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Abstract

Mobile Edge Computing (MEC) refers to the concept of placing computational capability

and applications at the edge of the network. Running applications and computations closer

to the clients provide benefits such as reduction in network congestion, better performance

of applications, and reduced latency in handling client requests. The performance of

an edge server is adversely affected when it is overloaded, especially if it crashes due

to overload and causes service failures. In this thesis, a solution to prevent nodes from

getting overloaded is analyzed by introducing an admission control policy. An adaptive

admission control policy based on low complexity Reinforcement Learning (RL), called

SALMUT (Structure-Aware Learning for Multiple Thresholds), is validated using several

scenarios mimicking real-world deployments. This approach performs as well as state-

of-the-art deep RL algorithms such as PPO (Proximal Policy Optimization) and A2C

(Advantage Actor Critic), but requires an order of magnitude less time to train, and outputs

an easily interpretable policy. We also show that SALMUT performs better than a baseline

algorithm in a real-testbed we created, which runs actual workloads similar to real-world

deployments.
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Sommaire

Le Mobile Edge Computing (MEC) correspond au fait de placer des capacités de calcul

et applications à la périphérie du réseau. L’exécution des applications et des calculs plus

près des clients offre des avantages tels que la réduction de la congestion du réseau, une

meilleure performance des applications et une réduction de la latence dans le traitement

des demandes des clients. Les performances d’un serveur edge sont affectés négativement

lorsqu’il est surchargé, en particulier s’il se bloque en raison d’une surcharge et provoque

des pannes de service. Dans cette thèse, nous analysons une solution pour éviter la

surcharge des nœuds en introduisant une stratégie de contrôle d’admission. Une stratégie de

contrôle d’admission adaptative basée sur l’apprentissage par renforcement (Reinforcement

Learning, RL) de faible complexité appelée SALMUT (Structure-Aware Learning for

Multiple Thresholds) est validée à l’aide de plusieurs scénarios imitant des déploiements

réels. Cette approche fonctionne aussi bien que les algorithmes RL par apprentissage

profond de pointe tels que PPO (Proximal Policy Optimization) et A2C (Advantage Actor

Critic), mais l’entraı̂nement est un ordre de grandeur plus rapide et produit une stratégie

facilement interprétable. Nous montrons également que SALMUT fonctionne mieux qu’un

algorithme de base dans un environnement de test que nous avons créé, exécutant des

charges de travail réelles similaires à des déploiements dans le monde réel.
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Chapter 1

Introduction

1.1 Motivation

In the last decade, we have seen a shift in the computing paradigm, from co-located

datacenters and compute servers to cloud computing. Due to the aggregation of resources,

cloud computing can deliver elastic computing power and storage to customers without

the overhead of setting up expensive datacenters and networking infrastructures. It has

especially attracted small-sized and medium-sized businesses who can leverage the cloud

infrastructure with minimal setup costs. In recent years, the focus on the quality of

the experience of end users has become a very important aspect for network providers,

especially with the proliferation of Video-On-Demand (VoD) services, Internet-of-Things

(IoT), real-time online gaming platforms, and Virtual Reality (VR) applications. The cloud

paradigm is not the ideal candidate for such latency-sensitive applications owing to the

delay between the end user and cloud server.

This has led to a new trend in computing called Mobile Edge Computing (MEC) [1,

2], where the compute capabilities are increasingly moving closer to the network edges.

It represents an essential building block in the 5G vision of creating a large distributed,
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pervasive, heterogeneous, and multi-domain environments. Harvesting the vast amount of

the idle computation power and storage space distributed at the network edges can yield

sufficient capacities for performing computation-intensive and latency-critical tasks by

the end-users. However, it is not feasible to set up huge resourceful edge clusters along

all network edges that mimic the capabilities of the cloud, due to the sheer volume of

resources that would be required, which would remain underutilized most of the times.

Due to the limited resources at the edge nodes and fluctuations in the user requests, an

edge cluster may not be capable of meeting the resource and service requirements of all

the users it is serving.

Computation offloading methods have gained a lot of popularity as they provide a

simple solution to overcome the problems of edge and mobile computing. Data and com-

putation offloading can potentially reduce the processing delay, improve energy efficiency,

and even enhance security for computation-intensive applications. The critical problem

in computation offloading is to determine the computational workload, and to choose the

MEC server from all available servers. Various aspects of MEC from the point of view

of the mobile user have been investigated in the literature. For example, the questions of

when to offload to a mobile server, to which mobile server to offload, and how to offload

have been studied extensively (see [3–7] and references therein).

However, the design questions at the server level have not been investigated as ex-

tensively. When an edge server receives a large number of requests in a short period of

time (for example due to a sporting event), the edge server can get overloaded, which can

lead to service degradation or even node failure. When such service degradation occurs,

edge servers are configured to offload requests to other nodes in the cluster in order to

avoid crashing. The crash of an edge node leads to reduction of the cluster, which is
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catastrophic for the platform operator as well as the end users, who are using the services

or the applications. However, performing this migration takes extra time and reduces the

resources available for other services provided by the cluster. Therefore, it is paramount

to design proactive mechanisms that prevent the node from getting overloaded, by using

dynamic offloading policies that can adapt to service request dynamics.

In this thesis, we study the problem of node overload protection for a single edge

node. We first model the problem to incorporate practical considerations of server holding,

processing and offloading costs. Then we develop an offloading policy that rejects and

offloads new requests to balance the overall running cost of the system. In the simplest

case, when the request arrival process is time-homogeneous, we model the system as a

continuous-time Markov decision process (MDP) and use the uniformization technique [8,

9] to convert the continuous-time MDP to a discrete-time MDP, which can then be solved

using standard dynamic programming algorithms [10].

However, solving a dynamic program requires knowledge of the system parameters, i.e.

the MDP model, which is not typically known and may also, in practice, vary with time.

In such time-varying environments, the offloading policy must adapt to the environment.

Reinforcement learning (RL) [11] is a natural choice to design such adaptive policies

and has already been successfully applied in various optimization problems arising in

MEC [12–14].

Although RL has achieved considerable success in various application domains, in-

cluding communication networks, this success is generally achieved by using deep neural

networks to model the policy and the value function. Such deep RL algorithms require

considerable computational power and time to train, are notoriously brittle to the choice

of algorithm hyper-parameters, may not transfer well from simulation to the real-world,
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and produce policies which are difficult to interpret. These features make them impractical

for deployment on the edge nodes, where continuous adaptation to changing network

conditions is necessary.

For the aforementioned reasons, rather than using general purpose deep RL algorithms,

we design a node overload protection scheme that uses a recently proposed low-complexity

RL algorithm called SALMUT (Structure-Aware Learning for Multiple Thresholds) [15].

SALMUT exploits the structure of the optimal policy, requires considerably fewer compu-

tational resources to train and provides policies which are easy to interpret. We compare

the performance of deep RL algorithms with SALMUT in a variety of scenarios motivated

by real world deployments. Our experiments show that SALMUT performs as well as

state-of-the-art deep RL algorithms such as Proximal Policy Optimization (PPO) [16] and

Advantage Actor Critic (A2C) [17] but requires an order of magnitude less time to train

and provides policies which are easy to interpret.

1.2 Thesis Organization and Contributions

This thesis is organized as follows:

• Chapter 2 - Background and Related Work

This chapter provides background knowledge of Reinforcement Learning necessary

for understanding the work presented in later chapters. It also includes a detailed

literature review of reinforcement learning applied to networking and communication

applications.

• Chapter 3 - Problem Formulation

This chapter provides the system model for the optimal admission control policy in
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the node overload protection problem. It also contains the dynamic programming

solution for the admission control policy and the structure-aware formulation and

solution to the problem. This is joint work with Aditya Mahajan. The problem was

proposed by Zhongwen Zhu.

• Chapter 4 - Experiments

This chapter presents the numerical evaluation of the admission control policy in the

node overload protection problem. It includes analysis of the choice of parameters for

the model, followed by empirical evaluation in two different settings - a simulated

environment and a real testbed. It also covers the analysis of training time and

policy interpretability for SALMUT and behavioral analysis of the policies learned

by different algorithms. Ideas on which experiments to run have originated from

discussions with Aditya Mahajan.

• Chapter 5 - Conclusions and Future Work

This chapter presents the conclusions of the experiments conducted in this thesis and

suggests potential future avenues of investigation.

1.3 Scope of Thesis and Contributions

Our main contributions are the following:

• We design a node overload-protection scheme that uses a recently proposed low-

complexity RL algorithm called SALMUT (Structure-Aware Learning for Multiple

Thresholds) [15]. SALMUT exploits the structure of the optimal policy, requires

considerably fewer computational resources to train and produces policies which are

easy to interpret.
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• We compare the performance of deep RL algorithms with SALMUT in a variety of

scenarios, in a simulated testbed motivated by real world deployments. Our experi-

ments show that SALMUT performs close to state-of-the-art deep RL algorithms

such as PPO [16] and A2C [17] but requires an order of magnitude less time to train,

and provides policies which are easy to interpret.

• We also developed a real-testbed where we run actual workloads and compare the

performance of the SALMUT algorithm with a baseline algorithm.

• We perform an in-depth analysis of the effects of different parameters of the cost

function on the structure of the optimal policy and perform a sensitivity analysis of

the chosen cost structure to small changes in the request distribution.
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Chapter 2

Background and Related Work

2.1 Reinforcement Learning

In this chapter, we cover ideas in Reinforcement Learning that are necessary for under-

standing the approach we introduce in chapter 3. For a broader understanding of the area,

we refer the reader to [11]. Learning from interaction is a foundational idea that underlies

theories of learning and intelligence. Reinforcement learning (RL) is a computational

approach towards learning from interactions.

2.1.1 Markov Decision Process

Markov decision processes (MDPs) [10] are a theoretical formalism for modelling sequen-

tial decision making, in which an agent interacts with an environment where the states are

fully observable. The interaction between the agent and the environment can be seen in Fig.

2.1. The agent is at state St at a given time t and interacts with the environment by taking

an action At. It receives the next state St+1 and the reward Rt+1 from the environment.

A MDP is a tuple of five elements M = (S,A, p, r, γ), as defined in [18], where:

• S is a finite set of states. The state at time t is denoted as St ∈ S.
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Figure 2.1: Agent-Environment interaction in a MDP (adapted from [11]).

• A is a finite set of possible actions. The action at time t is denoted as At ∈ A.

• p : S × A× S → [0, 1] is the state transition probability, where p(s′|s, a) gives the

distribution of the possible next state s′ ∈ S upon taking action a ∈ A in state s ∈ S.

• r : S ×A× S → R is the expected reward obtained as a result of choosing action a

at state s. The reward at time t+1 is denoted asRt+1 ∈ R. It is the numerical reward

received from the environment at state St after taking action At and transitioning to

next state St+1.

• γ ∈ [0, 1) is temporal discount factor that is used to de-prioritize rewards obtained

far away in future.

A MDP satisfies the Markovian property:

Pr(St+1|St, At) = Pr(St+1|St, At, ..., S1, A1, S0),

which implies that the current state contains all the information needed by the agent to take

a decision.

In a finite MDP, the sets of states and actions (S, A) have a finite number of elements.
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Given a state s and action a, the probability of next state s′ is given by:

p(s′|s, a) = Pr(St+1 = s′|St = s, At = a). (2.1)

An MDP could either be episodic or continuing. In an episodic MDP, the interaction

between the agent and the environment breaks naturally into subsequences, which we call

episodes. Each episode ends in a special state called the terminal state, followed by a reset

to a starting state, which can be fixed or sampled from a given distribution of starting states.

In an episodic MDP, there is a natural notion of final time step defined by T , which is the

time at which the agent enters the terminal state. Tasks which have episodes are called

episodic tasks. The final time step T is a random variable. Continuous tasks are tasks that

have no ends i.e. they don’t have any terminal state. These types of tasks will never end.

We will define all the terms for episodic tasks henceforth, unless explicitly mentioned.

2.1.2 Policies and Value Functions

Policy is a mapping from states to probabilities of selecting each possible action, π(a|s).

The goal of the agent in RL typically is to find a policy π(a|s) that maps from states s to

actions a in a way that maximizes the sum of expected future discounted rewards. This

sum is called the expected discounted return (or simply return). The return following time

step t is denoted by Gt and is given by:

Gt =
T∑

i=t+1

γi−t−1Ri.

Reinforcement learning algorithms specify how the agent should change its policy to

optimize the expected return. If the policy is deterministic, the agent will have non-zero

probabilities for all actions except one, and the policy can be represented as π : S → A. If

Π is the set of all possible policies in an environment, the goal of the RL agent is to find
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π ∈ Π that gives the highest expected discounted return possible from every state. This

policy is also called the optimal policy and is denoted as π∗.

The value function under a policy π, denoted by V π : S → R, is the expected return

given any state. When starting in state s at time t and following the policy π thereafter, the

value function is formally defined as:

V π(s) = Eπ

[
T∑

i=t+1

γi−t−1Ri|St = s

]
. (2.2)

The action-value function or Q-function under a policy π, denoted by Qπ : S ×A→ R, is

the expected return conditioned on both state and action. When starting in state s at time t,

taking action a, and following the policy π thereafter, it is formally defined as:

Qπ(s, a) = Eπ

[
T∑

i=t+1

γi−t−1Ri|St = s, At = a

]
. (2.3)

One can also express the value function as a relationship between the value of any state s

and the values of its successor states s′, known as the Bellman equation [19]:

V π(s) =
∑
a

π(a|s)
∑
s′

p(s′|s, a)[r(s, a, s′) + γV π(s′)]. (2.4)

The system of Bellman equations can also be written in a matrix form as:

Vπ = rπ + γPπVπ, (2.5)

where in Vπ ∈ R|S| represents the value of a state, each element in rπ ∈ R|S| represents

the reward associated with each state and Pπ ∈ R|S|×|S| represents the state transition prob-

ability for a fixed policy π. Formally, Vπ = [V π(1).....V π(|S|)]>, is a vector representing

the value of each state. Similarly, rπ = [rπ(1).....rπ(|S|)]> is a vector representing the

expected numerical reward at each state, which can be computed by marginalizing over the

next states and actions, and Pπ = [P π(1).....P π(|S|)]> is the state-transition matrix, with

each row P π(s) representing the probability distribution over the next states given state s,
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computed by marginalizing over the actions. The number of states in the environment is

denoted as |S|.

