
Krylov Subspace Techniques on Graphic

Processing Units

Maryam Mehri Dehnavi

Doctor of Philosophy

Department of Electrical and Computer Engineering

McGill University

Montreal, Quebec, Canada

July 02, 2012

__

A thesis submitted to McGill University in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Copyright 2012 Maryam Mehri Dehnavi

To my parents and Farhad

i

ABSTRACT

Computations related to many scientific and engineering problems spend most

of their time in solving large, sparse linear systems. Improving the performance of

these solvers on modern parallel architecture enables scientists to simulate large

accurate models and manipulate massive amounts of data in reasonable time

frames. Krylov subspace methods (KSM) are iterative techniques used to solve

large sparse systems. The main time consuming kernels in KSMs are sparse

matrix vector multiplication (SpMV), vector operations (dot products and vector

sums) and preconditioner manipulation. This work presents techniques and

algorithms to accelerate some of these kernels on a recent generation of parallel

architecture called manycore processors. The performance of the proposed

optimizations are tested on graphic processing units (GPUs) and compared to

previous work.

The SpMV kernel is accelerated on GPUs and speedups of up to 3.3 times are

achieved compared to previous GPU implementations of the algorithm. The

conjugate gradient iterative solver is accelerated on NVIDIA graphic cards and a

12.9 fold speedup is achieved compared to optimized implementation of the

kernel on multicore CPUs. The sparse approximate inverse preconditioner is

accelerated on GPUs and used to enhance the convergence rate of the BiCGStab

iterative solver. The preconditioner is generated on NVIDIA GTX480 in the same

time as it takes 16 AMD 252 Opteron processors to generate the same

preconditioner.

Communicating data between levels of a memory hierarchy and processors is

time consuming and costly in KSMs. Communication-avoiding (CA) Krylov

solvers take ݇ steps of a KSM for the same communication cost as one step to

reduce the communication overhead in standard KSMs. The matrix powers kernel

in communication-avoiding Krylov solvers is accelerated on NVIDIA GPUs and

ii

speedups of up to 5.7 are achieved for the tested problems compared to the

standard implementation of ݇ SpMV kernels.

iii

ABRÉGÉ

Les calculs liés à de nombreux problèmes scientifiques et techniques demandent

qu’on consacre beaucoup de temps à la résolution de grands systèmes linéaires

creux. Améliorer la performance de ces résolveurs sur l’architecture paralléle

moderne permet aux scientifiques de simuler de grands modèles précis et de

manipuler une quantité massive de données dans des délais raisonnables. Les

méthodes sous-espaces Krylov (KSM) sont des techniques itératives utilisées pour

résoudre de grands systèmes creux. Les noyaux principaux qui demandent

beaucoup de temps dans les KSMs sont la multiplication matrice-vecteur creuse

(SpMV), les opérations sur les vecteurs (produits scalaires et sommes vectorielles)

et la manipulation de préconditionneur. Ce travail présente les techniques et les

algorithmes pour accélérer certains de ces noyaux sur une génération récente

d’architecture parallèle appelée processeurs multicoeurs. La performance des

optimisations proposées est testée sur des processeurs graphiques (GPU) et

comparée aux travaux antérieurs.

Le noyau SpMV est accéléré sur les processeurs graphiques et des

accélérations jusqu’à 3.3 fois plus rapides sont atteintes par rapport aux

implémentations de l’algorithme des processeurs graphiques précédents. Le

gradient conjugué du résolveur itératif est accéléré sur des cartes graphiques

NVIDIA et une accélération 12.9 fois plus rapide est réalisée par rapport à

l’implémentation optimisée du noyau sur des processeurs multicœurs. Le

préconditionneur approximatif inverse creux est accéléré sur les processeurs

graphiques et utilisé pour améliorer le taux de convergence du résolveur itératif

BiCGStab. Le préconditionneur est généré sur un NVIDIA GTX480 pour la

même durée nécessaire à 16 processeurs AMD Opteron 252 pour générer le même

préconditionneur.

iv

La communication de données entre les niveaux d’une hiérarchie de

mémoire et des processeurs est longue et coûteuse en KSMs. Les résolveurs sans

communication (communication-avoiding ou CA) de Krylov n’utilisent qu’un

nombre ݇ d’étapes d’une méthode de sous-espace de Krylov (KSM) pour

un coût de communication équivalent comme une étape qui permet de réduire les

frais généraux des communications dans les KSMs standards. Le noyau des

pouvoirs de matrice dans les résolveurs de Krylov sans communication est

accéléré sur les processeurs graphiques NVIDIA et des accélérations jusqu’à 5.7

plus rapides sont atteintes pour les problèmes testés par rapport à

l’implémentation standard de ݇ des noyaux SpMV.

v

ACKNOWLEDGMENTS

I would like to express my greatest gratitude to my supervisor Prof. Dennis

Giannacopoulos for his priceless feedback, inspiration and guidance throughout

my PhD. His great interest and inspiration in initiating collaboration with other

research groups has allowed me to work with world renowned research groups

which has opened great windows to my future and work. I would also like to

thank Professor Jean-Luc Gaudiot for his guidance and support during my visit

to the parallel systems & computer architecture laboratory (PASCAL) in UC-

Irvine.

I am very grateful to Professor James Demmel and members of the Berkeley

benchmarking and optimization (BeBOP) group which I collaborated with during

my six month visit to UC-Berkeley. Finally I would like to greatly thank David

Fernandez a very talented colleague of mine whom I have collaborated with

throughout my studies.

vi

TABLE OF CONTENTS

TABLE OF CONTENTS ... vi

LIST OF TABLES ... ix

Chapter 1 Introduction ... 1

1.1 Scientific Computing ... 2

1.2 Systems of Linear Equations ... 3

1.2.1 The Solution of Linear Systems of Equations ... 4

1.2.2 Krylov Subspace Techniques ... 5

1.2.3 Kernels in Krylov Methods .. 6

1.2.4 Preconditioning .. 8

1.2.5 Reducing Communication in Krylov Techniques .. 9

1.3 Sparse Matrices .. 10

1.3.1 Types of Sparse Matrices ... 10

1.3.2 Sparse Matrix Storage Formats ... 10

1.4 Parallel Scientific Computation ... 12

1.5 Summary ... 14

1.6 Thesis Outline and Contributions ... 14

Chapter 2 Parallel Computing and Graphic Processing Units ... 17

2.1 Classification of Computer Architectures ... 17

2.2 Parallel Memory Architectures and Programming Models .. 18

2.2.1 Distributed Memory .. 18

2.2.2 Shared Memory ... 18

2.2.3 Hybrid Distributed-Shared Memory Model ... 19

2.3 Graphic Processing Units .. 19

2.4 NVIDIA GPUs .. 22

2.5 CUDA Programming Model ... 23

2.5.1 CUDA Threads and Kernel Execution on GPUs ... 24

2.5.2 Thread Scheduling ... 24

2.6 Performance Optimization in CUDA .. 26

2.6.1 Memory Coalescing .. 26

2.6.2 Avoiding Shared Memory Bank Conflicts ... 27

2.6.3 Increasing Occupancy .. 28

2.6.4 Avoiding Thread Divergence ... 29

2.6.5 Identifying Performance Limiters .. 29

2.6.6 Other optimizations ... 29

2.7 CUDA Libraries ... 31

2.8 Summary ... 32

vii

Chapter 3 Finite Element Sparse Matrix Vector Multiplication on Graphic Processing Units 34

3.1 Introduction ... 34

3.2 GPU Architecture .. 35

3.3 Sparse Matrix Vector Multiplication ... 36

3.4 PCSR (Prefetch-Compressed Row Storage Format) ... 37

3.4.1 Previous Work ... 38

3.4.2 The PCSR Algorithm .. 39

3.4.3 Prefetching ... 42

3.5 Results ... 42

3.6 Conclusion ... 46

Chapter 4 Enhancing the Performance of Conjugate Gradient Solvers on Graphic Processing

Units…….……….48

4.1 Introduction ... 48

4.2 GPU Architecture .. 49

4.3 Preconditioned Conjugate Gradient .. 50

4.4 Implementing PCG on GPUs .. 53

4.5 Results ... 56

4.6 Conclusion and Future Work .. 60

Chapter 5 Parallel Sparse Approximate Inverse Preconditioning on Graphic Processing Units . 62

5.1 Introduction ... 63

5.2 Sparse Approximate Inverse (SAI) Preconditioning .. 66

5.3 Parallel SAI in NVIDIA GPUs .. 70

5.3.1 GSAI Steps .. 72

5.3.2 Memory Allocation .. 77

5.4 Results ... 80

5.4.1 The GSAI Preconditioning Method ... 81

5.4.2 GSAI vs. ParaSails .. 83

5.5 Conclusion and Future Work .. 84

Chapter 6 Communication-avoiding Krylov Techniques on GPUs .. 93

6.1 Introduction ... 93

6.1.1 Communication-avoiding Krylov techniques ... 93

6.1.2 NVIDIA GPUS .. 94

6.2 Previous Work ... 95

6.3 Implementation Details ... 97

6.3.1 Matrix Powers on GPU Global Memory ... 97

6.3.2 Matrix Powers on GPU Shared Memory ... 99

6.4 Results .. 101

6.4.1 Matrix Powers on GPU Global Memory .. 102

viii

6.4.2 Matrix Powers on GPU Shared Memory .. 105

6.5 Conclusion and Future Work ... 107

Chapter 7 Conclusion and Future Work ... 109

7.1 Conclusion .. 109

7.2 Future Work ... 111

References…………………………………………………………………………………………….……………112

Appendix I The BiCGStab Iterative Technique .. 118

Appendix II NVIDIA GPU Specifications .. 119

ix

LIST OF TABLES

Table 2.1: CUDA Math Libraries ... 31

Table 2.2: Application-Specific Libraries .. 31

Table 3.1: Non-zeros (nnz) and filling ratio percentage for different padding factors (n) in

matrices .. 44

Table 3.2: Speedup of PCSR compared to the row-per-thread and row-per-warp methods on

GT8800, the CPU and the Cell architectures. ... 44

Table 4.1: Sparse matrices used for testing .. 58

Table 4.2: Speedup of the optimized PCG compared to PCG row-per-warp (RW) on GPU,

vectorized and non-vectorized CPU ... 60

Table 5.1: The number of elements in each of the data structures involved in GSAI and their size

based on their data. .. 80

Table 5.2: The effect of increasing tolerance (߬) on the number of iterations (GSAI on

GTX480)..... ... 86

Table 5.3: Properties of sparse matrices used to test the GSAI preconditioning method. 86

Table 5.4: The effect of increasing tolerance (߬) on the total execution time involving both the

preconditioner construction time and the solve time (GSAI on GTX480). 87

Table 5.5: The effect of increasing tolerance (߬) in the GSAI algorithm (on GTX480) on the

preconditioner construction time. ... 89

Table 5.6: The time spent in computing the stages in Fig. 5.2 for τ ൌ 0.9 on GTX480. 90

Table 5.7: Preconditioned and unpreconditioned BiCGStab iterative solver on GTX480 and

TESLA 2070. .. 90

Table 5.8: ParaSails execution time compared to GPU results. .. 91

Table 6.1: The best speedup of the matrix powers kernel compared to naïve SpMV, fraction of

total time spent in communicating data in the naïve SpMV implementation and extra computed

flops in the matrix powers kernel performing ݇. .. 106

Table 6.2: The extra floating point operations performed in the matrix powers kernel for shared

memory compared to naïve the SpMV implementation and the total number of thread blocks

launched for each ݇. ... 107

x

 LIST OF FIGURES

Fig. 1.1: Hierarchy of high performance scientific computing [1]. .. 3

Fig. 1.2: Solvers for linear systems of equations. .. 5

Fig. 1.3: Compressed sparse row storage format. ... 11

Fig. 1.4: Compressed format representation of diagonal matrices. ... 12

Fig. 1.5: The Ellpack-Itpack format of the ܣ matrix from Fig. 1.4. .. 12

Fig. 2.1: The general memory model of distributed parallel architecture [35]. 19

Fig. 2.2: Uniform Memory Access (left figure) and Non-Uniform Memory Access (right figure)

shared memory architecture [35]. ... 20

Fig. 2.3: A hybrid CPU memory model (left figure) and a hybrid CPU-GPU memory model (right

figure) [35]. ... 20

Fig. 2.4: CPU and GPU floating point operations per second and memory bandwidth (from

NVIDIA programming guide [42]). ... 20

Fig. 2.5: Compute (ALU) control and memory resources in CPU (left figure) and GPUs (right

figure). .. 22

Fig. 2.6: The underlying architecture of NVIDIA Fermi GPUs. .. 24

Fig. 2.7: Kernel/thread execution model on NVIDIA GPUs (SM represents the streaming

multiprocesors on the graphic card, the host and the device are the CPU and GPU respectively).

 ... 25

Fig. 2.8: The warp scheduler chooses the next warp ready for execution. 26

Fig. 2.9: The first figure shows threads within a warp accessing data in the 2D array ܣ in strided

pattern, when the array is transposed (second figure) data is accesses contiguously allowing for

coalesced memory accesses. .. 27

Fig. 2.10: Row major storage of a 32 ൈ 32 matrix in shared memory when each warp accesses one

column causes bank conflicts (first figure) which can be resolved by padding the matrix with an

extra column (second figure). ... 28

Fig. 2.11: Padding a vector to be a multiple of 4 and reducing it in parallel. 30

Fig. 3.1: The GT8800 underlying architecture. .. 36

Fig. 3.2: The CSR SMVM algorithm. .. 37

Fig. 3.3: PCSR partitioning scheme, (e.g. row 10 is partitioned between blocks 1 and 2 (1ܤ and

 40(2ܤ and 14 in 1ܤ the split vector shows that 3 elements of row 10 are stored in ;(2ܤ

Fig. 3.4: The Prefetch-CSR algorithm. .. 43

xi

Fig. 3.5: Prefetching data in PCSR (a) without prefetching, (b) with prefetching. 43

Fig. 3.6: The effect of the padding factor (n) in PCSR. .. 44

Fig. 3.7: Varying the number of prefetches in PCSR. .. 45

Fig. 3.8: PCSR performance compared to the row-per-thread and row-per-warp methods on

GT8800 as well as the QUAD-Core CPU and Cell architectures. ... 45

Fig. 4.1: NVIDIA GPU architecture. ... 50

Fig. 4.2: Highlighting several bottleneck operations in PCG Shewchuk [7] vs. PCG Chronopoulos

[8]. ... 51

Fig. 4.3: PCG Chronopoulos [8] algorithm implemented on the GPU, optimizing PCSR [53] adds

two new kernels to the implementation. .. 54

Fig. 4.4: (a) Percentage of the average execution time of kernels in the PCG Chronopoulos, (b)

Fusing kernels in PCG (K1 to K4 represent the kernels in optimized PCG). 55

Fig. 4.5: The effect of the optimizations proposed in Section 4.4 in increasing the performance of

the PCG algorithm on GT8800. ... 58

Fig. 4.6: Performance of the PCG-Row-per-warp [49] method compared to proposed optimized

PCG Chronopoulos [8] algorithm on G80 and GT200. .. 59

Fig. 5.1: Steps involved in constructing static sparse approximate inverse preconditioners. 68

Fig. 5.2: The four stages in implementing SAI preconditioners using GSAI on NVIDIA GPUs . . 70

Fig. 5.3: Constructing local ܣ matrices by first finding Jindex and Iindex vector values and then

matching the columns referenced in Jindex to the Iindex vector. .. 73

Fig. 5.4: The Gram Schmidt QR decomposition with ൏ ,ݍ ܽ ൐ൌ 75 ܽܶݍ

Fig. 5.5: The Mpointer vector computed in the compute preconditioner kernel is first modified using

the Modify kernel to match the CSC [88] storage format and then the Assemble kernel assembles

the ܯ matrix values and stores them in CSC format (ܯ௜௡ௗ௘௫
∗ and ܯ௩௔௟௨௘

∗ vectors). 76

Fig. 5.6: The effect of increasing ߬ on the maximum dimension of local ܣ matrices (n1,max and

n2,max). .. 87

Fig. 5.7: The average fraction of total time (over all matrices) spent in the functions/kernels

involved in the first three stages of the GSAI preconditioning algorithm (on GTX480) are shown

for an increasing ߬ (compute preconditioner consists of all steps in the Compute-GSAI stage). ... 88

Fig. 5.8: The average fraction of total time (over all matrices) in generating the SAI

preconditioner (the Pre-GSAI, Compute-GSAI and Post-GSAI stages in Fig. 5.2) and solving the

problem for an increasing ߬	on the GPU using GSAI. ... 88

xii

Fig. 5.9: The speedup achieved from generating the SAI preconditioner on GTX480 and TESLA

M2070 using GSAI compared to generating the same SAI preconditioner using ParaSails [59] on

1-32 processors/cores (the generated preconditioner has the same sparsity as A, ߬ ൌ 1 in GSAI)..

 ... 89

Fig. 6.1: The matrix powers implementation on GPU global memory, ݔ௝
௜	is the ݆-th component of

௜ݔ ൌ ሺ଴ሻ. .. 98ݔ௜ܣ	

Fig. 6.2: The steps in the auto-tuner to generate cache blocks for shared memory and find the

best performing matrix powers implementation on the GPU. ... 98

Fig. 6.3: The matrix powers implementation on GPU shared memory, ݔ௝
௜	 is the ݆-th component of

௜ݔ ൌ ሺ଴ሻ. .. 101ݔ௜ܣ	

Fig. 6.4: Each matrix is described by its name, description, number of rows, number of non-zeros,

average number of non-zeros per row and its non-zero pattern representation. 102

Fig. 6.5: The standard computation of ݇ SpMVs on the GPU, ݔ௝
௜ is the ݆ -th component of

௜ݔ ൌ ሺ଴ሻ. .. 102ݔ௜ܣ	

Fig. 6.6: Performance of the matrix powers kernel cache blocking for global memory on NVIDIA

GTX480. The “AkX” indicates the best performance obtained for all ݇ ൏ 40. The label “upper

bound” shows the performance achievable via scaling the standard ݇ SpMV operations by the

change in arithmetic intensity (equation 6.2). The “SpMV” bar shows the performance achieved

from the standard ݇ SpMV implementation using CUDA sparse library [89]. 104

Fig. 6.7: The speedups achieved for equation 6.1 for the matrix powers kernel on shared memory

(test matrix: a pentadiagonal matrix) for different thread blocks per SM (TB/SM) and ݇. 106

Fig. 6.8: The speedups achieved from equation 6.1 for the matrix powers kernel on shared memory

(test matrix: a pentadiagonal matrix) for the best performing number of thread blocks per SM

(TB/SM) and different ݇. .. 107

xiii

PREFACE TO THE THESIS

Format of the Thesis

This thesis contains four self-contained research papers in Chapters 3, 4, 5

and 6.

The work presented in Chapter 3 entitled “Finite Element Sparse Matrix

Vector Multiplication on GPUs” is published in the IEEE Transactions on

Magnetics and the short version published in the proceeding of IEEE Conference

on Computational Electromagnetics (COMPUMAG 2009). Chapter 4 entitled

“Enhancing the Performance of Conjugate Gradient Solvers on Graphic

Processing Units” is published in the IEEE Conference on Electromagnetic Field

Computation (CEFC 2010) and IEEE Transactions on Magnetics. Chapter 5

presents “Parallel Sparse Approximate Inverse Preconditioning on Graphic

Processing Units” accepted for publication in IEEE Transactions on Parallel and

Distributed Systems (the short version is published in the proceeding of

COMPUMAG 2011). Chapter 6 entitled “Communication-avoiding Krylov

Techniques on GPUs” is submitted to CEFC 2012 and is under preparation for

journal publication.

Contributions of the Authors

The applicant, Maryam Mehri Dehnavi, is the primary author of all the work

presented and the person responsible for all implementations along with major

contributions and ideas. Prof. Dennis Giannacopoulos initiated the research,

contributed ideas, valuable guidance, supervision, support and manuscript editing

throughout the thesis. David Fernandez contributed suggestions and insightful

discussions in the first three contributions; multicore results of his work are used

for comparison purposes in chapters 3 and 4.

xiv

Professor Jean-Luc Gaudiot provided valuable feedback, manuscript editing

and guidance for the work presented in Chapter 5. Professor James Demmel

initiated the research topic presented in Chapter 6 and contributed ideas,

insightful discussions, manuscript editing and valuable supervision for the work

presented in the chapter.

xv

LIST OF ACRONYMS

CPU: central processing units.

GPU: graphic processing units.

CUDA: compute unified device architecture.

SM: streaming multiprocessors.

SP: scalar processors.

API: application programming interface.

TB: thread block.

EM: electromagnetics.

FEM: finite element method.

FDTD: finite difference time domain.

SIMD: single instruction multiple data processing (also short vector processing).

CSR: compressed sparse row, also called compressed row storage (CRS).

CSC: compressed sparse column storage.

SPD: symmetric positive definite matrices.

SMVM/SpMV: sparse matrix vector multiply.

AXPY: alpha ݔ plus ݕ ,ݕ ≔ ݔߙ ൅ .ݕ

SAXPY: single precision alpha ݔ plus ݕ.

(P)CG: (preconditioned) conjugate gradient algorithm.

SAI/SPAI: sparse approximate inverse preconditioners.

KSM: Krylov subspace method.

DRAM: dynamic random access memory.

BiCGStab: method of biconjugate gradient stabilized.

CA: communication-avoiding.

GSAI: GPU accelerated SAI preconditioning technique.

PCSR/P-CSR: prefetch CSR technique.

 1

Chapter 1 INTRODUCTION

Simulations related to many physics and engineering problems have become

larger and more complex in recent years leading to the design of faster and more

powerful computing platforms. The new generation of supercomputers—multicore1,

manycore2, petascale3 and exascale4 computers— will enable scientists and engineers

to solve large accurate models and analyze massive quantities of data from a broad

range of natural and engineering systems. On the path to extreme-scale computing,

systems with hundreds of thousands of computing cores that can sustain a billion

billion calculations per second are being built [1]. The future transition in computer

architecture poses numerous scientific and technological challenges. Similar to the

migration from vector to parallel computing systems that occurred 15 years ago, the

transition to exascale computing will require adaptation, reformulation and redesign

of algorithms to effectively exploit future parallel hardware systems. Numerical

algorithms involved in simulations related to many complex scientific applications

need to rely increasingly on fine grain parallelism and strong scaling.

Krylov subspace methods (KSMs) are a popular class of iterative solvers used to

solve systems from many scientific applications and real life problems. The solution

of such systems can be a very time consuming process and can take several days or

weeks on single-core CPUs. This work accelerates the main computing kernels in

KSMs on the most up-to-date manycore architectures namely graphic processing

units (GPUs). The reported performance and speedups are compared to the fastest

available accelerations on modern multicore, manycore and multiprocessor hardware

platforms.

The first chapter is organized as follows:

Section 1.1 describes various stages involved in transferring a physical model

from real life problems to a computer program and introduces two of the popular

 2

numerical techniques used in scientific simulations. Techniques to solve linear

systems of equations specifically Krylov subspace methods are then described along

with their main computing kernels in Section 1.2. The aforementioned section also

briefly reviews major contributions of this work. Sparse matrices, their types and

storage formats are introduced in Section 1.3. The importance of parallel scientific

computations on modern architectures is detailed in Section 1.4 and the chapter is

summarized afterwards. The outline and major contributions of the thesis are

presented in the last section.

1.1 Scientific Computing

Many scientific applications can be formulated into mathematical models using a

series of differential equations and then transferred into a numerical formula using

numerical techniques such as the finite element model (FEM) and the finite

difference time domain (FDTD) technique. The numerical representation is then

translated into a programming model and executed on the desired hardware

platform. The use of modern architectures and parallel processing for running real

life applications and problems efficiently, reliably and quickly is called “High

Performance Scientific Computing”. Fig. 1.1 shows the steps involved in transferring

a physical model to a computer program, to be executed on state-of-the-art

hardware platforms.

The finite element method is a widely used numerical technique for the analysis

and simulations of electromagnetic problems. Following are the basic steps involved

in FEM:

 Discretization of the domain.

 Selection of the interpolation functions and formulation of the system.

 Solution of the assembled system of equations.

 3

One of the most time consuming steps in the finite element analysis is solving

the system of equations. The system of equations from many real life

electromagnetic problems are very large, thus, enhancing the execution time of FEM

solvers is essential. The upcoming sections will describe techniques to solve large

linear systems; this work adapts such techniques to better utilize the resources in

modern architectures and to reduce the solution time of scientific problems.

Fig. 1.1: The hierarchy of high performance scientific computing [1].

1.2 Systems of Linear Equations

Numerical techniques in many scientific problems result in solving a linear

system of equations which can be represented as

ݔܣ ൌ ܾ 1.1

where ݔ ∈ 	ே is the unknown determined using the coefficient matrix	ܣ ∈ 	ேൈேand

ܾ ∈ 	ே. The solution of equation 1.1 plays an essential role in simulating scientific

applications and real life problems. For practical problems the size of matrix ܣ is

very large which increases memory requirements for storing and solving the system.

