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ABSTRACT 

With the rise in local alcoholic beverage popularity, fraudulent activities are an emerging threat. 

This study addresses this issue by developing a robust non-targeted (NTA) high-resolution mass 

spectrometry (HRMS) coupled with ultra-high-performance liquid chromatography (RP-UHPLC-

Q-TOF) method to authenticate unaged spirits based on their chemical fingerprints. Sixty-three 

samples of gins (23) and neutral spirits (NS) (40) from various geographical and botanical origins 

were analyzed using the NTA LC-Q-TOF-MS method. This comprehensive approach, enhanced 

with multivariate analysis such as Principal Component Analysis (PCA), efficiently characterized 

the chemical fingerprint associated with origins in unaged spirits. An advanced tool, SIRIUS, 

assisted compound characterization, and compound identification followed levels of confidence 

(Schymanski, Jeon et al. 2014). The primary objectives are reviewing existing literature on 

alcoholic beverage fraud, establishing comprehensive fingerprints of NS and gins, and discerning 

potential compounds indicative of botanical and geographical origins, and assessing the impact of 
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botanical addition on authentication marker detection performance in gin production. Initial results 

demonstrated a discernible difference in the number of molecular features (MFs) among the 

samples. Specifically, the analysis yielded 76,447 MFs in ESI+ mode (48,345 for vodka samples 

and 28,102 for gin samples) and 42,206 MFs in ESI- mode (42,206 for vodka samples and 26,138 

for gin samples). MFs demonstrating significant differences across categories and with peak 

intensity exceeding 100,000 were selected for MS2 analysis to initiate the identification procedure. 

This study fills a gap in gin fraud literature and contributes to the efforts of creating a protected 

geographical indication for “Quebec origin” spirits, underlining the efficacy of the NTA LC-Q-

TOF-MS method in fighting alcoholic beverage fraud. 

RÉSUMÉ 

Avec l'augmentation de la popularité des boissons alcoolisées locales, les activités frauduleuses 

constituent une menace émergente. Cette étude aborde ce problème en développant une méthode 

robuste de spectrométrie de masse à haute résolution (HRMS) non ciblée (NTA) couplée à la 

chromatographie liquide à ultra-haute performance (RP-UHPLC-Q-TOF) pour authentifier les 

spiritueux non vieillis sur la base de leurs empreintes chimiques. Soixante-trois échantillons de 

gins (23) et de spiritueux neutres (SN) (40) d'origines géographiques et botaniques diverses ont 

été analysés à l'aide de la méthode NTA LC-Q-TOF-MS. Cette approche globale, complétée par 

une analyse multivariée telle que l'analyse en composantes principales (ACP), a permis de 

caractériser efficacement l'empreinte chimique associée aux spiritueux non vieillis. Un outil 

avancé, SIRIUS, a aidé à la caractérisation des composés, et l'identification des composés a suivi 

les niveaux de confiance proposés par Schymanski et al. (2014). Nos principaux objectifs sont une 

revue de la littérature existante sur la fraude en matière de boissons alcoolisées, l'établissement 

d'empreintes chimiques complètes des SN et gins et l'investigation des composés potentiels 

indiquant les origines botaniques et géographiques, ainsi que l'évaluation de l'impact de l'ajout 

d'aromates sur la performance de détection des marqueurs d'authentification dans la production de 

gin. Les premiers résultats ont montré une différence perceptible dans le nombre de 

caractéristiques moléculaires (CM) entre les échantillons. Plus précisément, l'analyse a produit 76 

447 CM en mode ESI+ (48 345 pour les échantillons de vodka et 28 102 pour les échantillons de 

gin) et 42 206 CM en mode ESI- (42 206 pour les échantillons de vodka et 26 138 pour les 

échantillons de gin). Les CM présentant des différences significatives entre les catégories ont été 
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sélectionnés pour l'analyse MS2 afin d'entamer la procédure d'identification. Cette étude comble 

des lacunes dans la littérature sur la fraude des boissons alcoolisées et contribue aux efforts de 

création d'une indication géographique protégée pour les spiritueux "d'origine québécoise", 

soulignant l'efficacité de la méthode NTA LC-Q-TOF-MS dans la lutte contre la fraude sur les 

boissons alcoolisées. 
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1. INTRODUCTION 

Alcoholic beverages hold a significant share of the food market worldwide, USD1,369.4 

billion in 2020, representing slightly more than 10% of the global food and beverage market (Lu 

2020). There has been a constant increase in demand in the last decades leading to alcoholic 

beverages sharing a progressively larger part of the food industry market. Even if adulteration is 

not a new concept for alcoholic beverages, this surge in market value has brought more 

opportunities for fraudsters. It is becoming apparent that important steps must be taken to protect 

consumers and industries. Indeed, for many years now, alcoholic beverages have been considered 

among the top food commodities to be adulterated for economic gain (Goodall, Harrison et al. 

2018, Europol - OPSON IX 2020). 

Food authenticity refers to compliance with all regulations and standards governing the 

truthful labelling and representation of a food product. Food fraud means to increase the economic 

gain by circumventing these regulations (GFSI 2018). Alcoholic beverages are subject to intrinsic 

and extrinsic types of adulteration. Intrinsic types are related to agricultural practices and 

processing (substitution, dilution, enhancement), and extrinsic types to finished product 

(mislabelling, origin, counterfeiting) (GFSI 2018). Adulteration of alcoholic beverages can have 

disastrous repercussions that are not only detrimental to the economy of the industry but can also 

endanger life (Holmberg 2010, Ellis, Muhamadali et al. 2019, Manning and Kowalska 2021). 

Despite laws regarding agricultural practices, production, processing, and labelling, there is a lack 

of the ability to detect adulterations more efficiently. Most traditional analytical tools have been 

commonly paired with targeted analysis (TA), using specific authentication markers, and 

comparing them against reference standards to evaluate authenticity (Cavanna, Righetti et al. 

2018). Nowadays, non-targeted analysis (NTA), or untargeted analysis, where the analysis is done 

on the whole matrix, has emerged as a powerful tool to provide the exhaustive chemical 

composition of various matrices. NTA thus provides unique chemical fingerprints which increase 

the difficulty in adulterating food to a point where it becomes virtually impossible (Cajka and 

Fiehn 2016, Cavanna, Righetti et al. 2018). As local craft spirits are gaining popularity worldwide, 

there is an emerging need for authentication of artisanal qualities to prevent eventual fraud (van 

Ruth, Huisman et al. 2017). This problem has been addressed in part with the targeted analysis of 

certain categories of spirits, notably Scotch whisky, tequila and brandies, but very little has been 
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using untargeted analysis (Ng, Hupé et al. 1996, De León-Rodríguez, González-Hernández et al. 

2006, Lukić, Banović et al. 2006, Wiśniewska, Boqué et al. 2017, Raičević, Popović et al. 2022). 

Many aspects of alcoholic beverages authentication remain to be explored, mainly the 

geographical and botanical origin of the raw materials, the agricultural practices, the fermentation 

and distillation processes, the identification and characterization of additives, the substitution and 

dilution with water or synthetic ethanol, to mention a few. The exploration of these complex 

matrices has often been conducted towards volatile compounds using gas chromatography, while 

non-volatile compounds have remained vastly understudied. The analysis of non-volatile 

compounds in spirits presents unique challenges, notably due to their expected lower 

concentrations due to the distillation process. Nonetheless, with sophisticated analysis, such as 

liquid chromatography paired with high resolution mass spectrometry, it is expected that the 

exploration of these non-volatile compounds can prove to be a rich source of chemical information 

for authentication. Furthermore, the use of volatile compounds as authentication markers can be 

challenging as well due to their inherent lower stability compared to non-volatile compounds, 

making the latter a potentially favorable alternative for authentication markers. In the context of 

this research, neutral spirits (NS) and gins were specifically selected for their unique chemical 

profiles and widespread popularity. Both spirits can be made from a diverse range of botanical 

ingredients and NS can often serve as base spirits for gins, offering an interesting contrasting 

comparison. The lack of literature in the authentication of both these spirits makes this research an 

important contribution in this field. The goal of this research project is to develop a robust 

authentication method using NTA LC-QTOF-HRMS to characterize the chemical fingerprint of 

NS and gins to potentially discover compounds serving as authentication markers for the botanical 

and geographical origins of these spirits. As mentioned, fraud of alcoholic beverages is an 

international issue challenging government bodies, industries, the food science community, and 

threatening consumers trust, resources, and health (GFSI 2018, Spink 2019). By developing this 

technique, it would reduce the consequences of unnoticed adulterated alcoholic beverages by 

increasing the detection efficiency of fraudulent products as well as reduce the incentive to commit 

the crimes in the first place by increasing the risk of getting caught. Therefore, this research aims 

at providing a solution to advance towards food fraud prevention. 
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1.1 Research Hypothesis 

The present study was conducted with the hypothesis that:  

Hypothesis 1: A robust RP-LC-QTOF-HRMS method can establish the unique chemical 

fingerprint for NS and gins. This fingerprint can identify and characterize key compounds related 

to specific spirit categories for authentication purposes. 

Hypothesis 2: Investigating the fingerprint of NS and gins reveals key compounds corresponding 

to botanical and geographical, identifiable through MVA. The use of SIRIUS software allows the 

elucidation of the chemical formula and structure of previously detected molecular features of 

interest. 

1.2 Research Objectives 

The overall goal of this thesis is to improve the ability to authenticate gins based on the 

geographical origin of the raw materials by using specific markers or fingerprint patterns. More 

specifically, I will be addressing the following points:  

Aim 1: Review the literature on food fraud, alcoholic beverage chemistry, and analytical tools and 

approaches used in food fraud detection to identify current knowledge gaps. 

Aim 2: Develop a robust RP-LC-QTOF-HRMS method to establish the fingerprint of neutral 

spirits and gins to obtain a general understanding and potentially identify important patterns related 

to the chemical fingerprint of the spirits. 

Aim 3: Investigate the fingerprint of neutral alcohols and gins to identify and characterize key 

compounds related to botanical and geographical origin, using multivariate analysis. Then, use 

MSMS data and SIRIUS to elucidate the chemical structure and formula of such candidate 

authentication markers. Use a classification model such as PLS-DA to establish the accuracy of 

classification of samples in their respective categories. 
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2. LITERATURE REVIEW OF ALCOHOLIC BEVERAGES 

AUTHENTICATION 

 Alcoholic beverages represent a significant portion of the global food market, accounting 

for slightly more than 10% in 2020 with a worth of USD 1,369.4 billion (Lu 2020). The European 

Commission estimates that food fraud costs the European Union 30 billion euros every year, with 

1.3 billion euros related to alcoholic beverages fraud (Lecat, Brouard et al. 2017, European 

Commission 2018). This is particularly prominent in countries producing internationally renowned 

beverages like Scotch whisky, Cognac, Bourbon, and wine. Rising demand, coupled with 

production regulations, has led to a surge in the value of rarer or highly sought-after products, 

creating opportunities for fraudsters. Alcoholic beverages fraud, a practice dating back to the times 

of Pliny the Elder (1885), can occur in several ways such as substitution, dilution, enhancement, 

mislabelling, or counterfeiting. Fraudulent adulteration of these beverages has significant 

economic repercussions and can potentially endanger consumers’ health. To counteract fraud, 

exhaustive analytical techniques should be incorporated into food control for early detection of 

adulterations, shifting from a reactive to a proactive approach. Legal measures are in place to 

ensure compliance with agricultural practices, production, processing, and labelling standards 

(Aylott 2013, Spink 2019). Strict regulations exist for beverages such as Scotch whisky, tequila, 

Cognac, bourbon, and most wines (27-CFR-5.22 2008, European Commission (EC) 2008, The 

Scotch Whisky Regulations 2009, Arvanitoyannis 2010, Comité Consultivo Nacional de 

Normalización de Seguridad al Usuario 2012, Bureau National Interprofessionnel du Cognac 

(BNIC) 2018). Typically, adulterated products are identified through investigations, whistle-

blowers, or a lack of proper documentation (Europol - OPSON IX 2020, Europol - OPSON X 

2021). However, these methods alone aren’t always sufficient, and analytical tools are essential to 

provide intrinsic proofs, such as the detection of adulterants.  

Analytical tools can offer spectroscopic, spectrometric, or isotopic data to authenticate a product 

and, in some cases, identify and characterize adulterants. Currently, there is an increased focus on 

NTA, which provides a unique chemical fingerprint of the sample for authenticity. This technique 

makes it virtually impossible to adulterate food without it being noticed. The resulting data can be 

analyzed with chemometrics to differentiate between authentic and fraudulent samples. Despite 

these efforts, fraud continues to plague the alcoholic beverages industry. Fraudsters adapt and find 
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new ways to pursue their illegal activities. One of the major challenges is the lack of 

standardization among the NTAs for authentication, which often leads to non-reproducible results 

and diminishes reliability (Cavanna, Righetti et al. 2018). In the case of alcoholic beverages, there 

is also a deficiency in understanding the complete chemistry of the products and how the 

environment and processing steps influence their compositions. A better understanding of the 

chemical composition, along with free access to fingerprint databases, would allow stakeholders 

to use alcoholic beverages authentication information anywhere along the supply chain. A robust 

authentication method, such as LC-MS, could provide powerful molecular information for use in 

authentication controls, offering an improvement over current basic analyses and sensory 

evaluation. In conclusion, it’s essential to improve the scientific knowledge concerning the 

chemical fingerprint of alcoholic beverages, the correlation between authenticity traits and their 

chemical fingerprint, and the current state-of-the-art methods used for their authentication. This 

literature review will go over the definition and current state of food fraud, especially regarding 

alcoholic beverages. It will then explore the chemical composition of alcoholic beverages, the 

production methods, and the resulting fate of authentication markers. Finally, analytical methods 

used in alcoholic beverages authentication will be described. This would identify gaps in the 

current understanding and improve the accuracy of authentication methods, thereby protecting 

consumers and promoting authentic products. 

2.1 DEFINITION OF FOOD AUTHENTICITY AND FOOD FRAUD 

While food fraud is not a novel concept, the active scientific pursuit to detect and dismantle 

it has gained increased attention over the last few decades. This is largely due to several high-

profile scandals, such as the poisoning related to diethylene glycol in wine in Austria in 1985 

(Holmberg 2010), the 2008 Chinese milk scandal (Pei, Tandon et al. 2011), and more recently the 

appalling seafood fraud happening worldwide (Silva, Hellberg et al. 2021). These are only a few 

of the biggest scandals that occurred in the last decades, but are sufficient to highlight the fact that 

food fraud is a challenging problem of essential importance. The concept of Food Integrity 

developed by the Global Food Safety Initiative is divided into two categories: intentional 

adulteration which is a crime and unintentional adulteration which is considered accidental (Figure 

2.1) (GFSI 2014, Goethem and Elliott 2018). The category of intentional adulteration includes 

food fraud, which is motivated by economic gain, and food defence, which is driven by the desire 
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to cause harm. The unintentional adulteration category includes food quality and food safety. The 

food industry and the scientific community have worked hard in the last decades to meet consumer 

demands for wholesome food, which includes food quality, food safety as well as food security 

(Elliott 2014, Manning 2017). 

Food quality is based on the attributes and characteristics of food products that are valued 

by consumers, like taste, appearance, texture, and nutritional content (Petrescu, Vermeir et al. 

2019). These factors are influenced by agricultural practices, production methods, processing 

techniques, and storage conditions. Promoting food quality means meeting consumer expectations 

by following the established industry standards. This ensures the preservation of the integrity of 

food products. Food security refers to the balance between food availability, consumption patterns, 

and production capacity at national and international levels (IFPRI). It is therefore not of 

importance in this review as it does not pertain to food fraud directly. However, in some cases of 

food fraud, like the Chinese milk scandal, some food becomes unavailable for a certain period 

following the exposure of the fraud due to recalls or can be fearfully avoided (Li, Wang et al. 

2021). Food safety involves chemical, microbiological, and physical hazards that can be 

accidentally present in food due to various factors like agricultural practices, food processing, food 

packaging, and storage conditions and cause foodborne illnesses (Fung, Wang et al. 2018). Food 

authenticity can impact both food safety and food quality depending on the type of fraud or 

adulteration (IFPRI , Goethem and Elliott 2018, Spink 2019). Various factors are to be considered 

in food authenticity such as animal/botanical origin, geographical origin of ingredients, 

agricultural practices, production method, processing, packaging, and, most commonly, the 

presence of adulterants (Figure 2.1). Additionally, some food products are regulated by various 

guidelines and legislation to provide a ‘’standard of identity’’ (Goethem and Elliott 2018). It is 

possible to identify discrepancies from this reference standard as potential adulterations, which is 

food fraud. Food authenticity, on the other hand, is defined as a product of genuine origin, both 

biological and geographical, compliant with agriculture, production, and processing practices, free 

of intentional adulteration, as well as legally produced and sold. This review will consider all types 

of adulteration, with a particular emphasis on origin authenticity, including geographical and 

biological origins. The following review will endorse the same definition for food fraud as in the 

Food Integrity Handbook, which is the following: ‘’an action intentionally causing a mismatch 

between food product claims and actual food product characteristics, either by deliberately 
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making claims known to be false or by deliberately omitting to make claims that should have been 

made’’ (Goethem and Elliott 2018).  

 

Figure 2.1. Food integrity englobes food quality and food safety under unintentional adulteration 

and food defence and food fraud under intentional adulteration. Food defence and food fraud are 

distinguished by the motivation behind adulteration, either intention to harm for the former or 

economic gain for the latter. Food authenticity is conditional on various factors such as 

animal/botanical origin, geographical origin of ingredients, method of production, agricultural 

practices, presence of adulterants, processing, and packaging (GFSI 2014, Hassoun, Måge et al. 

2020). 
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2.1.1 Authenticity and Fraud Issues 

To further define food fraud, the GFSI proposed dividing intentional adulterations into 

three subsets: adulteration, grey market, and counterfeiting. This section will discuss these subsets 

and provide examples to illustrate their characteristics. The GFSI categorizes adulteration into four 

types: substitution, dilution, unapproved enhancement, and concealment (GFSI 2014, GFSI 2018). 

Figure 2.2 briefly describes these types in the context of general food fraud. Substitution involves 

replacing a part of the food (nutrient or ingredient) with another, often of lower quality. Examples 

include substituting olive oil with seed oils, ethanol in alcoholic beverages with methanol, honey 

with cheaper sugars such as sucrose, or spices with sawdust, starch, sand, or chalk powder (Soares, 

Amaral et al. 2017, Ellis, Muhamadali et al. 2019, Kakouri, Revelou et al. 2021, Pacholczyk-

Sienicka, Ciepielowski et al. 2021). Dilution is similar to substitution but occurs when a portion 

of liquid foods is mixed with lower quality or cheaper liquid, often water. Unlike substitution, 

dilution does not remove any part of the authentic food but merely dilutes it to increase volume 

and thus profits (Schelezki, Deloire et al. 2020). Common examples include adding water to milk 

or wine (Holmberg 2010, Nascimento, Santos et al. 2017). Unapproved enhancement involves 

adding undeclared compounds to enhance a food’s quality. Examples include adding melamine to 

milk and infant powder to increase the nitrogen content, such as in the previously mentioned 

Chinese milk scandal, sugar to wine to increase alcoholic strength, and glycerol to wine to provide 

a thicker mouthfeel (Jung, Jaufmann et al. 2006, Holmberg 2010, Müller, Zhong et al. 2021). 

Concealment refers to hiding the low quality of food or ingredients, such as using hormones to 

make sick animals appear healthier or adding food colourings to fruits to cover bruises and 

blemishes. These categories often overlap, and fraud can remain undiscovered or have a minimal 

impact on health. However, fatal cases are not unheard of, particularly in the context of illicit 

alcoholic products where the addition of harmful adulterants like methanol to bypass religious 

restrictions, taxation, or for economic gains have led to several life-threatening incidents. 

Moreover, food allergies pose a significant public health concern as the substitution of ingredients, 

can result in severe allergic reactions or even death (Walker and Gowland 2015, Manning and 

Kowalska 2021). Grey market refers to the unauthorized sale of food products. Examples include 

diverting products from legitimate markets towards illegitimate ones (black markets, online 

platforms), not reporting overproduction and selling of excess food, and theft. In wine appellations, 

where production is highly regulated, or with fishing quotas, wineries or fishermen may sell the 
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regulated limit of food legally and sell the surplus without reporting it. Counterfeiting is a type of 

fraud that constitutes a crime on intellectual property by copying any aspects of a food product. It 

is common in contexts where specific or branded food products fetch high prices, such as high-

end wines and spirits (Kuballa, Hausler et al. 2018, Fougere, Kaplan et al. 2020). The infamous 

Rudy Kurniawan scandal in the wine industry is one example (Fougere, Kaplan et al. 2020). 

Counterfeiting can also occur with regular brands, where counterfeit product are sold at a discount, 

relying on high-selling volume (Kuballa, Hausler et al. 2018). Mislabelling encompasses providing 

false information on labels to deceive consumers. Common forms of mislabelling include 

misrepresenting agricultural practices, geographical origin, biological origin, vintage, age, and 

processing techniques (Panossian, Mamikonyan et al. 2001, Holmberg 2010, Food Safety 

Authority of Ireland (FSAI) 2013, Khaksar, Carlson et al. 2015, Soares, Amaral et al. 2017). 

Although misrepresentations of geographical or biological origin may fall under substitution, 

mislabelling, or counterfeiting, they can also be considered as a separate entity labelled simply as 

origin adulteration (Esslinger, Riedl et al. 2014). Given the prevalence of fraudulent origin claims 

in alcoholic beverages, numerous studies have been conducted on origin authentication (Roullier-

Gall, Lucio et al. 2014, Mannina, Marini et al. 2016, Roullier-Gall, Signoret et al. 2018, 

Karabagias, Karabagias et al. 2021, Phan and Tomasino 2021, Tzachristas, Dasenaki et al. 2021). 

Consequently, the following review will occasionally employ the term “origin fraud” over 

substitution, mislabelling, or counterfeit. 

Distilled alcoholic beverages are frequently associated with fraud practices. One common 

fraud method is counterfeiting, which involves refilling empty bottles of high-end products with 

cheaper alternatives, a practice particularly prevalent in bars and similar establishments where 

regulatory oversight is less stringent than at import/export borders (Aylott 2013, Teodoro, Pereira 

et al. 2017, Kuballa, Hausler et al. 2018). This form of counterfeiting extends to premium 

beverages, similar to high-end wines, where inauthentic products are sold as genuine, sometimes 

fetching astronomical prices, ranging from hundreds of thousands to millions of dollars (Bennett 

2017, Fougere, Kaplan et al. 2020). Other types of fraud may include the dilution of genuine spirits 

with cheaper ones, synthetic alcohol, or even methanol in extreme cases, posing several health 

risks and potential fatalities (Lachenmeier, Schoeberl et al. 2011). Fraudsters may also employ 

enhancement adulteration, using additives like colourings, flavourings, and sweeteners, to mimic 

the sensory attributes associated with a particular brand or beverage (Aylott 2013). These additives 
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often serve to replicate the effects of prolonged wood contact during maturation and aging, with 

caramel, wood, and tea extracts commonly used to simulate aging (Teodoro, Pereira et al. 2017).  

 

Figure 2.2 Types of food fraud (GFSI 2018) 

Mislabelling regarding geographical and botanical origins is another common authenticity 

issue (León-Rodríguez, Escalante-Minakata et al. 2007, Aylott 2013, Wiśniewska, Dymerski et al. 

2015, Wiśniewska, Śliwińska et al. 2016, Wiśniewska, Boqué et al. 2017, Power, Néill et al. 2020). 

For instance, whiskies must adhere to stringent regulations to qualify for designations like Scotch 

whisky (The Scotch Whisky Regulations 2009), Irish whiskey (Food Safety Authority of Ireland 

(FSAI) 2019), or Bourbon whiskey (27-CFR-5.22 2008), necessitating specific ingredients, 

proportions, and country of origin. Similar regulations apply to other spirits such as tequila 

(Comité Consultivo Nacional de Normalización de Seguridad al Usuario 2012), gins (Aylott 

2013), and brandy (Bureau National Interprofessionnel du Cognac (BNIC) 2018). Europol 

reported the seizure of over 50,000 litres of adulterated distilled spirits across multiple countries 

in 2016 during the OPSON V operation, and in 2021, approximately 50,000 litres of whiskey 

adulterated with colourants during the OPSON X operation (Europol - OPSON V 2016, Europol - 

OPSON X 2021). The extent of adulterated or counterfeited alcoholic beverages varies by country. 

In Russia, for example, spirits constituted half of the illicit alcohol market, equivalent to 10.2% of 

the total alcohol market (Euromonitor International 2015). A study on alcoholic beverages fraud 
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issues in South and Central America and Africa revealed that illicit alcohol accounted for 20-30% 

of the total alcohol market in most Central and South American countries and 50-65% in most 

African countries (International Alliance for Drinking Responsibly (IARD) 2018). Canada stands 

out with diverse unrecorded alcohol consumption, including home production, surrogate alcohol, 

smuggling, and cross-border shopping (Rehm, Kailasapillai et al. 2014). A study cited in a 

systematic review of these unrecorded alcohol consumption practices estimated that the illegal 

black market for alcoholic beverages in Canada resulted in $800 million in lost sales during the 

1990s (Room and West 1998). Unfortunately, a comprehensive contemporary analysis of lost sales 

due to alcohol fraud in Canada appears to be lacking in the current literature. Ensuring authenticity 

is a significant challenge given the prevalence of fraud in the distilled spirits industry. The various 

types of fraud pose serious economic, social, and health consequences. The industry, regulatory 

authorities, and researchers must continue devising more effective strategies to detect and prevent 

fraud in this sector.  

Wine, recognized globally as one of the most highly regulated food commodities, is at the 

same time one of the most sought-after beverages, leading to its unfortunate distinction as one of 

the most adulterated alcoholic beverages (Europol - OPSON IX 2020, Europol - OPSON X 2021). 

One prevalent adulteration is unapproved enhancement through chaptalization, where sugar or 

concentrated grape must is added to increase the wine’s ethanol content, resulting in an inflated 

market value. Another common form of wine fraud is substitution to increase the volume 

produced. For instance, blending high-end wine with must coming from lower-quality grapes such 

as in the Brunellopoli case (Cavicchi and Santini 2011), or adding wine from inferior regions to 

reputable appellations. In regions cultivating non-Vitis vinifera species, these hardier, cheaper 

grapes, are sometimes substituted for approved grapes. Although not inherently illegal, this 

practice must be accurately disclosed on the label and generally precludes any appellation mention 

(Müller, Zhong et al. 2021). Substitution is often inextricably linked to mislabelling fraud issues. 

Mislabelling of origin is a prevalent form of wine fraud, driven by the intrinsic value associated 

with specific varietals or appellations. This incentivizes dishonest labelling practices, attributing 

higher-value names to the product (Takeoka and Ebeler 2011). Simultaneously, the burgeoning 

demand for organic products, stemming from ecological and health considerations, has instigated 

additional opportunities for fraudulent activities, especially considering the typically higher price 

points of organic wines (Abraben, Grogan et al. 2017, Vigar, Myers et al. 2020). Despite this, 
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studies focused on organic alcoholic beverage authentication remain limited, although MIR 

techniques have proven successful in distinguishing between conventional and organic Australian 

wines (Cozzolino, Holdstock et al. 2009). Vintage authentication is notoriously challenging, with 

radioisotopic dating offering approximate age determination, but sometimes falling short in 

detecting fraudulent mislabelling due to significant seasonal variations. Such vintage mislabelling 

is often complementary to origin mislabelling or counterfeiting (Godelmann, Fang et al. 2013, 

Geană, Ciucure et al. 2019, Merkytė, Longo et al. 2020). Concerning illegal additives, the use of 

aluminum to brighten a wine’s colour, or berry extracts to darken red wines has been documented 

(Lachenmeier 2016). To imitate the effects of extensive cask aging, oak sawdust is often 

fraudulently used (Lachenmeier 2016). Historically, toxic lead salts were illicitly used to sweeten 

and clarify wines, a practice now virtually extinct due to health concerns (Lachenmeier 2016). 

Glycerol, naturally present in wine, contributes to a soft and full mouthfeel and signifies peak 

grape ripeness. Consequently, synthetic sources of glycerol are frequently added to wines, despite 

being an illegal additive in most winemaking regions (Müller, Zhong et al. 2021). These additives 

improve the perceived quality of the wine, permitting higher price points for cheaper wines. As 

with chaptalization, these practices are not universally illegal, reflecting the complex regulatory 

landscapes. The most high-profile aspect of wine fraud involves counterfeiting, particularly of 

premium or rare wines that command steep prices, presenting a lucrative opportunity for fraudsters 

(Fougere, Kaplan et al. 2020). Notably, fraudulent activities in the European Union’s wine industry 

implicated more than 1,000,000 litres of wine and exceeded €1,200,000 in the latter half of 2020 

alone (Popîrdă, Luchian et al. 2021). The implications of wine fraud are not solely economic as 

they also impact social and health aspects. Consumers who purchase high-quality wines expect 

transparency, and fraud activities are detrimental to the trust between producer and consumer. 

Health risks arise when hazardous unapproved additives are used, and their unknown or proven 

harmful effects on human health pose a threat. Therefore, the wine industry, regulatory agencies, 

and researchers must collaborate and improve current detection methods and prevention regarding 

wine fraud. This would ultimately benefit both the wine industry and wine consumers.  

