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ABSTRACT

In this thesis, a new method for studying the spectral gap of certain averag-

ing operators over the square integrable functions on the 2-sphere is explored.

The proposed method is the use of Goldman flows to probe associated spectral

radii defined over the moduli space of representations of the genus 2 funda-

mental group into SU2. In particular, the critical points of the spectral radii

are considered. Using Goldman flows, a description of how the first spectral

radius of representations of the genus 2 fundamental group into SU2 changes

locally around a point is given. A numerical study highlights representations

with minimal first spectral radius of zero as well as shows that highly sym-

metric representations need not exhibit this minimum. Focused introductions

to smooth manifolds, Lie groups, representation varieties along with their nat-

ural symplectic structures, and Goldman flows are provided before this first

attempt at using Goldman flows to study spectral gaps is discussed.
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ABRÉGÉ

Dans ce mémoire, une nouvelle méthode est utilisée pour explorer la la-

cune dans le spectre de certains opérateurs de moyennisation sur les fonctions

de carré sommable sur la 2-sphère. La méthode proposée est l’utilisation des

flots de Goldman pour sonder les spectres associés qui sont définis sur l’espace

de modules de représentations du groupe fondamental de genre 2 dans SU2.

Spécifiquement, les points critiques des rayons spectraux sont examinés. A

l’aide des flots de Goldman, une description est donnée de la variation lo-

cale du premier rayon spectral des représentations du groupe fondamental

de genre 2 dans SU2. Une étude numérique nous indique la présence de

représentations avec un premier rayon spectral égal à zéro et démontre ainsi

que les représentations hautement symétriques ne sont pas forcément celle

qui manifestent ce minimum. Des introductions aux variétés différentielles,

groupes de Lie, variétés de représentations et leurs formes symplectiques na-

turelles, ainsi les flots de Goldman sont fournies en préliminaire à cette étude

du trou spectral avec flots de Goldman.
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CHAPTER 1
Introduction

This thesis explores by means of Goldman flows the spectral gap of cer-

tain standard averaging operators defined over L2(S2). The close ties be-

tween the spectral gap of these operators and the representation varieties

Hom(π1(Σg), SU2)/SU2, realized as real-valued functions on Hom(π1(Σg), SU2)/

SU2 in which each representation class is mapped to an associated spectral gap,

allow this application of Goldman flows. Once the effect of such flows on the

spectral gap is understood, they will facilitate a study of the spectral gaps

local behaviour on the variety. Furthermore, providing agility within the rep-

resentation variety, these flows provide a means of searching for critical points

of the spectral gap.

Before the work in this direction is presented, preliminary material is built

up in earlier chapters. With the goal of describing this work in mind, in these

early chapters only those topics and examples necessary for building its foun-

dation are described. In the second chapter an introduction to manifolds,

quickly narrowing in on smooth manifolds, is given. The chapter culminates

with a description of the closed orientable surfaces. Another class of smooth

manifolds, Lie groups, are discussed following this in Chapter 3. In particular,

information about the Lie groups SUn, with further details yet about SU2, is

presented. In Chapter 4 representation varieties and their natural symplectic

structure are described in terms of both representations and flat connections.

The preliminary material is wrapped up in Chapter 5’s introduction to Gold-

man flows. In short, Goldman flows are a generalization of Fenchel-Nielsen

twist flows on Teichmüller space to more general representation varieties.
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In Chapter 6, the inquiry stated above is introduced in greater depth and

its historical context in terms of the Banach-Tarski Paradox and Ruziewicz

problem is outlined. Finally, Chapter 7 begins to address the questions posed

in chapter six in the lowest dimensional and simplest cases. Explicit descrip-

tions of how a sort of simplified spectral gap of representations of π1(Σ2) into

SU2 evolve under Goldman flows are shown.

The first two chapters rely heavily on John Lee’s Introduction to Smooth

Manifolds [12]. François Labourie’s course notes Lectures on Representation

of Surface Groups are the primary source for the sections building up to and

addressing the alternative formulation of the representation variety provided

in Chapter 4 [11]. William Goldman’s work in [8] and [10] source the informa-

tion on the representation variety’s natural symplectic structure and Goldman

flows. Work by Alex Gamburd, Dmitry Jakobson, and Peter Sarnak on the

spectral gap of free group representations into SU2 in [7] provides inspiration

for those questions asked in Chapter 6.

2



CHAPTER 2
Manifold basics

This chapter follows its title in both senses: many of the important basics

regarding manifolds, in particular smooth manifolds, are quickly laid out.

This brief overview is guided by the considerably more expanded introduc-

tion given in Lee’s Introduction to Smooth Manifolds [12]. The concepts which

are included have been chosen because they will be used in later chapters. A

natural place to start is with the definition of a manifold.

Definition 1. An n-manifold is a second countable, Hausdorff, topological

space such that every point of the space has a neighbourhood homeomorphic to

an open subset of Rn.

The primary concern of this thesis will be 2-manifolds, or surfaces. For this

reason, generic manifolds will be denoted by S. According to the last property

stated in the definition, one may think of these spaces as locally Euclidean.

The local Euclidean nature of manifolds may be made slightly more precise

by using coordinate charts. A coordinate chart is a homeomorphism φ from

an open subset U of an n-manifold S to an open subset Û of Rn. The compo-

nent functions φi of the homeomorphism, given by φ(x) = (φ1(x), . . . , φn(x)),

provide local coordinates on U . It follows from the definition that every point

of the manifold is contained in a coordinate chart, and in reality many. Be-

tween any two charts (U,φ), (V, ψ) for which U ∩ V ̸= ∅, the homeomorphism

ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) provides a transition map between the local

coordinates. A collection of charts whose domains together cover a surface S
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is said to be an atlas of S. Two atlases are equivalent if their union is again

an atlas. Examples of these objects are given for the sphere in figure 2–1.

Figure 2–1: Sphere with two coordinate charts comprising an atlas, and a transition map
between them.

By placing restrictions on the the coordinate charts, the manifold, at this

point a strictly topological entity, is endowed with further structure. In the

next section, smooth structures are discussed. G-structures will be encoun-

tered later in section 4.1.1.
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2.1 Smooth Manifolds

It is desirable, when possible, to build up enough structure on a manifold to

enable calculus. Such structure comes from placing certain smooth restrictions

on the coordinate charts. In particular, the manifold’s atlas of charts must be

restricted to a smooth atlas: an atlas for which the transition maps between any

two overlapping charts of the atlas are diffeomorphisms. A smooth structure

is an equivalence class of smooth atlases. A topological n-manifold S together

with some smooth structure is a smooth manifold. It will be assumed that all

manifolds discussed from here on will be smooth.

In this context, one may now define smooth functions. A smooth function

is any function f : S → Rk such that for every x ∈ S there exists a chart (U,φ)

whose domain contains x and for which f ◦ φ−1 is smooth on φ(U) ⊂ Rn. As

would be expected, the set of all real-valued, smooth functions form a vector

space, denoted by C∞(S).

Generalizing the previous definition, one may also define smooth maps be-

tween manifolds. For two smooth manifolds S,M , the map F : S → M is

smooth if for every x ∈ S, there exists charts (U,φ) containing x and (V, ψ)

containing F (x) for which F (U) ⊂ V and ψ ◦ F ◦ φ−1 is a smooth map from

φ(U) to ψ(V ). If, moreover, F is a bijection with a smooth inverse, it is said

to be a diffeomorphism between S and M .

2.1.1 The tangent bundle

With the basic smooth structure defined, the powerful tool in calculus of

linear approximation may be brought into the realm of smooth manifolds. The

tangent bundle, comprised of local linear approximations of the manifold, is

one construction which enables this extension. The basic building block of the

tangent bundle is the tangent vector.
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Tangent vectors. One of the simplest instances of linear approxima-

tion is the familiar notion of geometric tangent vectors and their one-to-one

correspondence with directional derivatives. The generalization of directional

derivatives to manifolds are derivations.

Definition 2. For any point x of a manifold S, a derivation at x is a linear

map X : C∞(S) → R satisfying, for all f, g ∈ C∞(S),

X(fg) = f(x)Xg + g(x)Xf.

Each derivation is called a tangent vector to S at x. As with directional

derivatives, the collection of all derivations forms a vector space. This vector

space is called the tangent space to S at x and is denoted by TxS. The

correspondence between derivations and geometric tangent vectors becomes

apparent when one considers local coordinates about x – see Lee [12, 60 - 70].

Tangent bundle. The tangent spaces at each point together comprise a

global object associated to a smooth manifold. For any smooth manifold S,

this object is the tangent bundle TS of S, defined to be the disjoint union of

all the tangent spaces:

TS =
∐
x∈S

TxS.

The tangent bundle has a natural topology and smooth structure that make

it into a 2n-dimensional smooth manifold.

Having considered the tangent structure on individual manifolds, it is in-

teresting to note how tangent vectors behave under smooth maps between

them. If S and M are manifolds, and F : S → M is a smooth map, then

the pushforward F∗ associated with F is a map F∗ : TxS → TF (x)M acting
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individually on the tangent spaces as follows

(F∗X)(f) = X(f ◦ F ), for any X ∈ TxS and f ∈ C∞(M).

Vector fields. Now that the tangent bundle has been established, vector

fields on manifolds may be defined. If S is a smooth manifold, a smooth vector

field on S is a smooth map X : S → TS, such that X(x) is an element of

TxS. Just as for vector fields in Rn, these are, roughly speaking, a smoothly

varying choice of a single vector at each point of the manifold. The set of all

smooth vector fields, let it be denoted by X(S), forms a vector space under

pointwise addition and scalar multiplication.

As with individual vectors, it is interesting to consider how vector fields

behave under smooth maps between manifolds. In general, the pushforward of

an entire vector field need not be defined. This is obvious if one considers maps

which are not injective. The pushforward is, however, defined in a natural way

in the case of diffeomorphisms.

Of considerable interest for Lie groups, a class of smooth manifolds which

will be described in Chapter 3, is how two smooth vector fields may be com-

bined to obtain another via the Lie Bracket.

Definition 3. The Lie bracket of two smooth vector fields X, Y is the smooth

vector field [X, Y ] : C∞(S) → C∞(S) defined by

[X, Y ]f = XY f − Y Xf for all f ∈ C∞(S).

For all vector fields X, Y, Z this map exhibits the following properties:

7



Bilinearity: for c, d in R,

[cX + dY, Z] = c [X,Z] + d [Y, Z]

[Z, cX + dY ] = c [Z,X] + d [Z, Y ]

Antisymmetry:

[X, Y ] = −[Y,X]

Jacobi identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

Another notable aspect of vector fields is their intricate link with flows and

integral curves.

Flows and integral curves. Fix any reasonably nice smooth vector

field on a smooth manifold. Then, intuitively, an integral curve is the path

traced out by an initial point which is placed on the manifold and left to

evolve according to the vector field. A flow is a smooth bijective evolution of

the entire manifold, and thus a series of diffeomorphisms, in which each point

moves along its respective integral curve. Concretely, flows and integral curves

may be defined as follows.

Definition 4. Given a manifold S, smooth vector field X on S, and an open

interval I ⊂ R, a smooth curve γ : I → S is an integral curve of X if

γ′(t) = Xγ(t) for all t ∈ I.

Definition 5. For a given manifold S, first define a flow domain D to be an

open set D ⊂ R×S for which, given any x ∈ S, the set Dx = {t ∈ R | (t, x) ∈

D} is an open interval containing 0. Then a (smooth) flow on S is a smooth
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map θ : D → S satisfying, for all x in S

θ(0, x) = x,

and for all t ∈ Dx and s ∈ Dθ(t,x) such that t+ s ∈ Dx,

θ(s, θ(t, x)) = θ(t+ s, x).

