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Image registration is widely used in the processing and analysis of clinical and research medical 

imaging tasks. However, validating and verifying nonlinear image registrations remains a 

challenging problem and limits its use in clinical settings. The field of registration error and 

confidence estimation provides a means to verify the result of image registration on a per-case 

basis. This field was objectively reviewed following PRISMA guidelines. Out of 570 potential 

records, twenty studies met our inclusion criteria. A taxonomy was developed to structure the 

field and enable comparison among its diverse algorithms. Trends, suggestions for best practices 

and opportunities for future research are discussed. Based on the results of the review, a method 

was implemented for an application with significant potential: estimating errors from MRI to 

ultrasound registrations in the context of Image-Guided Neurosurgery. Such an algorithm could 

pave the way for the clinical use of nonlinear registration algorithms in neuronavigation systems 

that are used to correct for the intra-operative phenomenon of brain shift, ultimately yielding 

safer surgeries. Ultrasound images were simulated from twelve pre-operative MRI images and 

deformed artificially to have the ground truth mis-registration. A 3D convolutional neural 

network was trained on augmented versions of this data to predict error on a voxel-wise basis. 

Experiments were performed to determine optimal training parameters. Deformations of varying 

complexity on two held-out test subjects were used to evaluate the model. With known mis-

registrations up to 15 mm, the trained model achieved a mean absolute error of 0.849 mm and a 

Pearson correlation of 0.838 between the known and estimated mis-registrations. Future work 

includes evaluating the model on real ultrasound data and implementing it on the 

neuronavigation systems developed by our group. Overall, this work impacts on a more global 

level, by providing guidance to a growing field, and on a more local level, by providing the 

groundwork for registration error estimation in Image-Guided Neurosurgery.  
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Le recalage d'images est très utilisé dans le traitement et l'analyse d'imagerie médicale aussi bien 

HQ�FOLQLTXH�TX¶HQ�UHFKHUFKH��&HSHQGDQW��OD�YDOLGDWLRQ�HW�OD�Yprification du recalage non linéaire 

des images reste un problème difficile, ce qui limite son utilisation en milieu clinique. Le 

GRPDLQH�GH�O
HVWLPDWLRQ�GH�O¶HUUHXU�DLQVL�TXH�O¶LQFHUWLWXGH�GH�UHFDODJH�IRXUQLW�XQ�PR\HQ�GH�

YpULILHU�OH�UpVXOWDW�GX�UHFDODJH�G¶images au cas par cas. Ce domaine a été objectivement examiné 

conformément aux directives PRISMA. Sur 570 articles potentiels, vingt études répondaient à 

QRV�FULWqUHV�G
LQFOXVLRQ��8QH�WD[RQRPLH�D�pWp�GpYHORSSpH�SRXU�VWUXFWXUHU�OH�GRPDLQH�G¶pWXGH�HW�

permettre la comparaison entre ses divers algorithmes. Les tendances, les suggestions de 

meilleures pratiques et les possibilités de recherches futures sont discutées. Sur la base des 

résultats de cette revue de littérature, une méthode a été mise en place pour une application à fort 

potentiel : l'estimation des erreurs de recalage des images IRM et échographiques dans le cadre 

de la neurochirurgie guidée par l'image. Un tel algorithme pourrait ouvrir la voie à l'utilisation 

clinique d'algorithmes de recalage non linéaire dans les systèmes de neuronavigation. Ces 

derniers sont utilisés pour corriger le phénomène préopératoire de déplacement du cerveau, 

aboutissant finalement à des chirurgies plus sûres. Les images échographiques ont été simulées à 

partir de douze images IRM préopératoires et déformées artificiellement pour obtenir la 

déformation initiale considérée comme vérité terrain. Un réseau neuronal convolutif 3D a été 

entrainé sur des versions augmentées de ces données pour prédire l'erreur au niveau de chaque 

voxel. Des expériences ont été réalisées pour déterminer les paramètres d'entraînement optimaux. 

Des déformations de complexité variable sur deux sujets de test retenus ont été utilisées pour 

évaluer le modèle. Avec des erreurs de recalage préalablement connues allant jusqu'à 15 mm, le 

modèle pré-entrainé a atteint une erreur absolue moyenne de 0,849 mm et une corrélation de 

Pearson de 0,838 entre les erreurs de recalage connues et estimées. Les travaux futurs incluent 

l'évaluation du modèle sur des données échographiques réelles et son implémentation sur les 

systèmes de neuronavigation développés par notre groupe. Au niveau global, ce travail fournit 

des lignes directrices et des conseils pour un domaine en pleine croissance, et à un niveau plus 

local, il fournit les bases pour l'estimation de l'erreur de recalage en neurochirurgie guidée par 

l'image.  
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&KDSWHU����,QWURGXFWLRQ 
 

Image registration is fundamental to medical imaging tasks that require images to be 

spatially aligned. Such tasks are ubiquitous in the clinical and research domains of medical 

imaging. They range from intra-subject registrations to fuse multimodal images (e.g., positron 

emission tomography images to magnetic resonance imaging (MRI) images) to inter-subject 

registrations for the comparison of patient populations (Holden, 2008; Knowlton, 2009; Rueckert 

and Schnabel, 2011). Image registration spatially aligns corresponding points in two or more 

images (Crum et al., 2004; Maintz and Viergever, 1998; Maurer and Fitzpatrick, 1993; Sotiras et 

al., 2013). 

 Compared to nonlinear (or deformable, curved or elastic) image registration, linear (i.e., 

rigid and affine) image registration is a relatively simple task and has achieved clinical 

acceptance in numerous applications (Viergever et al., 2016). Nonlinear registration, on the other 

hand, has yet to achieve widespread clinical acceptance primarily due to the difficulty of the task 

and the challenges inherent in validating such algorithms. For these reasons, in an address 

IROORZLQJ�XS�RQ�0DLQW]�DQG�9LHUJHYHU¶V������publication A survey of medical image registration 

(Maintz and Viergever, 1998)��9LHUJHYHU�HW�DO��³strongly advocate a shift of attention to the 

aspects of validation and clinical acceptance´�(Viergever et al., 2016).  

 Validation, in this context, refers to ensuring an algorithm can robustly produce accurate 

image registrations for its intended use (Brock et al., 2017; Jannin et al., 2006). Validating an 

algorithm does not guarantee it will perform without error in future registrations; registration 

errors can be expected. Verifying the performance of an algorithm (i.e., ensuring the accuracy of 

a specific registration (Brock et al., 2017)) is therefore an incredibly important task. Traditional 

metrics used to characterize the result of a registration, in validation or verification, have 

shortcomings. The field of estimating registration error and confidence emerged as a result. The 

goal of error and confidence estimating algorithms is to quantitatively estimate the quality of a 

registration result on a per-case basis. These algorithms confer numerous benefits to the field of 

image registration, ranging from increasing the clinical acceptance of deformable image 

registration to informing downstream processing and analysis tasks of possible errors or bias.  
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 A hypothetical yet relevant and realistic application of such a method lays in Image-

Guided Neurosurgery for tumour resections. A pre-operative MRI image is obtained from a 

patient with a brain tumour. A neuronavigation system is used during surgery to guide surgeons, 

GLVSOD\LQJ�WKHLU�VXUJLFDO�WRROV�LQ�UHODWLRQ�WR�WKH�SDWLHQW¶V�SUH-operative MRI image (Drouin et al., 

2017; Gerard et al., 2017; Grimson and Kikinis, 2009). The pre-operative MRI image loses 

ILGHOLW\�WKURXJKRXW�WKH�VXUJHU\�GXH�WR�WKH�SKHQRPHQRQ�RI�µEUDLQ�VKLIW¶�± deformation the brain 

undergoes during surgery (Dickhaus et al., 1997; Gerard et al., 2021, 2017; Hartkens et al., 2003; 

Hastreiter et al., 2004; Kelly et al., 1986; Nabavi et al., 2001). To mitigate the effects of brain 

shift, surgeons can acquire intra-opeUDWLYH�XOWUDVRXQG�LPDJHV�WKDW�VKRZ�WKH�µVKLIWHG¶�VWDWH�RI�WKH�

brain. To correct for brain shift, the pre-operative MRI image can be registered to the intra-

operative ultrasound, resulting in an updated pre-operative MRI image that reflects the 

anatomical/physical changes (i.e., brain shift) that have occurred since the beginning of surgery 

(Fedorov et al., 2014; Gerard et al., 2017; Sastry et al., 2017). The registration enables surgeons 

to continue using the neuronavigation platform. One can imagine how registration errors could 

have devastating effects on the brain tumour resection surgery: the surgeon could be misled and 

damage eloquent regions or miss resecting tumour tissue. A registration error estimating 

algorithm could highlight anatomical regions where the registration process performed well, as 

well as those that the surgeon should be weary of.  

 The field of registration error and confidence estimation is relatively new. A challenge 

for researchers new to the field, and even those already in it, is the diversity of the publications it 

includes. The key feature that unites methods in this field is that they aim to provide error or 

confidence estimates on a per-registration basis to indicate the quality of a registration. However, 

these methods range from Bayesian registration algorithms that produce confidence estimates to 

complex neural network architectures that estimate error. An encompassing and concise resource 

to unify the field with a structure to link seemingly disparate methods is lacking. To this end, we 

wrote a compendious systematic review of the field of registration error and confidence 

estimation. We introduced a novel taxonomy to classify registration error and confidence 

estimation methods, which provides structure to the field and allows researchers to compare and 

contrast competing algorithms. Drawing on insights from the review process, we provided 

suggestions for best practices and fruitful areas for future research. This review was submitted to 

the international journal Medical Image Analysis on October 29, 2021 (MEDIA-D-21-01149). 
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The manuscript is presently under second review and composes Chapter 2 of this thesis. Our 

review will help orient new and current researchers, and guide the growth and development of 

the field of registration error and confidence estimation.  

 The application of an error estimating algorithm in Image-Guided Neurosurgery, outlined 

above, can yield immediate and significant benefits. It could easily be integrated in a 

neuronavigation system (e.g., Intraoperative Brain Imaging System (IBIS), the neuronavigation 

system developed in our research group by Drouin et al. (Drouin et al., 2017)). It could then 

warn surgeons of regions in a registration that did not perform well and instill confidence in 

nonlinear registration algorithms that can better model brain shift (Archip et al., 2007; Fedorov et 

al., 2014; Sastry et al., 2017). To the best of our knowledge, an error estimating algorithm for the 

purpose of ultrasound-MRI registrations in the context of Image-Guided Neurosurgery has yet to 

be proposed. Therefore, I expand the scope of the field of registration error and confidence 

estimation to include ultrasound-MRI registrations in the context of Image-Guided 

Neurosurgery. In Chapter 3, I implemented an error estimation method discovered in the 

systematic review of Chapter 2 to ultrasound-MRI registrations. The algorithm is based on a 

sliding-window convolutional neural network that estimates the residual mis-registration error on 

a voxel-wise basis. To create training data where the true registration error is known exactly, 

ultrasound images were simulated from pre-operative MRI images and artificially deformed. 

Experiments were performed to determine optimal training parameters for the algorithm. This 

exploratory analysis provides the groundwork for such a method to be incorporated in 

neuronavigation systems.  

 The thesis ends with Chapter 4, which serves as a conclusion and outlines promising 

areas of future research.  
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The contributions of this work include: 

x Chapter 2: 

o A taxonomy to classify methods that densely estimate registration error and 

confidence.  

o A detailed review of the literature on methods that estimate registration error and 

confidence guided by the PRISMA guidelines (Page et al., 2021). The review is 

conducted according to the proposed taxonomy.  

o An analysis of the trends and advantages and disadvantages of methods in the 

field of registration error and confidence estimation. Additionally, suggestions for 

best practices and directions for future research are discussed.  

o 7KH�WD[RQRP\��UHYLHZ�DQG�GLVFXVVLRQ�DUH�GHWDLOHG�LQ��³Estimating Medical Image 

Registration Error and Confidence: A Taxonomy and Systematic Review´�E\�

Joshua Bierbrier, Houssem-Eddine Gueziri and D. Louis Collins, submitted to 

Medical Image Analysis (MEDIA-D-21-01149). 

Joshua Bierbrier: Conceptualization, Data curation, Formal analysis, Investigation, 

Methodology, Validation, Visualization, Writing - original draft/review & editing. 

Houssem-Eddine Gueziri: Conceptualization, Methodology, Writing - review & 

editing. 

D. Louis Collins: Conceptualization, Funding acquisition, Methodology, 

Supervision, Writing - review & editing. 

x Chapter 3: 

o The implementation of a registration error estimation algorithm for MRI-

ultrasound registrations. To the best of our knowledge, this implementation is 

novel in the following ways: 

1. The first dense registration error estimating algorithm applied to multi-

modal registrations; in particular MRI-ultrasound registrations. 

2. The first dense registration error estimating algorithm using simulated 

images to obtain reference data for training and validation. 

3. The first dense registration error estimating algorithm applied in the 

context of Image-Guided Neurosurgery. 
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o Validation of a registration error estimation algorithm on artificially deformed 

simulated ultrasound images and (real) pre-operative MRI images.  

Joshua Bierbrier: Conceptualization, Data curation, Formal analysis, Investigation, 

Methodology, Software, Validation, Visualization, Writing - original draft/review & 

editing. 

D. Louis Collins: Conceptualization, Funding acquisition, Methodology, Resources, 

Supervision, Writing - review & editing. 

x Chapter 4: 

o A comprehensive action plan for improving and continuing the development of 

the algorithm, including enhancing the deep learning model, training data and 

validation procedure, as well as noteworthy future research directions. 

Joshua Bierbrier: Conceptualization, Formal analysis, Investigation, Writing - 

original draft/review & editing. 

D. Louis Collins: Conceptualization, Supervision, Writing - review & editing. 
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Abstract 
 

Given that image registration is a fundamental and ubiquitous task in both clinical and research 

domains of the medical field, errors in registration can have serious consequences. Since such 

errors can mislead clinicians during image-guided therapies or bias the results of a downstream 

analysis, methods to estimate registration error are becoming more popular. To give structure to 

this new heterogenous field we developed a taxonomy and performed a systematic review of 

methods that quantitatively and automatically provide a dense estimation of registration error. 

The taxonomy breaks down error estimation methods into Approach (Image- or Transformation-

based), Framework (Machine Learning or Direct) and Measurement (error or confidence) 

components. Following the PRISMA guidelines, the 570 records found were reduced to twenty 

studies that met inclusion criteria, which were then reviewed according to the proposed 

taxonomy. Trends in the field, advantages and disadvantages of the methods, and potential 

sources of bias are also discussed. We provide suggestions for best practices and identify areas of 

future research.   

 

 

 

Abbreviations 

 

PRISMA: Preferred Reporting Items for Systematic reviews and Meta-Analysis 

MIND: Modality Independent Neighbourhood Descriptor 

CT: Computed Tomography 

MRI: Magnetic Resonance Imaging  

MCMC: Markov chain Monte Carlo 

RF: Random Forest 

ML: Machine Learning 

mm: Millimetres  
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1. Introduction 
Image registration is the process of spatially aligning homologous points in two or more 

images (W R Crum et al., 2004; Maintz and Viergever, 1998; Maurer and Fitzpatrick, 1993; 

Sotiras et al., 2013). The product of a registration is useful for numerous downstream clinical and 

research tasks including motion correction, motion determination, cross modality image fusion, 

change detection, distortion correction, atlas construction, atlas registration and segmentation 

(Holden, 2008). While linear (i.e., rigid and affine) registration was once the focus of most 

research, nonlinear (or deformable, curved or elastic) image registration currently receives much 

more attention (Viergever et al., 2016). 

Despite such increased attention, deformable image registrations are not immune to error. 

Registration errors occur whenever the registration fails to correctly align corresponding points 

in the images (Crum et al., 2003; Rohlfing, 2012). There are several causes for registration error. 

It may be caused by the quality of the images, which can be noisy, suffer from movement 

artefacts or have distortions (Brock et al., 2017; Heinrich et al., 2016; Janoos et al., 2012a; 

Risholm et al., 2013; Saygili, 2018; Zhong et al., 2007). The images may be missing 

correspondences due to pathology in one of the images but not the other. Misregistration can also 

be due to differences in contrast between the images, or to the inherent challenges of inter-

subject registrations (Brock et al., 2017; Heinrich et al., 2016; Risholm et al., 2010a, 2013; 

Saygili, 2018; Schultz et al., 2018, 2019), to incorrect modelling assumptions used for the 

registration (Brock et al., 2017; Janoos et al., 2012a; Kierkels et al., 2018; Nix et al., 2017; 

Schultz et al., 2019; Zhong et al., 2007), or incorrect optimization or interpolation parameters 

(Brock et al., 2017), or to the lack of features driving the local deformations in homogeneous 

regions (Hub et al., 2009; Hub and Karger, 2013; Li et al., 2013).  

Deformable image registration algorithms are, consequently, thoroughly validated prior 

to their general acceptance and use. Recently, the American Association of Physicists in 

Medicine commissioned Task Group 132 to review the field of image registration in 

radiotherapy and provide recommendations on quality assurance and control (Brock et al., 2017). 

They presented measures for assessing the accuracy of image registration algorithms during 

validation, including target registration error of corresponding landmarks, distance and overlap 

measures for contoured areas, and properties of the deformation vector field.  
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While a number of metrics exist to characterize registration results (Brock et al., 2017), 

each have their drawbacks. For example, anatomical landmarks do not yield a dense estimate of 

the error, are lacking in homogeneous regions, often restricted to highly selective features, 

difficult to find in large numbers, require expert knowledge of the anatomy and are subject to 

inter- and intra-observer variability (Bender and Tomé, 2009; R. Castillo et al., 2009; Eppenhof 

and Pluim, 2018; Hub et al., 2009; Hub and Karger, 2013; Kierkels et al., 2018; Li et al., 2013; 

Lotfi et al., 2013; Neylon et al., 2017; Obeidat et al., 2016; Ribeiro et al., 2015; Schlachter et al., 

2016; Schreibmann et al., 2012; Sokooti et al., 2019b; Zhong et al., 2007). Contour-based 

metrics suffer from similar shortcomings. Overlap measures based on contours do not provide 

error measurements, but are surrogates (Eppenhof and Pluim, 2018; Rohlfing, 2012), and 

distance measures are only sensitive to inaccuracies normal to their surfaces (Obeidat et al., 

2016; Rohlfing, 2012). Consistency and field smoothness measures may suggest issues with the 

resulting registration transformation, but do not necessarily infer error (Bender and Tomé, 2009; 

Hub and Karger, 2013; Ribeiro et al., 2015). Visualizations yield qualitative measures (Li et al., 

2013; Sokooti et al., 2021) and are open to inter- and intra-observer variability (Sokooti et al., 

2021), human fatigue (Sokooti et al., 2021), and are not always feasible for large amounts of data 

(Nix et al., 2017; Saygili et al., 2016; Sokooti et al., 2021). Finally, metrics that quantify the 

similarity between images (i.e., similarity measures/metrics) can be seriously misleading to 

assess registration error (R. Castillo et al., 2009; Eppenhof and Pluim, 2018; Obeidat et al., 2016; 

Rohlfing, 2012).  

A thorough validation does not imply perfectly performing algorithms. For example, in 

2009, Klein et al. performed an in-depth comparison of leading deformable image registration 

algorithms (Klein et al., 2009). While their interest lay in determining the best algorithm, 

Simpson et al. pointed out that none of the algorithms performed without error (Simpson et al., 

2011). In addition, it should be noted that the performance of any given algorithm is not uniform 

throughout the entire registration field.  

The idea that the performance of deformable image registration is variable, both within 

and across subjects, is not new (Brock et al., 2017; Gunay et al., 2018; Kirby et al., 2016; Luo et 

al., 2020; Muenzing et al., 2012, 2009; Paganelli et al., 2018; Saygili, 2021; Zhong et al., 2007). 

The results obtained from a validation experiment do not necessarily ensure the success of each 

subsequent registration with that algorithm. Risholm et al. further point out that if a registration 
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algorithm is presented with images that contain pathology or artifacts that did not appear in the 

validation data, one cannot assume it will perform to the same degree of accuracy reached in 

validation (Risholm et al., 2013).   

There are specific applications that necessitate highly robust and accurate registrations, 

for example in image-guided spine surgeries, where registration accuracies of 1-2 mm are 

required (Cleary et al., 2000). Registration errors will affect and can bias downstream processing 

or analysis tasks (Brock et al., 2017; Ribeiro et al., 2015; Saygili, 2020; Sokooti et al., 2019b). 

This includes clinical decision making in image-guided therapies (Heinrich et al., 2016; 

Heiselman and Miga, 2021; Kierkels et al., 2018; Luo et al., 2020; Neylon et al., 2017; Nix et al., 

2017; Obeidat et al., 2016; Risholm et al., 2013; Saygili, 2020; Schultz et al., 2018, 2019; Sedghi 

et al., 2019; Sokooti et al., 2019b), and more general research applications, like in atlas 

construction, multi-modal image alignment, inter-subject registration and segmentation (Holden, 

2008). Moreover, the variable performance of deformable image registration impedes its clinical 

acceptance (R. Castillo et al., 2009; Luo et al., 2020; Neylon et al., 2017; Paganelli et al., 2018; 

Schlachter et al., 2016; Sedghi et al., 2019). It is therefore no surprise that Viergever et al. 

³strongly advocate a shift of attention to the aspects of validation and clinical acceptance´�

(Viergever et al., 2016). 

Given the ubiquitous use of image registration in the medical field, it seems important 

that the performance of an algorithm be verified on a per-registration basis. Indeed, there is 

growing interest in directly estimating the quality of individual registrations (Paganelli et al., 

2018; Schultz et al., 2019). This systematic review focuses on such methods. In particular, we 

review methods that densely estimate the deformable image registration error, or confidence, 

between two registered images, without any manual intervention. The goal is to be able to 

automatically and quantitatively assess the results of any given registration immediately after it 

is performed. This could enable, for example, a surgeon to place trust in a region of a registration 

with low estimated error (or confidence) during an image-guided (e.g., (Luo et al., 2020; 

Risholm et al., 2013; Sedghi et al., 2019)) or radiation therapy (e.g., (Paganelli et al., 2018)) 

procedure. Alternatively, it could be used to inform downstream processing tasks of areas with 

potentially high error (e.g., (Gil et al., 2021; Simpson et al., 2011)). An error estimation method 

could further be used to improve the results of a registration (e.g., (Lotfi et al., 2013; Muenzing 
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et al., 2014)). It can vastly decrease manual assessment time and enable automatic quality control 

of large-scale image analysis (Sokooti et al., 2019b, 2021).  

