporal; RSC = retrosplenial cortex; PHC = parahippocampal cortex. 

 

  



 

 

124 

Discussion 

   The present study established the functional architecture of AHIPP, PHIPP, and TP with 

the DN, differences between younger and older adults, and associations with episodic and 

semantic AM. Across participants, TP was strongly connected to lateral temporal regions in 

correspondence with a dorsal medial DN sub-network. AHIPP and PHIPP were strongly 

connected to regions of the medial temporal DN sub-network, including orbitofrontal cortex. 

Compared to older adults, younger adults had greater RSFC between both hippocampal regions 

and orbitofrontal cortex. As predicted, older adults had lower RSFC within AHIPP, PHIPP, and 

TP, but greater RSFC with distributed regions of the DN. This pattern of higher and lower RSFC 

was associated with PHIPP volumes in older adults, suggestive of a link between local structural 

and distributed functional differences with age. Across age groups, individual differences in 

episodic (internal density) and semantic (external density) AM were dissociated in their 

relationship to RSFC, indicating a maintained degree of distinctiveness between recollection of 

these types of details. More episodic AM was associated with greater AHIPP and TP 

connectivity to orbitofrontal cortex, and intra-PHIPP connectivity. More semantic AM was 

associated with higher TP connectivity to regions across lateral temporal and temporoparietal 

cortex. Relative to older adults, younger adults had a unique pattern of AM related to RSFC for 

both episodic and semantic AM. In this younger adult pattern, greater AM detail overall was 

associated with greater TP connectivity to orbitofrontal cortex and retrosplenial cortex, greater 

AHIPP connectivity to temporoparietal cortex, and lower connectivity TP connectivity to 

prefrontal cortex. Our findings provide a high-resolution map of RSFC between temporal lobe 

structures and regions throughout the DN as well as differences with age. They also serve as 

novel evidence that RSFC of AHIPP, PHIPP, and TP with the DN is related to individual 

differences in AM.  
 

Age Group Differences in RSFC of AHIPP, PHIPP, and TP 

A multivariate comparison of RSFC between age groups revealed that older adults had 

less connectivity within TP, AHIPP, and PHIPP, as well as less connectivity between AHIPP and 

PHIPP, largely consistent with prior work (Salami et al., 2016; Stark et al., 2021; Damoiseaux et 

al., 2016). This pattern recapitulates a pattern of large-scale network dedifferentiation across the 

healthy aging connectome (Setton & Mwilambwe-Tshilobo et al., Under Revision; Chan et al., 
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2014; Geerligs et al., 2015; Wig, 2017). Reduced connectivity within AHIPP and within PHIPP 

suggests reduced specialization of the hippocampal longitudinal axis in older adults.  

TP showed greater affiliation with lateral temporal and temporoparietal regions in 

younger adults, corresponding to a dorsal medial DN sub-network (Andrews-Hanna et al., 2010). 

Our analysis also revealed heterogeneity in TP RSFC in younger adults. Select anterior medial 

portions of TP were connected to core DN regions and parahippocampal cortex. AHIPP 

connectivity to this same TP region was among the most reliable connections in younger adults, 

along with AHIPP connectivity to parahippocampal cortex. Indeed, anterior medial TP may be 

more cytoarchitectonically similar to medial temporal polar cortex, which is homologous to 

ventral TP in nonhuman primates (Blaizot et al., 2010). As such, stronger RSFC of this TP 

region may be expected along the medial extent of the temporal lobe, including with 

parahippocampal cortex, and may thus show similarities to parahippocampal RSFC (Persichetti 

et al., 2021). Given its proximity and connection to AHIPP, this anterior medial TP region may 

be uniquely located to pivot between hippocampus and DN sub-networks. In older adults, TP 

was less functionally associated with dorsal medial DN regions, instead correlating more—and 

less selectively—with posterior core and medial temporal DN regions. This confirmed de-

differentiation of a dorsal medial DN sub-network, as seen previously (Campbell et al., 2013). 

The more widespread connectivity between TP and posterior DN regions may also suggest 

decreased heterogeneity within the TP in older adulthood. 

 AHIPP and PHIPP RSFC in younger adults revealed a tighter correspondence to the 

medial temporal DN sub-network than older adults, as evidenced by greater connectivity to 

parahippocampal cortex, medial prefrontal cortex, and orbitofrontal cortex (Andrews-Hanna et 

al., 2010). This finding diverged from those identifying parahippocampal cortex as preferentially 

connected to PHIPP as part of a posterior medial network (Kahn et al., 2008; Ranganath & 

Ritchey, 2012). In older adults, greater hippocampal RSFC was most prominently observed 

between PHIPP and temporoparietal cortex. In fact, older adults had greater RSFC for both 

AHIPP and PHIPP with distributed regions throughout the DN. This was in contrast to prior 

work finding lower RSFC between PHIPP and core regions of the DN alongside increased 

connectivity within PHIPP in older adults (Damoiseaux et al., 2016; Salami et al., 2016; Stark et 

al., 2021). These inconsistencies may be due to differences in analysis choices, including the 

extent of regions tested for RSFC differences, functional boundary mapping (e.g., hippocampal 
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body as PHIPP instead of AHIPP; Zheng et al., 2021), smaller samples sizes, and poorer tSNR. 

The present work overcomes many of these methodological challenges to more fully characterize 

age differences in RSFC throughout the DN. The combination of techniques applied here—

multi-echo fMRI for improved signal detection, hippocampal segmentation with an atlas 

optimized for use in older adults, and individualized parcellation for individual-specific 

demarcation of functional regions—provides unprecedented precision in characterizing this 

network.  

RSFC differences across groups were related to PHIPP grey matter volume. We recently 

reported that older adults have smaller PHIPP grey matter volumes compared to younger adults, 

with no differences observed in AHIPP or TP (Setton et al., Under Revision). Here, larger PHIPP 

volumes in older adults were related to stronger expression of the “young-like” RSFC pattern. 

This finding suggests a link between local structural and distributed functional differences in 

older compared to younger adults (e.g., Park & Reuter-Lorenz, 2009). We speculate that the 

observed age differences in RSFC may be driven by grey matter atrophy to the posterior 

hippocampus. Including site as a covariate attenuated relationships, yet controlling for site may 

remove desirable demographic variability that may have even more pronounced effects on older 

adult brain structure and function (e.g., Chan et al., 2018). Replication in larger diverse samples 

will advance understanding of age differences in structure-function relationships within the 

temporal lobe, particularly where longitudinal data is lacking. 

 

An Age-Invariant Pattern of RSFC Dissociates Episodic From Semantic Autobiographical 

Recollection 

Despite age differences in the functional architecture of the AM circuit under 

examination, individual differences in episodic and semantic AM were dissociated in their 

patterns of RSFC across the full sample. This is consistent with task-related findings showing 

that younger and older adults engage similar regions during AM (e.g., Addis et al., 2011; Viard 

et al., 2007; Martinelli et al., 2013). However, task studies have also identified activity that 

differs between younger and older adults (Addis et al., 2011), interpreting differences as a 

consequence of the reduced episodic quality of memory in older age. Few studies have explicitly 

linked task activation to individual differences in AM. The advantage of the approach used here 

is that RSFC dissociated episodic and semantic aspects of recollection, providing evidence for 
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separable distributed network ensembles that may be configured to support different aspects of 

AM (Cooper & Ritchey, 2019; Ranganath & Ritchey, 2012), and may explain why individuals 

vary in how they recount the past. 

Individuals with more episodically dense recollections had greater RSFC between 

AHIPP/TP and orbitofrontal cortex and within PHIPP. AHIPP, TP, and orbitofrontal cortex are 

anatomically and functionally connected as part of an anterior temporal network of regions. 

Together these regions are predicted to play a role in familiarity-based recognition, social and 

emotional processing, and semantic knowledge representation (Adnan et al., 2016; Kahn et al., 

2008; Ranganath & Ritchey, 2012). Our results suggest that variation in RSFC among these 

regions may also scale with episodic processes. While self-reported episodic AM abilities in 

younger adults have been associated with RSFC between hippocampus and posterior medial 

regions (Sheldon et al., 2016; Petrican et al., 2018), a more distributed set of regions active 

during AM have been related to subjective ratings of imagined detail in younger and older adults 

(Addis et al., 2011). We expand on this with evidence for how the magnitude of connectivity 

among AHIPP, PHIPP, and TP relates specifically to episodic AM. 

RSFC between AHIPP/TP and orbitofrontal cortex systematically increases through 

adolescence concurrent with development of complex cognitive function (Calabro et al., 2020; 

Murty et al., 2016). RSFC between these regions in association with episodic AM may reflect 

fluid aspects of everyday remembering. AHIPP is thought to support recollection of coarse or 

more generalized AM information, as would be expected in early stages of memory construction 

prompted by open-ended retrieval cues (Sheldon & Levine, 2016). Effective connectivity models 

have demonstrated interactions between AHIPP and frontotemporal regions during early AM 

retrieval that precede PHIPP interactions with posteriomedial regions during later elaboration 

(McCormick et al., 2015). Activity in ventromedial prefrontal cortex, which spans orbitofrontal 

cortex, is associated with temporarily binding schema representations from across cortex to form 

higher-order knowledge templates (Gilboa & Marlatte, 2017). When certain schemas are 

activated, orbitofrontal cortex can then bias information processing in a context-sensitive 

manner. Studies leveraging the higher temporal resolution of magnetoencephalography during 

AM have shown that ventromedial prefrontal cortex activity during construction drives 

hippocampal activity that is then sustained throughout elaboration (McCormick et al., 2020). TP 

is often associated with semantic processes and incorporating prior knowledge into encoded 
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representations (e.g., Lambon Ralph et al., 2017; Raykov et al., 2021).  Functional interactions 

among AHIPP, TP, and orbitofrontal cortex could putatively reflect context-dependent retrieval 

that takes place in orbitofrontal cortex: representations of associated episodes in AHIPP arrive at 

orbitofrontal cortex, activate specific schemas that then call on relevant prior knowledge from 

TP, all to engage and retrieve context appropriate representations from PHIPP. The observed 

pattern of greater RSFC for more episodically dense AMs may therefore reflect connections 

forged as a result of repeated efficient context-dependent retrieval. As the ability for context-

dependent retrieval, and episodic AM, wanes, this pattern of RSFC may diminish. 

Our findings are the first to relate intrinsic functional connectivity between TP and lateral 

temporal and prefrontal regions to a greater propensity for semantic AM across individuals. This 

suggests that younger and older adults maintain RSFC patterns that may be recruited in similar 

ways to support semantic AM. A stronger association in older adults further suggests that this 

RSFC pattern may underlie recollection of more semantic information in older age. Lateral 

temporal, lateral prefrontal, and temporoparietal cortices are all predicted to communicate 

bidirectionally with anterior temporal regions including the TP during semantic cognition 

(Lambon Ralph et al., 2017). The observed interregional connections related to semantic AM 

underscores that variation in the functional connectivity across these specific regions at rest is 

sensitive to variation in semantic detail recollection. Although we did not have predictions about 

the laterality of effects, semantic AM was exclusively associated with contralateral TP 

connectivity. When examining the subcategory contributions to this RSFC pattern, we found that 

semantic details contributed most to the association in younger adults while unrelated specific 

details contributed most in older adults. This converges with the finding that older adults’ 

recollections tend to be ‘semanticized’, whereby specific memories gradually lose their 

spatiotemporal context over time (Piolino et al., 2002). Thus, relevant episodic and semantic 

details may become more similar with age, and more distinct from irrelevant episodic details. The 

distinction between relevant and irrelevant episodic details in older adults is especially intriguing 

given age-related impairments to attention, stemming from a reduced ability to suppress irrelevant 

information (e.g., Gazzaley et al., 2005). AM studies tend to center on the episodic quality of 

recalling the past, yet it is clear that better characterization of semantic AM, especially in older 

age, can provide much needed insight into the neurocognitive contributions of shifts in narrative 

retelling. 
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A RSFC Pattern Associated with Autobiographical Recollection in Young Adults 

A smaller, but significant, factor for individual differences in AM was age. Younger adults 

had a pattern of connectivity associated with AM distinct from older adults. In this pattern, episodic 

and semantic memory covaried together, revealing a network ensemble specific to younger adult 

recollection. More dense recollections were associated with greater RSFC between left TP 

(including anteromedial TP) and orbitofrontal cortex, precuneus/posterior cingulate cortex, 

retrosplenial cortex, and parahippocampal cortex. Less dense recollections were related greater 

left TP RSFC with prefrontalcortex and temporoparietal cortex. This pattern may represent a link 

between episodic and semantic AM that is deprecated in older adults. Leading models of AM posit 

that access to our repository of memories is hierarchical: specific episodic experiences are 

embedded within categories of more general events, which are in turn subsumed under lifetime 

periods (Conway & Pleydell-Pearce, 2000). Vivid recollections thus require aspects of both 

semantic and episodic memory: retrieval and reconstruction of an appropriate memory involves 

sifting through broader organizing categories to gain access to specific contextual details. At the 

level of the brain, networks associated with general semantic processing and episodic core 

recollection have substantial overlap (Renoult et al., 2019). Intact recollection may therefore 

require both. We speculate that the shared pattern of covariance in younger adults reflects access 

through nested levels of the AM hierarchy to more specific event complexes, the absence of which 

may explain limited access to episodic detail in older adult recollections. Anteromedial TP, which 

also showed greater RSFC to parahippocampal cortex in younger adults, may be a candidate region 

for a bridge between episodic and semantic AM. 