As the system grows the time to compute the solution will also considerably

increase. Thus adapting such algorithms to run on modern architectures in a

reasonable time frame with minimum storage requirements is fundamental in high

performance scientific computing. Various algorithms to solve equation 1.1 are

introduced in this chapter and time consuming computing kernels in these solvers

are introduced.

 4

Fig. 1.2: Solvers for linear systems of equations.

1.2.1 The Solution of Linear Systems of Equations

A linear system of equations can be solved using direct or iterative techniques

[3]. Direct techniques are not a suitable candidate for vector and parallel machines

due to their sequential and recursive nature [4]. A more viable alternative to solving

large linear systems is using iterative solvers. Iterative techniques improve the

solution of the linear system of equations in a sequence of iterations. Using an initial

solution vector, an iterative technique and a termination criterion, the solution of a

convergent system converges to a desired accuracy. The number of iterations

required to reach the termination criteria is determined by the distribution of

eigenvalues of the coefficient matrix ܣ. Fig. 1.2 shows a classification of solvers for

linear systems of equations. This work studies Krylov subspace techniques classified

as non-stationary iterative solvers.

Polynomial

Solve the system equations (Linear Systems): Ax=b

Iterative Methods Direct Methods

Cholesky

LU

Gauss-Elimination

…

Stationary Non-Stationary

Richardson

Jacobi

SSOR

…

Krylov

Neumann

Chebyshev

Least-squares

…

Arnoldi

Lanczos

…

 5

1.2.2 Krylov Subspace Techniques

Krylov subspace methods (KSM’s) are a large class of iterative techniques used

to solve systems of linear equations from a broad range of applications. A dominant

computing kernel in standard KSMs is sparse matrix vector multiplication (SpVM

or SMVM). Using one or more SpVM operations in each iteration, KSMs add

vector(s) to a basis for one or more “Krylov subspace(s)” and in each iteration the

best solution is selected from the expanding subspace, ሺݏ, ,ܣ ሻݒ ൌ ݊ܽ݌ݏ

ሼݒ, ,ݒܣ	 …,ݒଶܣ , ݊ is an ܣ ሽ whereݒ௦ିଵܣ ൈ ݊ square matrix, ݒ is a length ݊ vector and

 is a positive integer. Krylov subspace techniques can be categorized based on the ݏ

choice of subspaces and the way the system is preconditioned [5]. The most

commonly used algorithms to compute the basis of these subspaces are Arnoldi,

Lanczos and Bi-Lanczos [5]. Lancsoz algorithms are known as the symmetric version

of Arnoldi methods while Bi-Lanczos techniques are a variant of Lanczos algorithms

applicapable to non-symmetric problems. A variant of Lanczos and Bi-Lanczos

algorithms are used to compute the solution of the tested problems in this work.

The conjugate gradient method (CG) [5], [6] is a Lanczos based Krylov solver

used for symmetric positive definite (SPD) matrices. The CG algorithm

approximates the solution of the linear systems of equations based on orthogonal

residuals and previous search directions. The two variants of the conjugate gradient

technique used in this work, namely, Shewchuk [7] and Chronopoulos [8] are

detailed in Chapter 4.

The biconjugate gradient stabilized (BiCGStab) iterative solver classified as Bi-

Lanczos algorithms is also used in this work (Chapter 5). By generating a CG-like

sequence of vectors, one based on the original coefficient matrix ܣ and the other

based on ்ܣ, the solution of the linear system is solved using bi-orthogonal sequence

of vectors and a smooth convergence behaviour [2]. The algorithm for the

preconditioned BiCGStab solver used in Chapter 5 can be found in Appendix I. In

 6

the following section compute intensive kernels in the aforementioned Krylov solvers

are discussed.

1.2.3 Kernels in Krylov Methods

Computing the solution of linear systems using iterative techniques such as

KSMs can be very slow for large problems due to communication and computation

cost of major computing kernels in KSMs. In this work the term “kernel” is used to

represent time-consuming parts of Krylov methods. To accelerate the execution

time of Krylov solvers on modern architectures, the most important computing

kernels in these algorithms should first be identified. The four main kernels in KSMs

are as follows [10]:

 Sparse matrix vector multiplication: The SpMV kernel multiplies a matrix by

a vector and stores the result.

 AXPY: This class of kernels are classified as vector-vector operations and are

represented in the form ݕ ≔ ݔߙ ൅ .ݕ

 Dot products: Another class of vector-vector operations in the form ߚ ≔

.∗ݕ .ݔ

 Preconditioning: The next section discusses the importance of

preconditioners. Generating the precondtitioner and applying it to the

iterative solver are two separate kernels; the computing cost of the former is

considered as part of the iterative solver. Applying the preconditioner ܯ, to

the iterative solver usually involves an SpMV operation which multiplies

either ܯ or ିܯଵ with a vector; the result is then used in the KSM.

This work proposes techniques to accelerate the execution of the aforementioned

kernels on modern architectures with many cores. Chapter 3 parallelizes the

execution of the SpMV kernel on NVIDIA GPUs; AXPY and dot products are

computed in parallel and used in the CG and BiCGStab solvers in chapters 4 and 5.

 7

All results in this work are compared to the best available accelerations on both

GPUs and CPUs. Previous work on accelerating the above kernels on GPUs

(manycore architectures) is surveyed in the related chapters (Chapter 3

and Chapter 4); a survey of previous work on accelerating the aforementioned

kernels on CPUs (multicore architectures) is provided in the following. One of the

best performing optimizations proposed by Fernandez et al. [11], [12] is used as

baseline CPU results for comparisons in Chapter 3 and Chapter 4.

Optimization techniques used in modern architectures such as register and cache

blocking, loop transformations, special diagonal storage of matrices and reordering

[13], [14], [15] have mostly initiated from the Berkeley benchmarking and

optimization (BeBOP) group [16] at UC-Berkeley and used in open source libraries

such as OSKI (Optimized Kernel Interface) [17] and POSKI parallel OSKI) [18].

Such optimizations accelerate the execution of kernels such as SpMV on individual

cores of an architecture. Other work such as [5], [19], [20] have also proposed

techniques to reduce memory transfers, increase data locality and instruction level

parallelism on a single-core. Williams et al. [21], [22] take advantage of the multiple

cores on modern CPU architectures and show the importance of exploiting

parallelism across multiple cores to enhance the performance of kernels such as

SpMV. The conjugate gradient method has also been accelerated on multicore

architectures in work such as [23], [24]. Vector units in modern architectures have

been efficiently used in [25] by using special matrix formats. Work presented by

Fernandez et al. [11], [12] not only exploits parallelism between the multiple cores of

modern CPU but also uses vector operations to further enhance the performance of

the SpMV and CG algorithms on modern CPUs. GPU accelerations of SpMV and

CG kernels in this work have been compared to highly optimized CPU code

provided in the aforementioned work.

 8

 The “preconditioning” kernel in KSMs is introduced in detail in the next section

and the sparse approximate inverse (SAI/SPAI [26]) preconditioner is generated on

NVIDIA GPUs is Chapter 5 and then applied to the BiCGStab solver.

1.2.4 Preconditioning

Iterative techniques used to solve large scale problems from practical

applications generally have a slow convergence rate. The convergence of these

problems depend on the condition number of the coefficient matrix ܣ which is

determined by the spectral property of the matrix [27], [28]. A preconditioner ܯ,

can improve the convergence rate of the linear system ݔܣ ൌ ܾ by transforming the

system to ିܯଵݔܣ ൌ ଵܾିܯ and decreasing the condition number of the

preconditioned matrix ିܯଵܣ. A system of equations can be preconditioned in three

ways:

 Left preconditioning: When the preconditioner is applied to the left hand side of

the coefficient matrix resulting in the following system: ିܯଵݔܣ ൌ .ଵܾିܯ

 Right preconditioning: This type of preconditioning does not effect the right

hand side of the systems and is applied as follows: ିܯܣଵݑ ൌ ݔ ,ܾ ൌ .ݑଵିܯ

 Split preconditioning: A preconditioned system with split preconditioning is

represented as: ିܯଵିܯܣܮଵܴݑ ൌ ݔ ,ܾܮଵିܯ ൌ ܯ where ݑଵܴିܯ ൌ .ܴܯܮܯ

Using any of the aforementioned preconditioning techniques, the number of

iterations required to reach a desirable tolerance in the linear system reduces at the

expense of constructing and storing ିܯଵ and applying it in the iterative solver.

Based on how they are constructed, preconditioners are classified as implicit or

explicit. Implicit preconditioners compute the approximate of ܣ while explicit

preconditioners are approximates of the inverse of ܣ	 [28]. Sparse approximate

inverse preconditioners are an important class of explicit preconditioners which are

suitable for parallelization. Chapter 5 introduces this class of preconditioners,

 9

proposes techniques to generate them in parallel on NVIDIA GPUs and applies

them to the BiCGStab iterative solver in parallel. A very detailed survey of all

available work on SPAI preconditioners and work on accelerating this kernel on

multicore, manycore and multiprocessors architectures is provided in the

aforementioned chapter.

1.2.5 Reducing Communication in Krylov Techniques

Communication is defined as data movements in the memory hierarchy of a

single processor or between different processors. One of the major bottlenecks in

accelerating Krylov techniques on modern architectures is the limited memory

bandwidth and data communication overhead. Krylov techniques and most of the

kernels in such methods are memory-bound, i.e. communicating data within the

memory hierarchy is a major performance limiting factor when accelerating these

kernels on modern processors. Techniques proposed to accelerate the performance of

Krylov techniques and their kernels in Chapter 3 and Chapter 4 such as memory

coalescing, data prefetching, fusing kernels, binding vectors to caches such as the

texture memory, etc. reduce the communication overhead of these kernels on GPUs.

While benefiting from the aforementioned techniques and optimizations in

individual GPU kernel calls, a more aggressive approach in reducing memory

communication overhead in Krylov techniques is studied in chapter 6. The

aforementioned chapter is based on work titled communication-avoiding (CA)

Krylov techniques introduced by the BeBOP research group [18] and extensively

studied in Hommen’s thesis [10]. CA Krylov techniques reduce communication in

Krylov solvers by taking ݇-steps of the iterative solvers at the same time; data will

be on fast memory while the ݇ steps of iterative solver are taken at the same time,

reducing memory references considerably. A detailed survey of communication-

 10

avoiding Krylov techniques is presented in Chapter 6 and the main computing

kernel in these algorithms called the matrix powers kernel is accelerated on GPUs.

1.3 Sparse Matrices

Matrices from many partial differential equations (PDEs) based on numerical

methods are usually large and have few non-zeros. Whenever the large number of

zeros elements and their locations in a matrix can be used to better store and solve

the system of equations the matrix is “sparse” [5]. Sparse matrices are defined by

Duff [29] as the ratio of the zero to non-zero entries in a matrix and can be

represented and operated in compressed formats introduced in Section 1.3.2 [30].

1.3.1 Types of Sparse Matrices

The distribution of non-zero elements in sparse matrices varies based on the

properties of the original problem and the mesh generation technique used. If the

non-zeros in the matrix form a regular pattern along diagonals, the matrix is

referred to as structured. An unstructured sparse matrix on the other hand, consists

of irregularly distributed non-zeros. The structure of a sparse matrix is important in

high performance scientific computing. The memory required to store matrices as

well as the time to operate on them can be reduced if the non-zeros in a matrix

follow a structured pattern.

1.3.2 Sparse Matrix Storage Formats

Sparse matrices can be stored in compressed formats which only require

allocating memory to their non-zeros elements. Various schemes exist to store sparse

matrices and can be found in books such as [31]. This section briefly introduces

some of the more important sparse matrix storage formats. The compressed sparse

row (CSR) format stores the matrix using three arrays (Fig. 1.3). The value vector

(VAL in Fig. 1.3) stores the non-zero elements of the matrix in consecutive rows

and the indices corresponding to each of these values are stored in another array

 11

(INDX in Fig. 1.3). Pointers to the beginning of each row in the aforementioned

arrays are stored into a third array (PTR in Fig. 1.3). If the matrix is stored in

column order using the above format then the storage schemes is referred to as the

compressed sparse column (CSC) storage format.

Fig. 1.3: Compressed sparse row storage format.

The non-zeros in diagonally dominant matrices are distributed in a small

number of diagonals. These matrices can be stored using their diagonals in a format

represented by Diagonal (1:n, 1:nd) [32], where nd is the number of diagonals and n

is the matrix rank. The diagonal offsets are stored in another array OFF (1:nd)

(Fig. 1.4). Another compressed storage format for sparse matrices suitable for vector

machines is the Ellpack-Itpack format. The matrix is stored using two dense arrays.

The non-zero values of the matrix are stored in the first array in row order while

padded to match the size of the largest row in the matrix (C in Fig. 1.5). The

column indices of each elements is stored in the other array (JC in Fig. 1.5). The

CSR, CSC and diagonal matrix formats are used in this work to store both the

coefficient matrices and the preconditioners.



















0700

0480

6502

0913

Sparse Matrix

VAL

INDX

PTR

3 1 9 2 5 6 8 4 7

321 1 3 4 2 3 3

7 9 1041

 12

Fig. 1.4: Compressed format representation of diagonal matrices.

Fig. 1.5: The Ellpack-Itpack format of the ܣ matrix from Fig. 1.4.

Proposed algorithms and techniques in this work are tested using matrices from

real applications. Two main matrix repositories were used to obtain the tested

matrices, the Matrix Market repository [33] and the University of Florida Sparse

Matrix collection [34].

1.4 Parallel Scientific Computation

The demand for more precise and complex simulations has increased

considerably in the past few decades increasing the execution time of such problems

on single-core CPUs. Building faster serial/single-core computers poses many

physical and practical challenges such as increased wire delays, miniaturization

limitations, manufacturing costs, etc. [35]. During the past 20+ years, Parallel

Computing, defined as the simultaneous use of multiple computing resources to

compute discrete parts of a problem in parallel, has been increasingly used to

simulate large scale scientific problems. Complex problems can potentially be solved

in a much shorter time with cheaper resources if executed in parallel. Parallel

 13

computing also enables the use of non-local resources over a large network, also

referred to as Cloud Computing. For example, over 2.9 million computers in 253

countries are used by SETI@home [36]. Thus, the development of efficient methods

to improve the performance of practical scientific problems on parallel processors is

almost inevitable in future.

A major challenge in parallel computing is the ability to choose an optimum

hardware and parallelize the algorithms to achieve maximum performance and

speed on the architecture. Originally introduced in 2001 with the IBM Power4

processor and later integrated to in Sun UltraSPARC IV, AMD dual core Opteron,

Cell Broadband engine [37] and Intel Pentium architecture, etc., multicore

processors are a more recent and important class of parallel computers.

Computations related to large complex problems are divided between threads

executing in parallel on the existing cores of such architectures. Multicore processors

with several tens and hundreds of cores are also referred to as manycore

architectures. NVIDIA graphic cards are currently one of the most popular

manycore architectures. Intel will soon be realising their many integrated cores

(Intel MIC) [38] processors which have considerably more cores compared to their

current multicore CPUs. NVIDIA GPUs are the main computing platforms used

throughout this work; most of the optimization and accelerations proposed are

applicable to architectures with tens or hundreds of cores and can be adapted to

run on future manycore processors.

Modern GPUs are not only powerful graphic engines but also highly parallel

programmable manycore processors, allowing very fast manipulation of data.

Because graphic cards possess much greater computational parallelism than single

or multicore CPU computing platforms, to increase the speed and accuracy of real

life problems, compute intensive kernels should be processed on the GPU. Various

challenges exist in optimizing algorithms to run on graphic cards. Using the most

 14

up-to-date version of GPUs and by achieving a thorough understanding of the

compute intensive kernels described in Section 1.2, these kernels are accelerated to

run in parallel on the many cores available on modern graphic cards. Whenever

possible results achieved from accelerating kernels on graphic cards are compared to

their parallel execution on other architectures such as Intel multicore CPUs and the

Cell Broadband engine as well as multiple processors.

1.5 Summary

The main objective of this work and the importance of high performance

computing for scientific applications were discussed in this chapter. Compute

intensive kernels in Krylov subspace techniques were introduced and a summery of

the compute intensive kernels accelerated in the thesis was provided along with

literature review complementary to the previous work survey in each chapter.

1.6 Thesis Outline and Contributions

The rest of the thesis is organized as follows:

 Chapter 2: Classifies general computer architectures and parallel computers

and gives a detailed introduction to NVIDIA graphic cards, their

architecture, programming model and optimization techniques to accelerate

the execution of compute intensive kernels on such architectures. Other

optimization methods used throughout this work to better utilize the

available resources in many core and parallel architectures are also detailed

in this chapter.

 Chapter 3: The execution of the sparse matrix vector multiplication is

accelerated on NVIDIA GPUs and compared to optimized implementations

of the kernel on the CPU and Cell Broadband engine as well as previous

work on GPUs.

 15

 Chapter 4: A less common variant of the conjugate gradient method called

the Chronopoulos variant is accelerated on the GPU and compared to the

more popular Shewchuk variant. The Chronopoulos variant is shown to be

better for parallelization on manycore architectures, the performance of the

accelerated kernels compared to best available implementations of the CG

method on GPU and multicore CPUs.

 Chapter 5: The sparse approximate inverse preconditioner is, to our

knowledge, for the first time accelerated on GPUs and then used in the

BiCGStab iterative solver which is also implemented on the GPU. The

proposed implementations are compared to the best available accelerations of

SAI preconditioners on multiprocessor platforms.

 Chapter 6: The communication-avoiding matrix powers kernel is accelerated

on graphic cards for the first time on both GPU global and shared memory.

The performance of the matrix powers kernel on GPUs is compared to

optimized standard implementation of ݇ step SpMV on NVIDIA GPUs.

Major contributions of the work are as follows:

 A new partitioning scheme and sparse storage format called Prefetch-CSR is

proposed to accelerate the execution of the SpMV kernel on manycore

architectures which enhanced the performance of this kernel on NVIDIA

GPUs considerably compared to previous accelerations. Novel techniques

such as padding vectors with zero to enable parallel reductions, hiding

memory access delays by prefetching consecutive matrix partitions are also

proposed.

 The Chronopoulos variant of the conjugate gradient method is for the first

time accelerated on GPUs and shown to be a better alternative to the more

common Shewchuk CG variant for manycore architectures. The Prefetch-

 16

CSR SpMV kernel is optimized to avoid atomic updates, kernels are fused to

reduce kernel launch overheads and increase data locality.

 The sparse approximate inverse preconditioner is accelerated on NVIDIA

GPUs for the first time using the proposed GSAI algorithm. Novel

techniques to manage GPU memory, compute columns of the preconditioner

in parallel via thousands of threads, solve local systems, assemble the matrix

in a compressed format on the GPU and transfer it to the iterative solver

without going back to the CPU are introduced.

 The communication-avoiding matrix powers kernel used to reduce

communication in Krylov subspace techniques is for the first time

implemented on NVIDIA GPUs. The matrix is partitioned to fit in the GPU

global and shared memory to reduce the communication overhead of KSMs.

The best performing matrix powers kernel and cache block size are

determined in an auto-tuning stage to efficiently implement the

aforementioned kernel on GPUs. The proposed techniques enhance the

performance of KSMs on graphic cards and enable the fast execution of

KSMs for large problems on manycore architectures.

 17

Chapter 2 PARALLEL COMPUTING AND GRAPHIC PROCESSING UNITS

Graphic cards have recently become very attractive hardware platforms for parallel

scientific computations and are the main architecture used in this work. The

objective of this chapter is to introduce the architectural and programming details

of GPUs specifically NVIDIA graphic cards. A popular classification of general

computer architectures and existing parallel processor memory models are

introduced in Sections 2.1 and 2.2. Section 2.3 compares CPU and GPU

architectures and their ability in accelerating parallel applications. The architectural

and programming features of NVIDIA GPUs are introduced in Section 2.4 and

Section 2.5, respectively. Techniques to optimize the performance of applications on

NVIDIA GPUs are presented in Section 2.6; many of these techniques are used

throughout this work to enhance the performance of the computing kernels on

graphic cards. Some of the available libraries for accelerating various problems and

kernels on GPUs are listed in Section 2.7. Finally, a summary of the chapter is

provided in Section 2.8.

2.1 Classification of Computer Architectures

A widely used classification of computer architectures was proposed by Flynn

[39] in 1966. Based on how instruction and data are processed on the hardware,

Flynn classifies computer architectures as:

 Single Instruction, Single Data (SISD): Only one instruction and one data

stream are used at each clock cycle, e.g., serial computers.

 Single Instruction, Multiple Data (SIMD): Processors execute the same

instruction on different data, e.g., GPUs, vector machines.

 Multiple Instruction, Single Data (MISD): Using a single data stream each

processing unit operates on data independently.

 18

 Multiple Instruction, Multiple Data (MIMD): Every processor maybe

operating on different data and executing different instruction streams. eg.

super computers, networked computing clusters.

SIMD, MIMD, and MISD are all types of parallel processors which are classified

based on their memory architecture in the next section.

2.2 Parallel Memory Architectures and Programming Models

Based on the memory configuration, parallel processors are classified into three

main categories: shared memory, distributed memory and hybrid models. The

programming model used for each class of processors is different and depends on the

processor memory model.

2.2.1 Distributed Memory

Inter-processor memories in distributed memory systems are connected using a

network. Each processor has a separate memory space (Fig. 2.1) which is not

mapped to others. If a processor requires data located in another memory space, the

programmer has to explicitly manage how data is transferred. Distributed systems

are easy to scale and data local to a processor can be accessed in a short time.

Released in 1994, one of the most popular interfaces used for implementations on

distributed systems is the message passing interface (MPI) [40].

2.2.2 Shared Memory

The processors in a shared memory system operate independently but share the

same memory resources (Fig. 2.2). The shared memory space can either be accessed

uniformly by all processors (Uniform Memory Access-UMA) or have a non-uniform

access pattern (Non-Uniform Memory Access-NUMA). Programming models such as

POSIX threads and OpenMP [41] are used in shared memory architectures such as

Intel multicore. Proposed by NVIDIA, compute unified device architecture (CUDA)

 19

is another application programming interface (API) used to program GPUs which

are also classified as shared memory architectures.

Fig. 2.1: The general memory model of distributed parallel architectures [35].

2.2.3 Hybrid Distributed-Shared Memory Model

Hybrid memory models are a combination of shared and distributed memory

architectures. By connecting shared memory processors (SMP) or GPUs through a

network as shown in Fig. 2.3, a hybrid memory model is constructed. Compute

intensive kernels can then be executed on local nodes and communication between

different nodes is maintained explicitly using distributed memory programming

models. For example, applications executing on a cluster of GPUs, benefit from

parallelism on each GPU via programming models such as CUDA while parallelism

and data communication between GPUs is maintained using programming

interfaces such as MPI.

Most of the hardware platforms used in this work such as NVIDIA GPUs, Intel

multicore and the Cell Broadband engine belong to the shared memory model.

2.3 Graphic Processing Units

Forced by the fast growing video game industry, a class of shared memory

manycore architectures called graphic processing units (GPUs) have recently

become a popular architectural resource for scientific computing. As illustrated in

Fig. 2.4 [42], the computing power and memory bandwidth of GPUs has grown

significantly larger than multicore CPUs in the last few years. For example, GPUs

such as NVIDIA GeForce GTX680 can perform up to 3 TFLOPs (tera floating

Memory MemoryCPU CPU

Memory CPU MemoryCPU

 20

point operations per second) with bandwidths up to 190 GB/s (gigabytes per

second) which is considerably larger than the maximum performance achieved from

muticore CPUs.

Fig. 2.2: Uniform Memory Access (left figure) and Non-Uniform Memory Access

(right figure) shared memory architectures [35].

Fig. 2.3: A hybrid CPU memory model (left figure) and a hybrid CPU-GPU

memory model (right figure) [35].

Fig. 2.4: CPU and GPU floating point operations per second and memory

bandwidth (from NVIDIA programming guide [42]).

Bus Interconnect

Memory Memory
CPU

CPUCPU

CPU CPU

CPUCPU

CPU

CPU

CPUCPU Memory

CPUCPU CPU

CPU CPU

Memory
CPU

CPUCPU

CPUCPU CPU

CPU CPU

CPU CPU

CPU CPU

Memory
CPU CPU

CPUCPU

CPU CPU

CPU CPU

Memory
CPU

CPUCPU

CPUCPU CPU

CPU CPU

Memory
CPU

CPUCPU

CPUCPU CPU

CPU CPU

Memory
CPU

CPUCPU

CPUGPU CPU

GPU CPU

Memory
CPU

CPUCPU

CPUGPU CPU

GPU CPU

Memory
CPU CPU

CPUCPU

CPU CPU

CPU CPU

Memory
CPU CPU

CPUCPU

CPU CPU

CPU CPU

Memory
CPU CPU

CPUCPU

GPU CPU

GPU CPU

Memory
CPU CPU

CPUCPU

GPU CPU

GPU CPU

 21

The large performance gap between GPUs and multicore CPUs is due to the

difference in design philosophies of the two architectures. While cache memories

reduce data and instruction access latencies, the large control logic in CPUs

(Fig. 2.5) enables the execution of complex sequential code within a thread. GPUs,

on the other hand, are designed to compute a large number of floating point

operations in a very short time by maximizing chip area and power budget

dedicated to arithmetic calculations. Graphic cards are optimized to launch massive

numbers of threads, each executing relatively simple tasks which require a small

logic unit. The many threads executing in parallel hide memory access latencies and

reduce DRAM (dynamic random access memory) accesses via cached memory

spaces. To conclude, GPUs are considered as numeric computing engines used to

execute compute intensive sections of applications while complex sequential parts of

the code are still computed on the CPU.