While beers, ciders, meads, or other similar beverages may not be as highly valued as wine 

or spirits, they are not exempt from fraudulent practices. Beers have been found to be adulterated 

in several ways, including blending with inferior brands, mislabelling of origin, and substitution 

with methanol (Mattarucchi, Stocchero et al. 2010, Fernández Pierna, Duponchel et al. 2012, 
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Mannina, Marini et al. 2016, Pereira, Amador et al. 2016, Associated Press 2020). Fraud in ciders 

primarily involves the substitution of apple varieties approved for PDOs with cheaper alternatives, 

constituting a type of origin fraud (Alonso-Salces, Guyot et al. 2005, García-Ruiz, Moldovan et 

al. 2007). Mead, a beverage that is infrequently discussed in fraud-related literature compared to 

other alcoholic beverages, is nonetheless susceptible to fraudulent practices. Given that honey, a 

key ingredient in mead, is among the most adulterated food products, it is plausible to infer that 

mead may also be subject to various forms of adulteration (Soares, Amaral et al. 2017). 

Documented fraudulent practices include the substitution of honey with molasses or syrups, the 

addition of ethanol to honey without any fermentation taking place, and the unapproved 

enhancement of mead with flavouring agents such as vanillin to mask off flavours (Česlová, 

Pravcová et al. 2022). Furthermore, numerous local alcoholic beverages receive scant mention in 

the literature, suggesting a lack of research into the authenticity of these products. Data from the 

JRC’s monthly food fraud reports show that, since 2016, wine and spirits together account for 

more than 85% of all reported cases related to alcoholic beverages fraud. This leaves less than 

15% of reports related to beers, meads, ciders, and ready-to-drink beverages (European 

Commission 2022) (Figure 2.3). This distribution may underscore the need for increased attention 

and research on potential fraud in these lesser-studied alcoholic beverages. 

 

Figure 2.3: Reported food fraud cases related to alcoholic beverages from September 2016 to 

August 2022 in a pie chart categorized by affected alcoholic beverages. The categories are wine 

(blue, 49.14%), spirits (orange, 38.79%), and others (grey, 12.07%) which includes beers, ciders, 

and ready-to-drink beverages. All cases have been reported in the Knowledge Centre for Food 
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Fraud and Quality (KC-FFQ) a subgroup of the European Commission. The monthly food fraud 

report is drafted by the Joint Research Centre (JRC) Unit F.4 “Fraud Detection and Prevention” 

of Geel in Belgium, with the support of the JRC Unit I.3 “Text and Data Mining” of Ispra in 

Italy. 

2.1.2 Consequences of Food Fraud 

Fraudulent practices involving alcoholic beverages can have severe consequences, 

spanning economic, social, ethical, and health aspects. For instance, significant negative 

repercussions emerged from the infamous “Brunellopoli scandal”, where Sangiovese grapes used 

to make Brunello di Montalcino DOCG wines were fraudulently substituted with cheaper grapes, 

tarnishing the appellation’s reputation, diminishing consumer trust in Italian wines, and promoting 

unfair competition amongst producers (Cavicchi and Santini 2011). Further notable cases include 

the Rudy Kurniawan scandal starting early 2000s until his arrest in 2013 (Fougere, Kaplan et al. 

2020), which involved a major counterfeiting scam where cheap wines were repackaged in famous 

vintage bottles and sold at premium prices, and the Glen Vodka scandal in the UK, where 

authorities seized 9,000 bottles of fake Vodka in 2019 (Lin and Salcido-Keamo 2021). A survey 

of industry stakeholders revealed complex view on the sharing of food fraud-related information. 

While most stakeholders see value information sharing, persistent drawbacks like cost, distrust of 

information shared by others, and increased workload make many reluctant to participate in such 

programs (Minnens, Lucas Luijckx et al. 2019). Instances of fraud have also had grave health 

implications. For instance, counterfeit alcohol has been known to contain dangerous amounts of 

harmful chemicals such as methanol, higher alcohols, ethylene glycol, and toxic metals, leading to 

numerous fatalities worldwide due to poisonings from illegally produced alcoholic beverages 

(Lachenmeier, Schoeberl et al. 2011, Pál, Muhollari et al. 2020, Manning and Kowalska 2021). In 

the Austrian Wine scandal of 1985, several wineries added diethylene glycol to their wines, 

resulting in significant harm to consumers and a near-collapse of the Austrian and parts of the 

German wine industry (Holmberg 2010). Premium appellations, such as Champagne and Cognac, 

have been implicated in multiple lawsuits over the years concerning the legal use of the appellation 

on labels, reflecting their importance in consumers’ purchasing decisions (Pegan, Vianelli et al. 

2020). Whiskey, particularly Bourbon and Scotch, have also been major targets of counterfeiting 

and fraud due to their high value (Collins, Zweigenbaum et al. 2014, Wiśniewska, Dymerski et al. 

2015, Power, Néill et al. 2020). Operation OPSON, a Europol-INTERPOL joint initiative targeting 

food fraud, has identified alcoholic beverages as a priority, seizing millions of litres of counterfeit 
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or adulterated alcoholic beverages (Europol - OPSON IX 2020, Europol - OPSON X 2021). 

However, these represent only a fraction of all fraud cases involving alcoholic beverages, such as 

those illustrated in Figure 2.3. In summary, food fraud, particularly in the context of alcoholic 

beverages, presents itself in various forms and has significant economic, social, and health impacts 

on individuals, industries, and society. 

 
Figure 2.4 Timeline of key recent scandals or frauds involving alcoholic beverages (Holmberg 

2010, Cavicchi and Santini 2011, Takeoka and Ebeler 2011, Bennett 2017, Associated local 

press 2020, Europol - OPSON IX 2020, Fougere, Kaplan et al. 2020, Europol - OPSON X 2021, 

Pomarici, Corsi et al. 2021, ANSA 2022, Balmforth 2022, Vaibhav Vikas 2022). 

2.1.3 Consumer Perceptions and Expectations of Food Authenticity 

Food fraud has wide-ranging repercussions beyond economic impact, leading to consumer 

distrust in the food industry and regulatory bodies, and often fostering feelings of anxiety and 

powerlessness (Charlebois, Schwab et al. 2016). Despite media attention, consumer awareness 

remains low, but a growing sentiment calls for stronger demand for food integrity (Charlebois, 

Juhasz et al. 2017). Surveys reveal that many consumers believe they have purchased fraudulent 

products, particularly in liquids like oils and alcoholic beverages. Trust in food authenticity varies, 
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and there is a desire for more information about food fraud issues (Ingrid Peignier 2017). Younger 

adults show more confidence in regulations but are less informed and less willing to change 

purchasing habits. While these findings are region-specific, a global knowledge gap exists and 

affects consumer willingness to pay, leading to economic implications (Spink 2019, McCallum, 

Cerroni et al. 2021). Increasing consumer knowledge and developing comprehensive techniques 

to prevent food fraud are essential. In understanding authenticity, consumers associate terms like 

accuracy, integrity, legitimacy, and originality with various meanings depending on the context 

(Nunes, Ordanini et al. 2021). Authetnic food is viewed as true to its origins, pure, compliant, and 

produced without solely economic motivations. Enhancing consumer knowledge can increase 

awareness and benefit both consumers and producers. Producers can also gain by presenting 

chemical fingerprints as proof of authenticity, promoting quality, and regional economic growth 

through origin certifications (Cavicchi and Santini 2011, Cassago, Artêncio et al. 2021). The 

sharing of information and more transparent practices could mitigate negative consequences 

associated with food fraud (Kendall, Clark et al. 2019). 

Table 2.1 provides a comprehensive overview of authentication studies on various 

alcoholic beverages matrices, from the last five years. These studies serve a multitude of 

objectives, from the discrimination and classification of botanical or geographical origin to the 

detection of substitution and dilution fraud. Most researchers in this field have utilized analytical 

instruments such as spectrometry and spectroscopy. It’s worth noting that the sample size (n) in 

these studies can vary widely, but very few have included over 200 samples. When it comes to 

data analysis the dominant methodologies often involve MVA, with PCA and DA being the two 

main statistical analyses employed. 
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MATRIX OBJECTIVE 
ANALYTICAL 

TECHNIQUE 
N DATA TREATMENT  

WINE 

Varietal discrimination 

of Greek white wines by 

profiling and suspect 

screening 

UHPLC-QTOF-

MS 
97 PCA, Random Forest (Tzachristas, Dasenaki et al. 2021) 

 

Varietal discrimination 

of Douro red wines by 

profiling of anthocyanin 

profile 

RP-HPLC-DAD 82 
PCA, PLS-DA, CART, 

ANN 
(Cosme, Milheiro et al. 2021) 

 

Geographical 

discrimination of Italian 

red wines by elemental 

fingerprinting 

ICP-MS 
63

9 

K-CM (ANN and Fuzzy 

profiling) 
(Bronzi, Brilli et al. 2020) 

 

Varietal identification 

assay development of 

Nebbiolo musts and 

wines using specific 

SNPs 

SNP Genotyping 
26

0 
- (Boccacci, Chitarra et al. 2020) 

BEER 

Discrimination of beers 

by style and production 

method using both a 

targeted and untargeted 

approach 

NMR 31 PCA, OPLS-DA (Palmioli, Alberici et al. 2020) 

WHISK(E)Y 

Untargeted analysis of 

diversely aged Bourbon 

whiskeys to identify 

potential authentication 

markers 

FT-ICR-MS, 

HPLC-MS/MS 
7 PCA (Yang, Somogyi et al. 2020) 

 

Geographical 

discrimination of 

whisk(e)y using 

elemental fingerprinting 

ICP-MS, MP-

AES 
68 MANOVA, CVA (Hopfer, Gilleland et al. 2017) 
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RUM 

Classification based on 

various production 

parameters and botanical 

origin using data fusion 

NMR, HS-

SPME-GC-

MS, HRLC-

MS 

24 CV-ANOVA 
(Belmonte-Sánchez, Romero-

González et al. 2020) 

FRUIT/MARC 

SPIRITS 

Classification based on 

geographical and 

botanical origin using 

FT-Raman spectroscopy 

Raman 97 Machine Llearning (Magdas, David et al. 2022) 

 

Origin classification of 

Grappa and other Italian 

spirit using GC-MS and 

M/NIR spectroscopy 

HS-SPME-GC-

MS, FT-NIR, 

FT-MIR 

75 
SOPLS-DA, SO-

CovSel-LDA 
(Giannetti, Mariani et al. 2020) 

VODKA 

Comparison of NMR and 

IRMS for the detection 

of substitution fraud in 

Polish Vodka 

NMR, IRMS 30 - 
(Ciepielowski, Pacholczyk-Sienicka 

et al. 2019) 

 

Detection and 

quantification of dilution 

(water) and substitution 

(methanol) fraud 

E-tongue 69 PCA, ANN (Marenco, de Oliveira et al. 2021) 

Table 2.1: Authentication Studies on Alcoholic Beverages.
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2.1.4 Strategies for Detecting and Preventing Food Fraud 

Fighting food fraud requires a multifaceted approach. The most common strategy involves 

investigations by food control authorities and other fraud-related law enforcement agencies. This 

approach is heavily dependent on legal documentation, whistle-blowers, surveillance programs, 

and traceability (Spink 2019). Examples of such initiatives include OPSON (Europol - OPSON IX 

2020, Europol - OPSON X 2021), and the TRACES platform proposed by the European 

Commission (European Commission 2003). Investigative processes are particularly crucial for 

detecting frauds that can’t be identified through analytical techniques, such as with many grey 

market frauds. In these cases, the product itself is often not adulterated; instead, the fraud involves 

the use of illegal markets, tax evasion, and unofficial distribution channels for economic gain. 

Since the chemical composition of the food remains unaltered, there is no adulteration signature 

to analyze. Therefore, investigative techniques are essential for preventing grey market fraud. 

While many analytical techniques require expertise, lengthy analysis time, or further development, 

investigations by authorities still take precedence over science. Analytical techniques are primarily 

used to provide evidence, confirm suspicions, or authenticate collections by private parties. These 

tools are invaluable for detecting fraudulent products and accurately identifying the adulterants 

involved. Analytical methods extract information from the chemical composition of the analyzed 

products, such as light absorption and emission, atomic vibrations, isotopic ratios, isotope 

decaying rates, and atomic and molecular masses. This raw information is then converted into 

measurable data to confirm product authenticity. 

In the context of alcoholic beverages, various other approaches to fraud detection and 

prevention exist. These include scrutinizing labels, logos, closure seals, production lot numbers, 

and other minute details, particularly for high-valued bottles that need to remain sealed to retain 

their value. Wineries and distilleries have also begun to develop protective measures for consumers 

against counterfeiting, such as smart labelling and holograms, invisible ink, and RFID, NFC, and 

QR communication technologies. These measures make authentic bottles more difficult to 

replicate and counterfeit ones easier to identify (Khalil, Doss et al. 2019, Lindley 2022). A 

relatively recent approach involves using blockchain technology to efficiently track the buying and 

selling of bottles and provide authentication information (Luzzani, Grandis et al. 2021). These 

measures lend credibility to the industry and provide some assurance to consumers that their 
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purchases are authentic. However, fraudsters are notoriously quick to adapt to new technologies 

and science, and it is only a matter of time before they devise new ways to deceive consumers. 

Therefore, the industry, authorities, and scientific community must remain vigilant and provide 

cutting-edge knowledge to protect consumers from fraudulent activities. The most effective 

strategy for tackling food fraud involves combining as many approaches as possible to cast the 

widest net. This is the only way to significantly improve the chances of preventing food fraud. 

When using analytical tools, the principle of measuring food and beverage authenticity involves 

comparing an experimental value or parameter to a reference or standard. If the experimental value 

falls within the control limit, the food is considered authentic or free from adulterants. These limits 

are set by analyzing authentic samples and represent the natural variation of a specific product. If 

the value falls outside these defined limits, it is considered problematic and may require additional 

investigation to confirm if it is fraudulent and to determine the source of adulteration (Esslinger, 

Riedl et al. 2014). Multiple methodologies paired with state-of-the-art analytical technologies are 

used to detect fraudulent products or to assess authenticity with accuracy beyond any reasonable 

doubt (Esslinger, Riedl et al. 2014). Traditional methods are based on TA, where selected analytes 

in suspicious samples are measured and compared to reference standards to evaluate if the analyzed 

analytes fall within or below certain limits (Cavanna, Righetti et al. 2018). NTA has shown 

promise in food authentication, using analytical technologies capable of providing exhaustive 

chemical fingerprints. The resulting analytical profile of the food provides authentication 

information on geographical origin, botanical or animal sources, potential adulterations, aging and 

spoilage, packaging material, contaminants, and many other parameters (Cajka and Fiehn 2016, 

Cavanna, Righetti et al. 2018). After analysis, other preventive measures come into play to deter 

fraud from happening, or at least to reduce its occurrence. From the perspectives of food science, 

social science, and business, it has been proposed that criminology can help understand the root 

cause of food fraud to further establish standards, certifications, and public policies to curb food 

fraud. Following these guidelines, supply chain management and enterprise risk management can 

act as the first line of defence in preventing food fraud (Spink 2019). The management of food 

fraud differs from that of food safety, in that it involves not so much risk analysis, but more of an 

evaluation and control over the vulnerabilities along the food supply chain (Spink 2019). Since 

fraudsters are actively trying to avoid detection due to the potential for significant economic gain, 

the goal of food fraud prevention is to reduce the opportunities for food fraud to a point where the 
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risk for the fraudsters is greater than the potential gain (Spink 2019). Promoting an 

interdisciplinary approach allows for the combination of the goals of every science field involved 

to simultaneously seize products, arrest fraudsters, judge and punish criminals, detect food fraud, 

identify fraudulent products, educate the public, and increase traceability and documentation. This 

enhances the risk for fraudsters since vulnerabilities in the food supply chain are significantly 

reduced, which in turn requires them to invest more money in their fraud scheme or jeopardize 

their criminal activities (Spink 2019). This literature review will highlight key aspects in the 

detection of adulteration in alcoholic beverages, an essential measure taken to protect consumers, 

but it is also important to realize that it only contributes slightly to preventing fraud from occurring 

initially. New strategies in analytical food science, notably untargeted analysis, permit the 

detection of adulteration with a broader spectrum, which decreases the probability of fraud going 

unnoticed. A by-product of this is that it makes it that much more difficult for fraudsters to succeed 

or to remain undiscovered. However, without a holistic approach targeted at identifying fraud 

opportunities and managing vulnerabilities, it appears impossible to eliminate food fraud, as it 

can’t be expected to achieve conformity from fraudsters only from analytical testing (Spink 2019). 

The third section of this literature review will detail the various instruments and approaches to 

authenticate alcoholic beverages. The official techniques in the authentication of alcoholic 

beverages are isotope ratio analysis, elemental profiling, physicochemical analysis (ethanol 

content, pH), targeted profiling of authentication markers (shikimic acid, anthocyanins, congeners, 

sugars), and carbon dating (Elliott 2014). Emerging techniques are NTA mass spectrometry (MS) 

metabolomics, spectroscopic approaches, and DNA next generation sequencing (Elliott 2014). 

Non-targeted analysis (NTA) is relatively new in the context of food analysis and has proven very 

useful in authentication studies due to its broad and exhaustive scope of analysis. The advantage 

of using NTA is that it is harder for fraudsters to circumvent the analysis by modifying their 

adulteration process since many analytes are simultaneously measured, making it virtually 

impossible to avoid detection. Previously, food fraud prevention relied heavily on testing the 

physicochemical properties of products. However, these techniques have become outdated as 

fraudsters have found more sophisticated ways to adulterate food, making it necessary to 

implement new and improved authentication methods, such as fingerprinting (González-Pereira, 

Otero et al. 2021, Sarkar, Salauddin et al. 2022). In conclusion, preventing and detecting food 

fraud requires a comprehensive and multifaceted approach that combines investigative techniques, 



31 

 

advanced analytical methods, and proactive management strategies. By staying ahead of the curve 

and continually developing and implementing state-of-the-art techniques and strategies, the ability 

to protect consumers from fraudulent activities and ensure the integrity of the food supply can be 

significantly enhanced. 

2.2 CHEMICAL COMPOSITION AND EFFECTS OF ADULTERATION ON 

SPIRITS 

Understanding the chemical composition of authentic food and beverages is crucial to the 

task of identifying and quantifying potential authentication marker compounds. Prior knowledge 

of chemical composition can enhance the identification and characterization of adulterants in food 

matrices using analytical techniques like NTA, although it is not a requirement. (Gertsman and 

Barshop 2018). Adulteration has the potential to affect the physicochemical properties of other 

analytes, thus disturbing the equilibrium of the food matrix by favouring new chemical reactions 

to occur. Analytical tools are capable of detecting these chemical shifts (generation and 

degradation of compounds) and the data provided can reveal the type of adulteration present. 

(Gertsman and Barshop 2018). Table 2.1 highlights previous studies that characterized analytes 

affected by specific types of adulteration and demonstrated their potential as authentication 

markers. 

2.2.1 Chemical Composition of Spirits: Influential Factors & Impact of Adulteration 

Spirits are a type of alcoholic beverage defined by high alcohol content, usually above 15% 

v/v ethanol, and most commonly 35-50% v/v (Aylott 2013). Only ethyl alcohol of agricultural 

origin (EAAO), thus from products such as cereals, fruits, vegetables, and plants are allowed 

(European Commission (EC) 2008). Spirits have similar chemical compositions due to shared 

fermentation and distillation processes, with frequent reports of higher alcohols, esters, aldehydes, 

ketones, organic acids, fatty acids, terpenes, heterocyclic compounds, phenolic compounds, and 

nitrogen-, sulfur-, and oxygen-containing compounds. (Riu Aumatell 2012, Aylott 2013, Collins, 

Zweigenbaum et al. 2014, Tsakiris, Kallithraka et al. 2014, Quesada-Granados, Samaniego-

Sánchez et al. 2016, Villanueva-Rodríguez, Rodríguez-Garay et al. 2016). As noted in Table 2.2, 

common cases of spirit adulteration are mislabelling (origin and ageing), counterfeiting, and 

substitution. 



32 

 

Whisky, with its roots in Scotland, Ireland, the US, Canada, Japan, and India, is made from cereal 

such as barley, corn, wheat, and rye (Aylott 2013, Roullier-Gall, Signoret et al. 2018). Its chemical 

profile comes from several steps including malting, kilning, mashing, fermentation, distillation, 

oak cask storage, and other steps like filtering. Each cereal introduces unique compounds, yet 

common classes of compounds such as carbohydrates, heterocyclic compounds, fatty acids, 

polyphenols, carbonyl compounds, and alcohols are often present (Lee, Paterson et al. 2001). Other 

factors like kilning duration, fermentation microorganisms, still types, and maturation conditions 

significantly impact the final product (Lee, Paterson et al. 2001, Power, Néill et al. 2020). 

Distillation is pivotal, providing specific compounds from the mash to the end product like ethanol 

and certain acids, esters, and higher alcohols (IARC 1988, Lee, Paterson et al. 2001). Whiskies 

from different geographical regions possess distinct chemical compositions due to terroir, an 

environmental factors that affect products (Roullier-Gall, Signoret et al. 2020). Regulations in 

major whisky-producing countries ensure quality and authenticity through specific requirements, 

indicated via labelling. For example, Irish whiskeys undergo triple distillation processes and must 

contain at least 25% malted barley (Power, Néill et al. 2020). A study highlighted the use of higher 

for authenticating Irish whiskeys, distinguishing them from American and Scotch whiskeys 

(González-Arjona, González-Gallero et al. 1999). American whiskeys, on the other hand, are 

distilled from specific grain mashes and aged in new charred oak (27-CFR-5.22 2008). A study 

identified key compounds unique to American whiskeys useful for brand identification and 

counterfeit detection (Collins, Zweigenbaum et al. 2014). Scotch whisky, made from 100% malted 

barley, is double-distilled in copper pot stills, and aged at least 2 years in oak, with the traditional 

use of peat bogs for drying malted barley, imparting unique compounds (Lee, Paterson et al. 2001). 

Factors like grain composition and aging time further influence the chemical profile of whiskies 

(Wiśniewska, Boqué et al. 2017, Roullier-Gall, Signoret et al. 2018, Kew, Goodall et al. 2019). 

The unique chemical composition of whiskies, thus stems from various factors including 

geographical origin, raw materials, processing, and aging. 

Eau-de-vie, a fruit-distilled spirit, becomes brandy when aged in wooden barrels. This spirit 

can be named based on geographical origin or production method, such as with Cognac, 

Armagnac, and others. Pomace brandy is made from fruit pressing residue and includes examples 

such as Grappa and Orujo (Aylott 2013). Chemical compounds in brandies are mostly derived 
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from the fruits, with stone fruits exhibiting higher levels of benzaldehyde, phenolic compounds, 

acetals, and aldehydes compared to apples or grapes (Ledauphin, Le Milbeau et al. 2010, 

Śliwińska, Wiśniewska et al. 2015). For instance, the use of grapes results in the presence of 

aliphatic alcohols (1-hexanol), free, oxidated, and glycosidic terpenes (linalool, nerol, geraniol, 

limonene, citronellol, rose oxide, myrcene), as well as aldehydes (furfural, benzaldehyde) and 

ketones (β-damascenone) (Tsakiris, Kallithraka et al. 2016, Matijašević, Popović-Djordjević et al. 

2019, Raičević, Popović et al. 2022). These compounds, known as congeners, can provide 

important information regarding the authenticity and origin of the spirit (Martí, Busto et al. 2004, 

Arvanitoyannis 2010, Hermosín-Gutiérrez, Castillo-Muñoz et al. 2011). During fermentation, 

various higher alcohols are produced, including 1-propanol, isoamyl alcohols, and isobutyl 

alcohols, as well as carboxylic acids such as propionic acid and butyric acid (Tsakiris, Kallithraka 

et al. 2016). Fermentation also leads to the formation of various fatty acids caused by the activity 

of different microorganisms (Tsakiris, Kallithraka et al. 2016). Additionally, over 160 esters have 

been reported to be produced during fermentation, such as ethyl acetate, ethyl lactate, and others 

(Tsakiris, Kallithraka et al. 2016). The distillation process typically involves two separate 

distillations. During the first distillation, the wine is brought up to around 24-30% alcohol by 

volume and many non-volatile compounds are present in wine, like organic acids, salts, 

polyphenolic compounds such as tannins, and some minerals, are removed. The second distillation 

separates and discards the head and tail fractions to keep only the heart fraction, resulting in a 

distillate of around 70% alcohol v/v (Tsakiris, Kallithraka et al. 2014). During distillation the 

heightened temperature results in the formation of carbonyl compounds, higher alcohols, Maillard 

reaction products, furans, and phenols (Tsakiris, Kallithraka et al. 2016). 
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MATRIX ADULTERATION MARKERS REFERENCES 

WINE Dilution (Water) 
Esters, higher alcohols, ethanol and 

reducing sugars. 
(Karabagias, Karabagias et al. 2021) 

 Mislabelling (Oak Ageing) Organic acids, polyphenols, aldehydes (Matějíček, Mikeš et al. 2005) 
 Counterfeiting (Vintage) 137Cs (Hubert, Perrot et al. 2009) 

 Mislabelling (Origin) 
Higher alcohols, esters, ketones, fatty 

acids, polyphenols, phenols, aldehydes 

(Chávez-Márquez, Gardea et al. 

2022) 

 Mislabelling (Origin, 

Vintage) 

Na, Mg, Si, P, S, Cl, K, Y, U, Cr, Ni, 

Mn, Cd, As, Pb, Zn, Cs, Rb, Ca, Fe, 

Cu, V, Ba, Li, Sr, Co, Al, Be, Sb 

(Capron, Smeyers-Verbeke et al. 

2007, Forina, Oliveri et al. 2009, 

Martin, Watling et al. 2012) 

SPIRITS Counterfeiting Alcohols, glycerol, organic acids (Kuballa, Hausler et al. 2018) 
 Substitution Methanol, formic acid, ethyl formate (Kuballa, Hausler et al. 2018) 

BRANDY 
Counterfeiting, 

Mislabelling (Oak Ageing) 

Sinapaldehyde, syringaldehyde, 

coniferaldehyde 

(Panossian, Mamikonyan et al. 

2001) 
 Substitution Caramel (Markechová, Májek et al. 2014) 

ABSINTH Substitution, Concealment 
Absinthin, thujone, tartrazine, patent 

blue V, brilliant blue FCF  
(Lachenmeier 2007) 

WHISK(E)Y Counterfeiting 
Fatty acids, polyphenols, higher 

alcohols, ethyl esters 

(Garcia, Vaz et al. 2013) (Teodoro, 

Pereira et al. 2017) 

 Mislabelling (Origin), 

Counterfeiting 

Aldehydes, fatty acids, polyphenols, 

phenols, higher alcohols, organic acids 
(Collins, Zweigenbaum et al. 2014) 

BEERS Counterfeiting 
Na+/K+ adducts of malto-

oligosaccharides 
(Pereira, Amador et al. 2016) 

 Origin (Trappists) 
Organic acids, alanine, adenosine, 

isopentanol, propanol 
(Mannina, Marini et al. 2016) 

 Mislabelling Sugars, higher alcohols, organic acids (Duarte, Barros et al. 2004) 

AGAVE SPIRITS Mislabelling (Oak Ageing) Organic acids, polyphenols, aldehydes (Muñoz-Muñoz, Grenier et al. 2008) 

 Mislabelling (Origin) 
Esters, higher alcohols, organic acids, 

fatty acids, ketones, aldehydes 

(León-Rodríguez, Escalante-

Minakata et al. 2007) 

 Mislabelling (Origin + 

Oak Ageing) 
Na, K, Cu, Ca, Mg, Fe, S, Zn, Sr 

(Ceballos-Magaña, Jurado et al. 

2009) 

RUMS Mislabelling (Ageing) Organic acids, 5-HMF, aldehydes (de Aquino, Rodrigues et al. 2006) 

Table 2.2: Authentication and fraud markers by fraud type on various alcoholic beverages
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Rum is mostly made from sugarcane derivatives, such as molasses and sugarcane honey, but 

can also be made from other sources such as beets (Aylott 2013). The spirit is primarily produced 

in Central and South America, but also has production sites in Europe, North America, and various 

islands including Madagascar, Hawaii, and the Canary Islands. These regions employ various 

production methods, ranging from processing raw sugarcane juice to using blackstrap molasses 

(Quesada-Granados, Samaniego-Sánchez et al. 2016). Sugarcane juice and molasses comprise a 

range of chemical compounds influencing the chemical composition of rum. These compounds 

can undergo chemical reactions during various stages of rum production, including fermentation, 

distillation, and aging, leading to highly complex compositions (Quesada-Granados, Samaniego-

Sánchez et al. 2016). The fermentation mostly produces glycerol, ethanol, and higher alcohols 

(such as isoamyl and isobutyl alcohols), lactic and acetic acids, acetaldehyde, various esters, and 

fatty acids (Quesada-Granados, Samaniego-Sánchez et al. 2016). Factors that are most influential 

to their chemical composition include still type and distillations passes (Sampaio, Reche et al. 

