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Abstract 

Dam failures are termed as low-frequency & high loss events since the failure of a dam can lead 

to catastrophic results. Therefore, major dams in the world have been installed with dam 

monitoring systems which collect data regarding the behavior of the dam. This thesis aims to 

improve the forecasting models for the displacements & the piezometer levels in a dam. The 

Hydrostatic-Seasonal-Time (HST) is a statistical model which has been used by the dam owners 

to monitor and forecast the displacements of a dam to an external loading. However, the HST 

model is incapable of producing accurate results for non-linear relationships between variables, 

and cannot adequately account for changes due to excessively hot or cold seasons. In this thesis, 

three different variants of the HST model have been proposed to remove these defects from the 

analysis. A segmented HST model has been proposed which uses segmented regression to 

approximate the non-linear relationship between the variables. A non-parametric model has been 

proposed which replaces the regular seasonal component of the HST model with a non-parametric 

seasonal component computed using locally weighted linear regression. Finally, an HSTLT model 

is implemented which uses the lagged air temperatures around the dam as predictors to account 

for the fluctuations caused due to delayed thermal effects. The results suggest an improvement in 

the accuracy of prediction and a reduction in the scattering of the residual plots. Further, two 

models have been proposed to forecast the piezometer levels in the upstream and the downstream 

end of the dam. These models employ dam displacements as additional predictors along with the 

water level in the reservoir. The author has concluded that the relationship between the reservoir 

level and the piezometer level has hysteresis and that a polynomial expression is not sufficient to 

account for the effects of the reservoir level. The use of the displacements as additional variables 

improves the overall adjusted R2 and reduces the standard error of the model. A segmented model 



has been proposed to approximate the non-linear relationship between the displacements and the 

piezometer level which reduces the residual errors by almost 10% as compared to the regular 

model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Resume 

 

Les défaillances de barrages sont des événements à basse fréquence et à forte perte puisque la 

défaillance d'un barrage peut avoir des résultats catastrophiques. Les principaux barrages dans le 

monde ont donc été installés avec des systèmes de surveillance qui recueillent des données sur le 

comportement de chaque barrage. Cette thèse vise à améliorer les modèles de prévision pour les 

déplacements et les niveaux de piézomètre dans un barrage. Le modèle statistique hydrostatique 

du temps saisonnier (HST) est un modèle qui a été utilisé par les propriétaires de barrages pour 

surveiller et prévoir les déplacements d'un barrage vers un chargement externe. Cependant, le 

modèle HST est incapable de produire des résultats précis pour les variables qui ont des relations 

non linéaires, et ne tiens pas suffisamment compte des changements dus à des saisons 

excessivement chaudes ou froides. Dans cette thèse, trois variantes différentes du modèle HST ont 

été proposées pour éliminer ces défauts de l'analyse. La première variante, un modèle HST qui 

utilise la régression segmentée pour trouver des résultats à la relation non linéaire entre les 

variables. Ensuite, un modèle non paramétrique qui remplace la composante saisonnière régulière 

du modèle HST par une composante saisonnière non paramétrique , calculée à l'aide de la 

régression linéaire pondérée localement. Enfin, un modèle HST est mis en œuvre qui utilise les 

températures de l'air retardées autour du barrage comme détecteurs des fluctuations causées par 

les effets thermiques retardés. Les résultats suggèrent une amélioration de la précision de la 

prédiction et une réduction de la diffusion des parcelles résiduelles. De plus, deux modèles ont été 

proposés afin de prévoir les niveaux de piézomètre dans les extrémités amont et aval du barrage. 

Ces modèles utilisent des déplacements de barrage comme détecteurs supplémentaires, analysant 

le niveau d'eau dans le réservoir. L'auteur a conclu que la relation entre le niveau du réservoir et le 



niveau du piézomètre présente une hystérésis et qu'une expression polynomiale n'est pas suffisante 

pour rendre compte des effets du niveau d’eau du réservoir. L'utilisation des déplacements comme 

variables supplémentaires améliore le R2 ajusté globalement et réduit l'erreur standard du modèle. 

Un modèle segmenté a été proposé pour approcher la relation non linéaire entre les déplacements 

et le niveau du piézomètre qui réduit les erreurs résiduelles de près de 10% par rapport au modèle 

régulier. 
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1 Introduction 

 

1.1 Brief History 

Dams are one of the essential infrastructures to foster development in a country. Dams help in 

improving the flood control, fostering irrigation, clean energy, navigation, and recreation. 

Previously, dams were used mostly for irrigation in agriculture, but nowadays the primary role of 

dams is to generate electricity & improve flood control. Therefore, dams are a single solution to 

many of the critical problems faced by any developing country. Despite improved design, 

construction techniques, and maintenance methods, failure of dams still occur due to unforeseen 

loadings induced by natural forces and human actions. “Failure” in dams does not necessarily 

mean the collapse of the whole dam, but a collapse or movement of the part of the dam or its 

foundations so that the dams cannot retain the stored water (ICOLD, 1995). Dams can be classified 

as heavy civil infrastructures which have low frequency-high loss failure events (National 

Research Council, 1983). These events can be infrequent but catastrophic and can lead to 

significant loss of human life, infrastructure, agricultural land, and environment. Concrete dams 

also fail all of a sudden. The failure of a gravity dam occurs in a short period of 0.1-0.5h while the 

failure of a concrete arch dams may occur instantaneously-0.1h (ICOLD, 1998b). Due to this short 

failure time floods arising from the breach of the concrete arch dam can be more severe than 

embankment dams of similar heights.  

Ageing of dams is another prominent concern. A large number of dams which are 30 or more years 

old are at a higher risk because of the increased hazard potential due to the downstream 

development, and increased risk due to structural deterioration or inadequate spillway capacity 



(National Research Council, 1983). Dam failures in the past have led to the formation of the 

International Commission on Large Dams (ICOLD) in 1928. Representatives from six countries 

formed this commission and today constitutes representatives from more than 79 countries. The 

primary objective of ICOLD is to provide a platform for researchers all over the world to share 

their expertise and experience to alleviate problems in various aspects like design, construction, 

performance, monitoring, and rehabilitation of dams. For this, studies have been done to find out 

the major causes of failure of dams and mitigation strategies. Since its inception, the work of its 

technical committees and the publications of bulletins have improved dam safety, advancing state 

of the art safety systems.  

A dam with a height of 15 meters or higher from the lowest foundation to crest, or a dam between 

5 to 15 meters impounding more than 3 million cubic meters is classified as a large dam 

(International Commission On Large Dams, 2011). According to the world register of dams 

(2011), there are more than 37,640 large dams in the world, with almost half of them in China 

alone. With such a massive amount of aging infrastructure, improved dam monitoring systems and 

rehabilitation programs are necessary, since replacement of dams at such scale can be very costly 

for any country. 

 

1.2  Dam Monitoring  

The primary objective of dam monitoring is to extract information for assessing continued 

performance and safety of dams (ICOLD, 2000). Monitoring can be used for both, short term and 

long term. Short-term monitoring can detect short-term changes or anomalies in the behavior of 

the dam which can be tackled immediately by repairing or restricting any operation. Long-term 

monitoring detects long-term changes in the structure of the dam. It helps to predict the 



deterioration in the dam and helps in choosing maintenance strategies. Analysis of the dam 

monitoring data utilizes techniques like multi-linear regression analysis or machine learning 

algorithms. These statistical models can be an assisting tool in monitoring the behavior of the dam 

and can assist in finding out whether the dam is behaving similarly to its past behviour under 

similar loads. Anomalous behavior of dam can be identified if the predicted behavior of the model 

does not match with the observed behavior. Visual inspections cannot help to detect any defects 

in the part of the dam which is submerged under water. Hence these models are used to assist dam 

inspections and prepare maintenance strategies. 

Various types of dam monitoring systems exist, the most popular being the use of pendulums, 

however, alternative methods have been discussed in Chapter-3. 

Dam monitoring depends on various factors like frequency of observations, placement of the 

pendulums, the degree of automation and type of the construction of the dam. The frequency of 

observations made during the construction phase and first impounding is more, as we need more 

information during this process to validate the assumptions in our design criteria. It is usually low 

during the service life as it is done to monitor long-term changes. Placement of pendulums and 

degree of automation are related to each other. Automated systems require less number of 

pendulums and give us a higher frequency of observation. Therefore they are used for short-term 

monitoring. Since we do not require a high frequency of observation during the service life, an 

automated system would not be economical. Following is a table which depicts the different 

criteria used for dam monitoring and their purpose. 



 
Table 1.1 - Criteria for monitoring 

Courtesy (ICOLD, 2000) 

 

1.3  Motivation 

The aging infrastructure and increase in the computational capacity of computers in last few 

decades have allowed the use of statistical analysis on large amounts of data. Historical data shows 

that one of the significant failures of dams is caused by loss of the stability due to uplift pressures 

acting on the foundation of the dam. Monitoring data from pendulums and piezometers can be 

helpful in analyzing the condition and reliability of such dams. However, data collection is just 

one step of the whole process. Analysis of the retrieved data is equally important, as it can reveal 

any anomalies in the behavior of the dam which can be used to alert dam wardens.  

It has been noted that there is a lack of effective tools for the analysis of dam data (Dibiagio, 2000).  

Even though the HST model has proved to be widely accepted and accurate in estimating the 

displacements of the dam, it also has its own limitations. The HST model might give inaccurate 

estimates for seasons with high variance of temperature (Léger & Leclerc, 2007), as they do not 



make use of air temperature. Also, it is based on the assumption that the Hydrostatic load and the 

temperature are independent of each other, however, it is well known that they are coupled as the 

thermal field is influenced by the water level in the upstream face (F Salazar, 2017). These defects 

can be removed from the HST model by adding different variables, or by adopting a different 

statistical technique. Also, there is a lack of models that include non-linear relationships between 

the reservoir level and the displacements, and the ones which also include the delayed behaviour 

of the dam to temperature. The inclusion of the delayed behaviour of dams will make the models 

more accurate, and therefore the threshold for the alarm system can be reduced further, reducing 

the false alarms. Even though dam monitoring has been in existence for longer than other civil 

engineering disciplines such as bridges and buildings, health monitoring of dams still lags behind 

despite improvements in sensing technologies and statistical methods. Therefore, there is a need 

to develop new tools to facilitate the job of dam safety engineers.  

 

1.4  Objectives  

The principal objectives of the thesis are: 

a) Fitting a Hydrostatic-Seasonal-Time model to the data obtained from a dam in Quebec followed 

by the defects of the model. Three different HST models were made to analyze the displacements 

of the dam in three axes, radial (y-axis), tangential (x-axis), and vertical (z-axis). The analysis has 

shown various instances where the HST model is insufficient in producing an accurate analysis.   

b) Improving the Hydrostatic-Seasonal-Time model by proposing three variants of the HST model. 

These have been proposed to tackle different problems in the statistical analysis of dam monitoring 

data. A segmented regression model has been proposed to tackle the non-linearity between the 

displacements and the water level in the reservoir. A nonparametric regression seasonal model has 



been proposed to reduce the defects in the regular seasonal component of the HST model. A 

Hydrostatic-Seasonal-Temperature-Time model tackles the problem of the delayed effect of air 

temperature on the displacements of dams by using lagged variables of air temperature as predictor 

variables.  

c) Analysis of the dam piezometer data by proposing two models to forecast dam piezometer levels 

upstream and downstream of the dam. The relationship between the displacements in the three 

axes of the dam and the piezometer levels upstream and downstream have been used to improve 

the existing models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 Statistical models used for the analysis of concrete dams 

 

2.1  Introduction 

Statistical models are an essential part of dam safety systems. After visual inspection, dam 

monitoring data is the most reliable way to analyze the structural behavior of a dam. Predictive 

models assist a dam safety engineer in analyzing monitoring data, which helps in the detection of 

any anomaly. Automated data acquisition systems (ADAS) utilize them on a continuous basis, 

assisting in timely maintenance and rehabilitation of the dam (ICOLD, 2000). These models 

provide us an estimated response of the dam under a given load combination, which can be 

compared with the observed response to draw conclusions regarding the structural deterioration 

(Nedushan, 2002).  

Dam deformation behavior models can be constructed using deterministic methods and statistical 

methods. A deterministic model can predict the deformation of the dam based on the data on 

various factors like external forces, material properties of the dam, geometry of the dam and stress-

strain relationships. Whereas, a statistical model uses years of observed data and techniques like 

regression analysis to estimate the future deformation of the dam within a specified confidence 

interval.  

Deterministic models like finite element models are widely used in engineering practice to predict 

dam response. They are based on physical laws governing the phenomenon, and have some 

advantages over statistical models:  

1) They are useful for the design and safety assessment for the first filling in the dam, due to the 

absence of significant amount of monitoring data 



 2) They can be interpreted conveniently, provided the parameters of the model have a physical 

meaning (Fernando Salazar, Morán, Toledo, & Oñate, 2017). However finite element models also 

have their limitations: Important stability parameters like uplift pressure and leakage flow in dams 

cannot be predicted accurately using numerical models (Mata, 2011). Also, the stress and strain 

properties of a dam and foundation materials are often limited which can lead to unreliable 

modeling (Salazar, Morán, Toledo, & Oñate, 2017). 

The above limitations of the finite element model, combined with increased computational power 

and the availability of monitoring data nowadays has led to the advancement of statistical models 

to predict dam response. Further, many researchers have developed machine learning algorithms 

and artificial neural networks for the analysis of dam behavior. Most of these models employ no 

laws of physics or material properties and are mostly based on massive amounts of past data. This 

chapter will discuss various models, their applications, modeling considerations and modifications 

made by various researchers in the past. 

 

2.2  Data based models for the prediction of dam behavior 

Various data-based models have been proposed by researchers in the past. Most of these models 

utilize statistical techniques like multiple linear regression (MLR) to predict the future response of 

the dam to a certain load condition. Dam behavior can be attributed to three parameters: 1) the 

hydrostatic level of water in the reservoir, 2) variation in the air and the concrete temperature due 

to seasonal changes, 3) irreversible changes, like creep and shrinkage, due to time (Zhao, 2003). 

The effect of the hydrostatic and seasonal parameters are considered to be reversible while long-

term effects of creep and shrinkage cause irreversible effects. The reversible effects are considered 



during the design of dams and hence are of less concern, whereas, irreversible effects can be a 

concern of deterioration of the dam or any other unanticipated changes. 

