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ABSTRACT 

Computations related to many scientific and engineering problems spend most 

of their time in solving large, sparse linear systems. Improving the performance of 

these solvers on modern parallel architecture enables scientists to simulate large 

accurate models and manipulate massive amounts of data in reasonable time 

frames. Krylov subspace methods (KSM) are iterative techniques used to solve 

large sparse systems. The main time consuming kernels in KSMs are sparse 

matrix vector multiplication (SpMV), vector operations (dot products and vector 

sums) and preconditioner manipulation. This work presents techniques and 

algorithms to accelerate some of these kernels on a recent generation of parallel 

architecture called manycore processors. The performance of the proposed 

optimizations are tested on graphic processing units (GPUs) and compared to 

previous work.  

The SpMV kernel is accelerated on GPUs and speedups of up to 3.3 times are 

achieved compared to previous GPU implementations of the algorithm. The 

conjugate gradient iterative solver is accelerated on NVIDIA graphic cards and a 

12.9 fold speedup is achieved compared to optimized implementation of the 

kernel on multicore CPUs. The sparse approximate inverse preconditioner is 

accelerated on GPUs and used to enhance the convergence rate of the BiCGStab 

iterative solver. The preconditioner is generated on NVIDIA GTX480 in the same 

time as it takes 16 AMD 252 Opteron processors to generate the same 

preconditioner. 

Communicating data between levels of a memory hierarchy and processors is 

time consuming and costly in KSMs. Communication-avoiding (CA) Krylov 

solvers take ݇ steps of a KSM for the same communication cost as one step to 

reduce the communication overhead in standard KSMs. The matrix powers kernel 

in communication-avoiding Krylov solvers is accelerated on NVIDIA GPUs and 
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speedups of up to 5.7 are achieved for the tested problems compared to the 

standard implementation of ݇ SpMV kernels.   
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ABRÉGÉ 

Les calculs liés à de nombreux problèmes scientifiques et techniques demandent 

qu’on consacre beaucoup de temps à la résolution de grands systèmes linéaires 

creux. Améliorer la performance de ces résolveurs sur l’architecture paralléle 

moderne permet aux scientifiques de simuler de grands modèles précis et de 

manipuler une quantité massive de données dans des délais raisonnables. Les 

méthodes sous-espaces Krylov (KSM) sont des techniques itératives utilisées pour 

résoudre de grands systèmes creux. Les noyaux principaux qui demandent 

beaucoup de temps dans les KSMs sont la multiplication matrice-vecteur creuse 

(SpMV), les opérations sur les vecteurs (produits scalaires et sommes vectorielles) 

et la manipulation de préconditionneur. Ce travail présente les techniques et les 

algorithmes pour accélérer certains de ces noyaux sur une génération récente 

d’architecture parallèle appelée processeurs multicoeurs. La performance des 

optimisations proposées est testée sur des processeurs graphiques (GPU) et 

comparée aux travaux antérieurs. 

Le noyau SpMV est accéléré sur les processeurs graphiques et des 

accélérations jusqu’à 3.3 fois plus rapides sont atteintes par rapport aux 

implémentations de l’algorithme des processeurs graphiques précédents. Le 

gradient conjugué du résolveur itératif est accéléré sur des cartes graphiques 

NVIDIA et une accélération 12.9 fois plus rapide est réalisée par rapport à 

l’implémentation optimisée du noyau sur des processeurs multicœurs. Le 

préconditionneur approximatif inverse creux est accéléré sur les processeurs 

graphiques et utilisé pour améliorer le taux de convergence du résolveur itératif 

BiCGStab. Le préconditionneur est généré sur un NVIDIA GTX480 pour la 

même durée nécessaire à 16 processeurs AMD Opteron 252 pour générer le même 

préconditionneur. 
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La communication de données entre les niveaux d’une hiérarchie de 

mémoire et des processeurs est longue et coûteuse en KSMs. Les résolveurs sans 

communication (communication-avoiding ou CA) de Krylov n’utilisent qu’un 

nombre ݇  d’étapes d’une méthode de sous-espace de Krylov (KSM) pour 

un coût de communication équivalent comme une étape qui permet de réduire les 

frais généraux des communications dans les KSMs standards. Le noyau des 

pouvoirs de matrice dans les résolveurs de Krylov sans communication est 

accéléré sur les processeurs graphiques NVIDIA et des accélérations jusqu’à 5.7 

plus rapides sont atteintes pour les problèmes testés par rapport à 

l’implémentation standard de ݇ des noyaux SpMV. 
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Chapter 1 INTRODUCTION 

Simulations related to many physics and engineering problems have become 

larger and more complex in recent years leading to the design of faster and more 

powerful computing platforms. The new generation of supercomputers—multicore1, 

manycore2, petascale3 and exascale4 computers— will enable scientists and engineers 

to solve large accurate models and analyze massive quantities of data from a broad 

range of natural and engineering systems. On the path to extreme-scale computing, 

systems with hundreds of thousands of computing cores that can sustain a billion 

billion calculations per second are being built [1]. The future transition in computer 

architecture poses numerous scientific and technological challenges. Similar to the 

migration from vector to parallel computing systems that occurred 15 years ago, the 

transition to exascale computing will require adaptation, reformulation and redesign 

of algorithms to effectively exploit future parallel hardware systems. Numerical 

algorithms involved in simulations related to many complex scientific applications 

need to rely increasingly on fine grain parallelism and strong scaling.  

Krylov subspace methods (KSMs) are a popular class of iterative solvers used to 

solve systems from many scientific applications and real life problems. The solution 

of such systems can be a very time consuming process and can take several days or 

weeks on single-core CPUs. This work accelerates the main computing kernels in 

KSMs on the most up-to-date manycore architectures namely graphic processing 

units (GPUs). The reported performance and speedups are compared to the fastest 

available accelerations on modern multicore, manycore and multiprocessor hardware 

platforms.    

The first chapter is organized as follows:  

Section  1.1 describes various stages involved in transferring a physical model 

from real life problems to a computer program and introduces two of the popular 
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numerical techniques used in scientific simulations. Techniques to solve linear 

systems of equations specifically Krylov subspace methods are then described along 

with their main computing kernels in Section  1.2. The aforementioned section also 

briefly reviews major contributions of this work. Sparse matrices, their types and 

storage formats are introduced in Section  1.3. The importance of parallel scientific 

computations on modern architectures is detailed in Section  1.4 and the chapter is 

summarized afterwards. The outline and major contributions of the thesis are 

presented in the last section.    

1.1 Scientific Computing 

Many scientific applications can be formulated into mathematical models using a 

series of differential equations and then transferred into a numerical formula using 

numerical techniques such as the finite element model (FEM) and the finite 

difference time domain (FDTD) technique. The numerical representation is then 

translated into a programming model and executed on the desired hardware 

platform. The use of modern architectures and parallel processing for running real 

life applications and problems efficiently, reliably and quickly is called “High 

Performance Scientific Computing”. Fig.  1.1 shows the steps involved in transferring 

a physical model to a computer program, to be executed on state-of-the-art 

hardware platforms.  

The finite element method is a widely used numerical technique for the analysis 

and simulations of electromagnetic problems. Following are the basic steps involved 

in FEM: 

 Discretization of the domain.  

 Selection of the interpolation functions and formulation of the system. 

 Solution of the assembled system of equations. 
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One of the most time consuming steps in the finite element analysis is solving 

the system of equations. The system of equations from many real life 

electromagnetic problems are very large, thus, enhancing the execution time of FEM 

solvers is essential. The upcoming sections will describe techniques to solve large 

linear systems; this work adapts such techniques to better utilize the resources in 

modern architectures and to reduce the solution time of scientific problems. 

 

Fig.  1.1: The hierarchy of high performance scientific computing [1]. 

1.2 Systems of Linear Equations 

Numerical techniques in many scientific problems result in solving a linear 

system of equations which can be represented as 

ݔܣ ൌ ܾ  1.1

where ݔ ∈ 	ே is the unknown determined using the coefficient matrix	ܣ ∈ 	ேൈேand 

ܾ ∈ 	ே. The solution of equation  1.1 plays an essential role in simulating scientific 

applications and real life problems. For practical problems the size of matrix ܣ is 

very large which increases memory requirements for storing and solving the system. 

As the system grows the time to compute the solution will also considerably 

increase. Thus adapting such algorithms to run on modern architectures in a 

reasonable time frame with minimum storage requirements is fundamental in high 

performance scientific computing. Various algorithms to solve equation  1.1 are 

introduced in this chapter and time consuming computing kernels in these solvers 

are introduced.  
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Fig.  1.2: Solvers for linear systems of equations. 

1.2.1 The Solution of Linear Systems of Equations 

A linear system of equations can be solved using direct or iterative techniques 

[3]. Direct techniques are not a suitable candidate for vector and parallel machines 

due to their sequential and recursive nature [4]. A more viable alternative to solving 

large linear systems is using iterative solvers. Iterative techniques improve the 

solution of the linear system of equations in a sequence of iterations. Using an initial 

solution vector, an iterative technique and a termination criterion, the solution of a 

convergent system converges to a desired accuracy. The number of iterations 

required to reach the termination criteria is determined by the distribution of 

eigenvalues of the coefficient matrix ܣ.  Fig.  1.2 shows a classification of solvers for 

linear systems of equations. This work studies Krylov subspace techniques classified 

as non-stationary iterative solvers.   

Polynomial

Solve the system equations (Linear Systems): Ax=b

Iterative Methods Direct Methods

Cholesky
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…

Stationary Non-Stationary
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SSOR 

…
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Chebyshev
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…

Arnoldi
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1.2.2 Krylov Subspace Techniques 

Krylov subspace methods (KSM’s) are a large class of iterative techniques used 

to solve systems of linear equations from a broad range of applications.  A dominant 

computing kernel in standard KSMs is sparse matrix vector multiplication (SpVM 

or SMVM). Using one or more SpVM operations in each iteration, KSMs add 

vector(s) to a basis for one or more “Krylov subspace(s)” and in each iteration the 

best solution is selected from the expanding subspace, ሺݏ, ,ܣ ሻݒ ൌ  ݊ܽ݌ݏ

ሼݒ, ,ݒܣ	 …,ݒଶܣ , ݊ is an ܣ ሽ whereݒ௦ିଵܣ ൈ ݊ square matrix, ݒ is a length ݊ vector and 

 is a positive integer. Krylov subspace techniques can be categorized based on the ݏ

choice of subspaces and the way the system is preconditioned [5]. The most 

commonly used algorithms to compute the basis of these subspaces are Arnoldi, 

Lanczos and Bi-Lanczos [5]. Lancsoz algorithms are known as the symmetric version 

of Arnoldi methods while Bi-Lanczos techniques are a variant of Lanczos algorithms 

applicapable to non-symmetric problems. A variant of Lanczos and Bi-Lanczos 

algorithms are used to compute the solution of the tested problems in this work.  

The conjugate gradient method (CG) [5], [6] is a Lanczos based Krylov solver 

used for symmetric positive definite (SPD) matrices. The CG algorithm 

approximates the solution of the linear systems of equations based on orthogonal 

residuals and previous search directions. The two variants of the conjugate gradient 

technique used in this work, namely, Shewchuk [7] and Chronopoulos [8] are 

detailed in  Chapter 4.  

The biconjugate gradient stabilized (BiCGStab) iterative solver classified as Bi-

Lanczos algorithms is also used in this work ( Chapter 5). By generating a CG-like 

sequence of vectors, one based on the original coefficient matrix ܣ and the other 

based on ்ܣ, the solution of the linear system is solved using bi-orthogonal sequence 

of vectors and a smooth convergence behaviour [2]. The algorithm for the 

preconditioned BiCGStab solver used in  Chapter 5 can be found in Appendix I. In 
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the following section compute intensive kernels in the aforementioned Krylov solvers 

are discussed.  

1.2.3 Kernels in Krylov Methods 

Computing the solution of linear systems using iterative techniques such as 

KSMs can be very slow for large problems due to communication and computation 

cost of major computing kernels in KSMs. In this work the term “kernel” is used to 

represent time-consuming parts of Krylov methods. To accelerate the execution 

time of Krylov solvers on modern architectures, the most important computing 

kernels in these algorithms should first be identified. The four main kernels in KSMs 

are as follows [10]: 

 Sparse matrix vector multiplication: The SpMV kernel multiplies a matrix by 

a vector and stores the result. 

 AXPY: This class of kernels are classified as vector-vector operations and are 

represented in the form ݕ ≔ ݔߙ ൅  .ݕ

 Dot products: Another class of vector-vector operations in the form ߚ ≔

.∗ݕ  .ݔ

 Preconditioning: The next section discusses the importance of 

preconditioners. Generating the precondtitioner and applying it to the 

iterative solver are two separate kernels; the computing cost of the former is 

considered as part of the iterative solver. Applying the preconditioner ܯ, to 

the iterative solver usually involves an SpMV operation which multiplies 

either ܯ or ିܯଵ with a vector; the result is then used in the KSM.  

This work proposes techniques to accelerate the execution of the aforementioned 

kernels on modern architectures with many cores.  Chapter 3 parallelizes the 

execution of the SpMV kernel on NVIDIA GPUs; AXPY and dot products are 

computed in parallel and used in the CG and BiCGStab solvers in chapters 4 and 5.  
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All results in this work are compared to the best available accelerations on both 

GPUs and CPUs. Previous work on accelerating the above kernels on GPUs 

(manycore architectures) is surveyed in the related chapters ( Chapter 3 

and  Chapter 4); a survey of previous work on accelerating the aforementioned 

kernels on CPUs (multicore architectures) is provided in the following. One of the 

best performing optimizations proposed by Fernandez et al. [11], [12] is used as 

baseline CPU results for comparisons in  Chapter 3 and  Chapter 4. 

Optimization techniques used in modern architectures such as register and cache 

blocking, loop transformations, special diagonal storage of matrices and reordering 

[13], [14], [15] have mostly initiated from the Berkeley benchmarking and 

optimization (BeBOP) group [16] at UC-Berkeley and used in open source libraries 

such as OSKI (Optimized Kernel Interface) [17] and POSKI parallel OSKI) [18]. 

Such optimizations accelerate the execution of kernels such as SpMV on individual 

cores of an architecture. Other work such as [5], [19], [20] have also proposed 

techniques to reduce memory transfers, increase data locality and instruction level 

parallelism on a single-core. Williams et al. [21], [22] take advantage of the multiple 

cores on modern CPU architectures and show the importance of exploiting 

parallelism across multiple cores to enhance the performance of kernels such as 

SpMV. The conjugate gradient method has also been accelerated on multicore 

architectures in work such as [23], [24]. Vector units in modern architectures have 

been efficiently used in [25] by using special matrix formats. Work presented by 

Fernandez et al. [11], [12] not only exploits parallelism between the multiple cores of 

modern CPU but also uses vector operations to further enhance the performance of 

the SpMV and CG algorithms on modern CPUs. GPU accelerations of SpMV and 

CG kernels in this work have been compared to highly optimized CPU code 

provided in the aforementioned work. 
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 The “preconditioning” kernel in KSMs is introduced in detail in the next section 

and the sparse approximate inverse (SAI/SPAI [26]) preconditioner is generated on 

NVIDIA GPUs is  Chapter 5 and then applied to the BiCGStab solver. 

1.2.4 Preconditioning  

Iterative techniques used to solve large scale problems from practical 

applications generally have a slow convergence rate. The convergence of these 

problems depend on the condition number of the coefficient matrix ܣ  which is 

determined by the spectral property of the matrix [27], [28]. A preconditioner ܯ, 

can improve the convergence rate of the linear system ݔܣ ൌ ܾ by transforming the 

system to ିܯଵݔܣ ൌ ଵܾିܯ  and decreasing the condition number of the 

preconditioned matrix ିܯଵܣ. A system of equations can be preconditioned in three 

ways: 

 Left preconditioning: When the preconditioner is applied to the left hand side of 

the coefficient matrix resulting in the following system: ିܯଵݔܣ ൌ   .ଵܾିܯ

 Right preconditioning: This type of preconditioning does not effect the right 

hand side of the systems and is applied as follows: ିܯܣଵݑ ൌ ݔ ,ܾ ൌ   .ݑଵିܯ

 Split preconditioning: A preconditioned system with split preconditioning is 

represented as: ିܯଵିܯܣܮଵܴݑ ൌ ݔ ,ܾܮଵିܯ ൌ ܯ where ݑଵܴିܯ ൌ  .ܴܯܮܯ

Using any of the aforementioned preconditioning techniques, the number of 

iterations required to reach a desirable tolerance in the linear system reduces at the 

expense of constructing and storing ିܯଵ  and applying it in the iterative solver. 

Based on how they are constructed, preconditioners are classified as implicit or 

explicit. Implicit preconditioners compute the approximate of ܣ  while explicit 

preconditioners are approximates of the inverse of ܣ	  [28]. Sparse approximate 

inverse preconditioners are an important class of explicit preconditioners which are 

suitable for parallelization.  Chapter 5 introduces this class of preconditioners, 
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proposes techniques to generate them in parallel on NVIDIA GPUs and applies 

them to the BiCGStab iterative solver in parallel. A very detailed survey of all 

available work on SPAI preconditioners and work on accelerating this kernel on 

multicore, manycore and multiprocessors architectures is provided in the 

aforementioned chapter.      

1.2.5 Reducing Communication in Krylov Techniques  

Communication is defined as data movements in the memory hierarchy of a 

single processor or between different processors. One of the major bottlenecks in 

accelerating Krylov techniques on modern architectures is the limited memory 

bandwidth and data communication overhead. Krylov techniques and most of the 

kernels in such methods are memory-bound, i.e. communicating data within the 

memory hierarchy is a major performance limiting factor when accelerating these 

kernels on modern processors. Techniques proposed to accelerate the performance of 

Krylov techniques and their kernels in Chapter 3 and  Chapter 4 such as memory 

coalescing, data prefetching, fusing kernels, binding vectors to caches such as the 

texture memory, etc. reduce the communication overhead of these kernels on GPUs. 

While benefiting from the aforementioned techniques and optimizations in 

individual GPU kernel calls, a more aggressive approach in reducing memory 

communication overhead in Krylov techniques is studied in chapter 6. The 

aforementioned chapter is based on work titled communication-avoiding (CA) 

Krylov techniques introduced by the BeBOP research group [18] and extensively 

studied in Hommen’s thesis [10]. CA Krylov techniques reduce communication in 

Krylov solvers by taking ݇-steps of the iterative solvers at the same time; data will 

be on fast memory while the ݇ steps of iterative solver are taken at the same time, 

reducing memory references considerably. A detailed survey of communication-
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avoiding Krylov techniques is presented in Chapter 6 and the main computing 

kernel in these algorithms called the matrix powers kernel is accelerated on GPUs.  

1.3 Sparse Matrices 

Matrices from many partial differential equations (PDEs) based on numerical 

methods are usually large and have few non-zeros. Whenever the large number of 

zeros elements and their locations in a matrix can be used to better store and solve 

the system of equations the matrix is “sparse” [5].  Sparse matrices are defined by 

Duff [29] as the ratio of the zero to non-zero entries in a matrix and can be 

represented and operated in compressed formats introduced in Section  1.3.2 [30].   

1.3.1 Types of Sparse Matrices 

The distribution of non-zero elements in sparse matrices varies based on the 

properties of the original problem and the mesh generation technique used. If the 

non-zeros in the matrix form a regular pattern along diagonals, the matrix is 

referred to as structured. An unstructured sparse matrix on the other hand, consists 

of irregularly distributed non-zeros. The structure of a sparse matrix is important in 

high performance scientific computing. The memory required to store matrices as 

well as the time to operate on them can be reduced if the non-zeros in a matrix 

follow a structured pattern. 

1.3.2 Sparse Matrix Storage Formats 

Sparse matrices can be stored in compressed formats which only require 

allocating memory to their non-zeros elements. Various schemes exist to store sparse 

matrices and can be found in books such as [31]. This section briefly introduces 

some of the more important sparse matrix storage formats. The compressed sparse 

row (CSR) format stores the matrix using three arrays (Fig.  1.3). The value vector 

(VAL in Fig.  1.3)  stores the non-zero elements of the matrix in consecutive rows 

and the indices corresponding to each of these values are stored in another array 
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(INDX in Fig.  1.3). Pointers to the beginning of each row in the aforementioned 

arrays are stored into a third array (PTR in Fig.  1.3). If the matrix is stored in 

column order using the above format then the storage schemes is referred to as the 

compressed sparse column (CSC) storage format.  

