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ABSTRACT

The effect of spin fluctuations on the resistivities of 14 different Fe,Ni,_,Zry metal-
lic glasses were analyzed in the temperature range from 4.2K to 80K. The corrections
to the resistivity due to the superconductivity and quantum interference effects at
very low temperatures were performed to obtain the spin fluctuation resistivity, p,;.
as a function of temperature and composition. It is found that, p,; varies as T2 at
very low temperatures, i.e. below around 20K, and as T at higher temperatures.
This confirms the predictions of the two-band model of Kaiser and Do:iacli and the
one-band model of Rivier and Zlatic. The spin fluctuation temperatures for all the
compositions, were determined from both models. T calculated from the one-band
model were about 30% higher than those calculated from the two-band model. The
spin fluctuation temperature is lowest when the system is closest to the magnetic
transition and it increases when the amount of magnetic species is reduced in the
alloy, i.e. for x = 1, Tyy = 10K (15K) and for x = 0.4, Tsy = 64K (96K) for the

two-band (one-band) model.
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RESUME

L’effet des fluctuations de spin sur la résistivité dans 14 verres métalliques différents
de Fe,Niy_.Zr, a été analysé dans la gamme de température allant de 4.2K a 80K.
Les corrections a la résistivité dues a la supraconductivité et aux corrections quan-
tiques, a trés basses températures, ont été prises en compte de fagon a obtenir la con-
tribution des fluctuations de spin a la résistivité, p,s, en fonction de la température et
de la composition. On trouve que, p,s obéit une loi en T? & trés basses températures,
i.e T inférieures & 20K, et une loi en T pour les hautes températures. Ceci confirme
les prédictions du modéle & deux bandes de Kaiser et Doniach et le modéle & une
bande de Rivier et Zlatic. Les températures de fluctuations de spin pour toutes les
compositions, ont été déterminées en utilisant les deuy modéles. Les valeurs de T,
calculées a partir du modéle 4 une bande sont approximativement 30% supérieures
a celles obtenues avec le modéle a deux bandes. La température de fluctuations de
spin est basse quand le systéme est proche de la transition magnétique et augmente
quand la proportion des especes magnétiques est réduite dans 1alliage, i.e. pour x
=1, T,y = 10K (15K) et pour x = 0.4, T,; = 64K (96K) d’aprés le modele & deux

bandes (& une bande).
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Chapter 1

Introduction

Amorphous materials are quite similar to liquid metals in their general behaviour of
the electrical resistivities,. Both have generally high resistivities, p and small tem-
perature coefficient of resistivities, -};-j—f. Several theories were developed in order
to understand the resistivity of amorphous metals at low as well as high tempera-
tures [1]. In particular, the resistivity behaviour at low temparatures has been the
most explored subject for the past decade. In disordered conductors, at very low
temperatures, intense elastic scattering causes interference effects on the electron
wavefunction, giving rise to quantum corrections to the conductivity known as weak
localization [2] and enhanced electron-electron interaction [3]. In this temperature
regime, the electron-electron interaction is dominant giving rise to —/T temperature
dependance of the resistivity. A large amount of theoretical [4] and experimental

(5], [6] work has been dore on this subject. Another low temperature phenomenon

occuring in amorphous materials is superconductivity. In superconducting metallic



"

glasses, above and very close to the transition temperature, there is a coutribution
to the temperature dependent resistivity due to the superconducting fluctuations
The influence of the superconducting fluctuations on p(T) above the critical tem-
perature was analyzed theoretically [7], [8] and [9] and experiments were carried out
to test these theories [10], [11]. In brief, these phenomena occuring in amorphous

materials at low temparatures is well studied.

There is also an anomalous resistivity behaviour that occurs in nearly mag-
netic amorphous systems. Although the transport properties of nearly magnetic
amorphous systems are widely studied, very little is known about the anomalous
resistivity behaviour that occurs in these systems. The first and only obscrva-
tion of this anomalous effect was seen recently by Strom-Olsen and co-workers [12],
in the amorphous system, Fe,Zr,_, taking seven alloys from FessZrs; thiough
Feyy 521575, which are on either side of the ferremagnetic transition [13] (see Figure
1.1). The anomalous effect was attributed to the presence of spin fluctuations. This
phenomenon has been observed in the temperature dependence of the electrical re-
sistivity of crystalline magnetic metals which have been studied for many years . In
many instances, the resistivity is found to become nearly temperature independent
at high temperatures compared to a characteristic temperature. As the tempera-
ture is decreased below the characteristic temperature, the resistivity is observed to
decrease monotonically. At the lowest temperatures, the resistivity becomes piopot-
tional to T'2. For instance in 1964, Coles [14] discovered the remarkable temperatuie

dependence of the resistivity of dilute RhFe alloys, containing 0.5 atomic% of Fe. in
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Figure 1.1: Magnetic phase diagram of Fe-Zr metallic glasses [13]



which after a very rapid linear increase with temperature, p tends to flatten out into
the shape of a knee at around 10K. Later, in 1968, Lederer and Mills [15] explained
this type of behaviour, which was also found in many other transit.ion metal allovs
containing small amounts of magnetic (or nearly magnetic) impurities. as due to the

scattering of conduction electrons from localized spin fluctuations.

The theories of spin fluctuations, have been demonstrated in a wide variety
of nearly magnetic crystalline systems. The two band spin fluctuation model sug-
gested by Kaiser and Doniach [16] appears applicable for the resistivities of the
crystalline dilute PdNi alloys [17] and Rh-Ru-Fe alloys [18]. However, the mea-
surements of Pauli susceptibility enhancement for Ir-Fe and Rh-Fe, {19], showed
some disagreement with the spin fluctuation model suggested by Kaiser and Do-
niach, which predicts a large temperature dependence when the enhancement facto:
is large; whereas the experimental results in crystalline systems like Ir-Fe [20], seem
to be in agreement with the one band model of Rivier and Zlatic [21]. Hence, fui-
ther study of theoretical models in correspondance with experiments is required for

quantitative understanding of the exerimental results.

The alloys studied in this thesis, were prepared by rapid quenching from the
liquid state. The amorphous alloys prepared by this technique, are known as metallic
glasses. Superconductivity in such metallic glasses was first reported in 1975 {22]. At
present, a large number of metallic glasses are known to exhibit superconductivity
and all of them are stable at room temperature. The most interesting feature, in all

cases was that the transition temperatures of these glasses were found to be higher



than those of the corresponding bulk crystalline alloys. So far, not much work is done
to incorporate spin fluctuations in understanding of superconductivity in metallic
glasses. In order to have a quantitatively accurate calculation of superconducting
transition temparature, it is necessary to include the influence of spin fluctuations.
The behaviour of the Zr based metallic glasses illustrates very clearly the influence
of spin fluctuations on superconductivity. This is directly evident from the data
of [23]. At this point, it is important to look for independent evidence of spin
fluctuations in these alloys perhaps via the field and temperature dependence of
the resistivity. In our research, we analyse the effect of spin fluctuations on the
temperature dependent resistivities of nearly magnetic metallic glass systems and

carry out a critical evaluation of the one and two band theories.