Integral curves and flows are called maximal if their domains cannot be

made larger. Both diffeomorphisms of the manifold and integral curves may

be extracted from a flow. Indeed, for each t in R such that it is defined, the

map θt : S → S given by

θt(x) = θ(t, x)

is a diffeomorphism. For each x in S, the curve θx : I → S defined by

θ(x)(t) = θ(t, x)

is an integral curve. For any flow, the vector field defined by Xx = θx′(0) is

called the infinitesimal generator of θ. Solidifying the intuitively understood

generation of flows and integral curves from vector fields described above,

the following theorem establishes that every smooth vector field determines

a unique maximal integral curve starting at each point, and also a unique

maximal flow.

Theorem 1 (Fundamental Theorem on Flows). [12, 442] Let S be a smooth

manifold, and X be a smooth vector field on S. Then there is a unique maximal

smooth flow θ : D → S whose infinitesimal generator is X. This flow has the

following properties:

1. For each x ∈ S, the curve θ(x) : Dx → S is the unique maximal integral

curve of X starting at x.

9



2. For each t in R, the set St = {x ∈ S | (t, x) ∈ D} is open in S, and

θt : St → S−t is a diffeomorphism with inverse θ−t.

3. For each (t, x) ∈ D, (θt)∗Xx = Xθt(x).

2.1.2 Other vector bundles

The tangent bundle is just one example of a vector bundle over a manifold.

In general, a vector bundle on a manifold is a collection of vector spaces, one

based at each point of the manifold, associated in such a way that locally

their union looks like the Cartesian product of the manifold with Rn, however

globally may be twisted.

Definition 6. [12, 104] A smooth vector bundle of rank k over a smooth

manifold S is a smooth manifold E together with a surjective smooth map

π : E → S satisfying:

1. for each x ∈ S, the set Ex = π−1(x) ⊂ S, which is called the fibre of E

over x, has the structure of a k-dimensional real vector space.

2. for each x ∈ S, there exists a neighbourhood U of x in S and a diffeo-

morphism Φ : π−1(U) → U × Rk, called a local trivialization of E

over U , such that for each q ∈ U , the restriction Φ to Eq is a linear

isomorphism from Eq to {q} × Rk ∼= Rk; and such that the following

diagram commutes

π−1(U)
Φ
- U ×Rk

U

π1

?

π
-

where π1 is the projection on the first coordinate.
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The space E is called the total space of the bundle, S is called its base, and

π is its projection. Any Ex = π−1(x) is a fibre. If there exists a trivialization

of E over S, then E is referred to as the trivial bundle. In any other case,

there will be more than one local trivialization on the bundle. Wherever two

trivializations overlap, their composition has a simple form as explained by

the following theorem.

Theorem 2. [12, 107] Suppose π : E → S is a smooth vector bundle and

that Φ : π−1(U) → U × Rk and Ψ : π−1(V ) → V × Rk are smooth local

trivializations of E for which U ∩ V ̸= ∅. Then there exists a smooth map τ :

U∩V → GL(k,R), called the transition function, for which the composition

Φ ◦Ψ−1 : (U ∩ V )×Rk → (U ∩ V )×Rk has the form

Φ ◦Ψ−1(x, v) = (x, τ(x)v).

Given two vector bundles E and E ′ over S and S ′ respectively, a bundle map

is a smooth map ψ : E → E ′ which is fibre-preserving and fibre-wise linear. If

the bundles E and E ′ share a base space then an isomorphism is a fibre-wise

invertible bundle map between them. The group of all automorphisms of a

bundle E is called the gauge group. It will be denoted by G(E).

Just as it was interesting to take a single vector from the tangent space at

each point to form a vector field, the same procedure is useful on more general

vector bundles. The resulting object is a smooth section.

Definition 7. Let π : E → S be a smooth vector bundle over a smooth

manifold S. Then a smooth section is a smooth map σ : S → E satisfying

π ◦ σ = IdS.

11



Just as the smooth vector fields formed a vector space, so too do the set

of smooth sections of a generic vector bundle. According to context, and

keeping with standard conventions, this vector space will be denoted either

by C∞(S,E) or Γ(E). If the domain of the section is restricted to some open

subset U of S, it is called a local section. A first useful application of sections

is to provide local bases for vector bundles. Suppose π : E → S is a smooth

vector bundle and the sections σ1, . . . , σn of E are defined over some open

U ⊂ S. These sections are independent if their values σ1(x), . . . σn(x) are

linearly independent elements of Ex for each x in U . If their values span Ex

for each x in U , then they are said to span E. An ordered k-tuple (σ1, . . . , σk)

of independent local smooth sections over U that span E is a smooth local

frame for E. As is clear from their linear independence and spanning nature,

for each x in U the vectors (σ1(x), . . . , σk(x)) form a basis for the fibre Ex.

Cotangent bundle. A vector bundle which exists on every smooth man-

ifold and is of significant importance is the cotangent bundle. Whereas it was

shown how the tangent bundle provides a means of describing the derivative

of a curve on a given manifold, the cotangent bundle allows a description of

the derivative of real-valued functions defined over the manifold.

In general, for any finite-dimensional real vector space V , a covector is a

real-valued linear functional on V . The set of all convectors forms a vector

space with the same dimension as the space V . This space is called the dual

space and is denoted V ∗. Consider now a smooth manifold S. For each point

x in S, there exists a cotangent space T ∗
xS dual to TxS. Elements of the space

T ∗
xS are referred to as tangent covectors. The disjoint union of the cotangent

spaces at each point of a manifold together form the rank-n cotangent bundle:

T ∗S =
∐
x∈S

T ∗
xS.
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A second useful application of sections now arises. A smooth section of T ∗S

is a covector field, or a (differential) 1-form. These 1-forms provide the means

of describing the first partial derivatives of real-valued smooth functions men-

tioned above. Given a smooth, real-valued function f on a smooth manifold

S, there is an associated smooth 1-form df , called the differential of f, defined

by

dfx(Xx) = Xxf for any Xx ∈ TxS. (2.1)

Like the gradient, the differential of f stores the first partial derivatives in each

of the tangent directions; given any tangent vector, the differential returns the

first partial derivative of the function in that direction.

Dual to the pushforward described earlier for tangent vectors, there exists

a pullback of covectors under smooth maps. Precisely, if F : S → M is

a smooth map between manifolds, then for each x ∈ S there exists a map

F ∗ : T ∗
F (x)M → T ∗

xS called the pullback and defined by

F ∗(ω)(X) = ω(F∗X), for all ω ∈ T ∗
F (x) and X ∈ TxS.

Tensor bundles. The tangent and cotangent bundles are special cases of

a larger class of vector bundles, namely the tensor bundles. The tangent and

cotangent bundles are at each point comprised of linear maps. General tensor

bundles are pointwise composed of multilinear ones. As vectors and convectors

were the basic building blocks of the tangent and cotangent bundles, tensors

are the basic elements of tensor bundles.

Definition 8. Given a vector space V , a covariant k-tensor on V is a real-

valued multilinear function of k elements of V :

ω : V × · · · × V  
k copies

→ R.

13



A k-tensor is said to be of rank k. The collection of all rank k tensors form

a vector space which will be denoted by T k(V ). Tensors of different ranks can

be combined via the tensor product to form new tensors. For a vector space

V and tensors ω, η in T k(V ), T l(V ) respectively, the tensor product of ω and

η is the covariant (k + l)-tensor

ω ⊗ η : V × · · · × V  
k + l copies

→ R

given by

ω ⊗ η(v1, . . . ,vk+l) = ω(v1, . . . ,vk) η(vk+1, . . . ,vk+l).

With the tensor product, a basis for T k(V ) may easily be described.

Theorem 3. [12, 262] Let V be a real vector space of dimension n and let (ei)

be its dual basis. The set of all covariant k-tensors of the form ei1 ⊗ · · · ⊗ eik

for 1 ≤ i1 ≤ · · · ≤ ik ≤ n is a basis for T k(V ).

That every k-tensor can be written as a linear combination of tensor prod-

ucts of convectors prompts a diversion to an alternative formulation of T k(V )

in terms of tensor products of vector spaces.

Definition 9. Given vector spaces V1, . . . , Vk, their tensor product V1 ⊗

· · · ⊗ Vk is the set

V1 ⊗ · · · ⊗ Vk = {multilinear maps φ : V ∗
1 × · · · × V ∗

k → R},

which is a vector space.

So each space T k(V ) is the tensor product of k copies of V ∗:

T k(V ) = V ∗ ⊗ · · · ⊗ V ∗  
n

.

14



The above definitions may now be expanded to manifolds. The bundle of

covariant k-tensors on a smooth manifold S is

T kS =
∐
x∈S

T k(TxS).

Note, the bundle of covariant 1-tensors is the cotangent bundle. Smooth sec-

tions of tensors bundles are smooth tensor fields. The tensor product of vector

bundles is the tensor product of the vector spaces at each point. That is,

given a manifold S and smooth vector bundles E1, . . . , Ek over S, their tensor

product is

E1 ⊗ · · · ⊗ Ek =
∐
x∈S

E1
x ⊗ · · · ⊗ Ek

x . (2.2)

An example which will appear later is the endomorphism bundle End(E) asso-

ciated to a bundle E over S. This bundle, which at every point x contains the

endomorphisms of Ex, may be written using the tensor product as End(E) =

E ⊗ E∗.

Alternating tensors and differential forms. Amongst tensors, the

alternating tensors are a noteworthy class. Alternating tensors are those ten-

sors for which their value changes sign whenever two arguments are switched.

Alternating k-tensors are also referred to as k-covectors. As their name sug-

gests, they are the natural extension of covectors to higher rank tensors. For

a given space V , the subset of T k(V ) consisting of all alternating tensors is

denoted by Λk(V ). Accordingly, for a smooth manifold S, the subset of T kS

comprised of the alternating tensors is ΛkS:

ΛkS =
∐
x∈S

Λk(TxS).
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For any vector space V there exists a projection Alt : T k(V ) → Λk(V ) given

by

Altω(v1, . . . ,vk) =
1

k!

∑
σ∈Symk

(sgn σ)ω(vσ(1), . . . ,vσ(k)), (2.3)

where Symk is the group of all permutations of k elements.

Alternating tensors are of particular importance to smooth manifold theory

because they provide manifolds with objects which can be integrated over.

These objects are the smooth sections of ΛkS, called differential k-forms. The

vector space of all such sections is denoted Ωk(S). Note the 0-forms are simply

smooth functions. The differential 1-forms df of smooth functions f already

discussed above in the paragraph titled Cotangent bundles are a subset of

Ω1(S) called the exact 1-forms. This subset will be generalized to higher k-

forms shortly.

Two important manipulations of forms are the wedge product and the

exterior derivative. The wedge product provides a means of combining forms of

different rank, while the exterior derivative generalizes the differential operator

d already defined in equation 2.1 for smooth functions.

Definition 10. If ω, η are elements of Λk(V ),Λl(V ) respectively, then the

wedge product of ω and η is the alternating (k + l)-tensor

ω ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η). (2.4)

Definition 11. [12, 306] Given a smooth manifold S, the exterior derivative

is the unique linear map d : Ωk(S) → Ωk+1(S) which satisfies the following

properties:

1. if f is a smooth real-valued function, the df is the differential of f
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2. if ω, η in Ωk(S),Ωl(S) respectively, then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

3. d ◦ d = 0.

Two important subsets of Ωk(S) may now be defined. As already seen in

the case when k = 1, the exact k-forms are those forms ω such that ω = dη

for some (k−1)-form η. The closed forms are those forms ω such that dω = 0.

Symplectic structure. A special type of 2-form which will become of

particular interest in Chapter 5 covering Goldman flows are the symplectic

forms.

Definition 12. Given a smooth manifold S, a symplectic form is a closed,

nondegenerate 2-form.