 

Fig.  1.3: Compressed sparse row storage format. 

The non-zeros in diagonally dominant matrices are distributed in a small 

number of diagonals. These matrices can be stored using their diagonals in a format 

represented by Diagonal (1:n, 1:nd) [32], where nd is the number of diagonals and n 

is the matrix rank. The diagonal offsets are stored in another array OFF (1:nd) 

(Fig.  1.4). Another compressed storage format for sparse matrices suitable for vector 

machines is the Ellpack-Itpack format. The matrix is stored using two dense arrays. 

The non-zero values of the matrix are stored in the first array in row order while 

padded to match the size of the largest row in the matrix (C in Fig.  1.5). The 

column indices of each elements is stored in the other array (JC in Fig.  1.5). The 

CSR, CSC and diagonal matrix formats are used in this work to store both the 

coefficient matrices and the preconditioners. 
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Fig.  1.4: Compressed format representation of  diagonal matrices. 

 

Fig.  1.5: The Ellpack-Itpack format of the ܣ matrix from Fig.  1.4. 

Proposed algorithms and techniques in this work are tested using matrices from 

real applications. Two main matrix repositories were used to obtain the tested 

matrices, the Matrix Market repository [33] and the University of Florida Sparse 

Matrix collection [34].   

1.4 Parallel Scientific Computation 

The demand for more precise and complex simulations has increased 

considerably in the past few decades increasing the execution time of such problems 

on single-core CPUs. Building faster serial/single-core computers poses many 

physical and practical challenges such as increased wire delays, miniaturization 

limitations, manufacturing costs, etc. [35]. During the past 20+ years, Parallel 

Computing, defined as the simultaneous use of multiple computing resources to 

compute discrete parts of a problem in parallel, has been increasingly used to 

simulate large scale scientific problems. Complex problems can potentially be solved 

in a much shorter time with cheaper resources if executed in parallel. Parallel 
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computing also enables the use of non-local resources over a large network, also 

referred to as Cloud Computing. For example, over 2.9 million computers in 253 

countries are used by SETI@home [36]. Thus, the development of efficient methods 

to improve the performance of practical scientific problems on parallel processors is 

almost inevitable in future. 

A major challenge in parallel computing is the ability to choose an optimum 

hardware and parallelize the algorithms to achieve maximum performance and 

speed on the architecture. Originally introduced in 2001 with the IBM Power4 

processor and later integrated to in Sun UltraSPARC IV, AMD dual core Opteron, 

Cell Broadband engine [37] and Intel Pentium architecture, etc., multicore 

processors are a more recent and important class of parallel computers. 

Computations related to large complex problems are divided between threads 

executing in parallel on the existing cores of such architectures. Multicore processors 

with several tens and hundreds of cores are also referred to as manycore 

architectures. NVIDIA graphic cards are currently one of the most popular 

manycore architectures. Intel will soon be realising their many integrated cores 

(Intel MIC) [38] processors which have considerably more cores compared to their 

current multicore CPUs. NVIDIA GPUs are the main computing platforms used 

throughout this work; most of the optimization and accelerations proposed are 

applicable to architectures with tens or hundreds of cores and can be adapted to 

run on future manycore processors. 

Modern GPUs are not only powerful graphic engines but also highly parallel 

programmable manycore processors, allowing very fast manipulation of data. 

Because graphic cards possess much greater computational parallelism than single 

or multicore CPU computing platforms, to increase the speed and accuracy of real 

life problems, compute intensive kernels should be processed on the GPU. Various 

challenges exist in optimizing algorithms to run on graphic cards. Using the most 
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up-to-date version of GPUs and by achieving a thorough understanding of the 

compute intensive kernels described in Section  1.2, these kernels are accelerated to 

run in parallel on the many cores available on modern graphic cards. Whenever 

possible results achieved from accelerating kernels on graphic cards are compared to 

their parallel execution on other architectures such as Intel multicore CPUs and the 

Cell Broadband engine as well as multiple processors.   

1.5 Summary 

The main objective of this work and the importance of high performance 

computing for scientific applications were discussed in this chapter. Compute 

intensive kernels in Krylov subspace techniques were introduced and a summery of 

the compute intensive kernels accelerated in the thesis was provided along with 

literature review complementary to the previous work survey in each chapter.  

1.6 Thesis Outline and Contributions 

The rest of the thesis is organized as follows: 

  Chapter 2: Classifies general computer architectures and parallel computers 

and gives a detailed introduction to NVIDIA graphic cards, their 

architecture, programming model and optimization techniques to accelerate 

the execution of compute intensive kernels on such architectures. Other 

optimization methods used throughout this work to better utilize the 

available resources in many core and parallel architectures are also detailed 

in this chapter.  

  Chapter 3: The execution of the sparse matrix vector multiplication is 

accelerated on NVIDIA GPUs and compared to optimized implementations 

of the kernel on the CPU and Cell Broadband engine as well as previous 

work on GPUs. 
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  Chapter 4: A less common variant of the conjugate gradient method called 

the Chronopoulos variant is accelerated on the GPU and compared to the 

more popular Shewchuk variant. The Chronopoulos variant is shown to be 

better for parallelization on manycore architectures, the performance of the 

accelerated kernels compared to best available implementations of the CG 

method on GPU and multicore CPUs. 

  Chapter 5: The sparse approximate inverse preconditioner is, to our 

knowledge, for the first time accelerated on GPUs and then used in the 

BiCGStab iterative solver which is also implemented on the GPU. The 

proposed implementations are compared to the best available accelerations of 

SAI preconditioners on multiprocessor platforms.  

 Chapter 6: The communication-avoiding matrix powers kernel is accelerated 

on graphic cards for the first time on both GPU global and shared memory. 

The performance of the matrix powers kernel on GPUs is compared to 

optimized standard implementation of ݇ step SpMV on NVIDIA GPUs.  

Major contributions of the work are as follows: 

 A new partitioning scheme and sparse storage format called Prefetch-CSR is 

proposed to accelerate the execution of the SpMV kernel on manycore 

architectures which enhanced the performance of this kernel on NVIDIA 

GPUs considerably compared to previous accelerations. Novel techniques 

such as padding vectors with zero to enable parallel reductions, hiding 

memory access delays by prefetching consecutive matrix partitions are also 

proposed. 

 The Chronopoulos variant of the conjugate gradient method is for the first 

time accelerated on GPUs and shown to be a better alternative to the more 

common Shewchuk CG variant for manycore architectures. The Prefetch-
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CSR SpMV kernel is optimized to avoid atomic updates, kernels are fused to 

reduce kernel launch overheads and increase data locality.   

 The sparse approximate inverse preconditioner is accelerated on NVIDIA 

GPUs for the first time using the proposed GSAI algorithm. Novel 

techniques to manage GPU memory, compute columns of the preconditioner 

in parallel via thousands of threads, solve local systems, assemble the matrix 

in a compressed format on the GPU and transfer it to the iterative solver 

without going back to the CPU are introduced.  

 The communication-avoiding matrix powers kernel used to reduce 

communication in Krylov subspace techniques is for the first time 

implemented on NVIDIA GPUs. The matrix is partitioned to fit in the GPU 

global and shared memory to reduce the communication overhead of KSMs. 

The best performing matrix powers kernel and cache block size are 

determined in an auto-tuning stage to efficiently implement the 

aforementioned kernel on GPUs. The proposed techniques enhance the 

performance of KSMs on graphic cards and enable the fast execution of 

KSMs for large problems on manycore architectures.  
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Chapter 2 PARALLEL COMPUTING AND GRAPHIC PROCESSING UNITS 

Graphic cards have recently become very attractive hardware platforms for parallel 

scientific computations and are the main architecture used in this work. The 

objective of this chapter is to introduce the architectural and programming details 

of GPUs specifically NVIDIA graphic cards. A popular classification of general 

computer architectures and existing parallel processor memory models are 

introduced in Sections 2.1 and  2.2. Section 2.3 compares CPU and GPU 

architectures and their ability in accelerating parallel applications. The architectural 

and programming features of NVIDIA GPUs are introduced in Section  2.4 and 

Section  2.5, respectively. Techniques to optimize the performance of applications on 

NVIDIA GPUs are presented in Section  2.6; many of these techniques are used 

throughout this work to enhance the performance of the computing kernels on 

graphic cards. Some of the available libraries for accelerating various problems and 

kernels on GPUs are listed in Section  2.7. Finally, a summary of the chapter is 

provided in Section  2.8. 

2.1 Classification of  Computer Architectures 

A widely used classification of computer architectures was proposed by Flynn 

[39] in 1966. Based on how instruction and data are processed on the hardware, 

Flynn classifies computer architectures as:  

 Single Instruction, Single Data (SISD): Only one instruction and one data 

stream are used at each clock cycle, e.g., serial computers. 

 Single Instruction, Multiple Data (SIMD): Processors execute the same 

instruction on different data, e.g., GPUs, vector machines. 

 Multiple Instruction, Single Data (MISD): Using a single data stream each 

processing unit operates on data independently. 
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 Multiple Instruction, Multiple Data (MIMD): Every processor maybe 

operating on different data and executing different instruction streams. eg. 

super computers, networked computing clusters. 

SIMD, MIMD, and MISD are all types of parallel processors which are classified 

based on their memory architecture in the next section.  

2.2 Parallel Memory Architectures and Programming Models 

Based on the memory configuration, parallel processors are classified into three 

main categories: shared memory, distributed memory and hybrid models. The 

programming model used for each class of processors is different and depends on the 

processor memory model.  

2.2.1 Distributed Memory 

Inter-processor memories in distributed memory systems are connected using a 

network. Each processor has a separate memory space (Fig.  2.1) which is not 

mapped to others. If a processor requires data located in another memory space, the 

programmer has to explicitly manage how data is transferred. Distributed systems 

are easy to scale and data local to a processor can be accessed in a short time. 

Released in 1994, one of the most popular interfaces used for implementations on 

distributed systems is the message passing interface (MPI) [40].  

2.2.2 Shared Memory 

The processors in a shared memory system operate independently but share the 

same memory resources (Fig.  2.2). The shared memory space can either be accessed 

uniformly by all processors (Uniform Memory Access-UMA) or have a non-uniform 

access pattern (Non-Uniform Memory Access-NUMA). Programming models such as 

POSIX threads and OpenMP [41] are used in shared memory architectures such as 

Intel multicore. Proposed by NVIDIA, compute unified device architecture (CUDA) 
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is another application programming interface (API) used to program GPUs which 

are also classified as shared memory architectures.   

  

Fig.  2.1: The general memory model of distributed parallel architectures [35]. 

2.2.3 Hybrid Distributed-Shared Memory Model 

Hybrid memory models are a combination of shared and distributed memory 

architectures. By connecting shared memory processors (SMP) or GPUs through a 

network as shown in Fig.  2.3, a hybrid memory model is constructed. Compute 

intensive kernels can then be executed on local nodes and communication between 

different nodes is maintained explicitly using distributed memory programming 

models. For example, applications executing on a cluster of GPUs, benefit from 

parallelism on each GPU via programming models such as CUDA while parallelism 

and data communication between GPUs is maintained using programming 

interfaces such as MPI.  

Most of the hardware platforms used in this work such as NVIDIA GPUs, Intel 

multicore and the Cell Broadband engine belong to the shared memory model.   

2.3 Graphic Processing Units 

Forced by the fast growing video game industry, a class of shared memory 

manycore architectures called graphic processing units (GPUs) have recently 

become a popular architectural resource for scientific computing. As illustrated in 

Fig.  2.4 [42], the computing power and memory bandwidth of GPUs has grown 

significantly larger than multicore CPUs in the last few years. For example, GPUs 

such as NVIDIA GeForce GTX680 can perform up to 3 TFLOPs (tera floating 

Memory MemoryCPU CPU

Memory CPU MemoryCPU
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point operations per second) with bandwidths up to 190 GB/s (gigabytes per 

second) which is considerably larger than the maximum performance achieved from 

muticore CPUs. 

Fig.  2.2: Uniform Memory Access (left figure) and Non-Uniform Memory Access 

(right figure) shared memory architectures [35]. 

 

Fig.  2.3: A hybrid CPU memory model (left figure) and a hybrid CPU-GPU 

memory model (right figure) [35]. 

 

Fig.  2.4: CPU and GPU floating point operations per second and memory 

bandwidth (from NVIDIA programming guide [42]). 
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The large performance gap between GPUs and multicore CPUs is due to the 

difference in design philosophies of the two architectures. While cache memories 

reduce data and instruction access latencies, the large control logic in CPUs 

(Fig.  2.5) enables the execution of complex sequential code within a thread. GPUs, 

on the other hand, are designed to compute a large number of floating point 

operations in a very short time by maximizing chip area and power budget 

dedicated to arithmetic calculations. Graphic cards are optimized to launch massive 

numbers of threads, each executing relatively simple tasks which require a small 

logic unit. The many threads executing in parallel hide memory access latencies and 

reduce DRAM (dynamic random access memory) accesses via cached memory 

spaces. To conclude, GPUs are considered as numeric computing engines used to 

execute compute intensive sections of applications while complex sequential parts of 

the code are still computed on the CPU. 

Four major high-end graphic card vendors are NVIDIA, AMD (formerly ATI), 

Qualcomm and Intel. AMD Fusion announced in 2006, integrates a CPU and GPU 

in a mobile stand-alone GPU. The second generation of Fusion is expected to be 

released in June 2012. Intel released Knights Ferry, a prototype of their many 

integrated core (MIC) architecture, in 2010 and proposed to release the first 

commercial version in late 2012. NVIDIA is best known for its gaming cards, but 

with the introduction of general propose programming on GPUs researchers and 

scientists have been using NVIDIA cards for high performance computations in the 

past few years. NVIDIA GPUs are used throughout this work to measure the 

performance of proposed optimizations and techniques. The techniques and 

optimizations presented in this work are not limited to the NVIDIA graphic cards 

and can be used on other manycore architecture and GPUs with minor adjustments 

and modifications.   
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Fig.  2.5: Compute (ALU) control and memory resources in CPU (left figure) and 

GPUs (right figure). 

2.4 NVIDIA GPUs 

This work accelerates compute intensive kernels in Krylov subspace techniques 

on NVIDIA graphic cards. The computing resources and architectural specification 

of these GPUs are described in this section. 

 Fig.  2.6 shows the architecture of NVIDIA graphic cards (other modern GPUs 

also have a similar architecture). Streaming processors (SPs) are the computing 

cores of the architecture, which depending on the version of the GPU can have one 

or multiple computing units. Every 8 SP is grouped into a streaming multiprocessor 

(SM) that is connected to a graphics double data rate (GDDR) DRAM, referred to 

as global memory. Global memory access latencies are high compared to other 

memory spaces on the GPU (eg. global memory bandwidth in NVIDIA GTX480 is 

177 GB/s). The GPU and CPU communicate through the peripheral component 

interconnect (PCI) express [42] and data is transferred from the CPU to the GPU 

global memory prior to invoking a GPU kernel (eg. the device/GPU to host/CPU 

memory bandwidth is 4 GB/s peak for a PCI-express x16). Each SM has access to 

an on-chip shared memory space and a register file private to each thread. In the 

new generation of NVIDIA GPUs called Fermi [42], the shared memory space can 

be configured to 48KB or 16KB with the rest allocated to L1 cache. Accessing data 

in shared memory and the register files has a low latency. Texture and constant 

  CPU GPU
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memory are cached and read-only; however, accesses to texture memory are 

considerably faster than accesses to constant memory. Fermi GPUs also have a 768 

KB unified L2 cache that services all load, store, and texture requests.  

NVIDIA GPUs have evolved significantly over the last decade resulting in the 

development of more than 6 generations through these years. The most up-to-date 

GPU available at the time was used in the contributions proposed in this work. The 

GPUs used are from the G80, G200, Fermi and TESLA generations of NVIDIA 

graphic cards; hardware specifications of each of the cards used are provided in 

Appendix II.   

2.5 CUDA  Programming Model 

Until 2006, programming GPUs was very difficult and only possible using 

graphic APIs such as OpenGL and Direct3D. General purpose programming for 

graphic processing units called GPGPU, was limited by the APIs and only a few 

people acquired the skills to use GPUs for general applications. The massively 

parallel architecture of graphic cards motivated GPU manufacturers, to devote 

silicon area to facilitate general purpose programming on GPUs. Using additional 

hardware, NVIDIA introduced CUDA (Compute Unified Device Architecture) in 

2007 [43], which soon became a fundamental parallel programming language in the 

scientific computing community and made manycore architectures a popular 

parallel hardware platform for scientific applications. Released in 2008, OpenCL is 

an open source framework that executes on heterogeneous platforms of CPU and 

GPUs. NVIDIA GPUs also support OpenCL; to date speedups achieved from 

CUDA are higher than OpenCL for most applications [44], therefore CUDA is used 

for GPU related tests in this work. The proposed optimizations and techniques can 

be ported to OpenCL and executed on most high-end GPUs (e.g NVIDIA, AMD, 

Intel MIC). 
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Fig.  2.6: The underlying architecture of NVIDIA Fermi GPUs. 

2.5.1 CUDA  Threads and Kernel Execution on GPUs 

Data parallelism is exploited in an application, where many arithmetic 

operations are simultaneously performed on the data structures. While sequential 

parts of an application execute on the CPU, data parallel sections of the program 

are parallelized to run on the graphic card. The threads in a GPU kernel are 

responsible for performing arithmetic operations on different data in parallel 

(SIMD). To execute parts of an application on the GPU, data has to be first 

transferred from the host (CPU) to the device (GPU) global memory, a GPU kernel 

is then launched to run the application on the GPU, finally results are transferred 

back to the CPU if required (Fig.  2.7). 

2.5.2 Thread Scheduling 

To execute an application in parallel, the GPU has to launch thousands of 

threads. The threads inside a GPU kernel are grouped into blocks where the threads 

inside one block share data through GPU shared memory space and their execution 

can be synchronized with little overhead. Threads belonging to different blocks can 
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only communicate through GPU global memory and can execute in any order. Up 

to eight thread blocks are assigned to a streaming multiprocessor simultaneously. 

The maximum number of threads per SM is also limited and depends on the GPU 

compute capability. In the Fermi graphic cards, up to 1536 threads can be active 

simultaneously on one SM.  

Active threads in an SM execute in groups of 32 called warps. Warps are 

scheduled in a scheduler and execute one at a time as shown in Fig.  2.8. To 

efficiently hide long accesses to global memory, when an instruction executing by 

the threads in a warp requires data from the device memory, the warp is placed in a 

waiting list and other warps are scheduled for execution.  
 

 

Fig.  2.7: Kernel/thread execution model on NVIDIA GPUs (SM represents the 

streaming multiprocesors on the graphic card, the host and the device are the CPU 

and GPU respectively). 


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Fig.  2.8: The warp scheduler chooses the next warp ready for execution. 

2.6 Performance Optimization in CUDA 

Various parameters should be considered when developing an application to run 

in parallel on GPUs. Besides identifying embarrassingly parallel parts of an 

application and exploiting fine grain parallelism using hundreds and thousands of 

threads, accesses to various memory spaces on the GPU should be efficiently 

handled to benefit from the high memory bandwidth on such architectures. 

Resource occupancy and instruction usage should also be maximized to hide 

memory access latencies. This section introduces some of the most important 

techniques used to enhance the performance of GPU kernels on the Fermi 

architecture (the same methods are used in earlier generations of NVIDIA GPUs 

with little modification [42]). 

2.6.1 Memory Coalescing 

Many applications are bandwidth bound and all accesses to data begin from 

global memory. Accesses to GPU global memory are not cached and can take up to 

600 cycles; thus optimizing global memory references can enhance the performance 

of the kernel considerably. Accessing continuous global memory locations by threads 

in a half warp is called memory coalescing; 32, 64 and 128 bytes by half a warp can 

be processed in one transaction to reduce global memory accesses. To increase 

coalesced memory references, data should be stored and accessed contiguously in 

global memory. Fig.  2.9 shows how accesses to a 2D array can be coalesced if 
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transposed. Whenever possible accesses to global memory have been coalesced in 

this work to reduce the execution time of computing kernels on GPUs.  

 

Fig.  2.9: The first figure shows threads within a warp accessing data in the 2D 

array ܣ in strided pattern; when the array is transposed (second figure) data is 

accesses contiguously allowing for coalesced memory accesses. 

2.6.2 Avoiding Shared Memory Bank Conflicts 

Shared memory is on-chip memory space with approximately 20 times lower 

access latency compared to global memory. The size of shared memory is 

considerably smaller than GPU global memory and should be used for data that are 

more frequently accessed.  

