
Speed Comparison of Solution Methods for the Obstacle
Problem

Rebecca M. Carrington
Department of Mathematics and Statistics

McGill University, Montréal

August 2017

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Science.

c© Rebecca M. Carrington 2017

Acknowledgments

The work of this thesis would not have been possible without the persistent support of my

advisor, Dr. Adam Oberman. I am very grateful for the time he invested in this project

and the opportunity of working with him. His vast knowledge of many areas of applied

mathematics was invaluable.

I am indebted to the greater body of the Mathematics and Statistics department for

supporting me and helping me learn throughout the last few years. I want to thank the Na-

tional Science and Engineering Research Council (NSERC) for supporting me with a PGS-M

scholarship this past year.

Finally, I am immensely grateful for the continued support of my parents and brother

throughout this journey.

But now, Lord, what do I look for?

My hope is in you.

Psalm 39:7

i

Abstract

Obstacle problems can be solved iteratively. Several solution methods are implemented and

their speeds are compared. Speed is measured both in terms of the number of iterations

required to converge and the average CPU time needed for one iteration for each method.

The implementation is done using MATLAB for problems in one and two dimensions. The

Euler iterative method requires a large number of iterations to converge to the solution. The

semismooth Newton’s method (SSNM) requires fewer iterations. Even fewer iterations are

achieved with the combined method, which alternates between several Euler steps and one

SSNM step. The behavior of the three different solution methods is compared extensively,

and the combined method is declared as the best.

ii

Abrégé

Les problèmes de l’obstacle peuvent être résolus itérativement. Plusieurs méthodes numériques

sont développées et leurs vitesses sont comparées. La vitesse d’une méthode est déterminée

en considérant le nombre d’itérations nécessaires pour converger ainsi que le temps moyen

requis par le processeur pour une seule itération. La réalisation est faite avec MATLAB en

une et deux dimensions. La méthode itérative d’Euler exige un grand nombre d’itérations

pour converger vers la solution. La méthode de Newton semismooth (MNSS) exige moins

d’itérations. Les deux méthodes sont combinées en alternant quelques pas d’Euler avec un

pas de la MNSS. Encore moins d’itérations sont nécessaires pour cette méthode de combi-

naison. La performance des trois méthodes est comparée et la méthode de combinaison est

déclarée gagnante.

iii

Contents

Acknowledgments . i

Abstract . ii

Abrégé . iii

1 Introduction 1

2 Background 4

2.1 The Classical Obstacle Problem . 4

2.1.1 Energy Method for Laplace’s Equation 4

2.1.2 The Obstacle Problem . 5

2.1.3 Complementarity Problems . 5

2.1.4 Variational Inequality . 7

2.2 Applications . 10

2.2.1 Deformation of an Elastic Membrane 10

2.2.2 Optimal Stopping . 11

2.3 The General Obstacle Problem . 12

2.4 Problem Discretization . 13

2.5 Finite Difference Operators . 14

3 Forward Euler Iterative Method 16

4 Forward Euler Implementation 28

iv

4.1 1d Numerical Results . 28

4.2 2d Numerical Results . 29

5 Semismooth Newton’s Method 32

5.1 Newton’s Method . 32

5.2 Nonsmooth Analysis . 33

5.2.1 Generalized Jacobian . 34

5.2.2 Semismooth Functions . 35

5.3 Semismooth Newton’s Method . 38

6 SSNM Implementation 39

6.1 1d Numerical Results . 41

6.2 2d Numerical Results . 43

7 Combined Method 45

7.1 Comparison of the Euler and SSNM Solvers 45

7.2 Combined Algorithm . 48

8 Combined Implementation 50

8.1 1d Numerical Results . 50

8.2 2d Numerical Results . 52

8.3 Comparison of the Three Solvers . 54

9 Conclusions 58

9.1 Summary . 58

9.2 Future Work . 59

References 60

v

List of Figures

2.1 Comparison of NCP functions . 7

2.2 Illustration of the obstacle problem in 1d 9

3.1 The first step of the Euler solver . 25

4.1 1d Euler solver . 29

4.2 2d Euler solver . 30

4.3 Number of iterations for the Euler solver 31

6.1 The minimum function and its generalized gradient 40

6.2 1d SSNM solver . 42

6.3 Comparison of NCP functions in 1d . 43

6.4 SSNM solver for N = 5002 . 44

6.5 Number of iterations for the SSNM solver 44

7.1 Comparison of methods via the change at each iteration 47

8.1 Number of Euler iterations corresponding to one SSNM iteration in 1d . . . 51

8.2 Combined solver each combined iteration for N = 1000 51

8.3 Analysis of the inner iterations of the combined solver 52

8.4 Number of Euler iterations corresponding to one SSNM iteration in 2d . . . 53

8.5 Combined solver for N = 10002 . 54

8.6 Change at all inner iterations for the combined solver with N = 1002 54

vi

8.7 Number of iterations for the combined solver 55

8.8 Comparison of the number of iterations for the methods 56

vii

List of Tables

4.1 Number of Euler iterations for the 1d obstacle problem 29

4.2 Number of Euler iterations for the 2d obstacle problem 30

6.1 Number of SSNM iterations for the 1d obstacle problem 41

6.2 Number of SSNM iterations for the 1d obstacle problem with different NCP

functions . 42

6.3 Number of SSNM iterations for the 2d obstacle problem 43

7.1 1d computation time comparison . 46

7.2 2d computation time comparison . 46

8.1 Number of Euler iterations corresponding to one SSNM iteration in 1d . . . 50

8.2 Number of iterations for the 1d obstacle problem using the combined method 51

8.3 Number of Euler iterations corresponding to one SSNM iteration in 2d . . . 53

8.4 Number of iterations for the 2d obstacle problem using the combined method 53

8.5 Number of iterations for the 1d obstacle problem weighted on SSNM iterations 56

8.6 Number of iterations for the 2d obstacle problem weighted on SSNM iterations 56

8.7 Slopes of the log-log plots of Figure 8.8 . 57

viii

Chapter 1

Introduction

Partial differential equations (PDEs) are equations that model real world phenomena. Ob-

stacle problems give rise to a particular PDE [1, 16]. They can be motivated by considering

an elastic membrane which is restricted to lie above an obstacle [16]. The optimal stopping

problem in control theory can also be formulated as an obstacle problem [14]. Obstacle

problems have two principle components: the obstacle, and an elliptic operator which deter-

mines how the obstacle is surmounted. The classical obstacle problem has as its operator the

negative Laplace operator. The more general obstacle problem allows for nonlinear elliptic

operators.

We are interested in solving obstacle problems for linear and nonlinear partial differential

equations in one and two dimensions as fast as possible. Solving the problems requires their

discretization onto a finite difference grid. Finite difference operators are used to approximate

partial derivatives on the grid. We would like the speed of convergence to be independent

of the grid size of the discretization. The speed of convergence is measured in terms of

the number of iterations needed to converge as well as the average CPU time of one such

iteration. We are looking for the most time efficient method for solving the obstacle problem.

1

The obstacle problem is formulated as a nonlinear complementarity problem (NCP) [11].

An equivalent formulation involving a system of equations with an underlying NCP function

is used [9]. This system is solved numerically using an iterative approach. That is, an initial

function is chosen, and an iterative update produces each subsequent function. The sequence

of functions converges to the solution of the obstacle problem.

Three iterative methods will be implemented and their speeds compared for specific ex-

amples. The first method to be considered is the forward Euler iterative method [13]. We

will show that the number of iterations required is highly dependent on the chosen grid size.

The second method to be used is the semismooth Newton’s method (SSNM) [15]. New-

ton’s method cannot be applied directly because the NCP functions considered here are not

smooth enough. Nonsmooth analysis will be called upon to prove the NCP functions are

semismooth and to apply the SSNM to our problem. Finally, we propose a new solver that

combines the existing Euler and semismooth Newton’s methods. In the combined method,

several iterations of the Euler solver precede one iteration of the SSNM solver. Numerical

results will show the combined method to be the fastest method for specific examples in one

and two dimensions.

The SSNM has been implemented for the Bratu obstacle problem with the continuously

differentiable merit function of an NCP function using the preconditioned conjugate gradient

(PCG) method in MATLAB [10]. A range of grid sizes all required only six SSNM iterations

for convergence. However, the PCG inner iterations are expensive in terms of computation

time, and it is unclear if this result extends to different obstacles.

The thesis is organized as follows. Chapter 2 covers background information on the obsta-

cle problem and the finite difference grid. Chapter 3 introduces the theory behind the Euler

method. Chapter 4 gives the numerical results for the Euler method. Chapter 5 contains an

2

introduction to nonsmooth analysis and the SSNM. Chapter 6 gives the numerical results

for the SSNM. Chapters 7 and 8 describe the combined method and its implementation,

respectively. Finally, Chapter 9 provides a summary of the work done.

3

Chapter 2

Background

2.1 The Classical Obstacle Problem

2.1.1 Energy Method for Laplace’s Equation

As a motivation for the obstacle problem, we first consider a problem without an obstacle.

Let Ω be an open, bounded subset of Rd with boundary, ∂Ω, C1 and h : ∂Ω → R. The

problem of minimizing the functional (called the Dirichlet energy),

ED[u] := 1
2

∫
Ω

|∇u|2 dx, (2.1)

subject to u ∈ AD := {u ∈ C2(Ω̄) | u = h on ∂Ω} is equivalent to u solving the PDE


−∆u = 0 in Ω,

u = h on ∂Ω.

This is a well-known fact in harmonic analysis [5].

4

2.1.2 The Obstacle Problem

We now add an obstacle and an external force to the problem. Let g, f : Ω̄ → R be given

smooth functions. The obstacle, g, adds pointwise constraints to the function u, while f is

a nonnegative external force. Define the new energy functional

E[u] :=

∫
Ω

1
2
|∇u|2 − fu dx, (2.2)

and the set A := {u ∈ H1(Ω) | u ≥ g a.e. in Ω, u = h on ∂Ω}. Here H1(Ω) denotes

the space of square integrable functions whose gradient is also square integrable. The ob-

stacle problem with Dirichlet boundary conditions is to minimize E[·] among all functions

u ∈ A. There exists a unique function u ∈ A that solves the obstacle problem, i.e. satisfying

E[u] = min
w∈A

E[w] [5].

2.1.3 Complementarity Problems

Before reformulating the obstacle problem, we define the nonlinear complementarity problem

(NCP) and NCP functions [11, 8]. Let x ∈ Rn. By x ≥ 0, we mean xi ≥ 0 for all i = 1, . . . , n.