2008, Quesada-Granados, Samaniego-Sánchez et al. 2016). Pot still distillates typically contain 

more ethyl acetate and 5-HMF, while column still distillates are characterized by higher 

concentrations of benzaldehyde, acetaldehyde, isoamyl alcohol, ethyl carbamate, higher alcohols, 

and acetone (Reche, Leite Neto et al. 2007, Sampaio, Reche et al. 2008). 

Agave spirits are distilled from various types of succulent plants from the genus Agave, 

including mezcal, tequila, and others. Mezcal can be made using a wide range of agaves, while 

tequila must be made only with Agave tequilana Weber v. azul (Cisneros 2001, Aylott 2013). 

Agave spirits are almost exclusively produced in Mexico, and Tequila is only made in the state of 

Jalisco, and restrictively in other states (Villanueva-Rodríguez, Rodríguez-Garay et al. 2016). 

Mexican laws specify that it must be made from at least 51% A. tequilana, the remaining being 

any other carbohydrates sources except for other agaves (Comité Consultivo Nacional de 

Normalización de Seguridad al Usuario 2012, Villanueva-Rodríguez, Rodríguez-Garay et al. 

2016). Studies on Tequila have focused on its fructans and only limited literature describes its 

chemical composition (Lopez, Mancilla-Margalli et al. 2003, Waleckx, Gschaedler et al. 2008, 

Ávila-Fernández, Rendón-Poujol et al. 2009). The degradation of lignin during production forms 

compounds serving as authentication markers such as vanillin and syringaldehyde, pectin, fatty 

acids, homoisoflavanones, and various terpenes (Peña-Alvarez, Dı́az et al. 2004, Peña-Alvarez, 
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Capella et al. 2006, Morales-Serna, Jiménez et al. 2010, Villanueva-Rodríguez, Rodríguez-Garay 

et al. 2016). Tequila production begins with cooking and juicing the piñas (the stem and basal parts 

of the agave leaves) to release the fermentable carbohydrates, which are then hydrolyzed to glucose 

and fructose by cooking. The cooking generates multiple compounds, including organic acids, 

higher alcohols, furans, aldehydes, ketones, norisoprenoids, aromatic compounds, terpenes, and 

others (Villanueva-Rodríguez, Rodríguez-Garay et al. 2016). Fermentation is then induced with 

indigenous or cultured yeasts, the former resulting in a greater diversity of chemical compounds 

(such as esters and terpenes), albeit to the detriment of ethanol production (Villanueva-Rodríguez, 

Rodríguez-Garay et al. 2016). The by-products of fermentation, in addition to ethanol, are higher 

alcohols, phenylethanol, ethyl esters, ketones, and aldehydes (Lachenmeier, Sohnius et al. 2006, 

Villanueva-Rodríguez, Rodríguez-Garay et al. 2016). 

Vodka can be produced from a variety of fermentable carbohydrate sources, with the most 

common being grains such as wheat, corn, and rye. Vodka and most spirits before being aged or 

flavoured are considered to be neutral spirits due to their neutral flavour profile. Although vodkas 

made from other raw materials such as potatoes, cassava, honey, maple, whey, and fruits also exist, 

they have limited representation in the international market (Aylott 2013). Compared to other 

spirits, the raw materials used in the production of vodka have a lesser impact on its chemical 

composition due to the extensive distillation process made to increase the purity of ethanol, which 

leaves only minimal residual congeners (Aylott 2016). Artisanal vodka producers sometimes lower 

the distillation proof to increase the presence of congeners, thus enhancing the sensory profile 

related to the raw materials used. Similarly, the impact of the fermentation process on the final 

chemical composition also follows these principles. Due to the extensive distillation and filtration 

processes, vodka has a simpler chemical composition when compared to other spirits (Aylott 

2016). For this reason, vodkas often require preconcentration to allow the detection of trace 

analytes. Adulteration can be more easily detected due to a lower variety of compounds, although 

geographical and botanical origins are harder to detect for the same reasons (Lachenmeier, Attig 

et al. 2003, Legin, Rudnitskaya et al. 2005, Ciepielowski, Pacholczyk-Sienicka et al. 2019, 

Marenco, de Oliveira et al. 2021). After distillation, most spirits are filtered but few are as filtered 

as vodka is. Producers claim various filtration methods to promote the purity of their spirit, ranging 

from the use of lava rock, coconut carbon, charcoal, and quartz crystals to gold, platinum, micron 

paper, pearls, and diamonds. These methods have been recognized by expert tasters to affect the 
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sensory properties of vodka, but the scientific literature on their impact on chemical composition 

is scarce. One study observed that higher-end filtration methods using deionization such as reverse 

osmosis and ion exchange resulted in a lower concentration of various anions. The analysis of the 

anionic composition has been demonstrated to be sufficient in the brand identification of various 

Russian and German vodkas (Lachenmeier, Attig et al. 2003). Besides filtration, another post-

distillation step is the addition of colourings, flavourings, or sweeteners, which is more common 

in vodkas compared to other spirits and can significantly affect its chemical composition, leading 

to the requirement of mentioning flavoured vodka on its labelling in some countries (Aylott 2016). 

The most common approved additives are sugars, glycerol, citric acid, and propylene glycol (Ng, 

Hupé et al. 1996, Aylott 2016). Vodka is produced worldwide and regulations vary by country. In 

Russia, vodka must be made from grain or potatoes and the alcohol content must be 38-45% or 

exactly 50% or 56% (Legin, Rudnitskaya et al. 2005). In Canada and the US, it is defined as a 

neutral spirit distilled or treated after distillation, as to be without distinctive character, aroma, 

taste, or colour (27-CFR-5.22 2008, Regulations 2022). However, unlike Canadian regulations, 

the US allows the addition of sugar and citric acid without mentioning it on labels (27-CFR-5.22 

2008, Regulations 2022). This has been demonstrated by the presence of 5-hydroxymethylfurfural 

(5-HMF) and triethyl citrate (TEC) in American vodkas, which result from sugar degradation and 

the reaction between citric acid and ethanol, respectively (Ng, Hupé et al. 1996). 

Gin is a unique category of spirits because the type of raw ingredients used to produce ethanol 

is less important than the requirement to infuse juniper berries according to legal regulations (J. 

communis) (Aylott 2013). Foremost, gin is produced by infusing juniper berries in a neutral spirit 

(i.e., vodka), along with other botanicals, spices, and fruits (Riu Aumatell 2012). Different terms 

and designations, such as London Dry Gin, Distilled Gin, Compound Gin, Navy Gin, Plymouth 

Gin, or Genever, describe specific subtypes of gin and are governed by legal regulations. The 

European Commission defines gin as a spirit flavoured with J. communis and made from ethyl 

alcohol of agricultural origin (EAAO) with a minimum alcoholic strength of 37.5% alc./volume. 

Distilled gins must be produced by redistilling EAAO in the presence of J. communis, and London 

Dry Gin, a type of distilled gin, must not contain added sweeteners exceeding 0.1 g /L, and only 

water can be added after distillation (European Commission (EC) 2008). Compound Gins are 

produced by flavouring EAAO with J. communis and other ingredients using a maceration step. 

Plymouth Gin and Genever are spirits made with the infusion of J. communis, both of which have 
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PDO (Riu Aumatell 2012). While there is limited data on the differences in chemical compositions 

between distilled and compound gins, distilled gins are often considered to be of higher sensory 

quality (Riu Aumatell 2012). The use of a variety of botanicals in gin production results in the 

creation of a diverse range of flavours, reflecting cultural influences, regional flora, and specific 

aroma profiles. However, certain ingredients are predominantly used in gin production. J. 

communis is known to provide around 80 compounds to gin, mostly monoterpenes, oxygenated 

monoterpenes, diterpenes, sesquiterpenes, oxygenated sesquiterpenes, aldehydes, and alcohols 

(Vichi, Riu-Aumatell et al. 2007, Riu Aumatell 2012)». Of the monoterpenes, terpinene-4-ol, p-

cymene, β-myrcene, γ-terpinene, α-pinene, and limonene represented more than 70% of the 

volatile fraction of gins (Vichi, Riu-Aumatell et al. 2007). Various factors affect the relative 

abundance of these compounds in gin, such as geographic location, altitude, plant age, and berry 

ripeness (Barjaktarović, Sovilj et al. 2005, Vichi, Riu-Aumatell et al. 2007). The chemical 

composition of J. communis essential oil has been characterized as containing possibly close to 

200 compounds, therefore, many more compounds might be present in gins, albeit in trace amounts 

(Barjaktarović, Sovilj et al. 2005). Otherwise, coriander (Coriandrum sativum), orange (Citrus 

sinensis), cassia (Cassia fistula), orris root (Iris florentina), cardamom (Elettaria cardamomum), 

angelica root (Angelica archangelica), cinnamon (Cinnamomum zeylandicum), calamus (Acorus 

calamus), fennel (Foeniculum vulgare), aniseed (Pimpinella anisuum), lemon (Citrus limon), 

cumin (Cuminum cynimum), almond (Prunus amygdalus), and licorice root (Glycyrrhiza glaba) 

are all common ingredients in gin production (Riu Aumatell 2012). The individual ingredients 

used in gin production have vastly different chemical compositions, meaning each gin recipe will 

have a unique chemical profile. Additionally, these ingredients are influenced by their 

environment, and are susceptible to seasonal variations and geographical differences, resulting in 

fluctuation between batches of the same gins. Despite the importance of understanding the 

chemical composition of gins, few studies have been conducted in this area, and there is currently 

no established method for their authentication. Different infusion techniques for botanicals are 

used depending on the type of gin produced and the desired sensory profile, such as maceration in 

the distillate during redistillation, vapour infusion with hanging baskets in the still, and vacuum 

distillation (Riu Aumatell 2012, Hodel, Pauley et al. 2019). Maceration is the most traditional 

method and lets the botanicals steep in the EAAO while it is slowly being heated for redistillation 

(Riu Aumatell 2012). A study comparing vapour infusion and maceration techniques observed a 
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higher abundance of compounds using vapour infusion, the only exception being linalool, which 

was present at lower concentrations (Hodel, Pauley et al. 2019). On the other hand, vacuum 

distillation increases compound oxygenation and reduces the presence of undesirable heat-

generated compounds (Greer, Pfahl et al. 2008).  

2.2.2 Chemical Markers in Spirits as Indicators of Authenticity and Fraud 

The data presented in Figure 2.5 highlights the fact that half of the reported fraud cases in 

spirits are associated with the grey market, with the majority being smuggling and contraband 

issues. Since the food matric often remains unaltered, it is practically impossible to identify grey 

market activity using analytical instruments. The remaining half of the fraud cases are dominated 

by substitution, which accounts for 28%, followed by counterfeiting at 15%, mislabelling at 6%, 

and a combination of dilution, concealment, and enhancement at 1% (JRC 2023). 

 

Figure 2.5 Breakdown of reported food fraud cases related to spirits, from September 2016 to 

January 2023 (n = 165). These cases are divided into categories: Grey market (50%, n = 82), 

substitution (28%, n = 46), counterfeit (15%, n = 24), mislabelling (6%, n = 10), and a category 

combining dilution, concealment, and enhancement (2%, n = 1 for each). These findings are 

sourced from the Knowledge Centre for Food Fraud and Quality (KC-FFQ), a subgroup of the 

European Commission. The monthly food fraud reports are prepared by the JRC Unit F.4 “Fraud 
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Detection and Prevention” based in Geel, Belgium, and supported by the JRC Unit I.3 “Text and 

Data Mining” located in Ispra, Italy. 

Substitution is a common type of fraud in spirits, often involving the addition of methanol 

or synthetic ethanol (Tsakiris, Kallithraka et al. 2014). Synthetic ethanol can be produced using 

various methods, such as the hydration of ethene or the reaction of CO and H2 under high pressure 

or with catalysts (Mohsenzadeh, Zamani et al. 2017, Kang, He et al. 2020). One way to detect 

synthetic ethanol is by analyzing its different oxygen isotopic ratios compared to ethanol of 

agricultural origin, using techniques such as IR-MS (Perini and Camin 2013). Other markers that 

can help detect synthetic ethanol include acetone, 2-butanol, crotonaldehyde, and degradation 

products resulting from the production of synthetic ethanol (Tsakiris, Kallithraka et al. 2014). 

Counterfeiting occurs when criminals produce fake versions of a specific spirit or brand. This type 

of fraud is often uncovered because of dubious labels, incomplete documentation, or when illegal 

production sites are investigated. In some cases, the authenticity of rare spirits sold at auctions or 

held in private collections may be questioned, necessitating scientific analysis to verify their origin. 

Mislabelling, such as falsely claiming geographical or botanical origin fraud or age statements, is 

a prime target for analytical methods as it is often difficult to detect by other means. To verify the 

identity of a spirit, specific markers mentioned in the previous sections on chemical composition 

can be used such as organic acids, higher alcohols, aldehydes, ketones, lactones, flavonoids, 

terpenes, phenolic compounds, and coumarins (Riu Aumatell 2012, Aylott 2013, Collins, 

Zweigenbaum et al. 2014, Tsakiris, Kallithraka et al. 2014, Quesada-Granados, Samaniego-

Sánchez et al. 2016, Villanueva-Rodríguez, Rodríguez-Garay et al. 2016). For example, brandies 

made with the Muscat variety have higher linalool content, while those made with Chardonnay 

produce more 1-hexanol, and those made from Pinot Blanc have much lower concentrations of 

ethyl esters (Lukić, Banović et al. 2006). Similarly, apple, grape, or plums brandies have been 

authenticated using aldehydes, acetals, benzaldehyde, higher alcohols, and furanic compounds 

(Ledauphin, Le Milbeau et al. 2010). Spirits that have false age statements will mostly have 

discrepancies in the compounds extracted from wood by ethanol and their relative abundances, 

such as vanillin, sinapinaldehyde, coniferaldehyde, and syringaldehyde and their derivatives 

(Panossian, Mamikonyan et al. 2001, de Aquino, Rodrigues et al. 2006, Muñoz-Muñoz, Grenier 

et al. 2008, Collins, Zweigenbaum et al. 2014, Tsakiris, Kallithraka et al. 2014, Espinosa-Vega, 

Belio-Manzano et al. 2019). Diluting spirits with water or with neutral spirits can be relatively 
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easily detected due to a lower abundance of all chemicals normally present. Enhancement or 

concealment through the use of illegal additives such as colourings, flavourings, and sweeteners 

is usually prohibited, such as in Bourbon production (Collins, Zweigenbaum et al. 2014). Known 

additives can also be easily detected with the use of traditional targeted analysis techniques. For 

example, a study on brandies has characterized the furfural:5-HMF ratio as a potential 

authentication marker for spirit caramel E150, a commonly added colouring agent (Granados, Mir 

et al. 1996). Dilution, concealment, and enhancement, have been the least reported adulteration 

types in the JRC fraud report since 2016 (JRC 2023). 

2.3 ANALYTICAL TECHNIQUES TO AUTHENTICATE ALCOHOLIC 

BEVERAGES AND DETECT FRAUD 

Authenticating the origin and detecting adulterants in alcoholic beverages is challenging 

due to their complex chemical compositions and the wide range of adulterants, many of which are 

still unknown. Two major analytical strategies, or workflows, can be applied to authenticate 

alcoholic beverages and food in general. The first one is based on targeted analysis (TA), also 

called profiling. It focuses on the analysis of a specific set of known metabolites (Cavanna, Righetti 

et al. 2018). TA is usually applied on samples where the goal is to quantify or detect the presence 

of known compounds. The second one, non-targeted analysis (NTA) is a method that analysis at 

once a massive part of the chemical composition of a sample, without prior knowledge of the 

matrix composition, or the need for specific targets (Broadhurst, Goodacre et al. 2018). NTA is 

usually applied with the objective of discovering new compounds or markers or establishing a 

chemical fingerprint. Therefore, both TA and NTA are used with different objectives in mind and, 

accordingly, produce vastly different results. 

TA in food authentication is precise but limited to known compounds, making it 

insufficient for detecting adulterants or markers (Esslinger, Riedl et al. 2014, Broadhurst, 

Goodacre et al. 2018). NTA, on the other hand, measures numerous analytes semi-quantitatively 

without prior knowledge, providing a broader view (Broadhurst, Goodacre et al. 2018). Ta 

analyzes a few specific compounds, while NTA detects thousands, offering a fingerprint of the 

sample’s chemical composition (Esslinger, Riedl et al. 2014, Broadhurst, Goodacre et al. 2018). 

NTA requires minimal sample preparation to enhance the non-discriminatory approach (Uttl, 

Bechynska et al. 2023). It identifies patterns and relative metabolite abundances rather than 
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specific metabolites (Esslinger, Riedl et al. 2014). Due to the vast amount of data generated in 

NTA, statistical analyses are required to interpret relationships between variables (Esslinger, Riedl 

et al. 2014). Figure 2.6 depicts common pipelines of TA and NTA. The integration of both NTA 

and TA offers the most effective approach for future food authentication studies (Cajka and Fiehn 

2016, Chen, Zhong et al. 2020). The main advantage of using NTA over TA is in the amount of 

information extracted from the samples and the simplicity of the sample preparation step, making 

it a quick and exhaustive method in authentication studies. Food fingerprinting has many 

applications besides authentication, such as food quality (Cevallos-Cevallos, Reyes-De-Corcuera 

et al. 2009), food safety and food processing (He and Bayen 2020), as well as in food microbiology 

(Chao and Krewski 2008). NTA has also been implemented for PGI registration purposes 

(Cassago, Artêncio et al. 2021). Overall, food fingerprinting using NTA has demonstrated 

significant potential for the authentication and quality control of alcoholic beverages, as will be 

further explored in the following sections (Aylott 2013, Lachenmeier 2016, Arslan, Tahir et al. 

2021, Lin and Salcido-Keamo 2021). 

 

Figure 2.6 Workflows of targeted analysis and non-targeted analysis. 
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2.3.1 Analytical Instruments Used to Authenticate Alcoholic Beverages  

Many analytical instruments and methods exist to detect fraud in food and beverages. Table 

2.3 lists many of the analytical tools used for alcoholic beverages in recent authentication studies. 

GC-MS, LC-MS, and spectroscopic methods are dominant, but many other techniques are gaining 

popularity in food authentication such as elemental analyses, isotopic ratio analyses, radioisotope 

dating, DNA sequencing, and electronic devices (E-nose, E-tongue). Most analytical methods 

include common steps such as sample preparation, separation of analytes, and detection of 

analytes. Sample preparation is used to extract compounds from complex matrices, enhance the 

signals of certain analytes, and allow the analysis of matrices unfit for analytical instruments due 

to their physical properties. Various organic solvent extraction can also be used to target 

compounds from the bulk of the matrix. Extractions are used sparingly in NTA to provide a 

comprehensive portrait of the sample. Samples can also be concentrated or purified resulting in a 

reduced matrix interference and an improved recovery, which increases the concentration of 

analytes and their signal intensity. Sometimes, the food matrices must first be treated to be able to 

analyze properly, as is the case for sticky or fatty substances like honey or milk in LC-MS. When 

that is the case, dilution, or the use of solvent for extraction will allow converting the matrix into 

a more appropriate form, fit for analysis. Separation techniques often rely on chromatography in 

food authentication studies, such as GC and LC. GC aims at separating volatile particles with a 

gas carrier, representing the mobile phase, and an adsorbent or liquid-coated packing material, 

representing the stationary phase (Marriott 2005). LC separates compounds with a liquid mobile 

phase carrying the analytes and a solid stationary phase contributing to the retention of the analytes 

through ionic activity or by obstruction with particles of various sizes that impedes the flow of 

analytes. In both techniques, parameters such as polarity, viscosity, size, and volatility, will force 

analytes to eluate at different rates to separate them from one another, and depending on the 

interactions with the stationary phase, the analytes will then reach the detector at different moments 

(Palamareva 2005). GC is predominantly used with highly polar and volatile compounds since the 

analytes must be carried by a gas, while LC is mainly used with non-volatile or nonpolar 

compounds, although variations, such as reverse phase LC (RP-LC), allow for a wider range of 

compatible analytes (Marriott 2005, Palamareva 2005). Capillary electrophoresis (CE) is another 

technique that separates ions based on their electrophoretic mobility. It can easily analyze polar 

and charged compounds and is mostly paired with mass spectrometry, although its presence in 
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authentication studies is still uncommon (Mamani-Huanca, de la Fuente et al. 2021). The detection 

part is dominated by mass spectrometry (MS) and spectroscopy detectors. MS is based on the 

measurement of the analytes’ fragment ions’ mass-to-charge ratios (m/z) in relation to their relative 

abundance in a sample (Haag 2016). MS is commonly used in conjunction with GC and LC (GC-

MS, LC-MS). On the other hand, spectroscopy is based on the measurement of the absorption and 

the emission of radiation, and the most frequent spectroscopic methods are nuclear magnetic 

resonance (NMR) and vibrational spectroscopy (IR, RAMAN). The importance of each method 

and its advantages and disadvantages will be discussed in the following sections. 

MS is a commonly used analytical detector in the field of food authentication studies, often 

in combination with GC and LC. MS measures the m/z of analytes in a sample and plots them 

based on their relative abundances and retention times. MS has three essential components: 

ionization source, mass analyzer, and detector (Haag 2016). The ionization sources used to create 

atomic and molecular ions often rely on electron beams (Siuzdak 2004). Numerous ionization 

sources exist, such as ESI, EI, MALDI, ICP, and APCI (Siuzdak 2004, Feider, Krieger et al. 2019). 

The selection of ionization methods depends on various factors, such as the mass of the analytes, 

the type of ionization needed, the required energy level for fragmentation, and the desired 

sensitivity (Siuzdak 2004). Fragmentation occurs after ionization when the absorbed energy from 

the beam atomizes compounds. The molecular fragments serve as a specific molecular fingerprint 

of a compound, unique to the chosen analytical method. The mass analyzer is a critical component 

of the mass spectrometer responsible for separating ionized fragments based on their m/z, selecting 

only charged analytes of a specific mass suitable for detection (Haag 2016). The separation of ions 

is achieved through the use of electromagnetic fields, allowing for the retention of only ions with 

a predetermined m/z range (Jennings and Dolnikowski 1990). The selection of a mass analyzer 

depends on the range of studied m/z, the mass of analytes, the required resolving power, and the 

limit of detection (Haag 2016). Commonly used mass analyzers include Quadrupole, TOF, ion 

trap, FT-ICR, and Orbitrap (Haag 2016). Combining multiple mass analyzers can greatly enhance 

the specificity of the analysis, resulting in tandem MS, MS2, or MS/MS (Haag 2016). Examples of 

these include triple quadrupole (QqQ), quadrupole TOF (QTOF), or TOF/TOF (Haag 2016).
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MATRIX FRAUDS ANALYTICAL TOOL REFERENCES 

WINE Dilution (water) HS-SPME-GC-MS (Karabagias, Karabagias et al. 2021) 
 Mislabelling (Oak Ageing) HPLC-UV-DAD (Matějíček, Mikeš et al. 2005) 
 Counterfeiting (Vintage) Gamma-Ray Spectroscopy (Hubert, Perrot et al. 2009) 
 Mislabelling (Botanical) HPLC-QTOF-MS (Vaclavik, Lacina et al. 2011) 

BRANDY Counterfeiting, Wood Ageing Capillary Electrophoresis (Panossian, Mamikonyan et al. 2001) 
 Substitution Fluorescence Spectroscopy (Markechová, Májek et al. 2014) 

ABSINTH Substitution, Concealment HPTLC (Lachenmeier 2007) 

WHISK(E)Y Counterfeiting, Mislabelling (Age) 
Paper spray-MS, ESI-FT-

ICR-MS 

(Garcia, Vaz et al. 2013) (Teodoro, 

Pereira et al. 2017) 

 Mislabelling (Origin), 

Counterfeiting 
UHPLC-QTOF-MS (Collins, Zweigenbaum et al. 2014) 

BEERS Counterfeiting Paper spray-MS (Pereira, Amador et al. 2016) 
 Origin (Trappists) NMR (Mannina, Marini et al. 2016) 
 Mislabelling NMR, FTIR (Duarte, Barros et al. 2004) 

AGAVE SPIRITS 
Dilution, Substitution, 

Enhancement, Counterfeit 
UV-Vis Spectroscopy 

(Contreras, Barbosa-García et al. 

2010) 
 Mislabelling HPLC-DAD (Muñoz-Muñoz, Grenier et al. 2008) 

 Mislabelling (Origin) GC-MS 
(León-Rodríguez, Escalante-

Minakata et al. 2007) 

RUM/SUGARCANE 

SPIRITS 
Mislabelling (Ageing) HPLC-UV (de Aquino, Rodrigues et al. 2006) 

 Mislabelling (Origin) 
ICP-AES, GC-MS, GC-FID, 

HPLC-UV-Vis 

(Cardoso, Andrade-Sobrinho et al. 

2004) 

Table 2.3: Studies reporting the detection of frauds using various analytical tools.
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The detector detects the charged mass fragments and converts them into a measurable 

signal (David W. Koppenaal 2005). Common detectors include electron multipliers, a serial 

connection of dynodes amplifying the current of ions; Faraday cups, measuring the potential drop 

from the result of the electrons passing through a resistor after the ions hit a collector; 

photomultiplier conversion dynodes, which is similar to electron multiplier, but photons are 

amplified instead of electrons; and array detectors, which measures the spatial distribution of the 

ions hitting a sensor, allowing simultaneous detection of multiple analytes (David W. Koppenaal 

2005). In summary, the analytes enter the MS after being separated by chromatography. They are 

then ionized and fragmented, and the resulting fragments are then separated by a mass analyzer. 

The flow of ions is finally converted into a measurable signal by the detector to be further analyzed 

by data treatment tools. MS is incredibly valuable in authentication studies due to its sensitivity 

and its common pairing with chromatographic separation instruments (GC, LC) (Cajka and Fiehn 

2016). The authentication studies cited in Table 2.3 illustrate well the dominant presence of MS 

compared to other analytical tools (Cajka and Fiehn 2016). Indeed, MS has found many 

applications in alcoholic beverage authentication with various matrices and for different purposes, 

such as the detection of adulterants, and authentication of origin (See Table 2.3). GC-MS has been 

used in the origin authentication of tequila and Cabernet Sauvignon (León-Rodríguez, Escalante-

Minakata et al. 2007, Chávez-Márquez, Gardea et al. 2022). LC-MS has been used to profile the 

nonvolatile compounds in American whiskeys (Bourbon, Rye, Tennessee, and non-classified) and 

has allowed the identification of 7600 compounds in total, further allowing to classify whiskeys 

based on raw materials, age, and producers (Collins, Zweigenbaum et al. 2014). It is also 

commonly used for the discrimination of wine based on varietals (Vaclavik, Lacina et al. 2011). 

In summary, MS has both strengths and drawbacks compared to spectroscopy, the second most 

used method. MS offers high sensitivity, a wide detection range, numerous databases, and the 

ability to couple it with advanced separation techniques, making it a versatile tool in a wide range 

of applications. However, it also has limitations such as low quantitation, low reproducibility, 

destructive nature, and significant sample volumes (Bujak, Struck-Lewicka et al. 2015). Despite 

these challenges, MS remains an essential analytical tool, providing researchers insights into the 

chemical composition of complex samples such as alcoholic beverages. 
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Spectroscopy is a well-established technique in food science and authentication. 

Spectroscopic techniques are considered the main techniques for some food matrices, such as fruit 

juices, oil, and wine (Su, Arvanitoyannis et al. 2018). Spectroscopic techniques are useful for 

analyzing high-value alcoholic beverages, as they can be conducted non-destructively (Arslan, 

Tahir et al. 2021). Spectroscopy works by analyzing the absorption and emission of radiation 

through wavelengths isolation. The pattern of these wavelengths provides a spectrum that is used 

to fingerprint samples (Schermann 2008). Common spectroscopic methods include IR-related ones 

(NIR, MIR), nuclear magnetic resonance (NMR), Raman, and UV-Vis. NMR is the predominant 

analysis technique used in food authentication (Cajka and Fiehn 2016). It can analyze several 

matrices with little sample preparation required and its measurements are highly reproducible and 

repeatable. However, NMR is less sensitive than other techniques like GC/LC-MS or even IR (Le 

Gall and Colquhoun 2003). It has been used for authentication purposes with cases of extension 

with various sugars (Bertelli, Lolli et al. 2010), wine origin (Son, Kim et al. 2008, Alonso-Salces, 

Héberger et al. 2010, Godelmann, Fang et al. 2013), rum classification (Belmonte-Sánchez, 

Romero-González et al. 2020), vodka authentication (Ciepielowski, Pacholczyk-Sienicka et al. 

2019), and tracing beer origins (Monakhova, Schäfer et al. 2011). IR was among the first tools for 

food fingerprinting (Lai, Kemsley et al. 1994). FTIR, combined with MVA, like PCA and DA, 

quickly authenticates food products and detects chemical shifts (Lai, Kemsley et al. 1994, Su, 

Arvanitoyannis et al. 2018). MIR has evolved as a swift screening tool for alcoholic beverage 

authentication (Fernández Pierna, Duponchel et al. 2012, Parpinello, Ricci et al. 2019). Raman 

spectroscopy is used for classifying wines and other products but is considered to have weaker 

resolution (Kizil and Irudayaraj 2018, Magdas, David et al. 2022). Fluorescence spectroscopy 

relies on measuring light emitted by exciting molecules and has been applied to authenticate 

various alcoholic beverages, with the ability to detect trace analytes (Hassoun, Måge et al. 2020, 

Xagoraris, Revelou et al. 2021). UV-Vis is allows the detection of wavelengths in organic 

compounds’ visible light or ultraviolet light range (Passos, Sarraguça et al. 2019). UV-Vis coupled 

with CE has been applied in wine to authenticate grape cultivars with the use of proteins in must 

or various phenolic acids (Popîrdă, Luchian et al. 2021). Spectroscopic techniques play an 

important role in food authentication, with each method having its advantages and limitations. 