The field of automatic registration error and confidence estimation is relatively new, with 

early methods coming from Kybic and Smutek, and from Muenzing et al. (Kybic and Smutek, 

2006; Muenzing et al., 2009). Our review is not the first in the field. Paganelli et al. provided an 

overview of patient-specific validation methods in deformable image registration (Paganelli et 

al., 2018), focusing on image-guided radiotherapy. We differentiate our review from theirs in 

several ways. First, our review is more general, rather than focused on radiotherapy. Second, we 

propose a taxonomy for methods that estimate registration error and confidence, which serves as 

an objective way for researchers to classify and compare methods. Third, we employ a 

systematic and objective approach in the review, following PRISMA guidelines (Page et al., 

2021) with clear paper inclusion criteria. This provides a succinct yet thorough representation of 

the field of registration error and confidence estimation that includes recent developments.  

 The rest of the review is structured as follows. We first describe a taxonomy to 

characterize different methods and then present the literature review methodology. The results of 

the systematic review are then presented in terms of the proposed taxonomy. Trends, advantages 

and disadvantages, and forms of bias are discussed thereafter. Suggestions and best practices are 

given throughout the Discussion section. 
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2. Material and methods 

2.1. Taxonomy 

  

 
Figure 2.1. The proposed taxonomy for methods that estimate error and confidence. 

We propose a taxonomy to classify methods that automatically and densely predict error 

and confidence of medical image registrations (Figure 2.1���7KH�WD[RQRP\¶V�IRrmat enables 

different modules to be combined to describe an error and confidence estimation method as 

required. Note that the method applied to estimate registration error or confidence is usually 

distinct from the registration method. Image registration transforms a moving image to a fixed 

image and yields a registered (moving) image; whereas estimating registration error or 

confidence is generally performed after the registration algorithm has been applied. 

The taxonomy comprises three components: Approach, Framework and Measurement. 

The Approach is the most fundamental level of a method and describes how the method extracts 

features from the registered images to estimate registration error or confidence. The Framework 

specifies whether additional processing is required to transform these features into an estimate, in 

millimetres (mm) for example, of local misregistration. If such a transformation between the 

features output from the Approach is not needed, the result of the Approach is used directly as 

the Measurement. Finally, the Measurement specifies the type of output the method produces; 

this output corresponds to determining the magnitude (and sometimes direction) of the error or 



Chapter 2 

 13 

the confidence result. The taxonomy is described in detail below. We begin by describing the 

types of Measurements, then explain how they are generated by the different Approaches and 

Frameworks.  

 

2.1.1. Measurement 

We classify the output of a method into two types: either estimated error or confidence.  

Error and confidence are fundamentally different concepts. Estimated error is a prediction of the 

registration error, that is, an estimate of the misalignment of corresponding points in the 

registered images (Crum et al., 2003; Fitzpatrick, 2001; Rohlfing and Avants, 2012). The 

accuracy of a registration relates to the amount of error in the estimated registration 

transformation. Fundamentally, error estimates must be in distance units (Rohlfing, 2012). 

Confidence is a direct or indirect measure indicating the level of belief one can have in the 

correctness of a registration result (Eppenhof and Pluim, 2018; Lotfi Mahyari, 2013). Most 

Approaches produce a measure of confidence. We identify two categories of confidence 

Measurement: uncertainty and plausibility. Uncertainty has been defined as ³a measure of the 

possible variations within the given model´�(Schultz et al., 2019). It is a measure of precision (or 

repeatability), not accuracy. The distinction between estimated error and uncertainty is of utmost 

importance, particularly for end-users. To illustrate, Luo et al. claim that many clinicians believe 

high (or low) registration uncertainty indicates high (or low) registration error  (Luo et al., 2020). 

In such cases, it is imperative to know how well the uncertainty relates to the error since having 

little uncertainty (i.e., small variation within a model) does not necessarily imply a lack of 

UHJLVWUDWLRQ�HUURU��$V�VXPPDUL]HG�E\�/RWIL�0DK\DUL��³one can be highly certain of an incorrect 

answer´�(Lotfi Mahyari, 2013). Plausibility is another measure of confidence related to the 

credibility of the registration results based on a priori assumptions. Such assumptions include 

that high image similarity (quantified through a similarity metric) indicates correct alignment, or 

that correctly aligned images do not display certain characteristics in their deformation fields 

(e.g., loss of volume). Even if these assumptions are met, an error-free registration is not 

guaranteed. Therefore, plausibility Measurements are not synonymous with estimated error 

Measurements. Finally, note that the Measurement can be a vector (with X, Y and Z 

components) or a scalar.   
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2.1.2. Approach 

We identified two unique but related Approaches: Image-based and Transformation-

based (shown in the first column of Figure 2.1).  

 

 
Figure 2.2. A toy example of an Image-based Approach with two slightly different images. The column on the left shows the 

registered images. The yellow boxes indicate the patches around corresponding (red) voxels assumed to correspond, given the 

transformation to be evaluated. The column on the right shows the corresponding patches; these are assessed for similarity in 

Image-based Approaches.   

Image-based Approaches use local measures to assess the similarity between 

corresponding regions of registered images. Such regions are often defined as the immediate 

QHLJKERXUKRRG��RU�µSDWFK¶��DURXQG�FRUUHVSRQGLQJ�YR[HOV�RI�WKH�UHJLVWHUHG�LPDJHV��DV�LOOXVWUDWHG�

in Figure 2.2). The neighbourhood similarity can be estimated from the voxel intensities or from 

other features extracted from the images. These Approaches aim to assess if the regions match, 

which is assumed to indicate a lack of registration error. In many Machine Learning 

Frameworks, the image intensities are directly used as features. With the exception of neural 

network methods that consider the input images in one shot, most Image-based Approaches 

iterate through the voxels of the images to get dense Measurements. 
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Figure 2.3. A toy example of a Parameter Exploration Approach. The transformation control point under consideration (in red) 

has different possible options for its displacement. The distribution on deformations, shown in d), illustrates how likely each 

possible displacement is after the different possibilities have been explored. 

There are two types of Transformation-based Approaches: Parameter Exploration and 

Transformation Plausibility. The first type of Transformation-based Approach is Parameter 

Exploration. Parameter Exploration Approaches explore the parameter space of a registration 

transformation. In this process, they can make use of local neighbourhood similarity metrics used 

in Image-based Approaches. The explored parameters can be those from the registration, for 

example, the node displacements that drive a registration. The parameters may be explored 

during the registration itself, which is the case in probabilistic image registration methods. A 

distinction can be made between Parameter Exploration Approaches that seek to explore the 

transformation space to determine the distributions of the most likely parameters and those that 

seek to find the specific parameters that yield a better registration.  

As an example of the former, in Figure 2.3, the possible displacements of a node that 

drives the registration are compared. If the method is more certain about a limited set of 

deformations, with a peaked distribution as in the case of Figure 2.3d, the confidence is higher. 

Probabilistic image registration algorithms fit into this category, since they provide a probability 

distribution for the parameters of the registrations (also referred to as a distribution over 
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deformations or displacements (Risholm et al., 2013)), shown in Figure 2.3d. Such 

Transformation-based Approaches typically summarize the obtained distributions by a simple 

statistic, like variance. Higher dimensional summaries of such distributions are usually possible 

but lend themselves to intuitive visualization with difficulty. 

Transformation-based Approaches that seek to find parameters that yield a better 

registration may consider the displacement vectors of a deformation field as the transformation 

parameters to be explored. These methods then search for specific parameters (e.g., the voxel 

displacement vectors) that yield a better alignment. The output of such an Approach is typically 

the displacement that purports to improve the alignment.  

The second type of Transformation-based Approach is Transformation Plausibility. These 

Approaches analyze the deformation vector field obtained from the registration to assess if it is 

physically legitimate by evaluating the physiological realism of the transformation or its 

numerical consistency (Kierkels et al., 2018). Examples include the Jacobian determinant of the 

deformation vector field or the inverse consistency error.  

 

2.1.3. Frameworks 

The Framework takes as input the results of an Approach and outputs a Measurement of 

estimated error or confidence. 

  

2.1.3.1. Machine Learning 

The Machine Learning Framework can take input from any of the Approaches and is 

divided into three dimensions. The first dimension refers to the type of machine learning method 

used ± either a classical machine learning model or a deep learning model. The second 

dimension describes the features that the model uses. These features can come from any of, or a 

combination of, the Approaches. Finally, the model requires data that indicates the known 

registration error. This comes from a Reference; either artificially deformed data, where the 

underlying deformation, and hence the registration error, is known, or from annotated 

(corresponding) landmarks in both images. In the Machine Learning Framework, a model that 

learns the relationship between features and registration error is trained. (Note that a Machine 

Learning Framework could be based on simple regression between the output of an Approach 

and the known error.) These models output the estimated error.  
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2.1.3.2. Directly to Measurement 

The result of the Approaches can be directly used as Measurements of confidence. In this 

case, the output of the Approach is not processed through a Machine Learning Framework. 

 Transformation Plausibility Approaches yield Measurements of plausibility. These 

Approaches indicate where and why a transformation may or may not be physiologically or 

physically realistic, based on the registration deformation field. Numerically consistent 

transformations as well as physiologically or physically realistic registrations do not necessarily 

ensure a lack of error (Bender and Tomé, 2009; Hub and Karger, 2013; Ribeiro et al., 2015); it is 

assumed, however, that they make the transformation more likely. 

 Image-based Approaches also yield Measurements of plausibility. True corresponding 

points do not necessarily always look the same through the lens of a similarity metric (Pluim et 

al., 2016; Rohlfing, 2012; Rohlfing and Avants, 2012). Even if their surrounding patches match, 

it is not guaranteed that they contain corresponding points that are correctly aligned (R. Castillo 

et al., 2009; Crum et al., 2003; Rohlfing, 2012; Rohlfing and Avants, 2012). Therefore, we 

designate the result of such Approaches as Measurements of plausibility. Because two patches 

match (in terms of high similarity), it is more plausible that they are in correct alignment. The 

same follows for Parameter Exploration Approaches that use Image-based Approaches that seek 

better alignments. 

 Parameter Exploration Approaches that summarize the distribution of several possible 

parameter configurations yield Measurements of uncertainty. In probabilistic image registration 

settings, for example, the uncertainty measure summarizes the posterior distribution on the 

deformation or transformation parameters (Janoos et al., 2012b; Lotfi et al., 2013; Luo et al., 

2020; Risholm et al., 2013; Schultz et al., 2019), as seen in Figure 2.3. 
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Figure 2.4. The Reference and Comparison Function are notable aspects of validation procedures. Note that the Measurement is 

the output of a method, as shown in Figure 2.1. 

2.1.4. Validation 

The validation of any method has two main components (see Figure 2.4): the Comparison 

Function and the Reference. Here, we borrow terminology from Jannin et al. (Jannin et al., 

2006). It is important to note that although the estimated error is a direct prediction of the actual 

registration error, it will likely not be exact. Thus, we distinguish between the estimated (or 

predicted) error and the known (or actual, true) error obtained from a Reference (Lotfi Mahyari, 

2013). We identified two types of References: landmarks and artificial deformations. Note that 

although these References yield the known error, they are not perfect. In particular, landmarks 

are subject to inter- and intra-rater variability. While artificial deformations do not have this 

limitation, they can struggle to match the complexity of real registrations (Fitzpatrick, 2001). 

Note that labelled anatomical structures can have utility in assessing the quality of a registration 

as overlap or distance metrics (e.g., the Dice coefficient). However, these metrics are not suitable 

References for error and confidence estimation given they do not yield the known error for 

individual voxels. 

The Validation Metric is a Comparison Function that relates the Reference, the source of 

known error, to the estimated error or confidence. Comparison Functions include error metrics 

and correlation metrics. Error metrics, such as root mean square difference or mean absolute 
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error, compare the estimated error from a Machine Learning Framework to the known error from 

a Reference. These quantify the error in estimating the error. A correlation metric can relate 

confidence or error estimates to the known error.  

 

2.2. Literature search 

This review followed the Preferred Reporting Items for Systematic reviews and Meta-

Analysis (PRISMA) 2020 guidelines (Page et al., 2021) without prior publication of a review 

protocol. Keywords were collected from a preliminary literature review and were used to 

formulate an advanced database search. A campus librarian was consulted when constructing the 

advanced database search. The following search (last updated September 13th, 2021) was entered 

as a query on the Scopus database: 

 

(TITLE-ABS-KEY ((imag* regist*) AND ((uncertain* OR error OR confidence OR 

accuracy OR quality) W/5 (estimat* OR predict* OR eval* OR quant*))) AND TITLE 

((regist*) AND (uncertain* OR error OR confidence OR accuracy OR quality))) 

 

(VVHQWLDOO\��LW�ILQGV�UHFRUGV�ZLWK�UHOHYDQW�WHUPV�VLPLODU�WR�µLPDJH�UHJLVWUDWLRQ�¶�

µHVWLPDWLRQ¶�DQG�µHUURU¶�LQ�WKH�7LWOH��$EVWUDFW�DQG�.H\ZRUGV�ILHOGV��,Q�DGGLWLRQ��WKH�UHFRUGV�

collected from the preliminary literature review, as well as appropriate references from the 

Scopus-returned records, were considered for inclusion. Only English records were considered. 

The following seven inclusion criteria were considered: 

 
1. Error or confidence must be explicitly related to known error (e.g., through correlation). 

2. The method must provide a dense estimation. 

3. 3D-3D nonlinear image registration. 

4. During application, the method only requires two (registered) images (e.g., no further imaging or 

manually annotated data) (note that this does not exclude methods that require training data). 

5. The method is automatic. 

6. Focus is on quantitative estimation of error or confidence. 

7. Focus is on biomedical image registration. 
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7KHVH�FULWHULD�DUH�SDUWLDOO\�LQVSLUHG�E\�WKH�³qualities of a yet to be developed ideal evaluation 

method for measuring neuroimage registration accuracy´�VXJJHVWHG�by Garlapati et al. 

(Garlapati et al., 2015). For the estimated error or confidence to have physical significance, it 

should be related to known error (e.g., measured in mm). A dense estimation, meaning that for 

every registered voxel there is an accompanying Measurement, ensures that the entire field of the 

3D-3D deformable registration can be assessed. The method should only require the two 

registered images ± no manual segmentations or landmark identification, or additional image 

data. The remaining criteria restricted our review to publications on biomedical image 

registration that have a focus on estimating error or confidence. 

One reviewer considered each record relative to the inclusion criteria to determine its fit. 

When screening records, only the title and abstract were considered. When assessing reports for 

eligibility, the title, abstract and full publication were considered as necessary. In cases of doubt, 

a second reviewer was consulted. The first reviewer also extracted results from the included 

papers, which are presented qualitatively. Only results relevant to the validation of error and 

FRQILGHQFH�HVWLPDWLRQ�PHWKRGV�ZHUH�VRXJKW��7KH�6\VWHPDWLF�5HYLHZ�$FFHOHUDWRU¶V�GHGXSOLFDWLQJ�

tool was used to automatically identify and (manually) remove duplicate records (Rathbone et 

al., 2015). The systematic review software from Rayyan Systems Inc. was used to structure and 

organize the paper selection process (Ouzzani et al., 2016). 

  



Chapter 2 

 21 

3. Results 
 

 

 
Figure 3.1. PRISMA flow diagram highlighting the screening and selection process. 

The results of the literature search and selection process are given in the PRISMA flow 

diagram of Figure 3.1. A total of 570 records were considered. After removing duplicates and 

screening the records, twenty papers were found to match the inclusion criteria and are reviewed 

here in terms of the taxonomy introduced above (Figure 2.1). The results are summarized in 

Table 3.1.  

 
Author Approach Framework Measure-

ment 

Reference Data Results 

(Bender 

and Tomé, 

2009) 

Transformation 

Plausibility 

Directly to 

Measurement 

Plausibility Landmarks 1. CT of physical phantom containing identifiable landmarks, 

physically deformed to different levels 

$YHUDJH�6SHDUPDQ¶V�UDQN�RUGHU�correlation coefficient for two 

types of registrations: 0.342, 0.661 

(Li et al., 

2013) 

Transformation 

Plausibility 

Directly to 

Measurement 

Plausibility Landmarks 

Artificial 

deformations 

1. POPI-model: 1 thorax 4DCT dataset (40 landmarks) 

(Vandemeulebroucke et al., 2007) 

2. CREATIS: 6 thorax 4DCT of cancer patients (100 

landmarks per case) (Vandemeulebroucke et al., 2011) 

3HDUVRQ¶V�FRUUHODWLRQ�FRHIILFLHQW��������DUWLILFLDO�GHIRUPDWLRQV��� 

0.64 (landmarks) 
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(Kierkels 

et al., 

2018)  

Transformation 

Plausibility 

Directly to 

Measurement 

Plausibility Artificial 

deformations 

1. CT of 26 head and neck cancer patients 

2. 4DCT of 12 lung cancer patients 

Pearson's correlation for Harmonic Energy: 0.44 (Head and 

Neck region), 0.49 (Lung region) 

(Schlachter 

et al., 

2016) 

Image-based Directly to 

Measurement 

Plausibility Artificial 

deformations 

1. DIR-Lab-4DCT: 10 thoracic CT, half from patients with 

thoracic malignancies (>300 landmarks per image pair) (E. 

Castillo et al., 2009; R. Castillo et al., 2009) 

Correlation coefficient for Histogram Intersection 

(plausibility): 0.713 (for one case of artificial deformation; 

only at landmark locations) 

(Saygili et 

al., 2016) 

Parameter 

Exploration 

Directly to 

Measurement 

Plausibility Artificial 

deformations 

Landmarks 

1. SPREAD: follow-up chest CT of 21 emphysema patients 

(~100 landmarks per case, chosen semi-automatically 

(Staring et al., 2014)) (Stolk et al., 2007) 

2. HAMMERS: 30 healthy brain MRI (Hammers et al., 2003) 

3. RIRE: T1 and T2 brain MRI (West et al., 1997) 

No single value given (only graphs); qualitative correlations 

shown 

(Nix et al., 

2017) 

Parameter 

Exploration 

Directly to 

Measurement 

Plausibility Artificial 

deformations 

1. MRI-CT of 14 head and neck cancer patients Versions of the method detected errors of 1.60 ± 0.67 mm and 

1.44 ± 0.92 mm for known in-plane translations of 1.5 mm 

(Sokooti et 

al., 2016) 

Parameter 

Exploration 

Image-based 

Transformation 

Plausibility 

ML (RF; 

Landmarks + 

surrounding 

region) 

Error Landmarks 1. SPREAD Mean absolute error: 0.72 ± 0.96 mm 

(Sokooti et 

al., 2019b) 

Parameter 

Exploration 

Image-based 

Transformation 

Plausibility 

ML (RF; 

Landmarks + 

surrounding 

region) 

Error Landmarks 1. SPREAD 

2. DIR-Lab-4DCT 

3. DIR-Lab-COPDgene: 10 thoracic CT of patients with 

severe breathing disorders (>300 landmarks per case) 

(Castillo et al., 2013) 

Mean absolute error: 1.07 ± 1.86 mm (intra-database; SPREAD 

data), 1.76 ± 2.59mm (inter-database) 
 

(Eppenhof 

and Pluim, 

2018) 

Image-based ML (CNN; 

Artificial 

deformations) 

Error Landmarks 

Artificial 

deformations 

1. DIR-Lab-4DCT 

2. DIR-Lab-COPDgene  

3. POPI-model 

4. CREATIS 

Root mean square difference: 0.51 mm (Artificial 

deformations), 0.66 mm (Landmarks) 

(Saygili, 

2018) 

Parameter 

Exploration 

ML (RF; 

Landmarks + 

surrounding 

region) 

Error Landmarks 1. DIR-Lab-4DCT Mean absolute error: 1.64 ± 1.81 mm 

(Saygili, 

2020) 

Parameter 

Exploration 

ML (RF; 

Landmarks + 

surrounding 

region) 

Error Landmarks 1. DIR-Lab-4DCT 

2. CREATIS 

Mean absolute error: 2.00 mm (Three Orthogonal Planes 

approach with RF) 

R2 = 0.74 

(Saygili, 

2021) 

Parameter 

Exploration 

ML (RF; 

Landmarks + 

surrounding 

region) 

Error Landmarks 

Artificial 

deformations 

1. DIR-Lab-4DCT  

2. CREATIS 

3. HAMMERS 

R2 correlations: 0.63756, 0.58005 and 0.68825 (POPI data 

(x,y,z)) 

R2 correlations: 0.65163, 0.56063, 0.77355 (DIRLab data 

(x,y,z))  

Mean absolute error: 1.05 ± 1.28, 0.81 ± 0.87, 1.71 ± 2.91, 1.75 

± 2.47 mm (x, y, z, magnitude) 

(Sokooti et 

al., 2021) 

Image-based ML (Encoder-

Decoder; 

Artificial 

deformations) 

Error Landmarks 1. DIR-Lab-COPDgene 

2. DIR-Lab-4DCT 

3. SPREAD 

Classification accuracy: 87.1% 

Average F1 score: 66.4% 

(Hub et al., 

2009) 

Parameter 

Exploration 

Directly to 

Measurement 

Plausibility Artificial 

deformations 

1. 5 lung 4DCT datasets No single value given (only graphs); qualitative correlations 

shown 

(Hub and 

Karger, 

2013) 

Parameter 

Exploration 

Directly to 

Measurement 

Uncertainty Artificial 

deformations 

1. 2 toy images (one with translation, other with B-spline 

deformation) 

2. 5 lung 4DCT datasets 

Pearson's correlation: 0.19-0.47 (range for all lung cases and 

directions) 

(Lotfi et 

al., 2013) 

Parameter 

Exploration 

Image-based 

Transformation 

Plausibility 

Directly to 

Measurement 

ML (RF; 

Artificial 

deformations) 

Uncertainty 

Error 

Artificial 

deformations 

1. Synthetic texture image 

2. BRATS 2012: 6 brain tumour MRI �³0,&&$,�%5$76�

�����´�Q�G�� 

3. LBPA40: 40 brain MRI (Shattuck et al., 2008) 

Correlation coefficient: 0.730 (uncertainty; synthetic data), 

0.215 (est. error; without uncertainty as a feature), 0.542 (est. 

error; with uncertainty as a feature) 
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(Sedghi et 

al., 2019) 

Image-based 

Parameter 

Exploration 

Directly to 

Measurement 

ML (CNN; 

Artificial 

deformations) 

Uncertainty Artificial 

deformations 

1. IXI: T1 and T2 brain MRI �³,;,�'DWDVHW�± Brain 

'HYHORSPHQW�´�Q�G�� 

Correlation coefficient: 0.94  

(Luo et al., 

2020) 

Parameter 

Exploration 

Directly to 

Measurement 

Uncertainty Landmarks 1. RESECT: 17 pre-operative and intra-operative ultrasound 

of brain tumour patients (landmarks) (Xiao et al., 2017) 

2. MIBS: 6 pre-operative and intra-operative ultrasound of 

brain tumour patients (Machado et al., 2018) 

6SHDUPDQ¶V�UDQN�RUGHU�FRUUHODWLRQ�FRHIILFLHQW���������

(RESECT), 0.4014 (MIBS) 

(Risholm 

et al., 

2013) 

Parameter 

Exploration 

Directly to 

Measurement 

Uncertainty Artificial 

deformations 

1. 1 pre-operative T1 MRI  

2. 1 pre-operative and intra-operative (post resection) T2 

MRI of a brain tumour patient 

Inter-quartile range (uncertainty) contained the ground truth 

deformation 92% of the time 

(Heinrich 

et al., 

2016) 

Parameter 

Exploration 

Directly to 

Measurement 

Uncertainty Landmarks 1. DIR-Lab-4DCT 
 

R2 correlation coefficient: 0.58 (two registration settings; one 

subject) 

Table 3.1. Summary of the methods by their taxonomy classification, validation, datasets used and results. (CNN: Convolutional 

Neural Network, ML: Machine Learning, RF: Random Forest) 

 

3.1. Approach 

 
Figure 3.2. Publications classified by their Approach. 