Data in shared memory is stored in 32 2-byte wide banks where contiguous 4-

byte words belong to different banks. Called bank conflicts, if threads within a warp 

access different 4-byte words of the same bank their access is serialized. To benefit 

from the shared memory high bandwidth, bank conflicts should be avoided. As 

shown in Fig.  2.10, if a 32 ൈ 32 matrix is stored in row major (rows are stored 

consecutively) in shared memory and each warp accesses one column, the memory 
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accesses will be serialized due to bank conflicts. Adding an extra column to the data 

array (also called padding), will eliminate bank conflicts since data accessed by the 

threads in a warp are stored in different banks. 

  

  

Fig.  2.10: Row major storage of a 32 ൈ 32  matrix in shared memory when each 

warp accesses one column causes bank conflicts (first figure) which can be resolved 

by padding the matrix with an extra column (second figure). 

2.6.3 Increasing Occupancy 

The number of active warps divided by the maximum active warps in an SM is 

used to measure occupancy in a GPU kernel. Higher occupancy improves the 

performance of a GPU kernel by fully utilizing the available GPU resources; 66% 

occupancy is usually enough to reach the peak performance. In Fermi graphic cards 

up to 48 warps and 8 blocks can be active per SM; however, depending on the 

number of threads per block, available shared memory (and registers) per thread, 

the number of active warps (and occupancy) can vary. For example, if 32 bytes of 

shared memory is used by a thread with a 16KB shared memory configuration only 
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16 warps are active per SM reducing occupancy to 33 percent. The programmer 

should consider the aforementioned factors while optimizing GPU kernel code in 

order to enhance resource occupancy. CUDA occupancy calculator [45] can also be 

used to determine the available resources per thread and occupancy.  

2.6.4 Avoiding Thread Divergence 

The threads in a warp execute one instruction at a time, thus parallelism is 

exploited at warp granularity. If the threads inside one warp go through different 

execution paths, their execution will be serialized and the threads will diverge. This 

is called thread divergence and should be avoided since it will decrease the 

performance of the GPU kernel. Optimizations proposed in this work eliminate or 

minimize thread divergence resulting in high levels of parallelism in the kernels. 

2.6.5 Identifying Performance Limiters 

Accelerating the execution of an application on the GPU can be tedious and 

desired speedups might not be achieved initially. Performance should be further 

optimized after running the kernel, detecting performance limiters and addressing 

them. Major performance limiters in GPU kernels are memory throughput, 

instruction throughput, latency or a combination of all. Performance can be 

assessed based on the algorithm’s memory and computational requirements, 

instruction and profiler counters collected using CUDA profiler [42] or using code 

modified to measure memory and arithmetic execution times independently. The 

GPU kernels and optimizations proposed in this work are fine-tuned using the 

aforementioned techniques to obtain high speedups.  

2.6.6 Other optimizations 

Other optimizations have also been used throughout this work in order to 

enhance the performance of computing kernels on GPUs. Some of the more 
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important optimizations used in future chapters, are presented in detail in this 

section. 

 Prefetching: Prefetching is used to hide memory access latencies; while some 

instructions are waiting for data to be fetched from memory, other 

instructions perform arithmetic operations. As data in the current partition is 

being manipulated by some of the threads in the block, other threads access 

memory and fetch the required data for the next data partition in order to 

hide global memory access latencies.    

 Padding: Adding extra elements to a data structure is referred to as padding. 

We pad some of the data structures with zero in this work to be multiples of 

a desired number. This will regularize operations and enable a more 

aggressive manipulation of the data structure in parallel. For example if 

vectors were padded to be multiples of four as shown in Fig.  2.11, each 

thread could reduce every 4 elements in parallel enabling efficient parallel 

reduction of the vector.   

 

Fig.  2.11: Padding a vector to be a multiple of 4 and reducing it in parallel.  

 Spreading the ݔ  vector: When solving ݔܣ ൌ ܾ , the ݔ ݎ݋ݐܿ݁ݒ   values are 

accessed in an irregular pattern which can lead to many uncoalesced memory 

accesses. To regularize these accesses, the corresponding ݔ vector values are 

stored/spread in a separate vector in caches in the order they are accessed.  

Whenever possible, vector operations such as sort, add, reduce and search are 

implemented in parallel using the many threads in a thread block and best available 

algorithms from NVIDIA developers website and libraries [42]. 
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Table  2.1: CUDA Math Libraries 

CUFFT Fast Fourier Transforms Library 

CUBLAS Complex BLAS Library 

CUSPARSE Sparse Matrix Library 

CURAND Random Number Generation Library 

THRUST Performance Primitives for Video Processing 

Math.h C99 Floating Point Library 

Table  2.2: Application-Specific Libraries 

Molecular Dynamics OpenMM, HOOMD-blue, ACEMD, …

Electromagnetic and Acoustic Waves Acceleware, EM Photonics, … 

Computer Vision GPU VSIPL, GpuCV, … 

Computational Statistics R+GPU, … 

Computational Finance OPLib, … 

2.7 CUDA  Libraries 

Since the introduction of CUDA, many researchers and developers have 

developed and modified libraries and application-specific software to run their 

compute intensive kernels on GPUs and harness the power of graphic cards in 

running embarrassingly parallel problems. As shown in Table  2.1, software used in 

various application areas has already been modified to run parts of their code on 

GPUs. Math libraries have also been modified to run on GPUs with only a few 

listed in Table  2.2. Two of the fastest available libraries in sparse and dense linear 

algebra released and maintained by NVIDIA called CUBLAS and CUSPARSE are 

used in this work.  



 32 

 

Hundreds of such software and library currently exist (MAGMMA, iCUDA, 

Barra, decuda, CULA, CUPP, etc.) and with the emerging heterogeneous 

architectures that uses a combination of GPU and CPU hardware most of the 

existing sequential software will have be modified to run on manycore architectures 

in near future.     

2.8 Summary 

The architecture and programming model of NVIDIA graphic cards were studied 

in this chapter along with optimization techniques used to enhance the performance 

of scientific applications on such platforms. The following chapters will propose 

various algorithms and methods to accelerate the execution of computation 

intensive kernels in Krylov techniques on GPUs.  
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PREFACE TO CHAPTER 3 

The following chapter is included as a paper published by the IEEE 

Transactions on Magnetics (“Finite Element Sparse Matrix Vector Multiplication on 

GPUs”, IEEE Trans. on Mag., vol. 46, no. 8, pp. 2982-2985, 2010). In this chapter 

we introduce a new partitioning scheme and sparse storage format (called Prefetch-

CSR) to accelerate the execution of SMVM/SpMV kernel on NVIDIA GPUs. 

Performance results are compared to the SMVM implementation proposed by 

NVIDIA called row-per-warp which is one of the fastest available accelerations of 

the aforementioned kernel on graphic cards. Results are also compared to optimized 

implementation of the SMVM kernel on Intel multicore and the Cell Broadband 

engine.  

The proposed acceleration of the SMVM kernel (Prefetch-CSR) is further 

optimized in the next chapter and used to accelerate the execution of the conjugate 

gradient method on NVIDIA GPUs. 
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Chapter 3 FINITE ELEMENT SPARSE MATRIX VECTOR MULTIPLICATION 

ON GRAPHIC PROCESSING UNITS 

Maryam Mehri Dehnavi, David M. Fernandez, and Dennis Giannacopoulos 

Abstract: A wide class of finite element electromagnetic applications requires 

computing very large sparse matrix vector multiplications (SMVM). Due to the 

sparsity pattern and size of the matrices, solvers can run relatively slowly. The 

rapid evolution of graphic processing units (GPUs) in performance, architecture and 

programmability make them very attractive platforms for accelerating 

computationally intensive kernels such as SMVM. This work presents a new 

algorithm to accelerate the performance of the SMVM kernel on graphic processing 

units. 

Index terms: Computer architecture, Graphic processing units, Parallel processing, 

Sparse matrix vector multiplication. 

3.1 Introduction 

The performance of finite element (FE) electromagnetic applications can be 

dominated by the iterative solvers used, such as conjugate gradient (CG) based 

methods. As problems become larger and more complex, the computation overhead 

of these kernels dramatically increases the execution time of such solvers on single-

core CPUs. Thus, the development of efficient methods to improve the performance 

of iterative solvers on parallel processors is almost inevitable. 

One of the most important kernels in iterative solvers such as the CG method is 

the sparse matrix vector multiplication. This operation is performed in each 

iteration and often consumes a majority of the computation time. The main 

objective of the SMVM kernel is to calculate ݔܣ where ܣ is a sparse matrix and ݔ is 

a dense vector. Major limitations of SMVM computation involving FE matrices are 

large memory storage and bandwidth requirements as well as indirect and irregular 
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memory accesses. Graphic processing units (GPUs) have recently evolved into very 

attractive commodity data-parallel coprocessors. Easy to learn programming 

interfaces such as CUDA [43] have allowed massive multithreading and increased 

utilization of large numbers of cores on the GPU, making them cost efficient highly 

parallel platforms to solve computationally intensive scientific problems [46]. 

The main objective of this work is to accelerate the performance of finite 

element SMVM kernels on the NVIDIA GT8800 graphic cards using a new 

algorithm, namely PCSR (Prefetch-Compressed Row Storage). 

3.2 GPU Architecture 

Modern GPUs are massively parallel and conform to single instruction multiple 

data (SIMD) architectures. Several levels of parallelism are offered by GPUs 

through multiple pipelines and vector processing. GPU architectures such as AMD-

ATI X1k series process data in parallel using vector processors while others such as 

NVIDIA G80 use multiple pipelines to perform parallel operations. With the ability 

to launch thousands of threads in parallel and processing trillions of operations in 

seconds, NVIDIA GPUs are among the best for general purpose programming [43], 

[46]. The NVIDIA GT8800 graphic card (Fig.  3.1) consists of 14 streaming 

multiprocessors (SMs), each containing eight scalar processors (SPs), or processor 

cores running at 1.5GHZ. Each of the SMs access a separate 16KB shared memory 

and a total of 8192 registers. The 14 SMs are connected via 512MB of off-chip 

device memory. 

Using the CUDA programming model, the GPU is viewed as a compute device 

capable of executing a large number of threads in parallel. While the main core of 

the code is run on the CPU, parts of the application that exhibit rich data 

parallelism are implemented as kernel functions on the device (GPU). Data required 

by the kernel is transferred to the GPU global memory and the parallel portion of 
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the application is then executed on the device using many different threads. The 

programmer divides the threads into threads blocks that are distributed amongst 

the SMs allowing each multiprocessor to run a maximum of eight blocks. Thread 

blocks allocated to one SM communicate via fast shared memory, but blocks from 

different SMs can only communicate through global memory with a memory access 

latency of up to 600 cycles. Every 32 threads in a block execute the same 

instruction and are called a warp. When threads in the same warp follow different 

paths of control flow, we say that these threads diverge in their execution. Thread 

divergence forces the threads in a warp to execute sequentially thus reducing the 

execution speed of the application and should be avoided [43]. 

 

Fig.  3.1: The GT8800 underlying architecture.  

3.3 Sparse Matrix Vector Multiplication  

The SMVM kernel is one of the most popular kernels in solving sparse linear 

systems for large and complex finite element simulations. A variety of sparse matrix 

representations exist, each having a distinct form of data storage and access, 

manipulation of matrix entries and calculation of the matrix vector multiplication 
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product. The compressed sparse row storage format is one of the most commonly 

used data structures for SMVM solvers. The non-zero elements of the sparse matrix 

in this format are stored in a value vector (VAL), while the corresponding index 

values are held in another vector (INDX). The format also uses a pointer array 

(PTR), which points to the first entry of each row in VAL and INDX [5]. The 

sparse vector matrix product in this format is calculated using two nested loop 

iterations (Fig.  3.2).  

for ݅ ൌ 1 to number of rows 

  ܻሾ݅ሿ ൌ 0   

  for ݆ ൌ ܴܲܶሾ݅ሿ to ܴܲܶሾ݅ ൅ 1ሿ   

						 ܻሾ݅ሿ ൌ ܻሾ݅ሿ ൅ ሾ݆ሿ݈ܣܸ ∗ ܺሾܺܦܰܫሾ݆ሿሿ  

  end for 

end for 

Fig.  3.2: The SMVM CSR algorithm. 

3.4 PCSR (Prefetch-Compressed Row Storage Format) 

Many challenges exist in optimizing the performance of scientific applications 

such as the SMVM kernel on GPU platforms. Some are as follows: global memory 

access latency, limited shared memory, thread synchronizations, thread divergence, 

inadequate number of threads and limited global memory bandwidth. The way the 

programmer addresses these issues differs depending on the application [43].  

A new SMVM algorithm, namely PCSR is proposed in this section. By 

combining CSR with a novel partitioning scheme and computation strategy, the 

execution time of the SMVM kernel is accelerated on NVIDIA GPUs. To clarify the 

major advantages of our method, a survey of previous work on SMVM kernel 

optimization techniques for the GPU is first presented and the details of the new 

implementation are then described. 
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3.4.1 Previous Work 

Since the release of CUDA in 2007, few works have investigated the SMVM 

kernel optimization on the GPUs. Buatois et al. [47] investigated the performance of 

blocked-CSR on the G80 series of NVIDIA graphic cards. To increase the 

performance of their method, the matrix filling ratio is decreased, adding extra non-

zeros to the value vector and increasing the number of memory transactions. 

Sengupta et al. [48] proposed the use of segmented scan for calculating SMVM on 

GPUs. Wiggers et al. [24] reorders matrix rows to increase parallelism in the SMVM 

kernel and reduce thread divergence when a row is calculated by a single thread. 

Sorting matrix rows increases processing overhead considerably increasing the 

execution time on the host. Comparing the performance of various SMVM 

representations on the GPU, Bell et al. [49] proposed a new method to optimize the 

CSR format on the GPU. To decrease thread divergence, instead of calculating each 

row by a single thread, all threads on a single warp are responsible for computations 

of one row. Matrices with average non-zeros less than 32 per row do not benefit 

from their proposed technique and since every element is fetched from the global 

memory separately and only when their value is required, a majority of memory 

fetches are uncoalesced when run on the GT8800. 

Previous results were implemented on various versions of NVIDIA GPUs each 

with a different memory bandwidth and processing power. To compare our method 

with other work we applied the row-per-thread and row-per-warp methods using the 

code in [49] on our GPU and present comparison results. Our proposed algorithm 

introduces new techniques to hide global memory access latency via data perfecting 

and memory coalescing. The technique also regularizes the data access pattern on 

the GPU by proper partitioning and padding the matrix with zeros. Detailed 

description of the method and its major contributions are given in the proceeding 

sections. 
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3.4.2 The PCSR Algorithm 

Details of the partitioning scheme and padding method used in PCSR are 

proposed in this section. Methods of efficiently accessing the ݔ  vector and the 

algorithm steps are also presented. 

A. Partitioning scheme 

To obtain a reasonable execution time on the GPU, global memory accesses 

should be minimized by transferring data on to shared memory. Due to the limited 

storage of shared memory, vectors require to be partitioned and transferred in small 

segments. Different row sizes in small matrices complicate the partitioning of the 

vectors. We propose an efficient partitioning method that benefits from the inherent 

parallelism on the GPU. To maximize resource usage on an SM, 768 threads should 

run simultaneously on its architecture. Therefore, if three blocks are active per SM, 

256 threads should be executed via one block to maximize performance. The value 

and index vectors in the CSR representation should also be divided into blocks of 

256 elements (vectors are padded with zeros to be divisible to 256). Searching 

through the row pointer vector, rows split between the blocks are found and their id 

as well as their spreading pattern between two blocks is stored in a new vector 

called the split vector (Fig.  3.3). For matrices with more than 256 average number 

of non-zeros per row the split vector will store only the id of blocks holding 

elements of more than one row, to keep the size and transfer time of the split vector 

to GPU memory negligible compared to the total data transfer time. 

Simultaneous loading of data from global memory to shared memory, coalesced 

memory accesses and reduced memory transfer time are the major benefits of 

partitioning. Partitioning the vectors and loading them from global memory at the 

beginning of the kernel, will also reduce the effects of thread divergence. Divergent 

threads in the computation section of the kernel will fetch their required data from 

on-chip shared memory, avoiding the serialization of global memory accesses. 
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Fig.  3.3: PCSR partitioning scheme, (e.g. row 10 is partitioned between blocks 1 and 2 (1ܤ 

and 2ܤ); the split vector shows that 3 elements of row 10 are stored in 1ܤ and 14 in 2ܤ). 

B. Zero padding 

Minimizing thread divergence on GPUs is essential for achieving good 

performance. If each thread calculates one row, the diversity in row sizes will cause 

thread divergence and threads will execute sequentially. Assigning a warp to each 

row [49] will also cause thread divergence since the number of non-zeros per row are 

not necessarily multiples of 32. Since the execution is serialized in divergent threads, 

we reduce the number of operations per thread by padding.  

Padding each row to be a multiple of the padding factor (݊) will allow the kernel 

to reduce the product vector using parallel reduction. Every ݊ value in the product 

vector can be added via parallel reduction and stored in another vector called sum. 

Because of the padding, in the reduction procedure threads will not add values of 

more than one row. The number of elements corresponding to a row in the sum 

array is less than the product vector. Thus to calculate the results of each row, a 

thread will only add the elements in the sum vector corresponding to that row, 

reducing the number of operations executing sequentially (although increasing the 
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padding factor is beneficial in reducing thread divergence, larger ݊ decreases the 

vector filling ratio and increases the value vector size). 

C. Texture memory 

The ݔ  vector cannot be divided between blocks due to the irregular indirect 

access to its elements in the SMVM kernel. Accessing the global memory for every 

index increases memory latencies. To avoid such accesses, the ݔ vector is loaded on 

to texture memory and its elements are spread on the shared memory of each block 

simultaneously. The texture memory is an on-chip cached memory space, thus a 

texture fetch costs one memory read from global memory only on a cache miss 

otherwise it just costs one read from the texture cache. Loading the ݔ vector to 

texture memory decreases global memory access latencies and enhances the 

performance of the SMVM kernel.  

In the proposed technique, threads in a block simultaneously load 256 elements 

of the ݔ vector corresponding to the index vector values on to shared memory. The 

technique enables simultaneous spreading of the ݔ  vector on the GPU with 

minimum memory access latency and also minimizes the effects of thread divergence 

throughout the kernel. 

D. Algorithm steps 

Fig.  3.4 shows the seven steps in the PCSR algorithm. Partitions of the index 

and value vector allocated to each block (256 elements) are first loaded into shared 

memory simultaneously to coalesce memory accesses and reduce memory transfer 

time. The ݔ vector elements are then loaded from texture memory and spread in 

shared memory. The 256 elements allocated to each block are multiplied with the 

corresponding values of the ݔ vector in parallel by the 256 threads in a block. After 

determining the index and split pattern of the rows in each block using the split 

vector, required elements of the pointer (PTR) array are loaded into shared memory. 
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Depending on the padding factor, the product vector is reduced in parallel to 

generate the sum vector values. Using the sum vector, the final value of each row is 

calculated by different threads with minimum thread divergence and the results are 

written into the global memory simultaneously. 

3.4.3 Prefetching 

The time required to load data from global memory is high due to the 300 cycle 

global memory access latency. Prefetching the required data for the next iteration in 

each thread block hides much of the global memory access delay. While many 

threads are waiting on global memory accesses, others process with the necessary 

calculations for the current data in shared memory. Details of the prefetching 

methods are shown in Fig.  3.5, the prefetching loop is also unrolled to maximize 

performance. 

3.5 Results 

We have investigated the performance of our technique on various sparse 

matrices from [22] with different average non-zeros per row (Table  3.1). The 

performance of the algorithm is tested on GT8800 NVIDIA graphic cards using 

CUDA 2.3 and the execution speed of the kernel is represented in GFLOPs (billion 

floating operations per second). The SMVM kernel is a part of iterative solvers, thus 

data transfers between host and device memory occur at most twice (at the 

beginning and the end of iteration) and are neglected over a large number of SMVM 

operations [49].   

In Fig.  3.6 the performance of the proposed technique has been shown. The 

execution time of the kernel is tested for padding factors of 1, 2, 4 and 8 (the filling 

ratio of the padded matrices are shown in Table  3.1). 