Current research is aimed at improving sensitivity and resolution, while also exploring new 

applications for food authentication such as portable instruments (Chaudhary, Kajla et al. 2022). 
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Elemental analysis is effective in identifying the geographical origin of alcoholic beverages 

(García-Ruiz, Moldovan et al. 2007, Magdas, Cristea et al. 2021). Techniques like ICP-OES, ICP-

MS, and AAS are used in authentication. ICP, known for its low detection threshold and ability to 

analyze multiple elements simultaneously, is especially useful in NTA (Eyring 2003, Thomas 

2019). ICP-OES detects photon wavelengths, while ICP-MS measures relative abundance based 

on m/z (Fernández-Sánchez 2019). AAS, less expensive but limited in resolution and multi-analyte 

detection, is less preferred (Eyring 2003). Recent advancements include coupling NTA ICP-MS 

with LC for elemental speciation analysis, providing detailed insights into molecular forms and 

isotopic composition (Lorenc, Hanć et al. 2022). Elemental analysis, traditionally part of TA, is 

evolving with speciation analysis (Feldmann, Raab et al. 2018). Techniques like LIBS, though less 

sensitive than ICP, are useful for infield analyses and have been applied in wine authentication 

(Cremers 2013, Tian, Yan et al. 2017). These methods have diverse applications in authenticating 

alcoholic beverages. For instance, they differentiate tequila from mezcal, various ages of tequila, 

rums from cachaça, and different beer styles (Bellido-Milla, Moreno-Perez et al. 2000, Cardoso, 

Andrade-Sobrinho et al. 2004, Ceballos-Magaña, Jurado et al. 2009). They are also extensively 

used to determining the geographical origins of wine, while their effectiveness in identifying grape 

varietals or vintage remain inconsistent (Capron, Smeyers-Verbeke et al. 2007, Forina, Oliveri et 

al. 2009, Martin, Watling et al. 2012, Đurđić, Pantelić et al. 2017). Despite these challenges, 

elemental analysis holds significant potential in authenticating alcoholic beverage. 

Isotope ratio analysis is a valuable tool in alcoholic beverage authentication, particularly 

in the detection of adulteration and identifying geographical and botanical origins of substances 

(Perini and Camin 2013, Magdas, Cristea et al. 2021, Magdas, David et al. 2022). The ratio of 

13C/12C (δ13C) is useful in botanical authentication due to differences in photosynthetic pathways 

between plants. It can distinguish between C3 and C4 plants and detect sugar adulteration in spirits 

like brandy and whiskey (Evert, Eichhorn et al. 2013)«(Rhodes, Heaton et al. 2009). Associated 

with water sources in alcoholic beverages, δ18O (18O/16O) is instrumental in detecting fraudulent 

dilution and varying production methods. It can also detect synthetic ethanol but has limitations in 

detecting sugar adulteration (Perini and Camin 2013). The hydrogen isotopic ratio δ2H (D/H) is 

widely used to determine geographical origin and distinguish between fermentation and synthetic 

ethanol. It has authenticated the origin of Polish vodka and detected sugar adulteration 
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(Ciepielowski, Pacholczyk-Sienicka et al. 2019, Martinelli, Nardoto et al. 2020). The nitrogen 

isotope δ15N (15N/14N) shows promise in authenticating agricultural, varying based on fertilizers 

and pesticides used (Kelly, Heaton et al. 2005, Nietner, Haughey et al. 2014, Kelly, Brodie et al. 

2018, Spangenberg and Zufferey 2018). In summary, isotopes ratios are influenced by a plant’s 

metabolism and geographical location, leading to unique profile ratios for authentication studies. 

Challenges include determining vintages and the minimal discussion of non-traditional isotopes 

like B, Cu, Zn, Hg, Cr, and Fe (Rossmann 2001, Adam, Duthie et al. 2002, Cellier, Berail et al. 

2021). Measurements techniques include IRMS, SNIF-NMR, and ICP with advanced instruments 

like MC-ICP-MS achieving high precision. 

Carbon dating is a technique widely applied in various scientific fields to determine the 

age of an item or substance by calculating the decay rate of 14C, a carbon isotope. Due to the 

nuclear weapon testing in the 1950s and 1960s, the level of 14C in the atmosphere almost doubled 

the level it was before the tests. This drastic change in atmospheric 14C can be used to date much 

more accurately than by using the traditional radioactive decaying of 14C (Asenstorfer, Jones et al. 

2011). In the context of food authentication, carbon dating has been used to date vintage in wines 

or year of production in old bottles of Scotch whiskies, proving its usefulness in detecting 

counterfeit bottles (Asenstorfer, Jones et al. 2011, Cook, Dunbar et al. 2020).  A major limitation 

of this technique used to be the requirement of a physical sample from the wine, however, a non-

destructive technique has been developed to authenticate a wine’s age by applying a vacuum on 

the cork of a bottle and cryo-trapping the molecules that migrate from the inside of the bottle to 

the outside, mainly ethanol and other gases (Fahrni, Fuller et al. 2015). By analyzing these 

molecules using carbon dating, the authors that developed the method were able to verify the 

vintage of the wines without opening the bottle, thus protecting the quality of the content and the 

value of the product. This technique has the potential to be used with other techniques such as 

chemical or elemental analysis and is considered superior to other non-destructive methods such 

as the fingerprinting of the bottle, the cork, or the label (Fahrni, Fuller et al. 2015). In addition to 

carbon dating, gamma rays from 40K, 226Ra, 210Pb, 228Ra, and 137Cs can also be calculated to 

distinguish alcoholic beverages made before and after the nuclear testing without even opening the 

bottle (Hubert, Perrot et al. 2009, Médina, Salagoïty et al. 2013). 



50 

 

DNA sequencing is used in the authentication  of alcoholic beverages to identify biological 

origins and detect food fraud, such as the substitution of high-quality ingredients with cheaper 

ones. This method has been employed for verifying the variety of grapes in wine and the botanical 

source in beer. However, it has limitations in authenticating geographical origin, especially when 

the same raw materials are used across different regions (Böhme, Calo-Mata et al. 2019, Cusa, St 

John Glew et al. 2022). PCR is the main DNA-based authentication method, with modern 

variations like qPCR and ddPCR providing more precise quantification (Taylor, Laperriere et al. 

2017, Böhme, Calo-Mata et al. 2019). Challenges include the low amount of DNA extractable 

from alcoholic beverages, especially spirits, and the interference from other compounds (Anca, 

Adriana BĂ et al. 2021). Emerging techniques, such as double digest restriction enzyme associated 

DNA, are allowing authentication without reference databases, broadening the scope of genetic 

material analysis in food fingerprinting (Peterson, Weber et al. 2012). In summary, DNA 

sequencing tools like qPCR, ddPCR, and ddRAD are useful to precisely authenticate botanical 

origin in alcoholic beverages, although there are still limitations to using them for other fraud 

issues, namely the requirement of genetic diversity and low DNA concentration in finished 

products. 

E-nose and e-tongue are analytical tools that have emerged in the last few decades (Zou, 

Wan et al. 2015). They function by detecting compounds in a mixture with an array of partially 

selective electronic chemical sensors with varied sensitivity to recognize, identify, classify, and 

quantify these compounds. E-noses are used with volatile compounds, while e-tongues are used 

with non-volatile compounds (Zou, Wan et al. 2015). The compiled data detected by the sensors 

provide a chemical fingerprint of the sample (Zou, Wan et al. 2015). E-noses uses a range of 

sensors for improved efficiency, such as conducting polymers, optical sensors, and piezoelectric 

sensors (Freund and Lewis 1995, Johnson, Sutter et al. 1997, Wu 1999, Zou, Wan et al. 2015, 

Sierra-Padilla, García-Guzmán et al. 2021). A study has been conducted using e-nose to 

characterize the aging fingerprint of beer (Ghasemi-Varnamkhasti, Mohtasebi et al. 2011), while 

another used HS-MS to authenticate wines’ geographical origins, grape varietals, and aging (Martí, 

Busto et al. 2004). Polish vodkas could also be classified by botanical origin and substitution with 

maize could be detected (Wiśniewska, Śliwińska et al. 2016). E-tongues also has multiple sensors, 

such as electrochemical, optical and mass sensors. Electrochemical sensors measure various 

electrical current parameters (voltage, amperage, conductivity, resistance) (Ciosek and 
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Wróblewski 2007, Zou, Wan et al. 2015), while optical sensors measure the response to the light 

activity of non-volatile compounds. Mass sensors accumulate a charge when a mechanical stress 

is applied. E-tongues have been used to evaluate the type of wood and charring level in aged red 

wines (Parra, Arrieta et al. 2006), discriminate the geographical origin of Italian wines down to 

the specific vineyard (Legin, Rudnitskaya et al. 2003) and classify wines based on botanical origin 

and vintage year (Geană, Ciucure et al. 2020). Similarly, e-tongues were used to classify brandies 

by vintage and quality (Cetó, Llobet et al. 2013) and classify whiskies by brand (Novakowski, 

Bertotti et al. 2011). Despite the potential of these technologies in the analysis of alcoholic 

beverages, important challenges such as susceptibility to the environment and loss of sensitivity 

in the presence of high concentrations of ethanol remain (Harper 2001, Baldwin, Bai et al. 2011). 

2.3.2 Analytical Tool Issues in Alcoholic Beverage Authentication 

Alcoholic beverage authentication using analytical tools still presents several challenges, 

including issues with small sampling sizes, workflow standardization, and experiment 

reproducibility. Studies with small sample sizes, which are common in the literature, often below 

50 samples and rarely above 200 samples, can introduce biases in the data obtained and decrease 

the value of the studies. In Table 2.4, studies with relatively large sample sizes were selected to 

ensure data accuracy and reduce bias, but it can still be seen that most don’t have large sample 

sizes. Another issue is the lack of standardization and reproducibility of the analytical methods 

used in different laboratories. Many laboratories develop their protocol for detecting adulterants 

in alcoholic beverages or authenticating origin, but these protocols may not provide the same 

results in different environments or with slightly different sample sets (Cavanna, Righetti et al. 

2018, Goethem and Elliott 2018). Recent studies have shown that the lack of standardization and 

reproducibility can significantly impact the value of untargeted analytical studies for food 

authentication purposes. To address these challenges, researchers are exploring new methods to 

increase the value and accuracy of untargeted analytical studies for food authentication purposes. 

These methods are mainly focused on standardizing analytical methods across the food 

authentication research field and enhancing reproducibility. Future research is aimed at 

implementing the potential for machine learning and artificial intelligence to improve accuracy 

and reproducibility (Gabrieli, Muszynski et al. 2022, Goyal, Kumar et al. 2022, Mavani, Ali et al. 
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2022). Overall, addressing these challenges is essential to ensure the authenticity of alcoholic 

beverages and protect consumers and honest producers. 

2.3.3 Data Treatment in Alcoholic Beverage Authentication Using NTA 

Data treatment is necessary for any research that relies on the analysis of data through 

statistical means. In the NTA framework, the process begins with collecting raw data, which is 

then both preprocessed and processed to convert it into clean and usable data for analysis. 

Statistical methods are then employed to extract meaningful correlations and causation from the 

data. MVA is a key feature of NTA data analysis, allowing multiple different measurements to be 

made on each experimental dataset, which helps in prediction analysis, sample classification, 

clustering, and the isolation of outliers. Once all the results of the analysis have been obtained and 

various relationships have been identified and characterized, it can be interpreted to identify 

authentic or fraudulent products. If the result is uncertain, questionable samples may undergo 

further investigation using different analytical approaches or instruments. Reporting on all data 

treatment steps employed in a study is essential for reproducibility and standardization in NTA 

approaches. 

Data preprocessing is required after the acquisition of the raw data for its ‘’correction’’. 

Although each analytical approach requires its own data preprocessing procedure, several common 

steps are necessary (Esslinger, Riedl et al. 2014). These steps include cleaning, transformation, 

reduction, and wrangling (Fan, Chen et al. 2021, Simonnet-Laprade, Bayen et al. 2021). 

Figure 2.7 Workflow from collection of data from samples to end results. 

Data cleaning involves several tasks, such as removing or filling missing values and 

handling noisy data through binning, regression, or clustering. It also includes resolving of 
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inconsistencies, such as null values, outliers, or irrelevant data (Fan, Chen et al. 2021)  Data 

transformation aims to transform data into suitable forms by converting numerical data values into 

categorical ones. Data transformation steps include normalization, discretization, and concept 

hierarchy generation. Normalization, often called data scaling, will adjust all the data into defined 

limits. Discretization is the transformation of continuous data values into discrete forms, which is 

usually more suitable for the numerical evaluation of statistical models. Concept hierarchy 

generation involves converting lower-tiered concepts into higher-tiered ones (Fan, Chen et al. 

2021). Data reduction is useful in big data analysis, such as NTA, to reduce the amount of data. 

This can be achieved by data cube aggregation, feature selection, numerosity reduction, and 

dimensionality reduction (Fan, Chen et al. 2021). Data cube aggregation simply summarizes the 

data by aggregating similar concepts into broader ones. Feature subset selection involves the 

removal of less significant data, which can be done by discarding data with p-values greater than 

the accepted level of significance or selecting a subset of relevant attributes from the original 

features to optimize model construction. Numerosity reduction is the conversion of the data into 

simpler representation models. Dimension reduction involves transforming data from a high-

dimensional space to a lower-dimensional space using compression and encoding mechanisms. It 

may result in a loss of information but aims to retain as many properties as possible from the 

original data set. A common dimension reduction tool is the principal component analysis (PCA) 

which will be described later (Fan, Chen et al. 2021). Data wrangling is usually performed last and 

involves transforming the preprocessed raw data into structurally appropriate values suitable for 

analysis (Azeroual 2020). The more multidimensional a technique is, the more complex the data 

pre-processing has to be. An increasing number of software is being developed to respond to the 

demand for these types of analytical instruments’ data pre-processing steps (Esslinger, Riedl et al. 

2014). Finally, data processing commonly includes initial m/z detection by the selection of m/z 

retention time pairs, retention time alignment based on information from reference compounds, 

removal of shoulder peaks, noise filtering, and reduction, removal of undesired peaks, 

isotopologues grouping, peak alignment by comparison between samples, gap-filling, feature 

filtering, removal or filtering of duplicates, normalization and thresholding of abundance based on 

spikes and blanks, searching libraries for known compounds, and annotation and identification of 

features (Katajamaa and Orešič 2005, Fisher, Croley et al. 2021). This list is representative of the 

commonly featured data processing steps. Researchers using NTA or screening approaches should 
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report all data processing steps employed in their publications to ensure reproducibility and 

promote standardization. 

Developing a robust method development for authentication studies using NTA requires 

careful consideration of several key aspects. These include extraction replicates, quality controls 

(QC), performance validation, marker identification, MVA or machine learning model validation, 

receiver operating characteristic (ROC) curves, and sample accuracy in terms of representativeness 

of authentic products (Cavanna, Righetti et al. 2018). It is crucial to consider that chemical 

variations may not arise from the food matrices themselves but rather from the analytical 

techniques or the sample preparation. Applying validation parameters is essential to reduce the 

occurrence of these biased results (Esslinger, Riedl et al. 2014). QC measures in NTA approaches 

are complex, as they must take into account not only individual analytes but also the complete 

food matrix (Esslinger, Riedl et al. 2014). To ensure the reliability of QC measures, it is important 

to use homogenous, stable pooled samples that cover all signals in the matrix (Esslinger, Riedl et 

al. 2014). Injecting these pooled samples at regular intervals throughout the experiment helps 

maintain rigorous measurements and prevent deviations (Cavanna, Righetti et al. 2018). Model 

and performance validation are crucial steps in developing a robust authentication method. Internal 

validation using cross-validation approaches can provide insight into the robustness of the model 

by removing parts of the samples and recreating the model with the remaining data, a procedure 

repeated multiple times until all data points have been included in the test at least once. 

Additionally, external validation is conducted by evaluating an independent set of samples not 

used for model building to demonstrate the model’s validity through introduction of variability 

(Cavanna, Righetti et al. 2018). Marker identification and validation are essential components of 

authentication studies using NTA. The accuracy in the identification of compounds relies on the 

data available. Recently, researchers have adopted the Identification Confidence Levels system, as 

shown in Figure 2.8. (Schymanski, Jeon et al. 2014, Schrimpe-Rutledge, Codreanu et al. 2016). 

These levels range from level 5, where accurate m/z and retention time are known, to level 1, 

which involves comparing experimental data with reference standards. Intermediate levels include 

unequivocal molecular formula, substituent and class elucidation using libraries and databases, 

and matching of experimental MS/MS spectra with those in libraries and databases (levels 4,2, and 

2, respectively) (Schymanski, Jeon et al. 2014). The objective of using these confidence levels is 

to establish a standardized approach to compound identification. Data fusion, a new approach that 
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combines data from different analytical instruments, can further improve the validity of a marker 

if the signal is detected using multiple instruments, making it relevant across platforms  (Cavanna, 

Righetti et al. 2018). 

 

Figure 2.8 Identification confidence levels using HRMS analysis (Schymanski, Jeon et al. 2014). 

Sample accuracy presents a significant challenge in authentication studies, as it is difficult 

to confidently assess whether a provided sample is truly authentic. A review paper on the 

challenges in model validity for NTA revealed that among the presented papers (49 articles), more 

than 25% did not perform any validation study on their methods or models (Cavanna, Righetti et 

al. 2018). In summary, a robust method for authentication studies using NTA involves rigorously 

applying validation procedures, including QC measures, model validation, marker identification, 

and sample accuracy. 

2.3.4   Data Analysis in Alcoholic Beverage Authentication Studies 

Data analysis is essential to authentication studies, particularly in the context of NTA. The 

vast amount of information generated by these analytical strategies necessitates the use of 

statistical classification models, dimension reduction and pattern recognition methods, and more 

recently, machine learning approaches. MVA, or chemometrics, is commonly employed to 

interpret the data obtained. MVA is used to reduce the complexity of datasets and cluster 

information, enabling the differentiation of samples based on their intrinsic chemical composition. 
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This process allows for the discrimination or classification of samples according to their chemical 

fingerprint. MVA can also serve as a predictive tool to assess the analytical parameters required 

for specific fingerprints, thus determining to which class a sample belongs, without prior 

knowledge of its chemical composition, origin, or production methods (López-Ruiz, Romero-

González et al. 2019). MVA works by analyzing multiple measurements on each data point and is 

divided into two approaches: supervised and unsupervised MVA, which are not interchangeable. 

Supervised and unsupervised MVA are both valuable in assessing complex groups of variables, 

such as those involved in the authentication or detection of adulteration in alcoholic beverage 

matrices. Supervised MVA methods, such as PLDS-DA, LDA, SVM, kNN, and SIMCA, evaluate 

variables in the data to determine combinations that best represent causality. They establish 

classification thresholds based on previous sample sets and classify samples using predefined 

parameters. Supervised methods can work effectively with predetermined parameters, due to their 

exposure to correctly labelled training sets. In authentication studies, the chemical composition 

and relative abundance of compounds serve as the primary variables, given the significant 

information they provide (Cubero-Leon, Peñalver et al. 2014). Contrastingly, unsupervised MVA, 

such as HCA, PCA, and FCM, seek to condense data to understand its structure and detect 

underlying patterns, without focusing on a specific end goal (Scott and Crone 2021). It excels in 

detecting differences among samples and employs techniques such as clustering to group samples 

based on similarities and sequence associations to identify patterns (He and Bayen 2020).  
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Matrix Analytical Technique n Data Treatment Reference 

Wine UHPLC-QTOF-MS 97 PCA, Random Forest (Tzachristas, Dasenaki et al. 2021)  
RP-HPLC-DAD 82 PCA, PLS-DA, CART, ANN (Cosme, Milheiro et al. 2021)  

HS-SPME-GC-MS 45 MANOVA, LDA, PLS (Karabagias, Karabagias et al. 2021)  
ICP-MS 639 K-CM (ANN and Fuzzy profiling) (Bronzi, Brilli et al. 2020)  

A-TEEM, ICP-MS 86 PCA, SVMDA, PLS, XGBDA (Ranaweera, Gilmore et al. 2021)  
ART-FTIR 84 PCA, LDA (Kruzlicova and Gruberova 2022)  

NIR 88 PCA, PLS, OPLS-DA (Nardi, Petrozziello et al. 2020)  
SNP Genotyping 260 - (Boccacci, Chitarra et al. 2020)  

NMR 201 PCA, PLS-DA (Ehlers, Horn et al. 2022) 

Cider, 

Radler 

ICP-MS, ICP-OES, CVAAS 73 PCA (Gajek, Pawlaczyk et al. 2021) 

Beer NMR 31 PCA, OPLS-DA (Palmioli, Alberici et al. 2020)  
ATR-MIR 24 PCA, PLS-DA (Gordon, Chapman et al. 2018) 

 
LC-MS 232 PCA, OPLS-DA (Mattarucchi, Stocchero et al. 2010) 

Baiju Fluorescence Spectroscopy 30 LDA, PCA (Burns, Alexander et al. 2021) 

Whisk(e)y FT-ICR-MS, HPLC-MS/MS 7 PCA (Yang, Somogyi et al. 2020) 

  ICP-MS, MP-AES 68 MANOVA, CVA (Hopfer, Gilleland et al. 2017)  
NMR 148 PCA, OPLS-DA (Kew, Goodall et al. 2019) 

Rum NMR, HS-SPME-GC-MS, 

HRLC-MS 

24 CV-ANOVA (Belmonte-Sánchez, Romero-González 

et al. 2020) 

Fruit/Marc 

Spirits 

Raman 97 Machine Learning (Magdas, David et al. 2022) 

 
HS-SPME-GC-MS, FT-IR 75 SOPLS-DA, SO-CovSel-LDA (Giannetti, Mariani et al. 2020) 

Vodka NMR, IRMS 30 - (Ciepielowski, Pacholczyk-Sienicka et 

al. 2019)  
E-tongue 69 PCA, ANN (Marenco, de Oliveira et al. 2021) 

Table 2.4: Recent authentication studies conducted on various alcoholic beverages matrices using different statistical analyses strategies.
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In effect, both supervised and unsupervised analyses offer distinct strengths: while supervised 

models are particularly apt for establishing classification parameters, unsupervised models are 

adept at uncovering previously unseen patterns in data (Pereira, Amador et al. 2016). Most MVA 

statistical algorithms can be categorized into four distinct usages: predictive, descriptive, 

generative, and discriminative modelling (Cevallos-Cevallos, Reyes-De-Corcuera et al. 2009). 

Predictive modelling forecasts future outcomes with new data, potentially detecting new 

adulteration issues in alcoholic beverages or classifying new samples based on existing databases 

(Malek, Hui et al. 2019). Descriptive, or informative, modelling establishes relationships between 

data and outcomes, helping identify outliers in datasets to detect fraudulent products in 

authentication studies (Cevallos-Cevallos, Reyes-De-Corcuera et al. 2009). Generative models 

create probability distributions for individual classes, representing data placement across 

dimensions. In authentication studies, samples are submitted to these classes to evaluate their fit 

and classification. Discriminative models classify data points by establishing boundaries between 

classes and determining key differences that separate one class from the others. Both generative 

and discriminative models are widely used for classifying samples, making them essential 

statistical models in authentication studies (Sallans, Bruckner et al. 2006, Cevallos-Cevallos, 

Reyes-De-Corcuera et al. 2009, Ji 2020). 

In terms of supervised methods, PLS-DA is used for predictive, descriptive, and discriminative 

modelling. It combines dimension reduction (PLS), a technique common to multiple statistical 

tools, and discriminative modelling (DA) (Lee, Liong et al. 2018). Although PLS-DA was not 

initially designed for sample classification, it frequently succeeds in determining whether data fits 

a class by comparing it to a training set (Barker and Rayens 2003). A study analyzing Brazilian 

beer brands, which are often counterfeited through substitution with cheaper brands, used PLS-

DA as a classification tool to detect MS patterns. The researchers achieved a 98% reliability rate 

in discriminating between cheap and premium brands. By enhancing PLS-DA with variable 

selection, in this case using OPS, they reached a 100% reliability rate (Pereira, Amador et al. 2016). 

LDA is another supervised classification technique that focuses on reducing dimensions and 

maximizing variance among samples by creating a pooled covariance matrix (Næs, Isaksson et al. 

2004). LDA can then distribute samples into predetermined classes. It is frequently used in 

authentication studies, for example in the classification of Italian wines (Parpinello, Ricci et al. 
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2019). New methods involving LDA have aimed at creating semi-supervised and unsupervised 

algorithms (Un-LDA) to address challenges faced by supervised techniques, such as the required 

labelling of classes (Wang, Wang et al. 2021). SVM, a supervised machine-learning method, is 

used for descriptive modelling and discriminative classification models (Wilson 2008). SVM 

operates by constructing a line or plane, known as a hyperplane, that separates all data into two 

categories while maximizing the distance between each point in the set and the hyperplane (Wilson 

2008). As SVM classifies samples into two groups separated by a hyperplane, it is ideal for 

identifying outliers, such as fraudulent products in routine analysis. However, SVMs struggle to 

establish a hyperplane in large datasets, often encountered in NTA. To address this issue, the kernel 

trick is commonly applied, adding dimensions to the dataset to find a hyperplane that separates 

data in a higher dimension (Wilson 2008). kNN is a supervised technique that classifies new data 

points by associating them with their nearest neighbours in the dataset (Neath and Johnson 2010). 

The data point is then assigned to the class with the highest number of nearest neighbours. kNN is 

particularly useful in predictive modelling, as demonstrated in a study that used Pinot Noir 

lipidomics to determine whether a sample belongs to a specific geographical origin (Phan and 

Tomasino 2021). SIMCA, a supervised classification technique, is based on PCA, an unsupervised 

technique discussed below (Hopke 2003). As an unsupervised technique, PCA does not consider 

predetermined class information and is therefore not helpful for classifying data into 

predetermined classes. SIMCA was developed to use PCA with predetermined class information. 

It operates by developing a class model for each group in the training set and then adding new data 

points to these classes based on their relative distance from the existing information (Hopke 2003, 

Ballabio and Todeschini 2009). 

Delving into unsupervised methods, HCA is a straightforward unsupervised method that 

constructs hierarchies of clusters, ensuring that each cluster is distinct while maintaining related 

data within clusters. HCA creates a dendrogram by clustering data from top to bottom or vice versa 

(Pezoulas, Exarchos et al. 2020). In a study analyzing red monovarietal wines produced from 

Zweigelt and Rondo grapes, researchers found that HCA could classify the wines into two groups 

based on their phenolic compound composition (Stój, Kapusta et al. 2020). PCA aims to maximize 

variation between samples while reducing the dataset’s dimensionality. It identifies the fewest 

linear combination that can summarize as much data as possible without losing significant 

information (Mardia, Kent et al. 1979, Parpinello, Ricci et al. 2019). PCA is useful for determining 
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correlations between samples and variables (Næs, Isaksson et al. 2004). In a study, researchers 

used high-resolution NMR paired with chemometrics techniques such as ICA, PCA, and OPLS-

DA, to successfully model various whisky production parameters like malt status, presence of 

peated malt, alcoholic strength, and maturation wood type. PCA was primarily used to discriminate 

between blended and single-malt whiskies (Kew, Goodall et al. 2019). FCM operates similarly to 

previously described clustering analysis, assigning data points to clusters such that they are as alike 

as possible. However, FCM allows data points to belong to more than one cluster (Theodoridis, 

Pikrakis et al. 2010, Subasi 2020). While HCA works in a top-down (or bottom-up) manner, FCM 

uses means to indicate the degree to which specific data points belong to a cluster. Although many 

fuzzy logic tools have been applied to authenticate alcoholic beverages, FCM has not yet been 

used for this purpose, despite its potential for clustering (Raptis, Siettos et al. 2000, Petropoulos, 

Karavas et al. 2017). FCM offers advantages over other unsupervised methods, such as partial 

membership, which could detect subtle chemical shifts caused by adulteration, identify 

subcategories of alcoholic beverage types, or authenticate beverages containing multiple 

ingredients, like gins or wine blends (Tanatavikorn and Yamashita 2015). 

Statistical learning, which combines data science, statistics, and machine learning, is 

increasingly being used in authentication studies, particularly in the era of big data. It employs 

machine learning tools, such as deep learning with DT and NN, for pattern recognition (Pezoulas, 

Exarchos et al. 2020). These tools can be supervised, unsupervised, or semi-supervised, and they 

are a subset of artificial intelligence designed to perform tasks without being explicitly 

programmed for them (El Naqa and Murphy 2015). DTs are supervised techniques used for 

classification and regression models. They work by dividing datasets into nodes until only terminal 

subsets remain, with these terminal nodes representing clusters (Krzywinski and Altman 2017). 

