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Abstract 

Multiple Sclerosis (MS) is an autoimmune disease that affects the central nervous 

system and is characterized by demyelination, axonal loss, and neurodegeneration. 

Functional connectivity (FC), the temporal correlation of multiple distinct brain regions, 

characterizes resting state networks (RSN) and may contain useful indicators of MS 

pathology that are not captured with traditional structural MRI metrics.  

In this project, we aimed to elucidate FC differences between a cohort of age/sex 

matched healthy controls (HC) (n=15), early stage relapsing-remitting MS (RRMS) (n=14) 

and late stage secondary progressive MS (SPMS) (n=11) patients. Subjects were scanned 

using high field 7 T MRI to acquire high quality resting state functional MRI data, as well as 

high resolution anatomical images. RSN’s were measured using two methods: (1) group 

independent component analysis, a fully data-driven technique that uncovered group-

specific RSNs, and (2) a correlation matrix approach, implemented by selecting 100 

predefined regions of interest (ROIs) across a set of template RSN’s. Group differences in FC 

were measured with reference to MS disability, neuropsychological testing scores, and 

cortical gray matter thickness.   

The RRMS phenotype exhibited globally increased FC compared to HC and SPMS. This 

was particularly evident within and between the default mode network and executive 

control network. RRMS subjects also showed statistically significant increases in 

connectivity within the visual and sensorimotor networks compared to HC in dual regression 

functional MRI data analysis. A regional connectivity analysis using predefined ROIs revealed 

increased FC in short-range, posterior DMN regions and disrupted long-range FC in thalamic 

DMN regions of RRMS subjects compared to HC. The strength of thalamic connections in the 

DMN was also directly correlated with cognitive processing speed in all three cohorts. 

Overall, the results of our study suggest possible short-term compensatory adaptations in 

RRMS that may preserve and even strengthen FC in the brain.   
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Résumé  

La sclérose en plaques (SP) est une maladie auto-immune qui affecte le système 

nerveux central et se caractérise par la démyélinisation, la perte axonale et la 

neurodégénérescence. La connectivité fonctionnelle (CF), qui est la corrélation temporelle 

de plusieurs régions cérébrales distinctes, caractérise les réseaux d’état de repos (RSN) et 

peut contenir des indicateurs utiles de la pathologie de la sclérose en plaques qui ne sont pas 

capturés avec les mesures IRM structurelles traditionnelles. 

Dans le cadre de ce projet, nous avons cherché à élucider les différences de CF entre 

une cohorte de témoins sains (TS) appariés selon l’âge/le sexe (n=15), les patients atteints 

de SP récidivante-rémissive au stade précoce (RRPS) (n=14) et les patients atteints de SP 

progressive au stade secondaire tardif (SPPS) (n=11). Les sujets ont été scannés à l’aide de 

l’IRM à champ élevé 7 T pour acquérir des données IRM fonctionnelles de haute qualité à 

l’état de repos et des images anatomiques à haute résolution. Les RSN ont été mesurés à 

l’aide de deux méthodes : (1) l’analyse des composantes indépendantes du groupe, qui est 

une technique entièrement axée sur les données qui a permis de découvrir les RSN propres 

au groupe, et (2) une approche matricielle de corrélation, mise en œuvre en sélectionnant 

100 régions d’intérêt (ROI) prédéfinies dans un ensemble de RSN modèles. Les différences 

entre les groupes ont été mesurées en fonction de l’incapacité liée à la sclérose en plaques, 

des résultats des tests neuropsychologiques et de l’épaisseur de la matière grise corticale. 

Le phénotype RRPS présentait une augmentation globale de la CF par rapport au 

phénotype TS et au phénotype SPPS. Cela était particulièrement évident à l’intérieur et entre 

le réseau de mode par défaut (RMD) et le réseau de contrôle exécutif (RCE). Les sujets 

atteints de RRPS ont également montré des augmentations statistiquement significatives de 

la connectivité au sein du réseau visual et sensorimoteur comparativement aux TS dans 
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l’analyse des données IRM fonctionnelles de double régression. Une méthode d'analyse de la 

connectivité régionale utilisant des ROI prédéfinis a révélé une augmentation de CF à courte 

portée dans les régions RMD postérieures et les connexions RMD thalamiques à longue 

portée ont été pertubées dans RRPS par rapport à TS. Les connexions thalamiques dans le 

RMD étaient également directement corrélées à la vitesse de traitement cognitif dans les 

trois cohortes. Dans l’ensemble, les résultats de notre étude suggèrent d’éventuelles 

adaptations compensatoires, à court terme, des patients atteints de RRPS qui pourraient 

préserver et même renforcer la CF dans le cerveau.  
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1. Introduction 

The brain, the central organ of the human nervous system, is primarily comprised of 

white matter, gray matter, and cerebrospinal fluid (CSF). White matter, which composes 

60% of soft tissue volume, essentially facilitates the neuronal signal transfer process. Gray 

matter, the remaining 40% of parenchymal tissue primarily exists as clusters of nuclei in the 

brain1. Gray matter nuclei are often considered the final sites for neuronal signal processing. 

CSF, a clear and colorless fluid produced by specialized ependymal cells of the brain 

ventricles, flows throughout the ventricles and spinal cord1. CSF serves a myriad of purposes, 

including nutrient circulation and waste management. It also functions to cushion the brain 

from external physical forces. The above major components of the brain interact in concert 

to maintain the homeostatic state of a healthy, functioning brain. They are supported by the 

blood-brain barrier (BBB), which is a semi-permeable layer mitigating nutrient exchange 

between the external blood circulation and brain tissue. Disturbances to normal brain 

homeostasis and BBB integrity may arise from a wide range of conditions, including physical 

trauma such as concussion, natural cell death due to aging, or neuro-inflammation due to 

multiple sclerosis (MS).  

MS is a neuroinflammatory autoimmune disease in which the myelin sheath 

surrounding the white matter of the central nervous system is attacked and destroyed by 

pathogenic CD4+ and CD8+ cells, which are further supported by B-cells and others in the 

immune system2 . Currently, both the biological mechanism and the disease course of MS are 

incompletely understood3. However, substantial progress has been made in the last 20 years 
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addressing the symptoms and slowing disease progression. The primary neuroinflammatory 

insult in MS involves degradation of white matter (WM) myelin3.  This adversely affects 

signal communication, given that WM is overwhelmingly responsible for connecting sensory 

neurons. Depending on the severity of demyelination and axonal loss in MS, symptoms may 

first manifest as a decline in physical motor skills (in early stage MS), followed by more 

severe consequences such as confinement to a wheelchair.  

The early diagnosis and treatment of MS has become an increasingly important area 

of study and disease modifying therapies (DMTs) are most effective in the earliest stages of 

MS4. Attacking the disease as early as possible has generated the greatest success in 

preserving brain structure, cognitive and motor function, and overall quality of life5. When 

the disease enters the progressive stage, the patient’s options for effective DMT’s decreases 

substantially and the neurodegenerative mechanisms become more complex.  Constantly 

improving anti-inflammatory DMT’s can slow disease progression and address the 

autoimmune response but evaluating the efficacy of such therapies in a quantitative manner 

remains challenging6. The introduction of magnetic resonance imaging (MRI) in the 1970’s, 

and its rapid advancement in the decades thereafter, has enabled numerous improvements 

in neuroimaging-based detection and monitoring of demyelination in MS. Novel imaging 

techniques have improved the early detection and diagnosis of MS, and results are highly 

complementary with neurological and biological testing7.  

Current applications of MRI for monitoring MS go far beyond simple anatomical 

imaging and include diffusion tensor imaging (DTI), susceptibility weighted imaging (SWI), 

and BOLD fMRI, among others. White matter tract-specific demyelination and structural 
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integrity can be detected by mapping water diffusion using DTI7. In lesions that manifest in 

gray matter and normal appearing white matter, iron level often increases, which increases 

magnetic susceptibility8. Quantitative susceptibility mapping is a method of SWI that can be 

used to detect such increased susceptibility and has shown up to 50% increases in lesion 

detection over conventional MRI7. Alterations in neuronal activity and metabolism in gray 

matter can be indirectly detected via the functional MRI blood-oxygen level dependent 

(BOLD) signal.  

This thesis focuses on the resting state functional MRI (rs-fMRI) signal and, 

specifically, on network-level rs-fMRI alterations in MS. Brain networks, as derived from rs-

fMRI, are synchronous BOLD signal fluctuations. They are detected using MRI examinations 

performed on a subject “at rest” - not subject to an external stimulus and defined by the 

synchronous BOLD activity occurring in multiple regions of the brain. One of the first RSN’s 

to be discovered was the default mode network (DMN), which comprises of activation in the 

orbital frontal cortex, prefrontal cortex, posterior cingulate cortex and parietal lobe. 

The precise biological mechanisms underlying synchronous neuronal activation in rs-

fMRI are unknown. Although RSN’s generally correlate well with white-matter structural 

networks9, there are still many examples of synchronous BOLD activity occurring without 

any direct structural connections10. Previous research has observed that rs-fMRI network 

level changes occur with age11, neurological disease12 and traumatic brain injury13, among 

others. In this  study, our goal is to closely examine the networks of the brain within two MS 

phenotypes: (1) Relapsing-Remitting MS (RRMS), a form of early onset MS in which patients 

experience relapses of symptoms followed by remission, and (2) Secondary-Progressive MS 
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(SPMS), a later stage of the disease in which symptoms get progressively worse. The two MS 

phenotypes are compared to a healthy, age and education-matched group of controls. 

Resting state network changes are observed, accounting for such physical parameters as 

atrophy and cortical thickness, as well as such cognition and other clinical test scores.   
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2. Background 

2.1 Magnetic Resonance Imaging 

Fundamental Physics 

Magnetic Resonance Imaging (MRI) is based on the principle of nuclear magnetic 

resonance (NMR). The fundamental physical mechanism that governs NMR is the interaction 

of a nucleus with an external magnetic field. Hydrogen (1H) is the most abundant MRI-visible 

nucleus in living tissue. Various tissue structures in the human body, such as muscle and fat 

differ in hydrogen/proton density.  Upon the application of an external magnetic field, B0, 

protons align with the direction of the magnetic field and precess. The precession is 

analogous to gravity acting on a spinning gyroscope. The gyroscope maintains its original 

spin, but also wobbles (precesses) about the axis of gravitational force.  

The precession frequency (omega sign here) of protons in the external magnetic field, 

B0, of the MRI magnet is given by the Larmor equation: 

𝜔0 = 𝛾 ∙ 𝐵0    (2.1) 

 

Where: 

• 𝜔0 is the precessional, or Larmor frequency, measured in MHz 

• 𝛾 is the gyromagnetic ratio, a constant equal to 42.57 MHz/Tesla (MHz/T) for 

hydrogen. Gyromagnetic ratios are a fixed constant for different types of nuclei, 

and the value is 42.57 MHz/T for protons 
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• 𝐵0 is the strength of the applied external magnetic field, in T 

The net magnetization of a bulk sample of protons in an external magnetic field is 

denoted by the symbol M0. The application of a strong external to a sample of results in a 

small excess of protons in a lower energy state with parallel alignment to the B0 field. The 

number of spins in the lower energy state is only a handful of spins per million at typical B0 

field strengths. However, the resulting net magnetization M0 is large enough to be applied to 

detect signal in MRI. By applying a radiofrequency (RF) pulse, B1+, perpendicular to the B0 

field at the Larmor frequency, precessing protons synchronously rotate or “tip” away from 

the B0 axis.  

The orientation of final precession is directly dependent on the strength and 

duration of the applied RF pulse, as determined by the following equation:  

𝛼 = 𝛾 ∙ 𝐵1 ∙ 𝑇𝑝 (2.2) 

Where: 

• 𝛼 is the flip angle, which describes extent of rotation or “tipping” away from M0 

• 𝛾 is the gyromagnetic ratio in MHz/T 

• 𝐵1 is the strength of the applied RF pulse, in T 

• 𝑇𝑝 is the duration of the pulse, in seconds 

Bloch Equations 

Subsequent to the application of an externally applied B1+ field, protons “relax” back 

to their equilibrium state. Two different mechanisms govern the dynamics of proton 

relaxation:  (1) spin-lattice relaxation, through which the longitudinal component of 
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magnetic moment, Mz, returns to the equilibrium state and (2) spin-spin relaxation, in which 

protons interact with their neighbours through dipolar interactions  and the transverse 

magnetization, Mxy, is dephased14. Spin-spin relaxation involves energy transfer between 

neighbouring spins through dipolar and exchange interactions. Spin-lattice relaxation is 

characterized by the loss of stored energy to the surroundings (lattice).  

These two NMR relaxation phenomena were classically modelled by physicist, Felix 

Bloch, in 1946. Bloch specifically developed a differential equation-based formalism of the 

longitudinal and transverse relaxation components. The path of vector magnetization over 

time can be modelled as the cross product of magnetic moment with the static external 

magnetic field:  

𝒅𝑴

𝒅𝒕
=  𝜸 ∙ 𝑴 × 𝑩 

(2.3) 

Where: 

• gamma is the gyromagnetic ratio. 