Padding the matrix rows to be multiples of four, increases the performance to 60 

percent compared to no padding (padding factor 1). For padding factors larger than 
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four, the number of zeros added due to padding are increased, decreasing the filling 

ratio and the SMVM kernel performance. Setting the padding factor to its optimum 

value (four), Fig.  3.7 shows the effects of prefetching data to hide global memory 

latency. The results show an average 16 percent increase in performance if each 

block prefetches and operates on four partitions of 256 value vector elements 

(Section  3.4.2). 

The Prefetch-CSR algorithm 

1: Load VAL and INDX vectors to shared memory 

2: Load and spread the ݔ vector 

3: Calculate the product vector in parallel 

4: Load PTR array values related to the block 

5: Reduce the product vector via padding and store in sum 

6: Calculate each row by one thread 

Fig.  3.4: The Prefetch-CSR algorithm. 

 

Fig.  3.5: Prefetching data in PCSR (a) without prefetching, (b) with prefetching. 

 

 

Loop 

{ 

Load current partition to shared 
memory 

Syncthreads()

Compute current partition 

Syncthreads() 

} 

Load partition i to shared memory 

Syncthreads() 

Compute partition i 

Load partition i+1 to shared memory 

Syncthreads() 

Compute partition i+1 

Load partition i+2 to shared memory
...

(a) Without prefetching (b) With prefetching
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Table  3.1: Non-zeros (nnz) and filling ratio percentage for different padding factors (n) in 
matrices  

Matrix consph cant shipsec mac-econ s3dkt3m2 

nnz 6010480 4007383      7813404    1273389 3843910 

nnz/row 72.1 64.1    55.4      21.24     6.1 

n=2 98.8 99.2    98 93.8    97.8 

n=4 96.4  98    97.3   80    97.7 

n=8 92.2 93.3    96.1   44   68.69 

Table  3.2: Speedup of PCSR compared to the row-per-thread and row-per-warp methods on 
GT8800, the CPU and the Cell architectures. 

Matrix consph cant shipsec1 mac-econ s3dkt3m2 Average

Row thread 3.57 3.71 3.56 2.37 3.64 3.37 

Row  warp 2.39 2.60 2.26 2.38 2.64 2.45 

Cell 5.27 5.04 5.18 5.77 5.41 5.34 

CPU 17.03 17.52 18.7 13 18.8 17 

 

Fig.  3.6: The effect of the padding factor (n) in PCSR. 
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Fig.  3.7: Varying the number of prefetches in PCSR. 

 

Fig.  3.8: PCSR performance compared to the row-per-thread and row-per-warp methods on 

GT8800 as well as the QUAD-Core CPU and Cell architectures.  

Because of the variety in the memory bandwidth and computation capabilities of 

different NVIDIA cards, comparisons with other work are done via running their 

methods on the GT8800. Fig.  3.8 and Table  3.2 provide a comparison of our 

method to the row-per-warp and row-per-thread methods on GT8800 [49]. The 
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performance of PCSR is also compared to the execution of the SMVM kernel on a 

quad-core CPU and the Cell-PPE. The Cell results were obtained using the Cell 

SDK 3.0 and the PMS method [11]. The CPU platform used was Intel core2 Quad 

2.4GHZ architecture with 4 MB of L2 cache per core-pair and 4GB of global DRAM. 

As shown in Table  3.2, on average our algorithm outperforms the row-per-warp and 

row-per-thread techniques presented in previous work by 2.45 and 3.37 times 

respectively. Speedups of up to 18.8 times were achieved compared to the quad core 

CPU and the execution time was less than what is achieved through optimized 

SMVM kernel on the Cell. 

3.6 Conclusion 

We have introduced several efficient techniques to accelerate the execution of 

the sparse matrix vector multiplication on NVIDIA graphic processing units. The 

proposed methods increased the performance of the SMVM kernel on GT8800 up to 

18.8 times compared to the quad core CPU and 3.37 times compared to previous 

work on accelerating SMVM for GPUs. Reducing the execution time of finite 

element solvers such as the conjugate gradient method using the proposed 

optimizations will be investigated in future work. 
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PREFACE TO CHAPTER 4 

The following chapter is included as a paper published by the IEEE 

Transactions on Magnetics (“Enhancing the Performance of Conjugate Gradient 

Solvers on Graphic Processing Units”, IEEE Trans. on Mag., vol. 47, no. 5, pp.1162-

1165, 2011). The Chronopoulos variant of the conjugate gradient method is 

implemented on NVIDIA GPUs and compared to the Shewchuk variant. Various 

optimizations such as fusing GPU kernels, binding vectors to caches and SpMV 

optimizations are used to enhance the performance of the aforementioned kernel on 

graphic cards. Performances of the proposed optimizations are evaluated on 

NVIDIA GT8800 and GT200 graphic cards. Performance is also compared to 

vectorized and non-vectorized parallel implementation of the CG algorithm on Intel 

multicore architecture.   

The convergence rate of iterative solvers such as the conjugate gradient method 

can be very slow for ill-conditioned matrices. The next chapter accelerates the 

generation of preconditioners, specifically the sparse approximate inverse 

preconditioner, used to reduce the number of iterations in iterative solvers. The 

preconditioner is then used in the BiCGStab iterative solver which is also executed 

in parallel on the GPU. 
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Chapter 4 ENHANCING THE PERFORMANCE OF CONJUGATE GRADIENT 

SOLVERS ON GRAPHIC PROCESSING UNITS  

Maryam Mehri Dehnavi, David M. Fernandez, and Dennis Giannacopoulos 

Abstract: A study of the fundamental obstacles to accelerate the preconditioned 

conjugate gradient (PCG) method on modern graphic processing units (GPUs) is 

presented and several techniques are proposed to enhance its performance over 

previous work independent of the GPU generation and the matrix sparsity pattern. 

The proposed enhancements increase the performance of PCG up to 23 times 

compared to vector optimized PCG results on modern CPUs and up to 3.4 times 

compared to previous GPU results  

Index terms: Computer architecture, Graphic processing units, Parallel processing, 

Conjugate gradient. 

4.1 Introduction 

Real world electromagnetic problems constantly demand more precise and 

sophisticated simulations in reasonable time frames. To meet such demands in 

modern finite element method (FEM) applications, programmers must efficiently 

exploit new technological advancements in modern computing systems. Graphic 

processing units (GPUs) have evolved very quickly over the last few years and 

significantly overwhelm CPU specifications in both raw power and memory 

bandwidth [47]. To benefit from the pervasive computing resources in a GPU, 

compute intensive data-parallel sections of large problems should be optimized to 

run on the GPU architecture.  

This paper focuses on enhancing the performance of the preconditioned 

conjugate gradient (PCG) algorithm [7], a popular sparse linear solver in FEM 

using current GPU processors. Efficient techniques to parallelize PCG on GPUs are 

presented that overcome the main limitations imposed by both the PCG algorithm 
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(namely poor data locality and sequential execution), and the programming 

constraints of modern GPUs (e.g. efficient use of different GPU resources, 

minimizing data communication, hiding memory access latencies and reducing the 

number of kernel calls). The effectiveness of these techniques is demonstrated using 

a range of matrices and speedup results are compared with other state-of-the-art 

PCG multicore and GPU implementations. 

4.2 GPU Architecture 

Initially driven by the demand for powerful high-definition 3D graphics, modern 

GPUs have become massively parallel, multithreaded architectures. Easy to learn 

APIs (Application Programming Interfaces) such as compute unified device 

architecture (CUDA [43]) has enabled the acceleration of modern scientific 

applications via massive multithreading. In particular, NVIDIA GPUs offer 

important computing power for these applications. Fig.  4.1 shows the general 

architecture of NVIDIA graphic cards. Scalar processors (SPs) are the basic 

processing units of the architecture and are clustered in groups of eight called 

streaming multiprocessors (SMs).  

Sections of an application that exhibit rich data parallelism are scheduled to run 

on the GPU. Executing a parallel section on the GPU using CUDA involves: a) 

transferring required data to GPU global memory; b) launching the device (GPU) 

kernel; and c) transferring results back to host memory. Threads inside a kernel are 

grouped into thread blocks, which are executed on SMs. Threads in a block 

communicate via fast shared memory, but threads in different blocks communicate 

through long latency global memory. Major challenges in optimizing an application 

on GPUs are: global memory access latency, different execution paths in each warp 

(32 consecutive threads in a block) namely thread divergence, communication and 

synchronizations between threads in different blocks and resource utilization. 
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Fig.  4.1: NVIDIA GPU architecture.  

4.3 Preconditioned Conjugate Gradient  

The conjugate gradient (CG) algorithm is one of the most popular iterative linear 

solvers  available today, mainly due to its fast convergence, constant decrease in 

error-per-iteration and efficient memory usage [7]. Before introducing the 

parallelization and performance enhancing techniques, one must choose an 

appropriate PCG version with good parallelization properties as presented in the 

next section. 

A. Choosing a PCG algorithm 

Many variations of the PCG algorithm exist, depending on their formulation. In 

this work we implemented a classical PCG algorithm [7] and a variation presented 

in [8] with better data locality that minimizes the number of kernel calls, the GPU 

global memory loads, and the communication overhead. Fig.  4.2 presents both 

algorithms highlighting sections in the main iteration loop where vectors are loaded 

for the SMVM, SAXPY (vector updates, ݕ ൌ ݔߙ ൅  .and dot product operations  (ݕ



 51 

 

 

Fig.  4.2: Highlighting several bottleneck operations in PCG Shewchuk [7] vs.  PCG 

Chronopoulos [8].  

The main advantages of the Chronopoulos variant of the PCG algorithm 

compared to the Shewchuk method are as follows: 

 In the PCG-Chronopoulos version vectors are loaded in the same place 

within the main loop as opposed to across the whole loop for the Shewchuk 

version. This property allows multiple operations to reuse data while on 

shared memory, reducing long latency memory accesses and exhibiting better 

data locality. 

 Dot products are clustered together in the Chronopoulos variant reducing the 

number of synchronization steps on both the GPU and the CPU. 

 Efficient partitioning of vector and matrix values enables coalesced loading of 

data and maximum GPU resource utilization during PCG kernel 

calculations. 
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B. Previous work 

Accelerating the PCG algorithm on massively parallel hardware platforms, 

especially GPUs, is very challenging due to the sequential nature of the algorithm. 

Buatois et al. [47] accelerated the CG solver on GPUs using the blocked compressed 

sparse row storage (BCSR) format. Their algorithm is optimized for a limited set of 

matrices with specific sparsity patterns. Wiggers et al. [24] reorder matrix rows to 

decrease the execution time of the SMVM kernel for CG. Sorting rows increases pre-

processing and execution time on the CPU. In [50] and [51] a mixed precision 

iterative refinement algorithm is proposed for the CG. The single precision inner 

solver in their method is the most time consuming kernel in the overall solution and 

accelerating its execution is the major focus of our work. 

The performance of SMVM using various compressed storage formats on GPUs 

has been studied in [49]. Using a decision based method, [52] chooses the best 

performing storage format for SMVM from [49] prior to executing the CG 

algorithm, at the expense of storing (generating) several copies of the matrices in 

the various storage formats. Formats such as JDS [9], HYB [52], ELL [49], BCSR 

[47] require extra pre-processing to benefit from the GPU processors (sorting rows, 

blocking non-zero values, redundant padding, etc.) that are not negligible compared 

to the fast execution time of the SMVM and CG algorithms on the GPU. The 

Prefetch-CSR (PCSR) algorithm proposed in [53] requires very little padding and 

pre-processing and outperforms the previous SMVM algorithms including one of the 

best performing algorithms, namely the row-per-warp method from NVIDIA [49]. 

By using an optimized version of the PCSR algorithm and the row-per-warp 

method this paper proposes new techniques to overcome major bottlenecks in 

accelerating PCG on GPUs. 
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4.4 Implementing PCG on GPUs 

We propose four optimizations to the original Chronopoulos PCG in order to 

decrease its execution time on the GPUs. Without optimization, implementing the 

Chronopoulos variant of the PCG algorithm leads to eight kernels and some scalar 

updates on the CPU (Fig.  4.3). Fig.  4.4a shows the percentage of average time 

spent on each of these kernels in the naive implementation of the PCG algorithm on 

the GPU. We enhance the performance of the Chronopoulos PCG by optimizing the 

SMVM kernel, fusing SAXPY operations, using a Jacobi preconditioner and binding 

vectors to GPU texture memory. 

A. Optimizing the SMVM kernel 

As shown in Fig.  4.4a on average 80 percent of the total PCG execution time is 

spent on the SMVM kernel, thus using the best performing SMVM algorithm is 

essential in decreasing PCG execution time. In this work we compare the effects of 

two of the best performing SMVM algorithms proposed in previous work [49], [53] 

in the PCG algorithm. The first algorithm is the row-per-warp method introduced 

by Bell et al. [49] and the prefetch compressed row storage (PCSR) [53] is the 

second SMVM method used. Unlike SMVM algorithms based on other storage 

formats, the row-per-warp method and PCSR do not require extra pre-processing 

since they are based on the CSR format.  

 Row-per-warp 

In the row-per-warp [49] method each warp is assigned a row to compute one 

vector result. The method is efficient if the sparse matrix has a regular sparsity 

pattern and its bandwidth is approximately equal to a multiple of a warp size.  

 Prefetch-CSR (PCSR) 

The PCSR method [53] partitions the matrix non-zeros to blocks of the same size 

and distributes them amongst GPU resources. The algorithm pads rows with zeros 
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to increase data regularity and use of parallel reduction techniques. Prefetching data 

is also used to hide global memory accesses. To further increase the performance of 

the algorithm, in this work we have eliminated the atomic updates of the ܻ vector 

by replacing the original SMVM kernel with three sub-kernels, namely, clear ܻ 

vector, SMVM and ܻ vector update (Fig.  4.3). Thus in the optimized version of 

PCSR, atomic sums of the Y  vector values corresponding to partitioned rows 

between blocks are removed (the two added kernels, clear Y vector and Y vector 

update are small and have a fast execution time compared to the SMVM kernel). 

B. Jacobi preconditioner 

A Jacobi preconditioner was implemented mainly for its ease of parallelization in 

the PCG method. As an additional benefit, because the solver for this type of 

preconditioner can be treated as a SAXPY operation, it can be fused with other 

operations as described in the next section. 

 

Fig.  4.3: PCG Chronopoulos [8] algorithm implemented on the GPU, optimizing PCSR [53] 

adds two new kernels to the implementation. 
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Fig.  4.4: (a) Percentage of the average execution time of kernels in the PCG Chronopoulos, 

(b) Fusing kernels in PCG (K1 to K4 represent the kernels in optimized PCG). 

C. Fusing kernels 

Although the PCG algorithm is mainly implemented on the GPU in previous 

work, gathering result vector values and performing vector dot products require 

going back to the CPU, resulting in multiple kernel calls. In each kernel call data is 

loaded to fast access GPU shared memory in partitions. Upon termination of a 

kernel, all data is stored back to the GPU global memory, requiring proceeding 

kernels to reload data to shared memory before their execution. Thus, besides the 

launching time of each kernel, increased communication is another major drawback 

of multiple kernel calls.  

There are two objectives of fusing individual kernels, the first is to minimize the 

number of kernels, saving time between kernel calls; and the second is to take 

advantage of the vectors loaded into shared memory avoiding double loads. The 

fusions are done in three steps (Fig.  4.4b). In the first step the SAXPY kernels are 

fused into a single kernel. The second step fuses the preconditioner and clear ܻ 

vector kernels into the SAXPY kernel. The dot product and the SMVM kernels are 

fused into one kernel in the last step (scalar updates of the dot product are still 

performed on the CPU). 
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 Fusing reduces the total number of kernels from 8 to 4 in the PCG algorithm. 

Although optimized implementations of other PCG algorithms might result in small 

number of kernels, the resulting kernels after fusion in the proposed method have 

significant implications leading to increased performance: 

• Most vectors are only loaded once onto shared memory per iteration. 

• Fusing the main operations in the PCG algorithm into one kernel (K1 in 

Fig.  4.4b) increases coalesced memory fetches reducing global memory accesses. 

• Kernels 3 and 4 (K3 and K4 in Fig.  4.4b) are small and do not require large 

number of memory loads. 

D. Texture binding 

The texture memory is a fast on-chip cached memory space. Loading vectors to 

texture memory decreases the effect of global memory access latencies and enhances 

the performance of the PCG algorithm kernel. We bind vectors that benefit the 

most from the cached space to texture memory. By binding vectors to texture 

memory we increase the execution speed of the PCG algorithm. Since vector values 

in PCG are updated in each iteration, vectors need to be binded/unbinded to/from 

texture memory in each iteration.  

4.5 Results 

The performance of the optimizations proposed is evaluated using 7 sparse 

matrices from [34] with different sparsity patterns and application areas (Table  4.1). 

The execution speed of the PCG algorithm is presented in GFLOPs (billion floating 

point operations per second). For each PCG Chronopoulos iteration, the algorithm 

computes one SMVM and 7 vector operations, thus 2 ൈ ݖ݊݊ ൅ 14 ൈ ݊  flops plus 

scalar updates are counted (݊݊ݖ: number of non-zeros, ݊: matrix dimension). 

The performance of the optimized algorithm is tested on two different 

generations of NVIDIA graphic cards the G80 and GT200 series. NVIDIA GT8800 
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and GTX280 graphic cards are used as representatives of the G80 and GT200 

series, respectively. The GTX280 consists of 30 SMs, 16K registers and 1GB of 

global memory compared to the 14 SMs, 8K register file and 512MB of device 

memory on the GT8800. Both GPUs have 16KB of shared memory but the GT8800 

operates at a higher frequency (1.5GHZ vs. 1.29GHZ). The GT200 generation has 

higher compute capabilities and handles thread divergence more efficiently while the 

maximum graphic card power and average cost of the GTX280 is approximately 

double that of the GT8800 card. 

Fig.  4.5 shows the effect of the optimizations proposed in Section  4.4 step by 

step. Using the row-per-warp algorithm as the SMVM kernel, the PCG 

Chronopoulos method outperforms the Shewchuk algorithm for all the matrices. By 

replacing the row-per-warp SMVM with the optimized version of PCSR the average 

performance of the PCG algorithm increases up to 60 percent as shown in Fig.  4.5. 

While using PCSR as the SMVM kernel, binding vectors to texture memory 

increases performance on average 50 percent. Fusing SAXPY operations increases 

performance on average 6 percent compared to the non-fused version (Fig.  4.4b). 

The two other fusing steps also contribute to an average 6 percent increase in 

performance. 

Fig.  4.6 shows the performance of the optimized PCG algorithm compared to 

the row-per-warp method [49] on both G80 (GT8800) and GT200 (GTX280) 

NVIDIA GPU generations. The proposed algorithm outperforms previous methods 

on both platforms. Unlike previous methods [49], [52] which are not optimized for 

matrices with small number of non-zeros per row, the proposed optimizations, 

independent of the matrix sparsity pattern,  are able to increase considerably the 

performance for such matrices. 
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Table  4.1: Sparse matrices used for testing 

Matrix Name Matrix Type Rows nnz nnz/row 

thermal2 FEM/steady state 1228045 8580313 7 

shipsec5 PARASOL ship 179860 10113096 56 

g3-circuit Circuit simulation 1585478 7660826 5 

BenElechi1 2D/3D problem 245874 13150496 53 

2cubes-sphere FEM/sphere 101492 1647264 16 

s3dkt3m2 FEM/cyl. shell 90449 3753461 41 

mt1 Tubular joint 97578 9753570 100 

 

Fig.  4.5: The effect of the optimizations proposed in Section  4.4 in increasing the 

performance of the PCG algorithm on GT8800.  
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Fig.  4.6: Performance of the PCG row-per-warp [49] method compared to proposed 

optimized PCG Chronopoulos [8] algorithm on G80 and GT200.  

Table  4.2 presents the speedup (SU) of the proposed method compared to the 

row-per-warp (RW) method implemented on the G80 and G200 architectures, the 

best vectorized CPU results in [12] as well as a naive CPU implementation. A 

majority of SMVM algorithms proposed in previous work such as the row-per-warp 

method introduced in [49] rely on the architecture to address thread divergence, 

thus PCG algorithms using such methods do not perform well on the G80 

generation of NVIDIA GPUs. Since PCSR’s performance is independent of the GPU 

generation, our PCG implementation outperforms the PCG version of the row-per-

warp method on both GPU generations (Table  4.2). Compared to vectorized PCG 

[12] using 4 threads on an Intel core2 Quad 2.4GHZ architecture (4 MB of L2 cache 

per core-pair and 4GB of global DRAM) speedups of up to 23 were achieved 

(Table  4.2). On average 42 times speedup was achieved compared to non-vectorized 

PCG using a single thread on the same CPU (“CPU Regular” results in Table  4.2). 