A policy π is defined to be better than or equal to a policy π′ if its expected return

is greater than or equal to that of π′ for all states. In other words, π ≥ π′, only if

V π(s) ≥ V π′(s),∀s ∈ S. There is always at least one policy that is better than or equal

to all other policies, known as an optimal policy. We denote any optimal policy by π∗.

All optimal policies share the same state-value function, called the optimal state-value

function, denoted V π∗ and defined as:

V π∗(s) = max
π

V π(s), ∀s ∈ S. (2.6)

Similarly, the optimal action-value function, denoted Qπ∗ , is defined as:

Qπ∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S,∀a ∈ A. (2.7)

The Bellman optimality equation [19] for any state s is given by

V π∗(s) = max
a

∑
s′

p(s′|s, a)[r(s, a, s′) + γV π∗(s′)]. (2.8)

Similarly, the Bellman optimality equation for the Q-function of state s and action a is

given by:

Qπ∗(s, a) =
∑
s′

p(s′|s, a)[r(s, a, s′) + γmax
a′

Qπ∗(s′, a′)]. (2.9)

For finite MDPs, the system of Bellman optimality equations (2.8) and (2.9) has a

unique solution. In principle, one can obtain V π∗(s) or Qπ∗(s, a) by solving the equations

above in an iterative manner, if the dynamics of the environment p(s′|s, a) and the rewards

r(s, a, s′) are known. Once V π∗(s) or Qπ∗(s, a) are obtained, the optimal policy can be

derived. For each state s, there will be one or more actions for which the maximum is

obtained in the Bellman optimality equation. Any policy π that assigns non-zero probability

only to these actions is an optimal policy π∗.
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Dynamic programming refers to the collection of algorithms that can be used to find

optimal policies when the model of the environment is available. Iterative methods to

solve the Bellman optimality equations include value iteration [20], policy iteration [21] or

generalized policy iteration [20].

2.1.3 Learning Algorithms

In many practical applications, p(s′|s, a) is not available, so one cannot obtain the optimal

policy using (2.8) or (2.9). In order to address this issue, various methods such as Monte

Carlo [22], Temporal Difference (TD) learning [23], n-step TD [22] have been developed

to estimate the value functions or Q-functions. These methods do not need the an model

of the environment. Instead, they learn the value functions or Q-functions by interacting

with the environment.

Monte Carlo (MC) methods are a way of estimating the value function for a given

policy (prediction problem) by averaging sampled returns. One way to estimate the value

of a state from trajectories in the environment would be to simply average the returns

observed after visits to that state.

The value function update equation for MC methods is:

V π(St)← V π(St) + α(Gt − V π(St)), (2.10)

where α ∈ (0, 1] is the learning rate. If α is decayed appropriately, this provides an

unbiased estimator of the value function, because the updates are done based on the actual

returns that result from the interaction with the environment. However, the agent needs

to wait until the end of an episode, when return can be calculated, to update the value

functions, which makes this type of method very slow in practice. Monte Carlo estimates

can also suffer from high variance.
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Temporal difference (TD) methods are an alternative way to estimate the value function.

They are generally preferred over MC because the updates are done online (one does not

need to wait until the end of the episode to update values) and they can help to reduce the

variance of the estimates, compared to MC. These methods use the current estimate of V π

instead of the true value, hence they are also called bootstrap methods. The value function

update equation for one-step TD method, or TD(0), is:

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St)), (2.11)

where we assume that actions are generated according to the fixed policy π which is

being evaluated. The quantity Rt+1 + γV (St+1)− V (St) is denoted by δt, also known as

TD error. It measures the difference between the estimated value of St and the estimate

Rt+1 + γV (St+1), which is obtained one time step later

There are two very popular methods to do control (i.e., to approximate optimal poli-

cies) using TD-style updates, known as SARSA [24] and Q-learning [25]. In SARSA,

bootstrapping is performed from an action-value that is computed according to the current

policy (also called on-policy). The agent takes actions in a way which favors the actions

with the highest current estimated value. For example, the agent may follow an ε-greedy

policy, in which the action which currently has the highest value is taken with probability

1− ε, and the agent chooses uniformly among the other actions, with total probability ε,

where ε ∈ (0, 1) is chosen to be a small number. The SARSA update function is:

Q(St, At)← Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At)). (2.12)

In Q-learning, the bootstrapping uses the highest action-value from the next state,

regardless of what the agent actually ends up doing. This means that the agent can act

according to any policy, as the update is off-policy. The Q-learning update is:

Q(St, At)← Q(St, At) + α(Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)). (2.13)
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The n-step TD methods generalize both MC and TD methods, so one can shift from

one to the other smoothly as needed to meet the demands of a particular task. n-step

methods span a spectrum, with MC methods at one end and one-step TD methods at the

other. Instead of the one-step return as in TD or full return as in MC, n-step TD methods

utilize n-step returns to compute bootstrap targets:

Gt:t+n = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnVt+n−1(St+n), (2.14)

where we use indices to denote the time step at which a value function estimate is queried.

The value function update equation for n-step TD is:

Vt+n(St)← Vt+n−1(St) + α(Gt:t+n − Vt+n−1(St)). (2.15)

If the state space and action space are finite and small, the value functions or Q-

functions can be represented as a table with one entry for each state or state–action pair.

This represeentation is commonly known as tabular. With larger state and action spaces,

tabular representations lead to excessive memory requirements and sample inefficiency.

Therefore, we need function approximations that takes examples of transitions and attempts

to generalize from them to construct an approximation of the entire function.

There are two main approaches to solve this problem. In the first approach (value-based

methods), a value function orQ-function is learned to approximate the expected discounted

return. In the second approach (policy-based methods), a function approximator for the

policy is directly learned, which then determines the probability of choosing an action for

a given state. We review these two types of methods in the next two subsections.

2.1.4 Value-based Approximation Methods

In value-based approximation methods, a parametric function Ṽ π(s; θ) or Q̃π(s, a; θ) is

learned to estimate V π(s) or Qπ(s, a), where θ ∈ Rd (d� |S|) are the parameters of the
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functional form, which are updated as follows:

θt+1 = θt + α[Ut − Ṽ π(St; θt)]∇Ṽ π(St; θt), (2.16)

where Ut is the target of the update. If Ut is an unbiased estimate of the value function,

i.e. E[Ut|St = s] = V π(St) (e.g. the returns Gt in Monte Carlo methods), then θt is

guaranteed to converge to a local optimum under stochastic approximation conditions

[26], which include decreasing α according to a particular schedule over time and some

other technical conditions [27]. However, conveergence cannot always be guaranteed if a

bootstraping estimate of Ut is used, as in TD(0) or n-step methods, as these methods are

biased and do not produce true gradients. They take into account the effect of changing the

parameter θt on the estimate, but ignore its effect on the target. They only include a part

of the gradient, and therefore they are called semi-gradient methods. Semi-gradient TD

methods do converge [11] for linear function approximations to a parameter value called

the TD fixed point under the on-policy distribution. However, linear approximators are not

powerful enough to capture all complexities of real environments. To address this issue,

there has been a tremendous amount of research on non-linear approximators, especially

neural networks. One of the most popular techniques which has received tremendous

attention in recent years is Deep Q-Network (DQN) [28]

Deep Q-Network (DQN)

DQN utilizes a replay memory buffer and a target network to stabilize the training. The

replay buffer holds previous observation tuples (St, At, Rt, St+1, dt) where dt records if the

episode ended with this observation. Then, the approximator is trained by taking a random

mini-batch from the replay memory and applying the Q-learning update rule. DQN uses a

neural network, such as Convolutional Neural Network (CNN), to input St. The network
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has |A| outputs to approximate the Q-function for each possible action. The weights θ are

trained by taking a mini-batch of size m and minimizing the loss function:

L(θ) =
1

m

m∑
i=1

(yi −Q(Si, Ai; θ))
2, (2.17)

where

yi =


Ri, dt = True,

Ri + γmaxa′ Q(S ′i, a
′; θ−), dt = False,

(2.18)

where θ− is the weight vector of the target network, which is updated to θ every M

iterations. There are other other approaches inspired by DQN, such as Dueling Deep

Q-Network (DDQN) [29], Deep Recurrent Q-Networks (DQRN) [30] etc.

2.1.5 Policy-based Approximation Methods

The goal of policy-based methods is to directly learn the parameters of the policy πθ,

parameterized by θ, using a gradient-based algorithm. Let J(θ) measure the value function

for the policy πθ starting from state s0:

J(θ) = V πθ(s0).

Then the policy gradient theorem [11] provides an analytical expression for gradient of

J(θ) as:

∇θJ(θ) = Eπθ [∇θ log π(a|s; θ)Qπθ(s, a)]. (2.19)

The parameters θ of the policy are updated as follows:

θt+1 = θt + α∇θtJ(θt), (2.20)

where ∇θJ(θ) ∈ Rd is a stochastic estimate whose expectation approximates the gradient

of the performance measure with respect to its argument θ and α is the learning rate.
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Two commonly used policy-gradient methods are REINFORCE and actor-critic. RE-

INFORCE [31] applies the same idea as the Monte Carlo method and uses the actual return

to estimate the objective: in (2.19)

G0 :=
T∑
t=0

γtRt+1. (2.21)

The Actor-Critic (AC) [11] model modifies the REINFORCE algorithm by adding another

approximator, called the critic. The actor learns the policy parameters, similar to the

REINFORCE method, whereas the critic learns theQ-function, which provides the gradient

to the policy. The critic receives state St and returns the approximation of Qφ(s, a), where

φ are the parameters of the critic network. The critic is trained by calculating the TD-error

and updating φ as:

δt = Rt+1 + γQφ(St+1, At+1)−Qφ(St, At), (2.22)

φt+1 = φt + αφδt∇φQφ(St, At), (2.23)

where αφ is the critic’s learning rate. The most widely used policy-gradient algorithms

include Advantage Actor-Critic (A2C) [32], Proximal Policy Optimization (PPO) [33],

Trust Region Policy Optimization (TRPO) [34]. We will now review the first two of these

algorithms.

Advantage Actor-Critic (A2C)

A2C maintains a policy π(a|s; θ) and an estimate of the value function V (s;φ). The

algorithm uses the n-step return to update both the policy and the value function. The

update performed after every Tmax steps is:

θt+1 = θt +∇θ log π(At|St; θ)×A(St, At; θ, φ), (2.24)
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where A(St, At; θ, φ) is the estimate of the advantage function defined by

A(St, At; θ, φ) =

j−1∑
i=0

γiRt+i+1 + γjV (St+j;φ)− V (St;φ), (2.25)

and j is upper bounded by Tmax. Even though the parameters θ of the policy and φ of the

value function are shown as being separate for generality, in practice the policy and value

function usually share a common layer of features. Typically, a neural network is used

that has one softmax output for the policy π(At|St; θ) and one linear output for the value

function V (St;φ), with all non-output layers shared.

Proximal Policy Optimization (PPO)

Implementing policy gradient methods is challenging because they are sensitive to the

choice of stepsize and often have very poor sample efficiency. If the step size is too small,

then the progress is very slow whereas if it is too large, then the signal is overwhelmed

by the noise. Several methods were developed to eliminate these flaws. The family of

trust-region algorithms like TRPO [34] constrain or optimize the size of a policy update.

But TRPO is not easily compatible with sharing parameters between a policy and value

function, or with auxiliary losses.

PPO is a trust-region policy gradient algorithm that is easy to tune and implement,

reduces sample complexity and computes an update at each step that minimizes the cost

function while ensuring the deviation from the previous policy is relatively small. The

objective function is as follows:

J(θ) = Ẽt[min(ρ̃t(θ)Ãt, clip(ρ̃t(θ), 1− ε, 1 + ε)Ãt], (2.26)

where θ is the policy parameter, Ẽt denotes the empirical expectation over timesteps, ρ̃t(θ)

is the ratio of probability under the new and old policies respectively, Ãt is the estimated
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advantage at time t, as in A2C, and ε is a hyperparameter. The clip(.) function is defined

as follows:

c(x, a, b) =



1− ε, x < 1− ε,

1 + ε, x > 1 + ε,

x, otherwise,

indicating that if ρ̃t(θ) causes the objective function to increase to a certain extent, its

effectiveness will decrease (be clipped). This objective implements a trust region update

which is compatible with Stochastic Gradient Descent (SGD).

2.2 RL in Networks and Communications

Reinforcement learning has been recently used as a tool to effectively address various

problems and challenges in the areas of networks and communications. As modern

networks such as Internet of Things (IoT), Heterogeneous Networks (HetNets), and

Unmanned Aerial Vehicle (UAV) networks become more autonomous and decentralized,

network entities need to make local and autonomous decisions, such as spectrum access,

data rate selection, transmission power control, and base station association, in order

to achieve targets such as throughput maximization, energy consumption minimization,

latency minimization, etc. In uncertain and stochastic environments, most of the decision-

making problems can be modeled by Markov Decision Processes. This section contains a

concise summary of the applications of reinforcement learning to different networks and

communications problems, as presented in [35].
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2.2.1 Data and Computation Offloading

IoT devices need to support advanced applications such as interactive online gaming and

face recognition with good user experience, despite the limited computation, memory and

power supplies at the edge of the network. In order to address the limited capabilities at

the edge of the network, IoT devices can offload computational tasks to nearby Mobile

Edge Computing (MEC) servers, Access Points (APs), and even neighboring Mobile Users

(MUs). Data and computation offloading can potentially reduce the processing delay, save

battery, and even enhance security for computation-intensive IoT applications. However, a

critical problem in computation offloading is to determine the amount of computational

workload to offload, and to choose the MEC server (from all available servers) to which

to offload. If the chosen MEC server experiences heavy workloads and degraded channel

conditions, it may take even longer for the IoT devices to offload data and receive the results

from the MEC server. Hence, the design of an offloading policy has to take into account

time-varying channel conditions, user mobility, energy supply, computation workload and

the computational capabilities of different MEC servers.

