
Policy Guided Planning in

Learned Latent Space for

Model-based Reinforcement

Learning

Mohammad Amini

Computer Science
McGill University, Montreal

February 2, 2021

A thesis submitted to McGill University in partial fulfilment of the requirements of

the degree of Master of Science. c©Mohammad Amini; February 2, 2021.

i

Dedication

This thesis is dedicated to my beautiful mom, who is mad at me for not

visiting her during this time.

i

Acknowledgements

I am so grateful for having my family being there any time. Every time

my mom and I talk together, I immediately realize nothing is ever more im-

portant than family. My dad would remind me of my inner strength and how

I should keep going and trust myself in the face of adversity and it matters so

much more to keep going when nothing seems to be working. My mom would

be the support that no matter what I go through calms me and reminds me

of what really matters.

I am extremely thankful for my supervisor Doina Precup for her amazing

patience and optimism during all this time. Doina has pushed me so subtly

that I usually only realize it after some time. I am extremely thankful to her

that despite her busy schedule she would always make some time and listen

to me and make sure I am set properly. She gave me an endless stream of

opportunities. I hope, she is proud of me.

I would like to thank Sarath Chandar who has helped throughout this

thesis and many personal life challenges in the last two years, without whom

this thesis would not be possible. I have always wanted an elder brother and

the universe has given me the best brother I could ever hope for. He has held

me accountable to my ideal self and that is a gift I expect to keep receiving

for the rest of my life.

I would like to extend my appreciation to Hannah Alsdurf for her amaz-

ing support. She has reviewed this thesis thoroughly and has provided me

her valuable feedback. Every time I meet Hannah she reminds me of the

very spirit that never gives up. She is the living embodiment of living life on

her own terms while knocking out one obstacle after another and yet looking

ii

as if she is just having another chill day. I am extremely lucky to have met her.

My elder sister has been my rock, who has also reminded me that the

beauty of life is this journey of going through one challenge at a time. My

younger brother, Erfan, who has inspired me and made sure I am held ac-

countable to growth. Him alone, has made sure I maintain being his role

model and since he regularly levels up, I have to do too. Erfan makes sure I

workout regardless of any excuse. I very much thank Sepehr who has reminded

me numerous times how lucky I am to be where I am and how important it

is to focus on the present moment and appreciate what I already have.

I am extremely thankful to Maude Godard, Who has been an enormous

source of optimism in the toughest part of writing this thesis. She has helped

me realize the importance of focusing on the goal and the positive side of the

goal. She has brought forward the big picture in mind, that in return removed

all stress and only made the journey full of enthusiasm and joy.

I really would like to thank Nithin Vasisth for his presence in my life. He

is one of the most courageous men I have ever met and he has an immense

resilience and persistence throughout any of his journeys. Also, I have become

a better listener because of Nithin. Ardalan is a loyal friend who has stuck

by me in thick and thin. No matter what we went through we could always

just sit down and enjoy that moment we spend with each other. We could

have the most laughable moments ever. Another really influential person in

my life has been James Ough who has ideal combination of winner mindset

and go-getter attitude. James is, without a doubt, a bundle of abundance of

confidence and morale.

I would also love to thank all my friends and colleagues who helped and

iii

contributed in different forms: Chegini, R., Dutta, D., Ericson, E.,Faramarzi,

M., Hamouni, P., Konar, A., Teru, K.

iv

Abstract

Model-based Reinforcement Learning (MBRL) is one of the longstand-

ing methodologies of Reinforcement Learning (RL). However, model-based

RL algorithms have empirically been lagging behind model-free RL algo-

rithms in asymptotic performance, particularly for complex tasks in which

learning a perfect model of the task dynamics is hard. PlaNet, a recent

model-based algorithm, combined decision-time planning in latent space with

a learned dynamics model of the environment and achieved superior perfor-

mance when compared to state-of-the-art model-free deep RL methods. Even

though PlaNet is orders of magnitude more sample efficient, the decision time

planning module performs a naive Cross Entropy Method (CEM) based search

on the action space. In this thesis, we propose PG+, which improves upon

PlaNet by learning a policy in the latent space and then using the policy

while doing decision-time planning. We also propose an efficient way to add

noise to the policy parameters that speeds up the CEM search in policy space.

Our experimental results show that PG+ achieves better performance than

PlaNet in all five continuous control tasks that we considered.

v

Résumé

L’apprentissage par renforcement basé sur un modèle (MBRL) est l’une

des méthodologies importantes de l’apprentissage par renforcement (RL).

Cependant, les algorithmes RL basés sur des modèles n’ont pas été empirique-

ment si performants que les algorithmes RL sans modèle, en particulier pour

les tâches complexes dans lesquelles l’apprentissage d’un modèle parfait de

la dynamique est difficile. PlaNet (Hafner et al., 2018), un algorithme ré-

cent basé sur un modèle, combine la planification du temps de décision dans

l’espace latent avec un modèle de la dynamique appris par interaction avec

l’environnement et a obtenu des performances supérieures par rapport aux

méthodes de RL profonds sans modèle de pointe. Même si PlaNet est d’un or-

dre de magnitude plus efficace par rapport au montant de données, le module

de planification du temps de décision effectue une recherche naïve basée sur la

méthode d’entropie croisée (CEM) (Botev et al., 2013) sur l’espace d’action.

Dans cette thèse, nous proposons PG+, qui améliore PlaNet en apprenant

une politique dans l’espace latent et ensuite enutilisant la politique, tout en

faisant la planification du temps de décision. Nous proposons également un

moyen efficace d’ajouter du bruit aux paramètres de politique qui accélère

la recherche de CEM dans l’espace des politiques. Nos résultats expérimen-

taux montrent que PG+ obtient de meilleures performances que PlaNet dans

toutes les cinq tâches de contrôle continu que nous avons considerées.

Contents

Contents vi

1 Introduction 1

2 Reinforcement Learning 4

2.1 Markov Decision Process . 4

2.2 Return . 6

2.3 Policies . 7

2.4 Reinforcement Learning . 8

2.5 Value Functions . 8

2.6 Value Function Estimation . 10

2.6.1 Dynamic Programming . 11

2.6.2 Temporal Difference Learning 12

2.6.3 Q-Learning . 13

2.6.4 Deep Q-Networks (DQN) . 13

2.7 Policy Optimization . 14

2.7.1 Policy Gradient . 15

2.7.2 Policy Gradient with Baseline 16

2.7.3 Actor-Critic Methods . 17

2.8 Model-based Reinforcement Learning 17

vi

CONTENTS vii

2.8.1 Model Predictive Control . 19

2.8.2 Pitfalls in Model-based RL . 19

3 Learning the model of the world 20

3.1 World Models . 20

3.2 Gradient-based Planning . 22

3.3 Universal Planning Network . 25

3.4 PETS . 26

4 Empirical Analysis of PETS 31

4.1 Tasks and Experimental Setting . 31

4.2 Baseline Performance . 32

4.3 Effect of training models longer . 34

4.4 Effect of population size . 35

4.5 Effect of CEM iterations . 37

4.6 Complementary effects . 37

4.7 Final performance . 40

4.8 Discussion . 41

5 Policy-guided Latent Space Planning 43

5.1 Background . 43

5.2 PG+: An algorithm for policy-guided planning in learned latent space 45

5.2.1 Learning a Policy Network . 47

5.2.2 Computing Policy Noise Efficiently 48

5.3 Relation to other algorithms . 50

5.4 Experiments . 51

5.4.1 Tasks . 52

5.4.2 Results . 52

5.4.3 Ablation Study . 55

CONTENTS viii

5.5 Discussion . 56

6 Conclusion and Future Work 57

Bibliography 59

1
Introduction

Designing autonomous decision making systems is one of the longstanding goals of

Artificial Intelligence (AI). Reinforcement Learning (RL) is a sub-field of AI that

attempts to design agents that can learn to make decisions. A typical RL agent

interacts with the world by taking actions and receives feedback in the form of re-

wards. The goal of the agent is to maximize its expected reward over its lifetime.

Traditional RL methods, while theoretically grounded, can exhibit poor scalability

for complex tasks with high-dimensional observation space and/or complex environ-

ment dynamics. The pioneering work of Mnih et al. (2013) introduced Deep Re-

inforcement Learning (DRL), which uses powerful Deep Neural Networks (DNNs)

as function approximators for RL. Deep reinforcement learning made it possible to

design a superhuman agent that beat the human world champion in the game of Go

(Silver et al., 2017).

RL algorithms can be broadly classified into model-free RL and model-based

RL. Model-free RL algorithms aim to directly learn the policy to take actions given

the current state of the world; most algorithms also learn the value function, which

estimates the expected future return, in order to guide the search for a good policy.

On the other hand, model-based RL algorithms learn a model of the world and use

the learnt model to plan actions, as well as to update thee value function. Learning

the model of the world is desirable for several reasons:

1

CHAPTER 1. INTRODUCTION 2

1. The model of the dynamics of the world is task-independent and hence can be

used to solve future tasks in a sample efficient way.

2. Model based RL algorithms can quickly adapt to changes in the reward func-

tion, unlike model-free algorithms, since the world dynamics and the reward

functions are learnt separately.

However, the asymptotic performance of model-based RL algorithms has tradi-

tionally been inferior to model-free RL algorithms in the high data regime, when

using function approximation. Recently, Chua et al. (2018) proposed a model-

based Deep RL algorithm called Probabilistic Ensembles with Trajectory Sampling

(PETS) that achieved superior asymptotic performance when compared to existing

state-of-the-art model-free RL methods. PETS uses the learnt model to perform

decision-time planning using the Cross Entropy Method (CEM) (Botev et al., 2013).

While achieving impressive performance, PETS has two major limitations:

• it assumes access to true reward functions which might not be available for all

the tasks.

• it uses the low-dimensional latent state representation instead of high-dimensional

observations; hence, is not clear if PETS can learn sufficiently good models.

Hafner et al. (2018) proposed PlaNet which alleviates both these limitations of

PETS by learning the reward function and a stochastic variational RNN model that

can deal with high-dimensional observations. PlaNet does CEM-based decision-

time planning in the learned latent space; hence the planning still happens in an

effectively low-dimensional space. This thesis builds upon PETS and PlaNet and

proposes a new model-based RL algorithm called PG+.

The contributions of this thesis are as follows:

1. PETS has several arbitrary design choices and a lot of hyper-parameters. In

this thesis, we provide a systematic empirical analysis of PETS to understand

CHAPTER 1. INTRODUCTION 3

the importance of several design choices. Our analysis helped us to improve

PETS both in terms of final performance and sample-efficiency.

2. We propose PG+, a policy-guided model-based reinforcement learning which

plans in a learned latent space. PG+ combines PlaNet, a decision-time plan-

ning algorithm, with a learned policy network in the learned latent space.

3. We also propose a scalable method to add noise to the policy parameters for

efficient CEM search in policy space.

