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ABSTRACT

Diffusion weighted magnetic resonance imaging (DW-MRI) is a non-invasive

imaging modality sensitive to the Brownian motion of water, which is widely used

in the field of medical research and diagnostic medicine. In this work, DW-MR

images were acquired in patients with diagnosed soft-tissue sarcoma at pre-, mid-

and post-radiotherapy. Quantitative analysis of DW-MR images at pre-radiotherapy

provided insights on the differentiation of myxoid-containing and non-myxoid con-

taining soft-tissue lesions. Longitudinal analysis across three stages of radiotherapy

allowed one to evaluate therapy response from the changes in the apparent diffusion

coefficients (ADCs). In the effort to better understand tumour microenvironment, a

reference region based segmentation method was proposed to automate the process

of differentiating high T2 content, high cellularity tissue, necrotic tissue and fibrous

tissue within the tumour. Conventionally, these tissue types were interpreted via

visual inspection, based on the combinatory pattern of the relative signal intensity

of the lesion to its surrounding tissue, from T2-weighted, high b-value DW images

and the ADC map. In the proposed method, we avoided the signal dependence

of T2-weighted and high b-value DW images, by using quantitative T2 map, ADC

map and a computed surrogate map, which captured the main physical properties of

high b-value DW images. This method was tested with the soft-tissue sarcoma data

set. High T2 content, high cellularity tissue, necrotic tissue and fibrous tissue were

successfully differentiated in each lesion.
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ABRÉGÉ

L’imagerie par résonance magnétique de diffusion (DW-IRM) est une technique

d’imagerie non-invasive. Elle permet de calculer en chaque point de l’image la

distribution des directions de diffusion des molecules d’eau. Cette technique est

largement utilisé dans le domaine de la recherche médicale et la médecine diagnos-

tique. Dans cette thèse, les images de DW-IRM ont été acquises chez les patients

ayant reu un diagnostic de sarcome des tissus mous au préalable, à moyen et post-

radiothérapie. L’analyse quantitative des images de DW-IRM au pré-radiothérapie

ont donné un apercu sur la différenciation des myxoid-containing et non-myxoid

containing lésions de sarcome des tissus mous. La réponse de la radiothérapie a

été évaluée par l’analyse longitudinale de les changements des coefficients de dif-

fusion apparent (ADC) àtravers trois étapes de la radiothérapie. Dans le but de

mieux comprendre microenvironnement de la tumeur, une méthode de segmentation

a été proposé d’automatiser le processus de différenciation des tissus avec élevée en

T2, tissus de haute cellularité, tissus nécrosés et du tissu fibreux dans la tumeur.

Classiquement, ces types de tissus ont été interprétés par inspection visuelle, basée

sur le modèle combinatoire de l’intensité de signal relative de la lésion á son tissu

environnant, par d’image de T2-weighted, d’image de DW-IRM et de la cartogra-

phie d’ADC. Dans la méthode proposée, nous avons évité la dépendance du signal

d’image de DW-IRM et d’images de T2-weighted, en utilisant la cartographie d’T2,

la cartographie d’ADC et une cartographie de mère porteuse calculée, qui a capturé

les principales propriétés physiques d’image de DW-IRM.Cette méthode a été testée
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avec le tissu mou du sarcome de données ensemble. Tissus de haute T2, tissus de

haute cellularité, tissus nécrosés et du tissu fibreux ont été différenciées avec succès

dans chaque lesion.
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CHAPTER 1
Introduction

”In the beginning it was all black and white” - Maureen O’Hara

Magnetic resonance imaging (MRI) is a non-invasive imaging modality widely

used in the field of medical research and diagnostic medicine. The origin of MRI, or

previously referred to as nuclear magnetic resonance imaging (NMRI), can be tracked

back to 1946. During this time, Felix Bloch and Edward M. Purcell found that when

certain nuclei were place in a magnetic field, they absorb energy and re-emit this

energy when nuclei return to their original state. This phenomenon is the essence of

MRI today, for which Bloch and Purcell jointly received the Nobel Prize in Physics

in 1952 [1].

NMR was soon applied to create 2D images through a line scan technique,

which led to the first image of in vivo human anatomy. In 1977, Raymond Damadian

successfully imaged a cross section of a human chest [2]. This serves as a milestone in

the development of MRI as a valuable tool for non-invasive high resolution anatomical

imaging. Around the same time in 1965, Stejskal and Tanner introduced a novel MR

sequence sensitive to the Brownian motion of water, known as diffusion weighted

imaging (DWI).[3]. This technique allows scientists to look beyond the macroscopic
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structures of the human anatomy and to characterize the diffusional movement of

molecules. Since then, DWI has been widely applied to detect stroke in its acute

phase, to map neuro-networks, and to understand the microenvironment of tumours

[4, 5, 6, 7].

In oncologic imaging, DW-MRI is particularly advantageous due to the dy-

namic nature of tumours. Imagine for a moment that we could tag one of the water

molecules inside the tumour and track its migration. We could see that the path

taken by the water molecule is shaped by the microscopic structure of the tumour.

We might observe, for example, that the water molecule is trapped among densely

packed cells, in the case of malignant lesions; we might see that the water molecule

moves more freely in benign or normal tissues; or it can be completely unrestricted

in a cell free region such as necrotic areas. The path of the water molecule there-

fore reflects the microscopic environment of the tumour and its composition. These

information are crucial for delineating subregions that may benefit from higher ra-

diotherapy doses as well as for treatment monitoring.

The topic of interest in this thesis is to use DWI for better understanding of

soft-tissue sarcoma, a rare heterogeneous group of tumours arising from mesenchymal

tissues that occur at all ages from childhood and adolescence up to the elderly. MRI

is the best imaging modality for this type of tumour due to its excellent soft tissue

contrast. As part of a multi-modal imaging study, conventional T2-weighted and

diffusion weighted images were acquired in 10 patients with diagnosed soft-tissue

sarcoma before, during and after pre-operative radiotherapy. This work aims to
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evaluate tumour response at these three time points and to better understand the

microenvironment of soft-tissue sarcoma.