Definition 2.1 (NCP). Let F : Rn → Rn be a given function. Finding x ∈ Rn satisfying

x ≥ 0, F (x) ≥ 0, xTF (x) = 0 ⇔ xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0 ∀i = 1, . . . , n

is called a (nonlinear) complementarity problem (NCP).

Definition 2.2 (NCP function). A function ϕ : R2 → R is called an NCP function if

ϕ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

5

We now introduce two NCP functions that will be used in our numerical implementation

of the obstacle problem.

Proposition 2.3. ϕmin(a, b) := min(a, b) is an NCP function.

Proof. Suppose min(a, b) = 0. If a ≤ b, then a = 0 and b ≥ 0. Therefore, ab = 0. In

particular, a ≥ 0, b ≥ 0 and ab = 0. By symmetry, the same is obtained if b ≤ a. On the

other hand, suppose a ≥ 0, b ≥ 0 and ab = 0. Then either a = 0 or b = 0. If a = 0, then

min(a, b) = 0 since b ≥ 0. Again, by symmetry, the same is obtained if b = 0.

Proposition 2.4. ϕFB(a, b) :=
√
a2 + b2−a−b is an NCP function. It is called the Fischer-

Burmeister function [8].

Proof. To prove ϕFB is an NCP function, we need to prove ϕFB(a, b) = 0 ⇔ a ≥ 0, b ≥

0, ab = 0.

⇒ Assume first ϕFB(a, b) = 0. Then
√
a2 + b2−a− b = 0 implies (a+ b)2 = a2 + b2, which is

equivalent to a2 + 2ab+ b2 = a2 + b2. Therefore we obtain ab = 0. Now suppose a < 0. Since

ab = 0, b = 0 and therefore ϕFB(a, b) =
√
a2 − a > 0. This contradicts the assumption. So

we must have a ≥ 0, and by symmetry, b ≥ 0.

⇐ Next, assume a ≥ 0, b ≥ 0, ab = 0. Then a2 + 2ab + b2 = a2 + b2, which is equivalent to

(a+ b)2 = a2 + b2. Using the fact that a ≥ 0 and b ≥ 0, we can take the square root of both

sides of the last equation, obtaining
√
a2 + b2 − a− b = 0, that is, ϕFB(a, b) = 0.

We have proved that ϕFB is an NCP function.

The level sets of ϕmin and ϕFB are shown in Figure 2.1. From these images we can

identify areas of nondifferentiability: ϕmin is not differentiable on the line a = b while ϕFB

is not differentiable at the point (a, b) = (0, 0).

We now introduce a more compact formulation of a complementarity problem. Let

6

a

b

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) Level sets of ϕmin

a

b

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) Level sets of ϕFB

Figure 2.1: Comparison of NCP functions

Φ : Rn → Rn be defined as

Φ(x) :=


ϕ(x1, F1(x))

...

ϕ(xn, Fn(x))

 , (2.3)

where F : Rn → Rn and ϕ : R2 → R is a given NCP function. The following theorem gives

a correspondence between the NCP and the nonlinear system of equations Φ(x) = 0 [11].

Theorem 2.5. Let Φ be given by (2.3). Then x ∈ Rn solves the NCP if and only if Φ(x) = 0.

Proof. The result follows from the definition of Φ:

Φ(x) = 0 ⇔ ϕ(xi, Fi(x)) = 0 ∀i = 1, . . . , n,

⇔ xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0 ∀i = 1, . . . , n,

which is the NCP. The second equivalence follows from the fact that ϕ is an NCP function.

2.1.4 Variational Inequality

We now consider an alternate formulation of the obstacle problem. The unique minimizer

of Equation (2.2) satisfies

∫
Ω

∇u · ∇(w − u) dx ≥
∫

Ω

f(w − u) dx for all w ∈ A,

7

which is called a variational inequality [5]. Under a weak regularity condition, the variational

inequality is equivalent to

u− g ≥ 0, −∆u− f ≥ 0, (u− g)(−∆u− f) = 0, a.e. in Ω, (2.4)

which is a shifted NCP [5, 16]. To obtain the regular NCP, define v := u−g. Then Equation

2.4 becomes

v ≥ 0, −∆(v + g)− f ≥ 0, v(−∆(v + g)− f) = 0, a.e. in Ω, (2.5)

which is an NCP with F (v) = −∆(v + g) − f . Equation 2.5 is actually what is called a

linear complementarity problem. The more general NCP must be considered when dealing

with the general obstacle problem.

This NCP formulation implies that at each x ∈ Ω, the solution u satisfies−∆u(x)−f(x) =

0 and u(x)− g(x) ≥ 0 or u(x)− g(x) = 0 and −∆u(x)− f(x) ≥ 0. Define the following two

regions:

C := {x ∈ Ω | u(x)− g(x) = 0},

D := {x ∈ Ω | u(x)− g(x) ≥ 0}.

The set F := C ∩ D = {x ∈ Ω |u(x) − g(x) = 0,−∆u(x) − f(x) = 0} is called the free

boundary [5]. The free boundary plays an important role in the solution methods presented

in later chapters.

Figure 2.2 illustrates the one-dimensional obstacle problem with Ω = (−1, 1) and h ≡ 0.

8

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

 a
nd

 g
(x

)

a b c d

g(x)
u(x)

(a) f ≡ 0

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

 a
nd

 g
(x

)

g(x)
u(x)

(b) f constant

Figure 2.2: Illustration of the obstacle problem in 1d

The problem becomes


u(x)− g(x) ≥ 0, −uxx(x)− f(x) ≥ 0, (u(x)− g(x))(−uxx(x)− f(x)) = 0, x ∈ (−1, 1),

u(x) = 0, x ∈ {−1, 1}.

For the problem shown in Figure 2.2a, C = [a, b]∪ [c, d] and D = [−1, a]∪ [b, c]∪ [d, 1]. The

solution at points in set C coincides with the obstacle and is concave. The solution at points

in set D lies above the obstacle and is a line. The free boundary is the set F = {a, b, c, d}.

The force f is nonnegative by assumption. The larger f is, the closer the solution to the

obstacle problem is to the obstacle, g. Smaller values of f lead to solutions close to the case

shown in Figure 2.2a. This is illustrated in Figure 2.2b, with

f(x) =


k, x ∈ (−1, 1),

0, x ∈ {−1, 1},
(2.6)

where k ∈ {1, 2, . . . , 20}.

By Theorem 2.5, the shifted version of Equation 2.4 is equivalent to solving the system

9

of equations ϕ(−∆u(x) − f(x), u(x) − g(x)) = 0, x ∈ Ω, where ϕ is any NCP function.

Adding the given boundary data, the problem becomes


ϕ(−∆u(x)− f(x), u(x)− g(x)) = 0, x ∈ Ω,

u(x) = h(x), x ∈ ∂Ω.

(2.7)

Equation 2.7 is the formulation of the classical obstacle problem that will be used in the

remainder of this thesis. For example, if the minimum function (Proposition 2.3) is chosen,

the obstacle problem becomes


min(−∆u(x)− f(x), u(x)− g(x)) = 0, x ∈ Ω

u(x) = h(x), x ∈ ∂Ω.

(2.8)

It is important to note that the minimum function is not differentiable exactly at the points

along the free boundary.

2.2 Applications

Problems in a variety of fields take the form of obstacle problems. Two of these applications

are highlighted in the following subsections.

2.2.1 Deformation of an Elastic Membrane

The classical obstacle problem models the equilibrium position of a membrane in a domain

which is restricted to lie above an obstacle g in the interior of the domain and whose boundary

position is fixed. Consider a two-dimensional membrane. A membrane is a thin plate

acting only in tension [16]. Assume the membrane is equally stretched in all directions and

subject to an external force f on a domain Ω ∈ R2. Suppose each point x ∈ Ω is displaced

10

perpendicularly to the plane by u(x) and each point x ∈ ∂Ω is displaced perpendicularly to

the plane by h(x). The surface area after deformation of the membrane is

SA[u] =

∫
Ω

√
1 + |∇u|2 dx.

Minimizing SA subject to u ∈ AD is a minimal surface problem [5]. Using the Taylor

approximation,

SA[u] ≈
∫

Ω

1 + 1
2
|∇u|2 dx.

The solution of the minimization of the approximation of SA subject to u ∈ AD is therefore

an approximation to the solution of the minimal surface problem. The change in surface

area is equal to the deformation energy,

D[u] =

∫
Ω

1
2
|∇u|2 dx,

up to a positive constant of elasticity. The external force f does work

F [u] =

∫
Ω

fu dx.

Therefore, the total potential energy is given by E = D − F . Suppose in addition that

the membrane is constrained to lie above an obstacle, g. This problem is equivalent to

minimizing Equation 2.2 subject to u ∈ A, which is exactly the obstacle problem defined in

Section 2.1.2 [16].

2.2.2 Optimal Stopping

There is also an optimal stopping interpretation of the obstacle problem [14]. Consider a

diffusion process of a particle undergoing Brownian motion. The optimal stopping problem

is to choose a stopping time to minimize an expected cost. When the process is stopped, a

11

cost is incurred. The minimum expected cost over all possible stopping times is the solution

to an obstacle problem [6].

2.3 The General Obstacle Problem

The need for a more general obstacle problem is motivated by the following example. Define

the (negative) convex envelope of a function g as the infimum of all concave functions which

are minorized by g: u(x) = inf{v(x) | v is concave, v(y) ≥ g(y) for all y ∈ Rd}. The convex

envelope is the solution to the PDE

min(−λd[u](x), u(x)− g(x)) = 0, x ∈ Ω, (2.9)

where λd[u](x) is the largest eigenvalue of the Hessian D2u(x) [14]. Note that for d = 1,

the convex envelope is the solution to the classical obstacle problem (2.8) with f ≡ 0, as

illustrated in Figure 2.2a. For d = 2, this is no longer true since −uxx − uyy 6= −λ2[u]

in general. The PDE (2.9) is an example of the more general obstacle problem with the

minimum function, ϕmin, as the NCP function,


min(F [u](x)− f(x), u(x)− g(x)) = 0, x ∈ Ω,

u(x) = h(x), x ∈ ∂Ω,

(2.10)

where F [u] : Ω̄ → R is an elliptic operator. However, by Theorem 2.5, (2.10) can be

formulated as an NCP and hence any NCP function ϕ leads to an equivalent problem:


ϕ(F [u](x)− f(x), u(x)− g(x)) = 0, x ∈ Ω,

u(x) = h(x), x ∈ ∂Ω.

(2.11)

The same definitions of the sets C, D and F exist for the general obstacle problem.

12

Defining G[u] := ϕ(F [u]− f, u− g), the general problem can be rewritten as


G[u] = 0, on Ω,

u = h, on ∂Ω.

