
Active Learning for Attributed Graphs

Florence Robert-Regol

Department of Electrical & Computer Engineering, McGill University, Montréal

July 2020

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Master of Engineering

c©Florence Robert-Regol, 2020

ACKNOWLEDGEMENTS

I would like to thank everyone who have supported me for the duration of my

Master’s degree. In particular, I would like to express my gratitude toward my su-

pervisor Professor Mark Coates. As his student, I was given multiple opportunities

to learn and develop valuable research skills. I am also grateful for the insight-

ful feedback and guidance he provided me throughout my studies. His supervision

contributed greatly in making my experience as a graduate student enjoyable and

rewarding, and motivated me to pursue in academia. I thank my colleague Soumya-

sundar Pal (PhD candidate), for his contribution to this work and his useful input,

and everyone from the computer networks research lab of McGill for fostering a sup-

portive and stimulating environment. I also appreciate the support and guidance

provided by the department of Electrical and Computer Engineering of McGill Uni-

versity. Lastly I would like to thank my family for all their help and encouragements.

ii

ABSTRACT

Node classification in attributed graphs is an important task in multiple practical

settings, but it can often be difficult or expensive to obtain labels. Active learning

is an approach that aims to improve performance for a limited budget of labels

by targeting informative nodes that will form the labelled set. As such, adopting

active learning for node classification in attributed graphs seems to be a promising

avenue, and is the topic of this thesis. The best existing methods are based on graph

neural networks, but they often perform poorly unless a sizeable validation set of

labelled nodes is available in order to choose good hyperparameters. In this work,

the limitations of the the graph neural network methods are studied and a novel

graph-based active learning algorithm is proposed. The second contribution of this

thesis is to introduce a modified problem setting that takes into account the timeline

of the active learning process. This new formulation leads to a solution that reduces

the delay experienced by a labeller interacting with the system. Experiments on node

classification benchmark datasets show that the proposed models can outperform

state-of-the-art models.

iii

ABRÉGÉ

La classification de nœuds attribués est une tâche importante qui s’inscrit dans

multiples applications pratiques. Néanmoins, à l’instar de la majorité des méthodes

d’apprentissage, l’utilisation de ces algorithmes nécessite la collecte d’une quantité

importante d’étiquettes de données. Ce processus est souvent de longue durée et fas-

tidieux. Afin the résoudre cette problématique, l’apprentissage actif est un domaine

de recherche qui tente de limiter le nombre d’étiquettes à collecter tout en maintenant

la performance de l’algorithme en sélectionnant les plus informatives. Adopter une

approche d’apprentissage actif s’avère alors une avenue prometteuse pour la classifi-

cation semi-supervisée des nœuds de réseaux attribués. Pour cette raison, cette ap-

proche sera le sujet de ce mémoire. Les méthodes de pointe existantes sont basées sur

des réseaux de neurones pour données en réseaux, mais leur performance est souvent

grandement dépendante des choix des hyperparamètres. Pour utiliser les techniques

de sélection d’hyperparamètres, un ensemble important de nœuds étiquetés doit être

disponible. Dans ce mémoire, les limites de ces méthodes sont étudiées et un nou-

vel algorithme d’apprentissage actif pour des données en réseaux est introduit. La

deuxième contribution de ce mémoire est d’apporter une modification au problème

qui prend mieux en compte la chronologie du processus d’apprentissage actif. Cette

nouvelle formulation conduit à une solution qui réduit le délai subi par un oracle in-

teragissant avec le système. Les résultats de tests standard montrent que les modèles

proposés surpassent les modèles de pointe.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

ABRÉGÉ . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 Introduction . 1

1.1 Thesis Organization and Contributions 5

2 Background Material . 8

2.1 Learning on Graphs . 8
2.1.1 Graph Theory . 8
2.1.2 Graph Learning Algorithms 9

2.2 Active Learning . 13
2.2.1 Active Learning: A Problem Formulation 13
2.2.2 Active Learning Strategies 14

2.3 Summary . 17

3 Literature Review . 18

3.1 Non-Attributed Graph Models . 18
3.2 Active Learning for Non-Attributed Graphs 20
3.3 Active Learning for Attributed Graphs 28
3.4 Summary . 32

4 Graph Expected Error Minimization (GEEM) 33

4.1 Problem Setting . 33
4.2 Methodology : GEEM . 34

v

4.3 Methodology : Combined Method 38
4.4 Experiments . 41

4.4.1 Experiment Settings . 41
4.4.2 Datasets . 43
4.4.3 Baselines and Proposed Algorithms 43
4.4.4 Experimental Details . 44
4.4.5 Results . 45

4.5 Discussion . 51
4.6 Summary . 52

5 Preemptive GEEM . 54

5.1 A Modified Problem Setting . 54
5.1.1 Motivation . 54
5.1.2 Formulation . 55

5.2 Preemptive Query (PreGEEM) 57
5.3 Experiment and Results . 58
5.4 Discussion . 59
5.5 Bounds on the PreGEEM Risk Error 61

5.5.1 Preliminaries . 63
5.5.2 Bound on Risk Error: Binary Classification 65
5.5.3 Bound on Risk Error: Multiclass Classification 68
5.5.4 Additional Lemmas . 73
5.5.5 Discussion of the Bounds 74

5.6 Summary . 75

6 Conclusion . 76

REFERENCES . 79

vi

LIST OF TABLES
Table page

4–1 Statistics of evaluation datasets. 43

4–2 Experiment 1: Average accuracy at different budgets. Asterisks
indicate that a Wilcoxon ranking test showed a significant difference
(at the 5% significance level) between the marked method and the
best performing baseline. 49

5–1 Experiment 1: Average accuracy at different budgets, comparing
GEEM to PreGEEM. Asterisks indicate that a Wilcoxon ranking
test showed a significant difference (at the 5% significance level)
between GEEM and PreGEEM. 59

vii

LIST OF FIGURES
Figure page

2–1 Active learning in 1-dimensional binary classification. 13

4–1 Experiment 1. Each point on a curve shows the mean classification
accuracy achieved across 20 random partitions after the correspond-
ing algorithm has selected nodes to form an augmented labelled
set of size equal to the indicated number of nodes. The shaded
regions indicate 5/95 confidence intervals on the means derived
using bootstrap. 47

4–2 Experiment 1 with the label-propagation baseline TSA. The label
propagation method does not transpose well to other experimental
settings. 48

4–3 Experiment 2 and 3. Performance comparison between the label prop-
agation algorithms and the proposed combined model-averaging
expected error minimization method for both the transductive and
inductive case. 50

5–1 A comparison of the timelines of the standard single-query active
learning process and the proposed preemptive process. 56

5–2 Experiment 1 for a GEEM vs PreGEEM comparison. Each point on
a curve shows the mean classification accuracy achieved across 20
random partitions after the corresponding algorithm has selected
nodes to form an augmented labelled set of size equal to the
indicated number of nodes. The shaded regions indicate 5/95
confidence intervals on the means derived using bootstrap. 58

5–3 Risk comparison for GEEM vs PreGEEM. This diagram follows the
risk computations for 25 nodes in the Cora dataset for one trial.
The black star indicates which node was selected (following the
algorithm, it is the one with the lowest expected risk). 60

viii

CHAPTER 1
Introduction

Traditionally, most learning algorithms have focused on data that belongs to the

Euclidean space. While this assumption is not restrictive for most purposes, some

applications require more complex data models. One alternative representation is a

graph, which can concisely capture the relational structure contained in a network.

Graph-structured information cannot be easily transposed to the Euclidean space,

but appears in multiple real-world domains such as proteins interactions, telecommu-

nication networks, physical and social interactions, language, and the Internet. As

such, it is important to have learning algorithms that are suited to perform inference

on this particular type of data.

The development and analysis of these tools are the main goals of the graph

learning research community. One of the important tasks within this branch of

research is node classification. In this setting, the goal is to classify data points

(called nodes) lying on a graph. As an example, a dataset could consist of blog sites

that cross reference each other with hyperlinks. Each blog is associated with one of

a predefined list of topics, and the node classification algorithm has to learn to infer

the topic of a blog site based on its content and the connections between all of the

sites. The links give additional information and the graph encodes the relationships

between the blogs. Node classification problems arise in various fields and the task

has attracted significant interest from the machine learning community. As a result,

1

multiple algorithms have been proposed [1–7], and they continue to be analyzed and

improved upon.

Research into node classification has primarily focused on the semi-supervised

setting. In this setting, the algorithm has access to a very limited amount of labelled

data. For node classification, this means that labels are provided for only a few nodes.

As a result, the proposed solutions for node classification have to heavily rely on the

relational information coming from the graph topology. This type of classification

is motivated by scenarios where labelled data is tedious to collect. Returning to the

previous example of classification of blogs, identifying many websites and collecting

their content to form a large dataset can be efficiently performed through automation.

However, when it comes to labelling the blogs, assigning each of them to one of the

predefined fix set of topics is less straightforward, and generally requires human

interaction to achieve extremely high accuracy. If labels can be provided for at least

a few examples, then a semi-supervised learning algorithm would be well-suited for

the task of classifying the remaining sites.

From the scenario previously described, it is clear that this type of situation can

arise in many applications (well beyond the graph related scenarios). Developing

solutions that can generalize well without relying on a huge set of labelled data is

essential and semi-supervised learning is a good first step toward this goal. Active

learning is an approach that strives to optimize the benefits of the labelling process.

In active learning, the algorithm is given the additional ability of choosing which

points will form the labelled set. Given that we have the opportunity to decide

which points to query, we should try to select the most informative points that lead

2

to the best performance. The active learning process essentially involves alternating

between acquiring labels and deciding which label to query next based on what has

been learned. Similar to semi-supervised learning, the interest in active learning is

motivated by settings in which obtaining labels is particularly challenging or expen-

sive. A compelling application is the medical imaging domain, where the generation

of diagnostical labels from medical images or other data requires considerable valu-

able time from domain experts. As a result, many researchers have explored active

learning approaches to medical imaging classification [8–10].

Since most of the node classification research is already directed toward the

semi-supervised case, applying active learning seems to be a natural step and is the

topic of this thesis. Although there is a rich literature that already tackles active

learning for node classification, open problems in this area still exist, especially in the

attributed graph case. In an attributed graph, attributes or features are associated

with the nodes (and possibly edges) and this information can be exploited by a

learning algorithm.

Much of the early research in the field of active learning on graphs focused on

graphs with no attributes [11–16]. The common denominator of this line of work

is the adoption of probabilistic models that describe the label distribution of the

whole graph conditioned on the few available labels. The probabilistic model then

forms the foundation for an active learning strategy. Principled methods can be

constructed based on a conditional or marginal posterior. The derived techniques

are often computationally expensive (and in some cases effectively intractable), so

3

much effort has been spent on developing approximations that make the computa-

tion of quantities needed by the chosen strategy less burdensome. A consequence

of the usage of the probabilistic models is that the solutions are intimately tied to

the specific graph topology that is analyzed. This can be seen as a positive, since

the solution is tailored to each instance, optimized for the graph under study, but it

also limits the settings that can be considered. In particular, it means that the algo-

rithms are only effective for the transductive case, where the whole graph is known

during the training period. In the transductive case, the proposed algorithms achieve

impressive performance. However, as will be highlighted in this thesis, performance

dramatically deteriorates when the algorithm is applied in an inductive setting, i.e.,

when test nodes are added to the graph after training. In addition to this failing, it is

challenging to modify most of the algorithms to integrate node attribute information.

More recent work has focused on the attributed graph case [6, 17]. In the algo-

rithms developed for this task, there is interaction between propagation of informa-

tion across the graph and inference algorithms that learn based on the node features.

Thus far, the query selection rules that have been employed are more heuristic in

nature and do not rely on probabilistic models [6, 17]. Graph neural networks have

recently been established as the state-of-the-art models for node classification, and

these emerged also as the model of choice for active learning strategies for attributed

graphs. However, the integration of successful deep learning model into an active

learning framework should be done with care. It is well known that most neural

network algorithms rely on a sizeable validation set of labelled data to properly tune

4

hyperparameters. If this tuning is not performed, they are often incapable of achiev-

ing performance that is competitive with simpler models. In this thesis, we argue

that the current state-of-the-art methods based on neural networks have overlooked

this and thus operate with the unreasonable and impractical assumption that tuned

hyperparameters are available. The implication and impact of this assumption is

analyzed in this thesis.

As such, currently there is no graph-based active learning algorithm that can

integrate node features, operate with a reasonably limited amount of labelled data,

and is applicable to the transductive as well as the inductive case. One of the main

contributions of this thesis is to propose a solution based on the Expected Error

Minimization framework that meets all of these requirements, while outperforming

state-of-the-art methods that have emerged from both branches of graph-based ac-

tive learning. In addition, the timeline of the traditional active learning formulation

is closely examined and based on this, we introduce a modified version of the prob-

lem that takes into account the intrinsic delay of the labelling process. This novel

formulation leads to a modified version of the initial proposed algorithm, designed

to be more time efficient and less frustrating for a human labeller interacting with

an active learning system.

1.1 Thesis Organization and Contributions

The organization and contributions of the thesis are summarized below. The

material presented in Chapters 4 and 5 of the thesis has been submitted as an 8-page

conference paper and is currently under review.

5

• Chapter 2 - Background

Foundational material associated with the two topics of this thesis (active learn-

ing and learning on graphs) is presented in the background chapter. I first

present a short summary of basic graph notions and a high level overview of

node classification graph learning algorithms. The second part of the chapter

is devoted to active learning. First, a formal definition of the active learning

problem formulation is given, and this is followed by a summary of the different

types of approaches taken in the literature.

• Chapter 3 - Literature review

In this chapter, I review works that have addressed active learning for semi-

supervised node classification. The literature review is divided into two parts:

one for publications on non-attributed graphs and one for publications on at-

tributed graphs.

• Chapter 4 - Graph Expected Error Minimization (GEEM)

This chapter presents a novel graph-based active learning algorithm for the

task of node classification in attributed graphs. The algorithm uses graph cog-

nizant logistic regression for the prediction phase and maximizes the expected

error reduction in the query phase. Experiments conducted on four public

benchmark datasets demonstrate a significant improvement over state-of-the-

art approaches. The development of this algorithm and the implementation of

the experiments were my contribution, under the supervision of Prof. Mark

Coates.

6

• Chapter 5 - Preemptive GEEM

This chapter contains the second contribution of this thesis. First I provide

motivation for a revised formulation of active learning problem and then I in-

troduce and discuss this formulation. Subsequently, a preemptive querying

algorithm that calculates a new query during the labelling process is derived

from the previously introduced GEEM algorithm. Experiments conducted on

the same four public benchmark datasets demonstrate that the approximations

associated with this method have only a minor impact on the performance.