4. We empirically demonstrate that PG+ achieves better performance and sta-

bility as well as faster convergence than PlaNet in a suite of five DM-Control

tasks.

The thesis is organized as follows. Chapter 2 reviews the basics of Reinforcement

Learning (RL) and introduces the standard RL algorithms. Chapter 2 also discusses

the differences between model-free RL and model-based RL. Chapter 3 discusses

several recent model-based RL algorithms. Chapter 4 reports our empirical analysis

of Probabilistic Ensembles with Trajectory Sampling (PETS) (Chua et al., 2018) and

improvements to PETS in terms of performance and sample-efficiency. In Chapter

5, we introduce PG+, a model-based RL algorithm that combines the decision-

time planning algorithm PlaNet (Hafner et al., 2018) with learned policy networks.

Chapter 5 also contains an empirical evaluation of PG+, which demonstrates that

PG+ performs better than PlaNet both in terms of final performance and sample-

efficiency. Chapter 6 concludes the thesis and discusses avenues for future work.

Statement of contributions: PG+ is also presented in a recent paper that

we published at the NeurIPS’2020 Deep Reinforcement Learning Workshop (Amini

et al., 2020). I have carried out all the design, implementation, and empirical

evaluation of this algorithm, with input from the co-authors. I have also written

the bulk of the paper.

2
Reinforcement Learning

Reinforcement Learning (RL) studies the interaction of an agent with an environ-

ment. In this interaction, the goal of the agent is to maximize its expected reward

by learning to map states to actions, but unlike in supervised learning, the agent

is not told what actions to take at each state. The actions that the agent takes

affect not only the immediate reward, but also all subsequent rewards, because they

modify the state of the agent. Delayed reward signals and trial-and-error search are

the two most interesting aspects of RL. Usually, the problem of RL is formalized

through ideas borrowed from dynamical systems and control theory, especially from

the optimal control of Markov Decision Processes (MDPs). We will now review the

most important RL concepts that are necessary to put in context the work that we

will present.

2.1 Markov Decision Process

Figure 2.1 shows an example of an agent interacting with the environment. The

agent is the learner and everything outside the agent is known as the environment.

The agent and the environment continually interact; the agent takes actions and the

environment presents the agent with new situations and/or rewards. Concretely, the

agent interacts with the environment at discrete time steps t = 1, 2, 3, At each

time step t, the environment outputs an observation which represents the state

4

CHAPTER 2. REINFORCEMENT LEARNING 5

Figure 2.1: Interaction of an agent.

St ∈ S, where S is the set of all possible states. The agent takes an action At ∈ A,

where A is the set of all possible actions, based on St. As a consequence, the

environment returns a numerical reward Rt+1 ∈ R and transitions the agent to the

next state St+1 . This sequence produces a trajectory τ :

τ = S0A0R1S1A1R2S3... (2.1)

An observation Ot is a noisy version of the state. For example, a camera mounted on

a mobile robot only collects the image of what is in front of it (the observation), but

the full state would also include the robot’s real position in the world, its velocity,

as well as information about objects or people that might be behind it. A fully

observable environment is one in which the agent is able to observe the full state of

the world. In a partially observable environment, on the other hand, the agent only

observes Ot 6= St.

A Markov Decision Process (MDP) is the mathematical formulation of choice for

the RL problem, with which theoretical statements and guarantees are made. In a

finite MDP, the sets of actions and states are finite; Rt and St are defined as random

variables drawn from a probability distribution conditioned on the preceding state

CHAPTER 2. REINFORCEMENT LEARNING 6

and action, P (St+1, Rt+1 | St = s, At = a). The Markovian assumption means that

the preceding state captures the information from the entire history which is relevant

to predict the next state and reward distribution, and hence we have:

P (St+1, Rt+1 | St, At, St−1, At−1, ..., S1, A1) = P (St+1, Rt+1 | St, At) (2.2)

The first state of the world, S0, is sampled from start-state distribution ρ0 as:

S0 ∼ ρ0(.) (2.3)

where the dot (.) indicates a random variable. Every time an interaction between

the agent and the environment takes place, a transition is made to a new state. The

state transition function can be either stochastic:

St+1 ∼ P (. | St, At) (2.4)

or deterministic:

St+1 = f(St, At) (2.5)

Note that the latter is a special case.

Environments with a discrete action space A provide a finite number of actions

to the agent. On the other hand, in environments with continuous action space,

actions are represented as real valued vectors.

2.2 Return

The reward is the scalar value received at every time step, dependent on the current

state, current action, and sometimes the next state. Most often, we consider that

Rt = R(St, At) . The return is defined as a cumulative function of the rewards

obtained over a trajectory (i.e. a sequence of agent-environment interactions) and

is denoted G(τ). The horizon T is the time duration of a trajectory. The return for

a trajectory is defined as follows, for a finite and an infinite horizon, respectively:

G(τ) =
T−1∑
t=0

Rt (2.6)

CHAPTER 2. REINFORCEMENT LEARNING 7

and

G(τ) =
∞∑
t=0

γtRt (2.7)

The discount factor γ ∈ (0, 1) is used to emphasize more recent rewards; γ close to

0 indicates a myopic and shortsighted agent that cares only about the immediate

reward, and γ = 1 indicates an agent that assigns equal importance to rewards

achieved now and later in time. In an infinite horizon setting, the return may not

have a finite value if γ = 1, hence discounting (i.e. γ < 1) is required.

2.3 Policies

A policy is similar to a rule that tells the agent what actions to take in any given

state. The terms “policy” and “agent” are sometimes used interchangeably. In a

deterministic policy, the action At at any time step t is computed as:

At = µθ(St) (2.8)

where µ is a deterministic function and θ is a set of parameters of this function.

For stochastic policies, the action At at time step t is sampled from a distribution

conditioned on the state:

At ∼ πθ (. | St) (2.9)

where π is a conditional probability distribution parameterized by θ.

Without any function approximation, policies would be represented as a table

with one row for every state, containing the probability with which each action

should be chosen in that state. However, for large and/or continuous state and action

spaces, it is not possible to maintain this explicit table, so function approximators

are used. In such cases, the policy function can be modeled using a simple logistic

function or a deep neural network. The behaviour of the agent can be altered by

changing the parameters of this policy function. A policy π is better than policy π′

if its expected return is greater than that of π′ for all states. When using function

CHAPTER 2. REINFORCEMENT LEARNING 8

approximation, stochastic policies are often modelled as categorical distributions, for

discrete action spaces, and diagonal Gaussian distributions, for continuous action

spaces. In order to apply these policies, we need to be able to sample actions from

the associated probability distribution.

2.4 Reinforcement Learning

The objective of reinforcement learning (RL) agents is to learn a policy that acts

to maximize its expected return. If both the transition function and policy are

stochastic, then the probability of a T -horizon trajectory is given by:

P (τ | π) = ρ0(S0)
T−1∏
t=0

P (St+1 | St, At)π (At | St) (2.10)

And this leads to an expected return of:

J(π) =
∫
τ
P (τ | π)G(τ) = Eτ∼π[G(τ)] (2.11)

The optimal policy is given by the following equation:

π∗ = arg max
π

J(π). (2.12)

Next, it is necessary to define value functions, which can be viewed as helper quan-

tities that can direct the agent’s search for an optimal policy.

2.5 Value Functions

The value of a state is defined as the expected return given that the agent starts in

that state and takes actions from a particular policy. It is defined as:

V π(s) = Eτ∼π[G (τ) | S0 = s] (2.13)

The value of a terminal state, if it exists, is always zero. V π is called the state-value

function for any policy π.

CHAPTER 2. REINFORCEMENT LEARNING 9

The value of a state-action pair is defined as:

Qπ(s, a) = Eτ∼π[G (τ) | S0 = s, A0 = a] (2.14)

which is the expected return starting at state s and taking an action a, followed by

taking actions from policy π. Qπ is the action-value function for policy π.

Solving an RL problem is the same as learning the policy that gets the agent

the optimal expected return. To that end, it is useful to determine the value of each

state under the optimal policy, known as the optimal value function.

V ∗(s) = max
π

Eτ∼π[G (τ) | S0 = s] (2.15)

which is the expected value of starting at state s and always acting according to the

optimal policy. The optimal action-value function is defined as:

Q∗(s, a) = max
π

Eτ∼π[G (τ) | S0 = s, A0 = a] (2.16)

which is the expected value of starting at state s and take an action a, and forever

after taking actions from the optimal policy.

These value functions are related through the following relationships

V π(s) = Ea∼π[Qπ(s, a)] (2.17)

V ∗(s) = max
a

Q∗(s, a) (2.18)

The optimal action-value function and optimal policy are also related as follows:

π∗(s) = arg max
a

Q∗(s, a) (2.19)

One last point to note is that there may be more than one action that maximizes

Q∗(s, a), in which case any of those actions is optimal. Yet, there will always be at

least one optimal policy which selects an action deterministically .

Sometimes we want to determine how valuable one action is relative to other

actions, on average, or the advantage of one action compared to other actions. The

advantage function is defined as:

Aπ(s, a) = Qπ(s, a)− V π(s) (2.20)

CHAPTER 2. REINFORCEMENT LEARNING 10

It is often used in policy gradient methods (see Section 2.7).

2.6 Value Function Estimation

As explained above, value estimation is one of the main methods for solving an

RL problem. Since the future returns can depend on many factors other than the

current state, value estimation can be very noisy, which in turn makes this problem

hard. We will use past experience to estimate the value functions. Naturally, we

can estimate the value of a state by averaging the returns we get from that state, a

method known as Monte Carlo estimation. This is equivalent to using the sample

average to estimate the expectation in Eq. (2.13). The Monte Carlo value estimates

will converge to the true value of that state as the number of visits to that state

tends to infinity. However, if that state is visited by only one trajectory, Monte

Carlo estimates the value of that state to be the return from that single trajectory.

Hence, with little data, the Monte Carlo estimate can have high variance, especially

if the policy or environment are stochastic.

Lower variance estimates of value functions can be obtained by using the Markov

property. For this, we can expand the value function definition as follows:

V π(s) = Eπ[Gt(τ) | St = s] (2.21)

= Eπ[R(St) + γGt+1(τ) | St = s] (2.22)

= Eπ[R(St) + γEπ[V π(St+1)] | St = s, St+1 = s′] (2.23)

=
∑
a

π(a|s)
∑
s′,r

P (s′, r|s, a)(r + γV π(s′)) (2.24)

where R(St) is the expected reward from state St (slightly abusing notation) and

Gt+1(τ) is the return of the trajectory τ starting from state St+1 = s′. The expression

above is the Bellman equation for V π (Bellman, 1956). The Bellman equation shows

the relationship between the value of a state and the value of its successor states.

Qπ(s, a) obeys a similar equation, conditioning on (s, a).