This thesis contains three main chapters. A brief overview of certain essential

principles of magnetic resonance imaging is presented in Chapter 2, where a detailed

review of diffusion weighted MRI and the physiology of soft-tissue sarcoma are also

introduced. Chapter 3 presents the preliminary findings on the characterization

of soft-tissue lesions and their radiotherapy response through quantitative analysis

of the apparent diffusion coefficient (ADC). Chapter 4, presented in a manuscript

format, addresses the second objective of this study - to assess the microenvironment

and the subregions of the tumour. Conventionally, tumour tissue segmentations are

performed by visual inspection from the physicians, which is time consuming. A

novel method is proposed here to automate the tissue segmentation process and

tested on the sarcoma data set. Chapter 5 concludes the study with a summary

discussion of the major findings.
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CHAPTER 2
Background

”People without the knowledge of their past history, origin and culture is like a

tree without roots.” -Marcus Garvey

2.1 Nuclear Magnetic Resonance

Magnetic resonance imaging (MRI) is a powerful noninvasive imaging modality

that has widespread applications in research and clinical medicine. One could get a

sense about the underlying principles of MRI from its name. The word ”Magnetic”

refers to the use of an assortment of magnetic fields and ”resonance” refers to the

need to match the radiofrequency of an oscillating magnetic field to the precessional

frequency of the spin of some nucleus in a tissue molecule. MRI could be more accu-

rately named as nuclear magnetic resonance imaging (NMRI), however, due to the

general concern over the word ”nuclear”, this word has been suppressed [8]. Given

the complexity of nuclear magnetic resonance (NMR), a quantum mechanical de-

scription is necessary to fully understand the principle of MRI. Nonetheless, in the

scope of this thesis, classical concepts are sufficient to provide a clear understanding

on the basics of MRI. This section provides a brief overview of the classical descrip-

tion of NMR physics with some quantum mechanical descriptions included when
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appropriate. The concepts described here are based on the book written by Dwight

G. Nishimura [9].

2.1.1 Spin

Spin is a form of angular momentum. Unlike the classical angular momentum, it

is not produced by a rotation of the particle, but is an intrinsic property of the particle

itself. Every elementary particle, such as electrons and quarks, has a particular spin

quantum number s. s = 1
2

for electrons and quarks. Protons and neutrons are both

composed of three quarks, stuck together by gluons [10]. Protons have spin of 1
2

due

to the combinations of quark spins. For instance, when two of the quark spins are

antiparallel, a net spin of zero is obtained. The additional third quark spin gives a

total net spin of 1
2

to the proton. Similarly, neutrons also have a net spin of 1
2

for

the same reason.

On an atomic level, most atomic nuclei possess spin. The nuclear spin quantum

number depends on the combination of proton and neutron spins, and is convention-

ally denoted as I. Consider for a moment the nucleus of a hydrogen atom, 1H, which

contains a single proton. The nuclear spin, in this case, is equal to the net proton

spin of 1
2
. On the other hand, a nucleus that contains even numbers of protons and

neutrons would result in a nuclear spin of 0. For example the nucleus of 16O contains

eight protons and eight neutrons. The net proton and neutron spins are both 0,

resulting a spin I=0 for the nucleus.

The spin angular momentum is a vector quantity which is expressed as

S = h̄I (2.1)
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where h̄ is Planck’s constant divided by 2π and I is the spin operator in quantum

mechanics. Associated with S is a magnetic dipole moment µ, which can be expressed

as

µ = γS = γh̄I (2.2)

where, γ is the gyromagnetic ratio, a known constant unique for different nuclear

species [9]. One can therefore see from Equation 2.2 that for a nucleus to have nonzero

magnetic dipole moment, the spin angular moment S 6= 0. In other words, a nucleus

must have an odd number of protons and/or an odd number of neutrons to create

a magnetic dipole moment. These nuclei are referred to as MR active nuclei [11].

Important examples of MR active nuclei include 1H, 13C, 15N, 17O, 19F, 23Na, and

31P.

The hydrogen nucleus 1H is the MR active nucleus used in clinical MRI, because

of its abundance in the human body (in H2O). 1H contains a single proton with

nuclear spin of 1
2
. Also, a solitary proton gives the 1H a relatively large magnetic

moment [11]. Both of these features enable utilization of the maximum amount of

available magnetization in the body.

2.1.2 Classical Description of Nuclear Magnetism

The spin angular momentum provided a quantum mechanical explanation to

the induction of magnetic moment, which can also be described with classical theory.

Faraday’s Law of Induction states that a magnetic field is created when a charged

particle moves [12]. The hydrogen nucleus 1H contains one single proton with a

positive charge of +e. When a 1H nucleus moves, a magnetic field is induced around

it. The hydrogen nucleus therefore acts as a small magnet, similar to a permanent
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magnet, illustrated in Figure 2–1. The magnetic moment has a direction along the

north/south direction, which is conventionally used in the classical description of

MRI. While it is easier to grasp the induction of magnetic field concept by imagining

a spinning hydrogen nucleus in terms of classical electromagnetic phenomena, it is

important to remember that the nuclear magnetism is in fact a quantum mechanical

phenomenon. No evidence has suggested that nuclear particles actually spin in the

physical sense.

(a) (b)

Figure 2–1: The magnetic moment of the hydrogen nucleus. This figure is adapted

from Westbrook et al. 2011 [11].

2.1.3 Interaction with a Static Magnetic Field

In the absence of an external magnetic field, the magnetic moments of MR

active nuclei, for instance 1H nuclei are randomly oriented, as illustrated in Figure

2–2. When a static magnetic field B0 is applied in the z-direction, two important

effects arise: alignment and precession.
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Alignment

In the presence of an external magnetic field, B0, the magnetic moments µ of

all the 1H nuclei align in the direction of the applied field. As shown in Figure 2–2,

some of the hydrogen nuclei align parallel with B0 and the others align antiparallel

to B0, depending on the low and high energy state of the nuclei, respectively. The

number of nuclei parallel to B0 is denoted as n+, where as the number of antiparallel

nuclei is denoted as n−.

Figure 2–2: Schematic graph shows a classical description of alignment. This figure

is adapted from Westbrook et al. 2011 [11].

The energy difference between these two states can be expressed as

∆E = γh̄B0 (2.3)

Since n+ population occupies a lower energy state, more nuclei tend to join this

population. However, thermal energy is sufficient to ensure that the higher energy
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state is also occupied. The ratio of the two population can be described by the

Boltzmann distribution:

n−
n+

= e−∆E/kT (2.4)

where k is Boltzmann’s constant and T is the absolute temperature. Macroscopically,

the excess in n+ population creates a net magnetization M in the same direction as

B0, where M=
∑
µ.

Precession

When M is tipped away from the direction of B0, the magnetic field impinges

a torque on the nuclear magnetic moment of each hydrogen nucleus. The effect

of torque induces a precession of the magnetic moment about the applied field B0

(Figure 2–3, adapted from [13] ). This precession is analogous to the nutation of a

spinning top in a gravitational field when it is tilted slightly off axis.

Figure 2–3: Precession of the magnetic moment. This figure is adapted from [13].
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The torque equals to the rate of change of angular momentum which can be

expressed as

dS

dt
= µ×B (2.5)

or if both sides are multiplied by γ:

dµ

dt
= µ× γB (2.6)

The precession of individual nucleus causes a precession in the net magnetization

around the B0 field. Its equation of motion can be expressed as

dM

dt
= M× γB (2.7)

The solution to this equation gives the precession resonance frequency of M,

which is referred to as the Larmor frequency.

ω = γB (2.8)

As the gyromagnetic ratio γ is an unique constant for each nuclide that has a nuclear

magnetic moment, the Larmor frequency is constant for a given magnetic field. For

1H, γ/2π = 42.58 MHz/T.

2.1.4 Interaction with a Radiofrequency Field

In order to obtain a MR signal, a radiofrequency (RF) magnetic field B1 in

the xy transverse plane, tuned to the resonance frequency of the spins, is applied.