The authors in [36] use Deep Q-Network (DQN) to minimize the cost of delay and

power consumption for all mobile users, by jointly optimizing the offloading decision and

computational resource allocation. The system is modelled as a MDP where the states

comprise of the sum of the costs in the entire system and the available computational

capacity of the MEC server. The action for a base station is to determine the resource

allocation and offloading decision for mobile users. To overcome the large action space,

the authors introduce a pre-classification step which removes all the non-feasible actions

for the mobile users. In [37], the work done by [36] is enhanced by using Dueling Deep Q-

Network (DDQN) [29] in an ultra-dense network. They optimize the association between
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mobile users and the BSs. They enhance the system states by adding the energy and task

queues of the BSs in addition to the channel conditions between the mobile user and the

BSs. The cost function is a weighted sum of the execution delay, the handover delay

and the computational task dropping costs. The authors in [38] aim to design an optimal

offloading policy for IoT devices with energy harvesting capabilities. The system consists

of multiple MEC servers, which vary in their computation and communication capabilities.

The IoT devices can execute computational tasks locally or offload the tasks to the MEC

servers. The IoT device’s offloading decision is formulated as a MDP where the states

include the battery status, the channel capacity, and the predicted amount of harvested

energy in the future. The reward incorporates the overall delay, energy consumption, the

task drop loss, and the data sharing gains in each time slot. The authors propose a fast

DQN offloading scheme that uses hotbooting to initialize a Convolution Neural Network

(CNN), which accelerates the learning speed.

In [5] and [39], the authors study QoS-aware computation offloading in an ad-hoc

mobile network. The mobile user can offload computational tasks to nearby mobile users,

constituting a mobile cloudlet, by making a certain amount of payment. The mobile user

has a queue with limited buffer size to store the arriving tasks. The mobile user selects

nearby cloudlets within device-to-device (D2D) communication range for offloading the

task. The offloading decision is modeled as a MDP with the states including the number

of remaining tasks, the quality of the links between mobile users and the cloudlet, and

the availability of the cloudlet’s resources. The objective is to maximize a combined

utility function, incorporating the mobile user’s energy consumption, processing delay, and

payment for task offloading. The authors show that the utility function is an non-decreasing

function of the total number of tasks that have been processed either locally or remotely by
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the cloudlets. They formulate the optimization problem using a MDP and solve it using

DQN.

Data and computation offloading is also used in fog computing, where the mobile

application requesting data and the computational resources can be hosted in a container.

The authors in [40] model the container migration as a multi-dimensional MDP with the

system states comprising of the delay, the power consumption and the migration cost.

The action includes the selection policy that selects the containers to be migrated from

each source node, and the allocation policy that determines the destination node of each

container. The action space is optimized for efficient exploration by dividing fog nodes

into under-utilization, normal-utilization, and over-utilization groups. The training process

is optimized by using DDQN [29] and Prioritized Experience Replay (PER) [41] which

assigns different priorities to the transitions in the replay buffer.

2.2.2 Network Access and Rate Control

As IoT networks become more decentralized, sensors and mobile users need to make

independent decisions, such as channel and base station selections, to maximize their

throughput. Reinforcement Learning has been studied to optimize for the several problems

of this type, described below.

Dynamic Spectrum Access

Dynamic spectrum access allows users to dynamically select channels to maximize their

throughput. Users typically do not have full channel information. Deep Reinforcement

Learning (DRL) can thus be used as a powerful dynamic spectrum access method. The

authors in [42] suggest a dynamic channel access scheme of a sensor by formulating the

problem as a partially observable Markov Decision Process (POMDP) and leveraging DQN
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to come up with an effective allocation scheme. The sensor selects one of the M channels

in each time slot to transmit its packet. If the selected channel is in small interference,

the sensor receives a positive reward, otherwise the reward is negative. The goal is to

find a policy that maximises the expected discounted return of the sensor over time slots.

An adaptive scheme is proposed, which assesses the current policy’s accumulated reward.

DQN is re-trained to find a new good policy when the reward is reduced by a pre-defined

threshold.

Vehicle to Vehicle Communication

One of the difficulties of Vehicle to Vehicle (V2V) communication is that, in order to

optimise its capacity under a latency constraint, each V2V transmitter must choose a

channel and a transmission power level. DQN is used in [43], in which agents (V2V

transmitters) share a range of channels. Each V2V transmitter’s actions include selecting

channels and transmitting power levels. The reward is a function of the capacity and

latency of the V2V transmitter. The state observed by the V2V transmitter consists of (a)

the instantaneous channel state information (CSI) of the corresponding V2V connection,

(b) the interference with the V2V connection in the previous time slot, (c) the channels

chosen by the neighbours of the V2V transmitter in the previous time slot, and (d) the time

remaining to reach the latency constraint.

Joint User Association and Spectrum Access

User association is introduced to decide which user to delegate to which Base Station (BS).

Usually, the joint user association and spectrum access problems are combinatorial and

non-convex, requiring almost complete and precise network information to achieve the

optimal strategy. The authors consider a heterogeneous network (HetNet) in [44], which
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consists of multiple users and BSs - macro base stations and femto base stations. Each

user’s task is to select one BS and one channel in order to optimise its data rate, while

ensuring that the user’s Signal-to-Interference-plus-Noise Ratio (SINR) is higher than the

minimum requirement for Quality of Service (QoS). To address the problem, the state

consists of a vector of the QoS states of all users, and a DQN strategy is explored. The

user takes an action at each time slot (selecting BS and channel) and gets a positive reward

if the QoS is met and a negative reward otherwise. To learn the optimal strategy, they use

DDQN [29].

Adaptive Rate Control

In complex and unpredictable environments such as Dynamic Adaptive Streaming over

HTTP (DASH) [45], Adaptive Rate Control refers to data rate control, which enables users

to individually select video segments of different bitrates to download. The objective of

the client is to maximize the quality of experience (QoE) of the client, such as maximizing

the average bitrate and minimizing rebuffering. The problem can be formulated as a MDP

[46], where the agent is the client and the action comprises a bitrate codec representation to

download. The client state includes (a) the video quality of the last segment downloaded, (b)

the current buffer state, (c) the rebuffering time, and (d) the channel capabilities encountered

in previous time slots during segment downloads. They use Asynchronous Advantage

Actor-Critic (A3C) [32], where bitrates are chosen for the client by the actor network,

and the critic network helps train the actor network. The reward is a composite function

consisting of (a) the video’s visual quality, (b) the consistency of the video quality, (c) the

rebuffering event, and (d) the buffer state. The authors in [47] demonstrate that in a potential

space communication system that is supposed to function in unpredictable conditions,

e.g., orbital dynamics, atmospheric and space atmosphere, and complex networks, deep
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RL can be used for rate control to achieve multiple goals. In order to achieve multiple

objectives such as low Bit Error Rate (BER), throughput increase, power and spectral

performance, the transmitter in the device must be configured with parameters such as

symbol rate and encoding rate. The proposed approach uses a set of multiple neural

networks in parallel to achieve the multi-objective goal. The input is the current state and

the channel conditions, and the output is the predicted action. The neural networks are

trained by using the Levenberg-Marquardt backpropagation algorithm [48].

2.2.3 Caching

Studies on wireless caching have shown that access delays, energy consumption, and

the total amount of traffic can be reduced significantly by caching content in wireless

devices at the edge of the network. By deploying both computational resources and caching

capabilities close to end users, one can significantly improve the energy efficiency and

QoS for applications that require intensive computations and low latency. Statistically, a

small amount of popular content is usually requested by many users during a short time

span, which accounts for most of the traffic load. Proactively caching such popular content

can avoid the heavy traffic burden of the backhaul links.

Caching in networks has been broadly studied in two categories: with and without

perfect content popularity information. The majority of related research assumes that per-

fect popularity information is known in advance. Even then, the optimal cache placement

policy is a NP hard problem. Due to the content dynamics and users’ mobility, content

popularity may change over time. Therefore, it is necessary to learn the content popularity

and users’ preference dynamically. There has also been some research which assumes

imperfect information about content popularity. In this case, machine learning methods are
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exploited to learn the content popularity by observing users’ historical content demands

and user-content correlations.

Most of the current literature on distributed edge caching assumes that the content

popularity distribution is known or that the learned content distribution is stationary.

Under these assumption, distributed algorithms to determine the content placement have

been proposed in [49–58] using techniques such as integer linear programming, convex

relaxations, particle swarm optimization, belief propagation, and non-cooperative games.

Most of these works model the content popularity distribution using an Independent

Reference Model (IRM). This usually does not incorporate temporal locality and short-

term popularity, which are very important for an optimal caching strategy [59].

In recent years, there is some work on using reinforcement learning to design distributed

caching algorithms when the content popularity is not known. The authors in [60] propose

a deep RL caching algorithm for a single BS with a fixed cache size. For each request, the

BS makes a decision on whether or not to store the currently requested content in the cache.

If the new content is kept, the BS determines which local content will be replaced. They

employ the Wolpertinger architecture [61] to reduce the size of the action space and avoid

missing an optimal policy. The Wolpertinger architecture consists of three main parts: an

actor network, K-Nearest Neighbors (K-NN), and a critic network. The actor network is

meant to avoid a too-large action space, the critic network corrects the decisions made

by the actor network, the Deep Deterministic Policy Gradients (DDPG) [62] method is

applied to update both the critic and the actor networks, whereas the K-NN can help to

explore the set of actions better, in order to avoid poor decisions.

The authors of [63] address caching in 5G cellular networks, where space-time pop-

ularity of requested files is modeled via local and global Markov chains. The proposed
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framework entails estimation of the popularity profiles both at the local as well as at the

global scale - each SB estimates its local vector of popularity profiles based on limited

observations, and transmits it to the network operator, where an estimate of the global

profile is obtained by aggregating the local ones. They model three types of cost: (a)

cost of refreshing cache contents, (b) cost incurred during the operational phase, which

penalizes requests for files already cached much less than requests for files not stored,

(c) cost that captures the mismatch between the caching action and the global popularity

profile. The entire cost is a linear combination of these terms, adjusted according to the

characteristics of the network.

2.2.4 Network Security

As networks become more decentralized, they are vulnerable to various attacks such as

Denial-of-Service (DoS) and cyber-physical attack. We will review now the application of

reinforcement learning in resolving several security concerns.

Jamming Attacks

Attackers or jammers transmit high-powered radio frequency (RF) jamming signals to

interfere with legitimate communication networks, thus reducing the SINR of legitimate

receivers. It is difficult for users to select an appropriate frequency channel without being

aware of the radio channel, model and jamming methods, as well as to decide how to

exit and avoid the attack. The authors of [64] suggest the use of DQN to find an optimal

anti-jamming power management strategy. The model is an IoT network with one jammer

and IoT computers. The jammer is able to observe the transmitter’s communications and

selects a jamming technique to reduce the SINR at the receiver. To maximise its utility, the

transmitter selects the transmit power level as part of its action. The utility is the difference
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that the transmission creates between the SINR and the cost of energy consumption. The

agent is the transmitter, and the state consists of the SINR calculated at the last time step

on its receiver. In order to optimise its expected cumulative discounted reward, DQN using

a CNN is used to find an power control policy for the transmitter.

Cyber-physical Attacks

An attacker manipulates data in cyber-physical attacks in order to change control signals in

the system. Autonomous systems such as Intelligent Transport Systems (ITSs) are a typical

example of targets for such an attack, which raises the risk of accidents in autonomous

vehicles (AVs). In order to minimise the spacing deviation, a lot of vehicular communica-

tion security algorithms can be used. However, in these algorithms, the attacker’s actions

are believed to be stable, which is not realistic. Based on the time-varying observations of

the behaviour of the attacker, reinforcement learning can improve the action choices. A

framework involving a cloud and a collection of IoT devices is modelled by the authors

of [65]. The IoT devices produce signals and relay them to the cloud. The cloud uses

the signals obtained to estimate and monitor the operation of the IoT devices. The cloud

uses Long Short Term Memory (LSTM) [66] units to detect an attack, and uses features or

fingerprints such as flatness, skewness, and kurtosis of the signals of the IoT devices for

authentication. The cloud can only authenticate a small number of vulnerable IoT devices

due to the intensive computing needed in the process. A deep RL algorithm that allows the

cloud to determine which IoT devices to authenticate is suggested. The state of the cloud

involves the attacker’s behaviour in the past time steps on the IoT devices. The reward is

a function of the IoT devices’ data values. To find an optimal policy, the agent uses an

LSTM unit, whose input is the state of the cloud, and whose output contains IoT device

attack probabilities.
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2.2.5 Traffic Engineering and Routing

Traffic Engineering (TE) refers to Network Utility Maximization (NUM) in communication

networks - optimizing the direction of data traffic routing, given the number of network

flows from source to destination nodes. Traditional problems associated with NUM are

mainly model-based. The network environment, however, is becoming more complex

and dynamic with the developments of wireless communication technology, making it

difficult to model, forecast, and monitor. Deep RL methods offer a viable and practical

way to develop experience-driven and model-free approaches that can learn from past

observations and adapt to the complexity of a wireless network. The authors of [67]

propose an actor-critic approach for solving the problem of routing optimization. The state

of the system is represented by the bandwidth request between each source-destination

pair, and the reward is a function of the mean delay in the network. In [68], the same

problem is solved by combining two techniques in conjunction with DDPG [62] for TE

problems: TE-aware exploration and actor-critic-based PER methods. The TE-aware

exploration leverages the shortest path algorithm and NUM-based solution as the baseline

during exploration.

