
; , 

" 

,. 
.,. 

,'II 

'. ' 

\ 

.' 

f! ' 

An Environment for Program~ing a 
PUMA 260 Work CeU 

Eric MéConney 
..... 

March 14. 1986 

'\ 

Computer Vision and ,Robotics Laboiatory 

Depattment of "Electrical Engineering 

. McGiII University 

A thesis submitted to the Faculty of Graduate Studies and Resea'rch , 

in partial fulfillment of the requirements .fpr the degree of 

Master of Engineering. 
, " 

" 

@1986 by Eric McConney 
Posta' Address~ 3480 University Street, Montréal. Québec. Canad~ H3A 2A7 

" 

,0 , 

'. , 

r 

'. 



1 . 

.' 

F 

, 
• 

" 

. -. 

J , 

An Environment for Programming a 
• PUMA 260 Work Cell ' 

.~ 

\ 

, ' 

Eric McConney 

" • 

Abstract' 

• li , , 

"An Improved Robotics Applications Programming environment (RAP) has been devel-

oped for the PUMA 260 robot for "use in the repalr of hybrid integrated circuit boafds. The 

system features full control of the robot, vision system. X~ V linear stage. motorized mi-
• 

croscope. and digital Input/output interface module ln addition to the normal editing and 

filing capabillties. this unique programmmg enwonment provides the abillty to compose 

and execute programs "concurrently" as opposed to the mo~e tradltlOnal. Edit" Compile -

'Link - Runesequence Debuggmg capabihties are featured. mcluding the ablhty to set break 

pOints. and single step a program both in the forward and backward directions. Further 

faclhties allow the user to pause. continue or abort a ruhnihg program RAP-Is programed 

in the C language and runs Y,nder the UNIX 4.2 B 5 0 operating system Full spelhng 

and syntactic check mg of command lines IS âchleved by the use of keyword matching 

techniques. The RAP system greatly simplifies the programming task for such a complex 
" 

envlronment. allowmg the user to concentrate on the activitles bemg performed rather than 

on' the programming details. The program is being su.ccessfully applied ~o the rel>air of . 
hybrid integrated circuits in the McGill computer vision and tObotic~ laboratpry. 

/ 

" 

", , 

/ . / 
/ 

/ 

...... . . 
- , 

". 
- I-~ , i 

o .' 

'~', 

-' , 



. ' . 
~ 

, , ...... 

' .. : 

,( 

, ,1 

q, 
, . 

" 

..... ,: 

, . 

An Environment for Programming a 
PU MA 260 Work -Cell 

, 
Eric McConney 

Résumé 

• 

, Cette thèse présente un environnement de programmation robotique qui a été 'développé 

pou,r le PUMA 260 afin de procéder à la réparation des circuits·hybrides.' Le système permet 

le contrôle du robot. du système. de vision par ordinateur, de la table X-Y ainsi qu'une 

multitude d'autres périphériques. Grâce' à ce système, 11- est" po~sible de composer, de 

modifier. de mémoriser et d'exécuter des programmes sur le di)mp, ce quLest un avantage 
1 . • • 

face à la séquence traditionelle d'édition, de éompilation et d'exécution "y a des facilités -" 
poul la vérification des programmes, et d'autres qui permettent à l'utilisateur de suspendre 

temporairement le programme à des points spécifiés ainsi qUé de les exécuter en mode pas­

à-pas, SQit dans le sens du programme soit en 'sens contraire, Dè plus, Il ~ possible de 

suspendre, de continuer ou d'arrêter un programme pendant l'exécution de ce \t:rnier. Cet 

environnement a été programmé en language C et fonctionne présentement sur un système 

d'exploitation UNIX 4.2 BSD. Les erreurs de synta~e étant détectées Immédiatement. la 
, ~ 

tâéhe du "progr.ammèur se trouve grandement facilitée, ce qUi lUi permet de se pencher 

davantage sur ce qui doit êtré fait plutôt que-sur la manière dont les programmes seront 

exécutés.' Cet environnement est présentement utilisé avec succès' pour la réparation .des· 

circuits ~ybrides dans le laboratoire de viSion par ordinateur et de robotique de r Université 
; . 

McGiII. 
o ... 

' .. '.' . ' . • 

v' .... , 

. . . , 

Mard 14. 1986 
.. ,1 , f • 

. . 
" .. 

, ' , 
. \ 

-. 1 

'\ ' 

" 

..... 

\ '. ' . " 



" 

• 
" 

" -

. ' 

.. 

:'; 

'. 

( 

. ' 

" 

-. 

. .. 

• 
l ' 

Acknowlédgements 

1 

r' Ù Acknowledgements, 

l\' , 
. ' 

... -

\
: 
r, 

'\' 
1 would like to extend my thank~ to my·advisor. Dr, A. S. ~alowany. for his guidance 

and éncouragement in every aspect of this project. It has been b<?th education al and a 
u' , 1 

v- 'pleasure tô work with him, 

Thanks are also due to my colleagues. for t~eir help ~'l~ advice in many areas of this ,,,,",, 

, project. In particular 1 would li~e to thank M. Park~r fci~~ help with the debugging of _ 
~ ~ . . 

, sorne of the more convoluted constructs of my code, and A. Mansouri for help with the 

vlsiôn section of this prôject and"the translation to French of the abstract of this thesis, 

The tQols used in this project would not have been possible without the help. advice 

and mechanical expertIse of J. Fèldvari to whom 1 would like to extend my thanks, 

1'-.,,_ D' 

, 1 am grateful to my family, ,in particular my mother and father for their suppor~. without 

which -this project would h~ve never been completed. 

.. 
-<, 

March 14, 1986 • 

'. 

. 
/ 

" \ 1 

, , 

" 
\ 

'" 

'f' 

1 



, , . 

. , 

" ' 

., 

• 

• , 

- " 
Table of Contents 

Table of Contents 

Abstract 
, , 

................ , •••••••••• : .0 ••••••• t' •••••• f ••••• 'Îi ............... j., • " 

. , , 

Résumé' . ..... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . .. . ... :.. ii; 
. , , 

Acknowledgemel'ts ......•.. ,.,........................................... iv 

Table of Contents ......................... , ...................... :....... v - , 

L· 'f'r' ~ . , ... ,st 0 -rlgures ................................................ " ..... ' .. ,. Vit, 

Chapter 1 . Robotic Systems .. .. ......................... : ...... <. •• 1 
o 

1.1 Introduction ................ \ ............................. ' ..... '. . .. 1. , ' . ~ , ./ .. : 
1.1.1 The Need for Ro6ots .................................... ::.:. 2 

~:- ~ ",t~~. 

Ll.2 Description of Motion ...... : ......... -,-: ~ ...................... ' '-~. 

1.2 Types of Robots. . . .. . _ ...•........• : . . . .. . ... ' ....... ~ .g:: . . . . . . .. 3 

,1.3 A Survey of Robot Languages ........... ~ .... ,' ... .' ... : .... , ..... 0 ••• , 1 

1.3.1 Robot Levet Languagés .: . ~ .... :. ',' .. : .......... " .... ' ........ ' 7 . . 
1.3.2 Task Level Programmmg , .... , ......... ~ .. :. ~.,',. ': ........ , .. 9 

1.4 The Project . • , •••••••••••••••••••. 'l • , ••••• ' •••••••••••••• , 1 ~ 

. 
Chaptèr 2 Robotic Work at McGi11 ........ ' .. , .................. ::. 13 

2.1 IntroduçiÎo~ ......................... ' ... ,: ................... ," .. , .• 13 

2.1.1 Distributed Processing ........... , . , . ,' .. ," ..... ',~ ~ : ..... :~ 13 
\ ' -

2.1;2 Vision, .... ................ ~<I_ • ......... ' ••••• \,~ •• ' ..... 0 ................. o' • 14 

Force Sensing .... : .......................... , ............ , 15 

World Modeling ...... : .. , .......... " .... , ... , .........•. , 16 
, > e 0 

.collision Avoidance .. " .. , ...................... '. . . . . . . . . .. 16 
" . 

The Robot Languages- at McGiIJ . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. 16 
<-

Project Goals .......... ; ..... " : ...... 1 ••• .' •••••• ' •.•.• '. • • •• 17' .' , 

.2.2 System Overview ........................ ; ..........•. ; :', ' .. ~. . . . .. 118 . , . 
2.2.1 The PUMA Controller 

, 
••••• 1 ............. , '\10 0 ........ ~ ... ~ ••• • 0 ........ ,. 20 

l' 
'v 

, . 
1 • 

.', 

. ' 
!.,' 

• -"'1' 
: je,' 

'1 

, 
\ 



il 

' . .... 

"'. 

" 

o 
n .. 

Table of Contents 

," 

2.2.2 The PUMA Robot . . . . . . . . . . . . . . . . . . . . . . ............. , 2i 

2,2.3. "The Step~or Controller ............................ ' ... . 21 

2.2.4 The Grinnell Monitor ........... : .................. Q;' ••••••• 24 

2.2.5 The Microbo Robot> ........... : ........ -......... , ......... ' 24 

2.2.6" 
oÔ -', • • 

Interchangeable T ools ......... : ...... , ...... : ............. . 24 " 

... . 
2.3 The VAL language ....................... , ...................... . 27 

_ 2.l.1,. VAL-II ..... . . ...... , ......................... 'i ... ' .. , . , . 29 

. Chapter 3 The System Environment :" t ... , .. , ... ,., .... :. :.: ... , . 31 

~.1 Progra{!Wling Menu Concepts ........ , ... , , , . , ',' .. ',.,.' ... , .. ".,. , 31 . ' 

3.1.1 System Features . , ....... ' ...... , .. ' ....... , .. 
, \ 

32 

3.1.2Command Features ......... ',' : .... \- ........ , .. ~ \, .. , ... . 33 

3.1.3 Debugging and Editi~g ... : ..... "." \\ ' . , '.' , ... , , . , : ' . , . , . , , 

'3:2' System Commands , ... , , ." , , . , . , . _ ... , ... .1. . ...... , ,," •.•. , ..... . 

34 

35 

3.2.1 Channel Commands " .. " .. , .. . --J .. : . '\'0':' ... ' ........... : .. 
3.2.2 Point and Location Commands . .'.: ....... , .......... '. , ... 1, •• , , , 

3.2,3' MO~lon Com'mands ........ , .. ~ . .-.... :., \ .... , .~ ....... t ..... . 

3.2.4 Motion forrymands for the St~ge and Micro~cope ........... ', . , . 

'3.2.5 Debugg;ng and Editing Comm~~ds ..... , . ~ .... , ... '~t •• ,.' •• : ••• 
1 

1 

35 

. 37 ~ 

38,' 

42 

« 
3.2.6 Conditional Commands ................. '\1' .................. .. , " ~O 

3.2.7 Vision Commands ...... " .............................. , ... . 52 

3.2.8 . More VAL Commands , ....... : .. " ......................... . 54 

3.2.9 Specialized Commands .. , ....... : . ' ......... , ............... . 56 

Chapter 4 System-Implementation ................ , ............ .' .. . 59 

4.1 System Software ...... ; ........... ',' ......... ; ................. . 59 

4.2 The Communications Intenace , ........ , : ......... , . : ............. . 5.9 

,4.2,1 The PUMA Ori'ver .' ................ """ .. ' ..... : .............. . 62 
, '. 

4.2.2 The Key Tree 'Matcher ...................... , ... ' ....... , .... . 63 

vi 

, , 
/ 

Il 



Table of Contents 

4.2 3 Feedlng the Matcher , ..........•...... , .. "."",,' ... , ... , 64 

. 4.3 Adding a Subtree.;.. ', . .':., ................................. ~.. 65 
.... 

J 

4,4 Oebugging ... , ....... ' .. , ................................... , , . . 66 
. , 

4 5 Subrout,"e~ and Argument Passing ....... ',' ......... ' , , ............ 1 66 

4.6 Status Recording,., .............. ' ....... , . ',..~ .. "'1' .. , ...... '. . . .. 68 
• ~ ou ' • 

4.7 Error Recovery ..... ~ ....... ' .... '" ... _ ..... '.' , ... ':. , , .... ': ' , .. .. 69 

4.8 Implementation of T~ol Motion ......... ' ...... : ....... . ....... ...... 70 

Chapter 5, A Repair Function an 'Ex~mpl~ 
," ' 

~ .. .. .. .. .. .. .... - .. .. .. .. /. ...... : -.. .. ... " ........ '73 

5,1 .. The Repair Function .... ' .... ' ..................... , . . . . . . . . . . . . . .. "'73 

~.2 The Physical Layout ........ ;> •••••••• , •••••••••••••• , , •••• , , , •• " 74 

5.2.1 The Tooi Rack ........................................ ', . .. . .74 

5.2.2 The Vacuum Tooi ........... ' .. , .. ~ .. , .... , . . . . .•.. . . . .. .. 74 

5.2.3 ,The Hybr'id {c. Stand .. , , .....•........................... : 77 

5.2.4 The Tweezers ................... ~ .......... , ........ : .. :. . .. 77 

5.2.5 The Flame Heater .....•..... , ....... , , . . . . . . . . . . . . . . . . . . • . .. 77 
" ') ~ . 

" \ .. 
Sam pie Program # 1 .. , ... : ........ .' ................... ,......... 80 , , 5.3 

~ 

5.3.1 Sample Program # 2 '" .......... "'~-(," ... ''>' ••••••••••••• " 87 . ."..' ,.. 

5.4 DIScussion .................................... ' .... : .. " ' . . . . . . . .. 88 .] 

Chaptér 6 C ". .' . . one uSlon ................................................. . 92· 

References . ...... , ............. , ............. r. . . . . . . . . . . . . . . . . . . . . . . .. . 94 

\ / 

, , .... 

vii 
f-

, 
" 1 

. . 



. " 

û 
• 1. 

, . , 

... .. 

fi 

.. 
• t .. 

, 

<:> • 

• 1 

List of Figures . 

List of Figures 

1.1 A C~rtesian Robot Configuratiol). . . ... .. . . . . . .. . . . . . .. . . . . . . ... . . . . . .. 5 
, 

-
1.2 "Robot Showing Spherical Work Space ..... _ ......... '" . . . . ..... . . . ... 6 

. 1.3 Robot Showing Cylindrical Work Space. ..:......................... 6 

2.1 Blo.ck Diagra~ of Repair Station. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. 19 

2.2 The PUMA Robot. .... . . ..... . ........ . . ..... . . ....... ....... .... 22 

2.3 Th,e PUMA's Work ~pace .............. ' .... ' ........... : ........ '. . .. 23 

2.4 The Microbo Robot.. . ...... , .................... ' ..... '. . . . . . . . . . .. 25 

,2.5 The Microbo's Work Space. ....................................... 26 
• l 

System Software. ................................................ 60 
• J 

5.1 The Physical Layout of the Repair Station ................ : . .... . . . . .. 75 

5.2 The Tooi R~ck aqfcVi'~o~um 'Too'1 ............... " .............. ,. .. ... 76 
....~, -;. 4<';1 

5.3 The Hybrid -Le. Stand with I.C, ............... .- .. ' ... , .~ .. '> .......... ' 78 

5.4 
. ,'" 

The T weezer T 001. ... , ....... ' .........•.......... ". . . . . . . . . . . . . . .. 79 

5.5 Plate 1. · ................................ ', ..........•... '.. . . . . .. 84' 

5.6 Plate 2. ........................................................• 84 

5.7 _ Plate 3. ., ...•••••••. 'J. o.' •••••••••• 0 ••••••• 0 ..................... 85 . , 

5.8 Plate 4. • o ••••••••••••••• 50 

••••••••••• .., ••• , •••••••••••••••••••••• 85 

5.9 Plate 5~ •••••••••••• 0 o~ ••• o ••••• , •••••••••••• ~ ............ ,........ 86 
• Q 

5.10 Plate 6. •••••••••••••••• o •••••••••••••• o. • • • • • • •• • • • • ••••• • • • •• 86 

.J 

, viii 



• 0 

.... 
o 

() ., 
- -, , ~ 

\ 

Chapter 1 Robotic Systems 

., 

t .. 
1.1 Introduction 

The development of robotie sys~ems ;s a new field which is of great interêst to industry. 

Historical(y. ail manufacturing assembly has been perfor,:"ed manually. but with increasing 

prqcess cOf'lplexity and as large corporations stri'le for greater efficiency in the;r prod~ctio~ 

operations. the use of robots is I;kely to beGOme commonp'iace. 

ln 1975. a company called Vicarm lne .. which was involved in making manipulators 
o • .. . 

for .research laboratories. develope~ a test program. to incorporate a ~obot manipulâtor 

interfaced with a microcomputer. for the purpose of demons~rating the manipulator IShi-
. . 

mano 1]. Vicarm was sold to Unimation Inc. if\ 1977 and. baséd on the computer robot 

interface system. U~imation developed an industrial grade robot. und~r contract to the , , 
General Motors co;poration. The robot. ca lied PUMA (Progr~mmabl~ Universal Machine 

'1 • ~ 0 

!or Assembly) was delivered in 1918: . . . 
Since then. -studies have been done to investigate communicatio,ns between slave robots. 

sensors and supervisory control systems. The objective of current research work is ta 
• D 

develop general applications. using sensory feedback. which are reliable in complex assembly 

operations [Lieberman and Wesley 21. This presents severa. i~ierestjng opportunities f~f 
the resear'cher. 

.. , 
The repair of hybrid integrated circuit boards has been selected by the author as a 

~hicle for the development of a robotic programming ehvironment ca lied the RAP (Robotic 
_ 0 , ,._,., 

Applications Programming) system, The environment which has been created. ~ffers êI 

friendly interface ta ro~otic programming. sui~able both for the' novice and ellperie~ced 

\ 
c. 

., , 

l 

_i 
• " 

o ' 

if , 

, .., 

.,; 
r" 



• 

j 

Il' 

'., 

. ,,~ 

, 
1 1 l'ntroduction' t . ... 

programmer. It enables the programmer ta select syntactically correct commands from a 

menu. provides help "prompts. ·contains edlting and debugging featur~s and generltlly permits 
, , 

the programmer to cr~ate robotie appli~tions with great ease 
'-~ 

1.1.1 The Need for Robots 

The mO,st basic form of mimufacturing ,a~sembly. being manual in nature.,.. is 5uitable 

in low volume operations. where manufacture by hand is a positive marketing factor. That 

is. where the consumer desires a personapy customized product. for a specific purpose or 

need. and is prepared to paya premium for It 

, At the high end of the assembly volume spectrum. where the "nuts and bolts" of 

industry are of standard design. the production process IS cparacterized by high capital cosY 

. equipment. which automatically transfer materials and parts between machines, This ha rd 

automMion may be extensive. depending on the nature of the items belng manufactured. 

Robot control systelJlS are, of interest to industries in the intermediate region of the 

assembly volume spectrum where c~rtain aspects of assembly are cntical to the production 

process, This volLtme' rang~ is characterized' by an assembly sequence in ~hich air~ady 
~ 1 ~ • 

~anufactured parts. laols and fixtures have i.o come into close ~ontact with' ~ach other. in 

a harmonious manner. to achieve the desi;ed asseml>ly goal. 
, 

The most.widespread use of industrial robots today. is to carry out repetitive functions 

.such as those involved in gripping parts~ Ptcking them up and performing routine assembly 

- operations ~n them. Howev~r such basic tasks. involvi~g the most si~ple teach and repeat 

commands.'" ll~v_~ ~plications- ythich are limited to jobs such as spray painting, material 
~ - ~ \ \ 

handling. machine loading an~f spot welding. 
. l' 

As m~nufacturing syst~n:.s become more sensitive to part tolerances .. particularly in 

miniat~ized processes. the need for precision becomes apparent. Such precision can be 

aclii~ved only' in an environment in which the robot!i interact with supervisory control and, 

sensory devices. thereby 'enabli!lg"motions, ta be described with mathematical acêuracy. in 

addit~on to providing the capability for sensory feedb,.ack and decision making. 
& ' , 

d , ~ 

'Problems in the development of robotic systems ta carry, out manufacturing assembly 

operations are characterized by the need to crea te a friendly environ ment. in VVhich, ,a , 

" . \ 

.< . 
" 

'. 



• 

1 

1 2 Types of Robots 

programmer may speciahze in creatlng programs. without being encumbered by exhaustive 

tethnieal programming detai!. \ 

1.1.2 Description of Motion , . 
. r 

Specification of three dimensional movements. characteristic of assembJy operations. is 
-.li 

a very d!fficult task. The problem 'is that three dimensional movements ~re very difficult to 

conceptualize. because of their associated spatial complexity. While loose oral descriptions. 

"with a set of drawings. may be given in a factory environ ment to describe an assembly 

procedure. such simple descriptions are of no use in programming the robotic movements. , \. 

which are complex in nature 

D.escnptlon of the motions tequired to be performed. depend on the capaclty of the 

programmmg language to make accurate statements about the geometric and physical 
" . 

nature of as~embly. Geometrie terminology ,is necessary to describe the shape of an object 

and its location relativ,: to other objects .. Physical support or attachment arrangements 

~nd stability of the objects. while relatively easy to desc~ibe in static conditions. become 

dÎfficult to describe under "conditions in which the physical relationships are c'hanging. as 

in robotic manipulator fastening operatio,:,s. 

Therefore. the programmer mUst be able to function in an environment.which pro­

vides immediate feedback through observation of the robot's movements. as they are being 

programmed. while permitting,immediate modification"Of commands as may be desired. 

,\ Efforts to solve these difficult deSCription problems are being made by the development 

of systems such as the world model data base. (Lieberman and Wesley 2) to provide ·and 

update information rn order to reflect changes related to specifie commands. The work of 
. . 

(Ejiri et al 3J as described by (Will and Grossman 4] has solved in princlple. most standàrd 

. assembly problems. The challenge n~w. is to handle real-life industrial situations in whieh ~?"' 
tl" 

parts. objects and assemblies are varied in design. and to deveJop convenient methods of 

programming manipulators which may b~ imperfect. 

1.2 Types of Robots 
, 

There are many difTerent types o(manipulato~s or robots characterÎzed mainly by their 
IJ 

joint configl!ta\ions. T wo types of joints' are I,Ised in robots. rotary or revolute joints and , . 
3 

J 

, , 
\ 



./ 

. 
prismatic or sliding joints Muftl-motor confIgurations are reQuired to rotate the machine. 

to articuf~te the joints and to open and close the grippers. Sensors and potentlometers 

rpeasure motor positIons and the signais from these sensors are 'used to control the tra­

jectory and' pQsition of the manipulator. T 0 achieve any arbitrary position ana gripper 

orientation there must be at least three revolute joints in the manipulator. 

ln order to describe various mov'ements by which the robot can be actuated. the terms . 
:'a~is" and "degree of freedom" are~~_~~number of movements possible in a given 

system is called the degree of freedom of the-system while the mechanical devices causing 
o 

these movements are calléd axes. Each axis does not necessarily correspond to a· degree 

of freedom and in fact the maximum degree of freedom is six. Additional axes only serve 

to increase the geometrit dimensions ,of movement. if they are primary axes. or increase 

the orientation possi~ilities. if they are articulated axes. The many types of robots can be 

divided into three categories defined by the coordinate system the robot opera tes in. 

(The tirst type gf robot is the cartesian robot. This robot moves i'h the three basic axes 

t'X. Y. Z) and exhibits a cubic work space located ta one side on the robot. see figllre 

11.1}. The carteiian robot has the advantage of great precision in the ( X. V. Z) coordinate 

frame but has the disadvantage of more limited orientation possibilities for its t~ol tip. The 

cartesian robot is mainly used for its precision in areas such as precision assembly . 
• 

The so called articulated robot can be thought of in terms of polar coordinates and 

exhibits a spherical work space that surrounds, the robo~. see figure 11.2}. This type of 

robot overcomes the' disadvantage of limited work space and orientation possibilitiesof 

the cartesian robot but gives up its greater precision in ·the plane. The articulated robot 

because of its flexibility is preferred in applications such as arc welding and spray painting. 

The final cate~ory is the cylindrical robot. see figure Il.31. The cylindrical robot keeps 

two of the axes of the cartesian robot and one of the rotary axes of the articulated robot. 

ln this way the precision in the éartesian axes typically (Y and Z) are retained. and the 

work space is expanded by the ability to rotate about one oLthe axes typically ( Z ). This 

combination type of robot finds use in applications such as precision assembly. 

McGill currently has three robots whic~ aJtoexhibit different jOint configurations a"d fall 

into a different robot class. The PUMA 26()' is an articulated manipulator with six revolute 

joints. The 'IBM 7565 robot is a cartesian robot with three prismatic and three re~olute ' 
\ - . . 

1 4 

" 
l, 
r 

) " 



j 

1 

, 

• 

~.-.':' ... · .... , : ....... · · 
. -. -
2 

. .. 
_ ••• -t-~,_ 

•••• t ....... ,. ....... ~ -......... ... . ' . 
: ,. · .. ·::a • 
: ........ : 
; ....... : . ...... : . .. ,.;. , '. .... , .. , ....... ". : {" 

.... ~. 
· . · . y · , · ~ 
~. 
: 

••••• If 
1 ...... ........ :_...... -., 

., 

... ~ .. \ ........ ......... ' 

·--.·~ ... I ... ".'''' ..... ~ ......... 