• M is the vector magnetic moment. 

• B is a generalized expression of the magnetic field.  

Equation 2.3 can be expanded into component form as follows: 

𝒅𝑴

𝒅𝒕
=  𝜸 ∙ [(𝑴𝒚𝑩𝒛 − 𝑴𝒛𝑩𝒚)𝒊̂ + (𝑴𝒛𝑩𝒙 − 𝑴𝒙𝑩𝒛)𝒋̂ + (𝑴𝒙𝑩𝒚 − 𝑴𝒚𝑩𝒙)𝒌̂]  (2.4) 

 

Where Bz is static magnetic field along the Z-axis in the magnet frame of reference and Bx 

and By are magnetic fields rotating in the transverse plane. 
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In MRI, the transverse rotating external magnetic fields are usually generated by RF 

coils. The Bx and By fields typically vary sinusoidally in the transverse plane: 

𝑩𝒙 = 𝑩𝟏 ∙ 𝐜𝐨𝐬(𝝎𝒕) (2.5) 

𝑩𝒚 = −𝑩𝟏 ∙ 𝐬𝐢𝐧(𝝎𝒕) (2.6) 

𝑩𝒛 = 𝑩𝟎  (2.7) 

 By substituting equations 2.5-2.7 into equation (2.4) and imposing the initial 

condition of B1+=0 after completion of a 90 degree RF pulse, with Mx(0)=0, Mz(0)=0, and 

My(0)=M0, the Bloch equations can be solved to yield: 

𝑴𝒙(𝒕) = 𝑴𝟎 ∙ 𝒆−𝒕/𝑻𝟐 ∙ 𝐬𝐢𝐧(𝝎𝒕) (2.8) 

𝑴𝒚(𝒕) = 𝑴𝟎 ∙ 𝒆−𝒕/𝑻𝟐 ∙ 𝐜𝐨𝐬(𝝎𝒕) (2.9) 

𝑴𝒛(𝒕) = 𝑴𝟎 ∙ (𝟏 − 𝒆−𝒕/𝑻𝟏) ∙ 𝐜𝐨𝐬(𝝎𝒕) (2.10) 

 In equations 2.8-2.10, the T1 and T2 constants denote the spin-lattice and spin-spin 

interactions, respectively. Together, equations 2.8-2.10 model a proton’s return to 

equilibrium and static dephasing after the application of an RF pulse (Cite). The motion of 

protons returning to equilibrium can be classically understood as an upward spiraling 

pattern in the shape of a tent14.  

T1 and T2 Relaxation 

The spin-lattice relaxation time, T1, is defined as the time required for the longitudinal 

magnetization (Mz) to return to 63%, of M0. Similarly, the spin-spin relaxation time (T2) 

relaxation time can be classically modeled as an exponential decay based on equations 2.8 

and 2.9: 
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𝑴𝒙𝒚(𝒕) = 𝑴𝟎 ∙ 𝒆−𝒕/𝑻𝟐 (2.11) 

 The T2 relaxation time is time required for Mx or My to reach 37%, of their initial value 

before the application of a B1+ pulse. Relaxation times are dependent on external magnetic 

field strength14. Some typical values for relaxation times of biological tissue are summarized 

in table 2.1.  

 T1 (ms) T2 (ms) 

1.5 T 3 T 1.5 T 3 T 

Grey Matter 1100 1331 92 80 

White Matter 560 832 82 110 

Cerebrospinal Fluid 2060 3700 N/A N/A 

Muscle 1075 898 33 29 

Fat 200 382 N/A 68 

Table 2.1: Typical T1 and T2 relaxation time estimates at 1.5 T and 3 T 

field strengths15. 

 

In MRI experiments, the measured T2 is often shorter than that predicted by theory. 

This difference is partially explained by the presence of local B0 magnetic field 

inhomogeneities caused by structures such as iron, myelin, calcium and blood in the human 

body. When local magnetic field inhomogeneities are present, an additional relaxation 

component, denoted T2’ (reversible contribution to the transverse relaxation time from local 

field inhomogeneities) impacts the relaxation behaviour. When local field inhomogeneities 

are present, transverse relaxation is said to occur via the T2* mechanism (“T2 Star”, apparent 

transverse relaxation time).  The T2* time is then mathematically denoted as: 

𝟏

𝑻𝟐
∗ =

𝟏

𝑻𝟐
+

𝟏

𝑻𝟐′
 

(2.12) 
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Alternatively, equation (2.12) can be written in terms of relaxation rates, which are defined 

as the inverse of the relaxation times: 

𝑹𝟐
∗ = 𝑹𝟐 + 𝑹𝟐′ (2.13) 

Many types of imaging take advantage of T2* contrast. The presence of tissue-local 

field interactions are particularly relevant for imaging of the blood-oxygen level dependent 

(BOLD) contrast in fMRI16. 

 

Controlling Image Contrast Through an MRI Pulse Sequence 

In MR imaging, protons are excited through a sequence of timed RF pulses followed 

by delays. The combination of RF pulses and delays, in conjunction with gradient pulses and 

signal readout forms an MRI pulse sequence. Two fundamental pulse sequence parameters 

that critically impact MR image contrast are the echo time, TE, which measures time between 

RF pulse application and signal acquisition, and the repetition time, TR, which measures time 

between successive RF pulses. Appropriately varying TE and TR impacts the contrast 

generated in an MR image. Specifically, selection of TE and TR is usually carried out based 

on knowledge of T1 and T2 relaxation times of tissue14.  

During nuclear relaxation, T1 and T2 decay processes occur simultaneously. The T1 

time is longer than T2 for brain tissue and the signal contribution from T1 is highest 

immediately following the RF pulse. For this reason, T1 weighted imaging uses short TE, with 

a TR value that aligns with the T1 values of the target tissue being imaged15. T1-weighted 
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contrast is very useful for structural MR imaging of the brain, since T1 values differ 

appreciably for distinct tissue types in the brain (e.g. white matter, gray matter and 

cerebrospinal fluid). In T2-weighted imaging, TR is generally kept long, while the TE is often 

selected based on the T2 value of a specific tissue (or group of tissues). T2-weighted imaging 

is a standard contrast used to image white matter lesions and tumors in the brain14. 

 

Magnetic Resonance Imaging System Components 

Broadly, MRI systems are comprised of three principal components: the main magnet, 

the gradient coils, and the radiofrequency coil. 

The Magnet 

A major component of the MRI system is the main magnet. It is essentially a series of 

repeating wire loops formed around a hollow cylinder. The majority of clinical and research 

MRI’s utilize superconducting magnets which are cooled to as low as -269 degrees Celsius 

with liquid helium15. Superconducting magnet technology has evolved substantially in the 

last 20 years. Superconducting metal alloys can now be manufactured to produce strong, 

consistent static fields for the purposes of MR imaging over large volumes17. Specialized 

human MRI systems, including the high field MRI system employed for imaging in this thesis, 

can have main magnetic fields in excess of 7 Teslas (T)17. Clinical MRI systems generally have 

magnetic field strengths in the range of 1.5 – 3.0 T.  
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Gradient Coils 

Gradient coils, or simply imaging gradients, are electromagnets used to localize signal 

through spatial encoding in MRI. Spatial encoding is achieved by creating short term, spatial 

variations in the B0 field. This is specifically done by adding or subtracting linear magnetic 

fields of a given amplitude along the X, Y, and Z axes of the coordinate system of the magnet. 

The strength of magnetic field gradients used in MRI is typically on the order of 50-80 milli-

teslas per meter (mT/m). Two gradient coil performance metrics that are routinely used are 

the peak gradient strength and the slew rate. Higher maximum gradient power, Gmax, can be 

leveraged for high resolution imaging14.  The slew rate, defined as Gmax divided by gradient 

rise time, is a measure of how rapidly magnetic field reaches full power and typically found 

in the 20-200 T/m/s range15. Higher slew rates allow improved temporal resolution for 

rapid MRI acquisitions (e.g. applications in respiratory imaging or cerebral blood flow 

imaging). The maximum slew-rate in advanced gradient systems must be considered with 

reference to existing FDA limits on nerve stimulation or tissue heating, defined in terms of 

energy per kg of body mass per exposure time. For a full body scan, the figure is 4W/kg/15-

minute exposure18.  

 

Radiofrequency Coils 

Two types of radiofrequency (RF) coils required for MR imaging are (i) the RF 

transmit coil and (ii) the RF receiver coil. In some cases, these two two objects may be 

combined into one coil called a transceiver coil. For standard clinical MRI systems, the 
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transmit coil is built into the magnet bore. Its role is to generate RF pulses that cause the 

homogeneous initial excitation required for MRI signal generation. Receiver coils are usually 

smaller, more local coils that detect the MRI resonance signal. Receiver coils function based 

on the principle of Farday’s Law of Induction. Changing magnetic flux passing through a 

receiver coil loop induces an electric current the coil that can be digitized and applied for MR 

image reconstruction. To minimize external magnetic field interference and reduce the 

distance between the receiver coil and the tissue to be imaged, specialized receiver coils are 

often constructed based on the shape of local anatomical regions such as the head, abdomen, 

or knee joints.  

 

Pulse Sequences and Image Reconstruction 

A pulse sequence is a combination of RF and gradient pulses, used to create an MR 

image with specific contrast. The first step in image acquisition is the application of an RF 

pulse. In the case of 2D MRI, this is performed in conjunction with slice selection gradients 

(GSS)15. GSS are linearly varying gradients applied at the same time as the RF pulse to image 

spins at a particular resonant frequency. The imaged slice can be aligned in any orientation 

along the Cartesian X, Y, Z axes in the magnet frame of reference, or in an oblique orientation.  

After the RF pulse and GSS, a phase encoding gradient, GPE, is typically applied in a 

direction orthogonal to GSS. Application of the GPE results in a spatially dependent accrual 

of phase along the phase encode direction. After the GPE, application of the frequency 

encoding gradient, GFE, in the final orthogonal direction results in unique phase for all 
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protons precessing along the frequency encode axis. GFE activation is also coincident with 

signal detection in the receiver coil. In 2D imaging, this process is repeated sequentially with 

N different GPE increments to resolve a 2D slice of the spatial frequency domain with N rows. 

The process is repeated N times because only one row of phase measurements can be 

acquired per frequency encode.  

The resulting spatial frequency information is often referred to as a K-space image. 

The K-space representation contains all the image spatial frequencies necessary to 

reconstruct an image domain representation. The image domain information can be 

recovered from the K-space data using the inverse Fourier transform.   

 

High Field MRI 

The main magnet is generally the most expensive part of the MRI system. 

Advancements in superconducting magnet technology over the last 20 years have led to the 

development of human high and ultra-high field MRI systems with field strengths up to 11.7 

T17. Comparable pre-clinical MRI systems have been produced with field strengths as high as 

21 T19.  

Increased main magnetic field strength alters NMR relaxation times, image contrast, 

and magnetic susceptibility effects. The increased nuclear polarization of protons at high 

field leads to improvements in SNR that can be leveraged to increase spatial resolution or 

reduce scan time. For example, 7 T human MRI can now be applied to resolve laminar gray 

matter myeloarchitechture at the resolution of hundreds of microns20,21. This type of imaging 
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may allow significant advancements in understanding neural processing in the human 

cerebral cortex.  

However, high-field MRI is not without limitations. One notable current limitation of 

high field MRI is the substantially increased cost associated with the manufacturing of high 

field MRI systems. Some important benefits and drawbacks of high field MRI are highlighted 

in the following sections, with an emphasis on comparing 3 T and 7 T MRI in the context of 

the current thesis.  

One overwhelming argument for increasing B0 strength in MRI is the resulting 

improvement in signal-to-noise ratio. An often-utilized approach to improve SNR in standard 

clinical field strength (1.5 and 3 T) MRI is to increase the number of signal averages. SNR 

improves in proportion to the square root of number of signal averages15. However, signal 

averaging in MRI is time consuming14. Since SNR increases linearly with B0 field strength22, 

high field MRI can offer significant advantages for applications requiring high temporal 

resolution or ultra-high spatial resolution17. Improvements in SNR at high field can 

effectively be “spent” on acquiring images with higher spatial or temporal resolution.  