The numerical implementation presented in the following chapters only deals with the classi-

cal obstacle problem, however the same concepts could also be applied to a general obstacle

problem with a nonlinear underlying operator F .

2.4 Problem Discretization

To solve the obstacle problem numerically, it is first discretized onto the finite difference

grid. The domain Ω is discretized in space. There must also be a discretization in time to

keep track of the iterations in the iterative process. Let (x, t) ∈ ΩT := Ω̄ × [0, T], and let

u(x, t) : ΩT → R. The domain ΩT is discretized by a spacing h > 0 in all components of x,

and a time step dt > 0 in t. The discretized grid is given by

Ωh,dt
T = hZd × [0, dt, 2dt, . . . ,KTdt].

Here we assume KTdt = T , since if this is not the case, it can be made true by rounding.

Functions on the grid, ukJ : Ωh,dt
T → R are defined as

ukJ = u(hJ, kdt),

where k ∈ N and J ∈ Zd is a d-tuple of indices.

For example, the one-dimensional domain Ω = (−L,L), L > 0, hasN = 2L
h

+1 grid points,

where h is the grid spacing. Homogeneous Dirichlet boundary conditions are achieved by

13

setting u(L, ndt) = u(−L, ndt) = 0, for all n ≥ 0. In general, if w denotes the width of

the domain Ω, the number of grid points is N = w
h

+ 1. For a two-dimensional rectangular

grid of size wx × wy and grid spacing h in both directions, the number of grid points is

N =
(
wx

h
+ 1
) (wy

h
+ 1
)
, and homogeneous Dirichlet boundary conditions are defined in an

analogous way to the one-dimensional case.

2.5 Finite Difference Operators

We now introduce the standard finite difference operators which were used to approximate

the partial derivatives in the obstacle problem. The Taylor expansion for a smooth function

applied at x+ h and x− h is

u(x+ h) = u(x) + hu′(x) +
h2

2
u′′(x) +

h3

6
u′′′(x) +O(h4),

u(x− h) = u(x)− hu′(x) +
h2

2
u′′(x)− h3

6
u′′′(x) +O(h4).

Adding the two equations and isolating the u′′(x) term yields the one-dimensional second

order centered difference,

u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2),

which is second order accurate. The notation we use for the one-dimensional second order

centered difference at grid point j and iterate k is

(uCxx)kj =
ukj+1 − 2ukj + ukj−1

h2
. (2.12)

14

The two-dimensional Laplacian is

∆u(x, y) =
u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2
+
u(x, y + h)− 2u(x, y) + u(x, y − h)

h2
+O(h2),

=
u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)− 4u(x, y)

h2
+O(h2),

which is second order accurate. Similarly, the notation for the two-dimensional Laplacian

on our grid is

(∆uC)ki,j =
uki−1,j + uki+1,j + uki,j−1 + uki,j+1 − 4uki,j

h2
. (2.13)

Note that the two-dimensional Laplacian is simply the sum of the one-dimensional Laplacian

in the two grid directions: ∆uC = uCxx + uCyy.

15

Chapter 3

Forward Euler Iterative Method

Consider the PDE with Dirichlet boundary conditions,


G[u](x) = 0 for x in Ω,

u(x) = h(x) for x on ∂Ω.

(3.1)

The first method to solve (3.1) considered is the forward Euler iterative method. Instead of

solving the time independent PDE, a time dependent PDE will be solved. More specifically,

the Euler method is used to solve the PDE ut + G[u] = 0 instead of G[u] = 0. Then the

discretized version of the new time dependent PDE is

uk+1 − uk

dt
+G[uk] = 0.

Algorithm 1 Forward Euler obstacle solver

Let G : RN → RN be given. Select u0 ∈ RN and set k := 0.

1: Unless a stopping rule is satisfied, set:

uk+1 := uk − dtG[uk]. (3.2)

2: Set k := k + 1, and go to Step 1.

Algorithm 1 is the Euler solver for the obstacle problem with general operator F [u]

16

and arbitrary NCP function ϕ in pseudocode. For our case with the obstacle problem,

G[uk] = ϕ
(
F [uk]− f, uk − g

)
= 0. From this point on we consider only problems with

homogeneous boundary conditions, h ≡ 0. For example, for F [u] = −uxx, f ≡ 0 and

ϕ = ϕmin, Equation 3.2 is discretized with Equation 2.12 as

uk+1
j = ukj − dtmin

(
−
ukj+1 − 2ukj + ukj−1

h2
, ukj − gj

)
. (3.3)

During the implementation, when the exact solution of the particular problem is not

known, the stopping rule is chosen to be ‖uk+1 − uk‖∞ < ε for some ε > 0. Once it is

satisfied, the sequence of iterations {uk} is considered to have converged.

We now build the framework which will enable us to argue the convergence of the Euler

method for the obstacle problem. The iterative update in Algorithm 1 is uk+1 = uk−dtG[uk].

We define the explicit discretization of the PDE ut +G[u] = 0 as the Euler map [13].

Definition 3.1 (Euler map). For dt > 0, define Sdt : RN → RN by

Sdt(u) = u− dtG[u]. (3.4)

In order to comment on the convergence of this method, we need to define several con-

cepts. The following arguments follow the method outlined in [13]. Let ∇u and ∇2u denote

the gradient and Hessian of u, respectively. Then let G(x, r, p,X) be a continuous function

defined on Ω× R× Rd × Sd, where Sd is the space of all symmetric d× d matrices.

Definition 3.2 (Degenerate elliptic). The PDE G[u](x) ≡ G(x, u(x),∇u(x),∇2u(x)) = 0 is

called degenerate elliptic if

G(x, r, p,X) ≤ G(x, s, p, Y),

whenever r ≤ s and X ≥ Y , where x ∈ Ω̄, r, s ∈ R, p ∈ Rd, X, Y ∈ Sd. X ≥ Y means that

X − Y is a symmetric positive semidefinite matrix.

17

We now define notation for the finite difference scheme for G. Consider points on the

grid, xj ∈ Ωh, j = 1, . . . , N . Each point has a list of neighboring points, N(j). Define the

grid function uj = u(xj). We write the finite difference scheme for G as

Gh[u] ≡ Gj(uj, uj − uj′|j′=N(j)).

Definition 3.3 (Degenerate elliptic scheme). The scheme Gh is degenerate elliptic if each

component Gj is nondecreasing in each variable.

That is, the scheme must be a nondecreasing function of uj and of the difference uj−uj′ ,

for all neighbors j′ ∈ N(j). We next define global Lipschitz continuity and the nonlinear

Courant-Friedrichs-Lewy (CFL) condition.

Definition 3.4 (Lipschitz continuity). The finite difference scheme Gj is Lipschitz contin-

uous if there is a constant K such that for all j = 1, . . . , N , x, y ∈ R|N(j)|+1,

|Gj(x)−Gj(y)| ≤ K‖x− y‖∞,

where ‖z‖∞ := max
j
zj is the maximum norm.

Definition 3.5 (Nonlinear CFL condition). Let Gh be a Lipschitz continuous, degenerate

elliptic scheme, with Lipschitz constant K. The nonlinear CFL condition for the Euler map

Sdt is

dt ≤ 1

K
.

The traditional CFL condition is a necessary condition for the convergence of PDEs

solved using finite differences [4]. It gives a restriction on the time step dt. The largest

possible time step is desired. To prove the convergence of the iterates of the Euler map, the

scheme must also be proper.

18

Definition 3.6 (Proper schemes). The finite difference scheme Gj is proper if there exists

δ > 0 such that for j = 1, . . . , N and for all y ∈ RN(j) and x1, x2 ∈ R,

x1 ≤ x2 implies that Gj(x1, y)−Gj(x2, y) ≤ δ(x1 − x2).

If a scheme is not proper, we can instead consider the PDE G[u] + εu = 0. Choosing ε to

be smaller than the discretization error allows us to assume that the scheme is proper. This

has no affect on the accuracy [13].

Armed with these definitions, we now state the following two theorems from [13], which

will establish convergence of the Euler step method.

Theorem 3.7 (The Euler map is a contraction). Let Gh be a Lipschitz continuous, degen-

erate elliptic scheme. Then the Euler map (3.4) is a contraction in RN equipped with the

maximum norm, provided the nonlinear CFL condition, dt ≤ K−1 holds. If in addition, Gh

is proper, and strict inequality holds in the CFL condition, dt < K−1, then the Euler map is

a strict contraction.

Theorem 3.8 (Convergence). A proper, Lipschitz continuous, degenerate elliptic scheme

has a unique solution. The iterates of the Euler map converge to the solution for arbitrary

initial data, provided strict inequality holds in the nonlinear CFL condition, dt < K−1.

The proof of this theorem relies on Theorem 3.7 and Banach’s fixed point theorem. In

practice, convergence is obtained even when the CFL condition inequality is not strict.

We now use these definitions to examine the classical obstacle problem, with the mini-

mum function as the NCP function, G[u] = min(−∆u−f, u−g). We wish to apply Theorem

3.8 to prove the convergence of the Euler method.

Proposition 3.9. G[u] = min(−∆u− f, u− g) = 0 is a degenerate elliptic PDE.

19

Proof. G[u] = min(−∆u − f, u − g) can be rewritten as G(x, r, p,X) = min(−Tr(X) −

f(x), r− g(x)). Let r, s ∈ R and X, Y ∈ Sd be such that r ≤ s and X ≥ Y . This easily gives

r−g(x) ≤ s−g(x). SinceX−Y ≥ 0, the eigenvalues ofX−Y are nonnegative. Since the trace

of a matrix is the sum of its eigenvalues, Tr(X−Y) ≥ 0. Moreover, Tr(X) ≥ Tr(Y) since the

trace is a linear mapping, which gives us the inequality −Tr(X)− f(x) ≤ −Tr(Y)− f(x).

Then min(−Tr(X) − f(x), r − g(x)) ≤ min(−Tr(Y) − f(x), s − g(x)) which is exactly

G(x, r, p,X) ≤ G(x, s, p, Y).

We now concentrate on the one-dimensional obstacle problem:

G[u] = min(−uxx − f, u− g) = 0.

The finite difference scheme is

Gh[u] = min

(
−uj+1 − 2uj + uj−1

h2
− fj, uj − gj

)
,

which can be rewritten as

Gj(x, y1, y2) = min

(
y1 + y2

h2
− fj, x− gj

)
,

where y1 = uj − uj+1, y2 = uj − uj−1 and x = uj. To prove that Gj is nondecreasing in

each variable we can use the fact that if a1 ≤ a2 while b is fixed, min(a1, b) ≤ min(a2, b). As

a result, Gj is a degenerate elliptic scheme. The next thing to show is that Gh is Lipschitz

continuous. We first need the following Proposition.