Theoretical results that bound the one-step error arising from the approxi-

mations are also provided. Again, the development of the algorithm and the

implementation of the experiments were my contribution, under the supervi-

sion of Prof. Mark Coates. With the assistance of PhD student Soumyasundar

Pal, I formulated the theoretical bounds and derived the proofs for the bi-

nary classification case,. The proof for the multiclass case was developed in

collaboration with Prof. Mark Coates.

• Chapter 6 - Conclusion

This chapter summarizes the main contributions of the thesis and discuss the

outcomes and observed results.

7

CHAPTER 2
Background Material

This chapter provides the key background material for the two main topics of

this thesis: prediction on graphs and active learning. In the graph section, the

notations and basic concepts of graph theory are first laid out, then a general deep

learning model for graph data is presented. The active learning section introduces the

general problem formulation of pool-based active learning and gives an overview of

the approaches taken by presenting different categories of active learning strategies.

2.1 Learning on Graphs

2.1.1 Graph Theory

A graph is a mathematical representation of a network. In a graph G, entities

and their relationships are modeled as sets of nodes and edges: G = (V , E). Each

node vi ∈ V , 1 ≤ i ≤ N represents one entity, and the edge ei,j, represented as an

ordered pair (vi, vj), appears in the set of edges if there is a link from node vi to

node vj. In an undirected graph, two nodes are either connected or not; there is no

direction to the relationship. This is encoded by always including the two directions

in the set of edges (ei,j ∈ E) ⇐⇒ (ej,i ∈ E). In a directed graph, this constraint is

not there. The edge ei,j is endowed with a value ai,j. In an unweighted graph, we

always have ai,j = 1 for edges that exist. For a weighted graph, ai,j can be a real

value or weight wi,j ∈ R. In this work, all graphs are considered to be unweighted

and undirected unless specified otherwise.

8

A useful alternative to represent a graph is through its adjacency matrix AN×N .

In this square matrix, every possible edge that can exist is represented by an entry

in the matrix. This entry is 0 if the link is not present in the graph; if the edge does

exist, the entry is a non-zero value. The position in the matrix encodes which nodes

are linked. The (i, j)-th entry of the adjacency matrix is thus:

Ai,j =


ai,j > 0 if ei,j ∈ E ,

0 else .

(2.1)

For an unweighted graph ai,j = 1 if there is an edge from i to j.

The nodes that are connected to a given node vi form this node’s neighborhood

(in the simplified case of an undirected graph). In set notation, the neighbors are

specified as N ∗(vi) = {vj ∈ V ; ei,j ∈ E}. In the adjacency matrix, the neighborhood

is encoded as the position(s) of the non-zero entry(ies) in the vector corresponding

to the i-th row of the adjacency matrix Ai,:. For an undirected graph, the degree of

a node refers to the number of neighbors the node has, i.e., d(v) = |N ∗(v)|.

2.1.2 Graph Learning Algorithms

Learning Tasks

We use the term graph learning task to refer to any inference performed on

graph-structured data; a datum can either be a node in a graph or the graph itself.

The particularity of graph-based algorithms that sets them apart from other learning

algorithms is their ability to process information coming from features and the graph

topology jointly. As each node can have a varying number of relationships, and there

9

is usually no natural ordering of these relationships, models that require a fixed size

and ordered input cannot readily be employed.

Graph Neural Networks

A large family of graph neural network (GNN) models adopts the same high level

structure to address graph learning tasks. The idea is to successively model “deeper”

representations or embeddings of a node with a standard deep learning architecture

and incorporate the influence of the graph structure at each layer of the neural

network. In the GNNs most relevant to this thesis, the `-th layer representation of a

node v is a real-valued vector of dimension d(`): h
(`)
v ∈ Rd(`) . This is obtained from a

process that takes as input the representations at the previous layer {h(`−1)
u ;u ∈ V }

and the topology to propagate information between nodes.

There are other architectures in the literature, e.g., those proposed in [18], that

can include additional information in the computation of the node embeddings. For

example, an embedding representing a global state of the graph can also contribute to

the representation of each node [18]. The earliest GNN models, proposed in [19,20],

also differ from the architectures we present here. They combine recurrent neural

networks with message passing across the graph and can accommodate more general

combinations of node and graph features. The very high computational burden of

these early algorithms restricts their application to small graphs.

Following the framework of [21], the layered computation in most GNNs can be

divided into two main steps. The first is the aggregation of the information coming

from the neighbors into a summary vector a
(`)
v . The aggregation is performed using

a flexible AGGREGATE function:

10

a(`)
v = AGGREGATE

({
h(`−1)
u : u ∈ N ∗(v)

})
. (2.2)

We note that this function operates on an unordered set of vectors. The second step

is the combination of this neighborhood representation a
(`)
v with the previous node

representation h
(`−1)
v . This is performed using a generic COMBINE function:

h(`)
v = COMBINE(`)

(
h(`−1)
v , a(`)

v

)
. (2.3)

After these two operations have been defined, h
(`)
v can be obtained from the output

of the previous layer `−1 as:

h(`)
v = COMBINE(`)

(
h(`−1)
v , AGGREGATE

({
h(`−1)
u : u ∈ N (v)

}))
. (2.4)

The AGGREGATE function takes as input an unordered set of vectors, and

the cardinality of the set varies according to the size of a node’s neighborhood. Since

there is no intrinsic way to order neighbors, the function should be permutation

invariant. Some possible choices for this function include the weighted sum [2,4], or

sampling followed by concatenation [3]. The COMBINE function usually includes

learnable weights and involves a non-linear function g().

A popular GNN is the Graph Convolutional Network (GCN) [2]. This model

does not make any distinction between information coming from the neighbors and

the information coming from the node itself. It uses a weighted mean operator

to combine the vectors in the neighbourhood, then multiplies the result with the

learnable weights of its `-th layer: W(`) ∈ Rd(`)×d(`−1). The weights used in the

weighted mean operation control the contribution of each neighbor to the output.

11

Intuitively, these should depend on the graph topology. In a GCN, the weights

are derived via a preprocessed adjacency matrix that is constructed by first adding

an identity matrix IN×N to the adjacency matrix to ensure that all nodes have a

self-contribution. Then each node is normalized by its obtained degree. The pre-

processed adjacency matrix is thus Â , D̃−1/2(A + I)D̃−1/2 . Here D̃ is a diagonal

matrix that has di + 1, the degree of node i plus one, as its i-th diagonal entry. The

GCN computation at the `-th layer of the architecture can thus be written as:

a(`)
v = WEIGHTEDMEAN

(
h(`−1)
u : u ∈ {v ∪N ∗(v)}

)
, (2.5)

h(`)
v = g

(
W(`)a(`)

v

)
. (2.6)

These two operations can be combined into a single expression:

h(`)
v = g

(
W(`)

∑
u∈{{v}∪N ∗(v)}

âv,uh
(`−1)
u

)
. (2.7)

The operation that computes the `-th representation of every node at the same time

can be written compactly by concatenating the node embeddings in a matrix H(`)

(where H
(`)
i,: = h

>(`)
vi). The computation at each layer is then:

H(`) = g
(
ÂH(`−1)W(`)>

)
. (2.8)

In this thesis, we focus on node-level prediction tasks, meaning that we are in-

terested in predicting quantities associated with individual nodes in the graph. How-

ever the applications of GNNs go beyond localized inference. They can be applied for

graph classification, for example, treating the whole graph as a data point [3,21–23].

12

In such a case, the same architecture can be employed with an additional layer that

aggregates the information coming from all the nodes to form one global prediction.

2.2 Active Learning

In active learning, an algorithm has the additional ability of choosing which

data is labelled. In this context, labeling a point means that an oracle provides its

associated output (this can apply for both classification and regression). An illustra-

tive example of active learning given in [24] is the 1-dimensional binary classification

problem. Assuming that the data is separable, which points should be selected to

find the threshold the quickest?

x

which point to label next?

Figure 2–1: Active learning in 1-dimensional binary classification.

In this setting, it is obvious that randomly labeling points is not the sensible

thing to do. The optimal active learning strategy is to follow a binary search algo-

rithm to select the points. As the problems grow in complexity and dimensions, the

solutions become less trivial. Development of suitable algorithms is the main focus

of active learning research.

2.2.1 Active Learning: A Problem Formulation

The data is partitioned into two sets: a small initial labelled set L from which

we have access to the labels yL and a set U consisting of unlabelled points from which

we can query the label. The algorithm is restricted to a budget of b nodes that it

can query from U to augment L. The goal is to define a method that can select

the best nodes Q to add to L, in order to optimize the performance on a test set T

13

throughout the query process. How this test set is formed depends on the nature of

the problem. A pool-based active learning algorithm alternates between two steps:

1. Prediction Step: Form a prediction on yTt based on the current yLt and

other information D, yTt = fi(D,yLt).

2. Query Step: Until the budget has been exhausted, select nodes Qt ⊂ Ut to

add to the labelled set. We then update the sets: Ut+1 = Ut\Qt, Lt+1 = Lt∪Qt.

The index t ∈ {0, . . . , b} indicates the current iteration of the active learning process.

The test set is also indexed in this problem formulation to cover the case where it

coincides with the unlabelled set, but it can also be a fixed set of nodes distinct from

U . It is clear that the main step that is unique to active learning is the query step.

Most of the contributions in the active learning literature focus on proposing query

strategies; these are then coupled with appropriate inference algorithms.

2.2.2 Active Learning Strategies

In [25], Sen et al. define six broad categories for the various query strategies

that can be employed: (i) uncertainty sampling, (ii) expected model change, (iii)

expected error minimization, (iv) variance reduction, (v) query-by-committee, and

(vi) density-weighted sampling.

I now provide a brief summary of the categories. Uncertainty sampling aims

to query the point about which the predictive algorithm is the most unsure. The

intuition behind this strategy is that gaining knowledge about high uncertainty in-

stances will help the model the most and will lead to better performance. As this is

a heuristic method, there is no principled way to define the uncertainty measure and

multiple metrics have been proposed. A probabilistic approach can be adopted; this

14

requires us to make an approximation of the prediction’s distribution. For classifica-

tion, some probabilistic quantities that have been proposed are based on 0/1 error,

probability margins and entropy. Non-probabilistic methods can also be employed;

these are often based on majority-voting or the distance from decision boundaries.

In regression, the variance can be used as an uncertainty measure. This category of

methods has the drawback of being heuristic. Many of the algorithms can be misled

by outliers, but they often perform well in practice and they are computationally

efficient.

Similar to the previous category, Expected Error Change (EEC) also relies on

intuition and its effectiveness is demonstrated through empirical results. In this

framework, the most informative query is considered to be the one that will have

the biggest impact on the predictive model. There are two components to be con-

sidered when forming a metric to predict the impact. First, as the model change

depends on what happens after a point is added, we need to form an estimate of

this unknown by taking the expectation over the outcomes that can arise for each

candidate point. Second, we need to define how to measure the impact of adding a

point on a model. Although many metrics have been proposed, a convenient choice

is the Euclidean norm of the loss function gradient vector with respect to the can-

didate point. The main motivation for this choice is that most learning algorithms

are gradient-based. The EEC approach is usually more computationally involved

than uncertainty sampling as we need to calculate the expectation and compute the

gradient at each point over the label space. Even with this overhead, it is generally

15

considered to be one of the faster query strategies. It also shares with uncertainty

sampling the predisposition of being sensitive to outliers.

Another category of methods that considers the state of the model after a poten-

tial point has been added is expected error minimization (EEM), also called expected

error reduction (EER). It is a more principled approach as it can directly target the

quantity of interest — the generalization error. To do so, the unknown points are

treated as a proxy for unseen data and the error on this set of points is approximated

by taking the expectation. For each candidate point, we have to obtain a new model,

then compute the expected error of this new model over the remaining unlabelled

set. This quantity is referred to as the risk. As a result, every point in the unlabelled

set is involved in each risk computation. For this reason, it is considered to be the

most computationally intensive active learning strategy.

Variance reduction has been introduced to address this limitation. The idea is

that the targeted error can be reduced indirectly by minimizing the output variance.

This stems from the well-known decomposition of the generalization error into three

terms: the noise, the bias and the variance. Since a model cannot reduce its own

bias, a metric that is based on optimizing the variance is sufficient. This formulation

leads to variance-based metrics that can be manipulated to yield solutions of reduced

complexity compared to EEM.

Query-by-committee (QBC) is another method that has a solid theoretical foun-

dation. Rather than focusing on the error of the model, the aim is to restrict the

number of candidate models once the point is added. Given a labelled set, there is a

collection of hypotheses that are consistent with the dataset. The term ‘consistent’

16

means that they do not conflict with any of the points contained in this set, i.e., for

classification all of the consistent hypotheses have 100% accuracy. The space spanned

by the parameters of these hypotheses is called the version space, and reducing this

space helps the training process by making the search for a solution easier. This is the

motivation of QBC. A set of hypotheses (or committee members) is maintained and

we select the point that maximizes the level of disagreement amongst the members.

This disagreement metric can take the form of a distribution distance measure such

as the Kullback-Leibler Divergence (KL), Jensen-Shannon, or another entropy-based

voting method.

Lastly, in Density-weighted sampling, the strategy is to identify and select rep-

resentative points of the dataset. The underlying assumption is that there are some

clusters in the data and knowing some key center points is enough to correctly pre-

dict the others. To perform the selection, a similarity metric between a point and the

rest of the data needs to be defined. Then we simply select the point that maximizes

this metric.

2.3 Summary

Now that foundations of both topics have been presented separately, the follow-

ing chapter will review how active learning has been applied to the problem of node

classification in the existing graph learning literature.

17

CHAPTER 3
Literature Review

This literature review covers pool-based active learning for node classification.

The goal of the node classification task is to predict the label of each node in a

test set based on the provided graph topology and any available node features. The

literature review provides more detailed description of the algorithms that are more

closely related to the methodology proposed in this thesis. Early research on this

topic primarily focused on non-attributed graphs [11–16]. The inherent structure

in graph data alone allows us to postulate powerful models that do not rely on

node features. As a result, active learning for models that do not process or require

node attributes was explored. In Section 3.1 we review models for learning on non-

attributed graphs and in Section 3.2 we review active learning algorithms for such

graphs. Section 3.3 presents the active learning algorithms for attributed graphs that

have been proposed in the research literature.