 

2.2.1  Multi-linear models to predict deformations in concrete dams 

There are situations in regression analysis where more than one regressor variables are needed to 

fit the model. A regression model which has more than one regressor variable is called a multiple 

regression model. The term linear is used because the regression equation is a linear function of 

the parameters (or coefficients), not the variables. Following are a few multiple linear models to 

predict the displacements in a concrete arch dam. 

 

2.2.1.1  Hydrostatic-Seasonal-Time model (HST) 

The hydrostatic-seasonal-time model was first introduced by Électricité de France (Willm & 

Beaujoint, 1967). According to the Stone-Weierstrass theorem (De Branges, 1959), any continuous 

function closed over an interval can be approximated as a polynomial or a sum of polynomials. 

Similarly, the HST model is a regression model which takes into account the displacements from 

hydrostatic level as a fourth-degree polynomial of the water level in the reservoir, seasonal changes 

as a Fourier transformation of sine & cosine terms of time, and irreversible changes as a third-

degree polynomial of time. A general form of a response of HST model can be formulated as 

follows:  

                                             Di (t) = Hi (Z) + Si (T) + Ti (T) + εi            2.1 

 Hi (Z) is the displacement component due to the hydrostatic level of the water in the reservoir 

which can be expressed as: 

                                      Hi (Z) = a0 + a1*Zi + a2* Zi
2 + a3* Zi

3+ a4* Zi
4                                          2.2 



 Where a0, a1, a2, a3, a4 are the coefficients of the regression analysis and Zi is the standardized level 

of water in the reservoir at time‘t’. 

                                                                 𝑍 =  
Ht − Hmin

Hmax − Hmin
                                                          2.3           

Hmax, Hmin is the maximum and minimum level of water in the reservoir. Ht is the water level in the 

reservoir at time‘t’. 

Si (T) is the displacement caused due to seasonal effects. This effect can be modeled using a Fourier 

series, which accounts for the deformations due to change in temperature caused by various 

seasons. It can be expressed as: 

                       Si (T) = a5*sin (T) + a6*cos (T) + a7*sin (T)*cos (T) + a8*sin2 (T)                       2.4 

Where a5, a6, a7, a8 are the coefficients of the regression analysis, T = 
2.𝛱.𝑡

365
 , t = tt - to & tt, to are the 

current and initial date of monitoring.  

 Ti (T) is the displacement accountable for the irreversible effects caused due to creep, shrinkage 

or any other unanticipated changes. Historically, various researchers have implemented different 

expressions to model this effect by using some heuristics and trial & error procedures. Here are a 

few suggested examples of the modified irreversible term of the HST model:  

a) (Mata et al., 2014) introduced a linear and exponential term of time: 

                                                  Ti (T) = a9*t + a10*e-t                                                                                              2.5 

 b) (Yu, Wu, Bao, & Zhang, 2010) used a third degree polynomial of time: 

                                             Ti (T) = a9*t + a10*t2 + a11*t3                                                                 2.6 

Where a9, a10, a11 are the coefficients of the regression analysis. t = tt - to, & tt, to are the current and 

initial date of monitoring. εi is the residual error. 

Di (t) is the sum of the reversible and irreversible displacements, hence the displacement of the 

dam at time‘t’. 



The coefficients can be computed using the ordinary least squares method. Therefore the best fit 

model will have a minimum value of the difference between the sum of the squared values of the 

observations and predictions.  

The model has similar assumptions as used for any multilinear regression analysis: 

1) The variables chosen for the model should be independent of each other and should have a linear 

relationship with the dependent variable. 

2) The effects of the individual independent variables on the dependent variable are additive. 

3) All the errors should be independent and identically distributed.  

4) The mean of the error term (εi) should be zero. Also, the variance of the error term should be 

constant. 

5) The errors should be normally distributed. 

Appropriate tests should be conducted to confirm these assumptions before performing the 

regression analysis, failing which could lead to unreliable results or an improper fit. 

Changes can also be made to the hydrostatic and seasonal terms by adding or removing terms from 

the polynomial to fit the model better. Another alternative is to use stepwise regression, which uses 

the t-test p-values to remove redundant variables from the model in steps. 

There are, however, limitations to this model: 

1) One primary assumption is that the three effects defining the model are independent, whereas 

in reality there might be some correlation in between them.  

2) Another one would be the lack of any physical meaning to the coefficients of the regression 

analysis (Bonelli & Royet, 2001) 



3) H-S-T model does not consider the actual air temperature, replacing it with seasonal effects. 

Although it does make the model more flexible, it also reduces the accuracy of the prediction 

during significantly cold or warm years(Gomes & Matos, 1985). 

Due to all the above limitations, various researchers have modified the HST model to include 

different parameters. One such model is the Hydrostatic-Temperature-Time model (HTT) (Léger 

& Leclerc, 2007) which replaces the seasonal effect with thermal effect by utilizing the actual 

temperature of the dam body using thermometers on the upstream face, downstream face, and 

various other specified parts of the dam. The authors have concluded that the proposed frequency-

domain algorithms can convert the periodic heat problem to a transient one, and improves the fit 

when compared to regular HST or HTdT. The limitation of this model is the difficulty in selecting 

the appropriate thermometers among the ones available.  

Another model is the Hydrostatic-Seasonal-Temperature-Time model (HSTT) introduced by 

(Penot & Fabre, 2009), in which the periodic thermal effect is corrected with the help of actual air 

temperature. This model was used by Électricité de France during the European heat wave in 

2003 and produced better results than the HST model (Penot & Fabre, 2009). While using air 

temperature data, care should be taken to account for the delay between the dam deformation and 

the air temperature (Bonelli et al., 2001). The HSTT model does not account for water temperature, 

and water temperature has been found to be a vital source of the dispersion in the HSTT model 

(Tatin, Briffaut, Dufour, Simon, & Fabre, 2013). Moreover, water temperature also introduces a 

thermal gradient throughout the structure (Tatin, Briffaut, Dufour, Simon, & Fabre, 2015). 

Therefore, HST-Grad model was introduced by (Tatin et al., 2015)  which improves the HSTT 

model by considering both the air temperature as well as the gradient of the temperature in the dam 

body. 



2.2.1.2  Principal Component Analysis of concrete dams 

Multivariate methods like principal component analysis (PCA) are used when there are a large 

number of variables associated with multiple processes. In these cases, these variables might be 

correlated to each other, which can increase the dimensionality of the regression matrix making it 

harder to interpret. Methods like PCA reduce the number of the variables by forming linear 

combinations of them, hence reducing the dimensionality of the matrix. Each linear combination 

corresponds to one principal component. The first principal component depicts the maximum 

variance in the model followed by the second, third and so on. Each principal component is 

uncorrelated with its following principal component. The coefficients of these linear combinations 

are found by calculating the eigenvectors of the correlation matrix of the original variables. 

(Yu et al., 2010), used PCA on the data from dam monitoring devices to extract the major principal 

components which describe the variance in the model. This model was further applied to an actual 

project, and the results showed that PCA reduces data redundancy by approximately 60%. It can 

also separate the noise from the signal very efficiently, which reduces false alarms. 

A significant issue while using the HTT model is the selection of the thermometers. (Gomes & 

Matos, 1985) considered only the thermometers at the center of the cantilever span, assuming it 

depicts the equilibrium between the temperatures left and right parts. (Mata et al., 2014) proposed 

a new alternative by using PCA to select the most useful thermometers, to estimate the radial 

displacement of a concrete arch dam. A comparative study of the models on the Alto Lindoso dam 

shows that the HTT model with PCA (HTPCAT) performs much better than the HST model, 

especially in dams with thinner cross-sections at higher elevations. The main reason, as stated in 

the study, is that at higher elevations and thinner cross-sections dam behavior is more sensitive to 

temperature changes. Hence the HTPCAT model performs better than the HST. 



(Nedushan, 2002) implemented PCA on the stresses, displacements, and seepage of the Idukki 

dam, Daniel Johnson dam, and Chute-a-Caron dam. The author concluded that PCA could 

efficiently compress the original data and reduce the number of variables significantly. 

Principle component analysis has its disadvantages as well: 

PCA is just limited to linear combinations of the variables, and if the dependency is non-linear, 

then it may lead to misinterpretation of the results (Fernando Salazar et al., 2017).  

PCA in concrete dam analysis is used to reduce redundancy in response variables (deformations) 

since we have data from a large number of pendulums. Dam analysis has typically very few 

predictors. Therefore PCA is rarely used to reduce the explanatory variables. 

 

2.2.2  Artificial Neural Networks (NN model) 

Artificial neural network (NN model) is a simplified mathematical model of the natural neural 

network. They are inspired by the efficiency of the neurons in our brain. Linear models like the 

MLR are not suitable to reproduce the non-linear behavior, however, with NN models there are no 

such limitations since they allow modeling of highly complex non-linear processes (Fernando 

Salazar et al., 2017). A neuron is the central element of an artificial neural network. It is an operator 

with inputs and outputs, associated with a transfer function. These inputs, perceptrons, and outputs 

are interconnected using synaptic connections or weights. The following figure depicts how the 

information is processed in a neuron. 



 

Figure 2.1 Multi-layered perception model 

Figure courtesy (Mata, 2011) 

 

There are numerous NN models available. However, multi-layer perception model (MLP) is the 

most widely used model in the analysis of concrete dams (Mata, 2011). MLP has neurons or 

perceptrons arranged in three different types of layers: input layer, hidden layer & output layer. 

The input layer gets the input from the data, which is then transformed by the hidden layers to 

form the desired output. All the neurons of each layer are connected to the neurons in the next or 

previous layer by synaptic connections or weights. These weights are randomly initialized at the 

beginning and are adjusted by an iterative process called backpropagation. When these weights 

are adjusted such that the desired output is obtained, we call the model to be trained. The weights 

of the trained model can then be used to forecast new outputs. 

(Mata, 2011) did a comparative study of MLR and NN models and found out that NN model 

showed more flexibility and proved to perform better than the MLR model for months with 

extreme temperatures. 

 



2.2.2.1  Backpropagation 

A famous algorithm named backpropagation is used to train the NN model and find out the 

corrected weights. Backpropagation is an iterative process based on gradient descent technique, in 

which an input is presented to the model and output is calculated by randomly initializing the 

weights (Benvenuto & Piazza, 1992). Deviations between the model output and the known output 

are calculated, and weights are modified until these deviations are minimized. Finally, the 

corrected weights are saved when the deviations (cost function) is minimum or up to the desired 

value. 

 

2.2.3  Model for predicting the Piezometer head in arch dams 

Water seepage is a problem faced by most of the existing dams since water retained in the reservoir 

always find the path of least resistance. Hence it passes through the dam core and foundation and 

gets collected on the downstream toe of the dam. Various design considerations like impermeable 

core, higher compaction of the foundation, and drainage systems are considered during the design 

of hydraulic structures like dams, but they are only useful in controlling the amount of seepage in 

the dam. Uncontrolled seepage can lead to erosion of the inner surface of the dam core or 

foundation leading to piping. Increased uplift pressures due to soil pore pressure are also a critical 

part of the stability analysis of a dam. 

Piezometers are instruments installed in a dam and are used to measure this pressure. Accurate 

forecasting of piezometer levels can be beneficial for monitoring the stability of the dam. 

Piezometer levels depend on the difference between the upstream and the downstream water 

levels. For very high dams, the fluctuations in the downstream water level are minimal compared 



to the upstream water level (reservoir level) (Kalkani, 1989). Therefore, the water level in the 

reservoir (reservoir level) is an excellent predictor to forecast the piezometer levels in a dam.  

(Kalkani, 1989) used the method of polynomial regression to fit the piezometer levels of Kremasta 

dam in Greece to its corresponding reservoir levels. In this method, the observations from the 

piezometers were fitted to a polynomial of the reservoir level using ordinary least square method. 

                                           Piezometer level ~ H + H2 + H3+ …. + Hn                                       2.7 

H is the water level in the reservoir. 

A portion of data was used to establish the model, and another portion was used as validation data 

for forecasting the model. The piezometer levels were separated corresponding to increasing and 

decreasing reservoir levels. It is mentioned that the regression curves which correspond to 

increasing reservoir level are lower from those which correspond to decreasing reservoir level due 

to a hysteresis of the total head potential at the position of the piezometer. Hence, at the same 

reservoir level, lower values of the piezometer levels are present when the reservoir level increases 

and higher values are noticed when the reservoir level decreases.  

(Bonelli & Royet, 2001) also noticed a similar hysteresis of the piezometer head with increasing 

and decreasing reservoir levels. They suggest that the change in the piezometer level is not 

instantaneous with the variations in the reservoir level, but is a delayed process which can be 

corrected by calculating the convolution integral of the impulse response (yet to be identified) and 

the loading conditions (reservoir level, rainfall). The reason suggested for this delay is due to the 

air trapped inside the body of the dam. The authors used a Laplace transform to approximate the 

impulse response of the piezometer levels to the water level in the reservoir. The Laplace 

transformation or the convolution integral can be understood as averaging the water level in the 



reservoir over time using variable weights which decay with respect to the characteristic time. The 

author has concluded the delayed model improves the fit of the model significantly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 Description of the monitoring data and dam 

instrumentation 

 

3.1  Introduction 

Statistical analysis is only as accurate as the quality of data recorded by the monitoring system. 

The main idea behind using monitoring systems and dam instrumentation is to obtain data 

accurately and supplementing it with visual observations to predict the structural health of the dam. 

A statistical model is based on various variables which are considered to be influential in predicting 

the response of a system. Monitoring systems furnish data for all the essential variables considered 

in the model. This chapter will discuss methods of data collection and the instruments used to 

collect data along with a few examples. 

 

3.2  Data Collection 

There are various methods of collecting data. However, each of them has their applicability. The 

data collected should meet the modeling objectives, which means collecting data for all the 

significant variables along with a specified frequency of observation. Variables that tend to change 

rapidly or have large standard errors should be collected at a higher frequency to reduce 

uncertainties. Following are the popular methods project owners use to collect data: 

 

3.2.1  Manual data collection system 

As the name suggests, manual data collection is collected manually in the field. The data is noted 

down in field books, tablets, paper forms, etc. Complimentary data such as date, time, instrument 



name and number is usually mentioned along with the displacements. Also, the visual observations 

made are stored with the help of digital photographs and are saved such that it can be retrieved for 

future reference. Since it is a labor-intensive method, manual data collection systems are not 

preferred if the frequency of observations to be made is high. Therefore, they are not a good source 

for temporal measurements and hence can not be used for real-time monitoring systems. However, 

there are advantages to this system – 1) The operator can immediately check whether the data 

collected is anomalous and can calibrate the monitoring instrument.  