Some low energy nuclei absorb the energy from the RF field and join the high energy

population. This causes the net magnetization M to rotate away from the longitu-

dinal z axis, into the xy plane, as demonstrated in Figure 2–4. A rotating frame of
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reference is often used to picture this phenomenon. When the axes are rotating at

the resonance frequency of the spins, the M simply flips down to the xy plane. This

behaviour is termed excitation. The resulting flip angle is a function of B1 and its

duration τ , given by ∆θ = γB1τ . The flip angle is typically 90o, because it leads to

the largest possible signal in the xy plane.

Figure 2–4: (a) In a rotating frame of reference, the net magnetization M is tipped

down to the transverse xy plane due to B1. (b) In a laboratory frame, the axis is

also rotating, making the B1 induced rotation of magnetization towards transverse

plane more complicated. This figure is adapted from [8].

2.1.5 Relaxation effects

After B1 is turned off, the net magnetization M with the magnitude of M0

continues to precess in the xy plane about the z-axis. However, M eventually returns

to realign with B0 along the z-axis and restore its original magnitude of M0. Two

important processes are happening during this time: longitudinal T1 recovery and

transverse T2 decay.
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T1 recovery refers to the recovery of the longitudinal magnetization, i.e. Mz to

M0, which behaves according to

dMz

dt
= −Mz −M0

T1

(2.9)

During this process, nuclei give up their energy to the surrounding lattice and

return to their original energy state. Therefore, T1 recovery is also named spin lattice

relaxation. The rate of recovery follows an exponential trend, with a recovery time

constant termed T1 relaxation time. Following a 90o excitation, T1 recovery can be

expressed as:

Mz = M0(1− et/T1) (2.10)

T2 decay, on the other hand, refers to the decay of transverse magnetization, i.e.

Mxy to 0. The transverse magnetization behaves according to

dMxy

dt
= −Mxy

T2

(2.11)

This process is a result of neighbouring nuclei interacting with each other causing

the loss of phase coherence (dephasing) of the transverse magnetization. T2 decay is

therefore also termed spin-spin relaxation. The rate of decay can also be described

with an exponential function

Mxy = M0(e−t/T2) (2.12)

where, T2 is the decay constant, named T2 relaxation time.

In addition, the external field inhomogeneities also contribute to the decay of

the transverse magnetization. The observed decay time T2* is therefore shorter than
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T2, given by

1

T2∗
=

1

T2

+
1

T ′2
(2.13)

where T ′2 accounts for the decay time due to field inhomogeneity. This effect is

reversible by refocusing Mxy with another RF excitation pulse (magnetic field). This

type of combination is often referred to as the spin-echo sequence. To measure the

true T2 effect, one has to run the spin-echo sequence multiple times or the multi-echo

sequence, where more than one additional RF excitation pulse are applied.

2.1.6 Signal Detection

Signal detection occurs after the RF excitation pulse is turned off. The mag-

netization continues to process in the xy plane with the Larmor frequency of the

spins. A rotating magnetic moment generates a rotating magnetic field, which in

turn produces an electromotive force (EMF), according to Faraday’s law of induc-

tion. The same RF coil used to generate the RF excitation pulse B1is used to detect

the EMF. The resulting basic MRI signal is called the free induction decay (FID).

It is important to realize that the receiver coil only detects signal generated from

the transverse magnetization. As T1 and T2 relaxation effects take place, the signal

amplitude decreases. FID is thereby a time dependent signal, that decays with the

relaxation time T2*, as illustrated in Figure 2–5.
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Figure 2–5: Schematics of a FID curve with T2* decay. This figure is adapted from

[11].

2.1.7 Gradient field

The essence of MRI is based on the interaction MR active nuclei with three

types of magnetic fields. We have introduced the interaction of spin with an external

magnetic field and a radiofrequency field. The last type of magnetic field discussed

here is the gradient field G.

A gradient field is a field strength variation on the B0 field. The simplest but

most common case of gradient field is the linear gradient magnetic field, which is a

field along the same direction asB0, but with an amplitude that varies with position.

For instance, when an x-gradient Gx is applied, the external magnetic field now has

a position dependence on x. Hence,

Bz = B0 +Gxx (2.14)
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where Gx = dBz/dx with a unit of T/m. It is crucial to remember that the combined

magnetic field remains in the z-direction, only the field strength varies with the x-

location. More importantly, the precession frequency of the nuclei now has a x

location dependence, according to the Larmor equation (Eq. 2.8), expressed as

ω(x) = γ(B0 +Gxx) = ω0 + γGxx (2.15)

When a gradient is on, the spins precess faster as the combined magnetic field

increases, and slower when the combined magnetic field decreases. This behaviour

allows us to induce spin dephasing and rephasing without waiting for the natural

spin dephasing due to T2 relaxation or a 180o RF excitation pulse. Spin dephasing

refers to the lose of phase coherence, whereas spin rephasing refers to the restoration

of phase coherence. Figure 2–6 illustrates the mechanism of gradient induced spin

dephasing and rephasing.

Gradi
ent

Figure 2–6: This schematic demonstrates spin dephasing and rephasing due to the

presence of gradient fields. This figure is adapted from [11].
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If no gradient field is applied, all spins precess at the same Larmor frequency ω0.

When a positive gradient is applied along the x-direction, the spins further along the

gradient axis precess faster than those near the origin. For simplicity, we refer them

as fast spins and slow spins respectively. As a result, the magnetic moments fan out

or dephase, just like when the spins lose their phase coherence during T2 relaxation.

Now, if a negative gradient of the same magnitude is applied along the x-direction,

the fast spins are slowing down due to the decreased magnetic field further along the

axis. Similarly, the slow spins are precessing faster, owing to the increased magnetic

field near the origin. Eventually, the slow spins catch up with the fast spins. Phase

coherence is thus restored. A number of imaging sequences use gradient induced

dephasing and rephasing, such as gradient echo and diffusion weighted spin echo

sequences. In fact, this is the very effect that led Stejskal and Tanner to the design

of diffusion weighted spin echo sequence, which is described in the next section.

2.2 Diffusion Weighted MRI

Seventy two percent of the human body is composed of water. While water

appears static to the naked eye, water molecules are in constant random motion

at the microscopic level. This phenomenon is commonly referred to as Brownian

motion, named after the Scottish botanist Robert Brown who first observed that

particles trapped in pollen grains move through water in 1827. It was not until

Albert Einstein published a paper in 1905, that it became clear that the pollen

grains were moved by individual water molecules due to their thermal agitation [14].

The random water motion is also termed diffusion. In biological tissues, diffusion is

not completely random. Water diffusion can be hindered by cell membranes, vascular
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structures or macromolecules. Thus, measuring water diffusion enables us to gain

insights about the tissue structure without actually seeing it.