The authors model autonomous navigation of a single UAV in a large-scale, unknown,

complex environment as a POMDP in [69], which is then solved by an actor-critic approach.

The state of the device includes its distances and angles of orientation to surrounding

obstacles, and the distance and angle between its current location and the target. The

UAV’s actions include: turn left, turn right, or keep ahead. The reward is composed

of four parts: a) an exponential penalty term based on proximity to an obstacle, b) a

linear penalty term to facilitate minimum time delay, c) the transition, and d) direction

rewards, if the UAV is getting close to the target position. They use Recurrent Deterministic
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Policy Gradient (RDPG) [70] and approximate the actor and critic using Recurrent Neural

Netowrks (RNNs).

2.2.6 Resource Sharing and Scheduling

Enhancements to device capability can be focused on optimising the sharing and scheduling

of resources between multiple wireless nodes. Integrating reinfrocement learning into

5G networks would revolutionize resource sharing and scheduling schemes from model-

based to model-free approaches, and meet various application demands by adapting to the

network environment. In a massive multi-user MIMO scheme, the authors of [71] optimise

user scheduling, which is responsible for allocating resource blocks to BSs and mobile

users, taking into account the channel conditions and QoS specifications. The system state

is an indicator of the average spectrum efficiency. The action of the scheduler is a set

of scheduling parameters to maximize the return, as a function of the average spectrum

efficiency. A policy gradient method is deployed to learn a policy function directly from

trajectories generated by the current policy.

The network infrastructure is comparatively static, e.g., cache, computation, and radio

resources, while the upper layer Virtualized Network Functions (VNFs) are dynamic to

accommodate application-specific service demands that vary in time. Network slicing

[72] is the concept of dividing the network resources into multi-layer slices, managed by

different service renderers independently with minimal conflicts. The concept of Service

Function Chaining (SFC) refers to orchestrating various VNFs to provide the necessary

functionality and QoS provisioning. A deep RL approach for QoS/QoE aware SFC in

VNF-enabled 5G systems is proposed by the authors of [73].

Resource allocation and scheduling issues in computing clusters and database systems
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are studied by the authors of [74]. DeepRM is an online deep RL-based solution that

utilises policy gradient methods to control resources in computer systems. In [75], the

authors use the actor-critic method to address the scheduling problem in general-purpose,

distributed data stream processing systems. There are several threads, processes, and

devices in the system model. The state of the system consists of the current scheduling

decision and each data source’s workload. The scheduling problem is to allocate each

thread to a machine’s process. The scheduler agent decides the allocation of each thread,

with the intention of minimizing the average processing time. Three components are

included in the deep RL ageent: (a) an actor network, (b) an optimizer generating the

K-Nearest Neighbors (K-NN) set for the output action of the actor network, and (c) the

critic network. The action with the maximum Q-value from the K-NN set is selected.
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Problem Formulation

3.1 System model

A simplified mobile edge computing (MEC) system consists of an edge server and several

mobile users accessing that server (see Fig. 3.1). Mobile users independently generate

service requests according to a Poisson process. The rate of requests and the number of

users may also change with time. The edge server takes CPU resources to serve each

request from mobile users. The request is buffered in a queue before it is served. When

a new request comes, the server has the option to offload the request (see Fig. 3.2). The

mathematical model of the edge server and the mobile users is presented below.

Edge server

Let Xt ∈ {0, 1, . . . ,X− 1} denote the number of service requests buffered in the queue,

where X denotes the size of the buffer. Let Lt ∈ {0, 1, . . . , L− 1} denote the CPU load at

the server where L is the capacity of the CPU. We assume that the CPU has k cores.

We assume that the requests arrive according to a (potentially time-varying) Poisson

process with rate λ. If a new request arrives when the buffer is full, the request is offloaded
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Figure 3.1: A mobile edge computing (MEC) system. User may be mobile and will

connect to the closest edge server.The MEC servers are connected to the backend

cloud server or datacenters through the core network.

Figure 3.2: System model of admission control in a single edge server.

to another server. If a new request arrives when the buffer is not full, the server has the

option to either accept or offload the request.

The server can process up to a maximum of k requests from the head of the queue.
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Processing each request requires CPU resources for the duration for which the request

is being served. The required CPU resources is a random variable R ∈ {1, . . . ,R} with

probability mass function P . The realization of R is not revealed until the server starts

working on the request. The duration of service is an exponentially distributed random

variable with rate µ.

Let A = {0, 1} denote the action set. Here At = 1 means that the server decides to

offload the request while At = 0 means that the server accepts the request.

Traffic model for mobile users

We consider multiple models for traffic.

• Scenario 1: All users generate requests according to the same rate λ and the rate

does not change over time. Thus, the rate at which requests arrive is λN .

• Scenario 2: In this scenario, we assume that all users generate requests according

to rate λMt , where Mt is a global state which changes over time. Thus, the rate at

which requests arrive in a state m is λmN .

• Scenario 3: Each user n has a state Mn
t ∈ {1, . . . ,M}. When the user n is in

state m, it generates requests according to rate λm. The state Mn
t changes over time.

Thus, the rate at which requests arrive at the server is
∑N

n=1 λMn
t

.

• Time-varying users: In each of the scenarios above, we can consider the case when

the number of users is not fixed and changes over time. We call them Scenario 4, 5,

and 6 respectively.

Cost and the optimization framework

The system incurs three types of a cost:
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• a holding cost of h per unit time when a request is buffered in the queue but is not

being served.

• a running cost of c(`) per unit time for running the CPU at a load of `.

• a penalty of p(`) for offloading a packet at CPU load `.

We combine all these costs in a cost function

ρ(x, `, a) = h[x− k]+ + c(`) + p(`)1{a = 1}, (3.1)

where [x]+ is a short-hand for max{x, 0}, 1{·} is the indicator function and a is the

action. Note that to simplify the analysis, we have assumed that the server always serves

min{Xt, k} requests.

Whenever a new request arrives, the server uses a memoryless policy π : {0, 1, . . . ,X−

1} × {0, 1, . . . , L− 1} → {0, 1} to choose an action

At = πt(Xt, Lt).

The performance of a policy π starting from initial state (x, `) is given by

V π(x, `) = E

[∫ ∞
0

e−γtρ(Xt, Lt, At)dt

∣∣∣∣ X0 = x, L0 = `

]
, (3.2)

where γ > 0 is the discount rate and the expectation is with respect to the arrival process,

CPU utilization, and service completions.

The objective is to minimize the expected cost (3.2) for the different traffic scenarios

listed above. We are particularly interested in the setting where the arrival rate and

potentially other components of the model such as the resource distribution are not known

to the system designer and change during the operation of the system.

48



Chapter 3 Anirudha Jitani

Solution framework

When the model parameters (λ,N, µ, P, k) are known and time-homogeneous, the optimal

policy π can be computed using dynamic programming. However, in a real system, these

parameters may not be known, so we are interested in developing a reinforcement learning

algorithm which can learn the optimal policy based on the observed per-step cost.

In principle, when the model parameters are known, Scenarios 2 and 3 can also be

solved using dynamic programming. However, the state of such dynamic programs will

include the state Mt of the system (for Scenario 2) or the states (Mn
t )Nn=1 of all users (for

Scenario 3). Typically, these states change at a slow time-scale. So, we will consider

reinforcement learning algorithms which do not explicitly keep track of the states of the

user and check if the algorithm can adapt quickly whenever the arrival rates change.

3.2 Dynamic programming to identify an optimal admis-

sion control policy

When the arrival process is time-homogeneous, the process {Xt, Lt}t≥0 is a finite-state

continuous-time Markov decision process (MDP) controlled through {At}t≥0. To specify

the controlled transition probability of this MDP, we consider the following two cases.

First, if there is a new arrival at time t, then

P(Xt = x′, Lt = `′ | Xt− = x, Lt− = `, At = a)

=



P (`′ − `), if x′ = x+ 1 and a = 0

1, if x′ = x, `′ = `, and a = 1

0, otherwise.

(3.3)
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We denote this transition function by q+(x′, `′|x, `, a). Note that the first term P (`′ − `)

denotes the probability that the accepted request required (`′ − `) CPU resources.

Second, if there is a departure at time t,

P(Xt = x′, Lt = `′ | Xt− = x, Lt− = `)

=


P (`− `′), if x′ = [x− 1]+

0, otherwise.

(3.4)

We denote this transition function by q−(x′, `′|x, `). Note that there is no decision to be

taken at the completion of a request, so the above transition does not depend on the action.

In general, the reduction in CPU utilization will correspond to the resources needed for

the request whose service was completed. However, keeping track of those resources

would mean that we would need to expand the state to include (R1, . . . , Rk), where Ri

denotes the resources required by the request processed by CPU i. In order to avoid such

an increase in the state dimension, we assume that when a request is completed, CPU

utilization reduces by amount `− `′ with probability P (`− `′).

We combine (3.3) and (3.4) into a single controlled transition probability function from

state (x, `) to state (x′, `′) given by

p(x′, `′ | x, `, a) =
λ

λ+ min{x, k}µ
q+(x′, `′ | x, `, a)

+
min{x, k}µ

λ+ min{x, k}µ
q−(x′, `′ | x, `). (3.5)

Let ν = λ + kµ denote the uniform upper bound on the transition rate at the states.

Then, using the uniformization technique [8, 9], we can convert the above continuous

time discounted cost MDP into a discrete time discounted cost MDP with discount factor

β = ν/(γ + ν), transition probability matrix p(x′, `′|x, `, a) and per-step cost

ρ̄(x, `, a) =
1

γ + ν
ρ(x, `, a).
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Therefore, we have the following.

Theorem 1 Consider the following dynamic program

V (x, `) = min{Q(x, `, 0), Q(x, `, 1)}, (3.6)

where

Q(x,`, 0) =
1

γ + ν

[
h[x− k]+ + c(`)

]
+ β

[
λ

λ+ min{x, k}µ

R∑
r=1

P (r)V ([x+ 1]X, [`+ r]L)

+
min{x, k}µ

λ+ min{x, k}µ

R∑
r=1

P (r)V ([x− 1]+, [`− r]+)

]
,

and

Q(x,`, 1) =
1

α + ν

[
h[x− k]+ + c(`) + p(`)

]
+ β

min{x, k}µ
λ+ min{x, k}µ

R∑
r=1

P (r)V ([x− 1]+, [`− r]+),

where [x]B denotes min{x,B}.

Let π(x, `) ∈ A denote the argmin of the right hand side of (3.6). Then, the time-

homogeneous policy π(x, `) is optimal for the original continuous-time optimization

problem. 2

PROOF The equivalence between the continuous and discrete time MDPs follows from

the uniformization technique [8, 9]. The optimality of the time-homogeneous policy π

follows from the standard results for MDPs [10]. �

Thus, for all practical purposes, the decision maker has to solve a discrete-time MDP,

where decisions need to be taken at the time points when a new request arrives. From now

on, we will ignore the 1/(γ + ν) term in front of the per-step cost and assume that it has

been absorbed in the constant h, and the functions c(·), p(·).

51



Chapter 3 Anirudha Jitani

When the system parameters are known, the above dynamic program can be solved

using standard techniques such as value iteration [20], policy iteration [21], or linear

programming. However, in practice, the system parameters may slowly change over time.

Therefore, instead of pursuing a planning solution, we consider reinforcement learning

solutions which can adapt to time-varying environments.

3.3 Structure-aware reinforcement learning

Although, in principle, the optimal admission control problem formulated above can

be solved using deep RL algorithms, such algorithms require significant computational

resources to train, are brittle to the choice of hyperparameters, and generate policies

which are difficult to interpret. For these reasons, we investigate an alternate class of RL

algorithms which circumvents these limitations, by leveraging the special structure of the

problem that we want to solve.

3.3.1 Structure of the optimal policy

We first establish monotonicity properties of the value function and the optimal policy.

Proposition 1 For a fixed queue length x, the value function is weakly increasing in the

CPU utilization `. 2

PROOF The proof is presented in Appendix A.1 �

Proposition 2 For a fixed queue length x, if it is optimal to reject a request at CPU

utilization `, then it is optimal to reject a request at all CPU utilizations `′ > `. 2

PROOF The proof is presented in Appendix A.2 �
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3.3.2 The SALMUT algorithm

Proposition 2 shows that the optimal policy can be represented by a threshold vector

τ = (τ(x))Xx=0, where τ(x) ∈ {0, . . . , L} is the smallest value of the CPU utilization such

that it is optimal to accept the packet for CPU utilization less than or equal to τ(x) and

reject it for utilization greater than τ(x).

The SALMUT algorithm was proposed in [15] to exploit a similar structure in admis-

sion control for multi-class queues. It was originally proposed for the average cost setting.

We present a generalization to the discrete-time setting.

We use πτ to denote a threshold-based policy with the parameters (τ(x))Xx=0 taking

values in {0, . . . , L}X+1. The key idea behind SALMUT is that, instead of deterministic

threshold-based policies, we consider a random policy parameterized with parameters

taking value in the compact set [0, L]X+1. Then, for any state (x, `), the randomized policy

πτ chooses action a = 0 with probability f(τ(x), `) and chooses action a = 1 with

probability 1− f(τ(x), `), where f(τ(x), `) is any continuous decreasing function w.r.t `,

which is differentiable in its first argument, e.g., the sigmoid function

f(τ(x), `) =
exp((τ(x)− `)/T )

1 + exp((τ(x)− `)/T )
, (3.7)

where T > 0 is a hyper-parameter (often called “temperature”).