", 

F J,aure 1. 1, ft Cartealan R9bot, Configuration 
• ~ • Co 

'. 

,Ir, , 

.' 

, .' 

,.' 

", 

\, 



',' 

-' 

,-

f' 

-.' 

.' 

, .\ 

. . , 
7 •• 

. . ' 
, ••••• " ............. 1"' ... - •••• , .... .... ~ .... '\ 

, . ~ •• :::.:'Z' •• ", .• -'=': .-_ ......... ~ .. ~ .............. :.: .. .".,.~ 
j .... ...................................... '."':", .... , 

~- .. ' f " / ., 
.. _ t, . . /" 

1 \ 
.1 J ,8 \. { " ·-1It r \ \ 

: \ · , , ~~ t · . · . · . -: : : -f: 
1 • , . 

'-: ....... . .. " : ,. .~ 

1; ~ , , 
\........... . •.. :..····1 

lo.~ ........... " ....... ..r' " ._'. •••••• ./.,. ... '":1, \, " ......... _..... .......... .. 1 ~ 
-, ~I - 1 . . 
\ 1 
~ . , / 

\'. _ •• J" ',6. ~... . ..... 
, '~.... ~,,.. ... 

•• ~.... ... • ...... 4t\ 

.~.~ ....... -. ... ......... . . ..... .. ... 

. ' .. 

'. 1 

z 
oC 

• I ••• ~ •••• .;.-.-...._ • .............. \' _.-- ....... -. ................ ... 
, , ~ .. ............. ..... .". . 

,/ 
" ...... 

"\:' ." k. · '. i ~"' ....... ' · .. .... ..... :- .......... .. 
• • • : .~ ....... ..... . 
: .-' ....... . 

... : ,-,.'. · .' ... 
f' : .... .... 

'. ..... ". .-
'; ...... ~ .... .......... _-

.' ' 

. À \ ....... i ......... ... ": ..... . ."............. ,: 
.... ~I!lOo .... ~ • 

• • • • : 

~R .··:····>i 
. \ .l., 

\ .' .' 

.. .; ...... ": .... ;" .......... . 

J 

FI_à ... 1.:' Robot sho.1 n9 Cy l ,i ndr l ca 1 
1 

Uor'k ~pace 
" '. 

• 

-. 

, 

~. " 

1 '. 

- " / , , . 
'. 

. 
'1 ~ ... ." 

... ~~~ 

... 
''''"j, , 

'" 
., 

. 
" 

.', -
',' 

, 



• ... 

" ',';f 

\ -~, 

,,,",, ,'r,. 
, - '..,. 

, -

. , , 
, .. 

1"'. 1 , 

;, 

, . 

, . 
Cl 

1 3 A S'\Jr~cv of Rol)ot LanA~"Res 
: 

joint~. and the M,crobo IS' a cylindncal ;6bot with two prismatlc and four revolute JOints 
"'\ ' .. .. '. \ 

-The control of the$e vaiious robots as can be imagtned is a very camplex ta5~' 'TYP',cally . ,~ . 

each motor ,has a dedicated\o~ro~~er and these ;eparate or slave cODtrollers are supefv,sed 

bY'3 mai~ coordinator which 'takes request ",from a user or applicetion pr~gram and' the~ 

relays ~ommands or tasks to the slave Alocessors Each slave 'processors IS responslble ,: 
~ '_f 

for the monttoring and control of one of the ser\lo jomt motofS. The divIsion of th~ tasks - " , ~ 

, ln thi,s .way is vital as' the control of the robot is needed in real tlme and thus speed of 
, 

,proeessJlig is a major coneel"n The supervisar and slave processor archlt~d:ure a/so allows 
, , 

for" a very modular design ta whlch r11Ol'e SI~Vé controllers l]1aYI> be a~ded as needed, 
~ :" b 

As. mlght be expected the rriany types of robots and eontrollers tn addl.tion' ta the many 
, 1 . 
tasks and, applications the robo,t is to be put. ha~ /~d' to many difff'rent I.a.nguages and . ' , 
environments fOf the cqntrol of ·these robot1i. Sorne of the languages whlc~ have evolved 

will be summarized ln the next section .. 
1 • 

1.3 A Surv~y of Robot Languages 

~ ~, 

The earliest method of programmbg a robot was to guide it manually through a se.-

quence of motions. T·hese motions could be recorded and then played back to achieve 

repetitive tasks This pioneering form of robot programmingwas simple to Implement and 
t 

could b~ done without .the use of general purpose compute.rs The method. though simple. .. ~ . 
lacked several Important features. For example. programs could not react to sensor~ Inputs. 

, G .-

. Further. there could be no looping or branching. nelth~r could computatIons be made, 

The need for these mlss;ng features. essentJaJ ta create more "intelligent" robots. was 

partially satisfied by the use of general purpose computers The fall ln price' and the ris~ 

in power of these general 'purpose computers allQwed them ta be tncorporated intd robotie 
',4' 1 

. - ,packages. leading to the development of robot levei programming languages. 
, ,C! • 

-' 1.3·.1 Robot Level Languages 

, . 
~ 

. R,obot level programmtng lang.uages h~ve the advantélge~ of incorp~ra,ting sensory dat&~ , ~. 

from such devices as vision. ,~ystems. force sensors and exiéfnal sensors ;nto the control 

of the robot. However. ~O' order to use the robot level languages. It is necessary for the 

1 

t . 

. . 
" 



, . 
> 

1 

/,,?, 

l 
,. 

\, '-

" , 

" , 

\ 

A 

.. 
,. , 

... 

1 3 A Suhtey of Robot languages 

; .. \ • • ' " • 1 . ' '> ,/ o~ • \ ' .. 

user to l1ecome a programmer and become involved 10 the detai's of robot l'notions 'and, 
or ( 1 1 

sensory' based motion strategies, A variety of robot level languages have been developed. 

, as outhned here below 

,The Stanford Umversity Artificial Researc:h laborafory d~veloped, the language 'NAVE 

IPaul, 51 ln 1973. to ptogram robots for research into the limitations of robotics theory, 
411< " , ' 

While thlS '15 a low level language. Il served to pioneer important mechaOlsms in robot 
, ' 

programming The~ded the description of end-effector positions ln carteslan c.pordi-

nates. the coordrr:at.on oi JOint motions to ach.eve continuous 'veloclttes and acceleratâons 

and. the sp~clflcatlon o~ compliance ln cartes;an coordina'tes ln the following year. thé 

laboratory developed Al IFmkel et al61 a'hlgher levellanguage, to facllitate programming 

assembly Qperatlons ln 'additIon to the manipulation capabilitles of WAVE. Al is capable 

of executmg concurrent processes and oITers data an~ control structures similar ta ALGOl. 

, ŒM has developed a number of languages at thelf Watson Research Center The first 

of these. EMIL ~ IEvans GarneU and Grossman 7) and Ml {Will and Grossman 4}. hav~ 
, . 

. been used ln assembly tasks. AML ITaylor, Summers and Mèyei 81 wh,ch was otfered 

commerCially,1n 1982. for robot programming work. do es not slJPport carteslan motion in a 

, tbol frame. compilant motion or multlprocesses However It offers a system environment. . , ' 

in whlch. robot p.rogrammmg mtetfaces may be built 

SRi' International devel0ped RPl lPark 9J for use m facilitatm,e; control of machmes 

·in a work cell. It is implemented. as a set of subrout~e calls and may be viewed as a 

LISP type language cast m a FORTRAN syntax JARS (Craig 101 has been developed by 

Jet P!~puls,~n Laboratory to control robots ,assembling solar cells The JARS language is 

basically PASCAL. wÎth many robot speCifie types. vartables and subro,:,tmes added Jet 

Propulsion Laboratory has also developed'the language TEACH IRuoff 111 which deals WItt,' 

" cQncurrency ln a systematlC way. 

The RAIL language [Franklin and Vanderbrug 12}. which IS an Interpreter loosely based 

on PASCAl. has been devell;)ped by Automatix to contrat visuai inspection and to carry. out 
" . 

robotic assembly and arc-weldmg. HhLP IG E.C 13}. -also an interpreter simila"rly based 

on PASCAL. tS a robot programming language. announced by General Electnc Company in 

, . 

\ i.'-

19,82, it is best sUlt~d for use with cartesian arms a.~ mottqns are expressed in terms of 
actual robot Joints 

,) 

8 

o 

. , 

" "'. , - . 



t 

11, 

,-

,J 

, \ 

\ 

, . 
l '3 A Survey 01 Robot languages 

~ - (. 

, ,-'" , . 
,V~L IShimano 14) is a commercially ava.lable language whlch was developed' by The . ' 

Uni~àtion Corporation. It IS the programming language upon wh'eh th.s thesl~ IS, Da~ed 
,,~nd IS deg;nbed ;n detail in ,Chapte~ 2 A new version of th,s language. VA~ 1\ IShlma~~ ,.' 

et al 11. offers facilittes for local ~re~ networktng, real tlme control of traJectory, concurrent 

processing and syÎlchrOOllation ~nd general 'sensory interfaces as dlscussed Jn chapter 2 . 
1 • 

The PAL IT akase and Paul 151 system, developed at Purdue Umversity, represents 

t~ks in terms of structur~d c~rtes,an coordillates M~ti'ons are aC~leved as., a ~ide effect. 

in solvmg position equatl~ns RC'CL IHayward161, a continuation of this w~rk', 15 a ~et of 

C .subroutines used for controllmg the robot 

There aie other languages which may ~e found in th~ 'Iiterature. Mel (McDonnell 

Dougl~s 171 was developed for the US Air Force by McDonnell-Douglas, It is an extension of 
o , 1 

the nymeric'al control rlliIchlOe tool programming languag~ APT for the off-line programming 

of robots uSlOg a (AD dcha base 

MAPLE ( Damnger ~nd Blasgen 18]. was developed by~: based 6n t~e capabilities 

of Ml. but has neverobeen much used. SIGlA lSalmon 19], dev'eloped at Ohvettl, for the 

SIGMA robots Îs comparable to Ml ln Its syntactic level and supports pseudo inuit, tas king 

and sImple ·force çontrol 

.' /" MA~ lGlnI ~t al 20} was d,e'veloped ln 'Italy at the Mil~~ Polytechnic, It 15 a baSIC tike 

, .. Iangua~e and ~upports ~ulhple tasks a~d task synchronizat,on LAMA-S IFalek and Parent l 

~' 21] Îs a VAL like language developed ln France at IRIA LM ILiltombe and Mazer 221 was 

~ " also developed Jn' 'France at t'MAG It' prov/des many of the faClhtles of Al. 'but does 'not 
"""ft' . . 

.. 
support multl processlng, • 

1 ~ 
1:3.2 'Ta'sk Level Programming 

As th~ power of com~uters and the complexlty pf robot functions have expanded, a 

new set of user frrendly languages has slarted to emerge, This new'set of I.an~uages 

concentrates. on specifymg robot actions at a task lev el The task actions take the form 

of specifymg goals for the posit/oning of o~Jects As such, they may be robot independent 

but require extensive 'geometrrc data bases to model the world or the ènvironment in which. 
l " 

they are workÎng These task level languages, described below. are very sophlstlcated ln 
• +"', - .. 

, .' 

concept. but d'ue to thelr complexity. they are not yet developed to the same exte'n~ as the . \ , 

, 
.~ .. 

- .. 

L· 



", 

\ 
f 

g • 

'. 

, .. 

t-

~~, 

. , 

" 
" 

• < 

" 

" 

* 
.' 

1 3 A Survey of Robot Languag~s 

,more ~imple fobot'Ievel programming languages. No doubt they will develop and mature, 

.' as work advances -In the field. 

" 'AUTP:PAS~ ILlebertrian and Wesley 2] is a task level language developed at IBM 

, .. ,f9r semi-autom,!~/C programmillg It uses English "ke statements ta specify assembly 

. objectives rather than 'mechanical movements ' An extensive data base is reqUired to rel'ate 

the assembly ~bject,ves ta the necessary medlanical motions, The~data base is updated 

to reflect the state of the world t each assembly step, . ' 

RAPT IPopple~tone Amble and Bellos 231 uses the APT language. as a syn~actic basis, 
, 

, 1t transforms symbohc geome rte specifications into a sequence of end-~ffector p'ositions. 
, 

, l;he language' s main foeus IS 'task spepfication and does not deal with obstacle avoidance. 

automatlc graspmg or sensory operations. 
" 

The LAMA ILozano-Perez 24] system was designed al M. 1. T, The language is in-
" , 

~ 

tended to formulate the relationship between task specification. obstacle avoidance and 

error detec'tlon Other adval1ced cO,ncepts have also been defined. but the language has not 

yet been developed 

- L.r\~-GEO IMazer )5] is ,a task level extension to ~~ It incorpora tes symboljf specifi­

cation 'of destinations and with the use of' ROBE>f'{VJeck and Zuhlke 261, has the ability 

to plan collision free "motions, How"ever t~e full blown ROBEX system has not yet been 

implemented. ' . -. 
, , 

'HIROB IBork 27) 15 a hlgh lev el hierarchical'robot command language which features 
, 

the use of simple English phrases to specify robot procedures. These phrases are pal'sed 

ta deter~'lIne wnat portion of the phrase is known or already defmed Those portions which 

do not eXlst must be defined uSlng elther, eXlstlng HIROB pro.cedures (English phrases) or , 

,by using th~ primitive commands of thé low Jevel robot command language LOROB. which 

is part of HIROB An intermediate language MIDROB is also Incorporated and used ta 

control the 10gIC flo~ ln the HIROB phrases. 

As ~ndicated, the goal of these task levellanguages IS to provide hlgh level control of 

the robot. using Enghsh or English hke pnraseology. White this is very deslrable from a user 

pOint of vlew. it js extremely difflcult to deSign such a language. due to the ambigulty of the ' 
-. \ 

spoken word and the need ta describe. In finite detail. every single physlcal feature likely 
-

to be encountered by the rpbot. It is not surprising. therefore. tnat task level languages 
, 

" ; , 

10 : 

• 

.. ~ 



'1 

, . 
" 

1 4 The' Project 

have been only partlal,ly implemented and thé 'subject is a challenging topic of iesearch rn. 

the field. ~:,1; ., 

ln summary it can be seen that there are many de'veloped and developin,g languagés for . ' 

the control of robots The basic robot level Iflnguages in g~neral offer control of whatever 

direct featÏJres the robot has to ofTer The more advanced offer sorne additional 'processmg . 
o 0 , ~ 

to achieve features the robots do not offer dlrectly (for example cartesian motion on a 
, . 

cylindncal robot) and Increased access to the outside world. The tas'k~ levellanguages try 

to take tne control of a robot to the extreme 10 that they try to allow the user to program 

,a robot in English Ilke language with out having to knô";" ariy of the details of ttle control of 

the robot, This abstraction of the language from the ro~ot ofTers the potentiàl for ~reating 

robot independent programs and even task description 1hat are almost independent of the 
, , 

parts they are to manlpulate, Clearly these languages are striving for an ideal situatjon and 

is thus no surprise to see thal many are only in their design stages. 

It 1s the authors opinion that a compromise should be sought between the pr.ïmitive 
, 

low level contrôl of the robot and the unimplemented hlgh level task oriénted languages. 

While the programmer should not be expected to know the intricacies of the control of the 
1>, •• 

robot he should be expected to know that it is a~i:obot that he ;s programming, 

1.4 The Project 

• Th~ repair project. at McGill. involves the alltomated repair of hybrid circuit boards. 
, , ' 

- Ther~ are many· aspects associated with this project Areas su ch as robot contr91. vi-

sion and sensory feedback. task deSCription. tooling a~d mateual handhng. Inspection and, 

classification of defects.' are ail essentral in the go..al of automating the repalr ôf su ch boards. 

Robotic control of intricate mechanical assembly processes is a technique quite unlike , f 

anythmg found in business computing The repalr of hyJ>rid circuit boards. presents the - \ 
opportumty for exploration of assembly-dlrected programming, with the I,ong lerm goal 

of bringing parts, flxtures and tools together ln 3 natlfral manner to carry out assembly 

operat'lons. wlth robot decision makmg c~pabi"ty . ~ 

The actual repair proJect. at MeGill. may be, consldered to be a logi~al subgoal. with 

the objective of diseovenng how parts are grasped and placed in fixtures. how C6f1!p'Onents , . , 

may be mspected. how general purpose feedback may be used in robot programs. what is 

11 

'0 , 

\ ' 



, 
r 

J 

-.a. 4 The Project 

to be done and the extent of the repair necessary. T~e description of the motions required 

for such assembly and repair operations is a complex task with many subtleties. requiring 

extreme attention to detail. The project field is therefbre appropriate for the examination of 

the problem of robotie motion description and the development of user friendly programming , 
'Systems needed for precise robotie control. ' 

This t~esis is based on the âevelopment of an integrated robot programming environ-. , 
ment. The following chapters organize the material by .... specific topic. Architecture and 

) 1 s"ystem hardware together w~th the work being done at McGill is presented'in Ch'apter 2. 

ln Chapter 3. the features of the environ1llent are outlir'u)d and the commands required 

for motion. editing. debuggÎflg and visiOfl processing are described. A discourse on the 
• l • 

implementation aspects is given in Chapter 4. This mcludes details of the communicatiôn , . 

interface. parsing and execution of commands. 
'& • 

The system is demonstrated in an example program which implements a repair function 

in the hybrid integrated circuit board repair process. The features and th~ limitations of 

the system are discussed in Chapter 5. Finally. conclusions are drawn'in Chapter 6. 

12 



, 
,\ 

Chapter 2 . Robotic Work at McGiII 

.. 
2.1 Introduction" 

The purpose of this section is two fold. F.irst to describe the work being done in the . . , 
Department of Electrical Engineering at McGill University in the area of assembly and repair 

of hybrid circuits and printed ciro'uit boa~ds. S~cond. to give an ov~rview of the program 

environ ment developed by the author. 

A Computer Vision and Robotics laboratory (CVaRL) was started at McGiII University. 

in 1982. Sincte then the laboratory 'has become involved in the repair and assembly of 

printed circuit boards and hybrid integrated circuits. thereby developing the te.chniques of 

distributèd processing. vision. world modeling and collision avoidance. 

2.1.1 Distributed Processing 

The concept of distributed processing is one in which separate agents 'are employed 

ta carry out specialized discrete tasks. In order for the separate aeents.Jo function har- ' 

-moniously. there must be informatiôn feed back to a central command post. from which 

commands are issued in a precise and reliable manner. 

The importance of multi robot operation has been weil recog'nized in the laboratory 

and in industry. While most tasks -may be performed by employing one robot and some 

external holding fixtures. advantages of flexibility. speed and reduction in the number of 

external fixtures may be achieved with multi robot configuration. Moreove~rthe bottLe~ecks 
characteristic of a single robot design may be eliminated with distributed p cessing.' 

• 0 \ 

J>- __ _ 

.' 

" 
1-

.,. 



. . 

• 1 

--~ 

2 1 Introduction 
, , 

The current state of the art IS to employ several slave processors designéd to perform 

specifie tasks being controlled by a mas ter computer. There are sever.tl advantages to 

this configuration. These include greater fault tolerance. inherent with redundant eJëments 
" 

in design. as weil as ease of maintenance: modification and expansion due to modularity. 

These features ail enhance performance . 

. Disç-ibuted processing ne~works are Ii,mited 1Y the primitive communication 'systems 

presently available. [Gauthier et al 28}. Sorne re:\c~ labo~atories are addressing the 

~eficiency. At the McGiII CVaRL. work is being done to d~velop the communi~ations 

technology needed to carry out inspections of hyb,rid integrated circuits. to identtfy defects. 

and to make repairs in a three dimensional environment. abstracts on ail of the current 

pr~jects can be found in the CVaRt progress report [CVaRL 29}. 

The McGiII CyaR~veloping a Session Layer for a local area network based o,n a~. 

ethernet. This Session Layer,. which will be compatible with any programming language 

which can be linked to UNIX. will enablè the end user to crea te links and end points betweén 
1~1 ~ 

processes for the purpose of passing messages between processors. The object of this w()rk . 

is to make the network transpar~nt to the User. th us promot1ng its easy use f.or distributed 

processing. 

2.1.2 Vision 

Computer vision is the process of convert,ing an 'image or scene. into elements from 

wbich information can be obtained in an appropriate format for use by a' computer. This 
, 

has the potential to provide the best sensory input to any device, which requires feedback , 

for it to function. 

',Its vast potential is difficult to exploit because of the complexity of the conversion· 

"process involved. Nevert~eless. because of the many development possibilities. a great . ~ ~ 

amount of 'research is being done in this field. 

\ 
,~ One'-1Jf the main focuses of research at McGill in this area. is inspection of hybrid inte- /If 

'/~ratèd circuits and printed circuit boards as weil as r~bot hand eye coordination. Research ------ , . 
in inspection involves examining sold~red joints and capacitor alignment on 'hybrid circuit 

boards. '. 

14 

" 

'" 

. . 

1 



"\ . 

" 

0. 

2.1 IntroductIon 

ln 'additIon M~Gill has a rich library of vision soÀware including tHe HIP~ (Y~ Cohen 
- " 

30] and SPIDER !J.S.D. 31] software packages. HWS is a set of C functions for image 

processing that was developed at the NéW York University. The package provides man, 

filters for changing the image in the spatial'frequency domain. The SPIDER package 

provides a set of FORTRAN routines for performing similar functions on an image. 
o 

Aline detection algorithm ,has been developed IMansouri 321 which converts an image 

into a list of vectors whic~. can then be matched to a model of a capacitor 10 obtain its 

location and orientation. 
-

Work ln hand eye coordination involves making end point corrections when inserting 

components into printed circuit boards [Mansouri 33): For exal!!J>fe. errors in obtai"ing , 
components can be found and' translated into correction factors for final placement on the 

cirç:uit board. 

)~j.3 Force Sensing . 
Force sensing involves joint. wrist and pedestal activities. which may be employed to 

supplement vision in providing local information for such tasks as grasping components 

and inserting them into socKets and circuit boards. Force sensing may also be used for 

contour tracing and in grinding functions. 

ln joint sensing. forces are monitored at each pivot or prismatic point in a robot mech­

anism and these may be transformed -into other forces relative ta a coordinate frame. Wrist 
• 

sensing incorporates a sensor between the robot's last joint and an «HtCf-effector from whicti 

ttle forces in the wrist can be measured. In pedestal force serising. the stand registers the 
\ ~ C ~ - ( 

'forces applied to it. The capability to sense. interpret·and utilize such information is critical 
, 

to the Sl1100th execution of tasks involving delicate handling. Further improvement may be 

achieved by the use of sensing pads attached to the robofs fingeh (as in the "'BM's strain 

gauges) to deteet forces white grasping objects. 

McGiII is" investigating the use of a force sensing device which can b~ mounted in the 

robot' s wrist and used to resolve forces and torques in and around the X. Y and t directions. 

The device may also be mounted under a platform and used in a similar manner. but ·with 

the adv~ntage of freeing the robot oF the weight oLthe device. '" \ 

15 

•• 

J • 

# 



... 

.. .. 

, 

. 2 1 Introduction ~ Experiments ha~e bee ·carried ~ut in Joint force feedbaA by rrio~itoring the CUR'ents 

flowing through each .. Qf the Joints 'motor~. Thi;; has been achieved through the use of the 

f~rce primitives in trye.Robot Control C Ùbrary t RC'CL) language. 

) 
2.1.4 World/Modeling 

The successful performance of robots. in an artificial intelligence environment. depends 
• 0 

on a versatile and dynamic learning system supported by a rich knowledge base. whic~. 

has the capability to expand its knowledge without external intervention. Suc~ a world 

modelîng system. learns by proving rules. analyzing the proof. refining them and storing 

C them i~ the knowledge base automatically. '[Xu a~d Ch~n 34]. . . 
/ . 

• The u§~ .. of a data base ta model the, robotie, envir6nment "has the advantage tl1at it 

m~y be m~ipulated by' computers far easier and safer' than·the actual environment. Thus ' 
~ 'tt ~I" 

it may be used in areas 5uch as collision avoidance and assembly procedures. 
. " 

Depending on the use of the model. different representations, may be desired, • For 

collision avoidance. objects may be simpv)r modeled by their boundrng cub~, while for 

assembly or mating operations: more detailed representation is required. 
", 

2.1.5 ctsion Avoidanèe 

...... " .. rl j 

, There ~;e a nUfT!ber of techniques available to the~esearcher to implement collision 

avoidance syst~ms. 'pbstacle~ may be detected by the robot wit~ ,vision. ~adioactive. 
, .. 

capacitive. magnetic or ultrasonic sensors. Of these. ultrasanic sensors are favored. (Mack 
, ' 

35] because they, are lightweight and inexpensive. being most suita,ble for most industrial 

assembly situations. 
" , . 