3.1.1. Image-based Approaches 

Seven of the twenty included publications incorporated Image-based Approaches (Figure 

3.2).  
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Lotfi et al. considered different Image-based Approaches (Lotfi et al., 2013). Three of which 

were based directly on similarity measures between corresponding patches in the registered 

images. The difference of the Modality Independent Neighbourhood Descriptor (MIND) features 

(Heinrich et al., 2012) between corresponding patches was also considered. Similarly, Schlachter 

et al. proposed computing several similarity metrics patch-wise around each voxel over the 

registered images (Schlachter et al., 2016). Sokooti et al. used the Euclidean distance between 

the MIND features (Heinrich et al., 2012) of the fixed and registered moving images (Sokooti et 

al., 2016). Later, they also included different formulations of the normalized mutual information, 

as well as other similarity metrics (Sokooti et al., 2019b).  

More recently, Sokooti et al. used an Image-based Approach where the intensities of the 

corresponding patches are extracted as they are, without computing any features, to be used in a 

Machine Learning Framework (Sokooti et al., 2021). Eppenhof and Pluim, and Sedghi et al., also 

directly considered the corresponding patches around a voxel in the fixed and registered moving 

images for a Machine Learning Framework (Eppenhof and Pluim, 2018; Sedghi et al., 2019). 

However, Sedghi et al. used this Image-based Approach in combination with a Parameter 

Exploration Approach (Sedghi et al., 2019).  

 

3.1.2. Transformation-based Approaches 

3.1.2.1. Parameter Exploration 

Fourteen of the included publications employed Parameter Exploration Approaches (Figure 

3.2), where an aspect of the transformation parameter space, like the transformation parameters 

or the vectors of the deformation field, are explicitly explored. 

In 2009, Hub et al. proposed a Parameter Exploration Approach for parametric registrations 

(Hub et al., 2009). They used a B-spline registration, with the vector (i.e., 3D) displacement of 

each voxel being the parameters explored. Small random perturbations are added to the B-spline 

coefficients after the registration is performed. The local sum of squared differences similarity 

metric is computed for each voxel after each perturbation. The vector perturbation that most 

improves the local similarity metric over what was achieved from the original registration is used 

as the confidence. 

Hub and Karger later proposed a Parameter Exploration Approach for nonparametric 

registrations (Hub and Karger, 2013). An initial deformation vector field is obtained from the 
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original Demons-based registration. This deformation vector field is perturbed by adding a fixed 

offset to each vector component of each voxel displacement. The registration is performed again 

after each added perturbation, yielding new deformation vector fields. The standard deviation of 

the resulting deformation vector fields is computed and taken as a measure of uncertainty: if the 

registration procedure was perfect, it would return to the initial deformation vector field after 

each perturbation and have a very small standard deviation.  

Sokooti et al. used two types of features derived from Parameter Exploration Approaches for 

a Machine Learning Framework (Sokooti et al., 2016, 2019b). The explored parameters are the 

displacements of each voxel. The first class of these features was based on the standard deviation 

of deformation vector fields resulting from several registrations. The registrations can either be 

randomly initialized each time, or can be perturbed from a base registration, similar to Hub and 

Karger (Hub and Karger, 2013). Sokooti et al. also computed the difference between the base 

registration and the mean of the multiple registrations, which they used as a measure of bias. The 

second Parameter Exploration-based feature used by Sokooti et al. is the coefficient of variation 

of joint histograms. This feature quantifies the amount the joint histogram of multiple 

registration varies. If it is high, the registration quality is assumed to be low.  

Since deformable image registration can be approximated by local translations (Nix et al., 

2017), Nix et al. performed local translation-only re-registrations on corresponding patches of 

the registered images. Essentially, if a better alignment is found in the local re-registration, based 

on local similarity measures, it is assumed that the original registration is incorrect. This is a case 

of a Parameter Exploration Approach that seeks specific parameters (voxel displacements) that 

yield a better registration. 

Saygili et al. also attempted to find better voxel displacement parameters (Saygili et al., 

2016). They created a cost space for the voxel under consideration by comparing a dense set of 

features extracted from the corresponding patches of the fixed and moving images. The local 

minimum of this cost space is assumed to correspond to the correct alignment. The location of 

the minimum, as well as the shape of the cost space, are used to quantify the confidence. Saygili 

further explored this idea by using features derived from the cost space in a Machine Learning 

Framework (Saygili, 2021, 2018). In 2020, Saygili followed the same approach, but to save 

computation power, only considered the three orthogonal planes of the neighbourhood around 

corresponding voxels (Saygili, 2020). The distance to the minimum of each cost space (for each 
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plane) was extracted. Saygili also applied the pre-trained a stereo matching convolutional neural 

network (CNN) algorithm �äERQWDU�DQG�/H&XQ������� to the three orthogonal planes, and used 

the resulting features in a Machine Learning Framework (Saygili, 2020). 

Five methods use probabilistic image registration. There is an intimate connection between 

probabilistic image registrations and the Parameter Exploration Approach. These methods 

inherently explore a range of transformation parameters (see Figure 2.3). 

Lotfi et al. used the Random Walker image registration algorithm (Cobzas and Sen, 2011) 

since it yields a probabilistic output for the displacement of each voxel (Lotfi et al., 2013). A 

0HDVXUHPHQW�RI�XQFHUWDLQW\�LV�FRPSXWHG�IRU�HDFK�YR[HO�XVLQJ�DQ�LPSURYHG�YHUVLRQ�RI�6KDQQRQ¶V�

entropy on the distribution over displacements. This summarizes the dispersion of a distribution, 

similar to that shown in Figure 2.3d. 

Luo et al. used a Gaussian process probabilistic registration (Luo et al., 2020). The explored 

parameters are the voxel displacements (similar to Figure 2.3). In Gaussian process registration, 

features are extracted and matched between the moving and fixed images. The displacement 

vectors that result from the matched features are interpolated to the remaining voxels using joint 

gaussian processes. Each voxel is therefore associated with a covariance for its posterior 

distribution on displacements (similar to Figure 2.3d), which is used as the uncertainty 

Measurement.  

Risholm et al. employed a Parameter Exploration Approach in which the transformation 

parameters of a linear elastic finite element model are explored (Risholm et al., 2013). Building 

on previous work (Risholm et al., 2010a, 2010b), Risholm et al. proposed a Bayesian registration 

method in which the moving image is generated from the fixed image through a deformation 

(Risholm et al., 2013). Metropolis±Hastings Markov chain Monte Carlo (MCMC) generates 

samples from the posterior distribution to explore the parameter space. A Measurement of 

uncertainty is obtained by computing the inter-quartile range of the posterior distribution on 

deformations for the finite element model vertices. 

Heinrich et al. proposed a discrete registration method in which probability distributions over 

displacements are created for each voxel (Heinrich et al., 2016). Their method consists of 

dividing the image into several different layers of supervoxels, which are treated as graphs. The 

registration method is then performed for each of the supervoxel layers. Using belief 

propagation, marginal distributions for each node of the graph are found. The marginal 
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probabilities of all supervoxel layers are combined to create a distribution of potential 

displacements for each voxel. A Measurement of uncertainty is obtained by computing the 

standard deviation of this distribution. 

The final method by Sedghi et al. is a special case since a Machine Learning Framework with 

an Image-based Approach is incorporated in a Parameter Exploration Approach (Sedghi et al., 

2019). They proposed a probabilistic CNN classifier for image registration where corresponding 

patches around nodes of a B-spline transformation are used as input, and the classifier provides 

as output the class probabilities for each of 20 classes of discrete displacements for a node. The 

posterior probability of the classes is used to update the transformation parameters. At the final 

transformation, the probability distribution over displacements for each node is kept. The 

variance of this distribution is used as a Measurement of uncertainty. Although the CNN 

estimates the displacement between corresponding patches, which can be interpreted as an 

Image-based Approach in a Machine Learning Framework, the authors do not use this to get a 

final Measurement of estimated error. Instead, as mentioned, they use the variance of the 

probability distributions over the transformation parameters to yield a Measurement of 

uncertainty. 

 

3.1.2.2. Transformation Plausibility 

Six of the publications that met inclusion criteria use Transformation Plausibility Approaches 

(Figure 2.3).  

Bender and Tomé utilized the Inverse Consistency Error, which quantitatively measures 

differences between the forward and reverse registrations between two images (Bender and 

Tomé, 2009). In the ideal case, the Inverse Consistency Error is zero everywhere. Li et al. used 

the unbalanced energy of a finite element model as a plausibility Approach (Li et al., 2013), 

which Zhong et al. previously proposed (Zhong et al., 2007). Essentially, the work from an 

external force is compared to the elastic energy stored in a tetrahedral element of a finite element 

model. Ideally, this value should be zero.  

Kierkels et al. compared several different plausibility Approaches (Kierkels et al., 2018). 

They referred to two classes of transformations to describe these Approaches: numerically robust 

and physiologically realistic. The numerically robust measures were the inverse consistency 

error, the transitivity error and the distance discordance metric, introduced by Saleh et al. (Saleh 
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et al., 2014). The latter two Approaches require more than two images and therefore do not meet 

WKLV�UHYLHZ¶V�LQFOXVLRQ�FULWHULD��7KH�SK\VLRORJLFDOO\�UHDOLVWLF�PHWULFV�FRQVLGHUHG�DUH�WKH�-DFRELDQ�

determinant, the harmonic energy and the octahedral shear stress. Sokooti et al., as well as Lotfi 

et al., also used the Jacobian determinant of the deformation field (Lotfi et al., 2013; Sokooti et 

al., 2016, 2019b).  

 

3.2. Framework 
 

 
Figure 3.3. Publications classified by their Framework. 

3.2.1. Directly to Measurement 

Thirteen of the included publications use the results of the Approach directly (Bender and 

Tomé, 2009; Heinrich et al., 2016; Hub et al., 2009; Hub and Karger, 2013; Kierkels et al., 2018; 

Li et al., 2013; Lotfi et al., 2013; Luo et al., 2020; Nix et al., 2017; Risholm et al., 2013; Saygili 

et al., 2016; Schlachter et al., 2016; Sedghi et al., 2019) (Figure 3.3). The Parameter Exploration 

Approach accounts for the majority of the methods that directly produce a confidence 

Measurement (Heinrich et al., 2016; Hub et al., 2009; Hub and Karger, 2013; Lotfi et al., 2013; 

Luo et al., 2020; Risholm et al., 2013; Sedghi et al., 2019). Three methods are from each the 

Transformation Plausibility Approach (Bender and Tomé, 2009; Kierkels et al., 2018; Li et al., 

2013) and the Image-based Approach (Nix et al., 2017; Saygili et al., 2016; Schlachter et al., 
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2016). Note that the method of Lotfi et al. outputs a confidence Measurement which they also 

used in a Machine Learning Framework (Lotfi et al., 2013).  

 

3.2.2. Machine Learning 

Rather than directly using the confidence Measurement, the Machine Learning Framework 

can be used to provide error Measurements. Nine of the included publications used the Machine 

Learning Framework to transform the output of their Approach into an error Measurement 

(Eppenhof and Pluim, 2018; Lotfi et al., 2013; Saygili, 2018, 2020, 2021; Sedghi et al., 2019; 

Sokooti et al., 2016, 2019b, 2021) (Figure 3.3). The Machine Learning Framework is divided 

into three subcategories: the model, the features and the training data.  

 

3.2.2.1. Model 

The model can further be divided into classical machine learning and deep learning. The 

most popular machine learning model is random forest regression, used to estimate an error 

Measurement for each voxel (Lotfi et al., 2013; Saygili, 2018, 2020, 2021; Sokooti et al., 2016, 

2019b). Lotfi et al. identified several benefits of the random forest model (Lotfi et al., 2013), 

which were echoed by the subsequent groups. Random forest models can handle a high number 

of inputs, are resistant to over-fitting and do not necessitate feature pre-processing or 

normalization (Lotfi et al., 2013; Saygili, 2018; Sokooti et al., 2019b). Furthermore, feature 

importance can easily be computed. Sokooti et al. made use of Random Forests to see the most 

relevant features in their model (Sokooti et al., 2016, 2019b). 

More recently, sophisticated deep learning models are being adopted. Eppenhof and 

Pluim trained a 3D CNN where patches around corresponding voxels are used as input to the 

CNN, which learns to regress an error Measurement (Eppenhof and Pluim, 2018).  

Sedghi et al. also used a patch-based CNN model but do not regress a continuous error 

estimate (Sedghi et al., 2019). Their CNN classifier considers corresponding patches in the two 

images and provides probabilities for each of 20 classes: unrelated, registered, ±2, ±4 or ±8 

voxels (in the x, y, z directions). However, the CNN classifier is not used to provide error 

estimates. Instead, it is integrated in a registration algorithm that is classified as a 

Transformation-based Approach in a Directly to Measurement Framework, which uses the class 
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probabilities of the CNN prediction to obtain a Measurement of uncertainty. GivHQ�WKH�PHWKRG¶V�

implicit use of a Machine Learning Framework, it is included in this section as well. 

Sokooti et al. use an Encoder-Decoder classification Machine Learning Framework 

(Sokooti et al., 2021). A latent representation of the registered images is created using the pre-

trained RegNet network (the encoder), which is a CNN trained for image registration (Sokooti et 

al., 2019a, 2017). RegNet is selected since it is trained on similar data and preserves the spatial 

relation between the images. Three different encoders, corresponding to three different resolution 

scales of the images, are then created. Rather than simply concatenating the output of each 

resolution from the latent space and using a CNN as a decoder, they train a convolutional Long 

Short-Term Memory network as the decoder, which considers finer resolutions and 

classifications of error at each time step.  

 

3.2.2.2. Features 

The methods that use a random forest model make use of a variety of features. While 

Saygili sticks to the Image-based features (Saygili, 2021, 2020, 2018), Sokooti et al. and Lotfi et 

al. use a more diverse set of features, including those derived from Image-based, Parameter 

Exploration and Plausibility Approaches (Lotfi et al., 2013; Sokooti et al., 2019b, 2016). All of 

the above methods, excluding Lotfi et al., also perform feature pooling (i.e., include features 

from neighbouring voxels in addition to features from the voxel under consideration). The deep 

learning methods only use Image-based features. They directly take the voxel intensities as input 

(Eppenhof and Pluim, 2018; Sedghi et al., 2019; Sokooti et al., 2021).  

 

3.2.2.3. Training data 

Machine learning models require training data to learn the relationship between the 

features and the desired output. Two types of training data were identified in the papers 

reviewed: landmark points and artificial deformations.   

Sokooti et al. and Saygili use landmarks to train their models (Saygili, 2021, 2020, 2018; 

Sokooti et al., 2019b, 2016). These are corresponding points in both images which can be 

identified manually, semi-automatically, or automatically, and may come with a published 

dataset. The actual error is known at such locations. To increase the number of samples available 
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for training, Sokooti et al. and Saygili also include the neighbourhood around the landmark as 

training data, assuming it has the same error as the central (landmark) voxel. 

The remaining methods use artificially deformed data to train their models (Eppenhof and 

Pluim, 2018; Lotfi et al., 2013; Sedghi et al., 2019; Sokooti et al., 2021). In this case, a known 

deformation is applied to an image, or a region from an image. Since the artificial deformation is 

known, so too is the error between the images. Eppenhof and Pluim created training images from 

two sets of artificial deformations of one image, based on thin plate spline transformations with 

uniform random displacements, to generate errors between the images in a range of 0-4 mm 

(Eppenhof and Pluim, 2018). The data is further augmented by scaling and the addition of 

random offsets. Lotfi et al. randomly perturbed the nodes of a B-spline transformation grid to 

generate training data (Lotfi et al., 2013). Sedghi et al. created patch pairs for each class of 

misregistration they aimed to predict simply through translations (Sedghi et al., 2019). Finally, 

Sokooti et al. created four types of artificial deformations for their training data (Sokooti et al., 

2021): single frequency (constant shift to B-spline knots), mixed frequency, respiratory motion 

(similar to (Hub et al., 2009)) and identity transform (no misalignment). Further augmentations 

made these deformations more realistic. 
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3.3. Measurement 

 

 
Figure 3.4. Publications classified by their Measurement. 

The Measurements produced by the different methods are presented in this section (Figure 

3.4). Select quantitative results are presented for context. Note, however, that the results from 

different methods are generally not directly comparable due to differences in validation choices, 

like type of Reference, data and Validation Metric. The Bias section below elaborates on these 

issues. 

 

3.3.1. Estimated Error 

All of the methods that yield an error Measurement come from the Machine Learning 

Framework (Eppenhof and Pluim, 2018; Lotfi et al., 2013; Saygili, 2021, 2020, 2018; Sokooti et 

al., 2021, 2019b, 2016). Landmarks are the more popular choice of Reference (Saygili, 2020, 

2018; Sokooti et al., 2021, 2019b, 2016), followed by artificial deformations (Lotfi et al., 2013). 

Eppenhof and Pluim, and Saygili use both types of References (Eppenhof and Pluim, 2018; 

Saygili, 2021). Different Validation Metrics are used to compare the estimated error with the 
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known error: mean absolute error (Saygili, 2021, 2020, 2018; Sokooti et al., 2019b, 2016), root 

mean square difference (Eppenhof and Pluim, 2018), correlation (Lotfi et al., 2013; Saygili, 

2021, 2020) and classification accuracy (Sokooti et al., 2021). The method Sokooti et al. 

introduced in 2021 estimates error as one of three cODVVHV��>�������>������DQG�>������PP�(Sokooti 

et al., 2021). Other authors also give results as a classification into these same classes, but also 

included continuous error Measurements (Saygili, 2021, 2020, 2018; Sokooti et al., 2019a, 

2016). Saygili et al. is the only method to give vector Measurements of the error (Saygili, 2021). 

Sokooti et al. obtained mean absolute errors between the estimated error and the known 

error of 1.07 ± 1.86 mm and 1.76 ± 2.59 mm in intra- and inter-database experiments, 

respectively (Sokooti et al., 2019b). Eppenhof and Pluim obtained root mean square differences 

between the estimated error and known error of 0.51 mm and 0.66 mm for artificial deformations 

and landmarks, respectively (Eppenhof and Pluim, 2018). Saygili reported mean absolute errors 

of 1.64 ± 1.81 mm (Saygili, 2018), 2.00 mm (Saygili, 2020) and 1.75 ± 2.47 mm (Saygili, 2021). 

For the classification method of Sokooti et al., an average classification and F1 score of 87% and 

66%, respectively, was reported (Sokooti et al., 2021). Lotfi et al. received a correlation 

coefficient of 0.54 between the estimated and known error for one case of an artificial 

deformation (Lotfi et al., 2013). 

 

3.3.2. Confidence 

3.3.2.1. Plausibility 

Some of the plausibility Measurements come from Transformation Plausibility 

Approaches (Bender and Tomé, 2009; Kierkels et al., 2018; Li et al., 2013), while the others 

comes from Image-based (Schlachter et al., 2016) and Parameter Exploration Approaches (Hub 

et al., 2009; Nix et al., 2017; Saygili et al., 2016). Each method relates the plausibility 

Measurement with the known error through correlation, except for Nix et al., who compare their 

mean confidence Measurement with the known error (Nix et al., 2017). Bender and Tomé use 

landmarks (Bender and Tomé, 2009), whereas others use artificial deformations (Hub et al., 

2009; Kierkels et al., 2018; Nix et al., 2017; Saygili et al., 2016; Schlachter et al., 2016). Li et al. 

use both landmarks and artificial deformations (Li et al., 2013). The plausibility is presented as a 

scalar in all cases, except two (Hub et al., 2009; Nix et al., 2017). 
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%HQGHU�DQG�7RPp�REWDLQHG�D�6SHDUPDQ¶V�UDQN�RUGHU�FRUUHODWLRQV�EHWZHHQ�WKHLU�

plausibility Measurement and the known error of 0.66 and 0.34 for different types of 

registrations (Bender and Tomé, 2009)��.LHUNHOV�HW�DO��REWDLQHG�3HDUVRQ¶V�FRUUHODWLRQV�EHWZHHQ�

the Harmonic Energy (a plausibility Measurement) and the known error of 0.44 and 0.49 for 

different anatomical regions (Kierkels et al., 2018). Schlachter et al. found a correlation 

coefficient of 0.71 between the known error and the Histogram Intersection similarity measure 

(Schlachter et al., 2016). 

  

3.3.2.2. Uncertainty 

The most common way of measuring uncertainty is to use a simple statistic that describes 

the spread of the estimated distribution (Heinrich et al., 2016; Hub and Karger, 2013; Luo et al., 

2020; Risholm et al., 2013; Sedghi et al., 2019). Lotfi et al. investigated this topic in more depth 

(Lotfi Mahyari, 2013; Lotfi et al., 2013). Their probabilistic registration method results in 

probability distributions for the displacement of each voxel. To quantify the uncertainty, they 

LPSURYH�RQ�WKH�VLPSOH�XVH�RI�6KDQQRQ¶V�HQWURS\�RI�WKH�SUREDELOLW\�GLVWULEXWLRQ�E\�FRQVLGHULQJ�

the spatial information of the distribution (i.e., the displacement labels). Their uncertainty 

0HDVXUHPHQW�LV�KLJK�LI�WKH�GLVWULEXWLRQ�LV�GLVSHUVHG��DV�LQ�6KDQQRQ¶V�HQWURS\��and if it has high 

SUREDELOLW\�IRU�YHU\�GLIIHUHQW�GLVSODFHPHQWV��XQOLNH�6KDQQRQ¶V�HQWURS\���$V�an example, a 

distribution with 50% probability of -4 mm and +5 mm displacements would have higher 

uncertainty than distribution with 50% probability of +4 mm and +5 mm displacements.  