2) They can prove to be a better source for spatial measurements as compared to other real-time 

sources like GPS or Fibre optic sensors which might be placed on strategic places on a dam (eg: 

construction joints, deteriorated portions etc.) 

Below is a sample of manually collected data for a dam in Quebec, Canada. 

 
 

Table 3.1 - Manual data 

Where, Dx, Dy, and Dz are the displacements of the dam in x, y, & z-axis, and H is the height of 

the water in the reservoir. The figure shows that the manually collected data is obtained at an 

irregular frequency. 

 

3.2.2  Automatic data collection systems (ADAS) 

If a system has to be monitored at a very high frequency and real-time display & notifications are 

required, then automatic data collection system is a good option. It eliminates the requirement of 



extensive labor by transmitting it automatically via satellite, radio or internet to a remote location, 

where experts can analyze the data. This way the data can be analyzed quickly and is practical 

during a significant event. Historically, dam monitoring systems made use of pendulums to collect 

the data pertaining to the displacement of the dam, however, with the emergence of new 

technologies remote sensing techniques make use optical and synthetic aperture radar (SAR) 

images of the reservoir to accurately estimate the water level in the reservoir, which is an important 

variable used in the analysis of dams. Global Navigation Satellite Systems (GNSS) and fibre-optic 

sensors help to improve the accuracy of measurements and to furnish a near real-time monitoring 

system. These alternate technologies became more popular following the 1971 San Fernando and 

1994 Northridge earthquakes when many survey markers and access catwalks on the dam were 

destroyed resulting in the loss of the absolute frame of reference for the conventional surveys. 

GNSS, on the other hand has the absolute frame of reference far away from the site, therefore site 

interactions can not affect its readings. GNSS systems can capture displacements even at an 

interval of 10 seconds making it a near real-time monitoring system. It should be noted that this 

type of monitoring system is suitable only to measure static displacements, and dynamic 

displacements due to seismic shaking can not be measured by it since the interval is still 10 

seconds. 

Global Navigation Satellite Systems (GNSS) – GNSS monitoring systems are presently being used 

in many countries to monitor complex structural systems like dams. One such example is the 

integrated system that has been set to monitor the reservoir loads over three earthern dams in 

Hemet, USA. An active Continuosly Operating Reference Station (CORS) GNSS and a fully 

terrestrial geodetic system were set up to evaluate the displacements of control points located on 



the crest and downstream sides of the dam within a tolerance of 10mm with a 95% confidence 

level. (Pipitone, Maltese, Dardanelli, Brutto, & Loggia, 2018) 

Optical Fibres are also being developed to gather measurements for dam monitoring systems. The 

advantages of using optical fibres are many – 1) Inertness to external environment (eg: moisture, 

chemicals, electromagnetic fields), 2) small cross-section, 3) low signal attenuation over long 

distances. (Platt, Hagedorn, & Woodhead, 2011). There are three major types of fibre optic sensors 

that have been proposed by researchers – a) Point sensors – these type of optical fibres usually 

have a single sensor at the end of the fibre and the fibre itself is used to transmit the measurement. 

b) Quasi-distributed – these type of optical fibres have many point sensors along the one fibre. 

c) Distributed – In this type of sensor, the whole fibre acts as a sensor and measurements can be 

made at any point of the fibre. 

Following is a table which describes the use of these types of optical fibres in dam monitoring. 

“*” denotes that is relatively straightforward to adapt the sensor for this measurement 

Sensor type Bragg 

Grating 

Interferometer Rayleigh 

Scattering 

Raman 

Scattering 

Brillouin 

Scattering 

 Quasi-

distributive 

Point Distributive Distributive Distributive 

Strain  Y Y Y  Y 

Temperature Y * Y Y Y 

Pressure * *    

Displacement * Y    

 

Table 3.2 - Types of optical fibres and their uses in dam monitoring 

                      Courtesy - (Platt et al., 2011) 



Higher frequency observations help to calibrate the model better, and also reduces the errors. Even 

with automated systems, it is recommended to keep provisions for manual collection of data as 

there may be a system failure. With all the advantages, ADAS has expensive installation, 

potentially higher maintenance costs, and also requires a continuous source of power. Therefore 

most of the instruments in dams are manually operated, but a few important instruments around 

the construction joints, where the frequency of observation is high, are automatically monitored. 

Below is a sample of data collected by an ADAS system installed on a dam in Quebec, Canada. 

 

 
 

Table 3.3 - Automatic data 

Where, Dx, Dy, and Dz are the displacements of the dam in x, y, & z-axis, and H is the height of 

the water in the reservoir. Here the data is obtained at a fixed frequency of 12 hours, i.e., two 

observations per day. 

 

3.3  Significant Parameters 

It is vital to accurately gather data for all the significant parameters required to build the model. 

The automated dam monitoring systems guide by ICOLD recommends monitoring of 14 different 



parameters like headwater elevation, tailwater elevation, leakage flow, drainage flow, rainfall, 

temperature, seismic events, phreatic surface, pore water pressure, uplift pressure, deformation, 

alignment & plumb, load, and total stress (ICOLD, 2000). However, the models used in this study 

utilize only the deformations, headwater elevation, seasonal changes (associated with time), air 

temperature & uplift pressures.  

 

3.3.1  Deformations  

Deformations are one of the most critical variables in the analysis. It is the dependent or response 

variable in the model, hence accurate data on deformations is necessary. Deformations in dams 

can be measured using a combination of direct and inverted pendulums. These pendulums can be 

used to retrieve data for both, the horizontal displacements as well as the vertical displacements. 

The horizontal displacements can further be divided into radial displacements (Dy) and tangential 

displacements (Dx).  

For this study, the displacements in the z-axis were denoted by Dz and were considered the vertical 

displacements (along the height of the dam). The displacements in the y-axis were denoted by Dy 

and were considered the radial displacements (across the length of the dam). The displacements in 

the x-axis were denoted by Dx and were considered the tangential displacements (along the length 

of the dam).In a direct pendulum, the upper end of the steel wire is anchored to the top of the dam. 

Weight is suspended at the bottom end of the pendulum in a tank filled with damping liquid to 

reduce displacement due to wind or any other event. The relative displacement of the wire from 

the initial vertical position gives us the displacement of that particular pendulum. These relative 

displacements are usually stored in a readout device which can either be downloaded later or 

transmitted via radio, internet, etc.  



In an inverted pendulum, the lower end of the pendulum is anchored to the base of the dam and a 

float is attached to the top of the vertical wire. This float is placed in a water tank which keeps the 

vertical wire in tension. The horizontal movement of the float relative to the initial vertical position 

provides us the horizontal displacements. To calculate the relative movements, the vertical 

reference frame of the inverted pendulum should be the same as that of the direct pendulum. The 

reading process is usually similar to the direct pendulum with a readout device which can store 

and transmit data. Figure - 3.1 shows a schematic diagram depicting both, the direct pendulum as 

well as the inverted pendulum. 

 

Figure 3.1 - a) Direct Pendulum, b) Inverted pendulum 

Picture Courtesy (Nedushan, 2002) 

In a typical dam installation, these pendulums are aligned vertically one after the other, and each 

pendulum is used to calculate the relative displacement between its both ends and the initial 



vertical plumb. Direct pendulums are installed at the top, and inverted pendulums are installed at 

the bottom.  

Figure 3.2 illustrates the installation of pendulums in the cross-section of a dam. Direct Pendulum- 

P1 calculates the displacement between points A and B, direct pendulum-P2 calculates the 

displacement between points B and C and inverted pendulum-P3 calculates the displacement 

between C and D. The inverted pendulum is anchored in firm strata and is considered fixed at the 

bottom. 

 
Figure 3.2 - Typical arrangement of pendulums in an arch dam 

 

 Figures 3.3, 3.4, & 3.5 show a sample output of the displacements of a pendulum as a function of 

time in x, y, & z-axis. Data for the deformations is available from 22nd May 1997 to 31st August 

2000 with a frequency of observation of 12 hours, which gives us two observations per day.  



 
Figure 3.3 - Tangential displacement (in x-axis) as a function of time 

 

The positive values of the tangential displacements represent the outward movement of the dam 

in the x-axis, whereas the negative values of the tangential displacements represent the inward 

movements in the x-axis. 

 
Figure 3.4 - Radial displacement (in y-axis) as a function of time 



For radial displacements, the positive values explain upstream displacements, whereas negative 

values explain downstream displacements. 

 
Figure 3.5 - Vertical displacement (in z-axis) as a function of time 

 

Similarly, in the vertical axis, the positive displacements depicts increasing height, whereas 

negative displacements depict decreasing height. 

 

3.3.2  Reservoir level 

The reservoir level is one of the most critical predictor variables to predict the deformations in a 

dam. In this study, the reservoir variations follow a 12-month cycle with the maximum value as 

101.94 m and the minimum value as 93.67 m. Each year the reservoir level is at its minimum 

during April. Figure 3.6 shows the variation of the reservoir level as a function of time. 



 
Figure 3.6 - Reservoir level as a function of time 

 

3.3.3  Uplift pressure 

Uplift pressure is crucial in defining the stability of the foundation of a dam and therefore should 

be monitored. It is measured with the help of piezometers which are inserted in holes drilled in the 

foundation of the dam. Any sudden increase in the uplift pressure is associated with instability and 

therefore a drainage system is provided in the foundation of a dam to reduce the pressure. In this 

study, two piezometers were selected, one at the downstream end of the dam, and the other at the 

upstream end. The piezometer at the upstream end is denoted as PZP5m, and the one downstream 

is denoted as PZP5v.  

Figure 3.7 & 3.8 shows the variation of the uplift pressure head as a function of time in PZP5m 

and PZP5v. The uplift pressure is highly correlated with the reservoir level since both fluctuate in 

similar cycles of 12 months and reach a minimum value during April of each year. Figure 3.9 

shows the typical arrangement of piezometers in a concrete arch dam 

 



 
 

Figure 3.7 - Variation in the piezometer levels in the upstream piezometer as a function of 

time 

  

 

 

 Figure 3.8 - Variation in the piezometer levels in the downstream piezometer as a function 

of time 



 

Figure 3.9 - Variation in the piezometer levels in the downstream piezometer as a function 

of time 

 

3.3.4  Air temperature 

The air temperature data was recorded from May 16th, 1997 to August 31st, 2000. Figure 3.10 

shows the variations of temperature as a function of time. The temperature fluctuates between a 

max of 25.9°C to -29.7°C. The time series also shows that the seasonal variations are fairly 

predictable and can be used in the model instead of air temperature. Also, if the air temperature 

variable is considered in the model, then the temperature values would have to be smooth since 

the noise, and the variability in the daily air temperature data is very high  



 

Figure 3.10 - Air temperature as a function of time 

   

 

 

 

 

 

 

 

 

 

 

 



4 Methodology and a comparative study of models to 

predict displacement in a concrete arch dam in Quebec  

 

4.1  Introduction 

This chapter will discuss the methodology and various considerations used to build the HST model, 

followed by a comparative study of its different variants. The data used in this study was acquired 

from a concrete arch dam in Quebec. This study compares four different models to estimate and 

predict the deformation of a dam in three axes (radial, tangential & vertical).  

 

4.2 Methodology 

4.2.1  Elimination of outliers and smoothing of data 

Monitoring data is susceptible to be accompanied by some outliers due to mistakes made during 

manual collection, or due to improper calibration of the instruments. These outliers can influence 

the coefficients produced by regression analysis, leading to a bias in the forecasting model. 

Therefore it is essential to remove them, to fit the model accurately. Outliers or measurement errors 

are mostly of two types: a) Systematic errors   b) Random errors 

Systematic errors are described as consistently reproducible anomalies in data, which either under 

predicts or overpredicts the quantity measured. These errors occur due to a constant offset in the 

readings, in which the instrument does not read zero when the quantity measured is zero, or due to 

a multiplier, in which the difference between the readings is more or less than the actual change. 

Systematic errors occur due to miscalibrated instruments and cannot be removed by filtering or 

increasing the number of observations since it is in the system itself. It can be removed or avoided 

by proper calibration and maintenance of the instruments. 



Random errors are described as the statistical fluctuations that are random in sign & magnitude 

and are a result of the tolerance of an instrument. It is the inability to get the same reading every 

time even if the actual quantity does not change. Increasing the number of observations taken for 

the same quantity can reduce these types of errors.  

Time series scatter plots are one of the easiest ways to observe any significant outliers from a data 

set. Figure 4.1, 4.2, and 4.3 show the time series scatter plots for the response & predictor variables. 

It is evident that there are no significant outliers in the data. The reservoir level around Nov/99 

seems to be an outlier but is just a very sharp change in the reservoir level with respect to time.  

 

 
Figure 4.1 - Time series scatterplot for the standardized hydrostatic level in the reservoir 

   



 
Figure 4.2 - Air temperature as a function of time 

 

 

 
Figure 4.3 - Time series scatterplot for displacements (mm) in x, y & z-axis 



In many experiments in physical sciences’ & engineering, the true signal is rather a smooth curve 

which could be a trigonometric function or a function of time, whereas noise is seen as rapid 

fluctuations in the amplitude from one point to the next. Random noise should be reduced to 

perform the data analysis techniques accurately. 

Filtering methods like the unweighted moving averages, the weighted moving averages, Savitzky-

Golay filter and locally weighted linear scatterplot smoother (Lowess or Loess) aid in improving 

the signal to noise ratio of the dataset. Unweighted moving averages are the easiest to perform, as 

it replaces each value of the data set with the mean of “m” moving values in the data. Although 

simple, it might not be the best option since it gives equal weight to all the observations.      

     

                                                            X (i) = 
1

𝑚
∑ X(i)𝑖

𝑖−𝑚+1                                                        4.1 

The Weighted moving average method provides a better filter since we can add higher weights to 

closer values and lower weights to farther values. Two popular methods are a) the triangular 

weighted method and b) the exponentially weighted method. As the name suggests, the triangular 

weighted method distributes the weights in a triangular fashion, with the closest values getting the 

highest weights and adjacent ones getting reduced weights, whereas the exponentially weighted 

method reduces the weights exponentially. These weights are decided by a coefficient α, which 

can vary from 0 to 1. Since α is multiplied to the nearest value and (1-α) is multiplied to the furthest 

values, α being closer to one means that the nearest values are more influencing than the furthest 

ones. 