 Increased field strength also improves contrast-to-noise ratio (CNR), largely due to 

changes in the T1 and T2 relaxation constants of tissue at the higher fields14. Improvements 

to SNR and CNR have led to breakthroughs imaging cytoarchitecture of the cortical laminae, 

as well as important developments in cortical BOLD fMRI23. CNR improvements in gradient 

echo MRI at 7 T are mitigated by the shorter T2* relaxation of time of tissue at high field. For 

T2*-weighted BOLD fMRI of cortical gray matter, an approximate relationship exists between 

apparent transverse relaxation rate and main magnetic field strength24: 
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𝑅1 ≅ 𝐵0
−0.7 (2.14) 

𝑅2
∗ ≅ 10.5 ∗ 𝐵0 (2.15) 

For gradient echo imaging sequences using TR << T1 with TE chosen to approximate 

T2*, the CNR can be approximated as25: 

𝐶𝑁𝑅 ∝ √
𝑅1

𝑅2
∗ ∙

∆𝑅2
∗

𝑅2
∗  

(2.16) 

Where 𝑅2
∗ represents change in signal between baseline and activated state. Consequently, 

BOLD fMRI contrast, as well as other T2* weighted imaging applications are facilitated at high 

field26. 
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2.2 Brain Physiology 

Neurons  

The human nervous system, comprised of over 80 billion biological cells called 

neurons, is predominantly responsible for controlling human physiological processes1. 

Several types of neurons, all specialized for electrical communication are localized in the 

brain, spinal cord, and peripheral nervous system. This detailed network of neuronal cell 

bodies plays a critical role in human perception, cognition, and navigation.   

The main components of a neuron are the cell body, dendrites, and the axon. The cell 

body contains the nucleus and ribosomes, required for protein synthesis. Dendrites, typically 

tens or even hundreds of thousands per neuron, are branched extensions of the cell body 

and receive incoming signals from neighbouring neurons via chemical neurotransmitters. 

Substructures attached to dendrites, called dendritic spines, branch out to maximize cell 

surface area for interactions with neighboring neurons. Electrical signals in the form of 

action potentials propagate along axons via saltatory conduction1. Action potentials are 

generated at the initial segment of the axon near the the cell body. Propagation of action 

potentials is facilitated by insulating fatty sheaths called myelin that wrap around the axon.  

 

Action Potentials 

The initial segment of a neuron successfully generates an action potential if the sum 

of electrical potentials from the dendrites exceeds the threshold potential1. This mechanism 
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is governed by selectively permeable ion channels on the neuron membrane. Ion channels 

gate the flow of charged particles in and out of the cell body to regulate electrical activity. At 

rest, neurons maintain a net negative potential of roughly -70 millivolts (mV) inside the cell. 

Electrical stimuli result in the opening of voltage-gated sodium channels accompanied by an 

influx of sodium (Na+) ions into the neuron and the subsequent depolarization of the neuron. 

The neuron becomes less negatively charged if enough Na+ ions enter the neuron and it 

depolarizes at a critical threshold potential, typically -55 mV. A positive feedback loop 

initiates among all Na+ channels, causing a voltage rise of up to 100 mV. This overshoot 

triggers a brief period of net positive charge in the intracellular compared to the extracellular 

compartment, resulting in the opening of potassium (K+) channels and rapid outflux of 

potassium. This action returns the polarization state of the neuron to equilibrium. The 

potassium channels close relatively slowly, causing excess K+ ions being lost and a small 

hyperpolarization effect. Lastly, a special protein called the Na+/K+ATPase, which exports 3 

Na+ ions for every 2 K+ ions imported, brings the cell voltage back to its -70 mV equilibrium.  

 

White Matter and Axons 

Axons are long fibers varying from mere millimeters to a meter in length in the human 

body. The propagation of action potentials along axons is mitigated by three main structures: 

the axon itself, the myelin sheath and the nodes of Ranvier.  

The overall speed of action potential propagation depends on the axon diameter. This 

diameter partially determines the resistance to electrical current and the extent of ion influx 
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upon depolarization. Humans axon diameters are typically 1 micrometer1. The myelin 

sheath surrounding axons is a lipid-rich structure that provides insulation and enables that 

saltatory conduction of axon potentials. Regularly occurring unmyelinated sections of the 

axon, called nodes of Ranvier, are lined with sodium channels. The nodes of Ranvier 

generate/propagate action potentials by using a positive feedback loop. In this sense, it is 

technically more accurate to describe signal propagation along the axon as a regeneration of 

action potentials at each consecutive node of Ranvier. Action potentials propagate at an 

average speed of 0.5-100 meters per second in humans. However, the speed of action 

potential propagation depends on axonal diameter.  

Myelinated axons in white matter of the brain comprise around 60% of brain 

parenchymal tissue volume. Gray matter, forming the outer cortex and deep brain nuclei, 

comprises the remaining 40% of parenchymal tissue. Gray matter neurons are connected by 

a highly structured network of white matter axons, called tracts. In many ways, the brain 

structure can be compared to a computer where gray matter forms computational 

processing sites, connected by the intricate wiring of the white matter.  

 

Gray Matter and Neurovascular Coupling 

Gray matter is primarily comprised of neuronal cell bodies.  External stimuli in the 

brain reach gray matter via sensory neurons and the spinal cord. The spinal cord processes 

information and then sends instructions to the peripheral nervous system to manage 

physiological function and cognition. “Activation” of gray matter occurs in conjunction with 
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cellular consumption of oxygen. The brain itself does not store energy reserves. It relies on 

cerebral blood flow (CBF) to supply oxygen and nutrients. During early MRI experiments, it 

was observed that increased neuronal activity led to increased local oxygenation—a 

paradoxical result because oxygen should be consumed to feed neural activity. Fox and 

Raichle specifically showed, using Positron Emission Tomography imaging, that an 

“uncoupling” occurred between physiological oxygen demand and blood flow27. That is, that 

regional CBF increased, but the metabolic rate of cerebral oxygen consumption did not. The 

interpretation of this finding was that oxygenated blood was oversupplied locally compared 

to actual metabolic needs. As oxygen saturation increases in the capillaries, accelerated 

diffusion rate-limited delivery of oxygen for neuronal function occurs. This results in 

elevated BOLD signal in fMRI due to elevated deoxyhemoglobin causing T2 and T2* 

shortening effects. The shortened T2 and T2* signal is a proxy for neuronal activity15.  

 

Functional Neuroimaging 

The MRI-detectable, T2*-weighted BOLD signal change is less than 2% of the baseline 

signal observed in gradient echo MRI. For this reason, the methodology used in fMRI must 

be highly sensitive and accurate. Several factors can compound measurement error in fMRI, 

including signals from venous circulating blood, respiration, large-scale subject movement, 

and interference from physiological measurement devices. Optimized fMRI experimental 

design can minimize physiological noise and is of vital importance in isolating the true BOLD 

signal.   
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Traditional fMRI experiments used task-based paradigms to induce BOLD signal 

changes in selected brain regions. For example, a subject might be presented with an 

auditory stimulus or instructed to tap a finger in order to elicit a BOLD response28. This 

localized BOLD signal change in task-based fMRI has traditionally been modelled using a 

characteristic pattern with a small initial dip, succeeded by a rise. This is then followed by a 

drop to below initial baseline, and a subsequent return to baseline.  This pattern is known as 

the hemodynamic response function (HRF). However, the traditional view of the HRF shape 

has recently been challenged by studies of the HRF variance based on brain matter 

composition (WM and GM), cortical depth, and other factors. More specifically, HRFs may be 

regionally-specific in the brain and not exhibit an initial dip29. Nonetheless, the shape of the 

HRF can be explicitly modelled into task-based fMRI studies.  

In 1995, Biswal et al. discovered the existence of intrinsic functional brain activity 

after scanning subjects at rest30. The resulting BOLD fMRI measurements revealed 

surprising correlated activity between different regions of the sensorimotor system. Major 

progress was further made in 2001, when Raichle et al. identified the existence of the 

“Default Mode Network” (DMN) in subjects who were scanned at rest31. The DMN 

demonstrated active and correlated neural activity between the medial prefrontal cortex, 

posterior cingulate cortex and the adjacent precuneus, leading to the hypothesis of a “default 

mode” of brain activity. 

MRI scanning of subjects at rest places less demand on the subject (compared to task-

based fMRI) while maintaining the potential to collect valuable data related to gray matter 

function. For instance, patients having difficulty following instructions caused by brain 
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injuries can be scanned without requiring case-by-case experimental designs. Accordingly, 

rsfMRI has experienced an explosion in usage since the early 2000’s in nearly all areas of 

neuroscience. Since the first discovery of the DMN in 2001, at least a dozen robust and highly 

reproducible resting state networks have been identified and well-studied in both humans 

and animals32,33. 

How and why the brain organizes into characteristic networks of functional 

activation is not well understood. Nonetheless, comparing patterns of functional 

connectivity between subjects highlights interesting results. Recent studies have used 

rsfMRI to illustrate increases in whole-brain functional connectivity (FC) in certain 

pathological conditions. Increases in FC have been observed in the elderly with subjective 

memory complaints34 and in Alzheimer’s Disease35. Decreases in FC may be associated with 

aging36 and depression37. Nonetheless, in most pathological conditions prevailing literature 

suggests a combination of both increases and decreases in inter-regional brain FC exists, 

including multiple sclerosis38.  

 

Blood-Brain Barrier and Cerebrospinal Fluid 

Cerebrospinal fluid (CSF) and blood flow are vital for supporting healthy brain 

function. Oxygen and nutrients enter the brain through the arterial circulation from the 

heart. Transport of important molecules such as nutrients and hormones to the brain tissue 

occurs through specialized transport proteins in the blood-brain barrier (BBB). The BBB is 

a semipermeable membrane separating circulating blood from the extracellular fluid. It is a 
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highly selective barrier composed of tight junctions of endothelial cells having their own 

associated subunits, making it the brain’s primary defence against pathogens, blood 

infections, and other large molecules.  

CSF circulates both outside the brain and within the brain’s ventricular system. The 

ventricular system has four large cavities, each containing a choroid plexus that produces 

CSF. CSF produced by the choroid plexus is a clear, colorless fluid having several vital roles 

in the brain: physical cushioning and buoyancy support, regulation of cerebral blood flow 

(CBF) and flushing of waste back into the bloodstream. At any given time, roughly 125ml of 

CSF flows throughout the brain and spinal cord, while 500ml of CSF is produced per day1. 

CSF is separated from the circulatory system via the blood-cerebrospinal fluid barrier 

(BCFB), which works like the BBB in principle, in that it protects the nervous system from 

undesirable large molecules. Structurally, the BCFB is not as tight, allowing more molecules 

into the bloodstream. This is important for sustained CSF production from the choroid 

plexuses.  

Neurological disorders often affect WM, GM, CSF, and the BBB in an inter-related 

manner. This is particularly apparent in multiple sclerosis, where white matter damage is 

prevalent, but pathophysiological markers of neuroinflammation and neurodegeneration 

also exist in the GM, CSF and BBB.  

 



-  24  - 

 

Physiology of Multiple Sclerosis 

MS is an autoimmune disease that results in inflammation of the central nervous 

system and damage to axonal myelin sheaths in the brain. Three prevalent 

categories/phenotypes of MS are recognized in the clinical literature and account for over 

95% of cases3. Relapsing remitting MS (RRMS) is by far the most common phenotype and 

accounts for 85% of initial diagnoses. It is characterized by episodes of dysfunction, 

alternating with periods of stability which may be associated with worsening of symptoms. 

Usually 5-10 years after the onset of RRMS, Secondary progressive MS (SPMS) follows. This 

phenotype is characterized by a progressive worsening of the disease without signs of 

recovery. Primary Progressive MS (PPMS) is the third major MS phenotype, in which the 

disease gradually and continuously worsens from onset. PPMS accounts for 10% of cases. A 

fourth group, Clinically Isolated Syndrome (CIS – distinct from MS) refers to patients who 

have experienced a single episode of MS-like symptoms. CIS patients may or may not be 

diagnosed with MS in the future. 

Currently, there is no known cause or cure for MS. However, there is strong evidence 

that geographical and genetic factors play a role. For example, the country with the highest 

prevalence of MS is Canada, having nearly 400 cases per 100,000 people. Canada is followed 

by a number of European countries which are geographically located between 45 degrees 

and 65 degrees in latitude39. Countries along the equator have the lowest prevalence of MS40.  

No genetic risk factors for MS have been definitively isolated. Nonetheless, it is known 

that females are disproportionately more likely to develop MS compared males. The 
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worldwide female-to-male incidence rate of MS is 3:141. People of Northern European 

descent are also among the highest risk groups42. 

In recent decades diagnostic techniques have vastly improved the MS diagnosis. They 

have concurrently aided to improve life expectancy and quality of life of MS patients. Some 

patients can achieve equal life expectancies to the normal population and have more limited 

disability. Disability in MS is assessed by a clinical neurologist and often quantified according 

to the Expanded Disability Status Scale (EDSS)43. The EDSS score measured by a neurologist 

during a patient clinical visit varies from 0 to 10, incrementing in units of 0.5. RRMS patients 

generally have lower scores on the EDSS scale (0 to 4.5), while SPMS patients often have 

disability scored at 5 or above.  