Also, so far direct observations of the effects of spin fluctuations on the elec-
trical resistivity of ternary metallic glasses has not been reported. In this thesis, we
have analysed the effects of spin fluctuations in the resistivities of ternary metallic
glass system Fe,Ni;_.Zr;. We examined the resistivites of these alloys in the tem-
perature range from 4.2K to 80K. This is an ideal system to test spin fluctuation
effects, since the sizes of Fe and Ni atoms are identical and the glassy alloys have
similar structures. Thus the structure dependent contribution to the resistivity,
psir(T) is assumed to be identical for all the alloys in the system. And since the
binary NiZr, is farthest away from the magnetic transition, spin fluctuation effects
are negligible, as shown by Batalla et al. [13]. On the other hand, in FeZr,, which

is closest to the magnetic transition composition, FezzZre3 [13], the contribution to

10



the temperature dependent resistivity from spin fluctuations p,s(T') is expected to
be maximum. The temperature dependent resistivity of an alloy in this series can

be written as:
P(T) = putr(T) + pus(T) (1.1)
For NiZry, pss(T) =0
PVI(T) = () (12)
Since, the resistivity due to the structure is assumed to be the same for all alloys in

the series, p(T) of an alloy can now be written as:
pHH(T) = pNE(T) + pug () (13)

Thus by subtracting off the resistivity of NiZry, we can obtain directly the spin
fluctuation resistivity, p,s(T) for each alloy. The spin fluctuation resistivity obtained
in this way is expected to be more accurate than that obtained by the procedure
used in the previous experiments. For instance, in the work of Strom-Olsen and co-
workers [12] on the binary Fe.Zr;.., two approximations were made. First, the spin
fluctuation effects in FeggZrs, were assumed to be negligible. But, from the data
of 13}, it is clear that one can not neglect the spin fluctuation effect in FezZry;.
The second approximation is that a simple subtraction of p*"*¥ from pF¢2#27 would
give p,2!°v. The variation of Zr content in the alloys, however, means that p,,,(T)
is composition dependent. From the data of [24], the difference in p,,(T') between
Fey 521575 and FepZrqs, in the region of the resistivity anomaly, is estimated to
be of the same order as p,(T). In the present study, the selection of the alloy series

eliminates the need for these approximations.

11



D e e o e e L V1

R

For superconducting alloys, in addition to the terms in equation 1.1, there will
be another contribution from the superconducting fluctuations as mentioned earlier,
which varies with the superconducting transition temperature. This contribution
can be isolated, since the temperature dependence of the superconducting fluctua-
tion resistivity is known. In addition, for all the alloys, at very low temperatures, the
quantum corrections to the resistivity has to be accounted for. This procedure is also
straightforward as the temperature dependence (p & —/T) is well established. The
spin fluctuation resistivity can therefore be obtained directly and analyzed quanti-
tatively to test various existing theories. Moreover, with our procedure, the critical
or spin fluctuation temperature, T,;, as well as the temperature dependence of p;

can be determined as a function of composition.

The thesis is organized in the following way: In the next chapter, an introduc-
tion to the theory of spin fluctuations suggested by Kaiser and Doniach is given and
a brief introduction of the theory proposed by Rivier and Zlatic is also given. In the
3rd chapter the different experimental techniques used in this work are described.
In the 4th chapter, the experimental results for the fourteen alloys are presented

and discussed in the light of the above theories.
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Chapter 2

Theoretical Background

It has been reported by many researchers e.g. [14], [25] that the resistivities of
nearly ferromagnetic crystalline materials show an unusual behaviour with respect
to temperature. In these crystalline systems such as RhFe, PdNi, IrFe etc. the
resistivity due to magnetic impurities, shows a large decrease as the temperature
decreases. Several authors [15], [16], [21], [26] have suggested models that attribute
this behaviour to scattering of conduction electrons from localized spin fluctuations.
Similar behaviour was seen for the first time in the Fe-Zr amorphous system [12]. To
explain this anomalous behaviour in the amorphous system studied in this thesis,
we will use a simple model of spin fluctuations suggested by Kaiser and Doniach

[16] as well as the the one band model of Rivier and Zlatic [21].

13



2.1 Uniform And Localized Spin Fluctuations

Spin fluctuations in a ferromagnetic or nearly ferromagnetic metal can be explained
as follows: In a ferromagnetic metal, spin fluctuations occur above its Curie point.
We can think of these fluctuations as extensive regions in the metal in which the
‘d’ electrons are all polarized. This polarization in one region decays and appears
spontaneously in other regions. Also, the interaction between ‘d’ electrons induce
transient parallel spin alignment over those microscopic regions of the crystal and
hence their magnetic susceptibility is enhanced relative to the Pauli susceptibility of
a non-interacting electron gas. These fluctuations can also be expected to occur in
nearly ferromagnetic metals. Spin fluctuations in a metal which is nearly ferromag-
netic but still paramagnetic are sometimes referred to as “paramagnons”. These are
analogous to the density fluctuations in a fluid at temperatures close to but above

the critical point of the fluid.

When dilute concentrations of ferromagnetic impurities are added to these
systems, the spin fluctuations are enhanced in the vicinity of the impurity forming

“local spin fluctuations”, (LSF).

Spin fluctuation models mainly fall into two catogories: namely one band and
two band models. The two band model of spin fluctuations proposed by Lederer and
Mills [15], assumes that the heavy ‘d’ electrons provide the principal contribution to
the magnetic properties of the metal and the lighter electrons provide the principal

contribution to the conductivity. In this model it is shown that the time dependent

14



fluctuations of the magnetization at the site of a nearly magnetic transition metal
impurity produce scattering of conduction electrons. This leads to a resistivity

varying as T2 at very low temperatures.

Kaiser and Doniach [16] extended the calculation of Lederer and Mills to higher
temperatures. In this theory, the spin fluctuation resistivity varies as T2 at suffi-
ciently low temperatures, and slowly changes to T at temperatures of the order of
0.25 T,s, where T,; is the spin fluctuation temperature, and kgT,; is the en.ergy of
the peak in the localized spin fluctuation spectrum. If T,; is temperature dependent,
then the model predicts a deviation from the linearity at higher temperatures due to
the reduction of the enhanced susceptibility. It is reported by many researchers, that

the changes in T,; are in fact consistent with changes in susceptibility enhancement.

In the one band model developed by Rivier and Zlatic [21], the difference in
character between the electrons is neglected. The resistiviy behaviour predicted by
this model, is qualitatively similar to that of the above two band models, i.e. both
models predict T? and T behaviour of the spin fluctuation resistivity, but the main
difference being the prediction of the high temperature fall-off of p,s. Both models
are appropriate when both impurity and host components are transition metals
with similar electronic structure. In these systems, no localized virtual bound state
is formed at the impurity and hence residual resistivity is relatively small. In other
words, interference between potential scattering and spin fluctuation scattering is
reglected in these models. These models, therefore, are appropriate for nearly-

magnetic 3d impurities in 4d and 5d hosts from the same or nearby columns in the

15



periodic table. Thus, the temperature dependence of the resistivities of systems like
Fe-Ni-Zr studied in this thesis, can be understood in terms of the strong localized

spin fluctuations at the iron sites.