Fix an initial state (x0, `0) and let J(τ) denote the performance of policy πτ when

starting from the initial state (x0, `0). Let Vτ and Qτ denote the value function and

action-value function of policy πτ .

Now, from the policy gradient theorem [11], we know that

∇J(τ) =
X∑
x=0

L∑
`=0

µ(x, `)
∑
a∈A

δπτ (a|x, `)
δτ

Qτ (x, `, a) (3.8)

where µ(x, `) is the occupancy measure on the states starting from the initial state (x0, `0)
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and

∇Q(x, `; τ) =
X∑

x′=0

L∑
`′=0

∇p(τ)(x′, `′|x, `)×
∑
a∈A

πτ (a|x, `)Qτ (x, `, a). (3.9)

Therefore, an unbiased estimator of∇J(τ) is given by

∇p(τ)(x′, `′|x, `)Qτ (x, `, a), where a ∼ πτ (·|x, `). (3.10)

Note that

δπτ (a|x, `)
δτ

= (−1)a∇f(τ(x), `). (3.11)

Combining (3.8) with (3.11), we get that

(−1)a∇f(τ(x), `)
[
ρ̄(x, `, a) + βVτ (x

′, `′)
]
, (3.12)

where a ∼ πτ (·|x, `) is an unbiased estimator of∇J(τ).

Thus, we can use the standard two time-scale Actor-Critic algorithm [11] to simul-

taneously learn the policy parameters τ and the action-value function Q as follows. We

start with an initial guess Q0 and τ0 for the action-value function and the optimal policy

parameters. Then, we update the action-value function using temporal difference learning:

Qn+1(x, `, a) = Qn(x, `, a) + b1
n

[
ρ̄(x, `, a) + βmin

a′∈A
Qn(x′, `′, a′)−Qn(x, `, a)

]
, (3.13)

and update the policy parameters using stochastic gradient descent while using (3.12) as

the unbiased estimator of∇J(τ):

τn+1(x) = Proj
[
τn(x) + b2

n(−1)a∇f(τ(x), `)
[
ρ̄(x, `, a) + βmin

a′∈A
Q(x′, `′, a′)

]]
, (3.14)

where Proj is a projection operator which clips the values to the interval [0, L] and {b1
n}n≥0

and {b2
n}n≥0 are learning rates which satisfy the standard conditions on two time-scale

learning:
∑

n b
k
n =∞,

∑
n(bkn)2 <∞, k ∈ {1, 2}, and limn→∞ b

2
n/b

1
n = 0.

The complete approach is presented in Algorithm 1.
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Algorithm 1: Two time-scale SALMUT algorithm
Result: τ

Initialize value functions ∀x,∀`, Q(x, `, a)← 0

Initialize threshold vector ∀x, τ(x)← rand(0, L− 1)

Initialize start state (x, `)← (x0, `0)

while TRUE do

if EVENT == ARRIVAL then
Choose action a according to Eq. (3.7)

Update V (x, `) according to Eq. (3.13)

Update threshold τ using Eqs. (3.14)

(x, `)←− (x′, `′)

end

end

Theorem 2 The two time-scale SALMUT algorithm described above converges almost

surely and limn→∞∇J(τn) = 0. 2

PROOF The proof is present in Appendix B. �

In the next chapter, we demonstrate the advantage offered by the proposed SALMUT

algorithm in terms of the training time and interpretability of policies with respect to

traditional DRL algorithms such as PPO and A2C. We perform empirical evaluations of the

admission control policy in the node overload protection problem in two different settings -

a simulated environment and a real testbed.
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Experimental Setup

4.1 Numerical experiments - Computer Simulations

In this section, we present detailed numerical experiments to evaluate the proposed rein-

forcement learning algorithm on various scenarios described in Sec. 3.1.

We consider an edge server with buffer size X = 20, CPU capacity L = 20, k = 2

cores, service-rate µ = 3.0 for each core, holding cost h = 0.12. The CPU capacity is

discretized into 20 states for utilization 0− 100%, with ` = 0 corresponding to a state with

CPU load ` ∈ [0%− 5%), and so on.

The CPU running cost is modelled such that it incurs a positive reinforcement for being

in the optimal CPU range, and a high cost for an overloaded system.

c(`) =



0 for ` ≤ 5

−0.2 for 6 ≤ ` ≤ 17

10 for ` ≥ 18.

The offload penalty is modelled such that it incurs a fixed cost for offloading to enable

the offloading behavior only when the system is loaded and a very high cost when the
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system is idle to discourage offloading in such scenarios.

p(`) =


1 for ` ≥ 3

10 for ` ≤ 3.

The probability mass function of resources needed per request is as follows:

P (r) =


0.6 if r = 1

0.4 if r = 2.

We have performed a detailed analysis on the structure of the cost function, which will be

discussed in the next section.

We created a simulation environment using OpenAI’s Gym environment to model the

dynamics of the system. Rather than simulating the system in continuous-time, we simulate

the equivalent discrete-time MDP by generating the next event (arrival or departure) using

a Bernoulli distribution with probabilities and costs described in Sec. 3.2. We assume that

the parameter 1/(γ + ν) in (3.6) has been absorbed in the cost function. We assume that

the discrete time discount factor β = γ/(γ + ν) equals 0.95.

We use the ADAM optimizer because Stochastic Gradient Descent (SGD) does not

adapt well to sudden changes in request arrival distribution. ADAM [76] is a first-order

gradient-based optimizer for stochastic objective functions, based on adaptive estimates of

lower-order moments. ADAM is able to update its learning rate based on the change in the

lower-order moments, i.e. when there is a sudden change in the request distribution. We

observed in our initial experiments that the learning rate of SGD saturates to a small value

after running the experiments for some time, hence it was unable to provide meaningful

updates to the Q-values when the network dynamics changed drastically.
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4.1.1 Choice of the Model Parameters

In order to come up with an optimal cost structure, we analyze the structure of the Dynamic

Programming solution in 3.2, obtained by using Policy Iteration [11], by varying the

overload cost, offload cost, holding cost, rewards, and discount factor (β) one at a time

while keeping the others constants. We fix the arrival rate (λ = 6.0), processing rate

(µ = 3.0), number of cores (k = 2) and number of users (N = 24) throughout these

experiments.

The figures in this section plot the optimal policy computed using Policy Iteration for

all the states of the system. The x-axis denotes the queue/request size and y-axis denotes

the CPU utilization/load. The grid spanning the x-axis and y-axis is the state of the system

and the color of the grid represents the optimal action at that state. The color black means

that the optimal action is to offload, whereas the color white means that the optimal action

is to accept the request.

Varying the overload cost

The overload cost is the cost c(`) incurred when the system goes into an overloaded state.

In our experiments, we assume that the state goes into an overloaded state whenever the

CPU load ` is greater that 90%, i.e. ` ≥ 18. We vary the overload cost from 5 to 30

at the intervals of 5, while keeping the other costs constant. We need to ensure that the

overload cost is much higher than the other costs as it degrades the performance of the

edge nodes. We observe in Figure 4.1 that the optimal policy does not change with the

change in overload cost, as long as the overload cost is high enough.
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(a) c(`) = 5.0 (b) c(`) = 10.0 (c) c(`) = 15.0

(d) c(`) = 20.0 (e) c(`) = 25.0 (f) c(`) = 30.0

Figure 4.1: Dynamic Programming solutions obtained by varying the overload cost

and keeping other parameters constant (offload cost = 1, holding cost = 0.03, reward

= 0.1, β = 0.95). The x-axis denotes the request size and y-axis denotes the CPU

utilization. Each grid is the state space of the system and the color of the grid cells

represents the optimal action at that state: black for offload, white for accept.

Varying the Offload Costs

The offload cost is the cost incurred by the system when it offloads a packet to another

MEC server, denoted by p(`)1{a = 1}. We vary the offload cost from 0.5 to 1.5 at

the intervals of 0.2, while keeping the other costs constant. We observe in Figure 4.2

that changing the offloading cost results in a significant difference in the structure of the

optimal policy. When the offload cost is high, the system offloads only when the system

is overloaded (reactive offloading), which is a property we do not desire in our policy

(see Fig. 4.2f). When the offload cost is low, the system offloads very often, as accepting
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(a) p = 0.5 (b) p = 0.7 (c) p = 0.9

(d) p = 1.1 (e) p = 1.3 (f) p = 1.5

Figure 4.2: Solution to Dynamic Programming by varying the offload cost and

keeping other parameters constant (overload cost = 10.0, holding cost = 0.15, reward

= 0.1 β = 0.95)

the request would incur higher cost than offloading it, i.e. the holding cost significantly

overpowers the offload cost, causing frequent offloads (see Fig. 4.2a-4.2d). We desire an

intermediate value of offload cost, to ensure that offloads happen only when there is a good

possibility of the system going into an overloaded state.

Varying the Holding Costs

The holding cost is the cost incurred by the system per unit time when a request is buffered

in the queue but is not being served, denoted by h[x− k]+. We vary the holding cost from

0.08 to 0.18 at steps of 0.02, while keeping the other costs constant. We observe in Fig.

4.3 that the optimal structure varies significantly when we change the holding cost. The
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(a) h = 0.08 (b) h = 0.1 (c) h = 0.12

(d) h = 0.14 (e) h = 0.16 (f) h = 0.18

Figure 4.3: Solution to Dynamic Programming by varying the holding cost and

keeping other parameters constant (overload cost = 10.0, offload cost = 1, reward =

0.1, β = 0.95).

optimal structure remains constant until the holding cost is ≤ 0.1 (Fig. 4.3a - 4.3b). Once

we change the value beyond 0.1, there is a drastic change in the policy. It is because the

cost incurred for holding the requests in the queue exceeds the cost of offloading those

requests, hence more requests are offloaded. When the holding cost is too high, the edge

nodes decide to offload most of the requests, which is not a behavior we want in the policy.

We desire an intermediate value of holding cost that balances offloading in a way that

avoids overloading.
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(a) Reward = 0.0 (b) Reward = 0.075 (c) Reward = 0.15

(d) Reward = 0.225 (e) Reward = 0.3 (f) Reward = 0.375

Figure 4.4: Solution to Dynamic Programming by varying the rewards and keeping

other parameters constant (overload cost = 10.0, offload cost = 1.0, holding cost =

0.15, β = 0.95).

Varying the Rewards

A reward c(`) is a positive reinforcement provided to the system if it stays in the optimal

load area, i.e. 30% ≤ ` ≤ 85%. We vary the rewards from 0.0 to 0.375 at the intervals

of 0.075, while keeping the other costs constant. We observe in Fig. 4.4 that the system

offloads more when the rewards are low, as there is no incentive to stay in the mid-to-higher

load regions when the buffer size is high due to the increasing effect of holding cost. The

offloading decreases when the reward increases, as the edge nodes are incentivized not

to offload when the load of the system is not very high and the chances of going into an

overloaded state is minimal. When the reward is very high, the offloading occurs in a

reactive manner, i.e. only when the system is in an overloaded state or on the verge of
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(a) β = 0.95 (b) β = 0.99 (c) β = 0.999

Figure 4.5: Solution to Dynamic Programming by varying the discount factor (β)

and keeping other parameters constant (overload cost = 10.0, offload cost = 1.0,

holding cost = 0.15, reward = 0.2).

entering the overloaded state.

Varying the Discount Factor

The discount factor β determines how much the costs incurred in the distant future impact

the current action of the agent relative to those in the immediate future. We test for the

following values of discount factor: [0.95, 0.99, 0.999], while keeping the other costs

constant. We observe in Fig. 4.5 that the system offloads more when the discount factor is

high and the offloading decreases when the discount factor decreases. When β = 0.999, the

system offloads even when it is far from being overloaded, because there is a small chance

that overload may occur and the agent wants to avoid this situation at all costs. However,

this impacts the current performance because the system is underutilized. A discount

factor β = 0.95 gives us a nice staircase model, where the agent performs offloading in a

pro-active manner to avoid overloaded situations.

63



Chapter 4 Anirudha Jitani

(a) Fixed Cost (b) `t = 14 (c) `t = 15

(d) `t = 16 (e) `t = 17 (f) `t = 18

Figure 4.6: Solution to Dynamic Programming by varying the structure of the

overload cost and keeping other parameters constant (overload cost = 10.0, offload

cost = 1.0, holding cost = 0.12, reward = 0.1, β = 0.95).

Varying the Overload Cost Structure

In this analysis, instead of having a fixed overload cost as described in the previous section,

we vary the overload cost as a step function of ` beyond a utilization `t

c(`) =



0 for ` ≤ 5

−0.2 for 6 ≤ ` < `t

`/2 for ` ≥ `t.

We observe that changing the cost structure in this manner leads to more offloading

when values of `′ are low (see Fig. 4.6c-4.6d) and becomes similar to the fixed overloading

structure when values of `′ approach the threshold value of overload (see Fig. 4.6f and
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(a) λ = 5.1 (b) λ = 5.4 (c) λ = 5.7

(d) λ = 6.0 (e) λ = 6.3 (f) λ = 6.7

Figure 4.7: Solution to Dynamic Programming by varying the arrival rate (λ) and

keeping other parameters constant (overload cost = 10.0, offload cost = 1, holding

cost = 0.12, reward = 0.1, β = 0.95).

Fig. 4.6a). We do not want a policy which will offload aggressively, hence changing the

structure of the overload cost this way (with low values of `′) does not seem to provide

good policies in our problem.

Sensitivity Analysis

In this section, we present the cost structure we choose in Sec. 4.2-A as seen in Fig.

4.7d as it exhibits the ideal structure for an optimal policy. The requests are offloaded in

overloaded states, and the system also manifests proactive offloading behavior when the

CPU load and queue length are in the upper-mid range, to avoid going into overload. We

now analyse the susceptibility of the optimal policy to small changes in arrival rates (λ).
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Ideally, we want our policy to be invariant to small changes in the environment.