 

Conclusions  
The present study used novel acquisition methods to collect high quality resting-state fMRI 

data in the heretofore largest aging study of AM conducted with the AI. Leveraging multivariate 

methods, we were able to move beyond inferences made from silent in-scanner AM tasks to 

separately examine individual differences in episodic and semantic AM. We acknowledge that the 

brain-behavior associations presented convey an indirect characterization of age differences in 

brain function supporting AM (see Campbell & Schacter, 2016 and Finn, 2021 for similar 

commentary). Task activation studies are an effective means for identifying brain activity engaged 
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during cognition, but offer limited information about how activity varies across people. Using 

RSFC, here we identified specific network ensembles that systematically vary across individuals 

in predicting episodic and semantic AM. Interactions within and between these ensembles are 

likely key to understanding individual differences in recollection. These findings largely converge 

with recent work characterizing separable and combined roles of anterior temporal and posterior 

medial regions in AM and cognition more broadly (e.g., McCormick et al., 2015, 2020; Ranganath 

& Ritchey, 2012; Robin & Moscovitch, 2017; Sheldon & Levine, 2016), and provide testable 

hypotheses for future task fMRI studies (see also Geerligs & Tsvetanov, 2017). Continued 

advances in neuroimaging methods, such as real-time motion correction for audible in-scanner 

AM tasks (e.g., Gilmore et al., 2021), will be instrumental to further understand the different 

processes that underlie individual differences in AM.  

We established the intrinsic functional architecture of regions implicated in AM, 

differences between younger and older adults, and associations with episodic and semantic AM. 

Across individuals, we found evidence for broad correspondence of hippocampus and temporal 

pole with default sub-networks. In line with more global patterns of age-related functional 

reorganization, older adults showed de-differentiation of these regions with their sub-networks 

compared to younger adults. This pattern was associated with posterior hippocampal volume in 

older adults, suggestive of a link between local structural and distributed functional differences 

in older age. Critically, episodic and semantic AM were differentially related to RSFC in an age-

invariant fashion. Relative to older adults, younger adults also demonstrated a unique pattern of 

RSFC related to both episodic and semantic AM. Thus, individual differences in specific 

elements of this AM circuit scale with the tendency to recall one’s personal past with a certain 

balance of episodic and semantic detail, but young adulthood bears a distinct signature of RSFC 

related to overall recollection. Our findings provide a high resolution map of RSFC between 

temporal lobe structures and regions throughout the DN, and strong evidence for how variance in 

this map is sensitive to individual differences in recollection across the lifespan. 
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STAR Methods 

KEY RESOURCES TABLE 

 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Software and algorithms 

MATLAB R2018b https://www.mathworks.com RRID:SCR_001622 

Python 2.7 https://www.python.org/ RRID:SCR_008394 

FSL https://www.fmrib.ox.ac.uk/fsl  RRID: SCR_002823  

AFNI https://afni.nimh.nih.gov/ RRID:SCR_005927 

Freesurfer version 6 https://surfer.nmr.mgh.harvard.edu  RRID: SCR_001847  

ASHS https://www.nitrc.org/projects/ashs  

ME-ICA version 3.2 beta https://github.com/ME-ICA/me-ica  

GPIP Chong et al., 2017  

PLS https://www.rotman-baycrest.on.ca/index.php?section=84  

Behavioral Data https://osf.io/fzkm7/  

Neuroimaging Data https://openneuro.org/datasets/ds003592 ds003592 

 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by the 

lead contact, Roni Setton (roni.setton@mail.mcgill.ca). 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

Behavioral data have been deposited at the Open Science Framework and neuroimaging data 

have been deposited at OpenNeuro. Datasets are publicly available as of the date of publication. 

Access links and accession numbers are listed in the key resources table. 
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All original code and additional information required to reanalyze the data in this study are 

available from the lead contact upon request. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Participants were 263 healthy younger (N=158; 91 female; Mage=22.59, SDage=3.33) and 

older (N=105; 57 female; Mage=68.19, SDage=6.29) adults from Ithaca, New York and Toronto, 

Canada. We recently reported on this subset of participants to examine the link between AM and 

structural MRI (Setton et al., Under Revision). This subset comprised participants from a larger 

sample of participants with AM data (Lockrow et al., In Preparation) who also underwent MRI 

scanning. Briefly, all participants were screened for histories of neurological or psychiatric 

disorder, depressive symptomology (assessed with the Beck Depression Inventory or Geriatric 

Depression Scale; Beck et al., 1996; Yesavage et al., 1982), and mild cognitive impairment 

(using the Mini-Mental State Examination; Folstein et al., 1975).  

 

METHOD DETAILS 

Autobiographical Memory 

AM was assessed with the Autobiographical Interview (Levine et al., 2002). Participants 

were asked to choose a memory from each of three (younger adults) or five (older adults) life 

stages: childhood, teenage years, early adulthood, middle adulthood, and older adulthood. 

Participants were instructed to only choose memories that were specific in time and place. 

Starting with the first memory, participants described the memory chosen in as much detail as 

possible until they reached a natural end (free recall). Participants were then asked if they 

remembered anything else about the memory (general probe) before moving onto the next life 

stage. After all memory descriptions, each memory was revisited and participants were probed 

with specific questions to cue episodic recollection (specific probe). Participants then rated the 

memory for vividness, emotional change, significance, and rehearsal of the memory on a 5-point 

Likert scale. Interviews were audio recorded and transcribed. 

 Interviews were scored according to the original protocol by trained researchers. 

According to this procedure, scorers identify the main event in each memory and subdivide the 
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text into internal details—episodic details related to the event—and external details—unrelated 

non-episodic details that often provide background. Internal details include information about the 

sequence of events, location, time, perceptual landscape, and the participant’s emotions and 

thoughts. External details include semantic information, repetitions, metacognitive statements, 

and other details unrelated to the main event. A full listing of subcategories can be found in 

Tables S1-2. Tallies are then made for each detail type and for the broader internal and external 

categories. Text from specific probe was not considered in the present study. All interviews were 

double-scored and reached high inter-rater reliability (internal: r(261)=.91, p < .001; external: 

r(261)=.82, p < .001). 

 Work from our laboratory has shown that internal and external detail counts, which may 

serve as coarse approximations for episodic and semantic recollection, are positively associated 

with each other and overall word count (Lockrow et al., In Preparation). Dependent variables 

that control for verbosity have high reliability across memories, remove the positive association 

between internal and external details, and demonstrate convergent validity with other laboratory 

performance-based memory tasks. Here we use one such variable, a density score, which 

separately divides internal and external counts by a memory’s overall word count. Internal and 

external density scores were averaged across memories to serve as stable measures of episodic 

and semantic recollection. Density scores for subcategories of internal and external details were 

also calculated.  

Neuroimaging 

Imaging data were acquired from both sites with similar scan protocols. Images in Ithaca 

were acquired with a 3T GE750 Discovery series MRI scanner fit with a 32-channel head coil at 

the Cornell Magnetic Resonance Imaging Facility. Data in Toronto were acquired on a 3T 

Siemens TimTrio MRI scanner with a 32-channel head coil at the York University 

Neuroimaging Center. These data are openly available as part of a recent cross-sectional healthy 

aging data release (Spreng et al., Under Revision). 

T1-weighted volumetric magnetization prepared rapid gradient echo sequences at each 

site were as follows: on the GE750 Discovery (TR=2530ms; TE=3.4ms; 7° flip angle; 1mm 

isotropic voxels, 176 slices, 5m25s) with 2x acceleration with sensitivity encoding, and on the 
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Siemens TimTrio (TR=1900ms; TE=2.52ms; 9° flip angle; 1mm isotropic voxels, 192 slices, 

4m26s) with 2x acceleration and generalized auto calibrating partially parallel acquisition 

(GRAPPA) encoding at an iPAT acceleration factor of 2. 

Two ten-minute runs of eyes-open resting-state functional MRI were collected with a 

multi-echo (ME) EPI sequence: on the GE750 Discovery (TR=3000ms; TE1=13.7ms, 

TE2=30ms, TE3=47ms; 83° flip angle; matrix size=72x72; field of view (FOV)=210mm; 46 axial 

slices; 3mm isotropic voxels; 204 volumes, 2.5x acceleration with sensitivity encoding), and on 

the Siemens TimTrio (TR=3000ms; TE1=14ms, TE2=29.96ms, TE3=45.92ms; 83° flip angle; 

matrix size=64x64; FOV=216mm; 43 axial slices; 3.4x3.4x3mm voxels; 200 volumes, 3x 

acceleration and GRAPPA encoding). 
 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Image Processing 

Structure. T1-weighted images were submitted to FreeSurfer version 6.0.1 (Fischl et al., 

2002; Reuter et al., 2012) for cortical reconstruction and volumetric segmentation. Values of 

estimated total intracranial volume (eTIV), grey matter volume, and white matter volume were 

extracted. Estimated whole brain volume (eWBV) was calculated as (grey matter + white 

matter)/eTIV) and used as covariate where indicated. 

 The medial temporal lobe was segmented with Automatic Segmentation of Hippocampal 

Subfields (ASHS; Yushkevitch et al., 2015), which employs multi-atlas label fusion to 

automatically delineate subfields in individual participants. ASHS was run with the ASHS-PMC-

T1 atlas (Xie et al., 2016) in both younger and older participants. Outputs were visually 

inspected for gross errors. As our aim was to examine age differences in anterior/posterior 

hippocampus functional connectivity, we extracted regions of interest for anterior (head) and 

posterior (tail and body) portions of the hippocampus in each hemisphere (4 segments total; See 

Figure 1). The hippocampal body is sometimes considered separately (Zheng et al., 2021) or as 

part of the anterior segment (Zajac et al., 2020). We proceeded with the ASHS results, in line 

with preceding anatomical segmentations (Poppenk & Moscovitch, 2011; Sheldon et al., 2016). 



 

 

135 

Grey matter volumes were also extracted and adjusted for head size (Jack et al., 1989; Buckner et 

al., 2004). 

 Function. The functional data preprocessing and analysis here have been previously 

applied to a larger sample and detailed elsewhere (Setton & Mwilambwe-Tshilobo et al., Under 

Revision). We review them in brief below. A schematic of methodological steps is shown in 

Figure 1. 

 T1-weighted images were skull stripped in FSL BET (Smith, 2002) using default 

parameters. Skull-stripped anatomical and functional images were then submitted to ME 

Independent Components Analysis (Kundu et al., 2011; Kundu et al., 2013) for minimal pre-

processing and denoising. Advantages of ME acquisitions include the ability to better 

approximate T2* in every voxel, derive a T2* map of the brain, and optimally combine echoes. 

The TE-dependence model of BOLD signal drives denoising by separating TE-dependent BOLD 

signal from TE-independent noise. Together, these provide a significant boost to BOLD signal 

detection, particularly in regions prone to signal drop-out, such as the TP and OFC (See Figure 1 

inset). Denoised time series were quality checked to flag participants with unsuccessful 

coregistration, residual noise (framewise displacement > .50 and denoised time series with 

DVARS >1; Power et al., 2012), poor temporal signal to noise ratio (< 50), or fewer than 10 

retained BOLD-like components. The denoised BOLD component coefficient sets in native 

space were then mapped to a common cortical surface (fsaverage5) in FreeSurfer and 

concatenated. 

 To examine age-related changes to functional brain network organization, we 

implemented a participant-specific functional parcellation approach with Group Prior Individual 

Parcellation (GPIP; Chong et al., 2017). This approach initializes with a pre-defined group atlas 

(Schaefer 400; Schaefer et al., 2018) and then refines participants’ parcel boundaries by drawing 

on their resting-state fMRI data. GPIP has been shown to improve the homogeneity of BOLD 

signal within parcels, better demarcate functional regions (Chong et al., 2017), and enhance 

detection of brain-behavior associations (Kong et al., 2019; Mwilambwe-Tshilobo et al., 2019). 

The output of GPIP was a final optimal cortical parcellation for each participant from which 

BOLD coefficient sets were extracted.  

 In a separate analytical step, left and right anterior/posterior hippocampal regions of 

interest from ASHS were binarized and resampled to functional resolution in native space. 
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BOLD coefficient sets were subsequently extracted with AFNI 3dmaskave (Cox, 1996; Cox & 

Hyde, 1997; Gold et al., 1998) by run and concatenated. 

Functional Connectivity 

To assess RSFC, we conducted a variation on seed-voxel connectivity between our three 

regions of interest—anterior hippocampus (AHIPP), posterior hippocampus (PHIPP), and 

temporal pole (TP)—and an extended DN: limbic (LIM: LIM-A, LIM-B), default (DN-A, DN-B, 

DN-C), and temporal parietal (TEMP-PAR) sub-networks from the Yeo 17-network solution 

(Yeo et al., 2011). LIM-A and LIM-B were included for TP and OFC parcels. See Figure 1 for a 

surface rendering and legend of sub-networks. Table 1 includes a full description of regions 

belonging to each sub-network. 

BOLD data were extracted from each participant’s GPIP solution from only the parcels 

comprising these six sub-networks (119 parcels in total). Extracted BOLD data from anterior and 

posterior hippocampus were added at this step. Functional connectivity matrices were then 

created by computing the product-moment (r) correlation coefficient between each pair of 

regions. A canonical Fisher’s r-to-z transformation was applied (as in Kundu et al., 2013) to 

simultaneously normalize the correlation values and account for varying degrees of freedom (i.e., 

number of BOLD coefficients) across participants. The matrix of Z values was then downsized 

to a rectangular 17 x 123 matrix to specifically examine how BOLD signal in TP, AHIPP, and 

PHIPP covaried with LIM, DN, and TEMP-PAR sub-networks. 