By fixing a symplectic form ω, one endows a smooth manifold with a

symplectic structure. In this case, the manifold is referred to as a symplec-

tic manifold. For any symplectic manifold (S, ω) and smooth function H in

C∞(S) there exists a particularly interesting smooth vector field. This is the

Hamiltonian vector field XH , defined as the vector field satisfying

ω(XH , Y ) = dH(Y ) = Y H

for any vector field Y on S. The function H is referred to as the Hamilto-

nian, and the maximal smooth flow associated to the vector field XH is the

Hamiltonian flow.
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2.2 Classifying properties

There are several basic properties by which smooth manifolds may be de-

scribed. For instance, as topological spaces, manifolds may be compact, con-

nected, and/or path connected. Two other important properties of a manifold

are the possible existence of boundary and an orientation.

Boundary. The definition of an n-manifold stated above may be slightly

expanded to account for manifolds with boundary. This is done by considering

upper half-space

Hn = {(x1, . . . , xn) ∈ Rn |xn ≥ 0}

rather than the whole space Rn itself.

Definition 13. An n-manifold with boundary is a second countable, Haus-

dorff topological space such that every point of the space has a neighbourhood

homeomorphic to an open subset of Hn.

The coordinate charts explained above are modified accordingly. Points

x on the manifold are boundary points if their image under coordinate charts

are in ∂Hn = {(x1, . . . , xn) ∈ Rn |xn = 0}, while those points with images in

IntHn = {(x1, . . . , xn) ∈ Rn |xn > 0} are interior points. Compact manifolds

without boundary are referred to as closed.

Orientation. While orientability is a topological property, it is more

easily defined for smooth manifolds. Since the concern here is with smooth

manifolds, this route will be taken. Suppose S is a smooth manifold. The

tangent space Tx at every point x of the manifold can be given an orienta-

tion. In order for these pointwise orientations to have any meaning over the

entire manifold, they mush fit together in a certain way. For such a pointwise

orientation, a local frame (σi) [see the paragraph following definition 7] over
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some open set U is (positively) oriented if (σ1|x , . . . , σn|x) is a positively ori-

ented basis for each TxS according to the pointwise orientation at each x in

U . If every point of S is in the domain of some such oriented local frame, the

pointwise orientation is said to be continuous. An orientation of S is a con-

tinuous pointwise orientation. If a pointwise orientation exists for a manifold,

the manifold is said to be orientable. If no pointwise orientation exists, it is

nonorientable. Examples of nonorientable surfaces include the Möbius strip,

the Klein bottle, and the real projective plane RP 2.

2.3 Homotopy and the fundamental group

Paths on manifolds provide a precise way of encoding essential aspects

of their structure. A path in S from x0 to x1 is a continuous function from

[0, 1] → S such that f(0) = x0 and f(1) = x1. Similar paths may be related

through path homotopy.

Definition 14. Two paths f and g in S are said to be homotopic if they

have the same initial and terminal points and if there is a continuous map

H : [0, 1] × [0, 1] → S such that

H(t, 0) = f(t) and H(t, 1) = g(t),

H(0, x) = x0 and H(1, x) = x1.

Intuitively, two paths are homotopic if one can continuously be dragged

through the manifold to the other, while keeping the end points fixed. The

relation given by path homotopy is an equivalence relation. Considering only

the paths with fixed initial and terminal point x0, the homotopy classes of such

paths then form a group with concatenation of paths as the group product.

This group is called the fundamental group of the manifold with base point
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x0. While fixing a base point is necessary to define the fundamental group,

the group is independent of this point. It will therefore simply be denoted

by π1(S) without reference to the base point. The fundamental group is a

topological invariant, meaning that homeomorphic manifolds have the same

fundamental groups.

2.3.1 Closed orientable surfaces

Amongst manifolds, the closed orientable surfaces receive considerable at-

tention. These surfaces are classified according to their genus, which may

be defined concretely in terms of the Euler characteristic χ via the equation

χ = 2 − 2g, or intuitively in terms of the number of ‘handles’ of the surface.

For example, see the genus 2 surface in figure 2–2. A closed orientable surface

of genus g will be denoted by Σg and generic closed oriented surface will be

denoted by Σ. The fundamental groups of such surfaces have a particular

Figure 2–2: Genus 2 surface with generators α1, β1, α2, and β2 of its fundamental group.

form:

π1(Σg) = ⟨α1, β1, . . . , αg, βg |
g∏

i=1

[αi, βi] = Id⟩.
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These groups, frequently referred to as surface groups, will play an important

role in later chapters.

21



CHAPTER 3
Lie groups

One class of smooth manifolds are Lie groups. These manifolds are charac-

terized by being groups in addition to being smooth manifolds. As in Chapter

2, the brief introduction to Lie groups provided here is guided by Lee [12].

Definition 15. A Lie group G is a group which is also a smooth manifold

and for which the group operation map o : G × G → G and inversion map

i : G→ G, given respectively by

o(g, h) = gh and i(g) = g−1,

are both smooth.

One set of examples are the general linear groups Gln(R) of invertible n×n

matrices with matrix multiplication as the group operation. Another set of

examples which will be of particular importance later in the thesis are the

complex, special unitary matrices SUn. It is shown in Lee [12, 38(Gln(R));

215(SU2)] that these groups satisfy the necessary properties. An important

class of diffeomorphisms which arise on Lie groups are the left translations.

For any g ∈ G, a left translation is the map Lg : G→ G defined by Lg(h) = gh

for all h in G. Smoothness of the group operation map ensures that these are

indeed smooth maps. A vector field X on G is said to be left-invariant if it

is invariant under all such left translations. That is, more precisely, if for all

g, h ∈ G

Lg∗(Xh) = Xgh.
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Note, this pushforward of the vector field is well-defined since Lg is a diffeomor-

phism. The set of all left-invariant vector fields forms a real vector subspace

of X(G) called the Lie algebra and denoted by g. Importantly, the Lie algebra

is closed under the Lie bracket defined earlier in definition 3.

The map defined by associating to each vector field in g its tangent vector

at the group’s identity is a vector space isomorphism – see [12, 95]. Therefore

the Lie algebra can alternatively be viewed as the identity’s tangent space.

Within this dual view, there is a canonical smooth map exp : g → G. For any

X ∈ g, letting γ(t) be the integral curve of the smooth vector field X starting

at the identity, this map is defined by expX = γ(1). Simply put, this map

takes any tangent direction at the identity, perturbs the identity element in

this direction, lets it flow along the integral curve of the corresponding left-

invariant vector field, and returns the group element reached after one unit

of time. This map is called the exponential map and the notation is further

generalized so that exp tX = γ(t). The map gets its name from the fact that

in the case of matrix Lie groups it is given by the matrix exponential:

exp tX =
∞∑
n=0

1

n!
(tX)n,

where X is a matrix in g.

Considering now two Lie groups G and H, of particular interest are the

smooth maps between them which preserve their group structure. Such maps

are called Lie group homomorphisms.

Definition 16. A Lie group homomorphism from G to H is a smooth

map F : G→ H which is also a group homomorphism.
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3.1 The Lie groups SUn

The Lie groups which appear in the questions posed in Chapter 6 are the

groups SUn of special unitary matrices. For this reason, basic properties of

these Lie groups will be established here.

A complex, square matrix U is unitary if any of the following equivalent

conditions hold

1. U∗U = UU∗ = I, where U∗ is the conjugate transpose of U

2. U∗U = UU∗ and the eigenvalues of U lie on the unit circle

3. U is invertible with U−1 = U∗.

For each n, the group SUn is the group of n-dimensional unitary matrices

having determinant 1. Matrix multiplication is the group operation. It is a

real compact Lie group of dimension n2 − 1.

3.1.1 Further description of SU2

The work discussed in Chapter 7 involves, in particular, the group SU2.

This group of matrices SU2 may be described explicitly as

SU2 =

⎧⎪⎨⎪⎩
⎛⎜⎝α −ν

ν α

⎞⎟⎠ | α, ν ∈ C, |α|2 + |ν|2 = 1

⎫⎪⎬⎪⎭
and the Lie algebra of SU2 as

su2 =

⎧⎪⎨⎪⎩
⎛⎜⎝ix −ρ

ρ −ix

⎞⎟⎠ | x ∈ R, ρ ∈ C

⎫⎪⎬⎪⎭ .

Matrices in the form of those found in the Lie algebra have zero trace and are

antihermitian, that is U∗ = −U .
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3.1.2 Correspondence between SU2 and SO3

The Lie groups SU2 and SO3 are related through a two-to-one surjective

Lie group homomorphism of SU2 onto SO3. This map can be seen through a

representation of SU2 and su2 in terms of unit quaternions.

The norm of a quaternion q = a + bi + cj + dk with a, b, c, d ∈ R is

∥q∥ =
√
qq =

√
a2 + b2 + c2 + d2. Here q is the conjugate of q defined to be

q = a− bi− cj − dk. A unit quaternion is a quaternion of norm 1. The group

of all unit quaternions is the set

Q = {a+ bi+ cj + dk | a2 + b2 + c2 + d2 = 1}

along with quaternion multiplication as the group operation. There is an

isomorphism between SU2 and the unit quaternions given by⎛⎜⎝ a+ bi c+ di

−c+ di a− bi

⎞⎟⎠ ↦→ a+ bi+ cj + dk. (3.1)

Using the same map, the Lie algebra su2 can be associated with the vector

space I of all purely imaginary quaternions. There exists also a bijective

linear map between the purely imaginary quaternions and vectors in R3 in

which the quaternion bi + cj + dk and vector (b, c, d) are associated. Taking

the composition of these maps, su2 may be viewed as R3.

Representing SU2 and su2 in terms of quaternions allows for a simple de-

scription of the two-to-one surjective Lie group homomorphism of SU2 onto

SO3. Recall, SO3 is the Lie group consisting of all rotations of R3 about the

origin, with composition the group operation. In brief, the homomorphism is

attained by representing SU2 as linear transformations of su2. This represen-

tation is an instance of the more general adjoint representation of a Lie group

G as linear transformations of its Lie algebra g.
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Each element q of Q ∼= SU2 may be represented as a linear transformation

of the purely imaginary quaternions, equivalently su2 or R3, via the map

R : Q ∼= SU2 → End(I) given by quaternion conjugation:

Rq(ω) = qωq, ω ∈ I.

This map is a homomorphism since Rq1Rq2(ω) = q1q2ωq1q2 = Rq1q2(ω) for all

q1, q2 ∈ Q. From the definition, one easily sees that each Rq is an isometry

fixing ω = 0. In addition, it can be shown that each Rq is orientation pre-

serving. Therefore, viewing the purely imaginary quaternions as R3, it follows

that each Rq is a rotation of R3 about the origin, and hence an element of

SO3. The axis of rotation is the ray through Im(q) and the origin.

Since the group operation in SU2 is smooth, the homomorphism R : SU2 →

SO3 is also a smooth map and is thus a Lie group homomorphism. Finally, the

map R is surjective onto SO3 and, since R±q are easily seen to be the same ro-

tation of S2, we find that R is a two-to-one surjecive Lie group homomorphism

from SU2 onto SO3.

As a concrete example, the rotation of R3 associated to q = cos θ + i sin θ

is calculated here. The map Rq fixes i:

i ↦→ (cos θ + i sin θ)i(cos θ − i sin θ)

= (cos θ + i sin θ)(sin θ + i cos θ)

= i,
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brings

j ↦→ (cos θ + i sin θ)j(cos θ − i sin θ)

= (cos θ + i sin θ)(j cos θ + k sin θ)

= j cos2 θ + 2k sin θ cos θ − j sin2 θ

= (cos 2θ)j + (sin 2θ)k,

and, using similar trigonometric identities, brings

k ↦→ −(sin 2θ)j + (cos 2θ)k.