The uncertainty Measurements come from Parameter Exploration Approaches (Heinrich 

et al., 2016; Hub and Karger, 2013; Lotfi et al., 2013; Luo et al., 2020; Risholm et al., 2013; 

Sedghi et al., 2019). Artificial deformations are the more popular Reference (Hub and Karger, 

2013; Lotfi et al., 2013; Risholm et al., 2013; Sedghi et al., 2019), however, some authors opted 

for landmarks (Heinrich et al., 2016; Luo et al., 2020). Everyone except Risholm et al. correlated 

the known error with their Measurement of uncertainty. Risholm et al., instead, checked whether 

the ground truth deformation they applied was within their uncertainty level (Risholm et al., 

2013). Two methods report the uncertainty as a vector (Hub and Karger, 2013; Risholm et al., 

2013).  

+XE�DQG�.DUJHU�REWDLQHG�3HDUVRQ¶V�FRUUHODWLRQV�EHWZHHQ�XQFHUWDLQW\�DQG�NQRZQ�HUURU�LQ�

the range of 0.19-0.47 (Hub and Karger, 2013), while Lotfi et al. obtained a correlation 
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coefficient of 0.73 using a synthetic texture image with artificial deformations (Lotfi et al., 

2013). Sedghi et al. achieved a correlation coefficient of 0.94 between uncertainty and the known 

error from artificial deformations (Sedghi et al., 2019)��/XR�HW�DO��UHFHLYHG�6SHDUPDQ¶V�UDQN�RUGHU�

correlations of 0.29 and 0.4 on different datasets (Luo et al., 2020). Heinrich et al. reported an R2 

correlation of 0.58 for one subject with two different registration settings (Heinrich et al., 2016). 

 

3.4. Validation 
 

 
Figure 3.5. Publications classified by their Reference. 

The different approaches to evaluating a method can be classified by the Reference data: 

landmarks or artificial deformations (Figure 3.5). Landmarks compose half the References 

(Bender and Tomé, 2009; Eppenhof and Pluim, 2018; Heinrich et al., 2016; Li et al., 2013; Luo 

et al., 2020; Saygili, 2021, 2020, 2018; Saygili et al., 2016; Sokooti et al., 2021, 2019b, 2016). 

Artificial deformations are alternatively or additionally used (Eppenhof and Pluim, 2018; Hub et 

al., 2009; Hub and Karger, 2013; Kierkels et al., 2018; Li et al., 2013; Lotfi et al., 2013; Nix et 

al., 2017; Risholm et al., 2013; Saygili, 2021; Saygili et al., 2016; Schlachter et al., 2016; Sedghi 

et al., 2019).  

Different trends of artificial deformations are identifiable. In the first, a simple known 

deformation can directly be applied to an image to create the artificially deformed image. Nix et 
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al. apply translations and rotations applied to a reference image (Nix et al., 2017). Other 

approaches randomly perturb the control points of a deformation grid (Lotfi et al., 2013; Saygili, 

2021; Saygili et al., 2016; Sedghi et al., 2019).  

The second trend involves registering moving and fixed images and using the resulting 

deformation vector field as the ground truth artificial deformation. Kierkels et al. and Schlacter et 

al. create artificial deformations in this manner (Kierkels et al., 2018; Schlachter et al., 2016). 

Similarly, Eppenhof and Pluim register moving and fixed images with a B-spline coarse to fine 

registration scheme (Eppenhof and Pluim, 2018). The registered images after the coarse level 

and the fine level of the registration are used as the artificially deformed data pair.  

The final trend uses realistic artificial deformations for validation. Li et al. and Hub et al. 

generate realistic deformations of lung motion (Hub et al., 2009; Hub and Karger, 2013; Li et al., 

2013). Risholm et al. model the phenomenon of brain shift, with added sinusoidal deformations 

(Risholm et al., 2013). Sedghi et al., in addition to randomly perturbing B-spline nodes, 

incorporate image guided-surgery inspired resected tumours by removing areas of different 

shapes and sizes in random locations of an image (Sedghi et al., 2019).   

 

3.5. Excluded Papers 
In this section, we provide several examples of papers that did not meet one or more 

inclusion criterion but nonetheless present important or interesting methods.   

Not all the methods we came across were for deformable image registration (Bansal et al., 

2009; William R. Crum et al., 2004; Denis de Senneville et al., 2020; Hauler et al., 2016; Pennec 

et al., 1998; Pennec and Thirion, 1997). Some papers presented methods that are not dense 

(Fedorov et al., 2008; Garlapati et al., 2015, 2013; Li and Kurihara, 2014; Muenzing et al., 2012, 

2009; Nanayakkara et al., 2009; Neylon et al., 2017; Pizzorni Ferrarese et al., 2014; Werner et 

al., 2013), including error estimation for point-based rigid registrations (Danilchenko and 

Fitzpatrick, 2011; Datteri and Dawant, 2012a; Fitzpatrick et al., 1998a, 1998b; Fitzpatrick and 

West, 2001; West and Maurer, 2002) and methods that perform classification without indicating 

the magnitude of estimated error (Armato et al., 2006; Galib et al., 2020; Shams et al., 2018; Wu 

et al., 2016; Wu and Murphy, 2010). Several papers did not compare their confidence 

Measurement to the known error (Gunay et al., 2018; Mazaheri et al., 2015; Schreibmann et al., 

2012). This was especially common for papers with uncertainty Measurements from Bayesian 
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registrations (Agn and Van Leemput, 2019; Bayer et al., 2020; Grzech et al., 2020; Janoos et al., 

2012a; Luo et al., 2019; Risholm et al., 2010a; Wang et al., 2019, 2018; Wassermann et al., 

2014; Yang and Niethammer, 2015). Estimating registration error or confidence was not the 

focus of several publications (Dalca et al., 2019; Datteri et al., 2014; Fedorov et al., 2014; 

Gibson et al., 2012; Gil et al., 2021; Lin et al., 2019; Muenzing et al., 2014; Ren et al., 2017; 

Simpson et al., 2015, 2013a, 2013b, 2012, 2011; Sofka and Stewart, 2008; Yang et al., 2017), 

including those focused on dosimetry (Amir-Khalili et al., 2017; Azcona et al., 2019; Bai et al., 

2019; Bender et al., 2012; Hub et al., 2012; Kim et al., 2017; Risholm et al., 2011; Vickress et 

al., 2017). Several papers did not perform 3D-3D registrations (Heiselman and Miga, 2021; Hu 

et al., 2016; Kybic, 2010, 2008; Kybic and Smutek, 2006; Le Folgoc et al., 2017; Schultz et al., 

2019, 2018; Wang et al., 2001; Watanabe and Scott, 2012; Wu and Samant, 2007, 2004). 

Multiple methods required more than two images, notably those based on consistency measures 

(Datteri et al., 2015; Datteri and Dawant, 2012b, 2012c; Gass et al., 2015, 2014; Kim et al., 

2013; Kirby et al., 2016; Park et al., 2012; Saleh et al., 2014; Schestowitz et al., 2006; Tyyger et 

al., 2020; Vaman et al., 2010; Vishnevskiy et al., 2015). Not all methods focused on biomedical 

image registration (Glocker et al., 2008). Finally, not all methods were automated (Thompson et 

al., 2018).  
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4. Discussion 
In this section, we first consider current and future trends in method development. Then 

we present advantages and disadvantages of the Approaches, Frameworks and Measurements. 

Aspects of the Machine Learning Framework, as well as Parameter Exploration Approaches and 

uncertainty Measurements, are then considered. Subsequently, we highlight cases of thorough 

validation, and how different algorithm and validation choices can bias results. Finally, we 

address limitations of our systematic review. Suggestions for best practices and future research 

are provided throughout. 

 

4.1. Trends 
Machine Learning Frameworks compose most of the newer publications. The salient 

trend in Machine Learning Frameworks is towards more complex algorithms, namely deep 

learning. Earlier methods employed more classical machine learning models (Lotfi et al., 2013; 

Saygili, 2021, 2020, 2018; Sokooti et al., 2019b, 2016). Most commonly, random forest 

regressors were used. Now, however, deep learning models have displaced the classical machine 

learning models. CNNs, whether on their own (Eppenhof and Pluim, 2018; Sedghi et al., 2019) 

or in more complex architectures (Sokooti et al., 2021), are the base model of choice of the 

included publications. The move to direct use of image intensities, as opposed to features derived 

from them, seems to obviate the need of feature extraction from Parameter Exploration and 

Transformation Plausibility Approaches.  

The deep learning models require more training data than classical machine learning 

models. This is reflected in the fact that the methods of creating data for these models are all 

through artificial deformations. Artificial deformations allow for the creation of arbitrarily large 

amounts of training data with minimal user input. Conversely, using landmark points as training 

data, as often done in the earlier uses of the Machine Learning Framework, can require 

significant amounts of user time and expertise.  

Uncertainty Measurements are increasingly obtained from probabilistic image 

registrations (Heinrich et al., 2016; Lotfi et al., 2013; Luo et al., 2020; Risholm et al., 2013; 

Sedghi et al., 2019). While the recent deep learning-based registration methods of Yang et al. 

and Dalca et al. did not meet the inclusion criteria for this review, these methods can provide 
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uncertainty quantifications (Dalca et al., 2019; Yang et al., 2017). Compared to other 

Measurement types (error and plausibility), uncertainty is most frequently presented as a vector. 

Estimated error is the most common Measurement of all the included publications. It 

comes from Machine Learning Frameworks. This trend is likely to continue, as other 

Frameworks have not yet been introduced to estimate error directly. Nearly all error 

Measurements are scalar. Recently, Saygili proposed a Machine Learning Framework that 

measures error as a vector (Saygili, 2021). This may signal the beginning of a trend towards 

directional error metrics. However, Sokooti et al. recently published a method restricting the 

output to scalar errors in the ranges of three classes (Sokooti et al., 2021), signalling an alternate 

trend for those who are only interested in a coarser error estimate.  

Given the decreasing use of Transformation Plausibility Approaches and the increasing 

use of Image-based Approaches in Machine Learning Frameworks, the plausibility Measurement 

is decreasing in popularity. 

The incidence of using both landmarks and artificial deformations to evaluate a method is 

increasing (Eppenhof and Pluim, 2018; Li et al., 2013; Saygili, 2021; Saygili et al., 2016). 

Recent publications seem to place more emphasis on validation. 

 

4.2. Advantages and Disadvantages 

The qualities of an ideal confidence/error estimation algorithm include minimal 

dependence on tuneable parameters, (training) data or a registration algorithm, as well as fast 

estimates of the error itself (Garlapati et al., 2015). Here, we cover general benefits and 

drawbacks of the different Approaches, Frameworks and Measurements. 

 

4.2.1. Approach 

Transformation Plausibility Approaches usually do not depend on parameters, data or the 

registration, meaning that they are widely applicable. Furthermore, they generally do not depend 

on the intensities of the images. This abstraction from the registration is desirable. However, 

Transformation Plausibility Approaches yield plausibility Measurements, which are not 

necessarily indicative of registration error (Bender and Tomé, 2009; Ribeiro et al., 2015). 

Parameter Exploration Approaches do not require training data, and in some cases, are 

applicable to both multimodal (e.g., (Agn and Van Leemput, 2019; Janoos et al., 2012a)) and 
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inter-subject registrations. However, these approaches generally have tuneable parameters that 

can change the estimated Measurement. For example, the method of Hub et al. requires to set the 

maximum magnitude of a perturbation, which limits the estimate of confidence to values smaller 

than this threshold (Hub et al., 2009). Or, in Bayesian registration algorithms, the strength of the 

regularization parameter can affect the uncertainty Measurement (Schultz et al., 2019). 

Parameter Exploration Approaches can also be time consuming. The methods of Hub and Karger 

(Hub and Karger, 2013) and Sokooti et al. (Sokooti et al., 2019b, 2016) require multiple re-

registrations. The sampling performed in Bayesian registration algorithms can require even more 

prohibitive computation time (Risholm et al., 2013; Schultz et al., 2019). Faster approximation 

techniques exist, but have their own challenges as discussed in Section 4.4.2 below. Parameter 

Exploration Approaches that obtain uncertainty through probabilistic registrations depend on the 

probabilistic registrations itself.  

Image-based Approaches range in complexity and can be very intuitive to understand. 

However, their results may also be misleading. On the one hand, Schlachter et al. achieved 

decent correlations between a Histogram Intersection metric and the known error (Schlachter et 

al., 2016). On the other hand, the results of Castillo et al. show that simply using similarity 

metrics to assess the results of a registration showed very little correlation to the known error (R. 

Castillo et al., 2009). In fact, they showed cases where the similarity measure increased even 

though this corresponded to larger registration errors.  

 

4.2.2. Framework 

The main benefit of the Machine Learning Framework is that it can draw on 

complementary information from the different Approaches to directly estimate the registration 

error. Machine Learning Frameworks can yield fast error estimates once they are trained. 

However, their speed may be limited by the features they require (e.g., those requiring multiple 

registrations (Sokooti et al., 2019b, 2016)). The major drawback of the Machine Learning 

Framework is size of training dataset required to learn the relationship between the features and 

the error, which depending on the training data, may be biased or limited in its representation. 

Training data based on landmarks restricts available data to that which is already annotated by 

experts. The use of artificial deformations overcomes this restriction but introduces unanswered 

questions regarding the importance of systematic bias or the complexity of the deformations. 
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Furthermore, it may be harder to generate ground truth artificial deformations for multimodal 

data. In either case, the machine learning model is limited to the range of errors it is exposed to 

in the training data. For example, Eppenhof and Pluim only trained their model on errors up to 4 

mm (Eppenhof and Pluim, 2018), while Sokooti et al., up to 17 mm (Sokooti et al., 2021). 

Additionally, the trained model is limited to clinical context of the training data (e.g., specific for 

the anatomy, modality and pathology), and there can be issues of generalizability to new data 

even within the same clinical context. Although it can be considered a benefit or a drawback, by 

the nature of their current training and implementation, machine learning methods view 

anatomical change between the images (e.g., tumour growth) as registration error (Sokooti et al., 

2021, 2019b). Finally, machine learning models may be accompanied by their own uncertainty ± 

similar to the uncertainty of a registration algorithm. 

Directly outputting the confidence Measurement from an Approach (i.e., from Section 

3.2.1) of course obviates the drawbacks of the Machine Learning Framework but does not 

directly lead to an error Measurement, and thus, is prone to interpretation errors.  

 

4.2.3. Measurement 

Given the task of interest is to assess the registration quality, error Measurements are 

preferred. However, confidence Measurements, in terms of both uncertainty and plausibility, can 

no less be valuable if they demonstrate high correlations to the known error. 

 

4.3. Machine Learning Frameworks 

4.3.1. Features in machine learning 

Sokooti et al. introduced two groups of features in their Machine Learning Framework 

(Sokooti et al., 2019b, 2016)��7KH�ILUVW�ZDV�µUHJLVWUDWLRQ-EDVHG�IHDWXUHV�¶�ZKLFK�LQFOXGH�

Parameter Exploration and Transformation Plausibility Approach-based features. The second 

ZDV�µLQWHQVLW\-EDVHG�IHDWXUHV�¶�FRPSULVHG�RI�,PDJH-based Approaches. They trained with both 

sets of features separately and combined. When trained and tested on the same database, they 

found that the intensity-based features outperformed the registration-based features. Conversely, 

in their inter-database experiment, the model trained on registration-based features had a lower 

mean absolute error than that trained on the intensity-based features. This may suggest that the 

registration features are more generalizable than the intensity features. With Machine Learning 
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Frameworks trending towards the sole use of Image-based features (albeit with more complex 

models), one may wonder if including Parameter Exploration and Transformation Plausibility 

features, which provide complementary sources of information, could help these models remain 

generalizable and robust in the face of new data. 

Another finding of interest from Sokooti et al. is that feature pooling (i.e., including in 

the model features from neighbouring voxels in addition to features from the voxel under 

consideration) helps the regressor (Sokooti et al., 2019b, 2016). The mean absolute error goes 

from 1.24 ± 2.22 mm without pooling to 1.07 ± 1.86 mm when pooling is performed. Rather than 

only considering the features at a voxel, the regressor also gets information from the 

neighbourhood surrounding the voxel. This finding suggests that it is important for models to be 

given contextual information.  

 

4.3.2. Estimating Error with Transformation Plausibility and Parameter Exploration Approaches 

It is interesting to consider how well a Transformation Plausibility or Parameter 

Exploration Approach can estimate error on its own. Sokooti et al. (Sokooti et al., 2019b) trained 

machine learning models with individual features, including the Jacobian of the deformation 

vector field determinant (a Transformation Plausibility Approach) and a Parameter Exploration 

Approach similar to that introduced by Hub and Karger (Hub and Karger, 2013). The models 

trained only on the Transformation Plausibility-based feature and only on the Parameter 

Exploration-based feature achieved mean absolute errors (between the known error and their 

estimated error) of 2.15 ± 3.15 mm and 1.51 ± 2.40 mm, respectively (Sokooti et al., 2019b). 

Perhaps surprisingly, these are not that much worse than the model trained on all features (1.07 ± 

1.86 mm). 

Taken together, these results indicate that Transformation Plausibility and Parameter 

Exploration Approach-based features can potentially lead to acceptable estimations of error on 

their own. It is interesting to consider, however, that Kierkels et al. found no correlation between 

the ground truth error and the Jacobian of the determinant (Kierkels et al., 2018). Similarly, 

Ribeiro et al. found little correlation between field smoothness measures and the known error 

(Ribeiro et al., 2015). Hub and Karger found correlations in the range of 0.19-0.47 between the 

known error and their method (Hub and Karger, 2013). These discrepancies may be the result of 

different types of data, References or Validation Metrics. For example, Sokooti et al. used 
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landmarks (Sokooti et al., 2019b, 2016), whereas the other studies used artificial deformations 

(Hub and Karger, 2013; Kierkels et al., 2018; Ribeiro et al., 2015). 

 

4.3.3. Training in Machine Learning Frameworks 

4.3.3.1. Training with Artificial Deformations 

 There are several unique approaches to create training data for Machine Learning 

Frameworks. Sokooti et al. and Sedghi et al. represent opposite ends of the spectrum (Sedghi et 

al., 2019; Sokooti et al., 2021). Sedghi et al., on the one hand, restrict their artificial deformations 

to simple translations. Sokooti et al., on the other hand, not only use deformations of varying 

complexities, but they also include realistic lung motion deformations. The impact of having 

very simple deformations or a range of more complex deformations, has not yet been studied. 

Despite the simple approach taken by Sedghi et al., their resulting uncertainty estimates correlate 

well with the known error (r = 0.94), and their combined registration and uncertainty estimation 

method can recover deformations from B-spline transformed images. However, the task of the 

CNN used by Sokooti et al. and Sedghi et al. is different. The CNN trained on simple 

deformations by Sedghi et al. updates the registration iteratively and is not used to directly 

estimate error. As discussed in Section 3.2.2.1, their method instead provides a Measurement of 

uncertainty. On the other hand, the CNN employed by Sokooti et al. directly estimates the error. 

Regardless, further research is warranted to study the effect of the complexity of artificial 

deformations used to train error estimating neural networks. 

4.3.3.2. Training through Transfer Learning 

 Creating training data for Machine Learning Frameworks remains a challenge due to the 

lack of available ground truth data. This is, in fact, the motivation to create artificial 

deformations. In 2020, Saygili (Saygili, 2020) adapted the stereo matching CNN developed by 

äERQWDU�DQG�/H&XQ��äERQWDU�DQG�/H&XQ�������, which was trained on the KITTI stereo 

matching dataset (Geiger et al., 2012), to provide features that were fed to a classical Machine 

Learning Framework for registration error estimation. This produced results on par with the 

difference of MIND features (Heinrich et al., 2012) that Saygili also explored. Such transfer 

learning approaches are potentially of great use and deserve more research in the future. One 

may hypothesize that first employing MIND features (Heinrich et al., 2012) to the training stereo 
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data, and subsequently on testing medical image data, may further improve the applicability of 

such approaches. 

4.3.3.3. Distribution of Errors in Training 

 The distribution of errors used to train a model in a Machine Learning Framework can be 

uniform or nonuniform. While Eppenhof and Pluim and Sedghi et al. use a uniform distribution 

of errors (Eppenhof and Pluim, 2018; Sedghi et al., 2019), Sokooti et al. and Saygili use a 

distribution of errors that mimics what the model will likely see (Saygili, 2021, 2020, 2018; 

Sokooti et al., 2021, 2019b, 2016). In the 2021 publication of Sokooti et al., more training 

examples are explicitly put into the lower error class ([0,3) mm). In the publications of Sokooti et 

al. (2016, 2019) as well as those from Saygili (2018, 2020, 2021), it is hard to control the 

distribution of errors since they are from annotated landmarks. Sokooti et al. and Saygili used 

different approaches to ensure a large range of errors were included in their training set. Saygili 

registered the images only at a coarse level with a limited number of iterations. Sokooti et al. 

registered the images with a varying number of iterations, with lower errors expected after more 

iterations. It is not clear which approach, a uniform or nonuniform distribution of errors, is 

VXSHULRU��+RZHYHU��LW�LV�ZRUWK�QRWLQJ�WKDW�WKH�PHDQ�DEVROXWH�HUURU�IRU�HUURUV�LQ�WKH�UDQJH�RI�>�����

mm obtained by Sokooti et al. and Saygili are notably larger than the mean absolute error for 

errors in the range of [0,6) mm (Saygili, 2021, 2020, 2018; Sokooti et al., 2019b, 2016).  

 

4.3.4. Missing Correspondences 

Luo et al. contend that Image-based Approaches will run into trouble in cases where there 

are significant differences between the images being registered, making identification and 

alignment of corresponding features difficult (Luo et al., 2020), as may be the case of brain shift 

resulting from tumour resection in image guided surgery. The work of Sedghi et al. may 

potentially pose a solution for this issue (Sedghi et al., 2019). The CNN trained by Sedghi et al. 

is incorporated in a registration scheme that iteratively updates the registration based on the 

estimated misalignment into one of twenty classes. One such class is unrelated, and lets the 

registration know that the patches under consideration do not match. Interestingly, when the 

model is trained without this class, the registration performs much worse. Such an unrelated 

class could be visualized alongside an error or confidence estimate. It could also easily be added 

to the CNN of Eppenhof and Pluim (Eppenhof and Pluim, 2018). While this does not fully solve 
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the issue raised by Luo et al., it would help guide and warn surgeons where the registration may 

not be performing well. 