3.1 Non-Attributed Graph Models

The graph models presented in this section build on the intuition that if two

nodes are connected, then they are more likely to share the same label. This intu-

itive and simple assumption can be expressed with a Binary Random Markov Field

(BRMF) (here we only consider the binary case for simplicity, but most algorithms

can be extended to the multi-label case through a one-vs-rest scheme). In a BRMF,

each edge that links nodes of dissimilar labels yi 6= yj makes a negative contribution

18

in the likelihood. Given a strength parameter β and a normalizing constant Z, the

probability of observing labels y on a graph with adjacency matrix A under this

model can be written as :

P(y) =
1

Z
exp

(
−β

2

N∑
i<j

aij (yi − yj)2

)
. (3.1)

From this formulation, we can define a posterior of unknown labels conditioned on the

labelled nodes (and the graph topology implicitly). The issue is that evaluating this

posterior is a combinatorial problem. For tractability, researchers have introduced

relaxations and approximation strategies.

As a side note, it is clear that this model is completely specified by the graph

through the ai,j values that encode the presence of edges. This restricts the appli-

cability of the model to the graph used for training. For this reason, non-attributed

models focus on the transductive setting, where the entire graph is known, both

during training and testing. In the transductive setting, the test set corresponds to

the unlabelled set, hence all nodes are contained in U ∪ L.

In [26], the BMRF is relaxed to a continuous formulation. Moving away from

the discrete domain usually comes with a decrease of complexity, and in this case, it

significantly diminishes from combinatorial to linear. Rather than targeting discrete

labels y ∈ {0, 1}, Zhu et al. define in [26] a real valued function f that is constrained

to take the true values at the labelled nodes f(`) = y`, ` ∈ L. This leads to a

Gaussian Random Field (GRF) model:

P(y) =
1

Z
exp

(
−β

2

N∑
i<j

aij (f(i)− f(j))2

)
. (3.2)

19

The energy function associated with this model is E(f) = 1
2

N∑
i<j

aij (f(i)− f(j))2. It

is easily shown that the function f that minimizes this energy function, subject to

the constraint f(`) = y`, ` ∈ L, is harmonic. That is, it satisfies the property ∆f = 0

on unlabelled points, where ∆ is the combinatorial Laplacian, which can be defined

in matrix form as ∆ = D −A. This harmonic property allows Zhu et al. to pose

the equality:

fV = D−1AfV . (3.3)

In this expression, fV is an explicit vector of the values of f at each node. By

decomposing A, D and f in block matrices for labelled nodes and unlabelled nodes

as follows:

A =

AL,L AL,U

AU ,L AU ,U

 , (3.4)

the solution for the unlabelled nodes fU can be found in closed form:

fU = −∆−1
U ,U∆U ,LfL. (3.5)

All that remains is to translate the real values in fU back to binary labels by thresh-

olding: {ŷi = 0; fi ≤ 0.5 ∧ i ∈ U}.

3.2 Active Learning for Non-Attributed Graphs

GRF-EEM. After proposing the Gaussian random field model for non-attributed

graphs in [26], Zhu et al. published a second article [11], in which they employed the

tractable probabilistic model to tackle the problem of active learning. Under the pro-

posed model, the probability distribution of the real-valued labels of the unlabelled

nodes, conditioned on the observed labels, is a multivariate normal distribution with

20

a mean of fU and a variance that depends on the Laplacian. The conditional dis-

tribution can be approximated as P(yU |yL) ≈ N (fU ,∆
−1
U ,U), and this can be used to

determine the best query using the EEM active learning framework.

As mentioned in Chapter 2, a key quantity that needs to be defined for EEM

active learning is the risk associated with a model. The true Bayes risk for the node

classification task is:

RBayes(f) =
N∑
i=1

∑
y∈{0,1}

1[ŷi 6= y]P(yi = y|yL) (3.6)

Using the multivariate Gaussian approximation of the true conditional distribution,

Zhu et al. derive the following approximate risk R(f):

R(f) =
N∑
i=1

min (f(i), 1− f(i)) . (3.7)

Following the EEM framework, the node to query is the node that leads to the

largest expected reduction of this risk once it is added to the labelled set. The risk

is computed for each candidate node q ∈ U and is denoted by R+q. As we do not

have the label of the candidate node before executing the query, to obtain the risk

we need to: 1) take the expectation with respect to the candidate node label yq, and

2) recompute the model as if the candidate node had ground truth label yq, denoted

as f+(q,yq). The risk is then

R+q = Eyq [R(f+(q,yq))] (3.8)

= P(yq = 0|yL)R
(
f+(q,0)

)
+ P(yq = 1|yL)R

(
f+(q,1)

)
(3.9)

= (1− f(q))R
(
f+(q,0)

)
+ f(q)R

(
f+(q,1)

)
(3.10)

21

Recomputing f for every candidate node q appears at first to be computationally

expensive, but Zhu et al. derive an effective method through the following formula-

tion:

f
+(q,yq)
U = fU + (yq − fq)

(∆−1
U ,U):,q

(∆−1
U ,U)q,q

(3.11)

This allows the development of an algorithm of order O(N2), which is not computa-

tionally prohibitive and can be used in practical settings.

V-optimality and Σ-optimality. As presented in Chapter 2, one strategy

to avoid the complexity of Expected Error Minimization is to target other proxy

quantities. In [15], Ji and Han build on the method proposed in [11] by proposing the

variance reduction criterion, V-optimality. The developed algorithm targets the trace

of the variance of the GRF: Tr
(
∆−1
U ,U
)
. An alternative variance reduction approach

is proposed in [16]. The implicit loss used in V-optimality is the L2 regression loss:

L2 =
∑
u∈U

(yu − f(u))2 . (3.12)

In [16], Ma et al. argue that a survey loss provides a better approximation of the

true 0/1 error. The survey error Lsurvey is the discrepancy in the proportion of nodes

belonging to a class:

Lsurvey =
(
1>yU − 1>fU

)2
. (3.13)

22

Interestingly, the labels are absent from the two loss expressions. The selected node q∗

only depends on the unlabelled set, with the candidate node q removed, U9q , U\{q}:

V-optimality: q∗ = arg min
q∈U

Tr
(
∆−1
U9q ,U9q

)
. (3.14)

Σ-optimality: q∗ = arg min
q∈U

1>∆−1
U9q1. (3.15)

Ma et al. derive the optimal order to follow to add nodes sequentially in [16], and

they also present Σ-optimality as being advantageous on two fronts. First, unlike

alternative query selection methods that need to add the nodes one-by-one because

the computation at each step is dependent on the previous point that has been added,

this formulation allows selection of a batch of nodes. This gives the advantage of

targeting a global solution rather than greedily minimizing the expected error at each

step. In the experiments in [16], the method outperforms the GRF-EEM method

of [11] and other uncertainty sampling and clustering-based baselines. Second, Σ-

optimality also avoids the tedious task of retraining at each added point.

In the remainder of the thesis, we refer to solutions like these, in which selec-

tion is not impacted by the labels of the queried nodes, as non-adaptive methods.

Although there are some advantages, ignoring the labels of the nodes can reduce

the effectiveness of the learning process. Intuitively, such methods appear to ignore

valuable information.

Mincut algorithms. Although BMRF-based methods are predominant in

the active learning literature for non-attributed graphs, other approaches also exist.

Several methods are based on graph theory, and we now summarize the most closely

related approaches.

23

Binary node classification can be framed as a clustering or a minimum cut

problem. A cut is a partitioning of the nodes into two sets, and Φ(y) is defined as

being the sum of the weights of edges that cross the two partitions of a cut:

Φ(y) =
N∑
i<j

aij|yi − yj|. (3.16)

This value is also called the smoothness coefficient. This equation is obviously very

similar to the BMRF; although it is expressed differently, the underlying assumption

is the same. The goal is to choose yU such that Φ(y) is minimized.

In [27], the goal is to sample the initial set offline that will be subsequently

used to infer the labels, which can be seen as querying a batch of nodes only once,

i.e., addressing the case |Q0| = b and L0 = ∅. The label selection method relies

on optimizing the graph cut induced by the selection. Guillory and Bilmes addi-

tionally developed bounds that relate the smoothness coefficient of a graph to the

classification error of the solution [27].

Results from [27] were subsequently leveraged to build an active learning frame-

work suited for the special case of trees [12, 13]. Cesa-Bianchi et al. proposed an

extension to general graphs by using spanning trees but they did not provide theo-

retical guarantees on the optimality of their solution for the more general case [13].

This open problem was addressed in [28], where a submodular function analysis was

used to derive a bound on the quality of the approximation for the case of general

graphs.

Error bound minimization. In [14], Gu et al. propose an alternative ac-

tive learning approach for unattributed graphs, called Local and Global Consistency

24

(LLGC), that exhibits performance that is competitive with the Mincut and GRF

methods. For the proposed LLGC model, Gu et al. derive an upper bound on the

expected error of label prediction on the unlabelled set, and show that this can be

decomposed into the empirical error on the labelled data plus the empirical transduc-

tive Rademacher complexity of LLGC. Since the empirical error is fixed, the strategy

is to minimize the Rademacher complexity. This is similar to the variance reduction

idea.

Two-step Approximation (TSA). In [29], Jun and Nowak take a different

approach to EEM by moving away from the Gaussian random field model. Rather

than relaxing the problem to a continuous formulation, the BRMF model is retained

and its combinatorial complexity is addressed via approximation. Before detailing

the solution, we elaborate upon the complexity of the problem of using BMRF with

EEM. We can restate the BMRF model using the introduced Laplacian matrix:

P(y) =
1

Z
exp

(
−β

2
y>∆y

)
. (3.17)

To compute the posterior marginal, P (yi|yL), of the label of a node i given yL, each

permutation of the marginalized node labels has to be considered. This is where the

combinatorial nature of the problem arises. In developing an approximation, as in

GRF-EEM, the true Bayes risk is used as a starting point. In this case, it leads to a

risk, R (yq = y,yL), defined as a function of the given labels:

R (yq = y,yL) =
1

N

N∑
i=1

(
1− max

y′∈{1,−1}
P (yi = y′|yq = y,yL)

)
. (3.18)

25

So the risk of adding a node R+q = Eyq [R (yq = y,yL))] is:

R+q = P(yq = −1|yL)R (yq = −1,yL) + P(yq = 1|yL)R (yq = 1,yL) . (3.19)

This formulation highlights the importance of developing an effective method to

compute a conditional label probability P (y|yL); the minimization of risk requires

this probability to be evaluated many times.

To address this, Jun and Nowak introduce a Two-Step Approximation (TSA) of

this posterior marginal [29]. First they use the log probability ratio approximation

to approximate the conditional using some function µ():

P (yq = 1|yL) ≈ σ (log µ (yq = 1,yL)− log µ (yq = −1,yL)) . (3.20)

The next step is to find a suitable µ that can act as an upper bound on the joint

log probability, i.e., log(P (yq,yL)) ≤ log(µ(yq,yL)). The two approximations in-

volve using a max operator instead of log-sum-exp and relaxing the resultant integer

maximization problem. The final derived approximation is:

P (yq = 1|yL) ≈ σ
(
−2∆q,LyL + 2∆U9q ,q∆

−1
U9q ,U9q∆U9q ,LyL

)
, (3.21)

where ∆r,s denotes the matrix or vector obtained by taking the r-th row(s) and s-th

column(s) of the laplacian matrix as it was used before. Jun and Nowak also develop a

way to reduce the computational overhead to obtain a complexity of O(N2), which is

of the same order as the other GRF-based methods. In their experiments on real data,

they show that TSA either outperforms or is on-par with the previously introduced

GRF-EEM, V-optimality and Σ-optimality algorithms. Empirical results in [29] also

26

highlight how non-adaptive methods lead to a poorer exploitation/exploration trade-

off than adaptive methods such as TSA.

Gaussian Random Field – Expected Change (GRF-EC). [30] is the

most recent publication in the line of work that uses Gaussian random fields for

active learning in graphs. Berberidis et al. apply the Expected Change strategy on

a slightly modified version of the GRF. The authors point out that the initial GRF

model had a bias toward the zero class as it was using 0/1 labels, y ∈ {0, 1}, while

using a zero-mean Gaussian field. A simple fix is to use different labels, y ∈ {−1, 1}.

As the Expected Change strategy is to select the node that leads to the most

change, the change of a model conditioned on different labelled sets needs to be

quantified. Berberidis et al. propose five different expected change (EC) metrics and

conduct a thorough analysis of the relative advantages and disadvantages of each

EC metric, compared to each other and to the competitive baselines (GRF-EEM,

V-optimality, Σ-optimality, TSA). The metrics are 1) FL, a count of the number of

flipped labels; 2) KLG, the Kullback–Leibler (KL) divergence of the distributions of

the continuous random variables of the unlabelled nodes, modeled by the GRF; 3)

KL, the KL divergence of the discrete random labels of the unlabelled nodes, modeled

as Bernoulli variables; 4) MSD, the mean-square deviation of the GRF models; and

5) TV, the total variation of the GRF models. An uncertainty-based correction that

can be added to TV and MSD is also proposed. These two metrics combined with

this augmentation end up being the most promising candidates, offering advantages

both in terms of computational effectiveness and in performance.

27

Discussion. Common denominators of this branch of research are well-defined

models that can lend themselves to theoretical analysis and more principled ac-

tive learning strategies; namely EEM and VR. Although [30] employs EC, the au-

thors were able to include mathematical connections with uncertainty sampling, V-

optimality, and Σ-optimality. It is notable that committee-based strategies, which

are prevalent throughout the active learning literature, have been largely ignored

in the literature on active learning for unattributed graphs. A possible explanation

is that it is more challenging to derive a diverse committee, because without at-

tributes, all algorithms are based on similar models parameterized by the observed

graph. Forming a committee of coherent hypotheses that disagree with each other

at some unlabelled points can be challenging.

Although the strategies presented in this section offer the advantage of being

principled methods that directly target the quantity we want to optimize, label

propagation-based models cannot take into account node features and consequently

must rely on strong assumptions regarding the relationships between the graph topol-

ogy and the data. Most label propagation methods struggle if the graph is not con-

nected and do not usually translate well to an inductive setting, because the model

and hence the query decisions heavily rely on the knowledge of the complete graph

topology.

3.3 Active Learning for Attributed Graphs

In contrast to the non-attributed graph active learning literature, works that

consider the attributed graph setting are more prone to employ mixtures of heuristics

and are not tied to one predictive model.

28

Active Learning For Networked data (ALFNET) [31], introduced by Bilgic et

al., is arguably the first work to address active learning for attributed graphs. It was

preceded by work by the same authors [32, 33] that tackled the related problem of

label acquisition for collective classification (another name for node classification).