EDSS scores are assigned based on sub-scores measuring impairment across eight 

functional systems (FS), where each FS is a network of brain regions responsible for a type 

of task. The eight systems in MS are: pyramidal, cerebellar, brainstem, sensory, bowel and 

bladder, visual function, cerebral function, and “other”. The EDSS scoring system is 

summarized in table 2.2.  
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EDSS SCORE DESCRIPTION 

0 No disability. 

1.0 No disability and minimal signs in one FS.   

1.5 No disability and minimal signs in more than one FS.   

2.0 Minimal disability in one FS.  

2.5 Minimal disability in two FS.  

3.0 Moderate disability.  

3.5 Moderate disability in more than one FS. Does not require walking 

assistance.  

4.0 Relatively severe disability in one FS or equivalent. Does not require 

walking assistance.  

4.5 Able to work full day. May require some assistance day-to-day due to 

severe disability in one FS or moderate disability in multiple FS. Able to 

walk without aid or rest for 300 meters. 

5.0 Disability impairs daily activities. Able to walk without aid or rest for 200 

meters.  

5.5 Disability impairs or fully precludes daily activities. Able to walk without 

aid or rest for 100 meters.  

6.0 Requires unilateral aid to walk 100 meters without rest (cane, crutch, etc.) 

6.5 Requires bilateral assistance to walk 20 meters (canes, crutches, etc.) 

7.0 Unable to walk for more than 5 meters. Reliant on wheelchair for most 

transport.   

7.5 Unable to walk for more than a few steps. Reliant on wheelchair for most 

transport.   

8.0 Confined to bed or wheelchair. Generally self-reliant.  

8.5 Confined to bed. Able to care for self mostly.  

9.0 Confined to bed. Dependent for care. Can eat and communicate.  

9.5 Confined to bed. Fully dependent for care and unable to eat and swallow 

Unable to communicate effectively. 

10 Death due to MS. 

Table 2.2: Expanded Disability Status Scale (EDSS) score with corresponding description of 

symptoms. The table is adapted from the original scoring criteria developed by Kurtzke43. 
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Axonal White Matter Damage 

The first detailed work studying white matter lesions in MS was completed by 

physicians Jean-Martin Charcot and Edme Vulpian in 186844. They built on the previous 

works of Robert Carswell in 1838 and Jean Cruveilhier in 1841, both of whom independently 

observed discolorations and scarring in the white matter of brain and spinal cord tissue.  

Furthermore, the two specifically identified patterns of lesions associated with CNS 

impairment and a resulting “triad” of symptoms—unsteady eyes, impaired speech, and loss 

of motor coordination. The presence of lesions combined with this triad of symptoms which 

they named “sclerose en plaque disseminee” eventually becoming known as “multiple 

sclerosis” 44.  

Lesions arise from demyelination of white matter axons which then appear as 

discolorations in neural tissue when the characteristic light color of myelin is absent. At the 

cellular level, the myelin sheath function is to insulates action potentials travelling through 

the axon from the extracellular matrix and speed up its conduction velocity1. Loss of the 

myelin sheath thus slows down conduction, disperses action potentials into the extracellular 

space, or may even block action potentials altogether. Subsequent inability of neurons to 

communicate properly between the brain and spinal cord may lead to the beginning of 

physical and mental dysfunction.  

The location and distribution of WM lesions has seen increased understanding in 

recent years with knowledge advances in imaging and immunology. In a study by Charil et 

al, some relationships were found between lesion location and cognitive and motor 
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disabilities. Specifically, presence of lesions at the gray-white matter junction correlated 

with cognitive impairment, while lesions near the lateral ventricles and internal capsule 

were associated with motor impairment45.  This finding should be taken in context with the 

well-recognized  clinico-radiological paradox, which describes a  lack of correlation between 

MS disability and total white matter lesion burden46. The EDSS itself is also biased towards 

motor disability. Other clinical disability scores have recently been proposed, including the 

Multiple Sclerosis Functional Composite (MSFC), which incorporates cognitive testing47.  

During the transient, stable periods of RRMS axonal remyelination may occur48. 

However, complete remyelination never occurs49. SPMS, as well as PPMS are characterized 

by progressive increases in demyelination and axonal loss. They are also linked to a lower 

capacity of the brain to remyelinate damaged axons50.  

 

Gray Matter Pathology in MS  

There are substantial changes in cortical and subcortical GM in MS. Early studies by 

Brownell et al. showed that 26% of lesions in MS are localized in the cortical and subcortical 

GM51. This finding was later corroborated by Kidd et al in 199951. Kutzelnigg et al. 

subsequently studied MS lesions in post-mortem tissue and reported more extensive GM 

lesions in the cortex in PPMS and SPMS subjects compared to RRMS52. Furthermore, 

demyelination GM has been identified in deep GM nuclei including the basal ganglia, 

cerebellum, thamalus, hypothamalus, as well as in the cerebellum51,53.   
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Despite its reported prevalence in histopathology studies, cortical GM pathology in 

MS is difficult visualize using MRI for several reasons: (1) GM lesions are smaller than WM 

lesions in size and (2) there are smaller differences myelination between GM lesions and 

surrounding normal-appearing gray matter3.  

Signatures of GM pathology in MS can be identified based on MRI atrophy measures. 

For instance, Fisher et al. 2008 demonstrated that GM atrophy increases 14-fold in SPMS 

compared to RRMS, while WM atrophy remains the same54. This finding indicates the more 

pronounced brain parenchymal tissue loss (which is visible in MR images) in progressive MS 

is primarily a function of GM atrophy. A relationship between GM atrophy and disability has 

also been demonstrated by Fisniku et al.55.  

 

Functional Disruptions in Multiple Sclerosis 

In one of the earliest fMRI studies of MS, Rombouts et al. examined MS patients with 

unilateral optic neuritis compared to a group of healthy controls56. After stimulating each 

eye, subjects with optic neuritis showed decreased activation in the affected eye. They also 

showed decreased activation in both eyes compared to controls. In subsequent years, task-

based fMRI studies have elucidated important functional changes in MS brain.  Werring, et 

al, showed that MS subjects who recovered from optic neuritis displayed overall changes in 

their distribution of cortical activation57. Prior to recovery patients displayed visual 

activation in the occipital visual cortex. After recovery, the activated sites also included the 
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insula-claustrum, lateral temporal cortex, posterior parietal cortex, orbital prefrontal cortex, 

corpus striatum, and the thalamus.  

Compensatory cortical activation in the presence of lesions in has also been observed 

in early stage MS. In 2002,  Staffen et al. demonstrated the existence of increased cortical 

activation in RRMS patients compared to controls58. In the study, in neuropsychological 

testing of memory and attention, healthy controls and RRMS subjects showed no group 

differences in any of the test scores. However BOLD activation was markedly different. 

Healthy controls had increased activation in the right frontal gyrus cingula. RRMS subjects 

had increased activation in a wider range of areas, including Brodmann areas 6, 8, and 39 in 

the right hemisphere, as well as Brodmann area 39 in the left hemisphere. A later study also 

highlighted increased prefrontal cortex activation in RRMS59 during the Stroop test60, a test 

of matching colors with mismatches words, where MS and control groups had statistically 

insignificant test differences. Such results further extend to motor tasks. Two notable results 

include increased contralateral supplementary motor area activation in fatigued MS patients 

compared to non-fatigued and HC subjects during finger flexion-extension tasks61, and in 

PPMS patients compared to controls in an ankle flexion task, higher activation in a network 

of regions that is normally associated with tasks of higher complexity level62.  

Several novel technologies and methods were introduced in the early 2000’s and saw 

applications in MS research. Among these developments were more powerful magnets to 

elucidate deep subcortical structures, and the discovery of resting state networks to explore 

FC changes63.  
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Exploration of resting state networks has unveiled important FC changes, especially 

in the default mode network, visual network, and sensorimotor network38. In the DMN, the 

posterior cingulate cortex and anterior cingulate cortex, two major network hubs, have 

shown decreased FC in PPMS and SPMS64 and RRMS65. However, there is also evidence of FC 

increase between in PCC and ACC of the DMN in RRMS subjects66. In the visual network, 

RRMS and CIS has consistently seen decreases in FC67–69, possibly due to higher susceptibility 

to structural damage70.  Lastly, sensorimotor network sees decreased FC between nearly all 

connections in RRMS, particularly at the premotor cortex71, postcentral gyrus72 and 

thalamus73.  

 The link between FC changes and structural changes such as recovery and 

compensatory alterations is not fully understood. Intuitively, one might think compensatory 

activation in formerly unrecruited brain regions may be advantageous, but evidence has 

arisen that compensatory changes in functional activation may be short-lived, unsustainable, 

and even detrimental in the long term. For example, in two studies of PPMS subjects, Filippi 

et al. showed correlations between widespread compensatory motor activation linked to 

later detrimental structural evolution74. Second, Pantano et al. showed, in a longitudinal 

study of 15-26 months between scans, that RRMS patients showed initially higher bilateral 

activation than controls. In the follow-up scan, after increased lesion load and relapse in the 

RRMS group, BOLD activation reduced significantly in the ipsilateral sensorimotor cortex 

and contralateral cerebellum75.   
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3. Methodology 

3.1 Study Overview 

As the primary research objective of this thesis, we sought to isolate the influence of 

MS phenotype on local and global resting-state functional connectivity in a cohort of early 

and later stage MS patients. All subjects were imaged using the 7 T MRI system located at the 

Robarts Research Institute in London, Ontario.  

Resting state network activation patterns in MS are regionally-specific and may 

exhibit either increases or decreases in activation. However, a conceptual understanding of 

what governs such resting state alterations is lacking. Moreover, associations between FC 

and structural-MRI derived signatures of neuroinflammation and neurodegeneration are not 

fully understood.  Herein, we aimed to quantify 7 T-derived, resting state fMRI (rs-fMRI) 

alterations at the network level in relapsing-remitting and secondary-progressive MS 

patients compared to age, sex and education-matched healthy controls.  

 

3.2 Subject Recruitment 

RsfMRI data was collected as part of an ongoing study of cortical pathology in MS which 

is being conducted jointly between McGill University and University of Western Ontario. The 

imaging portion of the study includes 40 subjects who were imaged on the 7 T MRI system 

at the University of Western Ontario. The cohort distribution was as follows: 15 Healthy 
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Controls (HC), 14 Relapsing-Remitting MS (RRMS), and 11 Secondary Progressive MS 

(SPMS) subjects. By sex, there were 14 males and 26 females in the study.    

 

3.3 Neurological and Cognitive Testing 

Neurological assessment of each MS subject was performed by a board-certified 

neurologist at the London, Ontario MS Clinic. Each patient was assigned an Expanded 

Disability Status Scale (EDSS) score. This is discussed in section 2.2. Values for EDSS for 

subjects enrolled in our study ranged from 0 (no disability) up to 6.5 (requirement of two 

walking aids to walk 20 meters without rest). Subject EDSS Scores are summarized in 

Appendix X.  

In addition to clinical neurological evaluation, each subject underwent cognitive 

testing. The cognitive testing battery included: 

• Leonard Tapping Test (LTT), which evaluates motor coordination of two hands using 

a two-circle apparatus, each divided into four regions76. The left and right circles of 

the apparatus correspond to the left and right hand of the subject. Test takers are 

required to tap regions of each circle in the correct order. Specific tests included 

single tap, sequential tap, bimanual in-phase tapping, and bimanual out-of-phase 

tapping. The final score for the LTT is an average of the number of correct taps in all 

tests, with separate scores assigned for the dominant and non-dominant hand.  

• Symbol Digit Modalities Test (SDMT), a test designed to measure processing speed 

through identification of symbol and digit associations, and the most frequently used 
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neuropsychological test for this purpose in MS77.  Symbols and associated numbers 

are defined. Subjects are then asked to correctly identify as many correct matches as 

possible in 90 seconds. Scores are recorded for the correct number of associations. 

They are then scaled to Z-scores based on a population average.   

• Wechsler Adult Intelligence Scale, 3rd edition (WAIS-III), designed for testing IQ in 

adults78. In the current study, data is available for the processing speed tests 

associated with WAIS-III which includes a digit symbol-coding test, similar in 

principle to SDMT where subjects match numbers to symbols, and a symbol search 

test, where subjects identify if a given pair of symbols exist within a larger set of 

symbols. In both subtests, the number of correct responses is recorded in a set period, 

and scores are scaled into percentiles.  

• Beck Depression Inventory 2nd edition (BDI-II), a set of 21 self-scored questions about 

feelings over the past two weeks at the time of questionnaire79. Individual responses 

are rated from 0 to 3, and the final sum (BDI-II score) ranges from 0 (normal/non-

depressed) to over 40 (extremely depressed). The questionnaire and scoring system 

for BDI-II is included in Appendix X.  