 

4.4. Parameter Exploration Approaches and Uncertainty Measurements 

4.4.1. Uncertainty and Error 

Two studies investigated the relation between uncertainty and error explicitly (Luo et al., 

2020; Schultz et al., 2019). In Luo et al. (Luo et al., 2020), uncertainty estimates were obtained 

through a Gaussian Process-based registration. They compared uncertainty to the known 

�ODQGPDUN��HUURU�WKURXJK�6SHDUPDQ¶V�FRUUHODWLRQ��7KH�DYHUDJH�FRUUHODWLRQV�RI�WZR�VHSDUDWH�

datasets were 0.2899 and 0.4014. These results, as recognized by Luo et al., do not encourage the 

use of uncertainty as a surrogate for error. However, Luo et al. mention that the registration 

uncertainty is inversely related to the distance a voxel is from a feature used to drive the 

Gaussian Process registration. One may not expect this uncertainty to have a strong relation to 

error. It is possible that uncertainty derived from other probabilistic registration algorithms better 

relates to error. 

Schultz et al. investigated the relation between uncertainty Measurements and known 

error from point-based probabilistic (variational Bayesian) registrations of simulated 

deformations, where the posterior of the transformation parameters is used to characterize 

uncertainty (Schultz et al., 2019). They found that when no artificial lesions were inserted during 

simulation, the correlation between error and uncertainty was very low (0.0516 = ߩ). However, 

when artificial lesions were inserted, the correlation increased (0.2243 = ߩ), even more so with 

larger lesions (0.7397 = ߩ). The uncertainty did not correlate with error in the case of Model 

Mismatch (Hub et al., 2009), errors caused by differences in transformation models used to 

simulate deformations and those used to estimate the registration, but did correlate with error in 

the case of missing correspondences caused by the artificially inserted lesions. Given the higher 

correlation with large lesions, Schultz et al. purport that registration uncertainty can be used as a 

measure of error due to missing correspondences, such as in the case of pathology. 

While this section puts the validity of registration uncertainty as a surrogate for error into 

question, Sedghi et al. provide an example of high correlation between error and uncertainty (ݎ = 

0.94) with the use of artificial deformations with simulated resected lesions (Sedghi et al., 2019). 

Similar to Schultz et al. (Schultz et al., 2019), however, this high correlation may be due to the 
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missing correspondences introduced by the resected lesions as there is no Model Mismatch in 

their experiments. The implications of Model Mismatch are discussed in Section 4.6.4. 

 

4.4.2. Approximate and Exact Inference 

 Probabilistic registration algorithms rely on exploring a parameter space of a 

transformation to produce an estimate of registration uncertainty. In some cases, these methods 

can be computationally expensive. Risholm et al. used a Bayesian registration scheme to explore 

the posterior distribution with a MCMC approach (Risholm et al., 2013). Barring any 

approximations, such approaches are asymptotically exact. In their case, sampling the posterior 

took roughly 50 hours to evaluate a single registration thus limiting its applicability.  

 An alternative to sampling the posterior of the transformation parameters exactly is to 

approximate the posterior through, for example, a variational inference approach (Le Folgoc et 

al., 2017; Schultz et al., 2019; Simpson et al., 2012). This strategy provides computational 

improvements at the cost of assuming the form of the posterior distribution (typically Gaussian). 

However, Risholm et al. and Janoos et al. found that the posterior distribution can be non-

Gaussian and multimodal (Janoos et al., 2012b; Risholm et al., 2013). Because of this, Risholm 

et al. cautioned the use of such approximate approaches until they were thoroughly compared to 

the results of asymptotically exact sampling methods. Le Folgoc et al. did compare a variational 

inference approach with asymptotically exact MCMC and found that the uncertainty obtained in 

the approximate sampling case did not adequately match that from the asymptotically exact 

sampling (Le Folgoc et al., 2017). 

On the one hand, these findings suggest that variational approaches may not be useful for 

uncertainty quantification, despite their increase in speed. On the other hand, useful results have 

been achieved using variational approaches (Schultz et al., 2019; Simpson et al., 2012). Overall, 

caution should be taken when using a fast but approximate inference scheme. 

  

4.4.3. Summarizing the Distribution on Deformations 

Once a distribution on deformations is obtained, it must be summarized for further use. 

This aspect has been relatively underappreciated. Lotfi et al. proposed a new technique to 

summarize such distributions (Lotfi et al., 2013)��:KLOH�VLPLODU�WR�6KDQQRQ¶V�HQWURS\� it is 

tailored to summarizing uncertainty in image registration (Lotfi Mahyari, 2013).  
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Risholm et al., in a precursor to their 2013 publication, also gave this aspect some 

thought (Risholm et al., 2010a). They concluded that the interquartile range is a simple yet robust 

way to summarize posteriors. They propose visualizing the interquartile range in 3D as ellipsoids 

or as scalars at each voxel, in which the maximum interquartile range of all three directions is 

used. Note that a scalar map cannot convey directional bias. Since the estimated nonlinear 

transformations can be used to update intra-operative images with functional data from the pre-

operative images (e.g., functional MRI, fMRI or Diffusion Tensor Imaging, DTI), Risholm et al. 

proposed further information-specific measures to show the uncertainty for such data and their 

derived contoured volumes (Risholm et al., 2010a). In 2013, Risholm et al. visualized the 

posterior expected deformed image, the average deformation of all the drawn samples from the 

MCMC scheme, wherein blurrier regions represent higher uncertainty (Risholm et al., 2013). 

 

4.4.4. Future Research in Parameter Exploration 

There remains much to study about methods that produce uncertainty Measurements if 

their intent is to be used as surrogates for error. The relationship between error and uncertainty is 

murky. Further investigating this relationship, perhaps in light of the different types of error 

introduced by Schultz et al. (Schultz et al., 2019), is recommended. In particular, the impact of 

Model Mismatch on error. Artificial deformations based on different transformation types may 

help elucidate this aspect. In addition, the correlation between error and uncertainty of 

probabilistic registrations based in different types of transformations should be studied. The 

influence that particular sampling schemes have on the relationship also deserves future 

attention. We have not yet come across a case where the uncertainty from an asymptotically 

exact sampled posterior (e.g., by MCMC) is correlated with error. Finally, the effect of 

summarizing the distribution on deformations ± whether as a simple dispersion statistic or a more 

intricate measure ± on the correlation between error and uncertainty should be considered in 

more detail (see (Lotfi Mahyari, 2013)). 

 

4.5. Validation 

Properly validating a method can be as important as the method itself. Validation should 

HQVXUH�D�PHWKRG¶V�SHUIRUPDQFH�LQ�D�YDULHW\�RI�VFHQDULRV�DQG�XOWLPDWHO\�SURYLGHV�HQG-users, like 
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clinicians, confidence in that method. Here, we highlight cases of thorough validation from 

recent publications. 

Eppenhof and Pluim trained a machine learning model to predict error (Eppenhof and 

Pluim, 2018) and validated with artificial deformations and landmark points as References to 

leverage the benefits of both. In addition, they validated with a third independent dataset that was 

not used for training. Similarly, Sokooti et al. (Sokooti et al., 2021, 2019b) trained their machine 

learning model on one dataset and tested it on another. Such inter-database evaluations are 

especially important for Machine Learning Frameworks to assess generalizability. Going even 

further, Sokooti et al. (Sokooti et al., 2019b) used different registration algorithms to assess 

generalizability.  

These publications also provide insightful figures to illustrate the results of their 

validation. A figure visualizing the estimated Measurement (error, uncertainty or plausibility), 

perhaps overlayed on the registered image, can be considered essential. Sokooti et al. show the 

estimated and predicted error across all samples in a graph of error vs. samples (Sokooti et al., 

2019b). This is helpful to assess regions where the error is over- or underestimated. Correlation 

scatter plots are likewise helpful. Eppenhof and Pluim present error histograms to assess bias in 

the estimated error (Eppenhof and Pluim, 2018). Future inspiration may be drawn from the 

visualization field of positional uncertainty (Gillmann et al., 2021; Pang et al., 1997). 

Schlachter et al. performed a user study with clinicians (Schlachter et al., 2016). Such 

studies will be increasingly important in the future if error estimation methods are to gain clinical 

acceptance. 

 

4.6. Bias 

As recently noted by Sokooti et al. (Sokooti et al., 2021), comparing the results of different 

methods is far from trivial due to differences in transformation models, imaging data, organ 

targets, clinical context and applications. In the following, we review how choices in validation 

can bias results and the implications that follow. Ultimately, this demonstrates the need for a 

standardized protocol and openly available data to assess and compare competing methods. 

Ideally, a challenge would be organized that follows a standardized protocol and assesses 

methods on the same dataset. While such a protocol and challenge is beyond the scope of this 

review, we provide suggestions where relevant.  
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4.6.1. Clinical Context and Data 

Validation takes place on data from various modalities (e.g., MRI vs. CT), focussing on 

vastly different anatomies (e.g., brain vs. lung) and in different clinical contexts (e.g., exhale-

inhale images vs. monthly follow-XS��SDWKRORJ\�YV��KHDOWK\���7R�IXOO\�DSSUHFLDWH�D�PHWKRG¶V�

performance, it would ideally be rigorously tested in regard to the clinical context it will be used 

in. Some of the included publications restrict their validation to a single domain, while others 

include multiple domains. For example, Saygili et al. used lung CT and brain MRI data (Saygili 

et al., 2016). Methods that use Machine Learning Frameworks may be more restricted to the type 

of data they were trained on. Nonetheless, Sokooti et al. tested their method on multiple datasets 

with different clinical contexts (Sokooti et al., 2019b); inspiration and expiration and follow-up 

lung CT images, as well as different pathologies. While the results of a study that investigates a 

method in diverse settings may indicate that it is less accurate than if it is only considered in a 

VSHFLILF�FOLQLFDO�FRQWH[W��WKH\�SURYLGH�D�EHWWHU�UHSUHVHQWDWLRQ�RI�WKH�PHWKRG¶V�RYHUDOO�FDSDELOLWLHV� 

The information used to compute results is also important to consider (Jannin et al., 

2006). Some authors decided only to use certain parts of the registered images to calculate their 

results. For example, Eppenhof and Pluim only consider voxels within a lung mask for the root 

mean square difference between known and estimated error (Eppenhof and Pluim, 2018), and 

similarly Nix et al. only used data within the patient boundaries (Nix et al., 2017). Gunay et al., 

on the other hand, used all of the image data to compute their uncertainty Measurement (Gunay 

et al., 2018). Kierkels et al. excluded the brain region of head and neck cancer CT images from 

their correlation between plausibility and known error due to its poor results (Kierkels et al., 

2018). That said, Kierkels et al. used CT data, where there is notably limited contrast in the 

brain. Focusing the analysis on a region of interest in the data is perfectly acceptable, but it is 

important to note that such a result may be biased to look better than a result on all the anatomy 

visible in the images. Therefore, this should be made clear by authors. 

 

4.6.2. Validation Metrics 

Different Validation Metrics compare and summarize the data differently. Mean absolute 

error and root mean square difference are used in error estimating Machine Learning 

Frameworks. Sokooti et al. and Saygili used mean absolute error (Saygili, 2021, 2020, 2018; 
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Sokooti et al., 2019b, 2016), whereas Eppenhof and Pluim used root mean square difference 

(Eppenhof and Pluim, 2018). The latter is more sensitive to large discrepancies (or outliers). 

Presenting a histogram of error is more informative but does not summarize the error in a single 

number. 

Saygili reported both correlation and mean absolute error for several methods (Saygili, 

2020). In general, the rankings for R2 matched that the mean absolute error, but this was not 

always the case. Therefore, we recommend reporting both metrics.  

:KLOH�VRPH�DXWKRUV�XVHG�3HDUVRQ¶V�FRUUHODWLRQ�FRHIILFLHQW��H�J���(Hub and Karger, 2013; 

Kierkels et al., 2018)���RWKHUV�XVHG�6SHDUPDQ¶V�UDQN�FRUUHODWLRQ�FRHIILFLHQW��H�J���(Bender and 

Tomé, 2009; Luo et al., 2020)���5LEHLUR�XVHG�ERWK�3HDUVRQ¶V�DQG�6SHDUPDQ¶V�FRUUHODWLRQ�(Ribeiro 

et al., 2015)��/XR�HW�DO��XVHG�6SHDUPDQ¶V�UDQN�FRUUHODWLRQ�FRHIILFLHQW�WR�DVVHVV�WKH�UHODWLRQVKLS�

between uncertainty and error (Luo et al., 2020) where they identified two desirable properties 

RYHU�3HDUVRQ¶V�FRUUHODWLRQ��)LUVW��3HDUVRQ¶V�FRUUHODWLRQ�ORRNV�IRU�VWUHQJWK�RI�D�OLQHDU�UHODWLRQVKLS��

ZKHUHDV�6SHDUPDQ¶V�FRUUHODWLRQ�HYDOXDWHV�PRQRWRQLF�UHODWLRQVKLSV��6HFRQG�6SHDUPDQ¶V�

correlation is not as sensitive to outliers. 

$XWKRUV�PD\�RSW�WR�UHSRUW�WKHLU�UHVXOWV�LQ�FODVVHV��H�J���>�������>������DQG�>������PP���

similar to Sokooti et al. (Sokooti et al., 2021)��6RNRRWL�HW�DO��UHFRPPHQG�XVLQJ�)��DQG�&RKHQ¶V�

Kappa scores over accuracy, as they are more robust metrics for distributions with unbalanced 

classes. They reported all three metrics for the several methods they compared. It is worth noting 

that there are cases where the accuracy of one method is higher than another, while the other 

method has a higher F1 score. This illustrates how different Validation Metrics can obfuscate the 

validation process. 

Overall, it is important to recognize that the choice of Validation Metric matters. It can 

influence the perception of a result and make the comparison of methods more challenging. 

Given that most Machine Learning publications use mean absolute error, we recommend using 

LW��DORQJ�ZLWK�3HDUVRQ¶V�FRUUHODWLRQ��/XR�HW�DO��SURYLGH�D�VWURQJ�FDVH�IRU�WKH�XVH�RI�6SHDUPDQ¶V�

rank correlation (Luo et al., 2020), however, this may be application dependent (e.g., whether or 

not a strictly linear relationship is sought). It can also be helpful to show the mean absolute error 

or FRUUHODWLRQ�LQ�GLIIHUHQW�UDQJHV�RI�HUURU��H�J���>�������>������DQG�>������PP���UHJDUGOHVV�RI�

whether the method performs classification or regression.  
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4.6.3. Validation References 

The use of landmarks or artificial deformations as a Reference provides complementary 

views of the performance of a method. Landmarks are identified at distinct locations. As a result, 

they only assess how the algorithm does for these distinct (usually high contrast) locations of an 

image. An interesting result from Obeidat et al. is applicable here (Obeidat et al., 2016). They 

assessed the performance of different registration algorithms on artificially deformed data, which 

also had landmarks selected at high contrast locations. The mean registration error detected by 

the landmarks was up to 4 times smaller than the mean registration error obtained from the 

(dense) artificial deformations. This demonstrates that the errors obtained at distinct landmark 

locations are not necessarily representative of the errors throughout the registered images. 

Artificial deformations, in contrast, provide a dense map that enables dense evaluation of 

an algorithm, but most likely represent a simplified version of the true deformations and thus 

result in a potentially unrealistic version of the true registration error between two images (Pluim 

et al., 2016)��)LW]SDWULFN�QRWHV�WKDW�³simulations have the primary advantage that the 

transformation is known exactly, and the secondary advantage that any transformation is readily 

DYDLODEOH«�EXW�WKH\�ODFN�WKH UHDOLVP�DULVLQJ�IURP�WKH�VRPHWLPHV�VXEWOH�DQDWRPLFDO�FKDQJHV«�

validations based on simulations can, however, provide an upper bound on success´�(Fitzpatrick, 

2001). 

Both types of References impact the results. Landmarks may overestimate an algorithms 

performance since they only consider distinct locations; they do not indicate how an algorithm 

does in more homogeneous regions of the images. Artificial deformations may overestimate the 

performance of a method since they do not provide errors that are as complex as those from real 

deformations.  

 

4.6.3.1. Landmarks 

Most authors do not consider the inter- or intra-observer variability that exists from the 

manual selection of landmarks. This variability puts a limit on the accuracy of the landmark-

based validation. Eppenhof and Pluim qualitatively showed the performance of their method on 

image pairs with the worst and best inter-observer variability (Eppenhof and Pluim, 2018). 

Meunzing et al. only considered landmarks that have less than 2 mm inter-observer variability 

(Muenzing et al., 2012). 
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In the context of lung CT registrations, Castillo et al. recommended that over 1000 

uniformly spaced manually identified landmarks are used in the validation of registration 

algorithms (R. Castillo et al., 2009). Although image registration and estimating registration 

error (or confidence) are not synonymous, it is likely that a similar recommendation can be made 

to validate methods of error (or confidence) estimation. Of the included studies, the typical 

number of landmark points (from lung CT databases) ranges from 100 to more than 300 (see 

Table 3.1). Castillo et al. note that if landmarks are not uniformly spaced, or if they are 

³restricted to highly selective features�´�WKH�WUXH�UHJLVWUDWLRQ�HUURU�LV�DW�ULVN�RI�EHLQJ�

underestimated (R. Castillo et al., 2009).  

Lastly, ensuring a balanced or representative training set for different size errors is more 

challenging when using landmarks. This has implications for the results. For example, Sokooti et 

al. had many more lower error samples (Sokooti et al., 2019b). Their model did not perform as 

well estimating larger errors. The overall mean absolute error is the average for all landmarks, 

which is biased toward the better performance on the lower error samples. If this method was 

compared to an equally performing method that was evaluated on a balanced set of samples, it 

would appear better.  

4.6.3.2. Artificial Deformations 

 Some authors opted to create simple deformations to validate their method, while others 

used more complex, and sometimes realistic-inspired, artificial deformations. The impact this has 

is yet to be studied. However, it is likely that the results obtained from simple artificial 

deformations overestimates the true ability of an algorithm since it is tested on simpler errors.  

4.6.3.3. Future Work and Suggestions 

There is a great deal left to be explored on the impact a Reference (landmarks or artificial 

deformations) has on the results of a validation procedure. The issue of the quality and quantity 

of landmarks, as well as the impact of inter-observer variability, should be investigated. How the 

results of a landmark-based validation generalize to the rest of the image would be a fruitful area 

for further work. The effect of the complexity of an artificial deformation should also be 

investigated. Furthermore, the degree to which realistic artificial deformations are actually 

realistic would be an interesting area to explore.  

We suggest using both artificial deformations and landmarks in the validation of an 

algorithm. This reaps the benefits of both methods. Eppenhof and Pluim followed this approach 
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(Eppenhof and Pluim, 2018). Their results for artificial deformations and landmarks are 

comparable, with root mean square differences between landmark-based known error and 

estimated error being slightly larger. They ascribe this discrepancy to inter-observer uncertainty 

in the landmarks, similarity of the artificially deformed testing data to the training data and the 

artificially deformed images being from the same image.  

Finally, the method of Murphy et al. to semi-automatically identify landmark points may 

be of great use to find large sets of landmarks in new data (Murphy et al., 2011).  

 

4.6.4. Model Mismatch 

 Recall that Model Mismatch occurs when the transformation used to artificially deform 

images does not match the transformation used to register the images (Hub et al., 2009). Model 

Mismatch is desirable when validating an algorithm. If the transformations are the same, then the 

registration is more likely to easily revert the artificial deformation (Fitzpatrick, 2001) and yield 

simpler errors for the error or confidence estimation algorithm to be evaluated on. This would 

overestimate the ability of the error or confidence estimation algorithm, and not reveal how it 

does in the case of Model Mismatch, which is more likely in real registrations. When Hub et al. 

created their realistic (artificially deformed) lung CT data, they ensured that different types of 

transformations were used to create the artificial deformations than were used in the registration, 

thus ensuring Model Mismatch (Hub et al., 2009).  

 Schultz et al. demonstrated that in the case of registration errors resulting from Model 

Mismatch, there is very low correlation between their estimated uncertainty and the known error 

(Schultz et al., 2019). In real registrations, the two images differ not by an artificial deformation 

but by the deformation caused by, for example, a physiological process. If the type of 

transformation used in the registration does not match the real deformation, it can be considered 

a case of Model Mismatch. One can presume, therefore, that the uncertainty obtained by the 

method of Schultz et al. would not provide a good indication of error in such a case of Model 

Mismatch. 

The concept of Model Mismatch also applies, and is particularly important, when 

creating training data from artificial deformations (i.e., Section 3.2.2.3.). If an algorithm is only 

trained on data from one type of transformation and is subsequently evaluated on errors from this 

VDPH�WUDQVIRUPDWLRQ��WKH�DOJRULWKP¶V�DELOLW\�WR�JHQHUDOL]H�WR�GLIIHUHQW�W\SHV�RI�WUDQVIRUPDWLRQV��



Chapter 2 

 54 

and combinations thereof, is not tested. Eppenhof and Pluim mention that one explanation for 

their machine learning model not detecting high frequency errors is that it was trained on 

transformations that yield lower frequency errors than the transformation used to register the 

images (Eppenhof and Pluim, 2018). 

 We suggest future research to probe the effect of Model Mismatch. We further encourage 

authors to be aware of and use transformations with Model Mismatch when using artificial 

deformations for their training and/or validation. 

 

4.7. Limitations 

4.7.1. Limitations of the Evidence Included in the Review  

This review is not without some limitations. Its purpose was not meant to be a scoping 

review of the field, but rather a systematic review of papers that met the specific inclusion 

criteria. We recognize that, as a result, several papers may be excluded from this review but are 

nonetheless interesting methods that deserve further attention. For example, a great many 

probabilistic, and in particular Bayesian, registration algorithms are available but do not meet the 

criteria of relating the obtained uncertainty to the known registration error. We addressed some 

of these excluded articles in Section 3.5. Other error and confidence estimation methods can be 

found in the review of Paganelli et al. (Paganelli et al., 2018). Overall, the inclusion criteria led 

to a representative and objectively selected set of articles for the field of registration error and 

confidence estimation in medical images. 

 

4.7.2. Limitations of the Review Processes Used  

While the review process closely followed the PRISMA guidelines, certain limitations 

exist. First, we restricted our database search to the Scopus database. While other databases were 

considered, it is possible that we missed certain publications. However, we included records 

from a preliminary literature review, as well as those identified by searching through references 

of the included publications. The same limitation applies to the advanced search string that we 

used; it may have left out some relevant records, but we are confident that we would have come 

across them eventually. Finally, one reviewer was responsible for the majority of inclusion and 

exclusion decisions, and a second reviewer was consulted when necessary. 