Compared to single GPU results in [52] (their method uses an SMVM decision 

algorithm to choose the best performing storage format for each matrix, increasing 

pre-processing time), for the same matrices we achieve on average 1.5 times speedup 
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(for similar matrices g3-circuit, thermal2, and BenElechi1 speedups of 1.5, 2 and 1.1 

are achieved respectively). Thus the proposed PCG optimizations can, potentially, 

give average performances of up to 180 GFLOPs on multi-GPU platforms compared 

to 120 GFLOPs in [52].  

4.6 Conclusion and Future Work 

The paper introduces several optimizations for the Chronopoulos [8] PCG 

variant to accelerate the execution of PCG on GPUs. The proposed optimizations 

increased the performance of PCG on representatives of the G80 and GT200 

generations of NVIDIA GPUs up to 3.4 and 2.5 times, respectively, compared to 

previous methods [49]. In future work we intend to extend our algorithm to multi-

GPU platforms and other preconditioners. 

Table  4.2: Speedup of the optimized PCG compared to PCG-row-per-warp (RW) on GPU, 
vectorized and non-vectorized CPU 

Overall Speedup RW G80 RW GT200 Quad-Core CPU  Regular 

s3dkt3m2 2.7 1.16 11.11 30.65 

shipsec5 2.97 1.33 14.02 72.92 

g3-circuit 1.95 2.49 13.25 26.18 

BenElechi1 2.79 1.66 23.32 56.65 

mt1 3.4 1.12 7.45 34.12 

thermal2 1.52 2.53 9.39 41.22 

2cubes-sphere 2.5 1.95 11.99 31.35 

average 2.55 1.75 12.93 41.87 
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PREFACE TO CHAPTER 5 

The following chapter is included as a paper accepted for publication in IEEE 

Transactions on Parallel and Distributed Systems (“Parallel Sparse Approximate 

Inverse Preconditioning on Graphic Processing Units”). The sparse approximate 

inverse (SAI/SPAI) preconditioner is accelerated on NVIDIA GPUs. The 

preconditioner is then used to enhance the convergence rate of the BiCGStab 

iterative solver which is also implemented on the GPU. The performance of the 

proposed acceleration is compared to ParaSails, a popular implementation of SAI 

preconditioners on multiprocessors. The work was done in collaboration with 

Professor Jean-Luc Gaudiot at UC-Irvine. A more aggressive approach in reducing 

the communication cost of Krylov solvers on NVIDIA GPUs known as the 

communication-avoiding Krylov techniques is studied in the next chapter. 
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Chapter 5 PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONING 

ON GRAPHIC PROCESSING UNITS  

Maryam Mehri, David M. Fernandez, Jean-Luc Gaudiot and Dennis Giannacopoulos 

Abstract: Accelerating numerical algorithms for solving sparse linear systems on 

parallel architectures has attracted the attention of many researchers due to their 

applicability to many engineering and scientific problems. The solution of sparse 

systems often dominates the overall execution time of such problems and is mainly 

solved by iterative methods. Preconditioners are used to accelerate the convergence 

rate of these solvers and reduce the total execution time.  

Sparse approximate inverse (SAI) preconditioners are a popular class of 

preconditioners designed to improve the condition number of large sparse matrices 

and accelerate the convergence rate of iterative solvers for sparse linear systems. We 

propose a GPU accelerated SAI preconditioning technique called GSAI, which 

parallelizes the computation of this preconditioner on NVIDIA graphic cards. The 

preconditioner is then used to enhance the convergence rate of the biconjugate 

gradient stabilized (BiCGStab) iterative solver on the GPU.  

The SAI preconditioner is generated on average 28 and 23 times faster on the 

NVIDIA GTX480 and TESLA M2070 graphic cards respectively compared to 

ParaSails (a popular implementation of SAI preconditioners on CPU) single 

processor/core results. The proposed GSAI technique computes the SAI 

preconditioner in approximately the same time as ParaSails generates the same 

preconditioner on 16 AMD Opteron 252 processors.  

Index terms: Numerical algorithms; Parallel algorithms; Graphics processors; 

Parallel programming; Conditioning. 
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5.1 Introduction 

Mathematical physics and engineering problems in a broad range of applications 

(such as computational electromagnetics, medical and seismic tomography, heat 

conduction, computational fluid mechanics, etc.) have grown larger and more 

complex in the past few decades leading to large scale simulations. These 

simulations generally involve the use of techniques such as the finite element 

method (FEM) and the finite difference time domain (FDTD) method which are 

used to discretize, assemble and solve such systems [5], [54]. One of the most time 

consuming steps in the aforementioned techniques is solving the system of equations 

proceeding the systems assembly stage. The solution of such systems is often 

achieved by sparse linear systems and can be obtained by either direct or iterative 

methods. For larger and sparser systems, direct methods often suffer from high 

computational complexity and intensive memory requirements. Techniques such as 

Gaussian elimination, Choleski, LU and QR factorizations [5] are designed to 

address some of these issues and thus reduce the complexity of computations and 

required storage in this class of solvers. Direct solvers are notoriously difficult to 

implement in parallel due to the recursive nature of their computations such as 

solving large triangular systems [55].  

A more viable alternative to solving large linear systems is using iterative 

solvers. Krylov methods are a popular class of these solvers with techniques such as 

generalized minimum residual (GMRES), biconjugate gradient (BiCG), biconjugate 

gradient stabilized (BiCGStab) and conjugate gradient (CG) [5]. Krylov solvers 

generally involve less computations and memory requirements compared to direct 

methods. A major limiting factor of iterative solvers is their slow convergence rate 

especially for ill-conditioned matrices. The convergence rates of most iterative 

solvers heavily depend on the eigenvalues distribution of the ܣ matrix when solving 

the linear system of equations ݔܣ ൌ ܾ [56]. By clustering the eigenvalues or reducing 
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the condition number of the matrix, the convergence rate of iterative solvers is 

improved considerably. 

Preconditioners are designed to accelerate the convergence rate of iterative 

solvers for a majority of applications. Applying the preconditioner ܯ, to both sides 

of the linear systems equation ݔܣ ൌ ܾ , reduces the number of iterations and 

accelerates the execution time of the solver.  Although a considerable number of 

preconditioning techniques have been developed in previous work [56], e.g., 

incomplete cholesky (IC), diagonal preconditioners, successive over relaxation 

(SOR), polynomial preconditioners and sparse approximate inverse (SAI) 

preconditioners, researchers have not been able to develop an efficient general-

purpose preconditioner. A preconditioner is defined as good if it is easy to construct, 

cheap to store and accelerates the solvers from a broad range of problems. A good 

preconditioner should also be easy to parallelize and well-suited for modern 

architectures.  

A popular class of preconditioners suitable for parallelization and efficient for a 

large class of problems is sparse approximate inverse preconditioners. Although 

computing SAI preconditioners is generally expensive on a single processor, 

constructing them on parallel architecture is relatively fast. By generating a denser 

preconditioner, SAI preconditioning can reduce iterations in iterative solvers 

considerably and be applied to a broad range of applications. Previous work has 

accelerated the computation of this preconditioner on multiple processors [57], [58], 

[59], [60], [61], [62], [63], [64], [65] as well as multicore [66], [67] and manycore 

architecture [68].  

Graphic processing units have become an important resource for scientific 

computing in recent years [69]. With easy to learn APIs (Application Programming 

Interfaces) such as CUDA [43] (Compute Unified Device Architecture) introduced 

by NVIDIA, general purpose programming for modern scientific computations on 
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GPUs gained considerable attention. The GPU consists of streaming 

multiprocessors (SMs) and each SM contains basic processing units called scalar 

processors (SPs). To run compute intensive parts of an application on the GPU, 

initial data has to be transferred from CPU memory to GPU global memory and a 

GPU kernel is then launched. Using a single data multiple thread paradigm, GPU 

threads grouped into thread blocks proceed with the computations and transfer the 

results back to the CPU. The GPU consists of an on-board global memory with 

long access latency, a fast access shared memory, registers and caches. Threads 

inside a block communicate via shared memory and their execution can be 

synchronized. Every 32 threads in a block execute the same instruction and are 

called a warp. 

In this work we present a new GPU accelerated SAI preconditioning technique 

called GSAI, which prarallelizes the computation of sparse approximate inverse 

preconditioners on NVIDIA GPUs. Major contributions of the proposed GSAI 

technique are as follows:  

 Each GPU warp computes one column of ܯ and the preconditioner is generated 

in parallel on the GPU. 

 Large data structures are stored in GPU global memory and memory space is 

reused by dividing the computation of ܯ between many GPU kernels. 

 Memory accesses, vector multiplications and inner products are computed in 

parallel inside a GPU warp. QR decomposition and triangular solve kernels are 

also computed in parallel inside each warp via 32 threads.  

The preconditioner is assembled in a compressed storage format and then used to 

solve ݔܣ ൌ ܾ  via the preconditioned BiCGStab iterative solver, which is also 

accelerated on the GPU.  
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5.2 Sparse Approximate Inverse (SAI) Preconditioning  

A sparse approximate inverse preconditioner approximates the inverse of ܣ using 

a sparse matrix ܯ  to improve the condition number of the linear system of 

equations ݔܣ ൌ ܾ ܯ .  is computed using the least-squares methods and by 

minimizing the matrix residual norm   

ܯܣ‖ െ ி‖ܫ
ଶ  5.1

The above equation is then separated into ݊ independent least square problems 

min௠ೖ
௞݉ܣ‖ െ ݁௞‖ଶ

ଶ,  k=1,2,…,n  5.2

where ݁௞ is the kth column of the identity matrix and ݉௞ represents column ݇ in 

matrix ܯ. The degrees of freedom in solving the above equations are the locations 

and values of the non-zeros in ܯ. Based on the degree of freedom used, sparse 

approximate inverse preconditioner generation is classified as adaptive or static (a 

priori). In adaptive schemes ([61], [70], [71], etc.) the sparsity of ܯ is initially set to 

a simple pattern such as diagonal, this pattern is then augmented until a threshold 

on the residual norm or a maximum on the number of non-zeros in ܯ is reached. 

Although adaptive methods have broadened the scope of problems which can be 

solved using SAI preconditioning, by utilizing additional degrees of freedom in 

minimizing equation  5.2, the preconditioner generation becomes generally very 

expensive requiring many reruns to determine the appropriate values of various 

parameters involved, such as tolerance [72], maximum improvements per step [21], 

number of non-zeros per step [72], etc. for each problem. On the other hand, static 

preconditioning ([58], [64], [72], [73], [74]) determines the sparsity of ܯ in a pre-

processing step limiting the degrees of freedom in  5.1 to the non-zero values of ܯ.  

Previous work has introduced various techniques to determine a more accurate 

approximation of ܯ prior to computing the preconditioner and have shown that 

static schemes are more efficient than adaptive techniques in improving the 
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condition number of the ܣ matrix if the sparsity of ܯ is better approximated. Since 

the focus of this work is not to introduce a better initial guess for the ܯ 

preconditioner but to accelerate the computation of ܯ (equation  5.2), for general 

static (a priori) SAI preconditioners, we use the most popular approximate of ܯ 

which is based on sparsifications [75] of ܯ .ܣሺ݅, ݆ሻ is considered a non-zero if the 

condition  

,ሺ݅ܣ| ݆ሻ| ൐ ሺ1 െ ߬ ሻmax
௝
| ,ሺ݅ܣ ݆ሻ| , 0 ൑ ߬ ൑ 	1  5.3

is satisfied, where 	߬ is a user defined tolerance parameter (the main diagonal is 

always included). Based on equation  5.3, for smaller ߬ parameters more non-zeros 

entries in ܣ are dropped resulting in a sparser preconditioner; for ߬ equal to 1 the 

sparsity pattern assumed for ܯ would be the same as the sparsity of ܣ. If a more 

accurate approximate of the sparsity of ܯ is known for a specific application it can 

be used instead of equation  5.3. Knowing the sparsity of ܯ  before solving 

equation  5.1, reduces equation 5.2 to  

݉݅݊
௠ෝೖ

ฮܣመ ෝ݉௞ െ ݁̂௞ฮଶ
ଶ
, ݇ ൌ 1, 2, … , ݊   5.4

ෝ݉௞ is the reduced vector of unknows ݉௞ሺܬሻ, where ܬ is the set of indices ݆ such 

that ݉௞ሺ݆ሻ ് 0. Considering ܫ as a set of indices ݅ such that ܣሺ݅,  መ isܣ ,ሻ is not zeroܬ

the submatrix ܣሺܫ, .ሺܣ where all zero rows in	ሻܬ ,  መܣ ሻ are deleted. The dimension ofܬ

is equal to ݊ଵ ൈ ݊ଶ	 where ݊ଵ  and ݊ଶ  are the number of indices in ܫ  and ܬ 

respectively. Finally ݁̂௞  represents ݁௞ሺܫሻ. To construct and solve equation  5.4 for 

each column ݇	of ܯ, the steps in Fig.  5.1 should be computed for each ݇ (more 

information on the above implementations and the steps in Fig.  5.1 can be found in 

previous work on SAI preconditioners specifically [58], [59],[61], [63], [72]). 
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Fig.  5.1: Steps involved in constructing static sparse approximate inverse preconditioners.  

Factorized sparse approximate inverse (FSAI) preconditioners are another class 

of SAI preconditioning techniques initially introduced by [5], which have been 

developed in [76], [77], [78], [79], [80], [81], [82]. This class of preconditioners are less 

popular than the kind based on Frobenius norm minimization (equation  5.1) [56] 

and can fail due to breakdowns during an incomplete factorization process. FSAI 

preconditioners are constructed to preserve the symmetric properties of the 

preconditioned problem and are generally applied to the conjugate gradient iterative 

solver. A comparative study of various SAI preconditioners is presented in [83]. 

Sparsification is a method used to diminish the pattern of ܣ when it is relatively 

full and generate a sparser preconditioner and can be implemented in both adaptive 

and static SAI preconditioner construction algorithms. Initially introduced by 

Kolotilina [75] for computing SAI preconditioners for dense matrices, sparsification 

is also used by [84] to enhance the condition number of anisotropic problems via 

adaptive SAI preconditioners. Costgrov et al. [85] also propose augmenting the 

pattern of ܣ  for constructing sparse approximate inverse preconditioners. SAI 

preconditioner proposed by [86] and ParaSails [59] introduced by Chow [58] use a 

priori sparsity patterns based on powers of sparsified matrices for partial differential 

equation (PDE) problems. Sparsification is also implemented in SPAI 3.2 [72] by 

eliminating small values in ܣ before computing the preconditioner. The equation 

used in the proposed GSAI technique (equation  5.3) also allows for sparsifying ܣ 

using a tolerance parameter ߬. Applying sparsification to the preconditioner after it 

has been produced is also studied in [76], [86]. If an effective sparsification is known 

a) ܬ is constructed based on (3) 
b) Columns of A in ܬ are selected and matched to construct ܫ 

c) ܣመ is constructed and decomposed using QR Gram-Schmidt [5] 
d) Values in ෝ݉௞ are computed using ෝ݉௞ ൌ ܴିଵ்ܳ݁̂௞ and scattered back to M. 
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for a specific problem it can be added to the Pre-GSAI stage (Fig.  5.2) in the GSAI 

method proposed. 

Most of the work on SAI preconditioners presents techniques to parallelize the 

computation of the preconditioner on multi-processor architectures [57], [58], [59], 

[60], [61], [62], [63], [64], [65], by distributing the computation of the columns in ܯ 

between multiple processors. Techniques such as grouping communications [63], 

dictionary based methods [60] and latency-tolerant hybrid SAI preconditioning [62] 

are proposed in these works, to further enhance the execution time of SAI 

preconditioners on multiprocessors. ParaSails [59] and SPAI 3.2 [72] are two of the 

most popular open source implementations of the sparse approximate inverse 

preconditioner on single and multi-processor platforms and are used for comparison 

in a majority of previous work [56], [58], [60], [62]. While ParaSails uses a priori 

approximation of ܯ to generate the preconditioner, both adaptive and static SAI 

preconditioners are implemented in SPAI 3.2. Similar to SPAI 3.2 the 

preconditioned problem in GSAI is solved using the BiCGStab iterative solver 

(ParaSails implements the GMRES and CG iterative solvers). Chow et al. [58] 

compare the performance of ParaSails to SPAI 3.2 and show ParaSails generates the 

SAI preconditioner considerably faster than SPAI 3.2. We compare the 

preconditioner generation time of the proposed GSAI algorithm on GPUs to 

ParaSails on single and multi-processor platforms.  

Although parallelizing sparse approximate inverse preconditioners on more than 

one processor has been extensively studied in previous work which succeeded to 

enhance the execution speed of such preconditioners considerably, few works have 

studied the possibility of accelerating these preconditioners on multi/many core 

architectures. Gravvanis et al. [66], [67] attempt to accelerate a sparse approximate 

inverse preconditioned BiCGStab iterative solver on Intel multicore architecture by 

allocating the computation of each iteration of the iterative solver to a different 
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thread; implementation details on how to accelerate the preconditioner computation 

on a multicore are not presented in this work. Xu et al. [68] accelerate factorized 

SAI on NVIDIA GPUs. The paper mainly describes how to accelerate the sparse 

matrix vector multiplication kernel (SpMV) in the iterative solver but details for 

computing the sparse approximate inverse preconditioner have not been presented 

(other accelerations of the SpMV kernel are presented in [53], [49] and CUSPARSE 

[89]). 

 

Fig.  5.2: The four stages in implementing SAI preconditioners using GSAI on NVIDIA 

GPUs . 

5.3 Parallel SAI in NVIDIA GPUs 

The SAI preconditioner is computed in parallel on graphic cards by allocating 

the computation of each column of ܯ to one warp. Accelerating the SAI 

preconditioner involves local (per warp) parallelization of various computing kernels 

such as QR decomposition, dot products, sorting vector values, finding the 

maximum value in a vector, etc. One of the major challenges in computing SAI 

preconditioners on GPUs is the limited size of global and shared memory and the 

generation of large data structures required and produced by the SAI 
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preconditioning algorithm. Proposing techniques to free/reuse memory space and 

minimize the allocated memory to various data structures in the kernel are key 

factors in producing sparse approximate inverse preconditioners for large problems 

on GPUs. In the following implementation details to overcome the above 

constraints and implement in parallel the computing kernels involved in solving 

ݔܣ ൌ ܾ	using SAI preconditioners are presented.  

Computing the SAI preconditioner in parallel on GPUs involves the 

implementation of steps introduced in Fig.  5.1, which we implemented in a stage 

called Compute-GSAI (Fig.  5.2). In this stage every 32 threads (one warp) on the 

GPU computes one column of ܯ (m୩) by executing the steps in Fig.  5.1. Each warp 

first finds the dimensions of its corresponding ܣመ  matrix (equation  5.4) and 

assembles it. The local ܣመ matrices, which are very small compared to ܣ, are then 

decomposed (local decompositions per warp for each ܣመ ) using the Gram Schmidt 

method [5] and ݉௞  is computed. SAI preconditioning on GPUs requires two 

additional steps (Pre-GSAI and Post-GSAI) which handle GPU memory allocation, 

define required data structures, gather results and determine the required number of 

kernel calls based on the problem size and available GPU memory. Thus solving the 

ݔܣ ൌ ܾ	linear systems equations on the GPU using SAI preconditioners consists of 

four major steps (Fig.  5.2): 

1) Pre-GSAI: involves reading ܣ  in a compressed sparse format [88] and 

transferring it to GPU, allocating GPU memory space to the preconditioner M 

and other data structures and determining the number of kernel calls based on 

the available global memory space. 

2) Compute-GSAI: computes the sparse approximate inverse preconditioner on the 

GPU and scatters the produced columns back to ܣ on GPU global memory. 

3) Post-GSAI: revises the assigned global memory space to M by releasing extra 

memory space allocated to ܣ  and assembles ܣ  on the GPU in compressed 
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column storage (CSC) [88] format.  

4) Solver: converts both ܯ and ܣ from CSC to CSR (compressed row storage [88]) 

on the GPU to accelerate the iterative solver execution time and solves ݔܣ ൌ

ܾ	using the computed SAI preconditioner and the BiCGStab iterative solver.  

The rest of this section is organized as follows; Section  5.3.1 introduces 

implementation details of the above steps and the kernel/function calls involved in 

each stage. Managing global and shared memory, determining the amount of 

memory required for each data structure and deciding the necessary number of 

kernel calls are proposed in Section  5.3.2.  