• Modified Fatigue Impact Scale (MFIS), a set of 21 self-scored questions, rated from 0 

to 4, relating to recent events in relation to fatigue80. The sum of the results from 

selected individual questions contributes to a physical, cognitive, and psychosocial 

sub-score. The total score is the sum of scores from all responses which generates the 

final fatigue score ranging from 0 (non-fatigued) to 84 (severe fatigue). The 

questionnaire and scoring system for MFIS is included in Appendix X.  
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• Tower of London 2nd edition (TOL-2), a psychological test designed to assess 

executive function81. In this test, three towers are presented, in which a red, green, 

and blue ball are stacked in a starting configuration. The configuration is first 

presented by the examiner, and the subject attempts to re-create the configuration as 

fast and efficiently as possible. Efficiency is judged by number of moves necessary to 

re-create the configuration. A score is derived by calculating the difference between 

the number moves used and the optimal number of moves (i.e. move score of 0 means 

perfect sequence of moves).  Speed is also judged based on initiation time (time taken 

to plan), and execution time (time taken to execute the plan). Move score and time 

score are combined and scaled into percentile performance scores for each subject.   

• Paced Auditory Serial Addition Test (PASAT), which assesses auditory information 

processing and mathematical calculation ability82. The subject is first presented with 

a number, delivered from an audio cassette or disk. In regular repeating intervals of 

time, a digit is presented, and the subject must add the digit to the previously 

presented digit, thus requiring holding the previous digit in memory. A total of 60 

digits are presented with 2-second and 3-second intervals between digits are tested 

in the PASAT-2 and PASAT-3 tests, respectively. The final number of correct answers 

is scored and scaled to give a z-score based on population average statistics.  

A full summary of patient EDSS information and cognitive testing parameters is 

presented in appendix X.  
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3.4 Imaging Protocol 

Each patient underwent a 7 T human MRI scan on the Siemens MAGNETOM MRI 

system at the Centre for Functional and Metabolic Mapping of the Robarts Research Institute 

in London, Ontario. The scanner is specialized for neuroimaging applications and has a clear 

magnet bore of 680 mm. Further, it is equipped with a 32-channel receive head coil and 

imaging gradients that can achieve a maximum amplitude of 80 mT/m with a 350 mT/m/s 

slew rate.  

Each subject enrolled in our study underwent a T1-weighted structural MRI using a 

Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) pulse sequence 

with 0.7 mm3 spatial resolution. Functional rsfMRI data were subsequently acquired using a 

multi-band EPI sequence with 10-minute acquisition window to collect 480 total image 

volumes. The spatial resolution of the rsfMRI scan was 2 mm3. Subjects were instructed to 

remain awake throughout the duration of the scan. Neck and head cushions were provided 

to minimize patient movement. Imaging parameters are detailed in table 3.1 and 3.2, 

respectively.  
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Acquisition Parameters: 

Multislice Mode Interleaved 

Slices Acquired 224 

PAT Mode GRAPPA 

Acceleration Factor PE 3 

PE Direction  A>>P 

TR 6000 ms 

TE 2.73 ms 

Orientation Direction FOV Slices 

Sagittal R >> L 240 mm 342 

Coronal A >> P 240 mm 342 

Transversal F >> H 157 mm 224 

Table 3.1: 7 T MP2RAGE acquisition parameters that were employed for anatomical imaging in our 

study.  

 

 

Acquisition Parameters: 

Multislice Mode Interleaved 

Slices Acquired 56 

PAT Mode GRAPPA 

Acceleration Factor PE 2 

PE Direction  A>>P 

TR 1250 ms 

TE 18.0 ms 

Total scan time 600 seconds 

Total volumes acquired 480 

Orientation Direction FOV Slices 

Sagittal R >> L 208 mm 104 

Coronal A >> P 208 mm 104 

Transversal F >> H 124 mm 56 

Table 3.2: 7 T Echo Planar Imaging (EPI) parameters applied for BOLD fMRI.  
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3.5 MRI Preprocessing 

Preprocessing for our study consisted of two major steps: (1) extraction of the BOLD 

timeseries signal from raw T2*-weighted functional MR images, and (2) alignment of subject 

brain volumes to a 3D standardized space for group-level analysis.  

 

Registration Procedure 

Anatomical Cortical Parcellation 

As a preliminary step in our analysis, tissue classification using the FreeSurfer83 

pipeline was applied to 7 T, T1-weighted structural MR images. This was carried out to 

classify tissue structures, extract cortical volume and measure cortical thickness. Brain 

parcellation was accomplished using Freesurfer’s registration procedure to a target atlas 

optimized for cortical folds84. The atlas contains probabilistic labels for brain regions and 

structures85. Thickness measurements were computed using second order smoothing of 

vertex-wise mesh of the white and pial surfaces86. 

 

T1-weighted Brain Extraction 

Prior to subject registration, a brain extraction was performed using the T1-weighted 

anatomical image. This step removed the skull and surrounding non-brain tissue.  In the 

current study, the BET2 algorithm87, included as part of the FSL software package88, was 
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used for brain extraction. BET2 first analyses the pixel intensity distribution in the T1-

weighted image. It then calculates a brain/background threshold in order to estimate the 

approximate position of the center of gravity of the brain. In these calculations, the top and 

bottom 2% of pixels are removed to minimize the effect of outliers due to MRI system-

specific parameters and brightness from arterial blood. Bone is also treated as background 

by setting the brain/background threshold to 10% between lower and upper intensities. 

Next, a brain radius is roughly estimated based on voxels above the threshold intensity. This 

radius is employed to tessellate a spherical surface which approximately matches the brain 

surface. An iterative procedure then more precisely estimates the brain surface by modifying 

each vertex on the sphere incrementally until an optimal solution is found.  

In practice, several changes were made to the default BET2 algorithm to 

accommodate the high resolution (0.7 mm3 isotropic voxels) T1-weighted images (based on 

the MP2RAGE uni-den contrast) from our 7 T acquisitions. First, because the T1-weighted 

images contained non-brain tissue—fat, muscle, and skin—around the neck which show up 

bright in T1 images, the center of gravity estimates used by the brain masking algorithm 

were rendered less accurate. To address this issue, a “robust” brain center estimation was 

carried out. Briefly, the estimate procedure iterates the BET2 brain extraction process using 

updated center of gravity information at each iteration. The iterations will stop when the 

center of gravity no longer changes (within a tolerance threshold). 

The fractional intensity threshold employed in the BET2 algorithm determines edge 

of the final brain mask segmentation. The threshold is controlled manually and varies from 

0 to 1, where larger values lead to smaller final brain size estimates. The default option in 
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BET2 is 0.5. For the 7 T images in our study, this threshold resulted in excessive removal of 

brain tissue. A fractional intensity threshold of 0.1 was found to be optimal based on visual 

inspection. 

 
Figure 3.4: Visual comparison of MP2RAGE uni-den images and the effect of varying levels of BET2 

brain extraction, fractional intensity threshold. The threshold value affects how much cortex is 

preserved. Values below 0.1 left too much tissue, while values above 0.1 did not adequately remove 

non-brain tissue.  

 

A final step to refine the brain extraction involved a gradient in the BET2 fractional 

intensity threshold (from the top to the bottom of the image). The gradient ranged between 

-1 and +1. A positive value of gradient resulted in more tissue eroded at the top half of the 

image. For the brain extraction performed based on the 7 T MP2RAGE images of our MS 
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imaging study, the gradient threshold was iteratively adjusted in intervals of 0.1 between -

0.3 and +0.3. The optimal removal of non-brain features was judged by visual inspection.  

 

Registration to Standard Space 

Registration from functional MRI space to a template atlas requires calculation of a 

transformation/registration matrix. The transformation matrix was computed using an 

iterative algorithm based on the high-resolution, skull-stripped T1-weighted data. The final 

registration target was the Montreal Neurological Institute 152, 2mm atlas 

(MNI_152_2mm)89.  

Detail regarding the specific registration procedure is given below:  

Step 1: Segment the T1-weighted brain image into white matter and gray matter. This was 

accomplished using the FMRIB’s Automated Segmentation Tool (FAST)90 which utilizes a 

hidden Markov random field model (MRF) with an expectation-maximization (EM) 

algorithm to label pixels contextually, constrained by spatial information from neighboring 

pixels (Zhang et al 2001). The algorithm begins, with an input skull-stripped image. A three-

step EM algorithm is then applied iteratively using the MRF and maximum-likelihood 

estimates to calculate class labels and tissue parameters. Furthermore, the FAST algorithm 

estimates global bias fields/image non-uniformity and can remove it from the image.   

Step 2: Linear boundary-based registration (BBR) to register functional MR image to the 

high resolution, T1-weighted structural91, included in the FSL package as the “epi_reg” 
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function. BBR requires a high quality, segmented reference image. In our case, the reference 

image was obtained from step 1. BBR also qualitatively requires that the functional MRI data, 

have strong tissue contrast. Boundary-based alignment is achieved by computing a 

maximum gradient of the input image intensities across a segmented white matter surface91. 

The output of the registration procedure is a 4x4 affine transformation matrix.   

An alternative registration algorithm explored as part of this thesis was FMRIB’s 

Linear Image Registration Tool (FLIRT)92,93. In theory, approximate registration of two MRI 

contrast from the same subject, scanned in the same session should be achievable with linear 

affine registration using the FLIRT tool. However, in practice, final alignment of 7 T fMRI data 

to high resolution T1-weighted images with FLIRT was sub-optimal and BBR proved to be 

more consistent. The improvement registration achievable with BBR may be a result of its 

unique ability to compensate for the effects distortion in the 7 T fMRI data.  

Step 3: A non-linear transformation field was computed to register the high-quality 

reference T1-weighted image to the final MNI_152_2mm atlas space for group statistical 

analysis. This step was achieved using the Advanced Normalization Tools (ANTs) package94. 

ANTs performs nonlinear registration in a step-wise manner. First an approximate, rigid 

body transformation (shifting and rotating only) is estimated for rough alignment. This is 

followed by affine registration (shearing and scaling), then application of the Symmetric 

Normalization (SyN) algorithm95 for nonlinear registration to atlas space.  

The SyN nonlinear registration, allows for finer detail and control than affine linear 

registration for small and detailed structures in the brain such as sulci and gyri, while also 

being able to correct larger features like ventricles that may be present in highly atrophied 
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brains. SyN is fundamentally a based on diffeomorphic transformation, which means 

reference and input maps are treated as closed and differentiable with a differentiable 

inverse. One can visualize the surfaces as being smooth, and some of the resulting 

mathematical implications are that the solutions in image registration are well behaved and 

constrained in terms of their distance and change, and topology of the reference image is 

preserved.  

 The resulting output from ANTs is a deformation field represented by a 3D 

transformation matrix.  

Step 4: In a final step, the calculated transformations from step 2 and 3 were applied to the 

functional MRI data to align it with the T1-weighted anatomical data using the linear 

transformation matrix from step 2. This was followed by application of the nonlinear 

deformation field calculated from step 3 to sensitively align the fMRI data to the 

MNI_152_2mm atlas space.  

The entire registration procedure is summarized in figure 3.6.  
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Figure 3.6: Summary of the multi-step, image registration pipeline employed in our study. Raw 

fMRI data (top left) undergoes BBR with the aid of WM segmentation via FSL FAST Algorithm on the 

high quality T1-weighted anatomical data (top right). Furthermore, T1-weighted data is registered 

to MNI152 2mm atlas via ANTs SyN algorithm to compute a nonlinear warp field. The fMRI data 

that was transformed to T1-weighted anatomical space (bottom left) is then subject to the 

nonlinear warp field to produce the final registered fMRI image in atlas space.   
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Functional Preprocessing 

Artefact removal was performed based on the registered 7 T functional MRI data using a 

series of FSL preprocessing tools. Key steps in artefact removal are explained in the following 

sections.  

In this resting state fMRI data, BOLD signal is acquired in every voxel in the brain every 

1.25 seconds. Resting state networks were specifically evaluated in cortical and subcortical 

regions that displayed coherent signal fluctuations over the 10-minute duration of the scan. 

Physiological processes such as breathing, venous and arterial blood flow, and voluntary or 

involuntary head motion can result in artefactual, correlated BOLD signal. Furthermore, 

variations in MRI system parameters such as gradient heating can cause artificial gain or loss 

of signal locally or globally. These non resting state network (non-RSN) signals must be 

removed from functional images in order to ensure that the data contains real and relevant 

signal.  

Specialized pre-processing was applied to remove artefactual respiratory and cardiac 

signals from the raw rsFMRI data. In particular, single-subject independent component 

analysis (ICA)96. was applied as an artefact removal step.  

 

Motion Correction 

 The motion correction algorithm, motion correction FLIRT (MCFLIRT)92, was applied 

in our study to remove functional magnetic resonance image volumes corrupted by 
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significant head motion. During the 10-minute fMRI scan, 480 total volumes are acquired, 

and two measures of motion were be considered: absolute head motion (absolute position 

of the head throughout the course of the scan) and relative head motion, (head displacement 

occurring in any given volume compared to the next volume which was acquired 1.25 

seconds later).  

 Absolute head motion was corrected by using the middle volume as a reference and 

applying MCFLIRT to realign volumes before and after the reference point. The MCFLIRT 

algorithm compares image intensities and uses a normalized correlation cost function for 

volume alignment.  