X (i) = α*Xi-1 + (1-α)*Xi                                                        4.2 

Savitzky-Golay method uses least square fitting of polynomials to segments of data (Savitzky & 

Golay, 1964). The input variables include 1) vector of the unsmoothed signal, 2) a frame length 



(should be an odd number), and 3) order of the polynomial that has to be fit. The method replaces 

each value of the data set with a new value obtained by fitting a polynomial of order ‘k’ to the 

adjacent values in the frame length using least square fit. Higher the difference between the frame 

length and the order of the polynomial, higher is the smoothing effect. Figure 4.4 depicts the 

comparison of two plots of air temperature data as a function of time. One of the plots is filtered 

using Savitzky-Golay method whereas the other plot uses no filtering. 

 
Figure 4.4 - Smoothing effect of Savitzky-Golay filter 

 

In the figure above, a third-degree polynomial was the chosen fit for the data, with the frame size 

of 123 out of a total 2395 observations. The filter successfully smoothens the data values and 

improves the signal to noise ratio. Such smoothing filters can be applied to the data on temperature 

while constructing a hydrostatic temperature time model (HTT) or hydrostatic seasonal 

temperature time model (HSTT) since temperature data have higher noise than other variables. 



Locally weighted scatterplot smoothing (Lowess or Loess) is a non-parametric filtering method 

pioneered by (Cleveland & Devlin, 1988) that combines the simplicity of linear least squares 

regression with the flexibility of non-linear regression. Loess does not require the calculation of 

any parameters, which further minimizes the need to make any assumptions regarding them, 

making it more flexible. 

This method estimates the regression surface through a multivariate smoothing procedure, fitting 

the independent variables locally, and in  

a moving fashion by choosing a specified window of a span (Cleveland & Devlin, 1988). This 

window or span, also called the smoothing parameter, can be varied to adjust the smoothness of 

the fitted curve. Larger spans result in more smoothing and vice-versa. It is called “weighted” local 

regression because the data points which are near to the center of the window get a higher weight 

in the regression analysis than the ones further. The use of a weight function is based on the idea 

that the nearby observations are going to be more related than the further ones. A tri-cubic function 

describes the weight assigned to the neighboring data points. This function is a smooth decreasing 

function having the maximum value at the center of the span. It is specified as: 

   WT (z) = { 
 (1 − |𝑧|3)3  𝑓𝑜𝑟 |𝑧| < 1

                0     𝑓𝑜𝑟 |𝑧| ≥ 1
                                                          4.3 

Where zi =(
𝑥𝑖−𝑥𝑜

ℎ
), in which x0 is the center of the span, xi is the ith data point from the center, and 

“h” is half width of the span. From the equation, 4.3 one can notice that the observations further 

away from the half span receive zero weight from the function. Figure 4.5 depicts the distribution 

of the tri-cubic function over a specified span. Figure 4.6 compares the smoothing effect of Loess 

on the temperature data of a concrete dam with a plot of temperature with no filter. The span or 

smoothing parameter was chosen as 0.2, which corresponds to 480 observations out of a total of 

2395 observations. 



 
           Figure 4.5 - Tri-cubic weight function 

      Figure courtesy (Jacoby, 2005) 

 

 
  Figure 4.6 - Smoothing effect of Loess filter 

 



4.2.2 Generalized multiple linear regression 

4.2.2.1  Methodology 

Multiple linear regression (MLR) is one of the most popular methods to describe relationships 

between variables. It is used to describe relationships between the dependent variable (response 

variable) Y and multiple independent variables (predictors) X1, X2… Xp. A generalized multiple 

linear regression equation looks like: 

                                                                    Y = b X + ε                                            4.4 

Where Y is a vector of the observations of the response variable, X is the vector of the observations 

of the regressor (or predictor) variables, b is a vector containing the estimates of the coefficients 

of the regression equation, and ε is a vector of the residuals. Various methods can be used to 

estimate the coefficients of the regression equation, however ordinary least square estimator (OLS) 

was used in this study. According to this method, the estimates of the coefficients can be calculated 

by minimizing the sum of the square of the residuals, which means, minimizing the perpendicular 

distance between the observed point and the regression line. 

Mathematically the square of the residuals is: 

                                                                ε.ε' = (Y- X.b). (Y-X.b)'                                            4.5 

Therefore, the sum of the squares of the residuals can be represented as: 

  S = Σj=1
n ε(i). ε(i)′                                  4.6 

  S = Σi=1
n (Y- X.b). (Y-X.b)'                                            4.7 

The least square estimator minimizes this value using partial derivatives with respect to 

coefficients, to get the estimate of b: 

                                                    
∂

∂b
 [(Y- X.b). (Y-X.b)'] = 0                                           4.8 



                                       
∂

∂b
 [(Y.Y' – 2.Y.X.b + b'.X'.X.b)] =0                    4.9                                   

Solving equation 4.9 gives us the estimate of b, �̂�                                          

                                                                 �̂�  = (X'.X)-1(X'Y) 4.10 

By substituting �̂� in equation (4.4) we can find out the value of the estimate of Y: 

                                                             Ŷ = X. (X'.X)-1(X'.Y)                                                         4.11 

The standard error of the estimate is expressed as:  

                                                   S x, y =√
Ŷ΄Ŷ− b΄X΄Y΄ 

𝑛−𝑝−1
                                                 4.12  

Where n is the number of observations and p is the number of predictor variables  

The estimates of the coefficients can then be used to forecast the response variable within a 

specified confidence interval. However, it should be noted that the forecasting results outside the 

sample data can be inaccurate. 

 

4.2.2.2  Assumptions 

 Multiple linear regression is based on the following assumptions (Montgomery & Runger, 2003): 

1)  Linearity and additivity- The mean value of the response E(Y), at each value of a predictor X1, 

X2 …. Xn, should be a linear function of the predictors and the effect of the predictors on the 

expected value of the dependent variable should be additive. 

2) Heteroscedasticity- The residuals should follow a normal distribution with mean equal to zero 

and constant variance, i.e., ε ~N (0, σ2). 

3) Statistical Independence - The residuals should be independent and should have no 

autocorrelation. 



4) Stationarity – The variables, both dependent and independent, should be stationary. It means 

that their statistical properties like, mean, variance, and autocorrelation remain constant over time. 

5) There should be no multicollinearity in the model. 

Care should be taken to check whether the data set satisfies these assumptions. All of the above 

assumptions might never be entirely satisfied because in most of the cases there is a degree of 

correlation between the so-called independent variables, and this correlation leads to 

multicollinearity in the model. However, we must try to satisfy these assumptions to our best else 

the estimates of the coefficients could misinterpret the behavior of the model. Some of the 

assumptions like, linearity, and stationarity should be checked before running the regression 

analysis to avoid spurious regression coefficients. 

 

 

4.2.2.3  Establishing relationships between variables 

It is essential to select the correct independent variables to fit a regression model. Choosing more 

variables might give a higher R2 but could lead to an overfitted model, whereas choosing fewer 

variables might lead to loss of information from the data. Therefore, it is recommended to visualize 

scatterplots and perform correlation tests before selecting the variables to be included in the model. 

In this study scatterplot visualization and Pearson product-moment correlation tests have been 

computed between the response variables (displacements) and the predictors to select correct 

variables and validate the assumptions of the regression model. The Pearson correlation 

coefficient, r, is a measure of the strength of the relationship between two variables. It can take 

values between -1 to +1. A value of zero indicates that there is no association between the variables 

and a value of +1 or -1 shows a high positive or negative association. Pearson product- moment 



correlation test tries to fit a best fit line through the data between the two variables, and the value 

of ‘r’ shows how far the data points of the variables are from the best fit line. A value of +1 or -1 

shows that all the data points lie on the best fit line, or that there are no variations from the best fit 

line.  

Figure 4.7 shows a correlogram of the data set, which is a graph of the correlation matrix between 

the response and the predictor variables. It is clear from the figure that sin (T) and Z show strong 

associations with the displacements of the dam (Dx, Dy, & Dz). However, sin (T) has the highest 

correlation coefficient associated with the displacements of the dam Dx, Dy & Dz, followed by Z. 

It means that the seasonal components of the HST model might dominate the value of the 

regression coefficients more than the hydrostatic component, Z, or the time component, t.  

 
Figure 4.7 - Correlogram between the response and predictor variables 

   



 

 

As mentioned before, one of the assumptions made for multilinear regression is linearity. Linearity 

means that the relationship between the dependent and independent variable is linear, keeping 

other variables fixed. Pearson product-moment correlation test can only compute the strength of 

the association between the variables but does not define whether the dependency is linear or non-

linear. However, scatterplots of the variables can help confirm linearity. Figure 4.8, 4.9, and 4.10 

show the nature of the relationship between the reservoir level (H) and the displacements of the 

dam (Dx, Dy, and Dz). The figure shows that the relationship between the reservoir level and the 

displacements is non-linear, hence violates the assumption of linearity. Section 4.3 of this chapter 

includes a piecewise regression model to tackle non-linear relationships between variables. 

 

 
Figure 4.8 - Relationship between the reservoir level and the displacements in z-axis 

 



 
Figure 4.9 - Relationship between the reservoir level and the displacements in y-axis 

 

 
Figure 4.10 - Relationship between the reservoir level and the displacements in x-axis 

   

It is essential to check for the stationarity of variables before proceeding with the regression 

analysis. Stationarity means that the statistical properties of a variable like mean, variance, and 



auto-correlation remain constant throughout the time series. It implies that the distribution should 

have been uniform throughout the past and should continue to be uniform in future. A stationary 

time series is relatively easy to predict since its statistical properties will remain the same in the 

future as it follows a uniform distribution.  

However, dam monitoring data is rarely stationary since creep, shrinkage and other irreversible 

displacements will lead to drift in the displacement time series. The time component of the HST 

model is used to capture such drift in the data but it does not account for any non-uniform variance 

in the displacements. This non-uniform variance is very likely if the air temperature around the 

dam varies a lot, or if the dam is more susceptible to daily temperature variations (thin cross-

sections or high altitude). Figure 4.11 shows the time series plot for the displacement of the dam 

in the z-axis. It can be noticed that the amplitude of the cycles of the displacement curve for the z-

axis increases over time. 

 
Figure 4.11 - Displacements in the z-axis over time 

  

 This increase in the amplitude shows that the data for displacement in the z-axis is non-stationary 

since the variance is not constant throughout. Figure 4.12 and 4.13 shows the variation of 



displacement in the dam in y & x-axis respectively. The displacement in y-axis shows a drift and 

is also non-stationary since its mean varies over time. 

 
Figure 4.12 - Displacements in the y-axis over time 

  

 

 
Figure 4.13 - Displacements in the x-axis over time 

 

 

The displacement in x-axis shows some drift as well as non-uniform variance. Therefore, all the 

three displacement time series plots are non-stationary. Figure 4.14 shows the variation of the 

standardized reservoir level over time 



 
Figure 4.14 - Standardized reservoir level as a function of time 

 

It is clear that the reservoir level curve is stationary. Therefore, the non-stationarity in the response 

variable has to be captured by the seasonal terms  

Regression models have to be checked for multicollinearity since one of the assumptions states 

that there should be little to no multicollinearity in the model. A moderate to high correlation 

between the predictor variables lead to multicollinearity. In these cases, the calculation of the 

inverse of (X'X) in equation 4.9 may be difficult to obtain, since (X'X) becomes singular. (Greene, 

2000) states that multicollinearity may be observed if: 

a) Small changes in the data produce wide fluctuations in coefficients. 

b) The coefficients may have high standard errors, and they may have the wrong sign. 

Multicollinearity can be classified into two categories: 

1) Structural multicollinearity: Higher orders of predictors, if included in the model, cause 

structural multicollinearity. E.g., If we have both x and x2 in our model, then it is evident that they 

both are highly correlated. Such problem can be found in the HST model since the hydrostatic load 



is defined as a fourth order polynomial of the standardized reservoir level and the time effect can 

also be a third order polynomial of time. Higher orders of the reservoir level were not considered 

in the model to reduce structural multicollinearity in the model. 

2) Data based multicollinearity: In this case, the multicollinearity is caused only due to the type 

of data collected due to a poorly constructed experiment or due to the inability to apply any 

transformations to the data. 

Multicollinearity must be detected and removed. Calculation of the variance inflation factor (VIF) 

is a useful method of detecting multicollinearity. As mentioned before that multicollinearity 

increases the standard errors of the coefficients, therefore, there must be an increase in the variance 

of the coefficient. As the name suggests, variance inflation factor quantifies such inflation in the 

variance of the coefficient. A VIF of one means no inflation in the variance of that particular 

coefficient compared to no multicollinearity, VIF of 5-10 is considered to be moderate and depicts 

some multicollinearity, but a VIF > 10 shows considerable multicollinearity and can influence the 

values of the coefficients. The variables which have a VIF>10 should be removed from the model, 

until all the coefficients in the model have a VIF<10, preferably below 5. 

Performing stepwise regression can also reduce multicollinearity in the model. Stepwise regression 

utilizes a unique algorithm for selecting variables for the model. It chooses the variables by 

comparing their t-test p-value with the significance level (confidence level), as specified in the 

model. Variable with the least p-value gets selected first, and then other variables are added into 

the model according to their increasing p-values until the fit of the model stops improving, or until 

there are no other variables with p-values less than the significance level. There are three ways to 

run stepwise regression models: 



a) Stepwise regression (forward): In this method, the first variable selected for the model is the 

intercept, and then other specified variables are added into the model by comparing their p-values 

with the significance level until all the variables are exhausted.  

b) Stepwise regression (backward): In this method, all the variables are initially considered in 

the model, and then insignificant variables are removed from the model in steps by comparing 

their p-values with the significance level specified in the model. 

c) Stepwise regression (both): In this method, both forward and backward regressions are 

performed, and insignificant variables from both are removed from the model similar to the above 

two methods. 

Alternative methods to remove multicollinearity are multivariate methods like principal 

component analysis (PCA) and partial least square method (PLS), which remove the redundant 

variables from the model by forming linear combinations of them.   

 

4.2.2.4  Residual analysis and validation 

Residuals or errors are the difference between the observed response and the expected response 

which is predicted by the regression equation. In regression analysis, the error term should be 

random or unpredictable. We can breakdown regression equation in deterministic and stochastic 

parts.  

Response = Deterministic + Stochastic 

Deterministic part is the one which should have all the predictive power of the model. The 

stochastic part or error part should be random and should follow a normal distribution with zero 

mean and a constant variance. Residual plots are those plots where the error is plotted on the y-

axis with a predictor variable or response variable on the x-axis. Visualization of the residual plots 



is an important step in regression analysis since a white noise residual plot confirms that there is 

no predictive power left in the data and that only randomness is left behind. Residuals in the plot 

should be centered around zero and should have a constant variance. Any pattern or drift in the 

residual plot shows that some predictive term has still not been captured by the model.  

