An Environment for Programming a
PUMA 260 Work Cell

Eric McConney

March 14, 1986

a

N Hi

Computer Vision and Robotics Laboratory
Department of ‘Electrical Engineering

McGill University |

-
- £ -

y

A thesis submitted to the FScuIty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Enginee_ring.

<

©1986 by Eric McConney
Postal Address: 3480 University Street. Montréal, Québec. Canada H3A 2A7

/

et

hpgm

o

[y -e

Y

An Environment for Programming a
‘» PUMA 260 Work Cell '

- o »

" Eric McConney

.

et

Abst.ract)

L3 N .

*An ymproved Robotics Applications Programming environment (RAP) :las been devel-
oped for the PUMA 2G0 robot for use in the repair of hybrid integrated circuit boatds. The
system features full control of the robot, vision system, X-Y linear stage, motorized mi-
croscope. and digital input/output interface module In addition to the normal :aditing and
filing capabilities, this unique programming environment provides the ability to compose
and exeCL;te programs “concurrently” as opposed to the more traditional Edit - Compile -
‘Link - Run-sequence Debugging capabilities are featured, including the ability to set break
points. and single step a program both in the forWard and backward directions. Further
facilities allow the user to pause, continue or abort a ruhning program RAP-1s programed
in the C language and runs under the UNIX 4.2 BS D operating system Full spelling
and syntactic checking of command lines 1s achieved by the use of keyword matching
techniques. The RAP system greatly siimplifies the programming task for such a complex
environment. allowing the user to concentrate on the activities being performed rather than
on the programming details. The pr‘ogram is being successfully applied to the repair of

hybrid integrated circuits in the McGill computer vision and tobotics laboratory.

t . ' ’ il
, .

L

An Environmgﬁ‘i for Programming a ,
’ PUMA 260 Work Cell

1

Eric McConnéy .

o\

: . Résumé

v

+ Cette theése présente un environnement de programmation robotique qui a été développé
pour le PUMA 260 afin de procéder a la réparation des circuits hybrides.” Le systéme permet
le contréle du robot, du systeme de visic;n par ordinateur. de la table X-Y ainsi qu'une
multitude d'autres périphériques. Grice 3 ce systeme. il- est’ possible de cdmposer. de
modifier. de mémoriser et d’ executer des programmes sur le ciamp. ce qui.est un avantage
face a Ia séquence traditionelle d édition, de compnlatlon et d'exécution 1y a des facilités
pour la vérification des programmes, et d'autres qui permettent a I'utilisateur de suspendre
temporairemént le programme a des points spécifiés ainsi que de les exécuter en mode pas-
a-pas, sait dans le sens du programme soit en sens contrare. De plus. il est possible de
suspendre, de continuer ou d'arréter un programme pendant | exécution de ce dernier. Cet
environnement a été programmé en language C et fonctionne présentement sur un systéme
d’exploitation UNIX 4.2 BSD. Les erreurs de syntaxe étant détectées nmmedvatement la
tache du -programmeur se trouve grandement facilitée. ce qu lui permet de se pencher

davantage sur ce qui doit &tre fart plutdt que-sur la maniére dont les programmes seront

exécutés.” Cet environnement est présentement utilisé avec succés’ pour la réparation des-

circuits hybrides dans le laboratoire de vision par ordinateur et de robotique de I'Université
McGill. '

°

.
S
-3
‘
v

.) 2,
A « .o Nl

March 14, 1986 * A ot oo
e S

I

.
'

©

T i : . Acknowledgements
Acknowledgements

\ |)

3

. i .

| would like to extend my thanks to my’advisor, Dr. A. S. Malowany, for his guidance

and _éncouragement in every as;i;ct of this project. It has been both educational and a

~ -pleasure to work with him. .

Thanks are also due to my colleagues, for their help and advuce in many areas of this

A pto;ect In ‘particular | would like to thank M. Parker {Oﬁ‘fgﬁ help with the debugglng of

/x.
' some of the more convoluted constructs of my code, and A. Mansouri for help with the

~

.’ vision section of this project and-the translation to French of the abstract of this thesis.

The 'tqols used in this project would not have been possible without the help, advice
and mechanical expertise of J. Foldvari to whom | would like to extend my thanks. /

«

-7V am grateful to my family, in particular my mother and father for their support. without

which-this project would have never been completed.

- o « . a2

¢) B
\ . . -~
.
v
4 r
2 #
o
s - {
]
» =l
“ .
N ¢
.
. , 3)
. g 3
- . -
f " 4 ”
- N
N .
o ,
- s)
[~
‘ ‘ 1 { ° s
. L
B
.
. : . b
- \ A :
*
v
]
§ \
? ’
d 1
. ‘
- .
- } . . ;
4
March 14. 1986 , :
-
o L 4
¥

Table of Contents

. Table of Contents —_)
Abstracto e e P i
RESUME e dii
” Acénowledgemepts SUUE S P v
Table of Contents R B T EE T T TTRIURPUL PRI v
Listof Figures B TN viif
Chapter 1 . RoboticSystems <1
ﬂ1.1 InLroduction...........: o 1
1.1.1 The Need for R(;Bot's....\ / L2
1.1.2 Description of Motion SR ’ e 3
1.2 Types of Robots Y e s 0 N 3
1.3 A Survey of Robot Languages....................: ST |
* 1.3.1 Robot Level Languages :n\.i O SUR e 7
1.3.2 Task Level Programming e Teeleieae. R 9
14 The Projectooveesieeeeeennnn.. el e e 1
| Chapter 2 Robotic Work at McGill S BT e 13
21 Introduction.o iiiii 13
‘ ‘ '2.1;1 Distributed Processing........... R ERREEEES ::.:? 1 15‘1
202 VSO e 14
2.1.3 Force Sensing:.......... R BT 15
218 World Modeling ©w.oooovoeeeeaneeaenen, i 16
2.1.5 [(ollision Avoidance .. e R R TP IR TP PN 16
2.1.6 The Robot Languages at McGill I 16
21.7 Project Goals el S e [S 17 '
‘ . -22 System Overview.................. e Ceiieeaes O 18
2.21 The PUMA Controllerc.ioinnreeeeieriitineos 20
, R k ‘ '@"v
3 e * ; -
o

2.2.3 "The Stepper Motor Controller. TR 2
2.‘2.4 The Grinnell Monitor U e 24
2.2.5 The Microbo Robot........... T e 24
2.2.6° 'Interchangeable Tool_sca. —'Z oo T U yZ
23 The VAL language o oovveo oo S P 27
T 231 VAL L. ... SRR e 2
_ .Chapter 3 The System Environment ...-.................. . ‘ 31
3.1 Progragming Menu Concepts I PR 31
3.1.1 System Features.. . e *\. e .‘ e 32
3.1.2 -Command Features. LT \ e 33
o 3.1.3 Debugging and EdIting\....... oo . 34
3:2° System Commands e I ‘?x I 35
3.21 Channel Commands \) S N ‘. .. .‘3 .
3'2'2, Point and Location Commands. :....... ... e L L37
3.2.3 * Motion Comwmands............’ 38~
3.24 Motion -"“Commands for the Stgg:e and Microscope 42
'3.2.5 Debugging and Editing Commands B
326 Conditional Commands e 1‘\ e - 90
3.2.7 Vision C(;mmands 52
3.2.8 "More VAL tommands RO e ‘. ... 54
3.29 nSpecialized Commands AP TR SQ
Chapter 4 System:Implementation s e ... 59
41 SystemSoftware....’..: 59
4.2 ° The Communications Interface (: e e, . 59
421 The PUMADriver Yo e 62
422 The Key TreeMatcher.................. e e L .. 8
- : ¥ !
: y

-

Ta'ble of Contents

v '

222 The PUMA RObOL - . ..o\ oo e i B 2

o
‘ 423 Feeding the Matcher 64
43 AddingaSubtree....iciieiiee.. bl 6D
4.4 Debugéing e e e e e 66
45 Subroutines and Argument Passing.... ..., e e ..' 66
4.6 Status Recording R R RE We oo 68
47 Eror Recovery FE .. U PR 69
4.8 Implementation of Tool Motion e 70
Chapter 5 A Repair Function an Ei}}mplé S SO e ST T3
51 . T’he Repair Function et 73
5.2 The Physical Layout% TR el 74
521 The Tool Rack e S 74
522 The Vacuum Tool et G 74
523 . The Hybrid4.C. Stand PP - 177
524 The Tweezers e I . L T7
525 The Flame Heater U RLEEITE R TTTeppy N &
5.3 Sample Program # 1 SO e, 80
5.31 Sample Program # 2 e e e . 87
54 Discussion 88
. Chapteér 6 Conclusion P SRS - »
References. P e e 94
‘ .
;fs'*'”(.gﬁ '
» ‘ vii
[y) A \
-
Lo ‘) *

2.
Table of Contents

q A

*

.

List of Figures

List of FAigures

1.1 A Cartesian Robot Configuration. it 5
1..2 *Robot Showing Spherical Work S;;ace J T l 6
' 1.3- Robot Showing Cylindrical Work Space.ccece... . 6
21 Block Diagram of Repair Station. SR 19
2.2 The PUMA Robot. e e e e 22
23 The PUMA's Work Space. ST ST "o 23
24 The Microbo Robot. RUTRTRRR e 25
J‘2.5 The Microbo's WOrk SPace.ovvere oo e, 26
" 41 Systém Software. e e DR 60
51 The F;ﬁy;ical JLayout of the Repair Station. 75
5.2 The Tool Ri;ck a’qgavvag::t;um.'Toé?. 76
5.3 The Hybridi.C. St;nd:\;vith WG S ; e - 78
54 The Tweezer Tool. STTRRTRRP P e o 79
’5.5 Plate 1. i e e e 84
56 Plate 2. © 84
57 Plate3. o.......... K 85
58 Plated. ... e, R TORR 85
59 Plate5:o e FETOT 86
. 510 Plate6. ‘j AU 86
. . : ,)
‘ -viii
(.
-

% : P p -

-

Chapter 1] * Raobotic Systems

1.1 Introduction - -

The development of robotic systems is a new field which is of great interést to industry.
Historically, all manufacturing ass“embly has been performed manually. but with increasing
process complexity and as large corporations strive for greater efficiency in their prodﬁctioq
operations, the use of robots is likely to become commonplace.

In 1975, a corﬁgany called Vicarm Inc., which.was involved in making manipulators

foq_researzh laboratories, developed a test program, to incorporate a robot manipulétor
interfaced with a microcomputer, fc;r the purpose of demonsgrating the‘manipulator [Shi-
mano 1]. Vicarm was sold to Unimation Inc. in, 1977 and. baséd on the computer robot
interface system, Unimation developed an industrial grade robot. under contract to the
Gsneral Moiors co;poration. The robot, called PUMA (Prggra’mmable: Universal Machine
for Assembly) was delivered in 1978:
’ Since then, studies have been done to investigate communicatiqns between slave robots,
sensors and supervisory control systems. The objective of current research work is to
develop general applications, using sensory feedback. which are feliabole in complex assembly
operations [Lieberman and Wesley 2]. This presents several ir;ferestiﬁg opportunities for
the researcher.) ‘

The rep;ir of hybriAd integrated circuit boards lqlas been selected by the author as a
véhicle for the develgpment of a_robotic programrpiq_g environment called the RAP {Robotic
Appli;ations Programming) system. The environment which has been created, offers a

friendly interface to robotic programming, suitable both for the novice and experienced

°

\

v,

Jof

o

Lt
as

?
e)

' 11 I'ntroduction“,f
* X .

. programmer. It enables the programmer to select syntactically correct commands from a

tnenu. provides help prompts. contains editing and debugging features and generélly permits

4 the programmer to create robotic applications with great ease
9y

(.

1.1.1 The Need for Robots

T The most basic form of manufacturing assembly, being manual in nature. is suitable
in low volume operations. where manufacture by hand is a positive markéting factor. That
is, where the consumer desires a personally customized product. for a specific purpose or

need. and is prepared to pay a premium for it

- At the high end of the assembly volume spectrum. where the “nuts and bolts” of
industry are of standard design. the production process is characterized by high capital cost
.equipment, which automatically transfer materials and parts between machines. This hard

autombtion may be extensive, depending on the nature of the items being manufactured.

Robot control systems are of interest to industries in the intermediate region of the
assembly volume spectrum where certain aspects of assembly are cnitical to the prod}:;tion

- process. This volq;ne‘rar‘ng’e is characterized ‘by an assembly sequence in v:lhich already
__manufactured parts. tools and fixtures have io come into close contact with each other, if

t

a harmonious manner, to achieve the desired assembly goal.

The most .widespread use'of industrial robots today. is fo carry out repetitive functions
such as those involved in gripping parts. picking them up and performing routine assembly
- operations on them. However such basic tasks. inilolviﬁg the most sir';mple teach and repeat

commands. have ggilicationbs’ \?hich are limited to jobs such as spray painting, material

handling, machine loading ang"spot welding,
-]‘
As manufacturing systems become more sensitive to part tolerances.. particularly in

<

miniaturized processes, the need for precision becomes apparent. Such precision can be
achiieved onlyi in an environment in which the robots interact with supervisory control and
sensory devices. thereby enabling motions to be described with mathematical accuracy. in

addition to providing %he capability for sensory feedback and decision making.

. . ” ¢ . * .
Problems in the development of robotic systems to carry out manufacturing assembly

~operations are characterized by the need to create a friendly environment, in which a

-2

g .
12 Types of Robots
programmer may specialize in creating programs. without being encumbered by exhaustive

technical programming detail. ' : .

1.1.2 Description of Motion

Sﬁeciﬁcation of three dimensional movements, characteristic of assembly operations. is

a very dffficult task. The problem is that three dimensional movements Bre :ery difficult to
conceptualize, because of their associated spatiél complexity. While loose oral descriptions,
with a set of drawings, may be given in a factory environment to describe an assembly
procedure’. such simple descriptions are of no use in programi’ni‘n\g the robotic movements.
which are complex in nature)
‘ Description of the motions required to be performed. depend on the capacity of the
programming language to make accurate statements about the geometric and physical
nature of assembly. Geometric ierminology is necessary to describe the shape of an oi)jéct
and its Iocationurelativg to other objects.” Physical support or attachment arrangements
?nd stability of the objects. while relatively easy to describe in static conditions. become
difficult to describe under-conditions in which the physical relationships are changing. as
in robotic m::)nipulator fastening operétiops.) -

Therefore, the programmer must be able to function‘ in an environment,which pro-
vides immediate feedback through observation of the robot’s movements. as they are being
programmed, while permitting immediate modification-of commands as may be desired.

Efforts to solve these difficult descnption problems are being made by the developl;m;ant
of systems such as the world model data base, |Lieberman and Wesley 2] to provide and
update information in order to reflect changes related to spgcific commands. The work of -
[Ejiri et al 3] as described by [Will and Grossman 4] has solved in principle. most standard
. assemb'ly problems. The challenge anw. is to handle real-life industrial situations in which Az
parts, objects and assemblies are varied in design, and to develop convenient methods of
programming maniplulators which may be imperfect. ' "

-

1.2 Types of Robots ' -

\

There are many different types of 'manipulato}s or robots characterized mainly by their
' 2

joint configurations. Two types of joints are used in robots. rotary or revolute joints and

2
Y

3

-

§ . .

prismatic or sliding joints Multi-motor configurations are required to rotate the machine.

to articulate the joints and to open and close the grippers. Sensors and potentiometers

measure motor positions and the signals from these sensors are used to control the tra-

jectory and position of the manipulator. To achieve any arbitrary position and gripper

orientation there must be at least three revolute joints in the manipulator.

In order to describe various movements by which the robot can be actuated, the terms
“axis” and “"degree of freedom" are\égg\%mfzﬁe‘number of move;ments possible in a given
éystem is called the degree of freedom of the system while the mechanical devices causing
these movements are callen"d axes. Each axis does not necessarily correspond to a degree
of freedom and jn fact the maximum degree of freedom is six. Additional axes only serve
to increase the geometric dimensions \of movement. if they are primary axes. or increase
the orientation possibilities. if they are articulated axes. The }nany types of robots can be

divided into three categories defined by the coordinate system the robot operates in.

/The first type of robot is the cartesian robot. This robot moves # the three basic axes
(’X Y. Z) and exhibits a cubic work space located to one side on the robot, see figure
|1.1]. The cartesian robot has the advantage of great precision in the (X, Y. Z) coordinate
frame but has the disadvantage of more limited orientation possibilities’ for its tool tip. The

cartesian robot is mainly used for its precision in areas such as precision assembly.
P

The so called articulated robot can be thought of in terms of polar coordinates and
exhibits a spherical work space ¥hat surrounds the robot. see figure [1.2]. This type of
robot overcomes the: disadvantage of limited work space and orientation possibilities ‘of
the cartesian robot but gives up its greater precision in-the plane. The articulated robgf

because of its flexibility is preferred in applications such as arc welding and spray painting.

The final category is the cylindrical robot, see figure [1.3]. The cylindrical robot keeps

_two of the axes of the cartesian robot and one of the rotary axes of the articulated robot.

In this way the precision in the €artesian axes typically (Y and Z) are retained and the
work space is expanded by the ability to rotate about one of.the axes typically (Z). This

combination type of robot finds use in applications such as precision assembly. f

McGill currently has three robots which albtexhibit different joint configurations and fall

into a different robot class. The PUMA 260 is an articulated manipulator with six revolute

joints. The IBM 7565 robot is a cartesian robot with three prismatic and three re;‘lolute '

v

12 Typ\esmobqts

-

~a

]

P Ry

k4

‘

v

LI LI Y P YT Y Y L P R P e O T XYY YTy

i 12

@

. P
. R ,
s
@
H I
.
«
-~ H
©
‘v
v
f
»
‘
N
* - .-
P . -
LY
'
-
2 .
g Bl
. . >
R .
5
Rl
v
*
-
M .
N
. .
-—)
.

124
- - [
[K)
Kl
-t ¢
N ~
N
i . -a ~
v N R ~ L4
T, I BN
i
a ,
. ki
N
¢ -
. .,
o
ot
- - N
.Y -~
e
. i
' “‘.,
N N
' - - M
M
o~ .) .
t ‘ [y ¢
[
P
.
' [

“Fl gm'-o 1

1 - - \ . - ,
A . Lo s
N B
‘ : ‘ (A N A
. . R A
S N
. . .
¢ 2 - - .
L . pnsms R e,
. Soeeas
- . Nl. N
e
L .,
.- ,
M AT
R
.
~ 1
! .
v H
-
[
. .
'
'
I)
o "'}.

s
Wi

~ . N
’ - . -4
. ’ o7 .

i .

W 1 ¢

asrwe
.

'anassssacsnnsseans

K}

.
H s
*we,
4t et .
. . < . et L L] mwewmad®e
‘ ;
- ~
- - ¢
. [.ot (M . o
. N -~ .
g 1Y
Figurs 1.3 Robot
' - Y,
v .
A
. [
L. *
. Al
- ’ i -
- 3 * . ’ M
~t t -]

) — S

M wade
ccamnac =T

-
punt?

.2‘L_‘ﬂrt' iculated Rabot 'shoui\n.g. Spherica

I Hork Spacs,

.
) ©
- Vo
- .
. .
“
+ + N
g
'
‘s
.
' L
- Ne
» v '
w . . N
? "o
. ’ .
i
I
- ~ o
e P
Pl .
N P
‘4 .-
- R,

“
.
v
0
' \
v
ERE L N
. v
A ‘ .
'
o
-~ .
. .
- f
. . .
«
,
’ .
,
e - e
3
LI
L . Ed
.
e wa .
»
- .,
¢ «
'
.
' .
N v
)
"
.
i
.
. v

'
i
.
\
B
'
.
-
o
.
'
.
.
.
o
.
-
.

da

a

‘ packqges.. leading to the development of robot level piogramminé languages.

A4

» L ‘ N 13 A Survey of Robot Lané,dages

jOIntS and the M:crobo 1s'a cylindnical robot wnth two pnsmatlc and four revolute joints

The control of these various robots as can be |mag|ned is a very complex task Typlcally
each motor has a dedicated co /roller and these separate or slave controllers are supe(wsed
“bya maln coordinator which takes request-from a user or application program and thegg
relays ;ommands or tasks to the slave pjocessors Each slave processors is responsible :
for the momtonng and control of one of the servo joint motors. The dIVISIOn of the tasks)
in thlsaway is vutal as the control of the robot is needed in real time and thus speed of
processing is a major concern The superwsor and slave processor architecture also,allows

for a very modular design to which more slave controllers may, be added as needed.