CHAPTER 2. REINFORCEMENT LEARNING 11

The optimal state value function and optimal action-value function also obey a

set of recursive relationships, called Bellman optimality equations:

V ∗(s) = max
a

∑
s′,r

P (s′, r|s, a)[r + γV ∗(s′)] (2.25)

and similarly for Q∗.

As shown above, the main difference between the Bellman equations for the

fixed-policy value functions and the optimal value functions is the max operation

over actions. This indicates that whenever the agent is given the choice among

different actions, it has to choose the one that yields the highest return.

2.6.1 Dynamic Programming

Dynamic programming (DP) offers a set of methods to find the optimal policy, if the

agent has access to the model of the environment. These are not the most efficient

algorithms, since they require enormous computational resources, but they provide

the necessary theoretical foundation for subsequent algorithms.

Policy iteration (Howard, 1960) constantly improves the policy to obtain the

optimal state value function. In this algorithm, V (s) is initialized to 0 and π(s)

is initialized to random for all states. Then, V (s) is updated iteratively for all

states using the following update rule, derived from the Bellman equation, until

convergence:

V (s)←
∑
a

π(a|s)
∑
s′,r

P (s′, r | s, a)[r + γV (s′)] (2.26)

This is known as the policy evaluation stage. Next, the policy π(s) is updated for

all the states using the following equation:

π(s)← arg max
a

∑
s′,r

P (s′, r | s, a)[r + γV (s′)] (2.27)

This is known as policy improvement. If policy improvement results in any change

in policy, then the policy evaluation and policy improvement steps are repeated

until there is no change in the policy.

CHAPTER 2. REINFORCEMENT LEARNING 12

Policy iteration alternates these two main steps: 1) policy evaluation, and 2)

policy improvement. Policy evaluation works to find the true values of all the states

given the current policy. Policy improvement is greedifying the policy by choosing

the action that maximizes the value of a given state.

Value Iteration (Howard, 1960) tries to perform both the above steps at once.

Specifically, V (s) is initialized to random values for all states, except the terminal

states, whose values are set to 0. Then V (s) for all states are updated iteratively,

using the following update rule until convergence:

V (s)← max
a

∑
s′,r

p(s′, r | s, a)[r + γV (s′)] (2.28)

The final policy can be computed by using argmax:

π(s)← arg max
a

∑
s′,r

p(s′, r | s, a)[r + γV (s′)] (2.29)

2.6.2 Temporal Difference Learning

Temporal Difference (TD) learning (Sutton, 1988) is an algorithms that combines

Monte Carlo and dynamic programming. TD is similar to Monte Carlo in the sense

that it does not require the model of the world, and similar to dynamic programming

in the ability to bootstrap, which means using the current estimate of the value

function as an approximation of future return. TD learning and Monte Carlo are

usually referred to as sample updates, since they both require seeing the sampled

trajectory of the agent, instead of knowing the model.

In short, Monte Carlo waits for the episode to finish and then uses that return

to update the value estimates as follows:

V (St)← V (St) + α[Gt(τ)− V (St)] (2.30)

where Gt(τ) is the return on trajectory τ from time t onward and α ∈ (0, 1) is the

step size. The main difference between Monte Carlo and TD learning is that in

TD learning, we do not have to wait until the end of an episode to have a target.

CHAPTER 2. REINFORCEMENT LEARNING 13

Rather, the target is already set after only one time step. The TD learning update

is given by the following equation:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (2.31)

The difference between V (St) and (Rt+1 + γV (St+1)) is called the TD-error.

As mentioned above, TD methods are preferred to DP methods since the re-

quirement of having access to the model of the environment both for transitions

and rewards is relaxed. TD methods are preferred to Monte Carlo methods since

they can learn in a fully online and incremental fashion and they do not need to

wait until the end of the episode, when the return is known.

2.6.3 Q-Learning

Q-Learning (Watkins and Dayan, 1992) is an off-policy TD control method, which

aims to learn the optimal action value function from sampled transitions. The

update equation for Q-Learning is:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.32)

where α ∈ (0, 1) is the step size. The only difference with the previous TD defini-

tion is that the state-value functions are replaced by action-value functions, and we

assume that from state St+1 onward, the agent will follow the policy which max-

imizes its current value estimates. The advantage of this method is that we can

approximate the optimal action-value function without having access to transitions

coming from a single policy. To reach convergence, the only requirement is that all

state-action pairs keep getting updated.

2.6.4 Deep Q-Networks (DQN)

The Deep Q-Network (DQN) algorithm (Mnih et al., 2013) is an example of suc-

cessfully deploying the Q-Learning algorithm to achieve impressive results, defeating

CHAPTER 2. REINFORCEMENT LEARNING 14

human experts in Atari Games (Bellemare et al., 2013). DQN uses deep neural net-

works to approximate Q(s, a) because storing value functions explicitly in large

state spaces would not be feasible. Since DQN uses a form of function approxima-

tion typically used in supervised learning, in order to solve this RL problem, it needs

to ensure that the data is decorrelated, as it would be if it obeyed the i.i.d (inde-

pendently and identically distributed) assumption. The mechanism which ensures

this decorrelation is called Experience Replay. Experience Replay refers to storing

all transitions observed by the agent in a buffer and then taking batches at random

among these samples during the training process, in order to break the correlation

between the transitions within one trajectory. This also has been shown to be an

efficient method to reuse the samples.

Using the same deep neural network to learn and compute target action-values

makes the problem highly non-stationary. DQN solves this issue by using a separate

target network to compute the target values, which makes the learning stable. The

weights of the action-value network are copied onto the target network after every

k updates, where k is a hyper-parameter.

2.7 Policy Optimization

Policy optimization is a family of RL algorithms that try to learn πθ(a|s), via one of

two main methods. The first is to directly optimize for J(πθ) = Eτ∼πθ [G(τ)] using

gradient ascent. The second method is to indirectly maximize local approximations

of J(πθ). Normally this optimization is done in an on-policy fashion. On-policy

indicates that the rollouts are generated by acting in the world using the latest

version of the policy. On the other hand, off-policy indicates that the data used

to learn comes from a different policy than the one we are trying to optimize.

The most famous algorithms of the policy optimization family are Policy Gradient

(Williams, 1992), Actor Critic methods (Sutton and Barto, 2018), Trust Region

CHAPTER 2. REINFORCEMENT LEARNING 15

Policy Optimization (Schulman et al., 2015), and Proximal Policy Optimization

(Schulman et al., 2017).

2.7.1 Policy Gradient

To derive the vanilla policy gradient algorithm, we assume a stochastic parame-

terized policy πθ and a finite action space. Intuitively, the goal is to increase the

probability of the actions with a higher expected return. The aim is to use gradient

ascent to optimize the parameters θ of the policy, as follows:

θk+1 = θk + α∇θJ(πθ)|θk (2.33)

The derivative term ∇θJ(πθ) is a stochastic approximation whose expectation

estimates the gradient of the performance measure with respect to the parameters

of the policy, referred to as the policy gradient. Algorithms that optimize the policy

using this term are called policy gradient algorithms. The main benefit of this family

of methods is that as long as the policy gradient term exists and is finite, the policy

can be improved. Using a stochastic policy also helps in exploration.

Using elementary calculus and rearranging terms, we can derive the policy gra-

dient from first principles, for the undiscounted, finite horizon return, as follows:

1. The probability of an episode τ = (s0, a0, ..., sT) where actions are sampled from

policy πθ is:

P (τ |θ) = ρ0(S0)
T∏
t=0

P (St+1|St, At)πθ(At|St) (2.34)

2. Since we know the derivative of log x with respect to x is 1
x
, when it is applied

through the chain rule we get:

∇θP (τ |θ) = P (τ |θ)∇θ logP (τ |θ) (2.35)

3. The log probability of a trajectory is:

logP (τ |θ) = log ρ0(S0) +
T∑
t=0

(logP (St+1|St, At) + log πθ(At|St)) (2.36)

CHAPTER 2. REINFORCEMENT LEARNING 16

Since the environment and parameters θ have no relationship, the gradients of

ρ0(S0), P (St+1|St, At) are zero, so the gradient of the log probability of a trajec-

tory is:

∇θ logP (τ |θ) =
T∑
t=0
∇θ log πθ(At|St) (2.37)

The derivation of the policy gradient can be written as:

∇θJ(πθ) = ∇θEτ∼πθ [G(τ)] (2.38)

= ∇θ

∫
τ
P (τ |θ)G(τ) (2.39)

=
∫
τ
∇θP (τ |θ)G(τ) (2.40)

=
∫
τ
P (τ |θ)∇θ logP (τ |θ)G(τ) (2.41)

= Eτ∼πθ [∇θ logP (τ |θ)G(τ)] (2.42)

∇θJ(πθ) = Eτ∼πθ [
T∑
t=0
∇θ log πθ(At|St)G(τ)] (2.43)

Now we can approximate the policy gradient term using sample episodes. As

we already discussed, this is an on-policy method, which means the trajectories will

come from the same policy as the one we are trying to improve. To calculate the

gradient, we can compute the gradient for every trajectory using the above term

(Eq.(2.43)), find the average and then use it to perform an update for the gradient

ascent algorithm. This algorithm is called REINFORCE (Williams, 1992).

2.7.2 Policy Gradient with Baseline

In Equation (2.43), the term G(τ) is used. However, it can also be implemented by

comparing the action value with an arbitrary baseline b(s) that is independent of

action, as follows:

∇θJ(πθ) = Eτ∼πθ [
T∑
t=0
∇θ log πθ(At|St)(G(τ)− b(St))] (2.44)

The baseline b can be chosen to reduce variance. The only constraint is that it

should not depend on actions. In many scenarios, the baseline is simply the moving

CHAPTER 2. REINFORCEMENT LEARNING 17

average of the rewards observed up to the current time point. This encourages the

agent to take actions that are at least as good as the average value of the actions

taken thus far.

2.7.3 Actor-Critic Methods

A very useful baseline is the on-policy state value function V π(St), which needs to be

approximated using a function approximator, such as a neural network. This value

function network gets updated along with the policy network, so that it uses samples

of the most recent policy. The goal is improve on REINFORCE with baseline. In

this case, the policy is updated essentially based on the advantage function Aπ,

which is also called the critic. This approach is called actor-critic (Sutton and

Barto, 2018), and many versions exist, depending on how the actor and the critic

are implemented and updated. For example, TD methods could be used to update

the critic.

2.8 Model-based Reinforcement Learning

A good way to distinguish among different RL algorithms is to see if the agent needs

to have access to an estimated transition probability model, sometimes called model

of the world, in order to make decisions. This model is defined as the probability

distribution of the next state, given the current state and action, as per Equations

(2.4) and (2.5). It can either be given to the agent or learned.

The main component differentiating model-based RL from model-free RL is the

fact that model-based RL algorithms perform planning using the model. Despite

their differences, both approaches rely heavily on calculating value functions. Both

methods first predict future events and then approximate the value function using

this prediction.