In the following sections we discuss the details of Kasier and Doniach'’s theory

and present the model of Rivier and Zlatic.

2.2 Kaiser and Doniach Model

The scattering mechanism in most of the transitions metals can be understood by
the two-band model of Mills and Lederer [27]. Kaiser and Doniach [16] used this
model] while taking each band as spherical. So, the parameters of the LSF (lo-
calized spin fluctuations) model are then assumed to be appropriate averages over
the Fermi surfaces. When a dilute concentration of the transition metal impurities
having similar electronic structure is added, the two band model is still assumed to
be applicable but the main difference is that the d-band fluctuations are enhanced
in the impurity cell. In this model, the mechanism by which the spin fluctuations
affect the transport properties of the system is described by scattering of conduction
electrons via the s-d exchange interaction, J. This scattering gives rise to a temper-
ature dependent magnetic scattering component and is calculated using the Born
approximation. The Coulomb repulsion, between the opposite spin electrons which
is responsible for spin fluctuations, favours parallel alignment of the spin. These

interactions cause enhancement of the susceptibility of a uniform electron band by

16




a factor

1
1-Uxo

ap = (2.1)

where x; is the susceptibility of the non interacting electron gas, and U is the intra-
atomic exchange interaction. ag evaluated at absolute zero is referred to as the
Stoner enhancement factor. This enhancement clearly has important implications

for the spin fluctuations in the metal since it profoundly affects the generalized

susceptibility.

For dilute alloys containing impurities which are more nearly magnetic than
the host, Lederer and Mills [15] derived the generalised susceptibility in the absence

of a non-magnetic scattering potential

CoUX(§w)x(d',w)
1-6Ux(w)

Xallou(é" Jw) = X(q‘aw)‘sk',);' + (2.2)

Where C = impurity concentration, éU= the increase in intra-atomic exchange

interaction in the impurity cell, ¥(w) is the host susceptability x(§,w) averaged over

the wave vector,

) = 5 Lx(@w) 2.3)

g

The corresponding spectral density can be obtained by taking the imaginary part

of the above equation, i.e.

A(q‘aw) = 2]mXalloy(i,€,w) (24)

17



_ S X (¢, w)
= 2Imyx(q,w)+2C8U Im--——-——1 R (2.5)

The second term is the spectral density of the localized spin fluctuations due to the
impurities.

When the susceptibility enhancement at the impurity is much larger than that
in the host, the specral density of the LSF, A(w), takes the universal shape [16].

_ ahw
= h’w’ + szTnjz

A(w) (2.6)

Where T, is the spin fluctuation temperature and the quantity ‘a’ is proportional

to the enhancement factor for localized spin fluctuations.

Assuming that the conductivity arises from a single s-band, the electrical re-
sistivity produced by inelastic collisicns of conduction electrons with d-electron spin
fluctuations can be calculated by the standard variational procedure applied to the

Boltzmann equation as [16]:

p__h /°° dwwA(w)
po ksT Jo (et —1)(1 —e-Ph)

(2.7)

By using the spectral density given by the equation (2.6), the analytical ex-

pression for the spin fluctuation resistivity becomes [28}:

_A 1 Ty Ty
= + 41rT¢ 1+ 2ﬂ,) (2.8)

Where %ﬁ- is the normalized resistivity due to localized spin fluctuations and

¥/(z) is the trigamma function. The equation (2.8) is plotted in Figure 2.1. Now,

18
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from this equation we can obtain expressions for p,; in the low and high temperature

limits. From equation (2.8), when T — 0,

. w2 T 2
. f;{ ~ () (2.9)

This is the low temperature behaviour found by Lederer and Mills [15] and also by

Schindler and Rice (29]. When T — oo,

(5m) -5 (2.10)

Psf :
T' f 2

-—-—~'U

P

ol 2

As we can see, there is a clear analogy between the universal curve for spin fluc-
tuation resistivity obtained by Kaiser and Doniach, and the “Block-Gruneisen” ex-
pression for resistivity due to electron-phonon scattering, which also shows a linear
T dependence at higher temperatures. This linear dependence on T is explained in
terms of the Bose character of localized paramagnons. The number of thermal exci-
tations is proportional to T. Thus the appearance of a linear law may be expected

as a fairly gencral consequence of a low lying Bose excitation spectrum.

It was proposed that as T increases, the enhancement in the susceptibility
decreases, causing the reduction in the resistivity below the linear law. According

to the random phase approximation calculations, for

pss = TAX (2.12)

Where Ay is the susceptibility enhancement. Effect of the temperature dependence
of local enhancement, a, on p,y, is shown in Figure 2.2 for different enhancement

factors [16].

20
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Thus the two-band model appears capable of accounting, though qualitatively,

for the fall-off in the resistivity below the linear law at higher temperatures.

2.3 Rivier and Zlatic Model

Since in some metals, for example Rh and Ir, d-like electrons are thought to give
a major contribution to the conductivity Rivier and Zlatic [21], [30] and [31] have
suggested another method of calculating the effect of LSF on the transport proper-
ties.

In the model of Rivier and Zlatic [21], they start from an isotropic one-band
Wolff model [25] in which the same electrons are responsible for magnetic properties
and conduc'ivity. Taking the spin fluctuations as confined to the impurity cell and
the scattering as isotropic, the self energy of the d-like conduction electrons due
to scattering by LSF and by a nonmagnetic potential V at the impurity site, was
calculated. The t-matrix and transport properties were evaluated with no limitation
on the strength of the coupling between conduction electrons and LSF. The effective
scattering potential due to the LSF increases with increasing temperature followi.ng
the thermal increase in the number of LSF, causing an increase in the scattering
cross-section. An analytical expression for the resistivity of local spin fluctuations

was obatined as

oty T w4 Tty oy 4 Doty
==l 4G+ o)~ ¥+ 5 ) (213)
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where T is the spin fluctuation temperature. ¥(z) is the digamma function. A is

a normalization constant taken so that p,y = 1 at T = oo.