Four major high-end graphic card vendors are NVIDIA, AMD (formerly ATI),

Qualcomm and Intel. AMD Fusion announced in 2006, integrates a CPU and GPU

in a mobile stand-alone GPU. The second generation of Fusion is expected to be

released in June 2012. Intel released Knights Ferry, a prototype of their many

integrated core (MIC) architecture, in 2010 and proposed to release the first

commercial version in late 2012. NVIDIA is best known for its gaming cards, but

with the introduction of general propose programming on GPUs researchers and

scientists have been using NVIDIA cards for high performance computations in the

past few years. NVIDIA GPUs are used throughout this work to measure the

performance of proposed optimizations and techniques. The techniques and

optimizations presented in this work are not limited to the NVIDIA graphic cards

and can be used on other manycore architecture and GPUs with minor adjustments

and modifications.

 22

Fig. 2.5: Compute (ALU) control and memory resources in CPU (left figure) and

GPUs (right figure).

2.4 NVIDIA GPUs

This work accelerates compute intensive kernels in Krylov subspace techniques

on NVIDIA graphic cards. The computing resources and architectural specification

of these GPUs are described in this section.

 Fig. 2.6 shows the architecture of NVIDIA graphic cards (other modern GPUs

also have a similar architecture). Streaming processors (SPs) are the computing

cores of the architecture, which depending on the version of the GPU can have one

or multiple computing units. Every 8 SP is grouped into a streaming multiprocessor

(SM) that is connected to a graphics double data rate (GDDR) DRAM, referred to

as global memory. Global memory access latencies are high compared to other

memory spaces on the GPU (eg. global memory bandwidth in NVIDIA GTX480 is

177 GB/s). The GPU and CPU communicate through the peripheral component

interconnect (PCI) express [42] and data is transferred from the CPU to the GPU

global memory prior to invoking a GPU kernel (eg. the device/GPU to host/CPU

memory bandwidth is 4 GB/s peak for a PCI-express x16). Each SM has access to

an on-chip shared memory space and a register file private to each thread. In the

new generation of NVIDIA GPUs called Fermi [42], the shared memory space can

be configured to 48KB or 16KB with the rest allocated to L1 cache. Accessing data

in shared memory and the register files has a low latency. Texture and constant

 CPU GPU

 23

memory are cached and read-only; however, accesses to texture memory are

considerably faster than accesses to constant memory. Fermi GPUs also have a 768

KB unified L2 cache that services all load, store, and texture requests.

NVIDIA GPUs have evolved significantly over the last decade resulting in the

development of more than 6 generations through these years. The most up-to-date

GPU available at the time was used in the contributions proposed in this work. The

GPUs used are from the G80, G200, Fermi and TESLA generations of NVIDIA

graphic cards; hardware specifications of each of the cards used are provided in

Appendix II.

2.5 CUDA Programming Model

Until 2006, programming GPUs was very difficult and only possible using

graphic APIs such as OpenGL and Direct3D. General purpose programming for

graphic processing units called GPGPU, was limited by the APIs and only a few

people acquired the skills to use GPUs for general applications. The massively

parallel architecture of graphic cards motivated GPU manufacturers, to devote

silicon area to facilitate general purpose programming on GPUs. Using additional

hardware, NVIDIA introduced CUDA (Compute Unified Device Architecture) in

2007 [43], which soon became a fundamental parallel programming language in the

scientific computing community and made manycore architectures a popular

parallel hardware platform for scientific applications. Released in 2008, OpenCL is

an open source framework that executes on heterogeneous platforms of CPU and

GPUs. NVIDIA GPUs also support OpenCL; to date speedups achieved from

CUDA are higher than OpenCL for most applications [44], therefore CUDA is used

for GPU related tests in this work. The proposed optimizations and techniques can

be ported to OpenCL and executed on most high-end GPUs (e.g NVIDIA, AMD,

Intel MIC).

 24

Fig. 2.6: The underlying architecture of NVIDIA Fermi GPUs.

2.5.1 CUDA Threads and Kernel Execution on GPUs

Data parallelism is exploited in an application, where many arithmetic

operations are simultaneously performed on the data structures. While sequential

parts of an application execute on the CPU, data parallel sections of the program

are parallelized to run on the graphic card. The threads in a GPU kernel are

responsible for performing arithmetic operations on different data in parallel

(SIMD). To execute parts of an application on the GPU, data has to be first

transferred from the host (CPU) to the device (GPU) global memory, a GPU kernel

is then launched to run the application on the GPU, finally results are transferred

back to the CPU if required (Fig. 2.7).

2.5.2 Thread Scheduling

To execute an application in parallel, the GPU has to launch thousands of

threads. The threads inside a GPU kernel are grouped into blocks where the threads

inside one block share data through GPU shared memory space and their execution

can be synchronized with little overhead. Threads belonging to different blocks can




 

 25

only communicate through GPU global memory and can execute in any order. Up

to eight thread blocks are assigned to a streaming multiprocessor simultaneously.

The maximum number of threads per SM is also limited and depends on the GPU

compute capability. In the Fermi graphic cards, up to 1536 threads can be active

simultaneously on one SM.

Active threads in an SM execute in groups of 32 called warps. Warps are

scheduled in a scheduler and execute one at a time as shown in Fig. 2.8. To

efficiently hide long accesses to global memory, when an instruction executing by

the threads in a warp requires data from the device memory, the warp is placed in a

waiting list and other warps are scheduled for execution.

Fig. 2.7: Kernel/thread execution model on NVIDIA GPUs (SM represents the

streaming multiprocesors on the graphic card, the host and the device are the CPU

and GPU respectively).



 26

Fig. 2.8: The warp scheduler chooses the next warp ready for execution.

2.6 Performance Optimization in CUDA

Various parameters should be considered when developing an application to run

in parallel on GPUs. Besides identifying embarrassingly parallel parts of an

application and exploiting fine grain parallelism using hundreds and thousands of

threads, accesses to various memory spaces on the GPU should be efficiently

handled to benefit from the high memory bandwidth on such architectures.

Resource occupancy and instruction usage should also be maximized to hide

memory access latencies. This section introduces some of the most important

techniques used to enhance the performance of GPU kernels on the Fermi

architecture (the same methods are used in earlier generations of NVIDIA GPUs

with little modification [42]).

2.6.1 Memory Coalescing

Many applications are bandwidth bound and all accesses to data begin from

global memory. Accesses to GPU global memory are not cached and can take up to

600 cycles; thus optimizing global memory references can enhance the performance

of the kernel considerably. Accessing continuous global memory locations by threads

in a half warp is called memory coalescing; 32, 64 and 128 bytes by half a warp can

be processed in one transaction to reduce global memory accesses. To increase

coalesced memory references, data should be stored and accessed contiguously in

global memory. Fig. 2.9 shows how accesses to a 2D array can be coalesced if

w
arp

 8

Scheduler

w
arp

 1

w
arp

 8

...

w
arp

 1

 27

transposed. Whenever possible accesses to global memory have been coalesced in

this work to reduce the execution time of computing kernels on GPUs.

Fig. 2.9: The first figure shows threads within a warp accessing data in the 2D

array ܣ in strided pattern; when the array is transposed (second figure) data is

accesses contiguously allowing for coalesced memory accesses.

2.6.2 Avoiding Shared Memory Bank Conflicts

Shared memory is on-chip memory space with approximately 20 times lower

access latency compared to global memory. The size of shared memory is

considerably smaller than GPU global memory and should be used for data that are

more frequently accessed.

Data in shared memory is stored in 32 2-byte wide banks where contiguous 4-

byte words belong to different banks. Called bank conflicts, if threads within a warp

access different 4-byte words of the same bank their access is serialized. To benefit

from the shared memory high bandwidth, bank conflicts should be avoided. As

shown in Fig. 2.10, if a 32 ൈ 32 matrix is stored in row major (rows are stored

consecutively) in shared memory and each warp accesses one column, the memory

…
0 32 64 96 128 160

1 thread per row

0

32

…

1

33

…

31

63

……
…
…

Element Offsets

Float A [K] [32];
….
A [threadIdx.x] [0] =…
A [threadIdx.x] [1] =…

31*K+2

31*K+1

…

…
0 32 64 96 128 160

1 thread per column

0

1

…

32

33

… ……

…

Element Offsets

Float A [32] [K];
….
A [0] [threadIdx.x] =…
A [1] [threadIdx.x] =…

 28

accesses will be serialized due to bank conflicts. Adding an extra column to the data

array (also called padding), will eliminate bank conflicts since data accessed by the

threads in a warp are stored in different banks.

Fig. 2.10: Row major storage of a 32 ൈ 32 matrix in shared memory when each

warp accesses one column causes bank conflicts (first figure) which can be resolved

by padding the matrix with an extra column (second figure).

2.6.3 Increasing Occupancy

The number of active warps divided by the maximum active warps in an SM is

used to measure occupancy in a GPU kernel. Higher occupancy improves the

performance of a GPU kernel by fully utilizing the available GPU resources; 66%

occupancy is usually enough to reach the peak performance. In Fermi graphic cards

up to 48 warps and 8 blocks can be active per SM; however, depending on the

number of threads per block, available shared memory (and registers) per thread,

the number of active warps (and occupancy) can vary. For example, if 32 bytes of

shared memory is used by a thread with a 16KB shared memory configuration only

0,0 0,1 0,2 0,31

1,0 1,1 1,2 1,31

2,0 2,1 2,2 2,31

31,0 31,1 31,2 31,31

Bank 0
Bank 1

Bank 31

…

… …
Warp 1

Bank 31

Bank 2
Bank 1
Bank 0

Thread 31

Thread 2
Thread 1
Thread 0

15

0,0 0,1 0,2 0,31

1,0 1,1 1,2 1,31

2,0 2,1 2,2 2,31

31,0 31,1 31,2 31,31

Bank 0
Bank 1

Bank 31

…

… …
Warp 1

padding

Bank 31

Bank 2
Bank 1
Bank 0

 29

16 warps are active per SM reducing occupancy to 33 percent. The programmer

should consider the aforementioned factors while optimizing GPU kernel code in

order to enhance resource occupancy. CUDA occupancy calculator [45] can also be

used to determine the available resources per thread and occupancy.

2.6.4 Avoiding Thread Divergence

The threads in a warp execute one instruction at a time, thus parallelism is

exploited at warp granularity. If the threads inside one warp go through different

execution paths, their execution will be serialized and the threads will diverge. This

is called thread divergence and should be avoided since it will decrease the

performance of the GPU kernel. Optimizations proposed in this work eliminate or

minimize thread divergence resulting in high levels of parallelism in the kernels.

2.6.5 Identifying Performance Limiters

Accelerating the execution of an application on the GPU can be tedious and

desired speedups might not be achieved initially. Performance should be further

optimized after running the kernel, detecting performance limiters and addressing

them. Major performance limiters in GPU kernels are memory throughput,

instruction throughput, latency or a combination of all. Performance can be

assessed based on the algorithm’s memory and computational requirements,

instruction and profiler counters collected using CUDA profiler [42] or using code

modified to measure memory and arithmetic execution times independently. The

GPU kernels and optimizations proposed in this work are fine-tuned using the

aforementioned techniques to obtain high speedups.

2.6.6 Other optimizations

Other optimizations have also been used throughout this work in order to

enhance the performance of computing kernels on GPUs. Some of the more

 30

important optimizations used in future chapters, are presented in detail in this

section.

 Prefetching: Prefetching is used to hide memory access latencies; while some

instructions are waiting for data to be fetched from memory, other

instructions perform arithmetic operations. As data in the current partition is

being manipulated by some of the threads in the block, other threads access

memory and fetch the required data for the next data partition in order to

hide global memory access latencies.

 Padding: Adding extra elements to a data structure is referred to as padding.

We pad some of the data structures with zero in this work to be multiples of

a desired number. This will regularize operations and enable a more

aggressive manipulation of the data structure in parallel. For example if

vectors were padded to be multiples of four as shown in Fig. 2.11, each

thread could reduce every 4 elements in parallel enabling efficient parallel

reduction of the vector.

Fig. 2.11: Padding a vector to be a multiple of 4 and reducing it in parallel.

 Spreading the ݔ vector: When solving ݔܣ ൌ ܾ , the ݔ ݎ݋ݐܿ݁ݒ values are

accessed in an irregular pattern which can lead to many uncoalesced memory

accesses. To regularize these accesses, the corresponding ݔ vector values are

stored/spread in a separate vector in caches in the order they are accessed.

Whenever possible, vector operations such as sort, add, reduce and search are

implemented in parallel using the many threads in a thread block and best available

algorithms from NVIDIA developers website and libraries [42].

61 48 23

519

00

 31

Table 2.1: CUDA Math Libraries

CUFFT Fast Fourier Transforms Library

CUBLAS Complex BLAS Library

CUSPARSE Sparse Matrix Library

CURAND Random Number Generation Library

THRUST Performance Primitives for Video Processing

Math.h C99 Floating Point Library

Table 2.2: Application-Specific Libraries

Molecular Dynamics OpenMM, HOOMD-blue, ACEMD, …

Electromagnetic and Acoustic Waves Acceleware, EM Photonics, …

Computer Vision GPU VSIPL, GpuCV, …

Computational Statistics R+GPU, …

Computational Finance OPLib, …

2.7 CUDA Libraries

Since the introduction of CUDA, many researchers and developers have

developed and modified libraries and application-specific software to run their

compute intensive kernels on GPUs and harness the power of graphic cards in

running embarrassingly parallel problems. As shown in Table 2.1, software used in

various application areas has already been modified to run parts of their code on

GPUs. Math libraries have also been modified to run on GPUs with only a few

listed in Table 2.2. Two of the fastest available libraries in sparse and dense linear

algebra released and maintained by NVIDIA called CUBLAS and CUSPARSE are

used in this work.

 32

Hundreds of such software and library currently exist (MAGMMA, iCUDA,

Barra, decuda, CULA, CUPP, etc.) and with the emerging heterogeneous

architectures that uses a combination of GPU and CPU hardware most of the

existing sequential software will have be modified to run on manycore architectures

in near future.

2.8 Summary

The architecture and programming model of NVIDIA graphic cards were studied

in this chapter along with optimization techniques used to enhance the performance

of scientific applications on such platforms. The following chapters will propose

various algorithms and methods to accelerate the execution of computation

intensive kernels in Krylov techniques on GPUs.

 33

PREFACE TO CHAPTER 3

The following chapter is included as a paper published by the IEEE

Transactions on Magnetics (“Finite Element Sparse Matrix Vector Multiplication on

GPUs”, IEEE Trans. on Mag., vol. 46, no. 8, pp. 2982-2985, 2010). In this chapter

we introduce a new partitioning scheme and sparse storage format (called Prefetch-

CSR) to accelerate the execution of SMVM/SpMV kernel on NVIDIA GPUs.

Performance results are compared to the SMVM implementation proposed by

NVIDIA called row-per-warp which is one of the fastest available accelerations of

the aforementioned kernel on graphic cards. Results are also compared to optimized

implementation of the SMVM kernel on Intel multicore and the Cell Broadband

engine.

The proposed acceleration of the SMVM kernel (Prefetch-CSR) is further

optimized in the next chapter and used to accelerate the execution of the conjugate

gradient method on NVIDIA GPUs.

 34

Chapter 3 FINITE ELEMENT SPARSE MATRIX VECTOR MULTIPLICATION

ON GRAPHIC PROCESSING UNITS

Maryam Mehri Dehnavi, David M. Fernandez, and Dennis Giannacopoulos

Abstract: A wide class of finite element electromagnetic applications requires

computing very large sparse matrix vector multiplications (SMVM). Due to the

sparsity pattern and size of the matrices, solvers can run relatively slowly. The

rapid evolution of graphic processing units (GPUs) in performance, architecture and

programmability make them very attractive platforms for accelerating

computationally intensive kernels such as SMVM. This work presents a new

algorithm to accelerate the performance of the SMVM kernel on graphic processing

units.

Index terms: Computer architecture, Graphic processing units, Parallel processing,

Sparse matrix vector multiplication.

3.1 Introduction

The performance of finite element (FE) electromagnetic applications can be

dominated by the iterative solvers used, such as conjugate gradient (CG) based

methods. As problems become larger and more complex, the computation overhead

of these kernels dramatically increases the execution time of such solvers on single-

core CPUs. Thus, the development of efficient methods to improve the performance

of iterative solvers on parallel processors is almost inevitable.

One of the most important kernels in iterative solvers such as the CG method is

the sparse matrix vector multiplication. This operation is performed in each

iteration and often consumes a majority of the computation time. The main

objective of the SMVM kernel is to calculate ݔܣ where ܣ is a sparse matrix and ݔ is

a dense vector. Major limitations of SMVM computation involving FE matrices are

large memory storage and bandwidth requirements as well as indirect and irregular

 35

memory accesses. Graphic processing units (GPUs) have recently evolved into very

attractive commodity data-parallel coprocessors. Easy to learn programming

interfaces such as CUDA [43] have allowed massive multithreading and increased

utilization of large numbers of cores on the GPU, making them cost efficient highly

parallel platforms to solve computationally intensive scientific problems [46].

The main objective of this work is to accelerate the performance of finite

element SMVM kernels on the NVIDIA GT8800 graphic cards using a new

algorithm, namely PCSR (Prefetch-Compressed Row Storage).

3.2 GPU Architecture

Modern GPUs are massively parallel and conform to single instruction multiple

data (SIMD) architectures. Several levels of parallelism are offered by GPUs

through multiple pipelines and vector processing. GPU architectures such as AMD-

ATI X1k series process data in parallel using vector processors while others such as

NVIDIA G80 use multiple pipelines to perform parallel operations. With the ability

to launch thousands of threads in parallel and processing trillions of operations in

seconds, NVIDIA GPUs are among the best for general purpose programming [43],

[46]. The NVIDIA GT8800 graphic card (Fig. 3.1) consists of 14 streaming

multiprocessors (SMs), each containing eight scalar processors (SPs), or processor

cores running at 1.5GHZ. Each of the SMs access a separate 16KB shared memory

and a total of 8192 registers. The 14 SMs are connected via 512MB of off-chip

device memory.

Using the CUDA programming model, the GPU is viewed as a compute device

capable of executing a large number of threads in parallel. While the main core of

the code is run on the CPU, parts of the application that exhibit rich data

parallelism are implemented as kernel functions on the device (GPU). Data required

by the kernel is transferred to the GPU global memory and the parallel portion of

 36

the application is then executed on the device using many different threads. The

programmer divides the threads into threads blocks that are distributed amongst

the SMs allowing each multiprocessor to run a maximum of eight blocks. Thread

blocks allocated to one SM communicate via fast shared memory, but blocks from

different SMs can only communicate through global memory with a memory access

latency of up to 600 cycles. Every 32 threads in a block execute the same

instruction and are called a warp. When threads in the same warp follow different

paths of control flow, we say that these threads diverge in their execution. Thread

divergence forces the threads in a warp to execute sequentially thus reducing the

execution speed of the application and should be avoided [43].

Fig. 3.1: The GT8800 underlying architecture.

3.3 Sparse Matrix Vector Multiplication

The SMVM kernel is one of the most popular kernels in solving sparse linear

systems for large and complex finite element simulations. A variety of sparse matrix

representations exist, each having a distinct form of data storage and access,

manipulation of matrix entries and calculation of the matrix vector multiplication

 37

product. The compressed sparse row storage format is one of the most commonly

used data structures for SMVM solvers. The non-zero elements of the sparse matrix

in this format are stored in a value vector (VAL), while the corresponding index

values are held in another vector (INDX). The format also uses a pointer array

(PTR), which points to the first entry of each row in VAL and INDX [5]. The

sparse vector matrix product in this format is calculated using two nested loop

iterations (Fig. 3.2).

for ݅ ൌ 1 to number of rows

 ܻሾ݅ሿ ൌ 0

 for ݆ ൌ ܴܲܶሾ݅ሿ to ܴܲܶሾ݅ ൅ 1ሿ

						 ܻሾ݅ሿ ൌ ܻሾ݅ሿ ൅ ሾ݆ሿ݈ܣܸ ∗ ܺሾܺܦܰܫሾ݆ሿሿ

 end for

end for

Fig. 3.2: The SMVM CSR algorithm.

3.4 PCSR (Prefetch-Compressed Row Storage Format)

Many challenges exist in optimizing the performance of scientific applications

such as the SMVM kernel on GPU platforms. Some are as follows: global memory

access latency, limited shared memory, thread synchronizations, thread divergence,

inadequate number of threads and limited global memory bandwidth. The way the

programmer addresses these issues differs depending on the application [43].

A new SMVM algorithm, namely PCSR is proposed in this section. By

combining CSR with a novel partitioning scheme and computation strategy, the

execution time of the SMVM kernel is accelerated on NVIDIA GPUs. To clarify the

major advantages of our method, a survey of previous work on SMVM kernel

optimization techniques for the GPU is first presented and the details of the new

implementation are then described.

 38

3.4.1 Previous Work

Since the release of CUDA in 2007, few works have investigated the SMVM

kernel optimization on the GPUs. Buatois et al. [47] investigated the performance of

blocked-CSR on the G80 series of NVIDIA graphic cards. To increase the

performance of their method, the matrix filling ratio is decreased, adding extra non-

zeros to the value vector and increasing the number of memory transactions.

Sengupta et al. [48] proposed the use of segmented scan for calculating SMVM on

GPUs. Wiggers et al. [24] reorders matrix rows to increase parallelism in the SMVM

kernel and reduce thread divergence when a row is calculated by a single thread.

Sorting matrix rows increases processing overhead considerably increasing the

execution time on the host. Comparing the performance of various SMVM

representations on the GPU, Bell et al. [49] proposed a new method to optimize the

CSR format on the GPU. To decrease thread divergence, instead of calculating each

row by a single thread, all threads on a single warp are responsible for computations

of one row. Matrices with average non-zeros less than 32 per row do not benefit

from their proposed technique and since every element is fetched from the global

memory separately and only when their value is required, a majority of memory

fetches are uncoalesced when run on the GT8800.

Previous results were implemented on various versions of NVIDIA GPUs each

with a different memory bandwidth and processing power. To compare our method

with other work we applied the row-per-thread and row-per-warp methods using the

code in [49] on our GPU and present comparison results. Our proposed algorithm

introduces new techniques to hide global memory access latency via data perfecting

and memory coalescing. The technique also regularizes the data access pattern on

the GPU by proper partitioning and padding the matrix with zeros. Detailed

description of the method and its major contributions are given in the proceeding

sections.

 39

3.4.2 The PCSR Algorithm

Details of the partitioning scheme and padding method used in PCSR are

proposed in this section. Methods of efficiently accessing the ݔ vector and the

algorithm steps are also presented.

A. Partitioning scheme

To obtain a reasonable execution time on the GPU, global memory accesses

should be minimized by transferring data on to shared memory. Due to the limited

storage of shared memory, vectors require to be partitioned and transferred in small

segments. Different row sizes in small matrices complicate the partitioning of the

vectors. We propose an efficient partitioning method that benefits from the inherent

parallelism on the GPU. To maximize resource usage on an SM, 768 threads should

run simultaneously on its architecture. Therefore, if three blocks are active per SM,

256 threads should be executed via one block to maximize performance. The value

and index vectors in the CSR representation should also be divided into blocks of

256 elements (vectors are padded with zeros to be divisible to 256). Searching

through the row pointer vector, rows split between the blocks are found and their id

as well as their spreading pattern between two blocks is stored in a new vector

called the split vector (Fig. 3.3). For matrices with more than 256 average number

of non-zeros per row the split vector will store only the id of blocks holding

elements of more than one row, to keep the size and transfer time of the split vector

to GPU memory negligible compared to the total data transfer time.

Simultaneous loading of data from global memory to shared memory, coalesced

memory accesses and reduced memory transfer time are the major benefits of

partitioning. Partitioning the vectors and loading them from global memory at the

beginning of the kernel, will also reduce the effects of thread divergence. Divergent

threads in the computation section of the kernel will fetch their required data from

on-chip shared memory, avoiding the serialization of global memory accesses.

 40

Fig. 3.3: PCSR partitioning scheme, (e.g. row 10 is partitioned between blocks 1 and 2 (1ܤ

and 2ܤ); the split vector shows that 3 elements of row 10 are stored in 1ܤ and 14 in 2ܤ).