 Relative head motion between fMRI volumes is a greater challenge because. Large 

inter-volume movements can cause artificially spurious correlations in BOLD activity 

throughout the entire brain which may outweigh actual resting state activity97. In the current 

study, the MCFLIRT algorithm computed both relative and absolute motion in the time series 

data. Relative motion greater than 0.9 mm between volumes was identified for each subject 

and a confound matrix was created to discriminate corrupted from non-motion corrupted 

volumes.  Specifically, the confound matrix was read into the fsl_motion_outliers tool98 of the 

FSL package to remove unwanted signal contributions from outlier volumes.  
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Figure 3.7: Examples of (a) high subject motion and (b) low subject motion artefact in two selected 

fMRI scans. Relative displacement refers to the net displacement between volumes at successive time 

points. Absolute displacement refers to the relative displacement compared to the center volume 

(n=240). 

 

Slice Timing Correction  

Slice timing correction refers to the mitigation of temporally misaligned slices due to 

the chosen MRI readout. In the current study, fMRI data was acquired using interleaved axial 

slice ordering. A slice at the top of the brain was acquired followed by consecutive even 

numbered slices (n=2, 4, 6,…). The interleaved acquisition then restarted with acquisition of 

odd-numbered slices (n=3, 5, 7,…). This process continued until signal from the whole brain 

is acquired. For our, high temporal resolution, 7 T fMRI acquisition, traditional slice timing 

correction was not applied. Instead we opted to apply the temporal derivative method99 

available in the FSL package. The temporal derivative method is a temporal filtering 

technique applied to acquisition slices. Recent studies have shown traditional slice timing 
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correction can be less effective in rsfMRI acquisitions with high temporal resolution (TR<3 

seconds)100, given that RSN’s manifest in longer term signal fluctuations (0.01-0.1 Hz).  

 

Temporal Filtering  

 The raw fMRI signal contains high frequency noise from cardiac pulsality, breathing, 

and other physiological processes. These high frequency noise components typically have 

temporal oscillation frequencies in the 0.3 – 1 Hz range101. Low frequency noise, in the range 

of 0 – 0.015 Hz, also affects the fMRI signal. Low frequency noise is generally attributed to 

scanner B0 drift and head motion102. For the pre-processing applied to the fMRI time series 

data in our 7 T study, a high-pass filter was used to remove unwanted low frequency noise 

with oscillation frequencies below 0.01 Hz. A low-pass filter was not explicitly applied to 

remove high frequency noise due to risks of removing true RSN signal103. The rs-fMRI signal 

is generally in the 0.01 – 0.1 Hz range. However recent studies have shown higher 

frequencies associated with true neural firing also exist104. Instead of a low-pass filter, high 

frequency components were removed using spatial temporal ICA101 (to be discussed 

shortly). 

 

Spatial Smoothing 

In fMRI data analysis, a Gaussian spatial smoothing kernel, is often applied to produce 

an image for which each pixel’s intensity is the kernel-average of its neighbors. In BOLD fMRI, 

the extent of activation in both task-based and resting-state fMRI may be spatially 
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distributed. Consequently, spatial smoothing is applied to remove noise and isolate true, 

spatially consistent BOLD signal.  

The extent of spatial smoothing may be quantified by the full width at half-maximum 

(FWHM) of a Gaussian blurring kernel. For our 7 T fMRI time series analysis, the width of the 

Gaussian spatial smoothing filter was set at 5 mm (for group level statistics). Our chosen 

FWHM (which is 2.5x the acquired voxel size) was conservatively estimated to minimize 

discrete random noise and facilitate region-of-interest analysis. The kernel size was also 

identified to account for individual subject variability in activation for end-stage, group-level 

analysis.   

 

Noise Regression via Independent Component Analysis 

Independent Component Analysis (ICA) was applied as a final, quantitative noise and 

artefact removal step. In FSL, ICA is implemented using the Multivariate Exploratory Linear 

Optimize Decomposition into Independent Components (MELODIC) tool105. MELODIC is a 

linear decomposition method that separates 4D fMRI time series data into spatio-temporal 

components96. Each resulting component corresponds to structured signal or noise.  

The time series data for each subject enrolled in our study underwent ICA 

decomposition (producing 40-80 independent components). Components were manually 

classified as signal or noise based on spatial patterns of activation and component oscillation 

frequency. True resting state components exhibiting structured signal in gray with 

oscillation frequencies in the range of 0.01 – 0.1 Hz101. Noise components, including residual 
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physiological signal, motion artefacts, and MRI-system specific effects were removed. After 

manual classification of signal and noise, noise components were regressed from the raw 

input data. Some examples of signal and noise are given in the following figures.  

 
Figure 3.11: One component from an ICA decomposition that represents the DMN. The spatial 

distribution of BOLD signal is preferentially located in the posterior cingulate cortex and lateral 

occipital cortices, thresholded at Z=3. The timeseries shows relatively slow fluctuations and the 

frequency spectrum lies peaks in the 0.01-0.04 Hz range, within the 0.01-0.10 range that we expect 

to see RSN activity. 
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Figure 3.12: Artefactual venous circulation signal, characterized by strong BOLD activation in the 

sagittal sinus (Fig. 3.12a). The BOLD timeseries in Fig. 3.12b has a frequency spectrum (Fig. 3.12c) 

with peaks in the 0.01-0.1 Hz range. But a feature of the venous flow artifact is that it also shows 

power in the 0.25-0.3 Hz range. This differentiates artefactual venous signal from neural activity. 
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Figure 3.13: An ICA component representing head motion artifact. (a) The artefactual signal shows 

a characteristic ring structure around the brain. (b,c) Motion manifests as a  spike in the BOLD 

timeseries. (d) Motion can also be identified based on the sharp increase in absolute displacement 

occurring at volume #350 in the Mean Displacement Estimate from MCFLIRT. 
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A Note on Global Signal Regresssion and Anti-Correlations 

 Anti-correlations in rs-fMRI data have particularly been observed when applying 

Global Signal Regression (GSR) for artifact removal106. GSR subtracts not only the mean CSF 

and WM time series signal, but also the average time series signal from all parenchymal brain 

tissue (including GM). Since BOLD signal and noise characteristics are different across 

control and patient groups, GSR may fail and introduce unwanted, spurious negative 

correlations107. Consequently, GSR was not applied in our study. 
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3.6 MRI Data Analysis 

Three types of functional neuroimaging analysis were performed based on the pre-

processed 7 T rs-fMRI data collected in our MS imaging study. First, dual regression108, a fully 

data driven model, was used to calculate group-level ICA components and measure group 

differences between both MS phenotypes and controls within individual RSN’s. Next, a set of 

100 predefined regions of interest (ROI’s) based on 14 known resting-state networks, 

compiled by the Stanford FIND Lab109 were used in conjunction with the CONN toolbox110 to 

evaluate both intra and inter-network connectivity measure. Finally, the regions of interest 

from the FIND Lab atlas were applied in a connectivity matrix apporoach for each subject. 

Connectivity matrices were evaluated using partial least squares (PLS) statistics111. PLS 

extracts the most probable functional connections contributing to group differences in 

connectivity and additionally tests for stability of ROI-to-ROI connectivities through 

boostrapping. 

 (i) Dual Regression 

Dual regression requires prerequisite, group level spatial component maps, which 

represent RSN activation shared by all subjects. In our study, these maps were generated 

using group-ICA (GICA)112. GICA applies a temporal concatenation of all subject data 

followed by ICA decomposition to measure spatial components that are statistically 

independent and common across subjects. GICA-derived components represent (i) common 

shared RSN’s and (ii) noise components. In the GICA implementation in FSL MELODIC65 that 

was used in our study, initial data reduction occurred by projecting individual subject data 
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onto a common eigenbasis113. Components were then classified visually based on the spatial 

distribution of calculated components in the brain101.  

After the group template maps were identified from GICA, dual regression occurs in 

two multiple-regression steps.  

First, a set of time courses are computed for each group map using the GICA spatial 

maps (independent variable) and each subject’s timeseries data (dependent variable). The 

time courses describe the extent to which each component contributes to total BOLD signal. 

The time courses are then used in step 2, where they act as the model inputs (independent 

variable) for a second-stage regression against each subject’s BOLD fMRI data (dependent 

variable). The result of the two-stage dual regression process is a set of spatial maps for each 

subject that reflect their extent of activation relative to the GICA component.  

Based on the output of dual-regression, group-level differences were measured at the 

voxel using a general linear model (GLM). The GLM was built to establish group differences 

in functional connectivity between HC and RR subjects, HC and SP subjects, and RR and SP 

subjects. Sex, disease duration and Expanded Disability Status Scale were included as 

covariates in the GLM. All statistical tests were corrected for multiple comparisons using a 

family-wise error rate of p < 0.05.  
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(ii) Regional Connectivity Analysis (CONN Toolbox)  

The CONN toolbox (version 17) was used to assess inter- and intra- RSN differences 

with 100 predefined ROIs from the Stanford FIND Lab Atlas109, and ROIs were distributed 

among 10 known RSN’s.   

Regional connectivity was computed between all pairs of ROIs in the brain. Pairwise 

correlations were derived using Fisher Z-transformations of the BOLD time courses. Group-

level differences in both inter- and intra- network FC strengths were then calculated 

employing two-sample t-tests. The results were corrected for multiple comparisons using 

non-parametric permutation testing114. Clusters of interest were identified based on a voxel-

wise threshold of p<0.01. Each voxel within an ROI was tested for significance compared to 

the whole-brain activation probability density function using a permutation test with 1000 

permutations. Significant connections were then determined by using a false-discovery rate 

threshold of p<0.05. Each ROI was characterized by its mass (sum of the F-statistics over all 

connections in each ROI), and the mass of reach ROI was compared to the distribution of 

expected cluster mass values under the null hypothesis, which was numerically estimated 

based on permutation testing with n=1000 permutations.  
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Figure 3.19: FIND Lab Resting State Network (RSN) atlas of the human brain. Resting state networks 
are labelled by color. 

 

(iii) Correlation Matrix and Partial Least Squares Regression Analysis 

Correlation Matrices 

Correlation matrices were computed for each subjecting using the Stanford FIND Lab 

ROIs described in Section 3.6(ii). Specifically, for each subject, the average timeseries (after 

ICA de-noising) was computed within each ROI. This resulted in a 100 x 100 matrix of 

Pearson correlation coefficients. The connectivity matrix was organized such that the first 

50 rows and columns represent left-hemisphere ROIs and the remaining 50 rows and 

columns represent the right-hemisphere. The entire matrix is symmetric about the diagonal 
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and includes both inter- and intra-hemispheric connection.  Within the left and right 

hemispheres, ROIs were ordered such that the largest RSN’s appeared first (closest to the top 

of the matrix). Average group-level matrices are shown in figure 4.7 of the results.  

 

Partial Least Squares Regression 

Partial least squares (PLS) regression115 is a technique that has been applied in 

resting-state network modeling, to extract salient group differences in brain connectivity 

patterns. PLS is a statistical method designed to find weighted linear combinations of vectors 

that express maximum covariance between two or more ordered datasets. In this case, the 

data sets were rs-fMRI time series for each individual subject in our study.  As input, PLS 

takes a correlation matrix (X) and a matrix of subject phenotypes (Y). In our study, X was 

represented as a 40x4950 matrix where each row contains correlation data from one subject. 

Y was a 40x3 matrix denoting HC, RR, and SP phenotypes.  

The inter-relation between X and Y can then be summarized using the matrix 

equation M=X’Y. In PLS, M undergoes singular value decomposition into left and right 

singular value matrices, as well as a diagonal matrix of singular values: 

𝑀′ = 𝑈𝑆𝑉′ 

Where: 

• U is the left singular matrix. U has a size of 4950x3 in our work. 

• S is a diagonal matrix of singular values with size 3x3. 
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• V’ is the right singular matrix with size 3x3. 

Notably, the left and right singular matrices have the property 𝑈𝑇𝑈 = 𝐼 and 𝑉𝑇𝑉 = 𝐼, where 

𝐼 is the identity matrix. 

A set of latent variables (LV) can be derived from U, S and V by taking values from the 

ith column of U and V and the ith diagonal element of S, forming a triplet for each LV set115. 

The number of LV sets is equal to the rank of matrix M, which was 3 in our study. Each LV set 

comprises (1) the correlation matrix that expresses group differences (U), (2) the relative 

size of the singular value (S), and (3) the correlation of each phenotype with the expressed 

correlation matrix of group differences (V).  

To measure group connectivity differences with PLS, the latent variables are each 

tested for statistical significance using permutation methods115.  500 permutations are 

tested, each time generating a singular value. The p-value for significance is therefore 

equivalent to the fraction of singular values greater than that of the original, non-permuted 

matrix. For statistical significance, p < 0.05 (i.e. less than 25 of 500 permutations exceed the 

original SV).  