The spin fluctuation resistivity is again a universal function of T,;. In Figure
2.3, -J- is plotted against the reduced temperature 3%'-12 The resistivity increases
with temperature yielding a curve, surprisingly similar to that given by Kaiser and
Doniach’s two band model. Here the fall off of the resistivity from the linear law
is expected to occur around the spin fluctuation temperature. The temperature
dependence of the resistivity can be divided into four main regions. The resistivity

starts as T'? at very low temperatures, where,

Psy 1 2 T 2
Pot Loy L (2.14)
A =37 \T,
(or)
o 372 T 7
=Tl (2.15)

if the correction due to the Fermi window is included. At temperatures of the order

of 0.9%’,{-, the resistivity becomes linear, taking the value,

Py _ 119 L
- = 1'12T.f 0.7504 (2.16)

Above the spin fluctuation temperature, the variation is logarithmic, where,

Pof _ T
1 =C + Blog z— 7., (2.17)

Finally when T’ — o0, the spin fluctuation resistivity approaches the unitarity limit
as:

(2.18)
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Figure 2.3: The normalized spin fluctuation resistivity as a function of the reduced

temperature %—1%, from the one band model of [21].
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In other words, we can think of this single band model as having impurity spins
and conduction electrons coupled with an extremely large cou‘pling constant J. The
presence of the large coupling constant between them destroys their separate identi-
ties and implies a single band description of the alloy. For a large coupling constant

J, the resistivity reaches the unitarity limit at high temperatures.

Thus the concave curvature of p,s to the T axis at higher temperature is due
to the characteristic InT dependence for scattering by a magnetic impurity and not
to the temperature dependence of the LSF spectral density as assumed by Kaiser

and Doniach, which is neglected in this model.

The similarity of the resistivity shapes in the one-band and two-band models

indicates the general nature of the LSF resistivity shape.

2.4 Effect Of The Disorder On The Spin Fluctu-

ation Spectrum

Recently, it was reported by Riseborough [32], that in many highly disordered para-
magnetic materials, the spin fluctuation resistivity varies as T# rather than a T2 .
Since the introduction of impurities in a nearly magnetic system causes the impu-
rity scattering to produce a loss of coherence in the spin fluctuation spectrum, he
found that, by varying the impurity concentration, there is a correlation between

the coefficient of the 7' term and the magnitude of the residual resistivity. He used
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a single hybrid band model, where the electron interaction is via a local Coulomb

repulsion, to explain such behaviour.

2.5 Concluding Remarks

Thus both the one band and two band models predict the T and T° dependence
of the spin fluctuation resistivity. In this thesis, we mainly concentrate on this
low temperature regime. We would like to observe the variation of spin fluctuation
temperature with concentration of the alloy. Since, in the system studied here, by
varying the iron concentration in the alloy, we can significantly and directly vary

the contribution of the spin fluctuations to the resistivity.
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Chapter 3

Experimental Methods

In this chapter all the experimental details involved in this work are presented. First,
sample preparation and different stages involved in it are described and then, a brief
description of sample characterizatior is given. Finally, the experimental techniques

for measuring the resistivities and the superconducting transition temperatures are

described.

3.1 Raw Materials

The high purity raw materials needed for the preparation of alloys were purchased
from the following suppliers :

Iron:

Alpha products ( Morton Thiokol products)
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Danvers, MA, 01923, USA.
Purity : 99.99%

Morphology : lump.

Nickel:
Jonhson Matthey Chemicals limited,
Hertfordshire, England.
Purity : 99.999%
Morphology : 5 mm diameter rod.
Zirconium:

Jonnson Matthey Chemicals limited,
Hertfordshire, England.
Purity : 99.95%

Morphology : Crystal bar.

3.2 Preparation Of Samples

Apart from iron, all materials were etched to remove any surface contaminants.
After etching, the materials were immediately immersed in distilled water to stop

any further reaction and were finally cleaned with alcohol.



-t

- >

3.2.1 Arc - Melting

Appropriate amounts of the pure materials were weighed to within 0.005% of the
desired alloy compositions. The appropriate constituents were then arc-melted under
a titanium- gettered argon atmosphere. Fourteen ternary samples were made in the
composition Fe,Nt,_.Zr;, X ranging from 0 to 1 (i.e. x=0, 0.1, 0.15, 0.2, 0.3, 0.33,

0.36, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).

The resulting pellets were about 1.2 - 1.4g. These pellets were remelted several
times under the same conditions to ensure homogeneity. If necessary, the samples
were polished and cleaned with alcohol, between each melting, to remove any oxide
layer. During the last melt, the samples were formed into ellipsoidal buttons. These
buttons were then weighed a second time, and the mass loss in all cases was less

than 0.1% from the original mass of the constituent elements.

3.2.2 Melt - Spinning

The amorphous ribbons were prepared by the melt-spinning technique. The melt-
spinning apparatus is shown in Figure 3.1. This technique allows production of
relatively large quantities of material with relative ease. In this technique, an alloy
pellet is placed in a quartz crucible and is heated by an induction coil powered by
LEPEL High Frequency RF-generator. The molten metal is ejected through the
orifice at the bottom of the crucible onto the surface of a rapidly rotating copper

wheel, which is well polished. The molten jet forms a thin ribbon on the wheel
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Figure 3.1: Schematic diagram of the melt spinning apparatus taken from [33)..
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surface. To avoid oxidation effects, the melt-spinning was carried out under Helium
atmosphere, at a pressure of about 35 kpa and high purity Argon was used for
expulsion of the liquid ( at a pressure of about 100 kpa ). The tangential velocity
of the wheel was kept at 58 + 5m/s throughout. The melt-spinning parameters,
i.e. wheel speed, orifice diameter (0.65 + 0.05mm), and melt temperature were kept
constant for making all the ribbons for all compositions. The resulting ribbons were

typically 2mm wide and 20 - 25 um thick.

Throughout the preparation of the samples, care was taken to avoid oxygen

contamination.

3.3 Sample Characterization

3.3.1 Verification Of The Amorphous Structure

The structural state of the samples was examined by X-ray diffraction using CuK,
radiation (A = 1.54056A). A Nicolet-Stoe, automated powder diffractometer was
used for this purpose. The diffracted beam passes through a graphite monochro-
mator before entering the solid state detector, as shown in the Figure 3.2. For this
particular diffractometer the sample was mounted on a flat piece of glass and was
held in place by double sided sticky tape. The X-ray scans were done in the 26 range
of 30 to 45 degrees, in 0.1 degree increments, and a counting time of 15 seconds at

each position. All samples were judged to be satisfatory based on the absence of
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sharp diffraction peaks. Figure 3.3 shows an X-ray pattern typical of an amorphous
sample. Nearest neighbour distance, NND, was calculated from the angle, 20, at
which the maximum intensity of the reflected beam is observed, using Ehrenfest
relation. It was found that NND was the same for all the compositions with in the
experimental error of 8.10~3A. For x = 0, NND was 3.005A and for x = 1, NND

was 2.990A.

3.3.2 DSC Measurements

Differential Scanning Calorimetry (DSC) was used to determine the crystallization
temperature of the samples. This can be determined from the peak positions of the
crystallization exotherms. Enthalpy change (A H) upon crystallization can be found

by measuring the area under the exothermal peak in the DSC scan.

Figures 3.4 and 3.5 show typical DSC scans of four samples. Crystallization
temperatures for different compositions varied from 665K to 678K at a heating rate

of 10°/min.