B. Zero padding

Minimizing thread divergence on GPUs is essential for achieving good

performance. If each thread calculates one row, the diversity in row sizes will cause

thread divergence and threads will execute sequentially. Assigning a warp to each

row [49] will also cause thread divergence since the number of non-zeros per row are

not necessarily multiples of 32. Since the execution is serialized in divergent threads,

we reduce the number of operations per thread by padding.

Padding each row to be a multiple of the padding factor (݊) will allow the kernel

to reduce the product vector using parallel reduction. Every ݊ value in the product

vector can be added via parallel reduction and stored in another vector called sum.

Because of the padding, in the reduction procedure threads will not add values of

more than one row. The number of elements corresponding to a row in the sum

array is less than the product vector. Thus to calculate the results of each row, a

thread will only add the elements in the sum vector corresponding to that row,

reducing the number of operations executing sequentially (although increasing the

1

256

B
 2

256

B
 3

256

B


0i 1i 10i 11i 31i 32i
 510 530 253 2700 4



Row split Row split

0 0 3 10 14 31 2 31 18

Rows split
between blocks

1
B

 2
B

 3
B


Split Vector

PTR

VAL

10

 41

padding factor is beneficial in reducing thread divergence, larger ݊ decreases the

vector filling ratio and increases the value vector size).

C. Texture memory

The ݔ vector cannot be divided between blocks due to the irregular indirect

access to its elements in the SMVM kernel. Accessing the global memory for every

index increases memory latencies. To avoid such accesses, the ݔ vector is loaded on

to texture memory and its elements are spread on the shared memory of each block

simultaneously. The texture memory is an on-chip cached memory space, thus a

texture fetch costs one memory read from global memory only on a cache miss

otherwise it just costs one read from the texture cache. Loading the ݔ vector to

texture memory decreases global memory access latencies and enhances the

performance of the SMVM kernel.

In the proposed technique, threads in a block simultaneously load 256 elements

of the ݔ vector corresponding to the index vector values on to shared memory. The

technique enables simultaneous spreading of the ݔ vector on the GPU with

minimum memory access latency and also minimizes the effects of thread divergence

throughout the kernel.

D. Algorithm steps

Fig. 3.4 shows the seven steps in the PCSR algorithm. Partitions of the index

and value vector allocated to each block (256 elements) are first loaded into shared

memory simultaneously to coalesce memory accesses and reduce memory transfer

time. The ݔ vector elements are then loaded from texture memory and spread in

shared memory. The 256 elements allocated to each block are multiplied with the

corresponding values of the ݔ vector in parallel by the 256 threads in a block. After

determining the index and split pattern of the rows in each block using the split

vector, required elements of the pointer (PTR) array are loaded into shared memory.

 42

Depending on the padding factor, the product vector is reduced in parallel to

generate the sum vector values. Using the sum vector, the final value of each row is

calculated by different threads with minimum thread divergence and the results are

written into the global memory simultaneously.

3.4.3 Prefetching

The time required to load data from global memory is high due to the 300 cycle

global memory access latency. Prefetching the required data for the next iteration in

each thread block hides much of the global memory access delay. While many

threads are waiting on global memory accesses, others process with the necessary

calculations for the current data in shared memory. Details of the prefetching

methods are shown in Fig. 3.5, the prefetching loop is also unrolled to maximize

performance.

3.5 Results

We have investigated the performance of our technique on various sparse

matrices from [22] with different average non-zeros per row (Table 3.1). The

performance of the algorithm is tested on GT8800 NVIDIA graphic cards using

CUDA 2.3 and the execution speed of the kernel is represented in GFLOPs (billion

floating operations per second). The SMVM kernel is a part of iterative solvers, thus

data transfers between host and device memory occur at most twice (at the

beginning and the end of iteration) and are neglected over a large number of SMVM

operations [49].

In Fig. 3.6 the performance of the proposed technique has been shown. The

execution time of the kernel is tested for padding factors of 1, 2, 4 and 8 (the filling

ratio of the padded matrices are shown in Table 3.1).

Padding the matrix rows to be multiples of four, increases the performance to 60

percent compared to no padding (padding factor 1). For padding factors larger than

 43

four, the number of zeros added due to padding are increased, decreasing the filling

ratio and the SMVM kernel performance. Setting the padding factor to its optimum

value (four), Fig. 3.7 shows the effects of prefetching data to hide global memory

latency. The results show an average 16 percent increase in performance if each

block prefetches and operates on four partitions of 256 value vector elements

(Section 3.4.2).

The Prefetch-CSR algorithm

1: Load VAL and INDX vectors to shared memory

2: Load and spread the ݔ vector

3: Calculate the product vector in parallel

4: Load PTR array values related to the block

5: Reduce the product vector via padding and store in sum

6: Calculate each row by one thread

Fig. 3.4: The Prefetch-CSR algorithm.

Fig. 3.5: Prefetching data in PCSR (a) without prefetching, (b) with prefetching.

Loop

{

Load current partition to shared
memory

Syncthreads()

Compute current partition

Syncthreads()

}

Load partition i to shared memory

Syncthreads()

Compute partition i

Load partition i+1 to shared memory

Syncthreads()

Compute partition i+1

Load partition i+2 to shared memory
...

(a) Without prefetching (b) With prefetching

 44

Table 3.1: Non-zeros (nnz) and filling ratio percentage for different padding factors (n) in
matrices

Matrix consph cant shipsec mac-econ s3dkt3m2

nnz 6010480 4007383 7813404 1273389 3843910

nnz/row 72.1 64.1 55.4 21.24 6.1

n=2 98.8 99.2 98 93.8 97.8

n=4 96.4 98 97.3 80 97.7

n=8 92.2 93.3 96.1 44 68.69

Table 3.2: Speedup of PCSR compared to the row-per-thread and row-per-warp methods on
GT8800, the CPU and the Cell architectures.

Matrix consph cant shipsec1 mac-econ s3dkt3m2 Average

Row thread 3.57 3.71 3.56 2.37 3.64 3.37

Row warp 2.39 2.60 2.26 2.38 2.64 2.45

Cell 5.27 5.04 5.18 5.77 5.41 5.34

CPU 17.03 17.52 18.7 13 18.8 17

Fig. 3.6: The effect of the padding factor (n) in PCSR.

0

0.5

1

1.5

2

2.5

3

3.5

consph cant shipsec1 mac_econ s3dkt3m2 Average

G
F

L
O

P
s

n=1 n=2 n=4 n=8

 45

Fig. 3.7: Varying the number of prefetches in PCSR.

Fig. 3.8: PCSR performance compared to the row-per-thread and row-per-warp methods on

GT8800 as well as the QUAD-Core CPU and Cell architectures.

Because of the variety in the memory bandwidth and computation capabilities of

different NVIDIA cards, comparisons with other work are done via running their

methods on the GT8800. Fig. 3.8 and Table 3.2 provide a comparison of our

method to the row-per-warp and row-per-thread methods on GT8800 [49]. The

0

0.5

1

1.5

2

2.5

3

3.5

consph cant shipsec1 mac_econ s3dkt3m2 Average

G
F

L
O

P
s

no-prefetch prefetch=1 prefetch=2 prefetch=3 prefetch=4

0

0.5

1

1.5

2

2.5

3

3.5

4

G
F

L
O

P
s

Quad-Core Cell Row-Thread Row-Warp P-CSR

consph cant shipsec1 mac_econ s3dkt3m2 Average

 46

performance of PCSR is also compared to the execution of the SMVM kernel on a

quad-core CPU and the Cell-PPE. The Cell results were obtained using the Cell

SDK 3.0 and the PMS method [11]. The CPU platform used was Intel core2 Quad

2.4GHZ architecture with 4 MB of L2 cache per core-pair and 4GB of global DRAM.

As shown in Table 3.2, on average our algorithm outperforms the row-per-warp and

row-per-thread techniques presented in previous work by 2.45 and 3.37 times

respectively. Speedups of up to 18.8 times were achieved compared to the quad core

CPU and the execution time was less than what is achieved through optimized

SMVM kernel on the Cell.

3.6 Conclusion

We have introduced several efficient techniques to accelerate the execution of

the sparse matrix vector multiplication on NVIDIA graphic processing units. The

proposed methods increased the performance of the SMVM kernel on GT8800 up to

18.8 times compared to the quad core CPU and 3.37 times compared to previous

work on accelerating SMVM for GPUs. Reducing the execution time of finite

element solvers such as the conjugate gradient method using the proposed

optimizations will be investigated in future work.

 47

PREFACE TO CHAPTER 4

The following chapter is included as a paper published by the IEEE

Transactions on Magnetics (“Enhancing the Performance of Conjugate Gradient

Solvers on Graphic Processing Units”, IEEE Trans. on Mag., vol. 47, no. 5, pp.1162-

1165, 2011). The Chronopoulos variant of the conjugate gradient method is

implemented on NVIDIA GPUs and compared to the Shewchuk variant. Various

optimizations such as fusing GPU kernels, binding vectors to caches and SpMV

optimizations are used to enhance the performance of the aforementioned kernel on

graphic cards. Performances of the proposed optimizations are evaluated on

NVIDIA GT8800 and GT200 graphic cards. Performance is also compared to

vectorized and non-vectorized parallel implementation of the CG algorithm on Intel

multicore architecture.

The convergence rate of iterative solvers such as the conjugate gradient method

can be very slow for ill-conditioned matrices. The next chapter accelerates the

generation of preconditioners, specifically the sparse approximate inverse

preconditioner, used to reduce the number of iterations in iterative solvers. The

preconditioner is then used in the BiCGStab iterative solver which is also executed

in parallel on the GPU.

 48

Chapter 4 ENHANCING THE PERFORMANCE OF CONJUGATE GRADIENT

SOLVERS ON GRAPHIC PROCESSING UNITS

Maryam Mehri Dehnavi, David M. Fernandez, and Dennis Giannacopoulos

Abstract: A study of the fundamental obstacles to accelerate the preconditioned

conjugate gradient (PCG) method on modern graphic processing units (GPUs) is

presented and several techniques are proposed to enhance its performance over

previous work independent of the GPU generation and the matrix sparsity pattern.

The proposed enhancements increase the performance of PCG up to 23 times

compared to vector optimized PCG results on modern CPUs and up to 3.4 times

compared to previous GPU results

Index terms: Computer architecture, Graphic processing units, Parallel processing,

Conjugate gradient.

4.1 Introduction

Real world electromagnetic problems constantly demand more precise and

sophisticated simulations in reasonable time frames. To meet such demands in

modern finite element method (FEM) applications, programmers must efficiently

exploit new technological advancements in modern computing systems. Graphic

processing units (GPUs) have evolved very quickly over the last few years and

significantly overwhelm CPU specifications in both raw power and memory

bandwidth [47]. To benefit from the pervasive computing resources in a GPU,

compute intensive data-parallel sections of large problems should be optimized to

run on the GPU architecture.

This paper focuses on enhancing the performance of the preconditioned

conjugate gradient (PCG) algorithm [7], a popular sparse linear solver in FEM

using current GPU processors. Efficient techniques to parallelize PCG on GPUs are

presented that overcome the main limitations imposed by both the PCG algorithm

 49

(namely poor data locality and sequential execution), and the programming

constraints of modern GPUs (e.g. efficient use of different GPU resources,

minimizing data communication, hiding memory access latencies and reducing the

number of kernel calls). The effectiveness of these techniques is demonstrated using

a range of matrices and speedup results are compared with other state-of-the-art

PCG multicore and GPU implementations.

4.2 GPU Architecture

Initially driven by the demand for powerful high-definition 3D graphics, modern

GPUs have become massively parallel, multithreaded architectures. Easy to learn

APIs (Application Programming Interfaces) such as compute unified device

architecture (CUDA [43]) has enabled the acceleration of modern scientific

applications via massive multithreading. In particular, NVIDIA GPUs offer

important computing power for these applications. Fig. 4.1 shows the general

architecture of NVIDIA graphic cards. Scalar processors (SPs) are the basic

processing units of the architecture and are clustered in groups of eight called

streaming multiprocessors (SMs).

Sections of an application that exhibit rich data parallelism are scheduled to run

on the GPU. Executing a parallel section on the GPU using CUDA involves: a)

transferring required data to GPU global memory; b) launching the device (GPU)

kernel; and c) transferring results back to host memory. Threads inside a kernel are

grouped into thread blocks, which are executed on SMs. Threads in a block

communicate via fast shared memory, but threads in different blocks communicate

through long latency global memory. Major challenges in optimizing an application

on GPUs are: global memory access latency, different execution paths in each warp

(32 consecutive threads in a block) namely thread divergence, communication and

synchronizations between threads in different blocks and resource utilization.

 50

Fig. 4.1: NVIDIA GPU architecture.

4.3 Preconditioned Conjugate Gradient

The conjugate gradient (CG) algorithm is one of the most popular iterative linear

solvers available today, mainly due to its fast convergence, constant decrease in

error-per-iteration and efficient memory usage [7]. Before introducing the

parallelization and performance enhancing techniques, one must choose an

appropriate PCG version with good parallelization properties as presented in the

next section.

A. Choosing a PCG algorithm

Many variations of the PCG algorithm exist, depending on their formulation. In

this work we implemented a classical PCG algorithm [7] and a variation presented

in [8] with better data locality that minimizes the number of kernel calls, the GPU

global memory loads, and the communication overhead. Fig. 4.2 presents both

algorithms highlighting sections in the main iteration loop where vectors are loaded

for the SMVM, SAXPY (vector updates, ݕ ൌ ݔߙ ൅ .and dot product operations (ݕ

 51

Fig. 4.2: Highlighting several bottleneck operations in PCG Shewchuk [7] vs. PCG

Chronopoulos [8].

The main advantages of the Chronopoulos variant of the PCG algorithm

compared to the Shewchuk method are as follows:

 In the PCG-Chronopoulos version vectors are loaded in the same place

within the main loop as opposed to across the whole loop for the Shewchuk

version. This property allows multiple operations to reuse data while on

shared memory, reducing long latency memory accesses and exhibiting better

data locality.

 Dot products are clustered together in the Chronopoulos variant reducing the

number of synchronization steps on both the GPU and the CPU.

 Efficient partitioning of vector and matrix values enables coalesced loading of

data and maximum GPU resource utilization during PCG kernel

calculations.

10; ;

;
0

2While & do
max 0

;

;

1 ;

;

; 1

end

i r b Ax d M r

Tr d
new new

i i
new

newq Ad
Td q

x x d r r q

s M r
old new

T newr s
new

old
d s d i i

  

  




 

 


 





   

 

 

 

   
 

 

   

   

   

 

0 0 0

1 1 1

0 0 0 0

0 0 0 0 0 0

0 0 0

1

1

1 1

initial guess;

; 0

;

, ; ,

;

for 0,1,2,

;

;

if accurate enough then quit

; ;

, ; , ;

;

;

end

i

i i

i i

x r b Ax

q p

Kw r s Aw

r w s w

i

p w p q s q

x x p r r q

x

Kw r s Aw

r w s w



 
  

 
 

 
  
     

  





 

  
 
 

 




   
   

 

 



 



 52

B. Previous work

Accelerating the PCG algorithm on massively parallel hardware platforms,

especially GPUs, is very challenging due to the sequential nature of the algorithm.

Buatois et al. [47] accelerated the CG solver on GPUs using the blocked compressed

sparse row storage (BCSR) format. Their algorithm is optimized for a limited set of

matrices with specific sparsity patterns. Wiggers et al. [24] reorder matrix rows to

decrease the execution time of the SMVM kernel for CG. Sorting rows increases pre-

processing and execution time on the CPU. In [50] and [51] a mixed precision

iterative refinement algorithm is proposed for the CG. The single precision inner

solver in their method is the most time consuming kernel in the overall solution and

accelerating its execution is the major focus of our work.

The performance of SMVM using various compressed storage formats on GPUs

has been studied in [49]. Using a decision based method, [52] chooses the best

performing storage format for SMVM from [49] prior to executing the CG

algorithm, at the expense of storing (generating) several copies of the matrices in

the various storage formats. Formats such as JDS [9], HYB [52], ELL [49], BCSR

[47] require extra pre-processing to benefit from the GPU processors (sorting rows,

blocking non-zero values, redundant padding, etc.) that are not negligible compared

to the fast execution time of the SMVM and CG algorithms on the GPU. The

Prefetch-CSR (PCSR) algorithm proposed in [53] requires very little padding and

pre-processing and outperforms the previous SMVM algorithms including one of the

best performing algorithms, namely the row-per-warp method from NVIDIA [49].

By using an optimized version of the PCSR algorithm and the row-per-warp

method this paper proposes new techniques to overcome major bottlenecks in

accelerating PCG on GPUs.

 53

4.4 Implementing PCG on GPUs

We propose four optimizations to the original Chronopoulos PCG in order to

decrease its execution time on the GPUs. Without optimization, implementing the

Chronopoulos variant of the PCG algorithm leads to eight kernels and some scalar

updates on the CPU (Fig. 4.3). Fig. 4.4a shows the percentage of average time

spent on each of these kernels in the naive implementation of the PCG algorithm on

the GPU. We enhance the performance of the Chronopoulos PCG by optimizing the

SMVM kernel, fusing SAXPY operations, using a Jacobi preconditioner and binding

vectors to GPU texture memory.

A. Optimizing the SMVM kernel

As shown in Fig. 4.4a on average 80 percent of the total PCG execution time is

spent on the SMVM kernel, thus using the best performing SMVM algorithm is

essential in decreasing PCG execution time. In this work we compare the effects of

two of the best performing SMVM algorithms proposed in previous work [49], [53]

in the PCG algorithm. The first algorithm is the row-per-warp method introduced

by Bell et al. [49] and the prefetch compressed row storage (PCSR) [53] is the

second SMVM method used. Unlike SMVM algorithms based on other storage

formats, the row-per-warp method and PCSR do not require extra pre-processing

since they are based on the CSR format.

 Row-per-warp

In the row-per-warp [49] method each warp is assigned a row to compute one

vector result. The method is efficient if the sparse matrix has a regular sparsity

pattern and its bandwidth is approximately equal to a multiple of a warp size.

 Prefetch-CSR (PCSR)

The PCSR method [53] partitions the matrix non-zeros to blocks of the same size

and distributes them amongst GPU resources. The algorithm pads rows with zeros

 54

to increase data regularity and use of parallel reduction techniques. Prefetching data

is also used to hide global memory accesses. To further increase the performance of

the algorithm, in this work we have eliminated the atomic updates of the ܻ vector

by replacing the original SMVM kernel with three sub-kernels, namely, clear ܻ

vector, SMVM and ܻ vector update (Fig. 4.3). Thus in the optimized version of

PCSR, atomic sums of the Y vector values corresponding to partitioned rows

between blocks are removed (the two added kernels, clear Y vector and Y vector

update are small and have a fast execution time compared to the SMVM kernel).

B. Jacobi preconditioner

A Jacobi preconditioner was implemented mainly for its ease of parallelization in

the PCG method. As an additional benefit, because the solver for this type of

preconditioner can be treated as a SAXPY operation, it can be fused with other

operations as described in the next section.

Fig. 4.3: PCG Chronopoulos [8] algorithm implemented on the GPU, optimizing PCSR [53]

adds two new kernels to the implementation.

Saxpy1 Kernel 1

Saxpy2 Kernel 2

Saxpy3 Kernel 3

Saxpy4 Kernel 4

Preconditioner Kernel 5

SMVM Kernel 6

Scalar Products CPU

   

 

1

1

1 1

for 0,1,2,

; ;

; ;

if accurate enough then quit

; ;

, ; , ;

;

;

end

i

i i

i i

i

p w p q s q

x x p r r q

x

Kw r s Aw

r w s w

 
 

 
  
     





 

 
   
   

 

 



 

Dot Product1 Kernel 7

Dot Product2 Kernel 8

Remove
Atomic
Updates

Clear Y vector

SMVM

Y vector Update

 55

Fig. 4.4: (a) Percentage of the average execution time of kernels in the PCG Chronopoulos,

(b) Fusing kernels in PCG (K1 to K4 represent the kernels in optimized PCG).

C. Fusing kernels

Although the PCG algorithm is mainly implemented on the GPU in previous

work, gathering result vector values and performing vector dot products require

going back to the CPU, resulting in multiple kernel calls. In each kernel call data is

loaded to fast access GPU shared memory in partitions. Upon termination of a

kernel, all data is stored back to the GPU global memory, requiring proceeding

kernels to reload data to shared memory before their execution. Thus, besides the

launching time of each kernel, increased communication is another major drawback

of multiple kernel calls.

There are two objectives of fusing individual kernels, the first is to minimize the

number of kernels, saving time between kernel calls; and the second is to take

advantage of the vectors loaded into shared memory avoiding double loads. The

fusions are done in three steps (Fig. 4.4b). In the first step the SAXPY kernels are

fused into a single kernel. The second step fuses the preconditioner and clear ܻ

vector kernels into the SAXPY kernel. The dot product and the SMVM kernels are

fused into one kernel in the last step (scalar updates of the dot product are still

performed on the CPU).

Saxpy1
Saxpy2
Saxpy3
Saxpy4

Clear Y vector
SMVM
Y vector update K3
Dot Product1
Dot Product2 K4
Scalar Products CPU

Preconditioner

Fusing-Step 1

Fusing-Step2 K1

Fusing-Step3 K280%

10%

8%

2%

Kernel Execution time

SMVM SAXPY Dot Product Other

 56

 Fusing reduces the total number of kernels from 8 to 4 in the PCG algorithm.

Although optimized implementations of other PCG algorithms might result in small

number of kernels, the resulting kernels after fusion in the proposed method have

significant implications leading to increased performance:

• Most vectors are only loaded once onto shared memory per iteration.

• Fusing the main operations in the PCG algorithm into one kernel (K1 in

Fig. 4.4b) increases coalesced memory fetches reducing global memory accesses.

• Kernels 3 and 4 (K3 and K4 in Fig. 4.4b) are small and do not require large

number of memory loads.

D. Texture binding

The texture memory is a fast on-chip cached memory space. Loading vectors to

texture memory decreases the effect of global memory access latencies and enhances

the performance of the PCG algorithm kernel. We bind vectors that benefit the

most from the cached space to texture memory. By binding vectors to texture

memory we increase the execution speed of the PCG algorithm. Since vector values

in PCG are updated in each iteration, vectors need to be binded/unbinded to/from

texture memory in each iteration.

4.5 Results

The performance of the optimizations proposed is evaluated using 7 sparse

matrices from [34] with different sparsity patterns and application areas (Table 4.1).

The execution speed of the PCG algorithm is presented in GFLOPs (billion floating

point operations per second). For each PCG Chronopoulos iteration, the algorithm

computes one SMVM and 7 vector operations, thus 2 ൈ ݖ݊݊ ൅ 14 ൈ ݊ flops plus

scalar updates are counted (݊݊ݖ: number of non-zeros, ݊: matrix dimension).

The performance of the optimized algorithm is tested on two different

generations of NVIDIA graphic cards the G80 and GT200 series. NVIDIA GT8800

 57

and GTX280 graphic cards are used as representatives of the G80 and GT200

series, respectively. The GTX280 consists of 30 SMs, 16K registers and 1GB of

global memory compared to the 14 SMs, 8K register file and 512MB of device

memory on the GT8800. Both GPUs have 16KB of shared memory but the GT8800

operates at a higher frequency (1.5GHZ vs. 1.29GHZ). The GT200 generation has

higher compute capabilities and handles thread divergence more efficiently while the

maximum graphic card power and average cost of the GTX280 is approximately

double that of the GT8800 card.

Fig. 4.5 shows the effect of the optimizations proposed in Section 4.4 step by

step. Using the row-per-warp algorithm as the SMVM kernel, the PCG

Chronopoulos method outperforms the Shewchuk algorithm for all the matrices. By

replacing the row-per-warp SMVM with the optimized version of PCSR the average

performance of the PCG algorithm increases up to 60 percent as shown in Fig. 4.5.

While using PCSR as the SMVM kernel, binding vectors to texture memory

increases performance on average 50 percent. Fusing SAXPY operations increases

performance on average 6 percent compared to the non-fused version (Fig. 4.4b).

The two other fusing steps also contribute to an average 6 percent increase in

performance.

Fig. 4.6 shows the performance of the optimized PCG algorithm compared to

the row-per-warp method [49] on both G80 (GT8800) and GT200 (GTX280)

NVIDIA GPU generations. The proposed algorithm outperforms previous methods

on both platforms. Unlike previous methods [49], [52] which are not optimized for

matrices with small number of non-zeros per row, the proposed optimizations,

independent of the matrix sparsity pattern, are able to increase considerably the

performance for such matrices.