In this earlier work, the acquisition cost (or query cost) is explicitly modeled in

the loss function and jointly minimized at inference time with respect to a batch

of selected nodes. Another departure of the label acquisition framework from the

active learning formulation is that the inference algorithm is assumed to be already

trained and provided. The algorithm in [32, 33] is based on avoiding labeling nodes

that would induce misclassification, and the selection is made by targeting nodes

that minimize the potential error.

ALFNET was introduced after GRF-EEM [11] and before V-optimality [16].

The task addressed is inductive node classification. As discussed, algorithms de-

veloped for unattributed graphs do not extend well to this setting. Relative to

GRF-EEM, Bilgic et al. position their contribution as being free of strong model

assumptions and emphasize the significant time complexity of EEM frameworks.

The predictive model employed in ALFNET is the Iterative Classification Algo-

rithm (ICA) [34]. The idea behind ICA is to form a node embedding by aggregating

the information coming from the node’s features, but also from the label and the fea-

tures of the neighbors. Since the majority of the nodes will mostly have unlabelled

neighbors, the algorithm alternates between making intermediate predictions and,

from those predictions, augmenting the label set by retaining some of the predictions

29

as ground truth. ALFNET uses two classifiers, one that takes into account the net-

work and one that only considers features. With these classifiers, the query strategy

is a mixture of uncertainty sampling, committee sampling and density sampling. A

batch of nodes is selected at each iteration.

Active learning for Graph Embedding (AGE). [17] followed the recent

introduction of the Graph Convolution Network [2]. Motivated by the success of

graph neural networks, Cai et al. leveraged the output of a GCN to design active

learning metrics. The process slightly differs from the framework presented in ear-

lier sections, because the separation between prediction and query steps is blurred.

Instead of fully training the predictive model at each active learning step, the algo-

rithm only trains for one epoch before adding a query. Training until convergence is

only performed once the given budget has been reached.

The query strategy is based on a score that is a weighted mixture of three metrics

covering different active learning strategies. These include an uncertainty metric

and two density-based metrics. The uncertainty metric is obtained by calculating

the entropy of the softmax output given by the current GCN model. The softmax

output of an incomplete trained GCN is viewed as an approximation of the label

distribution. The GCN output is also used to provide node embeddings for a density

metric. The embeddings are clustered and the distance computed between each

node’s embedding and the center of its cluster. A more central embedding indicates

a more representative node. The other density metric is based on graph centrality.

This metric is independent of the GCN and only relies on the position of the node

in the graph.

30

The quality of the GCN output is expected to be poor in early stages and to

improve as training continues. For this reason, the weight that each metric has in

the final decision evolves as more nodes are added to the labelled set in order to

reflect the increased confidence in the two metrics that are derived from the output

of the GCN. The weights are updated following a fixed rule, with a rate parameter

that is found by cross-validation.

Multi-armed bandit ARNMAB. The AGE algorithm is extended in [6],

where Gao et al. argue that using a fixed weight adaptation rule is suboptimal. Their

proposal is to use an alternative multi-armed bandit (MAB) algorithm that learns

how to dynamically balance the contributions of the different metrics. They argue

that this mechanism can better adapt to the varying natures of different datasets.

Discussion. In this thesis, AGE and ARNMAB will be referred to as GCN-

based active learning algorithms. They represent the state-of-the-art methods for

active learning on attributed graphs. It is likely that this status can be partly

attributed to the powerful generalization capabilities of the GCN. This brings up a

point that was touched upon in the introduction. In both GCN-based publications

mentioned, the presented active learning experiments start off with an initial labelled

set L0 varying between 10 and 30 nodes depending on the dataset, while using

500 additional labelled nodes as a validation set for tuning hyperparameters and

performing early stopping. This is not a sensible or practical setting for an active

learning task. It is possible that the prediction quality of the GCN is actually not too

sensitive to hyperparameter choices or early stopping. The algorithms do incorporate

a mechanism that assumes that the quality of the GCN predictions is poorer at the

31

beginning. If hyperparameter tuning is not important, then the end performance

would not be impacted if no validation set is available. We will see in the following

chapter that this is, in fact, a major issue.

3.4 Summary

This literature review chapter presented the works relevant to the topic of this

thesis. Two directions of research have been identified and the different types of solu-

tions each tend to generate have been described. Even though they tackle a slightly

different problem setting, the state-of-the-art methods for non-attributed graphs can

often achieve similar performance to the GCN-based methods. The models designed

for the non-attributed case have the disadvantage of not being able to use feature

information, but their model formulation allows them to be applied even when there

are very few labels. For these reasons, they are included as baseline in this thesis

in order to give a more complete picture of active learning on graphs. Based on the

review in this chapter, state-of-the-art methods can be identified for both fields; TSA

and EC for the non-attributed graph case and AGE and ARNMAB for attributed

graphs (subject to the hyperparameter tuning concern). In addition, the limita-

tions and disadvantages of both approaches have been identified and discussed. This

has allowed us to clearly define what is currently lacking from the literature in this

field and which characteristics a solution should have in order to make a meaningful

contribution. In the following chapter, such a solution is proposed.

32

CHAPTER 4
Graph Expected Error Minimization (GEEM)

In this chapter, we propose a novel EEM-based algorithm for active learning

on attributed graphs. The chapter commences with the problem formulation and

specifies the scope of the work. Then I present the methodology of the core algorithm.

This is followed by a second version which is equipped with a mechanism to cover

additional active learning scenarios. Section 4.4 presents the experimental details

and results for three different numerical experiments. The performance is compared

with state-of-the-art algorithms for active learning on attributed graphs. The chapter

concludes with a discussion of the results.

4.1 Problem Setting

The primary contributions of this thesis are novel methods for pool-based active

learning for the transductive and inductive semi-supervised node classification task

on attributed graphs. In both classification settings, there is an attributed graph

G, node features of dimension d(0) contained in the matrix X ∈ RN×d(0) and node

labels Y (the labels are now expressed in a one-hot encoding matrix). To complete

the general active learning problem formulation presented in Section 2.2, we need

to specify exactly how U , L and T are formed. The partitioning depends on the

experiment setting, and details are provided in Section 4.4. The remainder of the

problem formulation is the same as in Section 2.2; a small initial labelled set L0

33

(|L0| � |V|) is given with true node labels YL0 , to which b nodes can be added from

the unlabelled set U0. Evaluation is performed on the nodes of the test set.

1. Prediction Step: Inference depends on the type of classification. For the

transductive setting, the full feature matrix X and graph topology G are avail-

able in addition to YL so the prediction is given by: ŶT = ft(X,G,YLt). For

the inductive setting, we do not have access to the node features of the test

nodes: ŶT = ft(XV\T ,GV\T ,YLt).

2. Query Step: The optimal node is chosen q∗t ∈ Ut and the sets are updated

Ut+1 = Ut \ {q∗t }, Lt+1 = Lt ∪ {q∗t }.

4.2 Methodology : GEEM

The proposed Graph EEM (GEEM) algorithm is based on the EEM framework

and uses a node classification logistic regression model. These two components are

first presented separately, and then I describe how they are combined to form the

active learning solution.

Expected Error Minimization (EEM). Similar to most of the EEM-based

work that was presented in the literature review in Chapter 3, the risk R+q
|YLt

of adding

node q ∈ Ut given the current known label set Lt is derived using the zero-one error.

When considering the addition of node q, we denote by U9q
t the set of unlabelled

nodes after t iterations of active learning, excluding node q. The risk associated with

adding node q as a query node is then R+q
|YLt

and is defined as:

R+q
|YLt

, Eyq

[
EYU9qt

[
1
|U9q

t |

∑
i∈U9q

t

1[ŷi 6= yi|yq,YLt]
]]
. (4.1)

34

Here ŷi is the label prediction at node i. The expected error is thus calculated by

summing error probabilities over the unlabelled set, excluding the node q that is

being considered. Define ϕ+q
i,k,YLt

,
(

1 − max
k′∈K

P(yi = k′|YLt , yq = k)
)

, where K

is the set of classes. If the query node yq has label k, then ϕ+q
i,k,YLt

represents the

probability of making an error in the prediction ŷi of the label of node i. If we can

compute the distribution P(y|·), we can evaluate the risk of querying q:

R+q
|YLt

= 1
|U9q

t |

∑
k∈K

∑
i∈U9q

t

ϕ+q
i,k,YLt

P(yq = k|YLt) . (4.2)

The query algorithm selects the risk-minimizing node q∗t :

q∗t = arg min
q∈Ut

R+q
|YLt

. (4.3)

It remains to define the probabilistic model P(y|·).

Graph-cognizant logistic regression. Our proposed solution is to use a

graph-cognizant logistic regression model to obtain P(y|·). Such a model was intro-

duced in [35], where it was derived as a simplified (linearized) version of the GCN

of [2]. [35] showed that the simplified model can achieve competitive performance

for most datasets for a significantly lower computational cost. As highlighted in the

publications involving EEM, a new model needs to be learned for every potential

query node, so it is essential that the computational cost of model inference is rel-

atively low. The graph-cognizant logistic regression model meets our requirements:

its computational requirements are moderate and it takes into account the graph

structure and node features.

35

A GCN is built by stacking layers, as defined in equation 2.8, which we restate

here for convenience:

H(`) = g
(
ÂH(`−1)W(`)>

)
.

The features of the nodes are the initial node representation: H(0) = X and the final

layer, paired with a softmax operator σ as the final non-linearity, gives the predicted

output: H(`) = Ŷ. A GCN with an arbitrary number of intermediate layers ` can be

expressed as:

Ŷ = σ
(
Âg
(
· · · g

(
ÂXW>(0)

)
· · ·
)
W>(`)

)
. (4.4)

To obtain a linearized version, we simply need to remove the non-linear operator

from the intermediate layers.

Ŷ = σ
(
Â
(
· · ·
(
ÂXW>(0)

)
· · ·
)
W>(`)

)
(4.5)

This can be simplified by an adjacency matrix raised to the `-th power with a single

weight matrix W ∈ Rd(0)×d(`) to form the final model Ŷ = σ(Â`XW) . By defin-

ing X̃ , Â`X, which can be interpreted as graph-based preprocessing of the node

features, the final model matches a logistic regression formulation:

Ŷ = σ(X̃W) . (4.6)

The parameter ` controls the number of hops that are considered when generating

the final node representation. For most datasets that have been analyzed in the

literature, using a 2-hop (` = 2) neighborhood yields good classification performance.

Graph EEM (GEEM). Using the graph-cognizant logistic regression model,

we can compute a risk for each query node. At each step t, we use the current known

36

labels YLt to find the weights WYLt
by minimizing the error for the predictions ŶLt =

σ(X̃LtWYLt
). This can be used to approximate P(yq = k|YLt) ≈ σ(x̃qWYLt

)(k),

where the index (k) indicates that we extract the k-th element of the vector. Then

for each candidate node q, for each possible class k, we solve:

ŶLt,+q,yk = σ(X̃Lt,+q,ykWYLt ,+q,yk
) . (4.7)

Here the notation +q, yk indicates that we are adding node q to the labelled set and

assigning it label yk. For the adopted model, we have

ϕ+q
i,k,YLt

= (1−max
k′∈K

σ(x̃iWYLt ,+q,yk
)(k′)). (4.8)

The node to query is then the one that minimizes the risk:

q∗t = arg min
q∈Ut

1

|U−q
t |

∑
k∈K

∑
i∈U9q

t

ϕ+q
i,k,YLt

σ(x̃qWYLt
)(k) . (4.9)

This implies that we have a computational complexity of O(|U||K|T), where T repre-

sents the complexity associated with training the model. For logistic regression, this

is the overhead involved in learning the weights WYLt
. The solution in our experi-

ments is obtained by using the liblinear solver, a standard iterative algorithm from

the scikit-learn library with default parameters and L2 loss. As a result, the proposed

algorithm requires the choice of very few hyperparameters (only the number of hops

` and logistic regression hyperparameters). This contrasts with the active learning

approaches based on graph neural networks, where there are multiple hyperparam-

eters that must be selected, and suboptimal choices can have a major impact on

performance (as demonstrated in the experiments in Section 4.4).

37

4.3 Methodology : Combined Method

Most of the active learning methods for non-attributed graphs that were pre-

sented in Chapter 3 can operate in the most extreme case of active learning where

we start with only one labelled node. In this scenario, the logistic regression model

cannot make useful predictions until at least some nodes have been queried. To ad-

dress this problem, the GEEM algorithm can be combined with a label-propagation

method. The aim is to first use label-propagation when very few node labels are

available, then switch to a combination of both algorithms when more information is

available, and finally transition to the more accurate graph-cognizant logistic regres-

sion. Bayesian model averaging provides a mechanism to make this transition [36,37].

In Bayesian model averaging, we have M different classifiers and our belief is that one

of these models is correct. We start with a prior P(m) over each model. After observ-

ing data D, we compute the model evidence P(D|m) and update the posterior using

Bayes’ rule P(v|D) = P(v)P(D|m)/P(D) to compute and weight the predictions:

P(y|D) =
M∑
m=1

P(y,m|D) =
M∑
m=1

P(y|m,D)P(m|D). (4.10)

In the context of active learning using expected error minimization, we need to

evaluate the risk associated with a query. This risk depends on which probabilistic

model is employed, so the model m is added in the notation to indicated which

model is being used: R+q
|YL,m. In the combined method, a model-averaged risk can

be computed :

R+q
|YL =

M∑
m=1

R+q
|YL,mP(m|YL) . (4.11)

38

In order to compute this expression, we need to evaluate P(m|YL). Assuming that we

have equal prior belief in the models available to us, this is equivalent to calculating

the marginal likelihood P(YL|m).

Two models are incorporated in our proposed method, one based on label propa-

gation and the other based on logistic regression. For the binary random field model

that underpins the label propagation classifiers, there are no learnable model pa-

rameters (there is only one hyperparameter β which is fixed to 1). Evaluating the

evidence P(YL|m) is thus equivalent to computing P(YL) under the BMRF model.

This is a combinatorial problem, but we can factorize the joint probability into a

chain rule of conditionals and use the same two-stage approximation (TSA) that is

employed in [29]. To do so, we consider an arbitrary ordering of the nodes in L and

obtain p(YL) with the following chain rule :

p(YL) = p(y1)p(y2|y1)...p(y|L||y1,y2, ...y|L|−1) . (4.12)

Each conditional distributions can be evaluated with the approximation provided

in [29]. There is no information to determine the label probability of the first node

label p(y1), so it is set to the uniform distribution. We denote this evidence approx-

imation by

λTSA,YL , P(YL|TSA). (4.13)

.