As.might be expected the many types of robots and controllers n addition to the many
. { . ,
tasks and ap;‘)lications the robot is to be put. has lgd to many daﬂ'orent languages and
enwronments for the control of .these robots. Some of the Ianguages whlch have evolved

wnll be summanzed in the next section.

» ‘ VAN
\

1.3 A 5urvgy of Robot Languages - , | o

The earliest method of progﬁamming a robot was to guide it manq;lly through a se-
quence of motions. TFhese motions could be recorded and then played back to achieve
repetitive tasks This pioneering form of robot programming was simple to implement and
could be done without g}g use of general purposé computers The method, though simple,

lacked several important features. For example, programs could not react to sensory |ﬁputs.
d ' .

- Further, there could be no looping or branching. neither could computations be made.

The need for these missing features. essential to create more “intelligent” robots, was

. partially satisfied by the use of general purpose computers The fall in price' and the rise

in power of these general-purpose computers allowed them to be incorporated into robotic

i

1.3.1 Robot Level Languages ~ ’ .

v s . ' . IR

. Robot level programming languages have the advantages of incorporating sensory date- '
from such devices as vision systems, force sensors and exiérnal sensors into the control

of the robot. However. in order to use the robot level languages. it 1s necessary for the

Y . .

@

-

-

S L ' 13 A Survey of Robot Languages

v
i \

- - Al Ay : " '. . . X ey , .— ' -
user to Become a programmer and become involved in the details of robot motions and,

sensory based motion strategies. A variety of robot level languages have been developed,

. as outlined here below - .)

The Stanford Unwersity Artificial Research Laboratory developed the language WAVE
lPaul 5] in 1973. to ptogram robots for research into the limitations of robotics theory.
Whlle this 1s a low level language it served to pioneer important mechamsms in robot

programming TWded the description of end- eﬂ'ector positions in cartesian coordi-

nates, the coordihation of joint motions to achieve continuous velocities and acceleratjons

and the specification of compliance in cartestan coordinates In the following year. the

laboratory developed AL [Finkel et al 6] a‘higher level language. to facilitate programming
assembly gperations In'addition to the manipulation capabilillés of WAVE, AL is capable

of executmg concurrent processes and offers data and control structures similar to ALGOL..

© IBM has developed a number of languages at then Watson Research Center The first
of these. EMILY |Evans Garnett and Grossman 7] and ML |[Will and Grossman 4]. have
‘been used i assembly tasks. AML [Taylor. Summers and Meyer 8] which was offered
commercna.llyjn 1982. for robot programming work, does not support cartestan motion in a
.tool frame. comphant motion or multiprocesses However 1t offers a system environment,

in which, robot programming intetfaces may be built

SRI nternational developed RPL [Park 9] for use n facilitating control of machines
-in a work cell. It is implemented.as a set of subroutine calls and may be viewed as a
LISP type language cast n a FORTRAN syntax JARS [Craig 10} has been developed by
Jet Propulsion Laboratory to control robots ?ssembling solar cells The JARS language is
basically PASCAL. with many robot specific types. vaniables and subroutines added Jet
Propulsion Laboratory has also developed the language TEACH [Ruoff 11] which deals with’

concurrency (n a systematic way.
9

The RAIL lanéuage [Franklin and Vanderbrug 12]. which 1s an interpreter loosely baset‘i
on PA:?CAL. has been developed by Automatix to control visual inspection and to carry. out
robotic assembly and arc-welding. HELP [G E.C 13)]. also an interpreter similarly based
on PASCAL. ts a robot programmlng language, announced by General Electric Company in
1982. It is best suited for use wuth cartesian arms as motigns are expressed in terms of

actual robot joints ' . : . [

v

»t . o . 13 A Survey of Robot Languages ;

- .
4 . .
. f

VAL [Shimano 14] is a commercially avallable language which was developed' by “The

Unimation Corporatiori. It 1s the programming language upon which this thesis 1s, based

and 1§ described in detail in Chapter 2 A new version of this language, VAL Il {Shumano '

et al 1]. offers facilities for local area networking, real ime control of trajectory. concurrent

processing and synchronization gmci general sensory interfaces as discussed in chapter 2

The PAL [Takase and ‘Paul 15] system. developed a{ Purdue University, represents

tasks in terms of structured cartesian coordimates Motions are achieved as alside effect_

in solving position equaudns RCCL [Hayward ‘16]. a continuation of this work, 1s a set of

C subroutines used for controlling the robot

) There afe other languages which may be found in the literature. MCL [McDonnell
" Douglas 17] was developed for the US Air Force by McDonnell-Douglas. It is an eixtension of
the numeric’al control machine tool programming language AP T for the off-line programming
of robots using a CAD data base v

MAPLE { Darnnger and Blasgen 18], was developed by 8. based on the capabilities
of ML. but has never.been much used. SIGLA [Salmon 19]. developed at Ohvetti. for the
SIGMA robots is comparable to ML in 1ts syntactic level and supports ps;eudo mult ’tasking

and simple force control

~7 MAL [Gim et al 20] was developed i ‘ltaly at the Milan Polytechnic. It 1s a basic fike *

. ~languaée and supports rﬁultnple tasks and task synchronization LAMA-S |Falek and Parent
21] is a VAL like language developed in France at IRIA LM [Latombe and Mazer 22] was

QQ’Z‘ also developed n- France at IMAG It provides many of the facllmes of AL, but does ‘not
N

1

support multi processing.

L T

1:3.2 ‘Task Level Programming

As the power of computers and the cohplexlty of robot functions have expanded. a
new set of user friendly languages has started to emerge. This new 'set of languages
concentrates,on spécifymg robot actions at a task level The task actions take the form

of specifying goals for the posmonmg of oé;ects As such, they may be robot independent

but require extensive geometnc data bases to model the world or the environment in which.

they are working These task level languages. described below. are very sophtstlcated n

concept, but due to therr complexity. they are not yet developed ‘to the same extent as the

-

.

.
» s 9
N B .
)

LS

»

13 A Survey of Robot Languages

' _ .more simple robot level programming languéges. No doubt they will develop and mature.

’

."as work advances ‘in the field. .

. : * AUTOPASS [Lieberﬁ’ian and Wesley 2] is a task level language developed at IBM

’ ', for semi-automatic programming It uses English ke statements to specify assembly
" objectives rather than mechanical movements ' An extensive data base is required to relate

the assembly ~ob}le\ctwes to the necessary mechanical motions. The.data base is updated

to reflect the state of the world 3t each assembly step.

RAPT [Popplestone Amblef and Bellos 23] uses the APT language. as a syntactic basis.

- At transformé symbolic geomefric speafications into a sequence of end-effector positions.

The language's main focus is ‘task specification and does not deal with obstacle avoidance,
automatic grasping or sensor'y operations.] 4

The LAMA [Lozano-Perez 24] sxsterﬁ was designed at M. |. T. The Ianguaée is in-

tendgd to f(‘)rmulate the relgtionship between task specification, obstacle avoidance and

error detection Other advanced concepts have also been defined. but the language has not

] * yet been developed (

- LM-GEQ [Mazer 25] is a task level extension to LM It incorporates symboli€ specifi-
cation ‘of destinations and with the use of ROBEX {Weck and Zuhlke 26]. has the ability
" to plan collision free motions. However the full blown ROBEX system has not yet been

implemented.

P e

HIROB [Bork 27] 1s a high level hierarchical Tobot command Ianéuage which features

the use of simble Ehgiish phrases to specify robot procedures. These phrases are parsed

" to determine what portion of the phrase is known or already defined Those portions which

do not exist must be defined using either. existing HIROB procedures (English phrasés) or

-by using the pnimutive commands of the low level robot command language LOROB, which

is part of HIROB An intermediate l;xnguage MIDROB is also incorporated and used to
control the logic flow in the HIROB bhrases.

As indicated. the goal of these task level languages is to provide high level control of
the robot, using English or English like phraseology. While this is very desirable from a user
point of view. it is extremely difficult to design such a language, due to the ambiguity of the

' spoken word and the need to describe. n finite detail, every single physical feature likely

to be encountered by the robot. it is not surprising, therefore, that task level languages

.

r's 1 . ! N s
. : . 10 ¢

v oo ‘ . .
‘ 14h The Project
have been only bartial}y implemented and thé subject is a challenging topic of fesearch in.
the field. o) e o G

In summary it can be seen that there are many dehvelc;p\ed and developing languages for
the con;crol of robots The basic robot level languages in éeperal offer controf of whatever
direct features the robot has to offer The more advanced offer some additional ‘processmg .
to achieve features the robots do not oﬂ'er directly (for example cartesian motlon on a
cylindrical robot) and increased access to the outside world. The tas‘ks level languages try
to take the control of a robot to the extreme in that they try to allow the user to program
.a robot in English like language with out having to know any of the details of the control of °
the robot. This abstractien of the language from the rol;ot offers the potential for creating
robot independent programs and even task gdescription that are almost independent of the
parts they are to manipulate. Clearlx these languages are striving for an ideal situation and
is thus no surprise to see that meny are only in their design stages. ’

It is the authors opinion that a compromuse should be sought bet;fveen the primitive
low level control of the robot and the unimplemented }rngh level task oriented languages.
While the programmer should not be expected to know the intricacies of the control of the ‘

robot he should be expected to know that it is a“robot that he is programming.

!)
[

1.4 The Project %

» The repair project, at McGill, involves tthe automated repair of hybrid circuit boards.
-There are many aspects associated with this project Areas such as robot conltr_ol. vi-
sion and sensory feedback, task description. tooling and material handling. inspection and,
classification of defects. are all essential in the gaal of automating the repair ¢f such boards.
Robotic control of intricate mechanical assembly processes is a techmqueﬁ quite unlike
anything found in business computing The repawr of hybrid cuwcuit boards, presents the
opportunity for exploration of assembly-directed prog;amming. with the long term goz:l
of bringing parts. fixtures and‘tools together in a natural manner to carry out assembly .
operat'vons. with robot decision making e;}pabihty
The actual repair project, at McGill, may be considered to be a Iogical subgoal, with
the objecnve of discovering how parts are grasped and placed in fixtures, how cémponents

may be mspected. how general purpose feedback may be used in robot programs, what is

n

w14 The Prc;ject

to be done anfi the ex'tentlof the repair necessary. The description of the motions required
for such assembly and repair‘ operations is a cor!{plex task with many subtleties, requiring
extreme attention to detail. The project field is therefore appropriate for the examination of)
the problem of robotic motion description and the development of user friendly programmmg
systems needed for precise robotic control)

This thesis is based on the development of an integrated robot programmlng envuon-
ment. The following chapters organize the material by specnflc topic. Atchltecture and

I ' system hardware together with the work bel_ng done at McGill is presented in Ch“apter 2.

In Chapter 3. the features of the environment are outlingd and the commands required
for motion, editing. debugging and vnsnon processmg are described. A discourse on the
implementation aspects is glven in Chapter 4. This mcludes details of the communication
interface. parsing and execution of commands.

The system is demonstrated in an example program which implements a rep;ir' function
in the hybrid integrated circuit board repair Jprocess. The features and the limitations of

the system are discussed in Chapter 5. Finally. conclusions are drawn in Chapter 6.

~

v

s

Chapter 2 . ‘ - _' Robbtic Work at McGill

2.1 Introdu&ion -

The purpose of this section is two fold. First to describe the work being done in the

a . .
Department of Electrical Engineering at McGill University in the area of assembly and repair

- of hybrid circuits and printed circuit boards. Second. to give an overview of the program

environment developed by the author. -

A Computer Vision and Robotics Laboratory (CVaRL) was started at McGill University ,.
in 1982. Sinee then the laboratory has become involved in the repair and assembly of
printed circuit boards and hybrid integrated circuits, thereby developing the techniques of

distributed processing. vision, world modeling and collision avoidance.

-

2.1.1 Distributed Processing

- ¥

4

~* The concept of distributed processing is one in which separate agents-are employed
to carry out specialized discrete tasks. In order for the separate agents to function har-
~moniously. there must be information feed back to a central command post. from which

commands are issued in a precise and reliable manner.

The importance of multi robot operation has been well recognized in the laboratory

" and in industry. While most tasks -may be .performed by employing one robot and some

external holding fixtures, advantages of flexibility. speed and reduction in the number of
external fixtures may be achieved with multi robot configuration. Moreover,\the bottlenecks

characteristic of a single robot design may be eliminated with distributed pracessing. $

Mo e e

s

21 Introduction

The current state of the art 1s to employ several sla;re processors designed to perform

Jﬁi ‘ ’ specific tasks being controlled by a master computer. There are severdl advantages to .
this configuration. These include greater fault rolerance. inherent with redundant elements

in design. as well as easeoof maintenance; modification and expansion due to modularity.

~

These features all enhance performance. C.

Distribited processing networks are limited by the primitive communication ‘systems

presently available. [Gauthier§et al 28]. Some arch laboratories are addressing the

‘ - “__/;deficiency. At the McGill CVaRL, work is being done to develop the communications
' ' technology needed to carry out inspections of hybrid integrated circuits, to identrfy defects .
and to make repairs in a three drmensronal environment, abstracts on all of the current

pYOJeCtS can be found in the CVaRL progress report [CVaRL 29].

The McGill CVaRL is_developing a Session Layer for a local area network based on an - .
ethernet. This Session Layer, which will be compatible with any programming languagey
which can be linked to UNIX, wrll enable the end user to create links and end points betweén
processes for the purpose of passmg messages between processors. The object of this work”
is to make the network transparent to the user, thus promoting its easy use for distributed

* . processing.

X . " -y
2.1.2 Vision i) T

Computer vision is the process of converting an image or scene, into elements from
whrch information can be obtained in an approprrate format for use by a computer. This

. . A has the potential to provide the best sensory input to any device.which requires feedback °

for it to function.

mlts vast botential is difficult to exploit because of the complexity of the conversion -

» process involved. Nevertheless, because of the many development possibilities. a great

- %

amount of research is being done in thls field.

- One‘of the main focuses of research at McGill in this area, is inspection of hybrid inte- *
~ " grated crrcurts and printed circuit boards as well as robot hand eye coordination. Research . ',
\
in mspectlon involves examining soldered joints and capacitor alignment on hybrid circuit

i
i
:\"\

boards. . .

14 :

]

.

“

2.1 Introduction

v

In addition McGill has a rich library of vision so}tware including thie HIPS [Y. Cohen
30] and SPIDER {J.5.D. 3‘1] software packages. H_IPS is a set of C functions for image
processing that was developed at the New York University. The package provides many
filters for changing the image in the spatial'freq;.gency domain. The SPIDER package

provides a set of FORTRAN routines for performing similar functions on an image.

°

A line detection algorithm has been developed [Mansouri 32] which converts an image

into a list of vectors which, can then be matched to a model of a capacitor to obtain its

"

jocation and orientation.

i

Work in hand eye coordination involves making end point corrections when inserting

" components into printed circuit boards [Mansouri 33]. For example. errors in obtaining

components can be found and translated into correction factors for final placement on the

circuit board.

»2.1.3 Force Sensing

Force sensing involves joint, wrist and pedestal activities, which may be employed to
supplement vision in providing local information for such tasks as grasping components
and inserting them into sockets and circuit boards. Force sensing may also be used for

contour tracing and in grinding functions. . .

In joint sensing, forces are monitored at each pivot or prismatic point in a robot mech-
anism and these may be transformed-into other forces relative to a coordinate frame. Wrist
sensing incorporates a sensor between the robot's last joint and an end-effector from which

the forces i in the wnst can be measured In pedestal force serising, the stand registers the

forces applled to n The capablhty to sense, mterpret and utnhze such information is critical)

to the smooth execution of tasks involving dellcate handling. Further improvement may be
achieved by the use of sensing pads attached to the robot’s fingets (as in the IBM's strain

gauges) to detect forces while grasping objects. .

McGill is_investigating the use of a force sensing device which can be mounted in the
robot's wrist and used to resolve forces and torques in and around the X, Y and Z directions.
The device may also be mounted under a platform and used in a similar manner. but -with

the advgu{tage of freeing the robot of the weight of the device. ” \

s a3

1 . ' ' : : 15

q

+

r

21 Introduction

Experlments have beeh carried out in joint force feedback by monitoring the cuwents
flowmg through each of the joint’s motors This has been achieved through the use of the
force primitives in the Robot Control C Labrary (‘RC/ L) language.

2.1.4 World'Modeling

— N
g

" The successful performance of robots. in an artificial intelligence environment. depends

on a versatile and dynamic learning system supported by a rich knowledge base, which.

has the capability to expand its knowledge without external intervention. Such a world
modelmg system. learns by proving rules. analyzmg the proof, refining them and st,onng

(them in the knowledge base automatically. |[Xu and Chen 34].

,The use of a data base to model the robotnc‘envu&nment has the advantage that it

may be mampulated by computers far easier and safer than- the actual environment. Thus -

3

it may be used in areas such as collision avoidance and assembly procedures

&

Depending on the use of the model, different representations- may be desired, “For
collision avoidance, abjects may be simpVy modeled by their bounding cubes. while for

assembly or mating operations; more detailed representation is required.

215 Ct?ﬁsnon Avoidance

4 :

’

There are a number of techniques available to the resaarcher to implement collision
avmdance systems Obstacles may be detected by the robot with vision, radioactive.
. capacitive. magnetlc or ultrasomc sensors. Of these. ultrasonic sensors are favored. [Mack
35] because they: are lightweight and inexpensive, being most sunteble for most industrial

assembly situations. 1

i 3

+

2.1.6 The Robot Languages at McGill

s

An overview of various methods of programming robots was discussed inthe introduc-
tory chepter of this thesis and some of the existing languages were described.

At McGill. there are three robots. each with its own native language. The PUMA 260
runs VAL, the Swiss Microbo runs IRL ;nd the IBM runs AML.

. LIS

.. v . 16

*q

%

.
& . © 2
-
t
-~ e
, .

2 1 Introduction

. At present, the PUMA and the Microbo robots have overlapping work spaces and may\\/
be used together, on separate projects in the same work space. or in cooperation with’
eagh other on a single project. While some Iow level form of cooperation may be achieved *
using 1/O ports as synchronization lines. this tecrmiq‘ue is.not considered adequate for
sophisticated cooperation. A more structured formr of message passing would be needed

so that more than the go/nogo type of synchronization could be achleved

A more powerful language RCCL is bemg investigated for use by the PUMA 260 and
Microbo robots. This language has routrrres capable of processing force sensing informa-
tion in real time, vrhich offers greater control over the robot. Additionally, time varying
functionally defined transforms can be used to control the Tobot’s trajectory This lan-
guage has already been installed. at McGill. on the PUMA robot by [Llyod 36] and on the
Microbo by [Kossman 37].

2.1.7 Project Goals .

o

4
i As discussed under distributed processing. the system of slave processors controlled by

a nfaster computer offers substantial advantages in the management and-control of work
tasks. With the divoréity of 4uiprr1ent available to the programmer, as described above,
it is apparent that the environment should be one in which the programmer is free to be
creative, eonce {ng on the tasks required to be performed by the robot rather than being

involved in repetitivé routines.

-
2

Accordingly. creation of a superior environment was enthu§iastically selected by the
author as the project to be covered by this thesis. The desired goal i$ to encourage
deve!opment of technology to speed up ooerations. minimize errors and simplify debugging
routines with the objectrve of making dramatic advances in roEiOt programming productivity. ‘)

More specifically the following are the main goals or féatures set for the environment.

(1) Rapfd turn around time was considered necessary to replace the Iaborious technique
of first editing, then compiling and finally running the program, with associated inherent
opportunities for error. i

(2) The ability to control all of the available equipment from a central programming
environment. The user should be able to control and synchronize the robot, stage and

vision processes. : .

17

“~

situations.

O —————— s

22 System O\:erview
) (3) Increased debugging facilities t'o simplify program development The progra]mmer
shoulfi have the ability to test any command individually and to single step throlugh a
program in order to observe its performance, as well as to change’ and modify. existing
programs. o ~ |
| (4) The ehmination of syntactic and spelling errors through immediate parsing of com-
mand lines was also ‘considered to be important for quick and easy development of pro-
grams.