The goal of model-based RL is to learn the transition probability function

CHAPTER 2. REINFORCEMENT LEARNING 18

P (St+1|St, At). Then, we can explicitly use the model to unroll various sequences of

states and actions and pick the action which leads to the highest return.

For the deterministic case, there is always one next state, St+1 = f(St, At), and

the model can be trained to minimize mean squared error loss as follows:

∑
i

||f(si, ai)− si+1||2 (2.45)

where si+1 is the observed next state. But often this approach does not work well

because a deterministic model is not expressive enough. To get around this problem,

we can re-plan at every step and add the action taken from the current policy to the

experience buffer, which helps learn the model. Both re-planning and executing the

actions are done using Model Predictive Control (MPC) which will be explained in

the next section.

The most common approaches to model the environment are:

1. Gaussian Processes (GPs): Here the input is (St, At) and the output is

St+1. GPs are efficient in a low-data regime. However, they can be extremely

slow when the dataset (the buffer in which we store the transitions) is large.

GPs also do not do a great job when the dynamics are not smooth.

2. Neural Networks (NNs): Like GPs, NNs also learn to map the inputs

(St, At) to St+1. An advantage of using NNs is that we can use a lot of data

and they can be very expressive. However, if we have very few data points,

then NNs perform poorly.

3. Gaussian Mixture Models (GMMs): These approximate P (St+1|St, At)

using the tuples (St, At, St+1) and maximizing data log-likelihood, usually

through Expectation Maximization (EM).

CHAPTER 2. REINFORCEMENT LEARNING 19

2.8.1 Model Predictive Control

Model Predictive Control (MPC) (Camacho and Alba, 2013), is a simple method

for control problems, best suited when the state space and the action space are both

large. MPC works very well when joined with a learned model of the world. MPC

works by planning a sequence of actions for the current state for a finite horizon,

using the current model. However, only the first action of the best trajectory is

then taken, the data obtained is used to update the model, and then a new plan (a

sequence of actions) is recomputed and the cycle repeats. Hence, even if the model

is inaccurate, since only the first action of the plan is taken, the impact of model

errors on the action choice is not catastrophic. Using a short time horizon for the

planning also means that the computation will be more feasible.

2.8.2 Pitfalls in Model-based RL

One important point to always keep in mind is that the planner could look for

regions where the model is wrongly optimistic. Some planners, in order to generate

good solutions, require very accurate models. On the other hand, some tasks can be

solved by a very simple policy even if the environment dynamics are very complex.

In such cases, policy gradient and other model-free methods can be more effective

than model-based RL.

3
Learning the model of the world

While model-based RL has long been viewed as a very promising approach in the

RL field, it has always been very challenging empirically when compared to model-

free methods. However, the recent success of AlphaZero (Silver et al., 2017) and

MuZero (Schrittwieser et al., 2019) has renewed the interest in model-based RL, by

demonstrating the power of planning based methods, provided we have access to

an accurate model of the world. In this chapter, we will survey some of the recent

successful RL methods that aim to learn the model of the world in order to solve

the given task efficiently.

3.1 World Models

Ha and Schmidhuber (2018) proposed an agent design for solving control tasks from

pixel-level observations, called World Models. Specifically, they learn the following

three components separately to solve a task:

1. A vision module, which maps the pixel observations to a latent vector space.

2. A memory module, which integrates the information in the latent vector space

learnt by the vision module and can be used to make future predictions.

3. A controller, which uses the output of the vision module and the memory

module to predict what action to take next.

20

CHAPTER 3. LEARNING THE MODEL OF THE WORLD 21

The vision module of the world model is a variational auto-encoder (VAE) which

takes a 2D image at any time-step t as input and learns to compress it into a low-

dimensional latent vector zt, such that the image can be reconstructed from the

latent vector.

While the vision module computes a low-dimensional representation of the infor-

mation from the current time step, the memory module integrates this information

over time. This is done by using a recurrent neural network (RNN) which takes a

sequence of z vectors as inputs and predicts the next z vector that the VAE will

produce after seeing the next image. Since the environment could be stochastic,

the RNN outputs a probability distribution over z, p(z). Specifically, the RNN will

model the following conditional distribution: P (zt+1, rt+1, at+1, dt+1|at, zt, ht) where

at is the action taken at time t, dt+1 is an indicator function of whether the episode

ends at time step t + 1, and ht is the hidden state of the RNN at time t. This

probability distribution is modeled as a mixture of Gaussians, with a temperature

parameter which can be tuned to increase the stochasticity of the prediction. This

memory model is depicted in Figure 3.1.

Figure 3.1: The memory module of the World Model architecture.

CHAPTER 3. LEARNING THE MODEL OF THE WORLD 22

The controller is a linear model which takes ht and zt as inputs to predict the

action at. The authors argue that by transferring most of the capacity to the

representation learner and the model, we can afford to train a simple linear controller

in more unconventional ways, such as evolutionary methods. Specifically, they use

Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, 2016).

In the World Model architecture, all three components are trained in a sequential

way. First, a set of rollout trajectories are collected by using a randomly initialized

controller (which could be updated based on the interactions during this data col-

lection process). Next, the images in the rollouts are used to train the VAE model.

Then, the rollout trajectories are encoded in z space to train the RNN model, using

the encoded trajectories. The main novelty is in using this trained model to create

an environment for training the controller “in the dream". Specifically, the authors

wrap the model in an RL environment (using the standard Gym interface) and use

it to train the controller. The temperature parameter of the MDN-RNN model is

increased, to increase the stochasticity of the dream world, which helps the agent to

avoid exploiting the imperfections of the learnt model, and which leads to robust-

ness while performing in a real environment. The experimental results show that an

agent trained purely in the dream can achieve state-of-the-art performance in the

real environment. The entire world model architecture is summarized in Figure 3.2.

3.2 Gradient-based Planning

Henaff et al. (2017) introduced a model-based RL algorithm which uses gradient

descent based planning for taking actions. The authors collect a set of trajectories

by executing a random policy and use them to learn the reward function fR(St, At)

and the transition function fS(St, At), which predicts the next state St+1, These

functions together are known as the forward model, and are represented by a neural

CHAPTER 3. LEARNING THE MODEL OF THE WORLD 23

Figure 3.2: The World Model architecture

network. The loss function per time step is defined as follows:

l(St, At, Rt, St+1) = LS(St+1, fS(St, At)) + LR(Rt, fR(St, At)) (3.1)

Both LS and LR are mean-squared error loss in their experiments, but in principle,

they could be different. The functions fS and fR can be completely independent or

they could be a single neural network which takes St and At as inputs and predicts

both St+1 and Rt with multiple heads. The next state predicted by the model can

be fed back as the current state during the next prediction, instead of teacher-

forcing the current state, which helps the model to learn how to be robust to its

own imperfections.

Having learned these two functions to predict the next state and reward, one

can use gradient descent to find a sequence of actions that maximizes the expected

return of a specific trajectory, provided the actions are also continuous. This is done

by solving the following optimization problem:

arg max
A0,...,AT

T−1∑
t=0

fR(fS(S̃t, At), At+1) (3.2)

CHAPTER 3. LEARNING THE MODEL OF THE WORLD 24

Figure 3.3: Gradient based planning model. Only the actions are updated using
gradient descent while the forward model is fixed.

where S̃0 = s0 and S̃t+1 = fS(S̃t, At). The entire architecture for gradient based

planning is depicted in Figure 3.3.

While this method works for continuous action spaces, it cannot handle discrete

actions spaces. If we initialize the action sequence with one-hot vectors, there is no

guarantee that gradient descent will find the right one-hot action vector. Hence,

Henaff et al. (2017) propose to re-parameterize the discrete action space to be

a continuous action space, by restricting the actions to a simplex. If e1, e2, ...ed

are the set of one-hot action vectors, then the optimization problem after the re-

parameterization is as follows:

arg max
A0,...,AT

T−1∑
t=0

fR(fS(S̃t, σ(Xt)), σ(Xt)) (3.3)

where σ is the softmax function. A sequence of actions can then be chosen by solving

this optimization problem to quantize each σ(Xt) to the closest one-hot vector e.

Even though this reformulation forces the action space to be in the simplex,

optimizing using gradient descent may leave the actions in the interior of the simplex

rather than at the vertices, which are the one-hot vectors. The next modification

is to add Gaussian noise ε to the action vectors at the time of training the forward

CHAPTER 3. LEARNING THE MODEL OF THE WORLD 25

model, which will make the loss surface more convex around the action vectors.

This results in the following modified loss function:

l̃(St, At, Rt, St+1) = Eε∼N (0,σ2)[l(St, At + ε, Rt, St+1)] (3.4)

which can be re-written as:

∫ 1√
2πσ

e−
ε2

2σ2 l(St, At + ε, Rt, St+1)dε (3.5)

The probability mass is highest at ε = 0, which corresponds to the one-hot action

vector At. This increases the number of points sampled closer to the one-hot vector

at the time of training, causing it to lower the loss surface around those points at the

time of the gradient descent update. The result is a smoother loss surface around

the one-hot vector encoding each of the actions, making it easier to optimize.

Doing gradient descent based planning to take every action is time consuming.

Hence, the authors proposed learning a policy network, by generating numerous

trajectories using the learnt forward models and training the policy network in a

supervised way. The authors demonstrated that this policy network with knowledge

distilled from the gradient based planner achieves better results than state-of-the-

art RL methods like Trust Region Policy Optimization (TRPO) (Schulman et al.,

2015).

3.3 Universal Planning Network

Universal Planning Network (UPN) (Srinivas et al., 2018) is an end-to-end model-

based learning algorithm for MPC. Like World Models (Ha and Schmidhuber, 2018),

UPN learns an encoder representation for the states and a forward transition model

in the latent space. Like Henaff et al. (2017), UPN has a gradient-based planning

module. All these components are put together and everything is trained with a

single high-level imitation learning objective.

CHAPTER 3. LEARNING THE MODEL OF THE WORLD 26

Specifically, UPN is a goal-conditioned policy architecture which receives the

current observation and a goal observation as inputs. These two observations are

encoded by a neural network fφ into a latent vector representation. UPN also learns

a forward prediction model gθ which takes a latent state xt and action at as inputs

and predicts the next latent state xt+1. Now, given xt, xg, and a randomly initialized

action sequence of length T (the horizon), the planner module first unrolls the future

states from xt to xt+T+1 by using gθ. The planning loss is computed as the difference

between xt+T+1 and xg. The Huber loss is computed between the two entities. The

action sequence is updated based on the gradient with respect to the planning loss.

Now, this gradient based planning is repeater for k iterations, with the updated

action sequence from the previous iteration. Note that only the action sequence

at, ..., at+T is updated during gradient based planning. The parameters of fφ and gθ

are not updated.