For the logistic regression model,

P(yi = k|m,W) ≈ σ(x̃iW)(k). (4.14)

39

For the evidence, P(YL|m,W) =
∏

yi∈YL σ(x̃iW)(ki), where ki is the categorical

index of yi. To obtain the evidence, the weight matrix should be integrated out:

P(YL|m) =

∫
W

∏
yi∈YL

σ(x̃iW)(ki)P(W) dW . (4.15)

Since this integral is not analytically tractable, P(YL|m) is approximated by the

likelihood of the logistic regression model with weights WYL :

P(YL|m) ≈ P(YL|m,WYL) (4.16)

The evidence of the logistic regression model is denoted by:

λLG,YL ,
∏
yi∈YL

σ(x̃iWYL)(ki). (4.17)

This leads to a sufficiently accurate approximation of the evidence for our purpose

(which is just to achieve an adaptive balance between label propagation and graph-

cognizant logistic regression). The approximations of the evidences are normalized

to sum to one:

λ̄m,YL =
λm,YL∑M

m′=1 λm′,YL
. (4.18)

The final query policy is given by the combination of the two risk estimators, balanced

by their marginal likelihoods:

q∗ = arg min
q∈U

λ̄LG,YLR
+q
|YL,LG + λ̄TSA,YLR

+q
|YL,TSA . (4.19)

If the labelled set L only has one class, then the logistic regression model is not used

λ̄LG,YL = 0 and only the TSA risk is considered for the query selection.

40

4.4 Experiments

4.4.1 Experiment Settings

To conduct a thorough assessment of how the GEEM algorithm compares to the

state-of-the-art methods, three different experiment settings are presented. As in the

literature review, the baselines are divided into two groups: the GCN-based models

and the BMRF-based models. Although label propagation methods were proposed

to address the non-attributed graph setting, they can and should be compared with

algorithms that can take advantage of node features.

Since the GCN-based methods involve training a deep learning model, they

require more nodes in the initial labelled set. In Experiment 1, following the semi-

supervised node classification formulation, the nodes are partitioned into train, test,

and validation sets. The train set corresponds to the labelled set L, the test and

validation sets are withheld from the query algorithm, and the remaining nodes in

the graph form the unlabelled set. So the full graph and node features are known,

but test and validation nodes cannot be added to the labelled set. During the learn-

ing process, the algorithm is aware of the topology of the entire graph (including

test and validation nodes); it cannot request labels from the test or validation sets

but otherwise it is unaware of which nodes constitute the test set. As mentioned

previously, the validation set is an unrealistic assumption in the active learning set-

ting and should technically be included in the labelled set. This impracticality is

ignored in the Experiment 1 setting, but the dependence on the validation set of the

GCN-based algorithms will be highlighted in the experiment.

41

Experiment 2 is constructed to resemble the setting that has been traditionally

used to evaluate label propagation methods, namely that there is no distinction be-

tween the unlabelled set and the test set. Experiment 3 is designed to highlight the

difference between the transductive and inductive settings. Since the label prop-

agation methods are highly dependent on the graph used for training, the label

propagation methodologies are not suited to an inductive case at all. In Experiment

3, the test nodes are removed from the graph during the learning process and then

reintroduced for testing.

Experiment 1: Initial Labelled Set, Transductive: The three sets U ,L, T are

obtained by partitioning the nodes V . For the Cora and Citeseer dataset, the nodes

in L0 are chosen at random for each trial and the set is of cardinality equal to 0.5%

of the nodes. This is reduced to 0.01% for the larger datasets Amazon-Photo and

Amazon-Computers to achieve similar initial set sizes. The test set is formed of 20%

of the nodes, again chosen at random for each trial.

Experiment 2: Single Labelled Node, Transductive: The test set coincides with

the unlabelled set U = T and the initial labelled set only has one node |L0| = 1,

chosen at random for each trial.

Experiment 3: Single Labelled Node, Inductive: The nodes are again partitioned

in three sets U ,L, T , but this time the test nodes are also removed from the graph.

The initial labelled set only has one node |L0| = 1, and the test set is formed from

20% of the nodes. The nodes in these sets are chosen at random and vary from trial

to trial.

42

4.4.2 Datasets

The performance is evaluated on four different benchmark datasets for node clas-

sification from [38]. Cora and Citeseer [25] are citation datasets. Nodes represent

journal articles and an undirected edge is included when one article cites another.

The node features are bag-of-words representations of article content. Amazon-Photo

and Amazon-Computers [38] are larger graphs based on customers’ co-purchase his-

tory records. For each dataset we isolate the largest connected component in the

graph following [38]; this also allows us to accommodate the label-propagation base-

line. The description of the dataset statistics is shown in Table 4–1.

Table 4–1: Statistics of evaluation datasets.

Dataset #Classes #Features #Nodes #Edges Edge density
Cora 7 1,433 2,485 5,069 0.04%
Citeseer 6 3,703 2,110 3,668 0.04%
Amazon-Comp. 10 767 13,381 245,778 0.07%
Amazon-Photo 8 745 7,487 119,043 0.11%

4.4.3 Baselines and Proposed Algorithms

• Random: This baseline chooses a node to query by uniform random selection,

and then performs classification using a linear GCN (the same graph-cognizant

logistic regression predictive model as is used in our proposed method). This

is a standard baseline that can be evaluated in all settings.

• Experiment 1:

– AGE: The graph neural network based algorithm proposed in [17].

43

– AGE non-optimized: The graph neural network based algorithm pro-

posed in [17] without fine-tuned hyperparameters. More details are pro-

vided in Section 4.4.4.

– ANRMAB: The graph neural network algorithm proposed in [6] based

on a multi-armed bandit.

– GEEM*: The proposed algorithm based on graph-cognizant logistic re-

gression and expected error minimization from Section 4.2.

• Experiments 2 and 3:

– TSA: The label-propagation algorithm based on a two-stage approxima-

tion of the BMRF model [29].

– EC-TV, EC-MSD: The two best performing expected change metrics

for the Gaussian random field model proposed in [30].

– Combined*: The proposed combined algorithm using Bayesian model

averaging to adaptively merge graph-cognizant logistic regression and la-

bel propagation in an EEM framework from Section 4.3.

4.4.4 Experimental Details

For each experiment, the average over 20 trials with different random partitions

is reported, along with confidence intervals on the means derived using bootstrap. All

GCNs and linearized GCNs have 2 layers. The weight-adapting parameter of AGE

is set to the values in [17] and to 0.995 for datasets that were not studied in [17]. For

Cora and Citeseer, the budget b is set to 60 nodes. For the larger datasets, Am-Photo

and Am-Comp, the budget is lowered to 40 and the computational complexity for

44

GEEM is reduced by evaluating the risk using a subset of 500 nodes, selected ran-

domly in an approach similar to [39]. This has minimal impact on performance. The

GCN hyperparameters are set to the values found by [38] to be the best performing

hyperparameter configurations for each dataset. Early stopping is not employed be-

cause access to a validation set is not a reasonable assumption in an active learning

setting. The “non-optimized” version of AGE is included to emulate the case in prac-

tice where we would usually not have access to the tuned hyperparameters provided

by [38]. For the non-optimized version of AGE, the hyperparameter configuration

for each trial was randomly selected from the values considered in the grid search

of [38].

4.4.5 Results

To properly assess the performance of an active learning algorithm, the accuracy

of the model is reported as nodes are being added to the labelled set. We present

figures that show the accuracy as a function of the number of labelled nodes, which

can be seen as the size of the training set, from the starting initial labelled set

size (|L0|) until the algorithm reaches the query budget (|L0| + b). As a result,

the different methods are being compared at all points of the process, for the same

number of chosen nodes. This is important as it is not only the end performance that

matters, but also how quickly the algorithm can increase its accuracy by choosing

informative nodes.

Results are presented in this fashion for all three experiments. Figure 4–1 shows

the average accuracy, with 5/95 confidence intervals for each baseline corresponding

to Experiment 1 for the four datasets, and Figure 4–2 shows the same experimental

45

results for the label-propagation baseline TSA for Cora and Citeseer. In Table 4–2,

snapshots of accuracies taken during the active learning process of Figures 4–1 are

reported, which allows us to present the outcomes of statistical significance tests on

the results. The label-propagation baselines for Experiment 2 and Experiment 3 are

portrayed in Figure 4–3.

46

20 40 60
Number of nodes in labeled set

40

50

60

70

80
A

cc
ur

ac
y

AGE
AGE non optimized
ANRMAB
GEEM*
Random

Cora

10 20 30 40 50 60 70
Number of nodes in labeled set

30

40

50

60

70

Citeseer

10 20 30 40 50
Number of nodes in labeled set

40

60

80

A
cc

ur
ac

y

Amazon-Photo

20 30 40 50
Number of nodes in labeled set

20

30

40

50

60

70

80

Amazon-Computers

Figure 4–1: Experiment 1. Each point on a curve shows the mean classification
accuracy achieved across 20 random partitions after the corresponding algorithm
has selected nodes to form an augmented labelled set of size equal to the indicated
number of nodes. The shaded regions indicate 5/95 confidence intervals on the means
derived using bootstrap.

47

20 40 60
Number of nodes in labeled set

20

40

60

80
A

cc
ur

ac
y

AGE
ANRMAB
GEEM*
Random
TSA

Cora

20 40 60
Number of nodes in labeled set

20

40

60

A
cc

ur
ac

y

Citeseer

Figure 4–2: Experiment 1 with the label-propagation baseline TSA. The label prop-
agation method does not transpose well to other experimental settings.

48

Table 4–2: Experiment 1: Average accuracy at different budgets. Asterisks indicate
that a Wilcoxon ranking test showed a significant difference (at the 5% significance
level) between the marked method and the best performing baseline.

budget b 0 1 10 30 60

Cora

GEEM* 39.6 46.5 69.8* 77.2* 79.9

Random 39.6 40.2 49.7 63.0 73.3

AGE 46.6 52.7 61.6 74.9 79.8

ANRMAB 46.6 47.5 59.1 72.7 78.1

Citeseer

GEEM* 40.5 49.7* 65.8* 71.2 72.8

Random 40.5 44.1 53.8 64.4 70.4

AGE 41.2 44.7 60.5 69.1 71.4

ANRMAB 41.2 44.1 55.7 64.6 69.4

budget b 0 1 10 30 40

Amazon-Photo

GEEM* 59.6 64.3 82.4* 89.2* 90.7*

Random 59.6 61.4 72.0 82.3 87.6

AGE 45.5 52.0 51.5 67.8 69.3

ANRMAB 45.5 50.6 62.6 67.8 70.0

Amazon-Computers

GEEM* 54.6 59.8 68.8* 74.8* 76.8*

Random 54.6 57.7 65.9 72.8 73.3

AGE 47.1 41.5 51.6 52.4 53.3

ANRMAB 47.1 49.4 54.6 58.7 58.5

49

0 20 40 60
Number of nodes in labeled set

20

40

60

80
A

cc
ur

ac
y

Combined*
EC-MSD
EC-TV
Random
TSA

Cora - transductive

0 20 40 60
Number of nodes in labeled set

20

40

60

80

A
cc

ur
ac

y

Combined*
Random
TSA

Cora - inductive

0 10 20 30 40 50 60
Number of nodes in labeled set

20

30

40

50

60

70

Citeseer - transductive

0 10 20 30 40 50 60
Number of nodes in labeled set

20

40

60

Citeseer - inductive

10 20 30 40
Number of nodes in labeled set

20

40

60

80

Amazon-Photo - transductive

10 20 30 40
Number of nodes in labeled set

20

40

60

80

Amazon-Photo - inductive

Figure 4–3: Experiment 2 and 3. Performance comparison between the label propa-
gation algorithms and the proposed combined model-averaging expected error mini-
mization method for both the transductive and inductive case.

50

4.5 Discussion

Experiment 1: For all presented datasets, the proposed algorithms outperform

the other GCN-based methods.

At the starting point of the query process (b = 0), the query algorithm does

not come into play and the more powerful deep learning models are expected to

outperform the logistic regression model. This is the case for Cora and Citeseer;

as they are very common benchmark datasets for GNNs, their hyperparameters are

likely to have been correctly fine-tuned. However for the two other less common

datasets, the logistic regression outperforms the GCN by almost 30 percent, even

though the GCN hyperparameters are taken from a paper in which hyperparameters

are optimized for these datasets [38].

The dependence on the validation set is clearly highlighted by the performance

of the non-optimized version of AGE (orange line) that emulates a scenario where no

cross-validation can be performed. In all cases, a significant performance deteriora-

tion can be observed. The AGE performance curve is mirrored by its non-optimized

version, but there is a reduction in accuracy by several percent. In addition, AGE

outperforms the ANRMAB algorithm for the datasets where its weight-adapting pa-

rameter was tuned (Cora and Citeseer). These results clearly highlight the advantage

of using a model that does not rely heavily on a validation set for hyperparameter

tuning.

Overall, the GEEM substantially improved accuracy in all cases. For the cases

where the logistic regression was initially outperformed by the GCN, once the query

process starts the proposed method quickly surpasses the competitors. It even

51

reaches statistical significance after only 1 query in the case of Citeseer. This shows

how effective the query selection of the GEEM is.

In Figure 4–2, the best-performing label propagation technique (TSA [29]) is

included for Experiment 1. These results are provided to illustrate that label prop-

agation methods are not competitive with the GNN-based methods when a larger

initial training set is available and when a test set of nodes is removed from the

candidate query pool.

Experiments 2, 3: Figure 4–3 compares the performance of the proposed Com-

bined method with the label propagation algorithms. In the transductive setting,

the proposed method is much better than Random selection. Since it incorporates

the TSA technique, its performance is similar to TSA when few nodes have been

queried. As the number of labels increases, there starts to be a small but significant

improvement in accuracy. The inability of the label propagation methods to adapt

to the inductive setting is shown clearly in all cases. In order to choose effective

nodes to query, these methods need to know the topology of the entire graph and

the graph must include the test nodes. By contrast, the proposed Combined method,

which incorporates graph-based logistic regression, achieves similar performance in

both inductive and transductive settings.

4.6 Summary

In this chapter, an EEM-based algorithm has been introduced with an extension

to cover the extreme case of having only one node as the initial labelled set. The effi-

cacy has been demonstrated through extensive experiments. A thorough assessment

of how the proposed approach compares to state-of-the-art baselines has been made.

52

The results underline the weaknesses of the two identified types of baseline and show

the dominance of the proposed GEEM method, which can be advantageous in all

settings. A notable drawback is the run-time of the methods that are based on the

EEM framework. For the Cora dataset, for example, the time required to identify one

query of the GEEM algorithm is approximately seven times that of the GCN-based

algorithms, and four to five times that of the label-propagation baselines. In the

following chapter, this limitation is indirectly addressed by looking at the problem

from a different perspective. This leads to a modified version of the algorithm that

can profit from this new problem formulation.