(5) The environment should be modular and easy to add to and adapt to specialized

|
t

The rest of this thesis will deal with the description of the implemented environment

that achieves such goals. : - S

1

1
2.2 System Overview

E
N

One of the major advantages of robots is their great nversatiliot'y. They may-be ‘used in
a pumber of different tasks without many medifications. This great versatility is mainly
due to the generality of the robots physical structure and control {Sanderson 38). However
much of this flexibility is lost due to the difficulty in prbgrammmg the robots. Often robots
are designed as stand alone systems, are low cost and offer primitive facilities to develop
and modify programs as well as the ability to deal with \fhe external world, In this thesis
an 1gteﬁace to such a stand ‘alor;e system has been de;/eloped. The system is a Unimation .
PUMA 260 robot running VAL. The interface offers an enhanced environment’ well suited
to both the on line as well as the off line development of robot programs.

Aplock diagram of the experimental repair station can be seen in higure [2.1]. The repair
station integrates a PUMA 260 robot running VAL, an X-Y stage. microscope, Grinnell
monitor and a {/AX 11/750 host computer. The user sitting "4t the host computer can
conFroI any one of these devices. Images obtammed from the microscope can be displayed
on fhe Grinnell and processed by the host cofnputer. Storage for images. robot positions
and programs is provided by the host’'s disk drive .

Communications to the PUMA is provided by a RS-232 link, with the host replacing .
the PUMA }erm:nal. Access to the 1/0 module of the VAL controller can also be obtained

ia this link. The X-Y stage and microscope are controlled by a stepper motor controller
! ! _7,//)
. ! ‘18

User's
Terainal

! vision system

N
sman -\‘.-- enenscssnnue

-d

; Ethernet - i -
Host UAX 11/750
— . - vAX 11/780
RS 232 Links " | Frame Grabber |i
' e %
Puma 260 Ricrobo ~ | , | Stepper Notor RN I &
Controller Control ler Controller - : *
. B ‘. F)
¥ ¥ —y 0y
Pusa 260 | ° |1/0 module, X-¥ Stage | | MotariZed |
Robot : Teach . Hicroscope| -
\ Pendant ,
Disk Drive T
Cameras | .
v
Grinnel
4
+ y } Honitor
Tools & < f1icrobo- 1/0 module, Hotapg &
Rack Aobot Pendant, X Stage
. Tape unit _
, Figure 2.1 Block biog[om of Repeir Stetion -

-l

=~

e

———

-

- - . . 22 System Overview

4 N)
'
-~

which also interfaces via a RS-232 link. Further develqpment to include-a Microbo’ robot
1s underway. The Microbo robot has already been interfaced to the host compﬁter and all

that remains to be done is to incorporate it into this programming environiment.

-
~

o

2.2.1 The PUMA Controller

N -

The PUMA 260 robot is controlled by an LSI 11 cqntrql \co‘mﬁut;er which is also used -

to control. the binary 1/0 sensor and relays. the PUMA teach pendant and disk drive. This
robot and controller package. which 1s manufactured by Unimation., is also used to run the

Lo .
VAL language. This package offers rio external computer interface, therefore for a host

. computer to talk to the PUMA with out .modlfyi_né Uriimation’s hardware it must do so

through the terminal pori The terminal port 1s a RS-232 port normally connected-te-the
user's terminal. The host somp’hter was placed as shoM in.figure [2 1] between the user's
terminal g‘nd the LSI 11 contrplle'r. gget of C subroutines whs then de\{eloped on the host
to relay commands and messages back and forth between t ' yfer's terminal and LSt 11

controller so that the host computer terminal can act as if it was connected to the PUMA

controller.

) Thi§ method of interfa(cing the host and LS 11 is somewhat awkward but it should be

oted that the package was designed as a turn key stand alone systém and as such was
considered to be sufficient to satisfy the prevailing need. Furthermore there is-no standard
interface available from any other manufacturer. It is expected that this deficiency will be

overcome.as the industry matures

The use of the host computer provides useful extensions to the VAL language For

example, the host can be used for enhanced numerical calculations, processing of points
[

and .trajectories, as well as superior processing of sensory inputs from the |/O module In

addition, complex data from such devices as cameras and microscopes may be processed

£l

and incorporated into the robot program

The host computer used in this project is a VAX 11/750 running UNIX 4.2 BSD. This

computer was acquired by McGill for robotic research and is being used on a number of

projects. . ’ ;

¥

The UNIX environment makes the programming language “ C " a natural choice for

program development. C is a general purpose programming language developed on the

o _ 20

oy

v

%

223 The Stepper Motor Controller | o .0

..) .
. :
,]
Ad -

o0 : ' 22 System Overview

. ;

"UNIX system [Kermghqn & Ritchie 39] It i$ a relatlvely low level language. that can

“be learned quickly. The language is qunte efficient and can be ported to other machines wr

with httle dlfflculty..‘lt' provides the constructs for creating structured programming. and

functions or procedures may be written and compiled in separate flles and linked later

allowing for a degree of modularity in program deVelopment ‘

222 The PUMA Robot L T S .

The PUMA 260 Robo‘t/ 1§ an articulated manipulator with six degrees -of freedom-man-
ufactured by Ummation Inc. [Unifation 40). a diagram-of the PUMA can be seen in figure

" [2.2). Each joint 1s controlled by a DC servomotor, each containing an incremental encoder

mounted on its svhaft The encoders provide position information relative to a known initial
absolute position” The “nest” position of the robot is"used as the imtial referencqposmon .
The controller obtains data from the encoders and calculates velocnty from them The
work space of the PUMA is roughly spherical as shown in figure [2.3]. Thls conh‘gur?—
tion of totally revolute joints allows for ve.ry flexible movements of the arm and a statedw“ ‘

accuracy of repeatabffity of. 20 microns. However due to wear of the robot through much

-experimentation the accuracy has diminished somewhat. ’ R

'

r

The stepper motor controller is used to.control two devices, aniX-Y “stage and a
microscope. The Controller actually controls four motors; Two are used to ;hove the stage
and the other two control the focus and zoom of the microscope [Mansouri 41). " ,

The X-Y stage as the name implies Is a platform that may be moved in the X and Y

duecllons This stage may be moved in mcrements of six and a half microns, thus allong

A for very precise posmomng in the plane. This s |deal|y suited to the aigembly and repalr

of electronic components T ,
The microscope’s zoom -and focus may be controlled by a user program thhrough the
stepper motor controller The microscope’s height above an object may be changed. to
achieve focusing, and_the zoom control knob totated by the two motors .The use of
this microscope provides‘: necessary visgal feedback in tagks dealing with small electronic*

o

components. ' . |

.

e
-3

weist:308%Joint D .- T

L]

1
- 1

\ _ Shoutder 314%(oint 2) !

Elbow 292°(Jaint 3)

4 .

) -
X7 Flange Rotation
534°(Joint 6)

. C Wrist Bend

o 244%Joint 5)¢

Rototion
578%Joint 4)

»

Y

‘f\‘

nl
£ha

13cm Dis Around
Base & Trunk
not Accessible

1] :
AA ,' - v
I‘ 1 N
%
" Region 18 / | ’
'Attsineble in
Lefty Configuretion. & . '
y guration. N py 40.6cm Mox.
. Redius to Hond -. C -
. ' 8 Centerline.
T [47cm Radius to Tool
t Flange.] -
o , : ¥
314° { :
5 . ’ |)
. ——— y
) ° P # d '
\ Figure 2.3 The PUMA'S Work Space .
. e

re

L¥

!;.

: 22 System Overview

2.2.4 The Grinnell Monitor ‘ .

1

The Grinnell monitor 1s a 256 by 256 color monitor used to display images obtained
_ from the microscope This monitor is controlled by a VAX 11 /780 host computer. Images

‘ must then be sent over a network from the VAX 11/750 to the 11/780 to be displayed

on the monitor. Thls transfer of data is slow and so limits the use of the vision feedback
to non real time uses Work is being done to interface a dedicated 512 by 512 Matrox

frame,grabber and color dlsplay monitor to a dedicated Intel system 310 with multiple

. vision processors This system in turn will be linked to the VAX 11/750. The Matrox/Intel

system will offer higher resolution and faster execution timey, in the order of a few seconds.

v, v

b

2.2.5 The Microbo Robot

The Microbo robot is Swiss made [Microbo 42]. Like the PUMA, it has six degrees
of freedom. but differs from the PUMA in its architecture While the PUMA is an artic-

ulated manipulator comprising solely of revolute Jomts the Microbo has four revolute and

-

two prismatic joints. as shown diagrammatically i frgure [243. The prismatic joints are

structured in such a way as to allow considerable improvement in the precision of motions,

“in the radial and vertical directions. comoared te the PUMA. (5 microns in the case of

the Microbo and 20 in the case of the PUMA) However its work area is restricted to a
dough-nut shape. see figure [25]. which luits its use compared to the larger and more

comfortable spherical work area associated with the PUMA

‘ Like the PUMA it runs an interpreted language called IRL (Intuitive robot language).
thus Interfacing this robot to the host was achieved in a manner similar to that of the
PUMA. Incorporatlon of this robot into the authors environment is thus straight forward
However, routines will have to be developed to implement necessary cartesian and other

motlons. essential for effective use of the robot to be achieved from the ehvironment.

»

¥

2.2.6 Interchangeable Tools

L
Having the nght tool for the job is vital if meaningful work is to be performed by the

robots. A variety of tools have been developed by the authdr and others in the lab for use

with the PUMA and Microbo robots. These tools all ieé;ure a standard mechanism for

) . 2

e

~

-

~
B > N -
s

Joint 3, Prissatic Rodialy

' / j’{[/ " . Joint 4, Revolute

l
Q \ N n .
“ ~ ' NJoint, 9, Rl:wolu‘ie
< Joint 2, — ﬁ‘t\ﬁ Revolute about
\Prisnatlc along 2 T/L—__J\ﬂ ‘ 'todl t!; :
. .]

Figure 2.4 . The Microbo Robot

. T
4 A o

)

:1 ,:]' 200sn
Q7% 27
// , 7 // /;//

: J
' ,"ngﬁrg 2.5 The Hicrobo's Work Space .

The VAL language

attachment to the manipulators and are thus interchangeable. Each tool has been designed
with its own stand. which assures correct alignment of the tool when it is not n uée.
Specialized tools for grasping capacitors, hybrid integrated circuits and chips etc.. have
all been developed. Tooié have also been designed and made to cany‘ out such\ tasks as
grinding, continuity checking and solder paste dispensing. These are fully described. in

chapter 5 with diagrams accompanying those designed by the author.

2.3 The VAL language . ']

VAL is a rudimentary programming language desigrred for industrial robots. It has the
capability to interactively edit, interpret, debug, execute and store user'programg. lt'has
be‘en designed primarily for operations involving prgdefined robot positions and is ideal for
pick and place operatior'\sfwith human interaction. Where feedback is required, VAL cannot

be used without addition, because it lacks the facilities to process complex sensory input,

The basic capabilities of the VAL language. are listed by Tomas Lozano-Pérez. in his

paper on Robot Programming [Lozano-Pérez 43]. and described by Bruce Shimano [Shimano
1]. Itis necessary for the reader to understand the value and limitations of these capabilities
in order to appreciate the improved env_i;onment developed in this project. For full details

of VAL the reader is referred to the VAL user's manual [Unimation 44).

VAL is an interpreted language, that is,. commands can be run with out the ne(_ad~for
timely compilation to an executabie format. A variety of comman‘ds are available, which
may be run directly from the monitor or stored and edited in a program file The editor
stores the comr‘nands in an internal format for quick interpretation and compact storage

Point to point motion commands are used in situations where only the final position
of the end-effector is important and where the path taken by the manipulator may be

disregarded. This type of motion on the PUMA s joint interpolated motion, that is, all

'

joints complete their actions simultaneously This is achieved by interpolating the control -

variables betweén the initial and final positions of the joint. The time of niotion is set
accordlng to the time required for the slowest jomt to complete its motlon The advantage
of this type of motion is that it provides the fastest controlled trajectory but the tool tip
often moves along a complex space curve, which is a limiting factor in operations requiring

motions relative to-an external object. -

- ™. o 27

To overcome this limitation, cartesian motion commands are available to move the tool

N tip along specified paths._ This kind of motion.is useful for generating str.‘aight line p;ths‘
and reduces the number of positions that would otherwise have to be taught, by utilizing

“ motions relative to a coordinate frame. However, to achieve such paths. joints may have

to be moved more than is necessary for the task. Moreover, sincea constant velocity is
implemented, joints may have to be frequently accelerated and decelerqted. an unnecessary

: waste of energy.

fn addition to these two types of motion commands, described above. the manipulator -

-,

* ‘'may also be moved in various other ways:
- . - The manipulétor may be moved incrementally to perfo'rm departures and relative
motions. - : \
- It may be moved to a position relativg to a defined point. useful for ap;;roaches
- Individual join,ts may be driven by a spe:;iﬁed number of degrees.
- : The opening of the manipulator’s hand may be controlled.

- Parameters used to control the trajectories, including the speed of each motion, may

be changed. ' ' .

_ VAL has the capability of specifying coordinate frames and motions relative to these
frames in addition to some manipulation of the frames. Most motions are relative to

! the world coordinate frame, situated at the base of the robot, which. may be offset or
- rotated about its z axis. It is frequently more important for the end point of the tool to
be precisely positioned than the ’Vmanipulator itselfi VAL accommodates to this need by
defining a tool transform which can be used to change the description of tools being used by

the manipulator as they are changed. However, a need to move in the tool coordinate frame.

while supported by the teach pendant, is limited to tool Z motion in the VAL language.

@ - Intéger arithmetic is accommodated by the normal operators of addition, subtraction,
mﬁltiplication and division. This together with the facilities of branching, labels, and
comparison tests provide the mechanism for looping and indexed operations such as pal-
letization. Subroutines are also provided but they lack any argument passing thus making

~ them somewhat limifed in their application. -

* VAL has several ways to allow the feaching of points or transforms to be used in
" ' programs. The teach pendant may be used to magually steer the robot to the desired
o ° . ' R 28

"‘

23" The VAL language-

23 The VAL language

¢ ‘\/\

sposition and that place t‘hen stored withg the HERE conlmand Alternately any of the
robots joints may be freed so that they may be manually ushed and moved to a desued
position. VAL also prowdes a semi-automatic method of teachlng a series of points to the
robot and have the robot: automatically generate move statements to move between the

taught points, thus a path may be taught in a fairly automatic way.

Finally the binary inputs and outputs can be controlled and monitored. providing &

means for synchronizing external devices with program execution. Interrupt service routines '

ma_y also be set up to start execution when ane of the binary input lines is activated. This
allows for guarded moves. thlat is. motions may be stopped or modified by the activation
of a Sensor. J

As can be seen VAL, ofl‘ers control of many of the PUMA's features and as a stand.
alone system performs rather well. However if the Puma is o be used in a more complex

environment extensions to the language are needed. ™/ ~ J

231 VAL-I _ .

L]
%

VAL-ll a successor to VAL offers many important extensions needed for a more complex
environment. The main improvements over-VAL are as follows. VAL-ll has a formal
communications capability, flexible path control, general sensory interfaces; and improved

computational facilities [Unimation 45). ’ \

As has been seen robots in todays applications seldom operate in isolaﬁgn making the

need to communicate with external devices-and computers essential. The facnlmes oﬂered
by VAL were of the simple on/off go/nogo type of binary interface mechanism. In VAL !

communication can’ l>e achieved via a formal nctwork This interface allows for the complete ;.

supervision of the robot system by a remote computer. The network protocol is based on

Digital Equipment Corporation’ DECNET communications network system. This allows
for error detection, retranlsmlssmn of faulty data. and the ability to use inexpensive RS-
232 senal lines for communication. The remote computer canh issue all VAL-1l commands
normally available to the user, communicate with user programs to provnde and collect data,

as well as upload and download programs. and monitor the status of the system. .
r

VAL-l offers a much more ﬂexlble control of the robot s path than dld VAL. Besudes the

" standard VAL joint interpolated, and cartesian rﬁotlons YAL-H has the ablllty to generate
|
29

»

5y

o

2

23 The VAL language

e

functionally defined motions. such as circles and arcs, by having procedures calculate man}
short motion request. from which VAL-Il will smooth using its continuous path feature.
In addition to this procedural motion VAL-Il also has a real time ability to accept motion’

corrections from some external device and alter its intended motion by these correctiort”

factors. The corrections are n in terms of their XY, and Z components and may bg

used by the controller in a cumulative or non-cumulative fashion. The corrections may also
be specified relative to the world’or tool coordinate systems.

> The real_time ability to alter robot paths leads directly into the ability to accept or
control sensors. The \sensory interface consists of the 19,200-baud serial line for the acces§
of corrective data from an éxternal device. This line canralso be used to monitor the robot's
position in real time. In addition to this line the biﬁgry and analog inputs and outputs
can be controlled and monitored not only by single instruction commands. but by process
control programs which run éoncu,rrently with the main user progral\'n. Such process control

programs have access to all_the VAL-ll commands that do not cause motion. They may

" monitor and control 1/0 lines and modify program variables or halt the robot This allows

for more complete control of sensory data.

“The teach pendant can now be accessed and used by user prog;amlé. This allows the
user to create flexible systems using the teach pendant to gui\de the positions needed by a
program. This is done through what is calied d'etached motion control. In detached motion
cbntfol the users program can release cgntrol of the manipulator while still executing. This -
enables all manual control modes to be used from the teach pendant while the user's
program runs and prompts for positions to be taught. There are even facilisie's to redefine

the effect of the buttons on the teach pendant.

»

The computational power of VAL-II has also improved, integer arithmetic has been re-
placed by ﬂoatmg poiat, and real valued functions and predefmed system constants added.
The increased ability to handle computatlons adds greatly to the procedural motion sub-
routines. i

All of these improvements over VAL make VAL-Il a very interesting system to interface
to a” host computer. Unfortunately VAL-Il was not available at the time of this thesis
research, and so the interface was done with VAL. How‘ever it will be noted that many of

theﬁﬁﬁahéer;tenls of VAL-Il can bé found in the implemented system.

©
S

30

n

Chapter 3 e © The System Environment

This chapte.r describes the system environment for programming the PUMA 2§0 robot
as seen by the end user. The user is basically concerned with the functionality of the
environment and how a]program may be created in it. Accordingly. the various commands
available to the user are described. These include commands for motion, vision: and
movement of the X-Y stage and microscope. Techniques for file management debugging

and editing are also descnbed

Ed

This chapter also indicates the types of .problems likely to be encountered by users, the

level of help available in each case and the methods of teaching transforms and positions

used by the robaot. . o s -, .

- - — . .
— - \ -t
3 . .,

3.1 Programming Menu Concepts .
i 3 :

It is recognized that most 'users of robots desire a friendly environment. which can best

§

be achieved by menu programming. With such a facility, the user is in a position to be

gunded by prompts in selectmg commands from a menu, ‘Every executed command results

. in syntactlcally correct inputs and desired changes may be made with ease.

Work on menu programming has been done by [Gomaa et al 46] to achieve an mte;actwe

‘programmlng envuronment for all stages of program development. Their system, as does

this system, permits the user to select commands while havmg access to all functions
at all times. The user may switch between executing commands, debugging and editing.
Commands may be selected by working along branches of a menu tree,” which may be

accessed by selecting the appropnate group of commands and-working through submenus

"

B

P

31 Programming Menu Concepts

For example. the motion group of commands contamns a submenu which defines various

arm motions. such as joint interpolated. and straight line motions.

"

The author’s work also resembles that being done by [Kirschbrown & Dorf 47] on
KARMA (A Knowledge based Robot Manipulator Syétem). Their system is a menu driven
system which uses the menu and graphic capabilities of the Apple Macintosh to pr;wide a
pleasant user inteiface. The system has an associated knowledge base ’to aid the user in
creating programs. If the system can not find the necessary information in the data base *
the user is promptgd for it. While the system is not connected to a real robot, robot actions .
are instead simulated graphi;:.:ally on the screen. A combination of this graphic interface\
and simulation along with the actual control of a robot and its associated devices is the

*

eventual goal of any high level robot. programming environment,

~

e
3.1 / " System Features

P4

As previously intimated. a system comprising of diverse equipment for robotic appli-
¢ations depends on proper supervision and the collection and interpretation of data. The
advantages of a centralized environment for supervisory control and data acquisition are
refleCted in better management and improved productivity. The system developed t;y the

author is a suceessful implementation of such an environment.