  



Chapter 2 

 55 

5. Conclusion 
Image registration is widely used in both medical research and clinical settings. 

Registration errors can have immediate and pernicious consequences on downstream tasks. We 

performed a systematic review of the literature on methods that automatically estimate 

registration error, registration confidence or both. The review was structured around a taxonomy 

to organize and classify these different methods. Trends, benefits and drawbacks, and sources of 

bias of the methods, their development and validation were discussed. We provided suggestions 

for best practices and future research. The field of registration error and confidence estimation is 

blossoming, and we hope our review will help guide and structure it as it continues to grow. 
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Taxonomy and Systematic Review 
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In Section 3.5 of the above chapter, we provided several examples of papers that were 

excluded from our review. Below, we provide a more comprehensive, though not exhaustive, list 

of error estimation papers for point-based rigid registrations that did not meet the criteria of our 

review.   
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Chapter 3: Estimating MRI-Ultrasound 

Registration Error in Image-Guided 

Neurosurgery 
± preface ± 

 
Chapter 2 systematically reviewed methods that densely estimate registration error and 

confidence. Trends, advantages and disadvantages, suggestions and directions for future research 

are provided, among several other topics, and are all presented in relation to the proposed 

taxonomy. An observation of Chapter 2 is that, while error estimation methods are increasingly 

popular, the application of these methods, though numerous in theory, is very limited. In Chapter 

3, we extend this list of applications by implementing an error estimating algorithm for MRI-

ultrasound registrations in Image-Guided Neurosurgery. This application represents an exciting 

development given the impact such an algorithm can have in Image-Guided Neurosurgery, as 

discussed in Chapter 3.  

7KH�DOJRULWKP¶V�LPSOHPHQWDWLRQ��EDVHG�RQ�D�SURSRVHG�PHWKRG�GLVFRYHUHG�DQG�UHYLHZHG�

in Chapter 2, is guided by the findings, discussions and recommendations of Chapter 2. An 

algorithm meant to verify MRI-ultrasound registrations in Image-Guided Neurosurgery should 

meet specific criteria. Namely, it should provide Measurements that are easily interpretable by 

surgeons and have fast runtimes. To meet the first requirement, error estimates are ideal given 

they are intuitively understood (as opposed to uncertainty or plausibility Measurements, which 

can be less intuitive and may only correlate with the error to a certain degree).  

The taxonomy developed in Chapter 2 easily allows us to identify the appropriate class of 

methods: the desired Measurement type is estimated error, which only comes from Machine 

Learning Frameworks. As identified in Chapter 2, an advantage of Machine Learning 

Frameworks is that they can provide fast error estimates once trained (meeting the second criteria 
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listed above). Moreover, Machine Learning Frameworks and the corresponding estimates of 

registration error were the most popular type of method reviewed in Chapter 2. Among these 

methods, deep learning-based Frameworks are becoming more frequently used, with their only 

feature being from an Image-based Approach (directly using the image intensities). Considering 

all of this, we implemented the convolutional neural network proposed by Eppenhof and Pluim 

(Eppenhof and Pluim, 2018).  

Accompanying deep learning models is a need for large datasets. The strategies for 

artificially deforming data, which yield the ground truth registration error for training and 

validation in Chapter 3, were informed by the results and discussions on artificial deformations 

in Chapter 2. Furthermore, Chapter 3 adheres to the suggestions of Chapter 2 regarding 

validating error and confidence estimation methods and the forms of bias that result from 

different validation choices.  

Overall, Chapter 2 forms the basis for the implementation of Chapter 3.  
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Abstract 
 

Image-Guided Neurosurgery allows surgeons to view their tools in relation to pre-operatively 

acquired patient images and models. Such neuronavigation systems enable safer and more 

efficient surgeries. Due to the phenomenon of brain shift (e.g., deformations of the brain during 

surgery), the pre-operative images cease to accurately reflect the true state of the brain. One 

technique to compensate for brain shift is to update the pre-operative image through registration 

to ultrasound images of the patient¶V�EUDLQ�REWDLQHG�LQWUD-operatively. Although nonlinear 

registration algorithms are more appropriate to model brain shift, they are not used clinically 

given challenges in validating these algorithms. We implemented a method to estimate MRI-

ultrasound registration errors, with the goal of enabling surgeons to quantitatively assess the 

performance of nonlinear registrations. The algorithm is based on a sliding-window 

convolutional neural network that operates on a voxel-wise basis. To create training data where 

the true registration error is known, ultrasound images were simulated from ten pre-operative 

MRI images and artificially deformed. Experiments determined optimal training parameters. The 

model was evaluated on held-out test patients with artificial deformations up to 15 mm. The 

model achieved a mean absolute error of 0.849 mm and a Pearson correlation of 0.838. To the 

best of our knowledge, this is the first error estimating algorithm applied to MRI-ultrasound 

registrations. It lays the foundation for future developments and ultimately implementation on 

clinical neuronavigation systems. The next steps involve evaluating the model with real 

ultrasound data and implementing it on the neuronavigation system developed by our group.  

 

Abbreviations 

 

MRI: Magnetic Resonance Imaging 

CT: Computed Tomography 

MAE: Mean Absolute Error 

US: Ultrasound 

CNN: Convolutional Neural Network 

mm: Millimetres 

CSF: Cerebrospinal Fluid  
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1. Introduction 
Neurosurgery is uniquely challenging. Fortunately, a combination of methodological 

innovation and technological advancement gave rise to Image-Guided Neurosurgery in the 1980s 

(Galloway, 2015, 2001). Image guided procedures allow surgeons to visualize their tools in 

relation to pre-operatively acquired images and patient models to enable safer, less invasive and 

more effective operations (Galloway, 2015, 2001; Grimson et al., 1999). The guidance provided 

by these tools can also permit more risky surgeries. Image-Guided Neurosurgery has become 

³the standard of cared for intracranial neurosurgery´�(Galloway, 2015) and is consequently 

used in most neurosurgical departments (Unsgård et al., 2014).  

Magnetic Resonance Imaging (MRI), given its high spatial resolution and ability to image 

contrast between soft tissues, is a common choice as a pre-operative image (Galloway, 2015; 

Miner, 2017; Sastry et al., 2017). While such pre-operative images are used in neuronavigation, 

WKHLU�XVH�LV�OLPLWHG�GXH�WR�WKH�SKHQRPHQRQ�RI�µEUDLQ�VKLIW¶�(Fedorov et al., 2014; Gerard et al., 

2021) ± deformations the brain undergoes during surgery (Dickhaus et al., 1997; Gerard et al., 

2021, 2017; Hartkens et al., 2003; Hastreiter et al., 2004; Kelly et al., 1986; Nabavi et al., 2001).   

One approach to mitigate the effect of brain shift is to image the patient again during the 

surgery. Intra-operative ultrasound can be used to update the pre-operative MRI image so that it 

matches the deformed brain (Gerard et al., 2021; Sastry et al., 2017; Unsgård et al., 2014). 

Central to this process is image registration. Rigid (a type of linear) image registration 

algorithms are used for this purpose (examples from our group include e.g., (De Nigris et al., 

2012; Mercier et al., 2012b)). However, they suffer a limitation in not being able to adequately 

model the deformation caused by brain shift. Nonlinear registration algorithms are more 

appropriate for this task (Archip et al., 2007; Fedorov et al., 2014; Sastry et al., 2017) but are not 

clinically accepted due to the complexity of the problem and the challenges in validating and 

verifying these algorithms (Fedorov et al., 2014) (examples from our group include e.g., (Arbel 

et al., 2004; Rivaz et al., 2015, 2014; Rivaz and Collins, 2015)).  

Any error in registration, whether by a linear or nonlinear registration, can have significant 

LPSDFWV�RQ�WKH�SDWLHQW¶V�ZHOOEHLQJ��&RQVLGHU�WKH�QHXURVXUJLFDO�FDVH�RI�EUDLQ�WXPRXU�UHVHFWLRQ��

Registration error could mislead a surgeon into damaging healthy (namely, eloquent) tissue or 

miss resecting the full extent of the tumour. A lesser extent of resection is linked to decreased 
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patient survival (Lacroix et al., 2001) and damaging healthy tissue leads to functional deficits 

WKDW�LPSDLU�WKH�SDWLHQW¶V�TXDOLW\�RI�OLIH�� 

With this in mind, an algorithm that is integrated in a neuronavigation system to estimate 

registration error would therefore be extremely beneficial. The development of algorithms that 

estimate registration error is becoming increasingly popular (Bierbrier et al., 2022). Not only 

could such an algorithm warn surgeons of potential error in linear registrations (making these 

registrations safer), but they can also instill trust in nonlinear registration algorithms (enabling 

these registrations to be clinically acceptable). To the best of our knowledge, a method for 

estimating nonlinear registration error has yet to be proposed for ultrasound-MRI registrations in 

Image-Guided Neurosurgery. To fill this void and to lay the groundwork for future research, we 

demonstrate the application of a suitable algorithm with a clinical dataset.  

 

A registration error estimation algorithm for application in Image-Guided Neurosurgery must 

meet specific criteria:  

x First, and most obvious, it needs to meet a certain accuracy in estimating the registration error ± 

that is, the error in estimating the amount of mis-registration must be sufficiently small. Here, we 

expect to obtain sub-millimeter accuracy when estimating registration error with maximum mis-

registrations of 5 millimeters (mm). This is in line with the registration errors from brain shift 

FRPSHQVDWLRQ�UHSRUWHG�LQ�*HUDUG�HW�DO�¶V�UHFHQW�UHYLHZ�(Gerard et al., 2021). 

x Second, the algorithm must run quickly enough so it does not interrupt the surgical workflow. 

After discussion with surgeons, delays less than a few minutes would be acceptable. 

x Third, the algorithm must produce results that lend themselves to intuitive visualization by 

surgeons.  

x Additionally, the algorithm should estimate registration error, which, by definition, is a 

measurement in physical units (e.g., millimeters) (Rohlfing, 2012), and should yield dense results 

(i.e., error estimate at every voxel location). These requirements ensure the results are 

interpretable by a surgeon and that they provide appropriate information for deformable 

(nonlinear) registrations.  

 

Considering these criteria in more detail, the method of Eppenhof and Pluim stands out 

(Eppenhof and Pluim, 2018). Eppenhof and Pluim proposed a patch-wise 3D convolutional 

neural network (CNN) to regress registration error estimates. Their method is applied in the 
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context of lung computed tomography (CT) images and yields a dense error map that can easily 

be visualized alongside (or by overlaying with a colorwash) the results of a registration in a 

neuronavigation system. While Eppenhof and Pluim report a prohibitive execution time of their 

algorithm (~25 minutes), we believe that it can meet runtimes suitable for the operating room 

given appropriate computation power (i.e., a powerful graphics processing unit), efficient 

implementation and smaller input volumes (i.e., ultrasound vs CT). On top of providing an 

algorithm that meets our requirements, Eppenhof and Pluim thoroughly validated their algorithm 

using two types references (landmarks and artificial deformations), as we recommend in our 

review (Bierbrier et al., 2022). They obtained root mean square deviations (between the known 

and estimated registration error) of 0.51 mm and 0.61 mm for artificially deformed data and 

manually annotated landmarks, respectively. 

Our goal is to achieve similar accuracy (mean of < |1| mm) as well as high correlations (> 

������E\�DSSO\LQJ�(SSHQKRI�DQG�3OXLP¶V�PRGHO�WR�XOWUDVRXQG-MRI data in the context of Image-

Guided Neurosurgery. To do so, we simulate ultrasound data from MRI images of patients with 

brain tumours. We artificially deform the images to mimic registration error and use the resulting 

images to train the model. Experiments to determine the optimal number of epochs to train the 

model and to determine the amount of data augmentation during training are performed. Drawing 

on these results, the trained model is used to estimate error on the test subjects. Finally, we 

discuss the results of the trained model and identify areas of future research.   

 

2. Methods 

2.1. Model 

(SSHQKRI�DQG�3OXLP¶V�QHWZRUN�XVHV�D�VOLGLQJ�ZLQGRZ�&11�WR�SURGXFH�HVWLPDWHV�RI�WKH�

registration error. As input, it considers the patches around the corresponding (registered) voxels 

for which the error is to be estimated. Eppenhof and Pluim used patch sizes of 33x33x33, with 

voxels resampled to 1x1x1 mm (yielding patches of 33x33x33 mm) after empirically determined 

this to be an optimal size for the range and type of error their network expected. Their 

empirically optimized network consists of two sequences of two convolutional layers followed 

by max pooling and then three fully connected layers, with the final layer being the regressed 

(scalar) registration error. They regularized the network with batch normalization after each layer 
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and dropout in the fully connected layers. An advantage of following the method of Eppenhof 

and Pluim, over similar previous methods like that of Sokooti et al. or Muenzing et al. 

(Muenzing et al., 2012; Sokooti et al., 2019, 2016), is that Eppenhof and Pluim trained their 

network with artificially deformed data which obviates the need for manually selected landmark-

based training data (Eppenhof and Pluim, 2018). In terms of the taxonomy introduced in our 

review article (Bierbrier et al., 2022)��(SSHQKRI�DQG�3OXLP¶V�PHWKRG�XVHV�DQ�Image-based 

Approach that provides features for a Machine Learning Framework and yields a Measurement 

of the estimated error. 

 

 
Figure 2.1. The architecture of the network proposed by Eppenhof and Pluim (adapted from (Eppenhof and Pluim, 2018)). 

 

We make use of the architecture proposed by Eppenhof and Pluim (Eppenhof and Pluim, 

2018) (Figure 2.1). However, there are several differences between our implementation and 

theirs. Our task ± estimating error in ultrasound-MRI registrations ± extends their method to the 

case of multimodal registrations. As noted by Eppenhof and Pluim, preparing training data for 
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the case of multimodal image registration following their procedure requires that one modality is 

simulated from the other modality to ensure that the registration error is perfectly known 

throughout the images. To this end, we simulate ultrasound images from the MRI images. Our 

process of creating artificially deformed data, both for training and validating our network, also 

differs. Additionally, whereas Eppenhof and Pluim restrict the errors their algorithm sees to the 

range of [0, 4] mm, we explicitly chose to train and test our algorithm on a much larger range of 

errors ± [0, 15ذ] mm ± to robustly test its limits. Finally, on top of batch normalization and 

dropout, L2 regularization is employed to each layer to further ensure our model remains 

generalizable. 

 

2.2. Simulated Ultrasound Images 
2XU�GDWDVHW�LV�FRPSRVHG�RI�WKH�%,7(��µ%UDLQ�,PDJHV�RI�7XPRUV�IRU�(YDOXDWLRQ¶��GDWDEDVH�

(Mercier et al., 2012a). It consists of pre- and post-operative MRI, and intra-operative ultrasound 

images of 14 patients with brain tumours. For this work, only the pre-operative T1-weighted 

MRI (with gadolinium) images are used. We arbitrarily split the data into training (subjects 1-

10), validation (subjects 11-12) and independent test (subjects 13-14) sets. (Please note that the 

test subjects are used only to evaluate the final model and are never used in training or parameter 

optimization.) 

As mentioned above, simulated ultrasound images are created from the pre-operative MRI 

images to ensure that the two 3D image volumes (i.e., MRI and ultrasound) are in perfect 

correspondence prior to being deformed. To create simulated ultrasound images we follow the 

approach of Mercier et al. (Mercier et al., 2012b), who simulated ultrasound images for rigid 

ultrasound-MRI registrations. While the technique is relatively straightforward, it was clearly 

sufficient for Mercier et al.; they achieved significantly improved MRI-ultrasound registration 

results when registering the MRI-based simulated ultrasound with the real ultrasound compared 

to directly registering the MRI and the real ultrasound. We summarize the method here. 

The simulated ultrasound is generated by segmenting a masked MRI image into white matter, 

gray matter, cerebrospinal fluid (CSF) and background. The CSF is further categorized as 

ventricular CSF (which appears darker in ultrasound images) or sulcal CSF (which appears 

brighter in ultrasound images). A final class representing both vessels and high-grade tumours is 

obtained by thresholding the MRI image. Each class (white matter, gray matter, ventricular CSF, 
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sulcal CSF and vessels/high-grade tumours) is then mapped to an intensity to visually resemble 

ultrasound images. Finally, the intensity-remapped image is smoothed with a Gaussian filter.  

Throughout, we used the same parameters as Mercier et al. (Mercier et al., 2012b). The MRI 

image intensities were corrected with the nonparametric nonuniform intensity normalization 

�µ1�¶��DOJRULWKP�(Sled et al., 1998) and were linearly normalized to match the ICBM152 

template by histogram matching. The intensity corrected and normalized images were then 

registered to Talairach space using an affine transformation (Collins et al., 1994) and resampled 

to 1x1x1 mm. Brain masks were created for these images with the BEaST algorithm (Eskildsen 

et al., 2012). Within the brain mask, the images were nonlinearly registered to the ICBM152 

template (Collins and Evans, 1997). The brain was then segmented into gray matter, white 

matter, CSF and background (Cocosco et al., 2003), and cortical structures (Collins et al., 1999). 

For all subsequent processing (here and below), we used the SimpleITK library in Python to 

interact with and manipulate images (Beare et al., 2018; Lowekamp et al., 2013; Yaniv et al., 

2018). An example simulated ultrasound image is presented in Figure 2.2. 
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Figure 2.2. The MRI image (left) and the corresponding simulated ultrasound image (right) of subject 1. The numbers above 

each subplot denote their slice. The simulated ultrasound was created following the method proposed by Mercier et al. (Mercier 

et al., 2012b). 

2.3. Training Data 

2.3.1. Artificial Deformations 

The original masked MRI and simulated ultrasound images, initially in perfect 

correspondence, are deformed using cubic B-spline-based free-form deformations (see e.g., 

(Rueckert et al., 1999; Rueckert and Schnabel, 2011) or (Pérez-García, 2020) for a helpful 



Chapter 3 

 89 

tutorial with SimpleITK). B-spline transformations have been used by others to artificially 

deform training data for error estimating tasks (Lotfi et al., 2013; Sokooti et al., 2021). The B-

spline transformations are defined by the displacements of a set of uniformly spaced control 

points (or nodes) in a 3D mesh. There are two parameters leveraged to create random artificial 

deformations (Figure 2.3). The first is the size of the control point mesh (see the vertical axis of 

Figure 2.3). A smaller number of mesh nodes implies lower frequency deformations, while a 

larger number of mesh nodes enables higher frequency deformations (Rueckert et al., 1999). We 

refer to this parameter as affecting the frequency of the deformation. The second parameter is the 

magnitude of the displacement (or perturbation) of the control points (see the horizontal axis of 

Figure 2.3). Larger displacements create larger deformations. We refer to this parameter as 

affecting the size of the deformation.  

Given that the images are perfectly aligned to begin with, any deformation applied to either 

LPDJH�UHVXOWV�LQ�PLVDOLJQPHQW�ZKLFK�ZH�XVH�DV�D�SUR[\�IRU�µUHJLVWUDWLRQ�HUURU�¶�7KHUHIRUH��

artificial deformations are applied to create training data in which the amount of registration 

error is known at every voxel in the two images. Figure 2.3 shows examples of deformed 

simulated ultrasound images. 
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Figure 2.3. Top: Deforming the simulated ultrasound image with a different number of control points (low, medium and high 

frequency of the deformation shown in different rows) and varying control point perturbation (size of the deformation ranging 

from low, medium and high across columns). The control point displacements are shown in light blue in the X and Y directions 

(but note that the deformations are in 3D). Bottom: The histograms of registration errors that are produced by the levels of 

deformation size. Note that the horizontal axis changes for each histogram plot and that each plot contains the same number of 

samples. These distributions do not appreciably change for the levels of deformation frequency and, as such, they are only 

plotted for the levels of deformation size with medium deformation frequency. 
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2.3.2. Data Generator 

One strategy to create training data is to apply (perhaps several) artificial deformations to the 

images and save corresponding patches (the samples) along with their known error (the labels) 

prior to training. The model is trained on this data during each epoch. This has the advantage that 

the training data can be generated prior to training. The disadvantage is that during each epoch, 

the model sees the same set of training data, which may limit its ability to generalize. Given this 

drawback, we opted for an online data generator strategy. In this approach, new data is generated 

at the beginning of each epoch. The primary advantage of using an online data generator is that 

the model is constantly exposed to previously unseen data, furthering its ability to generalize. It 

also does not require storing a large training dataset. The drawback of a data generator is the 

additional computational time required. With our implementation this accounted for 3-5x as 

much time as the training itself.  

Our data generator was developed with the help of the tutorial from Amidi and Amidi (Amidi 

and Amidi, 2018) and works as follows. At the beginning of each epoch, a random artificial 

deformation is applied to the simulated ultrasound of each subject used for training and 

validation. This deformation is random in terms of the number of control points (affecting the 

frequency of the deformation) as well as the 3D displacement of each control point (affecting the 

size of the deformation). The control point grid is isotropic (i.e., the same size in each direction), 

with the size being randomly determined each deformation. The displacement of each control 

point (in each 3D direction) is randomly sampled from a uniform distribution of a given range 

centered on 0 mm. For each deformation, the range itself is random. This ensures simulated 

registration errors of different variety and size. For each subject, 100 corresponding patches are 

randomly selected from the MRI and ultrasound images (as shown in Figure 2.4), along with the 

known error of the central voxel of the patch pair. This yields (10 subjects x 100 patch 

pairs/subject = 1000) training samples per epoch. The order of the extracted patches is randomly 

shuffled each epoch.  
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Figure 2.4��7KH�05,�DQG�GHIRUPHG�XOWUDVRXQG��µ86¶��LPDJHV��7he blue arrows illustrate the displacement of the control points 

and the red arrows display the deformation vector field of the deformation. The red boxes in the MRI and ultrasound images are 

the corresponding patches that are extracted. These patches are shown in the column on the right, along with the error map. 
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Figure 2.5. Levels of data augmentation (gamma shifting, Gaussian noise, Gaussian filter). For illustrative purposes, each plot is 

created with the maximum amount of augmentation (i.e., for low augmentation: gamma: 0.3, noise: 3, filter: 0.25mm). 
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2.3.3. Data Augmentation 

Data augmentation is a popular strategy to avoid overfitting small datasets (Shorten and 

Khoshgoftaar, 2019). Eppenhof and Pluim found that data augmentation reduced the bias of their 

model (Eppenhof and Pluim, 2018). Therefore, in addition to the random artificial deformations, 

the images are augmented at the beginning of each epoch. The augmentation includes the 

addition of random Gaussian noise, random gamma shifting (to change image contrast) and 

Gaussian smoothing with a kernel with random standard deviation (see Figure 2.5), and are 

performed using the TorchIO Python library (Pérez-García et al., 2021). The augmentations are 

applied separately to the MRI and ultrasound images. Finally, the corresponding patches are 

randomly flipped in (X, Y, Z) directions. Note that the validation data does not undergo this 

augmentation. Thus, while the training data evidently comes from the same set of images at each 

epRFK��LW�LV�µQHZ¶�WR�WKH�PRGHO�LQ�WHUPV�RI�� 

x The artificial deformation size and complexity: 

o Each training image is deformed with a randomly size control point mesh and randomly 

sized control point displacements. 

x The intensity profile: 

o Each training image is augmented by random smoothing, noise and gamma shifting. 

x The location of the patch within the image: 

o 100 corresponding patches are randomly selected from each of the training image pairs 

(the augmented MRI and augmented/deformed simulated ultrasound).  

x The orientation: 

o Each augmented patch pair may randomly be flipped in the three cardinal directions. 