UPN also has an outer loss, which takes the action sequence returned by the

gradient based planner and computes a behaviour cloning loss with respect to the

action sequence from the demonstration data. This loss is back-propagated through

the entire gradient descent planning module and is used to update fφ and gθ. The

goal of UPN is to learn a representation and a forward model which is directly

useful for planning. Once trained, UPN can be used to plan a sequence of actions

and after taking the first step in the sequence, one can re-plan using UPN. The

authors have shown that MPC using UPN achieves state-of-the-art results when

compared to other model-free methods and simple imitation learning methods. The

gradient descent planner module of UPN is depicted in Figure 3.4.

3.4 PETS

Probabilistic Ensembles with Trajectory Sampling (PETS) (Chua et al., 2018) is the

first known method to accomplish the same asymptotic performance as model-free

CHAPTER 3. LEARNING THE MODEL OF THE WORLD 27

Figure 3.4: Gradient descent planner module in Universal Planning Networks.

algorithms while simultaneously being orders of magnitude more sample efficient.

Model capacity and expressivity are the most important aspects of choosing a model

to learn the dynamics. While Gaussian Processes (GPs) are capable of learning very

fast, they are a good choice of model to represent the dynamics only if the amount

of available data is small. However, as mentioned by Calandra et al. (2016), in the

case of very complex and discontinuous environments, GPs should not be chosen,

since they are not scalable.

To incorporate neural networks into model-based RL, one needs to handle the

different types of uncertainty that exist in modelling. According to Chua et al.

(2018), there are two main types of uncertainty. One is called aleatoric uncertainty,

and refers to inherent stochasticites and non-stationarity of the system. To take care

of aleatoric uncertainty, one can deploy probabilistic neural networks that predict a

probability distribution from which to sample, instead of a mean point prediction.

Another type of uncertainty is the epistemic uncertainty, which is caused by our

function approximator and its limits in capturing the entirety of the dynamics,

typically caused by lack of data. The usual assumption is that if we have infinite

CHAPTER 3. LEARNING THE MODEL OF THE WORLD 28

data and a model with high capacity to represent the data, epistemic uncertainty

should disappear. An ensemble of probabilistic neural networks can be used to tackle

epistemic uncertainty. The goal is to capture both types of uncertainty, which is

done well with PETS.

A probabilistic neural network outputs a probability distribution over the next

state St+1 given the current state St and the current action At. It is trained by

maximizing the log-likelihood of the sampled next state, which is equivalent to

minimizing the following loss function:

T−1∑
t=0
− log fθ(St+1|St, At) (3.6)

where T is the length of the trajectory and fθ is a neural network with parameter

θ. One caveat when using probabilistic neural networks is that their estimate of

variance may have arbitrary values for out-of-distribution inputs. These variance

estimates may collapse to zero or even explode towards infinity, whereas this issue

does not exist in GPs, because the variance is well behaved, bounded and Lipschitz

smooth. Chua et al. (2018) bounded the output using a maximum and minimum

value to avoid this issue.

While one can use Bayesian Neural Networks (BNNs) to handle epistemic un-

certainty, they require heavy computation. Ensembles of models trained with boot-

strapped datasets are simpler than BNNs. B-many boostrap models are used in

PETS, with θb denoting the parameters of the bth model. To train the bth model, a

dataset Db is generated by sampling with replacement from the original dataset D.

The actions can be generated from a policy π(a|s) or from MPC (Camacho and

Alba, 2013). The advantage of MPC is that it is simple to use and we do not have

to define the entire task horizon in advance. The only two requirements for MPC

are knowing the current state St and a prediction horizon T .

The most straightforward way of generating action sequences is using the random

shooting method, which was originally proposed by Nagabandi et al. (2018) using

CHAPTER 3. LEARNING THE MODEL OF THE WORLD 29

Gaussian Processes. Through this method we randomly generate action trajectories

that are sampled from a Gaussian distribution, apply the optimization and then

select the best trajectory. Instead, Chua et al. (2018) use the Cross Entropy Method

(CEM) method (Botev et al., 2013), in which action trajectories are sampled from

the distribution that is closer to the action trajectories that yielded the highest

return last time.

Since we are learning uncertainty aware models, we should take care of approxi-

mating uncertainty propagation. The three most common uncertainty propagation

methods are:

1. Deterministic: in which the mean prediction will be used and the variance

(uncertainty) ignored.

2. Particle: in which a set of Monte Carlo samples is propagated.

3. Parametric: in which Gaussian or Gaussian mixture models are used.

As shown by Kupcsik et al. (2013), particle methods are highly accurate and

computationally effective, while simultaneously making no strong assumptions on

the prior distributions. Thus, Chua et al. (2018) use particle based propagation

in PETS, specifically, Trajectory Sampling (TS) state propagation. In trajectory

sampling, given a state S0 and P particles, each particle is propagated using:

Spt+1 = f̂θb(p,t)(S
p
t , At) (3.7)

where b(p, t) is one of the bootstrap models that may include time index as an

impacting parameter.

Two types of TS propagation are used:

1. TS1: In TS1, particles re-sample a bootstrap model at every time step. If

we used a Bayesian model instead of an ensemble of models, then particles

would be consistently re-sampled from the approximate marginal distribution

CHAPTER 3. LEARNING THE MODEL OF THE WORLD 30

of dynamics. This type of state propagation imposes a soft limit on trajectory

multi-modality.

2. T S∞: In TS∞ the same particle bootstrap is used throughout the entire

trial. TS∞ is able to learn the time invariance due to the fact that each boot-

strap index is made consistent over time. In TS∞, aleatoric and epistemic

uncertainties are distinct (Depeweg et al., 2017). In this type of propaga-

tion technique, aleatoric state variance is the average variance of particles of

the same bootstrap. However, epistemic state variance is the variance of the

average of the particles of the same bootstrap indices.

The PETS training procedure is summarized in Algorithm-1.

Algorithm 1 PETS
1: Initialize dynamics network parameters φ, data-set D
2: while Training iterations not Finished do
3: for ith time-step of the agent do . Sampling Data
4: Initialize action-sequence distribution. µ = µ0, Σ = σ2

0I
5: for jth CEM Update do . CEM Planning
6: Sample action sequences {âi} from N (µ,Σ).
7: for Every candidate δi do . Trajectory Predicting
8: for t = i to i+ τ , St+1 = fφ(St+1|St, At = Ât). f is a probabilistic

ensemble.
9: Evaluate expected reward of this candidate.

10: end for
11: Fit distribution of the elite candidates as µ′,Σ′.
12: Update noise distribution µ = (1− α)µ+ αµ′, Σ = (1− α)Σ + αΣ′
13: end for
14: Execute the first action from the optimal candidate action sequence.
15: end for
16: Update φ using data-set D . Dynamics Update
17: end while

4
Empirical Analysis of PETS

PETS (Chua et al., 2018) was the first model-based deep RL algorithm to match the

asymptotic performance of model-free RL algorithms while requiring fewer samples.

In this chapter, we perform a systematic empirical analysis of the PETS algorithm in

order to study the effect of various design choices in the algorithm. Our motivation

comes from the work of Henderson et al. (2018) who showed that it is very hard to

make a meaningful comparison of deep RL algorithms due to non-determinism of

the benchmarks, intrinsic variance in the algorithms, and poor standardization of

the experimental reporting.

4.1 Tasks and Experimental Setting

Chua et al. (2018) used the four continuous control benchmark tasks built on top of

the Mujoco physics simulator (Todorov et al., 2012) in their experiments: cartpole,

reacher, pusher, and half-cheetah. For our analysis, we used the first three tasks

which are explained below:

1. Cartpole is a classic benchmark where the goal is to balance a pole as long as

possible. The pole is attached to a cart, and the agent has to push the cart

in order to avoid the pole falling below a certain angle. The state space has 4

features and there are 2 possible actions.

31

CHAPTER 4. EMPIRICAL ANALYSIS OF PETS 32

2. Reacher is a simulated 7-DOF PR2 robot. The goal for the robot is to reach

a target. The state space has 14 features and there are 7 possible actions.

3. Pusher uses the same simulated 7-DOF PR2 robot. The goal for the robot

in this task is to push an object to a target location. The state space has 14

features and there are 7 possible actions.

The three tasks are depicted in Figure 4.1. While these images are used for

visualization purposes, the agent takes only the low-dimensional, raw state features

as input. The code to reproduce all the experiments reported in this chapter is

available at https://github.com/amini2nt/pets.

((a)) Cartpole ((b)) Reacher ((c)) Pusher

Figure 4.1: Cartpole, reacher, and pusher tasks.

4.2 Baseline Performance

Chua et al. (2018) ran 100 experiments for each task and reported the average

performance for the top 10 best performing experiments. This reporting has the

following issues:

1. Choosing the top 10 experiments skews the mean performance towards the

best performance and hence is not the true average performance of PETS.

2. There is no standard deviation information in the reports, meaning no avail-

able data on the variance of PETS performance.

https://github.com/amini2nt/pets

CHAPTER 4. EMPIRICAL ANALYSIS OF PETS 33

Deep RL experiments are costly and hence running a lot of experiments to obtain

statistically significant average performance of an algorithm is a computationally-

heavy and time-consuming process. However, discarding 90 completed experiments

and only reporting the average performance of the top 10 experiments is not appro-

priate. In order to get meaningful performance results, we ran PETS with the same

configuration for 10 random seeds and reported the average performance, along with

the confidence interval of one standard deviation in Figure 4.2.

((a)) Cartpole ((b)) Reacher

((c)) Pusher

Figure 4.2: Performance of PETS in cartpole, reacher, and pusher tasks. Results
are averaged over 10 random seeds.

Comparing these performance curves with the ones reported by Chua et al.

(2018), we observe that while the performance in Cartpole is similar, the reported

CHAPTER 4. EMPIRICAL ANALYSIS OF PETS 34

performance in Pusher and Reacher in their paper is higher than the average perfor-

mance we report in Figure 4.2. This is due to the fact that Cartpole is a relatively

simple environment and hence it is easy to learn an accurate model with less variance

in performance. On the other hand, Pusher and Reacher are complex environments

where modeling errors result in variance in the performance.

4.3 Effect of training models longer

In this section, we study how training models longer affects performance. In every

iteration of PETS training, we used the current model with MPC to collect training

episodes and then applied the collected data set of transitions to train the model

of the environment. This trained model is then used in the next iteration for more

data collection. Chua et al. (2018) train their models for 5 epochs in every iteration.

While this will help us obtain a better model over several iterations, there is an

advantage to improving the accuracy of the model earlier. If we can obtain a better

model in one iteration, that would help in collecting high performing trajectories in

the next iteration to better train the model. Overall, this process should increase

the sample efficiency of the algorithm.