2.1.6 The Robot languages at Mc Gill 

An ove'rview of var10us methods of programming robots was discus$ed in'the introduc­

tory chapter of this thesis and sorne of the exi5ting languages were described; 

At McGiII. there are three robots. each with its own native language. The P"ÙMA ibo 
\ 

runs,VAL. the Swiss Microbo runs IRL and thè IBM runs AML 

.. 16 

.. 
'. , 

< 



2 t Introduction 
, , 

.At present. the PUMA and the Mitrobo robots have overlapping work spaces and ma~~ 

be used together. on separate projects in the s'ame work space. or in cooperation with' 

eaéh other on a single project. Whilë sorne low level form of cooperation may be achieved ' 

usi~g 1/0 ports as synchronizatlOn ~nes. ttlis tec~niq'ue is: not considered adequate for. 

sophisticated cooperation. A more structured form of message passing would be neede~ 

50 that more than the go/nogo type of synchronization could be achieved. 
f> 

A more powerfullanguage RCCl is being investigated for use by the PUMA 260 and 

Microbo robots. This Janguage has routires capable of processing force sensing informa­

tion in real time. which offers greater control over the robot. Additionally. time varying 
"J , 

functionally defined transforms can be used to control the 'robot's traject<?ry. ~his lan-. , 
guage has already'beeD installed. at McGi11. on the PUMA robot by [llyod 36] and on the 

Microbo by [Kossman 37]. 

2.1.7 Project Goals 

lAs discussed under distributed processing. the system of slave processors controlled by 
~ , 0 

a ",aster computer offers substantial advantages in the management and'control of work 

tasks. With the diver~ity of -4uip~ent available to 'the programmer. as described above. . , , 

it is apparent sat the environ ment should be one in which the program'mer is free to be 

creative. tonce . g on the tasks required to be perform~d ~y the robot rather than being 

involvèd in repetitiv routines. , 

Accordingly. creation of a superior environment was enthusiastically selected by the . ~ 

autho;' as the project to be cQvered by this thesis. Th_e desired goal is to encourage . . 
development of technology !o speed up operations. minimize errors and simplify debugging 

routines with the objective of. making dramatic advances in rol5ot programming productivity. 
, 0 

More specifically the following are the main goals or filatures set for the environment . . 
(1) Rapid turn around lime was considered necesséjry to replace the I~borious technique 

of first editing. then compiting and finally running the program. wi~h associated inherent 

opportunities for error. 

(2) The ability to control ail, of the available equipment from a central programming 

environ ment. The user should be able to control and synchronize the robot. ~stage and 

vision processes. 

11 

"', 

, ' 

.' 



~ . 
r 

, 1 

2 2 System Overview 

• 1 

(3) Increased debugging facilities to simphfy program development The programmer 1 

should have the ability to test any command' individually and to single step through a 
- 1 

pr~gram in order to observe ils performance. as weil as to change' and modify. existing 

ptograms. 1 

1 

(4) The ehmination of syntactic and spelling errors through immediate parsing of c~m-

mand lines was also 'ronsidered to be important for quick and easy development of pro­

grams. 

(5) The environment should be mod~l:r and easy to add to and adapt to specialized 
1 

situatjoos. 

The- rest of this thesis will dear with the description of the implemented environment 

that echieves such goals. 

2.2 System' Overview 

One of the major advantages of robots is their great versatili~y. They may ·be used in 

a 9umb~r of different tas~ without many modifications. This great versatility js, rllainly 

due to the generality of the robots physic~1 structure and, controIIS'and~rson 38]. However 
1 

much of this flexibility is lost due to the difficulty in programming the robots. Often robots , 
ar~ designed as stand alone systems. are low cost and \~ffèr primitive facilities to develop 

and modify programs as weil as the ability to deal with the external world. In this thesi~ 
':- . 

an interface to suth a stand 'alone system has been developed. The system is a l,lnimation 

PUMÀ 260 robot running VAL. The interf.ace offers a'1 enha';ced e,nvironment weil suited 

to both ,the on lif!e as weil as the off line development of robot programs. 

Arb~ock diagram of the experimental repair station' can be seen in figure 12.1). The repair 

station integrates a PUMA 260 robot running VAL. an X-y stage. microscope. Grinnell 
o 

monitor and a VAX 11/750 host computer. The user sitting "at the host computer can 

control any one of these devices. Images obtamed from the microscope can be displayed 
1 

on the Grinnell and pro~essed by the host computer. Storage for images. robot positions 
l , 
1 

and programs is provided by the ~ost's dlsk drive 

Communications to the PUMA is provided by a RS-232 link. with the host replacing 

t e PUMA terminal. Access to the 1/0 module of th~ VAL controller can also be obtained 
1 

ia this link. ,The X- y stage and micro\cop~ are_,/~ohtrolled by a stepper ~otor controller 

• \ l , 18 

~. 

,,~ , 

: 

, ' 



.. ' 

• 

" 

, 

1 

User'd 
Ter.lnal 

.~ -, 

• " 

'. Hpat UAX 11/750 ...... Ethernet • . ... .. ......... .. .!l''''' 

~ 4~ 

, 

.. 

, 

. 
. ........... ., .................. ~ · · V1s10n system • 

. VAX 111780 

-1 . 

• · · · · · • · · · · . ! · • • 1 ,...-' ... · .' 
1 

I{S 232 L1 nks • Fra.e Grabber 
l' , -, , • · '. 
~ 

· ......•.••.........• _.- ..... 
u 

. ,. 4~ 

· • • · · · · · · • J 

Pu.a 260 1 " 

"'crobo . St epper no"tor . " 

.. 1 

Control 1er Control 1er Contra 1 ter' 

t ~ t 1 

. 
i + • , r • • - . , . 

: 
Puaa 260 , 1/0 .adule, K':Y Stage " notor·I ted .... 

Robot Teach ni cr'oacape 
.. 

Pendant, 
Dfsk Drlue ' .. , . Ca.eras - -.. 

" 
Grlnnel " • • • -

Tools & nlcrobcr 1/0 .odule, R~taÎ"g & 
nonltor 

Rack 
j-+-

Robot Pendant, X Stage 
Tape unit 1 - -

."~ . 

, Figure 2 .. 1 Btock D1egrem o(Repeir Stetion 
J 

1 _. 

, " 

... ' 

... 
" 

1 c:> 

., 
1 

, e 

" .' 

, .-
'" . 

.~ - , 

" 

, , 

" 



. ' 

1 

.-

2 2 Systen; Overvlew '. 

which also interfaces via a RS-232 hnk. Further development ta include ,a Microbo robot 

IS underway. The Microbo robot hàs already been i"!t~rfaced to t,he host computer and ail 

that remains to be done is to incorporate it into thls programming environtnent. 
" ' 

2.2.1 The PUMA Conlroller 
11 .-1

1 

Th~ PUMA 260 lobot is, cdnt(dlle~ by an LSI 11 cQntr91 ,computer which is also used' , 

to control. the binar,Y 1/0 sensor and relays. the PUMA teach pendant and disk drwe, This 

robot and controller package, which IS manufactured by UnimatlOn. iS,also used ta ru". the 
\ 4 • .. 

VAL language. This package offers no external computer Interface, therefore for a host 

çomputèr ta talk ta the PU,MA with out .rnodlfying Uriimation's hardware It must do so 

through the terminal port The t~rminal poH IS a RS-232 port normally connectecktrthe 

user's terminal. The hast ~omputer was placed as sho~ in,figure 12 1) betwee,n the user's 

.' terminal ~,nd the LSI 11 contr911~r. ~t of C s,ubroutme:ts then de~eloped on the host 

ta relay commands and messages back and forth between t ~ser's terminal and LSt 11 
, . "-

controlJe, so that the host computer' terminal can act ,as if it was connected to -thè PUMA 
, '. " 

controller. 

\ : Thi~ ~ethod of interfa~ing t~e host_ and lSI.ll iS,some,what awkward but it should b~ . 

. ' ~ed that the package was deslgned as a turn key,stand dlone sys&m ·and as such was 

considered ta be sufficient ta satlsf~ the prevailing need. Furt~ermore there is-no standard 

interface available from any other manufacturer. It is expected that thls deflcÎency will be 

overcome,as the mdustry matures 

The \,Ise of the hast computer provides useful extensions to the VAL language For 

example. the host can be used for enhanced numerical caleulations. processing of poin~s 
" and .trajectories, as weil as superlor processing of sensory inputs from the 1/0 module ln 

- '. addition. complex data from such devlces as camera~ and microscopes may be processed 

.and ineorporated IOta the robot program 

The hast computer used in this project is a VAX 11/750 'runnlng UNIX 4.2 BSD. This 
o 

computer was acquired by McGili for robotie research and IS being used on a number of 

proje_cts. 

The UNIX environment makes the programmmg language" C .. a natural choice for 
r"1 • ,1 

p,rogram development. C is a general purpose programmmg language developed on the 

20 

, .. , 
-. 

. .' 
,.-

, 
" , 

,~ 

r ' 

,'. 

" 

" , 

, , 

" 

\ ' 



.\ 

.. , 
.' ~ , 

.' 

, , 

. " 

'. 

\ 2 2 System Overviéw 

. UNIX system [KernÎgn<\n & Rit~hle 39] It ~s a relatively low level language. that can 

. ~be le~irned 'quiC;kly. Thé' I~ngu~g~. ;s 'quite efficient and ~an be ported to other machines 

, with !Iule (jjfiic~lty,. 'It, provldes the constructs for creating structured programming. a~d 

functions or procedures may be written and cQmpiled in separate files and linked la ter . 
; ':> • .. .. '" 

all~wing for a degr~e of modularity in program de,,~lopment .. ' 

·2.2.2 The PUMA Robot 

. " 

The Pl)MA 260 Robot 15 an artic~lated rnanipulator with six degrèes-of freedom'man-

ufactured by Ummation Inc. [Unifhation 4qj, a diagram'of the PUMA can be seen in, figure 

(2.2J. Each Joint IS controlled QY a O~ servomotor. each contaming an incremental encoder 

mounted on ilS shaft . The encoders provide position information relative to a known initiai 

absolute posltion"- Th~ "nest" position of the robot is-used as the in~tial refeiencetPositlon. 

The controller obtams data from the en.cod~rs ~nd calcula tes v~locity from them The 
, ' 

~ work space of the PUMA is roughly spherica,1 as shawn in figure (2.3J. ~his conf~gur?-' 

tion of totally revolute JOl'nls allows for ve'ry flexil:>le movements of the arm and a stated ,: 
'<:' 

accuracy of repeatability of,20 microns. Howev~r d!Je to wear of the ~Qbot through:much 

,experimentation the ac~uracy has dimini~hed'somewhat. 

2'.2.3 The Stepper Motor Controller 

The stepper motor controller is used to, control two deviœs, an1t,X- y stage ~nd a .. , 
microscope. The Controller actually controls four motors: Two are used to move the stage 

, ' 

and the other two control the focus and zoom of the microscope IMansouri 41]. ' , 

The X- y stage as the name implies IS a platform that may' be moved in the X and Y 

directions. This, stage may be moved in increments of six and a half microns, thus allowing 

. f~r ~ery precise posi;ioning ln the plane, Thls!s ideall~ suited to the ~~mbly and rep~ir . 

of electronlc components . r' 
• .,. > 

The microscope's zoom .and focus may be cont~olled by a user program through t~e 

stepper motor tontroller The microscope' s height above an object may be changed, to 

achleve focusing. and. the zoom control knob l'Çtated by the two motors ,The use of 

this miG:roscope provides' necessary vis~al feedback in tasks de~ling with small electroniC', 

components. 

" . , 
. . 

" 

21 

',; 

. a 

• '# / 



\ -' 

l, f • 

:' ... 

l ' ,'*t: _ 
, . ' , 

,l, 

.. 

f ' 

" , . 

, , 

, ' 

f" , ,_ 

'. 

, '. 

. ,. 

, 1 • 

" '. 

We1st-30eo(Jo1nt,1l , . 
.. 

\ ,. 

'. -

, \ 

. , ! • .t 

.' ,'" FIgura 2.2 

-
1 ,. 

., 

~1:: • 

l ' 

',-
, -. 

, l 

Shoulder 314oCJo1nt ,2) , 

Elbow 292o(Jofnt 3) .. : 

Fl.,nH8 Rot.,t10," 
534 (Jo1nt 6) 

" 

Wrfst Bend 
244o(Jo1nt 5) ( 

'-t'l' 

"Wr1st 
Rotet1on 
57So(Joil)t "', 

The PllM~ Robot 

. ~ 

\ ' 
,~ '"' . 

.' 

'" 

, '. 

", 't 

~' . 



Cl 

f 
.' 

9 

~ 

~. 

" 

" , . 

,-& 

- -

~ègfon 1s '/ 
. Atte1neble tn 
Lefty Conftgur.e~1on. 

.. 8 .. 
f. , 

'" 

" • 

:' 

. .; 

! 

.-

l' 

" '. 

. 

.. 

X 

.\ 

" ~ 

Z , 
\ 

13em D1e Arpund 
B'ose & Trunk 
not Accesst b 1 e 

4 

Po ..,. 

4OJ5cm Mex. 
RotH us to Hend • 
Centerl1ne. 
[47cm Redtus ta Tool 
Flonge.l 

.. 

'. ( ~ 

,r 

" , 
.., •• 19 

, . , 

\ Figure 2.3 The- PUHA"s Work Speee 

, , 
-. 

" 



, ' 

-.. 
,/. 

.' 

" 

" 

, ' 

" 

.; 

2 2 System OvcrvlCw 

2.2.4 The Grinnell Monitor 

The Giinnell monitor IS a 256 by 256 color monitor used' to display Images obtained 

fr-om the microscope This mOnitor is controlled by a VAX 11 /780 host computer. Images 

1 must then be sent over a network from the VAX 11 /750 ta the 11 /780 to be displayed 
... ~ ~ ..... 

on the mOnitor. This transfer of data 15 slow and 50 limlts the use of the visIon feedback 

to non real, lime uses Work is bemg done to Interface a dedlcated 512 by 512 Matrox 
\ , 

frame..,grabber and color display monrtor ta a dedicated Intel system 310 with multiple 
\ "'~.. . 

vision processors. This system in turn will be linked to the VAX 11/750. The Matrox/lntel 

system will Qffer higher resolution and faster executton time:;-. .in the order of a few seconds. 

2.,2.5 The Microbo Robot 

The Microbo robot is Swiss made IMicrobo 42]. Like the PU~ it has six degrees 

of freedom. but dJffers from the PUMA in its archi~ecture W~lile the PUMA is an artlC­

ulàted manipulator comprising solely of revolute joints the Microbo has four tevolute and 
. . . 

two prismatic joints, as shawn diagrammatically ln figure 12 J!.j. The prismatic joints are. 

structured in su ch a way as to allow considerable ImprOVelTlent in ,the precision of motIOns. 

'in the radial and vertICal directions. com)ared tt' the PL'MA. (5 microns in the case of 

the Microbo and 20 in the case of the PUMA) However its wotk area is restricted to ~ 

dougll-nut shape, see figure [25j. which III:lits ils use compared ta the larger and more 

comfortable sphencal work area associated with the PUMA 

Like the PUMA it runs an mterpreted language called IRL (Intuitive robot language). 

thus Interfacmg thls robot to the host was achieved in a manner 'simllar to that of the 

PUMA. Incorporation of thls robot into the authors envlronment is thus straight ~?rward. 
\ 

However. routines will have to be developed to implement necessary carteslan and other 
. -. 

motions. essential for effective use of the robot to be achieved from the etlvlronment. 

2.2.6 Interchangeable Toois 

Ha\lmg the nght tool for the job is vital If meanmgful work is to be performed by.the 

robots. A variety of tools have been developed by the auth6r and others ln the lab for use 

with the PUMA and Mlcrobo robots. These tools ail Jeàture a standard mechanism for 

24 

,~ 
',' 



.. , 

... 
" , ' 

l ' 

'/ l , 

J ' 

z 

, ' 

/ 
, ' 

Joint 2 1 ~ 
, Pr 1 à.at 1 cal on9 2 r----+..J.--.L..J....-. 

, .. 
1 

" , ' , 

, . 

: ' 
i ' 

, \ 

,f 

,1 

. , 

, ' 
1 

. ' . , , 

\ 

Jo 1 nt 3, PI" 18.~t 1 c Rad 1 a l, y 

-/ Joint i, Revolute 

, ' 

9 .. H' 

c::>~ Jo 1 nt, 5. Rè"D 1 ùh 

Jo l,nt 6 ~,I Revo 1 ute about' 
tool t Ip 

Joint 1" Reuolute about 2 

\' 

-," 
, " 

" 

1 • 



," 

200 •• 

, 

,Y 

l, 

• "1(\ " 

.. 

(, ... 
::::::::::::::::~ ................ :\ 

/,'?:;::::l!I.:ii.t!::ilfiii:i:i:i!j! 
,.~~::: ~: ~::: ~,~::: ~:::::::': ~:~: ~::. ~: ~::':: ~:::~ ~ 

, " 
1 

Figu .. e l 2.5 The Mi crobo 1 s Uork Space , 
1 -



", 

2 The VAL language 

attachment to the manipulators and are thus interchangeable. Each tool ha been designed 

with its own stand. which assures correct ~Iignment of the tool, when it 1 not in use. 

Specialized tools for gras'ping capacitors, hybrid integrated circuits and chip etc., have 

ail been developed. Tooj~ have also been designed and made to carry' out sudi tasks as 

grinding, continuity checking and solder paste dispensing. These are fully desc 'bed, in 

chapte'r 5 with diagrams accompanying those designed by the author. 

, 
2.3 The VAL language \ 

VAL is a rudiment.,) programming language designed for industrial robots. ;; h~ the 

capability to interactively edit, interpret, debug, execute and store user' programs, It has 
, " 

been designed primarily for operations involving predefined robot positions and is ideal for -. -
pick and place operations' with human interaction, Where feedback is required, VAL cannot 

be used without addition. because it lacks the facilities to process complex sensory input. _ 
"." 'i 

The basic capabi{ities of the VAL language. are listed by Tomas Lozano-Pérez, in his "c-$ 

paper on R<?bot Programming lLozano-Pérez 43], and,desc'ribed by Bruc~ Shim~no [Shimano 

1). It is necessary for the reader to un~erstand the value and limitations of these capabilities 

in order to appreciate the improved environment developed in this project. For full details 
.> 

of VAL the reade~ is referred t? the VAL user' s ma~ual 1 Uni~ation 44]. 

VAL is an interpreted language. that is.' commands can be run with out the need' for . .' 

timely compilation to an executable format. A variety of commands are available, which 

may be run directly from the monitor or 5tored and edited in a program file The editor 

'stores the com~ands in an internai format for quick interpretation :nd compact storage 

Point to point motion commands are used in situations where only the final position 

of the end-effector is important and where the path taken by the manipulator may, be 

disregarded. This type of motion on the PUMA 15 jomt interpolated motion. t,hat i5. ail 

joints complete their actions simultaneously ThiS is achi~ve~ by interpolating the control ' 

variables betweén the initiAI and final positions of the joint. The time of motion is set 

according to the time requirêd for the slowest jo!nt ta complete its nl'otion. The advantage . . 
of this type of motion i5 that it provi~es the fastest controlled irajectory. but the tool tip 

often moves along a complex space curve, which is a limiting factor in operations requiring 

motions relative tO'~n external object. 

21 

'\ 

\ 

.. 



-, 

" . 

23 - The VAL language 

To overcome this lim;t~tion .. cartesian motion commands are available to '!love the tool . . , 
tip along specified paths,--- This kind of mot~ useful for generating str.aight line paths' 

and ~educes the number of positions that would ritherwise have to be taught. by utilizing 

" motions relative to a coordinate frame. However. to achieve such paths. joints may have 

to be move~ more than i~ necessary for the task. Moreover. sincelâ constant velocity is 

implemented. joints may' have to be frequently accelerated and decelerated. an unneces~ar.y 

waste of energy. 

fn addition to these two types of motion commands. described above. the manipulator, 

" 'may also be moved in various other ways: . 
- The manipulator may be, moved incremehtally to perform departures and relative 

motions. -

- It métf be moved to a position relative te;> a defined point. useful for approaches .... , 

- Individual joints may be driven by a specified number of degrees. 
, , 
-' The 9pening of the manipulator' s hand may be controlled. 

- Parameters used to control the trajectories. including thê speed of each motion. may 

be changed. 

, VAL has the capability of specifying coordinate frames and motions relative to these 

frames in addition to sorne_manipulation of the frames. Mo~t motions are relative to 

the world coordinate frame. situated at the base of the robot. which - may be offset or 

rotated about its z axis. Jt is frequently more imp91tant for the end 'point of the tool to 

be precisely positioned than the 'manipulator itself. VAL accommodates to this need by 

defining a tool tran~form which can b~ used ~o change the description of tools being ~sed by 

the manipulator as they are changed. However. a need to move in the tool coordinate frame. 

while supported by the teach pendant. is limited to tool Z motion in the V~l language. 

Integer arithmetic is accommodated by the normal operators of addition, subtraction. 

multiplication and .division. Th~s together with the facilities of branching. labels, and 

comparison tests provide the mechanism for looping and indexed operations such as pal­

ietization. Subroutines are also provided but they lack any argument passing thJ,ls rr'aking 

them somewhat limifed in their application. 
. ' 

VAL has several ways to allow the teaching of points or transforms to be used in 

programs. The teach pendant may be use<f ~o maoually steer the robot to the desired 

28 

.' 

\ 



r 

.' 

2 3 The VAL language 

o '-- _ 

Qposition and that place then stored with the HERE c~mmaF1d. Alternately any of the 

robots joints may ~ freed sa' th,at. t.hey may be man,ually f::ushed a,,!d moved ta a desired 

position. VAL also provides a semi-automatic method of téaching a serie.s of pOints to the 

robot and have the robot· automatically generate move statements to move between the 
r ">;, , 

taught points. thus a pa th may be taught in a fairly automa"tic way. . , 

Finally the btnary inputs and outputs can be controlled and monitored. providing i- f 

means for synchronizing external deviçes with program execution. Interrupt service routines 

may also be set up to start Execution when one of the binary Input lines is activated. This 
',l <:> 

allows for guarded moves. that is. motions may be stopped or modified by the activation 

of a sensor. 

As can be seen VAl. ofTers control of many of the PUMA's features and as a stand. 

alone system performs rather weil. However if the Puma is \to be used in a more comp'lex ... , ~ 

environment extensions to the language are needed~ J 

, . 
2.3.1 VAL-II 

VAL-II a successor to VAL offers many important extensions needed for a more complex 

environ ment. The main improvements over,.. VAL ar~ as follows. VAL-II has a formai 

communications capa~ility. flexible path control. general. sensory interfac.es~· and improved 

computational facilities [Unimation 45]. 

As has been seen robots in todays applications seldom operate in isolat~n. making ~he 
D ...... '"'... c"" _ ... 't 

n.eed to communicate with external deviees-and computers essential. The faéilities bfre'rëd 
~ .' " 

by VAL were of th:"simpJe on/pff go/nogo type of .binary interface mechanism. In'VAL-II 

communication cari~be achieved via a formai n~twor~. Thi~ interface allows for 'the complete ~';'. 
supervision of the robot system by aremote computer. The network protocol is based on ,:~_ 

Digital ~quipment Corpora~i~OECNET communications ne~work system. This allows 

for error detection. rètran~mission of faulty data. and the ability to use inexpensive RS-

23~ ~,eriallines for communication. The remote computer can issue ail VAL-II commands 

norm~lIy available to the" user. comlTlunicate with' user programs ~o pro~ide and. colleet data. 
. . 

as weil as upload and downlQad programs. and monitor the st,atus of the system. "0 . " 
VAL-II offers a much more flexible control of the robQt's path than did VAL. Besides the 

o ô,' 

stand~rd VAL joint interpolated. and cartesian n'lotions VAL-II has the a~ility to generate 
f 

29 

\ 

\ 
\ .. 

• 



j l • ~ 

... 

2 3 T~e VAL language 

functionally deJined m'otions. such as circles and arcs. by having proc~dures calculate many 
" 

short motion request. from which VAL-I.I will smooth usmg its 'contmuous path feature. 

ln additiàn to this procedural motion VAL-II also has a real time, ability to accept motion' 

corrections' from some external device and alter its intenaed motion by these correctioit-• 
factors. The corrections are . n in terms of their X. Y. and Z components and may be 

r ~ 

used by the controller in a cumul ive or non-cumulative fashion. The corrections may als~ 

be specified relative to the world or tool coordinate systems. 