 PLS was also applied to find the most stable ROI-to-ROI connections via bootstrapping 

with replacement. Rows in the X and Y matrices (i.e. individual subject correlation matrices 

and phenotype) were randomly sampled with replacement, and the resulting matrix M 

underwent SVD to generate a new set of LV’s. The weights of the new LV’s, sampled 500 

times, which generated a distribution of saliences for each ROI-to-ROI correlation. Each 

salience had an associated standard error. The singular value weight divided by the standard 
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error is the bootstrap ratio (BSR) for each ROI-to-ROI correlation. The BSR is approximately 

equal to the Z-score if the standard error distribution is approximately normal115. Therefore, 

the greatest contributions of interest at a 95% confidence can be obtained by thresholding 

the results to BSR>1.96. The thresholded BSR correlation matrix reveals the RSN’s that 

contribute most to group differences in connectivity. 

 Finally, the left singular vector can be projected onto each individual subject’s 

correlation matrix to compute a “brain score” for each individual115. Brain scores identify the 

quantitative contribution of each subject to the group differences in global connectivity 

patterns. 
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4. Results 

4.1 Baseline Cognitive Testing and Structural Neuroimaging Characterization 

of our Cohort 

Baseline cognitive tests were administered to measure memory, attention, executive 

function, and processing speed for all subjects included in our cohort. Structural image 

processing was performed based on the 0.7 mm3 isotropic resolution T1-weighted 

anatomical MP2RAGE data collected in our study. Regional and global brain volumes and 

cortical thickness were measured using FreeSurfer. Demographic, clinical, and cortical 

thickness characteristics of subjects enrolled in this study are summarized in table 4.1.  

 HC (n = 15) RRMS (n = 14) SPMS (n = 11) 

Male : Female Population 6M : 9F 5M : 9F 3M : 8F 

Age 43.6(7.93) 43.4(6.80) 49.8(5.06)b,c 

Education Level (Years) 16.13(2.42) 15(1.92) 13.82(1.60)b 

EDSS Score   1.89 (1.33) 4.59 (1.69)c 

Disease Duration (Months)  133.6 (76.0) 221.6 (94.0)c 

Cortical Thickness (mm) 2.289 (0.1036) 2.200 (0.0971)a 2.167 (0.1459)b 

Table 4.1: Demographic and clinical characteristics between cohorts. Statistically significant group 
differences are noted as follows:  
a HC vs. RRMS: cortical thickness p<0.030.  
b HC vs. SPMS: age p<0.022, education level p<0.007, cortical thickness p<0.039.  
c SPMS vs. RRMS: age p<0.013, disease duration p<0.022, EDSS p<0.0003.  
 
 

 Neuropsychological test results are summarized in the following box-and-whisker 

plots, highlighting statistically significant differences at p<0.05. A numerical summary of 

figures is also found in Appendix A.1-A.3.  
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Overall, RRMS patients showed statistically significant decreases in cortical thickness 

compared to HC (p<0.03), and no differences in neuropsychological testing.  

SPMS patients had lower education levels compared to HC (p<0.007), and in 

neuropsychological testing, worse scores on SDMT (p<0.009), WAIS-III (p<0.001), PASAT-3 

(p<0.03), higher levels of fatigue (MFIS) (p<0.00001), and higher levels of depression (BDI-

II) (p<0.013).  

Finally, comparison of SPMS with RRMS reveals the former is older on average 

(p<0.013) and have lived with the disease longer (p<0.0003). In neuropsychological testing, 

SPMS subjects showed higher fatigue (MFIS) (p<0.04).  
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Figure 4.1: Neuropsychological test 
score results for HC, RRMS and SPMS 
subjects. Statistically significant 
differences are noted as follows: 
* HC vs. SPMS: SDMT p<0.0094, WAIS-
III p<0.001, MFIS p<0.00001, BDI-II 
p<0.013, PASAT-3 p<0.03 
** HC vs. RRMS: no statistically 
significant differences 
***RRMS vs. SPMS: MFIS p<0.039 
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4.2 Dual Regression 

The group ICA (GICA) decomposition of denoised resting state timescourses from our 

study yielded 20 independent components. Eight of the components were manually 

identified to be true resting state networks116. Figure 4.2 below shows GICA-derived 

common resting state networks shared between HC, RR and SP subjects: 
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Figure 4.2: Axial and sagittal views of twelve RSNs derived from gICA in our population of HC and 

MS subjects. Coordinates are based on the MNI152 2mm atlas space and thresholded at the level 

Z=3. From top to bottom, RSNs correspond to: (a) visual, (b) sensorimotor, (c) dorsal DMN, (d) 

visuospatial, (e) ventral DMN, (f) right ECN, (g) high visual, (h) left ECN, (i) precuneus, (j) language, 

(k) auditory, (l) basal ganglia/precuneus. 
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These networks were highly robust, exhibiting strong activation patterns that were 

spatially consistent with previously recognized resting-state activation patterns observed in 

large cohort studies109. 

 Dual regression was applied to the GICA-derived components to evaluate group 

differences in activation between Healthy Control (HC), Relapsing Remitting (RR), and 

Secondary Progressive (SP) MS subjects. Statistical inference was specifically carried out 

using a GLM design. Two statistically significant findings were seen in RRMS patients 

compared to HC.  

 In the primary visual RSN, which is associated with information processing of 

stationary and moving objects117, RRMS subjects displayed increased activation in the 

precuneus cortex, calcarine cortex, and lingual gyrus. In the sensorimotor network, which is 

associated with planning and execution of motor tasks, RRMS subjects showed greater 

activation in the pre- and post- central gyri and the posterior cingulate gyrus. Results were 

reported with a significance threshold of p<0.05, corrected for multiple comparisons. No 

significant effects were found when comparing resting state activation of SPMS subjects to 

HC and RR.  
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Figure 4.3: Group expression of the primary visual network for HC, RRMS, and SPMS is displayed in 

columns 1-3, respectively, representing average expression of the RSN for members of the cohort. 

Statistically significant increases in RRMS activation compared to HC are highlighted in column 4. 

Key areas are (i) precuneus cortex and (ii) calcarine cortex, and (iii) lingual gyrus regions. Results 

were corrected for multiple comparisons and are reported with a threshold level of p<0.05. 

 

 

 
Figure 4.4: Group expression of the sensorimotor network for HC, RRMS, and SPMS is displayed in 

columns 1-3, respectively, representing average expression of the RSN for members of the cohort. 

Statistically significant increases in RRMS activation compared to HC are highlighted in column 4. 

Key areas are (i), (ii) pre- and post-central gyri, and (iii) the posterior division of the cingulate gyrus.  

Results were corrected for multiple comparisons and are reported with a threshold level of p<0.05. 

 

 

 



-  68  - 

 

4.3 Inter-Regional Connectivity Alterations in MS Evaluated using CONN 

Toolbox 

Several connectivity alterations were revealed by regional connectivity analysis 

within the DMN. RRMS subjects, compared to HC, had decreased connectivity between the 

thalamus and the posterior cingulate cortex (PCC) and the superior lateral occipital cortex 

(OCC-ls) (p<0.005). By contrast, connections between the parahippocampal gyrus (PHG-pd) 

and the left and right precuneus cortices (PCUN-L and PCUN-R) and the PCC were 

strengthened (p<0.008) , as well as the PCC-PCUN-R connection (p<0.005).  

SDMT scores, measuring cognitive processing speed, were strongly correlated with 

the strength of thalamic connections with the PCUN-L/PCUN-R, left and right hippocampi 

(HPC), PHG-pd, and the frontal pole (p<0.03).   
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Figure 4.5: Significant FC differences between healthy controls and RRMS subjects within DMN 

ROI’s.  Healthy controls showed stronger thalamus-PCC and thalamus OCC-ls connectivity compared 

to RRMS subjects (red connections) (p<0.005). RRMS subjects had increased connectivity compared 

to HC in the PCC-PCUN-R (p<0.005), PHG-pd-PCUN-R, PHG-pd-PCUN-L and PHG-pd-PCC connections 

(p<0.005) (blue connections).  
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Figure 4.6: Significant FC correlations between SDMT and thalamic DMN ROI connectivity. Higher 

SDMT scores were correlated with increased connectivity between the thalamus and other regions 

(PCUN-L, PCUN-R, HPC-L, HPC-R, PHG-pd, and frontal pole) of the DMN (p<0.03).  
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4.4 Correlation Matrix and Partial Least Squares Evaluation 

Using 100 ROIs derived from the FIND Lab atlas (reference), individual resting-state 

correlation matrices are plotted. Visualization of average group matrices are shown in figure 

4.7 below.  

 

Figure 4.7: Average functional correlation matrices for HC, RRMS and SPMS groups. Individual 

resting state networks are denoted on the diagonal. Color schemes are consistent with Figure 3.19 

for visualization purposes. 

 

Partial least squares regression was applied to the group correlation matrix 

constructed from all subjects to yield a set of Latent Variables (LVs). The LVs can be used to 

evaluate group connectivity differences between HC, RRMS, and SPMS subjects.  The LVs 

were specifically extracted in the order to quantify of the amount of covariance between 

rsfMRI signal and subject group (HC, RR or SP). RRMS subjects showed higher expression of 

the ROI-to-ROI connections highlighted by the thresholded bootstrap ratio (BSR) matrix in 

Figure 4.8. The BSR matrix depicts connections which contribute most to group-wise 

differences in resting state connectivity. Many connections lie in the Default Mode Network 

(DMN) and Executive Control Network (ECN).  
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Figure 4.8: Thresholded Bootstrap Ratio (BSR) matrix showing ROI-to-ROI connections that 

contribute most to group-wise differences. The majority of the significant connections are within the 

default mode network (blue) and the executive control network (yellow).  
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Figure 4.9: Total effect size derived from the BSR matrix significant connections (fig 4.8). A positive 

value for RRMS subjects suggests stronger expression of the BSR matrix compared to HC and SPMS.   

 

 

A brain score for each subject was derived from the singular value decomposition of 

the connectivity matrices. The brain score identifies the quantitative contribution of each 

subject to the group differences in global connectivity. Brain scores from PLS (fig. 4.10) 

regression identified increased global connectivity in RRMS. More specifically, there were 

statistically significant increases in brain score of RRMS subjects compared to HC 

(p<0.0006). There were also significant increases in brain scores of SPMS subjects compared 

to HC (p<0.002). No brain scores differences were observed between RRMS and SPMS 

subjects (p<0.075). 
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Figure 4.10: Brain scores derived from PLS. RRMS brain scores were highest, on average, and greater 

than HC (p<0.0006). 

 

4.5 Relating Brain Scores to Cognitive Metrics 

PLS brain scores were related to neuropsychological testing results using simple 

linear regression. The goal of this analysis was to assess the relationship between whole 

brain connectivity patterns and cognition in the MS and HC group. Using bootstrap 

resampling (5000 bootstrap re-samples) we estimated the 95% confidence interval for a 

linear regression relating brain scores to the cognitive testing data collected in our study. A 

subtle relationship was observed between PLS brain score and both PASAT-2 and PASAT-3 

scores in HC. PASAT-2 and PASAT-3 differ based on the time given between each stimulus (2 

seconds vs. 3 seconds) during the neuropsychological test. A weak positive correlation 
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between PASAT2 test performance and PLS-derived brain score was found for HC subjects 

(R2 = 0. 32). A similar weak correlation between and PLS-derived brain score was also found 

(R2 = 0. 15).  

 
Figure 4.11: PASAT-2 Z-scores plotted as a function of PLS-derived Brain Scores (R2=0.32). 
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Figure 4.12: PASAT-3 Z-scores plotted as a function of PLS-derived Brain Scores (R2=0.1535). 
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5. Discussion 

In this thesis, resting-state functional connectivity of two cohorts of multiple sclerosis 

patients and one group of age, education and gender-matched healthy controls was studied 

using three different neuroimaging statistical analysis pipelines. An overall goal was to 

uncover group differences in 7 T resting state BOLD activation indicative of demyelination, 

axonal loss or adaptive network changes in response to neuroinflammation.  

All network evaluation began with a pre-processing pipeline to correct for imaging 

artefacts, machine noise, and physiological noise. For 7 T resting state fMRI studies, the 

nature of the selected pre-processing is vital118. For the MS patients enrolled in our study, 

scanned using a 7 T head-only MRI scanner, we observed patient head motion could 

significantly impact individual and group ICA results. For this reason, careful denoising was 

applied at the single subject level to all timeseries data we collected. Careful attention was 

also paid to artefactual cardiac signals (both first and higher harmonics) that spatially 

resembled true resting state BOLD activation. 

Consistent pre-processing was applied, irrespective of the end-stage statistical 

inference method used for whole-brain and local connectivity evaluation.  Specifically, 

motion outliers were removed if volume-to-volume displacements exceeded 0.9mm, high-

pass filtering was consistently applied with a cutoff of 0.01 Hz, and spatial smoothing was 

performed using a 5 mm FWHM kernel. ICA decomposition separated the total signal into 

independent components, representing either true resting state BOLD signal or noise. 

Manually classified noise was then regressed from the resting state time course to generate 
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an effective data set for analysis in group ICA and dual regression, and ROI-to-ROI analysis 

in CONN toolbox and PLS statistics.  