This is verified in our experiments reported in Figure 4.3. As we can see, in-

creasing the number of epochs in model training resulted in faster convergence in

all three tasks. The maximum improvement is in Cartpole, where it is easy to learn

an accurate model of the environment with very little data. The improvements

saturate after 40 epochs. However, in the case of Reacher, which is more complex,

there is clear improvement in training for 100 epochs when compared to training

for 40 epochs. Pusher is the most complex task, thus the improvements are only

minor, which suggests that more training is needed. Pusher results also highlight

that the reported results were limited by the inaccuracy of the model since we can

see performance improvement when the models are more accurate.

CHAPTER 4. EMPIRICAL ANALYSIS OF PETS 35

((a)) Cartpole ((b)) Reacher

((c)) Pusher

Figure 4.3: Effect of training the model longer. Chua et al. (2018) reported results
with models trained for 5 epochs.

We would like to highlight that data collection is the bottleneck in PETS train-

ing, not the model training time. This is because data collection requires population

based search (as implemented in CEM) and is often done in CPU. On the other hand,

model training is simple supervised learning with batch gradient descent on GPUs

and does not require interaction with the environment.

4.4 Effect of population size

In this section, we study the effect of the population size of the CEM algorithm

on the final performance. CEM uses particle based trajectory sampling in which

CHAPTER 4. EMPIRICAL ANALYSIS OF PETS 36

((a)) Cartpole ((b)) Reacher

((c)) Pusher

Figure 4.4: Effect of increasing the population size. Chua et al. (2018) used a
population size of 400.

p different trajectories are sampled from the current state, where p is the number

of particles. Then CEM chooses the top-k particles (also known as elite particles)

based on the returns from the trajectories and uses these elite particles to update

the action distribution from which future action sequences are sampled.

The population size of CEM refers to the number of particles used in the trajec-

tory sampling. Intuitively, the higher the population size, the better the expected

performance. In Figure 4.4, we compare the performance of PETS for various popu-

lation sizes. While Chua et al. (2018) used a population size of 400, we analyzed the

performance by varying the population size from 200 to 1000. As we can see from

the Cartpole and Reacher experiments, increasing the population size can help by

CHAPTER 4. EMPIRICAL ANALYSIS OF PETS 37

providing slightly faster convergence and better performance. However, the return

is negligible after a population size of 800. Pusher is a complex task, and thus it

requires an even greater population size to improve the performance.

4.5 Effect of CEM iterations

CEM particles are action sequences sampled from a Gaussian distribution, where

the mean and standard deviation are updated iteratively based on the population

statistics from the elite particles. As we increase the number of CEM iterations,

the mean of this action distribution should approach the optimal action and the

variance of the action distribution should reduce significantly. Hence, longer CEM

iterations should help us to improve the performance.

Figure 4.5 reports the performance of PETS when varying the number of CEM

iterations. Chua et al. (2018) used 5 CEM iterations. As we can see, increasing

the number of CEM iterations improves the performance in all three tasks. In the

simple Cartpole task, we do not see a big difference since PETS can learn a highly

accurate model even with fewer samples. However, the performance improvement

is clear in Reacher and even Pusher shows some improvement.

4.6 Complementary effects

In this section, we try to understand if the benefits gained in the last three experi-

ments are complementary to each other. First, we study the complementary effects

of training the model and increasing the CEM iterations. The results are reported

in Figure 4.6. In Cartpole, both longer model training and increased CEM itera-

tions helped to achieve better performance. We can see that models that are trained

longer have faster convergence (1750 steps vs. 600 steps). The configuration with

longer model training and more CEM iterations achieves the best performance.

CHAPTER 4. EMPIRICAL ANALYSIS OF PETS 38

((a)) Cartpole ((b)) Reacher

((c)) Pusher

Figure 4.5: Effect of increasing the CEM iterations.

The importance of more CEM iterations is clear from the Reacher experiments.

Even though the model trained for 100 epochs converged three times faster than

the model trained with 5 epochs (1000 steps vs 3000 steps), it achieved the same

final performance. However, the model trained for just 5 epochs, when more CEM

iterations were added, converged to a significantly better solution. Increasing the

amount of model training helps to obtain faster convergence to a superior solution.

Results in Pusher show that as the task gets more complex, both better model

and longer CEM iterations are needed to improve the performance. This is evident

from the faster convergence and significantly superior performance of the model

trained for 100 epochs with 15 CEM iterations.

CHAPTER 4. EMPIRICAL ANALYSIS OF PETS 39

((a)) Cartpole ((b)) Reacher

((c)) Pusher

Figure 4.6: Complementary effects of training the model longer and increased CEM
iterations.

Lastly, we study how the population size of CEM affects the performance when

combined with the other two improvements. The results are reported in Figure 4.7.

From the figure, it is clear that increasing the population size helps when we have

a less perfect model. However, as we increase the model training (from 5 epochs to

100 epochs), we can see that increasing the population size either hurts (as in the

Cartpole experiments) or has no significant effect (as in the Reacher and Pusher

experiments).

CHAPTER 4. EMPIRICAL ANALYSIS OF PETS 40

((a)) Cartpole ((b)) Reacher

((c)) Pusher

Figure 4.7: Complementary effects of population size.

4.7 Final performance

Based on our analysis, we have the following recommendations for improving the

performance of PETS:

1. Train the model longer in every iteration. This does not require extra data,

since we are training the model in batch mode by using the collected data.

This helps data efficiency by improving the MPC. We would like to highlight

that training the model longer does not have huge computational overhead

since the training time is dominated by the CEM steps.

2. Increase the CEM iterations. While this makes the training slower (in terms

CHAPTER 4. EMPIRICAL ANALYSIS OF PETS 41

((a)) Cartpole ((b)) Reacher

((c)) Pusher

Figure 4.8: Performance of PETS with and without the suggested improvements.

of CPU time), this is necessary in more complex tasks to achieve better per-

formance.

Figure 4.8 summarizes the performance of baseline PETS model and the im-

proved PETS model. We achieve faster convergence and significantly better perfor-

mance in all the three tasks.

4.8 Discussion

Recently Wang and Ba (2020) proposed a new algorithm called POPLIN which ex-

tended PETS by adding a policy network. The authors demonstrated that POPLIN

can achieve superior performance to PETS. Our improvements to PETS close the

CHAPTER 4. EMPIRICAL ANALYSIS OF PETS 42

gap between these two algorithms without adding new components to the algorithm.

For example, using the suggested setting for PETS, we achieved approximately the

same performance as POPLIN with fewer time steps (10k vs 50k) in a complex

simulated robot reaching task (Reacher). In Pusher, we achieved better perfor-

mance than POPLIN with fewer steps (15k vs 50k). We would like to highlight that

POPLIN is a compute-intensive approach when compared to PETS since it does

CEM search in the high-dimensional policy parameter space instead of the low-

dimensional action space and hence cannot be efficiently mini-batched like PETS.

This limitation of POPLIN is further discussed in the next chapter where we pro-

pose an efficient solution to do CEM in policy parameter space. Our PETS results

highlight the importance of proper analysis of new algorithms.

5
Policy-guided Latent Space Planning

In this chapter, we propose a new model-based reinforcement learning algorithm

called PG+ which is built on top of PETS (Chua et al., 2018) and PlaNet (Hafner

et al., 2018). The results in this chapter are also presented in (Amini et al., 2020).

5.1 Background

Deep Planning Network (PlaNet) (Hafner et al., 2018) is a model-based RL algo-

rithm which learns a latent dynamics model that can predict both the transition

dynamics and the reward function in latent space.

Unlike PETS, which uses an ensemble of feed-forward networks with probabilis-

tic outputs, PlaNet uses a single variational recurrent neural network (RNN) with

probabilistic output. Specifically, given the previous latent state st−1 and action

at−1, PlaNet first computes a deterministic state model as follows:

ht = f(ht−1, st−1, at−1) (5.1)

where f is a recurrent neural network. Given this deterministic hidden state, then

a stochastic state model is constructed: st ∼ p(st|ht). PlaNet learns an observation

model and reward model conditioned on the state models: p(ot|ht, st) and p(rt|ht, st).

Together, these models form the Recurrent State Space Model (RSSM).

The complete architecture of an RSSM model unrolled over three time steps is

shown in Figure 5.1. Unlike PETS, which takes a low-dimensional state as input,

43

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 44

PlaNet takes a high-dimensional observation space (in the form of images) as input.

However, predicting forward in high-dimensional observation space is not desirable

due to the following reasons:

1. We need to evaluate thousands of action sequences at every time step of the

agent. Doing this with a forward model that predicts high-dimensional ob-

servations is a computationally intensive process to perform during decision

time.

2. Image observations often contain a lot of irrelevant information. Hence, trying

to predict the entire observation can be error-prone, since these errors then get

propagated as we predict far in the future. It is also not necessary to capture

the irrelevant details (like image background) in the transition dynamics.

To avoid these issues, RSSM learns to predict forward purely in the low-dimensional

latent space st. Hafner et al. (2018) emphasize the importance of conditioning both

on the deterministic path ht and on the stochastic path st for better modeling of

the transition dynamics.

RSSM is trained by maximizing the variational lower bound on the observation

log-likelihood, defined as follows:

log p(o1:T |a1:T) = log
∫ ∏

t p(st|st−1, at−1) p(ot|st) ds1:T

≥ ∑T
t=1

(
Eq(st|o≤t,a<t)[ln p(ot|st)]− Eq(st−1|o≤t−1,a<t−1)[KL[q(st|o≤t, a<t)p(st|st−1, at−1)]]

)

Similarly, we can also compute the variational lower bound for the reward log-

likelihood.

Since the RSSM is trained to predict forward in the latent space, the agent can

perform imaginary rollouts in the learned latent space and choose the action which

leads to highest return among the imagined rollouts. Similar to PETS, Hafner et al.

(2018) use a CEM based planner to choose the next action. However, PETS does

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 45

Figure 5.1: Recurrent State Space Model. The model observes the first two time
steps and predicts the third. Circles represent stochastic variables and squares
deterministic variables. Solid lines denote the generative process and dashed lines
the inference model.

CEM planning in the observation space while PlaNet does CEM planning in the

learned latent space.

5.2 PG+: An algorithm for policy-guided planning in

learned latent space

While PlaNet achieves state-of-the-art performance when compared to other model-

based methods, it is still doing simple model predictive control on top of the learned

model using CEM. While CEM is easy to perform in low-dimensional action spaces,

it does not scale up well for high-dimensional action spaces. Also, CEM learning is

only episodic. Hence, the CEM module is reinitialized to a standard Gaussian in

every action step.

Recently, Wang and Ba (2020) proposed POPLIN, which combined PETS with

a learned policy network. In POPLIN, along with the model of the world, authors

also learn a policy network which takes the current state and predicts the action.

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 46

This policy network is learnt by behaviour cloning using the data collected by the

agent up to that point. During the CEM planning stage, POPLIN uses the policy

network in either of the following ways:

1. In POPLIN-A, the policy network and the learned model of the world are used

to propose an action trajectory. A CEM module is then used to learn a noise

sequence to be added to this action trajectory, such that the resulting action

trajectory leads to the highest return.