 58

Table 4.1: Sparse matrices used for testing

Matrix Name Matrix Type Rows nnz nnz/row

thermal2 FEM/steady state 1228045 8580313 7

shipsec5 PARASOL ship 179860 10113096 56

g3-circuit Circuit simulation 1585478 7660826 5

BenElechi1 2D/3D problem 245874 13150496 53

2cubes-sphere FEM/sphere 101492 1647264 16

s3dkt3m2 FEM/cyl. shell 90449 3753461 41

mt1 Tubular joint 97578 9753570 100

Fig. 4.5: The effect of the optimizations proposed in Section 4.4 in increasing the

performance of the PCG algorithm on GT8800.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

PCG-PW-Shewchuk PCG-PW-Chronopoulos PCG-PCSR PCG-PCSR (texture
binding)

PCG-Fused1 PCG-Fused2 PCG-Fused3

s3dkt3m2 m_t1

shipsec5 G3_circuit

BenElechi1 thermal2

2cubes_sphere Average

PW
Shewchuk

Fused3Fused2PW
Chronopoulos

Fused1PCSR
(texture binding)

PCSR

G
FL

O
Ps

 59

Fig. 4.6: Performance of the PCG row-per-warp [49] method compared to proposed

optimized PCG Chronopoulos [8] algorithm on G80 and GT200.

Table 4.2 presents the speedup (SU) of the proposed method compared to the

row-per-warp (RW) method implemented on the G80 and G200 architectures, the

best vectorized CPU results in [12] as well as a naive CPU implementation. A

majority of SMVM algorithms proposed in previous work such as the row-per-warp

method introduced in [49] rely on the architecture to address thread divergence,

thus PCG algorithms using such methods do not perform well on the G80

generation of NVIDIA GPUs. Since PCSR’s performance is independent of the GPU

generation, our PCG implementation outperforms the PCG version of the row-per-

warp method on both GPU generations (Table 4.2). Compared to vectorized PCG

[12] using 4 threads on an Intel core2 Quad 2.4GHZ architecture (4 MB of L2 cache

per core-pair and 4GB of global DRAM) speedups of up to 23 were achieved

(Table 4.2). On average 42 times speedup was achieved compared to non-vectorized

PCG using a single thread on the same CPU (“CPU Regular” results in Table 4.2).

Compared to single GPU results in [52] (their method uses an SMVM decision

algorithm to choose the best performing storage format for each matrix, increasing

pre-processing time), for the same matrices we achieve on average 1.5 times speedup

 60

(for similar matrices g3-circuit, thermal2, and BenElechi1 speedups of 1.5, 2 and 1.1

are achieved respectively). Thus the proposed PCG optimizations can, potentially,

give average performances of up to 180 GFLOPs on multi-GPU platforms compared

to 120 GFLOPs in [52].

4.6 Conclusion and Future Work

The paper introduces several optimizations for the Chronopoulos [8] PCG

variant to accelerate the execution of PCG on GPUs. The proposed optimizations

increased the performance of PCG on representatives of the G80 and GT200

generations of NVIDIA GPUs up to 3.4 and 2.5 times, respectively, compared to

previous methods [49]. In future work we intend to extend our algorithm to multi-

GPU platforms and other preconditioners.

Table 4.2: Speedup of the optimized PCG compared to PCG-row-per-warp (RW) on GPU,
vectorized and non-vectorized CPU

Overall Speedup RW G80 RW GT200 Quad-Core CPU Regular

s3dkt3m2 2.7 1.16 11.11 30.65

shipsec5 2.97 1.33 14.02 72.92

g3-circuit 1.95 2.49 13.25 26.18

BenElechi1 2.79 1.66 23.32 56.65

mt1 3.4 1.12 7.45 34.12

thermal2 1.52 2.53 9.39 41.22

2cubes-sphere 2.5 1.95 11.99 31.35

average 2.55 1.75 12.93 41.87

 61

PREFACE TO CHAPTER 5

The following chapter is included as a paper accepted for publication in IEEE

Transactions on Parallel and Distributed Systems (“Parallel Sparse Approximate

Inverse Preconditioning on Graphic Processing Units”). The sparse approximate

inverse (SAI/SPAI) preconditioner is accelerated on NVIDIA GPUs. The

preconditioner is then used to enhance the convergence rate of the BiCGStab

iterative solver which is also implemented on the GPU. The performance of the

proposed acceleration is compared to ParaSails, a popular implementation of SAI

preconditioners on multiprocessors. The work was done in collaboration with

Professor Jean-Luc Gaudiot at UC-Irvine. A more aggressive approach in reducing

the communication cost of Krylov solvers on NVIDIA GPUs known as the

communication-avoiding Krylov techniques is studied in the next chapter.

 62

Chapter 5 PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONING

ON GRAPHIC PROCESSING UNITS

Maryam Mehri, David M. Fernandez, Jean-Luc Gaudiot and Dennis Giannacopoulos

Abstract: Accelerating numerical algorithms for solving sparse linear systems on

parallel architectures has attracted the attention of many researchers due to their

applicability to many engineering and scientific problems. The solution of sparse

systems often dominates the overall execution time of such problems and is mainly

solved by iterative methods. Preconditioners are used to accelerate the convergence

rate of these solvers and reduce the total execution time.

Sparse approximate inverse (SAI) preconditioners are a popular class of

preconditioners designed to improve the condition number of large sparse matrices

and accelerate the convergence rate of iterative solvers for sparse linear systems. We

propose a GPU accelerated SAI preconditioning technique called GSAI, which

parallelizes the computation of this preconditioner on NVIDIA graphic cards. The

preconditioner is then used to enhance the convergence rate of the biconjugate

gradient stabilized (BiCGStab) iterative solver on the GPU.

The SAI preconditioner is generated on average 28 and 23 times faster on the

NVIDIA GTX480 and TESLA M2070 graphic cards respectively compared to

ParaSails (a popular implementation of SAI preconditioners on CPU) single

processor/core results. The proposed GSAI technique computes the SAI

preconditioner in approximately the same time as ParaSails generates the same

preconditioner on 16 AMD Opteron 252 processors.

Index terms: Numerical algorithms; Parallel algorithms; Graphics processors;

Parallel programming; Conditioning.

 63

5.1 Introduction

Mathematical physics and engineering problems in a broad range of applications

(such as computational electromagnetics, medical and seismic tomography, heat

conduction, computational fluid mechanics, etc.) have grown larger and more

complex in the past few decades leading to large scale simulations. These

simulations generally involve the use of techniques such as the finite element

method (FEM) and the finite difference time domain (FDTD) method which are

used to discretize, assemble and solve such systems [5], [54]. One of the most time

consuming steps in the aforementioned techniques is solving the system of equations

proceeding the systems assembly stage. The solution of such systems is often

achieved by sparse linear systems and can be obtained by either direct or iterative

methods. For larger and sparser systems, direct methods often suffer from high

computational complexity and intensive memory requirements. Techniques such as

Gaussian elimination, Choleski, LU and QR factorizations [5] are designed to

address some of these issues and thus reduce the complexity of computations and

required storage in this class of solvers. Direct solvers are notoriously difficult to

implement in parallel due to the recursive nature of their computations such as

solving large triangular systems [55].

A more viable alternative to solving large linear systems is using iterative

solvers. Krylov methods are a popular class of these solvers with techniques such as

generalized minimum residual (GMRES), biconjugate gradient (BiCG), biconjugate

gradient stabilized (BiCGStab) and conjugate gradient (CG) [5]. Krylov solvers

generally involve less computations and memory requirements compared to direct

methods. A major limiting factor of iterative solvers is their slow convergence rate

especially for ill-conditioned matrices. The convergence rates of most iterative

solvers heavily depend on the eigenvalues distribution of the ܣ matrix when solving

the linear system of equations ݔܣ ൌ ܾ [56]. By clustering the eigenvalues or reducing

 64

the condition number of the matrix, the convergence rate of iterative solvers is

improved considerably.

Preconditioners are designed to accelerate the convergence rate of iterative

solvers for a majority of applications. Applying the preconditioner ܯ, to both sides

of the linear systems equation ݔܣ ൌ ܾ , reduces the number of iterations and

accelerates the execution time of the solver. Although a considerable number of

preconditioning techniques have been developed in previous work [56], e.g.,

incomplete cholesky (IC), diagonal preconditioners, successive over relaxation

(SOR), polynomial preconditioners and sparse approximate inverse (SAI)

preconditioners, researchers have not been able to develop an efficient general-

purpose preconditioner. A preconditioner is defined as good if it is easy to construct,

cheap to store and accelerates the solvers from a broad range of problems. A good

preconditioner should also be easy to parallelize and well-suited for modern

architectures.

A popular class of preconditioners suitable for parallelization and efficient for a

large class of problems is sparse approximate inverse preconditioners. Although

computing SAI preconditioners is generally expensive on a single processor,

constructing them on parallel architecture is relatively fast. By generating a denser

preconditioner, SAI preconditioning can reduce iterations in iterative solvers

considerably and be applied to a broad range of applications. Previous work has

accelerated the computation of this preconditioner on multiple processors [57], [58],

[59], [60], [61], [62], [63], [64], [65] as well as multicore [66], [67] and manycore

architecture [68].

Graphic processing units have become an important resource for scientific

computing in recent years [69]. With easy to learn APIs (Application Programming

Interfaces) such as CUDA [43] (Compute Unified Device Architecture) introduced

by NVIDIA, general purpose programming for modern scientific computations on

 65

GPUs gained considerable attention. The GPU consists of streaming

multiprocessors (SMs) and each SM contains basic processing units called scalar

processors (SPs). To run compute intensive parts of an application on the GPU,

initial data has to be transferred from CPU memory to GPU global memory and a

GPU kernel is then launched. Using a single data multiple thread paradigm, GPU

threads grouped into thread blocks proceed with the computations and transfer the

results back to the CPU. The GPU consists of an on-board global memory with

long access latency, a fast access shared memory, registers and caches. Threads

inside a block communicate via shared memory and their execution can be

synchronized. Every 32 threads in a block execute the same instruction and are

called a warp.

In this work we present a new GPU accelerated SAI preconditioning technique

called GSAI, which prarallelizes the computation of sparse approximate inverse

preconditioners on NVIDIA GPUs. Major contributions of the proposed GSAI

technique are as follows:

 Each GPU warp computes one column of ܯ and the preconditioner is generated

in parallel on the GPU.

 Large data structures are stored in GPU global memory and memory space is

reused by dividing the computation of ܯ between many GPU kernels.

 Memory accesses, vector multiplications and inner products are computed in

parallel inside a GPU warp. QR decomposition and triangular solve kernels are

also computed in parallel inside each warp via 32 threads.

The preconditioner is assembled in a compressed storage format and then used to

solve ݔܣ ൌ ܾ via the preconditioned BiCGStab iterative solver, which is also

accelerated on the GPU.

 66

5.2 Sparse Approximate Inverse (SAI) Preconditioning

A sparse approximate inverse preconditioner approximates the inverse of ܣ using

a sparse matrix ܯ to improve the condition number of the linear system of

equations ݔܣ ൌ ܾ ܯ . is computed using the least-squares methods and by

minimizing the matrix residual norm

ܯܣ‖ െ ி‖ܫ
ଶ 5.1

The above equation is then separated into ݊ independent least square problems

min௠ೖ
௞݉ܣ‖ െ ݁௞‖ଶ

ଶ, k=1,2,…,n 5.2

where ݁௞ is the kth column of the identity matrix and ݉௞ represents column ݇ in

matrix ܯ. The degrees of freedom in solving the above equations are the locations

and values of the non-zeros in ܯ. Based on the degree of freedom used, sparse

approximate inverse preconditioner generation is classified as adaptive or static (a

priori). In adaptive schemes ([61], [70], [71], etc.) the sparsity of ܯ is initially set to

a simple pattern such as diagonal, this pattern is then augmented until a threshold

on the residual norm or a maximum on the number of non-zeros in ܯ is reached.

Although adaptive methods have broadened the scope of problems which can be

solved using SAI preconditioning, by utilizing additional degrees of freedom in

minimizing equation 5.2, the preconditioner generation becomes generally very

expensive requiring many reruns to determine the appropriate values of various

parameters involved, such as tolerance [72], maximum improvements per step [21],

number of non-zeros per step [72], etc. for each problem. On the other hand, static

preconditioning ([58], [64], [72], [73], [74]) determines the sparsity of ܯ in a pre-

processing step limiting the degrees of freedom in 5.1 to the non-zero values of ܯ.

Previous work has introduced various techniques to determine a more accurate

approximation of ܯ prior to computing the preconditioner and have shown that

static schemes are more efficient than adaptive techniques in improving the

 67

condition number of the ܣ matrix if the sparsity of ܯ is better approximated. Since

the focus of this work is not to introduce a better initial guess for the ܯ

preconditioner but to accelerate the computation of ܯ (equation 5.2), for general

static (a priori) SAI preconditioners, we use the most popular approximate of ܯ

which is based on sparsifications [75] of ܯ .ܣሺ݅, ݆ሻ is considered a non-zero if the

condition

,ሺ݅ܣ| ݆ሻ| ൐ ሺ1 െ ߬ ሻmax
௝
| ,ሺ݅ܣ ݆ሻ| , 0 ൑ ߬ ൑ 	1 5.3

is satisfied, where 	߬ is a user defined tolerance parameter (the main diagonal is

always included). Based on equation 5.3, for smaller ߬ parameters more non-zeros

entries in ܣ are dropped resulting in a sparser preconditioner; for ߬ equal to 1 the

sparsity pattern assumed for ܯ would be the same as the sparsity of ܣ. If a more

accurate approximate of the sparsity of ܯ is known for a specific application it can

be used instead of equation 5.3. Knowing the sparsity of ܯ before solving

equation 5.1, reduces equation 5.2 to

݉݅݊
௠ෝೖ

ฮܣመ ෝ݉௞ െ ݁̂௞ฮଶ
ଶ
, ݇ ൌ 1, 2, … , ݊ 5.4

ෝ݉௞ is the reduced vector of unknows ݉௞ሺܬሻ, where ܬ is the set of indices ݆ such

that ݉௞ሺ݆ሻ ് 0. Considering ܫ as a set of indices ݅ such that ܣሺ݅, መ isܣ ,ሻ is not zeroܬ

the submatrix ܣሺܫ, .ሺܣ where all zero rows in	ሻܬ , መܣ ሻ are deleted. The dimension ofܬ

is equal to ݊ଵ ൈ ݊ଶ	 where ݊ଵ and ݊ଶ are the number of indices in ܫ and ܬ

respectively. Finally ݁̂௞ represents ݁௞ሺܫሻ. To construct and solve equation 5.4 for

each column ݇	of ܯ, the steps in Fig. 5.1 should be computed for each ݇ (more

information on the above implementations and the steps in Fig. 5.1 can be found in

previous work on SAI preconditioners specifically [58], [59],[61], [63], [72]).

 68

Fig. 5.1: Steps involved in constructing static sparse approximate inverse preconditioners.

Factorized sparse approximate inverse (FSAI) preconditioners are another class

of SAI preconditioning techniques initially introduced by [5], which have been

developed in [76], [77], [78], [79], [80], [81], [82]. This class of preconditioners are less

popular than the kind based on Frobenius norm minimization (equation 5.1) [56]

and can fail due to breakdowns during an incomplete factorization process. FSAI

preconditioners are constructed to preserve the symmetric properties of the

preconditioned problem and are generally applied to the conjugate gradient iterative

solver. A comparative study of various SAI preconditioners is presented in [83].

Sparsification is a method used to diminish the pattern of ܣ when it is relatively

full and generate a sparser preconditioner and can be implemented in both adaptive

and static SAI preconditioner construction algorithms. Initially introduced by

Kolotilina [75] for computing SAI preconditioners for dense matrices, sparsification

is also used by [84] to enhance the condition number of anisotropic problems via

adaptive SAI preconditioners. Costgrov et al. [85] also propose augmenting the

pattern of ܣ for constructing sparse approximate inverse preconditioners. SAI

preconditioner proposed by [86] and ParaSails [59] introduced by Chow [58] use a

priori sparsity patterns based on powers of sparsified matrices for partial differential

equation (PDE) problems. Sparsification is also implemented in SPAI 3.2 [72] by

eliminating small values in ܣ before computing the preconditioner. The equation

used in the proposed GSAI technique (equation 5.3) also allows for sparsifying ܣ

using a tolerance parameter ߬. Applying sparsification to the preconditioner after it

has been produced is also studied in [76], [86]. If an effective sparsification is known

a) ܬ is constructed based on (3)
b) Columns of A in ܬ are selected and matched to construct ܫ

c) ܣመ is constructed and decomposed using QR Gram-Schmidt [5]
d) Values in ෝ݉௞ are computed using ෝ݉௞ ൌ ܴିଵ்ܳ݁̂௞ and scattered back to M.

 69

for a specific problem it can be added to the Pre-GSAI stage (Fig. 5.2) in the GSAI

method proposed.

Most of the work on SAI preconditioners presents techniques to parallelize the

computation of the preconditioner on multi-processor architectures [57], [58], [59],

[60], [61], [62], [63], [64], [65], by distributing the computation of the columns in ܯ

between multiple processors. Techniques such as grouping communications [63],

dictionary based methods [60] and latency-tolerant hybrid SAI preconditioning [62]

are proposed in these works, to further enhance the execution time of SAI

preconditioners on multiprocessors. ParaSails [59] and SPAI 3.2 [72] are two of the

most popular open source implementations of the sparse approximate inverse

preconditioner on single and multi-processor platforms and are used for comparison

in a majority of previous work [56], [58], [60], [62]. While ParaSails uses a priori

approximation of ܯ to generate the preconditioner, both adaptive and static SAI

preconditioners are implemented in SPAI 3.2. Similar to SPAI 3.2 the

preconditioned problem in GSAI is solved using the BiCGStab iterative solver

(ParaSails implements the GMRES and CG iterative solvers). Chow et al. [58]

compare the performance of ParaSails to SPAI 3.2 and show ParaSails generates the

SAI preconditioner considerably faster than SPAI 3.2. We compare the

preconditioner generation time of the proposed GSAI algorithm on GPUs to

ParaSails on single and multi-processor platforms.

Although parallelizing sparse approximate inverse preconditioners on more than

one processor has been extensively studied in previous work which succeeded to

enhance the execution speed of such preconditioners considerably, few works have

studied the possibility of accelerating these preconditioners on multi/many core

architectures. Gravvanis et al. [66], [67] attempt to accelerate a sparse approximate

inverse preconditioned BiCGStab iterative solver on Intel multicore architecture by

allocating the computation of each iteration of the iterative solver to a different

 70

thread; implementation details on how to accelerate the preconditioner computation

on a multicore are not presented in this work. Xu et al. [68] accelerate factorized

SAI on NVIDIA GPUs. The paper mainly describes how to accelerate the sparse

matrix vector multiplication kernel (SpMV) in the iterative solver but details for

computing the sparse approximate inverse preconditioner have not been presented

(other accelerations of the SpMV kernel are presented in [53], [49] and CUSPARSE

[89]).

Fig. 5.2: The four stages in implementing SAI preconditioners using GSAI on NVIDIA

GPUs .

5.3 Parallel SAI in NVIDIA GPUs

The SAI preconditioner is computed in parallel on graphic cards by allocating

the computation of each column of ܯ to one warp. Accelerating the SAI

preconditioner involves local (per warp) parallelization of various computing kernels

such as QR decomposition, dot products, sorting vector values, finding the

maximum value in a vector, etc. One of the major challenges in computing SAI

preconditioners on GPUs is the limited size of global and shared memory and the

generation of large data structures required and produced by the SAI

Copy A to
GPU

Compute
dimensions

Allocate
memory

Pre-GSAI

Find J

Find I

Construct

Compute-GSAI

Â

QR decomposition
and triangular solve

Modify
Mpointer

Assemble
M

Post-GSAI

CSC to CSR

Solve

BiCGStab

 71

preconditioning algorithm. Proposing techniques to free/reuse memory space and

minimize the allocated memory to various data structures in the kernel are key

factors in producing sparse approximate inverse preconditioners for large problems

on GPUs. In the following implementation details to overcome the above

constraints and implement in parallel the computing kernels involved in solving

ݔܣ ൌ ܾ	using SAI preconditioners are presented.

Computing the SAI preconditioner in parallel on GPUs involves the

implementation of steps introduced in Fig. 5.1, which we implemented in a stage

called Compute-GSAI (Fig. 5.2). In this stage every 32 threads (one warp) on the

GPU computes one column of ܯ (m୩) by executing the steps in Fig. 5.1. Each warp

first finds the dimensions of its corresponding ܣመ matrix (equation 5.4) and

assembles it. The local ܣመ matrices, which are very small compared to ܣ, are then

decomposed (local decompositions per warp for each ܣመ) using the Gram Schmidt

method [5] and ݉௞ is computed. SAI preconditioning on GPUs requires two

additional steps (Pre-GSAI and Post-GSAI) which handle GPU memory allocation,

define required data structures, gather results and determine the required number of

kernel calls based on the problem size and available GPU memory. Thus solving the

ݔܣ ൌ ܾ	linear systems equations on the GPU using SAI preconditioners consists of

four major steps (Fig. 5.2):

1) Pre-GSAI: involves reading ܣ in a compressed sparse format [88] and

transferring it to GPU, allocating GPU memory space to the preconditioner M

and other data structures and determining the number of kernel calls based on

the available global memory space.

2) Compute-GSAI: computes the sparse approximate inverse preconditioner on the

GPU and scatters the produced columns back to ܣ on GPU global memory.

3) Post-GSAI: revises the assigned global memory space to M by releasing extra

memory space allocated to ܣ and assembles ܣ on the GPU in compressed

 72

column storage (CSC) [88] format.

4) Solver: converts both ܯ and ܣ from CSC to CSR (compressed row storage [88])

on the GPU to accelerate the iterative solver execution time and solves ݔܣ ൌ

ܾ	using the computed SAI preconditioner and the BiCGStab iterative solver.

The rest of this section is organized as follows; Section 5.3.1 introduces

implementation details of the above steps and the kernel/function calls involved in

each stage. Managing global and shared memory, determining the amount of

memory required for each data structure and deciding the necessary number of

kernel calls are proposed in Section 5.3.2.

5.3.1 GSAI Steps

The proposed GSAI preconditioning method computes the SAI preconditioner on

NVIDIA GPUs in three major steps namely Pre-GSAI, Compute-GSAI and Post-

GSAI, the generated preconditioner is then passed to the Solver stage (Fig. 5.2) to

precondition and solve the linear system

A. Pre-GSAI Stage

Copy A to GPU: Sparse matrices are stored in memory using various

compressed sparse storage formats such as CSR, CSC, etc [39]. Such formats

reduce the amount of memory used to store the sparse matrix by contiguously

storing rows/columns allowing for coalesced memory accesses. To compute the SAI

preconditioner the ܣ matrix is initially stored in CSC format using three vectors

called Avalue, Aindex and Apointer. The ܯ matrix is also produced and stored in columns.

A copy of the ܣ matrix is transferred to GPU global memory.

 73

Fig. 5.3: Constructing local ܣመ matrices by first finding Jindex and Iindex vector values and then

matching the columns referenced in Jindex to the Iindex vector.

Compute n1 and n2 and allocate memory to ܯ: The preconditioner ܯ is stored in

global memory, thus memory should be allocated to ܯ prior to the Compute-GSAI

stage. Although the dimensions of ܯ are the same as ܣ it has to be stored in

compressed format to fit on the GPU global memory. To reduce the amount of

computation required to locate data structures used by each warp and regularize

global memory accesses, equal memory space is allocated to each column of ܯ using

the compute dimensions kernel (Fig. 5.2). The proposed memory allocation

technique, introduces the need for the Post-GSAI step described in the next section,

whose execution time is, however, negligible compared to Compute-GSAI as shown

in the results section and to the provided benefits. The kernel first finds the

dimensions of local ܣመ matrices (n1, n2) and stores them on global memory and the

maximum n1 and n2 values between all columns (called n1,max and n2,max) are then

found. Since the number of non-zeros in the largest column of ܯ is equal to n2,max,

global memory allocated to ܯ would be equal to the number of columns in ܯ

multiplied by the number of bytes required to store n2,max floating point values

(Mvalue). The row indices corresponding to the values of the preconditioner (Mindex)

and the number of non-zeros produced for each column of ܯ (Mpointer) are stored in

 74

global memory. Besides allocating memory to the preconditioner ܯ, the Allocate

memory step of the Pre-GSAI stage (Fig. 5.2) assigns memory space to other data

structures used during the computation of the SAI preconditioner (Compute-GSAI)

and determines the number of kernel calls required to compute the SAI

preconditioner. Details of these implementations are presented in Section 5.3.2 and

Table 5.1.

B. Compute-GSAI Stage

To compute the SAI preconditioner on the GPU, the steps indicated in the

Compute-GSAI stage in Fig. 5.2 have to be implemented in parallel on the GPU in

a kernel called compute preconditioner. Each column of the preconditioner ܯ is

computed via one warp (32 threads in a block) and every block is assigned 256

threads (eight warps) to compute eight columns in parallel. The number of columns

computed in one SM simultaneously will depend on the allocated shared memory

per block and available resources per SM.

Find ܬ: In this stage the set ܬ (the first step in Fig. 5.1) is constructed and

loaded into a vector called Jindex. Each warp in the kernel first loads the column in ܣ

corresponding to its index (the index is assigned to each warp based on the total

number of warps launched on the GPU) and finds the largest element in the loaded

column. The condition in equation 5.3 is then evaluated for each element of the

loaded value vector simultaneously and the column index of elements satisfying the

condition is stored in Jindex.