53

CHAPTER 5
Preemptive GEEM

This chapter presents a variation of the GEEM algorithm. A new problem

statement prompted by a closer examination of a practical active learning process

timeline is introduced in the first section. This formulation leads to the proposal of an

approximate algorithm designed to be more time efficient. Experiments, analysis and

discussion are jointly presented in Section 5.4, followed by the results that show that

the performance loss caused by the approximation is marginal. Finally, theoretical

bounds on the approximation are presented in the last section of the chapter.

5.1 A Modified Problem Setting

5.1.1 Motivation

The query step of active learning involves the following steps: 1) select the point

to query; and 2) add its label to the labelled set. In most numerical experiments that

emulate an active learning scenario, no oracle is actually being queried for the label.

Usually the complete set of labels is readily available, which makes the transition

between the two steps instantaneous. This obfuscates an important practical reality

that is at the core of the motivation of active learning; in practice, label acquisition is

tedious and requires considerable resources. This often translates into labelling being

time consuming for a human oracle. It implies that the active learning algorithm

stalls between 1) and 2), waiting for the oracle to label q∗t . In addition, the oracle

must wait while the algorithm computes the best subsequent query node q∗t+1. This

54

is inefficient for both parties and, for a human oracle, frustrating. In [40], this exact

issue is discussed:

Since the query has been labeled and added to the training set L, the

learner re-trains using this newly-acquired knowledge and selects another

single query, given all the previously labeled instances, and the process

repeats. However, this is not always a realistic setting. For many appli-

cations, the process of inducing a model from training data may be slow

or expensive, which is often the case with state-of-the-art methods like

large ensemble algorithms, or the graphical models used for structured-

prediction tasks. In such cases, it is an inefficient use of labeling resources

(e.g., a human annotator’s time) to wait for the model to re-train before

querying for the next label. [40, p. 3]

Settles used this observation in [40] as a motivation for batch querying, where the

algorithm selects multiple instances instead of only one to make the process more

efficient. However this only reduces the number of times that the oracle is stalled;

the root problem remains. The approach taken in this thesis is different. Our first

step is to explicitly identify the labeling time component in the problem formulation.

5.1.2 Formulation

1. Prediction Step : Form a prediction of ŶTt based on the graph, G, features,

X, and the current labels, YLt ;

2. Query Step : Until the budget is exhausted, select a node q∗t ∈ Ut to query

and to add to the labelled set.

55

3. Labeling Step : The oracle takes time ∆ to label q∗t . We update the sets:

Ut+1 = Ut \ {q∗t }, Lt+1 = Lt ∪ {q∗t }.

Our main idea is then to derive an active learning algorithm that can identify the

query node q∗t using the label set Lt−1. If the labelling time and the query com-

putation time are similar, then neither the oracle nor the algorithm stalls for long.

While the oracle is generating the label for q∗t , this preemptive active learning algo-

rithm identifies in parallel the best query node q∗t+1 using Lt. Figure 5–1 compares

the timelines of the standard single-query active learning procedure (in which the

query generation algorithm waits for the oracle and vice versa) with the preemptive

strategy where labelling and query generation are performed in parallel.

Timeν ν + ∆ 2ν + ∆

YLt query selection → q∗t

Oracle labels yq∗t .YLt+1
= [YLt , yq∗t]

YLt+1
→ q∗t+1

(a) Timeline for the standard active learning process.

Timeν 2ν 3ν

YLt−1
→ q̂∗t

Labeling process yq̂∗t

YLt → q̂∗t+1

(b) Timeline for preemptive active learning process.

Figure 5–1: A comparison of the timelines of the standard single-query active learning
process and the proposed preemptive process.

56

5.2 Preemptive Query (PreGEEM)

In this section, the GEEM algorithm is adapted to perform preemptive query

calculation, using the labelling time to identify the next node to query. Instead of

waiting for the oracle to label q∗t−1 to start the identification of q∗t during iteration t,

the algorithm forms an approximation of the risk before knowing yq∗t−1
. The direct

approach is to replace the risk R+qt
|YLt

with the expectation over the possible values

of yq∗t−1
, but this increases the computational complexity by a factor of |K|, which is

highly undesirable. To avoid this penalty, R+q
|YLt−1

,q∗t−1
is further approximated using

the value of risk for the label at the mode of P(y∗qt−1
|YLt−1). Effectively, the predicted

label ŷq∗t−1
of the previous model P(·|YLt−1) is added to the labelled set to form an

augmented set Y′Lt = {YLt−1 ∪ {ŷq∗t−1
}} and define an approximate risk:

R̂+q
|Y′Lt

, Eyq

[
EYU9qt

[
1
|U9q

t |

∑
i∈U9q

t

1[ŷi 6= yi|yq,Y′Lt]
]]
. (5.1)

As was the case for GEEM in equation 4.9, the probability P(y = k|Y′Lt) is ap-

proximated by the model prediction σ(x̃qWY′Lt
)(k), however now the Y′Lt subscript

of the weights indicates that the model is trained on the labelled set containing a

predicted label. The same applies for ϕ+q
i,k,Y′Lt

= (1−max
k′∈K

σ(x̃iWY′Lt
,+q,yk)(k′)). The

approximated risk is then evaluated as :

R̂+q
|Y′Lt

= 1

|U−q
t |

∑
k∈K

∑
i∈U9q

t

ϕ+q
i,k,Y′Lt

σ(x̃qWY′Lt
)(k). (5.2)

The query node is then q̂∗t = arg minq∈U R̂
+q
|YL′t

.

57

5.3 Experiment and Results

Since the PreGEEM is an approximation, the main question is how much this

impacts the performance of the algorithm compared to GEEM. To answer this, the

same Experiment 1 from Section 4.4 is conducted for all datasets and the PreGEEM

performance is compared to the GEEM. The results are presented in Figures 5–2

and Table 5–1.

20 40 60
Number of nodes in labeled set

40

50

60

70

80

A
cc

ur
ac

y

GEEM*
PreGEEM*
Random

Cora

10 20 30 40 50 60 70
Number of nodes in labeled set

40

50

60

70

Citeseer

10 20 30 40 50
Number of nodes in labeled set

60

70

80

90

A
cc

ur
ac

y

Amazon-Photo

20 30 40 50
Number of nodes in labeled set

50

55

60

65

70

75

80

Amazon-Computers

Figure 5–2: Experiment 1 for a GEEM vs PreGEEM comparison. Each point on a
curve shows the mean classification accuracy achieved across 20 random partitions
after the corresponding algorithm has selected nodes to form an augmented labelled
set of size equal to the indicated number of nodes. The shaded regions indicate 5/95
confidence intervals on the means derived using bootstrap.

58

Table 5–1: Experiment 1: Average accuracy at different budgets, comparing GEEM
to PreGEEM. Asterisks indicate that a Wilcoxon ranking test showed a significant
difference (at the 5% significance level) between GEEM and PreGEEM.

budget b 0 1 10 30 60

Cora
GEEM 39.6 46.5 69.8 77.2 79.9
PreGEEM 39.6 46.5 68.2 77.1 80.3
Random 39.6 40.2 49.7 63.0 73.3

Citeseer
GEEM 40.5 49.7 65.8 71.2 72.8
PreGEEM 40.5 49.7 66.5 71.8 73.3
Random 40.5 44.1 53.8 64.4 70.4

budget b 0 1 10 30 40

Amazon-Photo
GEEM 59.6 64.3 82.4 89.2 90.7*
PreGEEM 59.6 64.3 80.3 88.8 89.6
Random 59.6 61.4 72.0 82.3 87.6

Amazon-Computers
GEEM 54.6 59.8 68.8 74.8 76.8
PreGEEM 54.6 59.8 68.4 76.5 77.5
Random 54.6 57.7 65.9 72.8 73.3

5.4 Discussion

By inspecting the results in Figure 5–2, it is clear that the approximation has

little effect. In most cases, the performance of GEEM is marginally better, but not

always, and the difference is small. Table 5–1 confirms this finding by identifying no

statistically significant difference between the performance of the two algorithms at

any point except for one.

To provide further insight into the effect of the approximation, I now present a

case study that follows the risks from both algorithms as query nodes are added.

59

Query 4

Query 3

Query 2

Query 1

Query 0

GEEM* R+q
|YLt

PreGEEM* R+q
|Y ′Lt

Figure 5–3: Risk comparison for GEEM vs PreGEEM. This diagram follows the
risk computations for 25 nodes in the Cora dataset for one trial. The black star
indicates which node was selected (following the algorithm, it is the one with the
lowest expected risk).

For PreGEEM to yield poorer results compared to GEEM, three things need

to happen. First, YLt needs to be different from Y′Lt . This can be caused by the

previous query being different, thus changing Lt−1, or an error in the prediction of

ŷq∗t−1
. If neither of these occur, there is no difference between GEEM and PreGEEM

calculations and the risks would be identical. The second element is that the differ-

ence in risk values must be substantial enough to change the ordering of the R̂+q
|YL′t

;

this will lead to a different query q̂∗t 6= q∗t . It is possible that, even if the risk values

are not matching, the same node minimizes both sets of risk values. Lastly, this

60

resulting changed labelled set L should actually be poorer for model generalization,

which manifests itself in lower test accuracy.

Figure 5–3 displays the evolution of the two active learning algorithm risk values

for a small subset of nodes. When identifying the first query, the labels of the initial

set L0 are accessible so no approximation is being made and the same node is selected

by both algorithms. This is reflected by the GEEM and PreGEEM having perfectly

matching blue point patterns. Subsequently, the inference algorithm makes a mistake

in ŷq∗0 for PreGEEM, which cause the risk values to differ. The impact is small, but

enough to change the node that minimizes R̂+q
|YL′1

and PreGEEM selects a different

query. This deviation is corrected at the third step, where the two algorithms switch

their query selection. Both labelled sets L3 contain the same nodes. During the

selection of the fourth query node, no mistake is made by the inference algorithm for

PreGEEM and the risk values are identical. For the last query, a mistake is made

but this time it is not enough to sway the selection process to a different node. After

five steps the same nodes have been selected by both algorithms. This demonstrates

how the approximation can have a minor impact on the classification performance.

5.5 Bounds on the PreGEEM Risk Error

Empirical analysis from the previous section clearly showed that there is no

significant difference in the performance of GEEM vs PreGEEM. A key observation

made in the case study was that a deviation caused by the PreGEEM approxima-

tion needed to be important enough in order to modify the query and potentially

negatively impact the performance. This motivates our interest in bounding the

magnitude of the error on the risk of PreGEEM.

61

As explained in Section 5.2, PreGEEM relies on a prediction rather than waiting

for the true label to compute the risk. So an error only arises when there is a

misclassification. The bounds presented in this Section focus on the error incurred

by labelled sets that differ by one label: |R̂+q
|Y′Lt
− R+q

|YLt
|. The formulations for

the different risks are given in equation 4.9 for GEEM, and in equation 5.2 for

PreGEEM. The difference or error arises because the prediction values are made by

logistic regression models that are trained on slightly different training sets:

|R̂+q
|Y′Lt
−R+q

|YLt
| ≤

∣∣∣∣∣∣
∑
k∈K

∑
i∈U−q

t

ϕ+q
i,k,Y′Lt

σ(x̃qWY′Lt
)(k) − ϕ+q

i,k,YLt
σ(x̃qWYLt

)(k)

∣∣∣∣∣∣ (5.3)

As a result, the bound is constructed as follows: 1) bound the difference between the

regression weights learned from different label sets; 2) bound the difference in the

predictions made on the same point by two logistic regression models; and 3) bound

the elements in the sum of the risk. 1) and 2) can be viewed as preliminary steps

and are addressed first in Section 5.5.1. Then, the bound 3) is developed for two

cases. For clarity, the binary classification task is first considered in section 5.5.2;

then a more general bound for multiclass classification is stated in Section 5.5.3.

Section 5.5.4 presents two peripheral lemmas that are used in the proofs of the main

results.

62

5.5.1 Preliminaries

The first step is to bound the difference in the logistic regression weights derived

for the two label sets. In [41], Sivan et al. consider the problem of online learning,

where the available data is being gradually replaced and updated. In their context,

the two datasets are derived by applying a sliding window to the same stream of

data. Sivan et al. are interested in how much the weights trained on an updated

dataset can differ from the weights learned using the previous dataset, given that

the datasets contain many common examples. A bound on this difference can allow

one to make a more informed decision about whether to retrain or not. There are

analogies between this problem formulation and our setting and the main theorem

in [41] provides the starting point for the development of our bounds.

We start by stating the result of [41]. Let {xi ∈ R1×d : 1 ≤ i ≤ N} be the

feature vectors of N instances, indexed by D. Sivan et al. define the optimization

problem P of learning the weights wp of a logistic regression model by minimizing the

sum of the loss of individual instances `i(w) under L2 regularization with associated

regularization parameter CP .

P : wp = arg min
w∈Rd

Cp
∑
i∈D

`i(w) +
1

2
‖w‖2 (5.4)

Let w1 be the optimal solution of P1 over the labelled samples with indices D1, and

let w2 be the solution of P2 over the labelled samples D2. Similarly, C1 is associated

to P1 and C2 to P2. In [41], Sivan et al. process a dataset that is being updated, so

they define a set of indices of added samples, DA = D2\D1, and a set of indices of

63

samples removed, DR = D1\D2. Finally, let ∆g be :

∆g :=
∑
i∈DA

∇`i (w1)−
∑
i∈DR

∇`i (w1) (5.5)

Theorem 1 of [41] establishes that the distance between w1 and w2 is bounded by:

‖w1 −w1‖ ≤ 2‖r‖, where

r =
1

2

(
w1 −

C2

C1

w1 + C2∆g

)
We can see that this result can be directly applied to our setting. Rather than

an updated dataset, we have two datasets that share most of the elements, with some

instances that differ by being associated with different binary class labels yi,1 and yi,2.

Let D1 and D2 be two datasets that contain all N instances, with label values that

differ for exactly M < N of the feature vectors, with indices {jm},m = 1, . . . ,M .