Proposition 3.10. Let Gj
1 and Gj

2 be Lipschitz continuous finite difference schemes with

Lipschitz constants K1 and K2, respectively. Then G := min(Gj
1, G

j
2) is Lipschitz continuous

with Lipschitz constant K := max(K1, K2).

Proof. Let x, y ∈ R|N(j)|+1. Then, |Gj(x)−Gj(y)| = |min(Gj
1(x), Gj

2(x))−min(Gj
1(y), Gj

2(y))|.

There are four cases to consider:

20

Case 1:

|Gj(x)−Gj(y)| = |Gj
1(x)−Gj

1(y)|

≤ K1‖x− y‖∞

Case 2:

|Gj(x)−Gj(y)| = |Gj
2(x)−Gj

2(y)|

≤ K2‖x− y‖∞

Case 3:

|Gj(x)−Gj(y)| = |Gj
1(x)−Gj

2(y)|

= Gj
1(x)−Gj

2(y)

≤ Gj
2(x)−Gj

2(y)

≤ |Gj
2(x)−Gj

2(y)|

≤ K2‖x− y‖∞

The second equality only holds if Gj
1(x) ≥ Gj

2(y). If Gj
1(x) ≤ Gj

2(y), the chain of inequalities

can be modified to lead to |Gj(x)−Gj(y)| ≤ K1‖x− y‖∞.

Case 4:

|Gj(x)−Gj(y)| = |Gj
2(x)−Gj

1(y)|

This case is symmetric to Case 3.

Therefore, for any x, y, |Gj(x)−Gj(y)| ≤ K‖x− y‖∞, where K := max(K1, K2).

We now return to proving that the finite difference scheme for the one-dimensional clas-

sical obstacle problem is Lipschitz continuous. Let x, y1, y2, x̂, ŷ1, ŷ2 ∈ R. Then we consider

21

two cases. The first case is

|Gj(x, y1, y2)−Gj(x̂, ŷ1, ŷ2)| =
∣∣∣∣y1 + y2

h2
− fj −

(
ŷ1 + ŷ2

h2
− fj

)∣∣∣∣
=

1

h2
|y1 − ŷ1 + y2 − ŷ2|

≤ 1

h2
|y1 − ŷ1|+

1

h2
|y2 − ŷ2|

≤ 2

h2
‖(x, y1, y2)− (x̂, ŷ1, ŷ2)‖∞,

where the first inequality is due to the triangle inequality. The Lipschitz constant in this

first case is K1 := 2
h2 . The second case is

|Gj(x, y1, y2)−Gj(x̂, ŷ1, ŷ2)| = |x− gj − (x̂− gj)|

= |x− x̂|

≤ ‖(x, y1, y2)− (x̂, ŷ1, ŷ2)‖∞.

The Lipschitz constant in this case is K2 := 1. Using Proposition 3.10, the Lipschitz constant

for Gh is K := max(K1, K2) = K1, since we can safely assume that h2 ≤ 2. The nonlinear

CFL condition for the one-dimensional case is therefore dt ≤ h2

2
.

We must now prove that the scheme is proper. Let x1, x2 ∈ R with x1 ≤ x2 and

y := (y1, y2) ∈ RN(i). Then in one case,

Gj(x1, y)−Gj(x2, y) = min

(
y1 + y2

h2
− fj, x1 − gj

)
−min

(
y1 + y2

h2
− fj, x2 − gj

)
=
y1 + y2

h2
− fj −

(
y1 + y2

h2
− fj

)
= 0.

If x1 6= x2, one cannot find a δ > 0 satisfying the proper conditions. However, we can instead

22

consider the PDE G[u] + εu = 0, for some ε > 0. The scheme for this PDE is proper. This

new PDE is only needed to apply Theorem 3.8. The implementation of the scheme for the

new PDE with small enough ε ends up being the same as the implementation for G[u] = 0.

In the two-dimensional case, G[u] = min(−∆u−f, u−g) = 0, the finite difference scheme

is

Gh[u] = min

(
−ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j

h2
− fi,j, ui,j − gi,j

)
,

which can be rewritten as

Gi,j(x, y1, y2, y3, y4) = min

(
y1 + y2 + y3 + y4

h2
− fi,j, x− gi,j

)
,

where y1 = ui,j−ui−1,j, y2 = ui,j−ui+1,j, y3 = ui,j−ui,j−1, y4 = ui,j−ui,j+1 and x = ui,j. The

same procedure can be followed as for the one-dimensional case. Gi,j is a degenerate elliptic

scheme since it is nondecreasing in each variable. The scheme Gi,j is Lipschitz continuous

with Lipschitz constant K = 4
h2 . Gi,j is again not proper, but the same argument can be

applied as in the one-dimensional case.

Theorems 3.7 and 3.8 can now be applied to show that the iterates of the Euler map con-

verge to the solution for arbitrary data, provided strict inequality holds in the nonlinear CFL

condition. For the one-dimensional case, this means dt < h2

2
and for the two-dimensional

case, dt < h2

4
. The time step dt is restricted by the grid size of the discretization. In the im-

plementation however, we chose dt = h2

2
and dt = h2

4
which proved to be enough in practice.

The Euler map (3.4) becomes SK−1(u) = u−K−1G[u], where K is the Lipschitz constant

for Gh. The iterative update in the one-dimensional case can be written as

uk+1
j = ukj −

h2

2
min

(
−
ukj+1 − 2ukj + ukj−1

h2
− fj, ukj − gj

)
. (3.5)

23

In the two-dimensional case, the iterative update is

uk+1
i,j = uki,j −

h2

4
min

(
−
uki−1,j + uki+1,j + uki,j−1 + uki,j+1 − 4uki,j

h2
− fi,j, uki,j − gi,j

)
. (3.6)

We now introduce a concept that is useful for a better visualization of the Euler method.

Proposition 3.11. min(a, b) = 0⇔ min(a, b
ε
) = 0, for all ε > 0.

Proof. ⇒ Suppose min(a, b) = a = 0. Then b ≥ a = 0. But we still have b
ε
≥ 0. And so

min(a, b
ε
) = a = 0, i.e. the first component is still the smaller component. On the other hand,

if min(a, b) = b = 0, then a ≥ b = 0. And we still have a ≥ b
ε

= 0. Then min(a, b
ε
) = b

ε
= 0,

i.e. the second component is still the smaller one.

⇐ Suppose now that min(a, b
ε
) = a = 0. Then b

ε
≥ a = 0 and therefore b ≥ 0 = a

and so min(a, b) = a = 0. On the other hand, if min(a, b
ε
) = b

ε
= 0, then a ≥ b

ε
= 0. We also

have that b = 0. Then min(a, b) = b = 0.

The idea is that the same option in the minimum will be chosen in both cases. This

concept is now applied to the one-dimensional PDE min(−uxx − f, u− g) = 0. We consider

instead the equation min
(
−uxx − f, u−g

h2/2

)
= 0. Equation 3.5 is modified to

uk+1
j = ukj −

h2

2
min

(
−
ukj+1 − 2ukj + ukj−1

h2
− fj,

ukj − gj
h2/2

)
, (3.7)

which further simplifies to

uk+1
j = ukj −min

(
−
ukj+1 − 2ukj + ukj−1

2
− h2

2
fj, u

k
j − gj

)

= ukj + max

(
ukj+1 − 2ukj + ukj−1

2
+
h2

2
fj, gj − ukj

)

= max

(
ukj+1 + ukj−1

2
+
h2

2
fj, gj

)
. (3.8)

Consider the case when f ≡ 0. Intuitively, the iterative update in Equation 3.8 says that

24

at each grid point, the function either jumps to the obstacle, or is smoothed by taking the

average of its neighbors from the previous time step. Figure 3.1 is an illustration of this

phenomenon at the first Euler step with the initial guess shown in black, the obstacle in red,

and the solution in blue.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u 0(x
),

 g
(x

)
an

d
u(

x)

u
0
(x)

g(x)
u(x)

Figure 3.1: The first step of the Euler solver

The Euler iterations given by Equation 3.7 were implemented with

uk+1 = uk − h2

2
min

(
−Dxxu

k − fj,
uk − g
h2/2

)
,

where uk ∈ RN−2. Recall that N is the number of points in the discretized domain. The

homogeneous Dirichlet boundary conditions force two values of u, uk0 and ukN , to be zero for

all k. Dxx is tridiagonal matrix for the one-dimensional Laplace operator for the problem

25

with homogeneous Dirichlet boundary conditions:

Dxx =
1

h2



−2 1

1 −2 1

1 −2

.

1 −2 1

1 −2


.

The entries that are not shown are zeros. Dxx is an (N − 2) × (N − 2) matrix since each

iterate uk is fixed to be zero at the boundary.

The same averaging idea can be applied in the two-dimensional case, but with u − g

divided by h2

4
. Equation 3.6 becomes:

uk+1
i,j = uki,j −

h2

4
min

(
−
uki−1,j + uki+1,j + uki,j−1 + uki,j+1 − 4uki,j

h2
− fi,j,

uki,j − gi,j
h2/4

)
(3.9)

= max

(
uki−1,j + uki+1,j + uki,j−1 + uki,j+1

4
+
h2

4
fi,j, gi,j

)
.

The iterations given by Equation 3.9 were implemented with the line of code

uk+1
e = uke −

h2

4
min

(
−D2d

xxu
k
e − fe,

uke − ge
h2/4

)
,

where the subscript e represents the expanded version of the grid functions, with the indices

representing the homogeneous Dirichlet boundary conditions removed. The two-dimensional

grid functions uk, g and f are expanded into one-dimensional vectors. For example, matrix

ui,j representing the values of u at position i, j in the grid is transformed into a vector of

length N = n2 by mapping index i, j of the matrix to index (i−1)n+j of the vector, where n

is the number of points in one dimension. The entries corresponding to the boundary values

26

of the grid are then removed from the vector since we are considering only homogeneous

Dirichlet boundary conditions. D2d
xx is the two-dimensional Laplacian and is given by

D2d
xx =

1

h2



−4 1 1

1 −4 1 1

1 −4 1 1

.

1 1 −4 1 1

1 1 −4 1 1

.

1 1 −4 1

1 1 −4 1

1 1 −4



.

D2d
xx is an (n− 2)2× (n− 2)2 matrix. The blank entries are all zero, and the number of zeros

between the 1 entries in each row is n− 4.