Therefore the transformation of the yz-plane under Rq may be described via

the matrix multiplication

(y, z) ↦→

⎛⎜⎝cos 2θ − sin 2θ

sin 2θ cos 2θ

⎞⎟⎠
⎛⎜⎝y
z

⎞⎟⎠ ,

and it is clear that Rq is a rotation of S2 about the x axis by an angle of 2θ.
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CHAPTER 4
Representation variety

The discussion of manifolds and Lie groups becomes focused in Chapter 4

on the theory of representation varieties. In the last section of the previous

chapter, a representation of SU2 as orthogonal linear transformations of R3

was outlined. In general, a representation of a group G into a vector space V

is a homomorphism φ : G → GL(V ), where GL(V ) is the group of invertible

linear transformations of V . For a fixed G and V , the collection of all possible

representations forms an object called the representation variety. Whereas

the example from the previous chapter provides a representation of the Lie

group SU2, in this chapter, the concern will be with representations into Lie

groups. The groups represented will be surface groups. Before the representa-

tion variety is discussed further several notions related to representations are

presented.

From the definition of a representation stated above one sees that repre-

sentations can be thought of in terms of actions on the vector space V . If there

is a subspace of V , call it W , such that the action induced by the representa-

tion fixes W , then there is an induced sub-representation φW : G → GL(W )

given by the restriction of the image of φ to its action on W . In this case the

representation is said to be reducible. Conversely, if no such subspace exists,

the representation is said to be irreducible. If the action on the vector space is

discrete, that is the orbit of any point in the vector space under the representa-

tion of the group has no accumulation points, the representation is said to be

discrete. As a final definition concerning representations, if the representation

φ is an isomorphism onto its image, the representation is said to be faithful.
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4.1 Representation variety

A real analytic variety is a set V ⊂ Rn such that for every x in V there

exists a neighbourhood U of x in Rn and real analytic functions f1, . . . , fm

defined in U such that U ∩ V = {z | fk(z) = 0 for all 1 ≤ k ≤ m}. Except

for a collection of ill-behaved singular points, analytic varieties are locally real

manifolds. Points of V for which there exists a local neighbourhood U such

that V ∩ U is a manifold are called regular. The set of all regular points is

denoted by V −.

For any connected Lie group G consider the space Hom(π1, G) of all rep-

resentations of a surface group π1(Σ) into G. This space may be topologized

with the compact-open topology by specifying that a sequence of represen-

tations ρn : π1 → G converges to ρ ∈ Hom(π1, G) iff each sequence ρn(γ)

converges to ρ(γ) for all γ ∈ π1, equivalently iff each ρn(γi) converges to ρ(γi)

for γi, i ∈ I a set of generators of π1. Given this topology the space is a real

analytic variety. The group G acts by inner automorphisms on Hom(π1, G).

Using this action to define an equivalence relation, one may construct the

moduli space of representations Hom(π1, G)/G. Such a space Hom(π1, G)/G

is called a representation variety. They will be the primary concern of the

following sections, however, to situate this discussion within the field, it is

worthwhile to mention several closely related spaces.

Related spaces

One space related to the representation variety is the character variety.

When G is a matrix group, two representations ρ1 and ρ2 of π1 in G may

be said to define the same character if Tr(ρ1(γ)) = Tr(ρ2(γ)) for all γ ∈ π1.

This defines an equivalence relation on the representations and the quotient of

Hom(π1, G) by this equivalence relation produces what is called the character
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variety. Since conjugate representations necessarily have the same charac-

ter, there exists a projection of the representation variety onto the character

variety.

Another related space comes from considering the action of the outer auto-

morphism group Out(π1) on Hom(π1, G)/G. This action is well defined since

the action of inner automorphisms of π1 on Hom(π1, G) performs the same ma-

nipulations as the G actions, rendering the action of Inn(π) on Hom(π1, G)/G

trivial. Teichmüller space, denoted by TΣ, is the component of discrete, faith-

ful representations in Hom(π1(Σ), PSL2(R))/PSL2(R). In this case, Out(π1)

acts discontinuously and the resulting moduli space TΣ/Out(π1) is the Rie-

mann moduli space of all complex structures on Σ.

4.1.1 Representation variety as the space of flat G-connections

Given any surface Σ and Lie group G the associated representation va-

riety may alternatively be formulated in terms of flat G-connections on Σ.

While this framework is potentially initially less palatable than representa-

tion theory, it provides a more transparent description of the representation

variety’s symplectic nature, as will be seen later. Before this reformulation

is presented, the definitions and basic properties of the necessary structures,

namely G-structures, connections, and finally G-connections, are given. This

material is based on the lecture notes [11] by François Labourie which provide

a more in-depth construction of the representation variety in these terms as

well as preliminary material.

G-structures. A given manifold S and Lie group G may be coupled

through the consideration of specific structures on a restricted class of vector

bundles over S. A vector bundle E over S is said to have a G-atlas if there

exists a set of trivializations such that the transition functions take values

in G. Any two G-atlases are equivalent if their union is again a G-atlas. A
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G-structure is an equivalence class of G-atlases. Elsewhere in the literature,

G-structures are referred to as reductions of the structure group to G. A

bundle E together with a G-structure is a G-bundle. For a given G-bundle E

of over S, it is natural to restrict the gauge group G(E)—that is the group

of all bundle automorphisms—to those automorphisms which fibre-wise may

be described via elements of G. Due to the canonical association of the gauge

group and sections of End(E) the gauge group may be viewed as C∞(S,G). It

is the connections defined on these bundles and coherent with these structures

which are used to define the representation variety.

Connections and holonomy. Formally, a connection ∇ on the vector

bundle E over a manifold S is defined to be a linear map

∇ : Γ(E) → Γ(E ⊗ T ∗S) = Ω1(S,E)

such that given any vector field X and smooth function f on S the Leibniz

rule is satisfied:

∇X(fσ) = df(X) · σ + f ∇X(σ),

where ∇X is defined to be the map from Γ(E) to itself given by

∇X(σ) = ∇(σ)(X).

In coordinates connections take on the form ∇ = d + Γ with Γ an endo-

morphism valued 1-form. An important property of each connection is its

curvature, defined to be the map

R∇ : TS × TS → End(E)

given by

R∇(X, Y )(σ) = ∇X∇Y (σ)−∇Y∇X(σ)−∇[X,Y ](σ)
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for X, Y ∈ Γ(TS) and σ ∈ Γ(E). If R∇ is identically zero the connection is

said to be flat.

Later, it will be necessary to consider how connections are pulled back

from one bundle to another in coherence with a diffeomorphism between them.

First it is necessary to define the pullback of a vector bundle. Let S and M

be smooth manifolds and F : S → M a smooth map between them. For any

bundle π : E → M its pullback bundle over S is constructed by choosing the

fibre at each point x ∈ S to be EF (x). If F is restricted to diffeomorphisms

then any connection ∇ on E may also be pulled back, in particular to the

unique connection F ∗∇ which satisfies

(F ∗∇)X(F
∗σ) = F ∗(∇F∗(X)(σ))

for all σ ∈ Γ(E) and X ∈ TS. This connections is called the pullback connec-

tion. Given a manifold S and vector bundle E, two connections ∇1 and ∇2

on E are said to be gauge equivalent if there is some element F of the gauge

group G(E) for which ∇1 = F ∗(∇2). In this case the automorphism of the

bundle effects in a nontrivial way the pullback of bundle sections.

Connections, as their name hints, provide a means of transferring informa-

tion between the fibres at unique points on the manifold. In particular, with a

connection one has a means of describing the infinitesimal change of sections

over the bundle. More precisely, if σ is a section of E along a path γ(t) in S,

the derivative of σ along γ(t) is given by

∇γ̇(σ)

where γ̇ is the tangent vector field along the curve γ. Of importance are the

sections σ along γ satisfying

∇γ̇ (σ) = 0.
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Such sections are said to be ∇-parallel along γ, and are uniquely determined

by specifying the initial vector σ(0). Let the section uniquely determined by

σ(0) be denoted by σσ(0)(t). By means of this section, ∇ associates to each

path γ in S beginning at γ(0) and ending at γ(1) the linear map

Hol∇(γ) : Eγ(0) → Eγ(1)

σ(0) ↦→ σσ(0)(1).

This map Hol∇(γ) is referred to as the holonomy of ∇ along γ. While for an

arbitrary connection there may be many holonomy maps between two fibres

Eγ(0) and Eγ(1) coming from the plethora of possible paths connecting γ(0)

and γ(1) in E, for flat connections the situation is more simple. When ∇ is

flat, the holonomy of ∇ along γ depends only on the homotopy class of γ.

Therefore, for a fixed vector bundle E and connection ∇ on E, holonomy may

be used to define the group homomorphism

π1(Σ, x0) → GL (Ex0)

[γ] ↦→ Hol∇(γ).

This homomorphism is referred to as the holonomy homomorphism of ∇.

G-connections and the representation variety. The discussion onG-

structures and connections may now be combined to speak of G-connections.

When considering a G-bundle one can look for those connections which pre-

serve the G-structure. Such G-connections ∇ are those for which when written

in coordinates∇ = d+Γ, the 1-form Γ takes values in g. When a G-connection

is moreover flat, then the associated holonomy homomorphism defined above

takes values in G. What is more, when two flat G-connections are gauge

equivalent their holonomy homomorphisms are conjugate by an element of

G. Thus the link with the representation variety becomes apparent; given a

33



surface Σ and Lie group G there is associated to every class of gauge equiv-

alent flat G-connections on a G-bundle over Σ a class of representations in

Hom(π1, G) given by the holonomy homomorphism as described above. The

converse holds also, and therefore the representation variety may be viewed

either as the space of flat G-connections modulo action by the gauge group or

as the space of group homomorphisms of π1 into G modulo conjugation by G:

{flat G-connections}/{gauge group} = Hom(π1, G)/G.

It should be noted that although there are singular points on the representa-

tion variety the discussion from here on will consider only the regular points.

Further information on the singular points of the representation variety may

be found in [9].

4.1.2 Natural Symplectic structure of the representation variety

Having understood the representation variety, its symplectic structure may

now be explored. In advance of this, there is yet one more step: to understand

the local structure. The local structure will be developed within both frame-

works of the representation variety outlined above. In both cases the tangent

spaces appear as a first cohomology groups.

Tangent spaces in the representation variety as a moduli space

of representations. When Hom(π1, G)/G is viewed as a moduli space of

representations, the tangent space to an equivalence class of representations

may be expressed in terms of group cohomology. Before the tangent space is

discussed, a brief summary of group cohomology is provided.

For a given group H and H-module A for which H acts on A as automor-

phisms, an associated cochain complex may be defined as follows. For each

n ≥ 0, the group of all functions ϕ from Hn → A are the n-cochains and the
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map dn from n-cochains to (n+ 1)-cochains defined by

(dnϕ)(h1, . . . , hn+1) = h1 · ϕ(h2, . . . , hn+1)

+
n∑

i=1

(−1)iϕ(h1, . . . , hi−1, hihi+1, hi+2, . . . , hn+1)

+ (−1)n+1ϕ(h1, . . . , hn)

is a coboundary homomorphism. Indeed a routine calculation verifies that

dn+1 ◦ dn = 0. Computing cohomology in the standard way, the group of

n-cycles, n ≥ 0, is Zn(H,A) = Ker(dn) and the group of n-coboundaries

is B0(H,A) = 0, Bn(H,A) = Im(dn−1), n ≥ 1. The nth cohomology group

is Hn(H,A) = Zn(H,A)/Bn(H,A). In particular, a 1-cocycle (also called a

crossed homomorphism) is a function ϕ : H → A such that for any h1, h2 ∈ H

h1 · ϕ(h2)− ϕ(h1h2) + ϕ(h1) = 0.

A 1-coboundary (also called a principal crossed homomorphism) is a function

ϕ : H → A for which there exists an a ∈ A such that for all h ∈ H

ϕ(h) = h · a− a.