Newer and improved algorithms, such as bagging trees and Random Forest, are more stable but 

also provide more nodes, increasing the complexity of the models (Breiman 1996, Breiman 2001, 

Nuti, Jiménez Rugama et al. 2021). NNs can be both supervised and unsupervised. They function 

by mimicking biological neural networks to model complex datasets statistically or structurally, 

offering high flexibility in their approaches (Jain, Jianchang et al. 1996, Abiodun, Jantan et al. 

2019). Fuzzy logic is a legacy machine learning method behind FCM and is based on the premise 

that all data points simultaneously belong, to varying degrees, to all possible clusters in the dataset. 

As such it assigns a degree of membership to clusters and then proceeds to map nonlinearly the 
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data points with these degree values (Mendel 1995, Kayacan and Khanesar 2016). SVM and SVC, 

two previously mentioned approaches, are also machine learning techniques. Deep learning 

involves representation-learning methods that use multiple levels of representation, composed of 

simple, non-linear modules. Deep learning models in chemometrics analyze large chemical or 

spectroscopic datasets by learning data representations with multiple abstraction levels. This 

enables automatic feature extraction from raw data like chromatograms or spectra. Large datasets 

and robust computational resources are necessary for training deep learning models (López-

Monroy and García-Salinas 2022). Despite its potential, deep learning is underexplored in 

alcoholic beverage authentication, presenting an exciting opportunity for future research. In all 

cases, machine learning has been developed to help overcome challenges in statistical analyses, 

such as pattern recognition, clustering, functions estimation, prediction power, self-optimization, 

and adaptiveness to new data, all of which are highly desired characteristics for understanding data 

(Jain, Jianchang et al. 1996). 

2.3.5 Data Treatment and Data Analysis Issues in Alcoholic Beverages Authentication 

Studies 

The current scientific challenges in developing a proficient and widely available 

authentication workflow include a lack of method and model validation and reproducibility, which 

leads to difficulties in confidently assessing the classification or discrimination abilities of 

proposed approaches. Other challenges include the absence of responsible sharing of widely 

available databases of mass spectra and chemical fingerprints of food products, issues in asserting 

the authenticity of collected samples, and incoherence in data processing steps, as well as a 

deficiency in the transparency of these steps in published articles (Riedl, Esslinger et al. 2015, 

Cavanna, Righetti et al. 2018, Gertsman and Barshop 2018). These challenges are common to all 

NTA approaches. Resolving these issues would enable the validation of workflows and their 

establishment in various parts of the food industry to maintain strict control over authentication, 

thus reducing fraudulent products from reaching markets. The use of standardized methods would 

unify measurements made from similar instruments across multiple brands and laboratories. 

Providing a shared database would allow the scientific community to compare their results and 

gain access to all analyzed products based on geographical origin, botanical origin, harvest year, 

and production processes. This would facilitate authentication controls and aid in identifying and 
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characterizing unknown compounds, one of the most significant bottlenecks in NTA (Gertsman 

and Barshop 2018). 

2.4  CONCLUSION 

Food fraud, notably in alcoholic beverages, poses significant risks to consumers, industries, 

and public health. Authenticating these beverages requires verifying their origin, production 

methods, and ingredients. Chemical composition analysis and identifying adulteration-related 

chemical shifts are key in addressing fraud. Techniques like LC-QTOF-HRMS based NTA with 

MVA are effective for detecting fraud and differentiating between geographical and botanical 

origins, but research in this area, especially for spirits, is still developing. There is a need to expand 

these methods to new spirits and origins. Challenges include identifying knowledge gaps, 

particularly in how adulteration affects chemical composition. Developing methods to establish 

fingerprints and databases for various alcoholic beverages is crucial, as is standardizing these 

methods across laboratories. Current research focuses on distilled spirits using GC, with limited 

LC use, and doesn’t fully explore the correlation between authenticity traits and chemical 

fingerprints. High water and ethanol content in beverages pose specific challenges, masking 

important trace analytes (Esslinger, Riedl et al. 2014). Many studies have small sample sizes, 

highlighting the need for larger-scale research for reliable findings. Neutral grain spirits and gins, 

despite their increasing popularity and complexity due to the inclusion of various botanicals, suffer 

from a lack of research, especially concerning their chemistry and the identification of 

authentication markers. This gap in research, coupled with the rising popularity of gins, presents 

potentially profitable opportunities for fraudsters. Currently, there are no existing methods capable 

of certifying the authenticity of gins, highlighting the need for comprehensive research in this area. 

In conclusion, addressing these challenges and preventing fraudulent practices in the alcoholic 

beverage industry through improved authentication methods is vital. By increasing detection 

efficiency and reducing incentives for committing crimes, it is possible to protect consumers and 

ensure they receive authentic products that meet their expectations. The complexity of alcoholic 

beverages’ chemistry, influenced by various processing steps, necessitates the development of 

robust analytical tools for authentication. This knowledge will contribute significantly to the fight 

against food fraud, ensuring the integrity of the food systems. 
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CONNECTING TEXT 

In the preceding chapter, a survey was performed on the complex and diverse literature of food 

authenticity and fraud, with a particular focus on alcoholic beverages. This exploration revealed a 

critical role of chemical composition analysis in authenticating these products. Chapter 2 

emphasized the significance of techniques like LC-QTOF-HRMS based NTA coupled with MVA 

in identifying adulteration and verifying geographical and botanical origins. However, it also 

highlighted the emergent state of this approach in the realms of spirits, indicating an urgent need 

for further research in this area. Key challenges such as standardization of methods and the 

necessity for larger-scale studies were identified, underscoring the gaps in the current 

understanding of alcoholic beverage fraud, especially in relation to spirits like neutral grain spirits 

and gins. 

Building on these foundations to transition to Chapter 3, an innovative study that pioneers the use 

of NTA RP-LC-QTOF-HRMS tailored to the chemical composition of neutral spirits and gins. 

This significant advancement in the literature of alcoholic beverages introduces a novel approach 

to the characterization of the complex chemical fingerprinting of these spirits. By integrating 

advanced techniques such as ESI and APCI ionization, and utilizing MVA, this study not only 

distinguishes between different categories of spirits but also uncovers unique markers, such as 

methyl cinnamate in gins, which have not been reported previously. This marks a substantial 

contribution to the field of alcoholic beverages authentication, addressing the highlighted 

challenges of the previous chapter and paving the way for further exploration in the chemical 

characterization of spirits.  
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3. CHARACTERIZING THE CHEMICAL FINGERPRINTS OF 

NEUTRAL SPIRITS AND GINS USING A ROBUST RP-LC-

QTOF-HRMS METHOD AND MULTIVARIATE ANALYSIS 

3.1 Abstract 

This study innovatively employs a NTA approach utilizing RP-LC-QTOF-HRMS to establish 

the chemical fingerprints of neutral spirits (NS) and gins. Through the application of both ESI+ 

and ESI-, as well as APCI+ ionization modes, a robust and rapid method for NS and gins 

fingerprinting was developed and validated. Analysis using Venn diagrams allowed for the 

isolation of unique entities while PCA demonstrated that the spirits categories represented the main 

source of variability among the dataset with clear separation between both spirits. With the unique 

entities identified and the help of a screening list, three compounds were considered carefully as 

potentially being authentication markers for gins when compared with NS. Those entities 

underwent MSMS analysis to obtain detailed mass spectra details. These results along with the 

mass-to-charge ratio and retention time values obtained from MS data were used to compare with 

reference standards and imported in SIRIUS to proceed with chemical structure and formula 

elucidation. One compound, methyl cinnamate, emerged with significant similarity to its reference 

standard, proving to be a strong candidate in the authentication of gins. These results significantly 

advanced the current understanding of the chemical composition of NS and more specifically gins, 

paving the way for improved authentication and quality control measures within the beverage 

industry. The findings corroborate the hypothesis that NTA RP-LC-Q-TOF-HRMS is a viable 

technique for deciphering the complex chemical fingerprints of alcoholic beverages, and propose 

the exploration of this methodology in discovering new compounds of interest in other beverage 

categories. Future work should extend this validated method to a broader spectrum of spirits and 

alcoholic beverages to further explore the chemical diversity and potential applications in food and 

beverage authenticity studies. 

3.2 Introduction 

The authenticity and quality of alcoholic beverages, particularly spirits, have been the subject 

of increasing interest in recent years. This is attributed to the economic, health, and social 

implications of counterfeit and adulterated products. The complexity of alcoholic beverages, which 
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are composed of a myriad of volatile and non-volatile compounds, presents a unique challenge. 

This complexity is further enhanced by the fact that the chemical composition of alcoholic 

beverages is influenced by numerous factors, including the type of raw materials used, the 

fermentation process, and the aging conditions (Basalekou, Kyraleou et al. 2022). Recent progress 

in analytical techniques have made it possible to characterize in depth the chemical composition 

of spirits, such as high-resolution mass spectrometry (HRMS). These techniques, coupled with 

multivariate analysis (MVA), can provide a robust method for the authentication of spirits. 

However, these undertakings are not without challenges. Issues related to the validity of the 

samples labelled as authentic, and the sample size needed to prove that these approaches are 

applicable for establishing the fingerprint of neutral alcohols are expected. Moreover, the diversity 

and intricacies of the alcoholic beverage matrices complicate things further, resulting in gaps in 

the current scientific literature aimed at understanding their chemical composition. Recent studies 

have demonstrated the potential of these techniques in the discovery of relevant compounds in 

various spirits. For example, a study demonstrated the potential of UHPLC-QTOF-MS in the 

authentication of spirits. Through the analysis of the non-volatile composition of various whiskeys 

and by using a discriminant analysis model, the researchers were able to differentiate whiskey 

samples by type and age based on 40 compounds, of which only 8 were previously mentioned in 

the literature (Collins, Zweigenbaum et al. 2014). To the best of knowledge, there are no studies 

that have been published specifically on the elucidation of the chemical composition of NS or gins 

using LC-MS. This highlights the substantial work that remains to be done with these spirits. 

In the realm of food authentication, it is becoming more evident that the MVA nature of 

chemical fingerprints demands a rigorous approach (Riedl, Esslinger et al. 2015). Unlike 

traditional TA which evaluates results compound-by-compound, fingerprinting approaches 

evaluate data on the level of chemical patterns, making the optimization and validation processes 

essential. Especially when dealing with complex matrices like alcoholic beverages, these steps are 

not only procedural formalities but are foundational to ensure the reproducibility and the credibility 

of the study results (Esslinger, Riedl et al. 2014). Proper method validation establishes the 

reliability of the findings and the potential replicability of the method for future studies. As the 

field of analytical chemistry in the context of NTA food authentication evolves, the importance of 

being rigorous cannot be overstated. ESI and APCI are two prominent ionization techniques 

pivotal for NTA in food authentication. While APCI excels for thermally stable, less polar 
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compounds, minimizing ion suppression effects (Ismaiel, Halquist et al. 2008), ESI is adept for 

polar compounds and large biomolecules (King, Bonfiglio et al. 2000, Kostiainen and Kauppila 

2009). However, each technique has its limitations, such as matrix effects (Thurman, Ferrer et al. 

2001) and fragmentation challenges (Li, Gan et al. 2015, Commisso, Anesi et al. 2017), with a 

lack of clarity on their comparative efficiencies for characterizing NS and gins. The effectiveness 

of these ionization techniques in detecting molecular features part of the chemical profiles of NS 

and gins remains unexplored. MVA employing software tools like with Profinder and MPP plays 

a crucial role in extracting, filtering, and analyzing primary LC-MS amenable compounds. While 

previous studies have demonstrated the utility of MVA in analyzing complex matrices of other 

alcoholic beverages (Collins, Zweigenbaum et al. 2014, Einfalt 2020, Uttl, Bechynska et al. 2023), 

the application and efficiency of these tools in studying NS and gins are not well established. 

Employing Venn diagrams for the delineation of unique entities in NS and gins is a novel approach, 

with its effectiveness in identifying unique chemical fingerprints in alcoholic beverages remaining 

scarce (Cao, Shu et al. 2023), despite being used with other matrices (Ueda, Iwamoto et al. 2019, 

Zhang, Cui et al. 2023). Other clustering methods like PCA have shown promise in distinguishing 

between different types of alcoholic beverages (Phan and Tomasino 2021), different botanical 

origins (Tzachristas, Dasenaki et al. 2021), and different geographical origins (Pan, Gu et al. 2022), 

yet its comprehensive application to NS and gins is lacking. Utilizing software like SIRIUS for the 

elucidation of chemical structure and formula of previously identified compounds within NS and 

gins is yet another critical step in understanding the complex chemical composition of NS and 

gins. Although SIRIUS has proven its accuracy across various fields (Dührkop, Nothias et al. 

2021), its application with alcoholic beverage matrices is still an uncommon sight (Mallmann, O. 

Rios et al. 2023, Uttl, Bechynska et al. 2023). 

The primary aim of this study is to characterize the chemical fingerprints of NS and gins for 

authentication purposes. The first step will be the validation of the proposed NTA LC-MS method 

followed by a rigorous assessment of the effectiveness of the different ionization modes. Following 

this, the use of MVA will allow for further characterization of the chemical composition of NS 

and gins by isolating entities among the comprehensive datasets obtained that are unique to 

specific spirit categories. Simultaneously, the applicability of PCA in distinguishing between NS 

and gins based on their respective chemical fingerprints will be evaluated to identify whether it 

represents a significant aspect of the variance in the dataset. Finally, utilizing SIRIUS software 
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and reference standards, the tentative identification of some compounds of interest will be pursued 

to potentially reveal a candidate marker for authentication. 

3.3 Materials & Methods 

3.3.1 Chemicals and reagents 

HPLC grade methanol and acetonitrile were purchased from Agilent (Santa Clara, CA, USA). 

Deionized water was purified using a Milli-QTM water purification system (Millipore, Bedford, 

MA, USA). HPLC grade ammonium acetate was purchased from Sigma-Aldrich. Mobile phases 

were prepared immediately before LC-MS analysis. The volume of solvents and additives were 

carefully measured with clean and autoclaved graduated glassware. The solvents and additives 

were then sonicated for 5 minutes to ensure proper mixing and reduce the presence of bubbles in 

a Branson 3510 ultrasonic device by Emerson (Markham, Ontario, Canada). The labelled internal 

standards (caffeine-D3, carbamazepine-D10, DEHP-D38, terephthalic acid-D4, Bisphenol S 13C12, 

and triclosan-D3) were purchased from Sigma-Aldrich (St Louis, MO, USA), Toronto Research 

Chemicals (North York, ON, CA), and CDN Isotopes (Pointe-Claire, QC, CA). These were 

selected to have early eluting, mid-eluting, and late-eluting analytes to cover the complete analysis 

run. The reference standards were purchased from Sigma-Aldrich for α-pinene and methyl 

cinnamate (St. Louis, MO, USA), and from Cayman Chemicals for β-elemene (Ann Arbor, MI, 

USA). 

3.3.2 Samples 

Forty neutral spirits/vodkas and 23 gins were obtained from local producers in Quebec or 

bought at the provincial liquor board (Société des Alcools du Québec) in the Greater Montréal 

region. Samples were made of various raw materials that were grown in various geographical 

regions. Samples were catalogued by botanical origin, geographical origin, production type, 

product name, lot number, distillation date, sampling date, and delivery date. After opening the 

samples to transfer some into 2 mL amber vials, the original containers were resealed using 

parafilm and stored in a cool, dark, and dry location. The amber vials were then stored in the 

freezer, at -20℃ for the duration of the experiment.  

Sample volumes of 990 µL were transferred from sealed glass bottles to plastic syringes using 

glass microsyringes. PTFE filters (25mm × 0.2 µm) were then installed on the plastic syringe to 
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filtrate the samples into 2 mL HPLC amber glass screw vials. 10 µL of the labelled internal 

standard mixture was added to each vial and the vials were mixed with a vortex. 

Pooled QC samples served as a critical quality control measure, ensuring the consistency and 

reliability of the analytical process (Evans, O’Donovan et al. 2020). They were made by mixing 

in equal parts all samples and were then spiked with the labelled internal standards mixture 

appropriate for the ionization mode. Solvent blanks consisting of 1:1 methanol in water was 

determined as the most suitable available blank since all samples had an ethanol concentration in 

the 40-60% range and no HPLC grade ethanol could be purchased in Canada. 

3.3.3 UHPLC-QTOF-HRMS Analysis 

UHPLC 1290 Infinity II (Agilent Technologies, Santa Clara, CA, USA) coupled with the 

G6546 QTOF-MS (Agilent) was used, along with a G7120 binary pump, G7167 multisampler, 

and G7116 multicolumn thermosampler, all provided by Agilent. The method was initially adapted 

from a study focused on contaminant identification in alcoholic beverage matrices (He and Bayen 

2020). However, some parameters were optimized to better suit the specific requirements of NS 

and gins analysis and to improve the quality of chromatograms. After conducting preliminary tests, 

it was determined that the best combination was an injection volume of 10 µL and a flow rate of 

0.3 mL/min. This injection volume provided a sufficient amount of sample for accurate analysis 

while minimizing band broadening and tailing, while the flow provided a reasonable timeframe 

with excellent resolution. The mobile phase for ESI consisted of 5 mM ammonium acetate in 

HPLC grade water (A) and 1:1 acetonitrile/methanol (B) and the elution gradient was as follows: 

0.50 min (95% A; 0.300ml/min-1), 4.00 min (0% A; 0.300ml/min-1), 8.00 min (0% A; 0.300ml/min-

1), 8.01 min (95% A; 0.300ml/min-1), and 9.00 min (95% A; 0.300ml/min-1). The mobile phase for 

APCI consisted of 5 mM ammonium acetate in HPLC grade water (A) and 100% methanol (B) 

and the elution gradient was as follows: 0.50 min (95% A; 0.300ml/min-1), 4.00 min (0% A; 

0.300ml/min-1), 9.50 min (0% A; 0.300ml/min-1), 9.51 min (95% A; 0.300ml/min-1), and 10.00 

min (95% A; 0.300ml/min-1). These conditions were chosen for their ability to provide high-

resolution separations within a reasonable analysis time of 10 min. The APCI method was adapted 

from the ESI parameters with adjustments made to improve the suitability for this specific 

ionization mode (Fischer and Dunca 2007). The chromatographic system was equipped with a 

Poroshell 120 C18 column (3.0 mm x 100 mm x 2.7 µm) from Agilent Technologies. A pre-guard 
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column (3.0 mm x 5 mm x 2.7 µm) by Agilent  was used to enhance performance, protect the 

column, and reduce the occurrence of contaminants. The UHPLC-QTOF-HRMS was equipped 

with two non-simultaneous ionization techniques for analysis: electrospray ionization (ESI) and 

atmospheric pressure chemical ionization (APCI) from Agilent. ESI was operated in both positive 

and negative ion modes, while APCI was only applied APCI+ mode. This decision was based on 

empirical observations during preliminary tests, which showed that APCI- did not offer the 

suitability required for the analysis due to mostly absent signals (data not shown). To the best of 

current knowledge, this specific limitation of APCI- has not been reported in existing literature, 

suggesting a potential area for future research.  

The parameters for the mass spectrometer set with the ESI+ ion source were as follows: sheath 

gas flow of 12 L/min, sheath gas temperature of 375 ℃, gas flow of 11 L/min, gas temperature of 

150℃, nebulizer pressure of 30 PSIG, capillary voltage of 4,000V, nozzle voltage of 1,000V, and 

skimmer voltage of 45 V. The detection conditions of the instrumental methods were identical for 

both ESI+ and ESI-, except for gas temperature (175℃ for ESI-) and nozzle voltage (2,000V for 

ESI-). The difference in temperature and voltage settings were selected based on optimization tests 

that indicated these were the most effective parameters in their respective mode. For the APCI ion 

source, the parameters were as follows: gas temperature of 300℃, vaporizer temperature of 350℃, 

gas flow of 5 L/min, nebulizer pressure of 30 PSIG, capillary voltage of 4,000 V, corona voltage 

of 4 V, skimmer voltage of 45 V. The instrument was operated in full scan mode in the m/z range 

50-1,700Da. For the MSMS data, the same parameters were applied with a range of ±0.2min of 

target RT and 10 V, 20 V, and 40 V were used to fragment compounds and obtain comprehensive 

MSMS spectra. 

To limit potential compound loss or discrimination, a direct-injection strategy that overcomes the 

need for any extraction or dilution of samples was employed, thus ensuring that the integrity of 

the original samples is maintained. The method of QC employed in this study was designed with 

the best contemporary practices in mind and surpasses the standard methodologies outlined in the 

literature in key areas. The use of randomized injections, solvent and system blanks, and internal 

standards for normalization post-acquisition was adopted. The methodology also incorporated the 

injection of pooled samples after every 10 samples to ensure reproducibility. Furthermore, system 

suitability was evaluated by injecting a blank of chemical standards and subsequently reviewing 
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the chromatographic peaks’ width. Moreover, the method takes a step further in assessing the 

accuracy and sensitivity of the chemical standards’ mass and retention times, leading to more 

robust and reliable results. 

3.3.4 Compound Identification 

A five-tiered confidence level system for molecular structure identification via mass 

spectrometry was used (Schymanski, Jeon et al. 2014). Level 1 offers definitive molecular 

identification through a reference standard and utilizes MS, MS/MS, and retention time matching, 

ideally corroborated by an orthogonal method. Level 2 proposes an exact structure based on 

different forms of evidence, either unambiguous literature or library spectrum data, or MS/MS 

fragments and ionization behaviour, if no reference standards are available. Level 3 provides a 

grey zone where evidence suggests possible structures, but none can be confirmed. Level 4 

provides an unequivocal molecular formula based on spectral data yet lacks sufficient evidence 

for structure identification. Finally, Level 5 identifies only the exact mass (m/z) without additional 

structure or formula identification. The use of this robust classification system aims to standardize 

the identification confidence across other studies.  

3.3.5 Method Validation 

A rigorous method validation analysis was conducted to ensure its robustness, specifically 

targeting the precise characterization of NS and gins.  Intra-reproducibility was measured using 

relative standard deviance (RSD). The RSD for the intra-day precision was calculated based on 

the analysis of spiked pooled QC samples at 20 µg/L injected every 10 samples (n=10). Mean mass 

measurement error (MME) was determined using the mass of internal standards to assess the 

accuracy of mass measurements. It was calculated using the difference between the observed mass 

and the true mass of internal standards in parts per million (ppm) with the following formula: 

𝑀𝑀𝐸𝑝𝑝𝑚 = (
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑚𝑎𝑠𝑠−𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑠𝑠

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑠𝑠
) × 106. Suitable mass measurement accuracy was 

considered to be below 2 ppm (Villar-Pulido, Gilbert-López et al. 2011). LOD and LOI were 

determined with the use of the signal-to-noise ratio (S/N) with thresholds equal to S/N=3 and S/N 

=6, respectively, as suggested in the literature (Vogelgesang and Hädrich 1998, Lappas and Lappas 

2016). The stability of these metrics was assessed across the duration of the analyses to ensure 

they provided consistent and reliable detection of MFs, thereby enhancing the robustness of the 
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analytical method. Matrix effects were evaluated by using the same spiked pooled QC as 

previously described for intra-reproducibility. The concentration of the analytes in the post-spike 

samples was then compared to those in solvent blanks to determine the impact of the matrix on the 

analytes. The matrix effect (ME) was calculated using the formula:𝑀𝐸 =  (
𝐼𝑚𝑎𝑡𝑟𝑖𝑥

𝐼𝑏𝑙𝑎𝑛𝑘
) × 100. ME 

within the range of 85-115% was considered acceptable (Viswanathan, Bansal et al. 2007). 

3.3.6 Data Analysis 

Assessing peak quality was performed using Agilent MassHunter Qualitative. Data processing, 

such as peak alignment, normalization, and gap filling was carried out before any data analysis 

using Profinder. The molecular feature extraction (MFE) procedure was made using the “Batch 

Recursive Small Molecules Feature Extraction” wizard. The first step set a feature count of 2000, 

focusing on ion species that included protonated (H+) and deprotonated (H-) species, as well as 

common organic molecules. This was followed by the second step, which utilized the default 

settings of the software for analysis. In the third step, the RT shift was set to 0% ± 0.1 based on 

the RT shift of internal standards observed in pooled QC runs, and a mass tolerance of 20 ppm ± 

0 mDa was set. The fourth step expanded the feature count from step one to 4000 and forced a 

minimum matching score of 70, with the condition that the features must be present in at least one 

file in one sample group. In step 5, settings were adjusted to include a symmetric tolerance of ± 

0.35 ppm, while raising the minimum RT matching score to 80. Steps six and seven maintained 

default settings. Finally, the eighth step stipulated a minimum absolute height of 2500 and required 

a minimum matching score of 80 in at least one file in one sample group. This configuration based 

on preliminary data ensured optimal feature extraction from the data, leading to the identification 

of significant compounds. The statistical analysis undertaken in this research aimed to compare 

data among various sets of samples to identify chemical patterns or unique features with the 

potential to serve as authentication markers. 

MPP software by Agilent was utilized to filter the MFs based on the pooled QC data, 

optimizing the data analysis through a series of filtering parameters. Initially, a frequency cut-off 

percentage was set, retaining only features that occurred in more than 40.0% of all conditions to 

ensure consistency across samples. This was followed by setting a sample variability threshold at 

less than 40.0%, thereby filtering out features with high variability and potentially less reliability. 
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Further refinement was carried out by implementing a minimum abundance criterion, where only 

features displaying an abundance of over 100,000 in all samples were retained. This stringent 

filtration process ensured that the remaining MFs were of high interest for the study, based on their 

consistent and frequent presence across the samples, their low variability and high reliability, and 

their high abundance (Dudzik, Barbas-Bernardos et al. 2018, Gravert, Vuaille et al. 2021). 

Accounting for variations in sample size between different categories, a normalization step was 

performed to ensure a fair comparison of the analyte counts across different ionization modes. As 

the number of samples for NS was about twice the number of gin samples, normalizing the data 

based on sample size helps in mitigating this bias when comparing the ionization efficiency 

between these spirits. The normalization was performed by calculating the average analyte count 

per gin samples for each ionization mode, which was then projected to the sample size of NS to 

estimate the equivalent analyte counts. 

The research extends this practice by conducting comprehensive multivariate analysis 

including PCA, Venn diagrams, and Volcano plots. While PCA is commonly used to assess sample 

group clustering, the analysis benefits from the further incorporation of Venn diagrams to identify 

unique molecular features among sample groups. This inclusion improves upon the conventional 

methods by providing a more detailed comparison of the sample groups. Additionally, the research 

exploits the use of Volcano plots to compare two sample groups and find statistically significant 

(p<0.05) molecular features with a significant fold change difference (>2.0). This use of Volcano 

plots provides a detailed comparison that enhances the detection of statistically significant 

differences. 

3.3.7 Compound Identification 

Utilizing the Venn diagrams generated from prior analyses, molecular features of interest 

(MFOIs) unique to each spirit type were isolated. Concurrently, a suspect screening list was 

compiled based on literature regarding the chemical composition of gins to provide an extensive 

list of candidate markers for gins. The procedure entailed evaluating the list of unique MFs 

satisfying one of these two criteria: 1) either presence or absence in over 90% of all samples within 

a specified category (e.g., gins or NS) and correspondingly absence or presence in the opposite 

category, and 2) a significantly higher or lower intensity of presence or absence compared to the 

other category. Alongside, a suspect list of potential key compounds identified from an extensive 
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literature review was examined. SIRIUS 5.8, a software tool developed by Böcker group that uses 

algorithms to deduce the molecular structures from MS2 data through molecular ion detection and 

preprocessing, molecular formula annotation, fragmentation tree computation, tree scoring and 

ranking, and molecular structure prediction (CANOPUS), was used with imported MS2 data for 

compounds reconstitution which helped in the process of compound identification and 

characterization (Böcker and Dührkop 2016, Dührkop, Fleischauer et al. 2019). 

3.4 Results and discussion 

3.4.1 Method Validation 

To ensure that the proposed method, adapted from He and Bayen (2020), was suitable for 

distilled spirits analysis, method validation parameters were measured, therefore ensuring 

efficiency and robustness. Multiple analyses were conducted, manipulating analytical parameters 

such as mobile phases, flow rates, and injection volumes. An APCI method was also developed 

based on the previously described ESI, making minor parameter changes to adapt to this ionization 

process. For the APCI, the mobile phase was modified to 100% methanol due to its suitability for 

maximum analyte coverage in APCI. Acetonitrile’s use in APCI was avoided since it can prevent 

the formation of ions in both the positive and the negative ion polarities (Fischer and Dunca 2007). 

Due to the absence of internal standards’ signals in the negative APCI polarity, only the positive 

polarity data was kept for further analysis. 

MME assessment ensures the mass error is within the established parameters for the data 

processing. The values were obtained from the comparison of observed mass in internal standards 

(see Figure 3.1) to theoretical mass of the same compounds. The MME ranged from 0.23 to 2.52 

ppm in ESI+ and 0.41 ppm to 2.07 ppm in ESI- mode. Despite the recommendation of having 

MME below 2 ppm (Villar-Pulido, Gilbert-López et al. 2011), these results fall below 5 ppm, 

which is often considered to be acceptable for most studies (Nácher-Mestre, Ibáñez et al. 2013). 