Residual analysis helps us to know whether our model has all the predictive terms, or if some 

variable can be added to the model.  

Also, the model should be validated to assess the predictive capacity of the model on new 

observations. There are a few methods to validate a regression model. 

1) Validation set approach: In this method, the data is split into training and testing subsets. The 

regression model is trained using the training data, and further, the regression equation is used to 

predict the observations in the testing subset. The resultant validation-set error is a reasonable 

estimate of the test error. The disadvantage of this method of validation is that only a fraction of 

the data is used to fit the model and it could lead to a weaker fit if the observations are few. 

2) K fold cross-validation: The data is divided into k equal parts, with k-1 parts used to fit the 

model and the kth part is used to validate the predictions. The model trained using the k-1 parts is 

used to predict the kth part and error is computed. This process is repeated iteratively for all values 

of k, and the resultant error is averaged over k. So if k=4 then the process is repeated four times 

with k=1, 2, 3, & 4.  

3) PRESS statistic or leave one out approach: PRESS (prediction sum of squares) or leave one out 

approach allows the whole data to be used a training data. In this method, one data point is removed 

from the whole dataset upon which regression analysis is performed again to predict the 

observation that was left out. This method is repeated for all data points in the dataset, and the 



predictive performance of the model can be checked by how well it predicts the left out 

observations. 

Predicted R2 is calculated from the PRESS statistic and is much better criteria to access the 

predictive power of the model than R2 or Adj.R2. 

 

4.3  Comparative study of different models for predicting dam displacement  

This comparative study has been done to assess the performance of four different variants of the 

HST model, to predict the displacement of a dam in three axes, radial, tangential, and vertical. 

Comparisons between the fit of these models have been discussed along with the regression 

diagnostics.  

4.3.1  Model -1 (HST) 

Model -1 is a hydrostatic-seasonal-time (HST) model which uses stepwise regression to fit the 

dam monitoring data. The HST model can be decomposed into three different terms: a) Hydrostatic 

deformations, b) Seasonal deformations, c) Irreversible (time) deformations.  

The model is expressed as a polynomial of the standardized hydrostatic level, trigonometric 

functions and time. Individual models named HST_X, HST_Y, and HST_Z were made to fit the 

displacements in three axis, x,y, and z: 

HST_Z   Dz ~ a0 + a1* Zi + a2*sin (T) + a3*cos (T) + a4*sin (T)*cos (T) + a5*sin2 (T) + a6*t + 

a7*t2 + a8*t3                                                                                                                               4.13                                        

HST_Y  Dy ~ a0 + a1* Zi + a2*sin (T) + a3*cos (T) + a4*sin (T)*cos (T) + a5*sin2 (T) + a6*t + 

a7*t2 + a8*t3                                                                                                                               4.14 

HST_X  Dx ~ a0 + a1* Zi + a2*sin (T) + a3*cos (T) + a4*sin (T)*cos (T) + a5*sin2 (T) + a6*t + 

a7*t2 + a8*t3                                                                                                                               4.15 



Dx, Dy, Dz represent the modelled displacements (in mm) of the dam in tangential, radial, & 

vertical axis respectively. The higher orders of the hydrostatic terms were removed to reduce 

structural multicollinearity in the model. A stepwise regression algorithm was used to find out the 

coefficients for the above three equations, making them deterministic. These equations can then 

be used to forecast the displacments for the three axes. Tables 4.1, 4.2, & 4.3 show the regression 

summaries of the stepwise regression analysis for the three axes: 

Independent              

variables 

Coeff.Estimate Std.Error t-value p-value(>|t|) 

Intercept -2.227e+00 2.495e-02 -89.228 < 2e-16 

Z 1.463e-01 2.694e-02 5.429 6.23e-08 

sin (T) 1.543e+00 6.915e-03 223.206 < 2e-16 

cos (T) -7.059e-01 5.978e-03 -118.076 < 2e-16 

sin(T).cos(T) -7.150e-02 1.387e-02 -5.154 2.76e-07 

sin2 (T) 5.734e-01 9.309e-03 61.598 < 2e-16 

t 2.508e-03 9.603e-05 26.113 < 2e-16 

t2 -2.897e-06 1.848e-07 -15.675 < 2e-16 

t3 7.641e-10 1.012e-10 7.552 6.05e-14 

Residual standard error 0.1597 on 2386 Degree of freedom 

Multiple R-squared 0.9833 

Adjusted R-squared 0.9832 

Predicted R-squared 0.9831 

Table 4.1- Regression Summary for model-1 in the vertical axis (z-axis) 

 

Independent              

variables 

Coeff.Estimate Std.Error t-value p-value(>|t|) 

Intercept -1.790e+00 2.272e-02 -78.79 <2e-16 

Z 1.340e+00 2.022e-02 66.26 <2e-16 

sin (T) 9.881e-01 6.530e-03 151.32 <2e-16 

cos (T) 5.008e-01 5.867e-03 85.36 <2e-16 

sin2 (T) 8.235e-01 1.029e-02 80.04 <2e-16 

t -3.130e-03 1.064e-04 -29.40 <2e-16 

t2 7.997e-06 2.048e-07 39.04 <2e-16 

t3 -4.396e-09 1.121e-10 -39.22 <2e-16 

Residual standard error 0.177 on 2387 degrees of freedom 

Multiple R-squared 0.9721 

Adjusted R-squared 0.9720 

Predicted R-squared 0.9718 

                Table 4.2 - Regression Summary for model-1 in the radial axis (y-axis) 



Independent              

variables 

Coeff.Estimate Std.Error t-value p-value(>|t|) 

Intercept 1.129e+00 2.382e-02 47.415 < 2e-16 

Z -3.948e-02 2.780e-02 -1.420 0.156 

sin (T) -1.107e+00 7.146e-03 -154.950 < 2e-16 

cos (T) 3.383e-01 6.179e-03 54.739 < 2e-16 

sin (T).cos(T) -5.871e-02 1.433e-02 -4.096 4.34e-05 

sin2 (T) -4.430e-01 9.593e-03 -46.181 < 2e-16 

t -8.635e-04 4.098e-05 -21.072 < 2e-16 

t2 6.381e-07 3.317e-08 19.240 < 2e-16 

Residual standard error 0.165 on 2387 degrees of freedom 

Multiple R-squared 0.962 

Adjusted R-squared 0.9619 

Predicted R-squared 0.9617 

             

Table 4.3 - Regression Summary for model-1 in the tangential axis (x-axis) 

 

 The seasonal terms like sin (T), cos (T) were found to have high t-values and low p-values in all 

three axes. The t-values were found to exceed 100 in all three axes which means that the seasonal 

component of the model-1 dominates the calculation of the regression coefficients. 

 Another important observation was that the influence of the hydrostatic term, Z, was most 

significant in the radial axis (along the water body) with a t-value of 66. It makes sense 

theoretically since the change in reservoir level should produce a higher effect in the radial 

displacements than the tangential and vertical, since it is across the length of the dam. Similarly, 

the term Z was the least influential in the tangential axis (-1.42) since it is perpendicular to the 

radial axis and changes in reservoir level should not produce much effect. The adjusted R–squared 

statistic was found to be high (>0.96) and the root mean square error was low (<0.177) for all three 

axes. The predicted R-squared calculated by using the PRESS statistic using leave-one-out 

approach was also high (>0.96). Figures 4.15, 4.16, & 4.17 compare the observed displacements 

of the dam with the predicted displacements and depict the decomposition of the displacements in 

hydrostatic, seasonal, and irreversible terms in x, y, and z-axis. 



 
Figure 4.15 - Comparison between the predicted and the observed displacements in the x-

axis 

 

The above figure shows the comparison between the predicted displacements and the observed 

displacements in the tangential axis, with a decomposition of the predicted displacements into 

three components of the HST model. It can be seen that the prediction of displacements is accurate 

except for the months of March & April. The improper fit during these months is because the air 

temperature data (Figure-4.2) is highly variable during January to March, and since dam response 

is delayed with respect to the air temperature, the fluctuations in the displacements are seen in 

between March &April. 

 It can also be noticed that displacements in March/2000 are less variable than the previous years 

since the temperature during January to March in the year 2000 is less variable than its previous 

years. Therefore it can be said that these deviations between the predicted and the observed 

displacements are because the seasonal term of the HST model can not account for the daily 



temperature variability, as it is based on smooth trigonometric functions of time. Also, since the 

displacement in the x-axis is more influenced due to the seasonal term than the hydrostatic term; 

it leads to substantial residuals during those two months. 

 
Figure 4.16 - Comparison between the predicted and the observed displacements in the y-

axis 

In the y-axis or the radial axis, the displacements were more influenced by the hydrostatic term 

than in the x-axis. Hence the fluctuations caused due to the seasonal component of the model were 

not highly characteristic in the overall displacement. Therefore, we see a better fit than in the x-

axis. However, slight variations were seen during August, which was due to the variability in the 

daily air temperature. 

Figure 4.17 shows that the predicted displacement in the vertical axis is also slightly deviated from 

the observed displacement during April which is also due to the changes in the daily air 

temperature unaccounted by the seasonal term of the model. 



 

Figure 4.17- Comparison between the predicted and the observed displacements in the z-

axis 

 

Residual diagnosis is an integral part of model validation. Skipping residual analysis can lead to 

spurious regression models creating larger standard errors for the coefficients. In this study, 

residual plots, histograms and q-q plots of the residuals were plotted for all three axes to check the 

assumption of normal distribution and white noise.  

Figure 4.18, 4.19, & 4.20 show the histogram and the q-q plots for the residuals in the x, y, & z-

axes. 



 
Figure 4.18 - Check for normality of residuals in x-axis 

 

 
Figure 4.19 - Check for normality of residuals in y-axis 



 

Figure 4.20 - Check for normality of residuals in z-axis 

 

It can be noticed that the residuals for the z-axis are not precisely normally distributed since the 

histogram is skewed and not all of the residuals in the q-q plot lie along the theoretical normal 

distribution line. The residuals for the x-axis & the y-axis seem to be normally distributed with a 

few residuals in the ends not lying on the normal distribution line.  

As discussed in 4.2.2.4, the most crucial step of model diagnosis is residual analysis. Therefore, 

residual plots of the model concerning the fitted displacements have been plotted to confirm the 

hypothesis of random (white noise) residuals with zero mean and constant variance. 

Figures 4.21, 4.22, and 4.23 show the residual plots of the model as a function of the fitted 

displacements for x, y, and z-axis.  

 



 
Figure 4.21 - Residual plot of model-1 as a function of fitted displacement in the x-axis 

 

It is evident that the residual plot is not white noise and has a predictive pattern in it. We can see 

more significant residuals near the right end of the plot, where the fitted displacement is in between 

1.5mm to 2mm. This can also be seen in figure 4.15 where the predicted displacements in the x-

axis do not satisfactorily fit the observed displacements during March and April.  

 
 Figure 4.22 - Residual plot of model-1 as a function of fitted displacement in the y-axis 



Figure 4.25 depicts that there is a slight trend in the residuals with few large residuals around fitted 

displacement = 0.8 to 0.9. These larger residuals are due to the imperfect fit for August/98. The 

mean of the residuals is approximately zero, and the variance is almost constant throughout. 

 
Figure 4.23 - Residual plot of model-1 as a function of fitted displacement in the y-axis 

 

The residual plot in the vertical axis shows a strong trend with a mean of the residuals centered 

around zero and a constant variance. Therefore we can say that some predictive power is remaining 

in the residuals. Overall, model – 1 (HST) fits the data accurately except for the days when the air 

temperature is very high or low as compared with the seasonal component of the model.  

 

 

 

 

 



4.3.2 Model – 2 (HST Segmented) 

As discussed before in section 4.2.2.3, it was found that the relationship between the reservoir 

level and the displacement is non-linear for all three axes. This non-linear relationship violates the 

assumption of linearity between the independent and dependent variables and can cause improper 

fit with larger residuals. We also found that the displacements have increasing amplitudes, and are 

non-stationary. The standard HST model does not incorporate for non-stationarity due to 

increasing variance, and neither does it incorporate the effect of the non-linear relationship 

between the reservoir level and the displacements. 

Therefore, two changes have been made to the model-1 to include these effects.  

1) To reduce the effect of non-linearity the standardized reservoir level variable (Z) was fitted 

piecewise to the displacement using a segmented regression. Multi-linear segmented (or 

piecewise) regression analysis fits the non-linear relationship piecewise, with the help of 

interaction terms or dummy variables. In this case, the breakpoints of the curve can be 

approximated by looking at the scatterplot between the dependent and the independent variable. 

Therefore, the non-linear relationship can be divided into segments of linear relationships. Dummy 

terms of the variable showing non-linearity are introduced in the model, which change the slope 

of the regression curve after an estimated breakpoint. These dummy variables only partake in the 

regression analysis after their breakpoint. This way the non-linear relationship can be modeled 

better by dividing it into segments of linear relationships.  

Figure 4.24 and 4.25 show the difference between the segmented (or piecewise) regression and the 

standard HST fit.  

 



 
Figure 4.24 - Regular fit for a non-linear relationship 

 

The above figure explains how a standard HST model tries to fit these two variables linearly, 

whereas the relationship between them is non-linear. This will lead to an improper fit and larger 

residuals.  

 
Figure 4.25 - Segmented fit for a non-linear relationship 

 



It is clear from the Figure 4.25 that a piecewise fit provides a better fit for the hydrostatic part of 

the model as compared to model-1. 

2) A linear term of time was multiplied by the seasonal component of the model which can 

incorporate for the increasing amplitudes of the displacement curve.  

The previous seasonal term was: a2*sin (T) + a3*cos (T) + a4*sin (T)*cos (T) + a5*sin2 (T) 

The new proposed seasonal term is: (1+t)*(a2*sin (T) + a3*cos (T) + a4*sin (T)*cos (T) + a5*sin2 

(T)) 

 a2*sin (T) + a3*cos (T) + a4*sin (T)*cos (T) + a5*sin2 (T) +t*(a2*sin (T) + a3*cos (T) + 

a4*sin (T)*cos (T) + a5*sin2 (T)) 

The second part of the seasonal term with interaction terms between time and the trigonometrical 

functions is assumed to capture the increment in the amplitudes of the displacement. 