Find ܫ and construct the local ܣመ: To determine ܫ (Fig. 5.1), the algorithm first

loads the row indices of the first column referenced in Jindex into a vector called Iindex.

The row index vector of successive columns referenced by Jindex are then loaded in

order into shared memory and compared in parallel with values in Iindex, new indices

are tagged and later added to Iindex to construct the set ܫ . Local A෡ matrices are

 75

constructed on global memory by loading columns indexed in the Jindex vector and

matching them to the Iindex vector in parallel (Fig. 5.3).

Local QR decomposition and triangular solves: Local QR decompositions are

computed using the Gram Schmidt method (Fig. 5.4) [5], which was easier to

parallelize inside a warp compared to other QR decomposition techniques. Each

warp decomposes one ܣመ matrix, thus many QR decompositions are computed

simultaneously via warps executing in parallel. Parallelism is also exploited in a

warp by computing the local QR decompositions in parallel using the 32 threads

inside a warp, e.g., most of the operations in Fig. 5.4 such as memory loads,

multiplications and inner products are computed in parallel.

The orthogonal vectors produced in each step of the QR decomposition

algorithm (ݍ௜ in Fig. 5.4) are stored in global memory (Q in Table 5.1) and are used

in proceeding steps. At the end of the Compute-GSAI stage ݉௞ values are

computed using ෝ݉௞ ൌ ܴିଵ்ܳ݁̂௞ and scattered to global memory space allocated to

the ܯ matrix.

if ܣ ൌ ሾܽଵ … ܽ௡ሿ and ݆݋ݎ݌௤ܽ ൌ
〈௤,௔〉

〈௤,௤〉
 ݍ

௞ݑ ൌ ܽ௞ െ ∑ ௤ೕܽ௞݆݋ݎ݌
௞ିଵ
௝ୀଵ ௞ݍ ൌ

௨ೖ
‖௨ೖ‖

ܽ௞ ൌ ∑ ,௝ݍ〉 ܽ௞〉ݍ௝
௞
௝ୀଵ

ܳ ൌ ሾݍଵ … , ௡ሿݍ































33

3222

312111

,00

,,0

,,,

aq

aqaq

aqaqaq

R

Fig. 5.4: The Gram Schmidt QR decomposition with ൏ ,ݍ ܽ ൐ൌ . ்ܽݍ

 76

Fig. 5.5: The Mpointer vector computed in the compute preconditioner kernel is first modified

using the Modify kernel to match the CSC [88] storage format and then the Assemble

kernel assembles the M matrix values and stores them in CSC format (ܯ௜௡ௗ௘௫
∗ and ܯ௩௔௟௨௘

∗

vectors).

C. Post-GSAI Stage

Modify and assemble M: The values and row indices of the preconditioner

generated in the compute preconditioner kernel are stored in Mvalue and Mindex

vectors in the format shown in Fig. 5.5. Since the allocated size to each column of

 on global memory is equal to n2,max (which is not necessarily equal to the number ܯ

of non-zeros per column), to assemble ܯ each warp has to store the number of non-

zeros of the column it is generating into a vector called Mpointer. In the Post-GSAI

stage the Mvalue, Mindex and Mpointer data structures are modified to match the CSC

storage format. The first kernel in the Post-GSAI stage is called Modify which

changes Mpointer to match the CSC format (ܯ௣௢௜௡௧௘௥
∗ in Fig. 5.5). Another kernel

called Assemble then modifies the Mindex and Mvalue vectors on the GPU to match the

column storage format (ܯ௜௡ௗ௘௫
∗ and ܯ௩௔௟௨௘

∗ in Fig. 5.5). The updated value and

index vectors of ܯ are generated on GPU memory and do not require data to be

transferred to the CPU.

D. The Solver

Preconditioned BiCGStab solver: When generating a right preconditioner ܯ (via

minimizing equation 5.2) matrices are stored and generated in column storage

format to reduce memory access latencies [5]. On the other hand, to achieve the

*
intpo erMintpo erM

valueM

indexM

2n

*
valueM

*
indexM

 77

best performance and increase coalesced memory accesses on the GPU, the matrices

in the sparse matrix vector multiplication kernel should be stored in row storage

format [89]. Thus prior to solving ݔܣ ൌ ܾ the matrices are converted to CSR format

(to generate a left preconditioner the CSC to CSR stage in Fig. 5.2 should be

removed since all matrices are generated and stored in CSR format). After the

conversion step the BiCGStab kernel is called to solve ݔܣ ൌ ܾ using the produced

 .ܯ

The preconditioned BiCGStab iterative solver on GPU is dominated by the

multiple sparse matrix multiplies [5]. The CPU is only used for scalar updates in

the algorithm and major computing kernels are implemented on the GPU. Since

sparse matrix vector multiplication is the most time consuming operation in

iterative solvers [26] it has to be accelerated efficiently on the GPU. We used the

SMVM implementation from [49], [89] which is one of the fastest implementations

of this kernel on GPUs. Other operations in the BiCGStab iterative solver have also

been accelerated on the GPU using CUBLAS [90] functions. One of the advantages

of using BiCGStab is that ܣ can be non-symmetric.

5.3.2 Memory Allocation

In this section we introduce techniques to overcome GPU memory space

limitations and enable the correct implementation of the GSAI stages proposed in

Section 5.3.1 for large problems. Since the exact size of data structures (such as ܣመ

and Q) used in the compute preconditioner kernel are only determined during the

kernel execution, techniques to allocate memory statically to these data structures

in the Pre-GSAI stage (prior to calling the kernel) are also proposed. Based on the

allocated memory space to each data structure, the number of compute

preconditioner kernel calls required to generate the preconditioner are also

determined. The implementations proposed in this section are all a part of the

 78

Allocate memory section of the Pre-GSAI stage shown in Fig. 5.2.

Local data structures such as ܣመ and Q are generally large and cannot be stored

on GPU shared memory; thus by approximating their size, global memory space is

allocated to them in the Pre-GSAI stage prior to calling the compute preconditioner

kernel. The maximum number of rows and columns in these matrices is computed

in the compute dimensions kernel (݊ଵ,௠௔௫ and ݊ଶ,௠௔௫) and global memory space

equal to the size of an array with ݊ଵ,௠௔௫ ൈ ݊ଶ,௠௔௫ elements is allocated to them per

column (warp). The Iindex vector used in the Compute-GSAI kernel also varies in

size for each warp and can easily exceed the maximum size of shared memory. This

vector is also stored in global memory by allocating memory to arrays of ݊ଵ,௠௔௫

elements per column. To compute the preconditioner different columns of ܣ	are

required thus the ܣ matrix should be on global memory at all times. Table 5.1

shows the amount of global memory required to store various vectors and data

structures on global memory prior to calling the Compute-GSAI kernel. Because the

preconditioner is generated in double precision, data structures such as ܣመ, Q and

Mvalue are stored in double precision.

For large ܣ matrices and ߬ parameters that lead to a denser preconditioner, the

total size of the data structures in Table 5.1 will exceed the GPU global memory.

Since the memory required to store ܣመ and Q for all columns is considerably larger

than the size of ܣ and ܯ, by calling multiple kernels sequentially and overwriting

the memory space allocated to these matrices, computing the SAI preconditioner is

made possible on the GPU. Thus after storing ܣ and ܯ on global memory

depending on the available memory space and the size of other data structures that

need to be stored on global memory, the computation of the preconditioner is

divided between multiple kernels each producing a few columns of ܯ. As a result

memory allocated to other data structures such as ܣመ and Q can be reused. In the

following, steps (implemented on the CPU) to determine the number of required

 79

compute preconditioner kernel calls are presented and the allocated memory space

to ܣመ which is overwritten in each kernel call is determined (memory assigned to

other data structures such as Q can be computed the same way):

 Memory available to store local data structures (ܣመ, Q, etc.) in global memory is

first determined by subtracting memory allocated to ܣ and ܯ matrices from

GPU global memory.

 The result is then divided by the size of memory required to store the local data

structures for one column, in order to determine the number of columns which

can be computed in each kernel call (columns-per-kernel).

 The number of compute preconditioner kernel calls is determined via dividing

the total number of columns in A by columns-per-kernel. The memory allocated

to storing local ܣመ matrices for each kernel will be equal to ݊ଵ,௠௔௫ ൈ ݊ଶ,௠௔௫

multiplied by columns-per-kernel.

The small size of the GPU shared memory does not limit the size of the problem

being solved, because large vectors and data structures in the kernel are stored on

GPU global memory. To accelerate computations shared memory is used to store

local data structures in the compute preconditioner kernel whenever possible. Before

calling the compute preconditioner kernel (in the allocate memory section of the

Pre-GSAI stage), the amount of shared memory required for each block to store

these data structures is checked and if it reduces the number of active blocks per

SM to two all data is read from global memory directly. For larger tolerance

parameters which lead to larger data structures most of the data is read directly

from global memory. Thus, the number of active blocks per SM is no longer limited

to the size of data structures and available shared memory and memory access

latencies are reduced via configuring the size of L1 cache to 48KB. To generate SAI

preconditioners for very large problems which do not fit on the GPU global memory

or to generate very dense preconditioners, a graphic card with larger global memory

 80

could be used or the computation of the SAI preconditioner should be distributed

between many GPUs.

Table 5.1: The number of elements in each of the data structures involved in GSAI and
their size based on their data.

Data Structure Number of elements Type Size

Avalue non-zeros double elements * 8

Aindex non-zeros integer elements * 4

Apointer Columns integer elements * 4

Mvalue Columns ൈ ݊ଶ,௠௔௫ double elements * 8

Mindex Columns ൈ ݊ଶ,௠௔௫ integer elements * 4

Mpointer Columns integer elements * 4

መ (all columns) Columns ൈܣ ݊ଵ,௠௔௫ ൈ ݊ଶ,௠௔௫ double elements * 8

Q(all columns) Columns ൈ ݊ଵ,௠௔௫ ൈ ݊ଶ,௠௔୶ double elements * 8

Iindex(all columns) Columnsൈ ݊ଵ,௠௔௫ integer elements * 4

elements, columns and non-zeros represent the number of elements computed in the second column of the table, the

number of columns in A and the number of non-zeros in A, respectively

5.4 Results

The performance of the proposed SAI acceleration on GPUs is evaluated using 7

matrices [34] from various application areas with different sparsity patterns

(Table 5.2). Since the SAI preconditioner is not limited to symmetric problems the

performance of the preconditioner and the acceleration has also been tested on 4

unsymmetric matrices. These problems are generally difficult to solve and

precondition due to their complex geometry and ill-conditioning. GPU results were

achieved using NVIDIA GTX480, TESLA M2070 and CUDA-SDK 3.2, CPU

programs are executed on a system core Linux cluster from Sharcnet [91] using 1-32

AMD Opteron 252 (2.6GHZ, single-core) processors with a Quadrics Elan4

interconnect. The preconditioned BiCGStab iterations are terminated upon reaching

10,000 iterations or reaching a relative residual of less than 1e-7 in under 10,000

iterations using a random Right Hand Side (RHS) for all problems (the same RHS

 81

is used for each matrix in all platforms). Both the preconditioner generation kernel

and the iterative solver run in double precision. In the following the performance of

the proposed GSAI preconditioner on GTX480 and TESLA M2070 is first presented

(Section 5.4.1), the preconditioner computation time on the GPU is then compared

to ParaSails (Section 5.4.2) on a single processor/core (a processor/core is an AMD

Opteron 252 consisting of one core).

ParaSails computes the preconditioner in parallel on multi-processor platforms

by partitioning ܯ and allocating the computation of its columns to different

processors. They propose novel techniques to partition columns/rows amongst

processors, hide inter-processor communication latencies, balance load amongst

processors, manage one-sided communications, construct ܣመ matrices and perform

operations such as QR decomposition. Implementation details of how the

computation of SAI preconditioners is parallelized in ParaSails can be found in the

documentations and publications referenced in [59]. The time to compute the SAI

preconditioner using GSAI on GPUs is compared to ParaSails on a cluster of

multiple AMD Opteron 252 processors in Section 5.4.2.

5.4.1 The GSAI Preconditioning Method

In this section the effect of increasing the tolerance ߬ in equation 5.3 using GSAI

and NVIDIA GTX480 on the preconditioner construction time, iterative solver

execution time and the number of iterations are first studied. The total execution

time and the number of iterations of the preconditioned iterative solver are then

presented for both GTX480 and TESLA M2070.

As shown in Table 5.3 for larger tolerances (߬), the number of iterations

considerably decreases for most of the tested problems using GSAI. Because the

preconditioner ܯ is an approximation of ିܣଵ decreasing its sparsity using ߬ does not

necessarily guarantee a better preconditioner, for example the number of iterations

 82

in g3-circuit increases when ߬ is increased to 0.6 (Table 5.3). But on average the

number of iterations decrease as ߬ increases and the sparsity of ܯ gets closer to ܣ

[56]. For most of the tested problems the total execution time on GPU also

decreases as ߬ increases (Table 5.4). Because more elements of ܣ satisfy the

condition in equation 5.3 the maximum number of rows and columns (n1,max and

n2,max) of the local ܣመ matrices on the GPU increase with tolerance (Fig. 5.6). As a

result the time required by the compute dimensions kernel to determine n1,max and

n2,max as well as the time required to construct and decompose ܣመ in the compute

preconditioner kernel also increase with ߬ (Fig. 5.7 and Table 5.5). Fig. 5.7 shows

the fraction of total preconditioner execution time spent in all kernels involved in

the construction of the SAI preconditioner on GTX480 (kernels in the Pre-GSAI,

Compute-GSAI and Post-GSAI stages). Based on Table 5.5 for all tested matrices

the preconditioner execution time increases with ߬. Thus, except for copying ܣ to

the GPU, the execution time of all kernels increases with ߬ due to an increase in the

number of non-zeros in preconditioner ܣ (Fig. 5.7 and Table 5.5).

Fig. 5.8 and Table 5.4 explain why an increase in the SAI computing time for

larger tolerances still on average improves the total execution time on GPU. As

shown in Fig. 5.8, the total execution time is dominated by the BiCGStab solver.

Thus, based on total execution times reported in Table 5.4, by increasing ߬ and

generally generating a more accurate preconditioner, the execution time of the

iterative solver is decreased (due to an average reduced number of iterations) with a

negligible increase in SAI computation time. Since the time spent in generating the

preconditioner is considerably less than the time required to solve the problem, the

total execution time on average decreases for larger tolerance parameters.

The problem solution time on the GPU decreases when the iterations are

reduced on the GPU. This is because the sparse matrix vector multiply kernel

involved in the iterative solve uses available GPU resources more efficiently as the

 83

number of non-zeros in ܯ increase. While the preconditioner becomes denser with

larger ߬ parameters, the number of rows in ܯ is fixed and as a result the number of

computing blocks/warps launched on the GPU remain unchanged because of using

the sparse matrix vector multiply kernel introduced in [49], [89]. On the other hand

the number of non-zeros per row increases, exploiting more parallelism per warp and

better utilizing the GPU resources. Thus GPU acceleration of the SAI allows for the

generation of more accurate and denser preconditioners and increases the

applicability of static preconditioning for sparse approximate inverse

preconditioners. Table 5.6 shows the execution time of the steps involved in

constructing the sparse approximate inverse preconditioner on GTX480 for ߬ equal

to 0.9 (which generated the best preconditioner amongst the tested tolerances) as

well as the BiCGStab iterative solver. The time spent in constructing the

preconditioner is less than 3 seconds for all matrices (Table 5.6) while the iterative

solve can take up to 171 seconds for matrices such as thermal2 on the GPU.

Preconditioners with more than 6 million non-zeros (Table 5.7) are generated in

less than 3 seconds (Table 5.6) using the proposed GSAI preconditioner on GTX480.

As shown in Table 5.7 without the preconditioner most of the problems would not

converge in 10,000 iterations while with the preconditioner the BiCGStab iterative

solver would converge to the 1e-7 residual error in less than 100 iterations for some

matrices (venkat01 and majorbasis). Table 5.7 also shows that although the number

of iterations for the preconditioned iterative solver on TESLA M2070 decreases

compared to GTX480, the total execution time is still larger for all tested matrices.

5.4.2 GSAI vs. ParaSails

In this section the preconditioner construction time is compared with ParaSails

[59] which also uses a priori techniques to determine the sparsity of ܯ and

computes SAI in parallel on multiprocessors. Techniques proposed in ParaSails to

 84

better determine the sparsity of ܯ prior to its computations for PDE problems can

be implemented in the Pre-GSAI stage of GSAI without changing the Compute

preconditioner kernel itself (determining the sparsity of ܯ in a priori SAI

preconditioning techniques is negligible compared to the preconditioner computation

itself). To compare GSAI with ParaSails, parameters were set so that both

ParaSails and GSAI would produce similar preconditioners with the same sparsity

as ܣ (߬ ൌ 1 in GSAI, parameter settings for ParaSails are described in [59]),

preconditioners are produced using unfactorized preconditioning in ParaSails.

Table 5.8 shows generating the SAI preconditioner using ParaSails on one

processor/core can take up to 100 seconds while the proposed acceleration of sparse

approximate inverse preconditioners on GPUs generated the same preconditioner in

less than 3 seconds. With GSAI on GTX480, speedups of up to 47 times are

achieved compared to ParaSails, decreasing the average generation time of SAI

preconditioners 28 times. In Fig. 5.9 the average execution time of ParaSails for all

matrices on multiprocessors is compared to average preconditioner generation time

of GSAI on NVIDIA GTX480 and TESLA M2070. As shown in Fig. 5.9

constructing the preconditioner on a single GPU using GSAI is equivalent to

constructing the same preconditioner on 16 processors/cores using ParaSails.

GSAI computes many columns of ܯ in parallel, the time spent to construct local

 መ matrices do not accumulate for columns generated simultaneously. This is not theܣ

case in ParaSails when run on a single processor, so both the parallel execution of

columns on the GPU and the techniques proposed to compute each column of ܯ are

the main reasons behind the reported speedups.

5.5 Conclusion and Future Work

The GPU accelerated sparse approximate inverse preconditioning method called

GSAI, proposed in this work introduces optimized implementations to parallelize

 85

the computation of sparse approximate inverse preconditioners on NVIDIA GPUs.

A sparsified pattern of ܣ based on tolerance ߬ is used as the sparsity pattern of the

preconditioner ܯ. By allocating the computation of each column of ܯ to one warp,

the GSAI method computes the SAI preconditioner in three stages called Pre-GSAI,

Compute-GSAI and Post-GSAI and then solves the linear system of equations in

the Solve stage. Techniques to overcome limitations imposed by the small GPU

shared and global memory in computing SAI preconditioners on GPUs are proposed

as a part of the Pre-GSAI stage. The execution of operations involved in the SAI

computation are parallelized per warp in the Compute-GSAI and the generated

preconditioner values are assembled and stored in a compressed format in the Post-

GSAI step. Finally the preconditioned BiCGStab iterative solver is implemented in

parallel (Solver stage) to compute the results of the linear system of equations using

the generated preconditioner.

The effects of decreasing the sparsity of the preconditioner using a tolerance

parameter ߬ are tested on the GPU using GSAI. The results showed that the

number of iterations and total execution time would on average decrease using

GSAI for larger tolerances; the preconditioner generation time would remain

negligible compared to the problem solution time. The total execution time on the

GPU (the time spent on generating the preconditioner and solving the problem)

would constantly decrease as ߬ increases making the generation of denser

preconditioner more efficient. The generation of the SAI preconditioner was

accelerated on average 28 and 23 times on GTX480 and TESLA M2070 respectively

using GSAI compared to the time required to create the same preconditioner using

ParaSails on a single processor (single-core AMD Opteron 252). The preconditioner

generation time on GTX480 and TESLA M2070 (using GSAI) is almost equivalent

to creating the SAI preconditioner on 16 processors in parallel using ParaSails. We

plan to accelerate the execution time of other variants of SAI preconditioning

 86

techniques such as adaptive methods and also introduce techniques to find better

approximations of the preconditioner using GPUs in future work.

Table 5.2: Properties of sparse matrices used to test the GSAI preconditioning method.

Matrix Name Matrix Type Rows non-zeros Structure

venkat01

CFD problem

sequence 62,424 1,717,792 unsymmetric

majorbasis
optimization

problem

160,000 1,750,416 unsymmetric

t2em
electromagnetics

problem
921,632 4,590,832 unsymmetric

atmosmodd CFD problem 1,270,432 8,814,880 unsymmetric

thermal2 thermal problem 1,228,045 8,580,313 Symmetric

g3-circuit
circuit simulation

problem
1,585,478 7,660,826 Symmetric

apache2 structural problem 715,176 4,817,870 Symmetric

Table 5.3: The effect of increasing tolerance (߬) on the number of iterations (GSAI on
GTX480).

Matrix τ ൌ 0.5 τ ൌ 0.6 τ ൌ 0.7 τ ൌ 0.8 ߬ ൌ 0.9

venkat01 65 59 50 45 70

majorbasis 49 47 49 43 23

t2em 2390 2390 2390 1264 1264

atmosmodd 268 268 268 145 145

thermal2 6000 5805 5727 3608 2906

g3-circuit 1856 2307 1863 1347 1145

apache2 2922 1674 1674 1143 1226

average 1936 1793 1717 1085 968

 87

Fig. 5.6: The effect of increasing ߬ on the maximum dimension of local ܣመ matrices (n1,max

and n2,max).

Table 5.4: The effect of increasing tolerance (߬) on the total execution time involving both
the preconditioner construction time and the solve time (GSAI on GTX480).

Matrix τ ൌ 0.5 τ ൌ 0.6 τ ൌ 0.7 τ ൌ 0.8 ߬ ൌ 0.9

venkat01 0.43 0.54 0.69 0.83 2.6

majorbasis 0.66 0.64 0.65 0.68 0.6

t2em 108 108 108 59 59

atmosmodd 17 17 17 11 11

thermal2 364 348 331 213 174

g3-circuit 136 170 138 101 87

apache2 110 63 63 44 47

average 105 101 94 61 54

0

5

10

15

20

25

30

35

40

45

50

0.5 0.6 0.7 0.8 0.9

S
iz

e



n1,max

n2,max

 88

Fig. 5.7: The average fraction of total time (over all matrices) spent in the

functions/kernels involved in the first three stages of the GSAI preconditioning algorithm

(on GTX480) are shown for an increasing ߬ (compute preconditioner consists of all steps in

the Compute-GSAI stage).

Fig. 5.8: The average fraction of total time (over all matrices) in generating the SAI

preconditioner (the Pre-GSAI, Compute-GSAI and Post-GSAI stages in Fig. 5.2) and

solving the problem for an increasing ߬	on the GPU using GSAI.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 0.6 0.7 0.8 0.9

F
ra

ct
io

n
of

 t
ot

al
 ti

m
e



Modify and assemble M Compute preconditioner

Compute dimensions & allocate memory Copy A to GPU

96%

96%

97%

97%

98%

98%

99%

99%

100%

100%

0.5 0.6 0.7 0.8 0.9

F
ra

ct
io

n
of

 t
ot

al
 ti

m
e



SAI Solve

 89

Fig. 5.9: The speedup achieved from generating the SAI preconditioner on GTX480 and

TESLA M2070 using GSAI compared to generating the same SAI preconditioner using

ParaSails [59] on 1-32 processors/cores (the generated preconditioner has the same sparsity

as A, ߬ ൌ 1 in GSAI).

Table 5.5: The effect of increasing tolerance (߬) in the GSAI algorithm (on GTX480) on
the preconditioner construction time.

Matrix τ ൌ 0.5 τ ൌ 0.6 τ ൌ 0.7 τ ൌ 0.8 τ ൌ 0.9

venkat01 0.11 0.24 0.42 0.58 2.14

majorbasis 0.11 0.11 0.11 0.19 0.3

t2em 0.3 0.3 0.3 1.26 1.26

atmosmodd 0.43 0.43 0.43 1.97 1.97

thermal2 0.42 0.42 0.7 1.65 2.7

g3-circuit 0.65 0.78 0.9 1.51 1.84

apache2 0.31 0.35 0.35 0.78 0.8

0.1

1

10

100

1 2 4 8 16 32

S
p
ee

d
u
p

processors/cores

GTX480 vs. ParaSails

Tesla M2070 vs. ParaSails

 90

Table 5.6: The time spent in computing the stages in Fig. 5.2 for ߬ ൌ 0.9 on GTX480.

Matrix

Pre-GSAI

τ ൌ 0.9

Compute-GSAI

τ ൌ 0.9

Post-GSAI

τ ൌ 0.9
Solve

venkat01 0.2 1.94 0.01 0.46

majorbasis 0.06 0.23 0.01 0.3

t2em 0.22 1.03 0.01 57

atmosmodd 0.389 1.57 0.02 9.5

thermal2 0.46 2.23 0.02 171

g3-circuit 0.33 1.49 0.02 85

apache2 0.17 0.62 0.01 47

Table 5.7: Preconditioned and unpreconditioned BiCGStab iterative solver on GTX480 and
TESLA 2070.