2. In POPLIN-P, a CEM module is used to learn a noise distribution sequence

to be added to the parameters of the policy network, such that the policy

network can produce an action trajectory that leads to the highest return.

Wang and Ba (2020) reported that POPLIN-P achieves superior performance

when compared to PETS and POPLIN-A in most of the tasks. However, extending

POPLIN-P to PlaNet has the following challenges:

1. In the Mujoco domains under consideration, PETS had access to the true

low-dimensional state space, which made the tasks easier when compared to

PlaNet’s raw image-based observation space. Hence, bootstrapping from the

collected data with behaviour cloning was sufficient to learn a good policy for

PETS. However, in the case of PlaNet, the policy needs to be learnt on the

latent space, which is more challenging for the policy network.

2. The latent space is also learnt simultaneously and hence there is continuous

drift in the state distribution seen by the policy network. This further increases

the difficulty of the task.

3. Adding noise to the parameter space is a computationally intensive process.

We need to compute a separate noise for every time step and also for every

example in the mini-batch. Hence, we cannot mini-batch the policy network

predictions, so the training is very slow when compared to POPLIN-A.

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 47

With this motivation in mind, we now describe our proposed algorithm, Policy

Guided Planning in Latent Space (PGPLaS or PG+), which aims to improve the

above mentioned issues in combining a policy network with PlaNet.

5.2.1 Learning a Policy Network

Given a collected dataset of state-action sequences, behaviour cloning (BC) aims to

maximize the log-likelohood of the action given the state:

E(s,a)∈D log πθ(a|s) (5.2)

where π is the policy network with parameters θ and D is the dataset collected

so far. BC assumes that all actions collected in the dataset are “good” actions.

However, learning a policy network in the latent space of PlaNet introduces addi-

tional challenges. In the initial stages of the learning, the latent state space evolves

faster since it is also simultaneously learnt. So it is difficult to learn a good policy

and this in turn affects the quality of the data collected. Fitting the low quality

data leads to further degradation in the quality of the policy. To avoid this, we use

the Monotonic Advantage Re-Weighted Imitation Learning (MARWIL) loss pro-

posed by Wang et al. (2018). Since we also have access to the reward obtained by

performing the action, MARWIL exploits this additional information to weigh the

“good” actions more than the “bad” actions. Specifically, MARWIL maximizes the

following advantage reweighted log-likelihood:

E(s,a)∈D exp(βÂπ(s, a)) logπθ(a|s) (5.3)

where β is a hyper-parameter. The advantage function Â is defined as

Â(s, a) = (r − Vθ(s))/c (5.4)

where r is the reward observed after (s, a) and c is a normalization term for the

advantage value that helps to maintain the scale of β across different environments,

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 48

computed by using the moving average of the norm of the advantage:

c2 = c2 + 10−8((r − Vθ(s))2 − c2) (5.5)

Note that when β = 0, the MARWIL loss is reduced to BC loss. Wang et al. (2018)

used the MARWIL loss with batch data only to fit a policy. Our setting has two

major differences:

1. We are updating the policy by using the data collected by the same policy.

2. We use MARWIL in latent space instead of observation space and this latent

space is also simultaneously learnt.

The policy network is detached from the dynamics network and hence there is no

gradient flow between the policy network and the dynamics network. In our ablation

study, we show that it is necessary to detach the policy network for efficient learning.

Our experimental results show that one can indeed use a batch-RL algorithm

like MARWIL on the top of a learnt latent space and achieve state-of-the-art per-

formance. This opens up avenues for transferring advances in the batch RL or the

offline RL setting to the model-based RL setting.

5.2.2 Computing Policy Noise Efficiently

POPLIN-P adds noise to the parameters of the policy network and uses CEM to find

the best noise distribution, that results in a policy maximizing the return. Consider

the following simple single hidden layer policy network:

h = f(Ws+ b) (5.6)

π = V h+ c (5.7)

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 49

POPLIN-P adds noise to both the W matrix and the V matrix. Specifically, it

samplesWn and Vn from the noise distribution and performs the following operation:

h = f((W +Wn)s+ b) (5.8)

π = (V + Vn)h+ c (5.9)

This type of policy noise has two limitations:

1. Since the noise is added to the parameters of the policy, we cannot benefit

from mini-batching. Hence, training is extremely slow.

2. The dimensionality of the noise distribution is equal to the number of param-

eters in the policy network. This is much larger than the action space itself

and CEM suffers from this increased dimensionality.

To avoid these limitations, we propose to add noise vectors to the input and hidden

layers of the policy network as follows:

h = f(W (s+ sn) + b) (5.10)

π = V (h+ hn) + c (5.11)

The dimensioanlity of the noise distribution that models sn and hn is much smaller

than that of POPLIN-P. Also, the matrix operations can be efficiently batched with

this approach and hence we incur no extra computational overhead. One can see

that the proposed state noise can be re-cast as parameter noise. However, this

state noise does not cover the entire space of parameter noise. Empirically, this

restricted but scalable noise itself is sufficient to achieve good performance. Our

experimental results show that PG+ with state noise achieves superior performance

when compared to PlaNet.

The complete method is presented in Algorithm-2. The high-level algorithm is

similar to POPLIN-P, but we use the proposed state noise for scalable policy noise,

the RSSM and PlaNet loss for learning the dynamics, and the MARWIL loss for

policy updates.

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 50

Algorithm 2 PG+
1: Initialize policy network parameters θ, dynamics network parameters φ, data-set
D

2: while Training iterations not Finished do
3: for ith time-step of the agent do . Sampling Data
4: Initialize policy state noise distribution. µ = µ0, Σ = σ2

0I
5: for jth CEM Update do . CEM Planning
6: Sample policy state noise sequences {ωi} from N (µ,Σ).
7: for Every candidate ωi do . Trajectory Predicting
8: for t = i to i+ τ , st+1 = fφ(st+1|st, at = πθ(st, ωt)) . st is the

latent state from RSSM
9: Evaluate expected reward of this candidate.

10: end for
11: Fit distribution of the elite candidates as µ′,Σ′.
12: Update noise distribution µ = (1− α)µ+ αµ′, Σ = (1− α)Σ + αΣ′
13: end for
14: Select the first action from the optimal candidate action sequence.
15: Add exploration noise to the selected action.
16: Execute the action for action_repeat times.
17: end for
18: Update φ using data-set D and PlaNet loss. . Dynamics Update
19: Detach the policy network and update θ using dataset D and MARWIL loss.

. Policy Update
20: end while

5.3 Relation to other algorithms

PETS learns to predict forward in the observed state space and combines the learned

model with a CEM search for decision-time planning. PlaNet improved PETS by

learning to predict forward in the learned latent state space and doing a CEM search

in the latent space, which helps PlaNet deal with high-dimensional observational

better than PETS. PG+ improves PlaNet further by learning a policy network in

the learned latent space and combining the policy network with the dynamics model

during decision-time planning. Searching in the policy space is much more efficient

than searching in the action space, since smaller changes to the policy network can

easily explore significantly different policies in fewer CEM iterations.

POPLIN (Wang and Ba, 2020) is similar to PG+ since both algorithms combine

policy networks with dynamics based decision-time planning. However, PG+ is

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 51

different from POPLIN in the following aspects:

• POPLIN learns a policy in the original state space while PG+ learns the policy

in the learned latent space. Simple behaviour cloning as used in POPLIN

cannot be used in the learned latent space and hence PG+ uses MARWIL loss

to learn the policy.

• POPLIN assumes access to true reward function while PG+ learns a reward

function by itself.

• POPLIN proposes adding noise in either the action space (POPLIN-A) or in

the policy parameter space (POPLIN-P). While the action space is low di-

mensional when compared to the parameter space, POPLIN-P is superior in

performance when compared to POPLIN-A. PG+, on the other hand, pro-

poses adding noise in the input and hidden states of the policy network. This

combines the benefits of both POPLIN-A and POPLIN-P since state noise

works in the low dimensional state space (input state and hidden state) and

is still as effective as POPLIN-P.

PG+ is also related to Dreamer (Hafner et al., 2020) since Dreamer learns a

policy on top of the learnt latent space of the dynamics model. However, Dreamer

is not a decision-time planning algorithm. Dreamer directly takes actions based on

the predictions by the policy network. The two approaches are useful in different

scenarios, and our focus is on decision-time planning.

5.4 Experiments

In this section, we present our empirical evaluation of the PG+ algorithm. Code to

reproduce the results is available at https://github.com/amini2nt/mb_rainbow.

https://github.com/amini2nt/mb_rainbow

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 52

5.4.1 Tasks

We evaluate PG+ on the following five visual control tasks of the DeepMind Control

Suite (Tassa et al., 2020) illustrated in Figure-5.2: Cheetah Run, Reacher Easy,

Walker Walk, Finger Spin, and Quadruple Run. All the DeepMind Control Suite

tasks have an action-repeat hyper-parameter which controls the number of times

each action is repeated. This hyper-parameter controls the difficulty of the task.

Setting the action-repeat to 4 divides the horizon of the problem by 4 and hence

the task becomes easier. Hafner et al. (2018) chose different action-repeat values for

different tasks to make the tasks easy for PlaNet. To avoid these discrepancies, we

decided to keep a uniform action-repeat of 2 for all the tasks. This approach is also

followed by Dreamer (Hafner et al., 2020). In effect, we removed a few easy-to-solve

tasks that PlaNet experiments considered, and added a few more challenging tasks.

Figure 5.2: The five DeepMind Control tasks considered in our experiments (from
left): Cheetah Run, Reacher Easy, Walker Walk, Finger Spin, Quadruple Run.

Each experiment is averaged over five random runs, and the mean and standard

deviations of the results are presented. Following PlaNet, we trained all the agents

for 1000 episodes.

5.4.2 Results

We use the PyTorch implementation of PlaNet provided by Arulkumaran (2019).

First, to reproduce the PlaNet results, we ran experiments on the setting for cheetah-

run recommended by Hafner et al. (2018) which is action-repeat = 4. The results

are provided in Figure-5.3. After reproducing PlaNet results for cheetah-run with

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 53

action-repeat = 4, we also benchmarked PG+ in the same easy setting. From

Figure-5.3, we can see that PG+ achieves significantly better results when compared

to PlaNet.

Figure 5.3: Results on Cheetah Run with action-repeat=4.