Dual regression and corresponding GLM analysis showed the RRMS subject group in 

our study had higher activation compared to HC in the precuneus cortex, calcarine cortex, 

and the lingual gyrus of the primary visual network. The increase in visual network 

activation was one of the earliest results from fMRI, where studies of MS patients with a 

particular condition called optic neuritis showed similar increased activation in the calcarine 

sulcus56. In general, greater activation in a brain region may superficially be a favorable trait 

for neurological function, however a growing body of research suggests that these increases 

may be an unsustainable short-term compensatory mechanism to address structural axonal 

damage, leading to detrimental long-term effects on brain function35. More severe tissue 

damage is typical for later stage SPMS subjects74, and is also reflected in the systemically 

decreasing brain scores derived from PLS. 

The second finding from dual regression was in the sensorimotor network, where 

RRMS subjects showed increased activation in the pre- and post-central gyri and posterior 

cingulate gyrus compared to HC. This results corroborates a previous finding by Faivre et 

al.119, whose group demonstrated sensorimotor network activation increases in RRMS at 3 

T. Furthermore, task-based fMRI experiments have shown increased postcentral gyrus 

activation during passive hand movement120 and repetitive thumb flexion121. The ground 

truth may be more nuanced, as other studies have found decreased left-right pre-central gyri 

connectivity in RRMS6872, highlighting that the sensorimotor network as a whole may be 

rearranging. Typically, the precentral gyrus is associated with voluntary movement, and the 

postcentral gyrus with proprioception. In the bigger picture, we may be seeing short term 
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compensatory BOLD signal increases associated with proprioceptive function in RRMS 

patients as a manifestation of local network adaptations. Later stage MS may render these 

mechanisms insufficient, leading to proprioceptive and motor dysfunction characteristic of 

progressive MS.  

Regional connectivity analysis revealed several alterations in DMN connectivity. The 

DMN is functionally involved in self-awareness, reasoning and episodic memory32, and 

includes the thalamus, PCC, medial prefrontal cortex, and angular gyri. Disruptions in DMN 

connectivity are a known phenomena in MS64,65 and other neurological conditions32. 

Comparison of RRMS with HC revealed both increases and decreases in DMN connections. 

Namely, lower FC was observed in thalamic-PCC and thalamic-OCC connections, which 

notably correlates to thalamic atrophy, a well known correlate of MS disease 

progression122,123. Furthermore, our cohorts showed clear decreases in average cortical 

thickness globally in RRMS and SPMS subjects compared to HC. In contrast, stronger FC was 

seen in other connections of the DMN, name the PHG-PCUN, PHG-PCC, and PCC-PCUN. It is 

worthwhile to note the posterior localization of these regions, and most notably the PCC 

which is a central node of the DMN124. Bonavita et al.65 have also reported similar increased 

FC in short range PCC-focused connections of RRMS subjects, accompanied by disrupted 

longer range connections and gray matter atrophy.  

The second notable finding in regional connectivity analysis was a direct correlation 

between thalamic connectivity in the DMN and cognitive processing speed, measured via 

SDMT cognitive testing scores. Several groups have previously identified the relationship 

between thalamic connectivity and cognitive performance in RRMS125,126. However, our 

work was a more general result that correlated all subjects’ SDMT scores with thalamic FC. 
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A statistically significant result was not achieved in separate analysis of groups, which is 

likely a consequence of sample sizes (see section 5.1: Limitations and Future Direction).  

 With PLS analysis, correlation matrices were first computed for each subject based 

on predefined ROI’s of 10 known RSN’s. SVD of resulting correlation matrices generated 

statistically significant LV sets that revealed global increases in RRMS connectivity. The 

effect was largely contributed by connections within and between the DMN and ECN. Each 

individual subject’s expression of the BSR matrix was quantified by the brain score. The brain 

score was a projection of the left singular vector of the group correlation matrix onto each 

individual’s correlation matrix. The ECN is associated with many executive functions 

including working memory, attention, and planning127, and comprises anatomical regions 

including the dorsolateral prefrontal cortex, anterior cingulate cortex, bilateral angular gyri 

and bilateral angular gyri—almost all of which lie adjacent to DMN regions. The role of inter-

network connectivity between default mode network and executive control has been 

touched on by Rocca et al.128 who found decreased DMN-ECN in RRMS compared to controls. 

This difference is possibly explained by methodological differences in RSN network selection 

where the authors used an ICA approach to generate group level networks, as we did in dual 

regression. The ICA approach takes the whole study population into account, meaning that 

an overweighting of MS subjects will necessarily bias RSN’s in that direction, as opposed to 

our predefined ROI’s used in PLS statistics which eliminate the bias but at the cost of losing 

potential population-specific effects that may be present118. 

 Another hypothesis to explain DMN-ECN interactions, given the physical proximity of 

their associated brain regions, may come from the “mixed rewiring effect”, a phenomena first 

observed in schizophrenia patients129. In their 2015 study, Littow et al. observed spatial 
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shifting and mixed functional signal patterns between regions of the very same networks, 

the DMN and ECN. If applicable to our MS cohorts, it may explain our DMN-ECN interactions 

derived from PLS.  

Finally, A positive relationship between brain score and both PASAT-2 and PASAT-3 

scores was observed for healthy control subjects. This finding suggests that reduced 

activation in the DMN and ECN may be correlated with increased scores in PASAT. A more 

detailed examination of specific connections could be undertaken. As discussed in section 

2.2, both increases and decreases between regions of the DMN manifest in MS, and it would 

be informative to understand how they translate to HC’s. No relationships between the brain 

scores of MS patients and any of the cognitive variables were identified. However, 

standardizing the preprocessing pipeline and increasing subject recruitment would help 

establish more confidence in this result, or lack thereof.  

 The combined results of the three analysis methods evaluated in this thesis 

complement one another and help build a more complete picture of the FC changes occurring 

in MS. Broadly, we observed a global increase in resting-state FC of RRMS subjects compared 

to HC from PLS. The result contrasts local connectivity alterations, where we observed 

increased FC in the visual and sensorimotor networks (from dual regression) and both 

increases and decreases in the DMN, as well as correlations with cognitive processing speed 

(revealed by regional connectivity analysis). Degradation of thalamic connectivity with 

progression of disease from RRMS to SPMS is consistent with existing neuroimaging studies 

that have identified the thalamus as an early site of neurodegeneration and demyelination 

in MS130. Network topology in MS brain may exhibit adaptive changes in response to 

structural damage due to lesions, inflammation and axonal loss.  
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5.1 Limitations and Future Directions 

 There are a few limitations of the current study. The total sample size, 40 subjects 

divided into 15 HC, 14 RR, and 11 SP groups, is reasonably small. Our ongoing study is 

seeking to recruit additional subjects, and this may be beneficial to remove bias in group ICA 

network calculation. Also, the GICA-derived networks in the current study were derived 

from a subject pool comprising roughly 2/3 MS patients. This means the GICA components 

are partially biased towards an MS phenotype. Deriving unbiased GICA networks in the case 

of neurological disease imaging studies is an unsolved problem. The group resting state 

networks we derived are representations of the global MS and HC populations and, 

importantly, appropriately model noise that is typical of our 7 T rsfMRI. An alternative 

approach could be to use either pre-existing template maps from an atlas or to compute GICA 

maps from a completely independent rs-fMRI dataset which includes MS patients and 

matched healthy controls.  

 Another possible future optimization in the preprocessing pipeline could be to use 

automated methods for ICA denoising. Algorithms such as FSL’s FMRIB’s ICA-based 

Xnoiseifier (FIX)131 can automatically classify noise after training. The Automatic Removal of 

Motion Artifacts (AROMA) tool132 (which does not require training) has also been designed 

specifically for advanced motion artifact detection of ICA components.   

 In our PLS study, we believe a possible limitation was the available sample size. 

Motion artifacts and physiological signal, if not properly accounted-for, can cause spurious 

correlations in group PLS analysis. These effects could potentially be minimized in a larger 
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cohort study. PLS brain scores derived from rs-fMRI data did not show an association with 

neuropsychological testing. This may reflect our chosen PLS data processing strategy or a 

fundamental absence of correspondence between scores relating global brain activity to 

certain neuropsychological testing data. 

Several possible future extensions of the current statistical neuroimaging analysis of 

MS brain connectivity exist. First, diffusion Tensor Imaging (DTI) data, which was acquired 

independently for each subject in our study with 3 T MRI, could be used to derive structural 

connectivity (SC) matrices based on number of tractography streamlines. Like FC matrices, 

structural connectivity (SC) matrices can decomposed using PLS regression. FC and SC can 

also be integrated to study the structure-function relationships133. 

A 24-month follow-up scan and cognitive testing was also carried out for each subject 

in our study. Future integration of follow-up scan data could allow analysis of longitudinal 

FC changes specific to RRMS and SPMS. 
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6. Conclusion  

The present study used advanced 7 T fMRI methods to identify alterations in resting-

state FC of RRMS and SPMS compared to controls.  Both within and between network FC 

were evaluated in key brain networks. Dual regression analysis revealed increased 

activation in the visual and sensorimotor networks of RRMS subjects compared to healthy 

controls. This feature may be associated with local adaptive network alterations in RRMS.  

Regional connectivity analysis using predefined ROI’s revealed increased FC in short-

range posterior cortical connections of RRMS patients compared to controls. In contrast, 

longer-range thalamic connections were weakened. Furthermore, DMN thalamic 

connectivity universally decreased with reductions in cognitive processing speed measured 

by SDMT.  

PLS brain scores identified an increase in whole-brain connectivity for RR compared 

to SP and HC subjects. Higher brain scores in RR subjects are indicative of network-specific 

increases in FC which could represent a compensatory response to neurodegeneration in 

MS. Cognitive scores generally showed little association with whole-brain rs-fMRI FC 

changes. Lastly, a plurality of affected connections resided in the DMN and ECN of subjects, 

suggesting possible RSN interactions and further investigation into potential mechanisms 

such as mixed rewiring effects.  

 This thesis highlights a systematic set of measures that can be used to map 7 T rsFMRI 

activation changes in MS. In particular, we see that RRMS subjects undergo FC adaptations 

in multiple RSN’s, and at multiple spatial scales. The results advance and supplement a with 
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a growing body of literature that combines structural imaging measures of tissue with 

measures of local and overall brain activation.  
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Appendix  

Table A.1: Subject Demographic Data 

Cohort  Age (Years) Education (Years)  Sex 

Healthy Controls Mean 43.56 16.13 Male 6 

S.E. 4.94 0.62 Female 9 

   
Total 15 

Relapsing 

Remitting MS 

Mean 43.45 15.00 Male 5 

S.E. 5.22 0.51 Female 9 

   
Total 14 

Secondary 

Progressive MS 

Mean 49.80 13.82 Male 3 

S.E. 1.53 0.48 Female 8 

   Total 11 

 

Note: Age and education measured at time of scan. S.E. = standard error.  
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Table A.2: Disease Duration and Expanded Disability Status Scale Scores of 

Multiple Sclerosis Cohorts 

Cohort  
Disease Duration 

(Months) 
EDSS 

Relapsing Remitting MS Mean 133.62 1.90 

 S.E. 111.18 0.33 

    

Secondary Progressive MS Mean 221.64 4.60 

 
S.E. 

 

28.35 

 

0.51 

 

 

Note: Disease duration and EDSS measured at time of scan. S.E. = standard error
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Table A.3: Neuropsychological Test Results 

Cohort  LTT (Mean Correct) SDMT WAIS-III MFIS BDI-II TOL-2 PASAT-2 PASAT-3 

  (In Phase) (Out of Phase) (Z-Score) (Percentile) (Raw 

Score /84) 

(Raw Score 

/40) 

(Scaled 

Average /100) 

(Z-Score) (Z-Score) 

Healthy Controls Mean 77.133 37.833 0.415 82.200 22.533 5.933 96.743 0.082 0.006 

S.E. 4.929 2.607 0.200 4.173 3.241 1.248 1.626 0.184 0.230 

           

Relapsing 

Remitting MS 

Mean 62.929 31.643 -0.228 60.786 33.000 9.857 100.000 -0.228 -0.341 

S.E. 6.422 3.628 0.249 7.892 5.297 2.507 1.898 0.264 0.276 

           

Secondary 

Progressive MS 

Mean 49.227 23.455 -0.777 36.545 46.273 12.182 92.883 -1.402 -1.121 

S.E. 5.871 2.748 0.351 9.976 2.770 1.892 2.906 0.575 0.438 

 

Note: All scores were measured at the time of the scan. S.E = standard error. LTT = Leonard Tapping Test76. SDMT = Symbol Digit Modalities Test134. 

WAIS-III = Wechsler Adult Intelligence Scale Test, Edition III78. MFIS = Modified Fatigue Impact Scale80. BDI-II = Beck Depression Inventory 

Edition II79. TOL-2 = Tower of London 2nd Edition81. PASAT = Paced Auditory Serial Addition Test82.  