Matrix

GPU

BiCGStab

Iterations

Precond.

non-zeros

GTX480

Precond.

BiCGStab

Iterations

GTX480

Total

Time

TESLA

M2070

Precond.

BiCGStab

Iterations

Tesla

M2070

Total Time

venkat01 ൐10000 822937 70 2.6 70 2.7

majorbasis ൐10000 646524 23 0.6 23 0.72

t2em ൐10000 4590832 1264 59 968 63

atmosmodd ൐10000 6317824 145 11 140 14

thermal2 6119 6720218 2906 174 2804 195

g3-circuit ൐10000 6562707 1145 87 1133 108

apache2 4931 2677127 1226 47 1115 58

The table shows the number of iterations (column one) required to solve the unpreconditioned BiCGStab solver for the

tested matrices, the number of non-zeros in the preconditioner produced for ߬ ൌ 0.9 and the iterations achieved from

the preconditioned BiCGStab solver using this preconditioner on both the GTX480 and TESLA M2070 graphic cards.

 91

Table 5.8: ParaSails execution time compared to GPU results.

Matrix

ParaSails

Setup

ParaSails

Precond.

ParaSails

Total

GTX480

߬ ൌ 1

ParaSails

Total vs.

GTX480

speedup

TESLA

M2070

߬ ൌ 1

ParaSails

Total vs.

TESLA M2070

speedup

venkat01 0.1 13.7 13.8 2.22 6.2 2.83 4.8

majorbasis 0.1 14.7 14.8 1.19 12.3 1.43 10.3

t2em 0.4 60 60.4 1.26 47.9 1.55 38.9

atmosmodd 0.7 93.7 94.4 3 31 3.8 24.8

thermal2 0.8 91.7 92.5 3.76 24.5 3.9 23.7

g3-circuit 0.7 99.4 100.1 2.13 46.8 2.64 37

apache2 0.4 52 52.4 1.62 32.3 2 25.8

average

speedup -- -- -- -- 28.7 -- 23.7

The time to setup (ParaSails-Setup) and compute (ParaSails-Preconditioner) the SAI preconditioner with the same sparsity as A (߬ ൌ 1	in

GSAI) on ParaSails for one processor/core compared to the time required to compute the preconditioner on GTX480 (GPU-SAI) and TESLA

M2070 using the GSAI preconditioning algorithm (ParaSails-Total is computed by adding ParaSails-Setup and ParaSails-Preconditioner).

 92

PREFACE TO CHAPTER 6

The following chapter is an extended version of a paper submitted to the IEEE

Conference on Electromagnetic Field Computation (CEFC 2012) titled

“Communication-avoiding Krylov Techniques on GPUs”. Communication-avoiding

Krylov solvers reduce the communication cost of KSMs by computing several

vectors of a Krylov subspace “at once”, using a kernel called “matrix powers”. The

matrix powers kernel is implemented on NVIDIA GPUs. Speedups of upto 5.7 times

are reported for the matrix power kernel compared to regular SpMV

implementation. The proposed implementation of matrix powers will be used in

communication-avoiding Krylov solvers in future work. This work is done in

collaboration with the Berkeley benchmarking and optimization group (BeBOP)

and co-supervision of Professor James Demmel at UC-Berkeley.

.

 93

Chapter 6 COMMUNICATION-AVOIDING KRYLOV TECHNIQUES ON GPUS

Maryam Mehri Dehnavi, James Demmel and Dennis Giannacopoulos

Abstract: Communicating data within the GPU memory system and between the

CPU and GPU are major bottlenecks in accelerating iterative solvers on GPUs. The

communication-avoiding [92] matrix powers kernel is implemented to reduce data

communication between CPU and GPU and within the GPU memory hierarchy in

Krylov solvers.

Index terms: Numerical algorithms; Parallel algorithms; Graphic processors;

Krylov solvers.

6.1 Introduction

The sparse matrix vector multiplication (SpMV) kernel is a dominant computing

kernel in standard Krylov subspace methods (KSMs). Computing a few arithmetic

operations per datum, SpMV operations are classified as communication-bound. The

cost of communication (moving data between levels of the memory hierarchy) is

considerably higher than the cost of arithmetic computations in modern

architectures and this gap is expected to further widen. Thus, in order to enhance

the performance of communication bound kernels such as SpMV, new

strategies/algorithms should be explored to minimize communication and data

movement.

6.1.1 Communication-avoiding Krylov techniques

Communication-avoiding (CA) algorithms [92] communicate less than the state-

of-the-art algorithms at the expense of more arithmetic operations. Standard

implementations of SpMV in KSMs, require reloading the sparse matrix to caches

and fast memory in each iteration when they are too large to fit in fast memory,

thus, overwhelming the algorithm with communications and data movement

between fast and slow memory. Communication-avoiding Krylov techniques [92],

 94

minimize communication via computing ݇ steps of the iterative solver at the same

time. To take ݇ steps at the same time, and so potentially reduce memory traffic by

a factor of ݇ , a new sparse matrix kernel is required, called the matrix powers

kernel. Where ݌௜ is a polynomial of degree ݅, the matrix powers kernel computes the

basis	ሾ݌ଵሺܣሻݔ, ,ݔሻܣଶሺ݌ …,ݔሻܣଷሺ݌ , ሿ. To compute the aforementioned basis for aݔሻܣ௞ሺ݌

matrix ܣ that does not fit into fast memory, the matrix is first divided into

partitions (cache-blocks) that fit into the desired memory space. The partitions are

then loaded into fast memory to compute the basis. To avoid communication

between fast and slow memory and between partitions, non-local rows might also be

copied to a partition (“remote/ghost” rows) leading to redundant arithmetic

operations [10]. For a well partitioned ܣ matrix (where ܣ has a low surface-to-

volume ratio), the communication cost of the ݇-step matrix powers kernel will be

ܱሺ1ሻ compared to ܱሺ݇ሻ for ݇ SpMV operations in a naïve implementation [10].

6.1.2 NVIDIA GPUS

Graphic processing units (GPUs) have become an important resource for

scientific computing in recent years. With easy to learn APIs such as CUDA [43]

introduced by NVIDIA, general purpose programming for modern scientific

computations on GPUs have gained considerable attention. The GPU consists of

streaming multiprocessors (SMs) and each SM contains basic processing units called

scalar processors (SPs). To run compute intensive parts of an application on the

GPU initial data has to be transferred from CPU memory to GPU global memory

and a GPU kernel is then launched. Using a single data multiple thread paradigm,

GPU threads grouped into thread blocks (TBs) proceed with the computations and

transfer the results back to CPU. The GPU consists of an on-board global memory

with long access latency, a fast access shared memory, registers and caches. Threads

inside a block communicate via shared memory and their execution can be

 95

synchronized. Every 32 threads in a block execute the same instruction and are

called a warp.

6.2 Previous Work

This work implements the matrix powers kernel on NVIDIA GPUs by

partitioning (cache-blocking) the matrix to fit into global and shared memory

spaces. The kernel will be used in ݇-step Krylov solvers in future work. In this

section a brief survey of the ݇ -step Krylov techniques is presented; algorithmic

details of these techniques and a complete survey of previous work on ݇-step Krylov

solvers are presented in [10].

The	݇-step Krylov subspace methods were initially introduced by Van Rosendale

[93], and later studied in work such as [8], [94]. All this work used a monomial basis

and reported convergence for ݇ ൏ 5 in ݇-step KSMs. By using a scaled monomial

basis [95], a scaled and shifted Chebychev basis [96] and Newton basis [97], the

coverage of the ݇-step Krylov subspace techniques were further improved at the

expense of increased dependency in the algorithm. This problem is resolved by

Hoemmen et al. [10] by eliminating the need for scaled basis vectors. A more

detailed survey of available work on communication-avoiding KSMs is presented in

[10]. The dominant computing kernel in ݇-step Krylov solvers is the matrix powers

kernel which is implemented on GPUs in this work.

A considerable number of work has been done on accelerating sparse matrix

vector multiplication on GPUs [49], [53], [89]. None of the available

implementations of SpMV on GPUs consider cache blocking for GPU global or

shared memory. If the matrix is larger than GPU global memory, computing ݇

SpMVs requires reloading the matrix to GPU global memory which is very costly.

Most of previous work assumes the matrix is transferred to the GPU once and does

not report transfer times between GPU and CPU, which is not applicable to large

 96

matrices that do not fit in global memory. The matrix powers kernel reduces data

communication between CPU and GPU global memory and within the GPU

memory hierarchy by partitioning the matrix and computing ݇ SpMV operations at

the same time for each partition.

To our knowledge, we are the first to study the performance of the matrix

powers kernel on NVIDIA GPUs using global and shared memory as fast memory.

Our work is closely related to the work proposed by Mohiyuddin et al. [98], which

implements the matrix powers kernel on a 8-core Intel Clovertown. The proposed

implementation of the communication-avoiding matrix powers kernel on GPUs will

be used in communication-avoiding KSMs in future work. Major contributions of

the work are classified in the following:

 Most of the previous work on accelerating SpMV on GPUs [49], [53], [89] does

not report the cost of copying data to and from the GPU and assume the ܣ

matrix fully fits on the device memory. With only 1.5GB of global memory in

GPUs such as NVIDIA GTX480, matrices from many real problems can not be

fully stored on the device. Memory might also be allocated to store

preconditioners and other data structures, leaving only a part of GPU global

memory for storing ܣ. As a result, the matrix has to be transferred to the GPU

in each iteration, increasing data transfers between GPU and CPU memory in

iterative solvers. The matrix powers kernel is implemented on GPUs via global

memory cache blocking to reduce data transfers to the GPU global memory in

KSMs. The proposed implementation will enable the efficient implementation of

communication-avoiding KSMs on NVIDIA GPUs.

 Similar to CPUs, graphic cards also have a memory hierarchy and although

references to global memory are efficiently handled by the hardware, reads from

this memory space are much more costly than accesses to GPU shared memory

and caches. A naive implementation of ݇ SpMV operations involves reloading

 97

matrix rows from shared memory in each SpMV kernel call, leading to many

global memory references. In the second contribution, the GPU shared memory

is used as a cache level for the matrix powers kernel to reduce data transfers

between GPU global and shared memory.

Implementation details of the proposed contributions are presented in

Section 6.3. The performance of the matrix powers kernel for global memory cache

blocking is evaluated using several matrices (Section 6.4.1). Initial results for the

second contribution are also presented in Section 6.4.2 but will be addressed in more

detail in future work.

6.3 Implementation Details

Implementation details of the matrix powers kernel on GPU global memory are

presented in this section. The auto-tuning stage partitions the matrix to fit into

GPU global memory, the partitions are then used in the matrix powers kernel.

Details of cache blocking for GPU shared memory are also presented.

6.3.1 Matrix Powers on GPU Global Memory

A. Auto-tuning Stage

The first stage of the algorithm is the partitioning stage where the matrix is

either divided into equal partitions using a naive partitioning strategy or graph and

hyper-graph partitioners such as Metis [99] and Zoltan [100]. The results presented

in this document are achieved via naive row block partitioning; other partitioning

methods will be studied in future work. The matrix is first divided in to equal

partitions of row blocks. The partitions are balanced based on the floating point

operations required to compute ݇ steps of the matrix powers for each row block and

are recursively reduced to fit into GPU global memory. The size of each partition is

equal to the memory required to store local and remote rows in compressed row

storage (CSR) format for each partition.

 98

 Cache Blocking for Global Memory

for each partition (cache block)

 transfer the partition to GPU Global memory

 for ݅ ൌ 1 to ݇ do

 call a GPU kernel to compute ݔ௝
ሺ௜ሻ

 (for all ݆ belonging to the current partition)

 copy ݔ௝
ሺ௜ሻ

 to the CPU (for all ݆ belonging to the current partition)

 remove the current partition from global memory

Fig. 6.1: The matrix powers implementation on GPU global memory, ݔ௝
௜ is the ݆-th

component of ݔ௜ ൌ .ሺ଴ሻݔ௜ܣ	

Fig. 6.2: The steps in the auto-tuner to generate cache blocks for shared memory and find

the best performing matrix powers implementation on the GPU.

B. Matrix Powers Kernel

For each partition, the corresponding elements of the source vector along with

the matrix partition are then transferred to the global memory to compute ݇ steps

 99

of the matrix powers via calling the CUSPARSE SpMV kernel [89]	݇ times. The

generated vectors can then be used in the communication-avoiding Krylov solvers.

(Fig. 6.1).

6.3.2 Matrix Powers on GPU Shared Memory

A. Auto-tuning Stage

Each streaming multiprocessor on NVIDIA graphic cards has a shared memory

which is divided between the active thread blocks in the SM and can be configured

to both 16K and 48K bytes. The performance of the matrix powers kernel is studied

in this section when partitions (cache blocks) are generated for GPU shared

memory. When cache blocking for global memory, each GPU kernel call is

responsible for computing a step of the matrix powers kernel for one partition. For

shared memory cache blocking on the other hand, the GPU thread blocks are

responsible for computing the basis vectors for different partitions of the matrix.

Partitioning the matrix to fit into shared memory and be operated on using the

active thread blocks per SM can be challenging and may lead to the failure of the

auto-tuning/partitioning phase. Some of these challenges are listed in the following:

 Larger cache blocks will lead to fewer extra floating point operations (flops) and

smaller ghost zones in the matrix powers kernel. One of the major challenges in

cache blocking for GPU shared memory is the small size of this memory space.

The shared memory on each streaming multiprocessor is divided between the

active thread blocks in that SM. To generate larger cache blocks and reduce

arithmetic operations related to ghost rows, the number of thread blocks per SM

(TBs/SM) should be reduced. One the other hand, limiting the number of

thread blocks per SM, reduces resource occupancy on the GPU which can lead

to performance loss.

 100

 The limited number of registers available to each GPU thread block can also

reduce GPU resource occupancy. When ݇ SpMVs are computed per thread

block, each active TB will require more registers compared to a naive SpMV

implementation (where each thread block only computes one SpMV), which

limits the active TBs per SM and can reduce GPU resource occupancy.

The auto-tuner finds the number of active thread blocks per SM which gives the

best performance for the matrix powers kernel and leads to successful partitioning

(Fig. 6.2). The matrix might be repartitioned and the number of active thread

blocks per SM modified in the auto-tuning phase based on the success and

performance of the matrix powers kernel for different configurations. To compute ݇

SpMVs for each partition via one thread block, the auto-tuner should also choose

the fastest implementation of the SpMV kernel amongst existing GPU SpMV

implementations, specifically the row-per-warp [49] technique (also used in

CUSPARSE), the row-per-thread method [49], and Prefetch-CSR [53]. Depending

on the matrix sparsity pattern and average number of non-zeros per row, the

performance of the aforementioned techniques differ; the auto-tuner chooses the best

performing heuristic for each matrix to be used for the matrix powers kernel.

Upon completion of the auto-tuning stage, the best performing implementation

of the matrix powers kernel is determined and used in the matrix powers kernel

described in the next section.

B. Matrix Powers Kernel

Fig. 6.3 shows the algorithm to compute the matrix powers kernel using GPU

shared memory. Each cache block is first loaded to shared memory, using the SpMV

algorithm chosen by the auto-tuner, the matrix powers basis vector is then

generated for each partition in parallel via GPU thread blocks. We present initial

results for the matrix powers kernel shared memory cache blocking for a penta-

 101

diagonal matrix in Section 6.4.2; improved partitioning schemes and more problems

will be studied in future work.

6.4 Results

Performance results for the matrix powers kernel on NVIDIA GTX480 are

presented in this section. The GTX480 graphic card contains 480 CUDA cores and

operates at 1.4GHz, the size of global memory is 1.5GB with a bandwidth of 177

GB/s. The shared memory is configured to 48KB. All speedups are calculated using

the following formula:

ݔ݅ݎݐሺ݉ܽ݁݉݅ݐ ݏݎ݁ݓ݋݌ ݈݁݊ݎ݁݇ ݎ݋݂ ሺݔܣ, …,ݔଶܣ , ሻݔ௞ܣ
ሺ݇݁݉݅ݐ ܸܯ݌ܵ ݀ݎܽ݀݊ܽݎݐݏ ሻݏ݊݋݅ݐܽݎ݁݌݋

 6.1

Cache Blocking for Shared Memory

for thread block ݍ

 copy partition (cache block) ݍ to shared memory

 for ݅ ൌ 1 to ݇ do

 compute ݔ௝
ሺ௜ሻ

 (for all ݆belonging to the partition) using the fastest SpMV algorithm

for the matrix (exploits parallelism via threads/warps inside a thread block)

 copy ݔ௝
ሺ௜ሻ

 (for all ݆ belonging to the partition) to global memory

Fig. 6.3: The matrix powers implementation on GPU shared memory, ݔ௝
௜ is the ݆-th

component of ݔ௜ ൌ .ሺ଴ሻݔ௜ܣ	

 102

Fig. 6.4: Each matrix is described by its name, description, number of rows, number

of non-zeros, average number of non-zeros per row and its non-zero pattern

representation.

Fig. 6.5: The standard computation of ݇ SpMVs on the GPU, ݔ௝
௜ is the ݆-th

component of ݔ௜ ൌ .ሺ଴ሻݔ௜ܣ	

6.4.1 Matrix Powers on GPU Global Memory

In this section the performance of the proposed implementation of the matrix

powers kernel on GPU global memory is studied using ten matrices (Fig. 6.4) from

Pwtk

Wind Tunnel
(218K, 12M, 55)

Cant

FEM cantilever
(62K, 4M, 65)

Cfd2

Pressure matrix
(123K, 3.1M,25)

Gearbox
Aircraft flap
actuator

(153K,9.1M, 59)

2d 9‐pt
9‐pt operator on

2Dmesh
(1M, 9M, 9)

mc2depi
2D Markov
model

(525K, 2.1M, 4)

Shipsec

FEM ship section
(141K, 7.8M, 55)

Xenon
Complex zelolite

csrytals
(157K, 3.9M, 25)

Rajat31

Circuit simulation
(4.6M, 20.3M, 84)

Cube_coup3d
coupled

consolidation
(2.1M, 124M, 59)

Standard Implementation of ݇ SpMVs

for ݅ ൌ 1 to ݇ do

 for each partition (cache block)

 transfer the partition to GPU Global memory

 call a GPU kernel to compute ݔ௝
ሺ௜ሻ

 (for all ݆ belonging to the current partition)

 transfer ݔ௝
ሺ௜ሻ

 to CPU (for all ݆ belonging to the current partition)

 remove the current partition from global memory

 103

the University of Florida matrix repository [35]. All matrices are cache blocked

assuming only one fourth of the matrix can be stored in global memory at one time.

The ݇ SpMV standard operations in equation 6.1 are computed using the

implementation in Fig. 6.5.

Fig. 6.6 shows the performance of the matrix powers kernel for global memory

cache blocking (the best performance obtained for all ݇ ൏ 40). Speedups of up to 5.7

and 4.98 are achieved for well structured matrices, cant and 2d-9pt. The naive

SpMV performance is lower for matrices with smaller numbers of non-zeros per row

such as 2d9pt and mc2depi. The CUSPARSE SpMV implementation performs

poorly for such problems due to an increase in thread divergence. The extra flops

performed in the matrix powers kernel (for the best ݇) compared to ݇ steps of the

standard SpMV is shown in Table 6.1. For an unstructured matrix such as xenon

that achieves the least speedup from the matrix powers kernel, in only 5 steps of the

matrix powers kernel up to 23% more flops are computed (Table 6.1). Upperbound

in Fig. 6.6 is computed for the best performing ݇ using:

ݕݐ݅ݏ݊݁ݐ݊݅_ܿ݅ݐ݄ܽ݉ݐ݅ݎܽ ሺ݉ܽݔ݅ݎݐ ሻݏݎ݁ݓ݋݌
ݕݐ݅ݏ݊݁ݐ݊݅_ܿ݅ݐ݄ܽ݉ݐ݅ݎܽ ሺܸܵܯ݌ሻ

. ሻ 6.2ܸܯ݌ሺܵ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌

where the arithmetic intensity is the effective flops to bytes transferred ratio. The

generated x୧ vectors (where ݔ௜ ൌ ሺ଴ሻ) are transferred to the CPU for both theݔ௜ܣ	

naive SpMV and matrix powers kernels at each step. The aforementioned transfers

are also included in computing the upperbound. Table 6.1 shows the fraction of

total time spent in communicating data between GPU and CPU memory for all the

tested problems (for the best performing k). The table shows on average 90 percent

of the SpMV kernel execution time is spent in transferring data between CPU and

GPU global memory which further justifies the importance of avoiding

communication using the matrix powers kernel. For matrices such as 2d-9pt and

 104

mc2depi, which have the least number of non-zeros per row, a smaller percentage of

total time is spent in communicating data. Also, compared to other matrices, the

performance gap between the matrix powers kernel and the upperbound is larger for

the aforementioned matrices. This is because the time spent in computing

operations such as spreading the initial and source vectors at each step of the

matrix powers kernel are no longer negligible for these problems. Increased thread

divergence on the GPU for matrices with less number of non-zeros per row also

increases the execution time of arithmetic computations for 2d9pt and mc2depi.

Fig. 6.6: Performance of the matrix powers kernel cache blocking for global memory

on NVIDIA GTX480. The “AkX” indicates the best performance obtained for all

݇ ൏ 40. The label “upper bound” shows the performance achievable via scaling the

standard ݇ SpMV operations by the change in arithmetic intensity (equation 6.2).

The “SpMV” bar shows the performance achieved from the standard ݇ SpMV

implementation using CUDA sparse library [89].

0

1

2

3

4

5

6

G
F

lo
p
/
s

Upperbound AkX SPMV

 105

6.4.2 Matrix Powers on GPU Shared Memory

The performance of the matrix powers kernel on shared memory (cache blocking

for shared memory) is tested for a pentadiagonal matrix with 100K rows and 500K

non-zeros. Since shared memory is divided between the active thread blocks per

GPU streaming multiprocessor, for the tested matrix the partitioning stage was

only able to generate partitions for a maximum of four thread blocks per SM.

Fig. 6.7 shows the performance of the matrix powers kernel for different ݇ and

possible thread blocks per SM. As shown for a pentadiagonal matrix, maximum

performance is achieved when the active thread blocks per SM is set to 3. For larger

TBs per SM, the small size of shared memory allocated to each thread block either

leads to the failure in the partitioning phase or increases the redundant

computations related to ghost rows in the matrix powers kernel. Smaller TBs/SM

on the other hand, reduce the GPU resource occupy leading to poor performance.

Fig. 6.8 shows the effects of increasing ݇ for the best TBs/SM chosen by the

auto-tuner, which was 3 for the tested matrix. The matrix powers kernel achieved

the best performance for ݇ equal to 15 leading to 1.4 speedup compared to the

standard SpMV implementation. Table 6.2 shows that for the optimum ݇ , 30

percent extra flops are performed compared to the naive implementation and 1131

thread blocks are launched on the GPU to compute the matrix powers kernel for

the tested pentadiagonal matrix.

Comparing Table 6.1 and Table 6.2, we find that the extra flops considerably

grow when generating cache blocks for shared memory, decreasing the performance

of the matrix powers kernel for shared memory cache blocking. Our experiments

show that implementing the matrix powers kernel on architecture such as GPUs

that have very small cache sizes, depends mostly on the partitioning technique and

matrix structure. The partitioning stage is not able to create very small cache

blocks for the tested matrices and the 1d5pt stencil matrix was the only matrix

 106

with solid performance. Also since the hardware manages the execution of threads

as well as data movement and prefetching, maintaining a balance between resource

occupancy and acceptable partitions highly depends on the auto-tuning phase. We

will study other partitioning schemes and enhance our auto-tuner to increase the

performance of the matrix powers kernel for shared memory in future work.

Table 6.1: The best speedup of the matrix powers kernel compared to naive SpMV, fraction

of total time spent in communicating data in the naïve SpMV implementation and extra

computed flops in the matrix powers kernel performing ݇.

Matrix pwtk 2d9pt cfd2 rajat xenon mc2depi
cube

coup
cant shipsec1 gearbox

݇ 15 34 7 15 5 11 8 14 6 7

Speedup 4.92 4.98 3.79 3.49 2.85 3.53 3.98 5.7 2.88 3.21

Communication

vs. Total time
91% 84% 90% 87% 87% 78% 88% 93% 93% 96%

AkXflops/

Naiveflops
1.3 1.1 1.2 1.03 1.23 1.02 1.22 1.16 1.24 1.26

Fig. 6.7: The speedups achieved for equation for the matrix powers kernel on shared

memory (test matrix: a pentadiagonal matrix) for different thread blocks per SM (H

in the figure) and ݇.

0

0.2

0.4

0.6

0.8

1

1.2

k=1 k=2 k=3 k=4 k=5 k=6

S
p
e
e
d
u
p

H=2 H=3 H=4

 107

Fig. 6.8: The speedups achieved from equation for the matrix powers kernel on

shared memory (test matrix: a pentadiagonal matrix) for the best performing

number of thread blocks per SM (TB/SM) and different ݇.