We change the arrival rate by small amounts and test for values of λ from 5.1 to 6.7 in

the intervals of 0.3. We observe in Fig. 4.7 that with small changes in λ, the policy does

not change much but is robust enough to adapt to the change in traffic. The policies do not

loose the staircase structure we are ideally looking for and adjust the offloading to suit the

request arrival distribution. Therefore, we conclude that the parameters of the cost function

we chose in Sec. 4.2 are correct for our problem.

4.1.2 Simulation scenarios

We consider a number of traffic scenarios which increase in complexity and closeness to

real-world settings. Each scenario runs for a horizon of T = 106. The scenarios capture

variation in the transmission rate and the number of users over time. The evolution of the

arrival rate λ and the number of users N for the different scenarios is shown in Fig. 4.8.

Scenario 1 This scenario tests how the learning algorithms perform in the time-homogeneous

setting. We consider a system with N = 24 users with arrival rate λi = 0.25. Thus, the

overall arrival rate λ = Nλi = 6.

Scenario 2 This scenario tests how the learning algorithms adapt to occasional but

significant changes to arrival rates. We consider a system with N = 24 users, where each

user generates requests at rate λlow = 0.25 for the interval (0, 3.33 · 105], then generates

requests at rate λhigh = 0.375 for the interval (3.34 · 105, 6.66 · 105], and then generates

requests at rate λlow again for the interval (6.67 · 105, 106].

Scenario 3 This scenario tests how the learning algorithms adapt to frequent but small

changes to the arrival rates. We consider a system with N = 24 users, where each user
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Figure 4.8: The evolution of λ and N for the different scenarios that we described.

In scenarios 1 and 4, λ and N overlap in the plots.

generates requests according to rate λ ∈ {λlow, λhigh} where λlow = 0.25 and λhigh = 0.375.

We assume that each user starts with a rate λlow or λhigh with equal probability. At time

intervals m · 104, each user toggles its transmission rate with probability p = 0.1.

Scenario 4 This scenario tests how the learning algorithm adapts to change in the number

of users. In particular, we consider a setting where the system starts with N1 = 24 user.

At every 105 time steps, a user may leave the network, stay in the network or add another
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mobile device to the network with probabilities 0.05, 0.9, and 0.05, respectively. Each new

user generates requests at rate λ.

Scenario 5 This scenario tests how the learning algorithm adapts to large but occasional

change in the arrival rates and small changes in the number of users. In particular, we

consider the setup of Scenario 2, where the number of users changes as in Scenario 4.

Scenario 6 This scenario tests how the learning algorithm adapts to small but frequent

change in the arrival rates and small changes in the number of users. In particular, we

consider the setup of Scenario 3, where the number of users changes as in Scenario 4.

4.1.3 The RL algorithms

For each scenarios, we compare the performance of the following policies

1. Dynamic Programming (DP), which computes the optimal policy using Theorem 1.

2. SALMUT, as described in Sec. 3.3

3. PPO (Proximal Policy Optimization) [16], which is a trust region policy gradient

method that optimizes a surrogate objective function using stochastic gradient ascent.

4. A2C (Advantage Actor-Critic) [17], which is a two time-timescale learning algo-

rithms where the critic estimates the value function and the actor updates the policy

distribution in the direction suggested by the critic.

5. Baseline, which is a fixed-threshold based policy, where the node accepts requests

when ` < 18 (non-overloaded state) and offloads requests otherwise. Such static

policies are currently deployed in many real-world systems.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Figure 4.9: Total cost as a function of time for the different algorithms.

4.1.4 Results

For each of the algorithms described above, we train SALMUT, PPO, and A2C for 106

steps. The performance of each algorithm is evaluated every 103 steps using independent

rollouts of length H = 1000 for 100 different random seeds. The experiment is repeated

for the 10 sample paths and the median return with an uncertainty band from the first to

69



Chapter 4 Anirudha Jitani

the third quartile is plotted in Fig. 4.9.

For Scenario 1, all RL algorithms (SALMUT, PPO, A2C) converge to the optimal

policy relatively quickly and remain stable after convergence. Since all policies converge

quickly, they are also able to adapt quickly in Scenarios 2–6 and keep track of the time-

varying arrival rates and number of users. There are small differences in the peformance

of the RL algorithms, but these are minor. Note that in contrast, the baseline policy of

offloading when the server is overloaded performs poorly.

The plots for Scenario 1 (Fig. 4.9a) show that all the algorithms converge to the

optimal performance. PPO converges to the optimal policy in less than 105 steps, whereas

SALMUT and A2C takes around 2 · 105 steps to converge. Upon further analysis on

the structure of the optimal policy, we observe that the structure of the optimal policy of

SALMUT (Fig 4.10b) differs from that of the optimal policy computed using DP (Fig

4.10a). There is a slight difference in the structure of these policies when the buffer size (x)

is high and the CPU load (`) is low, which occurs because these states are reachable with a

very low probability and hence SALMUT doesn’t encounter these states in the simulations

or encounters them too rarely to be able to learn the optimal policy in these states.

The plots from Scenario 2 (Fig. 4.9b) show similar behavior to Scenario 1 when λ is

constant. When λ changes significantly, we observe that the RL algorithms are able to

adapt to the drastic but stable changes in the environment. Once the load stabilizes, all the

algorithms are able to readjust themselves to the changes and perform very close to the

optimal policy. The plots from Scenario 3 (Fig 4.9c) show similar behavior to Scenario 1,

i.e. small but frequent changes in the environment do not impact the learning performance

of reinforcement learning algorithms.

The plots from Scenario 4-6 (Fig. 4.9d-4.9f) show consistent performance with varying
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(a) DP λ = 6 (b) SALMUT λ = 6

Figure 4.10: Comparing the optimal policy and converged policy of SALMUT along

one of the sample paths. The colorbar represents the probability of the offloading

action.

users. The RL algorithms including SALMUT show similar performance for most of the

time-steps except in cases when the load decreases, in which case SALMUT performs

slightly worse than PPO and A2C. This could be due to the fact that SALMUT takes longer

to adjust its more aggresive offloading policy when the system is in a more loaded state.

4.1.5 Analysis of Training Time and Policy Interpretability

The differentiating factor among these three RL algorithms is the training time and inter-

pretability of policies. We ran our experiments on a server containing Intel(R) Xeon(R)

Gold 6148 CPU @ 2.40GHz. Referring to Table 4.1, SALMUT is about 28 times faster

to train than PPO and 17 times faster to train than A2C. SALMUT does not require a

non-linear function approximator such as a Neural Network (NN) to represent its policy,

making its training very fast.

By construction, SALMUT searches for (randomized) threshold based policies. For
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Table 4.1: Training time of RL algorithms

Algorithm Mean Time (s) Std-dev (s)

SALMUT 95.67 3.29

PPO 2673.17 23.33

A2C 1677.33 9.99

example, for Scenario 1, SALMUT converges to the policy shown in Fig. 4.10b. It is easy

for a network operator to interpret such threshold based strategies and decide whether to

deploy them or not. In contrast, in deep RL algorithms such as PPO and A2C, the policy is

parameterized using the weights of a neural network r and it is very difficult to visualize

the learned weights of such a policy and decide whether the resulting policy is reasonable.

Thus, by leveraging the threshold structure of the optimal policy, SALMUT is able to learn

faster and at the same time to provide threshold-based policies which are easier to interpret.

The policy of SALMUT is completely characterized by the threshold vector τ , making

it storage efficient too. In addition to the vector τ , we need to store the Q-value function of

every state-action pair. This results in a storage complexity of O(|S × A|). The update

of the value function involves the computation of a single function corresponding to the

current value of threshold (3.14). Therefore, the per iteration computational complexity

is O(1). Thus the proposed algorithm provides significant improvements in storage and

per-iteration computational complexity compared to traditional reinforcement learning

algorithms.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Figure 4.11: Comparing the number of times the system goes into the overloaded

state at each evaluation step. The trajectory of event arrival and departure is fixed

for all evaluation steps and across all algorithms for the same arrival distribution.

4.1.6 Behavioral Analysis of Policies

We performed further analysis on the behavior of the learned policy by observing the

number of times the system enters into an overloaded state and offloads incoming request.

Let us define Cov to be the number of times the system enters into an overloaded state and
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Figure 4.12: Comparing the number of times the system performs offloading at

each evaluation step. The trajectory of event arrival and departure is fixed for all

evaluation steps and across all algorithms for the same arrival distribution.

Coff to be the number of times the system offloads requests for every 1000 steps of training

iteration. We generated a set of 106 random numbers between 0 and 1, defined by zt, where

t is the step count. We will use this set of random numbers to fix the trajectory of events

(arrival or departure) for all the experiments in this section. Similar to the experiment in
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the previous section, the number of users N and the arrival rate λ are fixed for 1000 steps

and evolve according to the scenarios described in Fig. 4.8. The event is set to arrival if zt

is less than or equal to λt
λt+min{xt,k}µ , and set to departure otherwise. These experiments

were carried out during the training time for 10 different seeds. We plot the median of

the number of times a system goes into an overloaded state (Fig. 4.11) and the number of

requests offloaded by the system (Fig. 4.12 along with the uncertainty band from the first

to the third quartile for every 1000 steps.

We observe in Fig. 4.11, that all the algorithms (SALMUT, PPO, A2C) learn not to

enter into the overloaded state. As seen in the case of total discounted cost (Fig. 4.9), PPO

learns this instantly, followed by SALMUT and A2C, which takes some time to learn this

behavior. The observation is valid for all the different scenarios we tested. We observe that

for Scenario-4, PPO enters the overloaded state at around 0.8 · 106, which is due to the fact

the
∑

i λi increases drastically at that point (seen in Fig. 4.8d), and we also see its effect

on the cost in Fig. 4.9d at that time. The baseline algorithm, on the other hand, enters into

the overloaded state quite often.

We observe in Fig. 4.12, that the algorithms (SALMUT, PPO, A2C) learn to adjust

their offloading rate to avoid the overloaded states. The number of times that requests are

offloaded is directly proportional to the total arrival rate of all the users at that time. When

the arrival rate increases, the number of times the offloading occurs also increases in the

interval. We see that even though more requests are offloaded by the RL algorithms than

by the baseline algorithm in all scenarios and timesteps, the difference between the number

of times they offload is not significantm implying that the RL algorithms learn policies

that offload at the right moment, as to not lead the system into an overloaded state. We

perform further analysis of this behavior for the real test bed (see Fig. 4.17) and the results
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Figure 4.13: Architecture for the realistic testbed we run the experiments on.

are similar for the simulations too.

4.2 Numerical experiments - Docker Testbed

We test our proposed algorithm on a testbed resembling the MEC architecture in Fig. 3.1,

but without the core network and backend cloud server for simplicity. We consider an edge

node which serves a single application. Both the edge nodes and clients are implemented as

containerized environments in a virtual machine. The overview of the testbed is shown in

Fig. 4.13. The load generator generates requests for each client independently according to

a time-varying Poisson process. The requests at the edge node are handled by the controller

which decides either to accept the request or offload the request based on the policy for the

current state of the edge node. If the action is ”accept”, the request is added to the request

queue of the edge node, otherwise the request is offloaded to another healthy edge node

via the proxy network. The Key Performance Indicator (KPI) collector copies the KPI

metrics into a database at regular intervals. The RL modules uses these metrics to update
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its policies. The Subscriber/Notification (Sub/Notify) module notifies the controller about

the updated policy. The controller now uses the updated policy to serve all future requests.

In our implementation, the number of clients N served by an edge node and the

request rate of the clients λ is constant for at-least 100 seconds. We define a step to be

the execution of the testbed for 100 seconds. Each request runs a workload on the edge

node and consumes CPU resources R, where R is a random variable. The states, actions,

costs, next states for each step are stored in a buffer in the edge node. After the completion

of a step, the KPI collector copies these buffers into a database. The RL module is then

invoked, which loads its most recent policy and other parameters, and trains on this new

data to update its policy. Once the updated policy is generated, it is copied in the edge

node and is used by the controller for serving the requests for the next step.

We run our experiments for a total of 1000 steps, where N and λ evolve according to

Fig. 4.8 for different scenarios, similar to the previous set of experiments. We consider

an edge server with buffer size X = 20, CPU capacity L = 20, k = 2 cores, service-rate

µ = 3.0 for each core, holding cost h = 0.12. The CPU capacity is discretized into 20

states for utilization 0− 100%, similar to the previous experiment. The CPU running cost

is c(`) = 30 for ` ≥ 18, c(`) = −0.2 for 6 ≤ ` ≤ 17, and c(`) = 0 otherwise. The offload

penalty is p = 1 for ` ≥ 3 and p = 10 for ` < 3. We assume that the discrete time discount

factor β = α/(α + ν) equals 0.99.

4.2.1 Results

We run the experiments for SALMUT and the baseline algorithm for a total of 1000 steps.

We do not run the simulations for the PPO and A2C algorithms in our testbed, as these

algorithms cannot be trained in real-time in an online manner, due to the amount of time
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they require for training. The performance of SALMUT and of the baseline algorithm

is evaluated at every step, by computing the discounted total cost for that step using the

cost buffers which are stored in the database. The experiment is repeated 5 times and the

median performance with an uncertainty band from the first to the third quartile are plotted

in Fig. 4.14 along with the total request arrival rate (
∑

i λi) in gray dotted lines.