3.3.3 Composition And Homogeneity

The composition and homogeneity of the samples were checked by electron-beam
microprobe analysis. The sample which is to be analysed is irradiated with an
electron beam of appropriate energy, which excites the electrons in the inner atomic

shells. The excitations decay emitting X-rays of characteristic wavelength. The
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Figure 3.3: A typical X-ray diffraction pattern of an amorphous Fe-Ni-Zr alloy taken

with CuK, radiation
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intensities of the X-rays are proportional to the concentration of the corresponding
element. The analysis was done at different positions of the ribbon (sample). Listed
in table 3.1 are the nominal and measured compositions for all the samples. The
analysis shows that the samples are homogeneous over the whole length. For all the
alloys, except FeggNigaZr)y, the concentration of each constituent differs by less
than 2% from the expected nominal composition.The accuracy of the instrument is

quoted at 0.2 atomic% for the elements investigated.

3.4 Room Temperature Resistivity Measurements

Electrical resistance at room temperature was measured using a 4-probe dc tech-
nique, on a sample of & 1 metre length with a Keithley #172A multimeter. Care

was taken to make good current and voltage contacts.

The density values of the samples needed to convert resistance to resistivity
were determined using Archimedes’ method with toluene as the liquid medium. The
mass in air (wg,r ) and in toluene (wyiyene) Was measured using a mechanical balance
(Mettler H20T). Toluene was used because of its low sur%ace tension. The density

of the sample is given by

Wair

/Valr - M’toluene

dloluene (3 1 )

dsa.mple = ]
where dsoiyene 15 the density of toluene which is 0.8669g/cm? at 20C.
The density of the samples varies linearly with the Fe content. After deter-

mining the density, the cross-sectional area A of the sumple can be calculated by
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Nominal composition (atomic%) | Detected composition (atomic%)
Fe | Ni Zr
Fess3Zree.r 329( 0 67.1
FeypNizZregr 305 34 66.0
Fege1Nig72766.7 25.7| 6.3 68.0
Fey3aNiy0Zr6s7 2431 99 65.8
FeyxoNi13327¢6.7 20.7 { 13.2 66.15
Fei7N 16727667 17.2 | 16.7 66.1
Fey33Niz0Z766.7 14.0 | 20 66.0
FeysNizy 3Zresr 12.5 | 21.5 66
FeNizz3Zres.7 11.6 | 22.4 66.0
Fey4Nig332re6.7 10.3 | 23.5 66.3
FegNigg7Zre6.7 6.9 |26.8 66.3
FesNiyg3Zregy 5.2 | 28.8 66.0
Fe33NiaogZresr 3.6 |30.4 66.0
Nizz3Zree.r 0 |[33.6 66.3

Table 3.1: Electron-beam microprobe results
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the relation,

m

A= T (3.2)
The room temperature resistivity of the sample is then, given by

RA Rm

where R is the sample resistance, [ is the length of the ribbon, d is the density
and m is the mass of the sample. The error in the resistance measurement was
estimated to be = 0.1 ohm, and that of mass is ém = 10~%g. The error in the

density mmeasurements was estimated to be éd = 0.04g/cm?®.

In Figure 3.6, the composition versus the room temperature resistivity of dif-
ferent samples is plotted. Within these errors, it can be clearly seen that the room

temperature resistivity is independent of the composition, x.

Finally, the values shown here are in good agreement on both ends with those

of [24], [34). In table 3.2, densities and room temperature resistivities for all the

alloys are given.
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Figure 3.6: Room temperature resistivity of Fe,Ni;_.Zr; metallic glasses
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Composition d(g/em®) | p (uQ ~ em) £6p
iFleg 6.92 167.7 £1.5
FeogNig312Zr, 6.93 164.8 £1.5
FeogNigaZrg 6.94 169.3 +2.3
FeozNig3Zr, 6.96 166.2 £1.6
FeogNigg4Zr, 6.97 167.1 +£14
FeqsNigsZr, 6.99 169.0 1.4
Feo4NioeZr, 7.00 170.1 +1.6
Feo3eNiggsZrs 7.00 -
Fega3NiperZry 7.01 -
Feo3Nig7Zrg 7.01 175.1 £2.0
FegaNiggZry 7.03 168.9 :l:1.4.
Feo1NipoZr, 7.04 167.9 £1.3
NiZry 7.06 168.2 1.8

Table 3.2: Mass density and room temperature resistivity.
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3.5 Measurements of Temperature Dependence
of Resistivity and Superconducting Transi-

tion Temperature

A sensitive four-terminal a.c resistance bridge designed by Muir, Strom-Olsen,
Cochrane and Kastner [35], [36] was used to measure small changes in the resis-

tance of the sample with temperature.

A detailed circuit diagram of the apparatus is shown in Figure 3.7. The circuit
operates in the following way: Two identical transformers Ty and T, supply equal
currents to both sample and reference loops. Transformer T3 eliminates current
imbalances to first order. Using an ITHACO 391A lock-in amplifier, the difference
between the voltage across the sample and voltage across the inductive voltage di-
vider were measured. A small quadrature signal given by the small difference in
the resistance of the two loops or capacitive coupling across the transformers, was
monitered with a second lock-in amplifier and adjusted to zero during the measure-

ments.

The output voltage of the lock-in amplifier was calibrated by changing the
reference voltage across the inductive voltage divider, which is proportional to a
calibrated resistance change AR, and reading the corresponding output voltage

change AV, at a constant temperature. The sample resistance is given by

AR
Raample = Rreference + Z_";Vlock—l'n (34)
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Figure 3.7: Schematic diagram of the a.c resistance bridge and data aquisition sys-

tem. Inset- circuit diagram of the a.c resistance bridge, taken from [36]
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where Ryeference i8 the reference resistance and ﬁ% is the calibration constant.
Viock—uwn 15 the lock-in amplifier output voltage which is read by a Keithley #175A

digital multimeter.

The noise on the output voltage of the bridge was reduced using a time constant
of 1 to 3 seconds. With this technique a change of 10~® in a 1 ohm resistor can be

easily detected.

The sample holder used in these measurements is shown in the Figure 3.8.
The copper sample holder block is held in position by four thin walled stainless steel
tubes, which contain copper leads for the necessary electrical connections. Two
samples of 2 cm long ribbons were mounted, one on each side of the mylar coated
copper block using G. E. Varnish. The thin mylar film acts as an electrical insulator
between sample and the copper block. Voltage and current contacts were made
with conductive silver paint. Care was taken to make very good contacts to reduce
noise. A calibrated Carbon glass resistance thermometer (Lake Shore Cryotronics
CGR - 1 - 500) was used to measure the temperature of the sample. Accuracy of
the thermometer varies from 0.1% at 1.5K to :}:0.05"/;) at 300K. Conductance of the
thermometer was monitored by a conductance bridge (SHE Corporation model PCB
843 - 8). The temperature dependence of the resistance was measured from 4.2K
to 80K. The sample chamber was first evacuated to a pressure of approximately 50
millibars. Then the sample temperature was increased by controlling the current in
the heater wire wrapped around the copper block as shown in Figure 3.8. In these

measurements, the changes in the sample resistance and its temperature were read
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Figure 3.8: Diagram of the resistance probe sample holder used for resistivity and
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by two Keithley #175A digital multimeters. All the data were stored in an IBM

personal computer and were transferred to a SUN work station for further analysis.