2.2.1 Theory of Diffusion Weighted MRI

In 1965, Stejskal and Tanner introduced an MR sequence sensitive to the Brow-

nian motion of water, as illustrated in Figure 2–7 [3]. This sequence consists of a 90o

RF excitation pulse, a 180o RF pulse and two gradient pulses. The 90o RF excitation

pulse brings the net magnetization into the transverse plane. The first gradient is

applied right after this RF pulse causing spins to dephase depending on the com-

bined external field they experience. The concept of gradient induced dephasing and

rephasing is explained in section 2.1.7. In Figure 2–7, the green, orange and blue

filled circles represent spins at different locations along the gradient. For demon-

stration purposes, we call them fast, medium and slow spins respectively. After the

gradient is turned off, the spins evolve freely. Static spins stay in the same position

while moving spins change their relative position. A 180o RF pulse is then applied,

flipping the phase of all spins to the opposite direction. At this moment, the slow

spins are leading the medium and the fast spins, in the case of static spins. If the

medium spins have switched position with the slow spins, however, the medium spins

would now lead the slow and the fast spins. Then, another identical gradient is used

to rephase the spins. The static spins restore their phase coherence, as the fast spins

catch up with the slow spins, neglecting T2 relaxation effects. The moving spins, on

the other hand, do not recover their phase coherence completely, because now the

slow, medium and fast spins each have a different phase. As a result, the acquired

signal from the moving spins is lower than the one from the static spins.
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After 180

static spins

moving spins

static spins

moving spins

moving spins

Figure 2–7: Schematic representation of the DW-MR sequence of Stejskal and Tan-

ner. This sequence which uses two lobe gradients is sensitive to Brownian water

motion. The introduction of diffusion weighting illustrated by the green, orange and

blue filled circles representing spins at different locations. G represents the strength

of the gradient. δ is a measure of the gradient duration. ∆ represents the time

interval between the two gradient lobes. This figure is adapted from [15].
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2.2.2 Quantitative Analysis of DWI

Stejskal and Tanner realized that the signal loss from their sequence depends

on the gyromagnetic constant γ, the gradient intensity G, the application time of

the gradient γ, the time separation between the two applied gradients ∆ and the

diffusion coefficient D. They derived the reduction in signal related to the amount of

diffusion through the following equation [3].

S(TE)

S0

= exp[−γ2G2δ2(∆− δ

3
)D] (2.16)

where S0 is the signal intensity without the diffusion weighting and S being the signal

with nonzero gradients. In 1985, Le Bihan suggested to simplify this equation by

gathering all the gradient terms in a ”b factor” [15]. The b factor is expressed in

Equation 2.17, which only depend on the acquisition parameters.

b = γ2G2δ2(∆− δ

3
) (2.17)

As a result, the signal reduction equation can be simplified to

S(b, TE)SE = S(b0) · exp(−b · ADC) (2.18)

D is replaced with the apparent diffusion coefficient (ADC) to indicate that the water

diffusion is not completely free in tissue, but restricted by many mechanisms. Taking

the natural logarithm of both sides, ADC can be computed with

ADC = − 1

(b− b0)
ln(

S(b)

S(b0)
) (2.19)

19



It is important to note that the ADC is no long MR signal dependent, but reflects

the intrinsic diffusion properties of a given tissue. In this case, the MR scanner acts

as a measuring instrument extracting physical parameters instead of behaving like a

camera. The ADC concept has a variety of clinical applications.

2.2.3 Clinical Applications of Diffusion Weighted MRI

The first clinical application of Diffusion Weighted MRI was reported in 1990,

when Moseley et al. found that diffusion weighted imaging in a cat brain allowed

the detection of ischemic brain areas in the first 30 mins [16]. Around the same

time, Le Bihan et al. suggested that brain perfusion could be viewed as a pseudo-

diffusion process and approximated with the intravoxel incoherent motion model

(IVIM) [17]. Over the years, DW-MRI has become a valuable tool for stroke detec-

tion, mapping of the brain structures and the understanding of pathophysiological

mechanisms of multiple sclerosis [18, 19, 20, 21]. In recent years, application of DW-

MRI has attracted attention in the field of oncology for lesion detection, diagnosis,

monitoring of treatment response and characterization of tumour tissue properties.

Figure 2–8 provides an example of DW-MRI aided tumour detection [22]. On the

T2-weighted image, the lesion pointed by the white triangle is difficult to spot. On

the b=750s/mm2 DW-MR image, however, the tumour appears bright and stands

out from its surrounding tissue. This is due to the fact that malignant tissues tend

to have greater cellularity, leading to more restricted water motion, which causes

less signal reduction on DW-MR images. Restricted diffusion also leads to low ADC

values. The location of the lesion is further confirmed by the ADC map.
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Figure 2–8: Restricted diffusion within rectal cancer with extension into the perirec-

tal space. T2-weighted image demonstrates lesion in perirectal space. Diffusion-

weighted image obtained at a b value of 750 s/mm2 yields a high signal and corre-

sponding ADC map demonstrates restricted diffusion within the tumour. This figure

is adapted from [23].

The other important application of DW-MRI is tissue characterization. Studies

have reported reduced ADCs in malignant lesions compared to benign and normal

tissue. For instance, DW-MRI is able to differentiate between benign and malignant

breast tumours based on their ADC values [23, 24]. Another study on focal hepatic

lesions reports similar results, with ADC of benign lesions being significantly higher

than those of malignant lesions [25]. In addition, DW-MRI is used for assessing

tumour response to chemotherapy and radiotherapy. The therapy-induced increase

in ADC has been demonstrated in multiple literatures and is considered a sign for

cell lysis and necrosis, which reflects successful treatment [26, 27, 28]. Furthermore,

DW-MRI is also useful in tumour staging and prediction of therapy outcomes, which
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are not discussed here. Due to its many applications, DW-MR imaging is now part

of the clinical imaging routine at many institutions.

2.3 Automated MRI-based tumour Segmentation

Another important oncological application of MRI is tumour segmentation.

Modern radiation therapy treatment techniques such as intensity modulated radi-

ation therapy allows for precise dose application. In order to take full advantage

of such technique, an accurate tumour volume delineation is highly beneficial [29].

Many literatures have reported automated or semi-automated MRI-based tumour

segmentation algorithms, especially on brain tumours [30]. Most segmentation al-

gorithms include three major steps: image pre-precessing, feature extraction, and

segmentation.

Besides anatomical variation, MRI signal intensity is inhomogeneous due to

radio-frequency field non-uniformity and eddy currents resulted from switching gra-

dient fields in the imaging system. Therefore, most segmentation algorithms rely on

certain pre-processing to correct for intensity inhomogeneity [31]. A simple normal-

ization method is to standardize the mean or the median intensity of the volume

of interest. An improved approach computes the intensity percentile of several pre-

defined landmark regions relative to the intensity histogram of the input and maps

these landmarks to pre-defined standard percentile values [32]. More sophisticated

algorithms have also been developed, including non-parametric non-uniform intensity

normalization and bias-field correction [33]. Imaging denoising is another standard

pre-processing task, where a de-noising filter, such as gaussian filter, anisotropic dif-

fusion filter, is applied to the image to reduce noise [34]. For segmentation with
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multi-modal images, pre-processing also includes registration of all modalities in a

common space of reference.