By fixing the regularization parameter to the same λ for both models and defining

the loss function as being the cross entropy, `(xi, yi; w) = −
(
yi log σ(xiw) +

(
1 −

yi
)

log
(
1− σ(xiw)

))
, where σ(x) =

1

1 + e−x
is the sigmoid function, we have:

r ,
1

2λ

M∑
m=1

(
∇w`(xjm , yjm,1; w)|w=w1 −∇w`(xjm , yjm,2; w)|w=w1

)
,

=
1

2λ

M∑
m=1

(
−
(
yjm,1 − σ(xjmw1)

)
xjm +

(
yjm,2 − σ(xjmw1)

)
xjm

)
,

=
1

2λ

M∑
m=1

(
yik,2 − yik,1

)
xik . (5.6)

We can then use ||w1 −w2|| ≤ 2||r|| in our setting.

64

Lemma 1 from [41] provides upper and lower bounds for xjw2 in terms of the

other weights w1. We have:

xjw1 − xjr− ||r||.||xj|| ≤ xjw2 ≤ xjw1 − xjr + ||r||.||xj|| . (5.7)

5.5.2 Bound on Risk Error: Binary Classification

Based on the results outline above, the following proposition can be specified,

bounding the difference between the predicted values of the two models.

Proposition 1. Let w1 and w2 be the weights derived by L2-penalized logistic re-

gression for two datasets (X,Y), (X,Y′), with common feature vectors but label sets

differing for M vectors indexed by {jm},m = 1, . . . ,M . Define η , 1
2λ

∑M
m=1||xjm||

and b±η(w2, i) , σ(xiw2)− σ(xiw2 ± 2η||xi||). Then for any xi, for i ∈ {1, . . . , N}:

|σ(xiw1)− σ(xiw2)| ≤ max(|b+η(w2, i)|, |b−η(w2, i)|) . (5.8)

Proof. We first note that
(
yik,2 − yik,1

)
∈ {−1, 1} implies from the definition of r

in (5.6) that ||r|| ≤ 1

2λ

M∑
m=1

||xjm || = η. Applying the Cauchy Schwarz inequality

to (5.7), we have:

xiw2 − 2||r||.||xi|| ≤ xiw1 ≤ xiw2 + 2||r||.||xi|| , (5.9)

and hence

xiw2 − 2η||xi|| ≤ xiw1 ≤ xiw2 + 2η||xi|| . (5.10)

65

Since σ(·) is monotonically increasing, we have σ(xiw1 − 2η||xi||) ≤ σ(xiw2) ≤

σ(xiw1 + 2η||xi||) and (5.8) follows.

The following result characterizes the potential risk error when we perform L2-

regularized binary logistic regression on {Y′Lt ∪ {yq = k}} to derive weights w2,k for

k ∈ {0, 1}. We are interested in bounding the difference in the risks that can arise

when we use two label sets YLt and Y′Lt that differ by only one label, associated with

the node index q∗t−1. The previous result can directly be applied by associating D1

with the dataset that contains all true labels YLt and D2 with the available dataset

Y′Lt that contains the predicted label.

We start by defining the two quantities:

ηq , 1
2λ

(
||x̃q||+ ||x̃q∗t−1

||
)
,

b̃(ηq,w2, i) , max
k∈{0,1}

max
(
|b+ηq(w2,k, i)|, |b−ηq(w2,k, i)|

)
.

(5.11)

Recall the definition of the risk of querying node q given a current label set YLt , for

the specific case of binary classification:

R+q
|YLt

, 1
|U9q

t |

∑
k∈{0,1}

∑
i∈U9q

t

ϕ+q
i,k,YLt

P(yq = k|YLt) , (5.12)

where

ϕ+q
i,k,YLt

,
(

1− max
k′∈{0,1}

P(yi = k′|YLt , yq = k)
)

= min
k′∈{0,1}

P(yi = k′|YLt , yq = k).

(5.13)

We now state the main result:

66

Theorem 5.5.1. The risk error arising from applying binary L2-regularized logis-

tic regression with regularization parameter λ to two labelled datasets (X,YLt) and

(X,Y′Lt) that differ by one label, associated with the node q∗t−1, is bounded as:

|R+q
|YLt
− R̂+q

|Y′Lt
| ≤ 1

|U9q
t |
∑
i∈U9q

t

b̃(ηq,w2, i) .

Proof. We define the random variable ϕ+q
i,YLt

which takes value ϕ+q
i,k,YLt

with proba-

bility P(yq = k|YLt) for k ∈ {0, 1}. Analogously, let ϕ+q
i,Y′Lt

take value ϕ+q
i,k,Y′Lt

with

probability P(q = k|Y′Lt) for k ∈ {0, 1}. The difference in risk is then:

R+q
|YLt
− R̂+q

|Y′Lt
= 1
|U9q

t |

∑
i∈U9q

t

Eyq [ϕ
+q
i,YLt

]− Eyq [ϕ+q
i,Y′Lt

] , (5.14)

where Eyq denotes expectation over yq conditioned on the corresponding observed

label sets, either YLt or Y′Lt . For query node q, for each k1, k2 ∈ {0, 1}, we learn

weights w1,k1 using {YLt ∪ {yq = k1}} and weights w2,k2 using {Y′Lt ∪ {yq = k2}}.

For each i ∈ U9q
t , we have:

|ϕ+q
i,k1,YLt

− ϕ+q
i,k2,Y′Lt

| ≤ |σ(xiw1,k1)− σ(xiw2,k2)| , using Lemma (5.5.4) ,

≤ max(|σ(xiw2,k2)− σ(xiw2,k2 − 2ηq||xi||)|, |σ(xiw2,k2)− σ(xiw2,k2 + 2ηq||xi||)|) ,

≤ max
k∈{0,1}

max(|σ(xiw2,k)− σ(xiw2,k − 2ηq||xi||)|, |σ(xiw2,k)− σ(xiw2,k + 2ηq||xi||)|) .

(5.15)

Here the second inequality follows from Proposition 1, observing that the labels can

differ for nodes q∗t−1 and q.

67

Now, the difference in risk is bounded as

|R+q
|YLt
−R+q

|Y′Lt
| ≤ 1

|U9q
t |
∑
i∈U9q

t

|Eyq [ϕ+q
i,YLt

]− Eyq [ϕ+q
i,Y′Lt

]| ,

≤ 1

|U9q
t |
∑
i∈U9q

t

max(| max
k∈{0,1}

ϕ+q
i,k,YLt

− min
k∈{0,1}

ϕ+q
i,k,Y′Lt

|,

| min
k∈{0,1}

ϕ+q
i,k,YLt

− max
k∈{0,1}

ϕ+q
i,k,Y′Lt

|) , using Lemma (5.5.3) ,

≤ 1

|U9q
t |
∑
i∈U9q

t

max
k∈{0,1}

max(|σ(xiw2,k)− σ(xiw2,k − 2ηq||xi||)|,

|σ(xiw2,k)− σ(xiw2,k + 2ηq||xi||)|) , using (5.15) ,

=
1

|U9q
t |
∑
i∈U9q

t

b̃(ηq,w2, i) (5.16)

5.5.3 Bound on Risk Error: Multiclass Classification

Now that the binary case has been presented, we would like to derive a similar

result for the more general case of multiclass classification. Every dataset used to

evaluate the performance of the proposed algorithms has three classes or more. Ex-

tending the theoretical result is not straightforward since a central part of the proof

relies on the mathematical formulation of the binary logistic regression prediction

model, which does not apply to the multiclass case. In practice, multiclass classi-

fication is often solved using a one-versus-all approach, i.e., by repeatedly applying

binary logistic regression. This is the method adopted by the solvers we have used

to generate the numerical results presented in the thesis. Effectively, the algorithm

68

performs binary logistic regression for each class (versus all other classes) and then

normalizes the sum of the sigmoid outputs to obtain the final prediction. In deriv-

ing a bound for multiclass classification, we assume that the one-vs-all method is

employed.

As before, we focus on the case where two labels can be different for the proposed

query node q and the previous query node q∗t−1. For a given label set YLt , we learn

weights w(k) for each class k ∈ K using L2-regularized binary one-vs-all logistic

regression. The output prior to normalization for a given feature vector xi is given

by σ(xiw(k)). We then normalize by dividing by Ci =
∑
k∈K

σ(xiw(k)) to obtain a

probability vector.

Again we start by defining several quantities. Let ρ(η,W2, i) be the multiclass

version of b̃(ηq,W2, i) defined in Equation 5.11. b±η(W2, i) remains the same as

defined in Proposition 1. We have:

ρ(η,W2, i) , max
k∈K

max(|b+η(w2,(k), i|, |b−η(w2,(k), i)|) (5.17)

β(W2, k, η, i) , max
(∣∣∣∣σ(xiw2,(k))

C2,i

− σ(xiw2,(k))− ρ(η,W2, i)

C2,i + 4ρ(η,W2, i)

∣∣∣∣ ,∣∣∣∣σ(xiw2,(k))

C2,i

− σ(xiw2,(k)) + ρ(η,W2, i)

C2,i − 4ρ(η,W2, i)

∣∣∣∣), (5.18)

β(W2, η, i) , max
k∈K

β(W2, k, η, i), (5.19)

The following proposition is similar to Proposition 1, but applies to the multi-

classification case and fixes the number of differing labels to two: M = 2. This leads

to η = 1
2λ

(||xj1||+ ||xj2||).

69

Proposition 2. Let W1 and W2 be the weights derived by multiclass logistic regres-

sion for classes k ∈ K to two datasets (X,Y), (X,Y′) with common feature vectors

but label sets differing for two vectors, yi1 6= y′i1 and yi2 6= y′i2. Assume that the mul-

ticlass logistic regression is performed by conducting L2-regularized one-vs-all binary

logistic regression for each class and then normalizing the output values to sum to

one. Let w1,(k) denote the weights learned for class k using label set Y and w2,(k) de-

note the corresponding weights learned using label set Y′. Let p1,k,i = σ(xiw1,(k))/C1,i

be the output probability associated with class k for feature vector xi using label set

Y, where C1,i =
∑

k∈K σ(xiw1,(k)). Let p2,k,i and C2,i be the corresponding entities

derived using label set Y′. For any feature vector xi, for each class k:

|p1,k,i − p2,k,i| ≤ β(W2, η, i) (5.20)

Proof. Two different labels can affect the weight vectors w(k) for at most four classes,

because there is no change in the one-versus-all binary labels for class k unless at

least one of yj1 , yj2 , y′j1 or y′j2 equals k. For any class k, at most two labels can

change for the binary classification. For the one-vs-all binary classifier for class k, we

learn a weight vector w1,(k) using Y and w2,(k) using Y′. Then from Proposition 1,

we directly have (for the case where both labels change):

|σ(xiw1,(k))− σ(xiw2,(k))| ≤ max(|b+η(w2,(k), i)|, |b−η(w2,(k), i)|) . (5.21)

70

Using ρ(η,W2, i) defined in Equation (5.17), we have for any class k:

σ(xiw2,(k))− ρ(η,W2, i) ≤ σ(xiw1,(k)) ≤ σ(xiw2,(k)) + ρ(η,W2, i) . (5.22)

We can thus bound the difference in the normalization terms C1,i =
∑

k∈K σ(xiw1,(k))

and C2,i =
∑

k∈K σ(xiw2,(k)). Since at most four classes can be affected by the change

of two labels, we have:

C2,i − 4ρ(η,W2, i) ≤ C1,i ≤ C2,i + 4ρ(η,W2, i) . (5.23)

We can now bound the difference in the probabilities p1,k,i and p2,k,i as follows:

|p1,k,i − p2,k,i| =
∣∣∣∣σ(xiw2,(k))

C2,i

− σ(xiw1,(k))

C1,i

∣∣∣∣ ,
≤ max

(∣∣∣∣σ(xiw2,(k))

C2,i

− σ(xiw2,(k))− ρ(η,W2, i)

C2,i + 4ρ(η,W2, i)

∣∣∣∣ ,∣∣∣∣σ(xiw2,(k))

C2,i

− σ(xiw2,(k)) + ρ(η,W2, i)

C2,i − 4ρ(η,W2, i)

∣∣∣∣) .
(5.24)

Taking the maximum of the right hand side of (5.24) over k leads to |p1,k,i− p2,k,i| ≤

β(W2, η, i) for all k.

Bound on risk. Recall the definition of the risk of querying node q given a

current label set YLt , this time for multiclass classification:

R+q
|YLt

, 1
|U9q

t |

∑
k∈K

∑
i∈U9q

t

ϕ+q
i,k,YLt

P(yq = k|YLt) , (5.25)

71

where

ϕ+q
i,k,YLt

,
(

1−max
k′∈K

P(yi = k′|YLt , yq = k)
)

= min
k′∈K

P(yi = k′|YLt , yq = k).

(5.26)

As for the binary case, the difference in risk is:

R+q
|YLt
− R̂+q

|Y′Lt
= 1
|U9q

t |

∑
i∈U9q

t

Eyq [ϕ
+q
i,YLt

]− Eyq [ϕ+q
i,Y′Lt

] , (5.27)

The random variable ϕ+q
i,YLt

now takes on value ϕ+q
i,k,YLt

with probability p(yq =

k|YLt) for k ∈ K.

We can now state the following theorem that bounds the difference in risk for

multiclass classification that arises from differing sets of labels.

Theorem 5.5.2. Consider multiclass regression performed via repeated one-vs-all

L2-regularized logistic regression with regularization parameter λ to two labelled datasets

(X,YLt) and (X,Y′Lt) that differ by one label, associated with the node q∗t−1. Let

wk
2,(k′) be the weight vector learned for class k′ using label data Y′Lt ∪ {yq = k}, and

let Wk
2 be the matrix with these vectors as columns, for k′ ∈ K. The risk error

arising from using Y′Lt instead of YLt is bounded as:

|R+q
|YLt
−R+q

|Y′Lt
| ≤ 1

|U9q
t |
∑
i∈U9q

t

β̃(W2, ηq, i) . (5.28)

Here β̃(W2, ηq, i) = max
k∈K

β(Wk
2 , ηq, i) for β(Wk

2 , ηq, i) as defined in (5.19).

Proof. For query node q, for each k1, k2 ∈ K, we learn weights wk1
2,(k) using YLt ∪

{yq=k1} and wk2
2,(k) using Y′Lt∪{yq=k2}, for each candidate class k. For each i ∈ U9q

t ,

72

we have:

|ϕ+q
i,k1,YLt

− ϕ+q
i,k2,Y′Lt

| =
∣∣∣∣max
k′∈K

P(yi = k′|Y′Lt , yq = k2)−max
k′∈K

P(yi = k′|YLt , yq = k1)

∣∣∣∣ ,
≤ max

(
max
k′∈K
|P(yi = k′|Y′Lt , yq = k2)− P(yi = k′|YLt , yq = k1)|

)
,

≤ β(Wk2
2 , ηq, i) ,

≤ max
k2∈K

β(Wk2
2 , ηq, i) , β̃(W2, ηq, i) . (5.29)

where the last line follows from Proposition 2.