5.3.1 GSAI Steps 

The proposed GSAI preconditioning method computes the SAI preconditioner on 

NVIDIA GPUs in three major steps namely Pre-GSAI, Compute-GSAI and Post-

GSAI, the generated preconditioner is then passed to the Solver stage (Fig.  5.2) to 

precondition and solve the linear system 

A. Pre-GSAI Stage 

Copy A to GPU: Sparse matrices are stored in memory using various 

compressed sparse storage formats such as CSR, CSC, etc [39].  Such formats 

reduce the amount of memory used to store the sparse matrix by contiguously 

storing rows/columns allowing for coalesced memory accesses. To compute the SAI 

preconditioner the ܣ matrix is initially stored in CSC format using three vectors 

called Avalue, Aindex and Apointer. The ܯ matrix is also produced and stored in columns. 

A copy of the ܣ matrix is transferred to GPU global memory. 



 73 

 

 

Fig.  5.3: Constructing local ܣመ matrices by first finding Jindex and Iindex vector values and then 

matching the columns referenced in Jindex to the Iindex vector. 

Compute n1 and n2 and allocate memory to ܯ: The preconditioner ܯ is stored in 

global memory, thus memory should be allocated to ܯ prior to the Compute-GSAI 

stage. Although the dimensions of ܯ  are the same as ܣ  it has to be stored in 

compressed format to fit on the GPU global memory. To reduce the amount of 

computation required to locate data structures used by each warp and regularize 

global memory accesses, equal memory space is allocated to each column of ܯ using 

the compute dimensions kernel (Fig.  5.2). The proposed memory allocation 

technique, introduces the need for the Post-GSAI step described in the next section, 

whose execution time is, however, negligible compared to Compute-GSAI as shown 

in the results section and to the provided benefits. The kernel first finds the 

dimensions of local ܣመ matrices (n1, n2) and stores them on global memory and the 

maximum n1 and n2 values between all columns (called n1,max and n2,max) are then 

found. Since the number of non-zeros in the largest column of ܯ is equal to n2,max, 

global memory allocated to ܯ  would be equal to the number of columns in ܯ 

multiplied by the number of bytes required to store n2,max floating point values 

(Mvalue). The row indices corresponding to the values of the preconditioner (Mindex) 

and the number of non-zeros produced for each column of ܯ (Mpointer) are stored in 
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global memory. Besides allocating memory to the preconditioner ܯ, the Allocate 

memory step of the Pre-GSAI stage (Fig.  5.2) assigns memory space to other data 

structures used during the computation of the SAI preconditioner (Compute-GSAI) 

and determines the number of kernel calls required to compute the SAI 

preconditioner. Details of these implementations are presented in Section  5.3.2 and 

Table  5.1. 

B. Compute-GSAI Stage 

To compute the SAI preconditioner on the GPU, the steps indicated in the 

Compute-GSAI stage in Fig.  5.2 have to be implemented in parallel on the GPU in 

a kernel called compute preconditioner. Each column of the preconditioner ܯ is 

computed via one warp (32 threads in a block) and every block is assigned 256 

threads (eight warps) to compute eight columns in parallel. The number of columns 

computed in one SM simultaneously will depend on the allocated shared memory 

per block and available resources per SM.  

Find ܬ: In this stage the set ܬ (the first step in Fig.  5.1) is constructed and 

loaded into a vector called Jindex. Each warp in the kernel first loads the column in ܣ 

corresponding to its index (the index is assigned to each warp based on the total 

number of warps launched on the GPU) and finds the largest element in the loaded 

column. The condition in equation  5.3 is then evaluated for each element of the 

loaded value vector simultaneously and the column index of elements satisfying the 

condition is stored in Jindex.    

Find ܫ and construct the local ܣመ: To determine ܫ (Fig.  5.1), the algorithm first 

loads the row indices of the first column referenced in Jindex into a vector called Iindex. 

The row index vector of successive columns referenced by Jindex are then loaded in 

order into shared memory and compared in parallel with values in Iindex, new indices 

are tagged and later added to Iindex to construct the set ܫ . Local A෡  matrices are 
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constructed on global memory by loading columns indexed in the Jindex vector and 

matching them to the Iindex vector in parallel (Fig.  5.3).  

Local QR decomposition and triangular solves: Local QR decompositions are 

computed using the Gram Schmidt method (Fig.  5.4) [5], which was easier to 

parallelize inside a warp compared to other QR decomposition techniques. Each 

warp decomposes one ܣመ  matrix, thus many QR decompositions are computed 

simultaneously via warps executing in parallel. Parallelism is also exploited in a 

warp by computing the local QR decompositions in parallel using the 32 threads 

inside a warp, e.g., most of the operations in Fig.  5.4 such as memory loads, 

multiplications and inner products are computed in parallel.  

The orthogonal vectors produced in each step of the QR decomposition 

algorithm (ݍ௜ in Fig.  5.4) are stored in global memory (Q in Table  5.1) and are used 

in proceeding steps. At the end of the Compute-GSAI stage ݉௞  values are 

computed using ෝ݉௞ ൌ ܴିଵ்ܳ݁̂௞ and scattered to global memory space allocated to 

the ܯ matrix. 
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Fig.  5.5: The Mpointer vector computed in the compute preconditioner kernel is first modified 

using the Modify kernel to match the CSC [88] storage format and then the Assemble 

kernel assembles the M matrix values and stores them in CSC format (ܯ௜௡ௗ௘௫
∗  and ܯ௩௔௟௨௘

∗  

vectors). 

C. Post-GSAI Stage 

Modify and assemble M: The values and row indices of the preconditioner 

generated in the compute preconditioner kernel are stored in Mvalue and Mindex 

vectors in the format shown in Fig.  5.5. Since the allocated size to each column of 

 on global memory is equal to n2,max (which is not necessarily equal to the number ܯ

of non-zeros per column), to assemble ܯ each warp has to store the number of non-

zeros of the column it is generating into a vector called Mpointer. In the Post-GSAI 

stage the Mvalue, Mindex and Mpointer data structures are modified to match the CSC 

storage format. The first kernel in the Post-GSAI stage is called Modify which 

changes Mpointer to match the CSC format (ܯ௣௢௜௡௧௘௥
∗  in Fig.  5.5). Another kernel 

called Assemble then modifies the Mindex and Mvalue vectors on the GPU to match the 

column storage format (ܯ௜௡ௗ௘௫
∗  and ܯ௩௔௟௨௘

∗  in Fig.  5.5). The updated value and 

index vectors of ܯ are generated on GPU memory and do not require data to be 

transferred to the CPU. 

D. The Solver 

Preconditioned BiCGStab solver: When generating a right preconditioner ܯ (via 

minimizing equation  5.2) matrices are stored and generated in column storage 

format to reduce memory access latencies [5]. On the other hand, to achieve the 

*
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best performance and increase coalesced memory accesses on the GPU, the matrices 

in the sparse matrix vector multiplication kernel should be stored in row storage 

format [89]. Thus prior to solving ݔܣ ൌ ܾ the matrices are converted to CSR format 

(to generate a left preconditioner the CSC to CSR stage in Fig.  5.2 should be 

removed since all matrices are generated and stored in CSR format). After the 

conversion step the BiCGStab kernel is called to solve ݔܣ ൌ ܾ using the produced 

  .ܯ

The preconditioned BiCGStab iterative solver on GPU is dominated by the 

multiple sparse matrix multiplies [5]. The CPU is only used for scalar updates in 

the algorithm and major computing kernels are implemented on the GPU. Since 

sparse matrix vector multiplication is the most time consuming operation in 

iterative solvers [26] it has to be accelerated efficiently on the GPU. We used the 

SMVM implementation from [49], [89] which is one of the fastest implementations 

of this kernel on GPUs. Other operations in the BiCGStab iterative solver have also 

been accelerated on the GPU using CUBLAS [90] functions. One of the advantages 

of using BiCGStab is that ܣ can be non-symmetric.   

5.3.2 Memory Allocation 

In this section we introduce techniques to overcome GPU memory space 

limitations and enable the correct implementation of the GSAI stages proposed in 

Section  5.3.1 for large problems. Since the exact size of data structures (such as ܣመ 

and Q) used in the compute preconditioner kernel are only determined during the 

kernel execution, techniques to allocate memory statically to these data structures 

in the Pre-GSAI stage (prior to calling the kernel) are also proposed. Based on the 

allocated memory space to each data structure, the number of compute 

preconditioner kernel calls required to generate the preconditioner are also 

determined. The implementations proposed in this section are all a part of the 
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Allocate memory section of the Pre-GSAI stage shown in Fig.  5.2. 

Local data structures such as ܣመ and Q are generally large and cannot be stored 

on GPU shared memory; thus by approximating their size, global memory space is 

allocated to them in the Pre-GSAI stage prior to calling the compute preconditioner 

kernel. The maximum number of rows and columns in these matrices is computed 

in the compute dimensions kernel (݊ଵ,௠௔௫  and ݊ଶ,௠௔௫ ) and global memory space 

equal to the size of an array with ݊ଵ,௠௔௫ ൈ ݊ଶ,௠௔௫ elements is allocated to them per 

column (warp).  The Iindex vector used in the Compute-GSAI kernel also varies in 

size for each warp and can easily exceed the maximum size of shared memory. This 

vector is also stored in global memory by allocating memory to arrays of ݊ଵ,௠௔௫ 

elements per column. To compute the preconditioner different columns of ܣ	are 

required thus the ܣ matrix should be on global memory at all times. Table  5.1 

shows the amount of global memory required to store various vectors and data 

structures on global memory prior to calling the Compute-GSAI kernel. Because the 

preconditioner is generated in double precision, data structures such as ܣመ, Q and 

Mvalue are stored in double precision.  

For large ܣ matrices and ߬ parameters that lead to a denser preconditioner, the 

total size of the data structures in Table  5.1 will exceed the GPU global memory. 

Since the memory required to store ܣመ and Q for all columns is considerably larger 

than the size of ܣ and ܯ, by calling multiple kernels sequentially and overwriting 

the memory space allocated to these matrices, computing the SAI preconditioner is 

made possible on the GPU. Thus after storing ܣ  and ܯ  on global memory 

depending on the available memory space and the size of other data structures that 

need to be stored on global memory, the computation of the preconditioner is 

divided between multiple kernels each producing a few columns of ܯ. As a result 

memory allocated to other data structures such as ܣመ and Q can be reused. In the 

following, steps (implemented on the CPU) to determine the number of required 
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compute preconditioner kernel calls are presented and the allocated memory space 

to ܣመ which is overwritten in each kernel call is determined (memory assigned to 

other data structures such as Q can be computed the same way): 

 Memory available to store local data structures (ܣመ, Q, etc.) in global memory is 

first determined by subtracting memory allocated to ܣ  and ܯ  matrices from 

GPU global memory. 

 The result is then divided by the size of memory required to store the local data 

structures for one column, in order to determine the number of columns which 

can be computed in each kernel call (columns-per-kernel).  

 The number of compute preconditioner kernel calls is determined via dividing 

the total number of columns in A by columns-per-kernel. The memory allocated 

to storing local ܣመ  matrices for each kernel will be equal to ݊ଵ,௠௔௫ ൈ ݊ଶ,௠௔௫ 

multiplied by columns-per-kernel. 

The small size of the GPU shared memory does not limit the size of the problem 

being solved, because large vectors and data structures in the kernel are stored on 

GPU global memory. To accelerate computations shared memory is used to store 

local data structures in the compute preconditioner kernel whenever possible. Before 

calling the compute preconditioner kernel (in the allocate memory section of the 

Pre-GSAI stage), the amount of shared memory required for each block to store 

these data structures is checked and if it reduces the number of active blocks per 

SM to two all data is read from global memory directly. For larger tolerance 

parameters which lead to larger data structures most of the data is read directly 

from global memory. Thus, the number of active blocks per SM is no longer limited 

to the size of data structures and available shared memory and memory access 

latencies are reduced via configuring the size of L1 cache to 48KB. To generate SAI 

preconditioners for very large problems which do not fit on the GPU global memory 

or to generate very dense preconditioners, a graphic card with larger global memory 
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could be used or the computation of the SAI preconditioner should be distributed 

between many GPUs. 

Table  5.1: The number of elements in each of the data structures involved in GSAI and 
their size based on their data. 

Data Structure Number of elements Type Size 

Avalue non-zeros double elements * 8 

Aindex non-zeros integer elements * 4 

Apointer Columns integer elements * 4 

Mvalue Columns ൈ ݊ଶ,௠௔௫ double elements * 8 

Mindex Columns ൈ ݊ଶ,௠௔௫ integer elements * 4 

Mpointer Columns integer elements * 4 

መ (all columns) Columns ൈܣ ݊ଵ,௠௔௫ ൈ ݊ଶ,௠௔௫ double elements * 8 

Q(all columns) Columns ൈ ݊ଵ,௠௔௫ ൈ ݊ଶ,௠௔୶ double elements * 8 

Iindex(all columns) Columnsൈ ݊ଵ,௠௔௫ integer elements * 4 

elements, columns and non-zeros represent the number of elements computed in the second column of the table, the 

number of columns in A and the number of non-zeros in A, respectively 

5.4 Results 

The performance of the proposed SAI acceleration on GPUs is evaluated using 7 

matrices [34] from various application areas with different sparsity patterns 

(Table  5.2). Since the SAI preconditioner is not limited to symmetric problems the 

performance of the preconditioner and the acceleration has also been tested on 4 

unsymmetric matrices. These problems are generally difficult to solve and 

precondition due to their complex geometry and ill-conditioning. GPU results were 

achieved using NVIDIA GTX480, TESLA M2070 and CUDA-SDK 3.2, CPU 

programs are executed on a system core Linux cluster from Sharcnet [91] using 1-32 

AMD Opteron 252 (2.6GHZ, single-core) processors with a Quadrics Elan4 

interconnect. The preconditioned BiCGStab iterations are terminated upon reaching 

10,000 iterations or reaching a relative residual of less than 1e-7 in under 10,000 

iterations using a random Right Hand Side (RHS) for all problems (the same RHS 
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is used for each matrix in all platforms). Both the preconditioner generation kernel 

and the iterative solver run in double precision. In the following the performance of 

the proposed GSAI preconditioner on GTX480 and TESLA M2070 is first presented 

(Section  5.4.1), the preconditioner computation time on the GPU is then compared 

to ParaSails (Section  5.4.2) on a single processor/core (a processor/core is an AMD 

Opteron 252 consisting of one core). 

ParaSails computes the preconditioner in parallel on multi-processor platforms 

by partitioning ܯ  and allocating the computation of its columns to different 

processors. They propose novel techniques to partition columns/rows amongst 

processors, hide inter-processor communication latencies, balance load amongst 

processors, manage one-sided communications, construct ܣመ  matrices and perform 

operations such as QR decomposition. Implementation details of how the 

computation of SAI preconditioners is parallelized in ParaSails can be found in the 

documentations and publications referenced in [59]. The time to compute the SAI 

preconditioner using GSAI on GPUs is compared to ParaSails on a cluster of 

multiple AMD Opteron 252 processors in Section 5.4.2. 

5.4.1 The GSAI Preconditioning Method  

In this section the effect of increasing the tolerance ߬ in equation  5.3 using GSAI 

and NVIDIA GTX480 on the preconditioner construction time, iterative solver 

execution time and the number of iterations are first studied. The total execution 

time and the number of iterations of the preconditioned iterative solver are then 

presented for both GTX480 and TESLA M2070.  

As shown in Table  5.3 for larger tolerances ( ߬ ), the number of iterations 

considerably decreases for most of the tested problems using GSAI. Because the 

preconditioner ܯ is an approximation of ିܣଵ decreasing its sparsity using ߬ does not 

necessarily guarantee a better preconditioner, for example the number of iterations 
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in g3-circuit increases when ߬ is increased to 0.6 (Table  5.3). But on average the 

number of iterations decrease as ߬ increases and the sparsity of ܯ gets closer to ܣ 

[56]. For most of the tested problems the total execution time on GPU also 

decreases as ߬  increases (Table  5.4). Because more elements of ܣ  satisfy the 

condition in equation  5.3 the maximum number of rows and columns (n1,max and 

n2,max) of the local ܣመ matrices on the GPU increase with tolerance (Fig.  5.6). As a 

result the time required by the compute dimensions kernel to determine n1,max and 

n2,max as well as the time required to construct and decompose ܣመ in the compute 

preconditioner kernel also increase with ߬ (Fig.  5.7 and Table  5.5). Fig.  5.7 shows 

the fraction of total preconditioner execution time spent in all kernels involved in 

the construction of the SAI preconditioner on GTX480 (kernels in the Pre-GSAI, 

Compute-GSAI and Post-GSAI stages). Based on Table  5.5 for all tested matrices 

the preconditioner execution time increases with ߬. Thus, except for copying ܣ to 

the GPU, the execution time of all kernels increases with ߬ due to an increase in the 

number of non-zeros in preconditioner ܣ (Fig.  5.7 and Table  5.5). 

Fig.  5.8 and Table  5.4 explain why an increase in the SAI computing time for 

larger tolerances still on average improves the total execution time on GPU. As 

shown in Fig.  5.8, the total execution time is dominated by the BiCGStab solver. 

Thus, based on total execution times reported in Table  5.4, by increasing ߬ and 

generally generating a more accurate preconditioner, the execution time of the 

iterative solver is decreased (due to an average reduced number of iterations) with a 

negligible increase in SAI computation time. Since the time spent in generating the 

preconditioner is considerably less than the time required to solve the problem, the 

total execution time on average decreases for larger tolerance parameters.  

The problem solution time on the GPU decreases when the iterations are 

reduced on the GPU. This is because the sparse matrix vector multiply kernel 

involved in the iterative solve uses available GPU resources more efficiently as the 
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number of non-zeros in ܯ increase. While the preconditioner becomes denser with 

larger ߬ parameters, the number of rows in ܯ is fixed and as a result the number of 

computing blocks/warps launched on the GPU remain unchanged because of using 

the sparse matrix vector multiply kernel introduced in [49], [89]. On the other hand 

the number of non-zeros per row increases, exploiting more parallelism per warp and 

better utilizing the GPU resources. Thus GPU acceleration of the SAI allows for the 

generation of more accurate and denser preconditioners and increases the 

applicability of static preconditioning for sparse approximate inverse 

preconditioners. Table  5.6 shows the execution time of the steps involved in 

constructing the sparse approximate inverse preconditioner on GTX480 for ߬ equal 

to 0.9 (which generated the best preconditioner amongst the tested tolerances) as 

well as the BiCGStab iterative solver. The time spent in constructing the 

preconditioner is less than 3 seconds for all matrices (Table  5.6) while the iterative 

solve can take up to 171 seconds for matrices such as thermal2 on the GPU. 

Preconditioners with more than 6 million non-zeros (Table  5.7) are generated in 

less than 3 seconds (Table  5.6) using the proposed GSAI preconditioner on GTX480. 

As shown in Table  5.7 without the preconditioner most of the problems would not 

converge in 10,000 iterations while with the preconditioner the BiCGStab iterative 

solver would converge to the 1e-7 residual error in less than 100 iterations for some 

matrices (venkat01 and majorbasis). Table  5.7 also shows that although the number 

of iterations for the preconditioned iterative solver on TESLA M2070 decreases 

compared to GTX480, the total execution time is still larger for all tested matrices.  

5.4.2 GSAI vs. ParaSails 

In this section the preconditioner construction time is compared with ParaSails 

[59] which also uses a priori techniques to determine the sparsity of ܯ  and 

computes SAI in parallel on multiprocessors. Techniques proposed in ParaSails to 
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better determine the sparsity of ܯ prior to its computations for PDE problems can 

be implemented in the Pre-GSAI stage of GSAI without changing the Compute 

preconditioner kernel itself (determining the sparsity of ܯ  in a priori SAI 

preconditioning techniques is negligible compared to the preconditioner computation 

itself). To compare GSAI with ParaSails, parameters were set so that both 

ParaSails and GSAI would produce similar preconditioners with the same sparsity 

as ܣ ( ߬ ൌ 1  in GSAI, parameter settings for ParaSails are described in [59]), 

preconditioners are produced using unfactorized preconditioning in ParaSails.  