For the measurements of the superconducting transition temperatures, the
sample was first immersed in liquid He. Then, by reducing the He pressure in the
sample chamber, the temperature of the bath was lowered from 4.2K to 1.5K, and

the changes in the sample resistance were monitored throughout.
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Chapter 4

Results and Discussion

In the first section the experimental measurements of the temperature dependent
resistivities for Fe-Ni-Zr metallic glasses (Fe,Ni,.-Zr;, x=0 to 1) are presented
and discussed. In the second and third sections, we review the quantum corrections
to the conductivity in metallic glasses at low temperatures, and the contribution of
superconducting fluctuations to the resistivity respectively. Finally we show how we
extract the spin fluctuation resistivity and the results are compared to the predic-

tions of the Kaiser and Doniach and Rivier and Zlatic theories of spin fluctuations.
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4.1 Temperature Dependent Resistivities of Fe-

Ni-Zr Metallic Glasses

The alloys studied are Fe,Ni,_,Zry, X ranging from 0 to 1. The resistivities of the
alloys are plotted in Figure 4.1 relative to their value at 4.2K, over the temperature
range 4.2K to 80K. In the electrical resistivities of these glasses two striking features
are observed :

1. The magnitude of the room temperature resistivity within experimental uncer-
tainities, is independent of the Fe concentration as shown in Figure 3.6.

2. The temperature dependence of the resistivity, however, is a strong function of
the Fe concentration.(see Figure 4.1)

Upon the addition of Fe, a striking positive anomaly emerges leading to a maximum
in p(T) before the curve resumes a monotonic decrease with temperature. The mag-
nitude of the anomaly increases with increasing Fe content, and becomes maximumn
for FeZr, alloy. This is similar to the behaviour seen in some systems in crystalline
and in amorphous alloys, mentioned earlier in chapter(2) and can be understood by

the scattering of conduction electrons from spin fluctuations.

There are basically two main contributions to the temperature dependent re-
sistivities of these alloys. One is the resistivity component due to the disorder of
the alloy. This contribution is assumed to be the same for all the alloys in the scries
(It is shown in chapter 3 that the resistivity, at room temperature and NND arc

independent of composition). The second contribution to the temperature depen-
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Figure 4.1: Resistivities of F'e,Ni;_.Zr, metallic glasses as a function of tempera-

ture. Some of the alloys are not shown here to avoid overlapping of the curves .
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dent resistivity comes from the spin fluctuations discussed in chapter 2, and this
component is different for different alloys in the series: it increases with increas-
ing Fe content as the system approaches the magnetic transition. For NiZr; the
temperature dependent resistivity comes from the disorder scattering only, since its
composition is farthest away from the magnetic transition; i.e. the contribution
from spin fluctuations is zero. As mentioned in the introduction, the behaviour of
NiZr, is representative of the resistivity due to disorder, therefore the resistivity
contribution from the spin fluctuations in the ternary alloys may be obtained, in

principle, by simply subtracting off the resistivity of NiZr, .

In addition to these contributions, at low temperatures, the quantum correc-
tions to the resistivity have to be taken care of. Some of the alloys, however, are
also superconducting at low temperatures . So, t, obtain the contribution to the
resistivity from spin fluctuations at low temperatures, we first have to subtract the
resistivity component due to superconducting fluctuations. Since their supercon-
ducting transition temperatures are low, these corrections due to superconductivity
and quantum corrections are necessary only below 15K. The resistivity components
due to spin fluctuations are then obtained by subtracting the resistivity of NiZr,.

In this way p,s, can be analysed in the entire temperature range from 4K to 80K by

fitting the experimental curves, to the expression of Kaiser and Doniach or Rivier -

and Zlatic.
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4.2 Quantum Corrections to the Conductivity

Recent experiments have shown that the electrical conductivity, o, of a large number
of metallic glasses varies as —/T at very low temperatures [37]. When the temper-
ature is increased this behaviour slowly changes to T. From the lowest temperatures
available to about 20K, this v/T dependance is observed in different metallic glass

systems.

This behaviour is indicative of quantum effects, implying that corrections to
the usual semiclassical treatment of conduct:on in metallic glasses are necessary.
There are mainly two sources of quantum corrections: weak localization [2] and
enhanced electron-electron interaction [3]. Both of these ccrrections are important
when the electronic mean free path becomes short so that electron propagation

between scattering events is no longer free electron like but diffusive [2).

The weak localization takes account of the effects resulting from the significant
interference between scattered partial waves. In disordered conductors, at low tem-
peratures, the coherent interference between the conduction electron wave functions
scattered around complementary paths by the defects of the system, causes weak
localization effect. The elastic scattering time of the conduction electrons at low
temperatures can exceed the inelastic scatteriné time by several orders of magni-
tude. As a result, a conduction electron can be scattered by the impurities from
one state to another state without loosing its phase coherence. In these conditions,

a coherent superposition of the scattered electron waves occurs which results in an
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enhanced probability of back-scattering of the electron wave [Bergman] [5], which

in turn causes an increase in the resistivity of the conductor.

The correction to the resistivity arising from the weak localization is given by

[38):

Ap(T) € 1 1 \/ 1
- Y 4.1
p*(4.2) 21:271[3 D7y + 4Dr, 4D'r,] (4.1)
where D = diffusion constant, 7,0 = spin-orbit scattering time, and 7, = electron-

phonon scattering time. Approximately one finds due to weak localization [39],

Ap x -T (4.2)

The second phenomenon, the interaction effect is a consequence of an in-
crease in the strength of the electron-electron interaction when electrons diffuse fast
through the alloys, which is a direct consequence of the disorder. Due to the diflu-
sive motion of the electrons, the screening of the Coulomb potential of the electron
by other electrons is reduced, causing a strong interaction between the conduction
electrons. In this case the resistivity of the conductor is increased, similar to weak
localization. This phenomenon is sensitive to inelastic, spin-orbit, spin scattering

and to the presence of magnetic fields.

The correction to the resistivity arising from the enhanced electron-electron

interaction in the case of superconductors, is given by (3] and [37]:




-

Bp _ _0915epuard 3, ][kgT }
Paz 4r?h '3 2 log !T

(4.3)

where F* = F — A\, F = screening parameter, A = electron-phonon mass enhance-
ment parameter, T, = superconducting transition temperature and D is the diffusion
constant. In the case of non-superconductors, T, is replaced by the Fermi tempera-

ture, TF.

At low temperatures, p ox —+/T seen in many amorphous metals, suggests
that the electron-electron interaction is dominant in determining the low tempera-
ture behaviour of the resistivity. Indecd in Y-Al [40], Strom Olsen and coworkers
found that, below 4K the contribution from weak localization is negligible and the
temperature dependence from the enhanced electron-electron interaction contribu-
tion is dominant. Similar results were obtained in many other metallic glasses [6],
[41) and [42]). Figure 4.2 shows the low temperature resistivity of CazoAlzg (taken

from [6]).