Analysis 

RSFC of AHIPP, PHIPP, and TP with the DN. Average RSFC was first calculated 

within each age group (Figure 2B). Bootstrap resampling (resampling rate=10,000) was used to 

calculate the 95% confidence interval around each pairwise z-value connection and determine 

reliability. Connections with confidence intervals crossing zero were masked out.  
 We performed a separate analysis to visualize the overall RSFC pattern of each region of 

interest with the extended DN across all participants (Figure 2C). For each region of interest, 

BOLD data were averaged across parcels from both hemispheres and RSFC matrices were 

recomputed, rendering three 1 x 109 matrices for each participant. Z values were averaged across 
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all participants and significance was determined with a one-sample t-test. P values below .05 

were masked out. AHIPP and PHIPP are not shown on the surface. For visualization purposes, 

all TP parcels in TP RSFC were assigned the maximum value in the matrix to indicate auto-

correlation. 

 
Age Group Differences in RSFC and Relationships to AM. Partial Least Squares 

(PLS) was used to examine group differences in RSFC and behavior PLS was used to examine 

RSFC associations with AI density scores. PLS is a multivariate method that identifies patterns 

of maximal covariance between two sets of variables (McIntosh & Lobaugh, 2004; McIntosh & 

Misic, 2013). Here those variables were represented by participant RSFC matrices and either 1) 

age group or 2) AI density scores. 

 To run PLS, a data matrix X was created with all participants’ rectangular connectivity 

matrices. Each row of X corresponded to a vector containing one participant’s within-network 

(LIM-A—LIM-A, AHIPP—AHIPP, PHIPP—PHIPP) and between-network connections. 

Column-wise means are then calculated by age group. All data in X were then mean-centered 

and submitted to singular value decomposition to yield mutually orthogonal latent variables 

representing distinct relationships between the two variables mentioned above. Each latent 

variable consisted of: 1) a left singular vector containing the weighted connectivity pattern 

optimally expressing the covariance, 2) a right singular vector with the weights of the study 

design variables (i.e., age group or AI density scores), and 3) a scalar singular value with the 

covariance strength between the design variable and connectivity. For each pattern, a brain 

connectivity score can be calculated from the dot product of the left singular vector (1) and each 

participant’s functional connectivity matrix. Stronger positive values reflect expression of the 

warmer colors while stronger negative values reflect expression of the cooler colors. Brain 

connectivity scores therefore represent the degree to which each participant expressed the pattern 

identified.  

 Permutation testing was used to statistically evaluate patterns identified and bootstrap 

resampling determined the reliability of pairwise connections (1000 permutations, 500 

bootstraps). Connectivity weights were considered to significantly contribute to the overall 

pattern when bootstrap ratios (weight in the singular vector/bootstrap-estimated standard error) 

exceeded + 1.96, corresponding to the 95% confidence interval. 
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 For display purposes, PLS results for each region of interest were mapped to the surface 

by averaging unthresholded results across parcels in the left and right hemispheres and then 

thresholding to a bootstrap ratio of 1.96. AHIPP and PHIPP regions are not shown on the 

surface. 

Partial correlations between brain connectivity scores and each region of interest volume 

(each hemisphere separately) were carried out to explore associations between volume and age 

group differences in RSFC. Covariates included sex, education, and eWBV. Associations were 

considered significant at p < .05. Site was not included as a covariate since participants across 

sites added desirable variability due to increased demographic diversity in the Toronto cohort. 

Instead, we ensured that any age group effects existed over and above site effects by conducting 

ANCOVAs on brain connectivity scores with site, sex, education, and eWBV as covariates 

(F(1,257)= 138.86, p < .001, ηp
2= .35). Correlations with site included as a covariate are also 

reported for completeness. We also report partial correlations between brain connectivity scores 

from Behavior PLS and density scores with sex, education, eWBV, and site as covariates with 

the corresponding results. 

A final set of post-hoc correlations were conducted between brain connectivity scores 

from behavior PLS and more granular detail categories from the AI. The goal was to explore 

which specific detail types contributed to associations between RSFC and internal/external 

density (i.e., internal: event, place, time, perceptual, emotion/thought details; external: semantic, 

repetition, other, event, place, time, perceptual, emotion/thought). Partial correlations were run 

between brain connectivity scores and detail density from all detail categories with sex, 

education, and eWBV as covariates. Results with site as an additional covariate are also 

provided. Associations were considered significant at p < .05. 

 

Network Contributions. PLS identifies inter-regional connectivity patterns that differ by 

group and/or covary with AI density. To examine network-level effects for each analysis, we 

calculated network contributions to each PLS-derived functional connectivity pattern (see Setton 

& Mwilambwe-Tshilobo et al., Under Revision; Mwilambwe-Tshilobo et al., 2019). Positive and 

negative weighted adjacency matrices were constructed from the PLS pattern: nodes represented 

parcels defined by either the individual parcellation or a unilateral segment of the hippocampus 

(i.e., left AHIPP), while edges represented the thresholded bootstrap ratio of each pairwise 
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connection. Network-level contributions were then quantified by 1) assigning each parcel 

according to the network assignment reported by Yeo et al. (2011) or to a hippocampal ‘network’ 

(left and right AHIPP, left and right PHIPP), 2) taking the average of all connection weights in a 

given network and calculating within- and between-network connectivity to yield a 3 x 8 matrix 

(LIM-A, AHIPP, PHIPP x LIM-A, LIM-B, DN-A, DN-B, DN-C, TEMP-PAR, AHIPP, PHIPP), 

and 3) permutation testing for significance. For each of 10,000 permutations, network labels 

were shuffled, and mean within-and between-network connectivity estimates were recalculated. 

After 10,000 iterations, an empirical null sampling distribution was created. Within- and 

between-network connections were deemed significant when the proportion of times the value of 

the sampling distribution was greater than or equal to the empirical value did not exceed .05 (See 

Figure 1 for example).  

  



 

 

140 

References 

Addis, D. R., Roberts, R. P., & Schacter, D. L. (2011). Age-related neural changes in 

autobiographical remembering and imagining. Neuropsychologia, 49(13), 3656–3669. 

https://doi.org/10.1016/j.neuropsychologia.2011.09.021 

Adnan, A., Barnett, A., Moayedi, M., McCormick, C., Cohn, M., & McAndrews, M. P. (2016). 

Distinct hippocampal functional networks revealed by tractography-based parcellation. 

Brain Structure and Function, 221(6), 2999–3012. https://doi.org/10.1007/s00429-015-

1084-x 

Andrews-Hanna, J. R., Grilli, M. D., Irish, M., Grilli, M. D., & Irish, M. (2019). A Review and 

Reappraisal of the Default Network in Normal Aging and Dementia. Oxford Research 

Encyclopedia of Psychology. https://doi.org/10.1093/acrefore/9780190236557.013.384 

Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). 

Functional-Anatomic Fractionation of the Brain’s Default Network. Neuron, 65(4), 550–

562. https://doi.org/10.1016/j.neuron.2010.02.005 

Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-

generated thought: Component processes, dynamic control, and clinical relevance. Annals 

of the New York Academy of Sciences, 1316(1), 29–52. 

https://doi.org/10.1111/nyas.12360 

Beck, A.T., Steer, R.A., & Brown, G.K. (1996). Manual for the Beck Depression Inventory-II. 

San Antonio, TX: Psychological Corporation 

Benoit, R. G., & Schacter, D. L. (2015). Specifying the core network supporting episodic 

simulation and episodic memory by activation likelihood estimation. Neuropsychologia, 75, 

450–457. https://doi.org/10.1016/j.neuropsychologia.2015.06.034 

Blaizot, X., Mansilla, F., Insausti, A. M., Constans, J. M., Salinas-Alamán, A., Pró-Sistiaga, P., 

… Insausti, R. (2010). The human parahippocampal region: I. temporal pole 



 

 

141 

cytoarchitectonic and MRI correlation. Cerebral Cortex, 20(9), 2198–2212. 

https://doi.org/10.1093/cercor/bhp289 

Braga, R. M., & Buckner, R. L. (2017). Parallel Interdigitated Distributed Networks within the 

Individual Estimated by Intrinsic Functional Connectivity. Neuron, 95(2), 457-471.e5. 

https://doi.org/10.1016/j.neuron.2017.06.038 

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: 

Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 

1124, 1–38. https://doi.org/10.1196/annals.1440.011 

Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., & Snyder, A. Z. 

(2004). A unified approach for morphometric and functional data analysis in young, old, 

and demented adults using automated atlas-based head size normalization: Reliability and 

validation against manual measurement of total intracranial volume. NeuroImage, 23(2), 

724–738. https://doi.org/10.1016/j.neuroimage.2004.06.018 

Calabro, F. J., Murty, V. P., Jalbrzikowski, M., Tervo-Clemmens, B., & Luna, B. (2020). 

Development of Hippocampal-Prefrontal Cortex Interactions through Adolescence. 

Cerebral Cortex, 30(3), 1548–1558. https://doi.org/10.1093/cercor/bhz186 

Campbell, K. L., Grigg, O., Saverino, C., Churchill, N., & Grady, C. L. (2013). Age differences 

in the intrinsic functional connectivity of default network subsystems. Frontiers in Aging 

Neuroscience, 5(NOV), 1–12. https://doi.org/10.3389/fnagi.2013.00073 

Campbell, K. L., & Schacter, D. L. (2016). Ageing and the resting state: is cognition obsolete? 

Language, Cognition and Neuroscience, 32(6), 661–668. 

https://doi.org/10.1080/23273798.2016.1227858 

Chan, M. Y., Na, J., Agres, P. F., Savalia, N. K., Park, D. C., & Wig, G. S. (2018). 

Socioeconomic status moderates age-related differences in the brain’s functional network 

organization and anatomy across the adult lifespan. Proceedings of the National Academy of 



 

 

142 

Sciences of the United States of America, 115(22), E5144–E5153. 

https://doi.org/10.1073/pnas.1714021115 

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased 

segregation of brain systems across the healthy adult lifespan. Proceedings of the National 

Academy of Sciences of the United States of America, 111(46), E4997–E5006. 

https://doi.org/10.1073/pnas.1415122111 

Chong, M., Bhushan, C., Joshi, A. A., Choi, S., Haldar, J. P., Shattuck, D. W., … Leahy, R. M. 

(2017). Individual parcellation of resting fMRI with a group functional connectivity prior. 

NeuroImage, 156(May), 87–100. https://doi.org/10.1016/j.neuroimage.2017.04.054 

Conway, M. A., & Pleydell-Pearce, C. W. (2000). The construction of autobiographical 

memories in the self-memory system. Psychological Review, 107(2), 261–288. 

https://doi.org/10.1037//0033-295X. 

Cooper, R. A., & Ritchey, M. (2019). Cortico-hippocampal network connections support the 

multidimensional quality of episodic memory. ELife, 8, 1–22. 

https://doi.org/10.7554/eLife.45591 

Cox, R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic 

resonance neuroimages. Computers and Biomedical Research, 29, 162-173. 

 

Cox, R.W. & Hyde, J.S. (1997). Software tools for analysis and visualization of FMRI Data. 

NMR in Biomedicine, 10, 171-178. 

Damoiseaux, J. S. (2017). Effects of aging on functional and structural brain connectivity. 

NeuroImage, 160(February), 32–40. https://doi.org/10.1016/j.neuroimage.2017.01.077 

Damoiseaux, J. S., Viviano, R. P., Yuan, P., & Raz, N. (2016). Differential effect of age on 

posterior and anterior hippocampal functional connectivity. NeuroImage, 133, 468–476. 

https://doi.org/10.1016/j.neuroimage.2016.03.047 



 

 

143 

 Eslinger, P. J. (1998). Autobiographical Memory After Temporal Lobe Lesions. Neurocase, 

4(6), 481–495. https://doi.org/10.1080/13554799808410641 

Finn, E. S. (2021). Is it time to put rest to rest? Trends in Cognitive Sciences, 25(12), 1021–1032. 

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., 

Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, 

A.M., 2002. Whole brain segmentation: automated labeling of neuroanatomical structures 

in the human brain. Neuron 33, 341-355. 

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-Mental State” A practical 

method for grading the cognitive state of patients for the clinician. Journal of Psychiatric 

Research, 12, 189–198. http://doi.org/10.1016/0022-3956(75)90026-6 

Gazzaley, A., Cooney, J. W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression 

deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 

1298–1300. https://doi.org/10.1038/nn1543 

Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A brain-wide 

study of age-related changes in functional connectivity. Cerebral Cortex, 25(7), 1987–1999. 

https://doi.org/10.1093/cercor/bhu012 

Geerligs, L., Tsvetanov, K. A., Cam-CAN, & Henson, R. N. (2017). Challenges in measuring 

individual differences in functional connectivity using fMRI: The case of healthy aging. 

Human Brain Mapping, 38(8), 4125–4156. https://doi.org/10.1002/hbm.23653 

Gilboa, A., & Marlatte, H. (2017). Neurobiology of Schemas and Schema-Mediated Memory. 

Trends in Cognitive Sciences, 21(8), 618–631. https://doi.org/10.1016/j.tics.2017.04.013 

Gilmore, A. W., Quach, A., Kalinowski, S. E., Gotts, S. J., Schacter, D. L., & Martin, A. (2021). 

Dynamic Content Reactivation Supports Naturalistic Autobiographical Recall in Humans. 

The Journal of Neuroscience  : The Official Journal of the Society for Neuroscience, 41(1), 

153–166. https://doi.org/10.1523/JNEUROSCI.1490-20.2020 



 

 

144 

Gold, S., Christian, B., Arndt, S., Zeien, G., Cizadlo, T., Johnson, D.L., Flaum, M., & 

Andreasen, N.C. (1998). Functional MRI statistical software packages: a comparative 

analysis. Human Brain Mapping, 6, 73-84. 