- The system has been entitled the RAP (Robotic Applications Programming) system
to indicate its ease of communicating with the PUMA robot in VAL, the X-Y stage and’

_ the microscope. Additionally routines providing vision bnmitives permit data from a vision

system to be,obtained for use in a robot program.

RAP permits the user to see the progress of the robot's movements as thé program is
developed. That is. in one of its modes, |IRAP will exeéute every command as it is entered,
this is especially helpful in developing sequential portions of a program as the robot is
always only one steb away from the next step to be programmed. The user then only has
to visualize one program step at a time. This means that the user is free to concentrate
on the task of optimizing the robots movements without the distraction of programming

details. or visualizing where the robot might be after a long sequence of commands.

32

L.

“w

Lo R
31 Pr‘ogrammmg Menu Concepts

'

3.1.2 Command Featurgs

"

Commands may be ordered from ‘the menu by typing comm@‘n‘d names as desired.
\hese typed commands are parsed by a key tree matcher, whenever a space or end of
Iin;\character is typed. On comparing the command ordereq with those available in the
menu. the matcher will automatically complete the desired command. as soon as 1t can be
uniquely identified. This means that most commands may be orde‘redkby typing t;nly their
initial letters and a space. This minimizes the typing task, while simultaneously eliminating

spelling errors. :

Addifionally. the matcher will help the user at any stage of the procegdings. Whenever
a question mark character is typed, all subsequent possibilities which are then available
Iwill be fisted on the screen. This means that a list of all commands may be generated by
typing a single question mark character. or all commands starting vyith a particular letterﬂ

may be listed when that letter is typed and followed by a question mhark.
]

Some commands cannot be completed without user spe‘ciﬁed. arguments In such cases
the matcher will wait for the arguments and ensure that they ;Pe of the correct type and
appropriate range befofe executing the command. In a manner. similar to that descril?ed
above, a question mark character may be type(j to obtain help with the argument being
awaited) . ’ . | - ‘

Various modes of operation exists in RAP. Commands may be run immediately.on line,
with the option for recording the (’:ommands simultaneous with their execution. Alterna-
tively, commands may be recorded in an off line mode This latter alternative frees the

. . . . & - .
equipment while programs are being developed. which is an advantage under conditions in

which the work station equipment is being utilized The former option offers ready verifi-

cation of each command as ordered This is useful i sequential work, because observation

of the robot’'s movement simplifies the programming task.
i

Recording commands, as they are executed. provides a number of interesting features.
If the user 1s not satisfied with the result of a command executed. a change in the robot's
actions may be desired This possibility 1s provided for by allowing the user to backup the
robot as far as may be needed before commands are reissued. The incorrect commands may
then be completely overwritten or supplementary commands may pe inserted to achieve

the desired modifications. ;

e
s

31 Programming.Menu Concepts
1] . ‘ -

., After recording a set of commands into a program ‘fjle'the user may wish to observe
the execution of this command file in its entirety. This may be done in a number of ways.
The user may run the program’at normal speed or single step through the program line
by line. At any point in execution the user may abort, pause of eve4n backup through the

:proéram. Pausing a program is very useful when runing ap old program in which points
may require updating. These programs“may be paused as they are about to reach the
! “) . * old pomi. the new one taught and the program resﬁmed Backing up a program although
| : hévingv no logical significance is extremely usgful in debugging a program as the rol;ot may
.’ be backed up for a command or set of commands to be retried. o ’
s ’(. ‘ | |
3.1.3 * Debugging 'and Editing

<

: ~ " In addition to these quite powerful tools for controlling'the flow of a program., vpoints to

A K , break the flow of a program may be set This feature’is useful in debugging. and for adding
_ : B dding.

. demonstration pauses to a program. These points called break points can be activated or

: deactivated before or during a program'run o

@ ’
Programs need not be independent They can be created to be subroutines or proce-

created to pick up an objeét The object to be picked up. the method of p-ick up and any

.
«

.. special approach to be used n picking up the object may all be specified via arguments to"

R , ' the pick up subroutine. This provides the opportunity to create quite complex and f)owérful
' subroutine hbraries - . C

In addition to subroutines, branching andconditional testing are provided for These
6 additional facjlities may be ysed to create loops. to branch on user input and sensory data
. orto handle error conditions. Sensory data may be acquired from the PUMA’s | /O module.

the microscope or the camera system.

- . 'Editing of recorded programs can be done after or indeed dunng therr development

: " L The editing 1s line oriented That is the user has the ability to change. insert, delete or list
- ’ command lines In the cases of deleting and hsting’command hnes a range of command
N . .+ lines may be specified so that rep;atitwe commands to delete a series of lines neegil not be
E . < given When inserting a line, RAP“automatlcally\gu__a_nges to insert mode where all further

commands are inserted until the user terminates this mode with the "insert off” command

N

34

dgues These subroutines unlike VAL can take arguments A typical subroutine may be

PR
-

\'. - '
' \ N

4 4 % ? . s)

- 3.2 Systéem Commands

i . t “ b
as described later.- - - ’

v .
.k: - .
N

3.2 System Comman\g’is

o

Having introducéd the main features of RAP the commands will iow be described. The '
commands are sorted according to their function and grouped with other commands which |
offer similar actions S

The first set of commands to be descnbed are those used to control the communication
channels to the various devices The commands that deﬁne'ioéations for the robot are
discussed next, followed by\commands which cause motion of the PUMA to these locations.
Next are the commands for moying the X-Y stage and microscope. Following the motion
commands are commands for debugging and ediu.n‘g. conditional branching, and vision

processing. as well as other implemented VAL commands The last section of commands

are a special group of commands developed to tailor the enviconment to theqtask of hyblri(l

.circuit board repair The commands’ are listed by section in alphabetical order and are,

shown in bold type. arguments to the commands are given in < italics> and enclosed in

" angle brackets The valyes that the argument fields may take on are also give in the text

< - -

in #talics.

321 C hannel Commands

! -

o
’

A N

OPEN <channel> , -

. Opens a channel for communication. < channel> may be val or stepper If for some

B

reason the channel car not be opened the user is infarmed of the failure by an error
message printed on the user's console The VAL channel is used to talk to the puma
running VAL, The‘OPEN VAL commaﬁpd must b'e issued before the robot will respond
to any robot command or a channel “unopened” error will be generated. Sinylarly the
sttpper motors will not respond, to any stepper command unMTEPPER
command 1s given . \ "

OPEN VAL ' . - The robot channel is opened.

OPEN STEPPER - The stepper channel’is opened. '
i3 3§
ﬂ/ . ‘ '

\

& 32 System Commands

-

CLOSE < channel.- . o " :

Closes a,communicataonZ;aﬁnel. as n the OPEN command the <channel/> can be

. P ‘
val or stepper Any errofs—encountered in closing a channel will be reported to the

ngser.

EXIT, QT . . "
. 'The system is exited The exit and quit command “do the same thing. both ‘are
p’rovidéd for the user’s convenience. - ' K , .
START.VAL ' R .

This command starts up the PUMA controller runing VAL It should be given after -
. the'OPEN VAL c9mmand, It prompts the user to turn on the controller if‘ it is not
aiready on It then r\esponds to the VAL start up prompts angl prompts the usér to
turn on the power to the robot arm and set the robot to computer mode. The PUMA

robot is then calibrated and placed in its “réady” position.
\ -

STEPPERIINIT N Y
The stepper m'otor controller is initialized and the stage and micréséobe drivé;,to
their home positions. It should be used after the OPEN STEPPER.cdmmand It
sets such paralﬁet‘ers as the .st'ep s'iz;: (balf or full). the acceleration and deceleration
.speeds and the maximum cru‘isé speed of the motors. This command will also reset
the stages coordinate frame to its home position. The Kome position of the stage
is when the stage hits both its X and Y limit switches which is considered its (0.0)" -
positioi The home position of the microscope is when the height of the scope is
greatest and the zoom fattor is least. T'h‘e command may be Qsedh at any time to

reset the stages coordinate frame if its accuracy is in doubt

7

VISION -) ‘
'I:he Vision command takes the user into the vision subtree where all the vision
commands can then be executed Once in the vision subtree all editing functions
must be performed wit;!‘their control key equivalents as explained in the debugging

\

and editing section ' .

32 Svstem Commands

3.2.2 Point and Location Commands.) » 4 \

.
\

§ s .

o .-, . v .

’ . ~ These commands deal with the teaching of points and transforms Points and _trans—
forms are VAL's way of representing locations in the r':)bot's space While a transform and
. a "p%{nt may represent the same physical location their internal representation is different.
A point 1s defmed by the six joint angles of the robot at the desued location. A transform
« is represented by the world X. Y. and Z coordmates and the three wrist orientation values
.0, A and T of the desired location As the point representation stores the actual joint
angles 1t ts more accurate than a transform However the gain in accuracy is offset by
. . " the limitations of manipL/Iatmg poinis A transform can be shifted and have computations
R) perfo}med on-it before it is used“in any motion command, there I1s no facil@ty for this on
points ’
‘DEFINE ’<type> <name> < data> . & . -
‘ ‘ Allowg the manual creation of a point or transform according to the <type> speeifiéd
S The name of the point or transform is taken from the <name> field. The <data>
field'is a six element list in joint angles for a point or in X.Y.Z,0.A,T format for a

transform

DEFINE POINT FEEDER 30 20 40 0 90 -90 . %

St The point feeder is defiri%d according to the

' . joint angle data. B

\ . 4 ! t

* POINT <name> ' .
The current pgsition of the rohot is stored under the the name given by the <name>

»

. field in pre€ision point format. 1

- ‘ ~ POINT FEEDER ‘ The 'posi'tion of the rebot is ‘recorded' as the

feeder position as a point?

R " TRANSFORM <name> .
' The current position of the robot is stored under the the name given by the <name>

‘ . field in transform or X.Y.Z.0.A.T format.

' TRANSFORM FEEDER “The position of the robot is jecprded as the

4) feeder position as a transform.

37

o

3

°
&

° . ‘ : ' 3.2 System Commands
3.2.3 Motion Commands ,
7 — ‘ . Y '
ACTIVATE <what.: ’ o .

Activates the hand of the PUMA or a suction pump as specified by <what>. If
« what_- 1s given the value hand thé robots hand will be closed. Suction can also . -
be turned on by setting <what - to suction The DEACTIVATE commiand has the

opposite effect as described later

ACTIVATE HAND. The robots hand is closed.

ACTIVATE SUCTION

[

The suction pump is turned on.

I3

ALIGN
Causes execution of the VAL alignment command. This causes the tool of the robot

to be rotated so that its Z axis i¢ aligned parallel to the nearest axis in the world

coordinate frame.

APPROACH <how> <where> < distance>

Approaches to a distance given by <distance> the location specified by <where>."

-
.

The type of motion is specified by <how>. Tgue argument <how>> may take on
the values of transform, point, straight transform, straight point, or tool. The first
two allow for jbint interpolated motion to transforms and precision points, while the
second two allo;u for cartesian or straight ime motion to transforms or points. These
four methods of approach all use the tool Z fixis as the axis of approach.

o

APPROACH TRANSFORM VACUUM 60
~- ' An approach is made by the robot in a joint
interpolated mode to a position 60 milimeters .

in the tool Z direction from the point vacuum,

APPROACH STRAIGHT_POINT VACUUM 50
) - An approach is made by the robot in a straight
line motion to a position 50 millimeters in the

tool Z direction from the point vacugim

38

. 32 System Commands

The tool mode allows a vector to be given instead of the regular distance argument.
' T;hics allows for an approach to be then made from any direction by supplying an
appropriate vector. It should be noted that this last taol approach is not offered from

’ ’

VAL Its implementation is discussed in chapter 4.

APPROACH TOOL VACUUM 100 0
An approach is made by the robot in a joint
interpolated mode to a position 10 millimeters .

in the X direction‘from the point vacuum.

CALIBRATE PUMA
Th#:VAL calibrate command is executed. The robot must be in the nest before this
command can be executed This command need only be used after the robot is Jimped
and placed in the nest, as when the system 1s started by the START VAL command
‘the robot arm 1s automatically calibrated and put into the ready position as described
, Previously o ' . ’ ,

DEACTIVATE < what> ‘ _ ,
performs the action opposite to ACTIVATE. The robots hand is opened if <what>

1s set to hand and the suction is turned off if <what_- 1s given the value suction.

DEACTIVATE HAND Opens the robots hand
DEACTIVATE SUCTION Turns the vacuum pump off

DEPART <how> <distagce> ‘)

The arm performs a mot}on relative to its current position, by an amount given in the
argument <distance>. The type of motion is specified by <how>. The argument \
< how> may take on the value_? Joint, straight, or tool The departure is carried out
in the direction of the tool's negative Z axis in joint interpolated motion or straight

(cartesian) motion as specified

DE?ART STRAIGHT 20 ‘ The robot moves in a straight fine 20 mithime-
. ters in the direction of the tool’s negative Z

axis.

39

32 System Commands

The too/ option does not al]o{lz the specification of a < distance> argument instead
the departure vector is takeri"fa:é' ‘the negative of a preceding APPROACH or TOOL
motion command. If an alternate departure is sought the TOOL command:can be
used instead. Thus' depar'turqs can occur along a vector rather than alwaysialon-g

the tool Z axis, This is an extension of VAL and its implementation is discussed in
) §

- chapter 4.

. DEPART TOOL The robot moves in the opposite direction to
the most recent APPROACH or TOOL com-
mand. ‘

§

DRAW < dx> <dy> <dz>

Causes the VAL draw command to be executed. This moves the tool along a straight

.line, a distance dx in the X direction. dyinthe Y direction and dzin the Z direction. The

tool orientation is maintained during this motion. ‘ .-
DRAW 10 00 , The tool is moved 10 miliimeters in the X
' direction

DRIVE <joint> <degree> <speed>

speed.
. y
DRIVE 1 -20 75 The robot’s first joirit is driven in the negative
- direction by°20 degrees at seventy five percent
’ a of the' monitors speed.
LIMP ’

The indicated robot <joint> is driven by the number of degrees given by <degree>
at the specified <speed>. The joint is given by an integer 1 to 6. The degree can be

@ negative or positive real number and the speed a percentage of the current monitor

Executes the VAL limp command. This causes all of the PUMA’s joint to become

free. It is used when there is a need to manually place the robot into its nest. Caution
should be taken to support the PUMA when this command is used. The PUMA will

YU Ly * #«
be left uncalibrated after this command. C

$: e w

o

EASTES

P

32 System Commands -

MOVE <how. < where>' ,
Moves. the robot to a location and orientation specified by <where>. The type of

motion is specified by the <how> argument. < how> may take on the values of trans-

form. point, straight_transform. or straight_point. This allows for joint interpolated '

and cartesian (straight) motions to both transforms and precision points.

MOVE TRANSFORM VACUUM Moves the robot to the transform pomt vac-

- ‘ uum, using jomt interpolated motlon
MOVE STRAIGHT POINT VACUUM Moves the robot to the preasuon point vac-

uum, Gusmg straight line motion.

NEST PUMA) \ ’

- This instruction can only be used after a READY_PUMA instruction which is enforced
by VAL. The command will place the PUMA arm in its nest. The speed should be
less than 20 when placing the arm into or bringing the arm out of the nest.

READY._PUMA . o
Moves theJrobot to a ready position above the Wm'ksepace. This forces the robot’

-

into a standard configuration regardless of.its location. This command must b? used

before the robot can be nested.

SPEED <what> < percentage>
Sets the speed of the PUMA or X-Y stage as indicated by < what> to a percentage

of top speed. If <what> is given the value puma the PUMA's speed is set. The

speed of the X-Y stage is set by giving <what> the value stepper. This sets the
speed of all four motors controlled by the big stepper, but by using a speed command
just before a command to the stage or microscope the speed of the individual motors
can be controlled. However if a s;>eed command is 1ssued while one of the motors is

S

moving the speed of that motor will change as well.

SPEED PUMA 20 Sets the PUMA’s speed to 20% of its maxi-
. . mum. h
' SPEED STEPPER 20 Sets the stage's speed to 20% of its maxi-
mum.

) i . a

]

32 System Comman?is

TOOL dx>"<dy> ~dz- : "
This command is an extension not originally supported by VAL. It offers straight line

" motion along a vector relat'i';é to the tool coordinates. The robot tool will be moved
along a straight line. a distance dx in the ‘ioo! X direction, dy in the tool Y direction
and dzin the?ol Z direction. The orientation of the tool is maintained during the
motion. The implementation details a;re given in chapter 4.

- .
3.24 Motion Commands for the Stage and Microscope

-

'CHECK Zwhat>
The CHECK command provides informatior; about the current state of a motor con-
trolled by the stepper motor controller. “The user ca}r find out if a motor has been
stopped, or_is still moving. If the motor is still moving the amount still remaining
to be moved may be determined. The motors that can be checkzd are specified by
the <what> argument which may be given the values tablex, tabley. zoom or height.
Tablex and tabley are used to check the stage’s progress in a motion while zoom and

height refer to the microscope’s zoom and height adjustment/notors respectively.

CHECK ZOOM ' Reports to the us/e{ the current state of the
~ * microscope’s zoom control motor.
A 3
" . FREE <what>- ' : Co

This commahd is used to halt the motion of the stage or microscope motors by
disconnecting their power supply. The stage may be halted by setting <what> to
table while scope may be used to halt the microscope. It is recommended that after
issuing a motion command that the free comr.pand be used to isolate the motors,
while they are stationary, from: their power supply in order to avoid over heating
proﬁ'lems.. A new motion command will automatically restore power to the motor or

motors affected by the command. .

FREE SCOPE The two microzcope motors”are disconnected

0

v

; . from their power supplies until the next mo-

. tion request.

-

e

-

0

9

° 3.2 System Commands

SCOPE <motor> <distance> <speed>
This is the command to adju§t and focus the microscope: The <motor> speclfvcatlon
can be zoom or height to change the microscope’s zoom or focus respectively. The
distance is an absolute focus or zoom setting.” The focus can be thought of as the
height of the microscope below its home position in millimeters. The zoom can be
thought of as a percentage of the scope’s maximum zoom capabilities. The <speed>
argument is given as a percentage of the top spgea of the selected motor. Speeds .
must be kept relatively low (below 50) when moving the microscope to avoid motor
overload and the consequéntial loss af calibration. The speed field ié used to updafe i

the selected motor's speed from its initial value or a previous SPEED command.

o

<

SCOPE HEIGHT 50 20 . Move the microscope to 50 millimeters below
its home positibn at 20% of its top speed.
SCOPE ZOOM 30 20 Adjust the zoom to 30% of its maximum at
~ . 20% of its top speed. ‘ /
STAGE <sub command>)

This is the command for moving the stage around. There are three sub commands
that are offered for this purpose. The sub ‘commands are move. where and té_cép.

The move option takes an additional X and Y argument. The X and Y arguments
can be given in millimeters or either may be left as the literals X and Y in which case
the values for X and Y will be taken from some global variables. These variables can

be set by some of the ,vision ”c‘c»m,mands to achieve feedback from vision routines.

The setting of these variables is discussed later.in the vision commands AREA and =
SET_DISTANCE. The stage performs an absolute move to the given X and Y values
. - |
STAGE MOVE 1020 The stage is. moved to the coordinates 10 20.
» a ‘ The stage will not move if the stage is already
‘ at this location. /
STAGE MOVE X 20 - The stage.is moved to the coordinates X 20,
., where X will be taken from'the global.variable -
< - ‘ , set by a vision command. The stage will not - -

move if th%;'étage is already at this location.

—

. B ' N - .43

1

~". is because it-would be a waste. and inhibit the modular development of subtrees if every

’
. B
~..
Al

37 System Commands

-

The where option can be used to find out where the stage is in the stage'sh local

coordinate frame.

STAGE WHERE Reports on the stage’s position in its local

-

N coordinate frame.
Y ° {

The to_cap command is an example of a specialized command and it will be déscribed
e

later in the section on specialized commands.

TABLE <motor> <distance> <speed>
The stage is moved by a relative amount as specified by the <distance> argument
whnch may be positive or negative. The speed is controlled by the < speed> argument
and is given as a percentage. Motion may be in the X or Y directions as give by the
<motor> parameter values tablex or tabley respectively. The staée's relative mo“tion
is used to ypdate the stage’s absolute position so that the STAGE commands will

@

~— still work correctly. .
\ABLE X -20 30 Move the stage by 20 millimeters in the -X

direction at 30% of its top speed.