Figure 2–9: Features extracted from a T1 MRI with simulated tumour. Top row: (a)

Normalized intensity, (b) Thresholded intensity feature, (c) Deformation field mag-

nitude, (d) Thresholded deformation feature; Bottom row: (a) Subtraction of image

and reflected image through symmetry plane, (b) Thresholded and filtered symmetry

feature, (c) Windowed Gabor-filtered image, (d) Thresholded texture feature [31].

The next major step of tumour segmentation algorithms is selecting image fea-

tures. The segmentation features used for brain tumours largely depend on the

tumour type and grade. Most common features include intensity, symmetry, shape

deformation and textures. Figure 2–9 demonstrates theses features extracted from

a T1-weighted image with a simulated tumour and the resulting feature images [31].

Intensity thresholding has been widely used for tumour segmentation (top row (a)
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(b)), but it is often insufficient for robust tumour detection. Symmetry feature, on

the other hand, has shown to be more robust for tumour segmentation [35]. Healthy

brain has a high degree of symmetry between two hemispheres. The presence of

tumour causes asymmetry in the brain anatomy, which could be used to detect the

tumour (bottom row (a) (b)). Shape deformation feature captures the anatomical de-

formation in the surrounding structure caused by tumour growth. The magnitude of

deformation can be calculated and thresholded for tumour detection. Lastly, texture

analysis is an important method and has a lengthy history in automated tumour seg-

mentation. In 1993, German scientist Schard et al. first applied texture analysis to

T1 and T2 images and demonstrated promising results for in vivo tissue segmentation

[36]. Common texture parameters include mean/variance of grey levels, skewness,

contrast, homogeneity, entropy and the grey level co-occurrence matrix.

Based on the extracted features, segmentation algorithms are applied to differen-

tiate tumours from health tissue. Most of the segmentation algorithms proposed uses

classification or clustering approach, which can easily handle multi-modal datasets.

Classification requires training data sets to learn a classification model, from which

new data sets can be classified. Each voxel is decided individually to which class it

belongs to based on a given image feature [30]. On the other hand, clustering works

in an unsupervised way and groups data based on similarity in certain features[37].

Clustering was first introduced into brain tumour segmentation by the same german

scientist Schard et al., who applied texture analysis to T1 and T2 brain images. In

1995, Phillips et al applied fuzzy c-means clustering which is still used today [38].
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Recently, Cai et al employed a number of MRI modalities including diffusion ten-

sor imaging, T1 and T2 imaging to create voxel-wise intensity-based feature vectors.

They were able to not only differentiate tumour from health tissues, but also segment

sub-compartment of tumour regions including necrosis, edema and active cells [39].

MRI-based tumour segmentation algorithms have also been applied to tumour

sites outside of the brain, including head and neck, breast, and prostate cancer

[40, 41, 29].

2.4 Soft-tissue sarcoma

2.4.1 Overview of soft-tissue sarcoma

Soft tissue arises from the mesenchyme, which differentiates during develop-

ment to become fat, skeletal muscle, peripheral nerves, blood vessels and fibrous

tissue [42]. 3Soft-tissue sarcoma comprise a heterogeneous group of tumours arising

from soft tissue. They are rare tumours representing 1% of all cancers in adults and

approximately 7% of all childhood malignancies [43]. The World Health Organiza-

tion (WHO) classifies soft-tissue sarcoma into nine categories: adipocytic, fibroblas-

tic/myofibroblastic, fibrohistiocytic, smooth muscle vascular, chondro-osseous and

those of uncertain differentiation [44]. Over 50% of soft-tissue sarcomas begin in the

limbs [43]. They occur most often in the thigh. The most frequent histologic types

occurring in this location are pleomorphic undifferentiated sarcomas, liposarcomas

and leiomyosarcomas [45].

MR imaging is advantageous for the diagnosis and evaluation of soft-tissue sar-

coma, due to its high soft tissue contrast. T1-weighted and T2-weighted imaging

sequence are typically used to provides information about the size and location of
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the tumour as well as its relationship to other structures [46]. A complementary CT

scan may also be performed to check for pulmonary metastases and to evaluate the

presence of bone involvement. Biopsy is generally performed to confirm the diagnosis

and determine the tumour grade and histology [43].

Traditionally, local surgical excision is used as the sole therapy for soft-tissue

sarcoma [47]. Nevertheless, due to the high local recurrence rate of 30 to 50% af-

ter local surgical excision, radical compartmental excision or amputation became

the standard practice to achieve local control rate of 80-90% and to reduce local

recurrence rate to 5 to 20% [48]. Increasing local control at the expense of limb

preservation is far from ideal, as it decreases patients’ quality of life. Recently, a

study of 43 adult patients with high grade soft-tissue sarcoma of the extremities was

conducted by the US National Cancer Institute, where they were prospectively ran-

domized to receive either amputation or limb-sparing resection with radiotherapy.

They have reported four local recurrences in the limb-sparing group and none in

the amputation group. However, there were no differences in survival rates between

these two groups [49]. As a result, the current preferred management of soft-tissue

sarcoma is conservative surgery and radiotherapy. The rationale for combining ra-

diotherapy with surgery is that radiotherapy eradicates microscopic disease allowing

more conservative surgery with equal probability of local control and survival [49].

Increasingly, radiotherapy is also given preoperatively, for reducing the tumour vol-

ume to a more manageable level for surgical resection [50]. For higher stage tumours

with distant metastases, chemotherapy may be given in combination of radiother-

apy, before and/or after surgery. A prospective randomized study of postoperative
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chemotherapy in 65 patients with high-grade soft-tissue sarcomas of the extremities

revealed a significant increase of overall survival rate in patients received chemother-

apy( 95% survival rate) compared to those without chemotherapy ( 74% survival

rate) [49].

2.4.2 Application of Diffusion weighted MRI to soft tissue sarcoma

Application of diffusion weighted MRI and quantitative analysis to characterize

soft-tissue sarcoma has been reported, mainly focused on the differentiation of ma-

lignant from benign soft-tissue tumours [51, 52]. Lee et al. assessed the malignancy

of soft-tissue tumours via visual inspection from two separate radiologists. tumour

intensity was compared with that of surrounding muscle and scored from grade one

to four, with one being hypo-intense relative to muscle and four being iso-intense

to fluid. It was reported that grade four tumours were more common in malignant

tumours. The minimum apparent diffusion coefficient (ADC) of the tumour and

the minimum ADC over the average ADC for normal muscle demonstrated statisti-

cally significant difference between malignant tumours and non-malignant ones [51].