Irish, M., & Piguet, O. (2013). The pivotal role of semantic memory in remembering the past and 

imagining the future. Frontiers in Behavioral Neuroscience, 7(April), 27. 

https://doi.org/10.3389/fnbeh.2013.00027 

Jack, C. R., Twomey, C. K., Zinsmeister, A. R., Sharbrough, F. W., Petersen, R. C., & Cascino, 

G. D. (1989). Anterior temporal lobes and hippocampal formations: Normative volumetric 

measurements from MR images in young adults. Radiology, 172, 549–554. 

Kahn, I., Andrews-Hanna, J. R., Vincent, J. L., Snyder, A. Z., & Buckner, R. L. (2008). Distinct 

cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic 

functional connectivity. Journal of Neurophysiology, 100(1), 129–139. 

https://doi.org/10.1152/jn.00077.2008 

Kong, R., Li, J., Orban, C., Sabuncu, M. R., Liu, H., Schaefer, A., … Yeo, B. T. T. (2019).  

Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, 

Personality, and Emotion. Cerebral Cortex, 29(6), 2533–2551.  

https://doi.org/10.1093/cercor/bhy123 

Kundu, P., Brenowitz, N. D., Voon, V., Worbe, Y., Vértes, P. E., Inati, S. J., … Bullmore, E. T. 

(2013). Integrated strategy for improving functional connectivity mapping using multiecho 

fMRI. Proceedings of the National Academy of Sciences of the Unites States of America, 

110(40), 16187–16192. http://doi.org/10.1073/pnas.1301725110 

Kundu, P., Santin, M. D., Bandettini, P. a., Bullmore, E. T., & Petiet, A. (2011). Differentiating 

BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. NeuroImage, 60, 

1759–1770.  

Kundu, P., Voon, V., Balchandani, P., Lombardo, M. V., Poser, B. A., & Bandettini, P. A. 

(2017). Multi-echo fMRI: A review of applications in fMRI denoising and analysis of 



 

 

145 

BOLD signals. NeuroImage, 154(March), 59–80. 

https://doi.org/10.1016/j.neuroimage.2017.03.033 

Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and 

computational bases of semantic cognition. Nature Reviews Neuroscience, 18, 42–55. 

https://doi.org/10.1038/nrn.2016.150 

Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. (2002). Aging and 

autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and 

Aging, 17(4), 677–689. https://doi.org/10.1037//0882-7974.17.4.677 

Lockrow, A.W., Setton, R., Spreng, K.A.P, Sheldon, S., Turner, G.R., & Spreng, R.N. (In 

preparation). Taking stock of the past: A comprehensive psychometric evaluation of the 

Autobiographical Interview. 

Martinelli, P., Sperduti, M., Devauchelle, A. D., Kalenzaga, S., Gallarda, T., Lion, S., … Piolino, 

P. (2013). Age-related changes in the functional network underlying specific and general 

autobiographical memory retrieval: A pivotal role for the anterior cingulate cortex. PLoS 

ONE, 8(12), 1–11. https://doi.org/10.1371/journal.pone.0082385 

McCormick, C., Barry, D. N., Jafarian, A., Barnes, G. R., & Maguire, E. A. (2020). VmPFC 

Drives Hippocampal Processing during Autobiographical Memory Recall Regardless of 

Remoteness. Cerebral Cortex, 30(11), 5972–5987. https://doi.org/10.1093/cercor/bhaa172 

McCormick, C., St-Laurent, M., Ty, A., Valiante, T. A., & McAndrews, M. P. (2015). 

Functional and effective hippocampal-neocortical connectivity during construction and 

elaboration of autobiographical memory retrieval. Cerebral Cortex, 25(5), 1297–1305. 

https://doi.org/10.1093/cercor/bht324 

McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data:  

Applications and advances. NeuroImage, 23, 250–263.  

https://doi.org/10.1016/j.neuroimage.2004.07.020 



 

 

146 

McIntosh, A.R., Mišić, B. (2013). Multivariate statistical analyses for neuroimaging data.  

Annual Review of Psychology, 64(1), 499–525. https://doi.org/10.1146/annurev- psych-  

113011- 143804.  

Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and beyond: 

The hippocampus and neocortex in transformation. Annual Review of Psychology, 67, 105–

134. https://doi.org/10.1146/annurev-psych-113011-143733 

Murty, V. P., Calabro, F., & Luna, B. (2016). The role of experience in adolescent cognitive 

development: Integration of executive, memory, and mesolimbic systems. Neuroscience 

and Biobehavioral Reviews, 70, 46–58. https://doi.org/10.1016/j.neubiorev.2016.07.034 

Mwilambwe-Tshilobo, L., Ge, T., Chong, M., Ferguson, M. A., Misic, B., Burrow, A. L., …  

Spreng, R. N. (2019). Loneliness and meaning in life are reflected in the intrinsic network  

architecture of the brain. Social Cognitive and Affective Neuroscience, 14(4), 423–433.  

https://doi.org/10.1093/scan/nsz021 

Palombo, D. J., Sheldon, S., & Levine, B. (2018). Individual differences in autobiographical 

memory. Trends in Cognitive Sciences, 1–15. https://doi.org/10.1016/j.tics.2018.04.007 

Park, D.C. & Reuter-Lorenz, P. (2009). The adaptive brain  : Aging and neurocognitive 

scaffolding. Ann Rev Psychol, 60, 173–196. 

https://doi.org/10.1146/annurev.psych.59.103006.093656 

Persichetti, A. S., Denning, J. M., Gotts, S. J., & Martin, A. (2021). A data-driven functional 

mapping of the anterior temporal lobes. The Journal of Neuroscience, (May), JN-RM-0456-

21. https://doi.org/10.1523/jneurosci.0456-21.2021 

Petrican, R., Palombo, D. J., Sheldon, S., & Levine, B. (2020). The neural dynamics of 

individual differences in episodic autobiographical memory. ENeuro, 7(2). 

https://doi.org/10.1523/ENEURO.0531-19.2020 



 

 

147 

Piolino, P., Desgranges, B., Benali, K., & Eustache, F. (2002). Episodic and semantic remote 

autobiographical memory in ageing. Memory (Hove, England), 10(4), 239–257. 

https://doi.org/10.1080/09658210143000353 

Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of 

the human hippocampus. Trends in Cognitive Sciences, 17(5), 230–240. 

https://doi.org/10.1016/j.tics.2013.03.005 

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious 

but systematic correlations in functional connectivity MRI networks arise from subject 

motion. NeuroImage, 59(3), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018 

Raimondo, L., Oliveira, ĺcaro A. F., Heij, J., Priovoulos, N., Kundu, P., Leoni, R. F., & van der 

Zwaag, W. (2021). Advances in resting state fMRI acquisitions for functional 

connectomics. NeuroImage, 243(February). 

https://doi.org/10.1016/j.neuroimage.2021.118503 

Ranganath, C., & Ritchey, M. (2012). Two cortical systems for memory- guided behaviour. 

Nature Reviews Neuroscience, 13. https://doi.org/10.1038/nrn3338 

Raykov, P. P., Keidel, J. L., Oakhill, J., & Bird, C. M. (2021). The importance of semantic 

network brain regions in integrating prior knowledge with an ongoing dialogue. BioRxiv, 

(1), 276683. Retrieved from 

https://www.biorxiv.org/content/10.1101/276683v3%0Ahttps://www.biorxiv.org/content/10

.1101/276683v3.abstract 

Renoult, L., Irish, M., Moscovitch, M., & Rugg, M. D. (2019). From Knowing to Remembering: 

The Semantic–Episodic Distinction. Trends in Cognitive Sciences, 23(12), 1041–1057. 

https://doi.org/10.1016/j.tics.2019.09.008 

Reuter, M., Schmansky, N.J., Rosas, H.D., Fischl, B. 2012. Within-Subject Template Estimation 

for Unbiased Longitudinal Image Analysis. Neuroimage 61 (4), 1402-

1418. http://reuter.mit.edu/papers/reuter-long12.pdf 



 

 

148 

Robin, J., & Moscovitch, M. (2017). Details, gist and schema: hippocampal–neocortical 

interactions underlying recent and remote episodic and spatial memory. Current Opinion in 

Behavioral Sciences, 17, 114–123. https://doi.org/10.1016/j.cobeha.2017.07.016 

Rugg, M. D., & Vilberg, K. L. (2013). Brain networks underlying episodic memory retrieval. 

Current Opinion in Neurobiology, 23(2), 255–260. 

https://doi.org/10.1016/j.conb.2012.11.005 

Salami, A., Pudas, S., & Nyberg, L. (2014). Elevated hippocampal resting-state connectivity 

underlies deficient neurocognitive function in aging. Proceedings of the National Academy 

of Sciences of the United States of America, 111(49), 17654–17659. 

https://doi.org/10.1073/pnas.1410233111 

Salami, A., Wahlin, A., Kaboodvand, N., Lundquist, A., & Nyberg, L. (2016). Longitudinal 

Evidence for Dissociation of Anterior and Posterior MTL Resting-State Connectivity in 

Aging: Links to Perfusion and Memory. Cerebral Cortex, 26(10), 3953–3963. 

https://doi.org/10.1093/cercor/bhw233 

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., … Yeo, B. 

T. T. (2018). Local-global parcellation of the human cerebral cortex from intrinsic 

functional connectivity MRI. Cerebral Cortex, 28, 3095–3114. 

https://doi.org/10.1093/cercor/bhx179 

Setton, A. R., Mwilambwe-Tshilobo, L., Girn, M., Lockrow, A. W., Baracchini, G., Lowe, A. J., 

… Spreng, R. N. (Under Revision). Age differences in the Functional Architecture of the 

Human Brain. Cerebral Cortex. 

Setton, R., Sheldon, S., Turner, G.R., & Spreng, R.N. (Under Revision). Anterior hippocampus 

and temporal pole volumes are associated with episodic autobiographical memory in 

healthy older adults. Hippocampus. 



 

 

149 

Sheldon, S., Farb, N., Palombo, D. J., & Levine, B. (2016). Intrinsic medial temporal lobe 

connectivity relates to individual differences in episodic autobiographical remembering. 

Cortex, 74, 206–216. https://doi.org/10.1016/j.cortex.2015.11.005 

Sheldon, S., Fenerci, C., & Gurguryan, L. (2019). A neurocognitive perspective on the forms and 

functions of autobiographical memory retrieval. Frontiers in Systems Neuroscience, 

13(January), 1–8. https://doi.org/10.3389/fnsys.2019.00004 

Sheldon, S., & Levine, B. (2016). The role of the hippocampus in memory and mental 

construction. Annals of the New York Academy of Sciences, 1369(1), 76–92. 

https://doi.org/10.1111/nyas.13006 

Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–

155. http://doi.org/10.1002/hbm.10062 

Spreng, R. N., Mar, R. a., & Kim, A. S. N. (2009). The Common Neural Basis of 

Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default 

Mode: A Quantitative Meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510. 

https://doi.org/10.1162/jocn.2008.21029 

Spreng, R.N., Setton, R., Alter, U., Cassidy, B.N., Darboh, B., DuPre, E., Kantarovich, K., 

Lockrow, A.W., Mwilambwe-Tshilobo, L., Luh, W., Jundu, P., & Turner, G.R. (Under 

Revision). Neurocognitive aging data release with behavioral, structural, and multi-echo 

functional MRI measures. 

Spreng, R. N., Stevens, W. D., Viviano, J. D., & Schacter, D. L. (2016). Attenuated 

anticorrelation between the default and dorsal attention networks with aging: evidence from 

task and rest. Neurobiology of Aging, 45, 149–160. 

https://doi.org/10.1016/j.neurobiolaging.2016.05.020 

Stark, S. M., Frithsen, A., & Stark, C. E. L. (2021). Age-related alterations in functional 

connectivity along the longitudinal axis of the hippocampus and its subfields. 

Hippocampus, 31(1), 11–27. https://doi.org/10.1002/hipo.23259 



 

 

150 

Stevens, W. D., & Spreng, R. N. (2014). Resting-state functional connectivity MRI reveals 

active processes central to cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 

5(2), 233–245. https://doi.org/10.1002/wcs.1275 

Svoboda, E., McKinnon, M. C., & Levine, B. (2006). The functional neuroanatomy of 

autobiographical memory: A meta-analysis. Neuropsychologia, 44(12), 2189–2208. 

https://doi.org/10.1016/j.neuropsychologia.2006.05.023 

Viard, A., Piolino, P., Desgranges, B., Chételat, G., Lebreton, K., Landeau, B., … Eustache, F. 

(2007). Hippocampal activation for autobiographical memories over the entire lifetime in 

healthy aged subjects: An fMRI study. Cerebral Cortex, 17(10), 2453–2467. 

https://doi.org/10.1093/cercor/bhl153 

Wig, G. S. (2017). Segregated Systems of Human Brain Networks. Trends in Cognitive Sciences, 

21(12), 981–996. https://doi.org/10.1016/j.tics.2017.09.006 

Xie L., Wisse E.M.L., Manjon V.J. Wang H., Das S.R., Wolk A.D., Yushkevich A.P. 2016. 

Accounting for the Confound of Meninges in Segmenting Entorhinal and Perirhinal 

Cortices in T1-weighted MRI. Athens, Greece. Medical Image Computing and Computer-

Assisted Intervention–MICCAI 2016(pp. 564-571). Springer International Publishing.  

Yeo, B. T. T., Kirienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead,  

M., . . . Buckner, R. L. (2011). The organization of the human cerebral cortex  

estimated by intrinsic functional connectivity. J Neurophysiol, 106, 1125-1165.  

doi:10.1152/jn.00338.2011. 