For Scenario 1 (Fig. 4.14a), we observe that the SALMUT algorithm outperforms

the baseline algorithm right from the start, indicating that SALMUT updates its policy

very quickly at the start and slowly converges towards optimal performance after 400

steps, whereas the baseline incurs high cost throughout. Since SALMUT policies converge

towards optimal performance after some time, they are also able to adapt quickly in

Scenarios 2–6 (Fig. 4.14b-4.14f) and keep track of the time-varying arrival rates and

number of users. We observe that SALMUT takes some time to learn a good policy, but

once it learns the policy, it adjusts to frequent but small changes in λ and N very well (see

Fig. 4.14c and 4.14d). If the request rate changes drastically, the performance decreases a

little (which is bound to happen as the total requests to process are much more numerous

than the server’s capacity) but the magnitude of the performance drop is much smaller in

SALMUT compared to the baseline, seen in Fig. 4.14b, 4.14e and 4.14f. This is because

the baseline algorithms incur high overloading cost for these requests, whereas SALMUT

incurs offloading costs for the same requests. Further analysis on this issue is presented in

Section 4.2.2.

4.2.2 Behavioral Analysis

We perform behavior analysis of the learned policy by observing the number of times the

system enters into an overloaded state (Fig. 4.15) and the number of incoming request
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Figure 4.14: Performance of RL algorithms for different scenarios in the end-to-

end testbed we created. We also plot the total request arrival rate (
∑

i λi) on the

right-hand side of y-axis in gray dotted lines.

offloaded by the requests (Fig. 4.16) at every step. Let us define Cov to be the number of

times the system enters into an overloaded state and Coff to be the number of times the

system offloads requests for every step (100s) of the training iteration.

Fig. 4.15 shows that the number of times the edge node goes into an overload state while
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Figure 4.15: Comparing the number of times the system goes into the overloaded

state at each step in the end-to-end testbed we created. We also plot the total request

arrival rate (
∑

i λi) on the right-hand side of y-axis in gray dotted lines.

following policy executed by SALMUT is much smaller than for the baseline algorithm.

Even when the system goes into an overloaded state, it is able to recover quickly and does

not suffer from performance deterioration. From Fig. 4.15b and 4.15e we can observe that

in Scenarios 2 and 5, when the request load increases drastically (at around 340 steps), Cov
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Figure 4.16: Comparing the number of times the system performs offloading at

each step in the end-to-end testbed we created. We also plot the total request arrival

rate (
∑

i λi) on the right-hand side of y-axis in gray dotted lines.

increases and its effects can also be seen in the overall discounted cost in Fig. 4.14b and

4.14e at around the same time. SALMUT is able to adapt its policy quickly and recovers

within 50 steps. We observe in Fig. 4.16 that SALMUT performs more offloading as

compared to the baseline algorithm.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Figure 4.17: Scatter-plot of Cov Vs Coff for SALMUT and baseline algorithm in

the end-to-end testbed we created. The width of the points is proportional to its

frequency.

A policy that offloads often and does not go into an overloaded state may not necessarily

minimize the total cost. We did some further investigation by visualizing the scatter-plot

(Fig. 4.17) of the overload count (Cov) on the y-axis and the offload count (Coff) on the

x-axis for both SALMUT and the baseline algorithm for all the scenarios described in
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Fig. 4.8. We observe that SALMUT keeps Cov much lower than the baseline algorithm

at the cost of increased Coff . We can observe from Fig. 4.17 that the slope for the plot is

linear for the baseline algorithms because they are offloading reactively. SALMUT, on the

other hand, learns a behavior that is analogous to pro-active offloading, where it benefits

from the offloading action it takes by minimizing Cov.
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Conclusion and Future Work

In this thesis, we considered a single node optimal policy for overload protection on edge

servers in a time varying environment. We proposed a RL-based, adaptive, low-complexity

admission control approach that exploits the structure of the optimal policy and finds a

policy that is easy to interpret. Our proposed algorithm performs as well as standard

deep RL algorithms but has better computational and memory complexity. Therefore, our

proposed algorithm is more suitable for deployment in real systems for online training.

The results we presented can be extended in several directions. In addition to CPU over-

load, one could consider other resource bottlenecks such as disk I/O, RAM utilization, etc.

In such cases, the state dimension would increase and one could use state-dimensionality

reduction techniques such as Principal Component Analysis (PCA) [77] and learn the

threshold-mapping between the principal component of PCA and the corresponding load.

It may be desirable to simultaneously consider multiple resource constraints. Similarly,

one could consider multiple applications with different resource requirements and different

priority. The framework we developed will be applicable to these more sophisticated setups

as well, provided the optimal policy has some kind of a threshold structure.

The empirical evaluations were done for a small state space. The increase in the
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state space can be handled by increasing the quantization step of discretization. If the

quantization step is too coarse, border effects may arise: depending on the choice of the

quantization intervals, the states may not capture the behavior of the system and small

transitions close to the border between two states may be perceived as huge changes by

the learner, which only knows that the state of the system has changed. There are several

approaches presented in the literature to overcome the problem including clustering states,

using softer borders [78], and generalizations to states based on fuzzy rules [79]. Soft state

borders mean that whenever the learner is close to the border between two states it can use

a linear combination of both states’ Q-values, avoiding hard transitions and the associated

border effects.

The discussion in this thesis was restricted to a single node. These results could

also provide a foundation to investigate node overload protection in multi-node clusters

where there are additional challenges such as routing, link failures, and changing network

topology. One approach could be to develop a two-tier hierarchical reinforcement learning

algorithm where the node-level admission control policy decides whether or not to offload

a request and the cluster-level admission control policy aggregates information from all

the nodes and executes the routing policy, i.e. where to offload the requests.

The problem could be modeled as designing optimal offloading and routing policies

using multi-agent multi-stage optimization, where one can view each server as a separate

agent. Each server could have a local state (its queue length and CPU load) and take a local

action (whether or not to offload a new request). The state dynamics of the servers in this

case are coupled through their control actions. In particular, when a request is offloaded by

a server, it impacts the arrival rate at the server to which it is re-routed. The servers could

also have coupled costs which depend on the end-to-end throughput and delay incurred
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by the users. In particular, when a request is offloaded by a server, it impacts the arrival

rate at the server to which it is re-routed. The servers also have a coupled reward which

depends on the end-to-end throughput and delay incurred by the users. Both the dynamics

and the reward couplings depend on the network characteristics such as link availability,

delays, and capacity, which vary over time.

Such multi-agent multi-stage optimization problems are studied under the heading of

decentralized stochastic control [80] or decentralized partially observable Markov decision

problems (dec-POMDPs) [81]. However, in general, finding the optimal solution to such

problems is NEXP-complete [82]. Therefore, instead of focusing on optimal policies, one

can consider an alternative approach to learn a satisficing policies (i.e., policies which

provide satisfactory or adequate performance rather than optimal performance) using

multi-agent reinforcement learning (MARL) algorithms (see [83] and references therein

for an overview), which has achieved considerable progress in recent years.

One of the difficulties in generalizing the approach discussed in this work to multi-agent

systems is the difficulty in identifying the structure of optimal policies. However, since in

the MARL framework, the objective is to identify a satisficing rather than optimal policy,

one can restrict attention to a specific policy structure because it is easier to interpret even

if it is not optimal. One could restrict attention to threshold-based policies and derive the

policy gradients for such policies for the MARL algorithms.
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Proof of Structural Properties

A.1 Proof of Proposition 1

Let δ(x) = λ/(λ + min(k, x)µ). We define a sequence of value functions {Vn}n≥0 as

follows

V0(x, `) = 0

and for n ≥ 0

Vn+1(x, `) = min{Qn+1(x, `, 0), Qn+1(x, `, 1)},

where

Qn+1(x,`, 0) =
1

α + ν

[
h[x− k]+ + c(`)

]
+ β

[
δ(x)

R∑
r=1

P (r)Vn([x+ 1]X, [`+ r]L)

+ (1− δ(x))
R∑
r=1

P (r)Vn([x− 1]+, [`− r]+)

]
and

Qn+1(x,`, 1) =
1

α + ν

[
h[x− k]+ + c(`) + p(`)

]
+ β(1− δ(x))

R∑
r=1

P (r)Vn([x− 1]+, [`− r]+),

where [x]B denotes min{x,B}.
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Note that {Vn}n≥0 denotes the iterates of the value iteration algorithm, and from [10], we

know that

lim
n→∞

Vn(x, `) = V (x, `), ∀x, ` (A.1)

where V is the unique fixed point of (3.6).

We will show that (see Lemma 1 below) each Vn(x, `) satisfies the property of Proposition

1. Therefore, by (A.1) we get that V also satisfies the property.

Lemma 1 For each n ≥ 0 and x ∈ {0, ..., X}, Vn(x, `) is weakly increasing in `. 2

PROOF We prove the result by induction. Note that V0(x, `) = 0 and is trivially weakly

increasing in `. This forms the basis of the induction. Now assume that Vn(x, `) is weakly

increasing in `. Consider iteration n+ 1. Let x ∈ {0, ..., X} and `1, `2 ∈ {0, ..., L} such

that `1 < `2. Then,

Qn+1(x,`1, 0) =
1

α + ν

[
h[x− k]+ + c(`1)

]
+ β

[
δ(x)

R∑
r=1

P (r)Vn([x+ 1]X, [`1 + r]L)

+ (1− δ(x))
R∑
r=1

P (r)Vn([x− 1]+, [`1 − r]+)

]
(a)

≤ 1

α + ν

[
h[x− k]+ + c(`2)

]
+ β

[
δ(x)

R∑
r=1

P (r)Vn([x+ 1]X, [`2 + r]L)

+ (1− δ(x))
R∑
r=1

P (r)Vn([x− 1]+, [`2 − r]+)

]

= Qn+1(x, `2, 0), (A.2)

where (a) follows from the fact that c(`) and Vn(x, `) are weakly increasing in `.

By a similar argument, we can show that

Qn+1(x, `1, 1) ≤ Qn+1(x, `2, 1). (A.3)
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Now,

Vn+1(x, `1) = min{Qn+1(x, `1, 0), Qn+1(x, `1, 1)}

(b)

≤ min{Qn+1(x, `2, 0), Qn+1(x, `2, 1)}

= Vn+1(x, `2) (A.4)
�

where (b) follows from (A.2) and (A.3). Eq. (A.4) shows that Vn+1(x, `) is weakly

increasing in `. This proves the induction step. Hence, the result holds for the induction.

A.2 Proof of Proposition 2

PROOF Let δ(x) = λ/(λ+ min{x, k}µ). Consider

∆Q(x, `) =Q(x, `, 1)−Q(x, `, 0)

= −βδ(x)
R∑
r=1

P (r)V ([x]X, [`+ r]L)− p.

For a fixed x, by Proposition 1, ∆Q(x, `) is weakly decreasing in `. If it is optimal to

reject a request at state (x, `) (i.e., ∆Q(x, `) ≤ 0), then for any `′ > `,

∆Q(x, `′) ≤ ∆Q(x, `) ≤ 0;
�

therefore, it is optimal to reject the request.
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Proof of Optimality of SALMUT

PROOF The choice of learning rates implies that there is a separation of timescales between

the updates of (3.13) and (3.14). In particular, since b2
n/b

1
n → 0, iteration (3.13) evolves at

a faster timescale than iteration (3.14). Therefore, we first consider update (3.14) under

the assumption that the policy πτ , which updates at the slower timescale, is constant.

We first provide a preliminary result.

Lemma 2 Let Qτ denote the action-value function corresponding to the policy πτ . Then,

Qτ is Lipscitz continuous in τ .

PROOF This follows immediately from the Lipscitz continuity of πτ in τ . �

Define the operatorMτ : RN → RN, where N = (X + 1)× (L + 1)×A, as follows:

[MτQ](x, `, a) =
[
ρ̄(x, `, a) + β

∑
x′,`′

p(x′, `′|x, `, a) min
a′∈A

Q(x′, `′, a′)] − Q(x, `, a).

(B.1)

Then, the step-size conditions on {b1
n}n≥1 imply that for a fixed πτ , iteration (3.13) may

be viewed as a noisy discretization of the ODE (ordinary differential equation):

Q̇(t) =Mτ [Q(t)]. (B.2)
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Then we have the following:

Lemma 3 The ODE (B.2) has a unique globally asymptotically stable equilibrium point

Qτ .

PROOF Note that the ODE (B.2) may be written as

Q̇(t) = Bτ [Q(t)]−Q(t)

where the Bellman operator Bτ : RN → RN is given by

Bτ [Q](x, `) =
[
ρ̄(x, `, a) + β

∑
x′,`′

p(x′, `′|x, `, a)×min
a′∈A

Q(x′, `′, a′)]. (B.3)

Note that Bτ is a contraction under the sup-norm. Therefore, by Banach fixed point

theorem, Q = BτQ has a unique fixed point, which is equal to Qτ . The result then follows

from [84, Theorem 3.1]. �

We now consider the faster timescale. Recall that (x0, `0) is the initial state of the MDP.

Recall

J(τ) = Vτ (x0, `0)

and consider the ODE limit of the slower timescale iteration (3.14), which is given by

τ̇ = −∇J(τ). (B.4)

Lemma 4 The equilibrium points of the ODE (B.4) are the same as the local optima of

J(τ). Moreover, these equilibrium points are locally asymptotically stable.

PROOF The equivalence between the stationary points of the ODE and local optima of

J(τ) follows from definition. Now consider J(τ(t)) as a Lyapunov function. Observe that

d

dt
J(τ(t)) = −

[
∇J(τ(t))]2 < 0,

as long as∇J(τ(t)) 6= 0. Thus, from Lyapunov stability criteria all local optima of (B.4)

are locally asymptotically stable. �
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Now, we have all the ingredients to prove convergence. Lemmas 2-4 imply assumptions

(A1) and (A2) of [85]. Thus, the iteration (3.13) and (3.14) converges almost surely to

a limit point (Q◦, τ ◦) such that Q◦ = Qτ◦ and ∇J(τ ◦) = 0 provided that the iterates

{Qn}n≥1 and {τn}n≥1 are bounded.

Note that {τn}n≥1 are bounded by construction. The boundness of {Qn}n≥1 follows from

considering the scaled version of (B.2):

Q̇ =Mτ,∞Q (B.5)

where,

Mτ,∞Q = lim
c→∞

Mτ [cQ]

c
.