Now, the difference in risk is bounded as

|R+q
|YLt
− R̂+q

|Y′Lt
| ≤ 1

|U9q
t |
∑
i∈U9q

t

|Eyq [ϕ+q
i,YLt

]− Eyq [ϕ+q
i,Y′Lt

]| ,

≤ 1

|U9q
t |
∑
i∈U9q

t

max

(
|max
k∈K

ϕ+q
i,k,YLt

−min
k∈K

ϕ+q
i,k,Y′Lt

|,

|min
k∈K

ϕ+q
i,k,YLt

−max
k∈K

ϕ+q
i,k,Y′Lt

|
)
, using Lemma (5.5.3) ,

≤ 1

|U9q
t |
∑
i∈U9q

t

β̃(W2, ηq, i) , using (5.29) . (5.30)

5.5.4 Additional Lemmas

The proofs of the main results bounding the differences in risks rely on the

following two lemmas:

Lemma 5.5.3. Let X and Y be two random variables taking values in [a, b] and

[c, d], respectively. Then |EX [X]− EY [Y]| ≤ max
(
|a− d|, |b− c|

)
.

73

Proof. We note

a− d ≤ EX [X]− EY [Y] ≤ b− c ,

from which the result follows.

Lemma 5.5.4. If 0 ≤ p1, p2 ≤ 1, then |min(p1, 1− p1)−min(p2, 1− p2)| ≤ |p1− p2|.

Proof. Let q = min(p1, 1− p1)−min(p2, 1− p2).

case 1 : p1 < 0.5, p2 < 0.5

q = p1 − p2

case 2 : p1 ≥ 0.5, p2 ≥ 0.5

q = (1− p1)− (1− p2) = p2 − p1

case 3 : p1 < 0.5, p2 ≥ 0.5

p1 − p2 ≤ q = p1 − (1− p2) ≤ (1− p1)− (1− p2) = p2 − p1

case 4 : p1 ≥ 0.5, p2 < 0.5

p2 − p1 = (1− p1)− (1− p2) ≤ q = (1− p1)− p2 ≤ p1 − p2

So, we have |q| ≤ |p1 − p2|.

5.5.5 Discussion of the Bounds

In this section, bounds on the one-step risk differences were presented for both

the binary and multiclass cases. A key feature of the bounds is that they are solely

expressed in terms of the available weights w2 or W2, which means that each bound

can be evaluated numerically (with minimal overhead compared to the regression

74

computations). If the bounds were tight enough, the algorithm could make an in-

formed decision at the time of computation as to whether it would be beneficial to

wait for the next label before determining which node to query. If the risk error is

small enough such that there is no possibility of it impacting the query decision, then

it is certain that the preemptive approximation will not affect the process at all. We

do not explore the usage of the bound in this way in this thesis, but it could be an

interesting direction for further study.

5.6 Summary

This chapter presented the preemptive algorithm PreGEEM that is based on

approximating GEEM in order to perform computation before obtaining the label

of the previous query. The purpose of this algorithm is to propose a way to take

advantage of time that could potentially be wasted. Empirical results showed that

the approximation did not hinder performance and a case study presented the effect

of the approximation on the process by comparing it with GEEM. Lastly, bounds

on the error made by approximation were presented for the binary and multiclass

classification tasks.

75

CHAPTER 6
Conclusion

The work described in this thesis has contributed to the field of active learning for

attributed graphs in multiple ways. First and foremost, a state-of-the-art algorithm

for the problem of active learning for semi-supervised attributed node classification

was introduced. In contrast to alternative approaches, the method relies on the prin-

cipled framework of expected error minimization and uses graph-cognizant logistic

regression to compete with GCN-based methods, without requiring a validation set.

Second, an extension of this model was provided to make the algorithm applicable to

the specific setting considered by the active learning for non-attributed graph litera-

ture. This variant, based on Bayesian model averaging, allows the algorithm to rely

on a label propagation method in very early stages of the process and then transition

to the better performing GEEM after enough labels have been collected. Third, a

new problem formulation led to the development of the PreGEEM algorithm, an-

other version of GEEM designed to perform preemptive querying by approximating

ground truth labels with predictions. This is a time efficient approach because the al-

ternative is to stall the process while waiting for the labelling process to be completed

(assuming that the labelling process is time-consuming). The last contribution is to

provide some theoretical guarantees for key quantities of the PreGEEM by bounding

the error caused by the introduced approximation.

76

Numerical experiments demonstrated that the proposed method significantly

outperforms existing active learning algorithms for attributed graphs, even when

the competing algorithms are given the unfair advantage of having access to fine-

tuned hyperparameters. This was thoroughly tested as the results were found to be

consistent over four different benchmark datasets. The second and third experimental

settings were conducted to evaluate how the designed combined algorithm compared

to state-of-the-art algorithms for the non-attributed graph setting. The strength

and consistency of our proposed model was once again highlighted as the reported

results did not vary much while migrating from the transductive to the inductive case.

By comparison, the label propagation methods designed for non-attributed graphs

completely fail when applied to the inductive setting. In Chapter 5, which introduced

the PreGEEM algorithm, the experiments focused on ensuring that performance did

not deteriorate substantially due to the modifications and approximations introduced

for the sake of time efficiency. The results demonstrate that in terms of achieved

accuracy, PreGEEM is almost equivalent to its non-preemptive counterpart.

Future Work. There are multiple avenues and algorithmic extensions that

can be explored. The main limitation of the proposed algorithms, which applies to

any single node pool-based query strategy in general, is scalability. As the size of the

graph grows, the relative impact of adding only one node decreases. This makes the

approach less relevant. At the same time, the computational overhead increases. For

this reason, we have limited our study to graphs with approximately 20,000 nodes.

For graphs of such size, the proposed single node approaches are both computa-

tionally feasible and achieve noticeable advantages compared to random query node

77

selection. For graphs of larger size, the advantage diminishes. For larger graphs, a

batch query solution is better suited, where multiple nodes can be selected at the

same query step. One strategy that could be explored is to extend the proposed

algorithm to the batch query setting. A simple, but heuristic and suboptimal ap-

proach, is just to identify multiple nodes at each step (the ten lowest risk estimates,

for example). One could improve this by requiring that the selected nodes have

predictions associated with different classes. Beyond such heuristics, it would be

preferable to develop a more principled approach. Another possible direction would

be to address the problem of applying deep learning algorithms to active learning

scenarios more directly. The solution taken in this thesis was effectively to avoid the

use of such models. A different approach could be to employ methods that focuses

on training models on very few training instances such as few shot learning [42] or

transfer learning [43].

78

REFERENCES

[1] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural net-
works on graphs with fast localized spectral filtering,” in Proc. Advances in
Neural Information Processing Systems, Barcelona, Spain, Dec. 2016, pp. 3844–
3852.

[2] T. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” in Proc. Int. Conf. on Learning Representations, Toulon,
France, Apr. 2017.

[3] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” in Proc. Advances in Neural Information Processing Systems,
Long Beach, CA, US, Dec. 2017, pp. 1024–1034.

[4] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
“Graph attention networks,” in Proc. Int. Conf. on Learning Representations,
Vancouver, Canada, Apr. 2018.

[5] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-based
semi-supervised classification,” in Proc. Int. World Wide Web Conf., Lyon,
France, Apr. 2018, pp. 499–508.

[6] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional net-
works,” in Proc. Int. Conf. on Knowledge Discovery & Data Mining, London,
United Kingdom, Aug. 2018, pp. 1416–1424.

[7] Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, and L. Song, “Geniepath: Graph neural
networks with adaptive receptive paths,” in Proc. AAAI Conf. on Artificial
Intelligence, Honolulu, HI, US, Jan. 2019, pp. 4424–4431.

[8] S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu, “Batch mode active learning and
its application to medical image classification,” in Proc. Int. Conf. on Machine
Learning, Pittsburgh, PA, US, Jun. 2006, pp. 417–424.

79

80

[9] Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning with
image data,” in Proc. Int. Conf. on Machine Learning, Sydney, Australia, Aug.
2017, pp. 1183–1192.

[10] T. Kurzendorfer, P. Fischer, N. Mirshahzadeh, T. Pohl, A. Brost, S. Steidl, and
A. Maier, “Rapid interactive and intuitive segmentation of 3d medical images
using radial basis function interpolation,” Journal of Imaging, vol. 3, p. 56, Nov.
2017.

[11] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using gaus-
sian fields and harmonic functions,” in Proc. Int. Conf. on Machine Learning,
Washington, DC, USA, Aug. 2003, pp. 912–919.

[12] N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella, “Active learning on
trees and graphs,” in Proc. Conf. On Learning Theory, Haifa, Israel, Jun. 2010.

[13] N. Cesa-Bianchi, “Active learning on graphs via spanning trees,” in Proc. Work-
shop on Networks Across Disciplines: Theories and Applications (NIPS), Van-
couver, Canada, Jun. 2010.

[14] Q. Gu and J. Han, “Towards active learning on graphs: An error bound min-
imization approach,” in Proc. Int. Conf. on Data Mining, Brussels, Belgium,
Dec. 2012, pp. 882–887.

[15] M. Ji and J. Han, “A variance minimization criterion to active learning on
graphs,” in Proc. Int. Conf. on Artificial Intelligence and Statistics, La Palma,
Canary Islands, Apr. 2012, pp. 556–564.

[16] Y. Ma, R. Garnett, and J. Schneider, “σ-optimality for active learning on Gaus-
sian random fields,” in Proc. Advances in Neural Information Processing Sys-
tems, Lake Tahoe, NV, US, Dec. 2013, pp. 2751–2759.

[17] H. Cai, V. W. Zheng, and K. C. Chang, “Active learning for graph embedding,”
arXiv preprint arXiv:1705.05085, 2017.

[18] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm,
“Deep Graph Infomax,” in Proc. Int. Conf. on Learning Representations, Addis
Ababa, Ethiopia, Apr. 2019.

[19] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph
domains,” in Proc. IEEE Int. Joint Conf. on Neural Networks, Québec, Canada,
Jul. 2005, pp. 729–734.

81

[20] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE Transactions on Neural Networks, vol. 20,
no. 1, pp. 61–80, 2009.

[21] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?” in Proc. Int. Conf. on Learning Representations, New Orleans, LA,
US, Jun. 2019.

[22] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in convo-
lutional neural networks on graphs,” in Proc. EEEI Conf. on Computer Vision
and Pattern Recognition, Honolulu, HI, US, Jul. 2017, pp. 3693–3702.

[23] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning
architecture for graph classification,” in Proc. AAAI Conf. on Artificial Intelli-
gence, New Orleans, LA, US, Feb. 2018, pp. 629–638.

[24] M. Karzand and R. D. Nowak, “Active learning in the overparameterized and
interpolating regime,” arXiv preprint arXiv:1905.12782, 2019.

[25] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
“Collective classification in network data,” AI Magazine, vol. 29, no. 3, p. 93,
Sep. 2008.

[26] X. Zhu, J. Lafferty, and Z. Ghahramani, “Combining active learning and semi-
supervised learning using Gaussian fields and harmonic functions,” in Proc.
Workshop on The Continuum from Labeled to Unlabeled Data (ICML), Wash-
ington, DA, US, Aug. 2003, pp. 58–65.

[27] A. Guillory and J. A. Bilmes, “Label selection on graphs,” in Proc. Advances
in Neural Information Processing Systems, Vancouver, Canada, Dec. 2009, pp.
691–699.

[28] A. Guillory and J. Bilmes, “Active semi-supervised learning using submodular
functions,” in Proc. Conf. on Uncertainty in Artificial Intelligence, Barcelona,
Spain, Jul. 2011, pp. 274–282.

[29] K. Jun and R. Nowak, “Graph-based active learning: A new look at expected
error minimization,” in Proc. IEEE Global Conf. Signal and Information Proc.,
Greater Washington, DC, USA, Dec. 2016, pp. 1325–1329.

82

[30] D. Berberidis and G. B. Giannakis, “Data-adaptive active sampling for effi-
cient graph-cognizant classification,” IEEE Trans. Signal Processing, vol. 66,
pp. 5167–5179, Oct. 2018.

[31] M. Bilgic, L. Mihalkova, and L. Getoor, “Active learning for networked data,”
in Proc. Int. Conf. on Machine Learning, Haifa, Israel, Jun. 2010, pp. 79–86.

[32] M. Bilgic and L. Getoor, “Effective label acquisition for collective classification,”
in Proc. germanInt. Conf. on Knowledge Discovery and Data Mining, Las Vegas,
NE, US, Aug. 2008, pp. 43–51.

[33] ——, “Reflect and correct: A misclassification prediction approach to active
inference,” ACM Trans. Knowl. Discov. Data, vol. 3, no. 4, Dec. 2009.

[34] J. Neville and D. Jensen, “Iterative Classification in Relational Data,” in Proc.
Workshop on Learning Statistical Models From Relational Data (AAAI), Austin,
TX, US, July 2000, pp. 42–49.

[35] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying
graph convolutional networks,” in Proc. Int. Conf. on Machine Learning, Long
Beach, CA, US, Jun. 2019, pp. 6861–6871.

[36] T. Minka, “Bayesian model averaging is not model combination,” 2002, MIT
Media Lab Note.

[37] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, “Bayesian model
averaging: A tutorial,” Statistical Science, vol. 14, no. 4, pp. 382–401, 1999.

[38] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph
neural network evaluation,” in Proc. Relational Representation Learning Work-
shop (NeurIPS), Montréal, Canada, Dec. 2018.

[39] N. Roy and A. McCallum, “Toward optimal active learning through sampling
estimation of error reduction,” in Proc. Int. Conf. on Machine Learning, San
Francisco, CA, USA, June 2001, pp. 441–448.

[40] B. Settles, “From theories to queries: Active learning in practice,” in Proc. Ac-
tive Learning and Experimental Design workshop In conjunction with AISTATS,
vol. 16, Sardinia, Italy, May 2011, pp. 1–18.

83

[41] H. Sivan, M. Gabel, and A. Schuster, “Online linear models for edge computing,”
in Proc. Eur. Conf. Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, Wurzburg, Germany, Sep. 2019.

[42] V. G. Satorras and J. B. Estrach, “Few-shot learning with graph neural net-
works,” in Proc. Int. Conf. on Learning Representations, Vancouver, Canada,
Apr. 2018.

[43] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep
transfer learning,” in Proc. Int. Conf. Artificial Neural Networks and Machine
Learning, Rhodes, Greece, Oct. 2018, pp. 207–217.