27

Chapter 4

Forward Euler Implementation

4.1 1d Numerical Results

The Euler method was implemented in MATLAB in one dimension for the classical obstacle

problem with Ω = (−1, 1), u, g = 0 on ∂Ω and f ≡ 0 or f ≡ 5. The obstacle is shown in

Figure 4.1a, and was also used as the initial guess, u0. This choice of u0 can be justified in

part by the Euler method itself. If u0 is chosen to be a function other than g as in Figure

3.1, the first Euler step will make the second iterate shoot up to the obstacle. Therefore

beginning with u0 = g could save an iteration. This is of course highly dependent on the

obstacle itself.

Figure 4.1b shows the iterates of the Euler solver at every 10000 iterations for N = 1000

grid points with f ≡ 0. The solution is attained after 301892 iterations. Each iterate is

closer to the solution than the previous one. The number of iterations needed for conver-

gence for several values of N is shown in Table 4.1. The number of iterations is highly

dependent on the grid size. It appears to grow quadratically with the number of grid points.

In fact, as was discussed before, at each iteration, every point on the grid either jumps to

the obstacle or is the average between its neighbors. That is, every point looks only at its

28

immediate surroundings. The higher the number of points on the grid, the longer it will take

for this process to converge. The stopping condition used in all numerical implementations

was ‖uk+1 − uk‖∞ < 10−8.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

g(
x)

(a) Obstacle g and initial u

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

 a
nd

 g
(x

)

g(x)
u(x)

(b) Euler solver each 10000 it-
erations for N = 1000 with
f ≡ 0

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

 a
nd

 g
(x

)

g(x)
u(x)

(c) Euler solver each 10000 it-
erations for N = 1000 with
f ≡ 5

Figure 4.1: 1d Euler solver

Table 4.1: Number of Euler iterations for the 1d obstacle problem

N 50 100 500 1000

Euler iterations, f ≡ 0 1234 4996 88209 301892
Euler iterations, f ≡ 5 794 3034 54888 187300

The number of iterations is smaller for the case with the nonzero force term. In this

particular case, this can be explained by noting that the solution is closer to the obstacle,

i.e. the starting iterate, than in the case when the force term is zero. However, the number

of iterations still grows quadratically with N . This suggests that the speed of the method is

independent of the forcing function, f .

4.2 2d Numerical Results

The Euler method was implemented in two dimensions for the classical obstacle problem

with Ω = (−1, 1)2 and u, g = 0 on ∂Ω as well as f ≡ 0. The obstacle is shown in Figure

29

4.2a, and was also used as the initial iterate, u0. Figure 4.2b shows the result of the Euler

method with N = 5002. The number of iterations needed for convergence for several values

of N is shown in Table 4.2. Similarly to the one-dimensional case, the number of iterations

grows rapidly with N .

(a) Obstacle g and initial u (b) Euler method for N = 5002

Figure 4.2: 2d Euler solver

Table 4.2: Number of Euler iterations for the 2d obstacle problem

N 502 1002 5002 10002

Euler iterations 2520 9076 159679 519456

Figures 4.3a and 4.3b show the number of iterations as a function of N for the one-

dimensional and the two-dimensional examples. The number of iterations in both cases

grows rapidly with N . The same data was plotted with logarithmically scaled axes and is

shown in Figures 4.3c and 4.3d. The slopes in the one-dimensional case with f ≡ 0 and

f ≡ 5 were found to be approximately 1.8195 and 1.8112, respectively. That is, the method

is near O(N2), regardless of f . The slope in the two-dimensional case was found to be

approximately 0.8873, which implies an O(N) method. Such a dependence on the grid size

is not desirable. Refining a grid should ideally not cost more in terms of the number of

iterations.

30

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

N

N
um

be
r

of
 it

er
at

io
ns

f=0
f=5

(a) Number of Euler iterations for the
1d obstacle problem

0 2 4 6 8 10

x 10
5

0

1

2

3

4

5

6
x 10

5

N

N
um

be
r

of
 it

er
at

io
ns

(b) Number of Euler iterations for the
2d obstacle problem

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

N

N
um

be
r

of
 it

er
at

io
ns

f=0
f=5

(c) Number of Euler iterations for the
1d obstacle problem, log-log plot.

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

N

N
um

be
r

of
 it

er
at

io
ns

(d) Number of Euler iterations for the
2d obstacle problem, log-log plot.

Figure 4.3: Number of iterations for the Euler solver

31

Chapter 5

Semismooth Newton’s Method

We are interested in solving the equation G[u] = 0. When solved numerically, u ∈ RN is

a grid function. A classical root finding method is Newton’s method. However, due to G

being nonsmooth, Newton’s method cannot applied directly. A generalized version of it, the

semismooth Newton’s method (SSNM), will be used. Before introducing this generalized

version, we recall Newton’s method and several of its properties.

5.1 Newton’s Method

Newton’s method is used for finding a root of a system of equations: given G : RN → RN ,

find x∗ ∈ RN such that G(x∗) = 0. The Newton’s method algorithm for finding a root is

given in Algorithm 2.

Algorithm 2 Newton’s method for smooth systems

Let G : RN → RN be a given continuously differentiable function. Select x0 ∈ RN and set
k := 0.

1: Unless a stopping rule is satisfied, solve (for dk):

∇G(xk)dk = −G(xk). (5.1)

2: Set xk+1 := xk + dk, k := k + 1, and go to Step 1.

32

In Algorithm 2, ∇G : RN → RN×N denotes the Jacobian matrix of G. Clearly, to solve for

dk in Equation 5.1,∇G(xk) must be nonsingular for all k. Newton’s method can be motivated

by a linearization about a given estimate xk ∈ RN , G(xk + dk) ≈ G(xk) + ∇G(xk)dk, for

some dk ∈ RN . Setting the left hand side to zero and solving for dk gives the search direction

in Algorithm 2. The one-dimensional interpretation is as follows: the next iterate xk+1 is

the point of intersection of the line of slope g′(xk), passing through xk with the horizontal

axis. We now define several convergence rate concepts.

Definition 5.1 (Quotient factor). Let {xk} ⊂ Rn denote a sequence with limit x∗ ∈ Rn, and

let p ∈ [1,+∞). Then for some k0 ∈ N,

Qp{xk} :=



lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

, if xk 6= x∗ for all k ≥ k0,

0, if xk = x∗ for all k ≥ k0,

+∞, otherwise,

is called the quotient factor of {xk}.

Three special quotient factor cases will be of interest to us. The case when p = 1 and

and Q1{xk} = 0 is called superlinear convergence. The case when p = 1 and 0 < Q1{xk} < 1

is called linear convergence. Finally, the case when p = 2 and 0 < Q2{xk} < +∞ is called

quadratic convergence. One can prove that Algorithm 2 converges locally at a quadratic rate

[9]. Global convergence of Newton’s method can be obtained with additional assumptions.

5.2 Nonsmooth Analysis

Often, a function whose root is to be found is not continuously differentiable, and hence

Algorithm 2 cannot be used. In particular the NCP functions used for the obstacle problem

here are not continuously differentiable. A different method, using a replacement for the

33

Jacobian, must be implemented. It is worth noting that there are continuously differentiable

NCP functions. However an important disadvantage of such functions is that they often lead

to singular Jacobians. For this reason we focus on ϕmin and ϕFB.

The nonsmooth version of Newton’s method that we will use instead requires results from

nonsmooth analysis that will be introduced here.

5.2.1 Generalized Jacobian

Several preliminary definitions are necessary before defining the generalized Jacobian. The

statements in this subsection are due to Clarke [3].

Definition 5.2 (Local Lipschitz continuity). Let G : Rn → Rm. G is locally Lipschitz

continuous if for all x ∈ Rn, there exist ε and L depending on x such that

‖G(x1)−G(x2)‖ ≤ L‖x1 − x2‖ ∀x1, x2 ∈ Bε(x).

Theorem 5.3 (Rademacher). Let G : Rn → Rm be a locally Lipschitz continuous function.

Then G is almost everywhere differentiable.

Let DG := {x ∈ Rn |G is differentiable at x}, i.e. DG is the subset of points in Rn at

which G is differentiable. By Rademacher’s theorem, the set Rn \DG is a set of measure zero

in the Lebesgue sense. Therefore for each x ∈ Rn, there exist arbitrarily many sequences

{xk} ⊆ DG converging to x (xk → x). We are now ready to define the generalized Jacobian.

Definition 5.4 (B-subdifferential, generalized Jacobian). Let G : Rn → Rm be a locally

Lipschitz continuous function and x ∈ Rn.

a) The set

∂BG(x) := {H ∈ Rm×n | ∃{xk} ⊆ DG with xk → x, ∇G(xk)→ H}

34

is called the B-subdifferential of G at x.

b) The generalized Jacobian at x is defined by

∂G(x) := conv(∂BG(x)),

where conv denotes the convex hull.

Note that when m = 1, ∂G(x) is called the generalized gradient at x. There are many

properties related to the B-subdifferential and the generalized Jacobian which are analogous

to properties of Jacobians of differentiable functions [3].

5.2.2 Semismooth Functions

Since a generalized Jacobian has been defined, it would seem possible to replace the Jaco-

bian in Algorithm 2 with an element of the generalized Jacobian, i.e. Equation 5.1 becomes

H(xk)dk = −G(xk), where H(xk) ∈ ∂G(xk) is arbitrary. However, it is not quite this

simple. If G is only required to be locally Lipschitz, at best one can expect linear con-

vergence of the new algorithm, if convergence at all [9]. Further properties are required of

G to ensure convergence of the modified Newton method as well as fast convergence. The

class of functions considered must be restricted to semismooth functions. Semismoothness

was first introduced for functionals in [12]. It was extended to functions G : Rn → Rn in [15].

Definition 5.5 (Semismooth). The function G : Rn → Rm is semismooth at x ∈ Rn, if it

is locally Lipschitz at x and if

lim
H∈∂G(x+td′)

d′→d,t↓0

Hd′ (5.2)

exists for all d ∈ Rn.

35

Let the directional derivative of a function G : Rn → Rm in direction d be given by

G′(x; d) := lim
t↓0

G(x+ td)−G(x)

t
.

An equivalent characterization of semismoothness is given next.