It is easy to see that

[Mτ,∞Q](x, `, a) = β
∑
x′,`′

p(x′, `′|x, `, a) min
a′∈A

Q(x′, `′, a′)−Q(x, `, a) (B.6)
�

Furthermore, origin is the asymptotically stable equilibrium point of (B.5). Thus, from

[86], we get that the iterates {Qn}n≥1 of (3.13) are bounded.

92



Bibliography

[1] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1,

pp. 30–39, 2017.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge

computing: The communication perspective,” IEEE Communications Surveys &

Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[3] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation task

scheduling for mobile-edge computing systems,” in IEEE International Symposium

on Information Theory, 2016, pp. 1451–1455.

[4] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing optimiza-

tion in wireless powered mobile-edge computing systems,” IEEE Transactions on

Wireless Communications, vol. 17, no. 3, pp. 1784–1797, 2017.

[5] D. Van Le and C.-K. Tham, “Quality of service aware computation offloading in an

ad-hoc mobile cloud,” IEEE Transactions on Vehicular Technology, vol. 67, no. 9,

pp. 8890–8904, 2018.

[6] M. Chen and Y. Hao, “Task offloading for mobile edge computing in software

defined ultra-dense network,” IEEE Transactions on Wireless Communications,

vol. 36, no. 3, pp. 587–597, 2018.

93



Bibliography Anirudha Jitani

[7] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung, “Dynamic

service migration in mobile edge computing based on markov decision process,”

IEEE/ACM Transactions on Networking, vol. 27, no. 3, pp. 1272–1288, Jun. 2019.

[8] A. Jensen, “Markoff chains as an aid in the study of markoff processes,” Scandina-

vian Actuarial Journal, vol. 1953, no. sup1, pp. 87–91, 1953.

[9] R. A. Howard, Dynamic Programming and Markov Processes. The MIT Press,

1960.

[10] M. Puterman, Markov decision processes: Discrete Stochastic Dynamic Program-

ming. John Wiley and Sons, 1994.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. The MIT

Press, 2018.

[12] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized computation

offloading performance in virtual edge computing systems via deep reinforcement

learning,” IEEE Internet Things Journal, vol. 6, no. 3, pp. 4005–4018, 2018.

[13] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning for online of-

floading in wireless powered mobile-edge computing networks,” arXiv:1808.01977,

2018.

[14] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computation of-

floading in multi-access edge computing using a deep sequential model based on

reinforcement learning,” IEEE Communications Magazine, vol. 57, no. 5, pp. 64–69,

2019.

94



Bibliography Anirudha Jitani

[15] A. Roy, V. Borkar, A. Karandikar, and P. Chaporkar, “Online reinforcement learning

of optimal threshold policies for Markov decision processes,” arXiv:1912.10325,

2019.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy

optimization algorithms,” arXiv:1707.06347, 2017.

[17] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, “Scalable trust-region method for

deep reinforcement learning using kronecker-factored approximation,” arXiv:1708.05144,

2017.

[18] M. L. Puterman, “Markov decision processes,” Handbooks in operations research

and management science, vol. 2, pp. 331–434, 1990.

[19] R. Bellman, “On the theory of dynamic programming,” Proceedings of the National

Academy of Sciences of the United States of America, vol. 38, no. 8, p. 716, 1952.

[20] M. L. Puterman and M. C. Shin, “Modified policy iteration algorithms for discounted

markov decision problems,” Management Science, vol. 24, no. 11, pp. 1127–1137,

1978.

[21] J Van Der Wal, “Discounted markov games: Generalized policy iteration method,”

Journal of Optimization Theory and Applications, vol. 25, no. 1, pp. 125–138, 1978.

[22] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s

College, Cambridge United Kingdom, 1989.

[23] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine

learning, vol. 3, no. 1, pp. 9–44, 1988.

[24] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems.

University of Cambridge, Department of Engineering Cambridge, UK, 1994, vol. 37.

95



Bibliography Anirudha Jitani

[25] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–

292, 1992.

[26] J. N. Tsitsiklis, “Asynchronous stochastic approximation and q-learning,” Machine

learning, vol. 16, no. 3, pp. 185–202, 1994.

[27] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis lectures on artifi-

cial intelligence and machine learning, vol. 4, no. 1, pp. 1–103, 2010.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.

Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control

through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,

2015.

[29] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-

learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30,

2016.

[30] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially observable

MDPs,” in AAAI Fall Symposium Series, 2015.

[31] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient

methods for reinforcement learning with function approximation,” in Advances in

Neural Information Processing Systems, 2000, pp. 1057–1063.

[32] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in

International Conference on Machine Learning, 2016, pp. 1928–1937.

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy

optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

96



Bibliography Anirudha Jitani

[34] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy

optimization,” in International Conference on Machine Learning, 2015, pp. 1889–

1897.

[35] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim,

“Applications of deep reinforcement learning in communications and networking: A

survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174,

2019.

[36] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based computation

offloading and resource allocation for MEC,” in IEEE Wireless Communications

and Networking Conference, IEEE, 2018, pp. 1–6.

[37] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized computation

offloading performance in virtual edge computing systems via deep reinforcement

learning,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4005–4018, 2018.

[38] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-based

computation offloading for IoT devices with energy harvesting,” IEEE Transactions

on Vehicular Technology, vol. 68, no. 2, pp. 1930–1941, 2019.

[39] D. Van Le and C.-K. Tham, “A deep reinforcement learning based offloading scheme

in ad-hoc mobile clouds,” in IEEE Conference on Computer Communications

Workshops, IEEE, 2018, pp. 760–765.

[40] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration modeling and learn-

ing algorithms for containers in fog computing,” IEEE Transactions on Services

Computing, vol. 12, no. 5, pp. 712–725, 2018.

97



Bibliography Anirudha Jitani

[41] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”

arXiv preprint arXiv:1511.05952, 2015.

[42] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforcement learning

for dynamic multichannel access in wireless networks,” IEEE Transactions on

Cognitive Communications and Networking, vol. 4, no. 2, pp. 257–265, 2018.

[43] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning based resource

allocation for V2V communications,” IEEE Transactions on Vehicular Technology,

vol. 68, no. 4, pp. 3163–3173, 2019.

[44] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, and Y. Jiang, “Deep reinforcement learning

for user association and resource allocation in heterogeneous networks,” in IEEE

Global Communications Conference, IEEE, 2018, pp. 1–6.

[45] T. Stockhammer, “Dynamic adaptive streaming over HTTP– standards and design

principles,” in Proceedings of the second annual ACM conference on Multimedia

systems, 2011, pp. 133–144.

[46] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming with

pensieve,” in Proceedings of the Conference of the ACM Special Interest Group on

Data Communication, 2017, pp. 197–210.

[47] P. V. R. Ferreira, R. Paffenroth, A. M. Wyglinski, T. M. Hackett, S. G. Bilén, R. C.

Reinhart, and D. J. Mortensen, “Multiobjective reinforcement learning for cognitive

satellite communications using deep neural network ensembles,” IEEE Journal on

Selected Areas in Communications, vol. 36, no. 5, pp. 1030–1041, 2018.

98



Bibliography Anirudha Jitani

[48] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the marquardt

algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989–993,

1994.

[49] C. Li, L. Toni, J. Zou, H. Xiong, and P. Frossard, “QoE-driven mobile edge caching

placement for adaptive video streaming,” IEEE Transactions on Multimedia, vol. 20,

no. 4, pp. 965–984, 2017.

[50] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content distri-

bution networks,” in IEEE International Conference on Computer Communications,

IEEE, 2010, pp. 1–9.

[51] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative edge

caching in user-centric clustered mobile networks,” IEEE Transactions on Mobile

Computing, vol. 17, no. 8, pp. 1791–1805, 2017.

[52] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality guarantees,”

ACM SIGMETRICS Performance Evaluation Review, vol. 44, no. 1, pp. 113–124,

2016.

[53] C. Liang, F. R. Yu, N. Dao, G. Senarath, and H. Farmanbar, “Enabling adaptive data

prefetching in 5G mobile networks with edge caching,” in IEEE Global Communi-

cations Conference, IEEE, 2018, pp. 1–6.

[54] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire, “Fem-

tocaching: Wireless content delivery through distributed caching helpers,” IEEE

Transactions on Information Theory, vol. 59, no. 12, pp. 8402–8413, 2013.

[55] S. Wang, X. Zhang, K. Yang, L. Wang, and W. Wang, “Distributed edge caching

scheme considering the tradeoff between the diversity and redundancy of cached

99



Bibliography Anirudha Jitani

content,” in IEEE International Conference on Communications in China, IEEE,

2015, pp. 1–5.

[56] J. Liu, B. Bai, J. Zhang, and K. B. Letaief, “Content caching at the wireless net-

work edge: A distributed algorithm via belief propagation,” in IEEE International

Conference on Communications, IEEE, 2016, pp. 1–6.

[57] C. Fang, F. R. Yu, T. Huang, J. Liu, and Y. Liu, “Energy-efficient distributed in-

network caching for content-centric networks,” in IEEE Conference on Computer

Communications Workshops, IEEE, 2014, pp. 91–96.

[58] J. Gao, L. Zhao, and L. Sun, “Probabilistic caching as mixed strategies in spatially-

coupled edge caching,” in 29th Biennial Symposium on Communications (BSC),

IEEE, 2018, pp. 1–5.

[59] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and S. Niccolini,

“Temporal locality in today’s content caching: Why it matters and how to model it,”

ACM SIGCOMM Computer Communication Review, vol. 43, no. 5, pp. 5–12, 2013.

[60] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement learning-

based framework for content caching,” in 52nd Annual Conference on Information

Sciences and Systems, IEEE, 2018, pp. 1–6.

[61] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt, T.

Mann, T. Weber, T. Degris, and B. Coppin, “Deep reinforcement learning in large

discrete action spaces,” arXiv preprint arXiv:1512.07679, 2015.

[62] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint

arXiv:1509.02971, 2015.

100



Bibliography Anirudha Jitani

[63] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and scalable caching

for 5G using reinforcement learning of space-time popularities,” IEEE Journal of

Selected Topics in Signal Processing, vol. 12, no. 1, pp. 180–190, 2017.

[64] Y. Chen, Y. Li, D. Xu, and L. Xiao, “DQN-based power control for IoT transmission

against jamming,” in IEEE Vehicular Technology Conference, IEEE, 2018, pp. 1–5.

[65] A. Ferdowsi and W. Saad, “Deep learning-based dynamic watermarking for secure

signal authentication in the internet of things,” in IEEE International Conference on

Communications, IEEE, 2018, pp. 1–6.

[66] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[67] G. Stampa, M. Arias, D. Sánchez-Charles, V. Muntés-Mulero, and A. Cabellos,

“A deep-reinforcement learning approach for software-defined networking routing

optimization,” arXiv preprint arXiv:1709.07080, 2017.

[68] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang, “Experience-

driven networking: A deep reinforcement learning based approach,” in IEEE Con-

ference on Computer Communications Workshops, IEEE, 2018, pp. 1871–1879.

[69] C. Wang, J. Wang, X. Zhang, and X. Zhang, “Autonomous navigation of UAV

in large-scale unknown complex environment with deep reinforcement learning,”

in IEEE Global Conference on Signal and Information Processing, IEEE, 2017,

pp. 858–862.

[70] D. R. Song, C. Yang, C. McGreavy, and Z. Li, “Recurrent deterministic policy

gradient method for bipedal locomotion on rough terrain challenge,” in IEEE In-

101



Bibliography Anirudha Jitani

ternational Conference on Control, Automation, Robotics and Vision, IEEE, 2018,

pp. 311–318.

[71] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C. Gursoy, “A deep reinforcement learning

based framework for power-efficient resource allocation in cloud RANs,” in IEEE

International Conference on Communications, IEEE, 2017, pp. 1–6.

[72] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network slicing in 5G:

Survey and challenges,” IEEE Communications Magazine, vol. 55, no. 5, pp. 94–

100, 2017.

[73] X. Chen, Z. Li, Y. Zhang, R. Long, H. Yu, X. Du, and M. Guizani, “Reinforcement

learning–based qos/qoe-aware service function chaining in software-driven 5g

slices,” Transactions on Emerging Telecommunications Technologies, vol. 29, no. 11,

e3477, 2018.

[74] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with

deep reinforcement learning,” in Proceedings of the 15th ACM Workshop on Hot

Topics in Networks, 2016, pp. 50–56.

[75] T. Li, Z. Xu, J. Tang, and Y. Wang, “Model-free control for distributed stream

data processing using deep reinforcement learning,” Proceedings of the VLDB

Endowment, vol. 11, no. 6, pp. 705–718, 2018.

[76] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[77] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics

and Intelligent Laboratory Systems, vol. 2, no. 1-3, pp. 37–52, 1987.

102



Bibliography Anirudha Jitani

[78] S. P. S. T. J. Michael and I Jordan, “Reinforcement learning with soft state ag-

gregation,” Advances in Neural Information Processing Systems, vol. 7, p. 361,

1995.

[79] P. Y. Glorennec and L. Jouffe, “Fuzzy q-learning,” in Proceedings of 6th Interna-

tional Fuzzy Systems Conference, IEEE, vol. 2, 1997, pp. 659–662.

[80] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized stochastic control with

partial history sharing: A common information approach,” IEEE Transactions on

Automatic Control, vol. 58, no. 7, pp. 1644–1658, 2013.

[81] F. A. Oliehoek and C. Amato, A concise introduction to decentralized POMDPs.

Springer, 2016.

[82] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The complexity of

decentralized control of markov decision processes,” Mathematics of operations

research, vol. 27, no. 4, pp. 819–840, 2002.
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