A similar method of differentiating malignant from benign soft-tissue tumours was

proposed by Teixeira et al [52]. The tumours were visually classified into hypo-

intense, iso-intense and hyper-intense, based on T2-weighted images. Muscle was

again used as a reference tissue, where its ADCs from both benign and malignant

groups were obtained. Similarly, the ADC ratio between min tumour ADC and aver-

age muscle ADC was calculated for each voxel. Benign tumours were differentiated

from malignant tumours with high sensitivity and specificity for T2 hyper-intense

tumours.
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Previous literature findings demonstrated that the addition of qualitative and

quantitative DWI to standard MRI protocol improves diagnostic accuracy for differ-

entiation between malignant and benign soft-tissue tumours. However, both example

analysis mentioned above still contain a qualitative component, carried out via visual

inspection. Moreover, no one to our knowledge has reported automated soft-tissue

tumour sub-region segmentation method. The major finding presented in this the-

sis (chapter 4) successfully automated tumour sub-region segmentation employing

quantitative T2 and ADC, which serves as a step-forward to further understand the

microenvironment of soft-tissue tumour and to provide essential information for sub-

region targeted radiation dose painting.
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CHAPTER 3
Quantitative analysis of diffusion weighted imaging in soft-tissue sarcoma

”He will turn himself into every kind of creature that goes upon the earth, and

will become also both fire and water; But you must hold him fast and grip him tighter

and tighter, till he begins to talk to you and comes back to what he was when you saw

him go to sleep.” - Homer, Odyssey

3.1 Introduction

The superior soft tissue contrast of MRI makes it the ideal imaging modality

for studying soft-tissue sarcoma. As the name suggests, it is a type of cancer that

originates from the soft tissues of the body. Diffusion weighted-MRI (DW-MRI)

is sensitive to the Brownian motion of water, thereby provides useful insights on

the tumour microenvironment. Water diffusivity, i.e. the rate of diffusion, can

be quantified as the isotropic apparent diffusion coefficient (ADC) in the form of

a parametric map. In general, malignant tumours have lower ADCs compared to

normal tissue owing to their increased cellularity. In the case of soft-tissue sarcoma,

however, malignant lesions sometimes demonstrate elevated ADCs. This is thought

to be due to the high heterogeneity and variability of composition of soft-tissue

tumours. For instance, Maeda et al have reported increased ADCs from myxoid
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tumours, due to the presence of the myxoid matrix where free water is abundant in

the extracellular space [53].

A few studies have explored the post-therapeutic change in soft-tissue tumours

using quantitative analysis of DWI. Increase in ADC was reported to be positively

correlated with response to radiotherapy, associated with reduction in tumour size

and tumour cellularity [54, 55, 56]. However, the relationship between ADC and tu-

mour characteristics or radiotherapy response is still poorly understood. An ongoing

clinical study on the role of fludeoxyglucose positron emission tomography (FDG-

PET), fluoromisonidazole PET (FMISO-PET) and DW-MRI in the management of

soft-tissue sarcoma of the extremities with pre-operative radiotherapy and surgery

were conducted by a team of researchers from the McGill University Health Center.

DW-MR data were acquired in patients at three stages of treatment: pre-, mid-

and post-radiotherapy. With these data, we further explore the relationship between

ADC and tumour types, change in ADC and response to radiotherapy, as well as

post-therapeutic change in ADC and tumour location. The findings are reported in

this chapter.

3.2 Method

3.2.1 Patient

From October 2013 to January 2015, 10 patients (4 females and 6 males; age

range 48-81 years) were recruited with histologically confirmed soft-tissue sarcoma

to participate in this clinical study. All tumours were malignant including three

undifferentiated pleomorphic spindle cell sarcoma (UPS), two myxoid liposarcoma,

one myxoid/round cell liposarcoma, one leiomyosarcoma, one myxofibrosarcoma,
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one pleomorphic liposarcoma and one synovial sarcoma. Lesions were located in

the shoulder(2), leg(1), thigh(3), arm(2), pelvis(1), and chest wall (1). Recruited

patients satisfied the following criteria: (a) A biopsy must be done within 8 weeks

prior to registration. (b) The tumour must be surgically resectable. (c) The patient

must be fit for surgery. (d) The patient must be at least 18 years old. (e) For

females with childbearing potential, a serum βHCG must be done 2 weeks prior to

registration and the patient must practice adequate contraception. Patients with

rhabdomyosarcoma, Ewing sarcoma, osteosarcoma and Kaposi sarcoma, metallic

objects in the body, prior radiotherapy or excisional biopsy leading to the removal of

the majority of the tumour were excluded from this study. The study was approved

by the Research Ethics Board of the McGill University Health Center and written

informed consent was obtained from each patient.

3.2.2 MRI

Echo planar imaging (EPI) based DW-MR images were acquired with a 1.5 T

MR scanner (GE Healthcare, Waukesha WI, USA) at b = 0, 100, 500, 800 s/mm2

in 8 out of 10 patients in week 1 of the study prior to radiotherapy. 6 out of these 8

patients have completed the DW-MRI at all three stages of the radiotherapy course:

pre-(week 1), intra-(week 4) and post-radiotherapy (week 9). All 10 patients received

surgery in week 10. The field-of-view, number of slices and slice thickness were

adapted for each patient ranging from, 290mm to 400mm, 21 to 44 slices, and 6

or 7 mm respectively. The matrix size 256x256, the echo time (TE) = 88 ms and

the repetition time (TR) = 5000 ms remained constant across patients. Axial fast

spin echo images were also acquired using 2D fast spin echo (FSE) sequence with
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fat saturation. The TR was between 3.95 s and 6.65 s, and the echo train length

(ETL) was 9. Data were acquired twice with different TEs: a long TE (64 to 83

ms ) and a short TE (9 to 12 ms). The sequence with long TE is sensitive to T2

weighting, therefore producing T2-weighted images. The images with short TE are

proton density weighted. These two set of images were used to create T2 maps. The

matrix size was 256x256, reconstructed to 512x512 by zero-padding. The field-of-view

(FOV), number of slices, and slice thickness were adapted for each patient, ranging

between 120 and 320 mm, 31 to 45 slices, and 4 or 5 mm, respectively. Patient 8 with

pleomorphic liposarcoma on the shoulder was excluded from this study, because the

reconstruction diameter of the b = 800 s/mm2 DW-MR images were inconsistent

with that of the DW-MR images acquired with other b-values. Rigid registration

with MIM was unable to correct for this discrepancy.

The tumour characteristics and MRI data collected for each patient is summa-

rized in Table 3–1.
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3.2.3 Apparent Diffusion Coefficient (ADC) map

The ADC of each voxel can be quantified by Eq. 4.3 with a minimum of two b

values [57].

Sj

S0,j

= exp(−b× ADCj) (3.1)

where j represents the voxel index, Sj is the signal intensity at a given voxel with

nonzero diffusion gradient b, S0,j is the signal intensity at a voxel without diffusion

gradient, b is the gradient factor and ADC is the apparent diffusion coefficient.

A linear regression model was fitted to the logarithm of Sj/S0,j against increasing

b-values, where its slope is the ADC value of the voxel. ADCs for each voxel were

computed and compared with four combinations of b-values: b = 0, 100, 500, 800

s/mm2, b = 100, 500, 800 s/mm2, b = 100, 800 s/mm2,and b = 500, 800 s/mm2.