Proposition 5.6 (Characterization of semismooth functions). The function G : Rn → Rm

is semismooth at x ∈ Rn if and only if it is locally Lipschitz at x and

lim
d→0

H∈∂G(x+d)

‖Hd−G′(x; d)‖
‖d‖

= 0. (5.3)

If G is semismooth at all x ∈ Rn, we call G semismooth [15]. In addition, for G : Rn → Rm

locally Lispchitz, if each component of G is semismooth at x, then G is semismooth at x

[15]. Semismoothness is equivalent to the uniform convergence of directional derivatives in

all directions [15]. Examples of semismooth functions are convex functions, smooth functions

and piecewise-smooth functions [12]. Sums, scalar products and compositions of semismooth

functions are also semismooth functions [15, 9]. There is a stronger characterization of

semismoothness:

Definition 5.7 (Strongly semismooth). The function G : Rn → Rm is strongly semismooth

at x ∈ Rn if it is locally Lipschitz at x and if

lim
d→0

H∈∂G(x+d)

‖Hd−G′(x; d)‖
‖d‖2

< +∞. (5.4)

If G is strongly semismooth at all x ∈ Rn, we call G strongly semismooth. We now prove

that the two NCP functions introduced in Propositions 2.3 and 2.4 are strongly semismooth.

Proposition 5.8. ϕmin is strongly semismooth.

Proof. Recall that a continuous function f : Rn → Rm is said to be piecewise affine if

there exists a finite family of affine functions {f 1, . . . , fk} for some positive integer k, where

36

f i : Rn → Rm, such that for all x ∈ Rn, f(x) ∈ {f 1(x), . . . , fk(x)} [7]. Clearly the minimum

function is a piecewise affine function. Proposition 7.4.7 in [7] states that every piecewise

affine function is strongly semismooth. Therefore, ϕmin is strongly semismooth.

Proposition 5.9. ϕFB is strongly semismooth.

Proof. When (a, b) 6= (0, 0), ϕFB(a, b) is continuously differentiable and therefore strongly

semismooth. We need only consider the case when (a, b) = (0, 0). We first compute the

directional derivative in direction d := (da, db) 6= (0, 0).

ϕ′FB((0, 0); d) = lim
t↓0

ϕFB((0, 0) + t(da, db))− ϕFB(0, 0)

t

= lim
t↓0

ϕFB(t(da, db))

t

= lim
t↓0

tϕFB(da, db)

t

= ϕFB(da, db).

Then ∂ϕFB((0, 0) + (da, db)) =

{(
da√
d2a+d2b

− 1, db√
d2a+d2b

− 1

)}
, and

lim
d→0

H∈∂ϕFB((a,b)+d)

Hd− ϕ′FB((0, 0); d)

‖d‖2
=

(
da√
d2a+d2b

− 1, db√
d2a+d2b

− 1

)da
db

− ϕFB(da, db)

‖d‖2

=

d2a+d2b√
d2a+d2b

− da − db − ϕFB(da, db)

‖d‖2

=
ϕFB(da, db)

‖d‖2

= 0 < +∞.

The function ϕFB is indeed strongly semismooth.

37

5.3 Semismooth Newton’s Method

Now that we have defined semismooth functions, we can introduce the modified version of

Newton’s method, the semismooth Newton’s method.

Algorithm 3 Semismooth Newton’s method

Let G : RN → RN be a given semismooth function. Select x0 ∈ RN and set k := 0.

1: Unless a stopping rule is satisfied, solve (for dk):

H(xk)dk = −G(xk), (5.5)

where H(xk) ∈ ∂G(xk).
2: Set xk+1 := xk + dk, k := k + 1, and go to Step 1.

Note that Algorithm 3 is identical to Algorithm 2 with the exception that the Jacobian is

replaced by the generalized Jacobian. We now make several statements on the convergence

of the SSNM.

Theorem 5.10 (Qi, Sun [15, 9]). Suppose that x∗ is a solution of G(x) = 0, G is locally

Lipschitz and semismooth at x∗, and all H ∈ ∂G(x∗) are nonsingular. Then the iteration

method (5.5) is well-defined and convergent to x∗ in a neighborhood of x∗.

It can be shown that the semismooth Newton method converges locally at a superlinear

rate [15, 9]. If G is strongly semismooth, then we even have local quadratic convergence.

That is, the semismooth Newton’s method has the same local convergence rate as Newton’s

method. Again, further assumptions lead to a global convergence result [15, 9].

38

Chapter 6

SSNM Implementation

We first consider the one-dimensional obstacle problem using one of the two strongly semis-

mooth NCP functions we are considering, i.e. G[u] = ϕ(−uxx − f, u − g) = 0. We assume

that both −uxx−f and u−g are continuously differentiable. Since ϕ is strongly semismooth,

the fact that compositions of semismooth functions are semismooth implies that G is semis-

mooth. To apply the SSNM, we need to compute the generalized gradient of G. We begin

by considering the generalized gradient of ϕmin(a, b) := min(a, b). ϕmin is not differentiable

on the line a = b. This is illustrated in Figure 6.1a. The generalized gradient of ϕmin is

given by

∂ϕmin(a, b) =


(1, 0) , if a < b,

(0, 1) , if a > b,

λ (1, 0) + (1− λ) (0, 1) , if a = b,

with λ ∈ [0, 1]. When a = b, the generalized gradient is exactly the convex hull of the

gradient in the other two cases. Figure 6.1b illustrates this generalized gradient.

We now consider the generalized gradient of the Fischer-Burmeister function, ϕFB(a, b) :=
√
a2 + b2−a−b. ϕFB is not differentiable only when (a, b) = (0, 0). The generalized gradient

39

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

b

min(a,b) = a

min(a,b) = b

min(a,b) = a = b →

(a) ϕmin(a, b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

b

∂min(a,b) = (1,0)

∂min(a,b) = (0,1)

∂min(a,b) = { λ(1,0)+(1−λ)(0,1) | λ ∈ [0,1] } →

(b) ∂ϕmin(a, b)

Figure 6.1: The minimum function and its generalized gradient

is given by

∂ϕFB(a, b) =


(

a√
a2+b2

− 1, b√
a2+b2

− 1
)
, if (a, b) 6= (0, 0),

(ρ− 1, η − 1) , if (a, b) = (0, 0),

where (ρ, η) ∈ R2 is a vector such that ‖(ρ, η)‖ ≤ 1 [8].

The problem is then discretized on the grid. Since the boundary conditions are homoge-

neous Dirichlet boundary conditions, we only need to solve for the solution on the interior

of the domain. Therefore each iterate uk is an element of RN−2. The second derivative uxx

is approximated by (uCxx)j as before, leading to the finite difference operator Dxx. Then the

discretized version of G becomes Gh[u] := ϕ(a(u), b(u)), where a(u) := −Dxxu − h2

2
f and

b(u) := u − g. Here u, f , and g are grid vectors of length N − 2. The factor of h2

2
in front

of the f is necessary to take into account the grid spacing used when computing Dxx.

The inputs to ϕ, a(u) and b(u), are vectors in RN−2. The generalized gradient of ϕ(a, b)

is given by ∂ϕ(a, b) :=
(

∂ϕ(a,b)
∂a

, ∂ϕ(a,b)
∂b

)
, where row r is a random element of the generalized

gradient of ϕ(ar, br). To compute the generalized Jacobian of Gh, we first transform the

columns of ∂ϕ(a, b) into N − 2 by N − 2 diagonal matrices, which we call Da and Db. By

40

the chain rule, a random element of the generalized Jacobian of Gh is

∂Gh[u] = Da∇u(−Dxxu−
h2

2
f) +Db∇u(u− g)

= Da(−Dxx) +DbI.

Then the semismooth Newton iteration is

uk+1 = uk − (∂Gh[uk])−1Gh[uk].

The two-dimensional case again uses the extended vector version, where Dxx and h2

2
are

replaced by D2d
xx and h2

4
, respectively.

6.1 1d Numerical Results

The SSNM solver was implemented in one dimension for the same example as the Euler

solver. The number of iterations needed for convergence for several values of N is shown in

Table 6.1.

Table 6.1: Number of SSNM iterations for the 1d obstacle problem

N 50 100 500 1000 5000 10000

SSNM iterations, f ≡ 0 7 16 74 149 741 1482
SSNM iterations, f ≡ 5 10 20 96 192 954 1909

The SSNM solver is much faster than the Euler solver in terms of the number of iter-

ations. This is a significant improvement on the quadratic increase of iterations exhibited

by the Euler solver. Figure 6.2 shows the SSNM solver every iteration for N = 100 and

N = 1000 for f ≡ 0 and every iteration for N = 100 and f ≡ 5. Each iteration appears to

41

move the free boundary by only one grid point. Just like the Euler method, the example

with the nonzero force requires more iterations for convergence than the example with zero

force.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

 a
nd

 g
(x

)

g(x)
u(x)

(a) SSNM solver each 1 itera-
tion for N = 100 for f ≡ 0

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

 a
nd

 g
(x

)

g(x)
u(x)

(b) SSNM solver each 1 itera-
tion for N = 1000 for f ≡ 0

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

 a
nd

 g
(x

)

g(x)
u(x)

(c) SSNM solver each 1 itera-
tion for N = 100 for f ≡ 5

Figure 6.2: 1d SSNM solver

These results were then compared with ϕFB as the NCP function for f ≡ 0. The com-

parison of the results is shown in Table 6.2.

Table 6.2: Number of SSNM iterations for the 1d obstacle problem with different NCP func-
tions

N 50 100 500 1000

ϕmin iterations 7 16 74 149
ϕFB iterations 13 22 78 154

Figure 6.3a shows a comparison of the number of iterations of the two NCP functions

considered for various values of N . The number of iterations appears to increase linearly

as a function of the number of grid points. Figures 6.3b and 6.3c show a comparison of

the evolution of the SSNM solver for the two NCP functions. The iterates move up the

free boundary more smoothly than with ϕmin. Evidently, ϕmin has the lowest number of

iterations for each case considered. However the trend in the number of iterations is very

similar for each of the NCP functions. From this point on, only the minimum function was

42

considered.

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160

N

N
um

be
r

of
 it

er
at

io
ns

min
FB

(a) Number of SSNM itera-
tions

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

 a
nd

 g
(x

)

g(x)
u(x)

(b) SSNM solver with ϕmin

each 1 iteration for N = 100

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

 a
nd

 g
(x

)

g(x)
u(x)

(c) SSNM solver with ϕFB

each 1 iteration for N = 100

Figure 6.3: Comparison of NCP functions in 1d

6.2 2d Numerical Results

The SSNM solver was implemented in the two-dimensional case for the same example as

was considered for the Euler solver. The iterates uk are now two-dimensional grid functions.

The number of iterations for various N values are given in Table 6.3. The solution obtained

is shown in Figure 6.4 and is identical to Figure 4.2b.