Now, turning to study the local structure of the representation variety

Hom(π1, G)/G the group and module which will be of interest are π1 and the

π1-module gAd ρ in which π1 acts on g via the composition π1
ρ−→ G

Ad−→ Aut(g).

The Zariski tangent space of a representation ρ in Hom(π1, G) will be

established first. In order to do so, fix any variation of ρ. That is a smooth

path ρt in Hom(π1, G) for which ρ0 = ρ. That ρt lies in Hom(π1, G) implies

each ρt satisfies the homomorphism condition

ρt(xy) = ρt(x)ρt(y)
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for all x, y ∈ π1. It is the associated infinitesimal variation of ρ which is of

importance for understanding the tangent space. Accordingly, writing ρt as

ρt(x) = exp(t u(x) +O(t2))ρ(x) (4.1)

for x ∈ π1 and for t in some interval about 0, it follows that u : π1 → gAd ρ

satisfies the 1-cocycle condition associated with gAd ρ:

u(xy) = u(x) + Adρ(x)u(y). (4.2)

Conversely, suppose u : π1 → gAd ρ is a 1-cocycle. Then any smooth variation

ρt satisfying (4.1) is a homomorphism to first order. Therefore the Zariski

tangent space to Hom(π1, G) at ρ is precisely the space Z1(π1, gAd ρ).

Since the desired object is the tangent space to the equivalence class [ρ]

in Hom(π1, G)/G rather than that of ρ in Hom(π1, G) it must now be deter-

mined which infinitesimal variations of ρ are trivial when the moduli space is

considered. These are precisely those corresponding to variations of ρ which

may be written as

ρt(x) = g−1
t ρ(x)gt, (4.3)

where gt is a smooth path in G with g0 = Id. Assuming gt may be written as

gt = exp(t u0 +O(t2))

for some interval of t about 0, it follows that the 1-cocycle u corresponding to

ρt satisfies

u(x) = Adρ(x)u0 − u0. (4.4)

In other words, u is the coboundary of u0. Working in the other direction,

each coboundary corresponds to some smooth variation ρt which is trivial in

Hom(π1, G)/G. Therefore, the Zariski tangent space to Hom(π1, G)/G at [ρ]
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may be represented as the cohomology group H1(π1, gAd ρ). Details of this

correspondence are worked out by Goldman in [8].

Tangent spaces of the representation variety as a moduli space

of flat G-connections. When Hom(π1, G)/G is viewed as the space of flat

G-connections on Σ modulo gauge equivalence the tangent space to an equiv-

alence class of flat connections may be expressed in terms of twisted de Rham

cohomology. As above, a general outline of this variant of cohomology will be

given before the tangent space is discussed.

Twisted de Rham cohomology is defined in terms of a given bundle π :

E → S and flat connection ∇ on E. The n-cochains are the bundle valued

n-forms Ωn(S,E) and the coboundary homomorphisms are linear differential

operators

dn
∇ : Ωn(S,E) → Ωn+1(S,E)

satisfying the following two properties:

• If ω ∈ Ωp(S) and η ∈ Ωq(S,E), then

dp+q
∇ (ω ∧ η) = dpω ∧ η + (−1)pω ∧ dp

∇η

where dp is the untwisted de Rham differential operator.

• If η ∈ Ω0(S,E) ∼= Γ(E) then

d0
∇(η) = ∇(η).

Such operators dn
∇ exist and are unique. In the case n = 1 the operator is

defined by

d1
∇(ω)(X, Y ) = ∇X(ω(X))−∇Y (ω(X))− ω([X, Y ]) (4.5)

for any vector fields X, Y on S. Again following the standard definitions, the

group of n-cycles, n ≥ 0, is the closed forms Zn
∇(S) = Ker(dn

∇), the group of
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n-coboundaries is the exact forms B0
∇(S) = 0, Bn

∇(S) = Im(dn−1
∇ ), n ≥ 1, and

the nth ∇-twisted de Rham cohomology group of S is Hn
∇(S) = Zn

∇(S)/B
n
∇(S).

The local structure of the representation variety may now be described.

Consider any point in the representation variety, and hence any equivalence

class [∇]. The tangent space must be comprised of the infinitesimal variations

of some representative ∇ for which the flatness condition is preserved. To

account for the quotient of G-connections by gauge equivalence the tangent

space will be the quotient of such variations by the subspace of variations

which are coming from gauge transformations.

Any connection on the same bundle as ∇ can be written in coordinates in

the form ∇ + Γ, with Γ in Ω1(Σ,End(E)). So varying ∇ inside the space of

smooth connections is the same as choosing a smooth path Γt in Ω1(Σ,End(E))

for which Γ0 is trivial, and letting ∇t = ∇ + Γt. The infinitesimal variation

of this path at ∇0 is then given by ∇̇ = d
dt

⏐⏐
t=0

Γt. The infinitesimal varia-

tions which preserve the flatness condition are those for which the infinitesimal

change in curvature, defined to be Ṙ = d
dt

⏐⏐
t=0

R∇t , is identically zero. Through

the first coboundary homomorphism defined above in equation (4.5) the in-

finitesimal change in curvature may be expressed in terms of the infinitesimal

variation as follows

Ṙ = d1
∇∇̇.

A proof of this is provided by Labourie in [11, 70]. Therefore, an infinitesimal

variation ∇̇ is flat iff d1
∇(∇̇) = 0. In other words, the group of infinitesimal

variations preserving the flatness condition is Ker(d1
∇).

It is necessary to know now which infinitesimal variations are coming from

gauge transformations. Again the coboundary homomorphisms defined above

may be used to describe such variations. An infinitesimal variation ∇̇ comes
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from a gauge transformation iff

∇̇ ∈ Im(d0
∇).

The details of this correspondence are also worked out in [11, 72]. Therefore

the tangent space at [∇] in the representation variety is the quotient

Ker(d1
∇)

Im(d0
∇)

=
Z1

∇(Σ)

B1
∇(Σ)

= H1
∇(Σ),

the first ∇-twisted de Rham cohomology group.

Symplectic structure. With the tangent spaces described, the sym-

plectic form on the representation variety may now be defined. Before doing

so there is yet one more assumption which must be placed on the Lie group G.

It must be assumed that G preserves some non-degenerate, symmetric bilinear

form B on its Lie algebra g.

Regard first H1(π1, gAdϕ) as the tangent space to Hom(π1, G)/G at [ρ].

Then the 2-form defined pointwise as the map

ω(B) : H1(π1, gAdϕ)×H1(π1, gAdϕ) → H2(π1,R) = R

which is the cup-product on π1 with B as the coefficient pairing is a symplectic

2-form on the representation variety.

Alternatively, regard H1
∇(Σ) as the the tangent space to the representation

variety at [∇]. Since each tangent vector is an End(E) valued 1-form on Σ,

the wedge product of any two tangent vectors θ and η is a 2-form on Σ taking

values in the bundle End(E) ⊗ End(E). The form B on g induces in the

obvious way a map from Ω2(Σ,End(E)⊗ End(E)) to Ω2(Σ,R). The bilinear

map defined pointwise as

ω
(B)
∇ : H1

∇(Σ)×H1
∇(Σ) → R
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by

ω
(B)
∇ (θ, η) =

∫
Σ

B′(θ ∧ η)

is a symplectic 2-form on the representation variety.

Under the same correspondence between the two frameworks for describing

the representation variety explained earlier, these two symplectic forms are

equivalent. Using a combination of both frameworks, Goldman proves in [8]

that each of the essential properties of symplectic forms are satisfied. His

approach to showing that the form is closed is based on work of Atiyah and

Bott in [1].
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CHAPTER 5
Goldman flows: moving around in the representation variety

In Chapter 6 certain real-valued functions defined over the representation

variety Hom(π1, SU2)/SU2 will be introduced and in Chapter 7 attempts to

find their critical points will be described. Goldman flows provide a method of

moving around in the representation variety and hence a means of searching for

critical points of these functions. These flows will be discussed here, beginning

with a simple example motivated by a look to the flow of a single representation

in a generic Hom(π1, G).

From here on, each representation variety will be looked at exclusively as

a moduli space of representations. Recall the standard generators of a surface

group π1(Σg) are being denoted by αi, βi, i = 1, . . . , g. Since each tangent

vector to Hom(π1, G), that is each cocycle in Z1(π1, gAdϕ), is completely de-

termined by its image on these generators, they will be referred to by the set of

these images: {ai, bi}, i = 1, . . . , g. It will be assumed that the Lie group G is a

matrix group and that the symmetric bilinear form B on g is B(a, b) = Tr(ab).

In this case the induced symplectic structure is given by

ω(B)
(
{ai, bi}, {âi, b̂i}

)
=

g∑
i=1

Tr(aib̂i − âibi). (5.1)

5.1 Flows of representations: a simple example

Choose any representation ρ = {ρ(αi), ρ(βi)} = {Ai, Bi} given by its im-

age on the standard generators and satisfying the relation Πi[Ai, Bi] = I.

Perturbing this representation in the direction of the cocycle {ai, bi}, the

41



perturbed representation is to first order {Ai(1 + t ai), Bi(1 + t bi)} where

Πi[Ai(1+t ai), Bi(1+t bi)] = ΠiAi(1+t ai)Bi(1+t bi)(1−t ai)A−1
i (1−t bi)B−1

i =

I implies the first order relation

∑
i

AiaiBiA
−1
i B−1

i + AiBibiA
−1
i B−1

i − AiBiaiA
−1
i B−1

i − AiBiA
−1
i biB

−1
i = 0.

(5.2)

In general it is either difficult or unsolvable to determine explicit values of

cocycles {ai, bi} in g from the above relation alone. There does, however, exist

deformations with simple descriptions. Such may be found by fixing some j,

taking bi = 0 for all i and ai = 0 for all i ̸= j. Then the above relation reduces

to

AjajBjA
−1
j B−1

j − AjBjajA
−1
j B−1

j = Aj(ajBj −Bjaj)A
−1
j B−1

j = 0.

Therefore, by taking aj such that

[aj, Bj] = 0

the relation in (5.2) is satisfied. Adhering to these simple restrictions, a per-

turbation to the representation {Ai, Bi} may be defined as follows

Θt(Aj) = Aj exp(t aj), Θt(Ai) = Ai, i ̸= j, Θt(Bi) = Bi,∀i. (5.3)

Assigning such a cocycle at each representation in a smooth way forms a

tangent vector field on Hom(π1, G) and thus a flow on this entire represen-

tation space. If aj is a polynomial in Bj then aj commutes with Bj. So

this assignment may be done by taking the same polynomial at each repre-

sentation. Taking the particular example bi = 0 and ai = δi,jB
m
j , ∀i as an

initial case study it is relatively easy to see that the associated flows com-

prised of individual pointwise perturbations such as the one described above

are Hamiltonian. Begin by considering the function H : Hom(π1, G) → R
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given by H({Ai, Bi}) = 1
m
Tr(Bm

j ), and the symplectic structure given by

B(a, b) = Tr(ab). In this case if ρ = {Ai, Bi} is perturbed in the tangent

direction {âi, b̂i} then

dH({âi, b̂i}) =
d

dt

⏐⏐⏐⏐
t=0

1

m
Tr(Bj(1 + t b̂j))

m = Tr(Bm
j b̂j). (5.4)

The last equality above uses the fact that the trace is cyclic and linear. Now

looking for the tangent vector at {Ai, Bi} of the Hamiltonian vector field IdH

associated to H is equivalent to searching for IdHρ = {ai, bi} such that

dH({âi, b̂i}) = ω(B)({ai, bi}, {âi, b̂i}), ∀{âi, b̂i} ∈ Z1(π1, gAdρ).