3.2.4 Data Analysis

Tumour contours were defined on axial T2-weighted images by an experienced

physician using commercially available software (MIM software, Cleveland, United

States). DW-MR images were registered onto axial T2-weighted images using the

rigid registration function in MIM, to correct for motion and misalignment between

images. The mean and the standard deviation (SD) of the ADCs inside the tumour

contours were computed with in house programs written in MATLAB (The Math-

Works Inc., Natick, MA, 2000). The data points in this chapter are presented as

means ± SD or standard error of the mean (SEM) as indicated.
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Histogram analysis was also performed to produce the following quantitative

parameters: mean, standard deviation, median, mode, maximum, minimum, kurto-

sis, skewness, entropy and percentiles. Mean and standard deviation represent the

average and dispersion of the histogram respectively. The median is a more repre-

sentitive estimation of the average for skewed distributions. The mode represents the

value with highest counts. Kurtosis and skewness reflect the shape and asymmetry

of the probability distribution, respectively. A flatter peak has a negative kurtosis; a

sharp peak has a positive kurtosis. The interpretation of skewness is demonstrated in

Figure 3–1. A positively skewed histogram has an elongated tail on the right side of

the mean. Similarly, a negatively skewed histogram has an elongated trial on the left

side of the mean. The entropy represents a statistical measure of the irregularities

in a histogram. Finally, a percentile represents the value below which a percentage

of observations is calculated [58].
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Figure 3–1: Interpretation of the skewness of histograms. This figure is adapted from

[43]

3.2.5 Statistical Analysis

Differences among groups of data were assessed by one-way Analysis of Variance

(ANOVA), followed by Tukey post-test, and accepted as statistically significant at

p < 0.05. ANOVA provides information on whether there is a difference among

groups of data. Tukey post-test, on the other hand, compares individual group to

all the other groups. This gives us insights on which specific groups are significantly

different.
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3.3 Results and Discussions

3.3.1 ADC parametric map

0
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Figure 3–2: The volumetric mean ADCs computed using four combinations of b-

values are plotted for each patient. Data points are mean ± standard deviation. The

tumour type abbreviations ML, LM, MF, MRL, SS stand for myxoid liposarcoma,

leimyosarcoma, myxofibrosarcoma, myxoid/round cell liposarcoma, and synovial sar-

coma respectively.

ADC0,100,500,800, ADC100,500,800, ADC100,800 and ADC500,800 were computed for

each tumour voxel with the combinations of b-values: b = 0, 100, 500, 800 s/mm2,
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b = 100, 500, 800 s/mm2, b = 100, 800 s/mm2,and b = 500, 800 s/mm2, respec-

tively. Depending on the choice of b-value combinations, the calculated volumetric

mean ADCs are significantly different, as demonstrated in Figure 3–2. The mean

ADC0,100,500,800 is consistently greater than the mean ADC100,500,800 and ADC100,800

(p < 0.001), which is greater than the mean ADC500,800 (p < 0.001) for each patient.

ADC100,500,800 and ADC100,800 are not statistically different (p > 0.05).

ADC 0,100,500,800 ADC 100,500,800 ADC 100,800 ADC 500,800

A
v
e
ra

g
e
 t

u
m

o
u
r 

A
D

C
 (

m
m

2
/s

)

0.8

1.0

1.4

2.0

2.2

2.4

1.2

1.6

1.8

2.8

2.6

Slice Number

0 2 4 6 8 10 12 14 16 18

x10-3

Figure 3–3: The mean ADCs computed using four combinations of b-values are

plotted for individual slices of a patient with myxoid/round cell liposarcoma. Data

points are mean ± standard deviation.

This behaviour found in volumetric mean ADCs is also observed on individual

image slices. As an example, Figure 3–3 plots the mean tumour ADCs calculated
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from each b-value combinations, for each image slice of a patient with myxoid li-

posarcoma. Again, the combination of b = 0, 100, 500, 800 s/mm2 and b = 500, 800

s/mm2 yield the highest and the lowest average ADCs (p < 0.001); the combination

of b = 100, 500, 800 s/mm2 and b = 100, 800 s/mm2 return similar average ADCs

(p > 0.05).

The discrepancy among the mean ADC0,100,500,800, ADC100,500,800, ADC100,800

and ADC500,800 is a result of the microcapillary perfusion detected at low b values.

In 1989, Le Bihan et al has reported that the transformation between perfusion and

true diffusion effect occurs at b-values in the 100-300 s/mm2 range [59]. In order

to capture the true diffusion effect, one should ideally use b-values greater than 300

s/mm2 to compute the ADC maps. In our study, however, we have only acquired

DW-MR images with two b-values greater than 300 s/mm2. The decreased signal

to noise ratio at high b-value DWIs causes increasing variations in the two-point

estimation (b = 500 and 800 s/mm2), thereby more error prone. This effect is

captured by the increased standard deviation on the mean ADC500,800 for 6 out of

7 patients, shown in Figure 3–2. Thus, for more reliable ADCs, the three-point

estimation ADC100,500,800 is used in the rest of this work. However, one should keep

in mind that certain amount of perfusion could still be captured by ADC100,500,800.

3.3.2 Pre-radiotherapy ADC analysis

Mean ADC value of myxoid and non-myxoid soft-tissue lesions

ADC100,500,800 was computed for all seven malignant soft-tissue lesions. As a

sanity check, the mean muscle ADC was also computed and compared against liter-

ature values. Muscle was selected because of its abundance in the extremities, where
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soft-tissue sarcoma are mostly located. The mean muscle ADC is 0.001 ± 0.003

mm2/s, consistent with literature reported ADC of 0.0011 ± 0.0001 [60]. However,

the standard deviation from the measured mean muscle ADC is much larger than

the literature reported value. One explanation could be that the contoured muscles

are from various anatomical locations for each patient. The use of different imaging

coils (extremity vs. body coil) could also increase the variation on the muscle ADC

measurement.

UPS

SS

ML

MSL

MF

LM

ML

0.5 1.0 1.5 2.0 2.5 3.0

Average tumour ADC (mm2/s) x10
-3

Muscle

Figure 3–4: The mean ADCs ± standard deviation were plotted for each tumour.

The pink rectangle represents the ADC range (within one standard deviation) of

muscle, computed from muscle regions across all patients. The tumour type ab-

breviations ML, LM, MF, MRL, SS stand for myxoid liposarcoma, leimyosarcoma,

myxofibrosarcoma, myxoid/round cell liposarcoma, and synovial sarcoma respec-

tively.
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The average tumour ADC ± SD of each tumour type is plotted in Figure 3–4.

The large standard deviation reflects the heterogeneous compositions of these lesions.

Notice that except for synovial sarcoma, all the other lesions have mean ADCs not

only greater than that of muscle, but also much greater than 0.0011 mm2/s. This

observation contradicts the literature reported conclusion that malignant soft-tissue

lesions should have ADCs smaller than 0.0011mm2/s [60, 51, 61, 62]. As we looked

for explanations, we realized that the ADC does not solely reflect the cellularity,

but can also be influenced by the pathological composition of interstitial spaces. For

example, myxoid matrix, an extracellular mucoid material with high water content

has been reported to cause elevated ADCs [53]. Therefore, our initial hypothesis

is that based on their ADCs, soft-tissue lesion can be categorized into non-myxoid

containing lesions, such as synovial sarcoma, and myxoid-containing lesions.