Table 6.3: Number of SSNM iterations for the 2d obstacle problem

N 502 1002 5002 10002

SSNM iterations 10 18 87 172

Figures 6.5a and 6.5b show that, as in the case of the Euler method, the number of

iterations grows with N . The slopes of the lines in the plots with logarithmically scaled axes

are found to be approximately 0.9985 and 0.4794, for the one- and two-dimensional cases,

respectively. This suggests that the method is O(N) in the one-dimensional case and O(N
1
2)

in the two-dimensional case.

43

Figure 6.4: SSNM solver for N = 5002

0 2000 4000 6000 8000 10000
0

500

1000

1500

N

N
um

be
r

of
 it

er
at

io
ns

(a) Number of SSNM iterations for the
1d obstacle problem

0 2 4 6 8 10

x 10
5

0

20

40

60

80

100

120

140

160

180

N

N
um

be
r

of
 it

er
at

io
ns

(b) Number of iterations for the 2d ob-
stacle problem

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

N

N
um

be
r

of
 it

er
at

io
ns

(c) Number of SSNM iterations for the
1d obstacle problem, log-log plot.

10
3

10
4

10
5

10
6

10
1

10
2

10
3

N

N
um

be
r

of
 it

er
at

io
ns

(d) Number of iterations for the 2d ob-
stacle problem, log-log plot.

Figure 6.5: Number of iterations for the SSNM solver

44

Chapter 7

Combined Method

7.1 Comparison of the Euler and SSNM Solvers

As can be seen when comparing Tables 4.1 and 4.2 with Tables 6.1 and 6.3, the Euler solver

takes a much larger number of steps to converge for each value of N tested, than the SSNM

solver. However, the two methods should not only be compared in terms of the number of

steps. The CPU time needed for the computation of each iteration must also be considered.

The complexity of the computation of each subsequent iterate must also be taken into

account. We recall here the iterative updates for both methods in the one-dimensional case

with the minimum NCP function. The update for the Euler method is

uk+1 = uk − h2

2
min

(
−Dxxu

k − fj,
uk − g
h2/2

)
,

and the SSNM update is

uk+1 = uk − (∂Gh[uk])−1Gh[uk],

with Gh[uk] = min(−Dxxu
k − h2

2
f, uk − g). As in the case with the Euler method, this

iteration can use Gh[uk] = min(−Dxxu
k − h2

2
f, u

k−g
h2/2

) instead. Clearly, the SSNM update is

45

more expensive computationally due to the matrix inversion of the generalized Jacobian at

every step. For this reason it is expected that the CPU time taken to compute one SSNM

step is much greater than the time taken to compute one Euler step.

The CPU time taken to obtain the results in Tables 4.1 and 6.1 are shown in Table 7.1.

Not only does the SSNM solver take fewer iterations until it converges, it also does so much

faster than the Euler method. The two-dimensional comparison is shown in Table 7.2, and

leads to the same conclusion. The average computation time for one SSNM iteration is much

smaller than for one Euler iteration in the two-dimensional case. This suggests that several

Euler iterations are as computationally expensive as one SSNM iteration.

Table 7.1: 1d computation time comparison

N 50 100 500 1000

Euler iterations 1234 4996 88209 301892
Euler CPU time (s) 0.0359 0.2501 23.6825 416.8883

Euler average time (ms) 0.0291 0.0501 0.2685 1.3809
SSNM iterations 7 16 74 149

SSNM CPU time (s) 0.0193 0.0281 0.0608 0.1352
SSNM average time (ms) 2.7571 1.7563 0.8216 0.9074

Table 7.2: 2d computation time comparison

N 502 1002 5002 10002

Euler iterations 2520 9076 159679 519456
Euler CPU time (s) 0.2491 2.4615 1847.2 31727

Euler average time (ms) 0.0988 0.2712 11.5682 61.0774
SSNM iterations 10 18 87 172

SSNM CPU time (s) 0.1377 1.1058 158.4441 2110.9
SSNM average time (s) 0.0138 0.0614 1.8212 12.2727

Each method is said to have converged once change := ‖uk − uk−1‖∞ < 10−8. The

evolution of this change as a function of the number of iterations is shown in Figure 7.1 for

46

both methods and for the one-dimensional and two-dimensional examples considered. The

Euler solver takes smaller and smaller steps toward the solution as the number of iterations

increases. The change decreases exponentially as a function of the number of iterations. On

the other hand, the SSNM solver takes much larger steps. Once it is sufficiently close to the

solution, one large step brings the iterate to the solution. This is expected, since Newton’s

method is a good local method.

0 1000 2000 3000 4000 5000
−9

−8

−7

−6

−5

−4

−3

−2

−1

Iterations

lo
g 10

(c
ha

ng
e)

(a) Change at each iteration for the 1d Euler
solver with N = 100

0 2 4 6 8 10 12 14 16

−16

−14

−12

−10

−8

−6

−4

−2

0

Iterations

lo
g 10

(c
ha

ng
e)

(b) Change at each iteration for the 1d SSNM
solver with N = 100

0 2000 4000 6000 8000 10000
−9

−8

−7

−6

−5

−4

−3

−2

−1

Iterations

lo
g 10

(c
ha

ng
e)

(c) Change at each iteration for the 2d Euler
solver with N = 1002

0 2 4 6 8 10 12 14 16 18
−16

−14

−12

−10

−8

−6

−4

−2

0

Iterations

lo
g 10

(c
ha

ng
e)

(d) Change at each iteration for the 2d
SSNM solver with N = 1002

Figure 7.1: Comparison of methods via the change at each iteration

By comparing Figures 4.1 and 6.2, the following observations can be made. Each iterate

in the Euler solver smoothes out the previous iterate as much as the obstacle allows. Each

47

component of the grid function evolves using only information from its neighbors. Larger

values of N naturally lead to slower convergence. The iterates of the SSNM solver move the

free boundary up one grid point at a time. Although the SSNM solver provides an important

improvement, it would be ideal if the SSNM solver would not cling to the grid points along

the obstacle. To combat this problem, we introduce a combined method.

7.2 Combined Algorithm

The idea of the combined method is to alternate between Euler and SSNM iterations. More

specifically, since Tables 7.1 and 7.2 suggest one SSNM step corresponds to many Euler

steps, in terms of CPU computation time, one combined step will consist of many Euler

steps followed by one SSNM step. Let nE be the number of Euler steps which correspond to

one SSNM step in terms of CPU computation time. nE is dependent on the grid size since

the computation time for both solvers varies with N . nE is found by finding the number of

Euler steps which has computation time closest to the computation time of one SSNM step.

Let NE be a set of possible nE values. This set is a range which is chosen through trial

and error to be near the final nE value. Algorithm 4 outlines the method of finding nE for

a given N .

For increased accuracy, this process is repeated several times. Averages are taken to

obtain the best value possible. Once nE has been found, the combined method, Algorithm

5 can be run. Algorithm 5 is essentially Algorithm 4 with NE = {bn∗Ec}. Algorithm 5 in

addition allows stopping during the nE Euler steps, unlike Algorithm 4.

48

Algorithm 4 Finding nE

Let G : RN → RN be a given semismooth function. Select u0 ∈ RN and the set NE.

1: Set k := 0, n := 0, tEnE
:= 0, tSnE

:= 0 for all nE.
2: for nE ∈ NE do
3: for n ≤ nE do
4: Set:

uk+1 := uk − dtG[uk]. (7.1)

5: Set k := k + 1, n := n+ 1, tEnE
= tEnE

+ CPU time for Step 4.
6: end for
7: Unless a stopping rule is satisfied, solve (for dk):

H[uk]dk = −G[uk], (7.2)

where H[uk] ∈ ∂G[uk].
8: Set uk := uk + dk, k := k + 1, tSnE

= tSnE
+ CPU time for Step 7. Go to Step 3.

9: end for
10: Compute the average, T S := average(tSnE

).
11: Perform linear regression on tEnE

as a function of the elements of NE to obtain a linear
function TE(nE).

12: Find n∗E such that T S = TE(n∗E).
13: Output bn∗Ec.

Algorithm 5 Combined obstacle solver

Let G : RN → RN be a given semismooth function. Select u0 ∈ RN and nE.

1: Set k := 0, n := 0.
2: for n ≤ nE do
3: Unless a stopping rule is satisfied, set:

uk+1 := uk − dtG[uk]. (7.3)

4: Set k := k + 1, n := n+ 1.
5: end for
6: Unless a stopping rule is satisfied, solve (for dk):

H[uk]dk = −G[uk], (7.4)

where H[uk] ∈ ∂G[uk].
7: Set uk := uk + dk, k := k + 1, n := 0.
8: Go to Step 2.

49

Chapter 8

Combined Implementation

8.1 1d Numerical Results

The combined solver was implemented for the same one-dimensional example problem as in

the previous chapters. nE was first computed for this specific problem using Algorithm 4.

Several values of nE are shown in Table 8.1 and depicted in Figure 8.1. There is an increase

in nE up to around N = 1000, at which point it appears to level out.

Table 8.1: Number of Euler iterations corresponding to one SSNM iteration in 1d

N 50 100 500 1000 5000 10000

nE 18 19 21 23 23 24

The number of iterations needed for convergence of the combined method are shown in

Table 8.2 for several values of N . One combined iteration consists of nE Euler iterations

and one SSNM iteration. The Euler steps row includes the total number of Euler steps per-

formed in the combined method. The same is the case for the SSNM steps row. Therefore

the number of combined iterations is equal to the number of SSNM steps. Figure 8.2 shows

the solution of the combined method for N = 1000, plotting every combined iteration. It

suggests that the solver does not evolve one grid point at a time along the free boundary, as

50

0 2000 4000 6000 8000 10000
15

16

17

18

19

20

21

22

23

24

25

N

n E
(N

)

Figure 8.1: Number of Euler iterations corresponding to one SSNM iteration in 1d

was observed in Figure 6.2b. This marks a significant improvement.

Table 8.2: Number of iterations for the 1d obstacle problem using the combined method

N 50 100 500 1000 5000 10000

Euler steps 37 77 232 392 1445 2677
SSNM steps 2 4 11 17 62 111

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

 a
nd

 g
(x

)

g(x)
u(x)

Figure 8.2: Combined solver each combined iteration for N = 1000

To examine this improvement more closely, consider Figure 8.3a, which plots the Euler

steps involved in each combined step, for N = 100. Each set of nE Euler steps gradually

detaches the iterates from the obstacle. When a SSNM step follows, the combined method

appears to have taken a much larger step. The nE Euler steps allow the Newton step to

51

move the free boundary further up the obstacle. Using a larger value of nE would allow the

iterates to jump further to the solution. However, a larger number nE of Euler steps would

no longer correspond to one SSNM step. The change as a function of the total number of

iterations (Euler and SSNM) is shown in Figure 8.3b. Euler steps change the iterates very

slowly. Newton steps, on the other hand, advance the iterates faster toward the solution.