, The real. time ability to alter r'{'}bot paths leads directly into the ability to accept o~ 

control sensors. The sensory interface consists of the 19.200-baud serialline for the acceS$ 

of corrective ,data from an è'Xternal device. This line ca~rlso be used to monitor the robors 

p position in real time. In addition ta thi.s.line the biiii:try and analog inputs and outputs 

can be controlle.d and monitored not only by single instruction commands. but by process 

control programs which run ~oncu!rently with the main ùser program. 5uch process control 

programs have access to aJUhe VAL-II commands that do not cause motion. ,They may 

, monitor and control 110 lines and modify program variables or hait the robot This allows 

for more complete ~ontrol of sensory data. 

''The teach pendant can noV; be access~d and used by user prog;am~. This allows the 

user to create flexible systems using the teach. pendant to gui,de the positions needed by a , 

program, This is clone through what is ca lied detached motion control. In detach~d motion 

control the users progràm cano release c~ntrol of the manipulator while still executing. Th~s ' 

enables ail manual c9ntrol modes ta be used from the teach pendant ~hile the user's 

program runs and prompts for positions to be taught. Thère are even facilities to redefine " , 
the effect of the buttons on the teach pendant. 

The computatlonal power of VAL-II has also improved. integer arithmetic has been re-
. ' 

placed by floating poiRt. and real valued functions and predefined system constants added. 

The increased ability to handle computations adds greafly to the procedural motion sub-, , . 

routines . 

. ~II of thes~ i":lprovements over VAL make VAL-II a very interésting system to interface 

to a host computer. Unfortunately VAL-II was not available at the time of this thesis .. 
research. and 50 the interface was done with VAL. However it will be noted that many of 

the-:ennancements of VAL-II can bè found in the implemente(system. 

30 

'\ , 

J 



. " 

J, 

• 

Chapter 3 , The System Environrnent 
',' 

. , 

This chapter describes the system environment for programming the PUMA 2f?O robot 

as seen by the end user. The user is basically concerned with the functionality of the .. ., . , 
environment and how a program may be creat~d in it. Accordingly. the various commands 

availàble ta the user are described. These incl~de commands for motion. vision: and 

movement of the X- y stage and microscope. Techniques for file mana'gement. debugging 

and editing are also ,described. 

)"his chapter al~o ihdicates the types C?f 'problems likely to be encountered by users. the ~ 
level of help av~irable in each case and the methods of teaching transforms and positions 

used by the robot. .. 

3.1 ~rogramtning Me~u Concepts. 
i 

-, 

It is recognized that most' users of robots d~sire a friendly environment. which can best 
, 0 > 

be achieved by menu programming. With such a fadlit)'. the user is in a position to be 

guided by prompts in se/ecting commands from a menu; 'Every executed command results 

. in syntactically co'rrect inputs and desired chang~s may be made with ease. 

, ' Work on menu programming has b~en done by [GQmaa e~ al 46J. to achieve an interctive 

programming environment for ail stages of program development. Their -system. as does 

this system. ,Pe;mits the user to select co~~ands while havin~ laccess to ail functio~s 
at ail times. The user may switch between ellec~ting commands. debugging al'ld editing. 

Commands may be ,se/ected by. working a/ong' branches of a menu tree.· which may be 

accessed, by selecting the' approprÎate group of commands and'working through submenus . 

\ . , 1 

oro 

• . ' , ' 

',' 

f· 

..... 



'~ " 

, -
- ..... 

l' 

1 
1 

, ,. 

/ 

. . 

,. , 
3 1 Pro~raml1ling Menu Concepts 

For example. the motion group of c~~mands contams a submenu which defines various 

arm motions, such as joint interpolated, and straight line motions. 

The author's work also resembles that being done by IKirschbrown & Dori 47] on 

KARMA (A Knowledge based Robot Manipulator System). Their system is a menu driven 

system which uses the m~nu and graphie eapabilities of the Apple Macintosh to provide a 

pleasant user interface. The system has an assocÎated knowledge basè to aid the user in 

creating programs. If the system can not find the necessary information in the data base ", 

the user is prompted for it. While the system is not eonneeted to a real robot. robot actions 
, ' , 

are instead simulated gré~phi~~lIy on the sereen. A eombination of this graphie interface" 

and sitnulation along with the actual control of a robot ànd its associated devicés is the 

eventual goal of any high level robot.programming environment. 
... 

J 

As previously intimated,.a system comprising of diverse equipment for robotie appli-

e~tions depends on proper supervision and the coll~ction and interpretation of data. The 

advantages of a centralized environment for supervisory control and data acquisition are 

refleëted in better management and improved productivity. The system developed by the 

author is a successful implementation of such an environment. 
1-, 

- The system has been entitled the R4P (Robotic Applications Programming) system 

to indicate its ease of communicating with the PUMA robot ln VAL. the X- y stage and' 
.-, 

the microscope. Addltionally routines providing vision primitives permit data from a vision 

system to be.obtained for use ln a robot program. 

. 
RAP permits the user to see the progress of the robot' s movements as the program is 

developed. That IS, in one of its modes"RAP will Execute every command as it is entered. . , 

this is especially nelpful in developing sequential portions of a prC?gram as the robot is 

always only one step away from 'the next step to be programmed. The user then only has 

to visualize one program step at a time. This means that the user is free 10 concentrate 

on the task of optlmizing the robots movements without the dlst~action of 'Programming 

details, or visualizinç where the robot might be after a long sequence of commands. 

32 

\ 

1 

-., 



" 

" 

. , 

31 Programmmg Menu c.0l'lcepts 
., l' 

3.1-.2 Command Features 

'\. CO,mmands may be ordered from ''the menu by·typing comm~nd names as desired. 

These typ,ed commands are parsed by a key tree matcher, whenever a space dr end of 

lin~haracter is typed, On comparing the co",!mand ordered with those avai!able in the 

menu. the matcher will automatically complete the desired commando as soon as It can be 
, , , t 

uniquely identified, This means that most commands may be ordered by typing only their 

initialletters and a space. This minimlzes the typing task. while simuitaneouslY' eliminating 

spelling err~rs. ~ 

Addiiionally, the matcher will help the user at any stage of the proceedings. Whenever 

a ql,lestion mark character is typed. ail subsequent possibilities whieh are then avàifable 

will be lisled on the sereen. This means that a list of ail commands may be generated by 

typing a single question mark character. or ail comm~nds starting with a particular lette! 
l . 

may be listed when that letter is typed and followed by a question ~ark, 

Sorne GOmmands cannat bè completed without user specified arguments ln such cases , 
" 

the matcher will wait for the arguments and ensure that t~ey at'e of the correct type and 

appropriate range befofe executmg the commando In a manner. similar to that descri~ed 

above. a question mark character may be typed to o~tain help with the .argument being 

awaited 

Various modes of operation PXIS!S ln RA~, Commands may be fUn immediately. 'on line. 
1 

with the option for recordmg the commands simuitaneous with their execution. Alterna-

tlvely. commands may be recorded in an off line mode This latter alternative frees the 

equipment while programs are being developed. whlCh '15 ;~ advantage under conditions in 

which the work station equipment IS bemg utilized The former option offers ready verifi­

cation of each command as ordered thls is useful ln sequentJai work. because observation 

of the robot' s movement simplifIes the programmlhg task. 

Recording commands, as they are executed. IJfovides a number of interesting featllres. 

If the user IS not satlsfled wlth the result of a comwand execute~. a change in the robot's 

actions may be deslfed This possibihty 15 provided for by allowlng the user to backup the 

robot as far as may be needed before commands are reissued. The incorrect commands may 

then be complet el y overwritten or supplementary com~ands may ~e inserted to achleve 

the desired modificatIons. 

33 

.. 
, . 

" , 

.' ;, 



. ' 
." 

',' 

- 1 

3 1 ProgrammlR~', Menu Concepts 

1 \ After recording a set of commands lOto a program file the user rnay Wlsh to observe 
, .... 

the exeçution of this command file in Its entirety, This may ,be done in a number of ways, ..".,. 

The user may run the. program 'at normal speed or single step thtough ·the program line 

by line. At aQY point in exécution the user may abort. pause or ev en backup through the 

,program. ~ausmg a program is very us~ful when runing a.v- old program 10 wh,ch points 

may reqUlre updating, These programs may be paused as they are about to reach the 

old pOint. the new one taught and th~ program res~med 8ackmg up a program althpugh 

hilVing no logical significance 15 extremely useful in debuggmg a program as the robot may 
, ',; , -

, j be backed up for a command or set of co~mands to be ret,ried, , 
'f, 

3.1.3 ' Oebugging and Editing 
~ , , ' 

ln addition to these quite powerful tools f~r controlling'the flow pf a program, 'points to 

break ,the flow of a progra m may be set This featuré/is use!ul in debu~ing. and for ~dding, ,." 

demonstratlon pauses ta a program. These points ca lied break points can be activated or . . , , . '" .. 

deactivated before or dunng a program 'run 
~ . 

Programs need not be mdependent They can be created to be subroutines or proce-

drres These subroutmes un~ike VAL can take arguments A typical subroutin~ ~ay be 

created ta plck up an object The abject to be picked IJP, th'e method of pick up and any 
• 

, , special approach to be useçlm pic~ing up the obJect may ail be speclfied via arguments to' 

thé pick 'op 5ubroutine. This provi'des the opportunity to create qUlte Gomplex and pow~rful 

subroutine hbraries 

ln addition to subroutines. branchmg and'7conditional testlng are provlded for These 
, , 

ad~itional facihties may be IJsed to create loops. to branch o'n ~ser input and sens ory data 

or to handle error conditions. Sensory data m~y be acqu~ed from the,PUMA's 1/0 module. 

~tfl microscope or th~ camera sy~tem. 

1 Edit.!!lg of reçorded programs can be done after or mdeed dunng th~1r development 

The edltlng IS line onented That is the user has the ability to change. insert. d~Jete or list 

command Imes ln the cases .of deleting and hsting~ command Imes a range of command 

lines may be specifled 50, that rep~titlve comffiWlds to delcte a series of lines nee~ not be 

given When insertmg a line. RAP'automatlcall~~ges to insert mod~ where ail further 

commands are inserted until the user terminal,es this mode ,with the "lOsert off" command 

34 

. ''', 
. , 

( 

, ' 



" 

, " 

" 
" ' 

.~. 

1 

3.2 System Commands 

, ' 
as described laler .. 

, ~. 
, 

3.2 ~yst,em Comri1é~n~s 

Having introd4cèd the main features of RAP the comma'nds willl'low be described. The 

commands are sort~d according to their functlon and grouped with other corhmands which 1. 
• .j, r 

offer similar actions 

The first set of commands to be descnbed are those used to control the commun! :ation 

channels to the various devices The çommands thal define locations for the robot are "" 

discussed next, follùwed bYl.commands whlch cause motion of the PUMA to these 10ca,llOn!>. 

Next are the commands for mo.vint the x-y stage- and microscope. Following the motion 

~ commands are commands for debuggl~g and editln,g, condition al branching, and vision 

processmg, as weil as other implemented VAL commands The last se~tlon of commands 

'. 

are a special group of commands ~eveloped to tailor the environ ment to the task of hyb'rÎlI • ' ,. ~ ~ ... 

~ ,circuit baa}d repalr The commands' are hsted by sechon ln alphabellcal arder and are, 

shown ln bold type, arguments ta the commands are glv.en in < it'alic5.> and enclosed in 

. angle brackets The val\)~s that the argument fields ma~ ~ake o~ are also glve ln the text 

in itdlics. 

3.2.1 \... " 
Channe,l Cqmmands 

OPEN <channel> 

. ' 

, " 

Opens a channel for communication .. < channél> may be val or stepper If for sorne 

t'eason the channel cal" not be opened the user is infQrmed of the failure by an error 

message printed on the user's console The VAL ~hannel is used to talk to the puma . 
running VAL. The OPEN VAL command must be Issued before the robot Will respond 

. It- , 

to any. robot command or a channel "unopened" error Will be generatedp SI .Iarly the 

sttpper mators Will not respond. to any steppercommand un '1 the OP STEPPER , 



.' 

, 1 

" . 
', .. '1 

, . 

... 

, ' " 

.'. 

,,' 

'"" 
\. 

-, 

" , 

. 3 l System (ommands 

Closes' ~ communications ~annel. as ln the OPEN command the <chiJnnel> can be 

"al or 5t~pper Any erro~ncountered ln clo~tng a channel will be re;orted ~o the 

" user. 

" 

EXIT. QUIT 
Il 

"The system is exited The exit and qui~ command "'do the same thing. both are 

provided for the user' s convenience. 

START.\{AL 
. , 

This command starts up the PUMA controller runing VAL It should be given after' . , 

t~e' OPEN.YAL c?mmand, It prompts the user to turn on the controller if il is not 

already on It Uhen responds to the VAL start up prompts and prompts the user to , ' 

turn on the power to the robot arm and set the robot to computer mode. The PUMA 

robot is then calibrated and placed in its "réady" position. 

STÈPPERJNIT 
" ~ " 

The stepper motor controller is initialized a'nd ttlê stage and micro$èope driven.to 

their home positions, It should be use(J after the, OPEN STEPPER .. c~mmand It 

sets 5uch para~erers as the 'step sïz~ (half or full), the acceleration and deceleratlon 
, ' ' 

,speeds and the maximum cruise speed of the mptors. This command will also reset 

the stages coordinate frame to ,t~ home position. The Wome position of the stage 

is w~en the stage hlts both its X and Y liroit switches whlch is considered its (O,.oy 

position The home position of the microscope is whèn the height of the scope is 

greatest and the zoom fattor is least. The command may be used at any time to 
, < 

reset the stages coordmale frame if its accur~cy is in doubt 

VISION, 

The VIsion command takes the user into the viSIOn, subtree where ail the vision 

comma'nds can then be' executed Once ln th~ vision subtree ail ed~ting fUl)ctlons 

must be performed with their c-ontrol key eqUivalents as explained in the debugging 
J" 

and edllmg section ' , 

, , 

r 

.. 

/ 

.,' 



~ \, 

.. 

.. 

CI. 

" 

. .. 

,. 

.. 

3 2 Svstem (onllnands 

3.2.2 Point and Location Commands. ,. 

-, 
These commands deal wlth th~ teaching of points and tr'ansforms Pomts and trans-.. 

forOls are VAL's way of representmg locations in the robot' s space White a transform and, 

,a v?jnt may represent the sa me physical location then internai represe~tatlon is dlfferent. 

A point 15 defmed by the ~IX Jomt angles of the robot at the desired location. A transform 

is represented by ~he world X, .y, and Z coordmates and the three wrÎst orientatIon values 

.0, A and T of the deslred locatIon As the pomt representatlon stores the actual jomt 

angles It IS more accurate than a transform However the gain ln acCtnacy is offset by 

the limItations of manipulatrng points A transform .can be shifted and have computation~ 

performed on' il before it is usecVin any motion commando there IS no facil~ty for thÎs on 

points 

1 

'OEFINE <type> <name> <data> . ' 
Allows the manual 'creation of a point or trans(~rm according to the <type> specifièd .. ". . " 

The name of the point or trans(orm is taken from the < name> field. The < data? 

field'is a six element list in joint angles fo~ a point or in X. y .Z.OA T format for a 

transform 

DEFINE POINT F'EEDER 302040090 -90 . 
./ 

The point feeder is defin~d according to the 

jOint angle data. 

POINT <nam~> e 

The curl"lmt ~on of the robot is stor~d Linder the the name given by the <name> 

field in pret.::'o~ point format. \ 

POINT f.EEDER 

TRANSFORM <name>' • 

The position of the rQbot is ,recorded' as the 

feeder position as a point~ 

, 
The current position of the robot 1S stored under the the name gi\len by the <name/ 

field in transform or X, Y .Z. O.A. T format:. 

TRANSFORM Fefj)ER 

... 

.. The position of the robot is recprded as thé 

feeder position as a transform . 

31 



\ . 

, , 

" 

.' 

~. ' 

;. 

. ( 
q '~ 1 ~ 

, ! 
, 1 

" 3.2 System (omman(ls 

3.2.3 Motion Commands 

ACTIVATE < what,:? 

Actlvates the hand of the PUMA or a suctlon pump as specified by' < what>. If 

", whaL· IS given the valu~ hand thé robots halld will be closed. Suction can also 

be turned on by settmg < what' to suction The DEACTIVATE comniand has the 

OppOSlté' effect as described later 

ACTIVATE HAND, 

ACTIVATE SUCTION 

AI,.IGN 

The robots hand is closed. 

The suction pump is turned on. 

( , 

Causes execution of the VAL alignment commando This causes the tool of the robot 
" ' to be rotated 50 that its Z axis is aligned parallel to the nearest axis in the' world 

coordinate frame. 

APPROACH < how> < where> < dist;nce> 
~ 

Approaches to a distance given by <distance> the "ocation specified by <where>.·: 
, . 

The type of motion is speCified by <how>. T~e argument <how> may -take on 

the values of trans{orm. point. straight transform. straight point. or tooJ. The first 

two al(ow for j~lnt Interpolated motIOn to transforms and precision points. while the 

second two allow for carteslan or straight Ilne motion to transforms or pOints. These 
." 

four methods of approach ail use the tool Z axis as the axis of approach. , 

APf>ROACH TRANSFORM VACUUM 60 

An approach is made by the robot in a Joint 

interpolated mode to a position 60 milhmelers . 

in the tool Z directIon from the point lIacuum. 

APPROACH STRAIGHLPOINT VACUUM 50 

<T , An approach is made by the robot in a straight 

Ime motion to a position 50 millimeters ln the' 

tool Z direction from the point vacu~m 

38, 



. . 

, 

.. 

" 

3 2 System Comm'Ùnds' 

The tool mode allows a vector to be given instead of the regular .distance argument: 

T,his allows for an appro~ch to be then made trom any direction by' supp,lying an 

appropriate vector. It should be noted that this last tapI approach is not ofTered from 
" 

VAL Its implementation is discussed in chapter 4. 

APPROACH TOOL VACUUM 10 00 

An approach is made by the robot in a joint 

interpolated mode ta a position 10 millimeters , 

in the X direc,tlon' from the point vacuum . 

. ' 

,," 
Th'è VAL calibrate command is executed. The robot must be in the nest before this 

command can be execuled This command need only b~ used after the robot is Jimped 

and placed in the nest. as when the system IS startéd"by the START VAL command 

the robot arm IS automatically calibrated 'and put inte the ready position as described 
\ 

previously 

DEACTIVATE < what> 

performs the action opposite to ACTIVATE. The robots hand is opened if < what> 

IS set to hand and the suctlOn is turned ofT if <. whaL~ IS glven the value suction. 

DEACTIVATE HAND 

DEACTIVATE SUC,T/ON 

DEPART <how> <distaQce> 

Opens the robots hand 

r ums th~ vacuum pump ofT 

The arm performs a motion rel<llive to Ils cur'rent position. by an amount glven in the 

argument < distance>. ' T he type of motion is specified by < how>. The argument 

<how> may take on the values j'oint. stra;ght. or tool The departure is carried out 
J 

. in the direction of the tool's negative Z axis in Joint mterpolated motion o~ straight 

(cartesian) motion as specified· 

DEPART STRAIGHT 20 The robot moves in a straight /ine 20 mi/lime­

ters in the direction of the t~ors negative Z 

axis. 

39 

" 

Q 

". 



, 
\ 

\ 

... 

3 2 System Commands , .-
. ~ ... \ 

The tool ~ption does not alJow the specification of a < distance> argument instead .... 
the departure vectot is taketi:~s 'the negative of a preceding APPROACH or TOOL 

motion commando If an alternate departure is sought the TOOL command',can be . " 

used instead. Thus departures can occur along a vector rather than always along . . , 

the tool Z axis. This is an extension of VAL and its implementation is discussed in 

"chapter 4. 

v DEPART TOOL 

DRAW <dx> <dy> <dz> 

The robot moves in the opposite direction to 

the Most recent APPROACH or TOOL com­

mand. 

.:: 

Causes the VAL draw command to be executed. This moves the tool along a straight 

" line. a distance dx in the X direction. dy in the Y direction and dz in the Z direction. The 

tool orientation is maintained during this motion. 

DRAW 1000 

DRIVE <joint> <degreê> <speed> 

The ,tool is moved 10 milÎimeters in the X 

direction 

The indicated robot <joint> is driven by the number of degrees given by < degree> 

at the specified < speed>. The joint is given by an integer 1 to 6. The degree can be 

ft negatlve ~r positive real number and the speed a percentage of the current monitor 

speed. 

DRIVE 1 -2075 

LlMP 

li 

The robofs first joint is driven in the negative 

direction by'20 degrees at seventy five percent _ 

of the monitors speed. 

Executes the VAL limp commando This causes ail of the PUMA's joint to become 

free. It' is used when thére is a need to manually place the robot lOto its nest. Caution 

should ~~ laken to support the PUMA when this command is used. The PUMA will 
' •• ';. l "-

be left unéalibrated after this commando . . 

.'*' . . .. 40 

---11 
1./ 
; 

,., 
1 ., 

'.' 

\ 

'" ." 



\ " 
• 1 

" 

" . 

-_ 1 

3 2 System Commands -

" 

MOVE <how;.· < where> , 

M,oves_ the robot to a location anp orientation specified by < where>. The type of 
, " 

motion.ts specified by the <how> argument. <how> rnay take on the values of trans-

(orm, point. straighUransform, or stra;ght-po;nt. This allows for joint interpolated ' 

and cartesian (str..aight) motions to both 'transforms and precision points. 

MOVE tRANSFORM VACUUM Moves the robot to the transform point vac-
" 

uum, using joint interpolated ~motion, 
" MOVE STRAIGHLPOINT VACUUM Mov.es the robot t~ the precision point vac-

uum: using straight line motion. 
r 

, This instruction can only be used after a READY .PUMA instruction which is enforced 

by VAL. The command will place the PUMA arm in its nest. The speed should be 

less than 20 when placing the arm into or bringing the arm out of the nest . 

.: 
,-

o 

Moves the robot to a ready position above the workspace, This forces the robot' 
J 

into a standard configuration regardless of.its location. This commànd must be used 
1 

before the robot can be nested. 

SPEED < what> <percentage> 

Sets the speed of the PUMA or X- y stage as indicated by < what> to a percentage 
, , 

of top speed. If < what> is given the value puma the PUMA's speed is set. The 

speed of the X- y stage is set by giving < what> the value stepper, This sets the 

speed of ail four motors controlled by the big stepper, but by using a speed command 

... " just before a command to the stage or microscope the speed of the individual motors y . \ . 
can be controlled. However if a speed command is Issued while one of the motors is 

moving the speed ot that motor will change as weIl. 

SPEED PUMA 20 Sets th~' PUMA's speed to 20% of its maxi-

mum. 

S~EED STEPPER 20 ' Sets the stage's speed to 20% of its maxi-

mum. 

41 



'. 

32 
I!> 

System Commands 

TOOL .... dx ;> '<. dy ~ .--, dv 

This commaryd is an extension not originally supported by' VAL. It offeis straight line 

motion along a veètor relailv~ to the, tool coordinates. The robot t~ol will be moved . , 

along a straight line. a distance dx in the tool X direction. dy in the tool V direction - . and dz in the tool Z direction. The orientation of the tool is rnaintained during the .. ' " 

motion. The implementation details are given in chapler 4. 

3.'2.4 Motion Commands ~or the Stage and Microscope 

CHECK <: what> . 

The CHECK commaod provides information about the current state of a motor con-
, , 

trolled by'the stepper motor controller. The user can fiod out if a motor has been 

stopped, or js still moving. If the motor is still moving the amount still remaining 

to be moved may be determined. The motors that can be check!d are specified by 

the < what> argument which may be given the values tab/ex. tabley. zoom or height. 

Tablex and tabley are used to check the stage's progress in a mo~ion while zoom and 

height refer to the micrpscope's zoom and height adjustmenjotors respectively, 

CHECK ZOOM Reports to the u~ the curn;nt state of the 

microscope's zoom control motor. 
• > 

FREE <wha't> 

This cornmahd is used ta hait the motion of the stage or microscope motors by 

disconnecting their power supply,. The stage may be halted by setting < what> to 

table white scope may be used to hait the microscope. It is recommended that after 

lssuing a motion command that the free command b~ used to isolate the motors, 
() 

while they are stationary. from' their power supply in order ta avoid over heating 

prob,lems; A new motion comrnand will automatically restore power to the motor or 

motors affected by the commando ~ 

FREE SCOPE The two microsc6fle motors·are disconnected 
, ~ . 

. from their power supplies until 'the next mO-

tion request. 

42 

.. , 

, 



,( 

j 

7 

t. 

;; 

3.2 System Commands 
" 

SCOPE <motor> <distanèe> <speed> . , . ',. 

This is the command to adjuit and focus the microscope; The .< motor> specification , , 

can be zoom or height to change the miëroseope's zoom or focus re~pectiv.ely. The .' distance is an absolute foeus or zoom setting.' The focus can be thought of as the 

height of the microscope below its home position in milli/lleters. The zoom can be 

thought of as a percent age of the scope's maximum zO,om capabilities. The <speed> 

argument is given as a percentage of the top speed of the selected motor. Speeds 

must be kept relatively low (below 50) when moving the microséope to avoid motor 
• tl 1, 1 

~ overload and the eonsequentialloss qf calibration. The speed fièld i~ used to update 

the selected motoTs speed from its initial value or a previous SPEED commando 
~ <f ' .. 