This concludes the section of commands that deal with moving a piece of hardware.

The next sectvon wlll present the commands that deal with editing running and debugglng

of programs.

- 1

”//5./2,5 Debugging and Editing Commands T : : .

~—
-

* The following commands fomll the heart of the system. These commands are a little
different from the other commands in that they can be called in two different viays Firstly
they can’ be invoked like the other commands from the menu by typmg them in at a
command fine prompt, and secondly they can be called by issuing a control character,
When the system i$ at its top level. that is, not in a separate commmand tree such as the

“Vision tree, all the editing and debugging commands are available from the menu. However

when the system is in a subtree the commands are fo longer available from the menu. .This

subtree had to duplicate the menu entries of the top level menu tree. Instead a method was

. Voo : : : : , “

- .
- . - s
! . .
= P C .
‘ .
.

e

Yemn

32 Svstem Commands

devised to catch control characters and have th=m interpreted ‘as” top, level menu entries.

This means that a subtree can be developed with total dlsregard of the top level menu

_ entries, and yet, when completed and linked into the system. still have full access to all of

the editing and debugging features that make the system what it 1s -

The following commands may then be thought .of as global commands available at all

times. be it via the menu or corresponding control key. It was found that when using’ the

: slyséem it was often more convenient to use the control keys for the editing functions than

typing its menu entry. The control key equivalents are given next to their corresponding
command below) ' o

1

4

“H HELP < what> .) S

The help command may_be used to get information, on the purpose and use of 3

command It will read in a_help file and using the UNIX functlon more wull display |t

on the screen. The user may do HELP HELP to get a fist of toplcs on which help is

;

available. . . o

‘B BACKUP <for whdt) < line nuinber> o .

This command may be issued while recordmg a program to cause the robot to retrace

its path back to the specnﬂed program llne The <for what> argument indlcates that
the user wishes 1o over write the following code or wishes code to be mserted before

the specified line number Thus the <for what> argument can take on the values

to. overwﬁte or for. msert if a backup is done to insert some code then the user

must mdocate when thns insertion is to stop by issuing the INSERT OF F .command

L

as discussed later - o

BACKUP TO.OVERWRITE 10 ‘ .! The program counter and robot are backed up
' toline 10. Any recorded code at, and after line

.) ' 10 is over written.c J
BACKUP FOR.INSERT 10 -The program and.robot are backed up to line

) 10. Commands are then inserted before line
o ;156 until the INSERT OFF command is given.
\ ' . s ' 1

»

~

o - . 32 Svstem Commands

BREAK
This command may be placed anywhere in a program. If the break is activated by the

. - *,
SET BREAK ON command then execution of this instruction will cause the program

to halt and the user will then be asked how or if to proceed. The same set of options

o

are then available at this point as when single stepping or interrupting a program as
described below. If the break command is not activated (SET BREAK OFF) then the

BREAK instructions are simply igrored.

-
o

B

~C INTERRUPT
Control C is taken as a user Interrupt to stop wha}ever is happening. A prompt\\is
‘issued and the user may then type a single fetter to indicate what action should l\)e
taken. The options are “a" to Abort a running program. “b" to Backup one step in
_running program, “p" to Pause a running program “s” to start Single step mode, “r”
to restore‘norm‘al Run mod;:, and “E" to perform the Error recovery or system reset
function. When in single step made each instruction is listed to the screen and the
_user given the same optiqr}s\as described above. Any other key will cause execution
of the next instruction in the program as if in single step mode. Thus a user can
step through a program line by line by entering single step mode and'tf;en simply
hi_t;ifg”lhe space bar for each line to be run. if a program is aborted or paused the
user is placed back in the top level of the key tree matcher If the pause command
was used the user can change whatever may be needed and the program resumed
with the CONTINUE comniand described below. The system reset option provides a-
fail safe mechanism for error\recovFry‘ Any open channels will be closed and running
programs abosted. The user is then placed in the top level of the key tree matcher
with the cum;nt program ready for addition, change or execution as the user may see+
fit. ‘ |
' o
CONTHNUE <where>
This command is used after pausing a program. The progr;m rﬁa;y be restarted from

any cbmma_nd line. To restart it from where it left off < where> should be set to run

or fromif a new continuation point is to be specified.
- &

CONTINUE RUN A paused program continues its execution,

46

A

3 2h System Commands

"
CONTINDE FROM. 10 3 ' A paused program resumes its execution from
line number 10. ' .

" “D DELETE < what> ’

This command is used to delete command lines or VAL locations. If <what> has
the value command._lines then a range of command lines must be given and will be

deleted. If instead <what> is set —tq place then a position name should be given-to

P}

delete a location.

=2

DELETE COMMAND-LINESg 9 The command lines two to ninel inclusive. are

-

deleted from the program.
DELETE PLACE FEEDER <7 A point named feeder,!s deleted.

“E EDITLINE </line number>

The commiand line pointer 1s moved to the given <line number> whereupon up to "

ten lines of commands are displayed to prbvide relevant context. <Any previously

1

recorded commands after the specified line number will be replaced line for line by .

any subsequent commands The user may use this command to move around and
change things in a program file but: this should be done only in an off ine mode as,,
the robot does not follow as the command line pomter is moved around. as happens
for the BACKUP command The user may return to the end of a file by giving a large ,

command line number and the system- wnIl ‘automatically set the pointer to the end

of file. S
,f//,/ s “, ,
EDITLINE 20 ~ The command pointer is set to line 20 and
lines 10 to 20 are-listed for the user to view.
“\
“1 INSERT] ’ | ,

This command is used to enter and leave insert mode. To enter insert mode the'

user must specify the line which the insertion is to precede. The insertion is then,

.made and the mode 15 exited using the INSERT OFF command. This command can

be used only if the user is in record mode. Note that the robot does not follow the
+ command line pointer as it does with the BACKUP FOR INSERT command.

47

ts .

o . ‘ o 32 System Commands-

L . INSERT BEFORE.LINE10 Commands are inserted before line 10.

. - " INSERT OFF :) The insert mode is left and the command line
/ pointer is set to the end of the program file.
. Y :

‘ ‘ “L LIST <what> ‘ _

2 This command is used to list command lines and VAL locations The </wh'at‘ >
parameter may be set to command_lines. all. places or named place |f command

~ lines are to be listed then a range of line numbers 1s expected while a poiﬁt name

) . *.» must be given in the named_place option. The all_place}; option will give a listing of

T * all carrently de‘fine’d points. ; ‘ ‘

’ LIST COMMAND LINES1020 All existing command lines betwewh"lmes 10

to 20 are listed) o L
LIST NAMED PLACE FEEDER The location feeder is shown if it exists.)
y > LIST ALL PLACES' o All defined locations are listed.
v | . - N
R RECORD < mode> .
A o This command switches the user Between the record and non- -record modes.’ The
' <mode> may lfe set to on or off.
’ RECORD oON ‘ Enter record mode.
.) ‘ RECORD OFF “ ’ Leave record mode. i
. BN - N
RUN <start number> < end number>

- . The run command 15 used bto run a pr(;grém-thai has been loaded into fﬁemory. or
' v is bemg recorde;i .and edited. The program will start execution at the line given by -

< start number>> and end either at 'if'en\d number > or the last program line depending

R) on which 1s smaller This means that thé’ user does ﬁot have to remember the exact

" “number of the last line of a program, instead he may just give a larée number in the

' . <end domber> field. ‘ S o
. RUN.1 99 . The program in memory is run from Iine}
. S L 1 to line 99 or the last hne of the program
\ S B o : whichever comes flirst.

L ’ 0 - ' - 32 System Commands

7

SAVE - what- - file name.. L S

This command 1s used to save a command or position file. Act:ordmgly

. By e

R

what > may

be set to command _file or position_file. A command file will be saved under the given

file name with the extension of .PLA added to indicate that it 1s a playback file. The

extension of POS will be added to all position files

SAVE COMMAND FILE'DEMOI) The current.command file will be saved under

8
- o the name demo1 pla

S ‘ der the name demol pos

SET < what> ‘ \ .

SAVE POSI TION-FIU:J DEMO1 All currently defined points will be saved un-

This command is used to set various enviwonment variables. The argument <what >

.) may be set to break. single_step or edit.only. The break option is used to activate or

deactivate the BREAK command. Likewise the single step mode may be switched on «

. or off. The edit only mode allows for the direct writing of programs with out the actual

* execution of robot motlons This 1s very useful if a set ﬂof’workmg subroutines has

already been developed and i is ready to be used ina larger program The subroutines

can be qinckly recorded wnhout having to wait for any lengthy execution which magh!

otherwise be-ifivolved The lengthy execution is not a result of a slow programmmg

environment but the result of the inherent slowness of mechanical equipment such as

the robot and stage or slow vision processing. s

/ .
SET BREAKON . ., .- The break command is acfivated.
® SET SINGLESTEP OFF ° Single step mode is exited.
) SET EDIT ONLY ON - Edit pnly mode is enfered.
» \ ’
STATUS

' The STATUS command can be given to list what tﬁe present modes are That is

" single step, break .record and edit only as well as the state of the VAL channel are

o
. shown to have states of on or off -

USE (Ltype> <file name>

o

33

™
‘ y+ 32 System Commands
This command looks for the specified file and loads it into memory Thé types of

_files available are command files, position_files and capacitor files Capacitor filgs are

treated later in the special commands section

B

US'E GOMMAND_FlILE DEMO1 The command file demol.pla is loaded into
- .) , - ‘memory if it-exists and error messages are |

given otherwise,

» .

3.?.6 Conditional Commands ‘ \ . ®

.

"The following set of commands are used to perform branching and and flow control of
- L * L

a program.

a

GOTO </line nymber> * i ' 2

.An unconditional branch is made to the </ine number> specified. This can be used

for infinite user terminated loops or for a branch after an IF command.

GOSUB <name> <argument list> .
The subroutine specified by the <name> field is called with the <argument list>.
The <arglj}nent list> is comma separated and may contain less arguments than the
routme is expecting. In such a case the default strmgs in the subroutme are used in
place of the missing arguments., The argument substltutlon occurs in the order that
the arguments are given in the list, therefore. if arguments other than the last in the

-

list are to be omitted commas must be used to fill thelr place.
<

'GOSU.B PICKUP "FEEDER..HAND" - The subroutine pickup is called with two ar-
- guments feeder and hand The second and fi:

nal arguments have been skipped and will take

their values from the default stri;lgs in the

subroutine. An example of such a subroutine

. L. can be seen in Chapter 5.

. v i 32 System Commands

IF <flag.- THEN :line number.. |
A conditional branch is made to < hne nqmbém if the <flag ~ is true, otherwise the
following instruction 1s executed The presently implemented flags are answer, c1 -
cd and error. Answer s set true if the user has answered the most recent prompt
in the afﬁrmative)_ C1 - c4 are set true if the‘correspondmg VAL nput channels are:

high, and the error flag 1s set true if VAL has reported an.error

» \
-

_IF ANSWER THEN 20 .l the user has answered the previous prompt

' < in the affirmative a branch is made to line

g : ~ . 20. otherwise tire following instruction is ex-
\) ecuted. tos .

< Lo S
- WAIT < condition>
The program waits until the cond#tion is satisfred’ The presently implemented condi-
ticans'are answer. capacitor, ‘and stége The prog'r'am will wait for the user to answer
yes or no to a p'rompt“lf answer is set as the condition, or for a capacitor number if
c.apacitor is set as the condition In both cases the wait will continue until a vahd
.. argument is entered by the user. The final condition stage allows a user program to
synchronize actions between the robot ‘;nd stage by waiti;lg for the stage to complete
its motion. \

'WAIT STAGE The program waits until the stage has come
to a halt, whereupon execution of the progrgr;v

continues with the next instruction,

:TYPE < prompt>
The string specified by <prompt> is tiped at the user’s terminal. This command is -

used to prompt the user for any terminal input needed by the program.

TYPE “Would you like to continue the demo (y/n)"

TYPE “Please enter a capacitor number”

51

32 System Commands ?

3.2.7 Vision Commands

The next set of commands deal with the control of the vision system. These commands
are an example of a separately developed tree of commands. These commands are accessed

by issuing the VISION command.

a

ALLOCATE GRINNELL
This command s used to gain access to the grinnell monitor which is controlled by

the VAX 780. It should be the first vision command issued.
e g

i

CAMERA < frames~ < channel>- . ‘
Grabs a camera’s image and loads it into the camera i}nage buffer. The < frames>
argument specifies how many frames are to be averaged into the final image buffer.
The -~ channel>- argument is used to select which of the three image planes (red.
green or blue} the image is to be stored on Channel 1 is red. channel 2 is green
and channel 4 1s blue Images can be grabbed onto multiple image planes by giving
a channel number that is a sum of the desired channel numbers?hat is channel 6

4

2+4 will give the gfeen and blue channels.

CAMEKA 3 1 ' ' Three frames from thé camera are averaged

onto the red channel

{

DISPLAY <what>
Displays an image specified by '< what> on the monitor. -.what~ may be cam-
era_image. file image or work image The camera image 1s the image buffer associ-
ated with the CAMERA command The file image is associated with the READFILE-
command described later and work 1mage 1s the ymage that can be manipulated by

vision commands such as AREA. as described in the special commands section,

DISPLAY CAMERA IMAGE ‘ The camera image is displayed on the grinnell

monitor. \

52

32 System Commands

X

ERASE

o
Erases a selected channel, as selected by the SELECT CHANNEL command described
. later.
EXIT o , ' {

Exits from the vision commands back to the main command tree.

o

FREE '
Prints a free message on the grinnell so that. other users may be notified that they

may now use the grinnell.

’

HISTOGRAM ‘ o,
~ Performs a histogram of the work image so that thresholds may be determined.

1)

LOAD <what> '
N -~
Loads a file_image or camera image into the work image as specified by <what>.

I"

LOAD‘ CAMERA IMAGE The camera image 1s copied into the work im-
}

age.

'READFILE < filename>

Reads into the file image a stored file as specified by < filename>-

READFILE TEST PIC Reads a file czlled test.pic into the file image

9 - buffer. .

SELECT CHANNEL <channel> > °
Selects a channel or channels that will be used by subsequent comm}nds. As ex-
plained in the camera command the channels are numbered 1. 2. and 4 for red, green

“and blue respectively. and channels may be combined additively. .

WRITEFILE < filename>

Stores the work image into a file given by < filename>>.
El

¢ -4

’

-

32 System Commands

0

WRITEFILE TEST.PIC -~ . The work jmaée is stored in a file test.pic.

[N
‘ I3

VIEW
This command displays continuously the image:seen by the camera on the monitor.

It can be used to set up the camera and lighting by providing immediate feedback to

changes made

328 More VAL Commands ‘ .

This next set of commands are’other.VAL commands that have been included in the key
tree matcher. It should be noted that not all of the VAL commands have been implemented.”
It was found that for the work cell at hand the commands implemented were sufficient.
However should the user wish to have a more complete selection of the VAL commands
two optioz are provicfed. The user may wnt'e VAL code anc! then down load it and then
run it. or they may enter VAL directly and run any VAL commands as if directly connected '

to VAL as explained in the VAL command described below.

BASE <dx> <dy> <dz> <zrotation> .
Causes the execution of the VAL base command\This changes the origin of the VAL -

reference frame. ,
BASE 100 0 0 90) The robots world reference frame is shifted
' by 100 mm in the X direction and rotated by
. 90 degrees around the Z axis. ~
CLEAR_VAL) .

This command is equivalent to the VAL zero command. It causes all VAL programs:

and positions to be erased. ' !

DELAY <time>

Causes the PUMA to wait for a specified time in seconds.

54

3.2 System Commands

- E] -

P

DOWNLOAD <program> L.
This com,manﬁ can be used to down load a VAL program stored on the host to the
‘ "VAL controller. In effect the floppy disk drive of the VAL controller is replaced by the
host’s hard disk. This command is also used to download interruq\sewi routines

as these must run on the VAL controller to be activated at interruptrates.

DOWNLOAD TEST ‘ A VAL routine called tes\t is down loaded from

the host to the VAL controller. R

1.
1

’ . N \‘\,
EXECUTE VAL <program> . - 3
Starts a VAL routine that has been previously down loaded running. control will not °

. o7
be returned to the key tree matcher until the VAL routine has stopped. . -

EXECUTE.VAL TEST The routine test is run on the VAL controller.

OUTPUT <line>
This command causes one of the VAL controller's output lines to be set or r:eset.
If <line > is positive the corresponding line will be turned on, and turned off if
<line> is ‘negative. This command allows the control of the output lines so that

communications with other devices is possible.

* " OUTPUT -3 ~ The output line 3 is turned off.

»
>

2 READ </ine> ' / .
R This command is used to test the status of an input line. Thi's is pseful for syn-
chronizing of devices or for simple sensory input. The global flags C1'- C4 are

correspondingly set to true if the Jine is found to be high

] READ 3 If the output line 3is high C3 is set true.

WHERE
Causes the execution of the VAL where command. This displays the robots’ position

in joint angles and X.Y,Z.0,A T notation.

55

*a

32 System Commands

VAL .
The user is connected in a “pass all’ mode to the VAL controller. This is as if the

user s. terminal was connected directly to the VAL controller. The user may return to

the key tree matcher by typing CONTROL- C

[

- v

‘ 3.29 Spécialized Commands : ’ Y

- ® N
The following set of commands gives an example of how commands can be added to

-

the system to tailor it to a particular situation. In this case the system has been modmed

to deal wnth the problems of hybrid circuit board repair.

AREA < threshold> < window size> < plot> .

This command will nin"a mask of size < window size> over an image and label all
" connected regions above the specified <t1hreshold>. The sizes of the five {argest
regions found will be returned along with their centers. The last argument <plc;t> is

a flag "to specify whether or not the labeled regions are to be displayed on the monitor.

-

]
@

AREA 20101 The areas and centers of the five largest re-
a ' gions above a threshold-of 20 are returned.
‘) * The window size is 10.X 10 pixels and the ,
' regions fou;nd are displayed on the monitor,

v

DISTANCE . .
This command can be used after the AREA command to find the distance of a fixed
target from the camera being carried by the robot. The target is a set of white on:
black circles of known size. The distance is found by relating the area of the circles
found with tjﬁa AREA command\to a ldistance area function of the camera being used.
This function was experimentally determined by taking a number of distance area
readings and fitting a curve to the data points. The curve function was then used to

; determine distances from areas.

»

32 System Commands
& .

SETDISTANCE - object.> <Xsize> < Ysize>

. This command can also be used after the AREA command. It sets the global X and Y
distances, in millimeters, of ‘an object |sbeléd in the AREA command from the center
of the screen. This command is used tb_,get these X and Y ’distances so that :n image °
can be centered under a camera by the robot qi X-Y stage. <abject> is-a number
ftoon‘ne to five specifying which of the labeled objects from the AREA command '
should be used in the calculation. < Xsize> and < Ysize> are the respective X and Y
sizes of the object in question. These sizes are needed so that “correc.t—scales may be

calculated.) Py

SETDISTANCE-2 20 20 The X and -Y distances of object 2 are found
in milimeters from the center of the image
and the corresponding global vsriables X and

-) Y set. The actual object having dimensions
of-20 X 20 milimeters. .

STAGE t0.ép . o

. The function/of .the STAGE to_cap command is to move the stage so that ‘an'éapacitcir
as spec‘:iﬁed/in a data base will be pssitioned~ over a defined‘ focation. This defined
location, is specified in the data base on the fitst line of the file, and is given as an
absolute position in the stage’s local coordinate frame. The number of the capacitor
must have been already defined with the WAIT CAPAC/TOR command and a capacitor
data base must have been loaded in.by the USE CAPACITOR_FILE command. Thesé

. N

commands are discussed in more detail below.

*

STAGE 70.CAP Moves a prespecified capacitor to a fixed lo—

- : : catlon

/

USE capacitor_file <rame>

The file specified by name will be loaded asﬂ:capacitor data file. The format of this
file is as follows. On the first line the desired absolute location of the stage in |ts

local coordinate system should be given. Following this each subsequent line should

have the capacitdrs %.y. and z offset from the desired location as given on line one.

Normal the z offéet is zero as the stage is Jocated honzontally

-

57

WAIT capacitor ' : o .