After this transformation the model looks like: 

HSTseg_Z  Dz ~ a0 + a1* Zi + a2*sin (T) + a3*cos (T) + a4*sin (T)*cos (T) + a5*sin2 (T) + 

t*a6*sin (T) + t*a7*cos (T) + t*a8*sin (T)*cos (T) + t*a9*sin2 (T) + a10*t + a11*t2 + a12*t3                     

4.16 

HSTseg_Y  Dy ~ a0 + a1* Zi + a2*sin (T) + a3*cos (T) + a4*sin (T)*cos (T) + a5*sin2 (T) + 

t*a6*sin (T) + t*a7*cos (T) + t*a8*sin (T)*cos (T) + t*a9*sin2 (T) + a10*t + a11*t2 + a12*t3                      

4.17 

HSTseg_X  Dx ~ a0 + a1* Zi + a2*sin (T) + a3*cos (T) + a4*sin (T)*cos (T) + a5*sin2 (T) + 

t*a6*sin (T) + t*a7*cos (T) + t*a8*sin (T)*cos (T) + t*a9*sin2 (T) + a10*t + a11*t2 + a12*t3                     

4.18 

Stepwise regression was used to calculate the coefficients of the regression equations. Only the 

hydrostatic component undergoes piecewise fit and the rest of the components are fitted linearly 



using a normal stepwise algorithm. Tables 4.4, 4.5, and 4.6 depict the regression summaries of the 

segmented regression in radial, tangential, and vertical axis respectively.    

Independent              

variables 

Coeff.Estimate Std.Error t-value p-value(>|t|) 

Intercept 1.263e+00 2.150e-02 58.755 < 2e-16 

sin (T) -1.004e+00 1.149e-02 -87.354 < 2e-16 

cos (T) 2.448e-01 1.010e-02 24.243 < 2e-16 

sin (T).cos(T) -5.250e-02 1.978e-02 -2.654 0.008 

sin2 (T) -4.899e-01 1.810e-02 -27.070 < 2e-16 

t.sin (T) -8.410e-05 1.608e-05 -5.230 1.85e-07 

t.cos (T) 1.758e-04 1.546e-05 11.366 < 2e-16 

t.sin (T).cos (T) 1.375e-04 2.818e-05 4.882 1.12e-06 

t.sin2 (T) 2.871e-05 2.654e-05 1.082 0.279 

t -1.584e-03 1.261e-04 -12.569 < 2e-16 

t2 2.079e-06 2.415e-07 8.610 < 2e-16 

t3 -7.862e-10 1.314e-10 -5.982 2.53e-09 

Residual standard error 0.1516 on 2380 degrees of freedom 

Multiple R-squared 0.9681 

Adjusted R-squared 0.9679 

Predicted R-squared 0.9677 

 

Table 4.4 - Regression summary for model-2 in tangential direction (x-axis)  

 

The regression summary for x-axis shows that the stepwise algorithm for model-2 did not include 

the standard reservoir level in the final model. Therefore a segmented fit of the reservoir level does 

not create any difference in the results for the x-axis.  Since the t-values for the seasonal terms are 

high, we can say that they dominate the response in the x-axis. The adjusted R-squared was found 

to increase slightly from 0.9619 to 0.9679, and the residual standard error reduced from 0.165 to 

0.1516 (~8% reduction), which was due to the transformation made in the seasonal component of 

the model.  

 

 



Independent              

variables 

Coeff.Estimate Std.Error t-value p-value(>|t|) 

Intercept -1.680e+00 2.979e-02 -56.403 < 2e-16 

Z 1.042e+00 5.085e-02 20.494 < 2e-16 

Sin (T) 8.498e-01 1.337e-02 63.566 < 2e-16 

Cos (T) 3.564e-01 1.099e-02 32.440 < 2e-16 

Sin (T).Cos(T) -4.153e-02 2.228e-02 -1.865 0.0624 

Sin2 (T) 7.519e-01 1.919e-02 39.173 < 2e-16 

t.sin (T) 1.085e-04 1.667e-05 6.510 9.13e-11 

t.cos (T) 3.029e-04 1.633e-05 18.544 < 2e-16 

t.sin (T).cos (T) -7.480e-05 3.005e-05 -2.489 0.0129 

t.sin2 (T) 2.577e-04 2.791e-05 9.232 < 2e-16 

t -4.160e-03 1.272e-04 -32.694 < 2e-16 

t2 9.927e-06 2.441e-07 40.666 < 2e-16 

t3 -5.560e-09 1.339e-10 -41.518 < 2e-16 

U1.Z 9.697e-01 8.525e-02 11.375 NA 

Estimated Break-Point in Z 0.511 

Residual standard error 0.1598 on 2380 degrees of freedom 

Multiple R-squared 0.9773 

Adjusted R-squared 0.9771 

Predicted R-squared 0.9769694 

 

Table 4.5 - Regression summary for model-2 in radial direction (y-axis) 

 

The regression summary above shows a new variable U1.Z, which is the dummy variable used to 

perform piecewise regression analysis on the standard reservoir level. Its coefficient denotes the 

difference between the slopes of the two piecewise linear fits made for the standardized reservoir 

level. The R-squared of the model-2 was slightly better than model-1, and the residual standard 

error dropped from 0.177 to 0.1598 (~10% reduction). Therefore it can be concluded that model-

2 is better at reducing the residual standard error. The estimated breakpoint for the piecewise fit 

converged at Z = 0.507.  Figure - 4.9 shows that the breakpoint is around reservoir level = 100m, 

which can be converted to standardized reservoir level of 0.75 using the formula:  

𝑍 =  
Ht −  Hmin

Hmax −  Hmin
 



It was not possible to further improve the estimate of the breakpoint in y-axis since the segmented 

function did not converge for Z=0.75 

Independent              

variables 

Coeff.Estimate Std.Error t-value p-value(>|t|) 

Intercept -2.256e+00 2.625e-02 -85.937 < 2e-16 

Z 9.033e-02 2.639e-02 3.423 0.000631 

Sin (T) 1.462e+00 1.119e-02 130.586 < 2e-16 

Cos (T) -6.828e-01 9.772e-03 -69.875 < 2e-16 

Sin (T).cos(T) 1.640e-01 1.878e-02 8.733 < 2e-16 

Sin2 (T) 4.788e-01 1.689e-02 28.345 < 2e-16 

t.sin (T) 9.616e-05 1.510e-05 6.366 2.32e-10 

t.cos (T) -6.805e-05 1.453e-05 -4.683 2.99e-06 

t.sin (T).cos (T) -4.825e-04 2.664e-05 -18.111 < 2e-16 

t.sin2 (T) 2.029e-04 2.486e-05 8.162 5.30e-16 

t 3.000e-03 1.177e-04 25.488 < 2e-16 

t2 -4.023e-06 2.261e-07 -17.789 < 2e-16 

t3 1.349e-09 1.231e-10 10.958 < 2e-16 

U1.Z 1.214e+00 1.312e-01 9.251 NA 

Estimated breakpoint 0.796   

Residual standard error 0.1413 on 2380 degrees of freedom 

Multiple R-squared 0.9869 

Adjusted R-squared 0.9868 

Predicted R-squared 0.9867 

 

Table 4.6 - Regression summary for model-2 in vertical direction (z-axis) 

 

The estimated breakpoint for model-2 in the vertical axis was 0.796, and from the figure 4.25, it 

can be seen that the breakpoint is near Z = 0.8. The R-squared for model-2 increased slightly and 

the standard residual error reduced from 0.1597 to 0.1413 (~11.5% reduction). Since the analysis 

is for the vertical axis, seasonal terms dominate again with t-values >100 for sin(T), whereas the 

standard reservoir level has a t-value of only 3.423. Therefore, the segmented fit of the reservoir 

level does not produce much effect on the model accuracy. Most of the reduction in error is due to 

the interaction terms of time and seasonal components, which incorporate for the increasing 

amplitudes of the displacement curve. 



Further, figures 4.26, 4.27, and 4.28 compare the predicted displacements from model-2 with the 

observed displacements for x, y, and z-axes respectively. Further, the displacements have been 

decomposed into three components of the model to better visualize the effects of these components 

on the global displacement. 

 
Figure 4.26 - Comparison between predicted and observed displacements for model-2 in x-

axis 

 

The above figure shows that the amplitude of the predicted curve keeps on increasing with time, 

which slightly improves the fit for March and September. 

 It can also be noticed that the hydrostatic curve is constant since it was not included in the model 

and only depicts the intercept of the model. The seasonal curve denoted by the blue curve is the 

most influencing factor in modeling the displacement in the x-axis. 

 



 
Figure 4.27 - Comparison between predicted and observed displacements for model-2 in y-

axis 

 

 
Figure 4.28 - Comparison between predicted and observed displacements for model-2 in z-

axis 



 

Figure-4.28 shows that model-2 slightly improves the fit in z-axis than model-1 for September 

during all three years.  

To show the effects of a piecewise fit of the standardized reservoir level plots between the 

displacements due to hydrostatic component and the standardized reservoir levels have been made 

for y and z-axis. Figure 4.29 & 4.30 depicts the plot of the effect of the standardized reservoir level 

(Z) on the overall displacement and the standardized reservoir level (Z). Segmented regression 

creates breakpoints of 0.511 for the y-axis and 0.796 for the z-axis.  

 
Figure 4.29 - Displacement effect of Z due to segmented regression in y-axis 

 

 
Figure 4.30 - Displacement effect of Z due to segmented regression in z-axis 



To check for the normality of the residuals, histograms and q-q plots have been plotted for all three 

axes.  

 
Figure 4.31 - Normality check of residuals for model-2 in x-axis 

 

Figure 4.32 - Normality check of residuals for model-2 in y-axis 



 
Figure 4.33 - Normality check for residuals of model-2 in z-axis 

 

The residuals in all three axes follow a normal distribution. Model-2 has shown to improve the 

normality of the residuals in all three axes, especially in the z-axis where the residuals did not 

follow normal distribution in model-1. Further, the residual analysis was performed to check 

whether the residuals were white noise or not. 

 

Figure 4.34 - Residuals as a function of the fitted displacement in x-axis for model-2 



 

 
Figure 4.35 - Residuals as a function of the fitted displacement in y-axis for model-2 

 

 
Figure 4.36 - Residuals as a function of the fitted displacement in z-axis for model-2 

 



 

From the above residual plots, it can be concluded that model-2 does not reduce the trend in the 

residual curve. However, it reduces the overall residual values for all three axes by (~10%) which 

is similar to the results of the regression summary where the where the model-2 showed smaller 

standard error than model-1. 

 

4.3.3  Model-3 (HST_nonparametric) 

The previous two models show that the seasonal component of the model does not capture the 

daily air temperature fluctuations, which leads to larger residuals. Therefore, a non-parametric fit 

for the seasonal component of the model has been made using locally weighted linear regression 

(LOESS) to fit these fluctuations better. The non-parametric fit will serve as an empirical seasonal 

curve which can be added to the HT model to get the predicted displacements. 

To capture the seasonal component of the observed data, firstly an HST model was fitted to the 

data, following which the displacement effects of the seasonal component were separated from the 

HST model for the entire times series. The remaining model is called the HT model. The residuals 

of the HT model were calculated which represent the seasonal component and the error. The 

residuals of the HT model were converted into a yearly seasonal scale (730 observations) by 

overlapping the residuals for all the years in just one. Further, the empirical seasonal curve was 

produced using locally weighted linear regression. This empirical seasonal curve will serve the 

purpose of the trigonometric functions used in the HST model. The displacement effects of the 

seasonal component can be computed from this curve and can be added to the hydrostatic and time 

components of the HT model, to predict the overall displacement of the dam in all three axes. The 

following schematic equations help to explain the procedure: 



 

 

 

 

 

 

 

 

 

 

Figure 4.37, 4.38, & 4.39 show the yearly seasonal curves produced using locally weighted linear 

regression for x, y, and z-axis respectively. 

 

 

Figure 4.37 - Seasonal curve for x-axis using LOESS fit 

HST = Hydrostatic component + Seasonal component + Time  

component +  Error 

HT = HST – Seasonal component 

component +  Error 

Residuals_HT = Observed displacement – HT = Seasonal component +error 

component +  Error 

Non-parametric seasonal curve = Loess (seasonal component + error) 

 

component +  Error Predicted displacements = HT + non-parametric seasonal curve 

 



 
Figure 4.38 - Seasonal curve for y-axis using LOESS fit 

 

 

 
Figure 4.39 - Seasonal curve for z-axis using LOESS fit 

 

The above plots approximate the seasonal component over the years by fitting one curve to it using 

LOESS fit. This method will help to average out the fluctuations caused due to temperature 



variations in any particular year(s) Since LOESS is a non-parametric method, we do not get any 

parameter estimates but directly the values for the seasonal component of the displacement. This 

seasonal component can then be added to the hydrostatic and time component of the HT model to 

predict the overall displacements. 

Figure 4.40, 4.41, and 4.42 compares the fit of the seasonal component of the standard HST, and 

the non-parametric seasonal curve to the residuals of the HT model which describe the seasonal 

effects for x, y, and z-axis. It was found that the seasonal component of the HST cannot account 

for the fluctuations caused due to air temperature, whereas the loess fit seasonal curve can better 

approximate the fluctuations. This improvement is because loess is a non-parametric fit and is 

more flexible than the seasonal component of the HST model, which is based on smooth 

trigonometric functions. Lower residuals are expected from the non-parametric model since it 

accounts for the fluctuations in daily temperature better than the regular seasonal model. 

 
Figure 4.40 - Comparison between different seasonal fits in x-axis 



 
Figure 4.41 - Comparison between different seasonal fits in y-axis 

 
Figure 4.42 - Comparison between different seasonal fits in z-axis 

Figure 4.43, 4.44, and 4.45 compare the observed displacements with the predicted displacements 

obtained from model-3 in x, y, and z-axis. 



 

Figure 4.43 -Comparison between observed and predicted displacements for model-3 in x-

axis 

 
Figure 4.44 - Comparison between observed and predicted displacements for model-3 in y-

axis 



 
Figure 4.45 - Comparison between observed and predicted displacements for model-3 in z-

axis 

 

Observing the above plots, we can say that the non-parametric model is more flexible around the 

fluctuations and but can capture them marginally better than the two other models. This is because 

the non-parametric seasonal curve is an estimate of the all the seasons of the time series. It averages 

out the fluctuations in all the seasons which might not improve the fit for any particular year but 

will reduce the overall errors in prediction 

Residual diagnostics were performed by plotting residual plots as a function of the fitted 

displacements to check whether the model residuals were white noise or not. Figure 4.46, 4.47, 

and 4.48 depicts the residuals of model-3 in x, y, and z-axis. Comparing figure 4.46 with figure 

4.21 & 4.34 shows that the residual curve for model-3 in x-axis has a lesser trend than the residual 

curve for model-1 and model-2 in the x-axis. This is because the non-parametric model captures 

the daily air temperature fluctuations better than model-1 and model-2. The residual plot is still 

not entirely white noise, but it is because the seasonal curve obtained from the Loess fit was a 



yearly seasonal curve which was used for all other years. There can be inter-annual seasonal 

changes which cannot be captured by this model. 