SCOPE HEIGHT 50 20 Move the microscope to 50 millimeters below 

its home pJs~n' at 20% of its top speed. 
SCOPE ZOOM 302(1 Adjust the zoom to 30% of its maximum at 

STAGE- <sub command> 

. . 
20% of its top speed . 

This is the command f~r moving the stage around. There are three sub commands 

'that are offered for this purpose. Th~ sub 'commands are move, where and to_câp. 

The move option takes an additional X and Y "rgument. The X and Y arguments 

can be given in millimeters or either may be left as the literais X and' y in which case 

th~ values for X and Y will be taken from sorne global variables. These variables can 

be set by sorne of the ,vision .c~mrna~ds to achieve feedback from vision routine . 
; , ... ~ 

The setting of these variables is dise'tlssed later. in ~he vision c0!'lrnands AREA a d 

SET _DISTANCE. The stage perforrns ~n absolute moye to the given X and Y val es. 

STAGE MOUE 10 20 

STAGE MOVE X 20 

. ' 

The stage is. movéd to the coordinates 0 20. 

The stage will not move if the stage is already 

at this location. 
The stage, is moved to the ~oordinates X ~O. 

where X will b~ taken from-the globélt.variable -

set bya vision commando The stage will not 

move if th~~stage is already ~t this location. 

43 

1 ~J 

l. , 

1 

• 



1 

li 
{ 

----

... ~Q 

3 2 System Lommands 

The where option Gan be used to fiod out where tl1e stage is in the stage's local 

coordinate fr-ame. 

STAGE WHERE 

, 
Reports 00 the stage' 5 position in its local 

coordinate frame. 
1 

The to~cap command is an example of a speciahzed command and it will ~e dèscribed 
" later in the section on specialized commands. 

TABLE <motof> <distance> <speed> 

ihe stage is moved by a relative amount as spedfied by the < distance> argument 
" 0 

which may be positive or negative. The speed is contro/led by the < speed> argument 
, 

and is given as a percentage. Motion may be in the X or Y directions as give by the 
, " 

, <,motor> parameter values tab/ex or tabley respectively. The stage's relative motion 

is used to tjp~ate the stage's absolute position 50 that the STAGE commands will 

~ still work correctly. 

~ABlE X ~20 30 Move the stage by 20 millimelers in the -X 

direction at 30% of its top speed. 

This concludes the section of commands that deal with moving a piece of ha~dware. 

The next section ~iII present the commands that <leal' with editing running and debugging 

of programs. 

~-------
3.2.5 Oebugging and Editing Commanda 

, 
'-

The following commands form the beart of the system. Thp.se commands are a little 

ditT~'rent from the other co~mands in that they can be cafled in two different ways. First/y , . 
,J • 'Ii 

they caf!' be invoked like the other commands from the menu by typing them in at a 
,J • 

c,?mmand fine prompt. and second/y they can be ca/led by issuing a control. character. 
L • 

When thë s~ystem i~ at its top level. Jhat is. Rot in a separate command tree such as the 

"isi~n tree. ail the editing and o~b~gging commands are ~vailable trom the menu. However 

when the system is in a subtree the commands âre no longer ilvail~ble from the menu .. This 

i~ -because it-would be a wast~. and inhibil-tne m~dular development of subtrees if ev.ery 
" subtree had to duplicate the menu entries of the top lev el menu tree. Instead a mettlod wéfs 

44 

J. 
>. 

~ • 0 (> t, 

: e, • 

• . 

- 1 

"1 

' . 



5 ' 

.. 

3 2 5vstem Commands 

devised to catch c~ntr~I characters and hav~ ~h .. rn IOterpreted 'as' top, 'Ievel menu e~tries. 
This means that a subtree can be developed with total disregard of the top ievel menu 

entries. and yet. when completed and linked into the system. still have full ,access to a~1 of 

the editing and debugging features that make the system what it IS:' 

The following commands may then b~ thought ·of as global commands available at ail 

times. be it via the menu or corresponding control key. It was found that when using' the 

s'ystem il was often more cOQvenient to use the control keys for the editing functions than 
!.. . " 

typing its menu entry. The control key equivalents are given nex't to their corresponding 

,. 

command below , 

AH HELP < what> 
. ' ; 

The help command May be used to get information, on tbe purpose and use .of a 
Q f,. ~ _ 

, comman'd. It will read in a.help file and using the UNIX function mOle will display it . , 

on the screen. The user may do HElP flELP ta get a list 'of topies on which help Îs 

available. 

!'B BACKUP <for whilt> <Iine n~fnber> 
" 

" 1 

l , 

" ft , 

1 

Thi~ command May be issued whil~,recording a program to cause the robot 19 retrace 
, . 

ils path backto the specified program lin~.' THe <for what> argument indicates that 

the' user wishes ta over' write thé fo~lowing code or wishes code to be inserted before 

the specified line number. Thus the < fOI what> argum~nt can take on the values 

to_overWflfte or for_insert. If a backup is done to insert some ,code then' the user 
\, \ ' 1 t • 

must in~icate when this insertion is ta stop by issuing the INSERT OFF ·command 
, " 

as disèussed laler; 
, ~~ 

BACKUP TO_OVERWRITE:lO . The program counter and robot are backed 'up 
, " . " 

to line 10. Any reèor'd~d code al. and after tine 
o 

10 is over written." 
BACKUP FOR-'flSERT 10 _ T~'e program and, robot are backed up ta tine 

1.9. Commands are th en inserted before line 
6' . . \ il' 

:tO until \he INSERT OFF comman~ IS given. 

. " 

" il 

l, ',~ " 

• j t ' 

\ 

, , 



',' 

c' 

c , 

, " 

\ .. 

, .. 

. , • 37: System C.olllrnand!> 

BREAK 

This commanâ may be placed anywhere in a program. If the break is actlvat~d by the 
. . "'. 

SET BREAK ON command then executlon of th;s instruction will cause the program 

to hait and the user will then be asked how ~r if to proceed. The same set of options 

are then available at this point as when single stepping or interrupting a program as 

describe~ below. If the break commaryd ;s not act;vated (SET BREAK, OFF) then the 
'. 

BREAK instructi?ns are simply ignored . 
., .. 

"C INTERRUPT 

Control C is taken as a -user Interrupt to stop whatever is happening. A prompt';is 
, \ 

issued and the user may then type a single letter to, indicate what action should be 

taken. The ôptions are "a" to Abort a running program. "b" to Backup one step in 

running program. "p" to Pause a running program "5" to start Single step mode. "r" 

to restore'normal Run mode. and "E" to perform the Error recovery or system reset 

function. When in single step mQde each instruction is listed to the SCreen and the ... ' ' 

. u~er given the same opti<?~s as described above. Any -other key will cause execution 

of the next instruction in the program as if in single step mode. Thus a user can 

step through a program line by line by entering single step mode and'then simply 

hi~~he space bar for each line to be r'un: if a program is aborted or paused the 

user is placed back in the top lever of the key tree matcher If the pause command 

was used the user can change whatever may be needed and the pl'ogram resumed 

with the CONTINUE command described below. The system reset option provides a' 

fail safe mechanism for error recovery. Any open channels will be c10sed and running 
\ 

programs abofted. The user is then placed 10 the top level of the key tree matcher 
f 

with the current program ready for addition. change or execution as the user may see' 

fit. 
o 

CONTtNUE <whefe> 

This comm!l.nd is used after pausing a program. The program may be restarted from 

any command line. T 0 restart it from whére il left off <. where> should be set to fun 
• • \ • ~ f 

or (rom if a new continuation point is to be specified. 

CONTINUE RUN A paused program continues its execution. 

46 

, -

1 
/ 



-
,-

CONTINÙE FROM 10 

"'0 OELETE < what:> 

32 System Commands 

A paused program resumes its exec~tion from 

line number 10. 
". 

f"j'J , 

This co",,?mand i~ useo to delete command lines or VAL locations. If 7- what? has 

the value com~and-'ines then a range of command lines must be given and wil'- be 
, ' 

deleted. If instead < what> is set t~ place then a PC?~ition name should be given·to . . . 
delete, a location. 

DELETE COMMAND_LlNES\,2 9 The command I;nes two to nine inclusive, are 

deletéd from t!le program. 

A point named feeder . ~s deleted. DElETE PLACE FEEDER 
" 

"'E EDITLINE <Iine number> 

The command line pointer 15 moved to the' ~iven <Iine number> ~hereupon up to 
. . 

ten lines of commands are displayed to provide relevant context. ,Any previously 

recorded commands after the specifled line ~umber will be replaced line for line by 

any subsequent commands The ~ may USt} this com';'and to move around and 

chan~ thmgs ln a program flle but· this should be ~one only in an off Ime mode aSq 
,.> 

the robot does not follow as the c:ommand line pointer 15 moved around. as happens 
'.. ." 

for the BACKUP command The ~ser ma.y return ta the end qf ~ file by giving a large. 
L • 

command line number and the system 'WIll automatically set the pointer ta the end 
- '- ~ , 

of file. .~~-

EDITLINE 20 

"IINSERT 

The command pointer is set to li ne 20 and 

lin~$ 10 to 20 are·listed for the user to view. 
''''1 (-. 
, 1 

, 

" 

This command is used to enter and leave insert mode. T 0 enter insert mode the 'fi . 

user must specify the line which the insertion is to precede. The insertion is then . 

. made and the mode 15 exited uSlng the )N5ERT OFF commando ThIS com~and can 

be used only if the user is in record mode. Note that the robot does not follow the 

command hne pointer as it does with the BACKUP FOR INSERT commando 

J 

.. 
1 

" 

, , 

." 



"l, 

, " 

, " 

" 

. ' 

. , 

.. 
" 

\ 
\ 

". 

INSERT BEFORE.UNE 10 
.' 

INSERT OFF 

AL LIST <wh,at> 

3 '} System Commands' 

Commands are inserted before line, 10. 

Th~ insert mode is left and the command line 

pointer is ,set to the end of the program file. 

This command is used to hst command lines and VAL locations The < wh'at > 

parametér may be set to command}ines. a''-~/aces or named.place If c~mm~nd 

lines are to be, hsted then a range of fine numbers 15 expected whiJe a point name 
Jt 

must be glven in the named.place optIon, The all.places option will give a listing of 

, ail currently defined pomts, 
, ' 

LIST COMMAND.L1NES'10 20 

, LIST NAMEO PLACE FEEDER 

LIST ALL.PLACf.;S 

. 

Ali existing tommand lm es b~twe:Iiines 10 

to 20 are listed 
The lo€ation feeder h sbown if It exists, 

Ali defined locatIons are hsted. 

'" AR R~CORQ. <mode>., . ' . 

'This command switches the user betweeh the record and non-record modes,' T-he 

<: moôe> may be set to on or 9ft. 
,t 

RECORD ON 

RECORD OFF 

RUN <start number> < end number> 

Enter record mode. 

~eave rec>ord mgde. 
\ 

" b, , l' 

The lUn command 15 used to run .a program' that has been loaded Into merriory. or . ' 
is ~elOg recorded and ed~ted, Th~ program will start executioo at the hoe glven by· 

< 5tr~ number> and end either at <end ,~umbef.> or ~he last program line dependlOg 

on whlCh 15 smaller This means that the user dQes not have to remel1,lbe~ the exact . ' 

, number of the last line of a program. mstead he may Just glve a large number in the 

<.enô Lb~r> field. ---' 

RUN.I99 The program ln mempry IS run from line 

1 to hne 99 or, the last Ime of the program 

whichever cornes first. 

, 1 

. ,t 
"~ 

. ' 

• 

, 



" 

. '. 

\ ' 

, , 

ô 

Q 

.. 

" , J 'l System (oJlllllands' 

SAVE ~, what'· , file name,·· , l" 1 

ThIs command IS used to save a command or position file. Actordrngly <: what> may 
, ' , 

be ~et to commandJ,Ie or po.sitlOnJile, A eommand file will be saved under the given 

flle name with the extension of ,PLA added to mdièate that it IS a playback flle, The 
, . 

extension of POS will be added to ait posItIon ftles 

SAVE COMMAND FILE DEMOl The current,eommand file will be saved-under . . 
\ 

the name demol pla 
,SAVE POSITIONJILE DEMOJ Ali currently defined points WIll be saved un-

~ 

der the name demol pos 

SET' < whàt> ' 

This command is used to set various ~nvvonment varIables: The argument <. what;> 

may be set to break, single_step or edit· on/y. The break option is used ta activate or 

deaçtivate the BREAK command, llkewise the sln.gle step mode may he sw.tched on <li 

or off. The edit only mode 'a"o~s for the direct wrrting of programs with out the actual 

, exeeution of r,obot m,otlons. This 15 very .useful if il ~et .'Ô!;.workmg subroutines has 

already been developed and is ready ta be used in a l'arger program The ~u'broutines . 
can be qUlckly recorded without having te wait for any lengthy execut,on wh,ch might 

otherwise be,iltvolved The lengthy execution is not a result of a slow programming 
, 

èr:wironment but the result of the inherent slowness of mechantcal equipment such as 

the 'robot and stage or slow viSIon processmg. *_ 

S~T BREAK ON" The break co;"mand;s ac6ed, 
SET SINGLESTEP OFF SIngle step mode is exÎted, 

SET EDIT ONL Y ON Edit only mode is entered. 

STATUS 

The STATUS command can be given to li5t what th~ present modes art. That is 

single step. break .record and edit only as weil as the state of the VAL channel are ., . 
shown to have st<ù.es of on or off" 

, . 
USE <type> <file name> 

49 

'1 

1 

/ 

. , 



.. - ", 

'. 

'. 

.. 

, 
'" 

t 3 '} System C.ornmaJld~ 

" 

This command looks for the spec.fted file anç loads it II}to memory Thé types of 

_ files available are comm,and files, positlonJiles and capacltor files Capacitor fi/~~ are 

treated later ln the special comf!1ands se,ctlon 

US~ COMMAND_FILE DE~Ol 

, , 

3.2.6 Conditional Commands 

The command file demol.pla is loaded lOto 

~ 'memory if it, eXIsts and error messages are 

given otherwise. 

, -

./ 

o 

The followmg s~l of commands are used to perform branching and and flow control of . . 
a program. 

. . 
GOTO < fine nl.lmber> -. 1 . 

... ~n unconditionàl branc.h is madè to the'</ine number> speCified, This can be ~sèd , 
1 

for infmlte user 'termmated lo,ops or for a branch after an IF commando 

GOSUB < name > < argument list> 

The subroutine specifled by the < name> field is called with the < argument list>. 

The < argument ';5t> is comma 5eparated and may contain less arguments than t~e 

routine is expéctmg. In 5uch a case the default strmgs in the subroutine are used in 
JI', " ~ • 

place of the missing arguments., The argument substitutIon occurs in the otder that 

the arguments are glven in the IIst. therefore:'if arguments other ,than the last in t~e. 

list are ta be omlUed commas must be used ta fill therr place. 

GOSUB PICKUP "FEEDER .. HANO" The subroutme pickup is called with two ar­

guments feeder and hand The second and fi­

nal arguments have been sklpped and will take 

their values from the default stri~gs in the 

sl,lbroutme. An example of such a subroutine 

can be seen in Chapter 5. 

50 

, 

", 



, 
-. 

.. 

.. 
32 System COll1mand~ 

IF < flag,.> THEN <.Iine number.-

~ A conditlOnal branch is made to <: Ime nllmber> If the < flag', is true, otherw;se 'the 

following instruction IS execu'ted The presently implemented flags are answer. c1 -

c4' and error, Answer IS set true if the user has.. answered the most recent prompt 

in the affirmative. Cl - c4 are set true if the correspondmg VAL mput channels are' ,"" . 
high. and the error flag IS set true if VAL has reported an.error ' 

IF ANSWER THEN 20 

. ' 
, WAil <condition> • 

If the user has answered the previ~us prompt 

in th~ affirmative a branch is made to line 

20. otherWlse the followmg instruction Îs ex­

ecuted, 

The program wa;ts urltil the condftion is satisfted The presently implemented condl-
" 

tions 'are answer. capacitor. and st~ge The program will wait for the user to answer , 
yes or no to a prompt îf anSy,ler is set as the condItion. or for a capacltor number if 

capacitor is set as, the condition ln bpth cases the wait wifl continue unt;1 a vahd 

_, argumènt is entered by thé user. The final condition stage allows a user program to 
'. , 

synchronize actions between the robot 'and stage by waiting for the stage to complete 

its motion, .-
WAIT STAGE The program waits until the stage has come 

, . 
to a hait. whereupon execution of the progr,am 

continues with the next instruction. 

TYPE <prompt> 

The string specifled by <prompt> is typed at the user's terminal. This command is • . . 
used to prompt the user for any terminal input needed by the program. 

TYPE "Would yotJ like to continue the demo (yin)" 

TYPE ':Pleilse enter a capacitor number" 

51 

" 
a 

.. 



Il 

32 System Commands ~ 
, . 

3'.2.7 Vision Commands 

The next set of commands d~al with the control of the vision system. These commands 

are an example of a separately developed tree of commands. These commands are àccessed 

by issuing the VISION commando 

ALlOCATE .GRINNELL . 
This command is used to gain access to the grinnell mOnitor whlch is controlled by 

the VAX 780. It should be the first vision command issu~d. 

~ 

CAMERA <.fr~mes'.. <'channel> 

Grabs a camera's image and loads, It into the camera image buffer. The «rames> 

argumenf speclf.&S how many frames. are to be averaged into the final image buffer. 

The <' channel> argument is tlsed to select which of the three Image planes (red. 

green or blue) the image is to be stored on Channel 1 IS red. channel 2 is green 

and channel 4 IS blue Images can be grabbed onto multIple Image planes by givlng 

a channel number that is a sum of the desned channelonumberyhfilt is channel 6 

2+4 will give the g(een and blue channels. 

C~MERA 31 

DISPLAV <what;· 

Three frames from the:\èamera are averaged 

onto the red channel 

Displays an Image speciFled by < what ~> on the O)ooltor. ", what .-, may be cam­

erajmage. file image or workimage The camera Image IS the image buffer assocl­

ated with the CAMERA command The f.le Image IS assoclated wlth the READFILE, 

command descllbed Jater and work Image 15 the Image that can be manipulated by 

vision commands such as AREA, as described in the special commands section. 

DISPlAY CAMERA IMAGE The camera image IS dlsplayed on the grinnell 

monitor. 

52 



! 

.. w, 
, ' 

\ , 

r . 

, . 

'1 

" ,.' 
'- ' 

3 2 System Commands 

ERASE 
!" 

Erases a selected channel, as selected by'the SELt:CT (;HANNEL command described 

later. 

EXIT t ,; 
, ' 

Exits trom the vision commands back to the main command tree . 

FREE 

Prints a, free message o~ the grinnell so that other :users may be notified that they 

may now use t~e grinnell. 

HISTOGRAM 

Performs a histogram of> the work image 50 that threshold~ m~y be determined. 

!i 

LOAO <what> 
, .... 

~oad5 a file_image or cameta jmage into the work image as specified by < what>. 

LOAD CAMERA/MAGE The camera Image 15 copied into the work im­

age. 

REAoFILE <Jilename> 

Reads ioto the flle lmage a stored file as specified by < filena,!,e',.o 

READFllE TEST PIC Reads a file cdled test.p'c into Hie file Image 

buffer. 

SELECT CHANNEL <channel> 

Selects a channel or channels that will be used by subsequent comm)nds. As ex­

plained ln the Camera command the channels are numbered J, 2, and 4 for red, green 
~ , 

• and blue respeclively. and chaooels may be combined additively. 

WRITEFILE < fIIename> 

Stores tbe work image into a file glven by < filename> . 
>Jo 

~ 

53 

\ . 



\ 

\ , 

3 2 System Commands 

WRITEFILE TEST,PIC The wotk jmage is stored in a file ~est.pic . 

. , 

VIEW 

This command displays continuously the image.seen by the camera on the monitor. 

It tan be used to set up the camera and lighting by providing immediate feedback to 

changes made 

-' 

3.2.8 More VAL Commands 

Thi~ ned set of commands are)other.VAL commands thathave b.e~n included in the key 

tree matcher. It should be noted that not ail of the VAL commands have been implemented.: 

It was found that for the work cell at hand the commands implemented were sufficient. 

However should the user wish 10 have a more complete selection of the VAL commands 
'lib. . 

two options are provided. The user may wnle VAL code and then down load il and then . . . 

run il. or they ma,y enter VAL directly and run any VAL commands as if directly co"n~cted 

to VAL as explained in the VAL command described below. 

BASE <dx> <dy> <dz> <zrotation> 

Causes the execution of the VAL base comman~ This changes the origin of the VAL 

reference frame, 

BASE 100 0090 

CLEAR~VAL 

,Thè robots world reference frame is shifted 

by '100 m-m in the X direction and rotaled by 

" 90 degrees around the Z axis. 

This command is equivalent to the VAL zero commando Il causes ail VAL programs' 

and positions to be erased. 

,. 
DELAY <time> 

Causes _lhe PUMA 10 wail for a specified lime in seconds. 

54 

.. 



.. 
• 

, 

JI 

3.2 System Command~ 

DOWNlOAD <prôgram> 

This (.ommand can be used to' down load a VAL program stored on the host to the 

"VAL controllér .. h; effect the ~Ioppy disk drive of the VA'l controller is replaced by the 

host' s hard disk. This command is also used to download interru t service routines 

as these must .. run on tht VAL controller ta be actlvated at interrup ates. 

DOWNLOAD TEST A VAL ,routine called te~t is down loaded from 

the host to the VAL control/er. ., _...,. 
\ 

\-
EXECUTE_VAL <program> . . 

Starts a VAL routine that has been previously down foa,ded running. cont~ol will not 1 

be relurned to the key tree matcher until the VAl- routine fias stopped.. -

EXECUTE_VAL TEST The rout,ine test is run on the VAL controller. 

OUTPUT <line> " ,. 
This command causes one of the VAL' controll~r's output lines to be set or reset. 

If <line > is positive the corresponding line will be turned on. and turned off if 

<Iine> is '~egative. This ~ommand allows the control of the output lines 50 that 

communicatIons with other devices is possible .. 

OUTPUT -3 The output line 3 is turned off. 

REAC <Iine> 

This command is used to test the status of an input line. This is jJseful for syn­

chronizing of devices or for simple sensory input. The' global ~Iags Cl c~ C4 are 

correspondingly set to true if the line is f<?und to be high 

READ 3 If the output line 3 is high C3 is set true. 

WHERE 

Causes the execution of the ,VAL where corrunand. This displays the robots' position 

in joint angles and X.Y.Z,O.A.T notation. 

5S 
.,' 

, . 

, .~ 

", 

-

.. , 



, , 

\ , 

" 
3 2 System Co,!!mands 

VAt 
'. 

The user is connecterS in a "pass aU" mode to the VAL controller. This is as if the 

u~er" s, terminal was.conn~cted directly to th,e VAL conlroller. The user rnay return to . ' " 
the key tree matc~er by typing CONTROl-Co 

3.2.9 Specialized Commands 

'" The following set of commands gives an example of how commands can be added ta 

the system ta tailor it to a particular situation. In this case the system has been modified 

to deal with the problems of hybrid circuit board rèpair. 

AREA < threshold> < window size> <plot> 

This command will riln', a mask of size < window size> over an image and 'é!bel ail 
! 

- connected regions above th~ specified < threshold> . The sizes of the five largest 
- . 

- regions found will be returned along with their centers. The last argument <plot> is 

a flag l'ta spedfy whether or not the labeled regions are to be displayed on tll'e monitor. 

AREA 20101 

DISTANCE 

" 
The areas and centers of the five largest re-

gions above a threshold ·of 20 are returned. 

The windo~ size is 10,X 10 pixels and' the, 

, regions fou,nd are displayed on the monitor. 

This çommafld can be used after the AREA command to·find the distance of a fixed 

target from the camera being carried by the robot. The target is a set of white on', 

blaclt drdes of known size, The distance ois found by relating the area of the drdes 

found with th~ AREA command to a distance area funetion of the camera being used. 
" \ ' 

This functi~n was experimentally determined by taking a number of distance area 

readings and fiuing a curve to the data points. The cl;Irve function was then ~sed to 
'. 

determine distances from areas. 

56 



" 

o 

.' , 

, . 

3 2 Sysiel]l Commands 
" . 

seTOISTANCE <',obj!Jct.> <Xsize':> < Ys;ze> 

Tbis comlTland can also be used after the AREA commando It sets 'the global X and Y 

distances, in miltimeters, of 'an object I~beled in the AREA command from the center 
, . -

of the scr~n. This command is used tOrget these X and Y distances so that an image' '. , 
can be centered under a camera by the robot if- X- y stage. < abject> is 'a numbeF 

~ ,> ;o.~v 

from _ one to five specifying which of the !abeled obj~cts from the AREA command " 

should be used in the calculation. <Xs;ze> and < Ys;ze> are the respective X and Y 

sizes of the object in question. Th~se size~ are neèded so that ',correct~cales may be 

calculated. 