»

£ - i

The program will wait for the user to enter a capacitor number. A capacitor's number

corresponds with the order_that the cabaqitors were specified in the capacitor file!
That is. the first capacitor in the file is numbered one and the second two etc. The

"WAIT command is usually given after a TYPE comm_alf!l requesting capacitor data.

- »
- N t v

This concludes the sections on commands available on the system It-can be.seen

"that a vanety of commonly used VAL commands can be accessed.’ Commands exist for

mampula;mg the stage, microscope and vision system. The set of vision commands is an
example of how a modular set of commands can be developed and' used in the system.
The only draw back of such modularity. as implemented. is the need to explicitly issue

commands to enter and leave the vision environment.- Besides the basic set of commands

toamanipulate the various pieces of equipment. examples of speciatized commands have -

been given. These specialized commands deal mostly with the (vus:on section as this area

of vision processing is quickily growmg and changmg and must therefore be able to be

A

customized to the desired environment. Examples of specuahzed commands were also seen

in the specialized commands section showing how the environment can be tailored to the _

I
..
>

hybrid repair process:

¥

32 System ,Cobmmands ’

.

ES

'
o

Chapter 4 . : ~ System Implementation

‘

-

a

t

4{{.1" System Software

< -

In this chapter the more technical aspects of the system will be discussed. These

include interface of the PUMA to the host. the associated éommunications: routines and
inherent limitations of the chosen interface meihod. The function of various elements of
the software and their interaction in the environment i$ described. as well as the methods
used to back up through a program. perform error recovery and implement tool mﬂptions
A block diagram of the system software can be seen in }igure [4.1]. The software
takes user input and parses it using the Rey tree matcher This matcher may also be

fed from program files by a spooler to run in an automatic mode The key tree matcher

passes the .user's parsed.commands onto the interpreter which determines whether direct.

. or, editor._commands are to be executed.r,Commands are forwarded by the interpreter to

the appropriate module forwexecutwion. The editor routines deal with the program‘, position
and capacitor-files. The direct commands: are handled by the command modules which

comrhunicate with the PUMA., 'stepper motar controller and vision system The error

handler module routes errors to the user's terminal or performs error recovery functions as

, needed. ! J ‘ L
, 111 " v ‘ <

:"4.2 | The Communications Interface

-

_Ag stated prevuously the PUMA has no method of commumcatmg with. an external

host computer except through its termmal port. This method of communications means

o o

User's Terainal

ﬂutolailc
N Spooler

Hi.

v

Key Tree
Hatcher

s

Interpreter

" Error Hondler

.

'

| Comnand Hodules

Local‘ﬂoioﬁy
) Tables

"{ Prognga_f1les

[

Editor Routines I‘_‘_’ 'Pooition files

. Lyl Capacitor files

PUMR Drlver
Rout ines

-

Puaa Controller

Vision Driver
Rout ines

I

Uision Systea

Stepp;r Drjver A

Rout i nes

|
I f
v

Figure 4.1

Stepper Motor |

*Control ler

Systes Software

T

1 -
; , , 42 The Commumcationssinterfacc
i

" that the host must emulate a user typing at the PUMA's teﬁpmal This technigue of sim-

ulating a user’s input terminal commands may appear to have som‘e limitations [Lechtm}«m
et al. 48]. Firstly. the communication speed 1s imited to typical t‘emﬁnal rates, less than
9600 baud Secondly the PUMA controller generates a great deal of output in“order to-be
user fnegdly This data must be processed by the host and either relayed to the user or
discarded lepending on its usefulness Thirdly there js no standard handsha;ke \protocol
normally associated with communication, thus there 1s an inherent rnisk of transmission
errors. Finally, and perhaps most importantly. any commands communicated to the con-
troller must be routed via a VAL command. Therefore. no direct control of the servo joint

’

controllers can be achieved

. On careful examination. most of these limitations are not of particular importance,
while others are not difficult to overcome. The slow communication speed is not of great
importance as the robot’s motion usually accounts for a far greater portion of time than

the relative command communication
»
As the communication is slow, routines may be easily developed on the host to deal

with, and categorize any messages returned by the PUMA controller These messages may
be used to implement a form of handshaking between the hast and PUMA controller
However this is not the most reliable way to achievé handshaking as the communications
lines may hang as one end wants for a continuation signal that may never come |f it has
been lost 1n a transmission error. This 1s very infrequent and presently a manual reset s -
implemented but a more automatic method could be implemented using a time out routine -

to detect the loss of transmission

a

The hmitation of having to implement all commands based on existing VAL commands
is seen as the most serious drawback of this method of controlling the PUMA l:or example
there 1s no direct way of doing any force sensing as VAL does not allow for this. Also
as con;mands are being sent through the VAL monitor no continuous path motion may be
obtained Another problem area 1s control of the trajectory as the user is hmited to the

types of motion specified by VAL

Work on overcomung this final restriction 1s being done at McGill by using RCCL as a
control language and modifying the PUMA’s controller by adding a parallel link to it [Lloyd
36]. This hink allows direct control of the joint servo controllers of the PUMA by the host

61

Al

X

e

* when used for anythyng but research Accordmgly more work in building an user interface,

SR ‘ g ’ . F ' 4.2 The Commumcauons Interface
B % . ‘
compute(Although addmg the power of direct control, in its present state this language

reqwres the user to become involved in the detanls of the control which 1s a limitation

N R ¥
layer to RCCL would have to be done before it could be offered to an end user in an -

acceptable fornjal.‘ However as RCCL 1s made up of a set of C subroutines it is possible
that the authors environment can offer just such an interface. An appropriate subset of
these routines could be linked into the enwronm;znt and entries made 1n the menu sé) they
could be called. :fhis would be in the same spint that.the vision algorithms were developed

as C subroutines and then linked in when complete.

%

421 The PUMA Driver

A communications package called Routines.c has been de'veloped in the C language

to allow communications betweer; the PUMA and host [G Carayannis 49] zl'his package

"

which was developed before the author started work on this project consisted of a set of

C routines that could be called from a main program to send VAL commands to the robot. J

The routines ¢ package incorporates many subroutines There are subrogtines for trans-
mitting commands, character by character. to the PUMA. VAL echoes each character it
receives This echo is checked by routines ¢ to ensure th&t no transmission error has oc-
curred In runrx{fg VAL commands run time errors may occur. The routines constantly
monitor transmissions from the PUMA controller and return with an error code or a signal
that ‘all 1s ok. These errors can be obtained in thewr raw form or encoded into numenical

form -as may be desired

To write a robot 'pvogram. a user would have had to write a C program to call these
routines, then compile, ink and debug the code and then finally run the program before any
motion of the robot could be realized There was no way for the user to interact with the
running program save aborting 1t and no way to debug it. without stopping it and repeating
the edit compile, link and try again routine Clearly this represented a very cumbersome
and time consuming wéy to add the power of host control and complex sensors to robot
programs ‘) .

The author’s alternative was tc; take these routines and incorporate them into an en-

vironment whereby the user would regain the more interactive programming method pre-

- 62

-

%

)

“viously enjoyed in VAL and sttll enjoy the benehts .of host control and complex sensor

v

lnterface

422 The Key ,Tfet_z Matcher - o ' T ,

.To provide an interactive p;og(amr\mng environment user’ commands must be parsed,
mterpreted and executed with feed%ack indicating thelr success or failure The parsing is .
done by making use of-a superb key tree matcher package developed at McGill by [Parker
50]. This package provtdes mechamsmslfor setting up a tree of key words (commands)-

against whih user commands may later be matched. Hence the name key tree matcher

The key words in the tree may be set up to take additional arguments The matcher

' can be made to check the range and type of the arguments before they are assigned

to programmer specified variables The common types of variables, integers, reals and
strings.\ are all supported The two main routines used a;e called tree_match parse and
tree match Tree match parse takes a tree specification and rf:i\urns a pomnter to an internal
tree structure This pointer should bg treated as a char * pointer Tree match parse needs
to be called only once per key word tree which may be.required in a program

The tree.match routine takes the pointer returned by tvge.match_parse along with a

prompt and pointer to a key word buffer as its paraméters The prompt can be any string

specified by the programmer and will be dnsplayed when user interaction 1s being sought

" The key word buffer 1s where the key word or command s actually returned after parsing

This key word buffer i1s stripped of any arguments and may be examined to see what
command was typed by the user The tree_match routine then should be called whenever
user interaction is required

In its presen£ state of development, commands may consist of any characters with the
exception of white space (space,tab.new line), control characters and the characters ! * #
%& () 7] Thecharacters * and @ should be avoided as they have a special meaning
when typed at the beginning of aline The * will Iist the entire tree which 1s useful in
debugging a tree that is bemng set up The @ followed by a file name will cause nput to
be taken from that file instead of the user’s terminal and may be used to run a batch of

commands previously prepared.

Il

A character which has a powerful effect when t)?ped at the start of a hne s ! When

63

4) The Communications Interface .

»

42 The Commumcations Interface
{

followed by a system command it will cause a new shell to be started and the command
run before control i passed back to the programmers routine This 1s most powerful as
directories may be listed and files found from within a progrgm without any need to exit

or stop the running procedure P

The following example shows how a tree containing the key words "quit”. “set” and

. "show™”, can be set up and then used as a reference for matehing commands. ‘
char *tree;] B
char *tree match parse(): .

char *buffer:
float sigmé:

* - PP ' ‘ - x
" _tree = tree_match parse,("(quit show set(sigma (%r".&sigma.”)})):

Q

tree_match(tree. “Enter command 7" ,buffer): . .

v

The above example also shows how a variable argument may be used. The real variable
sigma can be set to a specific number, say 20. by typing “set sigma 20". The %r signifies
that a real argument is expected. while %s and %i may be used for strings and integers as

appropriate

4.2.3 Feeding the Matcher

The above has given a flavor of what can be done using the key tree matcher The
matcher will normally handle the fetching of characters as the user types them in However
as program files had to be stored and then replayed through the matcher, a method was
found to feed the matcher commands in a controlled and automatic manner The new
extension allows for a programmer to specify a routine that 1s to used by the matcher to

f.("
get tnput A ‘spooler” routine was developed by the author for this purpose

The “"spooler” routine will normally just return whatever the user types However if
)
the user wishes to run a program file the spooler will read in this file and then proceed
to feed a character at a time to the matcher This character by character feeding allows

for some convenient features to be added to allow quite a bit of control over the flow of

N

64

e

D . . 4 3 Adding a Subtree

commands .being fed to the matcher It is this control of.the flow that allows for branching
and looping to be implemented as-well as argument passing. Branching can be implemented
by simply changing the spooler pointer in the file being spooled. and argument passing by
the interception and replacement of marker characters by the spooler, as discussed later.
This also facilitates the debugging capabilities of single stepping,and backing up thlouéh

a program

4.3 Adding a Subtree ' |)

]

A subtree can be added to the system quite easily This allows for modular development

“of packages to enhance the capabilities of the system, as was done with the vision package.

Once a set of subroutines have been developed independently they must be linked into the

system so that they can be used, This inking procedure is explained below.

The procedure of turning a set of subroutines into a subtree starts with the creation

of a tree of commands that will call the subroutines as described in the key tree matcher

section and more fully in [Parker 50]. Once this has been done an entry must be made in

the main key tree menu for calling the sub tree as shown below

include ‘ ‘subtree.h’’

char buf [80],
char *tree_match_parse;

tree = tree_match_parse(’' (exit \
) help \
vision \ !
.)T
while (strcmp (buf, '‘exit’')) ’

{ .
record_command () :
if (!strcmp (buf, ‘‘help’’)) help_routine():

if::(!strcmp (buf, '‘vision’'')) vision_tree():}

}

-
<

The above shows how the entry was made in the main menu for the vision subtree
The include file "subtree.h” contains the necessary declarations for the saved command
array and line pointer vanables It should be included in the user’s subtree as well. In
addition to the entry in the main menu the subtree routine, given here as vision_tree().
should include in the same place as shown in the main program the record command()

routine. This routine saves the commands entered by the user if the record flag is on.

¢

65

—.—,

———— —— n

W ——

44 Dchugping
a .

The subtree should also of course include an exit command so that the main tree can be
returned to after any subtree commands have been executed ,.fq

Finally once the subtree and main routines have been modified as indicated above they
must be recompiled and linked in the normal UNIX manner

It can be seen then that this i1s quite a modular expansion as only.one menu and calling
rouulne entry must be made in the main program While an include file and the addition of

the record.command() routine need be made in the subtree o \

4.4 Debugging’)

Debugging of a program can be achieved at any time in the program development. A

command may be tned to see if its effect is desirable before it 1s recorded The robotamay -

then be backed um'apd the command recorded or another tried for its effect. Alternatively
commands may be recorded off hne and then run on the robot These recordings may have
break points set so that programmed pauses may be made at appropriate times or the
program may be single stepped

If the user is runming a program n single step mode each command 1s fed to the matcher
and the user s then prompted with options for executing the command, pausing or aborting
a program. as well as backing up through the program. If the program is paused. the user
‘may change anything in the environment and then continue the program from where it was

‘paused ' ’ ,

4.5 Subroutines and Argument Passing

Subroutines which ta%??férgumems may be developed as easily as normal programs
These subroutines are sto Q\d i separate program files and may be treated like new. user
defined commands This pr%vides the ability to develop high level commands which the

user may then call to simplify a task description

Argument passing 1s handled in a quite unique way Special characters are interpreted

as markers where arguments are to be inserted. These arguments are taken from the

parameter list specified when callipg the subroutine As d marker may be followed by a

descriptive string the user may use this string to provide a default argument in case the

. . 66

v

45 Subroutines and Argument Passing

" subroutine 1s called without arguments. An example of such a subroutine that °performs

1

~ the action of picking up an object is given below.
‘ MOVE TRANSFORM $ready ,
APPROACH TOOL !vacuum 40’ '
MOVE TRANSFORM @vacuum
ACTIVATE #hand
DEPART TOOL ’ | Co L
MOVE TRANSFORM $ready |

If the routine is stored in a file named PICK, it may then be called to perform its default

action by giving the command with no arguments :;’fshown below.

GOSUB PICK "~

This will cause the robat to move to the ready p&sit’?on then approach the position
“vacuum” by 40 millimeters in the tool X direction. The robot will then move to -the
vacuum tool and close its hand. It will finally depart‘ in the reverse direction to its approach
and return to the ready position If the command is given ‘with arguments. totally différent

robot actions may be produced for examp'le the call.
GOSUB PICK __'"feeder 0 640, feeder. suction.”

Will cause the robot to pick up a board from a feeder as opposed to picking up the vacuum
tool

There are several things to be noted here. First only three arguments are given namely
“feeder 0 60 O “feeder” and “suction”. These arguments correspond to the first three
markers respectively That s, the first argument will be mapped onto the ! marker (shift
1). the second to the @ marker (shift 2) and the third to the # marker (shift 3) The
missing fourth argumer}t\whuch would normally map onto the $ marker (shift 4) 1s missing
and will thus be taken from the default string after the $ marker This default gtrlng as
given in the example 1s “ready” which s a safe position to which the robot may return in

between subroutine calls

A second point of note i1s that only stnings are passed as arguments Thus to pass
an approach vector such as 0 60. 0. it must be preceded by a string namely “feeder”.

This results in the string feeder” having to be passed twice. Once to specify a point

[

o ’ > 67

"

46 Status Recording

and approach vector and again to' specify and end point. This limitation is due to the
simplicity of the replacement algon{hm used to perform the marker substitution and could
be overcome with a better algorithm.

A third point to notice is that the method of picking up the object was changed from
using th: robots hand to using a suction pump controlled by one of the PUMA'5 output
ports. This shows the power of such a small subroutine. By specifyiny only three values
(‘approach vector, point and method). virtually any thing may be pnckéd up. This same
concept may also be applied directly to other routines such as those involved in placing

objects.

4.6 ' Status Recording.

Q .

"To allow the robot.to backup through a program two methods may be used. The
program may be analyzed and a reverse instru\ciion generated. or the previous state of _gxhe
robot recorded and returned to upon reqhest. fhe author has chosen to implement t\he
second method. ,) t

The first method while requiring reduced storage facilities. presents a con;plex task of
generating reverse instructions. For example, if the robot has executed an absolute move
to an object. then the robot’s previous location can not be determined from this instruction *
alone. It would be necessary to look not only at the last “move” command. but also at
the previous motion commands to see what route was taken by the robot. The method of
analyzing previous commands may become complex as the user tries to move farther and
farther back through a program

The alternative method 1s relatively simple A§ each command is executed the state
of the environment is saved Not only s the robot’s position and hand openi{ng saved, but)
also the state of the output lines and positions of the stage and microscope Then all that
is needed, to back up. is to restore the states in reverse order The state 1s not restored by
the brute force method of 1ssuing commands to set every recorded state variable Instead
all present states are éompared to the saved states to which the user wishes to retur-n. and
commands are issued to change any states that may differ

This restoration of state variables allows the user to backup one or any numft}\z’er of

commands. The system will ensure that the user does not backup further than the first

68

&
47 Error Recovery

~

recorded state. The user may. by this method of backing up. even retrace through a
. ¢ T .
conditional statement, then pause the program. change the conditional’'s argument and

restart the program. This allows for easy tracing of program branches.

1
»

A.7 Error Recovery _ .

o

As commands are executed. they are monitored and any errors foynd are reported to
the user. Besides reporting an error to the user an error variable is set and may be tested
for in a user's program. These errors can usually be classified into two areas. fatal and-

non-fatal.

A fatal error is one which requires restarting VAL or ihe recalibration of the PUMA.
Such errors occur unpredictably. for example when the robot hits an obstacle. In such an
event, the user will not lose any work that may have been completed. All that is necessary,
is for VAL to be restarted, if it has crashed, or for the PUMA to be renested and then
recalibrated. All user programs and position data are preserved in the system environment '
and may be reloaded after the PUMA has been restarted. Q)l'his is a great improvement
over VAL as it avoids a situation where, after much laborious programming and position
teaching, all may be lost because the user did not take the precaution to save all data

before trying out a program.

In the case of non-fatal errors. such as forgetting to return the teach pendant to
computer mode after teaching a point, the user may have the program do something in an
effort to recover. The uset may for example test that computer mode has been restored

following a programmed teach sequence by issuing a DELAY command and testing the.

o’

resulting error code until all is ok. L
. ,m’%‘—’j},ﬁ&

In the event that the system hangs. such as when a communications link is broken or

-

VAL crashes while the system is exyeting a return message. the user may still recover. To
recover, the user need only hit control-C to create a “user interrupt”. The interrupt handler
will enquire whether the user wishes to perform a system reset or stop a running program‘;
If a system reset is desired. all communications channels will be closed and system variables
reset. A system reset can be used to recover from virtually any error condition without

loss of programming data. Programs being run or edited will be preserved as well as_any

¢

‘ : ' L 69

=

-equation below. - . %

y 4.8 Implementation of Tool Motion

s

taught points. Th;s recovery has been implemented as a fail safe feature-to ensure a reliable
program development system. .

Another use of this “user interrupt” i1s to change states as a program is running. A
runnir"ng program may be interrupted and paus&d, aborted. backed up or caused to run in a
single step mode. This is a particularly convenient feature when developing large programs
as tested parts of a program may be run at full speed and then inter;u'pted and traced in
single step modJe as an untested section is about to run.

The aforementioned recovery is implemented via the use of some UNIX system func-

tions. Namely signal handling and longjump commands.

~

4.8 Implementation of Tool Motion

t

The "author ‘has developed three commands which use motions relative to the tool
coordinate frame, because it is often easier to express motions in this way rather than in
the world coordinate framie. This is especially true when grasping or placing tools from or

into a stand. or using tools which do not operate parallel to a world or the tool Z axis. or .