It follows from equations (5.4) and (5.1) that the above equality is equivalent

to

Tr(Bm
j b̂j) =

g∑
i=1

Tr(aib̂i − âibi) (5.5)

which is satisfied iff bi = 0 and ai = δi,jB
m
j , ∀i. Therefore IdH is pre-

cisely the tangent vector field initially taken and so, as claimed, the asso-

ciated flows are Hamiltonian. The above demonstration is easily expanded

to more elaborate polynomials. For instance aj = Bm
j + B n

j , where by tak-

ing H : Hom(π1, G) → R given by H({Ai, Bi}) = 1
m
Tr(Bm

j ) + 1
n
Tr(B n

j ) and

again the symplectic structure ω(B) induced by B(a, b) = Tr(ab), one sees that

{ai, bi} is the Hamiltonian vector field IdH.

5.2 Generalization to Goldman flows

Maintaining the key properties of the functions H defined above a larger

class of flows may be defined. As these flows have been developed by William

Goldman, they are referred to here as Goldman flows. They are referred to

by Goldman as Hamiltonian or generalized twist flows. The ideas laid out in

this section are based on Goldman’s work in [10].
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The important property to retain from the simple example above is the

invariance of the function Tr : G→ R under conjugation. From any invariant

function f : G → R and fixed simple cycle β ∈ π1 on Σ one may define a

Goldman flow, which is always Hamiltonian. In the case above β was taken

to be one of the standard generators of π1, in which case it is non-separating,

i.e. taking Σ|β to denote the surface without β, Σ|β is connected. A simple

cycle β ∈ π1 on Σ may separate Σ, i.e. Σ|β = Σ1 ∪ Σ2, with Σ1,Σ2 two

connected components. These are the only two possible cases. In the following

paragraph some definitions necessary to describe the Goldman flows arising in

these two cases are given.

There is associated to any invariant function f : G → R and simple cycle

β ∈ π1 (separating or not) the function fβ : Hom(π1, G)/G → R defined by

fβ([ρ]) = f(ρ(β)). Invariance of f implies this function is well defined. Then

associated to fβ is a unique function F : G→ g satisfying

d

dt

⏐⏐⏐⏐
t=0

f(B exp(t b)) = B(F (B), b), ∀B ∈ G, b ∈ g. (5.6)

From F one may define a function Fβ : Hom(π1, G) → g by setting Fβ(ρ) =

F (ρ(β)). As is discussed by Goldman in [10], invariance of f implies the

following two properties:

1. F (gBg−1) = gF (B)g−1, ∀B, g ∈ G.

2. For any B ∈ G,F (B) ∈ L(B) where L(B) is the Lie algebra centralizer

of B, in other words the subalgebra of g which is fixed by AdB. So

BF (B)B−1 = F (B).

Considering first the case when β is a non-separating simple loop of Σ, for

this is the more direct generalization of the above simple example, there is the

following description of the Goldman flow.
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Theorem 4. Let βj be a non-separating simple loop on Σ, hence a standard

generator of π1. Then the flow defined for each ρ = {Ai, Bi} ∈ Hom(π1, G) by

Θt(ρ) :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
αj ↦→ Aj exp(t F (Bj))

αi ↦→ Ai for i ̸= j

βi ↦→ Bi for all i

(5.7)

is a Goldman flow on Hom(π1, G) which covers the Hamiltonian flow of fβ on

Hom(π1, G)/G.

Looking back to the simple example above, one sees that there f : G→ R

was taken to be the function given by B ↦→ 1
m
Tr(Bm). Accordingly, Fβj

(ρ) =

F (Bj) = Bm
j , aj = F (Bj), and hence, as intended, aj ∈ L(Bj).

Consider now the second case, that is when β is a simple separating cycle

on Σ. For a given invariant function f : G → R the functions fβ, F, and Fβ

may be defined as in the previous case. Here, however, the standard gener-

ators of π1 are not suitable to describe the associated flow. In this case the

image of a representation ρ under the flow is described in terms of elements γ

from the fundamental groups of Σ1 and Σ2. The free product of π1(Σ1) and

π1(Σ2) amalgamated over the cyclic subgroup generated by β produces the

full fundamental group π1 of Σ. In this case there is the following theorem.

Theorem 5. Let β be a separating simple loop and Σ1,Σ2 the components of

Σ|β. The for each ρ ∈ Hom(π1, G), letting B denote ρ(β), the flow defined by

Θt(ρ) : γ ↦→

⎧⎪⎪⎨⎪⎪⎩
ρ(γ) for γ ∈ π1(Σ1)

exp(t F (B)ρ(γ) exp(−t F (B)) for γ ∈ π1(Σ2)

(5.8)

is a flow on Hom(π1, G) which covers the Hamiltonian flow on Hom(π1, G)/G

associated to fβ.
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Theorems (4) and (5) are proven by Goldman in [10] using intersection

theory and Poincaré duality.
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CHAPTER 6
New questions: Using Goldman flows to study the spectral gap

The new work presented in this thesis is an application of the theory of

Goldman flows presented above to study the eigenvalue spectra of standard

averaging operators of L2 functions on S2, in particular, their spectral gaps.

6.1 Introduction to the spectral gap

Given m elements g1, . . . , gm of SU2, in other words m rotations of S2 or

R3 as seen earlier, one can define an element of the group ring R[SU2] by

z = g1 + g−1
1 + · · · + gm + g−1

m and a corresponding averaging operator on

L2(S2) as follows

zf(x) =
1

2m

m∑
i=1

[
f(gi(x)) + f(g−1

i (x))
]
.

The set {g1, g−1
1 , . . . , gm, g

−1
m } will be referred to as the support of z, denoted by

supp(z). Since each gi is self adjoint so is the operator defined by z. It follows

that the spectrum of z is real. It is, moreover, contained in the interval [-1,1].

One sees easily that any constant function is an eigenfunction with eigenvalue

1. It is the eigenvalue of second greatest norm which is of interest. Let it

be denoted by λ. If |λ| < 1 then the operator is said to have a spectral gap.

Following a standard loosening of the nomenclature found in the literature,

the group ring element z itself, and even the group generated by the elements

of supp(z), will be referred to as having a spectral gap.

In rough terms, the existence of a spectral gap signifies that the rotations

generating z mix the functions of L2(S2) exponentially well. In order to es-

tablish the significance of the spectral gap more precisely, one may begin by
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recalling the following well known fact: the space L2(S2) decomposes orthogo-

nally under the spherical Laplacian over the spaces Hn of spherical harmonics

of degree n. That is, L2(S2) = H0 ⊕ H1 ⊕ · · · ⊕ Hn ⊕ · · · . Thus any f in

L2(S2) may be written as f = h0 + · · · + hn + · · · , with each hn in Hn. The

spherical Laplacian commutes with any z operator, and it follows that each z

maps Hn → Hn. Let the restriction of z to Hn be denoted by zn. Note z0 is

the identity map. If λn is taken to denote the eigenvalue of zn with greatest

norm, then ∥z k
n hn∥2 ≤ |λn|k∥hn∥2 for any positive integer k and |λ| ≥ |λn|

for each positive integer n. The eigenvalue λn will be referred to as the nth

spectral radius. So

zkf = z k
0 h0 + · · ·+ z k

n hn + · · ·

and

∥zkf − h0∥2 = ∥ − h0 + z k
0 h0 + z k

1 h1 + · · ·+ z k
n hn + · · · ∥2

=
∞∑
n=1

∥z k
n hn∥2 ≤

∞∑
n=1

|λn|k∥hn∥2 ≤
∞∑
n=0

|λn|k∥hn∥2 ≤ |λ|k∥f∥2.

Hence

∥zkf − h0∥2
∥f∥2

≤ |λ|k,

and if z has a spectral gap

lim
k→∞

∥zkf − h0∥2
∥f∥2

= 0.

Note, having now the decomposition of z in zn, if it is assumed that z fixes no

spherical harmonics of finite degree, then the existence of a spectral gap may

be expressed equivalently as

limn→∞|λn| < 1.
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6.2 An alternative formulation of the spectral gap

Because of their ties to representation varieties, an application of Goldman

flows to study the spectral gap occurs more naturally through an alternative

formulation of the gap in terms of the N th irreducible representations of SU2.

For N ≥ 0, the N th irreducible representation is symNV, where V is the

standard two dimensional matrix representation of SU2. The N th irreducible

representation brings SU2 into the space of N +1 dimensional matrices acting

on the space of homogeneous polynomials in (u, v) of degree N via the linear

action

(u, v) ↦→ (αu+ γv, βu+ δv),

⎡⎢⎣α β

γ δ

⎤⎥⎦ ∈ SU2.

As was discussed above, each operator z decomposes into a series of operators

zn on Hn. Recall that Hn is equivalent to the space of homogeneous harmonic

polynomials of degree n restricted to S2. Consider a fixed zN . Using the same

generic decomposition of f as above,

zN hN(x) =
1

2m

m∑
i=1

hN(gi(x)) + hN(g
−1
i (x)).

This formula rewritten in terms of coordinates (u, v) in C becomes

zNhN =
1

2m

m∑
i=1

symN(gi)hN + symN(g−1
i )hN

=

[
1

2m

m∑
i=1

symN(gi) + symN(g−1
i )

]
hN

where hN is the N+1 dimensional coordinate vector of hN in terms of the stan-

dard basis uN , uN−1v, . . . , uvN−1, vN of homogeneous polynomials of degree N .

Letting

symN(z) =
1

2m

m∑
i=1

symN(gi) + symN(g−1
i ),

the eigenvalues of zN are precisely the eigenvalues of symN(z).
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6.3 New questions

Considering side by side the Goldman flow theory and the above definition

of the spectral gap, the following question arises: How does the spectral gap of

a z whose support is the generators of a surface group representation in SU2

deform under Goldman flows? Zeroing in on first steps to approaching this

question, the work presented in the following chapter is restricted to looking

at the eigenvalue spectrum of the first symmetric power sym1(z) = z1 = z

and the surface group π1 coming from a genus two surface Σ2. In particular,

the following questions are explored: How does λ1, the eigenvalue of z1 with

maximum modulus, evolve under Goldman flows? What are the critical points

of λ1 as a function on the representation variety Hom(π1(Σ2), SU2)/SU2? A

set of representations in Hom(π1(Σ2), SU2)/SU2 which achieve λ1 = 0 are

discussed. This set is then used to explore whether λ1 = 0 is a signature

of representations which are (locally) maximal with respect to the spectral

gap. These questions emerge from a long history of inquiry into the Ruziewicz

problem.

6.4 History: The Ruziewicz problem and the spectral gap

Towards the beginning of the 20th century Ruziewicz posed the following

question: Is the Lebesgue measure the unique finitely additive rotation invari-

ant measure defined on the Lebesgue measurable sets of Sn? This question,

now referred to the as the (Banach-)Ruziewicz problem, itself was a response

to the Banach-Tarski Paradox for Sn. This paradox is that, for n ≥ 2, the

n-dimensional sphere may be decomposed into finitely many components and

subsequently reconstructed to form two copies of itself using rotations from the

group O(n + 1). That there exist no finitely additive rotation invariant mea-

sures defined on all subsets of Sn for n ≥ 2 follows quickly from this paradox.
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Ruziewicz hence posed his question and, besides Banach’s negative solution

for the case n = 1 in 1921, it lingered.

The eventual solution was found through an alternative formulation of

the problem in terms of rotation invariant means on L∞(Sn). One can show

that if the sort of measure which would answer negatively Ruziewicz’s question

exists, it must be absolutely continuous with respect to the Lebesgue measure.

It could therefore be used to construct in the standard way a rotation invariant

integral on L∞(Sn). Then Ruziewicz’s question becomes one of whether the

Lebesgue integral is the unique rotation invariant mean on L∞(Sn). In 1979

and 1981 respectively, Del-Junco-Rosenblatt [5] and Rosenblatt [17] produced

results giving a condition for when the Lebesgue integral is the unique rotation

invariant mean, reinvigorating the question. Shortly after Margulis [14] and

Sullivan [18], using this condition, independently provided more of the answer

to Ruziewicz’s question: the answer for n ≥ 4 is ‘yes’. Drinfeld [6] showed not

long after that for n = 2, 3 the answer is also in the affirmative, completing the

solution. Necessary to achieving his results, Drinfeld established the existence

of finitely generated subgroups of SU2 with spectral gaps.