 

 
Figure 4.46 - Residual plot for model-3 as a function of the fitted displacements in x-axis 

 

 
Figure 4.47 - Residual plot for model-3 as a function of the fitted displacements in y-axis 



 

 
Figure 4.48 - Residual plot for model-3 as a function of the fitted displacements in z-axis 

 

 

The residual plot for model-3 in the y-axis is very similar to the two other models, but the residual 

plot for model-3 in z-axis shows less autocorrelation than the ones in model-1 and model-2. It can 

be concluded that model-3 reduces the residuals, the trend in the residual plots and fits the 

fluctuations caused due to daily temperature marginally better than the other two models.  

 

 

 

 

 



4.3.4  Model – 4 (Hydrostatic Seasonal Lagged Temperatures Time model)  

Air temperature is an external load which causes delayed displacements in dams, therefore, using 

lagged air temperature data as independent variables should improve the model and reduce the 

autocorrelation in the residual analysis. In this model both trigonometric functions and lagged air 

temperature variables were used to capture the fluctuations more accurately. 18 different lagged 

variables of the air temperature (named Tempfit) were selected, each with a lag of 10 observations 

(5days). Therefore three months of lagged air temperature was selected for the model. The seasonal 

term was multiplied by a linear term of time similar to the seasonal term in model-2.  

Before preparing the lagged air temperature variables, it is essential to filter the noise from the 

temperature signal. To forecast future displacements, we need a smooth curve of the air 

temperature so that it can itself be forecasted with lower uncertainties. Therefore, a locally 

weighted linear fit was prepared for the temperature data. The span selected was 0.15 for a total of 

2213 observations. Figure 4.48 depicts both the observed air temperature data as well as the filtered 

signal. A higher span increases the smoothness of the filtered curve and vice versa.  

 

 

Figure 4.49 - Filtered fit of the air temperature data 



The fitted temperature curve is then used to prepare lagged variables of temperature and can be 

used for future predictions as well.  

Tables 4.7, 4.8, & 4.9 depict the regression summary of model-4. 

Variables Coefficients Standard Error t-value P-value (>|t|) 

Intercept -3.213e+00 4.875e-02 -65.902 < 2e-16 

Z 8.024e-02 2.076e-02 3.864 0.000115 

t 1.347e-03 1.301e-04 10.355 < 2e-16 

t2 -3.245e-06 2.304e-07 -14.085 < 2e-16 

t3 1.975e-09 1.264e-10 15.627 < 2e-16 

Tempfit 4.090e-01 3.488e-02 11.723 < 2e-16 

Tempfit10 -5.450e-01 7.153e-02 -7.619 3.79e-14 

Tempfit20 3.809e-01 5.745e-02 6.631 4.19e-11 

Tempfit40 -6.085e-01 7.928e-02 -7.676 2.46e-14 

Tempfit50 9.292e-01 1.350e-01 6.881 7.76e-12 

Tempfit60 -7.254e-01 1.215e-01 -5.969 2.78e-09 

Tempfit70 2.317e-01 9.274e-02 2.499 0.012530 

Tempfit80 4.902e-01 1.284e-01 3.818 0.000138 

Tempfit90 -7.417e-01 1.528e-01 -4.853 1.30e-06 

Tempfit100 6.276e-01 1.019e-01 6.159 8.69e-10 

Tempfit120 -5.233e-01 9.450e-02 -5.538 3.43e-08 

Tempfit130 7.337e-01 1.268e-01 5.786 8.23e-09 

Tempfit140 -5.773e-01 7.727e-02 -7.472 1.14e-13 

Tempfit160 3.904e-01 5.705e-02 6.844 9.99e-12 

Tempfit170 -4.665e-01 7.106e-02 -6.565 6.47e-11 

Tempfit180 3.575e-01 3.445e-02 10.375 < 2e-16 

sin (T) -2.896e+00 1.093e-01 -26.504 < 2e-16 

cos (T) -7.909e-02 5.201e-02 -1.521 0.128476 

sin (T).cos(T) 7.098e-02 2.050e-02 3.462 0.000547 

sin2 (T) 9.340e-01 2.195e-02 42.555 < 2e-16 

t*sin (T) 9.367e-05 1.372e-05 6.830 1.10e-11 

t*cos (T) 5.669e-04 2.323e-05 24.407 < 2e-16 

t*sin (T)*cos (T) -4.485e-04 2.150e-05 -20.859 < 2e-16 

t*sin2 (T) -3.835e-05 2.100e-05 -1.826 0.067939 

Residual standard error 0.1012 on 2184 degrees of freedom 

Multiple R-squared 0.9936 

Adjusted R-squared 0.9935 

Predicted R-squared 0.9934 

 

Table 4.7 - Regression summary of model-4 in x-axis 

 



 

Variables Coefficients Standard Error t-value p-value (|t|>0) 

Intercept -1.373e+00 6.624e-02 -20.727 < 2e-16 

Z 1.461e+00 2.887e-02 50.596 < 2e-16 

t -5.525e-03 1.810e-04 -30.532 < 2e-16 

t2 1.234e-05 3.238e-07 38.104 < 2e-16 

t3 -6.854e-09 1.773e-10 -38.662 < 2e-16 

Tempfit10 -4.176e-02 1.930e-02 -2.164 0.030597 

Tempfit30 1.115e-01 6.283e-02 1.775 0.076022 

Tempfit40 -1.586e-01 1.045e-01 -1.518 0.129144 

Tempfit50 2.376e-01 1.177e-01 2.019 0.043636 

Tempfit60 -3.358e-01 1.086e-01 -3.092 0.002014 

Tempfit70 1.978e-01 6.261e-02 3.160 0.001600 

Tempfit100 2.389e-01 6.491e-02 3.680 0.000239 

Tempfit110 -3.126e-01 9.845e-02 -3.175 0.001518 

Tempfit120 1.885e-01 8.704e-02 2.166 0.030402 

Tempfit130 -2.727e-01 6.004e-02 -4.541 5.91e-06 

Tempfit150 1.122e-01 3.307e-02 3.392 0.000707 

Tempfit170 1.553e-01 4.432e-02 3.503 0.000469 

Tempfit180 -1.550e-01 3.093e-02 -5.010 5.87e-07 

sin (T) 1.115e+00 1.442e-01 7.734 1.58e-14 

sin (T).cos (T) 4.930e-02 1.684e-02 2.928 0.003448 

sin2 (T) 5.837e-01 3.072e-02 18.996 < 2e-16 

t*sin (T) 1.698e-04 1.651e-05 10.288 < 2e-16 

t*cos (T) 2.078e-04 3.125e-05 6.650 3.68e-11 

t*sin2 (T) 4.947e-04 2.942e-05 16.818 < 2e-16 

Residual standard error 0.1451 on 2189 degrees of freedom 

Multiple R-squared 0.9813 

Adjusted R-squared 0.9811 

Predicted R-squared 0.9808 

 

Table 4.8 - Regression summary of model-4 in y-axis 

 

 

 

 

 

 

 

 

 

 

 

 



Variables Coefficients Standard Error t-value p-value (|t|>0) 

Intercept 1.991e+00     3.458e-02   57.566   < 2e-16 

Z 1.225e-01   2.175e-02    5.632 2.01e-08 

t 9.271e-04   3.521e-05   26.332   < 2e-16 

t3 -8.231e-10     2.635e-11 -31.234   < 2e-16 

Tempfit -4.058e-01  3.661e-02 -11.085   < 2e-16 

Tempfit10 5.981e-01     7.543e-02    7.928 3.51e-15 

Tempfit20 -4.530e-01     6.062e-02   -7.473 1.13e-13 

Tempfit40 5.637e-01    8.216e-02    6.861 8.90e-12 

Tempfit50 -7.546e-01   1.353e-01   -5.579 2.72e-08 

Tempfit60 5.202e-01   1.016e-01    5.120 3.33e-07 

Tempfit80 -6.239e-01   1.134e-01   -5.503 4.16e-08 

Tempfit90 6.719e-01   1.783e-01    3.769 0.000168 

Tempfit100 -4.650e-01   1.698e-01   -2.738 0.006239 

Tempfit110 -2.585e-01   1.319e-01   -1.960 0.050130 

Tempfit120 7.381e-01   1.328e-01    5.560 3.02e-08 

Tempfit130 -8.086e-01   1.502e-01   -5.384 8.05e-08 

Tempfit140 5.085e-01   1.397e-01    3.640 0.000278 

Tempfit150 2.082e-01   1.312e-01    1.587 0.112665     

Tempfit160 -5.771e-01   1.187e-01   -4.860 1.26e-06 

Tempfit170 5.889e-01   9.317e-02    6.321 3.15e-10 

Tempfit180 -4.256e-01 3.959e-02 -10.750   < 2e-16 

sin (T) 3.467e+00   1.076e-01   32.229   < 2e-16 

cos (T) -6.124e-01   5.475e-02 -11.185   < 2e-16 

sin (T).cos(T) 6.064e-02   2.152e-02 2.817 0.004884 

sin2 (T) -9.103e-01   2.109e-02 -43.172   < 2e-16 

t*sin (T) -1.466e-04   1.280e-05 -11.457   < 2e-16 

t*cos (T) -4.409e-04   2.250e-05 -19.592   < 2e-16 

t*sin (T)*cos (T) 6.414e-05   2.281e-05    2.811 0.004979 

t*sin2 (T) 2.524e-04   2.155e-05   11.713   < 2e-16 

Residual standard error 0.1075 on 2184 degrees of freedom 

Multiple R-squared  0.9844 

Adjusted R-squared 0.9842 

Predicted R-squared 0.9840 

 

Table 4.9 - Regression summary of model-4 in z-axis 

 

The above regression summaries suggest that there is a relation between the lagged air temperature 

variables and the displacements since they have a low p-value and significant t-values. While 

comparing the results of the model-4 to model-1, it can be seen that a significant improvement in 



the fit was registered for the x-axis where the Adjusted-R-squared increased from 0.9619 to 

0.9935, and an almost 40% decrease in the residual standard error was registered. The residual 

standard error for the y-axis and x-axis also reduce by 20% and 32% respectively, supplemented 

with an increase in the adjusted R-squared Therefore it can be said that adding the lagged 

temperature variables improves the fit of the HST model. Figure 4.49, 4.50, and 4.51 depict the 

plots between the observed displacements and the predicted displacements with a decomposition 

of the predicted displacements into four components, hydrostatic, seasonal, temperature, and time. 

This decomposition is done to check the contribution of each component to the overall 

displacement. 

 

Figure 4.50 - Comparison between the observed and predicted displacements in x-axis 

 

It can be seen that the observed and the predicted curves fit each other very nicely with smaller 

residuals than the previous three models. The temperature curve lags almost five months behind 



the seasonal curve, and both have almost 180-degree phase difference. Model – 4 accounted for 

the fluctuations more accurately than any other model in the x-axis. 

 
Figure 4.51 - Comparison between the observed and predicted displacements in y-axis 

 

The figure above shows that the fit between the observed and the predicted displacements for the 

y-axis is good, with the temperature curve lagging behind the seasonal curve by almost five 

months, similar to the x-axis. Model-4 showed a better fit for the y-axis when compared to any 

other model.  

Figure 4.52 shows that the fit for z-axis is also very accurate and that the lag between the 

temperature and seasonal model is about six months. It can be seen that the hydrostatic and the 

time component are more influential in the y-axis and therefore, more deterioration should be 

observed in the y-axis than other two. 



 
Figure 4.52 - Comparison between the observed and predicted displacements in z-axis 

 

For residual diagnostics: a) The q-q plots and the histograms of the residuals of the displacements 

in three axes are plotted in the figures 4.53, 4.54, and 4.55. 

 
Figure 4.53 - Check for normality of the residuals in x-axis 



The residuals for the x-axis seem to be normally distributed since most of the data points lie on the 

normal distribution line, except some endpoints. Also, the histogram looks like a normal 

distribution case. Therefore, it can be said that the assumptions of normal residuals holds true in 

the model for the x-axis. 

 

 
Figure 4.54 - Check for normality of the residuals in y-axis 

 
Figure 4.55 - Check for normality of the residuals in z-axis 



   

From the above q-q plots and histograms it can be seen that the residuals in the y-axis are normal 

whereas the residuals in the z-axis do not follow normal distribution at the ends. However, it is 

approximately normal. 

 

b) The residual plots as a function of the fitted displacement are plotted for all three axes to check 

for white noise. 

 

Figure 4.56 - Residual plot as a function of fitted displacement in x-axis 

 

The residuals for model-4 in the x-axis are smaller in magnitude than the other models, and the 

autocorrelation of the residuals has also decreased when compared to model-1 and model-2. 

The residual plot for model-4 in the y-axis also shows improvements over other models. The shape 

of the residual remains almost the same, but there was a reduction in the autocorrelation of the 

residuals. Also, the overall magnitude of the residuals decreased.  

 



 

Figure 4.57 - Residual plot as a function of fitted displacement in y-axis 

 

 

Figure 4.58 - Residual plot as a function of fitted displacement in z-axis 

 



The residual plot for the z-axis shows minor trend and also has a smaller magnitude than the ones 

from the other models, but still isn’t entirely white noise. 

It can be concluded that model-4 can account for some of the daily air temperature fluctuations 

and helps to reduce the scattering in the residual model by as much as 40%. This shows 

improvement in fit as compared to the other three models. The only disadvantage is that it increases 

the number of independent variables used in the regression analysis which might overfit the data 

if the number of observations is low.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 Statistical analysis of dam piezometer data 

 

5.1  Introduction  

As discussed in section 2.2.4 water level variations in the reservoir and rainfall have been discussed 

as essential predictors to forecast piezometer levels in an arch dam. In this study, displacements of 

the dam in radial, tangential & vertical axis were used as additional predictors to improve the fit 

of two piezometers, one on the upstream end (PZP5m) and another on the downstream (PZP5v). 

The description of the monitoring data is presented in section 3.3.5. 

 Displacements in a dam cause small cracks on the surface of the dam which deteriorate with time. 