Yesavage, J. A., & Brink, T. L. (1983). Development and validation of geriatric depression 

screening scale: A preliminary report. Journal of Psychiatric Research, 80(1), 37–49. 

http://doi.org/10.2307/1957152 

Yushkevich, P. A., Pluta, J. B., Wang, H., Xie, L., Ding, S. L., Gertje, E. C., … Wolk, D. A. 

(2015). Automated volumetry and regional thickness analysis of hippocampal subfields and 



 

 

151 

medial temporal cortical structures in mild cognitive impairment. Human Brain Mapping, 

36(1), 258–287. https://doi.org/10.1002/hbm.22627 

Zajac, L., Koo, B.-B., Tripodis, Y., Mian, A., Steinberg, E., Mez, J., … Killiany, R. (2020). 

Hippocampal Resting-State Functional Connectivity Patterns are More Closely Associated 

with Severity of Subjective Memory Decline than Whole Hippocampal and Subfield 

Volumes. Cerebral Cortex Communications, 1(1), 1–14. 

https://doi.org/10.1093/texcom/tgaa019 

Zheng, A., Montez, D. F., Marek, S., Gilmore, A. W., Newbold, D. J., Laumann, T. O., … 

Dosenbach, N. U. F. (2021). Parallel hippocampal-parietal circuits for self- and goal-

oriented processing. Proceedings of the National Academy of Sciences, 118(34). 

https://doi.org/10.1073/pnas.2101743118/-/DCSupplemental.Published 

 
  



 

 

152 

Chapter 5: General Discussion 

 Across three studies, we found that older adult brains show global and local patterns of 

losses and gains. In Study 1, we quantified BOLD dimensionality as a metric of global network 

integration and found that dimensionality was lower in older adults, signaling greater integration. 

Global integration in older adults emerged as reduced large-scale network structure across the 

brain and increased between-network connectivity specific to visual, somatomotor, and dorsal 

attention networks. In Study 2, posterior hippocampus volumes were smaller in older adults but 

were not related to worse cognition. Rather, episodic autobiographical memory (AM) was related 

to anterior hippocampus and temporal pole volumes in older adults. Temporal pole volumes in 

younger adults were associated with general semantic memory abilities. Study 2 also revealed 

that sex differences in brain structure, present in younger adults, pronounced sex differences in 

brain-behavior relationships by older age. In Study 3, older adult resting-state functional 

connectivity between temporal lobe structures and the default network was marked by a distinct 

pattern of integration, and was linked to reduced posterior hippocampal volumes. An age-

invariant pattern dissociated connectivity related to episodic from semantic AM across 

individuals. Variation in the balance of episodic and semantic details, which systematically shifts 

with age, impacted functional connectivity. Relative to older adults, younger adults exhibited a 

unique pattern of functional connectivity associated with recollection overall. In sum, we 

demonstrate that global properties of older brain reorganization, even if they emerge in specific 

network interactions, may not be sufficient to characterize, and thus evaluate, an impact on aging 

cognition. Local age-related brain differences in structure, linked to brain differences in function, 

were found to play a role in supporting cognition that gradually wanes over the lifespan. Yet, 

functional circuits related to AM were largely preserved. These findings suggest that older adult 

brains undergo robust functional reorganization at both global and local levels. They also offer 

preliminary evidence for adaptive structural change, as either an antecedent or byproduct of 

functional reorganization, that may sustain fluid cognitive function in older age. 

Herein lies the new perspective. Aging is a form of plasticity that involves both gains and 

losses that need to be studied together to fully appreciate whether and how they offset one 

another. Adaptive plasticity is not a new concept, but inquiry into healthy aging needs to look 

beyond mechanisms of decline and toward sustained function. Doing so requires looking at the 

brain as a whole unit and zooming in to determine the particular vulnerability or resilience of 
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different areas. It also involves moving away from using younger adults as the reference point 

and appreciating the brain as a dynamical system, constantly updating and adjusting in the face 

of change. In this way, we may uncover new insights about how to leverage age-related plasticity 

and how to optimize quality of life in the elderly. 

 

Adaptation is More Than a Response to Decline 

Current accounts of adaptive plasticity explain brain aging as a normative response to 

‘challenge’ and late life development (Park & Reuter-Lorenz, 2009; Fabiani, 2012). Specifically, 

STAC predicts that neural processing inefficiencies, more prominent in older age, may spark 

functional reorganization and contribute to dedifferentiation via scaffolding. Scaffolding, or 

integrating previously unassociated brain regions, is viewed as adaptive when it compensates for 

declining cognition. GOLDEN views age-related decreases to executive function, and associated 

functional change, as developmental continuity, or a shift in the distribution of individual 

processing capacity. Both STAC and GOLDEN’s stance on age-related change is inherently one 

of adapting to inefficiency.  

BOLD dimensionality, a novel metric of large-scale network differentiation, was found to 

systematically decrease across the lifespan. This was in line with prior work illustrating 

decreased network segregation with age (Chan et al., 2014). Functional integration thus appears 

to be a developmental trend that starts early and continues on into late life, in support of 

GOLDEN. However, we found no evidence to suggest that integration was related to worse 

cognition. In fact, functional integration in early adulthood is predicted to aid in the assembly 

and refinement of large-scale brain networks to support complex cognition (Kundu et al., 2018). 

We provided cursory results suggesting that reduced BOLD dimensionality was related to better 

executive function independent of age (but see Appendix A). Continuity of functional integration 

into older age therefore did not reflect a steady trajectory of cognitive decline. However, global 

patterns of brain function may be too far-removed to characterize their impact on cognitive 

function.  

More targeted investigation of age differences in brain-behavior relationships in Studies 2 

and 3 demonstrated that temporal pole functional connectivity is associated with episodic and 

semantic AM in both younger and older adults, yet temporal pole structure is uniquely associated 

with episodic AM in older adults. This occurred in the presence of posterior hippocampal grey 
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matter atrophy and reduced hippocampal functional differentiation in older adults. On the 

surface, these results support STAC: structural and functional integrity of the hippocampus may 

decline, requiring intact regions, such as the temporal pole, to support episodic function. 

However, posterior hippocampus volumes were not related to episodic AM in older adults, 

suggesting that hippocampal atrophy alone could not explain the temporal pole volume 

association. Age-related alterations to hippocampal functional connectivity cannot be ruled out 

as an impetus, but no evidence was found to suggest that such alterations represented deficiency. 

Moreover, temporal pole functional connectivity with regions throughout the distributed default 

network was associated with episodic AM independent of age. Together these results underscore 

the important role that the temporal pole plays in AM circuits, a role that may eventually be 

engrained in structure with repeated use over time. Aside from its involvement in semantic 

processing (e.g., Lambon Ralph et al., 2017), the temporal pole is also highly associated with 

social and affective processing (Olson et al., 2007; Herlin et al., 2021). While speculative, more 

prevalent brain-behavior relationships with the temporal pole in older adults may be linked to 

concomitant socio-motivational shifts toward prioritizing meaningful interactions (Carstensen, 

2006). As AM is a fundamental part of human connection (Bluck & Alea, 2011), greater 

temporal pole involvement may be socially and emotionally reinforcing. The temporal pole grey 

matter volume association with episodic AM may specifically reflect a honed ability to navigate 

between internal mentation and an external social world to appropriately tailor AM recollections 

in social settings. This would suggest an adaptive role for age-related reorganization in response 

to other cognitive gains. 

STAC and GOLDEN are comprehensive frameworks with empirical support for a 

number of age-related brain and cognition changes. However, adaptation may be more than a 

normative response to decline. 

 

Functional Integration as a Principle of Adaptive Brain Reorganization in Healthy Aging 

In Study 1, younger adult BOLD dimensionality was strongly related to modularity, 

suggesting that integration early on in life facilitates network structure. This association was not 

present in older adults. In fact, we observed broad dedifferentiation of visual, somatomotor, and 

dorsal attention networks with other networks in older adults. Thus, the organizing principle of 

functional integration may change across the lifespan. 
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The AM circuit is an appropriate example for why this integration may be viewed as 

adaptive. The notion of adaptive plasticity has been posed within the context of age-related 

cellular changes to the hippocampus (Gray & Barnes, 2015). For example, the cholinergic drive 

onto principal hippocampal neurons of aged compared to young rodents is impaired in dentate 

gyrus, CA3, and CA1. The expected consequence would be less excitable neurons. Aged rodents 

also have larger gap junctions between principal hippocampal neurons and dentate gyrus, CA3, 

and CA1, which would increase neuronal excitability. However, single-unit firing rates are 

preserved. These two opposing age-related changes may work in tandem to balance network 

excitability. Extrapolating outward, hippocampal grey matter loss in aging may impair episodic 

memory function (e.g., Driscoll et al., 2003). Reduced specialization of hippocampus may impair 

episodic memory function (e.g., Langnes et al., 2020). In the same way, reduced specialization of 

temporal pole may impair semantic memory function. As reported in the studies here, older 

adults had greater semantic AM and temporal pole volumes were associated with more episodic 

AM in older adults. Temporal pole was dedifferentiated from its corresponding sub-network in 

older adults, but functional connectivity in association with AM was largely comparable to 

younger adults. 

Differentiation of regions and brain networks, then, may no longer be a relevant principle 

to older adult functional organization and how it supports ongoing cognitive abilities. A similar 

idea has been proposed by the default-executive coupling hypothesis of aging (DECHA; Turner 

& Spreng, 2015; Spreng & Turner, 2019), which relates findings of increased lateral prefrontal 

activity to reduced suppression of the default network (which includes the hippocampus) during 

externally-directed task fMRI. DECHA draws on evidence that the default network is more 

coupled with executive networks in older adults at rest. This effectively makes the default 

network ‘stickier’ and less likely to decouple from executive networks during task, interfering 

with and impairing task performance. Unlike other models of neurocognitive aging, DECHA 

predicts that this form of integration may benefit goal-directed cognition that calls on prior 

knowledge (crystallized cognition, see below), which is supported by the default network. In 

other words, dedifferentiation of brain networks may support cognitive gains in older age.  
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Crystallized Capacities as a Principle of Adaptive Cognitive Reorganization in Healthy 

Aging 
 The focus of the present thesis was to characterize brain-behavior relationships in the 

whole-brain and in a smaller system of regions related to AM. At each turn, we investigated 

relationships to semantic memory: a domain-general composite score of semantic processing in 

Study 1, and semantic AM in Studies 2 and 3. The motivation was to understand what global and 

specific age-related brain change may support a robust cognitive gain in older adulthood. Global 

brain change, as in Study 1, may be too coarse to inform semantic memory maintenance with 

age. However, in Study 3 we observed that functional connectivity between the temporal pole 

and regions of lateral temporal cortex were related to systematic variation in semantic AM across 

the lifespan. As older adults’ recollections shift to contain more semantic detail, this pattern 

becomes more prominent. With respect to AM, the predominant view is that greater semantic 

recollection is a compensation for reduced access to episodic AM (e.g., Devitt et al., 2017). As 

such, age differences in brain-behavior relationships to semantic AM are less characterized. 

However, crystallized abilities continue to shape cognition in older adults. As with functional 

integration, a reliance on these cognitive gains may be adaptive, reflecting more than a response 

to fluid decline. 

It has been suggested that memory is an adaptive constructive process (Schacter, 2012). 

Because memories are inherently reconstructive, recollections are colored by the views and 

beliefs we have as individuals when we recall them. Such impressions may occur as early as 

encoding, where attitudes in response to stimuli shape the subsequent information remembered 

(Bartlett, 1932). Errors and distortions are thus a natural consequence of an imperfect, dynamic 

system that adapts to a changing individual. In other words, memory is prone to error 

independent of age because our experiences and identities, malleable as they are, constrain how 

we remember. Development continues past the age of 65, a lifetime of experiences alters our 

outlook, and reduced cognitive demand refines the cognitive abilities needed for everyday 

function. By definition, memory should change with age. Yet, older adult memory is often 

evaluated against younger adult memory. It is possible that a shift toward greater reliance on 

semantic memory reflects an updated “working self” (Conway & Pleydell-Pearce, 2000). Several 

lines of empirical research suggest that the semanticized autobiographical recollections of older 

adults contain a distinct verbal cadence that expresses a set of discourse goals including personal 
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narrative, reminiscence, and identity establishment (Boden & Bielby, 1983, 1986; Coupland & 

Coupland, 1995). Semantic memory, which preserves decontextualized schemas to extract the 

most important parts of memories with fewer errors, is vital for communication. Indeed, a 

proposed function of AM is communication (Hayes et al., 2018). In light of a socioemotional 

shift toward nurturing meaningful relationships (Carstensen, 2006), the more semantic 

autobiographical recollections of older adults may serve an adaptive communicative function. 

Crystallized abilities, more broadly, confer benefits beyond social cognition. 

Accumulated knowledge and experience over the lifespan improves decision-making by 

improving literacy and attenuating temporal discounting (Li et al., 2013). Strategies to improve 

these abilities in younger adults and neuropsychiatric populations is an active area of inquiry. For 

example, episodic future thinking has been proposed to reduce rates of temporal discounting in 

younger adults (Peters & Buchel, 2010; Benoit et al., 2011; Sasse et al., 2015). This form of 

episodic simulation appears to be less effective at improving discount rates in older adults, 

except for individuals with higher fluid abilities (Sasse et al., 2017). Although individual 

differences in fluid and crystallized abilities are important considerations, interventions that rest 

on fluid abilities may not be as relevant in older age. Indeed, semantic future thinking has been 

shown to reduce discounting in amnesics with lesions to the medial temporal lobe (Palombo et 

al., 2016). This may also be the case for older adults who experience significant functional and 

structural change to the temporal lobes. Crystallized cognitive gains may therefore be able to 

support fluid losses in older age. 