Concurrently, Lubotzky, Phillips, and Sarnak established for SU2 lower

bounds on the spectral gap and constructed sets of generators which achieve

them [13]. Oh has generalized these results, in particular, to rotation groups

of all higher dimensional spheres [16]. The existence of finitely generated

subgroups of SU2 with spectral gaps was revisited by Gamburd, Jakobson,

and Sarnak, who provided a different and more elementary proof of the exis-

tence of the spectral gap than those in [6] and [13]. More recently, Bourgain

and Gamburd have expanded these existence results by proving that all free

finitely generated subgroups of SUn for which the generating elements satisfy
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a noncommutative diophantine property, in particular those z for which the

elements of supp(z) have algebraic entries, have a spectral gap [2], [3].

Sets of elements in SU2 exhibiting spectral gaps have significance for quan-

tum computing. The 1-qubit, a basic unit of information in quantum comput-

ing, may be represented as a two dimensional complex unit vector. Accord-

ingly, the quantum gates which operate on qubits take form as elements of SU2.

In the vocabulary of quantum computing, a finite set of gates, equivalently a

finite set in SU2, is said to be universal if it generates a group which is topolog-

ically dense in SU2. Accounting for a discrepancy in the cost of implementing

certain gates, an efficient universal set is one which approximates any given

gate, that is element of SU2, inexpensively. There exists a present practical

concern of designing universal sets which realize the efficiency guaranteed by

the Solovay-Kitaev theorem. The design of such efficient universal sets may

be aided by an increase in knowledge of sets in SU2 which exhibit spectral

gaps. For further information on quantum computing and the Solovay-Kitaev

theorem please see [15] and [4].

Here, a merger with Goldman flows on representation varieties initiates a

new approach to studying the spectral gap.
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CHAPTER 7
New work

As outlined in Section 6.3 above, this chapter documents the results of some

initial exploration into the first spectral radius λ1 for surface groups π1 coming

from genus two surfaces Σ2. In section 7.1, computations are given which

express the evolution of λ1 under Goldman flows and provide conditions for its

critical points. These same topics are then treated numerically in section 7.2.

Initiated by their appearance in the numerical inquiry, the focus shifts in 7.3

to representations for which λ1 = 0. A set of examples of such representations

is given and then used to explore how much information on the spectral gap

is contained in the two dimensional symmetric representations. In particular,

initial calculations towards understanding whether those representations which

are minimal for |λ1| are (locally) minimal for higher |λN |, and hence (locally)

maximal with respect to the spectral gap are given.

7.1 First spectral radius—λ1—for representations of π1(Σ2) into SU2

and their evolution under Goldman flows

General information on λ1 for representations of π1(Σ2) into SU2.

Consider z whose support is the image of generators of the fundamental

group of genus 2 surfaces under irreducible representations ρ into SU2. Ex-

tending the notation established above, let λ1(ρ) denote the function on the

space Hom(π1(Σ2), SU2)/SU2 which assigns to each representation class [ρ]

the eigenvalue of sym1(z) = z1 = z of largest norm. Fix any representation

class [ρ] and let Ai, Bi, i = 1, 2 denote the images under ρ of the fundamental
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group generators αi, βi, i = 1, 2 respectively. Let

Ai =

⎡⎢⎣ ai ai

−āi āi

⎤⎥⎦ and Bi =

⎡⎢⎣ bi bi

−b̄i b̄i

⎤⎥⎦ . (7.1)

Then Ai+A
−1
i = 2Re(ai)I and Bi+B

−1
i = 2Re(bi)I. The simple form of these

matrix sums renders the computations in this case of N = 1 quite manageable.

Indeed,

z =
1

2 · 4
[
A1 + A−1

1 +B1 +B−1
1 + A2 + A−1

2 +B2 +B−1
2

]
=

1

4
[Re(a1) + Re(b1) + Re(a2) + Re(b2)] I

and therefore

λ1(ρ) =
1

4
(Re(a1) + Re(b1) + Re(a2) + Re(b2)) . (7.2)

Note, since z is a scalar multiple of the 2 × 2 identity matrix, λ1 is the only

eigenvalue of z.

Evolution and critical points of λ1 under Goldman flows.

As is well known, the dimension of the moduli space Hom(π1(Σ2), SU2)/SU2

is six. In order to know where λ1(ρ) is critical, one can look to see how it

changes in each of ρ’s tangent directions. Fixing an invariant function f and

an orthogonal structure B on su2, a basis for the tangent space at ρ may be

described in terms of the Hamiltonian flows covered by the Goldman flows

induced by the following six curves: each of the standard generators of the

fundamental group π1, the curve γ which separates the surface into two once

punctured tori, and the curve α1β1. The curves are drawn on Σ2 in figure 7–1

below. In what follows, the precise description of the Goldman flow induced by

each of these curves, their associated tangent vectors in H1(π1, su2), and their

effect on λ1 are given. Understanding how λ1 deforms as any representation is
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perturbed in each of its tangent directions provides a method for finding criti-

cal points of λ1. All of this is done at the level of the representative {Ai, Bi} of

[ρ]. One should keep in mind the interest at the level of representation classes.

Figure 7–1: Curves on Σ2 which induce Goldman flows spanning the tangent space at a
representation ρ.

The Goldman flows induced from the generators of the fundamental group

π1 are considered first. For the sake of demonstration, the flow induced by

β1 is specifically considered. The other three generators’ cases will produce

the same results suitably modified. As is stated in Theorem 4, the associated

Goldman flow fixes each of the generators except A1. The deformation of A1

is

Θt(A1) = A1 exp(tF (B1)),
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where, recall, F is a function from SU2 to su2 induced by the fixed invariant

function f . The associated cocycle u in H1(π1, su2) is defined by

α1 ↦→ −AdA1(−F (B1)) α2, β1, β2 ↦→ 0.

The representative {Ai, Bi} of the representation class [ρ] may be chosen so

that the matrix F (B1) is diagonal:

F (B1) =

⎡⎢⎣iϑ 0

0 −iϑ

⎤⎥⎦ .
Then Θt(a1) = a1(t) = etiϑa1 and therefore

Re(a1(t)) = [Re(a1) cos(tϑ)− Im(a1) sin(tϑ)] .

It follows that

d

dt
Re(a1(t)) = −ϑRe(a1) sin(tϑ)− ϑ Im(a1) cos(tϑ)

and hence

d

dt

⏐⏐⏐⏐
0

Re(a1(t)) = −ϑ Im(a1).

Since ϑ ̸= 0, a condition on the critical points of λ1 is that Im(a1) = 0 in the

representative {Ai, Bi} of [ρ] for which F (B1) is diagonal.

Now consider the effect of the Goldman flow induced from the loop γ which

separates the surface into two once punctured tori. Let ρ(γ) = Γ. As is stated

in Theorem 5, there is an induced Goldman flow which fixes A1 and B1 and

which conjugates A2 and B2 as follows

Θt(A2) = exp(tF (Γ))A2 exp(−tF (Γ))

Θt(B2) = exp(tF (Γ))B2 exp(−tF (Γ)).
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The associated cocycle u in the tangent space of {Ai, Bi} is defined by

α1, β1 ↦→ 0 α2 ↦→ F (A2)− AdΓF (A2) β2 ↦→ F (B2)− AdΓF (B2)

Choosing the representative {Ai, Bi} of [ρ] so that F (Γ) is diagonal , one sees

that both a2 and b2, and in particular Re(a2) and Re(b2), are fixed under this

flow: Θt(a2) = a2(t) = a2,Θt(b2) = b2(t) = b2. Therefore λ1 remains constant.

Finally, consider the flow induced by the simple curve α1β1. Note such a

curve must cross exactly one each of α1 and β1 in the positive and negative

directions. Again referring to Theorem 4, the associated Goldman flow fixes

A2 and B2, and deforms A1 and B1 as follows

Θt(A1) = A1 exp(tF (A1B1))

Θt(B1) = exp(−tF (A1B1))B1.

The associated cocycle u is defined by

α1 ↦→ −AdA1(−F (A1B1)) β1 ↦→ −F (A1B1) α2, β2 ↦→ 0.

Recall, as is stated in section 5.2, that F (A1B1) is in L(A1B1), the Lie alge-

bra centralizer of A1B1. Therefore if [ρ] is a class of faithful representations,

F (A1B1) is not also in L(A1) and L(B1). So this cocycle is linearly indepen-

dent from those associated to the flows induced by the cycles α1 and β1. As

above, the representative {Ai, Bi} may be chosen so that the matrix F (A1B1)

is diagonal:

F (A1B1) =

⎡⎢⎣iη 0

0 −iη

⎤⎥⎦ . (7.3)

57



Then Θt(a1) = a1(t) = etiηa1 and Θt(b1) = b1(t) = e−tiηb1. Therefore

Re(a1(t)) + Re(b1(t)) =Re(a1) cos(tη)− Im(a1) sin(tη) + Re(b1) cos(−tη)

− Im(b1) sin(−tη)

= [Re(a1) + Re(b1)] cos(tη) + [Im(b1)− Im(a1)] sin(tη)

Then

d

dt
Re(a1(t)) + Re(b1(t)) =− η[Re(a1) + Re(b1)] sin(tη) + η[Im(b1)

− Im(a1)] cos(tη)

and so

d

dt

⏐⏐⏐⏐
0

Re(a1(t)) + Re(b1(t)) = η[Im(b1)− Im(a1)].

Since η ̸= 0, it follows that a condition on [ρ] being a critical point for λ1

is that Im(b1) − Im(a1) = 0 in the representative {Ai, Bi} of [ρ] for which

F (A1B1) is diagonal.

Having seen that the conditions depend on the representative of ρ, and

this on the function F , it is worthwhile to discuss a possible precise form of

F . Goldman suggests in [10, 272] that for SU2 one may take the invariant

function f and bilinear form B to be the real parts of the character and trace

form respectively. Then the variation F of f is given by

F (M) =
1

2

(
M −M−1

)
−
(
i

2

)
Im trM.

Since the trace of any matrix M in SU2 is real, this equation reduces to

F (M) =
1

2

(
M −M−1

)
.
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For any M :

M =

⎡⎢⎣ m m

−m m

⎤⎥⎦ ,
in SU2,

F (M) =

⎡⎢⎣Imm m

−m −Imm

⎤⎥⎦ .

Therefore F (M) is diagonal iff M is diagonal. This variation function F

is the one which is used in the numerical inquiry discussed next. The fact

that F (M) is diagonal iff M is diagonal is used to conjugate given represen-

tations, putting them in the form described above that is more suitable for

computations.

Summary of λ1’s oscillation and critical points under Goldman flows.

The following list summarizes how, given a representation class [ρ] in

Hom(π1(Σ2), SU2)/SU2, λ1 oscillates under the Goldman flows which take [ρ]

in each of its tangent directions. Conditions on the critical points of λ1 along

each of these flows are also summarized. Recall, for a representative {Ai, Bi}

of any representation class [ρ] the notation used for the entries of matrices

Ai, Bi is established in equation (7.1). The precise form of F discussed above

has been assumed and its implications incorporated into the descriptions of

the oscillations.

Flow induced by α1:
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Taking the representative {Ai, Bi} of [ρ] such that A1 is diagonal, the critical

points of λ1 occur whenever Im(b1) = 0, and

λ1(t) =
1

4
(Re(a1) + [Re(b1) cos(t Im(a1))− Im(b1) sin(t Im(a1))] + Re(a2) + Re(b2)) .