. when data from a data base is. used for palletization operations. °

The method of moving in the tool coordinate frame as implemented is to convert
the tool motion request from tool coordinates to world coordinates and then use VAL
DRAW commands. To achieve this a tool to world transformation matrix is necessary. To
dgtermine the transformation matrix the:method similar to that described by [Bazerghi et

al. 51] was used.The reader is also referred to [Paul 52]. The orientation of the tool frame

i specsfled by the three VAL vanables O, A, and T. This leads to a break down of the

problem mto the four following parts.
(1) The rotation matrix relating the tool frame to a reference frame.
(2) The rotation matrix describing the rotation due to O
(3) The rotation matrix describing the rotation due to A
(4) The rotation matrix describing the rotation due to T

The fifst matrix was found by placing the robot in its ready position and then dvivihg
each of the tool joints so that the values of O. A, and T were zero. This done the transform

from this configuration to the reference frame was found. The transform is given by the

. .
implementation of Tool Motion

0 1 0 Xz X\
0 0 -t) 1Y |=1Ye
-1 0 8 22 Zw

The above equation represents the transform from the tool coordinate frame when O,

A. and T have been set to zero (X,. Y.. Z;) to the world reference frame {Xw. Yuw. Zu).
The effects of 0. A and T were then observed from this initial stat¢.” The results were that
O represents a rotation about the negati;/e X tool axis. A a rotation about the new Y tool
axis and T a rotation about the final Z axis. These rotations Lan be represented by the

following matrices.

Matrix O~ Matrix A - Matrix T
-X Y Z

1 0 .0 C. 0 S, c, -5 0

-0 Co So 0 1 0 Stf Ctv 0

0 -S, C, ~8a 0 Cu/ \0 0 1

\

where S,. S5, and 5; are the sines of O, A, and T and C,. C,. and C; the cosines
respectively. Having found these matrices they can now be multiplied together to give the

total transformation as done below.

. 0 1 0) 1 0 0 " Ca 0 S, c, -5 0\
0 0 -1]x{0 ¢, s.lx[o 1 olxls ¢ o
: -1 0 0 0 -S, C, -5, 0 C, 0 0 1

v

Cost - SoSaCt COCt + SoSaSt SoCa
= SoSt 'I" CoSaCt SaCt - C()Sast' —CoCa
v —CoCy CsSy ~ =8
This result can e:é(en be used in the following €guation to find the world X. Y. and Z -

. " o
coordinate componeis from the given tool components. The world companents are labeled

Xw. Yu. and Z,, and the tool components X;, Y;. and Z;.

CoSt - SoSaC' CoCt -+ SOSGSl SO\C‘G Xf Xw ’
Sost + CoSaCt SoCt - CoSaSt ~~CoCa X Yt = Yu) :
" —CeCy CaSi -5, Z \ Zy

. Ao

o

ERERY -
-~

; ' ‘48 Implcmentanon of Tool Motion

This equation is |mplemented on the host and is‘used in the APPROACH DEPART, anB
TOOL commands. Wthh all 155ue VAL DRAW commands with the converted components
This type of command while euendmg the flexibility of control of the robot uses the
host to make the «calculations. It would seem better if VAL had the ability to handle the

" real number calculations required so the host cou:ld be relieved of this relatively low level

conversion process. These types of calculation€” are supported in VAL-I1,
. At this point the concepts. features, commands. and implementation aspects of the

system have been seen. Fhe next thapter will give some examples of the system at work

. o . ¢
in robot appliations.
] - e T b
.
.
.
. ° . [»
Q » a : "
= - N
o t . <
-
! %
N
3
-~ s \ a
Ny -
N
s o
‘
N S .
\ -
..
s i
. 8
X ~ a
2
: ? ' '
- i N - » .
“
ﬁ M I's -
? . » 3 \
'
M o
. -
Mot 4
- b "
2 Ty e o ¢ /
e ’ ¥ . h 3
' . . T .,
. . .
- . .
o Rt e “
coon {r)
. y b . . -
Q& v,
v ;i . < I ‘ -
o “
i -
v
2
- 4 . 4
. hd %
* ! [S % - .
} .
F . ° f
! ¢ o 3
3 f ° . N \
A
. e N
.
. '
. .
= \
? R o -
. B
]
° \ .
o .
o .
' *un
1
v . ' ' - ,
. 4 b
~ 3]
[. o
B .
t -
b y
. . % t
. >
’ .
< . t a s
. ox '
1,
r % -1 ¢ ’
- . s ;
- A } L 72
. | H o N .
< ¥ v i
. ’
N . - i i o 3 -
d Ce, Al h Y
. - N -
s o . L .
B ,
S o -y, . !
~ "
5 -
L) . . 3) 4‘ -)
> . - K R o
. - i
‘ ’ « b
+ 1A -
[ki -
-~ + v A
4 -
i v - -
¢ N i »
* .
» ~ . ? P & 3
\ = [
s rd
r - b)

ra

Chapter 5 C _ " A Repair Function an Examplé

»

N . .)

This chapter presents an example of a repair function programmed,in and carried.cut ?
by the developed environment. The tools ‘dcveloped by the author in this repair experiment
are described and illustrated. . The chapter wdi begin by presenting the repair objective and -
the physncal layout of the robot envuronment The tools will then be described and the

', program for performing the repair pr“esented.

L.

A Y

-’

5.1- The Repair Function:

-t . N —

'

W

As an ‘example‘of"h;brid inte:grated cir.cuit (IC) b'oard repairit Was‘shown how capacitors

‘ may be desolderéd frob’i such a boa'rd. There are many reasons why a capacitor ‘(’nay have

_ to be removed in the process of r‘epair‘ing a hybrid IC, The capacitor in question may be

.misaligned with the pads on ‘which 1t has been placed. the solder contacts between the

. pads and capacitor may be bad. or the capacitor may be of Qt’he wrong type for the pad.

Any of these defects may occur in the manufacturing process [Bauks 53] ‘Typically these
repairs are carried out by hand. “The circuit boards are msbgcted and grouped ,l’ntlo claéses‘ .
of boards with similar defects These boards are then passed an to repair,persons who‘ do -

the actual repair.

’
- ; w

Industry is looking at ways to automate both this inspection and reparr process As the i
repairs are usually varied in nature there 1S a n&ed for ﬂexlble robots and vision processors

to carry out the repair task. It must be easy to program such tasks on robot controllers in

spite of the task complexity, precision and distributed or concurrent nature of the problem. '

i
v

©
£

L 4

52 The Physical Layout

1

5.2 . The Physical Layout

The repair station in this example is laid out as shown in figure [5;] As can be seen,
the station configuration used consists of one robot, an X-Y stage, a microscope, a flame
heater. a hybnid 1C stand and a rack of tools needed to perform the task, as well as the
controllers supervised by the‘host The robot is located centrally so that it can reach all
areas of the environment. In this éxpeniment it is designed ta regch the hybrid IC feeder,
the X-Y stage. the tool rack and the microscope ‘ l

It is not suggested that this 1s an optnmal layout for the task at hand. Rather it is
an experimental Iayout, best suited for research The robot, X % stage and microscope

illustrated in the diagram have all been previously described. therefore the tools. feeder and

rack need to he described Before the example is presemned

5.21 The Tool Rack

tools are required to be used at various times by the robot and must be mterchangeable

in an adtomatic fashion The tools must therefore be stored in a position where the robot

"

will be able to find them as needed The tool rack was designed for this purpose The rack

ffers a set of cones onto which tools may be placed (see figure [5.2]) The cones assure

orrect and consistent tool alignment by using the forces of gravity to advantage This

2 The Vacuum Tool

The vacuum tool has been developed to .perform two tasks It can be used to suck
up| integrated circuit chips and also to hft whole circuit boards by an attached chip A
schematic of this tool can be seen in figure [5 2] The tool was developed primanly for

carrying and inserting chips into printed circuit boards. but its use for transporting entire

hybnd circuit boards 1s also proving very successful t

,

Other methods of carrying these circuit boards have been developed *However, none of

these are considered suitable for this repair case, as they all involve grasping the hybnd !C_

it

'(?eight control

)

Hicroscope’

/

Flame

Heater

IC
Holder

X-Y Stage

(% fotor)

<

¥ Hotor

\Punovﬂobot

Hybrid

Circuit
Board

-Feeder

Tool rack

Tweezers

Uacuunm
Tool

Camera

-

Orinder

Grippers

Figure 5.1

—~

-

o

The Physical Layout of the Repair Station

- .
. "; -~ 7)
- . - BN
..' . "o
. 12
:
. I
. i
.
» . . -
- \
.) h e
5)
1
.. .
v o a ’
i) .
7/
- Uacuum Tool
,
.

-Tool Rack

Guides for |.C.
) Chip .

ST T T T

End Ulew ¥

. .
.
!
- A 2 ©
P . . °
. .
. v
e v
' -
~ .
s
1
- - » '
. .
[—
- .
f
o, <
-
- X
Lo ‘ -
.
b4 v
3
— ¢
»
« . -

~

“

¢

.

52 The Physical Layout

by its ‘edges. This is inappropniate in this case becau&e’ihe edges are not free for grasping

since they were used for stationary support in order to keep the upper and lower surfaces

free for repair work to be carried out

5.2.3 The Hybrid 1.C. Stand -

A temporary stand has.been provided for the experinint at hand. In the future an
automated feeder could replace it. in this demonstration the stand serves only as an imtial
and final resting place for a board being worked on. Nevertheless it has been designed to
present a circuit board in a consistent orientation. This s achieved as shown in figure [5.3]
which agl*n'n uses gravity to advantage This slanted plane of the stand also provides an
opportunity to illustrate how movement in the new tool coordinate frame can be used to

simplify the programming task

£.2.4 The Tweezers

®

Thus last tool was developed to handle the exacting precision needed in dealing with

. components as small, as the capacitors to be desoldered. As can be seen from figure [5.4].

it 1s made from a tube and common home tweezers. It has been desngned‘io automatically
compensate for errors in capacitor posniiomng as ;vould Be common In a repair task The
jaws of the tweezers are forced shut around a capacitor as the robot pushes them against
the su‘rface of a hybnid 1C board The capacitor may then.be lifted off by them To release
the capacitor from the tweezers the robot must further push against a hard surface, sgch
as a disposal bin. The tweezers can then be reset by pushing the plunger against a surface
This method of activating a small gripper allows for movements of the rot_?rg;,,;o be less
precise as the tweezers are made of spring steel and slide within the tube. thus allowing

<

for comphance in the tool’s operation

5.2.5 The Flame Heater

v
L

For the purposes of this research, the heater consists of simple alcohol burner that has -

been modified by passing a stream of air through its flame. The air stream has the effect

of creating a direc.ed fine flame A flame was chosen over an electrical hot plate because

17

<

<

o

¢,

Hybrid Substrate

1.C. Chip

Stand

Hybrld Substrate

I.C.CChip ‘ \ ‘ Pﬂpucltors

AW VAV

Gu ides

Figure 5.3 The Hybrid 1.C. Stand with 1.C

1]
.

v R
" - .

L

~ A

T

g

A

@

. § Plunger to
‘. :) reset tool after
capacitor removal
Holestor ™
elignment to L&) 1 Cone cutout
robot gripper for ahignment
. ,/ on tool rack
. i .
Outer Tool Cesing — 4. !
As Tool 1s ;
pressed against .~
T Jer surface tweezers
weezers close oncapacitor
h Capacitor

Hybrid Substrutesﬂ_L

-
\\

@

Figufe 9.4 The Tweezer Tool

o
\

53 Sample Program # 1

heat could be transferred to the hybrnid IC in a selected spot without having to make a
physical contact with the board The advantage of this 1s that the board may be placed

L]) 3
on the X-Y stage and moved over the Hame with precision, whilg at the same freeing the

P

robot to work on the top side of the board

.

5.2 Sample Program # 1

[1]
[2]
13]
4]
15]

6] AGE MOVE 40 40)
7] OSUB PUT "VACUUM.VACUUM 0 0 80.HAND"

_ 8] GOSUB PICKUP "TWEEZERS.TWEEZERS 0 0 80.HAND"
9] TYPE "PLEASE ENTER THE CAPACITOR TO BE REMOVED"

</L1°] WAIT CAPACITOR ‘
[11] STAGE TO.CAPACITOR -
- [12) STAGE WAIT '
(13] GOSUB PICKUP "CAPACITOR.CAPACITOR10 0 0.NONE"™ . °
[14) STAGE MOVE 0 90 -
[15] GOSUB PUT "GARBAGE.GARBAGE 0 0 -60.NONE"
[16] TYPE DO YOUVISH TO REMOVE ANOTHER CAPACITOR (Y/N)"
[17) WAIT ANSWER
[18) IF ANSWER THEN 9
19] GOSUB PUT "TWEEZERS. TWEEZERS 0 0 80.HAND'
20} GOSUB PICKUP "VACUUM.VACUUM 0 0 80.HAND"
[21] GOSUB PICKUP "STAGE.STAGE 10 0 0.SUCTION"
[22) GOSUB PUT "FEEDER.FEEDER 10 20 10,SUCTION™
[23] GOSUB PUT "VACUUM.VACUUM 0 0 80.HAND"
TYPE "OUR LITTLE DEMO 1S ALL FINISHED"

J24)

STAGE MOVE 0 90

GOSUB PICKUP "VACUUM.VACUUM 0 0 80.HAND" --
GOSUB PICKUP "FEEDER.FEEDER 10 20 10.SUCTION"

STAGE WAIT

T "STAGE.STAGE 10 0 0,.SUCTION"

Sample program # 1 represents a typical robot program developed in this environment

80

9

¥

53 Sample Program # 1

When run it will desolder capacitors from a hybrid circuit board. The program will now be
explained. As can be seen the program calls two subroutines “pickup” and “put”. these

two subroutines will be described before the overall action of the program is described.

SUBROUTINE PICKUP \
1] APPROACH TOOL @VACUUM 80 0 0 v
2] MOVE TRANSFORM IVACUUM. R o
3] - ACTIVATE #HAND o .
(4] DEPART TOOL .
[5] MOVE TRANSFORM SREADY

¢ SUBROUTINE PUT

[1] APPROACH TOOL @VACUUM 80 00

2] MOVE TRANSFORM IVACUUM ’
(3] DEACTIVATE #HAND

4] DEPART TOOL ST

I5] MOVE TRANSFORM SREADY

N) . . -
As_can be seen the two routinesare identical except for line 3. The routine pickup will

/<ap roach a given pomnt and activate the hand of the robot or the suction tool to pick up an-

(;b ect The Put ‘routme will do the same as the pick up routine except that " will deactwate:
the hand'or suction and so put down the object 1t 1s carrying As described n chapter 4 ,
the symb?s L @. #. and § act as markers for the arguments 1. 2, 3. and 4 respectively,c-
being passey to the subroutine Note that in the example program an argument to fill the $
mark‘er was never passed thus the default argument READY was used This ready position
1s situated centrally in the work area and is clear of all obstacles This simplifies the use
and linking of subroutine calls as the robot will always return to a safe and rea&y ;)osition
between calls ’

The sample program # 1 will now be described The fur;t hine of the program will
move the stage to the coordinates 0 90 Ths is the position at which the robot will later

place a board to be repaired The next command line calls the subroutine “pickup” with

81

1

53 Sample Program #]/

»”
arguments “vacuum”, “vacuum 0 0 80" and “hand". These arguments will cause the robo,t
"to pick up the vacuum tool with the its hand or gnpper attachment. as can be seen n platé
1..The vacuum tool‘ns approached for .pick up from 80 mm n the Z direction as specified.
Notice at this point the stage and the robot will be moving concurrently. After the robot
has picked up the vacuum tool command line 3 will cause the same subroutine “pickup” to.
be called but this ¥ime the arguments specify that it is the feeder that is to be a;)proached
and the suction activated instead of the robots hand As the robbt already has the vacuum

tool this will cause the hybrid circuit board n the feeder to be sucked up. plate 2.

Now before the robot can place the board onto the stage it must ‘be sure that the
stage has reached its final destination and. if not. wait for it This is the purpose of the
next command “stage wait” Once the robot has synchromzeci with the stage i1t will then
proceed to “put” the grcuit board onto the staf;e. plate 3 This 15 achieved by approaching
the stage by the specified approach vector and deactivating the‘vaciium which is holding

athe cicult to the vacuum tool Once the circuit board is on the stage it is moved to a

location, near the heater ready for heating While the stage 1s moving mto the new position
the robot will replace the vacuum tool to 1ts holder with a call to the “put” routi!le and

*then pick up the tweezers which 1t needs to remove the tiny capacitors, plate 4

The robot now has the tool for removing capacitors and the stage 1s poised to heat
the solder joint for removal ‘The user 1s now prompted in line 9 as to which capacitor
is to be removed This Is snm;ﬂy for demonstration purposes as normally repairs would
come from 3 hst or from the vision system- Once the capacitor to be removed has been
entered, 1t 1s placed over the tip of the flame for heatmg by moving the stage by an offset
corresponding to that capacitor, The offset 1s determined from a data file As before the
stage is now checked to ensure that it has completed its motion before the robot proceeds to
pick up the desoldered capacitor, plate 5 The capacitor is picked up by the tweezers which
move accordlng to the specifications in the “picklp” command. platé 6 The tweezers are
activated (closed) by pushmg them against the surface of the circuit board The “"none”
argument of the statement in line 13 1s used since no activation of the robots hand or

suction 1s desired. in effect causing hne 3 of the “pickup” subroutine to have no effect

&

After the capacitor has been removed the stage 1s moved away from’the heat and the

bad capacitor is placed in the garbage The motion of placing the capaaitor in the garbage

»

82

A

T

x-

53 Sample Program # 1

. {line 15) also has the effect of reseting the tweezers for use in suBsequent removals. At this
stage the user is prompted with the “type” command. If the user continues with removals
by answering yes then the sequence is resumed from line 9 with the user being asked for
the next capacitor to be removed. }f however the user answers no then the program will
continue from directly after the “if” command at line 19. These last commands will return
everything to its starting position. First the tweezers will be returned to their stand and
the vacuum tool will then be ‘picked up. fhg robot will then use the vacuum tool to pick
up the hyb'nd circuit board from the stage and return it to the feeder. Once it has placed
the circuit board in the feeder the robot will return the vacuum tool to its holder and a final .

message informing the user that all has been completed will be printed.

EX ! -

. . 83

Plate 2. , C
The Hybrid Circuit Board Is Picked Up From The Feeder

»

e

53 Sample Program # 1

53.1 Sample Program # 2

The second example given below shows the use of some of the vision commands and
a

how they can be used to obtain information that the robot can then use.

-
»

(1] MOVE STAGE 20 20
[2] GOSUB PICKUP_"VACUUM.VACUUM0 0 80,HAND"
[3] GOSUB PICKUP “MRGET.TARGET 10 20 10,SUCTION"
[4] . GOSUB PUT "STAGE.STAGE10 0.0,.SUCTION"
(5] VISION
[6] CAMERA FRAMES 2 CHANNEL 1
17 LOAD CAMERA_IMAGE
(8] AREA 20 10 1
[9] SET.DISTANCE1 5 5
" [10] EXIT
[11] * GOSUB PICKUP "STAGE.STAGE 100 0.SUCTION"
[12]. APPROACH TRANSFORM STAGE 10
[13] TOOLXYO0 :
[14] TOOL 00 10
[15] DEACTIVATE HAND
[16] DEPART TOOL
[17] MOVE TRANSFORM R/EADY
[18] TYPE “IMAGE 1S NOW CENTERED UNDER MICROSCOPE"

¢

X

[}

In this example the robot starts by picking up the vacuum tool and then using the
vacuum tool to pick up the target object. consisting gf a black rectangle containing white
circles. The target is then placed on the stage under the microscope. The vision area of
the commantd tree is now entered with the vision command. The first vision command
is “camera frames 2 channel 1”. This command will take two frames of the image under
thevmicroscc‘pe and average them together into the red channel. the next corg!mand loads
the image from the camera image into a work image area. Once the image is in the work

area it can be analyzed by the area command. This command will find the area and the

87

o

$

f;_t

-

2

" 54 Discussion

\\i N

c;\}%rs of the largest five regions that are above the threshold of 20 and use a window
, bt

size of 10 as given in the command line. The results will also be plotted on the grinnell

" as specified by the 1 in the ploi field. After the area com_mand has been completed the

set distance command is used to find the distance in millimeters of the largest object from

the center of the\‘a\}t This information is stored i:; the global var‘iables X and Y that
the tool command of line 13 will use later. Thus the vision precessing is now complete
and the vision subtree is left with the exit command. The robot is now movéd to pick up
the target from the stage and then repositions it using the tool command. by the. distance

obtained from the vision process Once the target has been repositioned. it is released onto

the stage and the robot is returned to the ready position and a message that the target ‘

has been centered is printed. . ’

5.4 Discussion -

As can be seen from the example programs. development of useful programs can be,
achieved in a relatively few lines of code. The use of subroutines for the functions of

pick and place have substantially reduced the amount of code. It has also been seen how

easy it is to develop specialized commands tailored to the needs of the environment. The °

first program gave as an example a function that would be needed in the repair of hybrid
integrated circuit boards namely the removal of capagitors from the boards. The second
example has shown how a vision system can be used to give feedback to the robot so that
a target could be centered under the microscope. This second example would find uses in
the automated inspection of hybrid boards were a defect or flaw might need to be centered

so that analysis can be done on that area of.the board.