In our alloy series, Fegg/Nig4Zr; can be taken as the representative of the
quantum interference effects at low temperatures, since, for this alloy, the super-
conducting transition temperature is far below 0.5K and it is far away from the
magnetic transition composition. Its resistivity varies as —Av/T + B from 7K down

to 4K, which can be seen in Figure 4.3.
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Figure 4.2: Low temperature resistivity of CazAls, solid line is the fit according

to equation 4.3.
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root of the temperature.

99



4.3 Resistivity Component due to Superconduct-

ing Fluctuations

Since some of the alloys in this series are superconducting, the superconducting
transition temperatures (7.) of the different samples were measured. The super-
conducting transitions for different alioys are shown in Figure 4.4. The width of
the transition as indicated by the difference between the temperatures at wbich the
resistance was 10% and 90% of its normal state value, for different alloys are given in
table 4.1. The width of the transition in all the alloys is less than 30 mK, indicating
a very sharp transition, and is indicative of a homogeneous alloy. Figure 4.5 shows
the variation of T, with the Fe content in the alloys. From the figure it is very clear

that T, decreases with increasing Fe content.

In these disordered superconductors, in particular for the Ni- rich alloys, the
contribution to the temperature dependent resistivity arising from the superconduct-
ing fluctuations above the transition temperature must be accounted for. In contrast
to ordered superconductors, superconducting fluctuations, i.e. Cooper pairs with a
small correlation length and a short life time, can exist in disordered supercon-
ductors far above the transition temperature T.. Tuere are basically two types of
contributions to the resistivity, one from the current carried by the superconducting
fluctuations known as the Aslamasov - Larkin term [8] and another from the scat-
tering of normal electrons by the superconducting fluctuations, which is known as

the Maki - Thomson term [8].
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Composition T. (K) | Transition width (mK)
Feo4NipgZry 19 26
FegasNiggsZra | 2.096 9
FegasNiggrZry | 2.213 15
FegaNig72r, 2.32 14
Feo1NigoZrg 2.76 9
NiZr, 28 6

Table 4.1: Superconducting transition temperatures and transition widths.

58



To(K)
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metallic glasses
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Ami and Maki [8] have shown that the Aslamasov - Larkin contribution de-
creases rapidly above the transition temperature. This is in agreement with the
experimental results of Johnson and coworkers 10}, who also reported that it is
negligible above 1.3T,. Johnson et al. showed that the theoretical predictions
of the Aslamasov-Larkin theory provide a good quantitative account of the data
near T,.. The apparent breakdown of the theory can be interpreted as resulting from
the breakdown of the Ginzberg Landau free-energy function. In contrast, the Maki-
Thomson term persists to well above T,.. As shown by Ami and Maki, it consists of
two parts: one with a large magnetic field and small temperature dependance; and

a second with a small field and drastic temperature dependance.

Johnson et.al. [10] found in amorphous metallic systems such as Lazs AuysCuyo
and MogoRezo, that this temperature dependent fluctuation conductivity decays as

ezp(—7v1). Wherey/? is the order parameter of the superconducting transition,

= — (4.4)
and v is a measure of the free energy difference between the normal and supercon-
ducting state. They reported that the quantity, 4, is constant in all of the their

samples studied (i.e. ¥ =4.5) . A plot of log(é;"o“) against v/t of the experimental

result is reproduced here in Figure 4.6.

Fe-Ni-Zr metallic glasses studied in this thesis, differ in their fluctuation in-
duced conductivity because of their-different transition temperatures. But, since
their physical parameters are approximately the same, a similar result is expected
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i.e. a constant value for 4 for all the alloys in this series.

We bave isolated the superconducting fluctuation related conductivity of the
superconducting alloys in this series by the following procedure. We fitted the
resistance curve of NiZr; (which has zero spin fluctuation resistivity) in Figure 4.7
to a background function —Av/T + B, describing the quantum corrections discussed
in section 2, and extrapolated this background to lower temperatures, i.e. down
to 4 K. By subtracting this background from the measured resistance change, we
obtained the superconducting fluctuation resistivity. We find that in NiZr;, as
expected, the superconducting fluctuation resistivity does decay exponentially with

V1 as shown in the Figure 4.8.

B g (4.5)

p(4.2)
From the fit to the data, the value of the decay constant 4 is found to be 3.4.
Which, as discussed above, is taken to be the same for all the other superconducting
alloys. The superconducting related resistivity calculated for each of the alloys from

equation (4.6), are subtracted from their measured resistivities.

After the corrections due to superconductivity, the resistivities of these alloys
varied as —AvVT + B from the lowest available temperature till around 14K. In
Figure 4.9, the resistivities of Fe sNisZry and Fe 4NigZr, are plotted against vT
in the temperature range 4K to 14K. We found that the variation of the coefficient of
VT, A, with the Fe concentration (x) in the alloy, can be expressed by the following

simple empirical relation:
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Figure 4.7: The resistivity of NiZr, as a function of temperature
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Figure 4.8: Normalized superconducting fluctuation resistivity of NiZr; as a func-
tion of temperature, the points are the experimental data and the solid line is a fit

C as described in the text [Eq. 4.5)
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A =0.0018(1 — z)

where x is the Fe content. This is consistent with equation (4.3), since T, decreases

with increasing Fe content.

4.4 Spin Fluctuation Resistivity

After the superconducting corrections, the large contribution due to spin fluctuations

(Pss) can finally be obtained for all compositions by subtracting off the resistivity

of Ning.

Using this procedure, we obtained p,; vs T curves, shown in Figure 4.10. The
remarkable similarity of the shape of the curves strongly suggests a common origin
for p,s. These p,; vs T curves confirm the overall shape predicted for the local spin
fluctuation resistivity component (given by Kaiser and Doniach as well as by Rivier
and Zlatic [16], [21]), which varies as T? at low temperatures and changing to a
linear dependence as T increases. Its size is comparable to that seen before in Fe-Zr

system and in other crystalline systems.