 

Leveraging Functional Integration and Crystallized Capacities in the Aging Brain 

Functional network integration and crystallized abilities may support fluid cognition in 

older age, suggesting that neurocognitive aging may, to some extent, reflect adaptive plasticity. 

Studies 2 and 3 demonstrated that temporal pole structure and function can support episodic AM. 

It is also conceivable that functional integration and crystallized cognition can together support 

fluid abilities. Accrued experience and updated beliefs shape perception, and necessarily, brain 

activity and intrinsic functional organization (Yeshurun et al., 2017; Stevens & Spreng, 2014). 

These cognitive shifts perhaps help to establish an integrated network architecture. A critical 

future direction will be to test adaptive plasticity and determine how these two gains may 

together support fluid processes. 
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DECHA provides a framework with which to test adaptive plasticity. Age-related 

increases in default-executive coupling may impede performance on a task in which these two 

networks are more efficiently anticorrelated, such as executive function tasks (Spreng et al., 

2016). However, if default-executive coupling is beneficial for goal-directed cognition that 

draws on crystallized abilities, one exciting question is whether incorporating crystallized 

cognition (i.e., semantic memory) into an executive task can boost performance. Initial evidence 

suggests that doing so offers a small but significant advantage to younger adults (Spreng et al., 

2014). As older adults exhibit declines to executive functioning and more default-executive 

coupling, one might predict a larger effect. Relatedly, crystallized cognition and default-

executive coupling have been shown to benefit divergent thinking in older adults (Adnan et al., 

2019). Such evidence would suggest that harnessing older adult brain integration may be the 

route to further plastic change, such as supporting fluid cognition losses. A valuable avenue for 

future research will also be to directly ask how age-related functional integration and crystallized 

abilities relate to real-world functioning. Understanding how these principles of brain 

reorganization shape and are shaped by an individual’s changing goals and motivations will 

illuminate a putative functional role for these brain changes.  

Changing motifs of brain organization over the lifespan would necessitate altering the 

approach to how we understand and evaluate the aging brain. Longitudinal research remains 

invaluable, especially to understand trajectories and mechanisms of age change. Cross-sectional 

studies may be limiting, but they also force us to examine relationships within older adults alone. 

Doing so has enabled us to glean that the brain structure and function that supports cognition in 

early adulthood may be fundamentally different by older adulthood. Moreover, it behooves the 

field of cognitive neuroscience to recognize the importance of the human brain as an entity 

steeped in a social world that reinforces and discourages behavior. Without considering how the 

aging brain navigates its changing social environment, we are bound to view it from the narrow 

lens of decline. In this view, we should re-evaluate whether young adults are the appropriate 

reference point to elucidate older adult neurocognition. 

 

The Importance of Sex in Healthy Aging 

 A final consideration made clear by the findings presented here is the need for continued 

inquiry into how and why sex impacts brain-behavior relationships later in life. Sex differences 
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in brain and behavior are robustly present in younger adults. For example, males and females 

show diverging proclivities for spatial and verbal memory (e.g., Weiss et al., 2003), and sexual 

dimorphism in grey matter volume is evident throughout the brain (e.g., Kiesow et al., 2020). 

Although our findings require replication in a larger sample, in Study 2 we observed that brain-

behavior associations are less different among the sexes in younger adulthood. One possibility is 

that sex differences become more pronounced with age, when distinct abilities and/or social roles 

are more established (e.g., Kiesow et al., 2020). Alternatively, it may be that older male and 

female brains respond differently to age-related change, yielding diverging brain-behavior 

relationships. This latter point is nontrivial given that older females tend to be more susceptible 

to Alzheimer’s disease (e.g., Fisher et al., 2018). For this reason, it is imperative to distinguish 

whether such differences represent vulnerabilities (i.e., to dementia) or adaptations (i.e., fixed 

social roles). Yet much of the research remains inconclusive about whether any one sex harbors 

an advantage to buffer against age-related brain vulnerabilities (female advantage: Sangha et al., 

2021; Canales-Rodriguez et al., 2021; male advantage: Cavedo et al., 2018). This is perhaps 

unsurprising given the vast number of health factors associated with age including hypertension, 

obesity, and APOE e4 carrier status, some of which afflict one sex more than another 

(Armstrong et al., 2019). Accordingly, sex differences also need to be investigated at multiple 

scales. The need to include sex and gender as factors of interest in cognitive neuroscience is 

increasingly being recognized, and is even more urgent within the domain of aging given the 

increasing complexity and implications for disease. 

 

Limitations of Resting State Functional Connectivity 

 A series of novel acquisition methods were applied across the three studies to collect high 

quality anatomical and resting-state fMRI data from a large sample of healthy younger and older 

adults. Paired with an in-depth collection of cognitive assessments, we aimed to test for whole-

brain and systems-level brain-behavior relationships. In Studies 1 and 3, we used resting state 

functional connectivity to establish the whole-brain and systems-level functional architecture in 

younger and older adults, and examine how variability in this architecture related to individual 

differences in cognition. Resting-state functional connectivity is thought to reflect experience-

dependent changes in functional connections, formed from the repeated use and disuse of circuits 

(Stevens & Spreng, 2014). While the methods implemented here were designed to respect 
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individual variation in brain function and optimize sensitivity to brain-behavior relationships, 

one limitation of resting-state functional connectivity is that it is not able to directly inform 

mechanisms of cognition (e.g., Campbell & Schacter, 2016; Finn, 2021). Moreover, networks 

identified at rest are often considered part of an intrinsic architecture, yet increasing evidence 

suggests that rest may simply reflect another less-constrained, episodic task state (e.g., Buckner 

et al., 2013). Identifying population differences in network makeup during an unconstrained task 

nonetheless provides an excellent backdrop for more hypothesis-driven task studies by enabling 

researchers to survey differences in large systems across cortex (see also Geerligs & Tsvetanov, 

2017). As demonstrated in Study 3, variation in connectivity at rest is associated with variation 

in cognition. This underscores that resting state functional connectivity remains an informative 

tool to ask how and why individuals vary from one person to the next. A combination of both 

task fMRI and resting state functional connectivity will ultimately help to disentangle trait (i.e., 

intrinsic) and state (i.e., task) differences in brain function (Geerligs et al., 2015). 

 

Conclusions 

 The studies contained within this thesis set out to characterize age differences in brain 

function, structure, and cognition as well as the intersection between them. In line with an extant 

neurocognitive aging literature, network integration was a defining feature of older adult 

functional brain change. Here we extend these findings and demonstrate that age-related 

functional integration within a circumscribed circuit is rooted in concomitant structural 

differences that may support fluid cognition in older age. These findings provide preliminary 

evidence for adaptive neuroplasticity, calling for a new perspective on brain and cognitive 

change in late life development.  
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Appendix A: Supplementary Material to age differences in the functional architecture of 

the human brain 

 

Supplemental Figure 1 

 

 
Supplemental Figure 1 Caption: Temporal Signal to Noise. A temporal signal to noise ratio (tSNR) map was created 
for both runs of each participant’s denoised data and averaged. The average group map (N=301) was projected onto 
an inflated surface, separated by left and right hemispheres. Maps were thresholded to demonstrate that the low end 
of tSNR values were well above 50. A maximum tSNR of 400 is shown here for visualization purposes. 
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Impact of Motion on RSFC 

ME-ICA has been shown to effectively remove distant dependent motion effects in RSFC 

data (Power et al., 2018). To rule out the possibility that these residual motion effects confounded 

our main results, we conducted a behavior PLS analysis with raw framewise displacement (FD). 

This analysis yielded a significant pattern (59.21% covariance explained, permuted p = 0.004; 

Supplementary Figure 2A) representing the main effect of correlating functional connectivity with 

FD across younger and older adults (younger adults r = .70; older adults r = 0.65; Supplementary 

Figure 2B).  While a motion-related connectivity pattern emerged (explaining 59.2% of the cross-

block covariance), no significant group differences or age group interactions emerged. Network 

contribution plots expressing the mean positive and negative weights within and between networks 

are depicted in Supplementary Figure 2C. Higher FD was associated with greater within-VIS 

connectivity and LIM, FPC, and DN connectivity (warmer colors), as well as lower within-

network connectivity of SOM, DAN, VAN, LIM, and DN (cooler colors).  

As described in Methods, covariance in PLS can be specified as percent cross-block 

covariance, where the cross-block covariance is between the brain data and predictor variables. 

The sum of the percent cross-block covariance must sum to 100% over all latent variables (LVs).  

As such, the value of covariance explained for a given LV cannot be interpreted in isolation but 

must be weighed against the other LVs. This is demonstrated in the case of a single predictor 

variable, where the resultant LV will explain 100% of the cross-block covariance.  

These findings suggest that ME-ICA patterns of RSFC are still impacted by motion. BOLD 

signal post-MEICA has been related to residual respiratory effects (Power et al., 2018), but to our 

knowledge there is no evidence to suggest that this residual noise would confound group 

comparisons. Rather, residual motion may reduce signal-to-noise in a similar manner across 

groups. Indeed, we find that motion effects are not confounded by group membership in our 

sample. A second LV accounting for 40.79% (p = .38) of the covariance dissociated age groups in 

their relationship to motion. Relative to the first LV, group specific motion effects on connectivity 

account for less covariance in the data. This LV, however, was not significant . If this LV was 

significant, then there would be evidence that motion differentially impacted connectivity by 

group, limiting the interpretation of the data. Because this interaction was not significant, our 

primary results, all of which compare groups, are not confounded by motion.  
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We empirically confirmed that the pattern of connectivity covarying with motion is not 

consistent with the age differences in RSFC reported in the main text. We determined this by 

assessing the correspondence between brain connectivity scores from the whole-brain age contrast 

(Figure 4) and from the motion-associated effects (Supplementary Figure 2A-C). Relationships 

are plotted in Supplementary Figure 2D-F. Partial correlations controlling for sex, education, 

eWBV, and site were as follows: Across the full sample, pr = -.037, p = .534; in younger adults: 

pr = -.049, p = .528; in older adults pr = .019, p = .833.  
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Supplemental Figure 2 

 
 

Supplemental Figure 2 Caption: Behavioral PLS examining the relationship between functional connectivity with 

motion in younger and older adults. Framewise displacement (FD) was calculated on the middle echo prior to 

processing. (A) Functional connections that correlate with higher FD (warmer colors) and lower FD (cooler colors). 

(B) Correlations of FD with the functional connectivity pattern in younger and older adults. Error bars indicate the 

95% confidence interval derived from the bootstrap estimation. (C) Network contributions of the mean positive and 

negative edge weights within and between networks. Scatterplots depicting age differences in brain connectivity 

scores on the x-axis and motion-related brain connectivity scores on the y-axis (D) across the full sample, (E) in 

younger adults, (F) in older adults. VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN = ventral 

attention, LIM = limbic, FPC = frontoparietal control, DN = default networks. 
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Supplemental Figure 3 

 
Supplemental Figure 3 Caption: BOLD signal dimensionality. The scatter plot shows BOLD signal dimensionality by 

age with a power distribution and 95% confidence intervals overlaid. Points in white were contributed by Kundu and 

colleagues (2018). Here, BOLD dimensionality is not adjusted by the number of time points acquired. BOLD 

dimensionality was averaged across two runs for points in black. 
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Characterizing BOLD Dimensionality  

The present report leverages ME fMRI acquisition and processing to define a novel metric 

of BOLD dimensionality as a proxy for global functional integration. We further investigate the 

biological substrate of BOLD dimensionality by examining its most defining interregional 

connections and comparing it to similar summary statistics of global RSFC organization.  

We first used behavior PLS to characterize the interregional connections associated with 

BOLD dimensionality. In brief, behavior PLS identifies functional connectivity patterns that 

optimally co-vary with a behavioral measure. Two significant patterns captured the association 

between functional connectivity and  BOLD dimensionality in younger and older adults. The first 

pattern reflects a main effect of BOLD dimensionality across groups(69.69% variance explained, 

permuted p < .001; younger adults r = .86; older adults r = .88; Supplementary Figure 4A). Network 

contribution plots summarize the significant interregional associations. Higher BOLD 

dimensionality was related to more within-network connectivity (Supplementary Figure 4A, 

warmer colors). Higher BOLD dimensionality was also related to connectivity among heteromodal 

association networks LIM, FPC, and DN .  Dimensionality was negatively related to VIS 

connectivity across the connectome (Supplementary Figure 4A, cooler colors).  

 The second pattern revealed an age group difference in the association between functional 

connectivity and BOLD dimensionality (30.31% variance explained, permuted p < .001; younger 

adults r = .62; older adults r = -.48). In younger adults, higher BOLD dimensionality was related 

to more connectivity within and between FPC and DN (Supplementary Figure 4B, warm colors). 