Table  5.8 shows generating the SAI preconditioner using ParaSails on one 

processor/core can take up to 100 seconds while the proposed acceleration of sparse 

approximate inverse preconditioners on GPUs generated the same preconditioner in 

less than 3 seconds. With GSAI on GTX480, speedups of up to 47 times are 

achieved compared to ParaSails, decreasing the average generation time of SAI 

preconditioners 28 times. In Fig.  5.9 the average execution time of ParaSails for all 

matrices on multiprocessors is compared to average preconditioner generation time 

of GSAI on NVIDIA GTX480 and TESLA M2070. As shown in Fig.  5.9 

constructing the preconditioner on a single GPU using GSAI is equivalent to 

constructing the same preconditioner on 16 processors/cores using ParaSails.   

GSAI computes many columns of ܯ in parallel, the time spent to construct local 

 መ matrices do not accumulate for columns generated simultaneously. This is not theܣ

case in ParaSails when run on a single processor, so both the parallel execution of 

columns on the GPU and the techniques proposed to compute each column of ܯ are 

the main reasons behind the reported speedups. 

5.5 Conclusion and Future Work 

The GPU accelerated sparse approximate inverse preconditioning method called 

GSAI, proposed in this work introduces optimized implementations to parallelize 
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the computation of sparse approximate inverse preconditioners on NVIDIA GPUs. 

A sparsified pattern of ܣ based on tolerance ߬ is used as the sparsity pattern of the 

preconditioner ܯ. By allocating the computation of each column of ܯ to one warp, 

the GSAI method computes the SAI preconditioner in three stages called Pre-GSAI, 

Compute-GSAI and Post-GSAI and then solves the linear system of equations in 

the Solve stage. Techniques to overcome limitations imposed by the small GPU 

shared and global memory in computing SAI preconditioners on GPUs are proposed 

as a part of the Pre-GSAI stage. The execution of operations involved in the SAI 

computation are parallelized per warp in the Compute-GSAI and the generated 

preconditioner values are assembled and stored in a compressed format in the Post-

GSAI step. Finally the preconditioned BiCGStab iterative solver is implemented in 

parallel (Solver stage) to compute the results of the linear system of equations using 

the generated preconditioner. 

The effects of decreasing the sparsity of the preconditioner using a tolerance 

parameter ߬  are tested on the GPU using GSAI. The results showed that the 

number of iterations and total execution time would on average decrease using 

GSAI for larger tolerances; the preconditioner generation time would remain 

negligible compared to the problem solution time. The total execution time on the 

GPU (the time spent on generating the preconditioner and solving the problem) 

would constantly decrease as ߬ increases making the generation of denser 

preconditioner more efficient. The generation of the SAI preconditioner was 

accelerated on average 28 and 23 times on GTX480 and TESLA M2070 respectively 

using GSAI compared to the time required to create the same preconditioner using 

ParaSails on a single processor (single-core AMD Opteron 252). The preconditioner 

generation time on GTX480 and TESLA M2070 (using GSAI) is almost equivalent 

to creating the SAI preconditioner on 16 processors in parallel using ParaSails. We 

plan to accelerate the execution time of other variants of SAI preconditioning 
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techniques such as adaptive methods and also introduce techniques to find better 

approximations of the preconditioner using GPUs in future work. 

Table  5.2: Properties of sparse matrices used to test the GSAI preconditioning method. 

Matrix Name Matrix Type Rows non-zeros Structure 

venkat01 

CFD problem 

sequence 62,424 1,717,792 unsymmetric 

majorbasis 
optimization 

problem 

160,000 1,750,416 unsymmetric 

t2em 
electromagnetics 

problem 
921,632 4,590,832 unsymmetric 

atmosmodd CFD problem 1,270,432 8,814,880 unsymmetric 

thermal2 thermal problem 1,228,045 8,580,313 Symmetric 

g3-circuit 
circuit simulation 

problem 
1,585,478 7,660,826 Symmetric 

apache2 structural problem 715,176 4,817,870 Symmetric 

Table  5.3: The effect of increasing tolerance (߬) on the number of iterations (GSAI on 
GTX480). 

Matrix τ ൌ 0.5 τ ൌ 0.6 τ ൌ 0.7 τ ൌ 0.8 ߬ ൌ 0.9 

venkat01 65 59 50 45 70 

majorbasis 49 47 49 43 23 

t2em 2390 2390 2390 1264 1264 

atmosmodd 268 268 268 145 145 

thermal2 6000 5805 5727 3608 2906 

g3-circuit 1856 2307 1863 1347 1145 

apache2 2922 1674 1674 1143 1226 

average 1936 1793 1717 1085 968 
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Fig.  5.6: The effect of increasing ߬ on the maximum dimension of local ܣመ matrices (n1,max 

and n2,max ). 

Table  5.4: The effect of increasing tolerance (߬) on the total execution time involving both 
the preconditioner construction time and the solve time (GSAI on GTX480). 

Matrix τ ൌ 0.5 τ ൌ 0.6 τ ൌ 0.7 τ ൌ 0.8 ߬ ൌ 0.9 

venkat01 0.43 0.54 0.69 0.83 2.6 

majorbasis 0.66 0.64 0.65 0.68 0.6 

t2em 108 108 108 59 59 

atmosmodd 17 17 17 11 11 

thermal2 364 348 331 213 174 

g3-circuit 136 170 138 101 87 

apache2 110 63 63 44 47 

average  105 101 94 61 54 
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Fig.  5.7: The average fraction of total time (over all matrices) spent in the 

functions/kernels involved in the first three stages of the GSAI preconditioning algorithm 

(on GTX480) are shown for an increasing ߬ (compute preconditioner consists of all steps in 

the Compute-GSAI stage). 

 

Fig.  5.8: The average fraction of total time (over all matrices) in generating the SAI 

preconditioner (the Pre-GSAI, Compute-GSAI and Post-GSAI stages in Fig.  5.2) and 

solving the problem for an increasing ߬	on the GPU using GSAI.  
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Fig.  5.9: The speedup achieved from generating the SAI preconditioner on GTX480 and 

TESLA M2070 using GSAI compared to generating the same SAI preconditioner using 

ParaSails [59] on 1-32 processors/cores (the generated preconditioner has the same sparsity 

as A, ߬ ൌ 1 in GSAI). 

Table  5.5: The effect of increasing tolerance (߬) in the GSAI algorithm (on GTX480) on 
the preconditioner construction time. 

Matrix τ ൌ 0.5 τ ൌ 0.6 τ ൌ 0.7 τ ൌ 0.8 τ ൌ 0.9 

venkat01 0.11 0.24 0.42 0.58 2.14 

majorbasis 0.11 0.11 0.11 0.19 0.3 

t2em 0.3 0.3 0.3 1.26 1.26 

atmosmodd 0.43 0.43 0.43 1.97 1.97 

thermal2 0.42 0.42 0.7 1.65 2.7 

g3-circuit 0.65 0.78 0.9 1.51 1.84 

apache2 0.31 0.35 0.35 0.78 0.8 
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Table  5.6: The time spent in computing the stages in Fig.  5.2 for ߬ ൌ 0.9 on GTX480. 

Matrix 

Pre-GSAI  

τ ൌ 0.9 

Compute-GSAI 

τ ൌ 0.9 

Post-GSAI 

τ ൌ 0.9 
Solve 

venkat01 0.2 1.94 0.01 0.46 

majorbasis 0.06 0.23 0.01 0.3 

t2em 0.22 1.03 0.01 57 

atmosmodd 0.389 1.57 0.02 9.5 

thermal2 0.46 2.23 0.02 171 

g3-circuit 0.33 1.49 0.02 85 

apache2 0.17 0.62 0.01 47 

Table  5.7: Preconditioned and unpreconditioned BiCGStab iterative solver on GTX480 and 
TESLA 2070. 

Matrix 

GPU 

BiCGStab 

Iterations 

Precond. 

non-zeros 

GTX480 

Precond.  

BiCGStab 

Iterations 

GTX480 

Total 

Time 

TESLA 

M2070 

Precond. 

BiCGStab 

Iterations 

Tesla 

M2070 

Total Time 

venkat01 ൐10000 822937 70 2.6 70 2.7 

majorbasis ൐10000 646524 23 0.6 23 0.72 

t2em ൐10000 4590832 1264 59 968 63 

atmosmodd ൐10000 6317824 145 11 140 14 

thermal2 6119 6720218 2906 174 2804 195 

g3-circuit ൐10000 6562707 1145 87 1133 108 

apache2 4931 2677127 1226 47 1115 58 

The table shows the number of iterations (column one) required to solve the unpreconditioned BiCGStab solver for the 

tested matrices, the number of non-zeros in the preconditioner produced for ߬ ൌ 0.9 and the iterations achieved from 

the preconditioned BiCGStab solver using this preconditioner on both the GTX480 and TESLA M2070 graphic cards. 
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Table  5.8: ParaSails execution time compared to GPU results. 

Matrix 

ParaSails 

Setup 

ParaSails

Precond. 

ParaSails

Total 

GTX480 

߬ ൌ 1 

ParaSails

Total vs. 

GTX480 

speedup 

TESLA 

M2070 

߬ ൌ 1 

ParaSails 

Total vs. 

TESLA M2070 

speedup 

venkat01 0.1 13.7 13.8 2.22 6.2 2.83 4.8 

majorbasis 0.1 14.7 14.8 1.19 12.3 1.43 10.3 

t2em 0.4 60 60.4 1.26 47.9 1.55 38.9 

atmosmodd 0.7 93.7 94.4 3 31 3.8 24.8 

thermal2 0.8 91.7 92.5 3.76 24.5 3.9 23.7 

g3-circuit 0.7 99.4 100.1 2.13 46.8 2.64 37 

apache2 0.4 52 52.4 1.62 32.3 2 25.8 

average 

speedup -- -- -- -- 28.7 -- 23.7 

The time to setup (ParaSails-Setup) and compute (ParaSails-Preconditioner) the SAI preconditioner with the same sparsity as A (߬ ൌ 1	in 

GSAI) on ParaSails for one processor/core compared to the time required to compute the preconditioner on GTX480 (GPU-SAI) and TESLA 

M2070  using the GSAI preconditioning algorithm (ParaSails-Total is computed by adding ParaSails-Setup and ParaSails-Preconditioner). 
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PREFACE TO CHAPTER 6 

The following chapter is an extended version of a paper submitted to the IEEE 

Conference on Electromagnetic Field Computation (CEFC 2012) titled 

“Communication-avoiding Krylov Techniques on GPUs”. Communication-avoiding 

Krylov solvers reduce the communication cost of KSMs by computing several 

vectors of a Krylov subspace “at once”, using a kernel called “matrix powers”. The 

matrix powers kernel is implemented on NVIDIA GPUs. Speedups of upto 5.7 times 

are reported for the matrix power kernel compared to regular SpMV 

implementation. The proposed implementation of matrix powers will be used in 

communication-avoiding Krylov solvers in future work. This work is done in 

collaboration with the Berkeley benchmarking and optimization group (BeBOP) 

and co-supervision of Professor James Demmel at UC-Berkeley. 

. 
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Chapter 6 COMMUNICATION-AVOIDING KRYLOV TECHNIQUES ON GPUS 

Maryam Mehri Dehnavi, James Demmel and Dennis Giannacopoulos 

Abstract: Communicating data within the GPU memory system and between the 

CPU and GPU are major bottlenecks in accelerating iterative solvers on GPUs. The 

communication-avoiding [92] matrix powers kernel is implemented to reduce data 

communication between CPU and GPU and within the GPU memory hierarchy in 

Krylov solvers.  

Index terms: Numerical algorithms; Parallel algorithms; Graphic processors; 

Krylov solvers. 

6.1 Introduction 

The sparse matrix vector multiplication (SpMV) kernel is a dominant computing 

kernel in standard Krylov subspace methods (KSMs). Computing a few arithmetic 

operations per datum, SpMV operations are classified as communication-bound. The 

cost of communication (moving data between levels of the memory hierarchy) is 

considerably higher than the cost of arithmetic computations in modern 

architectures and this gap is expected to further widen. Thus, in order to enhance 

the performance of communication bound kernels such as SpMV, new 

strategies/algorithms should be explored to minimize communication and data 

movement.  

6.1.1 Communication-avoiding Krylov techniques 

Communication-avoiding (CA) algorithms [92] communicate less than the state-

of-the-art algorithms at the expense of more arithmetic operations. Standard 

implementations of SpMV in KSMs, require reloading the sparse matrix to caches 

and fast memory in each iteration when they are too large to fit in fast memory, 

thus, overwhelming the algorithm with communications and data movement 

between fast and slow memory. Communication-avoiding Krylov techniques [92], 
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minimize communication via computing ݇ steps of the iterative solver at the same 

time. To take ݇ steps at the same time, and so potentially reduce memory traffic by 

a factor of ݇ , a new sparse matrix kernel is required, called the matrix powers 

kernel. Where ݌௜ is a polynomial of degree ݅, the matrix powers kernel computes the 

basis	ሾ݌ଵሺܣሻݔ, ,ݔሻܣଶሺ݌ …,ݔሻܣଷሺ݌ ,  ሿ. To compute the aforementioned basis for aݔሻܣ௞ሺ݌

matrix ܣ  that does not fit into fast memory, the matrix is first divided into 

partitions (cache-blocks) that fit into the desired memory space. The partitions are 

then loaded into fast memory to compute the basis. To avoid communication 

between fast and slow memory and between partitions, non-local rows might also be 

copied to a partition (“remote/ghost” rows) leading to redundant arithmetic 

operations [10]. For a well partitioned ܣ  matrix (where ܣ  has a low surface-to-

volume ratio), the communication cost of the ݇-step matrix powers kernel will be 

ܱሺ1ሻ compared to ܱሺ݇ሻ for ݇ SpMV operations in a naïve implementation [10]. 

6.1.2 NVIDIA GPUS 

Graphic processing units (GPUs) have become an important resource for 

scientific computing in recent years. With easy to learn APIs such as CUDA [43] 

introduced by NVIDIA, general purpose programming for modern scientific 

computations on GPUs have gained considerable attention. The GPU consists of 

streaming multiprocessors (SMs) and each SM contains basic processing units called 

scalar processors (SPs). To run compute intensive parts of an application on the 

GPU initial data has to be transferred from CPU memory to GPU global memory 

and a GPU kernel is then launched. Using a single data multiple thread paradigm, 

GPU threads grouped into thread blocks (TBs) proceed with the computations and 

transfer the results back to CPU. The GPU consists of an on-board global memory 

with long access latency, a fast access shared memory, registers and caches. Threads 

inside a block communicate via shared memory and their execution can be 
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synchronized. Every 32 threads in a block execute the same instruction and are 

called a warp.  

6.2 Previous Work  

This work implements the matrix powers kernel on NVIDIA GPUs by 

partitioning (cache-blocking) the matrix to fit into global and shared memory 

spaces. The kernel will be used in ݇-step Krylov solvers in future work. In this 

section a brief survey of the ݇ -step Krylov techniques is presented; algorithmic 

details of these techniques and a complete survey of previous work on ݇-step Krylov 

solvers are presented in [10].  

The	݇-step Krylov subspace methods were initially introduced by Van Rosendale 

[93], and later studied in work such as [8], [94]. All this work used a monomial basis 

and reported convergence for ݇ ൏ 5 in ݇-step KSMs. By using a scaled monomial 

basis [95], a scaled and shifted Chebychev basis [96] and Newton basis [97], the 

coverage of the ݇-step Krylov subspace techniques were further improved at the 

expense of increased dependency in the algorithm. This problem is resolved by 

Hoemmen et al. [10] by eliminating the need for scaled basis vectors. A more 

detailed survey of available work on communication-avoiding KSMs is presented in 

[10]. The dominant computing kernel in ݇-step Krylov solvers is the matrix powers 

kernel which is implemented on GPUs in this work.    

A considerable number of work has been done on accelerating sparse matrix 

vector multiplication on GPUs [49], [53], [89]. None of the available 

implementations of SpMV on GPUs consider cache blocking for GPU global or 

shared memory. If the matrix is larger than GPU global memory, computing ݇ 

SpMVs requires reloading the matrix to GPU global memory which is very costly. 

Most of previous work assumes the matrix is transferred to the GPU once and does 

not report transfer times between GPU and CPU, which is not applicable to large 
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matrices that do not fit in global memory. The matrix powers kernel reduces data 

communication between CPU and GPU global memory and within the GPU 

memory hierarchy by partitioning the matrix and computing ݇ SpMV operations at 

the same time for each partition. 

To our knowledge, we are the first to study the performance of the matrix 

powers kernel on NVIDIA GPUs using global and shared memory as fast memory. 

Our work is closely related to the work proposed by Mohiyuddin et al. [98], which 

implements the matrix powers kernel on a 8-core Intel Clovertown. The proposed 

implementation of the communication-avoiding matrix powers kernel on GPUs will 

be used in communication-avoiding KSMs in future work. Major contributions of 

the work are classified in the following:  

 Most of the previous work on accelerating SpMV on GPUs [49], [53], [89] does 

not report the cost of copying data to and from the GPU and assume the ܣ 

matrix fully fits on the device memory. With only 1.5GB of global memory in 

GPUs such as NVIDIA GTX480, matrices from many real problems can not be 

fully stored on the device. Memory might also be allocated to store 

preconditioners and other data structures, leaving only a part of GPU global 

memory for storing ܣ. As a result, the matrix has to be transferred to the GPU 

in each iteration, increasing data transfers between GPU and CPU memory in 

iterative solvers. The matrix powers kernel is implemented on GPUs via global 

memory cache blocking to reduce data transfers to the GPU global memory in 

KSMs. The proposed implementation will enable the efficient implementation of 

communication-avoiding KSMs on NVIDIA GPUs. 

 Similar to CPUs, graphic cards also have a memory hierarchy and although 

references to global memory are efficiently handled by the hardware, reads from 

this memory space are much more costly than accesses to GPU shared memory 

and caches. A naive implementation of ݇ SpMV operations involves reloading 
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matrix rows from shared memory in each SpMV kernel call, leading to many 

global memory references. In the second contribution, the GPU shared memory 

is used as a cache level for the matrix powers kernel to reduce data transfers 

between GPU global and shared memory. 

Implementation details of the proposed contributions are presented in 

Section  6.3. The performance of the matrix powers kernel for global memory cache 

blocking is evaluated using several matrices (Section  6.4.1). Initial results for the 

second contribution are also presented in Section  6.4.2 but will be addressed in more 

detail in future work.  

6.3 Implementation Details  

Implementation details of the matrix powers kernel on GPU global memory are 

presented in this section. The auto-tuning stage partitions the matrix to fit into 

GPU global memory, the partitions are then used in the matrix powers kernel. 

Details of cache blocking for GPU shared memory are also presented. 

6.3.1 Matrix Powers on GPU Global Memory 

A. Auto-tuning Stage  

The first stage of the algorithm is the partitioning stage where the matrix is 

either divided into equal partitions using a naive partitioning strategy or graph and 

hyper-graph partitioners such as Metis [99] and Zoltan [100]. The results presented 

in this document are achieved via naive row block partitioning; other partitioning 

methods will be studied in future work. The matrix is first divided in to equal 

partitions of row blocks. The partitions are balanced based on the floating point 

operations required to compute ݇ steps of the matrix powers for each row block and 

are recursively reduced to fit into GPU global memory. The size of each partition is 

equal to the memory required to store local and remote rows in compressed row 

storage (CSR) format for each partition.  
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 Cache Blocking for Global Memory 

for each partition (cache block) 

  transfer the partition to GPU Global memory 

  for ݅ ൌ 1 to ݇ do 

    call a GPU kernel to compute ݔ௝
ሺ௜ሻ

 (for all ݆ belonging to the current partition) 

    copy ݔ௝
ሺ௜ሻ

 to the CPU (for all ݆ belonging to the current partition) 

  remove the current partition from global memory 

Fig.  6.1: The matrix powers implementation on GPU global memory, ݔ௝
௜ is the ݆-th 

component of ݔ௜ ൌ  .ሺ଴ሻݔ௜ܣ	

 

Fig.  6.2: The steps in the auto-tuner to generate cache blocks for shared memory and find 

the best performing matrix powers implementation on the GPU. 

B. Matrix Powers Kernel  

For each partition, the corresponding elements of the source vector along with 

the matrix partition are then transferred to the global memory to compute ݇ steps 
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of the matrix powers via calling the CUSPARSE SpMV kernel [89]	݇ times. The 

generated vectors can then be used in the communication-avoiding Krylov solvers. 

(Fig.  6.1). 