ME were assessed through measurements of the intensities of the labelled internal standards in 

a single run, as shown in Table 3.1. The resulting ME ranged from 0.52% to -10.73% for ESI+, 

0.86% to -37.84% for APCI+, and 2.49% to 52.22% for ESI-. It is important to acknowledge that 

with NTA methods, it is challenging to account for every analyte due to the variability in their 

properties and behaviour. Normalization or compensation techniques, like matrix matching 
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(Giacinti, Raynaud et al. 2016) or dilution (Yang, Chang et al. 2015), would be impossible to work 

well for all analytes and could have unintended effects on analytes that are within the acceptable 

range. 
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Figure 3.1 Internal standards reproducibility testing for ESI- (A), ESI+ (B), and APCI+ (C). 

The LOD and LOI values were utilized to establish the minimum level at which compounds 

could be detected and identified, respectively. The signal values were calculated as the average of 

the signals in each spiked blank sample, while the noise value was determined by averaging the 

noise around each of the internal standard peaks. The final S/N values were obtained by dividing 

the averaged internal standards’ absolute intensities by the averaged noise values. The S/N ratios 

ranged from 11 to 850, which were deemed more than enough to achieve a good detection of 

signals and the accurate identification of these compounds, suggesting the robustness of the 

methodology. 

The intra-day intensity relative standard deviation (RSD%) varies within acceptable ranges for 

the methods tested: 5.67-11.98% (ESI+), 3.31-10.47% (ESI-), and 6.16-11.03% (APCI+). 

Furthermore, the intra-day retention time shift (RTS RSD%) exhibited minimal fluctuations for all 

ionization modes: 0.19-0.29 min (ESI+), 0.15-0.68 min (ESI-), and 0.05-0.10 (APCI+), thus 

confirming the stability and reproducibility of the experimental conditions. Since all RSD% values 

were below 15-20% (see Table 3.1), it demonstrates that the experiment had a commendable 

degree of precision and repeatability in its measurements. 
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 Internal standards 

Ionization 

mode 

Caffeine-

D3 

Carbamazepine

-D10 

DEHP-

D38 

Terephthalic 

Acid-D4 

Bisphenol 

S-13C12 

Triclosan-

D3 
 Intra-day (Intensity) RSD (%) 

ESI+ 11 12 6.9    

ESI-    7.9 10 3.3 

APCI+ 6.2 11 10    

 Intra-day RTS RSD (%) 

ESI+ 0.2 0.2 0.3    

ESI-    0.7 0.2 0.2 

APCI+ 0.1 0.1 0.1    

 ME (%) 

ESI+ 4.7 0.5 -11    

ESI-    52 -6.3 2.5 

APCI+ 3.2 0.9 -38    

Table 3.1: Matrix effects (ME%) and relative standard deviation (RSD%) for intra-day intensities 

and retention times across three ionization modes (ESI+, ESI-, AND APCI+) using pooled qc 

samples spiked with labelled internal standards. 

With the method validation parameters assessed, the results demonstrate high levels of 

efficiency, robustness, and reproducibility. The ME and RSD% data corroborate the method’s 

precision, meeting the overarching aim of achieving a rigorous approach to NTA NS and gins 

characterization. Our data show acceptable ranges for intra-day intensity and RT RSD%, affirming 

the stability and repeatability of the method. The high S/N ratios further establish the efficacy of 

the approach for capturing a broad spectrum of analytes with high accuracy. These metrics align 

well with the stated research objectives, particularly in enhancing data quality and enabling robust 

identification of compounds of interest. 

These findings are in accordance with prior studies emphasizing the necessity for stringent 

method validation in NTA (Esslinger, Riedl et al. 2014, Beger, Dunn et al. 2019). Notably, 

comprehensive method validation reporting, including parameters like MME, ME and RSD%, is 

not as widespread in NTA conducted on alcoholic beverages as it is in other NTA fields. Most 

studies in this area do not provide an exhaustive validation, lacking key metrics such as those 

previously mentioned. In this context, the present study provides a much-needed contribution to 

fill this gap in the literature. The observed ME and RSD% values of this study compare favourably 
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with the rare but pertinent studies that do report these measures (Tzachristas, Dasenaki et al. 2021). 

By situating the method’s performances within the objectives and against the backdrop of scarce, 

albeit relevant, existing literature, its robustness and applicability for the complex task of 

characterizing NS and gins is affirmed. The detailed validation approach adopted in this study sets 

a precedent for future research, aiming to standardize validation procedures in NTA. 

3.4.2 Comparison of the different ionization methods (ESI-, ESI+, APCI+) for the 

characterization of neutral spirits and gins 

In the endeavour to characterize the chemical fingerprints of NS and gins, the developed LC-

MS method was used for the untargeted examination of a broad range of analytes. Figure 3.2 and 

S1.1 provide the resulting total ion chromatograms (TIC) obtained from the samples in various 

ionization modes, showcasing the potential richness of the data to be analyzed. Given the need for 

a nuanced understanding of the chemical composition of NS and gins, multiple ionization methods 

were used, namely ESI and APCI, each offering distinct advantage. To mitigate risk of compound 

loss or discrimination, a direct-injection strategy was chosen. This method bypasses the need for 

any sample extraction or dilution, thereby maintaining the integrity of the original samples.  

The methods provided distinct insights into NS and gins’ chemical composition. ESI’s larger 

detection capacity made it the preferred method for comprehensive characterization. However, 

APCI+ was not considered redundant as it helped in detecting different types of molecular features 

enriching the overall characterization, while the joint use of these two ionization methods helped 

obtain more detailed chemical fingerprints. For instance, some MFs were only detectable with ESI 

(ex., m/z 205.1956 at RT 6.958min), while others, only with APCI (ex., m/z 199.1487 at RT 7.05 

min). This was expected since both ionization methods work best with different classes of 

compounds due to their intrinsic difference in ionizing mechanisms (Thurman, Ferrer et al. 2001, 

Commisso, Anesi et al. 2017). This suggests that both methods can simultaneously offer a different 

perspective and validate data seen in the other method. 
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Figure 3.2 Exemplary overlapped TICs of NS (red) and gins (black) for ESI-. See supplementary 

materials for ESI+ and APCI+ (S1.1). 

Interestingly, it was found that ESI+ detected the most features, followed by ESI-, and then 

APCI+. This finding corroborates previous research conducted other types of alcoholic beverages 

that also explored the differences between ESI modes (Vaclavik, Lacina et al. 2011, Ehlers, Uttl 

et al. 2023) and between ESI and APCI modes (Mazerolles, Preys et al. 2010). However, such 

findings have not been previously reported specifically for NS or gins. Existing literature suggests 

that certain analytes ionize more in the positive mode, while others produce stronger signals in the 

negative mode possibly explaining the discrepancies between ESI polarities (Liigand, Kaupmees 

et al. 2017). To ensure a comprehensive detection of analytes, data from all ionization modes was 

utilized. Regarding the peak intensities observed, most gin samples displayed maximum intensity 

signals within a consistent range, varying from 1.45 × 108 (ESI-) and 2 × 108 (ESI+ and APCI+). 

A similar pattern was observed for NS samples, with maximum intensity signals falling between 

1.75 × 108 (ESI-) and 2.5 × 108 (ESI+ and APCI+), indicating the general robustness of the method. 
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It is worth noting that these ranges fall within reasonable limits for the analysis, making it unlikely 

that the observed variability arises from methodological limitations. However, there were some 

notable outliers. Specifically, two samples, Quebec corn gin at a RT of 4.75 min (3.2 × 108) and 

Quebec rye gin at a RT of 7.61 min (2.5 × 108), presented very high intensity peaks when analyzed 

with APCI+. Similarly, in the NS samples, two outliers were observed, both being Quebec corn-

barley NS at a RT of 7.62 min (5.0 × 108) in APCI+. Importantly, some instances of ion saturation 

were observed in the chromatograms, and not only in these outliers. Ion saturation could 

potentially distort quantification and should be considered when interpreting these specific results. 

Delving into the specifics of the findings, NS revealed the detection of 48,345 (range of 

916-2,126 per sample) MFs in ESI+, 26,138 (range of 530-1,185 per sample) MFs in ESI-, and 

8,695 (range of 110-670 per sample) MFs in ACPI+. In contrast, for gins, these figures stood at 

28,102 (range of 1,213-2,896 per sample) MFs in ESI+, 16,068 (range of 675-2,715 per sample) 

MFs in ESI-, and 5,777 (range of 261-545 per sample) MFs in APCI+. For a clearer comparison, 

the data was normalized based on sample size, as described in the materials and methods section, 

to account for the different number of samples in NS and gins categories. It is suggested that gins 

would have had an estimated 48,873 MFs in ESI+ (1.1% higher than NS), 27,944 MFs in ESI- 

(6.9% higher than NS), and 10,047 MFs in APCI+ (15.5% higher than NS) after normalization. 

This data indicates that the difference in analyte count between NS and gins ranges from 1% to 

15%, a smaller disparity than might be expected given the addition of botanicals in the production 

process of gins. Existing literature on their respective chemical compositions would suggest a 

much wider difference in chemical complexity between NS and gins, which are further elaborated 

with botanicals (Riu Aumatell 2012, Aylott 2016, Einfalt 2020). However, the narrower than 

expected disparity observed may reflect the specific sensitivities and characteristics of the LC-MS 

technique, highlighting the potential for uncovering nuanced differences between NS and gins 

when employing this methodology. 

A notable observation is the increased disparity in the normalized number of MFs between 

NS and gins when utilizing APCI as opposed to ESI. This insight could be attributed to either a 

diminished detection rate of MFs in NS, or conversely, an enhanced detection rate in gins. The 

augmentation in detection within gins can possibly be traced back to the inclusion of botanicals, 

which introduces compounds of non-polar to moderately polar nature, such as terpenes. The 
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literature asserts that APCI is well adapted to the ionization of such compounds due to its weaker 

matrix effects and its superior handling of the high volatility characteristic of some gin compounds 

during the nebulization process (Ismaiel, Halquist et al. 2008, Trufelli, Palma et al. 2011, Kevin J. 

McHale 2018, Brecht, Uteschil et al. 2020). Despite this narrower difference between the count of 

MFs in NS and gins when using APCI, the overall detection rate of APCI was significantly lower 

compared to ESI, making the latter more appropriate for the overall characterization due to this 

higher range of detected compounds per sample. Therefore, despite the interesting findings with 

APCI+, the decision was made to prioritize ESI as the method of choice for this study. The number 

of detected MFs in both NS and gins in the present study constitutes a novel contribution to the 

existing body of literature on alcoholic beverages, especially for those specific spirits. Overall, 

these findings constitute a novel contribution to the existing body of literature on alcoholic 

beverages, especially for these specific spirits. This study represents the first comprehensive 

comparative analysis of TICs and the number of detected MFs in NS and gins using LC-Ms, 

providing a baseline for future investigations and a deeper understanding of the chemical 

complexities of these spirits. The discrepancies observed in comparison to general expectations 

based on known chemical compositions highlight the potential for LC-MS to provide new insights 

into the molecular profiles of NS and gins. 

3.4.3 Selection and filtering of key features in neutral spirits and gins 

The combination of MFE, FbI, and filtration led to significant reduction in the total number of 

MFs.This stringent protocol effectively filtered out unreliable data, including noise, false positives, 

and false negatives. Thus, 1,350 MFs in ESI- and 2,259 in ESI+ remained, all of which were 

amenable to LC-MS. Furthermore, the expected reduction of MFs, a crucial step for this study, 

aligns well with existing studies that also employ this approach for cleaner and more statistically 

significant data (Ehlers, Uttl et al. 2023, Uttl, Bechynska et al. 2023). This reduction was expected 

yet remains a crucial step for this study. Given that this is the first application of such methodology 

to NS and gins, this reduction is instrumental in providing a cleaner dataset specific to these 

beverages for subsequent MVA. The remaining MFs were presumed to be substantial contributors 

to the chemical composition of NS and gins due to their high abundance and statistical significance, 

thereby strengthening the validity of this study. This rigorous selection process enables the focus 

on MFs that are most representative of the unique chemical composition of NS and gins. It also 
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forms the basis for actual compound identification and further statistical analysis fulfilling the 

specific objective of this study. These results align well with existing studies employing a 

reduction of MFs to produce cleaner, more statistically significant data. However, the focus on NS 

and gins marks this research as the first of its kind to apply such methods to these beverages. The 

following sections will detail the results of further investigations, showcasing the unique and 

shared chemical components that define the characteristic of NS and gins. 

3.4.4 Isolation of unique entities in neutral spirits and gins 

Figure 3.3 demonstrates the efficiency of the filtration steps in reducing the number of MFs, 

ensuring the retention of only the most reliable and abundant MFs for further analysis. The 

resultant dataset post-filtration provides a clear representation of the core MFs common to both 

spirits, which are crucial for comparative analysis. Delving into the comparative aspect, it was 

observed that a large proportion of MFs was shared between NS and gins. This commonality was 

expected given that the base spirit of gins is oftentimes a neutral spirit. Moreover, the higher 

number of MFs observed in gins is similarly explained by the additional botanicals used in gins 

that contribute to its broader chemical profile (Riu Aumatell 2012). The identification of these 

unique entities is pivotal for authentication purposes and provides a deeper understanding of the 

impact of botanicals on the chemical complexity of gins. These comparative results of MF count 

are novel in the context of NS and gins when analyzed with LC-MS. In total, the combined MF 

count for ESI- and ESI+ revealed close 50,000 MFs pre-filtration and 7,000 MFs post-filtration. 

In comparison, a study performed on 16 gin samples with FT-ICR-MS reported close to 3,000 

MFs with ESI- and APPI+ combined (Dou, Mäkinen et al. 2023). Another study conducted on 

whiskeys using UHPLC-QTOF-MS reported 7,000 MFs pre-filtration and 3,100 MFs post-

filtration in about 60 samples (Collins, Zweigenbaum et al. 2014). Thus, the analyses revealed that 

the total MF count in both NS and gins was significantly higher than what has been reported in 

other alcoholic beverages studies. This reflects the efficiency and sensitivity of the developed NTA 

LC-MS method employed in this study and underscores its suitability in covering a broad chemical 

range for NS and gins. When comparing pre-filtration (A and B) to post-filtration (C and D), it 

becomes evident that the filtration process favoured only MFs characterized by high abundance, 

high reliability, and low variability, resulting in significant reduction of total MFs, approximating 

a total reduction of 87% in ESI- and 85% in ESI+ respectively. For NS, the filtration efficiency 
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decreased the MF count by 99.58% and 97.77% for ESI- and ESI+, respectively. Similarly, for 

gins, the filtration steps were able to reduce the count of MFs from 1,710 to 105 MFs (filtration 

rate of 93.86%) in ESI- and from 1,297 to 64 (filtration rate of 95.06%) in ESI+.  

Figure 3.3 Venn diagrams of unique features in NS (blue) and gins (orange) in ESI- (A: before 

filtration, C: after filtration) and ESI+ (B: before filtration, D: after filtration). 

Upon closer examination of the shared compounds between NS and gins, it is observed that 

before molecular feature filtration, 76.9% of entities were shared by NS and gins in ESI-, compared 

to 92% after filtration, while the overlap was of 87.9% for ESI+ before filtration, and of 96.6% 

after filtration. The increase in shared MFs affirms the inherent chemical similarities between NS 

and gins. This can be rationalized by understanding the inherent attributes of the filtration process, 

which is designed to retain MFs that exhibit high reliability, low variability, and high abundance, 

filtering out less reliable or less abundant MFs. Consequently, the entities remaining post-filtration 

represent a core set of MFs shared between both spirits, an indication of their chemical similarities. 

The amplification in overlap is not merely a theoretical expectation based on the filtration process’s 

design, but also is empirically observed in the data, thereby serving as a practical validation of the 

filtration method’s effectiveness. The developed method showcased its aptitude for this study by 

efficiently isolating meaningful MFs in both NS and gins. The substantial overlap of MFs between 

spirits elucidates their chemical similarities, while the unique chemical fingerprint of each spirit 

was preserved. The detection of unique entities for NS and gins is a novel contribution as this type 
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of comparative study has never been performed before using an LC-MS approach. These findings 

highlight the robustness of the method and offer valuable insights for future chemical 

characterization studies in the field. 

3.4.5 Clustering analysis using PCA as a means to differentiate the chemical 

fingerprints of NS and gins 

Following preliminary analyses and MF selection, PCAs in MPP for both ESI- and ESI+ modes 

compared NS and gin chemical fingerprints. Rigorously selected MFs ensured the PCA’s statistical 

significance, ensuring a reliable comparison. Tight clustering of methanol and ethanol blanks, 

along with pooled QC samples in PCA (Figure 3.4), confirmed LC-MS analysis reliability (Beger, 

Dunn et al. 2019). However, pooled QC samples diverged from central clustering due to unique 

honey-based spirit samples, which introduced bias (Evans, O’Donovan et al. 2020). This outlier, 

attributed to the novel use of honey, was excluded from further analyses to avoid bias. ESI- PCA 

showed clear separation between NS and gins, reflecting differences in their chemical 

composition. This result was expected due to different production methods and the addition of 

botanicals in gins (Riu Aumatell 2012, Aylott 2016). This result supports the hypothesis that NS 

and gins can be delineated based on their chemical fingerprints. The covariance for ESI- was 

mainly explained by PC1 (33.66%), PC2 (7.02%), and PC3 (5.14%), highlighting group 

differentiation. In ESI+ mode PCA, separation was less defined due to more MFs creating more 

variance, with less of it being solely attributed to the spirit categories. However, distinct planes for 

NS and gins still indicated different chemical compositions. The explained covariance for ESI+ 

was PC1 (23.74%), PC2 (10.6%), and PC3 (6.04%). These results, consistent with other studies, 

shows significant compositional differences between spirits due to varied production methods and 

ingredients. Yet, intergroup dispersion was moderate compared to tighter clustering in other 

studies, possibly due to different instrumental methods. The explained covariance in the PCA was 

slightly lower than in other studies (Wiśniewska, Śliwińska et al. 2016, Fleming, Chen et al. 2020). 

Nevertheless, this was the first PCA performed on NS and gins using LC-MS to the best of 

knowledge, thus contributing significantly to the literature on these beverages in the context of the 

characterization of their chemical fingerprints. These findings not only validate the unique 

chemical fingerprints of NS and gins both visually and statistically but also serve as a foundational 

step for subsequent phases of the present study and for future research on these spirits.  
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Figure 3.4 3D PCAs of NS and gins for ESI- (A) and ESI+ (B). Pooled QC samples (grey 

diamonds) and blanks (MeOH: dark-yellow triangles and EtOH: red squares) clustered 

separately and tightly. Gins (blue circles) were located nearer the plane formed by the y- and x-

axes, while NS (green ovals) were located nearer the one formed by the y- and z-axes. Black 

dotted lines indicate the separation line between NS and gins. 

A 

B 



85 

 

3.4.6 Compound identification 

From the initial suspect screening list and the MFOIs from previous analyses, after evaluation 

for data quality, the list of candidate markers was narrowed down to three potential MFs for gins: 

α-pinene, β-elemene, and methyl cinnamate. Unfortunately, no MFs of interest (MFOIs) were 

considered relevant for further data analysis concerning unique entities for NS, primarily due to 

false positives, lack of consistent presence in over 90% of NS samples, or inadvertent presence in 

some gin samples. Following MSMS analysis, SIRIUS software was utilized for further structure 

elucidation. However, SIRIUS analysis proposed an incorrect structure of benzoylacetone with 

66.94% score for the MF and 71.88% for the reference standard of methyl cinnamate, albeit 

correctly identifying the chemical formula (C10H10O2)( Figure 3.6). To ascertain the identity of 

these MFs, a confirmation step using reference standards was performed. The comparison for 

methyl cinnamate was promising as the retention time, m/z, and MSMS spectra matched with the 

reference standard (Figure 3.5), despite slight differences in fragment intensity. This substantiated 

the potential presence of methyl cinnamate in gin samples. For the terpenes, both the reference 

standard comparison and the SIRIUS analysis yielded poor results. Since both α-pinene and β-

elemene are terpenes, this result was expected as they are known to poorly ionize in ESI due to the 

lack of regions favourable for protonation (Banerjee and Mazumdar 2012). The absence of MFs 

that passed the rigorous selection evaluation underscores the complexity of the spirits’ composition 

and the challenges inherent in isolating unique entities, despite rigorous selection processes. This 

outcome, while seen as unfavourable for the objectives of this study, also highlights the 

complexities involved in isolating distinct entities even with the application of rigorous selection 

processes. The scant literature in the detection or identification of unique compounds in NS using 

LC-MS makes this result a foundational stone which underscores the need for further exploration 

into this uncharted territory. As for the MFOIs found in gins, the decision to challenge the known 

limitations regarding α-pinene and β-elemene came from experimental testing conducted on 

cannabis where these specific terpenes, along with others, could still be detected when present in 

sufficient concentration (not published). Additionally, both terpenes are commonly found in high 

concentration in juniper berries and multiple other botanicals that are frequently added to gins 

(Barjaktarović, Sovilj et al. 2005, Buck, Goblirsch et al. 2020). 
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Figure 3.5 Comparisons of MS chromatograms (above) and MSMS spectra (below) for MF 

(m/z: 163.0759, RT: 5.494 min) and for methyl cinnamate. 

      m   

  f               
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Methyl cinnamate, an ester found in cinnamon, strawberries, basil, and vanilla (Lunkenbein, 

Bellido et al. 2006, Giachino, Sönmez et al. 2014, Mogoşanu, Grumezescu et al. 2017, Karatoprak 

2022), shows potential as an authentication marker for gins as it could easily be ionized in ESI+ 

(Chen, Green et al. 2015, Lee, Kochhar et al. 2015). Although the MSMS spectra were not perfect 

match, the confidence level of identification is considered to be 2 (Schymanski, Jeon et al. 2014), 

since the MS, the MSMS, the RT, and the comparison with the reference standard all point to this 

compound or a potential isomer. The lack of coherence provided by SIRIUS shows that even if 

advanced software tools are allowing for much faster characterization, the use of reference 

standards for confirmation of identity remains essential. Concurrently, methyl cinnamate has never 

been reported in gins using LC-ESI-MS specifically, neither in the context of authentication by 

comparing them against other spirit categories, such as NS. While methyl cinnamate’s promising 

role as an authentication marker for gins has been identified using LC-ESI-MS, exploring its 

validation through GC-MS could offer additional insights. Given that methyl cinnamate is a 

volatile compound, GC-MS, which is particularly adept at analyzing volatile and semi-volatile 

compounds, might provide enhanced discriminatory capabilities. This approach could complement 

the current findings, offering a comprehensive understanding of methyl cinnamate’s presence in 

gins. It may also aid in confirming its identity with greater accuracy, validating the role of methyl 

cinnamate in the authentication of gins and broadening the methodological capabilities for spirit 

characterization. 

 

Figure 3.6 Proposed chemical structures for MF (m/z: 163.0759, RT: 5.494 min)(above) and 

for methyl cinnamate (reference standard)(below) by SIRIUS software.  0
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3.5 Conclusion 

This research pioneers an advanced analytical method, NTA RP-LC-QTOF-HRMS, tailored 

for characterizing the complex chemical fingerprints of NS and gins, marking a significant stride 

in alcoholic spirits’ literature. Through meticulous execution and integration of ESI and APCI 

ionization techniques, this method refined a vast dataset to reveal distinct molecular entities 

between NS and gins. The method, also showed a distinct clustering of spirit categories via PCA, 

therefore presenting a promising tool for authenticating spirits. The end result of the analysis 

notably identified a strong candidate marker specific to gins, methyl cinnamate, which was never 

reported before in this context. This addresses crucial concerns in both scientific and beverage 

industry fields. The findings not only substantiate the distinct chemical compositions of these 

spirits, but also lay a robust foundation for future studies, expanding the horizon of analytical 

chemistry in alcoholic beverage characterization.   
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CONNECTING TEXT 

Chapter 3 marked a significant milestone in the understanding of the chemical fingerprints 

of neutral spirits and gins, employing the NTA RP-LC-QTOF-HRMS method along with MVA. 

This chapter deepened the scientific comprehension of these spirits as well as pioneered the 

identification of unique markers, like methyl cinnamate in gins. The results obtained have been 

instrumental on characterizing the distinct chemical compositions of neutral spirits and gins, 

setting a robust foundation for further analytical exploration inf the field. 

 While Chapter 3 focused on characterization, Chapter 4 aims to revolutionize the process 

of authenticating the botanical and geographical origins of neutral spirits and gins. This novel 

exploration considered multiple botanical origins such as corn, rye, wheat, and potato, and grouped 

geographical origins into Quebec, Ontario, and an ‘Others’ category, encompassing a diverse range 

of countries. Utilizing the same method, this chapter delves into developing a more focused 

approached for spirit authentication by detecting thousands of molecular features related to these 

origins. Although faced with challenges, such as inconclusive PCA results and disparities in 

ionization modes, the research offers new insights and underscores the complexity of 

authenticating spirits based on their origin. The chapter also showcased the application of PLS-

DA models that achieved high accuracy rates in classifying spirits by origins, demonstrating the 

method’s effectiveness in the novel context of authenticating neutral spirits and gins. It highlights 

the mixed success of current methods and the pressing need for further refinement. This 

progression aligns with global efforts to combat food fraud and ensures the integrity and safety of 

alcoholic beverages. The advancements in Chapter 4 place us at the forefront of technological 

innovations in the alcoholic beverage industry, signaling a promising future for more robust and 

precise authentication techniques. 
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4. DEVELOPMENT OF A NTA RP-LC-QTOF-HRMS METHOD 

TO AUTHENTICATE THE GEOGRAPHICAL AND 

BOTANICAL ORIGIN OF QUEBEC NEUTRAL SPIRITS AND 

GINS 

4.1 Abstract 

The discrimination of alcoholic beverages based on parameters such as geographical origin, 

botanical origin, ageing time, and the presence of adulterants has been well documented in the 

literature. Previous studies have successfully discriminated spirits based on the geographical origin 

of the raw materials, and analytical strategies have been reviewed to support protected designations 

of origins for spirits. However, the use of LC-MS for these purposes has not been extensively 

explored, especially concerning neutral spirits and gins. This study primarily focused on the 

investigation of MFs for botanical origin authentication using MVA. From the detected MFs, a list 

of MFOIs was made through a selection process based on peak quality, abundance, and 

consistency across samples. Following this, the tentative structural and chemical formula 

elucidation of these MFOIs using SIRIUS software was pursued, aiming to identify new 

authentication markers. Finally, the classification of the samples in their respective categories 

using PLS-DA was achieved with overall accuracy above 88% with all categories and ionization 

modes. By focusing on these objectives, this research sought to employ NTA LC-QTOF-HRMS 

as a novel approach for the discrimination of neutral spirits and gins based on botanical origins, 

thereby filling a significant gap in the existing literature. Additionally, authentication based on 

geographical origin was also explored with preliminary results, as a way to broaden the scope of 

the study. 

4.2 Introduction 

The authentication of alcoholic beverages based on botanical and geographical origins is an 

old topic, but the recent introduction of powerful analytical instruments has allowed to provide 

crucial insights into combatting alcoholic beverage fraud. However, despite notable advancements 

in this domain through studies on wine (Tzachristas, Dasenaki et al. 2021, Pan, Gu et al. 2022) and 

various spirits (Contreras, Barbosa-García et al. 2010, Collins, Zweigenbaum et al. 2014, Roullier-

Gall, Signoret et al. 2020), a significant gap persists concerning the authentication of NS and gins. 
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Given the outlined challenge, a deeper exploration into the chemical compositions of NS and gins 

is required to uncover novel insights into their authentication. These spirits encompass a multitude 

of volatile compounds, and their volatile composition has only been explored by a minority of 

studies, usually with GC-MS (Buck, Goblirsch et al. 2020, Einfalt 2020, Dou, Mäkinen et al. 

2023). Despite these few studies, the exploration, characterization, and identification of 

authentication markers related to origins for these spirits remain largely unexplored. Furthermore, 

the scant investigations into the volatile composition of NS and gins have only scratched the 

surface of the complexity inherent to the chemical compositions of NS and gins. Therefore, the 

current study ambitiously aims to delve into the completely unexplored territory of non-volatile 

composition with the goal of discovering unique authentication markers related to origin, that can 

significantly contribute to the literature on spirit authentication. The potential to address this 

challenge relies on a previously developed NTA LC-QTOF-HRMS method, which has been used 

to characterize the chemical composition of NS and gins (see Chapter 3).  

To address the overarching aim, three main objectives are delineated. Firstly, the aim was to 

use the NTA RP-LC-QTOF-HRMS to study the chemical fingerprints of NS and gins. Coupling 

this with MVA to compare samples based on the geographical and botanical origins of their raw 

materials, MFs specific to certain origins were isolated. Secondly, from these MFs, a rigorous 

evaluation of peak quality, abundance level, and consistency across samples was conducted to 

create a list of MFOIs. All of them underwent MSMS to provide detailed mass spectra allowing 

for the tentative elucidation of their chemical structure and formula with SIRIUS software. This 

objective served to potentially identify and characterize key compounds as candidate markers of 

authenticity. Lastly, a PLS-DA classification model was built with the objective of determining 

the accuracy with which the samples could be classified based solely on their chemical 

composition. Centred around the hypothesis, this research proposes that through MVA, especially 

PCA and PLS-DA, it would be possible to discriminate and classify neutral spirits and gins based 

on the botanical and geographical origins of their raw materials. It was anticipated that statistical 

tools like volcano plots, and Venn diagrams of unique entities, would enable the isolation of key 

molecular features that are highly correlated with specific origin categories. The aim was then to 

characterize these key features and identify them using the SIRIUS machine-learning software. 