Table 6.2: The extra floating point operations performed in the matrix powers kernel for
shared memory compared to naive the SpMV implementation and the total number of

thread blocks launched for each ݇.

݇ 2 3 4 5 6 10 15 20 30

AkXflops/

Naiveflops
1.02 1.04 1.06 1.08 1.1 1.19 1.3 1.8 2.2

Thread

Blocks
1024 1024 1024 1024 1024 1026 1132 2036 2017

6.5 Conclusion and Future Work

The matrix powers kernel in communication-avoiding Krylov techniques is

accelerated and speedups of upto 5.7 are obtained for global memory cache blocking

compared to the standard implementation of ݇ SpMV operations. The matrix

powers kernel shared memory cache blocking is also implemented and tested on a

pentadiagonal matrix; in future work we intend to enhance the performance of this

kernel by implementing other matrix partitioning schemes and enhancing the auto-

tuning phase. The performance of the matrix powers kernel in Krylov subspace

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

k=1 k=2 k=3 k=4 k=5 k=6 k=10 k=15 k=20 k=30

S
p
e
e
d
u
p

 108

methods will be studied and preconditioners such as the sparse approximate inverse

will be used to enhance the convergence of communication-avoiding KSMs.

 109

Chapter 7 CONCLUSION AND FUTURE WORK

A brief outline of the main content and contributions of this work (Section 7.1)

along with possible extensions to future work (Section 7.2) are presented in this

chapter.

7.1 Conclusion

The initial two chapters of the thesis give an introduction to scientific

computing and Krylov subspace techniques (Chapter 1) and architecture

specifications and programming challenges of graphic processing units (Chapter 2).

The proceeding four chapters introduce major contributions of the work which are

outlined in the following:

 The sparse matrix vector multiplication kernel is accelerated on NVIDIA

GPUs using a new algorithm called Prefetch-CSR (PCSR). Major

contributions in the proposed algorithm are the introduction of a new

partitioning scheme, a new sparse storage format suitable for GPUs, parallel

reduction of the value vector via zero padding and data prefetching within a

GPU thread block. Compared to previous implementations of the SpMV

kernel on NVIDIA GT8800 the Prefetch-CSR algorithm was on average 3.37

times faster for the tested matrices.

 The Chronopoulos [8] variant of the conjugate gradient method is for the

first time accelerated on GPUs. By fusing the main computing kernels in the

aforementioned implementation, memory references and GPU kernel calls are

reduced. Frequently used vectors are also loaded in to GPU caches (texture

memory) to reduce the data communication overhead. Finally the PCSR

SpMV kernel is further optimized and used in the GPU implementation of

the Chronopoulos conjugate gradient implementation. The proposed

optimizations increased the performance of the preconditioned conjugate

 110

gradient algorithm on NVIDIA G80 and GT200 up to 3.4 and 2.5

respectively compared to previous accelerations of PCG on GPUs.

 The sparse approximate inverse preconditioner is accelerated on GPUs via

computing columns of the preconditioner in parallel. Techniques to manage

the limited memory space on GPU global memory for large problems, solve

local systems within a GPU warp, gather the generated columns and

assemble the preconditioner are proposed. Finally, the generated

preconditioner is transferred to a BiCGStab iterative solver to enhance its

convergence rate. For the tested matrices the SAI preconditioner was

generated on average 28 times faster on GTX480 compared to the time

required to create the same preconditioner on a single AMD Opteron 252

processor. The preconditioner is generated in approximately the same time

on NVIDIA GTX480 and 16 AMD processors.

 The communication-avoiding matrix powers kernel is implemented on

NVIDIA GPUs to reduce the communication overhead within the GPU

memory hierarchy and between the GPU and CPU memory in Krylov

subspace techniques. By dividing the matrix into balanced partitions that fit

into the desired memory spaces and choosing the best algorithm in the auto-

tuning phase, speedups of up to 5.7 are achieved for the ݇ -step matrix

powers kernel compared to ݇ steps of the standard SpMV kernel on GTX480.

Optimizations and techniques presented throughout this work are tested on

manycore GPUs; however, they are broadly applicable to current and future parallel

architectures. The proposed sparse data structures and storage formats, data

partitioning schemes, memory allocation strategies, communication-avoiding

techniques and many other optimizations, exploit fine grain parallelism in compute

intensive kernels in KSMs and can be used to efficiently implement and accelerate

these kernels on modern manycore architecture.

 111

7.2 Future Work

As the number of computing cores in processors increase, algorithms have to be

modified to efficiently exploit fine grain parallelism and fully utilize the available

resources on modern architectures. Techniques and algorithms proposed in this

work enable the parallel execution of compute intensive kernels in Krylov solvers on

modern manycore architectures. The proposed methodologies can be used in future

manycore architectures such as Intel MIC processors and heterogeneous computing

systems composed of different types of computational units.

Adaptive SAI preconditioning techniques will be implemented on GPUs in

future work and used as a smoother in multigrid techniques [101]. SAI

preconditioners are also suitable candidates for communication-avoiding Krylov

techniques since columns of the preconditioner can be generated independently

using only local partitions of the matrix. We intend to use this preconditioner to

enhance the convergence rate of communication-avoiding KSMs in future work.

New matrix partitioning schemes will be implemented to enhance the

performance of the matrix powers kernel on shared memory and more problems will

be tested. Finally the matrix powers kernel on GPUs will be integrated into

communication-avoiding Krylov techniques proposed in [10].

 112

References

[1] Department of Energy FY 2012 Congressional Budget Req.,www.cfo.doe.gov/budget/12budget/content

/volume4.pdf

 [2] Y. Liang, “The use of parallel polynomial preconditioners in the solution of systems of linear equations”,

Thesis, Faculty of informatics, University of Ulster, 2005.

[3] Z. Bai, et al., “LAPACK users guide”, 3rd Edition, SIAM, http://www.netlib.org/lapack/index, 1999.

[4] S. F. Ashby, “Minimax polynomial preconditioning for Hermitian linear systems”, SIAM J. Matrix Anal.

Appl., 12(4), pp. 766-789, 1991.

[5] Y. Saad, “Iterative methods for sparse linear systems”, SIAM, Philadelphia, pp. 10-349, 2003.

[6] M. R. Field, “Optimizing a parallel Conjugate Gradient solver”, SIAM J. Sci. Comput. 19(1), pp. 27-37,

1998.

[7] J. R. Shewchuk, “An introduction to the conjugate gradient method without the agonizing pain”,

Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

[8] A. Chronopoulosand C. W. Gear, “s-step iterative methods for symmetric linear systems”, J. Comput.

Appl. Math., vol. 25, no. 2, pp. 153-156, 1989.

[9] P. Sonneveld, “A fast Lanczos-type solver for nonsymmetric linear systems”, SIAM J. Sci. Statist.

Comput., vol. 10, no.1, pp. 36-52, 1989.

[10] M. Hoemmen, “Communication-avoiding Krylov subspace methods”. Thesis UC Berkeley, Department

of Computer Science, 2010.

[11] D. Fernandez, D. Giannacopoulos, and W. Gross, “Efficient multicore sparse matrix-vector

multiplication for FE electromagnetics”, IEEE Trans. on Mag., vol. 45, no. 3, pp. 1392-1395, Mar. 2009.

[12] D. Fernandez, D. Giannacopoulos, and W. J. Gross, “Multicore acceleration of CG algorithms using

blocked-pipeline-matching techniques,” IEEE Trans. on Mag., vol. 46, no. 8, pp. 3057-3060, 2010.

[13] E. J. Im, and K. A. Yelick, “Optimizing sparse matrix vector multiplication on SMPs”, in Proceedings

of the SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, USA, 1999.

[14] R. W. Vuduc, “Automatic performance tuning of sparse matrix kernels”, PhD Thesis, University of

California Berkeley, 2003.

[15] E. J. Im, K. Yelick, and R. Vuduc, “Sparsity: optimization framework for sparse matrix kernels”,

International Journal of High Performance Computing Applications, vol. 18, no. 1, pp. 135-158, 2004.

[16] Berkeley Benchmarking and Optimization Group: http://bebop.cs.berkeley.edu

[17] R. Vuduc, J. W. Demmel, and K. A. Yelick. “OSKI: A library of automatically tuned sparse matrix

kernels”, Journal of Physics Conference Series, 16, pp. 521-530, 2005.

[18] http://bebop.cs.berkeley.edu/poski/index.php

[19] S. Toledo, “Improving the memory-system performance of sparse-matrix vector multiplication”, IBM

Journal of Research and Development, vol. 41, no. 6, pp. 711-725, Nov, 1997.

 113

[20] R. Nishtala et al., “When cache blocking of sparse matrix vector multiply works and why”, Applicable

Algebra in Engineering Communication and Computing, vol. 18, no. 3, pp. 297-311, May, 2007.

[21] S. W. Williams et al., “The potential of the cell processor for scientific computing”, in Proceedings of the

3rd Conference on Computing Frontiers, pp. 9-20, Italy, 2006.

[22] S. Williams et al., “Optimization of sparse matrix vector multiplication on emerging multicore

platforms”, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp. 38:1--38:12, Reno,

Nevada, 2007.

[23] J. W. Demmel, M. T. Heath, and H. A. Van der Vorst, “Parallel Numerical Linear Algebra”, CSD-92-

703, UC-Berkeley, EECS Technical Rreports, October 6, 1992.

[24] W. A. Wiggers et al., “Implementing the conjugate gradient algorithm on multicore systems”, 2007

International Symposium on System-on-Chip Proceedings, pp. 11-14, 2007.

[25] J. Dongarra et al., “Solving linear systems on vector and shared memory computers”, USA: Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991.

[26] M. Mehri Dehnavi et. al., “Parallel Sparse Approximate Inverse Preconditioning on Graphic Processing

Units”, to appear in IEEE Transactions on Parallel and Distributed Systems, 2012.

[27] J. N. Shadid and R. S. Tuminaro, “A comparison of preconditioned nonsymmetric Krylov method on a

large-scale MIMD machine”, SIAM J. Sci. Comput. 15(2), pp. 440-459, 1994.

[28] A. M. Bruaset, “A Survey of preconditioned iterative methods, longman scientific & technical”, Co-

published in the United States with John Wiley & Songs, Inc., New York, 1995.

[29] G. K. Konstadinidis, “Challenges in microprocessor physical and power management design”, in VLSI

Design, Automation and Test, pp. 9-12, 2009.

[30] P. T. Stathis, “Sparse matrix vector processing formats”, PhD Thesis, Delft University of Technology,

2004.

[31] I. S. Duff, A. M. Erisman, and J. K. Ried, “Direct methods for sparse matrices”, Clarendon Press,

Oxford, 1986.

[32] K. Gallivan, A. Sameh, and Z. Zlatev, “A parallel hybrid sparse linear solver system solver”, Computing

Systems in Engineering, June 1990.

[33]R. Boisvert et al., “matrix market”, National Institute of Standards and Technology (NIST),

http://math.nist.gov/MatrixMarket/, Gaithersburg, Maryland, 2011.

[34] T. A. Davis, and Y. Hu, “The university of Florida sparse matrix collection”, ACM Transactions on

Mathematical Software (to appear), http://www.cise.ufl.edu/research/sparse/matrices, January, 2009.

[35] https://computing.llnl.gov/tutorials/parallel˙comp/

[36] www.setiathome.berkeley.edu

[37] “Cell Broadband Engine Programming Handbook”, version 1.1, New York: IBM,

www.ibm.com/developerworks/power/cell/documents.html, 2008.

[38] Intel MIC architecture:

 114

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-

many-integrated-core-architecture.html

[39] M. Flynn, “Some computer organizations and their effectiveness”, IEEE Trans. Comput. vol. 21, issue 9

pp. 948-960, 1972.

[40] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete Reference. MIT

Press Cambridge, MA, USA. ISBN 0-262-69215-5, 1995.

[41] OpenMP Application Program Interface, version 3.0, 2008, http://www.openmp.org/mp-

documents/spec30.pdf.

[42] NVIDIA downloads and documentation [Online]. Available: http://developer.nvidia.com/cuda-toolkit-

downloads.

[43] NVIDIA CUDA [Online]. Available: http://developer.nvidia.com/object/cuda.html.

[44] K. Karimi, N.G. Dickson, F. Hamze, “A performance comparison of CUDA and Open CL”, Int. J. High

Perform. Comput. Appl., 2011.

[45] CUDA occupancy calculator:

http://developer.download.nvidia.com/compute/cuda/4˙0/sdk/docs/CUDA˙Occupancy˙Calculator.xlsila

ble:

[46] J. D. Owens et al., “A survey of general-purpose computation on graphics hardware”, Comput. Graphics

Forum, pp. 80-113, 2007.

[47] L. Buatois, G. Caumon, and B. Levy, “Concurrent number cruncher: an efficient sparse linear solver on

the GPU”, in High Performance Computing and Communications. Berlin, Germany: Springer-Verlag,

2007, vol. 4782, Lecture Notes in Computer Science, pp. 358-371.

[48] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives for GPU computing”, in Proc.

Graphics Hardw., 2007, pp. 97-106.

[49] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on CUDA,” NVIDIA Tech. Rep.,

2008.

[50] S. Georgescu and H. Okuda, “GPGPU-Enhanced Conjugate Gradient Solver for Finite Element

Matrices”, Proc. of The Second international Workshop on Automatic Performance Tuning, 2007.

[51] D. Goddeke, R. Strzodka, and S. Turek, “Accelerating double precision FEM simulations with GPUs”,

ASIM, 2005.

[52] A. Cevahir, A. Nukada, and S. Matsuoka, “High performance conjugate gradient solver on multi-GPU

clusters using hypergraph partitioning”, J. of Research and Development, vol. 5, Issue. 1, pp. 83-91, 2010.

[53] M. Mehri Dehnavi, D. Fernandez and D. Giannacopoulos, “Finite element sparse matrix vector

multiplication on GPUs”, IEEE Trans. on Mag., vol. 46, no. 8, pp. 2982-2985, 2010.

[54] J.M. Jin, “The finite element method in electromagnetics”, Wiley-IEEE Press, pp. 19-44, 2002.

[55] R. Barrett et al., “Templates for the Solution of Linear Systems”, SIAM, 1994.

[56] J. Zhongxiao and Z. Baochen, “A power sparse approximate inverse preconditioning procedure for large

sparse linear systems”, Numerical Linear Algebra with Applications, vol. 16, no. 4, pp. 259-299,

 115

2009.

[57] E. Chow, “Parallel implementation and practical use of sparse approximate inverse preconditioners with

a priori sparsity patterns”, Int. J. High Perform. Comput. Appl., vol. 15, no. 1, pp. 56-74, 2001.

[58] E. Chow, “A priori sparsity patterns for parallel sparse approximate inverse preconditioners,” SIAM J.

Scientific Computing, vol. 21, no. 5, pp. 1804-1822, 1999.

[59] https://computation.llnl.gov/casc/parasails/parasails.html.

[60] T. Huckle, A. Kallischko, A. Roy, M. Sedlacek, and T. Weinzierl, “An efficient parallel implementation

of the MSPAI preconditioner,” Parallel Computing, vol. 36, no. 5-6, pp. 273-284, 2010.

[61] M.J. Grote and T. Huckle, “Parallel preconditioning with sparse approximate inverses”, SIAM J.

Scientific Computing, vol. 18, no. 3, pp. 838-853, 1997.

[62] P. Raghavan and K. Teranishi, “Parallel hybrid preconditioning: incomplete factorization with selective

sparse approximate inversion,” SIAM J. Scientific Computing, vol. 32, no. 3, pp. 1323-1345, 2010.

[63] P. Gonzalez, T. F. Pena, and J. C. Cabaleiro, “Parallel sparse approximate preconditioners applied to

the solution of BEM systems,” Engineering Analysis with Boundary Elements, vol. 28, pp. 1061-

1068, 2004.

[64] M. Benson, J. Krettmann, and M. Wright, “Parallel algorithms for the solution of certain large sparse

linear systems”, International J. of Computer Mathematics, vol. 16, no. 3-4, pp. 245-260, 1984.

[65] S. T. Barnard, L. M. Bernardo, and H. D. Simon, “An MPI implementation of the SPAI preconditioner

on the T3E”, International J. of High Performmance Comput. Appl., vol. 13, no. 2, pp. 107-123,

2010.

[66] G. A. Gravavis, P.I. Matskanidis, K.M. Konstantinos, E.A. Lipitakis, “Finite element approximate

inverse preconditioning using POSIX threads on multicore systems,” International Multiconference on

Computer Science and Information Technology - IMCSIT, pp. 297-302, 2010.

[67] G. A. Gravavis, “High performance inverse preconditioning,” Archives of Computational Methods in

Engineering, vol. 16, no. 1, pp. 77-108, 2009.

[68] K. Xu, D. Z. Ding, Z. H. Fan and R. S. Chen, “FSAI preconditioned CG algorithm combined with

GPU technique for the finite element analysis of electromagnetic scattering problems,” Finite Elements

in Analysis and Design, vol. 47, no. 4, pp. 387-393, 2011.

[69] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and T. Purcell, “A survey

of general-purpose computation on graphics hardware”, Computer Graphics Forum, vol. 26, no. 1, pp.

80-113, 2007.

[70] D. F. Cosgrove, J.C. Dias, and A. Griewank, “Approximate inverse preconditioning for sparse linear

systems”, International J. of Computer Mathematics, vol. 44, pp. 91-110, 1992.

[71] E. Chow and Y. Saad, “Approximate inverse preconditioners via sparse-sparse iterations”, SIAM J.

Scientific Computing, vol. 19, no. 3, pp. 995-1023, 1998.

[72] http://www.computational.unibas.ch/software/spai/spaidoc.html.

[73] M. J. Grote and H. D. Simon, “Parallel preconditioning and approximate inverses on the Connection

 116

Machine”, Parallel Processing for Scientific Computing, vol. 2, p. 519-523.

[74] T. Huckle, “Approximate sparsity patterns for the inverse of a matrix and preconditioning”,

Preliminary Proceedings IMACS World Congress on Scientific Computation, 1997.

[75] L. Kolotilina, “Explicit preconditioning of systems of linear algebraic equations with dense matrices”,

SIAM Journal on Matrix Analysis and Applications, vol. 13, pp. 2566-2573, 1992.

[76] L.Y. Kolotilina, and A.Y. Yeremin, “Factorized sparse approximate inverse preconditionings I.

theory”, SIAM Journal on Matrix Analysis and Applications, vol. 14, no. 1, pp. 45-58, 1993.

[77] M. Benzi, C.D. Meyer, and M. Tuma, “A Sparse approximate inverse preconditioner for the Conjugate

Gradient method”, SIAM J. Scientific Computing, vol. 17, no. 5, pp. 1135-1149, 1998.

[78] M. Benzi and M. Tuma, “A sparse approximate inverse preconditioner for nonsymmetric linear

systems”, SIAM J. Scientific Computing, vol. 19, no. 3, pp. 968-994, 1998.

[79] M. Benzi and M. Tuma, “A comparative study of sparse approximate inverse preconditioners”, Applied

Numerical Mathematics, pp. 305-340, 1999.

[80] M. Bollhofer and V. Mehrmann, “Algebraic multilevel methods and sparse approximate inverses”,

SIAM Journal on Matrix Analysis and Applications, vol. 24, no. 1, pp. 191-218, 2002.

[81] M. Bollhofer and Y. Saad, “A factored approximate inverse preconditioner with pivoting”, SIAM

Journal on Matrix Analysis and Applications, vol. 23, no. 3, pp. 692-705, 2001.

[82] S. A. Kharchenko, L. Yu. Kolotilina, A. A. Nikishin, and A. Yu. Yeremin, “A robust AINV-type

method for constructing sparse approximate inverse preconditioners in factored form”, Numerical Linear

Algebra with Applications, vol. 8, no. 3, pp. 165-179, 2001.

[83] M. Benzi, M. Tuma, “A comparative study of sparse approximate inverse preconditioners”, Journal of

Applied Numerical Mathematics, vol. 30, pp. 305-340, 1999.

[84] W. Tang, “Towards an effective sparse approximate inverse preconditioner”, SIAM Journal on Matrix

Analysis and Applications, vol. 20, pp. 970–986, 1999.

[85] J. Cosgrove, J. Diaz, and A. Williams, “Structural properties of the graph of augmented sparse

approximate inverses”, Proc. Symposium on Applied Computing, pp. 131-136, 1990.

[86] G. Alljeon G, M. Benzi, and l. Giraud, “Sparse approximate inverse preconditioning for dense linear

systems arising in computational electromagnetics”, Numerical Algorithms, vol. 16, pp. 1-15, 1997.

[87] W. Tang, W. Wan, “Sparse approximate inverse smoother for multigrid”, SIAM Journal on Matrix

Analysis and Applications, vol. 21, pp. 1236–1252, 2000.

[88] T. D. Davis, “Direct methods for sparse linear systems”, SIAM, pp. 7-17, 2006.

[89] NVIDIA CUSPARSE Library:

http://developer.download.nvidia.com/compute/cuda/40rc2/toolkit/docs/CUSPARSE˙Library.pdf.

[90] NVIDIA CUBLAS:

http://developer.download.nvidia.com/compute/cuda/2˙0/docs/CUBLAS˙Library2.0.pdf.

[91] https://www.sharcnet.ca.

 117

[92] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick, “Avoiding communication in

computing Krylov subspaces”, Technical Report UCB/EECS-2007-123, University of California

Berkeley EECS, 2007.

[93] J.V. Rosendale, “Minimizing inner product data dependencies in conjugate gradient iteration”,

IEEE Computer Society Press, Silver Spring, 1983.

[94] H.F. Walker, “Implementation of the GMRES method using Householder transformations”,

SIAM Journal on Scientific and Statistical Computing, pp. 9-152, 1988.

[95] A.C. Hindmarsh and H.F. Walker, “Note on a Householder implementation of the GMRES

method”, Technical report, Lawrence Livermore National Lab., USA, 1986.

[96] W.D. Joubert and G.F. Carey, “Parallelizable restarted iterative methods for nonsymmetric

linear systems”, Part I: Theory. International Journal of Computer Mathematics, 44(1), pp. 243-

267, 1992.

[97] Z. Bai, D. Hu, and L. Reichel, “A Newton basis GMRES implementation”, IMA Journal of

Numerical Analysis, 14(4), pp. 563-581, 1994.

[98] M. Mohiyuddin, M. Hoemmen, J. Demmel and K. Yelick, “Minimizing. communication in sparse

matrix solvers”, Proceedings of the 2009 ACM/IEEE Conference on Supercomputing, New York,

USA, Nov 2009.

[99] http://glaros.dtc.umn.edu/gkhome/metis/metis.

[100] http://www.cs.sandia.gov/Zoltan/.

[101] W. Tang and W. Wan, “Sprase approxiamte inverse smoother for multigrid”, SIAM. J. Matrix

Anal. Appl. vo. 21, pp. 1236-1252, 1999.

 118

Appendix I The BiCGStab Iterative Technique

Using a preconditioner ܯ and the following formulation, the preconditioned BiCGStab iterative

technique solves a linear system ݔܣ ൌ ܾ starting with an initial guess ݔ଴:

଴ݎ ൌ ܾ െ ଴ݔܣ

଴ߩ ൌ ߙ ൌ ߱଴ ൌ 1
଴ݒ ൌ ଴݌ ൌ 0

௜ߩ ൌ ሺ̂ݎ଴, ௜ିଵሻݎ
ߚ ൌ 	 ሺߩ௜ ⁄௜ିଵߩ ሻ ሺߙ ߱௜ିଵ⁄ ሻ⁄

௜݌ ൌ 	 ௜ିଵݎ ൅ ௜ିଵ݌ሺߚ െ ߱௜ିଵݒ௜ିଵሻ

ݕ ൌ ௜݌ଵିܯ
௜ݒ ൌ ݕܣ

ߙ ൌ ௜ߩ ሺ̂ݎ଴, ⁄௜ሻݒ

ݏ ൌ ௜ିଵݎ െ ௜ݒߙ

ݖ ൌ ݏଵିܯ
ݐ ൌ ݖܣ

߱௜ ൌ ሺିܯଵିܯ,ݐଵݏሻ ሺିܯଵିܯ,ݐଵݐሻ⁄
௜ݔ ൌ ௜ିଵݔ ൅ ݕߙ ൅ ߱௜ݖ

Choose a vector ̂ݎ଴such that ሺ̂ݎ଴, ଴ሻݎ ് 0

For ݅ ൌ 1,2,3,…

If ݔ௜ is accurate enough then quit

 119

Appendix II NVIDIA GPU Specifications

NVIDIA

GPU

generation

CUDA

cores

Processor

clock

Shared

memory

per SM

Registers

per SM

Off-chip

device

memory

Memory

bandwidth

GT8800 112 1.5GHZ 16KB 8K 512MB 57.6GB/sec

GTX280 240 1.29GHZ 16KB 16K 1GB 141.7GB/sec

GTX480 480 1.4GHZ 48KB 32K 1.5GB 177.4GB/sec

TESLA

M2070
448 1.15GHZ 48KB 32K 6GB 150GB/sec