SETDISTANCE r 2 20 20 

, 

The X and·Y distances of object 2 are found 
r_ 

in milimeters from the center of the image 

and the correspon~ing global vari,;tbles X and 

y set. The actual object having dimensions 

of<20 X 20 milimeters. 

STAGE to1;p 

--

r •• 

The function of .the STAGE to.cap command is to move the stage 50 that a <:apacitôr 
• ",/ l ' 

as specified in a <lata base will be positioned' over a defined location. This defined 

location" is specified in the data base on the first line of the file. and is given as an 

absolute position in the stage' 5 local coordinate frame. The number of the capacitor 

must havebeen already define~ with the WAIT CAPA CI TORcommand and a capacitor 

data base must have been loaded in.by the USE CAPA CI TOR11LE commando Thèsè 

commands are discussed in more detail below. 

STAGE TO.CAP 

--, 

Move's a prespecified capacitor to a fi"ed lo­

cation. , . 
J 

USE'capacitol-'ile <lÏame> 
...... 

The file specified by name will be loaded as '';) capacitor data file. The format 9f this . , 

file is as follows. On the first line the desired absolute location of the stage in ils 
- 1 ~ • 

local coordinate system should be given, Following this each subsequent line should 

have the capacit rs .y. and z offset from the desired location as given on linè one. 

et Is_~ero as the stage isJocated horizontally. 

.. 

". 

" , . 

57 



, " 

'.;1 " . ' . 

o' 

,1 

1 

. ~ 
Sy~tem .(om~ands . 

WAIT capacitor 

~ . ' 

The program will wait for the user to entJr a capacitor number. A'capacitor's number . 
.,corresponds ,with the order." that the capacitors were specifi'ed in l,he capacitor file: 

• " pO 

Th'!t is. the first capacitor in th~ file i~ numberèd one and the second two et~. The 

'WAIT commé!nd Is usually given after a TYPE com"'!.a~ r~qu~stiri~.capa.citor dàta . 
. , 

This concludes the sections' on commands available on the system. It. can be, seen, - ' \ 

. that a variety of commonly used VAL cOQ'lmands can be accessed.· Commands exist for 
• 0 • 

manipula~ing the stage, microsC':ope and vision system., The ~et of vision commands is an 

example of how a modular set of commands can be developed and' ~sed in the system. 

The only dra~ back of such modularity., as implemented. is the need to explicitly issue 

commands to enter ana leave the vision environmeot.' Besides the basic set of commands 

to' manipulate the various pieces of equipment. examples of speciatized commands have· 

been given.' These spècialized commands deal mostly with the vision section as this area 
.., ~ ,~"" f 

of vision processing is quickly growing and ch~nging and r:nu~ therefore be a~le to be 
;, 

customized to the desired environment. Examples of specialized commands were also seen . 
in the specialized commands section showing how the environ ment can be tailored to the 

• _,.,1 • • ~ • ~ 

hybrid repair process: 
'. , 

, , ' 

'j 

, 
J.- , . 

, . 

, t 

58 

.. 
, , 

1. 

, . 



o. 

f 

" 

, ~ , 

" 

-. 

. , 

0" 

C,hapter 4, 
", 

System Implementati~n 

l ' 

, . 
~.1" System Software " 

ln this chapter the more technical aspects of the system will be discussed, These 

include interface or. the PUMA t~ the host', th~ associated ~ommunicatio,,~ routines a,nd 

inherent limitations of the chosen interfacé method, The funetian of vanous elements of 

the software and their interaction in the envÏfonment is descnbed, as weil as the methads , , 

used to baçk up through a program, perlo'rm error rec;overy and implement tool ~~tions 
fi). 

A black ,diagram of the system software can be seen in figure (4.1 J. The software 

takes user input and parses it using the key tree matcher ThIS matcher may also be 

fed ftom progtam ,files by a ~poaler to run in an automatlC mode The key tree matcher 

,passes the .user' 5 parsed .commands onto the. Interpreter whlch determines whether, d'rect, 

, or" editor-.commands are to be executed," ,Commands are forwarded by, the Interpreter to'lf " . ',. . , 

the appropriate module for execution, The editor routines deal with the program, position 
~ '1"; , 

and capacitodiles, The direct commands' ~re handled by the com~an9 modulE!S which 

çommunic~te with the PUMA, 'stepper mo~or controller and VIsion' system The error 
, 

,handler module routes errors ta t~e user's terminal or performs error recovery functions as 
1 , needed, J ~ , 

" .' 

, 4.2 The Communications Interface 

oa A~ s'tated p'reviously' the PUMA has no method of cammunicati~g with. an external 
• ::> 1- 0' .. 

host computer except through its terminal port, Thi$ method of communications rneans 

, , 
'1 

• n ., 
<" .. 

, '-

" 

" 

"/ 
/' 

/" 

'III 

. " 

t' 



''il 

. '. 

" 

, " 

., 
\ 

i 

. 

. 

User's Terllnal 

j~ , 
" Key' Tree . natcher 

- ~~ ~ 

• r 
, , Interpreter 

, 

III . . . 
< , 

" Errar Handler Edltor Raut ine. 
, 

4~ 

0 ~~ , 

Cali and nodule. 
t--

- j~ 

" 

~Ir 0 ~It 

PUnA orluer UI.lon orluer 
Routine. , ,Raut ine. 

0 .~ 
" 

,t ~r 
~ 

PUla Control 1er UI.&ion Sy.tel 

~Igu ... 4..,1 

\ 

Autolatle 

"- Spooler 
J j~ 

, 

, 
'1 

ri- Localne.ory 
Tables 

\ 

f-tI Pro9r~r flle. 

'-- ~ 

\ 

". ... Position fil .. 
~ , 

.4 Capac J t or f n .. 

,-
.} 

} ~ 

\ 
,Ir \ 

1 
0 

Stepper orluer 
1 

Routine. 1 

.~ 
1 , 

" 
, 

Stepper notar \ 
1 

o Cantro 11er 

) 

Il 



\ 
\ ' 

\ 

\ 

.1 

.. 

\ 

1 
4 '} The Conllll11lllcatlon~.lnterfaC( 

that the host '!lust emulate a user typmg at the PUMA's te~mal Thl~ technique of Slm­

ulatmg a user's mput termmal commands may appear to have som'e hrTlItations ILechtmàn 

et al. 48], Flrstly, the communication speeQ IS hmlted tQ typlcal rermmal rates, less than ~ 

9600 baud Setondly the PUMA controller generates a great deal of output In'order to-be 

user ffl~I,Y This data must be processed by the host and elther relay.ed to the user or 

dlscarded ,pendmg on Its usefulness Thlrdly there !S no standard handsh;ke 'protocol 

normally assoclated wlth communicatIOn, thus there IS an mherent flsk of transmission 

errors, Fmally, and perhaps most importantly. any commands communic~ted to the con­

troller must be routed via a VAL command, Thèrefore, no dÎrect q>ntrol of the' servo joint 

controllers can be achleved " 

On careful examinatlon, most of these limitations are not of particular importance, 

while others' ate not difflcult to overcome. The slow comm'unication speéd is not of great 

importance as the robot's motion usually accounts for a far greater portloll of time than 

the relative command communication 
~ 

As the commUnication IS slow, routines may be easily develop~d on the host to deal 
, " 1 ~ 

wÎth. and categorize any messages returned by the PUMA controlfer These messages may 

be used to Impie ment a form of handshakmg between the hast and PUMA controller 

However thls 15 not the most rellable way to achleve handshakmg ars the commUnications 

lines may hang as one end walts for a continuatIon Signai that may never come If it has 
- , 

been lost ln a transmission error. ThIs 15 very infrequent and presently a manual reset IS 

implemented but a more automatlc method could be Implemented usmg a time out routine , 

to detect the loss of transmission 

The hmltatlon of havmg to Implement ail commands based on existmg VAL commands 

is s~en as the most seflous drawback of thls method of controllmg the PUMA ~or example 

there IS no direct way of domg any force sensing as VAL does not allow for this. Aiso 

as commands are bemg sent through the VAL monitor no c0r:ttmuous path motion may be 

obtained Another problem area IS control of the traJectory as the user IS hmited to the 

types of motion speclfled by VAL 

Work on overcommg thls fmal restriction IS betng done al McGIII by UStng RCCl as a 

control language and modifying the PUMA's controller by adding a parallellink to it (Lloyd 

36]. This Itnk allows direct contr.ol of the jOint servo controllers of the PUMA by the host 

61 

" 

" 



, . , 

4.2 'Thé (ommUnlc.atlons Inlerfac.c 

" , 
computec AI,though addtng the power of direct control. in its present state thls language 

requires the user to become rnvolved in the details, of the control which IS il limitation 

, ;when used for anyt'Hng but research Accordingly more work in buildmg an user interface, 
, r, 

layer' to RCel would hav{' to be done before it could be offered to an end user in an 

:. , . acceptabl~ format., However as ReCl 15 made up of a set of C ~ubroutmes it is possible 

tbat the authors environment can offer Just sudi 'an interface. An appropnate subset of 

these ~outmes ~~uld be h,ked lOto the envlronment and entries made ln the menu 50 they 

could be caJled. This would be in the sa me spint that"t~e vision algorithms were developed 

as C subroutines and then finked. in when complete. 

.. 

4.2.1 The PUMA Drjv~r 
1 

A communications package called Routines.c has been developed in the C language 
, ~ 

,to allow communrcatlons between the PUMA and host (G Carayannis ~9J. This package 

whicn was developed before the author started work on this project consist~d of â set of 

C routines that coula be ca lied from a f!lalO program to send VAL commands to the robot. J 
The routmes- c package mcorporat_~s man y subroutmes There are sub~~tines for trans- • 

mÎttÎng ,commands. character by character, ta the PUMA. VAL echoes each character it 

receives This echo is checked by routmes c to ensure thitf no transmiSSion error has oc-, . 
curred I~ run~ VAL commands run lÎme errors may occur. The. mutines constantly 

monitor transmissions from the P~MA çontroller and return with an error code or a signal 

that 'ail IS ok': These errors can lie obtatned in thel' raw form or encoded ioto numeucal 

formas may be deslred 

To wnte a robot pfogram. a user wou/d have had to wrÎte a C program to cali these 

routines, then compile. Imk and debug the code and the'n fmally run the program before any 

motion of the robot could be reahled There was no' way for the user ta, interact wlth the 

runnmg program save abortlOg It and no way to debug it. wlthout stopping .t and repeating 

the edIt compile, Imk and try again routine (Iearly this represeoted a very cumbersome 

and time consummg way to add the power of host control and complex sensors to ro~ot 

programs 
{ , 

'Av The author's alternative was to take thes'e routines and Jncorporate them mto an en-

vironment whereby the user would regam the more mteractive programming method pre-. 
62 

," 



, 
~ 

,> 

J: 

, 

• 1 •• 

" 

, 0 

t 
\ 

4 l T h{ C.OIl1I1IIJIlI(~tIOflS Interface , 
'vlously ~njoyed in VAL and stIll enJoy~ the benehts .of host control and complex senso! 

interface. 

(~.2 The Key ,Tree 'Matcher 

. To provlde an mt,.eractlve programmlng envlrorlment user' cornmands must be parsed. 

inter,~reted 'and executed with fee,dick Ind,catmg their success or failure The parsing is 

done by maklng use ofa superb key tre~ ,matcher package developed al McG,1I by IParker 

501. This package provldes mech~nisms for setting up a tree of key words (commands)" 

~gainst Wh~ user commands ~ay lat,e~ be rn'atched. Hen,ce the name key tree matcher 

The key words 10 the tree ~ay be set up to take add'llonaJ arguments The matcher 
, . 

can ~e made to ch~k the range and type of the arguments before they are assigned 

to programmer speclfled vartables The common types of variables. IOtegers. reals and 

strings.' are ail supported The two main routmes used are called tree, match parse and 

tree.match Tree.match parse takes a tree specîflcatlon and r;tùrns a pomter 10 an mternal , 

tree structure ThiS pOlO ter should br treated as Cl char * 'pointer T ree match .parse needs 

t.o be ca lied ooly once per Key word tree whlCh may be, reqUlred 10 a program 

The tree.match routtne takes the pomter relurned by tree.match.parse along wlth a 
" , 

prompt and potnte~ to Cl key word buffer as ItS p.aramëters The prompt can be any string 

spec,f,ed by the programmer ~nd Will be cllsplayed wh~n °user Intëractlon 15 belng sought 

The key'word buffer 15 where the key word or command t5 actually returned after pars mg 

ThiS key word buITer 15 stripped of any ~rguments and may be exammed to see what 

command was typed by the user The tree_match routme then should be cal/ed whenever 

user interaction IS required 

ln Its present state of development. commands may conslst of any characters wlth the 

exceptton of white space (spaèe.tab.new Ime). cohtrol characters and the characters 1 .. # 
% & () 7 Il The characters * and c) should be avolded as they have a special meaning 

when typed at the begmnlng of a hne The * will Iist the entlfe tree which IS useful ln 

debuggtng a tree that IS betng set up The (0 followed by a flle name Will cause mput to 

be taken from that flle mstead of the user"'s terminai and may be used to run a batch of 

command5 'prevlOusly prepared, 

9 
A character whlch has a powerful effect when typed at the start of aime IS! When 

63 

1 • 

\ 



, " 

. " o 

. , 

J .. 

4 '} The (on1muJllcatlons Interface 

followed by a system com'mand il will cause a new shell to be starled and the command 
" 

run before control ~ passed back to the pr,ogrammers routine This IS most powerful as 

directorles may be I{sted 'and files found from withlO ,a p,rogram without any need to exit . . , . ' 

or stop the runnmg' procedure "" 

The following example shows how a tree containing the key words "q'uit". "set" and 

"show" , c~n be set up and then ,-,sed as a referenc~' for mate:hing commands. 

char *tree: 

char *tree match_parseO: 

char *buffer: 

float sigma: 

• ".0 

~ 
_ tree = tree _ match _parse. ( .. (quit sh'ow se,t( sigma (%r," ,&sigm~.·· )))); 

tree.match(tree. "Enter command?" .buff~r): 

, The above example also shows how a variable argument may be used. The real variable 

~igma can be set to a speciflc number. say 20. by typing "set sigma 20". The %r signifies 

that a real argument is expected. while %s and %i may bè used for stnngs and integers as . , 

appropnate 

4.2.3 Feeding the Matcher 

The above has glven a flavor of what can be done using the key tree matcher The 

matcher will normally handle the fetching of characters as the user types them ln However 

as program files had to be stored and th,en replayed through the matcher. a method was 

found to feed the matcher commands ln il controlled and automatlc manner The new 

extensIOn allows for a programmer to speclfy a routine that 15 to used by the matcher to 
.,..<" 

get mput A 'spooler" routine was developed by the author for thls purpose 

The "spooler" routme will normally Just return whatever the user types However if 
! 

the user wishes to run a program hie the spooler Will read 10 thls flle and then proceed 

to feed a character at' a time to the matcher Th.s character by ~haracter feeding allows 

for sorne convenient features to be added to allow quite a bit of control over the flow of 

F --
, ,. 

64 ---



1. 

'" 

."{ 

--' 

l ' 
1 

" 

., 4 3 Addll1~ a Subtrce 

command~ being led to the matcher It rs thls control oLthe flow that allows for branching 

and looping to be Impleme~ted as· weil as argument passlng. Branching can be Implemented 

by slInply changmg the spooler pointer m the file !Jeing spooled. and argument passmg by 

the interception and replacement of marker characters by the spooler, as discussed later. 

This also facilitates the debugging capablli~ies of single steppmg,and backing uv through 

a program 

4.3 Adding a Subtree 

A subtree can be added to the system qUlte easlly This allows for modular development 

of packages to enhance the capabrlitles of the system, as was done with the vision package, 

Once a set of subroutihes have been developed mdependently they must be linked into the 

system sa that they can be .used,. ThiS Ilnkmg procedure 15 explalned below, 

The procedure of turning a set of subroutmes mto a subtree starts wlth the creation 
o 

of a tree of commands that will cali the, subroutmes as descnbed in the key tree matcher 

section and more fully in Warker 50]. Once th,IS has been done an entry must be made in 

the main key tree menu for calling the sub tr,ee as shown below 

include "subtree,h" 
char bu! [80] , 
char .tree_~atch_parse; 
tree ~'tree_match_parse(" (exit 

help 
vision 

) , , ) ; 

while' (strcmp (but, .. exi t .. ) ) 
{ 

record_command(); 

\ 
\ 
\ 

if (! strcmp (buf. •. he'lp' . » help_routine 0 ; 
i!'(!strcmp (but, "vision' '» vision_tree{);} 

} ... { 

': 

/ 

The above shows how the entry was made m the main menu fof the vision subtree 

The mclude flle "subtree.h" conta ms the necessary declaratlons for the saved command 

array and hne pomter variables It should be included ln the user' s subtree as weil. In 

addition to the entry in the main menu the subtree routine, glven here as vlsion_treeO, 

should mclude in the same place as shown ln the maIn program the record_commandO 

routine. This routine saves the commands entered by the user if the record f1ag is on. 

65 

/1 , 
1 

... 



, 

-~ ~~-- --------_.-------.... (-.. 
4 4 IJchugglll)!, 

'1 

The subtree should also of course mclude an eXit command so that the main tree can, be 

returned to after any subtree commands have been executed '" 

Finally once the subtree and mam routmes have been modlfled as Indlcated above they 

must be recomplled and linked ln the normal UNIX manner 

It can -he ,seen th en that thls IS qUite a modular expansion as <,>nly.one menu and calling 

routine entry must be made m the mam program, While an indude file and the addition of 

the record. commandO routine need be made 10 the subtree 

4.4' Debugging , 
" ' 

Debuggmg of a program can be achieved at any time in the program development. A , 
command may be tned to see if its effeet is desirable before It IS recorded The robot.may , 

then be backed uJ1o-'a~d the command recorded or another tfled for its effecL Alternatively 

commànds may be recorded off Ime ~nd then run on the robot These recordmgs may have 

break points set so that programmed pauses may be made at appropnate times or the 

program may be smgle stepped 

If the user is runnmg a program ln smgle step mode each command IS fed to the matcher 

and the user is then prompted wlth options for executmg the commando pausing or aborting 

CI program. as weil as backmg up through the program. If the program 15 paused~ the user 

may change anythmg ln the envÎronment and then continue the program from where It was 

'paused 

4.5 Subroutines and Argument Passing 

SubroutÎnes whlch ta~Mrguments may be developed as easily as normal programs 

These subroutmes are sto}\ed ln separate program files and may be treated hke new. user 
\\ -

defmed commands ThiS pr~vides the abillty to develop h;~h level commands whlch. the 

user may then cali to simplify a task description 

Argument passmg IS handled ln a qUite unique way Special characters are mterpreted 

as markers where arguments are to be inserted. These arguments are taken from the 

parameter list speclfled when calh,ng the subroutme As â marker may be followed by a 

descriptive string the user may use thls strmg to provide a default argument ln case the 

66 , 
J 



/ 

\ 
/ \ , 

r , / 

/ 

4 5 Subroutines and Argument Passing 

subroutine IS ca lied without arguments. An uample of suc~ a subroutine that ·perfc;>rms 

"" the action of plCking up an obJect is glven below. 

MOVÉ TRANSFORM Sreac;fy 

APPROACH TOOL !vacuum 40' , 

MOVE TRANSFORM Ovacuum 

ACTIVATE #hand 

DEPART TOOl 

MOVE TRANSFORM $ready 

, . 

If the routine is stored in a file named PICK. il may then be called tt> perform ilS default 

aêtion by giving the command wit~ no arguments ~5hown below." .. 

GOSUB PICK "" 

This' will cau~e the robot to move to the ready p~sitÎon then approach the position 

"vacuum" by 40 millimeters in the tool X directIOn. The robot will then move to the 
1 

vacuum tool and close Its hand. It will finally depart in the reverse direction to ItS approach 

and return to the ready position If the command is glven 'with arguments. totally difTerent 

robot actions may be produeed for example the calI. 

GOSUB PICK :'feeder 0 6~. feeder. suetlon." 

Will cause the robot to piek up a board from a feeder as opposed to picking up the vacuum 

tool 

There are several thmgs to be noted here, Flrst only three arguments are given namely 

"feeder 0 60 0". "feeder" and "suetlon". These arguments correspond to thè first three 

markers respecllvely That IS. the flrst argument Will be mapped onto the! marker (shift 

1). the second to the @) marker (shlft 2) and the tmrd to the # marker (shlft 3) The 

missmg fourth afgume~t . .Y'hlch would normally map onto the $ marker (shift 4) IS missmg 

and Will thus be taken from the default stnng after the $ marker ThiS default strmg as 

glVen ln the example IS "ready" whlch IS a safe position to whlch the robot may return ln 

between subroutlne ca Ils 
, 

A second pOint of note IS that only strings are passed as arguments Thus to pass 

an approach vector such as 0 60. O. It must be preeeded by a string namely "(eeder". 

ThiS results in the string :'feeder" havmg to be passed twice. Once to speclfy a point -_/) 
67 

) 

r 



-- ....... 

v 

• 

1 

'. 

Status Recording 

and approach vector and agam to' ~peclfy and end pomt. This limitation IS due to the 

simpli'city of the replacement algonfhm used to perform the marker substitution and could 

be overcome with a better alg~rithm. 

A thlrd point to notice is that, the method of pickmg up the object was changed from 

using the robots hand to usmg a suction pump controlled by one of t~e PUMA's output 
~ 1 

por:ts. This shows the power of such a small subroutine. By specifyini only three values , 

(approach vector. point and method). virtually arÎy thing May be plck~d up. This same 

concept may also be applied directly to other routines such as those involved in placing 

abjects. 

4.6 Status Recording . 

. To allow the robo.hto Ilackup through a program two methods May be used. The 

program may be analyzed and a reverse instruction generated. or the previous st~te of .~he ----- - \ 
robot recorded and returned to upon request. The author has chosen ta implement the 

second method. t 

The tirst method while requiring reduced storage facilities. pre~~nts a complex task 'of 

generating reverse instructions. For example. if the robot has executed an absolute MOye 

ta an object. then the robot's previous location can not be determmed from this instru~tion • 

alone. It would be necessary to look not only at the last "move" commando but also at 

the previous motion commands to see what route was taken by the robot. The method of 

analyzing prevlous commands May become e6mplex as the user tries to move fartner and 

fartner baek through a program 

The alternative method 15 relatlvely simple As eaeh command i5 executed tne state 

of the environment is 5aved Not only 15 the robot's positIOn and nand openi,ng saved. but 

also the state of the output lines and positIOns of the stage and microscope Then ail that 

is needed. to back up. IS to restore the states ln reverse or der The state 15 not restored by 

the brute force method of 15sumg commands to set every recorded state variable Instead 

ail present states are eompared to the saved states to which the user wishes to return. and 

commands are issued to cha,oge any states that May differ 

This restoratlon of state variables allows the user to backup one or any numb.er of 
....... " 

commands. The 5y'stem will ensure that the user does not backup further than the first 

68 

i 
; 



, ~. 

1 

fi 

4 1 Error Recovery 

rec;orded state. The user may. by this method of backing up. even retrace through a 
. il • 
conditional statement, then pause the program. change the conditiorial's argument and 

restart the program. This altows for easy ·tracing of program branches. 

4.7 Errar Recavery 

As com,mands are executed, they are monitored and any.errors foqnd are reported to 

the user. Besides reporting ~n error to the user an error variable is set and may be tésted 

for in a user's program. These errors can usually be .~Iassified into two areas. fatal and " 

non-fajal. 

A fatal error is one which requires restarting VAL or the recalibration of the PUMA. 

Such errors occur unpredictably. for example when the robot' hits an obstacle. In sucf:! an 

event. the user will not lose any work that may have been completed. Ali that is necessary. 
, 

is for VAL ta be restarted. if it has crashed, or for the PUMA to be renested and then 

recalibrated. Ali user programs and position data are preserved in the system environment 

and may be reloaded' after the PUMA has been restarted. ~his is a great improvement 

over VAL as it avoids a situation where. after much laborious programming and position 

teaching. ail may be lost because the user did not take the precaution ta save ail data .J 

before trying out a program. 

ln the case of non-fatal errars. such as forgetting to returr) th~ teach pendant to 

computer mode after teachmg a point. the user may have the pragram do something in an 

effort to recover. The uset may for example test that computer mode has been restored 

followmg a programmed teach sequence by issuing a DELAY command and testing the· . ,. , 

resulting error code until ail is ok. "1 
"~~~:::~~ 

or,... i:_ " 

ln the event that the system hangs. such as wh en a é<fmmumcationslink is broken or . . 
VAL crashes while the system is eX~hg a return message. tbe user may still recover. To 

recover. the user need oJ;lly hit cantral-C to create a "user interrupt". The interrupt handler 

will enquire whether the ~ser wishes to perform a system reset or stop a running program. 