Extensions to the existing environment are easy to make and can be done in a modular
fashion. Either a single command may be developed in C and linked into the environment
or indeed a whole tree of commands or packages may be developed and linked in. These
packages can then be used just like any of the other c;)mmands with all the editing and
debugging power of the system at hand. This has the advantage of allowing independent
development of packages or algorithms. Once thege algorithms have been developed they
may be incorporated into the system and tested with- all the available equipment ’of t‘be

station. This also allows for the station to be tailored to special situations by the addftioh

,‘ . -

v

54 Discussion

¢ 14

and removal of packages of specialized commands

v

The environment as mentioned previously is implemented in the C programming lan-

a

guage and is approximately six thousand lines of code. The size of the executable module is
some two hundredrkilob;tes. On the VAX 750 this code runs without any noticeable delays
to user commands However when the systeMi is loaded, pauses between successive robot
motions can be seen. These pauses can happen if the RAP system has been swapped out
of core between motron request to the VAL system. Pauses such as these could be avoided
by running the system at 5, greater priority. but for the research at hand such pau{ses were:

not a major concern. ,,J .

" The size of the executable code is quite modest considering the variety of options
available to the user, and on a VAX presents no problems. In comparison a typical RCCL
program compiles to at least four hundred kilobytes. Fgr the eode to be ported 1o a smalier
system such as a micro computer. the executable could be trrmmed down if a size limitation

problem arose. Size could be reduced by including only those packages which would be

i

needed in the experiment at hand. another advantage of a modular design.

Future expansions to the system could include a graphics interface. improved numerical

processing, and a more comprehensive vision package. <.

A graphics interface could be implemented on one of the SUN work stations recently
acquired by the lab or even on a micro with graphics capabilities such as the Apple Macin-
tosh. The lnterfage should offer both mouse and keyboard activated menus in addition to

"the present keytree matcher command entry system. -Running programs could be displayed
with a Iirre ;;oinier to indicate what line was executing instead of simply printing the current

7line to the screen as is now done. Editing capabilities should be expanded to support full

screen editing instead on the line oriented type of editing presently supported. A gr‘aphics)

interface would also present the opportunity to move the code from a time shared VAX to

a smaller dedicated processor on which the interface was being written.

Improved numerical processing would be needed | if the robot is to be used in én induetrial
type environment as opposed to a research one. This is because in industry functrons are
usually repeated many times thus creating th€need for complex loops and palletrzatron type
operatrbns in research on the other hand, many types of drﬂerer\)functrons areutested

as opposed to one function’ berng tested over and over. It is realized that any commercra!

. LR
v [

A

54 Discussion

system would have to support complex numerical processing. and as the implementation

. ‘ » +
is in C such an addition wouild not present any” major problems.

A more comprehensive vision package is the third area where expansioh is needed. The’
basic facilities for frame grabbing, viewing. storing. and simple processing of images need
to b;e augmented with image analysis and pattern recognition algonthms McGill's work in

" this area has lead to many research topics in themselves, and such additions while still in

the development stages are progressing rapidly.

<

Shortcomings of the system arise mainly from the method of controlling the robot.
through VAL. This means thatﬂ no matter how sophisticated the vision algorithms may
become, the robot will still bg limited to motions and trajectories that VAL can produce.
This situation is made worse by using VAL in a terminalimode since features such as
continuous “path smoothing. which VAL can’ normally provide. must be forfeited. The
smoothing feature of VAL must be given up because commands are now being sent one
at a time so VAL cannot calculate interpolations between motions as it does not get the
_ next motion until'theg previous one is complete An instantaneous ;tof) in the motion of

-

the robot can be seen between such commands.

Such limitations can be ehminated by using RCCL control instead of VAL This switch
would mean that the greater trajectory control of RCCL and'its force control primitives coulld
be accessed and used for better control of the robot As RCCL operates on a motion queue

‘fstrategy. more than one motion command may beysent at a time thus allowing smooth
‘ . transition b;tv'veen moEions _ The switch to RCCL would not be difficult to do and indeed -
hone of the system features would need to be given up. All t_hat would be needed would
be a set of C subroutines to.be written to call the appropriate RCCLroutines. Entries for
these subroutines would then be made in the key: tree matcher and the tree of commands

o

incorporated into the system <

When the system is viewed like this. it is seen to be a really con’\fénlent way of spectfylng'
the gder that a set of subroutmes should be run. It is like havmg a main program that is
compiled and hnked but the order of execut;on can be determined on the fly and recorded
for later play back This novel way of programmmg 1S the heart of the flexibinty and

expandability of the system

. At.the plesent it can be seen that the types of operatiois. af{hough a step above what,

o,

54 Discussion

.

could previously be done. asg still on the primitive side. This is not a fault of the system
It is due to the lack of sensors in the work station. and lack of tools which can provide
feedback as they perform th;ir job.

The cameras require very involved and time consuming algorithms to extract even the
simplest feedback for the robot. In addmgn the cameras must be calibrated to the rob%t
a very eomplicated procedure in rtself Also the cameras are rather large and must be
mounted in areas where their range of view Is limited or obscured by the moving robot.
Thus although the cameras have the potential to provide much feedback they are still many
problems faced when using them.

Tools at the present simply perform grasping. sucking, or grinding actions. There are
no sensors associated with the tools. This has meant that the tools have been designed to
Usé mechanical stops, guides and alignment features to try and elimmate}any uncertainties
in the operations they are to perform. While this 1s a credit to the ingenuity of their
designers it leaves the robot at the mercy of the tool’s accuracy and repeatability with no
way of knowing if any thing has gone wrong with its use. In the future. tools must also
incorporate sensory feedback that can confirm their failure or success in carrying out an
operation. The system has been designed with this in mind as can be seen from its ability
to test input lines which could be tied to the appropriate sensors on the tools

in summing up it can be seen that the system offers a great improvement in terms of
turn around#iine and ease of programming. verifying. and debugging of a task Howeverit is
also seen that for the tasks to become more sophisticated there are many stumbling blocks
still to be overcome. Eﬂ‘rcie;t vision algorithms as well as dedicated hardware processors
are needed to both improve and speed up the feedback that can be obtained fror_n the
cameras Tools must be built with feedback capabilities even if only binary, to confirm
an action they have carned out In addition proximity sensors and force feedbackysensors
could play a vital role in avoiding obstacles and locating parts. However like the cameras
these sensors will need dedicated processors so that data from them can be analyzed and
compressed into 2 form that the robot can use. Here it is seen that the system described
can easily be expanded to accommodate input from these sensory type devices as was
done with the camera system. This flexibility. exparrdability, and ease of use are the main

" features of the system desrgned y .

Lt h&
i

Chapter 6. g . . Conclusion

+

o ‘ Lo o €
This thesis has presented an env:ronment for Robotic Appllcatlons Programmmg on
a VAX 11/750 under UNIX 4. 2 BSD. The environment RAP allows for the control of a
PUMA 260 robot, an X-Y stage, and a vision system.

RAP features a full range of interactive programming and debugging tools. A user may

a,

" compose and watch programs run an instruction at a time or program in-an off line mode as

needed: Program files may be run in a step by step fashion in both a forward or backward

direction. Debugging may also be achieved by the use of strategically placed break points:

Running programs may be stopped or paused. to allow the user to modify any positions or
° L}

equipment in"the environment. and be then restarted at any point.

. The control of the PUMA i:s achieved by interfacing a VAX 11/750 to the LSI/11
PUMA controller and building on the VAL programming language. As the interface makes
use of the controller’s RS-232 terminal port no hardware modification need be made to the
Unimation robot controller package. Despite having to route all contrb] commands through
VAL, the author has developed gxtended commands for the movement of the robot in it:

tool coordinate frame and argument passing to subroutineg -

A stepper motor controller was similarly interfaced to the host computer This stepper

motor controller was used to control four motors’ Two of the motors were used to coritrol

the movements of an X-Y stage The remaining two ‘motors were used to automate the

focusing and zoom of the mucroscope o »
. .

I

Algonthms for domg vision processing were incorporated and can be called by user

programs. The vision routines are modular and.can be easily expanded to include routinés

from the rich libraries at McGill such as the HIPS and SPIDER packages. This opens new

BV

po—

»

N

~

Conclusion

avenues for the use of complex sensor){‘\' feedback in robot programs. It has been seen that
such fee'dback is vital in all but the most simple pick and place type appTications,

A program for the desolderi}ug of ca :écitors from a hybrid circuit board has been given
as an examplé to show off some of the system features. The program demonstrated a
iy;;ical hybrid circuit board repair function that would be needed in the automation of the
repair process The use of subroutines. movement in the tool coordinate framg. and vision
lfeedback have all been 'incorpo’rated into the examples. The performance of the system
was evaluated and recommendations presented. .

All tools developed .in the course of presenting the example have also been fully de-

‘ scribed and schematic diagrams given whete appropriate. These tools include, a vacuum

’

ronly to be of a use to industry in the repar process. but alse as a vehicle for the research

tool for the transportation of the hybrid circuit 'boards, a tweezer type tool for the grasping

and removal of capacitors, and a rack for the holding of these tools while not in use.

'\ The project as a whole has exposed the author to many areas in the robotics field

Topics such as distributed processing, vision and sensory feedback. world modeling, and

robotic programming Iangﬁpges all had to be addressed. The project is seen as such. not

of this dynamic and fast growing field.) §

iff

Y)) References

3

References

*o
H

[1.] B.E. Shimano, C.C. Geschke, C.H. Spalding lll, “VAL-II: A New Robot Control
System for Automated Manufacturing,” Proceedings IEEE Conference on Robotics.

pg. 278 - 292, 1984 _ : |

[2.] L. Lieberman and M.A. Wesley, "AUTOPASS: An Automatic Isrogramming
System for Computer Controlled Mechanical Assembly.” /BM Journaf of Research
‘and Development, Vol. 21. no. 4, pg 321-333. J8ly 1977.

>

[3.] M. Ejiri, T. Uno, H. Yoda, T. Gdto, and K. Take;asu, “A Prototype
Intelligent Robot that Assembles Objects from Plane Drawings.” IEEE Transactions '
on co;nputers. Vol C-21 pg 161 - 170, February 1972.

[4.] P.M. Will,. D.D. Grossman, “An Experimental System for Computet Controlled’
Mechamcal Assembly,” IEEE Transactions on Computers, Vol C-24 pg. 879 - 888,
1975)

<

) 59 R. Paul, “WAVE - A Model Based Language for Manipulator Control The

Industn,al Rol;ot Vol. 4, No. 1, pg 10-17. March 1977

[6.] R. Finkel, R. Taylor. R. Bolles, R. Paul, and J. Feldman, “AL. A Programming

System for Automation.” Artificial Intelligence Laboratory. Stanford Umversaty
AIM-177, November 1974

[7.] R. Evans, D. Garnett, and D. Grossman, “Software System for a Com;au er
Controlled Manipuilator,” /BM T.J. Watson Research Center. RC 6210, May

’ [8:] R. Taylor, P. Summers, and J. Meyer, “AML: A Manufacturing Language.”

Robotics Research. 1.3. 1982

[9.] W.Park. “Minicomputer Software Organization for Control of Industrial Robots.”

Joint Automatic C’ontrol Conference San Francisco. 1977. "

[10.] 1.4, Craig.- ~ "JPL Autonomous Robot System Jet Propulsion Laboratory. -
Pasadena, CA, 1980

[11.] C.F. Ruoff, “TEACH - A Concurrent Robot Control Language.” Proceeding; of
‘ the Third International Computer Conference, The Palmer House. Chicago, lllinois,
pg. 442-445, November 1979.

t

[12.] w. Franlin. and G. Vanderburg, "Programming Vision and Robotics Systems.,
with RAIL," SME Robots, VI, pg 392 - 406, March 1982,

¢

94

[13.] General Electric Company, “Allegro Operators Manual (A12 Assembly Robot).”
- General Electric Company. Bridgeport, CN, 1982

o
-

[14.] B.E. Shimano, “VAL - A Versatile Robot Programming and Control System.”
) Proceedings of the Third International Computer Conference, |EEE Computer So-
cnety The Palmer House. Chlcago llinois. pg 878-883. November 1979.

[15.] K. Takase, R.P. Paul, and- E.J. Berg, "A Structured Approach to Robot
> Programming and Teaching.” IEEE Transactions SMC Vol. SMC-11, no. 4. pg.
T 274-289. April- 1981.)

. [16.] V. Hayward, "RCCL User's Manual Version 1.0." .Technical Repx;rt TR-EE
83-46. School of Electncal Engineering Purdue Umversnty West Lafayette: Indiana,
47907, OctoBer 1983. . ‘

[17] McDonnell Douglas “Robotic System for Batch Manufacturing, Task B High
Level User Manual.” Téchmcal Report, AFML-JR-79- 4202 Wright "Patterson Air
Force Base OH. 0ctober 1981. \

e

[18.] 4. Damnger. and M, Biasben, * "MAPLE: A High Level\Language for Research
if Machine Assembly,” /BM T.J. Watson R\egarch Céqter.\ 'RC 5606. September
o 1975. ‘

[19.] M. Salmon, "SIGLA: The Olivetti SIGMA Robot Programmihg Language.”
- Eight International Symposium on Industrial Rgbots. Stuttgart, West Germany,
June 1978. . . . |

[20.] G. Gini, M. Gini, ‘R. Gini, and D. Giuse, “Introducing Software Systems:in In-

dustrial Robots.” Ninth International Symposium on Industrial Robots. Washington ,

Do
4

D.C.. pg. 309 - 321, March 1979.

b 4
® LN

[21.] D. Falek and M. Parent, “An Evolutive Language for an Intelligent Robot.”
The Industrial Robot, pg. 168-171. 1980.

[22.] J. Latombe, and E. Mazer, “LM: A High Level Language for Controlling

Assembly Robots.” Eleventh International Symposium on Industrial Robots. Tokyo. .

Japan, October 1981.

[23.] R. Popplestone, A: Ambler and I. Velos, “RAPT: A Language for Describing

Assemblies.” The Industrial Robot. pg. 131-137, September 1978.

[24.] .T. Lozano-Pérez and, P. Winstyn , “LAMA: a Language for Automatic
Mechanical Assembly”. Proceedings of the Fifth International Joint Conference on

Artificial Intelligence, MIT, Cambridge. Massaqhuset};. Pg. 710-716, August 1977,

! ~ L4 .
o " ,) : 95
%

‘ References .

- - T T T —————
. o
>

bl

&
References £
~

[25.] E. Mazer, "LM-Geo: Geometric Programming of Assembly Robots.” Laboratoire
IMAG, Grenoble, France, 1982. : SR

[26.] M. Week, and D. Zuhlke, “Fundementals for the Development of a High Level
Programming Language for Numerically Controlfed Industrial Robots." AUTOFACT
West. Dearborn, Michigan. 1981, '

° 4

[27.]) P. Bork, “Controling Robots with an English-like Higf\-Levei Hierarchical Com-
mand Language (HlﬁOB) IEEE, pg. 404—412 1984. S . ,

[28] D Gauthler G. Carayannis, P. Freedman and A. Malowany, ."A Session Layer
for a Distributed Robottcs Environment.” /EEE Proceedings Compint; pg.459-465,
September 1985, e - -

¢

[29.] CVaRL, “Progress Report,” Technical Report 85-10R, McGill University, Com-
puter VlSlon and Robotics Laboratory, September 1985.

[30] Y. Cohen, M.S. Landy, “The HIPS Plcture Processmg Software Referencef\
Manual.” Psychology Department. New York Umversnty Janurary 1983. -

i31.] J.SD., “SPIDER User's Manual.” Joint System Development Corp., Tokyo.
Japan, December 1983, \ »

[32.) A. Mansouri, A. Malowany, M. D. Levine, N “Line Detection in Digital Pictures:
A Hypothesis P;edlctlon/Venflcatnon Paradigm”, Technical Report 85-17R, McGill
University, Computer Vision and Robotics Laboratory. 1985.

- [33.] A. Mansouri, A. Malowany, *Using Vision Feedback in Printed-Circuit Board
Assembly” .’ Proceedings of the 1985 IEEE Microprocessor Forum, Atlantic City,
April 1985.

[34.] L.XU, and J. Chen, “"AUTOBASE: A System which Automatically Estab-
" lishes the Geometry Knowledge Base,” IEEE Proceedings Compint, pp 708-714,

September 1985. \) -
[35.] B. Mack and M.M. Bayoumi,, " An Ultrasonic Obstacle Avoidance System

for a Unimation PUMA 550 Robot IEEE Proceedings Compint, pg. 481-483.

September 1985. \ 4‘ :

[36.] J. Llyod, “Robot Control-Interface under UNIX.” M. Eng. Thesis. Dept. of
Electrical Engineering, McGill University, Montréal, Canada. {Spring 1986)

[37.) D. Kossman, A Miilti - Microprocessor - Based ControI‘Environment for Indus-
. trial Robots,” M. Eng. Thesis, Dept. of Electrical Engineering. McGill University.
Montréal, Canada. (Spring 1986).

N h & [

T ——

{

References

[38.] A.C. Sanderson and G. Perry, = ."Sensory - Based>Robotic Assembly Systems-
" Reasearch and Applications in Electronic Manufacturing,” Proceedings of IEEE.,
.vol. 71 no. 7, pg. 856-871 July 1983.

[39.] B.W. Kemigh;n and D.M.Ritchie.‘ “The C Programming Language.” Prenticoe'-
. Hall Software series. 1978. N

[40.] Unimation, “Unimate PUMA Robot 200 Series Volume'1 Equi.pment @Manual."
. Unimation Inc.. Danbury, CT. August 1983. ‘

[41.] A. Mansouri, “A report on the Stepper Motor Controller Intearface‘to the VAX,”
Technical Report. McGill University, Computer Vision and Robotics Laboratory.

H

March 1985. i , -
[42] Microbo, "L.R.L. Intuitive Robot Language.” Version 3.2, Microbo S.A.. Beau-
reguard, Ch-2035. Corcelles. Switzerland, 1984.

[43.] T. Lozano-Pérez, “Robot Programming,” MIT Al Memo, no. 698, 1982,

[44.) Unima;tioh. “Unirate PUMA Robot 200 Series Volume 2 User's Manual,”
Unimation Inc.. Danbury, CT. August 1983

[45.] Unimation, “Users guide to VAL-11." Unimation inc.. Danbury. CT, April 1983.

[46.] H. Gomaa; R. Captenter, and). Popelas,, “Menu Programming - An En-
vironment for Programming Robots.” /EEE.Proceedings Compint. pg. 466-470,
1985. " '

[47.] R.H: Kirsehbrown and R.C. Dorf, "KARMA a_Knowledge-Based Robot
‘Manipulation System.” Robotics, vol. 1'no. 1, pg. 3-12. May 1985. ’

[48.] H. Lechtman et al., Conecting the PUMA Robot with the MIC Vision System
and Other Sensors,” Robots VI Conference Proceedings. pg. 447-466, March 1982.

[49.] G. Carayannis, & “Controlling the PUMA 260 Robot~from a VAX." Technical
Report, 83-3R. McGill University, Computer Vision dnd Robotics Laborato'l;y, April

1983, ‘ -

[50.] M. Parker, “A Key Tree Matcher Tutorial for User's,” Internal roebalt. Electrical
Engineering Department, McGill University Montréal, Canada. '

[51.] A. Bazerghi et al., “An Exact Kinematic Model of PUMA 600 Manipulator."y '
IEEE Transactions on Systerps. man, and Cybernetics. vol. smc-14, no. 3, pp
483-487, May /June 1984,

97

of

References

LS
’

[52.] R.P. Paul, “Robot*Manipulators. Mathematics. Programming. and Control.”
MIT Press, Cambridge. Mass.. 1981, ' “

[53.] D.Z. Bauks, " “Automated Hybrid Assembly Systems for the Electronic Fac-
tory of the Future,” International Journal for Hybrid Microelectronics, Intrnational
Microelectron Symposium, Philadelphia. Pa, USA, pp 40-42 October 1983.

»

[}

e

98