As a next step, we benchmarked both the algorithms in all the 5 control tasks

with action-repeat = 2. The results are shown in Figure-5.4. From the figure, we

can see that PG+ achieves superior asymptotic performance in three out of five

tasks (cheetah-run, reacher-easy and finger-spin) and matches the final performance

of PlaNet but with faster convergence in the remaining two tasks (Walker-walk and

quadruple-run). For example, in the reacher-easy task, PlaNet with action-repeat =

4 (as reported in Hafner et al. (2018)) can solve the task and achieve the maximum

of 1000 reward points. However, when we switch to action-repeat = 2, we can see

that PlaNet cannot solve the task anymore, while PG+ solves the task within 500

episodes. This demonstrates that PG+ can learn more successfully in longer horizon

tasks when compared to PlaNet. This is intuitive, since PG+ starts the decision-

time planning with a much better initialization provided by the policy network and

also employs a search process in a higher level policy space. PG+ is also more

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 54

stable when compared to PlaNet. As we can see in reacher-easy, finger-spin, and

quadruple-run, PlaNet has large variance in performance throughout training, while

PG+ is more stable. The stability of the PG+ performance is intuitively due to the

learnt policy network, which gets better over time.

Figure 5.4: Comparison of PlaNet and PG+ in the following five DeepMind Control
tasks: Cheetah Run, Reacher Easy, Walker Walk, Finger Spin, Quadruple Run. All
experiments are run for 5 random seeds and the average performance and standard
deviation are plotted. We used action-repeat=2 for all the tasks. The results demon-
strate that PG+ performs better than PlaNet, both in terms of final performance
and in terms of learning speed.

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 55

5.4.3 Ablation Study

PG+ has three major design choices: detaching the policy network from the dy-

namics network, using probabilistic output for the policy network, and using the

MARWIL loss for training the policy network. To understand the relative impor-

tance of these three design choices, we conducted an ablation study of PG+ for the

cheetah-run task. The results are reported in Figure-5.5. From the figure, we can

see that not detaching the policy network from the dynamics network (PG+ no-

detach) performs the worst. We hypothesize that in the beginning of the training,

the policy network will see a huge shift in the state distributions due to the fact

that the latent state space is also simultaneously learnt. Passing gradients from the

policy network to the dynamics networks slows down the dynamics learning and

hence makes the entire learning process hard.

Figure 5.5: Ablation of different components in PG+ for Cheetah Run task with
action-repeat=2.

Using a standard BC loss instead of MARWIL loss (PG+ no value) results

in a drop in PG+ performance below the performance of PlaNet. This clearly

demonstrates the importance of using a better imitation learning algorithm to tackle

CHAPTER 5. POLICY-GUIDED LATENT SPACE PLANNING 56

the challenges in training a policy network that has to work on top of an evolving

latent state distribution. Finally, there is no clear benefit in using a policy network

with probabilistic output, since PG+ with a deterministic output policy network

(PG+ nonstochastic) achieves similar results.

5.5 Discussion

In this chapter, we introduced PG+, a model-based RL algorithm that combines

a dynamics prediction network, policy network, and search based action selection

module. PG+ strictly improves the performance of the previously proposed PlaNet

algorithm. The improvements come from the fact that PG+ uses a learned policy

network to guide the search process. We also proposed a scalable way to add noise to

the policy network parameters, which could be applied in other settings, including

for better exploration algorithms. PG+ demonstrates that any recent advance in

batch RL can be extended to thee model-based RL setting.

6
Conclusion and Future Work

This thesis has focused on model-based deep reinforcement learning. As a first con-

tribution, we provided a detailed empirical analysis of PETS (Chua et al., 2018),

a recently proposed model-based deep RL algorithm. PETS was the first model-

based RL algorithm that achieved superior asymptotic performance when compared

to state-of-the-art model-free RL algorithms, while requiring orders of magnitude

fewer samples. Our analysis highlights that by improving the accuracy of both

the model and the search process, through longer training and increased number

of CEM iterations respectively, the sample efficiency of PETS can be significantly

improved. While improving the accuracy of the model does not add any significant

computational overhead, increasing the accuracy of search process requires more

computation. We would like to highlight that PETS with our suggested improve-

ments achieved the same or better performance as POPLIN (Wang and Ba, 2020),

an algorithm which was presented as superior in the the literature, while still taking

less training time.

As a second contribution, we introduced PG+, a new model-based deep RL

algorithm. PG+ improves upon PlaNet (Hafner et al., 2018), the previous state-of-

the-art algorithm for decision-time planning. PG+ combines PlaNet with a policy

network in the simultaneously learnt latent space, which results in superior perfor-

mance, faster convergence and more stable training process on a suite of challenging

57

CHAPTER 6. CONCLUSION AND FUTURE WORK 58

visual control tasks. PG+ highlights the fact that recent advances in batch RL

algorithms can be used to improve the performance of model-based RL algorithms.

In the future, we would like to explore this direction further, by investigating other

ideas from batch RL that can be used for model-based RL.

While all the experiments in this thesis focused on continuous control problems,

exploring empirically the use of model-based RL algorithms for decision-time plan-

ning in other types of problems, such as discrete control, is an interesting future

direction. Finally, we would like to mention that an interesting future research di-

rection would be to further explore ways of stabilizing these kinds of algorithms

when the state distribution changes, which would be very useful in non-stationary,

continual learning RL problems.

Bibliography

Mohammad Amini, Doina Precup, and Sarath Chandar. Policy guided planning in

learned latent space. In NeurIPS Deep Reinforcement Learning Workshop, 2020.

Kai Arulkumaran, 2019. URL https://github.com/Kaixhin/PlaNet.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade

learning environment: An evaluation platform for general agents. Journal of

Artificial Intelligence Research, 47:253–279, 2013.

Richard Bellman. Dynamic programming and lagrange multipliers. Proceedings of

the National Academy of Sciences of the United States of America, 42(10):767,

1956.

Zdravko I Botev, Dirk P Kroese, Reuven Y Rubinstein, and Pierre L’Ecuyer. The

cross-entropy method for optimization. In Handbook of statistics, volume 31,

pages 35–59. Elsevier, 2013.

Roberto Calandra, Jan Peters, Carl Edward Rasmussen, and Marc Peter Deisenroth.

Manifold gaussian processes for regression. In 2016 International Joint Conference

on Neural Networks (IJCNN), pages 3338–3345. IEEE, 2016.

Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer

Science & Business Media, 2013.

59

https://github.com/Kaixhin/PlaNet

BIBLIOGRAPHY 60

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep

reinforcement learning in a handful of trials using probabilistic dynamics models.

In Advances in Neural Information Processing Systems, pages 4754–4765, 2018.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen

Udluft. Decomposition of uncertainty in bayesian deep learning for efficient and

risk-sensitive learning. arXiv preprint arXiv:1710.07283, 2017.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evo-

lution. In Advances in Neural Information Processing Systems, pages 2450–2462,

2018.

Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha,

Honglak Lee, and James Davidson. Learning latent dynamics for planning from

pixels. CoRR, abs/1811.04551, 2018. URL http://arxiv.org/abs/1811.04551.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to

control: Learning behaviors by latent imagination. In International Conference

on Learning Representations, 2020. URL https://openreview.net/forum?id=

S1lOTC4tDS.

Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint

arXiv:1604.00772, 2016.

Mikael Henaff, William F Whitney, and Yann LeCun. Model-based planning with

discrete and continuous actions. arXiv preprint arXiv:1705.07177, 2017.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and

David Meger. Deep reinforcement learning that matters. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

Ronald A Howard. Dynamic programming and markov processes. 1960.

http://arxiv.org/abs/1811.04551
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=S1lOTC4tDS

BIBLIOGRAPHY 61

Andras Gabor Kupcsik, Marc Peter Deisenroth, Jan Peters, and Gerhard Neu-

mann. Data-efficient generalization of robot skills with contextual policy search.

In Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural

network dynamics for model-based deep reinforcement learning with model-free

fine-tuning. In 2018 IEEE International Conference on Robotics and Automation

(ICRA), pages 7559–7566. IEEE, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Lau-

rent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore

Graepel, Timothy P. Lillicrap, and David Silver. Mastering atari, go, chess and

shogi by planning with a learned model. CoRR, abs/1911.08265, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

Trust region policy optimization. In International conference on machine learning,

pages 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

et al. Mastering the game of go without human knowledge. Nature, 550(7676):

354–359, 2017.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Uni-

versal planning networks: Learning generalizable representations for visuomotor

BIBLIOGRAPHY 62

control. In International Conference on Machine Learning, pages 4732–4741,

2018.

Richard S Sutton. Learning to predict by the methods of temporal differences.

Machine learning, 3(1):9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu,

Steven Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, and Nicolas Heess.

dmcontrol : Softwareandtasksforcontinuouscontrol, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-

based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 5026–5033. IEEE, 2012.

Qing Wang, Jiechao Xiong, Lei Han, peng sun, Han Liu, and Tong

Zhang. Exponentially weighted imitation learning for batched his-

torical data. In Advances in Neural Information Processing Systems

31, pages 6288–6297. 2018. URL http://papers.nips.cc/paper/

7866-exponentially-weighted-imitation-learning-for-batched-historical-data.

pdf.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks.

In International Conference on Learning Representations, 2020. URL https://

openreview.net/forum?id=H1exf64KwH.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):

279–292, 1992.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

http://papers.nips.cc/paper/7866-exponentially-weighted-imitation-learning-for-batched-historical-data.pdf
http://papers.nips.cc/paper/7866-exponentially-weighted-imitation-learning-for-batched-historical-data.pdf
http://papers.nips.cc/paper/7866-exponentially-weighted-imitation-learning-for-batched-historical-data.pdf
https://openreview.net/forum?id=H1exf64KwH
https://openreview.net/forum?id=H1exf64KwH

	Contents
	1 Introduction
	2 Reinforcement Learning
	2.1 Markov Decision Process
	2.2 Return
	2.3 Policies
	2.4 Reinforcement Learning
	2.5 Value Functions
	2.6 Value Function Estimation
	2.6.1 Dynamic Programming
	2.6.2 Temporal Difference Learning
	2.6.3 Q-Learning
	2.6.4 Deep Q-Networks (DQN)

	2.7 Policy Optimization
	2.7.1 Policy Gradient
	2.7.2 Policy Gradient with Baseline
	2.7.3 Actor-Critic Methods

	2.8 Model-based Reinforcement Learning
	2.8.1 Model Predictive Control
	2.8.2 Pitfalls in Model-based RL

	3 Learning the model of the world
	3.1 World Models
	3.2 Gradient-based Planning
	3.3 Universal Planning Network
	3.4 PETS

	4 Empirical Analysis of PETS
	4.1 Tasks and Experimental Setting
	4.2 Baseline Performance
	4.3 Effect of training models longer
	4.4 Effect of population size
	4.5 Effect of CEM iterations
	4.6 Complementary effects
	4.7 Final performance
	4.8 Discussion

	5 Policy-guided Latent Space Planning
	5.1 Background
	5.2 PG+: An algorithm for policy-guided planning in learned latent space
	5.2.1 Learning a Policy Network
	5.2.2 Computing Policy Noise Efficiently

	5.3 Relation to other algorithms
	5.4 Experiments
	5.4.1 Tasks
	5.4.2 Results
	5.4.3 Ablation Study

	5.5 Discussion

	6 Conclusion and Future Work
	Bibliography