If a system reset is des!red. ail communications channels will be closed and system variables 

reset. A system reset can be used to recover from virtually any e~ror, condition without 

loss of programming data. Programs being run or edited will be preserved as weil as any 
(1 • ~ .'" t 

69 

1 

/ 
/ . 



, . 

-. 

" . 

11 4.8 Impleme~tatlOn of Tooi Motion 

taugnt points. This recovery has been implemented as a fail safe feature·to ensure a reliable 

program development system. 

Another use of this "user interrupt" 15 to' change states as a program is running. A 
l • 

running program may be interrupted and pausid. aborted. backed up or caused to run i~ a 

single step modè. This is a particularly convenient feature when developing large programs 

as tested parts' of a program may be run al full speed and then inter~upted and traced in 

single step mo~e as an untested section is about 10 run. 

,The aforementioned recovery is implemented via the use of some UNIX system func- . 

tions. Namely ~ignal handling and longjump commands. 

4.8 Implementation of Tooi Motion 

Th,e , author . has developed three commands which use motions relative to the tool 

coordinate frame. because it is often easier to express motions in this way' rather than in 

the world coordinate frame. This is especially true wh en grasping or placing tools from or 

into a stand. or using 10015 which do not operate parallel to a world or the tool Z axis. or 
1-

when data from a data base is, used for palleti~ation oJ\erations. ' 

The method of moving in the tool coordinate frame as implèmented is to convert 
.' . .. 

the tool, motion request from tool coordinates to w~rld coordinates and then use VAL 

DRAW commands. To achieVE this a tool to world t'ransformation mat ri x is necessary. To" 

d~termine the transformation matrix the· method similar to th~t described by IBazerghi et 

.al. 51] was used. The read~r is also referred to IPaul 52]. The orientation of the tool frame 

- Îs s~ecified by the three VAL variables O. A. and T. This leads to a break down of the 
"" . 
problem into the four following parts. 

A 
(1) The rotation matrix relating 'the tool frame to a reference frame. 

(2) The rotation matrix describing the rotation due to 0 

(3) The rotation m~tril( de~cribing the rotation due to A 

(4) The rotation mat ri x de~cribing ihe rotation due to T 

The fif~t matrix was found by placing the robot in its ready position and then driving 

, eath of the tool jO,ints so that the values of O. A. and T were zero. This done the transform 

from this configuration to the reference frame was found. The transform is given by the 

"equation bel0Y'. 

10 

1 

, \ 



, " 

" 

" , 

4 Implementation of Tooi Motion 

0) ( X .. ) ( Xiv ) , -1 x l'z l'w 
o Zz Zw 

,~ 

The above, equation represents the transform from the tool coordinate frame when O. 

A. and T have been set to zero (Xz. Yz, Zz) to the world reference frame {Xw. Yw . Zw). 

The efTects of O. A and T were then observed from this initial staié:lhe results were that 

o represents a rotation about the negative X tool axis. A a rotation about the new Y tool 
" " 

axis and T a rotation about the final z' axis. These rotations can be represented byothe 

following matrices. 

Matrix 0' Matrix A Matrix T 

y Z 

~ • ~) ,( ~:' ~t ~) 
o C~: ',0 0 1 

where 50. Sa. and St are the sines of O. A. and T and Co. Cn. and Ct the cosines 

respectively. Having found these matrices they can now be multiplied together to give the 

total transformation as done below. 

, 

n P 1" 

~1) x G 0 0) (" C. 
0 s.) C' -St 

0 Co So x 0 1 o x St Ct 
-1 0 -Sa Co -Sa 0 Ca 0 0 

( CoS, - SoSaC, CoC, + SoS.S, SoC.) 
= SoSt +- CoSaGt SoCt - Co Sa St • -CoCa 

\'l -GaCt CaSt ' . -Sa 

This result çan tJJ.en be used in the followinp, -&,uation to find the world X. Y. and Z 

coordinate componds f~ the given" tool components. The world components ;~ I~beled 
X w • Yw. and Zw and the tool components Xt. Yt. and Zt. 

( C.S, - S.S.C, CoCt + SoSaSt 5.(:. ) G)=G;} ~oSt + Co Sa Ct SoCt - Co Sa St -CoCo. X 

-GaCt CaSt -Sa 
'- . ' 

71, 

0 

'" 

t' 



, . 

'. 

'l' 

.' 

. t 

.. 
, 1 

\ -
, .-
, " 

o 
1 

" . 

" 1 , , 
, 4 8 Implementation of T _001 ly1otlOIl 

This equation IS Implemented on the host and Is'used ln the APPROACH. DEPART. ana 
, 

TOOL commands. which ail issue VAL DRAW commands with the converted components. 
,J , 

This type of command while ex.tending the flexibility of control of the robot uses the 

host ta rnake the -caleu'lations. It would seem better if VAL lJad the abiJity ta handle the , 
J;al number calculations required 50 the host cou'ld be relieved of this relatively low level ....------" . ' 

-/' ..- .. -:-, conversion process. These types of calculatior1S' ate slipported in VAL-Il. 

b: 

" j 

. , , 
" 

'" 

. ' 

1 At this point the concepts. features. ê'ornmands.. ~rid implementation aspects of the . " . . . . ~ 

system have been seen. "Fhe next éhapter will give spme examples ôf the system at work 
• < 

in robot appli~ations. 

Q '. , 

Ji 
": 

1 1 

,,1 

", 
, ; . " 

•• 
~ , 

,1 - ,,1 

fi, " , 
-: . \, 

1. ' 

,', 

. -

" 

, l~ • 

.,t' 

'/ 

1 , , 

... 

, 
o .. 

• , , 

, . 
Jf ~ .3. 

l' 

, . , 

" 

12 
." , ' 

't: ", 

.. 

" 

, . , 



. . 

.', . . 

. ' 

. . 

.~ . 

.' 

, . 
" . . ' 

" . 

..... 
C~ap~er 5 A ~epai~ Funètio~ an '~x~mplé . 

, . 

• 
l.. • This chapter presents an example of il repair function programmed., in and carried,out ' 

by the developed environment. The too's 'd.eveloped by the author in thls repair experiment 

~re described aoo illustrated. ,The chapter ,,:,il1 begin by presenting th.~ repair objective al},d 

the physical layout of the robot environ ment The tools will then be described and the 

,program for performing the repair presented . 
, , 

5.1' The Repair Function' --\ ,1 • 

As an exar'nple o{hybrid integrated circuit (IC) board repair,i~ was s~own how capacitors 

may be desolder~d from sud, a bo~rd. The~ arè many reasons why a capacitor '~ay have . ' 

. to bè removed in the p'rocess of repairing a hybrid le, The' capacltor ln question may be 

,misaligned with the pads on which It h~s been placed. the solder contacts between the 

pads and capacitor may be bad. or the capacltor may be ~f .~he wrong type for the ·pad. 

Any of these defects may or.cur i'h the manufacturing process IBauks 53J ,TYPlcally these 
, , 

repairs are camed out by hand: ~The CircUit boards- are Jnspected and grouped into cla~ses' . . . ' 

- of bôards wlth similar defects These boards are then pa~sed Qn to repair:,persons who do 

~ the actu~1 repalf. . " " .' " . " "\ 

Industry is looking at ways to' automate bo~h ~hi5 1I1,spe~tlOn and repalr proc~~s, As the 

repairs é,lre u5ually varied in nature there 15 a n~d for flexible robots and vision proce5s~s 

. j 
( 

1 ~ 1 ,.' l , , 

to carry out the repalr task. It must be easy to program such tasks on robot 'controllers ln ': 

spite of the task complexity, precision and distributed or concurrent nature of the problem. ' 

.. 



o 

c 

) 

f. 

fi '2 The Physical Layout 

5.2 . The Physital Layout 

l'he repair station in this example is laid o.ut as shown in figure 15.1]. As can be seen. 

the station configuration used consist!. of one robot. an X- y stage. a microscope. a flame 

heater. a hybrold IC stand and ~ rack of tools needed ta perform the task.· as weil as the 

controllers supervlsed by the host The robot is located centrally 50 that It can reactl ail 

areas of the environment. In t!lis expenment It rs designed to reat:h the hybrid IC feeder. , . 
the X- y stage. the tool rack and the microscope 

If is not suggested that thls IS an optimal layout for the task at hand. Rather Il IS 
\ 

~ 

a!, expenmental layout best sUlted for research The robot;. X- y stage and microscope 

jllusfr!lted ln the diagram have ail been previously described. therefore the tools. feeder and 

rack need to be desCflbed Before the example 15 presented 

5.2.1 The Tooi Rack r 

The repatr task was found 'to be complex enough ta require a v 

tools are requlred ta be used at va nous tlmes by thS! robot and must 

in an atUomatlC fashlOn The tools must theH:fore be stored ln a pOSitIOn where the robot 
1 é/ :. 

will be able ta fmd them as needed The tool rack was deslgned for thls purpo'se The rack 

ffers a sel of cones onto w~lch tools may be placed (see figure 15.2]) The cones assure 
, 

orrect and consistent tool ahgnment by uSlng the forces of gravit y ta advantage This 

'j rrangement has proven to be very successful in automatmg tool changes It IS planned ta 

a g,sensors to the work station for several uses. such as. the verification of tool exchanges 

f r even better rehability 

The Vacuum T 001 

The vacuum ta 01 has been developed to .perform two tasks It can be used ta suck 

up integrated circUit chips and also ta hft whole CirCUit boards by an attached chlp A 

sc ematlc of thls to'ol tan be seen in figure 15 2] The tool was developed primanly for 

car ymg and Insertlng chips IOta prmted CirCUit boards. but ils US{l for transportmg entlre 

( hy nd clr~Ult boards IS also provmg very successful {l 

Othêr methods of carrymg these cirCUit boards hav~ been deyeloped 'Howe·ver. none of 

these are consldered sUitable fQr thls repalr case. as they ail mvolve graspmg ttJe hybnd !e..., 
, - 1 t' • ' 6 

.' 74 

\ 
Î 

.. 



• D Heator 

r- Ie 
Holder 

r"'. 
,! 

" o , 0 

X-y Stage ~ 
0 c 

:>- ,Pu.a Robot 

~ 

, 

( X "otor ) 
,.. 

Tooi rack 
Hybl"ld 

Clrcu It 
T.eezel"s Uacuu. 

Ca.era Grlnder Gr Ippers If Board Tooi 
-Feeder -

FiguN5.1 The Phys i ca 1 Layout 0 f the Repa i r St ati on 

\ 1 
i 
j 

. , , 



.. 

Gu 1 des for 1. C • 
Chlp '. 

,', 

Uacuu. 1001 

-Tooi Rack 

," 

End Ule. 

..... '.'. ". 

r 

Top Ule. 

" . ',' ," .... 

Side Ule. 

Figure 5.2 The Tooi Rack and Uacuu. Tooi 

.. 
\ 

• 

-

..... 

.. 



~ 2 The Physlcal Layout 

, by its 'edges. This is inappropnate 10 thls case becau~he edges are not free for grasping 

sînce tliey were used for slatlonary support ln order to keep the upper and lower surfaces 

free for repaîr work to be carried out 

5.2.3 The Hybrid t.C. Stand 

A temporary stand has, been provîded for the experi~t al hand. In the future an 

automated feeder could replace il. In this demonsttatlon the stand serves only as an imtial 

and fmal resting place for a board berng worked on. Nevertheless it has been deslgned to 

present a èlrcUit board in a consistent orientation. ThiS IS achieved as shown in figure (5.3J 

which agalfl uses gravit y to advantage ThIS slanted plane of the stànd also prov.des an 

opportuntty to Illustrate how movement ln the new tool coordinale frame can be used to 

slmpllfy the programmlng lask 

5.2.4 The Tweezers 

ThiS last tool was developed to handle the exacting precision needed in dealing with 
" . 

components as small~ as the capacltors to be desoldered. As can be seen from figure 15.4J. 

it 15 made from a tube and common home tweezers._,lt has been deslgnedto automatically 

compensate for errars in capacltor posltionlng as waulâ be comman ln a reparr task The 

jaws of the tweezers are forced shut around a capacltor as the robot pushes them against 

the surface of a hybrtd IC board The capacitor may then. be lifted off by them To release . 
the capacltor from the tweezers the robot must further push agamst a hard su;face. such 

" 1). 
as a disposai bm. The tweezers can then be reset by pushmg the plonger agamst a surface 

This method of actlvatmg a small gnpper allows for mavemenls of the ro~o be lèss 

precIse as the tweezers 'are made of spnng steel and slide wlthm the tub~. ~hus allowing 

for compltance in the tool' s operation 

5.2.5 The F'ame Heater 

For the purposes of thls research. the heater con.slsts ,!f,simp/e akohol burner that has -

been modifled by passlng a stream of air through ItS flame. The air stream has the effect 

of creatmg a d.re<"4ed fme tlame A tlame was chosen over an electncal hot plate because 

71 

" 



• 

" " 

ft 
,,/ 

, . 

" 

Hybr 1 d Subet rat e ' 

I.e. Chlp 

Stand 

Hybrld Substrate 

I.C.Chlp , 
, Capoc 1 tore 

Guld~ 

'. 

, , -
Figure 5.3 The Hybrld I.C. Stand .Ith I.C 

, 



• 

, . . 

- .. 

HOle~for 
Clhgnment to 
robot gnpper 

r'I : : 
i i · . Il 
j' 
! ! 

· · . · . · . · . · . · . · . · . · . · . · . · . 
· . 
11 

il 
! ~ 
f ~ · . · . · . · . : ~ 

Outer TODI Ceslng ----4f-1 ! 

Tweezers 

Capecltor 

Hybnd Substrate 

\ ... 
\ 

Figure 5.4 The Tweezer Tooi 

Plunger to 
reset too1 erter 

capecHor removel 

Cone cutout 
for ohgnment 
on tool rock 

As Too1 1S 

pressed egeinst '­
surface tweezers 
close on cepacltor 



!> 3 Salllpic Program # 1 

heat could be transferred to the hybnd IC 10 a selected spot wlthout havlOg to m~ke a 

physlcal contact with the board The advantage of this IS that the board may be placed 
- ' 

6" the X- y stage and moved over the flame wlth precision. while at the same freemg th~ . ~ 

robot to work on the top side of the board ,-

5.3 S~mple Program # 1 

[1] STAGE MOVE 0 90 

12] GOSUB PICKUP "VACUUM.VA'CUUM 0 0 80.HAND" .... 
13] GOSUB PICKUP "FEEOER.FEEDER ~O 20 10.SUCTlON·· 

14] STAGE WAIT 

15] T "STAGE.STAGE 100 O.SUCTION" 

\6] 

\71 OSUB PUT "VACUUM.VACUUM 0 0 80.HANO" 

18) GOSUB PICKUP "TWEEZERS.TWEEZERS 0 0 80.HANO" 

[SI TYPE "PLEASE ENTER THE CAPACITOR TO BE REMOVEO" 

QOI WAIT CAPACITOR 

\11) STAGE TO.CAPACITOR 

'0 
[12] STAGE WAIT 

[13] GOSUB PICKUP "CAPACITORCAPACITOR 10 0 D.NONE" 

[14] STAGE MOVE 0 90 

[151 GOSUB PUT ··GARBAGE.GARBAGE 0 0 -60.NONE" 

[16] TYPE ::00 VOU 4iÎ$H TO REMOVE ANOJHER CAPACITOR (Y IN)" 

[17] WAIT ANSWER 

[18] IF ANSWER THEN 9 

11 9] GOSUB PUT "TWEEZERS. TWEEZERS 00 80.HANO· 

[20]' ... GOSUB PICKUP "VACUUM.VACUUM 0 D 80.HAND" 

\21] GOSUB PICKUP "STAGE.STAGE 100 D.SUCTION" 

[22] GOSUB PUT "FEEOER.FEEOER 10 20 10.SUCTION·'· 

\23] GOSUB PUT "VACUUM. VACUUM 0 0 aO.HANO" 

124] TYPE "OUR LITTLE OEMO IS All FINISHEO" 

Sanrple program # 1 represents a typlcal robot p'rogram developed ln this envJrO~menl:' 

Q 80 

, " 
\ 

'\ T 

, 
.> 

. ~ 



Jo 

.' 

S 3 Samplc Program # 1 

When run it wiltdesolder capacitors from a hybrid circuit board. The program will now be 

explamed. As dm be seen the program ealls two subr:outines "piekup" and "put", these 

two subroutines will be descnbed before the overall actIOn of the program is described. 

Il} 

12} 

13] 

14] 

15] 

(1 ] 

12] 

13] 

\4) 

15] 

SUBROUTINE PICKUP 

APPROACH TOOl (QVACUUM 8000 

MOVE TRANSFORM IVACUUM, 

, ACTIVATE #HAND 

DEPART TOOL 

MOVE TRANSFORM SREADY 

, SUBROUTINE PUT 

APPROACH TOOL @VACUUM 8000 

MOyE TRANSFORM !VACUUM 

DEACTIVATE #HAND 

DEPART TOOL 

MÔVE TRANSFORM S:READY 

~' , , 

( 

~, AS',can, be seen the two routines 'are Identlea! ex ce pt for line 3. :h.e routine pickup will " 
/ ~ 1 ) 

ap roach a given pomt and actlvate the hand of the robot or the suction tool ta plck up 3f;l-

-~ eet . The Pu~"routme will do the same as the plck'up routine except that It will deactlvate 

t e hand\ or suetlon and 50 put down the abject It IS carrying As described ln chapter 4 

t e symb?{s !. @. #, and $ a,t as markers for the arguments 1. 2, 3. and 4 respectively."-. 

belh~ passe) to the subrouttne Note that 10 the example program an argument to hll the $ 

mark~r was never passed thus the- default argument READY was used This ready position 

15 s,tuated centrally in the work area and "IS clear of ail obstacles This simplifies the use 

and hnkmç of subroutlOe calls as the robot will always return to a safe and ready position 

between ca Ils 

The sample program # 1 VllII now be d~scribed The fatst hne of the p'rogram will 

move the stage to the coordinates 0 90 This is the positIOn at whlch the robot williater 

place a board to be repalred The next comroand Ime ~alls Othe subroutine "pickup" ..vith 

81 

'. 
., 



CI 

. . 

(;- .. ., ' 

53 

'. \ 

Samplc Program # ) 
1 
1 

arguments "vacuum". "vacuum 0 0 80" and "hand". The~ arguments will cause the robot 
1 

to pick up the vacuum tool with the ItS hand or gripper aUachment. as can be seen ln plate 

1 .. The vacuum tool IS approached for pick up from 80 mm ln the Z direction as specified. 
1 . 

Notice at th.is pOint the stage and the robot will be movlng concurrently. After the robot 

has Plcked up the vacuum tool command Ime 3 will cause the same subroutine "plckup" to , 

be called but thls lime the arguments speclfy that ,it is the feeder that is to be approached 

and the suction activated Instead of the robots hand As the rob'bt already has the vacuum 

tool thls will cause the nybrid circuit boar~ ln the feeder to be s~cked up. plate 2. 

Now before the robot can place the board onto the stage It must 'be sure that the 

stage has reached ItS final destmation and. If not. walt for It ThiS IS the pu'rpose of the 

next com~and "stage wait" Once the robot has synchronazed with the stage It will then 

proceed to "put" the qrcuit board onto the stage. plate 3 ThiS 15 achleved by approaching 

tbe stage by the specifÎed approach vector and deactivatlng the'vadrum which is holdmg 

_ .dhe clr,cu!t to the' vacuum tool Once the Circuit board IS on the stage It is moved to a 

location. near the heater ready for heatlng While the stage tS movmg lOto the new position 

the robot will replace th~ vacuum tool ta ItS holder with a cali to the "put" routi~e 'and 

-then plck up the tWeezers which It needs to remove the tiny capacltors, plate 4 

The robot now has the tool for removmg capacltors and the stage IS pOlsed to heat 

the solde'r Joint for removal 'The u!>er IS now prompted ln hne 9 as to which' capacitor 

is to be removed Thl~ IS s,mply for dem(}I)stratlOn purp~ses as normally repalrs would 

come from ~ IIst or frbm the VISion system' Once the capacltor to be remove(j has b~n 
, ~~ , 

entered. It IS placed over the tlp of the flame for heat-ing by movmg the stage .by an offset 
c 

correspondlng to that capacltor. The offset 15 determmed trom a data flle As before the 
~ .' ~ 

stage IS now checked to ensure that It has compJeted ItS motIon before the robot proceeds to 
, 

plCk up the de50ldered capacllor. plate 5 The capacltor IS Plcked up by the lweezer5 whlch 

move accord:ng to' thé specifications ln the "plckllp" commando plat~ 6 The' tweezers are 

actlvated '(dosed)" by ~ushlng thêm agalnst the surface of the Circuit board The "none" 

argument of the statement ln hne 13 15 used smce no activation of the robots hand or 

suction IS deslred, ln effect ca!-,smg hne 3 of the "plckùp" subroutine to have no. effect 

After the capacltor has been removed the stage IS moved away from'the heat and the 

bad capacltor is placed }n the garbage The motion of placmg the capacltor in the garbage 

82 

, . 



" 

l 
" . 

, , 

. ... 
" ~ 

,', 
'. 

'f \.' 
, 

\ 

) 3 Sam pic Prograryl # 1 

, J l' • • ~ 

(Iine 15) also nàs the effect of"esetlng tne tweezers for use in subsequent removals. At this 

stage the user is prompted witn the "type" commando If the user continues with removals. 

by answering yes then the sequence is resumed from line 9 with the user being asked for 

the·next capacitor to be removed. Jf however the user answers no then the program will 

continue from directly after the "if" command at line 19. These last commat:lds will return' 

evefything to its starting position. First the tweezers will be returned to their stand and 

the vacuum tool will then be 'picked up, The robot will then USE!, the vacuum tool to pick 

up t~e hybnd circuit board from the stage and return it to the feeder. Once it has placed 

the circuit board in the feeder the robot will return the vacuum taol to ilS holder and a final , 

message informing the user that ail has been completed will be printed. 

Q 

" 

-- , ' 

.' . 

.. 
,', .-

.1 

; , . ' , . 
.... , , 

, ,\;0 
l 

-, 

, . 
83 

1 

f ' 



f 

" 

\ 

, ' 

t='lftte 2. 
The Hybrid Circuit Honni Is P,icte'd Up Froiii The Feeder 

" 

1 

1 

1 ___ _ 

. , 

o 

" 

~ , 1 

. .. 



" " ' 

A 

1 . 

., 

," 

D 

, , 
1 

. '-' 
J 

(', 

Plat.3, 
Tb. Hybr1d Circuit l, Ploced On Tbe sta. 

}. " 

Plate 4. 
J;,be Kobol Piets Vu The ~weez,~r T90 1 

" 
, . 

.. 

• 
1 

, .. ' 

~ 

. . ' 

" 

•• 

\ 

" 

r 
\ 

" 

.. , 

! ... 

.' . , 

j 

.. 

, . . 



'. 

,r< 

1 . J 

!4 

Plot. 5. ' 
Tb. Robot l'About Jo R.moy. A H'lIt8d Ç'Dlcjtor 

wt tb Tb. TW.lz.r Tool 

Plote 6. 
, , A Ç'D,cj tOr Hgs Been Sueeessfully RemoY,ed 

" 

L ' 
"a V 

• 01 

) 



" 

" 

§ 3 Sam pie Program # 1 

5.3.1 Samp'e Program # 2 

\ 
The second example given below shows the use of some of the vision commands and 

(1 

how they can be used to obtain information that the robot can then use . 

(1) 

(2] 

(3] 

[4) 

(5) 

[6] 

'(7) ... 
(81 
[9] 

. [10] 

[11) 

[~2] . 

[13] 

(14] 
[15] 

[16] 

[17J 

(18J 

.. 

MOVE STAGE 20 20 

GOSUB PICKUP ··VACUUM.VACUUM a 0 80.HAND" 

GOSUB PICKUP~GET.TARGET 1020 10.SUCTION" 

GOSUB PUT "STAGE.STAGE 10 O.O.SUCTION" 

VISION 

CAMERA FRAMES 2 CHANNEL 1 

LOAD CAMERA_LMAGé 

AREA 20 .10 1 

SET .DISTANCE 1 5 5 

EXIT 

G0SU,B PICKUP "STAGE.STAGE 100 a.SUCTION" III 

APPROACH TRANSFORM STAGE 10 .. 
TOOL X Y 0 

TOOL 0010 

DEACTIVATE HAND 

DEPART TOOL 

. MOVE TRANSFORM RfADY . 