In contrast, higher BOLD dimensionality in older adults was related to more SOM connectivity 

with itself and with VIS, DAN, VAN, and LIM (Supplementary Figure 4B, cool colors). 
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Supplemental Figure 4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 4 Caption: Behavioral PLS of the relationship between functional connectivity and BOLD 

dimensionality in younger and older adults. Two significant latent variables were identified. (A) The first latent 

variable expresses an effect of the number of BOLD components on functional connectivity. From left to right: 

functional connections that correlate with a higher (warmer colors) and lower (cooler colors) number of BOLD 

components; Bar plots showing the correlations of BOLD dimensionality with the functional connectivity pattern in 

younger and older adults; Network contributions of the mean positive (warm colors) and negative (cool colors) edge 

weights within and between networks. (B) The second latent variable expresses age-related differences in the 

association between functional connectivity and BOLD dimensionality. From left to right: Functional connections that 

correlate with a higher number of BOLD components in younger (warm colors) and older adults (cool colors); Bar 

plots showing the correlation between BOLD dimensionality and the functional connectivity pattern; Network 

contributions of the mean positive (warm colors) and negative (cool colors) edge weights within and between 

networks. Error bars for the brain-behavior barplots indicate 95% confidence intervals derived from the bootstrap 

estimation. VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN = ventral attention, LIM = limbic, FPC 

= frontoparietal control, DN = default.  
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We then compared BOLD dimensionality to a series of graph theoretic measures to 

determine whether it provides unique information about global integration. Participation 

coefficient, and modularity were computed as implemented in the Brain Connectivity Toolbox 

(Rubinov & Sporns, 2011). Segregation was also calculated (Chan et al., 2014). Measures were 

calculated on each individual’s z-scored functional connectivity matrix. Self-connections and 

negative weights were set to zero. Product-moment correlations were computed within each age 

group and on the full sample controlling for age, as shown in Supplemental Table 1 and 

Supplementary Figure 5. BOLD dimensionality was negatively associated with participation 

coefficient and positively associated with modularity and segregation in younger adults. In older 

adults, BOLD dimensionality was associated with segregation. In the full sample controlling for 

age, all graph metrics showed a significant relationship to BOLD dimensionality. The observed 

negative association between BOLD dimensionality and participation coefficient is consistent with 

a prior report of a negative association in a lifespan sample from children to middle-aged adults 

(Kundu et al., 2018). The positive association with modularity only in young adults reinforces that 

BOLD dimensionality highlights an inflection point in network organization across the lifespan: 

More dimensionality in young supports an established community structure; more dimensionality 

in older adults may support segregation as community structure devolves.  

 

Supplemental Table 1 
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Supplemental Figure 5 

 
Supplemental Figure 5 Caption: Scatterplots between BOLD dimensionality and graph theory measures. Distributions 

of graph measures are shown at the top of each plot. BOLD dimensionality distributions are shown in the rightmost 

plot. * indicates significant correlations. YA= younger adults; OA = older adults. 
 
 

  



 

 

179 

Supplemental Figure 6 

 

Supplemental Figure 6 Caption: Functional connectomics in younger and older adults. Mean RSFC for the 200-

parcellated MEFC data in (A) younger and (B) older adults. Spring-embedded plots with a 7-network solution (5% 

edge density) of the mean correlation matrices for (C) younger and (D) older adults. (E) Multivariate PLS analysis 

was used to identify age-related differences in RSFC between younger and older adults. Red color indicates greater 

RSFC in younger adults, and blue color indicates greater RSFC in older adults. (F-G) Network contributions represent 

the summary of positive and negative edge weights within and between networks in younger (F) and older (G) adults. 

The mean positive and negative bootstrap ratios within and between networks are expressed as a p value for each z-

score relative to a permuted null model. Higher values indicate greater connectivity than predicted by the null 

distribution. VIS = visual, SOM= somatomotor, DAN= dorsal attention, VAN = ventral attention, LIM = limbic, FPC= 

frontoparietal control, DN= default.  
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Supplemental Figure 7 

Supplemental Figure 7 Caption: Functional connectomics in younger and older adults. Mean RSFC for the 400-

parcellated MEFC data in (A) younger and (B) older adults. Spring-embedded plots with a 17-network solution (5% 

edge density) of the mean correlation matrices for (C) younger and (D) older adults. (E) Multivariate PLS analysis 

was used to identify age-related differences in RSFC between younger and older adults. Red color indicates greater 

RSFC in younger adults, and blue color indicates greater RSFC in older adults (p < 0.0001; 100% variance explained). 

(F-G) Network contributions represent the summary of positive and negative edge weights within and between 

networks in younger (F) and older (G) adults. The mean positive and negative bootstrap ratios within and between 

networks are expressed as a p value for each z-score relative to a permuted null model. Higher values indicate greater 

connectivity than predicted by the null distribution. VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN 

= ventral attention, LIM = limbic, FPC = frontoparietal control, DN = default.  
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Supplemental Figure 8 

Supplemental Figure 8 Caption: Functional connectomics in younger and older adults. Mean RSFC for the 200-

parcellated MEFC data in (A) younger and (B) older adults. Spring-embedded plots with a 17-network solution (10% 

edge density) of the mean correlation matrices of (C) younger and (D) older adults. The threshold used for the spring-

embedded plots was set higher due to the sparsity of the graph at thresholds lower than 10%. (E) Multivariate PLS 

analysis was used to identify age-related differences in RSFC between younger and older adults (p < 0.0001; 100% 

variance explained). Red color indicates greater RSFC in younger adults, and blue color indicates greater RSFC in 

older adults. (F-G) Network contributions represent the summary of positive and negative edge weights within and 

between networks in younger (F) and older (G) adults. The mean positive and negative bootstrap ratios within and 

between networks are expressed as a p value for each z-score relative to a permuted null model. Higher values indicate 

greater connectivity than predicted by the null distribution. VIS = visual, SOM = somatomotor, DAN = dorsal 

attention, VAN = ventral attention, LIM = limbic, FPC = frontoparietal control, DN = default. 
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 Supplemental Figure 9 
 

Supplemental Figure 9 Caption: Functional connectivity of the dorsal attention (DAN), frontoparietal control (CONT), 

and default (DN) sub-networks following Yeo 17-network solution. Mean group connectivity for the 200-parcellated 

MEFC data in (A) younger and (B) older adults. Spring-embedded plots (10% edge density) of the mean correlation 

matrices for (C) younger and (D) older adults. A lower threshold was used for the spring-embedded plots due to the 

sparsity of the graph at higher thresholds. (E) Differences in RSFC between younger and older adults among DAN, 

CONT, and DN (p < 0.0001; 100% variance explained). (F-G) Network contributions represent the summary of 

positive and negative edge weights within and between networks in younger (F) and older (G) adults. The mean 

positive and negative bootstrap ratios within and between networks are expressed as a p value for each z-score relative 

to a permuted null model. Higher values indicate greater connectivity than predicted by the null distribution. DAN = 

dorsal attention, FPC = frontoparietal control, DN = default. 
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Supplemental Figure 10 

 

 
Supplemental Figure 10 Caption: Scatterplots between cognitive scores and (A) BOLD dimensionality and (B) 

manifold eccentricity. Cognition distributions are shown at the top of each plot. Distributions for BOLD 

dimensionality and manifold eccentricity are shown in the rightmost plots. * indicates significant correlations. YA = 

younger adults; OA = older adults. 
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Supplemental Figure 11 

 

 
Supplemental Figure 11 Caption: Scatterplot between BOLD dimensionality and manifold eccentricity. Distributions 

are shown on the respective axes. * indicates a significant difference between correlations. YA = younger adults; OA 

= older adults. 
 

 

  



 

 

185 

Supplemental Figure 12 

 

Supplemental Figure 12 Caption: Scatterplots between cognitive scores and brain connectivity scores for the (A) full 

7-network and (B) 3 sub-network analyses. Cognition distributions are shown at the top of each plot. Brain 

connectivity score distributions are shown in the rightmost plots. * indicates significant correlations. YA = younger 

adults; OA = older adults.  
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Supplemental Figure 13 

 

 
Supplemental Figure 13 Caption: Replication of  PLS results across sites. (A) Age differences in the full functional 

connectome for Ithaca participants. (B) Group differences in brain scores computed for York participants, based upon 

the edge-weights determined in the Ithaca sample. (C) Age differences in the functional connectivity of the dorsal 

attention (DAN), frontoparietal control (CONT), and default (DN) sub-networks from Ithaca participants. (D) Group 

differences in brain scores computed from Toronto participants, based upon the edge-weights from the sub-networks 

determined in Ithaca participants. DAN = dorsal attention, FPC = frontoparietal control, DN = default. 
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Supplemental Table 2 
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Supplemental Table 3 
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Supplemental Table 4 
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Supplemental Figure 14 

Supplemental Figure 14 Caption: Scatterplots between cognitive scores and (A) BOLD dimensionality, (B) manifold 

eccentricity, (C) whole brain connectivity scores, and (D) sub-network brain connectivity scores by age group and 
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site. Cognition distributions are shown at the top of each plot. Distributions for BOLD dimensionality, manifold 

eccentricity, and brain connectivity scores are shown in the rightmost plots. YA = younger adults; OA = older adults. 
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Supplemental Table 5A 
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Supplemental Table 5B 
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Appendix B: Supplementary Material to anterior hippocampus and temporal pole volumes 

are associated with episodic autobiographical memory in healthy older adults 
 

Methods 

 
Cognitive Battery 

259 of the 263 participants completed additional cognitive assessments of episodic 

memory and semantic memory. Two younger and two older adults were excluded for having 

more than 50% missing data. Measures of episodic memory included Verbal Paired Associates 

from the Wechsler Memory Scale-IV (Wechsler, 2009), Associative Recall Paradigm (Brainerd 

et al., 2014), and NIH Cognition measures of Auditory Verbal Learning (Rey) and Picture 

Sequence Memory (Gershon et al., 2013). Semantic Memory measures included Shipley-2 

Vocabulary (Shipley et al., 2009) and NIH Cognition measures of Picture Vocabulary and Oral 

Reading Recognition. Composite scores were created by taking the average of Z-scores within 

each cognitive domain. Two additional younger adults were excluded for outlying episodic index 

scores, leaving a final sample of 257. 

In order to characterize the sample, we include descriptive and inferential statistics on 

composite measures of episodic and semantic memory in Table 1. GEEs were also conducted on 

hippocampal and temporal pole volumes to test for age differences in brain-behavior 

relationships with laboratory-based measures. 

 

Results 

Posterior Hippocampal Volumes Are Smaller Early into Older Age 
To determine whether posterior hippocampal volumes were reduced only in later stages 

of older adulthood, we binned the older adult cohort into younger (60-69 years, N=66) and older 

(70+, N=39) groups for a total of three age categories. The ANCOVA on hippocampal volume 

was then repeated (Supplementary Figure 2).  

We observed main effects of age group (F(2,257)=3.48, p < .05 , ηp
2=.01), segment 

(F(1,779)=27.57, p < .001 , ηp
2=.03), and hemisphere (F(1,779)=16.13, p < .001, ηp

2=.02). 

Several interactions qualified these effects. First, a segment by hemisphere interaction 

(F(1,779)=59.01, p < .001, ηp
2=.07) indicated that right anterior volumes were larger than left 
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anterior volumes (t(779)=7.04, p < .001, Cohen’s d =.50), right posterior volumes (t(779)=9.26, 

p < .001, Cohen’s d=.66), and left posterior volumes (t(779)=7.16, p < .001, Cohen’s d=.51). A 

segment by sex interaction (F(1,779)=11.87, p < .001, ηp
2=.01) showed that anterior volumes 

were larger than posterior in both males (t(779)=6.81, p < .001, Cohen’s d=.49 ) and females 

(t(779)=3.06, p < .05, Cohen’s d=.22), but more so in males. Critically, a segment by age group 

interaction (F(2,779)=8.54, p < .001, ηp
2=.02) demonstrated that both groups of older adults had 

smaller posterior hippocampus volumes compared to younger adults (younger older: 

t(257)=2.88, p < .05, Cohen’s d=.36 ; older older: t(257)=3.45, p < .005, Cohen’s d=.43). There 

were no differences between younger older and older older adults. No differences were observed 

for anterior hippocampus volumes. As with the main results, education and site were included as 

covariates. 

 

Episodic Memory is Not Associated with Hippocampal Segment Volumes 
A GEE was modeled to test for relationships between composite episodic memory scores 

and different hippocampal segment volumes across age groups. Although an age group by 

episodic memory interaction was observed in the full sample (Wald 𝛘𝛘2 (1)=4.12, p  < .05; 

Supplementary Figure 4), episodic memory was not a significant predictor of volume within each 

age group alone. A sex by episodic memory interaction term was included due to a sex effect 

observed in an ANCOVA on episodic memory scores (F(1,252)= 19.03, p < .001, ηp
2=.07). 

 

Semantic, but Not Episodic, Memory is Associated with Temporal Pole Volumes in 

Younger Adults 
GEEs were also modeled to separately examine relationships between episodic and 

semantic memory with temporal pole volumes across age groups. No association was observed 

between episodic memory and temporal pole volumes. Results from the GEE with semantic 

memory also revealed no effect of semantic memory on volume. However, product-moment 

correlations demonstrated a significant association between temporal pole volumes and semantic 

memory in younger adults (Table S8), which suggested that a weaker association in the older 

group was likely dampening effects in the full GEE. We ran a post-hoc GEE in younger adults, 

which demonstrated a significant main effect of semantic memory (Wald 𝛘𝛘2 (1)=10.34,  b=.05, 

SE=.02, p  < .005) and a marginal hemisphere by semantic memory interaction (Wald 𝛘𝛘2 
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(1)=3.81, p  = .05; Supplemenatry Figure 7). Follow-up GLMs confirmed that semantic memory 

was positively related to the left temporal pole volume (b=.05, SE=.02, p < .01) and not the right. 

Models included sex as well as site, education, and eWBV as effects of no interest. 

 

Associations with Volume Ratio of Posterior to Anterior Hippocampus 
Prior work has shown that the proportion of posterior to anterior hippocampus volumes 

contributes to episodic memory (Poppenk & Moscovitch, 2011), spatial navigation (Maguire et 

al., 2000), and cognitive mapping (Brunec et al., 2019) beyond either volume alone. All analyses 

conducted on hippocampal segment volumes were repeated using a ratio of posterior to anterior 

volumes as the dependent variable. The aim was to determine whether the proportion of 

segments provides unique information about hippocampal volume relationships to AM. 