Thus, during each epoch, 1000 patch pairs were used for training (10 training subjects x 100 

patch pairs/subject). A similar approach is followed for the validation data that is used to assess 

the model during training, however, as mentioned, this data is not augmented. The model is 

assessed on the validation data again after training more thoroughly, as described below. 

 

2.4. Evaluating the Model After Training 

To validate the model after training, it is applied to the full field of view of both validation 

datasets (as opposed to randomly selecting a limited number of patches, as is done during 

training after each epoch). The validation datasets are randomly deformed following the same 
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procedure as above. The size and frequency of the deformations are each set to different levels: 

low, medium and high (see Figure 2.3). Therefore, each of the two validation subjects is 

deformed nine times. For example, a deformation with low frequency and low size has a [6, 6, 6] 

control point grid and randomly sized deformations in the range of [15, 15, 15] mm (i.e., 3D 

displacements sampled from [-7.5, 7.5) mm). Typical histograms of the registration error 

produced by each level of deformation are provided in Figure 2.3. The model then estimates the 

registration error for these images. For slices that are not being plotted, the model estimates error 

with a stride of 5 (i.e., skipping every 5 voxels) to increase computation efficiency. The error is 

only estimated for voxels within a mask of the brain. Note that the same procedure is performed 

on the two test datasets when the final model is being evaluated. 

The large displacements we apply create large registration errors ± that is to say, large 

µUHVLGXDO¶�PLV-alignment of MRI and ultrasound volumes. While we believe that nonlinear 

registration tools used in neurosurgery should result in much smaller errors (in line with the 

registration errors from brain shift FRPSHQVDWLRQ�UHSRUWHG�LQ�*HUDUG�HW�DO�¶V�UHFHQW�UHYLHZ�

(Gerard et al., 2021)), we wanted to know how robustly we could estimate such large errors, 

even if they were unlikely in practice. 

 

2.5. Experiments 

We performed two experiments to optimize hyperparameters prior to evaluating the model on 

the test set. First, we examined the optimal number of epochs to train the model. While this is a 

UHODWLYHO\�WULYLDO�WDVN��LW�GHSLFWV�KRZ�WKH�PRGHO¶V�SHUIRUPDQFH�LPSURYHV�ZLWK�PRUH�WUDLQLQJ��

Second, we evaluated the effect of data augmentation (Gaussian noise, gamma shifting, Gaussian 

smoothing and random flips). The models from the experiments are evaluated on the validation 

subjects. Given the insights drawn from these two experiments, the model was trained and 

evaluated on the test data. The results of the hyperparameter optimization are presented in the 

next section, followed by the evaluation of the model on the test set.  

7KHVH�H[SHULPHQWV�DUH�SHUIRUPHG�XVLQJ�D�µVWDQGDUG�PRGHO¶�ZLWK�WKH�IROORZLQJ�SDUDPHWHUV��

Adam optimizer (Kingma and Ba, 2017) with a learning rate of 0.0001, mean squared error loss, 

33x33x33 mm patches and 100 samples per subject for each epoch (10 subjects x 100 

patches/subject = 1000 patches total). These values were chosen empirically or from the results 

of Eppenhof and Pluim (Eppenhof and Pluim, 2018). The parameters for the random artificial 
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deformations were set to [6, 12] for the number of control points and a range of [0, 60] mm for 

the perturbation of the control points. Linear interpolation was used to resample the transformed 

images. The model was trained using Keras (Chollet and others, 2015) on top of TensorFlow 2 

(Martín Abadi et al., 2015) with an NVIDIA GeForce RTX 3090 graphics processing unit.  

We refer to the difference between estimated registration error and the known registration 

error as the regression error; this is the error in estimating the registration error. We select the 

Mean Absolute Error (MAE) and Pearson correlation as the validation metrics, as suggested in 

our review (Bierbrier et al., 2022). The MAE (or Pearson correlation) is reported as the average 

of the MAEs (or Pearson correlations) for all deformation levels for both validation subjects.  

 

3. Results 

3.1. Number of Epochs 

The model was trained on a varying number of epochs: 100, 500, 1000, 2000 and 3000. The 

learning curve for the model trained on 3000 epochs is presented in Figure 3.1.  

 

 
Figure 3.1. The learning curve for the model trained on 3000 epochs. The x-axis represents the epoch number and the y-axis 

illustrates the MAE in mm. 
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The experimental results of the models evaluated on the validation subjects for 100, 500, 

1000, 2000 and 3000 epochs are presented in Figure 3.2 ± Figure 3.4. The model with the lowest 

average MAE (0.807 mm) was trained for 3000 epochs. This model also had the highest mean 

Pearson correlation (0.775). The boxplots of Figure 3.2 illustrate that the distribution of absolute 

errors decreases as training progresses. The same trend is evident in Figure 3.4, where the violin 

plots illustrate a much larger range of regression errors for the model trained only on 100 epochs 

compared to that on 3000 epochs. The mean value of these violin plots shows the bias of the 

model (Eppenhof and Pluim, 2018). Particularly for the larger sized deformations (i.e., [45, 45, 

��@�PP���WKH�PRGHO¶V�ELDV�LV�UHGXFHG�DV�WUDLQLQJ�SURJUHVVHV�ZLWK�PRUH�HSRFKV��$Q�H[DPSOH�RI�

the model trained on 3000 epochs estimating registration error is given in Figure 3.5. 

 

 
Figure 3.2. The absolute error of regression (|Estimated ± True Error|) results from the Epochs experiment. The x-axis depicts 

the trained models. The y-axis displays the boxplots of the absolute error for all the evaluations performed for each experiment 

(all deformations for each validation subject). The orange bar represents the median. Note that outliers are not plotted to avoid 

cluttering the figure. 
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Figure 3.3. The Pearson correlation results for the Epochs experiment. The x-axis depicts the trained models. The y-axis shows 

boxplots of the Pearson correlation values for each of the evaluations performed (all deformations for each validation subject). 

The orange bars represent the median. 
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Figure 3.4. Violin plots of the regression error for the two validation subjects across the deformations for models trained on 100 

and 3000 epochs. The x-axis represents the levels of the applied deformation. The legend displays the validation subjects (1: 

subject 11; 2: subject 12). The annotated blue and orange bars display the mean of the violin plots. 
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Figure 3.5. Estimated error of slice 100 of validation subject 11 from the model trained on 3000 epochs. The deformation is 

medium frequency (i.e., [8, 8, 8]) and medium size (i.e., [30, 30, 30] mm). The red arrows on the Deformed US Image (top right) 

are the displacement vectors of the deformation. Note that correlation and MAE values given in the Absolute Difference image 

(bottom right) are calculated only for this slice. (Abs. Diff.: Absolute Difference). 

 

These results indicate that training the model on 3000 epochs is optimal. It is possible that 

training on even more epochs would produce better results (see the future work section). 

+RZHYHU��JLYHQ�WKH�PRGHO¶V�SHUIRUPDQFH�GRHV�QRW�VHHP�WR�EH�LPSURYLQJ�DSSUHFLDEO\��EDVHG�RQ�

the learning curve shown in Figure 3.1) and that it already meets our goals, we stop training after 

3000 epochs. The primary reason for this is to avoid overfitting the model on the training data.  

 

3.2. Data Augmentation 

The model was trained with different levels of data augmentation (Figure 2.5): none, low, 

medium and high. It was trained for 1000 epochs for each level of data augmentation.  
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The experiment results on the two validation subjects for data augmentation are presented 

in Figure 3.6 ± Figure 3.9. The model trained with the low level of data augmentation achieved 

the lowest average MAE (1.081 mm) followed closely by the model trained with medium data 

augmentation (1.083 mm). The average Pearson correlation was highest for the model trained 

with the low level of data augmentation (0.757), followed by no data augmentation (0.740). The 

MAE and Pearson correlation results plotted over the different levels of deformations confirm 

these findings (Figure 3.8 ± Figure 3.9). The model trained with the low level of data 

augmentation performs the best most consistently in terms of MAE and Pearson correlation. 

 

 
Figure 3.6. The absolute error of regression (|Estimated ± True Error|) results from the Data Augmentation experiment. The x-

axis depicts the trained models. The y-axis shows the boxplots absolute error for all the evaluations performed (over all 

deformations for both validation subjects). The orange bar represents the median. Note that outliers are not plotted to avoid 

cluttering the figure. 
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Figure 3.7. The Pearson correlation results for the Data Augmentation experiment. The x-axis depicts the trained models with 

different levels of data augmentation. The y-axis shows boxplots of the Pearson correlation values for each of the evaluations 

performed (all deformations for each validation subject). The orange bars represent the median. 

 

 
Figure 3.8. The MAE achieved by models trained on different levels of data augmentation across the levels of deformations. The 

x-axis shows the levels of deformation. The y-axis is the MAE in mm. Note that only the mean values are presented (not the entire 

distribution) to avoid cluttering the figure. 
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Figure 3.9. The Pearson correlation achieved by models trained on different levels of data augmentation across the levels of 

deformations. The x-axis shows the levels of deformation. The y-axis illustrates the Pearson correlation (only plotted in the range 

of [0, 1]). 

 

The results of this experiment suggest that a low level of data augmentation is beneficial. It is 

possible that models trained on the medium and high levels of data augmentation would achieve 

the same or even better results if trained for more epochs, since these samples can be more 

challenging (e.g., more noise or blurring). However, based on the results of this experiment, we 

used a low level of data augmentation when training the final model. 

 

3.3. Final Model 

Drawing on the results of the two experiments, the final model was trained with 3000 epochs 

and with the low level of data augmentation. This model was evaluated on the independent test 

set (subjects 13-14) using the same procedure as performed on the validation set. The results for 

the final model on the test set are presented in Figure 3.10 ± Figure 3.12. The model achieves an 

average MAE of 0.849 mm and an average Pearson correlation of 0.838. This is consistent with 

the findings on the validation set. 
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Figure 3.10. Violin plots of the absolute error of regression (|Estimated ± True Error|) of the model on the test subjects (1: 

subject 13; 2: subject 14). The x-axis represents deformation level. The annotated blue and orange bars display the mean of the 

violin plots. 

 
Figure 3.11. The Pearson correlation of the model on the test subjects (Sub 1: subject 13; Sub 2: subject 14). The x-axis 

represents deformation level. 
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Figure 3.12��9LROLQ�SORWV�RI�WKH�PRGHO¶V�UHJUHVVLRQ�HUURU�RQ�WKH�WHVW�VXEMHFWV�����VXEMHFW��������VXEMHFW������7KH�[-axis represents 

the deformation levels. The annotated blue and orange bars display the mean of the violin plots. 

 

 

There are several discernible trends in the testing data results relating to the level of 

deformation. Consider the absolute error plot of Figure 3.10��7KH�VSUHDG�RI�WKH�PRGHO¶V�DEVROXWH�

error distribution increases as the size of the deformations increase from low to medium to high. 

Correspondingly, the MAE increases with the size of the deformations but remains under 1 mm 

for the two smallest sets of deformations. There is a similar yet less consistent trend of the MAE 

increasing as the frequency of the deformations increases. Figure 3.11 illustrates that the Pearson 

correlation coefficients are generally the highest for the medium size deformations, and lowest 

for the largest deformations. The correlation coefficients decrease as the frequency of the 

deformations increases. Finally, considering Figure 3.12, it is apparent that the model 

consistently underestimates the true registration error. Note that the difference between the two 

test subjects is relatively small, with the model overall performing better on subject 14.  

Figure 3.13 GHPRQVWUDWHV�TXDOLWDWLYHO\�DQG�TXDQWLWDWLYHO\�WKH�PRGHO¶V�UHVXOWV�IRU�GLIIHUHQW�

levels of deformations of the test subjects. Qualitatively, the model performs well at identifying 



Chapter 3 

 106 

UHJLRQV�ZLWK�HUURU��$V�VHHQ�LQ�WKH�(VWLPDWHG�(UURU�DQG�$EVROXWH�'LIIHUHQFH�VXESORWV��WKH�PRGHO¶V�

HUURU�HVWLPDWH�LV�JHQHUDOO\�QRW�DV�VPRRWK�DV�WKH�WUXH�HUURU��1RWDEO\��WKH�PRGHO¶V�SHUIRUPDQFH�LV�

not appreciatively affected by the presence of the lesion in Subject 13.  

Figure 3.14 VKRZV�WKH�PRGHO¶V�SHUIRUPDQFH�ZLWK�ODUJH�GHIRUPDWLRQV��>����������@�PP��

and medium deformation frequency ([8, 8, 8]) for subject 14. The cyan boxes illustrate regions 

where the model underestimates the true registration error. The underestimation is confirmed by 

the violin plot. The relatively poor performance on this example results in a high MAE (1.578 

mm) and low correlation (0.599), however it is important to note that one would expect smaller 

residual mis-registration from a robust nonlinear registration algorithm. In contrast, Figure 3.15 

displays an instance where the model performed well (with slightly smaller simulated residual 

mis-registration), resulting in a MAE of 0.671 mm and correlation of 0.853, with no serious 

over- or underestimation of the true registration error. 
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Figure 3.13. Estimated error on the test subjects at different deformation levels. The correlation and MAE values given in the 

Absolute Difference images are calculated only for presented slice, which in all cases is slice 100. Note that the error colour bar 

of the True, Estimated and Absolute Difference plots are consistent within each subfigure but vary across the subfigures. (Abs. 

Diff.: Absolute Difference). 
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Figure 3.14. Estimated error on subject 14 with the corresponding violin plot displaying the regression error. The cyan boxes 

highlight regions where the model underestimated the registration error. The correlation and MAE values given in the Absolute 

Difference image, as well as all data in the violin plot, are calculated only for presented slice (slice 100). The blue bar in the 

violin plot represents the mean of the distribution. (Abs. Diff.: Absolute Difference). 

 

 
Figure 3.15. Estimated error on subject 14 with the corresponding violin plot displaying the regression error. The correlation 

and MAE values given in the Absolute Difference image, as well as all data in the violin plot, are calculated only for presented 

slice (slice 100). The blue bar in the violin plot represents the mean of the distribution. (Abs. Diff.: Absolute Difference). 
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4. Discussion 
Registration error estimating algorithms are becoming more popular (Bierbrier et al., 2022). 

A successful algorithm would yield immediate benefits in Image-Guided Neurosurgery. We 

adapted the method of Eppenhof and Pluim (Eppenhof and Pluim, 2018) to estimate errors in 

MRI-ultrasound registrations in the context of Image-Guided Neurosurgery. We performed 

experiments to determine the optimal number of epochs and level of data augmentation to use in 

training. The results of these experiments informed the training of the final model. 

The final model exceeded our goals. Evaluated on the test set, it obtained an average MAE of 

0.849 mm (goal: mean of < |1| mm) and an average Pearson correlation of 0.838 (goal: > 0.75). 

Given the success of the model on the test set, it does not seem to be overfitted to the training 

data. This is likely due to several factors, including limiting the training to 3000 epochs, 

incorporating data augmentation techniques into the training and using a data generator to 

provide diverse training samples from the relatively limited training set. In terms of 

visualization, error maps similar to those in Figure 3.13 can be displayed on the neuronavigation 

system, perhaps overlayed as a colourwash on the registered image. Once the model is fully 

trained, it takes approximately 100 second to estimate error within the entire brain mask with an 

in-slice stride of five. We estimate it will take a similar amount of time for real ultrasound 

images given their smaller field of view, and thus is acceptable for Image-Guided Surgeries. 

However, there is room for improvement with more efficient implementation. Evaluating the 

final model revealed several trends in its performance, as we discuss below. 

 

4.1. Model Trends 

4.1.1. Deformation Size 

Perhaps not surprisingly, the model performed better on smaller deformations in terms of the 

MAE (Figure 3.10). One possible explanation for this is the patch size. Eppenhof and Pluim 

selected the input size as 33x33x33 mm with the assumption that the errors their model would 

see are in the range of [0, 4] mm (Eppenhof and Pluim, 2018). They found 33x33x33 mm 

patches yielded the optimal trade-off between a model that has receives enough spatial context 

and a model that receives unnecessary information (e.g., deformations that do not inform on the 

error of the central voxel). Our range of deformations was much larger than theirs (up to ~15 

mm) to account for the possibly large residual mis-registrations due to ineffective nonlinear 
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registrations when accounting for brain shift. For large deformations (e.g., > 10 mm), a 

significant portion of the input patches may not overlap. Using larger-sized patches may be more 

appropriate to estimate such larger registration errors, however one would expect a successful 

nonlinear registration algorithm to have much smaller residual alignment errors. Another 

possible explanation for the better performance on smaller deformations relates to the 

distribution of training samples; there were many fewer large error samples in the training data. 

8VLQJ�D�EDODQFHG�WUDLQLQJ�VHW�FRXOG�LPSURYH�WKH�PRGHO¶V�DELOLW\�WR�HVWLPDWH�ODUJH�HUURUV�� 

The correlation coefficients of the medium-sized deformations were the highest, followed by 

those for the small deformations (Figure 3.11). This may also be due to an unbalanced training 

set, with the most training samples representing the medium-sized deformations. The large 

deformations had the lowest correlations, likely due to the issues discussed above. 

 

4.1.2. Deformation Frequency 

Increasing the deformation frequency generally resulted in poorer performance in terms of 

the MAE (Figure 3.10) and (more consistently) the Pearson correlation (Figure 3.11). A higher 

number of control points allows for higher frequency deformations (i.e., less smooth simulated 

residual mis-registration). Such deformations seem to pose a greater challenge for the model to 

detect and estimate. This may relate to the size of the input patches, as Eppenhof and Pluim 

pointed out (Eppenhof and Pluim, 2018): with higher frequency deformations, the patches are 

more likely to contain deformations that do not provide information related only to the error of 

the central voxel of that patch.  

 

4.1.3. Model Bias 

Figure 3.12 demonstrates that the model consistently underestimates the true registration 

error. It is not clear whether this is a result of missing regions with large error, as Figure 3.14 

illustrates, or if the model underestimates the error more generally. It is worth noting that in 

some cases the model overestimates the error; this was observed when evaluating the model on 

the validation data. It was particularly notable in regions of lesions, where high error would be 

estimated regardless of the true error. This may be the result of a lack of texture in these regions, 

which is generally exaggerated by the creation of simulated ultrasound data.  
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To ameliorate the issue of over- and underestimation of registration error, it is first important 

WR�XQGHUVWDQG��WKH�OLNHO\�PDQ\�UHDVRQV��ZK\�LW�RFFXUV��,I�LW�RFFXUV�GXH�WR�WKH�PRGHO¶V�LQDELOLW\�WR�

detect large deformations (large registration errors), then the model can be trained with larger 

registration errors and a larger input patch size. If it is due to a lack contrast (e.g., in a lesion), 

then such regions can perhaps be preferentially sampled (e.g., based on a probability map) during 

the training process to ensure the model is sufficiently exposed to these more challenging cases.  

 

4.2. Comparison to Other Methods 
2YHUDOO��WKH�PRGHO¶V�SHUIRUPDQFH�PHHWV�WKH�GHVLJQ�FULWHULD�VHW�RXW�DW�WKH�EHJLQQLQJ�RI�WKLV�

chapter. The method faced significant challenges in estimating error from (a) multimodal 

registrations, which are generally more challenging that mono-modal registrations, of (b) brain 

anatomy, which is inherently complex, for (c) patients with tumours, which, as we noted, can 

present additional issues for algorithms. Beyond this, it estimates error from a relatively large 

range [0, ~15] mm ± DOPRVW�IRXU�WLPHV�JUHDWHU�WKDQ�WKDW�RI�(SSHQKRI�DQG�3OXLP¶V�PRGHO��>����@�

mm) (Eppenhof and Pluim, 2018). On registration errors in the range similar to that of Eppenhof 

DQG�3OXLP��WKH�PRGHO¶V�UHVXOWV�DUH�LPSUHVVLYH��������PP�0$(��ORZ�VL]HG�GHIRUPDWLRQV�RQ�WKH�

test subjects; see Figure 3.10).  

Comparing the performance of different registration error estimating methods is not trivial. 

In fact, in our review of the field, we call for a standardized analysis approach and datasets for 

evaluation of competing methods (Bierbrier et al., 2022). The publications in the literature that 

are most similar to ours are Eppenhof and Pluim (Eppenhof and Pluim, 2018), Sokooti et al. 

(Sokooti et al., 2021, 2019, 2016), Saygili (Saygili, 2021, 2020, 2018), Lotfi et al. (Lotfi et al., 

2013) and Sedghi et al. (Sedghi et al., 2019). Each of these methods used a Machine Learning 

Framework to estimate registration error, with the exception of Sedghi et al. who integrated a 

Machine Learning Framework in a registration algorithm that provides uncertainty estimates. 

Table 4.1 provides the classification of other methods and their results in relation to ours. While 

the results are not directly comparable, it is clear that our results fall within the range of these 

other publications.  
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Author Approach Framework Measure-

ment 

Reference Data Results 

(Sokooti et al., 

2016) 

Parameter 

Exploration 

Image-based 

Transformation 

Plausibility 

ML (RF; 

Landmarks + 

surrounding 

region) 

Error Landmarks 1. SPREAD: follow-up chest CT of 21 emphysema patients 

(~100 landmarks per case, chosen semi-automatically 

(Staring et al., 2014)) (Stolk et al., 2007) 

Mean absolute error: 0.72 ± 0.96 mm 

(Sokooti et al., 

2019) 

Parameter 

Exploration 

Image-based 

Transformation 

Plausibility 

ML (RF; 

Landmarks + 

surrounding 

region) 

Error Landmarks 1. SPREAD 

2. DIR-Lab-4DCT: 10 thoracic CT, half from patients with 

thoracic malignancies (>300 landmarks per image pair) (E. 