Thus the unusual behaviour of resistivities of these alloys are due to the re-
sistivity contribution from the spin fluctuations i.e. the scattering of conduction
electrons from the d band spin fluctuations. Kaiser and Doniach theory accounts for
the experimental data on a wide variety of nearly magnetic systems including those

with localized spin fluctuations as well as systems with uniform spin fluctuations.
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Figure 4.10: The spin fluctuation resistivity vs.temperature of Fe_Ni,_ =41, metallic
glasses. As mentioned in section 3.3.3, for x = 0.8, the Zr content was higher than

the nominal content
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We have seen from Figure 4.10 that the characteristics of the measured spin
fluctuation resistivity agree qualitatively with the predictions of Kaiser and Do-
niach’s theory. We can now compare experimental data and theory quantitatively.
In dving so we will determine the unknown parameters p,,, T, and po. From the data
shown in Figure 4.10, we find that spin fluctuation resistivity follows a T? behaviour
up to 20 K. We, therefore, fit the data to the Kaiser and Doniach’s expression which,
at the low temperature limit (T — 0) can be written as:

2
Psg = %i[-g—j] Ps0 = Po (4.6)
Psoy Tsy and py are the fitting parameters. p,, is the scaling factor, and po is a
small constant, needed because p,s(T) is, by our definition, zero at 4.2K rather than
OK. Now if we take the higher temperatures, i.e. above 20K,l we can see the linear
behaviour of the spin fluctuation resistivity. We were also able to fit the linear
portion of the spin fluctuation resistivity above 20K, to the high temperature limit

of p,s; given by Kaiser and Doniach.
H=om-s (4.7)

The data are fitted by a multiparameter least-squares fitting routine. First, we start
fitting with some initial values for p,,,T,s and py and let them vary according to
the fitting routine. The process stops when the deviation between the data and the
theoretical expression is at a minimum. p,, obtained from the linear fit was found to
be a composition independent quantity. The values of p,, for different compositions,

had a scatter of less than 10%, whereas T,; increases with decreasing Fe content as
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expected. To obtain an internally consistent fit, p,, was fixed to its average value and
the analysis repeated with T,; being the main adjustable parameter. Our analysis

therefore yields a well defined value of spin fluctuation temperature T};.

Figure 4.11 shows the low temperature fitting of the data for different com-
positions. For the compositions FeZr, and FegoNig;Zr,, we could not see the T?
behaviour down to 4 K. This is because, the spin fluctuation temperatures of these
alloys are very low, so that 72 law occurs below the temperature range observed
here. The theory predicts that the temperature dependence changes gradually from
T? to T at temperatures of the order of 0.25T,;. For the alloys studied here, the
power law of spin fluctuation resistivity at the lowest temperatures is found to be
consistent with 2, but not 3 as suggested by Riseborough [32]. Within the error, the
values of T, for different compositions obtained from the T fit are consistent with

those calculated from the T2 fit.

We finally fitted the data in the entire temperature range from 4K to 80K, to
the full analytical expression given by Kaiser and Doniach for the spin fluctuation
resistivity, equation (2.8). Fig 4.12 shows the experimental data of spin fluctuation
resistivity and the solid line is the fit as explained above. The resulting spin fluc-
tuation temperature T,; increases with the decreasing Fe content, i.e. as we move

away from the magnetic transition. T,; is plotted against the composition in Fig

4.13.

It may be seen that after the corrections of the superconductivity, the agree-

ment between the theory and the experiment is excellent up to the temperature
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Figure 4.11: The low temperature spin fluctuation resistivity of five Fe,Ni;_.Zr;

alloys fitted to the expression of Kaiser and Doniach [Eq. (4.6)]
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40 K. Moreover it is equally good for all the compositions. Therefore we conclude
that the spin fluctuation theory suggested by Kaiser and Doniach for the crystalline

systems, describes the observed anomaly well in the amorphous systems also , for

temperatures < Ty.

However, the theory of Kaiser and Doniach predicts a fall-off in resistivity
below the linear law at higher temperatures, caused by the temperature dependence
of the spectral density. This fall-off increases with the increasing local enhancement
a. For the alloys studied here, the local enhancement is very small i.e. of order
7 [13], and is not expected to show a marked difference from the linear law. Our
experimental results, however, showed significant deviation below the linear law at

higher temperatures, which is not expected according to the theory.

The predictions that the resistivity due to the scattering of conduction elec-
trons by spin fluctuations, increases as T* and then as T, by Kaiser and Doniach,
had been confirmed by many other researchers, for example, Rivier and Zlatic [21].

Rusby [43] and Laborde and Radhakrishna [44].

However, according to Rivier and Zlatic, the concave nature of the spin fluc-
tuation resistivity at higher temperatures, comes naturally from the theory. The
characteristic fall-off marks the onset of the logarithmic regime. The spin {luctu-
ation temperatures obtained with Rivier and Zlatic"s model, are plotted in Figuie
4.13 along with those obtained by Kaiser and Doniach’s model for each composition.
The spin fluctuation temperatures for different alloys obtained from both one band

and two band models are given in table 4.2. Values of Ty calculated from Kaiser and
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c Doniach model are about 30 % smaller than those of the Rivier and Zlatic model.
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Table 4.2 Spin fluctuation temperatures obtained from two band and one band

models.

Composition T,; (K)
Two band Theory | One band Theory

FeZr, 10 15
FeggNigyZry 11 16.5
FeggNigoZr, 30 46.4
Feo,7& 103213 29 43.6
FeggNigqZr, 34 51
FeosNigsZr, 57 86.5
Feg4NiggZry 64 96
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Chapter 5

Conclusions

We have presented the measurements of temperature dependent resistivities of four-
teen different Fe-Ni-Zr metallic glasses. The major contribution to the resistivity
in amorphous alloys, i.e. the contribution due to its structure, is constant across
the alloy series studied here. Hence, the procedure used in this work to extract the
spin fluctuation resistivity is straightforward and allows, for the first time, qualita-
tive and quantitative analysis of the effects of spin fluctuations on the resistivity in
amorphous alloys. Our analysis confirm the qualitative results of preliminary work
done in this type of nearly magnetic alloys [12]. A complete description of the ex-
perimental data at low temperature is given in terms of superconductivity, quantum
corrections and spin fluctuation contributions. Our principal success is the verifica-

tion of the validity of the one band and two band models of spin fluctuations.

The superconducting fluctuation resistivity in the alloys of Fe,Ni;_Zr; sys-
tem, was isolated. n these alloys, the superconducting fluctuation resistivity is
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found to decay as exp(—vvt) with the reduced temperature t = T—;CZE, in agreement
with the experimental results of Johnson et al. [10}, v is 3.4 for our alloys. For alloys
containing less than 20 atomic % Fe, the quantum corrections to the resistivity have

to be taken into account below 14K. In this region, the resistivity varies as —AVT.

The value of A was found to increase with decreasing Fe content in the samples.

The procedure used here to extract the spin fiuctuatior. resistivity is more
accurate than the methods used in the previous experiments [e.g. {12}, [26])]. The
spin fluctuation resistivity varies as T2 at lowest temperatures and as T at higher
temperatures, which is consistent with the two band model of Kaiser and Doniach
and the one model suggestad by Rivier and Zlatic {21]. The significant f{all-off
of the resistivity at further higher temperatures, below the linear law, is not as
predicted by Kaiser and Doniach. On the other hand the one band model of Rivier
and Zlatic seems to explain this behaviour well. The spin fluctuation temperature
calculated from the above models, is minimum when the system is close to the

magnetic transition and increases as the system moves away from the magnetic

transition.

Suggestions for the further work are: To analyse the effect of external magnctic
field on the spin fluctuation resistivity and extending the resistivity ineasurements up
to room temperature to study the high temperature plateau of the spin fluctuation
resistivity. The effects of spin fluctuations on other transport properties such as

thermopower and Hall effect should also be investigated.
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