The ANCOVA on volume ratio revealed three main effects. A main effect of hemisphere 

(F (1,261)=159.06, p < .001, ηp
2= .35) showed that left ratios were larger than right. A main 

effect of sex (F(1,258)=4.02, p < .05, ηp
2=.01) demonstrated that females had a larger ratio 

compared to males. Lastly, a main effect of age group (F(1, 258)=5.74, p < .05, ηp
2= .02) 

indicated that older adults had smaller ratios compared to younger adults. Site and education 

were included as covariates. 

Next, GEEs were modeled separately for internal and external density. Terms included 

age group, hemisphere, internal density, and the three-way interaction. Consistent with models 

from the main text, a sex by internal density interaction term was also included, along with site, 

education, and eWBV as effects of no interest. Follow-up GEEs were conducted to break down 

marginal and significant interactions. GLMs were then performed on each hemisphere to inspect 

simple effects. 

Results from the GEE with internal density were qualitatively similar to those from the 

GEE on hippocampal segment volumes. Full results are listed in Table S7 for completeness. 

Notably, we observed an age group by hemisphere by internal density interaction (Wald 𝛘𝛘2 

(1)=7.45, p < .01). The follow-up GEE in younger adults showed a marginal hemisphere by 

internal density interaction (Wald 𝛘𝛘2 (1)=3.35, p = .067), but internal density showed no 

significant relationship to either left or right volume ratios.  

In older adults, interactions were observed between hemisphere and internal density 

(Wald 𝛘𝛘2 (1)=4.23, p < .05) as well as between sex and internal density (Wald 𝛘𝛘2 (1)=6.53, p < 
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.05). To break down these interactions, a GLM was first performed on volume ratios in each 

hemisphere. As depicted in Supplementary Figure 5 (left), internal density was negatively related 

to the left volume ratio in all older adults (b=-.188, SE=.86, p < .05). In the right hemisphere, a 

main effect of internal density (b=-1.78, SE=.79, p < .05) was accompanied by an interaction 

with sex (Wald 𝛘𝛘2 (1)= 11.52, p < .001; Supplementary Figure 5, right). A final set of GLMs 

performed within each sex on the right volume ratio revealed that internal density positively 

predicted volume ratios for older men (b=2.18, SE=1.03, p < .05), and negatively predicted 

volume ratios for older women (b=-1.80, SE = .63, p < .005). 

The GEE with external density showed no effect of density on volume ratio. This 

complemented results reported in the main text, where females showed a negative relationship to 

external density across both anterior and posterior volumes.  

As in the main text, this result highlights the interindividual variability in brain-behavior 

associations in older age. While the left proportion of hippocampal segment volume similarly 

impacts internal density in older adults, sex differences arose in the right hemisphere: the 

proportion of right hippocampal segment volumes contributed to internal density in older males, 

whereas in older females the volume of anterior hippocampus alone aided internally dense 

recollections. Sex differences in older age may reflect an exacerbation of effects seen in the full 

group: diminished volume ratio in the right hemisphere, males, and older adults. 

GEEs were also modeled to examine the effects of laboratory episodic and semantic 

composite scores on volume ratio. Neither variable was a significant predictor. The episodic 

GEE was repeated in older adults alone based on an observed association between volume ratio 

and episodic memory scores (Table S8), but episodic memory remained a nonsignificant 

predictor. 
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Supplementary Figure 1. ASHS Output. Representative left hemisphere segmentations from 

the T1 ASHS pipeline in one younger (left) and one older (right) adult in native space. Outputs 

included segmentations and volume measurements of the anterior and posterior hippocampus, 

entorhinal cortex, BA35, BA36, parahippocampal cortex, meninges, and other regions (see 

legend). The present study limited its examination to the longitudinal axis of the hippocampus. 

Anterior hippocampus = head. Posterior hippocampus = body + tail. 

  

   



 

 

 

  

 
 

 

 
 

 
 

 

 
Supplementary Figure 2. Age by Hippocampal Volume Interaction Present at Early Stage 

of Older Adulthood. Mean volumes of anterior and posterior hippocampal segments plotted by 

hemisphere and expanded age group categories. Both groups of older adults had smaller 

posterior, but not anterior, hippocampus volumes than younger adults. Volumes were adjusted 

for eTIV. Sex was included in the model. Site and education were included as covariates. * 

denote significant effects. L AHIPP = left anterior; R AHIPP = right anterior; L PHIPP = left 

posterior; R PHIPP = right posterior. 
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Supplementary Figure 3. Scatterplots of Internal Density Relationships with Hippocampal 

Volumes. Individual scatterplots are shown for relationships between internal density and 

hippocampal volume in younger (top) and older (bottom) adults. No relationships were 

statistically significant. Volumes were adjusted for eTIV. L AHIPP = left anterior; R AHIPP = 

right anterior; L PHIPP = left posterior; R PHIPP= right posterior.  

 
  

   



 

 

 

 

 

 
Supplementary Figure 3. Laboratory Episodic Memory Ability is Not Related to 

Hippocampal Segment Volumes. Scatterplots demonstrating a significant interaction between 

episodic memory scores and age group on hippocampal volumes. All volumes were corrected for 

eTIV. Sex was included in the model. Site, estimated whole brain volume, and education were 

included as effects of non-interest. * denote significant effects. L AHIPP = left anterior; R 

AHIPP = right anterior; L PHIPP = left posterior; R PHIPP = right posterior.   

   



 

 

 

  
Supplementary Figure 4. Interaction Between Sex and Internal Density on Older Adult 

Volume Ratios. Scatterplots show significant main effect of internal density (left hemisphere) 

and interaction with sex (right hemisphere) on volume ratio. In the left hemisphere, more 

internally dense recollections were related to a smaller volume ratio, or difference between 

posterior and anterior hippocampal volumes. In the right hemisphere, more internally dense 

recollections were related to higher ratios in older males and lower ratios in older females. All 

volumes were corrected for eTIV. Site, education, and estimated whole brain volume were 

included as effects of no interest in the model. Volume ratio = posterior/anterior hippocampus. * 

denote significant effects. F = female; M = male.  
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Supplementary Figure 5. Negative Relationship Between External Density and 

Hippocampal Volume. (A) Scatterplots demonstrating a significant relationship between 

external detail density and hippocampal volumes across all participants. (B) Scatterplots 

demonstrating a significant interaction between density and sex: larger hippocampal volumes 

were related to less external density in females only. All volumes were corrected for eTIV. Site, 

estimated whole brain volume, and education were included as effects of no interest. * denote 
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significant effects. L AHIPP = left anterior; R AHIPP = right anterior; L PHIPP = left posterior; 

R PHIPP = right posterior.   
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Supplementary Figure 6. Laboratory Semantic Memory Ability is Related to Temporal 
Pole Volumes in Younger Adults. Scatterplot demonstrating relationships between temporal 

pole volumes and composite semantic memory scores in younger adults. General semantic 

memory abilities were positively related to left temporal pole volumes in younger adults. 

Volumes were corrected for eTIV. Sex was included in each model. Site, estimated whole brain 

volume, and education were included as effects of non-interest. L = left; R = right. 
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Appendix C: Supplemental Material to age effects and individual differences in episodic 

and semantic autobiographical memory relate to resting-state functional connectivity of the 
hippocampus and temporal pole with the default network 

 

  
  
Table S1  

    

   
RSFC-AI Subcategory Correlations with Covariates (Sex, Education, eWBV)       

Factor   Younger Adults   Older Adults  First Pattern (Figure 4A)  
    

Internal Density   .209 (.008) [.05, .35]   .439 (.000) [.26, .58]      Event   .164 (.039) [.01, .31]   .334 (.001) [.15, .50]      Place   .039 (.629) [-.12, .19]   .166 (.100) [-.03, .35]      Time   .117 (.144) [-.04, .27]   .156 (.123) [-.04, .34]      Perceptual   .080 (.316) [-.08, .23]   .385 (.000) [.20, .54]      Emotion/Thought   .093 (.247) [-.06, .25]   .228 (.023) [.03, .41]  External Density   -.266 (.001) [-.41, .-.11]   -.421 (.000) [-.57, -.24]      Event   -.032 (.692) [-.19, .12]   -.363 (.000) [-.52, -.18]      Place   -.343 (.000) [-.47, -.20]   -.491 (.000) [-.63, -.32]      Time   -.126 (.116) [-.28, .03]   -.245 (.015) [-.42, -.05]      Perceptual   -.140 (.080) [-.29, .02]   -.369 (.000) [-.53, -.19]      Emotion/Thought   .065 (.420) [-.09, .22]   -.222 (.027) [-.40, -.03]      Semantic   -.165 (.038) [-.31, -.01]   -136 (.178) [-.33, .06]      Repetition   -.255 (.001) [-.40, -.10]   .028 (.784) [-.17, .22]      Other   -.219 (.006) [-.36, -.06]   -.140 (.166) [-.33, .06]  
Second Pattern (Figure 4B)  

    

Internal Density   .361 (.000) [.22, .49]   -.015 (.881) [-.21, .18]      Event   .302 (.000) [.15, .44]   -.156 (.149) [-.33, .05]      Place   .312 (.000) [.16, .45]   .028 (.783) [-.17, .22]      Time   .373 (.000) [.23, .50]   -.027 (.790) [-.22, .17]      Perceptual   .080 (.315) [-.08, .23]   .121 (.233) [-.08, .31]      Emotion/Thought   -.142 (.075) [-.29, .01]   .133 (.190) [-.07, .32]  External Density   .373 (.000) [.23, .50]   -.100 (.323) [-.29, .10]      Event   .313 (.000) [.16, .45]   -.037 (.719) [-.23, .16]      Place   .318 (.000) [.17, .45]   .031 (.763) [-.17, .23]      Time   .215 (.007) [.06, .36]   .076 (.456) [-.12, .27]      Perceptual   .194 (.015) [.04, .34]   .050 (.626) [-.15, .24]      Emotion/Thought   .143 (.055) [.00, .30]   -.067 (.511) [-.26, .13]      Semantic   .030 (.705) [-.13, .19]   -.058 (.566) [-.25, .14]      Repetition   .151 (.044) [.00, .31]   -.098 (.336) [-.29, .10]      Other   .265 (.001) [.11, .40]   -.169 (.094) [-.35, .03]  Note. pr values displayed with p values in parentheses and 95% confidence intervals in brackets. 
Bold denotes p < .05.  
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Table S2  
    

   
RSFC-AI Subcategory Correlations with Covariates (Sex, Education, eWBV, Site)       

Factor   Younger Adults   Older Adults  First Pattern (Figure 4A)  
    

Internal Density   .201 (.011) [.05, .35]   .424 (.000) [.25, .57]      Event   .190 (.017) [.03, .34]   .312 (.002) [.12, .48]      Place   .054 (.502) [-.10, .21]   .160 (.113) [-.04, 35]      Time   .190 (.017) [.03, .34]   .163 (.107) [-.04, .35]      Perceptual   .026 (.743) [-.13, .18]   .407 (.000) [.23, .56]      Emotion/Thought   -.013 (.872) [-.17, .14]   .185 (.067) [-.01, .37]  External Density   -.084 (.296) [-.24, .07]   -.365 (.000) [-.52, -.18]      Event   .004 (.964) [-.15, .16]   -.322 (.001) [-.49, -.13]      Place   -.096 (.228) [-.25, .06]   -.451 (.000) [-.60, -.28]      Time   .056 (.483) [-.10, .21]   -.203 (.044) [-.38, -.01]      Perceptual   -.008 (.921) [-.16, .15]   -.305 (.002) [-.47, -.11]      Emotion/Thought   .095 (.237) [-.06, .25]   -.178 (.078) [-.36, .03]      Semantic   -.177 (.026) [-.32, -.02]   -.126 (.213) [-.32, .07]      Repetition   -.063 (.429) [-.22, .09]   .081 (.426) [-.12, .27]      Other   .004 (.958) [-.15, .16]   -.101 (.322) [-.29, .10]  
Second Pattern (Figure 4B)  

    

Internal Density   .463 (.000) [.33, .58]   .025 (.808) [-.17, .22]      Event   .363 (.000) [22, .49]   -.111 (.272) [-.30, .09]      Place   .355 (.000) [.21, .48]   .045 (.659) [-.15, .24]      Time   .404 (.000) [.27, .53]   -.028 (.781) [-.22, .17]      Perceptual   .144 (.070) [-.01, .29]   .123 (.224) [-.08, .31]      Emotion/Thought   -.076 (.343) [-.23, .08]   .206 (.041) [.01, .39]  External Density   .264 (.001) [.11, .40]   -.217 (.031) [-.40, -.02]      Event   .329 (.000) [.18, .46]   -.113 (.267) [-.30, .09]      Place   .141 (.077) [-.02, .29]   -.055 (.590) [-.25, .14]      Time   .106 (.185) [-.05, .26]   .018 (.858) [-.18, .21]      Perceptual   .109 (.173) [-.05, .26]   -.058 (.567) [-.25, .14]      Emotion/Thought   .169 (.034) [.01, .32]   -.136 (.179) [-.32, .06]      Semantic   .008 (.919) [-.15, .16]   -.080 (.430) [-.27, .13]      Repetition   .004 (.955) [-.15, .16]   -.161 (.111) [-.35, .04]      Other   .120 (.132) [-.04, .27]   -.234 (.020) [-.41, -.04]  Note. pr values displayed with p values in parentheses and 95% confidence intervals in brackets. 
Bold denotes p < .05.  
  
 
  

 

 

 

 