With the foundational success of the NTA LC-QTOF-HRMS method in characterizing the 

chemical fingerprint of neutral spirits and gins (see Chapter 3), this research is poised to shed light 
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on the nuances of spirit authentication. This will bridge a significant knowledge gap in the 

authentication of these spirits and lay the groundwork for an analytical framework in combating 

alcoholic beverage fraud. 

4.3 Materials & Methods 

The method, instrument as well as the chemicals for this experiment have been described in 

Chapter 3. Please refer to it for more details.  

4.3.1 Samples 

Samples used in this study were consistent with those described in Chapter 3, thus 

encompassing 21 gins and 40 NS (see supplementary materials Table S1 for complete details). 

This alignment maintains the rigour of the research and allows for a better understanding of results 

across different sections of the research. To ensure a robust and comprehensive characterization 

of botanical and geographical origins in NS and gins, four primary botanical origins were 

considered: corn (n=12), potato (n=11), rye (n=11), and wheat (n=13). The inclusion of other 

botanical origins, such as barley and honey, as well as combinations of botanical sources was 

deliberate to enhance variability and comprehensiveness of the characterization process. While 

geographical selection was somewhat influenced by availability at the provincial liquor board 

(SAQ), two key geographical origins, Quebec (n=48) and Ontario (n=3), were highlighted. All 

other geographical origins, such as Sweden, France, Netherlands, and the United States, were 

thoughtfully grouped into one category labelled “Others” to maintain focus on the primary regions 

while acknowledging the broader diversity in spirit origins. The study’s overarching principle was 

to align sample selection within the research objective of obtaining spirits from as diverse a range 

of botanical and geographical origins as possible, even within the constraints of availability. By 

setting a criterion that only botanical and geographical origins with three or more samples were 

considered as individual categories, the research ensured that the results would be statistically 

significant and representative of each category. 

4.3.2 Compound Identification 

Please refer to Chapter 3 for more details on the molecular feature extraction process by 

Profinder, the filtration process by MPP, the use of SIRIUS to elucidate chemical formula and 
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structure of molecular features. The confidence levels used in this study are also discussed in detail 

in Chapter 3. 

4.3.3 Data Analysis 

The same data processing, normalization, and statistical analyses as those described in Chapter 

3 were used in the present study with the addition of the supervised statistical PLS-DA 

classification model to evaluate the accuracy of classification of the samples based on their 

botanical or geographical characteristics. In this study, PLS-DA models were developed using 

MPP to classify samples based on botanical and geographical origins, using both ESI+ and ESI- 

ionization modes. The PLS-DA model was constructed using four components, capturing the 

essential variance and correlation structure in the data, while reducing dimensionality. This 

approach allowed for the isolation of the most relevant features in the analysis. Each variable was 

automatically scaled, normalizing them to have a mean of zero and a standard deviation of one, 

thus allowing variables of different magnitudes to contribute equally to the model. The dataset was 

partitioned into three equal-sized folds for cross-validation, ensuring that each segment of the data 

was used once as a validation set while the remaining two segments served as training sets. This 

3-fold cross-validation was repeated ten times, thereby enhancing the robustness of the validation 

and providing more stable results of the model’s performance (Rubingh, Bijlsma et al. 2006). The 

performance of the model in classifying the samples accurately was evaluated using accuracy, 

sensitivity, and specificity as metrics. Accuracy is the proportion of correctly classified samples 

out of the total number of samples. It is calculated as 
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
, where TP is the number of 

true positive, TN is the number of true negative, FP is the number of false positive, and FN is the 

number of false negative. Sensitivity, also known as the true positive rate, measures the proportion 

of actual positives that are correctly identified as such and is calculated as 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
. Specificity, 

on the other hand, measures the proportion of actual negatives that are correctly identified as such 

and is calculated as 
(𝑇𝑁)

(𝑇𝑁+𝐹𝑃)
. These metrics provide a comprehensive understanding of the model’s 

performance across different classes and are crucial for evaluating the robustness and reliability of 

the PLS-DA model in distinguishing between different botanical and geographical origins of the 

samples (Lee, Liong et al. 2018). 
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4.4 Results and discussion 

4.4.1 Comparison of the different ionization methods for the characterization of 

botanical origins 

Utilizing various ionization modes, this section, building on the methodology from Chapter 3, 

delves into the chemical fingerprinting of NS and gins to detect and isolate MFs indicative of their 

botanical origins, showcasing the inherent complexities of these spirits. Due to discrepancies 

among the number of samples per categories, this study chose to normalize the number of MFs 

based on the number of samples to account for this variability (as detailed in Chapter 3), ensuring 

a more accurate and fair comparison of MFs across different botanical origins. This method, 

although novel, provides a robust basis for comparing MF distribution and abundance, crucial for 

the characterization and differentiation of spirits based on their origins. 

Using the ESI- ionization mode, the analysis detected 11,362 MFs for corn, 7,923 for rye, 

7,438 for wheat, and 6,288 for potato in the context of botanical origins (Figure 4.1). Transitioning 

to the ESI+ ionization mode, corn samples showed 21,438 MFs, rye had 15,396 MFs, wheat 

samples revealed 14,611 MFs, and potato samples comprised 12,040 MFs (S1.2). The 

normalization method adopted in this study revealed intriguing patterns post-normalization. The 

percentages represent the range of the ratio of MFs per samples within a category, indicating the 

relative abundance and distribution of MFs across different botanical origins. For instance, in ESI- 

ionization mode, the botanical dataset showed MF differences across categories ranging from -5% 

to +7% post-normalization, contrasting with the pre-normalized +7% to +81% (see Table 4.1). For 

ESI+, the differences in MFs ranged from -7% to +5% post-normalization as opposed to the initial 

+5% to +78%. Delving into the APCI+ ionization mode, corn samples had 4,589 MFs, rye had 

3,151 MFs, wheat presented 2,983 MFs, and potato revealed 2,325 MFs. The APCI+ ionization 

mode presented a trend similar to the ESI modes when normalizing the data. For botanical origins, 

the difference in MFs shifted from +6% to +97% pre-normalization to -3% to +8% post-

normalization. The percentage calculations aim to present a normalized comparison to elucidate 

the variations in MF distribution, facilitating a more balanced comparison across different 

categories. 
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Figure 4.1 Exemplary overlapped TICs of NS and gins for ESI-, colorized based on botanical 

origins. Represented categories are corn (black), potato (blue), wheat (green), and rye (red). See 

supplementary materials for ESI+ and APCI+ (S1.2).  

This study introduced a novel approach in characterizing the number of MFs associated with 

botanical origins in NS and gins, a realm not explored in the existing literature. The endeavour to 

comprehensively catalogue and compare MFs across diverse origins unveils a significant 

contribution to the understanding of their chemical compositions. This characterization enriches 

the existing body of knowledge and sets a precedent for subsequent investigations aiming at the 

authentication of the botanical origins of these spirits. Interestingly, the botanical differences in 

MFs, when normalized by sample size, remained relatively negligible across both ESI and APCI 

modes. Yet, a critical observation was the APCI+ mode’s reduced capability in detecting MFs 

when compared to the ESI modes. This echoed the findings from Chapter 3. Given this reduced 
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detection rate, there are concerns about APCI+’s adequacy in capturing comprehensively the 

chemical differences for origin differentiation. As a result, and prioritizing the modes with more 

potential for authentication, APCI+ was excluded from further analyses. Nevertheless, to the best 

of knowledge, this study represents the first comparative characterization of the number of MFs 

associated with botanical origins in NS and gins employing ESI+, ESI-, and APCI+ ionization 

modes. This novel approach, highlighting the varying efficacy of these ionization modes in 

capturing the diversity of MFs, has not been reported in the literature on the authentication of 

alcoholic beverages before. These results showcase that the usage of multiple ionization modes in 

NTA LC-MS has the potential to characterize the chemical fingerprints of these beverages more 

comprehensively, thus setting a precedent in the field. 

In conclusion, the analysis of overlapped TICs has yielded intriguing insights into the 

characterization of the botanical origins of NS and gins. The findings highlight the disparities in 

the effectiveness of the various ionization modes in distinguishing the spirits according to their 

origins’ chemical compositions. The normalization procedure provided a more refined perspective 

by significantly reducing discrepancies in the data, revealing nuances that warrant further 

exploration. These variations point towards future studies that could delve into the underlying 

factors contributing to this distinction. 

BOTANICAL ORIGIN DATA 

ESI- 

  Before Filtration After Filtration 

  Corn Rye Wheat Potato Corn Rye Wheat Potato 

Total 11362 7923 7438 6288 7533 6758 6261 6201 

Normalized 11362 11885 11157 11790 7533 10137 9392 11627 

  
Difference Before Normalization 

  

Difference Before 

Normalization   

    Corn Wheat     Corn Wheat   

  Rye 143% 107%   Rye 111% 108%   

  Wheat 153% 126%   Wheat 120% 109%   

  Potato 181% 118%   Potato 121% 101%   

  
Difference After Normalization   

Difference After 

Normalization 
  

    Corn Wheat     Corn Wheat   

  Rye 96% 107%   Rye 74% 108%   

  Wheat 102% 101%   Wheat 80% 87%   
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  Potato 96% 95%   Potato 65% 81%   

ESI+ 

  Before Filtration After Filtration 

  Corn Rye Wheat Potato Corn Rye Wheat Potato 

Total 21438 15396 14611 12040 13332 12425 11822 11688 

Normalized 21438 23094 21917 22575 13332 18638 17733 21915 

  
Difference Before Normalization 

  

Difference Before 

Normalization   

    Corn Wheat     Corn Wheat   

  Rye 139% 105%   Rye 107% 105%   

  Wheat 147% 128%   Wheat 113% 106%   

  Potato 178% 121%   Potato 114% 101%   

  
Difference After Normalization   

Difference After 

Normalization   

    Corn Wheat     Corn Wheat   

  Rye 93% 105%   Rye 72% 105%   

  Wheat 98% 102%   Wheat 75% 85%   

  Potato 95% 97%   Potato 61% 81%   

    APCI+     

      Corn Rye Wheat Potato     

    Total 4589 3151 2983 2325     

    Normalized 4589 4727 4475 4359     

  
    

Difference Before 

Normalization 
    

  

        Corn Wheat       

      Rye 146% 106%       

      Wheat 154% 136%       

      Potato 197% 128%       

  
    

Difference After 

Normalization 
    

  

        Corn Wheat       

      Rye 97% 106%       

      Wheat 103% 108%       

      Potato 105% 103%       

Table 4.1: Number of botanical origin MFs during various steps of the normalization and 

filtration procedures. 

4.4.2 Isolation of unique entities in botanical origins 

To comprehensively analyze the unique chemical constituents, present within different 

botanical origins of NS and gins, this study employed a Venn diagram approach.  Figure 4.2 

displays the distribution of shared and unique MFs across various categories both before and after 
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the filtration process (see Chapter 3), showcasing distinctions in botanical origins. This visual 

representation, never before utilized in conjunction with NS and gins, reveals a realm of origin 

specificities in terms of chemical composition.  

In ESI- ionization mode, the reduction of unique entities in botanical origins ranged from 

91.7% to 97.9%, while the total reduction of MFs was 83.6%. With ESI+ ionization mode, the 

range of reduction in unique entities spanned from 92.3% to 98.8%, with a total reduction of 

83.4%. Notably, only about 3% of all MFs in ESI- and 1% in ESI+ were considered unique to 

specific botanical categories. Conversely, only 21% and 23% of MFs were common to all 

categories in ESI- and ESI+ modes, respectively. While ESI- mode typically yielded fewer MFs 

compared to ESI+ mode for both NS and gins, consistent with findings in Chapter 3 and 

corroborated by literature (Cech and Enke 2001, Kebarle and Verkerk 2010), this distinction 

becomes particularly pronounced in the context of gins. Given the chemical composition of this 

spirit, which contains multiple compounds amenable to positive ionization (such as aldehydes, 

ketones, esters, ethers, terpenoids, etc.) (Riu Aumatell 2012), the superiority of ESI+ in detecting 

a higher number of MFs aligns well with established chemical principles. This underscores not 

only the consistency of these findings with existing literature but also emphasizes the relevance of 

method choice for specific beverage types.  The data reflected notable overlaps within certain 

botanical categories, hinting at common chemical profiles. This commonality necessitates further 

exploration into authentication markers shared among multiple botanical sources, as it suggests 

the presence of exclusion markers which are compounds absent in a category but present in all 

others. More interestingly, the analysis also revealed certain unique MFs within specific 

categories, which indicate the potential for compounds serving as authentication markers of 

specific origins. The normalized data, presented in Table 4.1, provided assistance to better compare 

these unique and shared entities across different categories, enhancing the evaluation of MFs for 

botanical origins. However, it is important to acknowledge that this relationship is not linear and 

more complex than it might initially seem. Intriguingly, post-normalization revealed that sample 

categories originally perceived as richer in MFs were in fact less abundant compared to other 

categories. 
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Figure 4.2 Venn diagrams of botanical origins (potato (blue), corn (orange), wheat (light blue), 

and rye (red)) for ESI- before filtration (A) and after filtration (C) and for ESI+ before filtration 

(B) and after filtration (D). 

The literature on alcoholic beverage authentication has primarily employed methods such as 

MF filtration (Collins, Zweigenbaum et al. 2014, Uttl, Bechynska et al. 2023), selection of MFs 

based on loading plots in PCA (Yang, Somogyi et al. 2020), or simply proceeded with MSMS on 

all MFs after a rigorous filtration process. These conventional approaches have their merits but 

often emphasize the singular pathway of meticulous filtration followed by analysis using MSMS. 

This study introduced the Venn diagram approach to augment the understanding of origin-specific 

chemical entities, a methodology not previously explored in alcoholic beverages studies, especially 

in the context of NS and gins. The inclusion of this approach aimed to provide a robust tool for 

isolating unique entities within categories. Utilizing this analysis, a critical evaluation of the data 

was conducted to highlight the commonalities and uniqueness of different origins. The results 

suggest that this pipeline might be more stringent than traditionally employed techniques, as 

evidenced by the unique insights derived from the analyses. This stringency allows for more 

efficient data treatment by isolating potential unique entities within a category. The use of Venn 

diagrams to depict the relative proportions of unique and shared entities across different botanicals 

has not been reported in the literature to the best of knowledge. Thus, it not only provides a novel 
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method but addresses an uncharted area in the literature, underscoring the Venn diagram’s 

capability to elucidate intricate relationships. 

4.4.3 Statistical analyses to evaluate the discriminative nature of the chemical 

fingerprints of the various botanical origins 

PCA is a valuable statistical tool used to discern patterns within data by capturing its 

underlying variance structure. In the present study, PCAs were conducted to investigate potential 

clustering relating to botanical origins in both ESI- and ESI+ modes. However, the results did not 

reveal the anticipated clustering for botanical origins (Figure 4.3). Instead, the analyses displayed 

considerable overlap of all categories along with notable dispersion. Specifically, the covariance 

explained was 31.68% in ESI- and 30.59% in ESI+ for botanical origins. The absence of clear 

clustering within the first three principal components of the PCA didn’t imply an absence of 

differences based on botanical origins. Instead, it suggests that the main sources of variability in 

this dataset might not be primarily driven by these parameters. This observation highlights that 

while PCA reveals major variations in a dataset, it might not always detect smaller differences 

within the dominant principal components. These results highlight the challenge in authentication 

based on chemical fingerprints alone, especially given the intrinsic complexity of botanical factors. 

These categories may represent a vast spectrum of chemical compositions, making significant 

differentiation elusive. Similar challenges in clustering based on origins with PCA were observed 

in studies on wine (Rubert, Lacina et al. 2014, Ehlers, Uttl et al. 2023) and whisky (Roullier-Gall, 

Signoret et al. 2020). While PCA didn’t clearly discriminate different categories, other statistical 

tools could capture subtle variations, implying that a multifaceted analytical approach is beneficial 

in such contexts. Notably, the Venn diagrams, as well as the Volcano plots and the PLS-DA models 

(discussed below) did reveal significant findings in relation to origins, further underscoring the 

multifaceted nature of the data, requiring multiple analytical perspectives. 
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Figure 4.3 PCAs of botanical origins for both ESI ionization modes (ESI- (A), ESI+ (B)). 

Botanical categories are represented by colours: corn (red), wheat (blue), rye (grey), and potato 

(dark yellow). 

A 

B 
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The volcano plots were employed to uncover significant MFs that differentiates the 

samples based on their botanical origins. These plots allowed for the comparison of specific 

categories, providing insights into the distinct chemical fingerprints associated with each origin. 

All combinations of one botanical origin against another were explored in both ESI- and ESI+ 

modes (1 vs. 1). These pairwise comparisons allow for a more nuanced understanding and 

identification of significant MFs specific to each category. By doing so, certain distinctions that 

would be otherwise obscured in broader one vs. rest comparison can be seen more easily detected. 

Among these, only the corn-potato combination revealed significant differences, while the other 

combinations failed to exhibit any MFs satisfying the criteria for significance (fold change > 2, p-

value < 0.05). The ESI+ mode captured more MFs of significant importance in distinguishing corn 

samples from potato samples. Interestingly, more MFs were present in significantly lower intensity 

in potato (see Figure 4.4), aligning with the previous Venn diagram results that highlighted more 

unique entities in corn. The prominence of corn-related MFs accentuated the potential to 

authenticate spirits based on their primary botanical ingredients. This observation was also made 

in the Venn diagrams for both ionization modes, where corn-based spirits had a higher abundance 

of unique entities (Figure 4.2). Many other studies have succeeded in differentiating between 

various botanical sources in spirits using mostly GC-MS, IRMS, or rarely LC-MS (Collins, 

Zweigenbaum et al. 2014). However, this distinction between NS and gins made from corn as raw 

material and those made from potato is a novel contribution to the literature on these categories of 

spirits and on alcoholic beverage authentication. 

This comprehensive analysis delved into the complex differentiation of NS and gins based on 

their botanical origins using PCA and Volcano plots as statistical analyses. While the PCAs 

indicated that these origins were not the main sources of variance in the dataset, the Volcano plots 

helped in pinpointing potential markers, especially when considering corn and potato as botanical 

origins. If a TA is to be derived from the present study, it is essential that the candidate markers 

can be detected with high reproducibility. Therefore, MFOIs extracted from the previously 

described statistical analyses including the unique entities in Venn diagrams underwent subsequent 

meticulous investigations of peak quality leading to the shortlisting of molecular features of 

interest (MFOIs) that demonstrated consistency and sufficient abundance across samples (see 

Table 4.2). 



103 

 

 

Figure 4.4. Volcano plots of potato vs. corn categories in ESI+ (A) and ESI- (B). Blue squares 

are MFs present in significant downfold abundance in potato samples, while red squares are MFs 

significantly more abundant in potato samples. 

4.4.4 Identification of candidate markers of authenticity for botanical origins 

The primary aim here was to determine if the proposed analytical methods and statistical 

analyses could generate sufficient information from the dataset to identify candidate markers of 

authenticity. While several studies have explored the identification of markers for various 

alcoholic beverage matrices (Collins, Zweigenbaum et al. 2014, Roullier-Gall, Signoret et al. 2018, 

Ciepielowski, Pacholczyk-Sienicka et al. 2019, Kew, Goodall et al. 2019), the specific focus on 

NS and gins using the methods described remains underrepresented in the literature. The objective 

was to identify and characterize key features that correlate strongly with specific botanical origins. 

The MS2 spectra of these MFOIs were imported into SIRIUS to aid in the elucidation and 

characterization of these MFs’ chemical formulas and structures. Following the meticulous 

evaluation of the MFOIs described previously, a selection of 20 MFOIs with good peak quality, 

high intensity, and strong consistency across representative categories was made for subsequent 

MS2 analysis. Extracted ion chromatograms of those MFOIs are represented in Figure 4.5. This 

approach is consistent with other studies where relevant MFs are evaluated then shortlisted to 
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improve the focus of the study (Stupak, Goodall et al. 2018, Phan and Tomasino 2021). This 

selection is presented in Table 4.2 detailing the mass, m/z, retention time, ion species, and labels 

for all MFOIs related to botanical origins. 

Mass m/z RT Formula Possible ID (%SIRIUS Structure Score) Label 

568.0129 567.007 1.603 

C22H13

F3N4O5

S3 

2-[4-nitro-2-[(Z)-[4-oxo-2-sulfanylidene-

3-[3-(trifluoromethyl)phenyl]-1,3-

thiazolidin-5-ylidene]methyl]phenoxy]-

N-(1,3-thiazol-2-yl)acetamide (46.90%) 

CORN 

536.3824 537.39 7.401 - - POTATO 

485.2052 486.212 6.910 
C18H35

N3O10S 

[[(2R)-1-(6-aminopurin-9-yl)propan-2-

yl]oxymethyl-(2,2-

dimethylpropanoyloxy)phosphoryl]oxym

ethyl 2,2-dimethylpropanoate (48.97%) 

POTATO 

465.2365 466.244 6.953 - - POTATO 

448.2933 449.303 7.338 
C25H36

B2N2O4 

1,3,5,6-Tetramethyl-2,7-bis(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-

yl)indole-4-carbonitrile (24.58%) 

POTATO 

358.2724 359.28 6.731 
C20H38

O5 
7-Hydroxyicosanedioic acid (66.01%) POTATO 

803.4094 804.417 7.020 
C40H61

N5O10S 

(2S,4R)-4-[[2-[(1R,3R)-1-acetyloxy-3-[2-

hydroxyethoxymethyl-[(2S)-3-methyl-2-

[[(2R)-1-methylpiperidine-2-

carbonyl]amino]pentanoyl]amino]-4-

methylpentyl]-1,3-thiazole-4-

carbonyl]amino]-5-(4-hydroxyphenyl)-2-

methylpentanoic acid (49.07%) 

POTATO 

710.4701 711.476 7.106 
C38H66

N2O10 

[(2S,3R,4S,6R)-4-(dimethylamino)-2-

[[(3R,5R,6R,7R,8R,9R,12R,13R,14S,19R

)-12-ethyl-5,8-dihydroxy-3,5,7,9,13,19-

hexamethyl-17-methylidene-10-oxo-13-

prop-2-enoxy-11,15-dioxa-1-

azabicyclo[12.4.1]nonadecan-6-yl]oxy]-

6-methyloxan-3-yl] acetate (61.59%) 

POTATO 

699.3255 700.333 7.434 
C36H42

FN9O5 

H-His-Arg-Gly-Thr-Thr-Glu-OH 

(61.97%) 
POTATO 

201.1728 202.18 3.616 
C11H23

NO2 

4-Hydroxy-1-(2-hydroxyethyl)-2,2,6,6-

tetramethylpiperidine (93.17%) 
POTATO 

431.9973 217.006 1.602 
C5H4F4

N2OS 
- WHEAT 

295.2146 296.223 6.459 
C17H29

NO3 

2-(2-methyl-3-oxocyclopentyl)-N-[(2-

propan-2-yloxan-3-yl)methyl]acetamide 

(61.18%) 

WHEAT 
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550.362 551.371 7.515 
C25H46

BN7O6 

(2S)-5-

[[amino(nitramido)methylidene]amino]-

2-[[2-(dimethylamino)acetyl]amino]-N-

[(1R)-3-methyl-1-[(1S,2S,6R,8S)-2,9,9-

trimethyl-3,5-dioxa-4-

boratricyclo[6.1.1.02,6]decan-4-

yl]butyl]pentanamide (48.56%) 

WHEAT 

738.5389 739.547 7.668 
C37H7O

N8O7 
Unk-Leu-Ile-Gly-Arg-NH2 (55.67%) WHEAT 

241.9564 242.962 1.603 
C6H5Cl

F2N2S2 

5-chloro-3-(4,4-difluorobut-3-

enylsulfanyl)-1,2,4-thiadiazole (41.67%) 
WHEAT 

307.9269 308.934 1.609 
C10H7B

rClFO3 

Ethyl 2-(5-bromo-2-chloro-3-

fluorophenyl)-2-oxoacetate (57.87%) 
WHEAT 

283.9656 284.973 1.608 
C7H8O8

S2 

Prop-2-ynyl 2,2,4,4-tetraoxo-1,5,2,4-

dioxadithiepane-6-carboxylate (53.70%) 
WHEAT 

201.9624 202.969 1.610 
C4H2N4

O2S2 

[2,2"-Bi-1,3,4-oxadiazole]-5,5"(4H,4"H)-

dithione (42.66%) 
WHEAT 

Table 4.2: List of the 18 selected molecular features of interest considered as potential marker 

candidates for botanical origin and their tentative identification. 

None of the MFs and unique entities found in rye passed the subsequent evaluation based 

on peak quality, intensity, and sample consistency. This outcome contrast with a study conducted 

on American whiskeys, where non-volatile compounds were used to discriminate rye whiskeys 

from other types (Collins, Zweigenbaum et al. 2014). All the MFOIs that passed the quality, 

intensity, and consistency investigation belonged to the potato and wheat categories. As mentioned 

before, this is the first study conducted on the authenticity of NS and gins from these botanical 

origins, which makes these results novel contributions to the field. The analysis aimed to identify 

unique compounds or those present at higher concentrations in specific origins. While several MFs 

were deemed potentially significant, the SIRIUS software evaluation did not conclusively identify 

any compound. However, most chemical formulas were identified with over 99% confidence, 

suggesting identification confidence level of at least 3. This is the first contribution of the sort for 

NS and gins, potentially shedding some light on novel compounds never before described in the 

literature on those spirits. 
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Figure 4.5 Exemplary chromatograms of MFOIs for wheat (m/z 567.007, left) and potato (m/z 

804.417, right). 

 8

 8
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To further these findings, future research could benefit from the integration of two-

dimensional LC-MS (2D LC-MS). This advanced technique allows for a more comprehensive 

separation and analysis of complex mixtures, offering superior resolution and detection 

capabilities compared to traditional methods. The implementation of 2D LC-MS could lead to a 

more detailed and accurate identification of specific MFOIs, potentially elevating the authenticity 

assessment of spirits to a new level of precision (Stoll and Carr  2017). 

 

Figure 4.6. SIRIUS results for the identification of MFOI 202.1802 (m/z) at retention 

time 3.62 minutes. 

Among the MFOIs, only one compound, 4-hydroxy-2,2,6,6-tetramethyl-1-

piperidineethanol (shown in Figure 4.6), had a structural confidence above 90%. However, 

literature cross-referencing revealed it as a known soil and water contaminant, unrelated to the 

chemical composition of NS and gins (Hale, Neumann et al. 2022). This unexpected result 

highlights the complexity of tracing botanical origins and the potential interferences from external 

sources. While no definitive authentication markers for botanical origins were identified, the 

methodologies and insights can contribute to future studies. The challenges encountered 

underscores the novelty and complexity of authenticating origin in NS and gins, where established 

markers are yet to be found. The presence of botanicals in gins, such as flowers, herbs, spices, and 

barks, can significantly influence chemical composition and thus marker identification (Riu 
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Aumatell 2012). The robustness of the analysis, as evidenced by the confidence levels from 

SIRIUS, emphasizes the need for ongoing research, possibly with refined methods or broader data 

sets, to explore the potential of chemical fingerprinting in these areas. 

4.4.5 PLS-DA classification model 

PLS-DA is a powerful statistical technique that combines the properties of both PCA and 

multiple linear regression. It has been used in this study to classify samples based on botanical 

origins by leveraging their respective chemical composition. It has become an essential tool in the 

field of chemometrics to handle complex and high-dimensional data. Both ESI ionization modes 

yielded identical results for all metrics and classifications, achieving an overall accuracy of 

93.02%, with an overall sensitivity of 95%, and an overall specificity of 97.83% (see Table 4.3). 

These metrics reflect a robust performance of the PLS-DA model in distinguishing between 

different botanical origins, aligning well with other studies which built classification models on 

alcoholic beverages, showcasing excellent accuracy, sensitivity, and specificity metrics 

(Wiśniewska, Boqué et al. 2017, Costa, Llobodanin et al. 2018, Urvieta, Jones et al. 2021). The 

specificity values, ranging from 94.3% to 100% across different classes, further substantiate the 

model’s ability to correctly identify negative cases, thus minimizing false positive rates. The 

potato, rye, and wheat samples were correctly classified in 100% of cases, reflecting a sensitivity 

of 100% as well for these classes. Conversely, the corn samples experienced three 

misclassifications, with two samples being mistaken for potato and one for wheat, resulting in a 

sensitivity of 80%. This asymmetry, where corn samples were misclassified as potato or wheat but 

not the reverse, may point to underlying complexities in the chemical fingerprints shared between 

these categories that allow nonreciprocal misclassifications. These complexities could stem from 

similarities in production processes, metabolic analytes, or other uncontrolled variables, making 

one-way misclassifications quite informative as they can indicate chemical similarities, model 

bias, feature importance, or other factors that could be explored further. 