At high pore pressures, these cracks open and lead to more seepage, which can suddenly increase 

the displacement of the dam. The stability of the dam can be questioned if there is a sudden increase 

in the pore pressure at peak displacements. Therefore the model uses displacements of the dam to 

improve the predictions of the piezometer model. Rainfall effects and the delay of response to the 

changes in water level were neglected.  

 

5.2 Establishing relationships between the variables 

Scatterplots between the response variable (piezometer head) and the independent variables 

(reservoir level & displacements) were plotted to understand the relationships between them better.  

Figures 5.1 & 5.2 show the relationship between the reservoir level and the piezometer levels in 

the upstream and downstream directions.  

 



 
Figure 5.1 - Relationship between the upstream piezometer level and water level in the 

reservoir 

 
Figure 5.2 - Relationship between the downstream piezometer level and water level in the 

reservoir 

 

It can be seen that there is some hysteresis in the piezometer head with increasing and decreasing 

reservoir levels, but it is not very significant and can be accounted for approximately with the help 



of a polynomial function of the reservoir level. The upstream piezometer is found to have less 

hysteresis than the one on downstream. 

Figure 5.3, 5.4 and 5.5 show the relationship between the upstream piezometer levels and the 

displacement of the pendulum in x, y & z-axis. 

 

Figure 5.3 - Relationship between the upstream piezometer head and displacement in the z-

axis 

 

The relationship between the upstream piezometer head and the displacement in the z-axis is non-

linear because after a particular piezometer head, here at 93.75m, the cracks open up and leads to 

a sudden increase in the displacements. This non-linear relationship is modeled better with the help 

of segmented regression. The piezometer head was fitted piecewise with an estimated breakpoint 

at Dz = -2.5mm. 

 



 
Figure 5.4 - Relationship between the upstream piezometer head and displacement in the x-

axis 

 

 
 

Figure 5.5 - Relationship between the upstream piezometer head and displacement in the y-

axis 

 



Similarly, the relation between the upstream piezometer head and the displacements in the x, and 

the y-axis is also non-linear. However, there is a high degree of hysteresis in the piezometer head 

due to upstream and downstream displacements in the y-axis. Therefore segmented fit of the 

piezometer head was prepared for the variables Dx & Dz only, and Dy was not used as apredictor 

variable in this model. The breakpoint selected for x-axis was at Dx = 1. 

Figures 5.6, 5.7 and 5.8 show the relationship between the downstream piezometer levels and the 

displacement of the pendulum in x, y & z-axis 

 
Figure 5.6 - Relationship between the downstream piezometer head and displacement in 

the z-axis 

 

The relationship between the downstream piezometer level and the displacements in the x, y, & z-

axes is non-linear but has more hysteresis than the one upstream. A segmented fit for the variable 

Dz was fit at Dz = -2 which means that the above figure was fitted using two linear fits, one 

between Dz = -3 to -2, and the other one between Dz = -2 to 1.  

 



 
Figure 5.7- Relationship between the downstream piezometer head and displacement in the 

x-axis 

 

 
Figure 5.8 - Relationship between the downstream piezometer head and displacement in 

the y-axis 

 

Similar to the observations made in the upstream piezometer, the relationships between the 

downstream piezometer head and the displacements in x, y, and z-axis are also non-linear and have 



more hysteresis in the y-axis. Therefore, Dy was dropped from the model for the downstream 

piezometer as well, and Dx & Dz were fitted piecewise. 

 

5.3  Model fitting 

Two separate models were made for the two piezometers, one with normal linear fit, and the other 

with a segmented linear fit for the displacements.  

5.3.1 Model-1 - PZP5m represents the normal linear model for the upstream piezometer and 

PZP5v represents the linear model for the downstream piezometer. The models look like: 

PZP5m  PZm ~ a1H + a2H
2 + a3H

3 + a4Dx + a5Dz                                                                      5.1                                                                          

PZP5v    PZv ~ a1H+ a2H
2+ a3H

3+ a4Dx + a5Dz                                                                        5.2 

Where PZm and PZv are the piezometer levels in the upstream and downstream piezometers, H is 

the water level in the reservoir and, Dx & Dy are the displacements in x and y-axis respectively. 

A stepwise regression algorithm was used to compute the coefficients of the predictor variables. 

Tables 5.1 & 5.2 represent the regression summaries of the piezometers in the upstream and the 

downstream directions respectively. 

Variables Coefficient 

estimate 

Standard 

error 

t-value P-value 

Intercept 4.340e+02 1.763e+01 24.61 <2e-16 

H -5.713e+00 2.702e-01 -21.14 <2e-16 

H3 2.311e-04 9.394e-06 24.60 <2e-16 

Dx 1.112e+00 6.661e-02 16.69 <2e-16 

Dz 1.338e+00 4.398e-02 30.42 <2e-16 

Residual standard error 0.3866 on 1655 degrees of freedom 

Multiple R-squared 0.9727 

Adjusted R-squared 0.9727 

Predicted R-squared 0.9725 
 

Table 5.1 - Regression summary of the upstream piezometer 



The regression summary shows that all the variables are good predictors of the piezometer levels 

since the p-values are very low, the predicted R-squared is high, and the residual standard error is 

low. However, the reservoir level and the displacement in the z-axis (vertical axis) are the 

dominant predictors. 

 

Independent 

variables 

Coefficient 

estimate 

Standard 

error 

t-value P-value 

Intercept 1.532e+03 6.357e+01 24.106 <2e-16 

H -3.061e+01 1.299e+00 -23.564 <2e-16 

H2 1.621e-01 6.636e-03 24.429 <2e-16 

Dx 5.432e-01 1.604e-01 3.386 0.000725 

Dz 2.042e+00 1.059e-01 19.280 <2e-16 

Residual standard error 0.9325 on 1655 degrees of freedom 

Multiple R-squared 0.9443 

Adjusted R-squared 0.9442 

Predicted R-squared 0.9439 

 

Table 5.2 - Regression summary of the downstream piezometer 

 

The regression summary for the downstream piezometer showed similar results to the one 

upstream. Reservoir level and the displacement in the z-axis were the dominant predictors with 

low p-values. The predicted R-squared was high, and the residual standard error was low. The 

predicted piezometer levels were compared with the observed piezometer level data to get better 

idea of the fit of the model, both in upstream and downstream directions. Figures 5.10 & 5.11 

depict the comparison of the predicted and the observed piezometer levels for the upstream and 

the downstream models respectively, by plotting them together as a function of time. Further, 

regression diagnostics like normality of the residuals, and the residual plots as a function of the 

fitted piezometer level were checked to validate the model. Normality check is done to satisfy the 



assumption of normally distributed residuals with a zero mean and constant variance which is 

necessary for a valid regression model. 

 

Figure 5.9 - Comparison between the observed and the predicted piezometer levels in the 

upstream model 

 

Figure 5.10 - Comparison between the observed and the predicted piezometer levels in the 

downstream model 



The comparison between the observed and the predicted piezometer levels shows that the model 

performs satisfactorily in the upstream direction but gives larger residuals in the downstream 

direction. This is due to the presence of higher hysteresis in the data from the downstream 

piezometer.  Figures 5.11 & 5.12 explain the normality of the residuals for the upstream and 

downstream piezometer models with the help of histograms and q-q plots.  

 
Figure 5.11 - Q-Q plot & histogram of the residuals for the upstream model 

 
Figure 5.12 - Q-Q plot & histogram of the residuals for the downstream model 



 

The plots for the upstream model suggest that the residuals are normally distributed, but the plots 

for the downstream model suggest a skewed normal distribution since the points at the ends of the 

q-q plot do not lie on the theoretical normal distribution line and the histogram also shows the 

skewed distribution of the residuals. Therefore, it is clear that the downstream gives less accurate 

results than the upstream model. 

 

5.3.1  Model-2 (segmented model) 

 Since the relationship between the displacements and the piezometer head is non-linear, a 

segmented fit of the displacement in the x & z-axis were computed in model-2 while the rest of 

the model remains the same. Tables 5.3 & 5.4 depict the regression summaries of the segmented 

upstream and downstream models. 

Independent 

variables 

Coefficient 

estimate 

Standard 

error 

t-value P-value 

Intercept 3.310e+02 1.616e+01 20.484 <2e-16 

H -3.951e+00 2.483e-01 -15.907 <2e-16 

H3 1.631e-04 8.692e-06 18.765 <2e-16 

Dx 4.287e-01 6.271e-02 6.837 1.14e-11 

Dz 3.212e+00 1.143e-01 28.111 <2e-16 

U1.Dx 2.221e+00 1.736e-01 12.791 NA 

U1.Dz -2.480e+00 1.203e-01 -20.615 NA 

Estimated breakpoint in Dx 1.469 

Estimated breakpoint in Dz -2.166 

Residual standard error 0.325 on 1651 degrees of freedom 

Multiple R-squared 0.9808 

Adjusted R-squared 0.9807 

Predicted R-squared 0.9805 

 

Table 5.3 - Regression summary for the segmented upstream model 

It can be seen that two new variables named U1.Dx & U1.Dz are introduced in the regression 

analysis. These variables represent the piecewise fit of the displacement in the x & z-axis, and their 



coefficients explain the change in the slope of the linear fit after the estimated breakpoint. The 

segmented model improved the R-squared values and reduced the overall standard error. The 

estimated breakpoints in Dx & Dz were 1.469 and -2.166 which could be validated visually by 

looking at the breakpoints in the scatterplots Figure 5.3 & 5.4.  

Independent 

variables 

Coefficient 

estimate 

Standard 

error 

t-value P-value 

Intercept 1.314e+03 6.489e+01 20.254 <2e-16 

H -2.574e+01 1.329e+00 -19.365 <2e-16 

H2 1.360e-01 6.809e-03 19.973 <2e-16 

Dx -9.288e-01 1.624e-01 -5.719 1.27e-08 

Dz 5.101e+00 3.038e-01 16.788 <2e-16 

U1.Dx 6.466e+00 3.820e-01 16.927 NA 

U1.Dz -4.284e+00 3.226e-01 -13.279 NA 

Estimated breakpoint in Dx 1.385 

Estimated breakpoint in Dz -2.166 

Residual standard error 0.8369 on 1651 degrees of freedom 

Multiple R-squared 0.9553 

Adjusted R-squared 0.9551 

Predicted R-squared 0.9548 

 

Table 5.4 - Regression summary for the segmented downstream model 

 

Similar to the regression summary of the upstream model, two new variables named U1.Dx & 

U1.Dz are introduced by the segmented fit, the coefficients of which depict the change in the slope 

of the fitted line at estimated breakpoints. The segmented downstream model also showed 

increased R-squared and reduced standard errors (~10%). The reservoir level and the displacement 

in the z-axis were still the dominant predictors. The estimated breakpoints of the displacements in 

the x & z-axis were 1.385 and -2.166 which could be validated visually by looking the Figures 5.5 

& 5.6. 

Further, the piezometer levels predicted by the segmented upstream and downstream models are 

compared to the observed piezometer levels. Figure 5.15 & 5.16 compare the observed and the 



predicted piezometer heads for the upstream and downstream models respectively. It can be seen 

that the fit for both, the upstream and the downstream models is slightly better than model-1.  

 

Figure 5.13 - Comparison between the observed and the predicted piezometer levels in the 

upstream segmented model 

 

Figure 5.14 - Comparison between the observed and the predicted piezometer levels in the 

downstream segmented model 



The normality of the residuals was checked by plotting histograms and q-q plots. Figures- 5.15 & 

5.16 show the histograms and the q-q plots for the upstream and downstream segmented model 

respectively.  

 

Figure 5.15 - Q-Q plot & histogram of the residuals for the upstream segmented model 

 

 

Figure 5.16 - Q-Q plot & histogram of the residuals for the downstream segmented model 



The segmented fit improved the normality of the residuals for the downstream model significantly, 

whereas it marginally reduced the normality of the residuals in the upstream segmented model.  

 

5.4  Conclusions 

Overall, the segmented model improved the Adj.R-squared and the Pred R-Squared of both the 

upstream as well as the downstream models and reduced the overall standard errors by almost 

10%. Also, it improved the normality of the residuals for the downstream model. Therefore it can 

be said that model-2 performs better than model-1. The fit for the downstream model is less 

accurate than the upstream model because of the higher hysteresis of the piezometer head 

downstream, and a cubic polynomial can only fit the hysteresis curve approximately. It can be said 

that the delayed response of the piezometer levels to the reservoir, if not included, leads to more 

significant residuals and a mediocre fit. Including the delayed response of the piezometer level to 

the reservoir water level can significantly improve the fit and reduce the autocorrelation. 

 

 

 

 

 

 

 

 

 



6 Conclusions and recommendations for future research 

 

6.1 Conclusions  

The results indicate that all provide a good fit but the HSTLT model provides the best fit and 

reduces the residual scattering more than all other proposed models. The segmented model is 

speculated to show better performance in cases where the hydrostatic component dominates the 

displacements, but in this study, the seasonal component of the model dominated the regression 

analysis. Therefore, it did not show much improvement in the fit. The study proves that the HST 

model is insufficient in cases of extremely cold or hot seasons and that adding lagged variables of 

air temperature improves the fit of the model significantly. The non-parametric seasonal curve can 

account for some fluctuations since the curve is computed using seasonal data of all the years in 

the dataset but it cannot predict the short-term changes accurately.  

The results from the piezometer models confirm that the displacements in the dam are an essential 

predictor of the piezometer level and that the displacements increase sharply after a certain 

piezometer level. The relationship between the displacements and the piezometer level is non-

linear, and a segmented model improves the fit and reduces the overall residuals. The fit for the 

downstream model is less accurate than the upstream model because of the higher hysteresis of 

the piezometer head downstream. Therefore, delayed effects of the water level should be 

introduced in the model to improve its accuracy. 

 

 



6.2 Recommendations for future use 

Since we know that lagged air temperatures help to improve the fit of the HST model, future 

research should focus on finding out the response function of the dam to the thermal effects or try 

to approximate it as accurately as possible. Also, since some part of the dam is submerged under 

water. Therefore, water temperatures at different elevations could help improve the accuracy of 

the model. Another problem faced by the HST model is that the seasonal components and the 

hydrostatic components are mostly correlated since the water level in the reservoir is regulated 

seasonally by most of the dam owners. This results in autocorrelation in the residuals which 

revokes an assumption made during multi-linear regression. Methods that do not require such 

assumptions need to be tested to check their applicability.  

To model the hysteresis behavior accurately, there is a need for a response function of the dam 

piezometer level with respect to the increasing and decreasing water levels in the reservoir. Also, 

the displacements and the water level are correlated with other. Therefore, methods that do not 

require the assumption of the independence of variables need to be tested. 
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