TYPE "IMAGE IS NOVV CENTERED UNDER MICROSCOPE" 

ln this example the robot starts by picking up thé ,vacuum tool and then using the 

vacuum ta 01 to pick up the target abject: consisting of a black rectangle containing white 
... 

circ/es. The target is then placed on the stage under the microscope. The vision area of 

the commanti- tree ,is now entered w~th the vision commando The first vision command 

is "camera frames 2 channel 1" . This command will take two frames of the image under 
•• y 

the microscope and average them together into the red channel. the next cOfJImand loads . . . 

the image from the camera image into a work image area. Once the image is in the work 

area it can be analyzed by the area commando This command will find the area and the 

87 



, 

l -

.. 

.. 
'" . '5.4 DIScussion 
'-",-

c~rs of the largest five reglons that are above the threshold of 20 and use a window 
t - • 

size of 10 as given jn the comma~d line. The results will also be plotted on the grinnell 
. - ' 

as specif.jed by the 1 in the plot field. After the area co~mand has bee.n completed the 

set distance command is used to flnd the distance in millimeters of the largest object from 

-the center of the ~~. This information is stored i~ the global var!ables X and Y that 

the to~1 command of line 13 will use later. Thus the vision preœssing is now complete 

and the vision subtree is left with the exit commando The robot is now mov,êd to pick up 

the target from the stage and then- repositions it using the tool commando by the. distance 

obtained from the vision process Once the target has been repositioned. it i; ~eleased onto 

the stage and the robot is returned to the re~dy position and, a message that the targèt . 

ha.s been centered is printed . 

. 5.4 Discussion 
• 0 

As cin ,be seen from the example programs. development of useful programs. can be t 

ach'i.eved in a rel~tively few lines of code. The use of subroutines for the funct;ons of 

pick and place have substantially reduced the amount of code. It has also been seen hovl 

easy it is to develop specialized commands tailored to the needs of the environment. The' 

first program gave as an example a function that wouid be needed in the repair of hybrid 

integrated circuit boards 'namely the removal of capai,itors from the boards. The second 
, 

example has shown how a vision system can be used to give feedback to the robot so that 

a target cou Id be centered \:Inder the microscope. This second example' would find uses in 

the automat~d inspection of hybrid boards were a defect or f1aw might need to be centered q 

50 that analysis can be done on that area of.the boa~d. 

Extensions to the existing environment are easy to make and can be done in a l'!1odular 

fashion. Either a single command may be developed in C and linked Into the environment 

or indeed 'a whole tree of commands or packages may be developed and linked in. These 

pac~ages can then be used just like any of the other commands with ail the editing and 

debugging power of the system at hand. This has the advantage of allowing independent 
ç 

development of packages or algorithms. Once these algorithms have been developed they 
, ~ 

may be incorporated into the system and tested with· ail the" available equipment of ~~e 

station. This also allows for the station to be tailored to special situations by the addkioh 

'88-

... 



, , 

1 ; 

~, . 

1 

5 4 'Discussion 

and removal of packag~s ?f specialized commands . 
, ' 

The el;lvironment as mentioned previously is impfemented in the C programming lan-

a gl.lage and is' approximately six thousand lines of code. The size of the executable module is 

sorne two hundred,kilobytes, On ~he VAX 750 this code runs without any notïceable delays 

to usèr commands However when the systelt is Iqaded. pauses between successive robot 

motions can be seen. These pauses can happen if the RAP system has been swapped out 

of core between mo.tton !,equest to the VAL system. Pauses such as these could be avoided 
d- ..., 

by running the system at ~ greater priority. but for the resea~ch at hand such pau\es were, 
{ \ 

l not a .major concern, if 

The size of the executable code is quite modest considering the var~e'y of options 

available to the user. and on a VAX presents no problems. In comparÎson a typical RCCL 

program compiles to at least four hundred kilobytes. F9r the code to be por-ted)o a smaller 

system such as a micro c<?mputer. the executable could be trimmed down. jf a size li~~Üon . . 

problem arose, Size could be reduced liy including only those packages which!"ould"l>e . 
needed in the experiment at hand. another advantage of a modular design. 

Future expansions to the system could include a graphies interface. improved numerical 
~ " 

prGcessÎng, and a more comprehensive vision package. 

A grüphics interface could be implemente~ on one of the SUN work stations recently 

acquired by the lab or even on a micro with graphies capabilities such as the Apple Macin­

tosh. The Interfa~ should orrer "both mouse and keyboard actlvated .menus in addition to 

. the pres~nt keytree matcher command entry system. -Running programs could be displayed 

with a \ine pointer to indieate what line was executing instead of ,sim ply printing the current 

çiine to the screen aS' is' now done. Editing capabÎlitie~ should be expanded to support full 

sereen editing instead on the line oriented type, of editing presently supported. A graphies . , ;\ 

interface wou Id also present the opportunity to move the' code from a time shared VAX to 

a smaller dedic~ted processor on which the interface. was t)eing written. 

. hrproved numerical procèssing would 'be neede~ ,if ~he robot is ta be used in an industrial 

type environment as opposed to a reséarch o~e·., This is bécause in indus'tr{fùnctions are 

usually repeated.many ·times thu~ cre~ting tl1t'need 'fo; complex' lo~ps and palletizati~n ,type 
, - n " '.. 1 J /1 .. ~ 

operations_ 1n research on the other hand. 1ll3n)t types of differeil{ functions are" tested. 

as op~osed to one function' being, test~d over and over. It is' reallzedr ~hat any "comm~rci~l' 
1 . , , 

',\' /}' 

,. 1 89: . . ", 

. l, f 
, ' 

'. " 
'1, ~ , 

, " 
'" " . 



, --

.. 

• 

. 5.4 Discussion 

system would have to suIort complex numerical processing. and as the implementation 

• is in C such an addition would not present anl' major problems. 

A ~ore co~prehensive vision package is the third area where expansiot. is needed. The' 

basic facilitles for frame grabbing. viewing. st~ring. and simpl~ processlAg of images need 

to be augmented with ,image analysis and' pattern recognition algonthms McGiII's work in 

, this area has lead to many research topies in themselves, and such additions while still in 

the development stages are progressing rapidly. 

5ho"rtcomings of the system arise. mainly tram the method of controlling the robot. 

throu~h. VAL. This means tnat no matter how sophisticated the vision algorithms may 

bec,?me. the robot will still be limited to motions and trajectories that VAL can produce, 

This situation is made worse by using VAL in a terminallmode since features such'as 
""" . 

continuous -path' smoothing. which VAL can° normally provide. must be forfeited. The 

smoothing feature of VAL must be given up because commands are' now being sent one , 

al a time so VAL cannat calc~late interpolations bet~ motions ~s it does n~t get the 

~ext motion until-the previous one is complete An IOstantaneous stop in th,e motion of 

the robot can be seen between such commands. 

5uch limitations can be ehminated by using RCCl control instead of VAL This switch 

wou!d mean that the greater trajectory control of R(CL and'Its force control primitives cou Id 

be accessed and used for better contre» of the robol As RCCl operates on a motion queue 

strategy, more than one motion command may be sent at a tlme thus allowing smooth 
f " 

transition between motions The sWltch t.o RC C L would not be difficult to do and indeed ' 
() . ", 

hone of the system features would need to be glven up. Ali that would be needed would 

be' a
o 
set of C subroutmes to.be written ta cali the appropriate ReCl .... routlnes, Entries for 

these subroutines w~uld then be made in the key' tree match~r and the tree of commands 

incorporated lOto the system. 
, . 

.1 

When the system is viewed like this. it is seen to be·a reaUy co~nient way of specifying' v -

the 8der that a set of' subrouti~~s should be r~n. It ts like 'having a ~ain program that Îs 

compiled and linked but the arder of execution can be determÎnè;t~n the fly and recorded 
rt " , . .J 

for later play back. This novel way of programming IS the heart of the fI~xjbiht.y and 

expandability of the system 

At. the p~esent it can be seen that the ty~es of operatIons. aKhough 'a -step abo~e what. 

.'.' 
;' ", 

(J, 

r • 

.' , 

90 

,', . " 

.', 



. , 

" . " 

, 

-' 

5 4 DlstusslOn 

cou Id previously be done. a~ still on the primitive side. This IS not a fault of the system 

It is due to the lack of sensors in the work statIon. and lack of tools which can pro'vide 

feedback as they perform their job. 

The cameras require very involved and time consuming algorithms to extract even the 

simplest feedback for the robot. In additipn the cameras must be calibrated to the robot. 0 . '. . 
a very eomplicated procedure in Itself Also the cameras a,re ·rather large and must ,be 

mounted ln areas where their range of view IS limited or obscured by the moving robot. 

Thus although the cameras have ~he patentia(to provide much feedb~ck they are still many 

problems faœd when using them. 

Tools at the present simply perform graspin~. sucking. or grincUng actions. There are 

no sensors associated with the tools. This has meant that the tools havé been designed tp 

'u,ê mechanical stops. guides and alignment'features to try and elimlnat/any uncertainties 

in the operations they are ta perform. While this IS a credit to the ingenuity of their 

designers it leaves the robot ~t the mercy of the toors accuracy and repeatabjlity with no 

way of knowing if any thing has gone wrong with its use. 1n the future. tools must also 

incorporate sensory feedback that can confirm thelr fallure or success in car'rying out an 

operation. The system has been designed with this in mmd as can be seen From its ability 

to test input !Ines which could be tied to the appropriate sensors on the tools 

ln summmg up it can be seen that the system offers a great improv!!ment in terms of 

turn around~e and ease of programming. verifying. and debugging of a task However it is 

also seen that for the tasks to become more sophisticated there are many stumbhng blocks 

still to be overcome. Efficient vision algorithrns as weil as dedicated hardware processors 

are needed to both improve and speed up the feedback that can be obtaineo from the . 
Cameras T ools must be built with feedback capabilities even If only binary. to confirm 

an action they have camed out ln addition proxlmlty sensors and force feedback\lsensors 

could play a vital role ln avolding obstacles and locating parts. However like the cameras , . 
these sensors will need dedicated processors so that data from them can be analyzed and 

compressed into a form that the robot can use. Here it is seen that the s,y stem described 

can easil)' be expanded t'o accommodate input from these sensory type devices as was 

done with the camera system. This flexibility. exparmability. and ease of use are the ,main 

features of the system designed 
0, • 

91 

" , 

" 

.'!,/ 



, -

\ 

-

• 4 

1 
" 

, . 

t 

Chapter 6. Conclusion 

.~ 

This thesis has presented an environment for Robotic Applications Programming on 
- ," ~ 

a VAX 11/750 under UNIX 4.2 BSD. The environment RAP aJiows for the éontrgl of .a 

PUMA 260 'robot. an X- y stage. and a visIon system . 

RAP features a full range of interactive programming and deliuggrng tools. A user may' 
", 

compose and watch programs run an instructIon at a tlme or program in-an off line mode as 

needed: Program files may be run in a step by 5tep fashion in both a forward or b~ckward 

direction. Debugging may al50 be achleved by the use of strategica!ly placed break points: 

Running programs may be stoppeâ or paused. to allow the user to modify any positions or , .. 
equipment in"the environment. and be then restarted at any point. 

, The control of the PUMA is achieved by interfacing a VAX 11/750 to the lSI/ll 

~UMA controller and bUIlding on the VAL programming language. As the interface makes 

use, of the controlle" s RS-232 terminal port no hardware modification need be made to the 
, ' 

Unimation robot controller package, Despite having to route ail control commands through 
() 

VAL. the author has developed extended commands for the movement of the robot in its 

tool coordinate frame, and argument passing to subroutjne~ 
(00 , 

A stepper motor controller was similarly interfaced to the host computer This stepper 

motor controller was used to control four motors' Iwo of the moton, were used to control' 

the movements of an X- y stage The remaining two 'motors ..vere us'e(J to automate the 

focusing and zoom of the microscope. 
'" . 

. Aigorithms for doing vision' processing were incofporated and can be called by user 

programs, The vision routine:; are modular and. can he eas.ily exp~~ded to include r-outinés 
.. f' , 

f~om the rich libraries a~ McGiII such as the HrpS anâ SPIDER packages"'. This opens ne;'" 

.. 
, l ',' 

l , 

.', ". 

.. 

\ 

# 

\ 

, 

'> 
;'" 

\1 , 

'. 

'. 

,; .. '. 

" 



• 

. ' . . 

\ ,-- . , 

\
,: 
'I 
'1 

Conclusion 

. *" . \ 
avenues for the use of complex sensor~\fèedback in robot programs. It has been seen that 

such feedback is vital in ail but the mo~t simple pick and place type applications. 

A.progra~ for the desolderi~g of ca~'acitors fro-m a hybrid circuit board has been given 

as an example to show off s0r.ne. of the system features. The program demonstrated a 

typical hybrid circuit board repair functi~n that would be needed in the automation of the 

repair process The use of subroutines. movement in the tool èoordinate frame. and vision 
1 • 

, feedback have ait been incorporated into the examples. The performance of the system 

, was evaluated and recommendations presented. 

Ali tools developed .in the course of presenting the example have also been fully de­

scribed and sehematic diagrams given where approp'riate. These tools include. a vacuum 

tool for the transportation of the hybnd CIrcuit 'boards. a tweezer type tool for the grasping 
. 

and removal of capaeltors. and a rack for the holding of these tools whlle not in use . 

~" The projeet as a whole has exposed the author to many areas ln the roboties field 

Topies sueh as distributed prbcesslng. vIsion and sensory feedback. world mo~eling. and 

• robotie programming lan~~.ages ail had to 'be addressed. The ~oject is seen as such. not 

.only to be. of a use to industry in the repalf proeess. but als@ as a vehicJe for the research 

of this dynamic and fast growing field. 

- 1 

" 

. \ 



.,/ 

• 

References 

References 

. , 
(1.] B.E. Shimano. C.C. Geschke. e.H. Spalding III, "VAl-lI: A New Robot Control 

[2.] 

13.] 

System for Automated Manufacturing," P;oceedings IEEE Conference on Robotics. 

pg. 278 - 292~ 1984 . 
Loi. Lieberman and M.A. Wesley. 

, . "AUTOPASS: An Automatic Programming 

System for Computer Controlled Mechanical Assembly," IBM Journal of Research 

and Development. Vol. 21. no. 4, pg 321-333, J{}ly 1977. 

M. Ejiri, T. Uno, H. Yoda, T. G~~O, and K. Takeyasu, "A Prototype 

Intelligent Robot that Assembles Objects from Plane Drawings. ,,- IEEE Transactions' . 

on computers. Vol C-21 pg 161 - 170. February 1972. ,: 0 

[4.] P.M. Will,. 0.0. G.rossman, "An Experimental System for Computer Controlled" 

l~] 

" [6.] 

~echanical Assemb~(' IEEE Transactions on Computers, Vol C-24 pg. 879 - 888, 

1975 

R. Paul, "WAVE - A Model 8ased Language for Mampulator Control." The 
~ ~ . 

Industri~1 Roqot. Vol. 4. No, 1. pg 10-17. March 1977 
\ 

R. F=inkel, R. Taylor, R. Bolles, R. Paul, and J. Feldmàn, "AL. A Programmmg 

System for AutomatIOn." Artiflciallntelligence Laboratory. Stanford Univetsity, 

AIM-177. November 1974 
, 

(7.] R. Evans, O. Garnett, and O. Grossman, "Software System for a com~r 

Controlled Manipùlator." IBM T.J. Watson Research Center. RC 6210. May . 

[82) R. Taylor, P. Summer,s~ and J. Meyer, 

Robotics Research. 1.3. 1982 

"AML: A Manufacturing Language," 

(9. ) W. Park. r, "Mmicomputer Software Organization for Control of Industrial Robots." 

Joint Automatic Control Conference. San Francisco. 1977. 
t 

[10.) J.J. Craig,.. , "JPL Autonomous Robot System:' Jet Propulsion Laboratory,; 

Pasadena, CA. 1980 

(11.) C.F. Ru,?ff, "TEACH - A Concurrent Robot Control Language," Procèedings of 

the Third International Computer Confere,!ce, The Palmer House. Chicago, Illinois, 1 

pg. 442-445, November 1979. 

[12.] W. Fr~nklin, and G. Vanderburg, "Programming Vision and Robotics Systemsri 

with RAIL." SME Robots, VI. pg ~92 - 406. March 1982. 
, <l 

94 

; 

" \ 

, . 



11 

,-

a 

" 

D 

D 

.. 

-
• References . 

[13.) General Electric Company. "Allegro Operators Manual (A12 Assembly Robot')." 

General Electr;c Company. Bridgeport. CN. 1982 , -
"(14.] B.E. Shimano. "VAL - A Versatile Robot Programming and Control System." 

Proceedings of the Third International Computer Conference. IEEE Computer So- • 

ciety. The Palmer House. Chicago. Illinois. pg 878-;-883. November 1979. 

[15.] K. Tabse. R.P. Paul. and- E.J. Berg, uA Structured Approach to Robot 

Programming and ~eaching." IEEE Transactions SMC, vôl. SMC-l1. no. 4. pg. 

274-289. April" 1981. ) 

116.] Y. Hayward. "RceL User's Manual Version 1.0." ,Technical Report. TR-EE 

[17.] 

(18.J 

83-46. School of Electrical Engineering Purdue University. West Lafayette: Indiana. 

'47907. Octo~r 1983: '. 

McDonnell Douglas "Robotic System for Batch Manufacturing. Task B High 

Level User Manual," T~hnical Report. AFML-JR-79-4202. Wnght ~Patterson Air ) , , 
Force Base. OH. Oetober 1981. 

J., Darringer. and M. Blasben. 

i~ Machine Assembly." IBM T.i 
1975. 

\ 
\ 

"MAPLE: A High Level\~anguage for Research 

Watson ~rch Cen,ter.\, RC 5606. September 

(19.] M. Salmon, "SIGLA: The Olivetti SIGMA Robot Programming Language." 

Eight International Symposium on Indus trial Robots. Stuttgart. West Germany. 

June 1978. 

(20.] G. Gini, M. Gini, ·R. Gini, and D. Giuse, ':!ntroducing Software Systems·in In-

dustrial Robots." Ninth International Symposium on Indus trial Robots. Washingto~ , 

D.C.. pg. 309 - 321. March 1979. 
, ~. 

[21.]. D. Falek and M. Parent, "A,.n Evolutive Language for an Intelligent Robot> 

The Indus trial Robot: pg. 168-171. 1980. 

(22.J J. Lato.,.be, and E. Mazer. "LM: A High Level Language, for Controlling 

Assembly Robots." Eleventh International Symposium on Industrial Robots. Tokyo. 

Japan. October 1981. 

(23.] R. Popplestone. A .. Ambler and 1. Velos, "RAPT:' A Language for Describing 

Assemblies." The Industrial Robot. pg. 131-137. September 1978. 

(24.] .T. Lozano-Pérez and, P. Winst9n , "LAMA: a Language for Automatic 

Mechanical Assembly". Proceedings of the Firth International Joint Conference on 

Artificiallntel/igence. MIT. Cambridge. Massac;huseù~. pg. 710-7i6. August 1977. ' 

95 
t 

/ 



! 1 

'. 

-~~~ ~- - -~------~---------• • 
') 
Ji. 

References t 

[25.) E. Mazer. "LM-Geo:, Geometrie Programmmg of Assembly Robots." Laboratoire 

IMAG. Grenoble. Frailèe. 1982., 

(26.) M. Week. and D. Zuhlke. "Fundementals for the Development of a High Level 

Programming Language for Num~rrcally Controtted Industriàl Robots." AUTOFACT 

West. Dearborn. Michigan. 1981.. 
0,' 

(27.] P. Bork, "Controling' Robots with an English-like H igh.Level Hlerarchical Com-

mand Language (HIROB)." lçEE. pg. 404-41~. 1984 .. 

[28.) D. Gauthier, G. Carayannis, P. Freedman and A. Malowany, . UA S~ssion Layer 

for a Distributed RobotÏ'cs Envlronment." IEEE Pro.ceedings Compint; pg.459-465. 

September 1985. 

(29.] CVaRL, "Progress Report." Technical Report 85-10R. McGill University. Com-

puter Vision and Robotics Laboratory. September 1985. 

(30.) Y. Cohen, M.S. ~a.ndy, "The HIPS Picture ·Processing Software Referencer'\ 

Manual." Psychology Department. New York Umversity. Janurary 1983. . '\ . . 
(31.) J.S.D., "SPIDER User's Manual." Joint System Develop;"ttnt Corp .. Tokyo. 

Japan. December 1983. , ~ 

(32'.) A. Mansouri, A. Malowany, M. D. L~vine, \ "Line' Detection in Digital Pictures: 
, 0 

A Hypothesis Prediction/Verification Paradigm". Technicill Report 85-=17R. MeGiII' . 
University. Computer Vision and Robotics Labor~tory. 1985 . 

. (33.] A. Mansouri, A. Malowany, ··Using Vision F~dback in Printed-Circuit Board 

Assembly" .), Proceedings of the 1985 IEEE Microprocessor Forum. Atlantic City. 
~ 

April 1985. 

(34.] L.XU, and J. Chen, "AUTOBASj:: A System which Automatically Estab-

. lishes the Geometry Knowledge ,Bàse." IEE'E, Pro~eedings Compint. pp 708-714. 

September .1985. \ 

(35.] 8. Mack and M.M. Bayoumi" .. An Ultrasonic Obstacle Avoidance System 

for a Unimation PUMA ,550 Robot." IEEE Proceedings Co;"pint. pg. 481-483. 

September 1985. , .... 

(36.] J. L1yod, "Robot Control <Interface under UNIX." M. Eng. Thesis. Dept. of 

Electrical Engineering. McGiII University. Montréal. Canada. (Spring 198~) 

(37.] D. K05sman, "A Multi - Microprocessor - Based Control'Environment for Indus-

. trial Robots." M. Eng. Thesis. Dépt. of Electrical Engineering: McGiII University. 

Montréal. Canada. (Spring 1986). 

96' 

" 



.... ' . 

J 

• 1 

S Q 

References 

(38.) A.C. Sanderson and G. Per~y. ' ~ "Sensory - B"asecf\ Robotic Assembly Systems' 

~easearch and Applications in ElectronlC Manufacturing," Proceedings of IEEE . 
. vol. 71 nC? 7, pg. 856-871 July 1983. 

, o. 
[39.] B.W. Kernighan and D.M.Ritchie. "The C Programming language:' Prentice-

, Hall Sohw~re series, 1978. 

(40,} Unimation. "Unimate PUMA Robot 200 Series Volume'l Equipment ,Manual:' 

, Unimati~n Ine., Ç>anbu~y. CT. August 1983. 

[41.) A. Mansouri, "A report on the Stepper Motor Controllér Inte'rface to the VAX." 

Technical Report. McGill ,!Jniversity. Computer Vision and Robotics Laboratory. 

March 1985. (- " 

[42.1 Microbo. "I.R.L. Intuitive Robot lal)guage." Version·3:i Microbo S.A .. Beau-

reguard, Ch-2035, Corcelles. Switzerland. 1984. -
(43.] T. Lozano-Pérez. "Robot Programming:' MIT AI Memo, no. 698.1982. 

(44.} Unimatioh. "Uniniate PUMA Robot 200 Series Volume 2 User's Manual." , , 

Unimation Ine .. Danbury, CT. August 1983. 

[45.) Unimation, "Users guide to VAL-II," Unimation inc .. Danbury. CT, Aprill983. 

(46.} H. Gomaa: R. Captenter. and). Popelas,> "Menu Programming -~ An Èn-
vironment for Programming Robots,'· IEEE.Proceedings Compint. pg. 466-470. 
1985. ~ 

(47.] R.H; Kirsehbrown and R.C. Dorf. "KARMA a Knowledge-Based Robot . -' .,., 

Manipulation System." Robotics. vol. 1 'n~. 1. pg. 3-12. May 1985. 
~ 

[48.] H. lechtman et al.. ·'tonecting the PUMA Rpbot with the MIC Vision System 

and Other Sensors," Robots VI Conference Proceedings. pg. ·447-466, March 1?82. 

(49.) G. "Carayannis, , "Controlling the PUMA 260 Robot-from a VAX," Technical 
Report, 83-3R. McGiII University. Computer Vision cînd Robotics Laborato~y, April 
1983.' , . 

[50.] M. Parker. "A Key Tree Matcher Tutorial,for User's," Internai r.eport. Electrical 

Engineering Department. McGiII University Montréal. Canada. 

[51.) A. Bazerghi et al., "An Exact Kinematie Model of PUMA 600 Manipulator," 

IEEE Tran,sactions on Systems, man. and. Cybemetics. vol. smc-14, no. 3 .. pp 

483-487, May 1 June 1984. 

97 

.! 

() ---.. . 



• ;: ..... --
... 

References 

[52.J R.P~ Paul, "Robot\Mampulators. Mathematics. Programming. and Control." 

MIT Press. Cambridge. Mass .. 1981. 

[53.) D.Z. B8Uks, "Automated Hybrid Assembly Systems for the Electronic Fac-

tory of the Future." International Journal for Hybrid Microelectronics. Intrnational .. 
Microelectron Symposium. Philadelphia. Pa. USA. pp 40-4~ October 1983 . 

.. 
. ' 

o 

, " 

, ,/ 

01 

" 

\ 

98 

, 