(7.4)

Flow induced by β1:

Taking the representative {Ai, Bi} of [ρ] such that B1 is diagonal, the critical

points of λ1 occur whenever Im(a1) = 0, and

λ1(t) =
1

4
([Re(a1) cos(t Im(b1))− Im(a1) sin(t Im(b1)] + Re(b1) + Re(a2) + Re(b2))

(7.5)

Flow induced by α2:

Taking the representative {Ai, Bi} of [ρ] such that A2 is diagonal, the critical

points of λ1 occur whenever Im(b2) = 0, and

λ1(t) =
1

4
(Re(a1) + Re(b1) + Re(a2) + [Re(b2) cos(t Im(a2))− Im(b2) sin(t Im(a2))]) .

(7.6)

Flow induced by β2:

Taking the representative {Ai, Bi} of [ρ] such that B2 is diagonal, the critical

points of λ1 occur whenever Im(a2) = 0, and

λ1(t) =
1

4
(Re(a1) + Re(b1) + [Re(a2) cos(t Im(b2))− Im(a2) sin(t Im(b2))] + Re(b2)) .

(7.7)

Flow induced by γ, the curve separating Σ2 into two once puncture tori:

λ1 is fixed under this flow.

Flow induced by α1β1:
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Taking the representative {Ai, Bi} of [ρ] such that A1B1 is diagonal, the critical

points of λ1 occur whenever Im(b1)− Im(a1) = 0, and

λ1(t) =
1

4
([Re(a1) + Re(b1)] cos(tη) + [Im(b1)− Im(a1)] sin(tη)

+Re(a2) + Re(b2)) , (7.8)

where η is as specified in equation (7.3).

Geometric rephrasing of λ1 critical point conditions.

Recall the correspondence between SU2 and unit quaternions discussed in

subsection 3.1.2 and written explicitly in equation (3.1). Through the natural

association of unit quaternions and the three sphere, each element of SU2 is

related to point on S3. Seeing the elements of SU2 in this way, the conditions

on the critical points for λ1 in the directions of the flows induced by stan-

dard generating elements of π1 summarized above have a simple geometric

interpretation. This will be illustrated for the flow induced by α1. Translated

according to the SU2-unit quaternion correspondence, the conditions for crit-

ical points of λ1 in the direction of this flow are that A1 and B1 have the

following quaternion forms:

A1 = Re(a1) + Im(a1) i

def
= α0 + α1i

B1 = Re(b1) + Re(b1) j + Im(b1) k

def
= β0 + β2 j + β3 k.
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These points of S3 may be shifted along the maximal torus on which they lie

via the maps

A1 ↦→ Â1(t) = exp(t logA1)

B1 ↦→ B̂1(t) = exp(t logB1).

Doing so until they reach the equator produces the orthogonal quaternions

Â1 = α̂1 i

B̂1 = β̂2 j + β̂3 k.

Therefore, for those tangent directions corresponding to Goldman flows in-

duced by standard generators of π1, conditions on the critical representations

of λ1 correspond to a sort of orthogonal property between pairs of generators

Ai, Bi. In searching for representations with minimal λ1, this property pro-

vides in some sense a more efficient approach: as soon as a pair of generators

Ai, Bi exhibit this orthogonality property, any representation {Ai, Bi} con-

taining them will be critical in the tangent directions corresponding to both

the αi and βi induced flows.

7.2 Numerical inquiry

The above computations have been translated into a computer program.

Given any one of the above flows and representation class [ρ], there is a pro-

gram which computes and plots λ1 along the flow. This is done via two

methods: I. using a direct method of flowing the matrix representation via

the definitions given above and computing the eigenvalues at each step, and

II. computing the oscillating eigenvalue via the periodic formulas—equations

(7.4) through (7.8) in the summary of the previous section. In both methods

code has also been written to normalize the periods to 2π.
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In each case, when two of the flows commute, a program was also written

to plot the values of λ1 against perturbations in each of these two directions.

Finally, there are functions which, given a representation and any of the

flows, find the representation with the minimum and maximum λ1 along the

periodic trajectory.

For example, take the representation {Ai, Bi} with

A1 =

⎡⎢⎣ 0 i

i 0

⎤⎥⎦ B1 =

⎡⎢⎣ 1√
2

i√
2

i√
2

1√
2

⎤⎥⎦
A2 = B2 =

⎡⎢⎣1
2
− i

2
−1

2
+ i

2

1
2
+ i

2
1
2
+ i

2

⎤⎥⎦ . (7.9)

Letting the representation evolve according to each of the discussed Goldman

flows produces the oscillations of λ1 shown in figure 7–2. The variation in λ1

when {Ai, Bi} is deformed according to the commuting Goldman flows induced

by α1 and α2 is shown in figure 7–3.

Figure 7–2: Evolution of λ1 under Goldman flows.
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Figure 7–3: Evolution of λ1 under the commuting Goldman flows induced by α1 and α2.

7.2.1 Application to study λ1 for representations into the octahe-
dral subgroup

Extremal eigenvalues of operators tied to the structure of Riemann surfaces

often coincide with a considerable degree of symmetry. For instance, critical

values of the first nonzero eigenvalue of the Laplacian ∆ on a genus g surface

correspond to highly symmetric Riemmanian metrics; the round metric on the

sphere is one example. Such connections motivated an application of the above

numerical tools to study λ1 for representations into the octahedral subgroup

of SO3 and hence of SU2.

The octahedral group is the group of symmetries of a regular octahedron,

equivalently the group of symmetries of a cube. Situating the centre of a cube

at the origin in R3, this symmetry group is comprised of the following twenty-

four elements along with each of these elements composed with inversion:

• the identity rotation;

• 3 × rotations by 180◦ about a proper axis;

• 6 × rotations by 90◦ about a proper axis;

• 6 × rotations by 90◦ about an edge axis;
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• 8 × rotations by 120◦ about a body diagonal.

Considering the symmetry present in the octahedral subgroup, one might

expect that representations occurring within it to exhibit critical values of

λ1. This was found not to be true. The representation described in equation

(7.9) above provides such a counterexample. The image of this representation

{Ai, Bi} is a subgroup of the octahedral group. It is, however, non-critical for

each of the flows in its tangent directions—see figure 7–2.

Looking still at figure 7–2, one sees there is a representation along the

periodic trajectory associated to the Goldman flow induced by α1 for which

λ1 is 0. In the next section, the class of all representations with λ1 = 0 in

which this representation is situated is discussed.

7.3 Representations with λ1 = 0

Interest in the values of the spectral gap lies in particular with those repre-

sentations for which the gap is maximal. In other words, for those representa-

tions which keep |λN | minimal. This prompts a look to those representations

for which λ1 = 0.

7.3.1 Examples of representations with λ1 = 0

Looking again at equation (7.2) one see that λ1 occurs precisely when the

sum of the real parts of the generators’ upper left entry equals 0. Irreducible

representations which satisfy such a property can easily be constructed. In-

deed, taking any two distinct diagonal matrices D1 = diag(eiϑ1 , e−iϑ1) and

D2 = diag(eiϑ2 , e−iϑ2) for which cos(ϑ1) + cos(ϑ2) = 0, and a matrix G

of SU2 which does not commute with either Di, setting A1, B1, A2, B2 =

D1, D2, GD1G
−1, GD2G

−1 establishes such a representation. In this case, as

desired,
[
D1 +D−1

1

]
+

[
D2 +D−1

2

]
= diag(cos(ϑ1), cos(ϑ1))+ diag(cos(ϑ2),
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cos(ϑ2)) = 0. The Di commute so that the commutator relation is satisfied,

however the group generated remains nonabelian.

7.3.2 Is there a link between λ1 = 0 and maximal spectral gaps?

A natural question which arises when looking at representations for which

λ1 = 0 is whether these representations have maximum spectral gaps. This

question is explored by looking at the set of examples described above.

To construct an example, take

Di =

⎡⎢⎣eϑi 0

0 e−ϑi

⎤⎥⎦ and G =

⎡⎢⎣ g g

−g g

⎤⎥⎦
satisfying the conditions of the examples given in the previous section. To

determine the values of λN for all N the following matrices must be calculated:

symN(z) =
1

8

[
symN(D1) + symN(D−1

1 ) + symN(D2) + symN(D−1
2 )+

symN(GD1G
−1) + symN(GD−1

1 G−1)+

symN(GD−1
2 G−1) + symN(GD−1

2 G−1)
]

=
1

8

[
symN(D1) + symN(D−1

1 ) + symN(D2) + symN(D−1
2 )+

symN(G)
[
symN(D1) + symN(D−1

1 ) + symN(D2)+

symN(D−1
2 )

]
symN(G−1)

]
def
=
1

8

[
symN(zD) + symN(G) symN(zD) sym

N(G−1)
]
.
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The second equality above holds since the operations of conjugation and taking

the Nth symmetric power commute. The Nth symmetric power of Di is

symN(Di) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eϑi(N) 0 · · · 0 0

0 eϑi(N−2) · · · 0 0

0 0
. . . 0 0

0 0 · · · e−ϑi(N−2) 0

0 0 · · · 0 e−ϑi(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence symN(Di)+symN(D−1
i ) = diag(cos(ϑi(N)), cos(ϑi(N−2)), · · · , cos(ϑi(N−

2)), cos(ϑi(N)) and symN(zD) = diag(cos(ϑ1(N)) + cos(ϑ2(N)), cos(ϑ1(N −

2))+cos(ϑ2(N−2)), · · · , cos(ϑ1(N−2))+cos(ϑ2(N−2)), cos(ϑ1(N))+cos(ϑ2(N)))

Based on the assumption that cos(ϑ1)+ cos(ϑ2) = 0 there are two possible

cases: ϑ2 = π± ϑ1. In either case, according to basic trigonometric identities,

it follows that for any N ,

cos(ϑ2(N)) = cos((π ± ϑ1)(N)) = cos(π(N)± ϑ1(N))

= cos(π(N)) cos(ϑ1(N))∓ sin(π(N)) sin(ϑ1(N))

= cos(π(N)) cos(ϑ1(N)).

Therefore when N is odd

symN(zD) = symN(D1) + symN(D−1
1 ) + symN(D2) + symN(D−1

2 )

= 0

as has already been seen in the case N = 1, and when N is even

symN(zD) = diag(2 cos(ϑ1(N)), 2 cos(ϑ1(N − 2)), · · · ,

2 cos(ϑ1(N − 2)), 2 cos(ϑ1(N))).
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This is as far as the computations in this direction have been taken. More work

must be done to understand the eigenvalues of sumN(z) = 1/8[symN(zD) +

symN(G) symN(zD) sum
N(G−1)] based on the above form of symN(zD) when

N is even before it will be understood whether λ1 = 0 is a signature of critical

spectral gaps.

68



CHAPTER 8
Conclusion

Following earlier chapters building up preliminary material, the relevance

of using Goldman flows to study the spectral gaps associated to certain stan-

dard averaging operators defined over L2(S2) and hence to Hom(π1(Σg), SU2)/

SU2 has been shown. Computations in the case of g = 2 and at the level of

the first spectral radius λ1 demonstrate how Goldman flows provide both in-

formation on the local behaviour of the first spectral radius as well as a means

of moving around in the representation variety, and therefore an approach to

finding critical points of the first spectral gap.

While the computations in this case are relatively simple, understanding

the general case is considerably more difficult. In addition to understanding

the generalization to higher genus surface groups, further work must be done

before it is understood how the nth spectral radii for n ≥ 2 and thus the spec-

tral gap itself evolve under Goldman flows. Once it is, these results would

allow further research into the critical points of the spectral gap over these

representation varieties. Working in another direction—favouring the aver-

age over the exceptional—it may interesting to explore how Goldman flows

could facilitate the computation of average statistics of the spectral gap over

Hom(π1(Σg), SU2)/SU2.
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