Once an iterate is close enough to the solution, one Newton step brings the next iterate to

the solution. This is again because Newton’s method is a good local method.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

 a
nd

 g
(x

)

g(x)
u(x)

(a) Combined solver showing Euler and
SSNM iterations for N = 100

0 10 20 30 40 50 60 70 80 90

−16

−14

−12

−10

−8

−6

−4

−2

0

Iterations

lo
g 10

(c
ha

ng
e)

Euler
SSNM

(b) Change at all inner iterations for the
combined solver with N = 100

Figure 8.3: Analysis of the inner iterations of the combined solver

8.2 2d Numerical Results

The implementation process of the combined method for the two-dimensional case is the

same as in the one-dimensional case, with the exception that the two-dimensional grid func-

tions are expanded to be one-dimensional vectors. Again, before running Algorithm 5, nE

was found for several grid sizes with Algorithm 4. The results of this process are shown in

Table 8.3 and depicted in Figure 8.4.

52

Table 8.3: Number of Euler iterations corresponding to one SSNM iteration in 2d

N 502 1002 5002 10002

nE 180 219 238 412

0 2 4 6 8 10

x 10
5

0

50

100

150

200

250

300

350

400

450

N

n E

Figure 8.4: Number of Euler iterations corresponding to one SSNM iteration in 2d

The results of Algorithm 5 are shown in Table 8.4. Figure 8.5 shows the solution ob-

tained from the combined method. As in the one-dimensional case, the combined method is

significantly faster than the SSNM in terms of the number of SSNM steps.

Table 8.4: Number of iterations for the 2d obstacle problem using the combined method

N 502 1002 5002 10002

Euler steps 361 358 1667 3708
SSNM steps 2 3 7 8

A closer look at the change in the inner iterations of the combined method is shown in

Figure 8.6. Similarly to the one-dimensional example, the inner Euler steps provide rela-

tively small changes, while the SSNM steps provide large steps.

Figure 8.7 shows the number of iterations as a function of N for both the one-dimensional

and two-dimensional cases. The plots with the logarithmically scaled axes have slopes of

0.7442 and 0.2412, for the one- and two-dimensional cases, respectively. This suggests that

the combined method is of order O(N
3
4) in one dimension and O(N

1
4) in two dimensions. In

53

Figure 8.5: Combined solver for N = 10002

0 100 200 300 400 500 600 700

−16

−14

−12

−10

−8

−6

−4

−2

0

Iterations

lo
g 10

(c
ha

ng
e)

Euler
SSNM

Figure 8.6: Change at all inner iterations for the combined solver with N = 1002

two dimensions, the number of iterations levels out at eight. This is quite impressive. As N

becomes large, the computation time for one SSNM step is very large, allowing many Euler

steps to be performed in one combined iteration.

8.3 Comparison of the Three Solvers

To compare the combined method to the two previously considered methods, all iterations

must be given on the same scale. To achieve this, we convert the Euler iterations to be of

SSNM “size”. The values in Table 4.1 are divided by the values in Table 8.1 and rounded

to the nearest integer to obtain SSNM “sized” iterations. For the combined iterations, the

54

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

N

N
um

be
r

of
 it

er
at

io
ns

(a) Number of combined iterations for
the 1d obstacle problem

0 2 4 6 8 10

x 10
5

0

1

2

3

4

5

6

7

8

9

N

N
um

be
r

of
 it

er
at

io
ns

(b) Number of combined iterations for
the 2d obstacle problem

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

N

N
um

be
r

of
 it

er
at

io
ns

(c) Number of combined iterations for
the 1d obstacle problem, log-log plot.

10
3

10
4

10
5

10
6

10
0.3

10
0.4

10
0.5

10
0.6

10
0.7

10
0.8

10
0.9

N

N
um

be
r

of
 it

er
at

io
ns

(d) Number of combined iterations for
the 2d obstacle problem, log-log plot.

Figure 8.7: Number of iterations for the combined solver

number of Euler steps and SSNM steps must also be combined in a specific way to reflect

SSNM “sized” iterations. The number of weighted combined iterations is computed as

weighted combined iterations =

⌊
Euler iterations

nE

+ # SSNM iterations

⌋
. (8.1)

Table 8.5 combines the results of Table 6.1 with these new computations. Table 8.6 shows

the results from Tables 4.2 and 8.4 weighted to be in terms of SSNM iteration time. In both

cases, each subsequent method requires fewer iterations.

Figure 8.8 compares the number of iterations for the three methods, using the iterations

in Tables 8.5 and 8.6. Clearly, the combined method is a big improvement on the two pre-

55

Table 8.5: Number of iterations for the 1d obstacle problem weighted on SSNM iterations

N 50 100 500 1000 5000 10000

Euler iterations 69 263 4200 13126
SSNM iterations 7 16 74 149 741 1482

Combined iterations 4 8 22 34 124 222

Table 8.6: Number of iterations for the 2d obstacle problem weighted on SSNM iterations

N 502 1002 5002 10002

Euler iterations 14 41 671 1261
SSNM iterations 10 18 87 172

Combined iterations 4 6 14 17

vious methods. The slopes of the lines in Figure 8.8 are shown in Table 8.7. The combined

method significantly reduces the dependence on the grid size.

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

N

N
um

be
r

of
 it

er
at

io
ns

Euler
SSNM
Combined

(a) 1d comparison of all three methods

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

N

N
um

be
r

of
 it

er
at

io
ns

Euler
SSNM
Combined

(b) 2d comparison of all three methods

Figure 8.8: Comparison of the number of iterations for the methods

56

Table 8.7: Slopes of the log-log plots of Figure 8.8

Method Euler SSNM Combined

1d 1.7295 0.9985 0.7442
2d 0.7773 0.4794 0.2445

57

Chapter 9

Conclusions

9.1 Summary

We began by introducing the classical obstacle problem in terms of its energy formulation.

The variational formulation was then shown to be a nonlinear complementarity problem.

The minimum function and the Fischer-Burmeister functions were chosen as the NCP func-

tions for the remainder of the thesis. The more general obstacle problem was then introduced.

After discretizing the problem and defining finite difference operators, three methods

were introduced and compared numerically with examples in one and two dimensions. The

Euler iterative method was found to be the slowest. The SSNM significantly speeds up

convergence, however the combined method is the best. The proposed combined method

alternates several (nE) Euler steps with one SSNM step. The number of Euler steps chosen

corresponds to the CPU time of one SSNM step for the particular problem considered. The

combined method succeeds in significantly reducing the number of Newton sized steps for

convergence. The number of Newton sized iterations is still dependent on the grid size cho-

sen, but the number of iterations is very small.

58

9.2 Future Work

The number of Euler steps corresponding to one SSNM step is not calculated in a precise

way. It is done by averaging CPU times of both methods over several identical tests. This

leads to variations in the results for nE. Algorithm 4 is always performed several times and

the results are averaged in an attempt to reduce error. nE is very dependent on N , the

size of the grid, since the CPU time taken to perform one SSNM step is dependent on N .

The larger N is, the larger the matrices used in each iterate computation are, and hence the

longer it takes to solve for each iterate.

So far it is assumed that nE must be found for each operator, F [u], considered. In ad-

dition, nE must ideally be found for each specific obstacle considered. Perhaps it may be

possible to find a general trend in nE for similar problems or similar obstacles. It would be

ideal for nE to at least be independent of the obstacle. It is no good finding a fast combined

method if one first needs to spend a considerable amount of time finding nE before imple-

menting the fast method. If estimates for nE for many values of N were found, the whole

process could be sped up. It was noted that more Euler steps per SSNM step results in a

smaller number of total SSNM sized steps. It may be possible to find some bounds on the

value of nE for a particular obstacle, operator, or size N . More effort should be focused on

finding a theoretical model for the values of nE.

We only considered ϕmin and ϕFB as NCP functions. It would be worth comparing its

performance with other NCP functions such as the penalized Fischer-Burmeister NCP func-

tion [2]. The Fischer-Burmeister function has a smooth merit function. A possible next step

would be to globalize the SSNM using the merit function as done in [10] and pair it with

iterative steps to again obtain a combined method.

The next step would be to implement the combined method on a general obstacle prob-

59

lem with a nonlinear operator. Ideally, the performance of the combined method would be

similar to the linear case.

60

Bibliography

[1] L. A. Caffarelli. The obstacle problem revisited. The Journal of Fourier Analysis and

Applications, 4(4-5):383–402, 1998.

[2] B. Chen, X. Chen, and C. Kanzow. A penalized Fischer-Burmeister NCP-function.

Mathematical Programming, 88:211–216, 2000.

[3] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York,

NY, 1983.

[4] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen der

mathematischen Physik. Mathematische Annalen, 100:32–754, 1928.

[5] L. C. Evans. Partial Differential Equations, 2nd edition. Graduate Studies in Mathe-

matics, vol. 19. American Mathematical Society, Providence, RI, 2010.

[6] L. C. Evans. An Introduction to Stochastic Differential Equations. American Mathe-

matical Society, Providence, RI, 2013.

[7] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Comple-

mentarity Problems. Springer New York, New York, NY, 2003.

[8] F. Facchinei and J. Soares. A new merit function for nonlinear complementarity prob-

lems and a related algorithm. SIAM Journal on Optimization, 7.1:225–247, 1997.

[9] M. Hintermüller. Semismooth Newton methods and applications. Department of Math-

ematics, Humboldt-University of Berlin, 2010.

61

[10] C. Kanzow. Inexact semismooth Newton methods for large-scale complementarity prob-

lems. 19(3–4):309–325, 2004.

[11] T. De Luca, F. Facchinei, and C. Kanzow. A theoretical and numerical comparison of

some semismooth algorithms for complementarity problems. Computational Optimiza-

tion and Applications, Springer Verlag, 16:173–205, 2000.

[12] R. Mifflin. Semismooth and semiconvex functions in constrained optimization. SIAM

Journal on Control and Optimization, 15:957–972, 1977.

[13] A. M. Oberman. Convergent difference schemes for degenerate elliptic and parabolic

equations: Hamilton-Jacobi equations and free boundary problems. SIAM Journal on

Numerical Analysis, 44:879–895, 2006.

[14] A. M. Oberman. The convex envelope is the solution of a nonlinear obstacle problem.

Proceedings of the American Mathematical Society, 135(6):1689–1694, 2007.

[15] L. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical Program-

ming, 58:353–368, 1993.

[16] J.-F. Rodrigues. Obstacle Problems in Mathematical Physics. North-Holland Publishing

Company, Amsterdam, Netherlands, 1987.

62