Castillo et al., 2009; R. Castillo et al., 2009) 

3. DIR-Lab-COPDgene: 10 thoracic CT of patients with 

severe breathing disorders (>300 landmarks per case) 

(Castillo et al., 2013) 

Mean absolute error: 1.07 ± 1.86 mm (intra-database; 

SPREAD data), 1.76 ± 2.59mm (inter-database) 
 

(Eppenhof and 

Pluim, 2018) 

Image-based ML (CNN; 

Artificial 

deformations) 

Error Landmarks 

Artificial 

deformations 

1. DIR-Lab-4DCT 

2. DIR-Lab-COPDgene  

3. POPI-model: 1 thorax 4DCT dataset (40 landmarks) 

(Vandemeulebroucke et al., 2007) 

4. CREATIS: 6 thorax 4DCT of cancer patients (100 

landmarks per case) (Vandemeulebroucke et al., 2011) 

Root mean square difference: 0.51 mm (Artificial 

deformations), 0.66 mm (Landmarks) 

(Saygili, 2018) Parameter 

Exploration 

ML (RF; 

Landmarks + 

surrounding 

region) 

Error Landmarks 1. DIR-Lab-4DCT Mean absolute error: 1.64 ± 1.81 mm 

(Saygili, 2020) Parameter 

Exploration 

ML (RF; 

Landmarks + 

surrounding 

region) 

Error Landmarks 1. DIR-Lab-4DCT 

2. CREATIS 

Mean absolute error: 2.00 mm (Three Orthogonal Planes 

approach with RF) 

R2 = 0.74 

(Saygili, 2021) Parameter 

Exploration 

ML (RF; 

Landmarks + 

surrounding 

region) 

Error Landmarks 

Artificial 

deformations 

1. DIR-Lab-4DCT  

2. CREATIS 

3. HAMMERS: 30 healthy brain MRI (Hammers et al., 

2003) 

R2 correlations: 0.63756, 0.58005 and 0.68825 (POPI data 

(x,y,z)) 

R2 correlations: 0.65163, 0.56063, 0.77355 (DIRLab data 

(x,y,z))  

Mean absolute error: 1.05 ± 1.28, 0.81 ± 0.87, 1.71 ± 2.91, 

1.75 ± 2.47 mm (x, y, z, magnitude) 

(Sokooti et al., 

2021) 

Image-based ML (Encoder-

Decoder; 

Artificial 

deformations) 

Error Landmarks 1. DIR-Lab-COPDgene 

2. DIR-Lab-4DCT 

3. SPREAD 

Classification accuracy: 87.1% 

Average F1 score: 66.4% 

(Lotfi et al., 

2013) 

Parameter 

Exploration 

Image-based 

Transformation 

Plausibility 

Directly to 

Measurement 

ML (RF; 

Artificial 

deformations) 

Uncertainty 

Error 

Artificial 

deformations 

1. Synthetic texture image 

2. BRATS 2012: 6 brain tumour MRI �³0,&&$,�%5$76�

�����´�Q�G�� 

3. LBPA40: 40 brain MRI (Shattuck et al., 2008) 

Correlation coefficient: 0.730 (uncertainty; synthetic data), 

0.215 (est. error; without uncertainty as a feature), 0.542 (est. 

error; with uncertainty as a feature) 

(Sedghi et al., 

2019) 

Image-based 

Parameter 

Exploration 

Directly to 

Measurement 

ML (CNN; 

Artificial 

deformations) 

Uncertainty Artificial 

deformations 

1. IXI: T1 and T2 brain MRI �³,;,�'DWDVHW�± Brain 

'HYHORSPHQW�´�Q�G�� 

Correlation coefficient: 0.94  

Our 

implementation 

Image-based ML (CNN; 

Artificial 

deformations) 

Error Artificial 

deformations 

1. BITE database: 14 brain tumour MRI and ultrasound 

(Mercier et al., 2012a) 

Mean absolute error: 0.849 mm 

Pearson correlation: 0.838 

Table 4.1. Classification (according to the taxonomy we proposed (Bierbrier et al., 2022)) and results of similar methods. Taken 

and partially modified from (Bierbrier et al., 2022). 
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4.3. Future Work 

Our progress marks a positive step towards the use of registration error estimating algorithms 

in the context of Image-Guided Neurosurgery. There are several areas of future research. They 

are grouped into three sections: model, evaluation and future experiments. Ultimately, addressing 

these areas provides the basis for our future work.  

 

4.3.1. Model 

There are numerous design considerations when crafting a machine learning model. Many of 

these were determined empirically (e.g., the learning rate) or based on the results of others (e.g., 

the model architecture and patch size), however a more thorough analysis of these parameters 

would likely prove useful. Such parameters include the choice of learning rate, optimizer, the 

patch size, number of samples per subject in each epoch, number of epochs to train and type and 

amount of regularization. In fact, the architecture itself can likely be improved. We implemented 

the model proposed by Eppenhof and Pluim (Eppenhof and Pluim, 2018) with minor 

improvements (such as the addition of L2 regularization). This model performed well for lung 

CT registrations, as presented by Eppenhof and Pluim, and adequately for brain MRI-ultrasound 

registrations, as presented above. It is possible that a more complex architecture would produce 

better results. For example, modifying the encoder-decoder model Sokooti et al. proposed to 

regress registration error estimates (as opposed to classifying the registration error into different 

ranges) (Sokooti et al., 2021). Such an architecture may reduce how noisy the error estimates can 

be. There are also several deep learning-based image registration algorithms that can be used as 

inspiration for registration error estimating algorithms (e.g., (Dalca et al., 2019; Yang et al., 

2017)).  

 

4.3.2. Evaluation  

There are several areas where the model evaluation can be made more robust. First, the fully 

trained models are validated by being deployed on different levels of random artificial 

deformations on the validation subjects. These deformations are random for each evaluation. 

Ideally, they would be the same for across experiments. Additionally, the process of randomly 

GHIRUPLQJ�WKH�YDOLGDWLRQ�GDWD�FRXOG�EH�UHSHDWHG�VHYHUDO�WLPHV�IRU�HDFK�PRGHO�VR�WKDW�WKH�PRGHO¶V�

average behaviour could be discerned, rather than its behaviour on a specific random 
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deformation. It is possible, for example, that the random deformations for one model are more 

complex (e.g., much larger) for one model than for another. As a result, the model that is 

evaluated on the more complex data performs (and is judged to be) worse.  

Second, the validation process can be made more robust. Selecting only two subjects as the 

µYDOLGDWLRQ�VXEMHFWV¶�LV�QRW�RSWLPDO��3HUIRUPLQJ�N-fold cross validation, in which the model is 

trained with a different training set (and different validation set) each iteration, is more robust.  

)LQDOO\��WKH�PRGHO�VKRXOG�EH�DVVHVVHG�ZLWK�µPRGHO�PLVPDWFK�¶�ZKLFK�LW�FXUUHQWO\�LV�QRW��:H�

discuss the implications of model mismatch in our review (Bierbrier et al., 2022). In our case, 

model mismatch occurs when the transformation model used is different for the training and the 

validation data. We used B-spline deformations for both the training and the validation data 

synthesis. Ideally the model should be assessed with model mismatch, i.e., with validation data 

created by a different type of artificial deformation (e.g., a finite element method or thin plate 

splines). Additionally, when implementing these future artificial deformations, as well as the B-

spline deformations from above, more care will be taken to ensure the deformations are realistic 

and, in particular, diffeomorphic.  

 

4.3.3. Future Experiments 

The final avenue of future work is a more comprehensive validation. First, this could include 

more data. Given that the method of generating simulated ultrasound images only requires an 

MRI image, data from any database that contains MRI can be used (although the process would 

need to be modified if the MRI images are not gadolinium enhanced). Note, too, that the 

presence of a lesion (e.g., a tumour) can impact the performance of a model. Additional data 

should be selected with this in mind.  

While the simulated ultrasound is designed to resemble real ultrasound acquisitions, it is not 

SHUIHFW��7KH�PRGHO¶V�SHUIRUPDQFH�RQ�UHDO�XOWUDVRXQG�GDWD�± the ultimate goal of this work ± is not 

guaranteed to match its performance on simulated ultrasound. Therefore, a more comprehensive 

validation involves evaluating the model on real ultrasound data with real registrations. Given 

that creating a dense correspondence map for real MRI-ultrasound data is not feasible, manually 

annotated landmarks are required. While manually annotated landmarks are not perfect (see a 

discussion in our review (Bierbrier et al., 2022)), they are the best case for real data. Fortunately, 

the BITE database, from which our data comes, contains a set of such landmarks.  



Chapter 3 

 115 

It is possible that the model will not perform as well on real ultrasound data given the relative 

simplicity of the simulated ultrasound. For example, a major difference between the simulated 

and real ultrasound images is the field of view. While our simulated ultrasound is created for the 

entire brain mask, real ultrasound imaging captures a much smaller field of view. This difference 

alone is not a major challenge for the trained model given that it operates on a patch-wise basis ± 

it is only concerned with the corresponding 33x33x33 mm patches it receives as input, not the 

field of view of the entire ultrasound and MRI images. Potential difficulties arise when there is 

an edge in the ultrasound patch caused by the limited field of view of the real ultrasound, since 

such edges will not be present in the MRI patch. Making the simulated ultrasound (and hence, 

training data) more realistic by extracting limited fields of view from the whole-brain simulated 

ultrasound may alleviate this potential problem. There are several other possible steps to create 

more realistic simulated ultrasound images to bridge the distribution shift between the training 

data (simulated ultrasound) and the data the model will see in practice (real ultrasound). These 

include adding speckle to the images (a type of noise present in ultrasound images), adding depth 

effects (ultrasound decays proportionally to depth) and creating more realistic ultrasound/tissue 

properties (e.g., high contrast at certain tissue junctions). While these improvements will 

undoubtedly make the simulated ultrasound more realistic, one wonders how realistic the 

simulations need to be for the purpose of training a model to estimate registration error.    

 

5. Conclusion 
A successful registration error estimating algorithm would benefit Image-Guided 

Neurosurgery by enabling surgeons to trust (linear or nonlinear) registrations performed on 

neuronavigation systems. We implemented an established method for MRI-ultrasound 

registrations. Our results provide a strong basis for future research and, eventually, 

implementation on neuronavigation systems like IBIS, the neuronavigation system developed by 

our lab (Drouin et al., 2017). 
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&KDSWHU����'LVFXVVLRQ��)XWXUH�:RUN�DQG�

&RQFOXVLRQ 

1. Discussion 
Image registration is increasingly popular in medicine (Viergever et al., 2016). Perfect 

automated registration performance is not guaranteed. Errors in registration can have serious 

salient or inconspicuous consequences. As a result, the field of registration error and confidence 

estimation began developing. These algorithms aim to verify registrations on a per-case basis. 

Their potential is as wide-ranging as image registration itself ± from quality control of large-

scale datasets (Sokooti et al., 2021, 2019) to ensuring the performance of a registration in image-

guided therapies (Brock et al., 2017; Paganelli et al., 2018). 

Upon turning to the literature, we came to two realizations. First, the field of registration 

error and confidence estimation is relatively new and there are few unifying resources for new 

researchers. Second, it is disparate; the methods it contains are very diverse and do not lend easy 

to comparison. These two factors motivated Chapter 2 of the thesis. In Chapter 2, we provided a 

compendious review of the field of registration error and confidence estimation. The review is 

objective in its breadth and structured by the PRISMA guidelines. To enable the comparison of 

individual methods ± and to provide structure to the field ± we proposed a taxonomy to classify 

the methods so that they can be evaluated and compared in an organized fashion. Chapter 2 

serves as a resource for those new to the field and those already in it. To help further the 

development of the field, we analyzed trends, provided suggestions for best practices and 

identified areas of future research. In addition, Chapter 2 will help structure and stimulate the 

growth of the field of registration error and confidence estimation.  

 In Chapter 3, we drew on the insights gained from Chapter 2 to implement a method that 

estimates registration error for MRI-ultrasound registrations in the context of Image-Guided 

Neurosurgery for brain tumour resections. The method is based on the error estimating 
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convolutional neural network (CNN) proposed by Eppenhof and Pluim for the task of lung 

computed tomography (CT) registrations (Eppenhof and Pluim, 2018). A notable feature of our 

implementation is the data generator that curates the training (and validation) data at each epoch. 

Experiments determining the number of epochs and level of data augmentation to train the model 

LQIRUPHG�WKH�WUDLQLQJ�RI�WKH�ILQDO�PRGHO��7KH�PRGHO¶V�SHUIRUPDQFH�RQ�WKH�WHVW�VHW�VXUSDVVHG�RXU�

goals and demonstrated that it generalized to new data well. The results of Chapter 3 mark a 

significant step forward in the development of a registration error estimating algorithm for 

Image-Guided Neurosurgery. At the end of Chapter 3, we outlined the work that lies ahead to 

continue this development and will describe the possible future work in more detail in the 

discussion below.  

 

2. Future Work 
Much research remains towards the end goal of implementing an error estimating method 

that will be usable in the clinic. To conclude this thesis, we apply the trends, suggestions and 

areas of future research outlined in Chapter 2 to continue the progress of Chapter 3. This 

includes improvements to the model and its training data, further experimentation, steps towards 

implementing the model on a neuronavigation system and other possible exciting developments 

and applications.  

 

2.1. Model 
A trend observed in Chapter 2 is the increasing complexity of the machine learning models 

used to estimate registration error. We implemented the architecture that Eppenhof and Pluim 

proposed in 2018 (Eppenhof and Pluim, 2018). While the architecture is relatively complex 

compared previous models (e.g., to the random forest regressors of Saygili and Sokooti et al. 

(Saygili, 2018; Sokooti et al., 2016)), it is not as complex as the recent convolutional long-short 

term memory network of Sokooti et al. (Sokooti et al., 2021). Such an architecture would likely 

produce smoother error estimates than the results obtained in Chapter 3 given that it does not 

consider each voxel independently like the sliding window CNN of Eppenhof and Pluim. In fact, 

Eppenhof and Pluim suggested increasing the complexity of the network architecture for 
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applications in brain MRI, such as considering information from multiple scales. Such a potential 

LPSURYHPHQW�WR�WKH�PRGHO¶V�DUFKLWHFWXUH�LV�ZRUWK�LQYHVWLJDWLQJ�� 

 Another possible improvement to the method implemented in Chapter 3 is the 

information it receives. In its current form, it is a Machine Learning Framework that relies only 

on an Image-based Approach for its features ± it uses only the image intensities. This may not be 

optimal. Two potential improvements include additionally using as input the deformation vector 

field and registration uncertainty. Both could be added to the model as another input layer. The 

registration deformation field can potentially provide useful information for the model to 

understand the scale of deformations that occurred during the registration as well as the 

smoothness relating to the physical or physiological plausibility of such deformations. An 

interesting result from Sokooti et al., also highlighted in Chapter 3, is the better generalization 

performance of their model when it is trained with Transformation-based features as opposed to 

Image-based features (Sokooti et al., 2019). This suggests the importance of retaining 

deformation field information for the error estimation. Similarly, the registration uncertainty may 

be a useful input to the model if it is provided by the registration algorithm (which is the case for 

some new deep learning methods (e.g., (Dalca et al., 2019; Yang et al., 2017)���/RWIL�HW�DO�¶V�HUURU�

estimating model performed much better when uncertainty was included as a feature (Lotfi et al., 

2013). Likewise, Simpson et al. showed that the registration uncertainty had a degree of 

SUHGLFWLYH�SRZHU�ZKHQ�FODVVLI\LQJ�$O]KHLPHU¶V�'LVHDVH�DQG�FRQWUROV�(Simpson et al., 2011). To 

incorporate these additional sources of information in the model, the training procedure would 

need to be adapted so it provides the deformation field and registration uncertainty along with 

the image intensities and known error.  

 )LQDOO\��WKHUH�DUH�SRWHQWLDOO\�LQWHUHVWLQJ�PRGLILFDWLRQV�WR�WKH�PRGHO¶V�RXWSXW��7KH�ILUVW�LV�

to have the model output a vector of registration error as opposed to a scalar, as recently 

performed by Saygili (Saygili, 2021). This task is likely much more challenging than estimating 

a scalar given it is effectively registering the two images again (since a 3D displacement is 

estimated for each voxel). The second modification, at the other end of the spectrum, is to 

perform classification into different ranges of registration error. Sokooti et al. recently trained a 

model to classify the registration error into one of three classes (Sokooti et al., 2021). This could 

be an interesting approach for the task of Chapter 3 ± perhaps a surgeon only wants to know if 

the error is greater than some threshold, e.g., 2 millimetres (mm). A related modification could 
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LQFOXGH�D�FODVVLILFDWLRQ�FRPSRQHQW�WR�WKH�PRGHO¶V�UHJUHVVLRQ�RXWSXW��7KH�PRGHO�FRXOG�UHJUHVV�

errors of a certain range ([0, X] mm) and anything beyond thaW�UDQJH�FDQ�EH�WUHDWHG�DV�µ(UURU�

DERYH�;�PP�¶�7KLV�LV�RQH�VWUDWHJ\��DORQJ�ZLWK�WKRVH�SUHVHQWHG�LQ�&KDSWHU����WKDW�PD\�KHOS�WKH�

model deal with the larger errors that it struggled with. Such an approach is akin to the method of 

Sedghi et al., which classifiHG�PLVDOLJQPHQW�XS�WR���YR[HOV�DQG�LQFOXGHG�DQ�µXQUHODWHG¶�FODVV�

(Sedghi et al., 2019)��7KH�µXQUHODWHG¶�FODVV�SURYHG�WR�EH�LPSRUWDQW�WR�WKHLU�UHJLVWUDWLRQ�

DOJRULWKP¶V�SHUIRUPDQFH��0DNLQJ�WKHVH�PRGLILFDWLRQV�ZRXOG�UHTXLUH updating the network 

architecture and training data labels. 

 

2.2. Training Data Complexity  

While the model architecture is one aspect that will influence its performance, another is 

the data it is trained on. There are improvements to be made in this domain as well, on top of 

simply adding more training data. They include the suggestions mentioned in Chapter 3 like 

creating a balanced training set and more realistic simulated ultrasound, as well as a more diverse 

set of transformations, including potentially realistic brain shifts, to deform the simulated 

ultrasound images. For example, drawing inspiration from Sokooti et al. who recently used four 

different types of artificial deformations to train their model, including realistic respiratory 

motion deformations (Sokooti et al., 2021). Such changes to the training data require the new 

types of artificial deformations to be added to the data generator. 

 

2.3. Experiments 
There are several additional experiments that could be performed to further assess the 

PRGHO¶V�SHUIRUPDQFH��7KH�ILUVW�LQYROYHV�WKH�FRPSOH[LW\�RI�WKH�WUDQVIRUPDWLRQV�XVHG�WR�HYDOXDWH�

the model. In Chapter 3, the model is evaluated with artificial deformations from B-spline-based 

transformations. This is the same type of transformation model used to create the training data ± 

WKHUH�LV�QR�PRGHO�PLVPDWFK��7R�IXUWKHU�WHVW�WKH�PRGHO¶V�DELOLW\��LW�VKRXOG�EH�evaluated with 

different types of transformations with varying complexity, as mentioned in Chapter 3. 

Furthermore, rather than only using artificial deformations, the model should also be tested after 

the deformed images are registered. Registering the images may introduce more subtle and more 

complex errors than those only from artificial deformations. In this case, the registration 

transformation model should be different than the artificial deformation transformation model to 
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ensure model mismatch. The second set of experiments involve evaluating the model with real 

ultrasound data, as outlined in Chapter 3. It is of utmost importance that the model is robust and 

generalizes well to new data. Therefore, to fully validate the model, it should be tested on data 

from outside of the BITE database (Mercier et al., 2012). Another database to test the model is 

the RESECT database (Xiao et al., 2017). Throughout the above experiments, it will be 

interesting to investigate some more general research questions identified in Chapter 2. This 

LQFOXGHV�FRPSDULQJ�WKH�PRGHO¶V�SHUIRUPDQFH�RQ�DUWLILFLDO�GHIRUPDWLRQ�DQG�ODQGPDUNV��DQG�WKH�

role image contrast plays in this), and assessing the impact of transformation model mismatch.  

 The end goal of this research is to provide a means to estimate registration error on 

clinical neuronavigation systems. To this end, there are two important steps. The first involves 

LPSOHPHQWLQJ�WKH�PRGHO�ZLWKLQ�,%,6��µ,QWUDRSHUDWLYH�%UDLQ�,PDJLQJ�6\VWHP¶���WKH�RSHQ-source 

neuronavigation platform developed by members of our lab (Drouin et al., 2017). Once available 

on IBIS, the second step is to obtain feedback from surgeons and other clinicians that will be 

using the registration error estimating method. A user study similar to that performed by 

Schlachter et al. may be appropriate (Schlachter et al., 2016). These steps will provide a 

functioning prototype of the model and suggestions to improve it for clinical use.  

 

2.4. Related Opportunities 

Beyond estimating error of MRI-ultrasound registrations, there are several related and 

exciting research avenues. I briefly touch on such topics. The first is implementing a registration 

error estimating algorithm for brain MRI registrations. Brain MRI registrations are fundamental 

for a range of different applications. A successful error estimating method could have 

widespread use. However, there are several factors to consider ± whether the algorithm is 

designed for inter- or intra-subject registrations, whether for mono- or multimodal registrations 

and the clinical context it is implemented for. A requirement is that the brain MRI data has 

annotated corresponding landmarks, which is not as common as e.g., segmentations in brain MRI 

databases. A very interesting and relevant starting point is with the Brain Tumor Sequence 

Registration (BraTS-Reg) Challenge dataset, which contains annotated landmarks (Baheti et al., 

2021). The second avenue is transfer learning ± repurposing a trained model for a related task 

(Goodfellow et al., 2016). Saygili used transfer learning with a model trained for stereo matching 

and pointed out that transfer learning can help alleviate some of the issues related to a lack of 
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ground truth data (Saygili, 2020). Another application of transfer learning would be to 

incorporate the trained model of Eppenhof and Pluim into the implementation of Chapter 3 

(Eppenhof and Pluim, 2018). A related avenue is how generalizable the error estimating models 

are and can be. Investigating how well a model trained for one task (e.g., lung CT) does on 

another task (e.g., brain MRI) would be interesting. Training a model with data from both of 

these tasks would also be worthwhile (i.e., with lung CT and brain MRI data). Perhaps the 

images can first be transformed into modality-independent features (Heinrich et al., 2012), as 

also suggested by Eppenhof and Pluim (Eppenhof and Pluim, 2018). Each of these research 

avenues advance the field of registration error estimation. 

 In pursuit of advancing the field, an important aspect is that different methods can be 

fairly and objectively compared to one another. Given the potential sources of bias in differing 

validation procedures (Bierbrier et al., 2022), there is a strong need for available data, open-

source code and standard validation protocols. Ideally, a challenge will be organized to facilitate 

these catalysts of research. 

 

3. Conclusion 
The field of registration error and confidence estimation is full of potential. Building off 

the efforts of many others, this thesis attempted to further unlock the potential by first reviewing 

and unifying the field as it is, providing it structure and direction, and then by applying it to an 

application where it can have immediate benefit to patients ± Image-Guided Neurosurgery. I 

sincerely hope these developments help the field realize its potential and, ultimately, help 

researchers and clinicians care for patients.  
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