The PLS-DA model has demonstrated strong potential in classifying samples based on 

botanical origins, with the accuracy, sensitivity, and specificity metrics reflecting its effectiveness 

in distinguishing between different botanical origins. However, the results do uncover areas that 

require careful considerations. First, the misclassification of corn samples sheds light on the 
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necessity for a more in-depth understanding of the underlying chemical or process-driven 

commonalities between the corn, potato, and wheat samples. 

 Corn (P) Potato (P) Rye (P) Wheat (P) Sensitivity Specificity Accuracy  

Corn (T) 12 2 0 1 80% 100% 80% 

Potato (T) 0 8 0 0 100% 94.3% 100% 

Rye (T) 0 0 10 0 100% 100% 100% 

Wheat (T) 0 0 0 10 100% 97% 100% 

Overall 

Score 
 95% 97.83% 93.02% 

Table 4.3: Confusion matrix (True (T) against Predicted (P)) of PLS-DA model for the 

classification of NS and gins based on botanical origins. 

This hints at a potential for future investigation that could further refine the classification 

model by identifying and accounting for these commonalities. The high accuracy in classifying 

potato, rye, and wheat samples, with a sensitivity and specificity of 100% and above 94.3%, 

respectively, implies a distinctiveness in the chemical profiles of these botanical origins as 

captured by the model, allowing for precise classification. This contrast sharply with the lower 

accuracy in classifying corn, which stands at 80%, suggesting that its chemical profile might share 

similarities with the other categories, or that the model requires further refinement to accurately 

capture the unique chemical signature of corn-based NS and gins. The PLS-DA model employed 

in this study offers robust insights into the classification of botanical origins, offering promising 

accuracies. The misclassifications of corn samples and require a deeper exploration, indicating that 

the complexity of the relationships between chemical fingerprints and origins demands larger 

sample sizes and more nuanced categorizations to allow for a better classification accuracy. This 

research lays a solid foundation for the ongoing endeavour to authenticate botanical origins in 

distilled spirits, contributing valuable insights to the field and paving the way for more 

comprehensive future investigations. 

4.4.6 Comparison of the different ionization methods for the characterization of the botanical 

and geographical origins 

The exact same methodologies and statistical analyses were performed to detect and isolate 

MFs indicative of their geographical origins with the goal of identifying candidate authentication 

markers. Due to the small number of samples for some categories, these results are presented as 

preliminary results for the geographical authentication of NS and gins. 
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Figure 4.7 Exemplary overlapped TICs of NS and gins for ESI-, colorized based on 

geographical origins. Represented categories are Quebec (red), Ontario (black), and “Others” 

(green). See supplementary materials for ESI+ and APCI+ (S1.3). 

Using the ESI- ionization mode, Quebec samples revealed 33,444 MFs, Ontario samples had 

2,171 MFs, and the category labelled “Others” comprised 3,198 MFs (Figure 4.7). After 

normalization, the MF difference between categories shifted from -32% to +1,440% to +13% to 

+34% (Table 4.4). Transitioning to the ESI+ ionization mode, Quebec samples had 61,126 MFs, 

Ontario samples had 4,291 MFs, and the “Others” category had 6,122 MFs (S1.3). The 

geographical normalization range changed from -30% to +1,325% pre-normalization to +10% to 

+28% post-normalization. Delving into the APCI+ ionization mode, Quebec samples showed 

15,097 MFs, Ontario had 857 MFs, and the “Others” category consisted of 975 MFs. The APCI+ 

ionization mode also presented a trend similar to the ESI modes when normalizing the data for 
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geographical origins. The range changed from an initial -12% to +1,662%, to +36% to +99% after 

normalization. The same novel approach described with botanical origins was applied to 

geographical origins, and provided results not reported in the existing literature. This paves the 

way for subsequent in-depth studies aiming at the authentication of geographical origins for these 

spirits. Interestingly, where the botanical origins showed negligible differences across ionization 

modes, the geographical origins presented more pronounced variations. More specifically, Quebec 

spirits demonstrated a higher number of MFs across both modes. Similarly, with APCI+, the 

geographical origins exhibited a broader post -normalization range of 136%-199%, continuing to 

highlight the more distinct variation compared with the findings in ESI modes. The same 

observation concerning APCI+ mode’s reduced capability in detecting MFs when compared to the 

ESI modes was made leading to the decision to exclude it from further analyses. Nevertheless, this 

study represented the first comparative characterization of the number of MFs associated with 

geographical origins in NS and gins employing these ionization modes. The results showcased that 

the usage of multiple ionization modes in NTA LC-MS has the potential to characterize the 

chemical fingerprints of these beverages more comprehensively, thus setting a precedent in the 

field. In conclusion, the analysis of overlapped MF count provided significant insights into the 

characterization of the geographical origins of NS and gins. These preliminary results highlight 

the potential of distinguishing these spirits according to their origins’ chemical compositions. 

Interestingly, the close similarities in MFs related to botanical origins contrasted with more 

pronounced differences in geographical origins. These variations point towards future studies that 

could delve into the underlying factors contributing to this distinction. 

GEOGRAPHICAL ORIGIN DATA 

ESI- 

  Before Filtration After Filtration 

  QC ON Others QC ON Others 

Total 33444 2171 3198 8517 4589 5429 

Normalized 33444 28223 24944 8517 59657 42346 

  Difference Before Normalization Difference Before Normalization 

    QC ON   QC ON 

  ON 1540%   ON 186%   

  Others 1046% 68% Others 157% 85% 

  Difference After Normalization Difference After Normalization 

    QC ON   QC ON 
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  ON 118%   ON 14%   

  Others 134% 113% Others 20% 141% 

ESI+ 

  Before Filtration After Filtration 

  QC ON Others QC ON Others 

Total 61126 4291 6122 14076 9933 10593 

Normalized 61126 55783 47752 14076 129129 82625 

  Difference Before Normalization Difference Before Normalization 

    QC ON   QC ON 

  ON 1425%   ON 142%   

  Others 998% 70% Others 133% 94% 

  Difference After Normalization Difference After Normalization 

    QC ON   QC ON 

  ON 110%   ON 11%   

  Others 128% 117% Others 17% 156% 

APCI+ 

    QC ON Others     

  Total 15097 857 975     

  Normalized 15097 11141 7605     

    Difference Before Normalization     

      QC ON     

    ON 1762%       

    Others 1548% 88%     

    Difference After Normalization     

      QC ON     

    ON 136%       

    Others 199% 146%     

 Table 4.4: Number of geographical origin MFs during various steps of the normalization and 

filtration procedures. 

4.4.7 Isolation of unique entities in botanical and geographical origins 

To isolate unique MF among different geographical origins for NS and gins, the same Venn 

diagram approach was employed. Figure 4.8 describes the same analysis as performed with 

botanical origins, but now for geographical origins. The reduction in unique entities ranged from 

90.9% to 97.1% with ESI- ionization mode, with a total reduction of MFs of 83.1%. ESI+ showed 

a reduction range from 92.0% to 95.7%, and the total reduction in MFs was 82.9%. Surprisingly, 

about 8% of MFs in ESI- and 2.5% in ESI+ were unique, with a large majority attributed to Quebec 

samples. Only 27% (ESI-) and 29% (ESI+) of MFs were common to all geographical categories, 

indicating significant overlap between certain categorical combinations. Post-normalization, the 
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range for ESI- shifted from 85%-186% to 14%-141%, and for ESI+, it changed from 94%-142% 

to 11%-156% (see Table 4.4). The normalization procedure for geographical origins revealed that 

the “Others” category showed an abundance of MFs five times higher when normalized. This may 

be explained due to this category encompassing spirits from diverse regions, reflecting the richness 

of different botanical, geographical, climatic, and production factors. Another interesting aspect is 

that this apparent higher number of MFs in “Others” upon normalization doesn’t result in a higher 

number of unique entities for this category mainly because these compounds might only be 

representative of a particular country, within the “Others” category, making them vulnerable to 

exclusion during the filtration process.  The data also reflected notable overlaps within 

geographical categories, suggesting commonalities across categories. Once again, this suggests the 

presence of exclusion markers which are compound absent in a category but present in all others. 

More interestingly, the analysis revealed unique MFs within specific categories, especially for the 

Quebec category. 

 

Figure 4.8 Venn diagrams of geographical origins (Others (blue), Ontario (orange), and Quebec 

(red)) for ESI- (A) and ESI+ before filtration and after filtration (C and D, respectively). 
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As mentioned with botanical origins, the use of Venn diagrams to isolate unique and shared 

entities across different geographical origins has not been reported in the literature, thus providing 

a novel method to elucidate intricate chemical relationships across categories of origins. 

4.4.8 Statistical analyses to evaluate the discriminative nature of the chemical fingerprints of 

the various botanical and geographical origins 

PCAs were also conducted with the objective to detect clustering related to geographical 

origins with both ESI- and ESI+ modes analyses. As with botanical origins, the results did not 

reveal the anticipated clustering for geographical origins, showing notable dispersion (Figure 4.9). 

Specifically, the covariance explained was 31.39% in ESI- and 30.42% in ESI+. These results also 

highlight the challenge in authentication based on origins. 

Volcano plots were then also employed, although only with Quebec against Ontario since 

the “Others” category would not have yielded meaningful insights in a one vs. one context given 

its diverse sample types. For geographical differentiation, Ontario samples revealed nuanced 

chemical profiles with the ESI+ dataset. The distribution of MFs in both lower and higher 

abundance regions suggests a complex chemical composition potentially stemming from various 

factors intrinsic to their geographical origin (see Figure 4.10). This discrepancy of MFs when 

comparing Quebec and Ontario samples could serve as a cornerstone for future in-depth 

authentication studies. Similarly to botanical origins, multiple studies have been able to show 

differences among spirits of various geographical origins using various instruments and statistical 

tools (Ciepielowski, Pacholczyk-Sienicka et al. 2019, Roullier-Gall, Signoret et al. 2020). 

However, such discernment for spirits produced from raw material of Quebec or Ontario origin is 

a novel insight contributing significantly to the authentication literature on these spirits and these 

geographical origins. 

Despite being only preliminary results, the MFs extracted from the previously described 

statistical analyses were also evaluated for their potential to be shortlisted for MFOIs, with a 

specific focus on the Quebec and Ontario apparent compositional differences. 
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Figure 4.9 PCAs of geographical origins for both ESI ionization modes (ESI- (A), ESI+ (B)). 

Geographical origins are represented by colours: Quebec (blue), Ontario (red), Others (dark 

yellow. 

A 

B 
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Figure 4.10 Volcano plots of Ontario vs. Quebec categories in ESI+ (A) and ESI- (B). Blue 

squares are MFs present in significant downfold abundance in Ontario samples, while red 

squares are MFs significantly more abundant in Ontario samples. 

4.4.9 Identification of candidate markers of authenticity for geographical origins 

The selection of the shortlisted MFOIs, extracted from previous statistical analyses is 

presented in Table 4.5 detailing the mass, m/z, retention time, ion species, and labels for the 

different geographical origins. Both peaks related to these MFOI are presented through their 

extracted ion chromatograms in Figure 4.11. 

Mass m/z RT Formula 
Possible ID (%SIRIUS Structure 

Score) 
Label 

103.0998 104.107 1.727 C5H13NO - QC 

99.1047 100.112 4.117 C6H13N - QC 

Table 4.5: List of the two selected molecular features of interest considered as potential marker 

candidates for geographical origins and their tentative identification. 
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Figure 4.11 Exemplary chromatograms of MFOIs for Quebec (m/z 100.112 (top) and 104.107 

(bottom)). 

None of the MFOIs from the Ontario or “Others” categories passed the evaluation, and 

only two Quebec MFOIs passed the evaluation for geographical origin. These results have never 

been reported in the literature before for any kind of spirits related to these specific origins, as well 

as for geographical authentication of NS and gins. The subsequent SIRIUS analysis did not 

conclusively identify the compounds related to Quebec origin. However, the chemical formulas 

were identified with over 99% confidence, providing an identification confidence level of 3. This 

is the first contribution of the sort for NS and gins, potentially shedding some light on novel 

compounds never before detected or described in the literature on those spirits. 

4.4.10 PLS-DA classification model 

For the geographical origins, the model performed with slightly varying accuracies: 88.89% in 

ESI- and 91.11% in ESI+, with overall sensitivity scores of 95.5% and 96.4%, and specificity 

scores of 96.2% and 96.9%, respectively. While both models classified all Ontario and “Others” 

samples correctly, achieving a sensitivity of 100% for these categories, the ESI+ model 

misclassified two samples as Ontario and two as “Others”. The ESI- model added one more 

misclassification of a Quebec sample as Ontario (see Table 4.6). These misclassifications were 

consistent across the two models for most of the samples, except for an additional one in ESI-. 
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Interestingly, the categories of misclassification were not constant between the two ionization 

modes. For example, two samples misclassified as “Others” in ESI+ were identified as Ontario in 

ESI-. Similarly, of the two samples misclassified as Ontario in ESI+, one was also misidentified 

as Ontario in ESI-, while the other was misclassified as “Others”. This variation in 

misclassification suggests a nuanced relationship between the chemical fingerprints and the 

geographical origins. The fact that the same samples were misclassified in different ways in the 

two modes might reflect complexities in the data or differences in how the ionization modes impact 

these relationships. 

ESI- 

  ONT (P) Others (P) QC (P) Sensitivity Specificity Accuracy 

ONT (T) 3 0 0 100% 93.3% 100.00% 

Others (T) 0 5 0 100% 95.2% 100.00% 

QC (T) 3 2 32 86.5% 100% 86.49% 

Overall Score   95.5% 96.2% 88.89% 

ESI+ 

  ONT (P) Others (P) QC (P) Sensitivity Specificity Accuracy 

ONT (T) 3 0 0 100% 95.5% 100.00% 

Others (T) 0 5 0 100% 95.2% 100.00% 

QC (T) 2 2 33 89.2% 100% 89.19% 

Overall Score   96.4% 96.9% 91.11% 

Table 4.6 Confusion matrix (True (T) against Predicted (P)) of PLS-DA model for the 

classification of NS and gins based on geographical origins. 

The PLS-DA model has demonstrated strong potential in classifying samples based on both 

botanical and geographical origins. However, the results do uncover areas that require careful 

considerations. The disparity in the number of samples between Quebec, Ontario, and the “Others” 

categories might introduce bias in the statistical models and future work should seek to apply the 

classification model to larger and more varied sample sets to enhance the evaluation of the model’s 

accuracy. It’s important to note that these are preliminary results due to the unbalanced and small 

sample size. Concurrently, the broader categorization of regions not identified as Quebec or 

Ontario into the “Others” category may mask significant differences in chemical fingerprints for 

these regions. These differences could be attributed to various factors such as botanical varieties, 

seasonal variations, production methods, soil composition, and other factors with potential impact 
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on chemical composition. Nevertheless, the preliminary PLS-DA model employed in this study 

offers promising insights into the classification of geographical origins. 

4.5 Conclusion 

This study, utilizing a UHPLC-QTOF-HRMS method, revealed distinct chemical 

signatures within different origins of NS and gins, advancing a method for spirit authentication. 

While Venn diagrams, Volcano plots, and PLS-DA models demonstrated the method’s potential, 

the inconclusive PCA results and other identified challenges highlight the need for further 

refinement. Disparities in ionization modes’ effectiveness provide insights for future analytical 

method development. The results partially support the hypothesis of grouping spirits based on their 

origins and identifying key features. Despite certain limitations, this study lays a solid foundation 

for future research, emphasizing the importance of expanding sample sets and advanced statistical 

or machine learning techniques for more precise spirit authentication. Overall, the mixed success 

underscores the method’s promise and the complexities in authenticating gins based on origin, 

pushing the field towards more robust analytical solutions for NS and gin authentication. 

5. SUMMARY AND CONCLUSIONS 

Alcoholic beverages, with a market value of USD1,369.4 billion in 2020, account for over 

10% of the global food and beverage sector (Lu 2020). Their growing demand over the years has 

not only expanded their share in the food industry but has also created more adulteration 

opportunities. Historically, alcoholic beverages have been prime targets for adulteration, primarily 

for economic benefits, ranking them among the top adulterated food commodities (Goodall, 

Harrison et al. 2018, Europol - OPSON IX 2020). Food authenticity ensures that a product aligns 

with all the regulations and standards pertaining to its truthful labelling and representation. 

Contrarily, food fraud, aims to bypass these regulations for monetary gains (GFSI 2018). Alcoholic 

beverages, have both intrinsic adulterations, which relate to agricultural and processing practices, 

and extrinsic adulteration, which concern the finished product, such as mislabelling and 

counterfeiting (GFSI 2018). The challenge intensifies when specific spirits are concerned such as 

neutral spirits and gins, where there happens to be a scarcity of literature on their authentication 

and chemical composition. While there have been efforts to detect adulterations in other spirits, 

the unique characteristics of NS and gins have left a significant gap in research, especially in 
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identifying reliable authentication markers. The recent popularity surge of gins, combined with the 

absence of established authentication methods, makes them particularly vulnerable to adulteration. 

This vulnerability is not just a threat to the economy of the industry but poses significant risks to 

consumer trust and safety (Ellis, Muhamadali et al. 2019, Manning and Kowalska 2021). In light 

of these challenges, there’s an urgent need to develop robust methods to authenticate NS and gins. 

Interest in developing protected geographical indication for spirits, e.g., for Quebec, underscores 

this need, emphasizing the importance of ensuring the authenticity of these spirits in the face of 

potential fraud.  

This research project aimed to address this critical gap. By employing advanced techniques 

like NTA LC-QTOF-HRMS, the goal was to discern the unique chemical fingerprint of NS and 

gins, in order to identify candidate markers for the botanical and geographical origins of these 

spirits. In doing so, this research hoped to fortify the defences against fraudulent activities in the 

alcoholic beverage sector, ensuring the integrity of NS and gins in the market. The core objective 

of this research was to delve deep into the chemical complexities of NS and gins, aiming to 

characterize their unique chemical fingerprints based on their respective spirit categories, and both 

botanical and geographical origins. To achieve this overarching goal, advanced analytical 

techniques, specifically the NTA LC-QTOF-HRMS method, were harnessed to elucidate the 

distinct chemical profiles of these spirits. The objectives were achieved for the characterization of 

NS and gins when considering them as different spirit categories. However, the objective was only 

partially achieved for their characterization in the context of botanical or geographical origins. 

Some unique entities could be extracted from these complex matrices but advanced analyses using 

MSMS and SIRIUS did not allow for the unequivocal elucidation of any chemical structure, only 

for chemical formulas. This presence of a grey zone regarding the identification of compounds 

related to origin means the MFOIs detected are considered tentative candidates (Schymanski, Jeon 

et al. 2014). 

Chapter 3 pioneered the analytical characterization of NS and gins as two distinct spirit 

categories. Utilizing the NTA LC-QTOF-HRMS method and integrating both ESI and APCI 

ionization techniques, distinct chemical fingerprints were obtained allowing to compare and 

contrast them. ESI expectedly performed better with these matrices due to the chemical family 

present in gins (Riu Aumatell 2012) and APCI’s performance was deemed unsuitable for the 
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chemical characterization. Following rigorous data extraction and filtration using Profinder and 

Mass Profiler Professional software, distinct molecular profiles for each spirit were identified. 

From thousands of MFs for each spirit and each ionization mode, only a few were considered 

significant for further statistical analyses. Using Venn diagrams, these MFs were then classified 

depending on their uniqueness to a specific spirit category or whether it was common in both. The 

PCA analyses distinctly showcased the chemical fingerprints of NS and gins, with ESI- revealing 

a clearer separation between the two spirits than ESI+. Despite some unexpected clustering 

patterns, the rigorous methods employed, and the consistency of controls validated the approach, 

emphasizing the unique chemical compositions of NS and gins. The resulting unique molecular 

features of NS and gins were then tentatively identified using advanced tools like SIRIUS software 

and reference standards. Perhaps one of the most striking findings was the identification of methyl 

cinnamate as a potential distinguishing compound in gins. Its consistent presence and the 

validation against the reference standard highlights its potential as a robust authentication marker. 

Such a discovery is a testament to both the efficacy of the analytical methods employed and the 

layered complexity of alcoholic beverages. This identification showcases the challenges intrinsic 

to authentication studies and paves the way for future research in understanding the chemical 

fingerprints of various spirits. Despite analyzing various compounds and testing them against 

reference standards, only one compound could be identified to a level 1 confidence level, 

highlighting a significant challenge in such authentication studies. This groundbreaking work not 

only validates the method’s effectiveness but also sets the stage for future investigations into the 

rich chemical profiles of alcoholic beverages. 

Chapter 4 delved deeper into the characterization of NS and gins by targeting their specific 

botanical and geographical origins as areas of authentication. Multiple botanical origins were 

considered, such as corn, rye, wheat, and potato, while three groups were considered for 

geographical origins, Quebec, Ontario, and “Others”, a group containing multiple countries 

represented by fewer than 3 samples in the study’s sample set. Using the previously developed 

NTA LC-QTOF-HRMS method, promising insights and challenges were revealed in the thousands 

of MFs detected, in relation to the botanical and geographical origins of NS and gins. ESI and 

APCI were once again compared and similar results were observed, where ESI performed 

significantly better than APCI. Pursuing with the ESI datasets, a filtration and extraction step were 

performed to remove low quality or redundant MFs. Then from the remaining MFs, certain 
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analytical tools like Venn diagrams and PCA were used with the same purpose as in Chapter 3. 

The Venn diagram revealed unique entities belonging to specific origin categories with the goal of 

isolating these to proceed with further statistical analyses to discover candidate markers. The PCA 

analyses, while effective at capturing large-scale variability, did not reveal expected clustering 

based on botanical or geographical origins. This lack of distinction suggests the main variability 

may not be primarily driven by these parameters. Following this, an additional statistical analysis, 

Volcano plots, was used to further extract and isolate MFs representative of specific categories. 

From these, twenty candidate markers were selected on which MSMS analysis was performed. 

The resulting data was used in conjunction with SIRIUS to elucidate the chemical structure and 

formula of these MFOIs, with the purpose of identifying compounds with the potential of serving 

as an authentication marker. PLS-DA, a combination of PCA and multiple linear regression, was 

used to classify samples based on botanical and geographical origins. Achieving 93.02% accuracy 

for botanical origins and close to 90% for geographical origins, the models were able to classify 

samples with high overall accuracy. Despite identifying multiple compounds with their chemical 

formula, the unequivocal identification of their chemical structure was a significant challenge that 

could not be overcome with the twenty MFOIs selected. Additionally, despite, the rigorous 

extraction and filtration methods used, the detection of unique entities with high peak quality, high 

abundance and consistency across representative categories proved to be an unexpected challenge. 

A potential solution would be to use a broader sample set to encompass more samples per 

categories and more categories overall. This proposed solution would lead to even more rigorous 

filtration procedures and statistical analyses simply due to a higher number of samples. The 

research aimed to group NS and gins based on their origins and subsequently identify 

authentication markers for these origins, and while some results aligned with expectations, others 

underscored the complexity in food authentication in general. This comprehensive analysis not 

only broadens the understanding of spirit authentication but also emphasizes the need for further 

refinement and exploration in the field. 

This study fills a notable gap in comprehensive NTA for NS and gin chemical 

fingerprinting. Through detailed metrics like ME, MME, and RSD%, the method was deemed 

robust, validating data quality and identification accuracy. The analysis of NS and gin’s chemical 

fingerprints using LC-MS, marked a significant comparative analysis of detected MFs in these 

spirits. Through a refined LC-MS method and multiple ionization modes, a narrower disparity in 
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analyte counts between NS and gins than expected from the literature was revealed for the first 

time (Riu Aumatell 2012, Aylott 2016), aiding in understanding their relative chemical 

compositions. Similarly, a higher MF count was detected compared with other studies on spirits, 

emphasizing the efficacy of the developed NTA LC-MS method (Collins, Zweigenbaum et al. 

2014, Dou, Mäkinen et al. 2023). Venn diagrams highlighted the commonalities and uniqueness 

among NS and gins, shedding light upon their chemical fingerprints, while also focusing the scope 

of the study by isolating potential authentication markers, a statistical technique applied for the 

first time in the characterization of NS and gins. PCA were used on NS and gins using LC-MS for 

the first time, showcasing a clear distinction in their chemical composition. The most notable 

finding, however, was the identification of methyl cinnamate as a candidate marker of 

authentication for gins using LC-ESI-MS. This significantly enriched gin characterization and 

authentication literature. The continued analysis of NS and gin’s chemical fingerprints provided a 

more in-depth perspective by comparatively analyzing four different botanical origins for the first 

time as well as three geographical origins in a preliminary way. The number of MFs were reported 

and compared for the first time in various botanical and geographical origins of NS and gins, when 

analyzed using LC-MS and various ionization modes, providing a novel framework for working 

with the authentication of these spirits. Venn diagrams were once more applied for the first time, 

this time in the context of authentication of origins in NS and gins. The isolation of many unique 

entities provided significant novel insights into the chemical composition associated with various 

origins in gins. PCAs were also a innovative application in this research context and although it 

was showcased that the main variability in the dataset was not associated with origins, this 

observation was paved the way for a better understanding of the chemical composition of these 

spirits. Volcano plots were a novel statistical analysis that was employed in origin authentication 

for NS and gins and gave unprecedented results regarding the notable disparities in chemical 

fingerprints between corn and potato spirits. From the preliminary results on geographical origins, 

it was also observed that there might be a difference in the chemical signatures of spirits of Quebec 

origin compared to Ontario origin. The use of SIRIUS with the resulting MSMS spectra didn’t 

provide an unequivocal identification of these compounds, but provided crucial metrics such as 

m/z, RT, chemical formulas, and tentative structure, for twenty compounds. Since LC-MS analysis 

performed on NS and gins was a novel approach, there is a high probability that one of these MFOI 

represents a previously undiscovered compound, indicating a substantial contribution towards 
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potential authentication markers. Finally, high accuracy, sensitivity, and specificity provided by a 

PLS-DA classification model was reported for the first time for botanical and geographical origins 

of NS and gins. These results indicate a strong potential for authentication based on botanical and 

geographical origins, reinforcing the discrimination potential established in the present study. 

This research explored the complex chemical composition of NS and gins and highlighted 

the challenge of characterizing their unique chemical fingerprints and identifying authentication 

markers related to their botanical and geographical origins. Using advanced techniques, notable 

the NTA LC-QTOF-HRMS, promising molecular features were uncovered. However, certain 

complexities arose, especially in unequivocally identifying chemical structures from the selected 

MFOIs. Nevertheless, this study has paved a significant path in spirit authentication. The ability 

to discern chemical composition and potential markers is promising, even as the goal to classify 

based on origins remains challenging. Increasing the sample set size could significantly improve 

the results of the statistical analyses, potentially leading to more accurate results and better 

characterization and identification of candidate markers of authentication. This difficulty, 

however, doesn’t mean that no compounds exist in these origin categories, as has been proven 

multiple times with other matrices. Future studies should focus on exploring different areas of the 

chemical composition of these spirits by making slight alteration to the present method. One 

strategic area of exploration would involve the modification of the LC-QTOF-HRMS parameters. 

Adjustments in the MS settings, like tuning the ionization modes, could enhance the detection of 

certain molecular features. Fine-tuning these parameters may allow for a more comprehensive 

exploration of these spirits’ chemical landscape, especially for compounds that are present in lower 

concentrations or have unique ionization properties. Similarly, adjustments on the mobile phase 

type, concentration, or gradient, or experimenting with different column types, could favor the 

detection of MFs that were not detected with the original settings. Furthermore, advanced 

characterization of the twenty identified MFOIs should be pursued. This would involve in-depth 

MS/MS analysis and the application of tools like SIRIUS for proper identification of these 

chemical compounds. Such detailed analysis could provide vital clues in identifying potential 

authentication markers and contribute significantly to the field of spirit authentication. Considering 

the complexities observed, integrating 2D LC-MS into this analysis could refine the identification 

process, isolating specific MFOIs for clearer analysis and aiding in chemical structure elucidation. 
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7. SUPPLEMENTARY MATERIALS 

 

Figure S1.1 TIC of ESI+ (A) and APCI+ (B) for NS (red) vs. gins (black). 
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Figure S1.2 TIC of ESI+ (A) and APCI+ (B) for wheat (green), rye (red), corn (Black), and 

potato (blue). 
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Figure S1.3 TIC of ESI+ (A) and APCI+ (B) for Others (green), QC (red), and ONT (Black). 
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CATEGORY BOTANICAL ORIGIN 
GEOGRAPHICAL 

ORIGIN 
COUNT 

NS Corn Quebec 5 

NS Corn Canada (Excl. Quebec) 3 

NS Corn USA 2 

NS Mixed (Corn & Malted Barley) Quebec 4 

NS Wheat Southern Sweden 1 

NS Wheat France 1 

NS Wheat Netherlands 1 

NS Mixed (Wheat & Rye) Quebec 1 

NS Wheat Quebec 6 

NS Rye Quebec 7 

NS Honey Quebec 1 

NS Potato Quebec 8 

Gin Corn Quebec 2 

Gin Mixed (Wheat & Rye) Quebec 1 

Gin Barley Quebec 1 

Gin Corn Canada 4 

Gin Wheat France 1 

Gin Potato Quebec 4 

Gin Wheat Quebec 4 

Gin Rye Quebec 4 

Table S1 Summary of NS and gin samples per botanical and geographical origins. 