6.3.2 Matrix Powers on GPU Shared Memory 

A. Auto-tuning Stage  

Each streaming multiprocessor on NVIDIA graphic cards has a shared memory 

which is divided between the active thread blocks in the SM and can be configured 

to both 16K and 48K bytes. The performance of the matrix powers kernel is studied 

in this section when partitions (cache blocks) are generated for GPU shared 

memory. When cache blocking for global memory, each GPU kernel call is 

responsible for computing a step of the matrix powers kernel for one partition. For 

shared memory cache blocking on the other hand, the GPU thread blocks are 

responsible for computing the basis vectors for different partitions of the matrix. 

Partitioning the matrix to fit into shared memory and be operated on using the 

active thread blocks per SM can be challenging and may lead to the failure of the 

auto-tuning/partitioning phase. Some of these challenges are listed in the following: 

 Larger cache blocks will lead to fewer extra floating point operations (flops) and 

smaller ghost zones in the matrix powers kernel. One of the major challenges in 

cache blocking for GPU shared memory is the small size of this memory space. 

The shared memory on each streaming multiprocessor is divided between the 

active thread blocks in that SM. To generate larger cache blocks and reduce 

arithmetic operations related to ghost rows, the number of thread blocks per SM 

(TBs/SM) should be reduced. One the other hand, limiting the number of 

thread blocks per SM, reduces resource occupancy on the GPU which can lead 

to performance loss.  
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 The limited number of registers available to each GPU thread block can also 

reduce GPU resource occupancy. When ݇  SpMVs are computed per thread 

block, each active TB will require more registers compared to a naive SpMV 

implementation (where each thread block only computes one SpMV), which 

limits the active TBs per SM and can reduce GPU resource occupancy.  

The auto-tuner finds the number of active thread blocks per SM which gives the 

best performance for the matrix powers kernel and leads to successful partitioning 

(Fig.  6.2). The matrix might be repartitioned and the number of active thread 

blocks per SM modified in the auto-tuning phase based on the success and 

performance of the matrix powers kernel for different configurations. To compute ݇ 

SpMVs for each partition via one thread block, the auto-tuner should also choose 

the fastest implementation of the SpMV kernel amongst existing GPU SpMV 

implementations, specifically the row-per-warp [49] technique (also used in 

CUSPARSE), the row-per-thread method [49], and Prefetch-CSR [53]. Depending 

on the matrix sparsity pattern and average number of non-zeros per row, the 

performance of the aforementioned techniques differ; the auto-tuner chooses the best 

performing heuristic for each matrix to be used for the matrix powers kernel.  

Upon completion of the auto-tuning stage, the best performing implementation 

of the matrix powers kernel is determined and used in the matrix powers kernel 

described in the next section. 

B. Matrix Powers Kernel  

Fig.  6.3 shows the algorithm to compute the matrix powers kernel using GPU 

shared memory. Each cache block is first loaded to shared memory, using the SpMV 

algorithm chosen by the auto-tuner, the matrix powers basis vector is then 

generated for each partition in parallel via GPU thread blocks. We present initial 

results for the matrix powers kernel shared memory cache blocking for a penta-
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diagonal matrix in Section  6.4.2; improved partitioning schemes and more problems 

will be studied in future work.  

6.4 Results 

Performance results for the matrix powers kernel on NVIDIA GTX480 are 

presented in this section. The GTX480 graphic card contains 480 CUDA cores and 

operates at 1.4GHz, the size of global memory is 1.5GB with a bandwidth of 177 

GB/s. The shared memory is configured to 48KB. All speedups are calculated using 

the following formula: 

ݔ݅ݎݐሺ݉ܽ݁݉݅ݐ ݏݎ݁ݓ݋݌ ݈݁݊ݎ݁݇ ݎ݋݂ ሺݔܣ, …,ݔଶܣ , ሻݔ௞ܣ
ሺ݇݁݉݅ݐ ܸܯ݌ܵ ݀ݎܽ݀݊ܽݎݐݏ ሻݏ݊݋݅ݐܽݎ݁݌݋

  6.1

Cache Blocking for Shared Memory 

for thread block ݍ 

  copy partition (cache block) ݍ to shared memory 

  for ݅ ൌ 1 to ݇ do 

    compute ݔ௝
ሺ௜ሻ

 (for all ݆belonging to the partition) using the fastest SpMV algorithm 

for the matrix (exploits parallelism via threads/warps inside a thread block) 

    copy ݔ௝
ሺ௜ሻ

 (for all ݆ belonging to the partition) to global memory 

Fig.  6.3: The matrix powers implementation on GPU shared memory, ݔ௝
௜ is the ݆-th 

component of ݔ௜ ൌ  .ሺ଴ሻݔ௜ܣ	
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Fig.  6.4: Each matrix is described by its name, description, number of rows, number 

of non-zeros, average number of non-zeros per row and its non-zero pattern 

representation. 

Fig.  6.5: The standard computation of ݇ SpMVs on the GPU, ݔ௝
௜ is the ݆-th 

component of ݔ௜ ൌ  .ሺ଴ሻݔ௜ܣ	

6.4.1 Matrix Powers on GPU Global Memory 

In this section the performance of the proposed implementation of the matrix 

powers kernel on GPU global memory is studied using ten matrices (Fig.  6.4) from 

Pwtk

Wind Tunnel
(218K, 12M, 55)

Cant

FEM cantilever
(62K, 4M, 65)

Cfd2

Pressure matrix
(123K, 3.1M,25)

Gearbox
Aircraft flap 
actuator

(153K,9.1M, 59)

2d 9‐pt
9‐pt operator on 

2Dmesh
(1M, 9M, 9)

mc2depi
2D Markov 
model

(525K, 2.1M, 4)

Shipsec

FEM ship section
(141K, 7.8M, 55)

Xenon
Complex zelolite

csrytals
(157K, 3.9M, 25)

Rajat31

Circuit simulation
(4.6M, 20.3M, 84)

Cube_coup3d 
coupled 

consolidation
(2.1M, 124M, 59)

Standard Implementation of ݇ SpMVs 

for ݅ ൌ 1 to ݇ do 

  for each partition (cache block) 

    transfer the partition to GPU Global memory 

    call a GPU kernel to compute ݔ௝
ሺ௜ሻ

 (for all ݆ belonging to the current partition) 

    transfer ݔ௝
ሺ௜ሻ

 to CPU (for all ݆ belonging to the current partition) 

    remove the current partition from global memory 
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the University of Florida matrix repository [35]. All matrices are cache blocked 

assuming only one fourth of the matrix can be stored in global memory at one time. 

The ݇  SpMV standard operations in equation 6.1 are computed using the 

implementation in Fig.  6.5. 

Fig.  6.6 shows the performance of the matrix powers kernel for global memory 

cache blocking (the best performance obtained for all ݇ ൏ 40). Speedups of up to 5.7 

and 4.98 are achieved for well structured matrices, cant and 2d-9pt. The naive 

SpMV performance is lower for matrices with smaller numbers of non-zeros per row 

such as 2d9pt and mc2depi. The CUSPARSE SpMV implementation performs 

poorly for such problems due to an increase in thread divergence. The extra flops 

performed in the matrix powers kernel (for the best ݇) compared to ݇ steps of the 

standard SpMV is shown in Table  6.1. For an unstructured matrix such as xenon 

that achieves the least speedup from the matrix powers kernel, in only 5 steps of the 

matrix powers kernel up to 23% more flops are computed (Table  6.1). Upperbound 

in Fig.  6.6 is computed for the best performing ݇ using: 

ݕݐ݅ݏ݊݁ݐ݊݅_ܿ݅ݐ݄ܽ݉ݐ݅ݎܽ ሺ݉ܽݔ݅ݎݐ ሻݏݎ݁ݓ݋݌
ݕݐ݅ݏ݊݁ݐ݊݅_ܿ݅ݐ݄ܽ݉ݐ݅ݎܽ ሺܸܵܯ݌ሻ

. ሻ  6.2ܸܯ݌ሺܵ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌

where the arithmetic intensity is the effective flops to bytes transferred ratio. The 

generated x୧ vectors (where ݔ௜ ൌ  ሺ଴ሻ) are transferred to the CPU for both theݔ௜ܣ	

naive SpMV and matrix powers kernels at each step. The aforementioned transfers 

are also included in computing the upperbound. Table  6.1 shows the fraction of 

total time spent in communicating data between GPU and CPU memory for all the 

tested problems (for the best performing k). The table shows on average 90 percent 

of the SpMV kernel execution time is spent in transferring data between CPU and 

GPU global memory which further justifies the importance of avoiding 

communication using the matrix powers kernel. For matrices such as 2d-9pt and 
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mc2depi, which have the least number of non-zeros per row, a smaller percentage of 

total time is spent in communicating data. Also, compared to other matrices, the 

performance gap between the matrix powers kernel and the upperbound is larger for 

the aforementioned matrices. This is because the time spent in computing 

operations such as spreading the initial and source vectors at each step of the 

matrix powers kernel are no longer negligible for these problems. Increased thread 

divergence on the GPU for matrices with less number of non-zeros per row also 

increases the execution time of arithmetic computations for 2d9pt and mc2depi.    

 

Fig.  6.6: Performance of the matrix powers kernel cache blocking for global memory 

on NVIDIA GTX480. The “AkX” indicates the best performance obtained for all 

݇ ൏ 40. The label “upper bound” shows the performance achievable via scaling the 

standard ݇ SpMV operations by the change in arithmetic intensity (equation  6.2).  

The “SpMV” bar shows the performance achieved from the standard ݇ SpMV 

implementation using CUDA sparse library [89]. 
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6.4.2  Matrix Powers on GPU Shared Memory 

The performance of the matrix powers kernel on shared memory (cache blocking 

for shared memory) is tested for a pentadiagonal matrix with 100K rows and 500K 

non-zeros. Since shared memory is divided between the active thread blocks per 

GPU streaming multiprocessor, for the tested matrix the partitioning stage was 

only able to generate partitions for a maximum of four thread blocks per SM. 

Fig.  6.7 shows the performance of the matrix powers kernel for different ݇  and 

possible thread blocks per SM. As shown for a pentadiagonal matrix, maximum 

performance is achieved when the active thread blocks per SM is set to 3. For larger 

TBs per SM, the small size of shared memory allocated to each thread block either 

leads to the failure in the partitioning phase or increases the redundant 

computations related to ghost rows in the matrix powers kernel. Smaller TBs/SM 

on the other hand, reduce the GPU resource occupy leading to poor performance.  

Fig.  6.8 shows the effects of increasing ݇ for the best TBs/SM chosen by the 

auto-tuner, which was 3 for the tested matrix. The matrix powers kernel achieved 

the best performance for ݇ equal to 15 leading to 1.4 speedup compared to the 

standard SpMV implementation. Table  6.2 shows that for the optimum ݇ , 30 

percent extra flops are performed compared to the naive implementation and 1131 

thread blocks are launched on the GPU to compute the matrix powers kernel for 

the tested pentadiagonal matrix. 

Comparing Table  6.1 and Table  6.2, we find that the extra flops considerably 

grow when generating cache blocks for shared memory, decreasing the performance 

of the matrix powers kernel for shared memory cache blocking. Our experiments 

show that implementing the matrix powers kernel on architecture such as GPUs 

that have very small cache sizes, depends mostly on the partitioning technique and 

matrix structure. The partitioning stage is not able to create very small cache 

blocks for the tested matrices and the 1d5pt stencil matrix was the only matrix 
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with solid performance. Also since the hardware manages the execution of threads 

as well as data movement and prefetching, maintaining a balance between resource 

occupancy and acceptable partitions highly depends on the auto-tuning phase. We 

will study other partitioning schemes and enhance our auto-tuner to increase the 

performance of the matrix powers kernel for shared memory in future work. 

Table  6.1: The best speedup of the matrix powers kernel compared to naive SpMV, fraction 

of total time spent in communicating data in the naïve SpMV implementation and extra 

computed flops in the matrix powers kernel performing ݇. 

Matrix pwtk 2d9pt cfd2 rajat xenon mc2depi 
cube 

coup 
cant shipsec1 gearbox 

݇ 15 34 7 15 5 11 8 14 6 7 

Speedup 4.92 4.98 3.79 3.49 2.85 3.53 3.98 5.7 2.88 3.21 

Communication 

vs. Total time 
91% 84% 90% 87% 87% 78% 88% 93% 93% 96% 

AkXflops/ 

Naiveflops 
1.3 1.1 1.2 1.03 1.23 1.02 1.22 1.16 1.24 1.26 

 

Fig.  6.7: The speedups achieved for equation  for the matrix powers kernel on shared 

memory (test matrix: a pentadiagonal matrix) for different thread blocks per SM (H 

in the figure) and ݇. 

0

0.2

0.4

0.6

0.8

1

1.2

k=1 k=2 k=3 k=4 k=5 k=6

S
p
e
e
d
u
p

H=2 H=3 H=4



 107 

 

 

Fig.  6.8: The speedups achieved from equation  for the matrix powers kernel on 

shared memory (test matrix: a pentadiagonal matrix) for the best performing 

number of thread blocks per SM (TB/SM) and different ݇. 

Table  6.2: The extra floating point operations performed in the matrix powers kernel for 
shared memory compared to naive the SpMV implementation and the total number of 

thread blocks launched for each ݇. 

݇ 2 3 4 5 6 10 15 20 30 

AkXflops/ 

Naiveflops 
1.02 1.04 1.06 1.08 1.1 1.19 1.3 1.8 2.2 

Thread 

Blocks 
1024 1024 1024 1024 1024 1026 1132 2036 2017 

6.5 Conclusion and Future Work 

The matrix powers kernel in communication-avoiding Krylov techniques is 

accelerated and speedups of upto 5.7 are obtained for global memory cache blocking 

compared to the standard implementation of ݇  SpMV operations. The matrix 

powers kernel shared memory cache blocking is also implemented and tested on a 

pentadiagonal matrix; in future work we intend to enhance the performance of this 

kernel by implementing other matrix partitioning schemes and enhancing the auto-

tuning phase. The performance of the matrix powers kernel in Krylov subspace 
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methods will be studied and preconditioners such as the sparse approximate inverse 

will be used to enhance the convergence of communication-avoiding KSMs. 
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Chapter 7 CONCLUSION AND FUTURE WORK 

A brief outline of the main content and contributions of this work (Section  7.1) 

along with possible extensions to future work (Section  7.2) are presented in this 

chapter.  

7.1 Conclusion 

The initial two chapters of the thesis give an introduction to scientific 

computing and Krylov subspace techniques (Chapter 1) and architecture 

specifications and programming challenges of graphic processing units (Chapter 2). 

The proceeding four chapters introduce major contributions of the work which are 

outlined in the following: 

 The sparse matrix vector multiplication kernel is accelerated on NVIDIA 

GPUs using a new algorithm called Prefetch-CSR (PCSR). Major 

contributions in the proposed algorithm are the introduction of a new 

partitioning scheme, a new sparse storage format suitable for GPUs, parallel 

reduction of the value vector via zero padding and data prefetching within a 

GPU thread block. Compared to previous implementations of the SpMV 

kernel on NVIDIA GT8800 the Prefetch-CSR algorithm was on average 3.37 

times faster for the tested matrices.  

 The Chronopoulos [8] variant of the conjugate gradient method is for the 

first time accelerated on GPUs. By fusing the main computing kernels in the 

aforementioned implementation, memory references and GPU kernel calls are 

reduced. Frequently used vectors are also loaded in to GPU caches (texture 

memory) to reduce the data communication overhead. Finally the PCSR 

SpMV kernel is further optimized and used in the GPU implementation of 

the Chronopoulos conjugate gradient implementation. The proposed 

optimizations increased the performance of the preconditioned conjugate 
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gradient algorithm on NVIDIA G80 and GT200 up to 3.4 and 2.5 

respectively compared to previous accelerations of PCG on GPUs.    

 The sparse approximate inverse preconditioner is accelerated on GPUs via 

computing columns of the preconditioner in parallel. Techniques to manage 

the limited memory space on GPU global memory for large problems, solve 

local systems within a GPU warp, gather the generated columns and 

assemble the preconditioner are proposed. Finally, the generated 

preconditioner is transferred to a BiCGStab iterative solver to enhance its 

convergence rate. For the tested matrices the SAI preconditioner was 

generated on average 28 times faster on GTX480 compared to the time 

required to create the same preconditioner on a single AMD Opteron 252 

processor. The preconditioner is generated in approximately the same time 

on NVIDIA GTX480 and 16 AMD processors.    

 The communication-avoiding matrix powers kernel is implemented on 

NVIDIA GPUs to reduce the communication overhead within the GPU 

memory hierarchy and between the GPU and CPU memory in Krylov 

subspace techniques. By dividing the matrix into balanced partitions that fit 

into the desired memory spaces and choosing the best algorithm in the auto-

tuning phase, speedups of up to 5.7 are achieved for the ݇ -step matrix 

powers kernel compared to ݇ steps of the standard SpMV kernel on GTX480.     

Optimizations and techniques presented throughout this work are tested on 

manycore GPUs; however, they are broadly applicable to current and future parallel 

architectures. The proposed sparse data structures and storage formats, data 

partitioning schemes, memory allocation strategies, communication-avoiding 

techniques and many other optimizations, exploit fine grain parallelism in compute 

intensive kernels in KSMs and can be used to efficiently implement and accelerate 

these kernels on modern manycore architecture. 
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7.2 Future Work 

As the number of computing cores in processors increase, algorithms have to be 

modified to efficiently exploit fine grain parallelism and fully utilize the available 

resources on modern architectures. Techniques and algorithms proposed in this 

work enable the parallel execution of compute intensive kernels in Krylov solvers on 

modern manycore architectures. The proposed methodologies can be used in future 

manycore architectures such as Intel MIC processors and heterogeneous computing 

systems composed of different types of computational units.  

Adaptive SAI preconditioning techniques will be implemented on GPUs in 

future work and used as a smoother in multigrid techniques [101]. SAI 

preconditioners are also suitable candidates for communication-avoiding Krylov 

techniques since columns of the preconditioner can be generated independently 

using only local partitions of the matrix. We intend to use this preconditioner to 

enhance the convergence rate of communication-avoiding KSMs in future work. 

New matrix partitioning schemes will be implemented to enhance the 

performance of the matrix powers kernel on shared memory and more problems will 

be tested. Finally the matrix powers kernel on GPUs will be integrated into 

communication-avoiding Krylov techniques proposed in [10].  
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Appendix I The BiCGStab Iterative Technique 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using a preconditioner ܯ and the following formulation, the preconditioned BiCGStab iterative 

technique solves a linear system ݔܣ ൌ ܾ starting with an initial guess ݔ଴: 

  

଴ݎ ൌ ܾ െ ଴ݔܣ

଴ߩ ൌ ߙ ൌ ߱଴ ൌ 1 
଴ݒ ൌ ଴݌ ൌ 0 

௜ߩ ൌ ሺ̂ݎ଴,  ௜ିଵሻݎ
ߚ ൌ 	 ሺߩ௜ ⁄௜ିଵߩ ሻ ሺߙ ߱௜ିଵ⁄ ሻ⁄  

௜݌ ൌ 	 ௜ିଵݎ ൅ ௜ିଵ݌ሺߚ െ ߱௜ିଵݒ௜ିଵሻ 

ݕ ൌ  ௜݌ଵିܯ
௜ݒ ൌ  ݕܣ

ߙ ൌ ௜ߩ ሺ̂ݎ଴, ⁄௜ሻݒ  

ݏ ൌ ௜ିଵݎ െ  ௜ݒߙ

ݖ ൌ  ݏଵିܯ
ݐ ൌ  ݖܣ

߱௜ ൌ ሺିܯଵିܯ,ݐଵݏሻ ሺିܯଵିܯ,ݐଵݐሻ⁄  
௜ݔ ൌ ௜ିଵݔ ൅ ݕߙ ൅ ߱௜ݖ 

Choose a vector ̂ݎ଴such that ሺ̂ݎ଴, ଴ሻݎ ് 0 

For ݅ ൌ 1,2,3,… 

If ݔ௜ is accurate enough then quit 
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Appendix II NVIDIA GPU Specifications 

 

NVIDIA 

GPU 

generation 

CUDA 

cores 

Processor 

clock 

Shared 

memory 

per SM 

Registers 

per SM 

Off-chip 

device 

memory 

Memory 

bandwidth 

GT8800 112 1.5GHZ 16KB 8K 512MB 57.6GB/sec 

GTX280 240 1.29GHZ 16KB 16K 1GB 141.7GB/sec

GTX480 480 1.4GHZ 48KB 32K 1.5GB 177.4GB/sec

TESLA 

M2070 
448 1.15GHZ 48KB 32K 6GB 150GB/sec 

 

 

 