(a) (b)

Figure 3–5: (a) Photomicrograph of the histological specimen (hematoxylin-eosin

stain) of myxoid liposarcoma (b) Photomicrograph of the histological specimen

(hematoxylin-eosin stain) of synovial sarcoma. These images are provided by Dr.

Sungmi Jung.
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A histological specimen from each tumour was examined to verify this hypoth-

esis. The histology clearly demonstrates two types of lesions: myxoid-containing

lesions with abundant mucus-like myxoid matrix (Fig. 3–5(a)), and non-myxoid

containing lesions with tightly packed cells (Fig. 3–5(b)). According to histology,

our hypothesis is partially correct. Myxoid liposarcoma, myxoid/round cell liposar-

coma and myxofibrosarcoma were confirmed as myxoid-containing lesions, whereas

synovial sarcoma belongs to non-myxoid containing lesions. Nevertheless, there are

two outliers to our hypothesis. Leiomyosarcoma and UPS, categorized as non-myxoid

containing lesions based on histology, were both predicted as myxoid-containing le-

sions due to their high ADCs. Moreover, to our knowledge, no one has reported

ADCs greater than 0.0011mm2/s from leiomyosarcoma or UPS. A possible explana-

tion to this discrepancy could be that the histological specimen was only taken from a

small section of each tumour, thereby can not represent the full tumour composition.

However, the exact reason for their high ADCs remains unclear in this study.

ADC histogram analysis of myxoid and non-myxoid soft-tissue lesions

Table 3–2: Myxoid vs.Non-Myxoid

Tumour Type ADC (mm2/s)
Mean Median Kurtosis Entropy Skewness

Myxoid 0.0018 ± 0.0002 0.0019 ± 0.0003 3.6 ± 1.1 0.8 ± 0.2 -0.2 ± 0.5
Non-myxoid 0.0014 ± 0.0004 0.0013 ± 0.0004 4.1 ± 1.2 0.5 ± 0.5 0.6 ± 0.2

p-value 0.15 0.11 0.59 0.27 0.046
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Based on tumour histology, the soft-tissue lesions in this study are divided

into two categories: myxoid-containing lesions, including myxoid liposarcoma, myx-

oid/round cell liposarcoma and myxofibrosarcoma, and non-myxoid containing le-

sions including leiomyosarcoma, synovial sarcoma and UPS. The average mean, me-

dian, kurtosis, entropy and skewness of both groups are listed and compared in

Table 3–2. The skewness successfully separates myxoid-containing tumours from

non-myxoid containing tumours, with p-value of 0.046. All the other parameters are

unable to differentiate these two groups.

Other observations

The mean, median, minimum, maximum, kurtosis, entropy, skewness and per-

centile of the ADC distribution from each lesion are also compared against tumour

grade, tumour size and development of metastasis. However, no significant relation-

ship was found.

3.3.3 Treatment evaluation

Diffusion weighted MR images were acquired before, 3 weeks and 8 weeks into

the course of radiotherapy, which are referred to as pre-treatment, mid-treatment and

post-treatment scans. The changes in ADC for the whole tumour are mapped out for

each patient in this study. As an example, Figure 3–6(a) - (c) demonstrates the ADC

maps of myxofibrosarcoma from these three time points. An overall increase in ADC

subsequent to treatment is clearly observed. The histogram representation of the

ADC distribution (Figure 3–6(d)) further confirms this observation. Post-surgical

scans of this patient indicated no local reoccurrence or metastasis.
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Figure 3–6: Example images from patient with Myxofibrosarcoma demonstrates in-

crease in ADCs in (a) Pre-treatment (radiotherapy) ADC map (b) Mid-treatment

ADC map and (c) Post-treatment ADC map. The therapy-induced increase in ADC

is further illustrated with (d) Histogram representation of the ADC distribution at

pre-treatment, mid- treatment and post-treatment.
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The therapy-induced increase in ADC has been demonstrated in multiple lit-

eratures and is considered a sign for cell lysis and necrosis [26, 27, 28]. Before

therapy, water movements are restricted by hydrophobic cellular membranes and

by interactions with stromal structural proteins [63]. With successful therapy, mi-

totic catastrophe progresses to cell shrinkage and membrane blebbing (decoupling

of the cytoskeleton from the plasma membrane) followed by necrosis formation and

phagocytosis (removal of dead cells). Increased water movements, hence increased

ADCs occur because of increased extracellular spaces, free water movements across

cell membrane remnant and in the presence of necrosis. Since changes in ADC are

usually seen before changes in tumour volume, increased ADC is considered as an

early biomarker of successful therapy [63].

For other soft-tissue lesions in the study, the net mean ± standard error at

pre-treatment, mid-treatment and post-treatment are used to illustrate the therapy

induced changes in ADCs (Figure 3–7). Although all patients responded positively

to radiotherapy and showed no local reoccurrence post-operations, three different

progression trends are observed here. Myxoid liposarcoma (purple line), myxofi-

brosarcoma (orange line) and synovial sarcoma (green line) demonstrate continuous

increasing in ADCs, as treatment progresses. Leiomyosarcoma (dark blue line) shows

a slight decrease in ADCs at mid-treatment and elevated ADCs post-treatment. Fi-

nally, myxoid/round cell liposarcoma (yellow line) and UPS (light blue line) both

have increased ADCs at mid-treatment, but decreased ADCs post-treatment.
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Figure 3–7: The mean ADCs ± standard error are plotted for each tumour at pre-

treatment (visit 1), mid- treatment (visit 2) and post-treatment (visit 3).

These three progression trends correspond to three types of cell behaviour re-

sponding to radiotherapy. During therapy, cells may undergo apoptosis or cell lysis

right away, exhibiting cell shrinkage, membrane blebbing or necrosis. A continuous

increase in ADC would be observed in this case for reasons explained previously.

In addition, cells can be resistant to therapy (no change in ADC values) or expe-

rience an initial transient cell swelling phase before apoptosis [64]. Cell swelling

causes reduction in and increased tortuosity of the extracellular space, hence re-

duced ADC values. The initial ADC drop observed in leiomyosarcoma could be due

to cell swelling. After therapy, removal of dead cells is followed by tissue compaction,

fibrosis (the scaring of connective tissue) and regeneration of native tissues. Resid-

ual active disease or resistant cells can also repopulate themselves. Both activities
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result in decreased ADC values. DW-MRI lacks the ability to distinguish fibrosis

from residual active disease. Dynamic contrast enhanced MRI (DCE-MRI) and flu-

orodeoxyglucose positron emission tomography (FDG-PET) may be used to make

the distinction. Reduced enhancement on DCE-MRI and low FDG uptake on PET

is observed in the case of fibrosis, whereas residual active disease is associated with

enhanced signal on DCE-MRI and high FDG uptake [63].

Lastly, our preliminary results indicate that the deep intramuscular tumours

(N=3) consistently demonstrated a continuous increase of the mean ADCs during

radiotherapy (Figure 3–8(a)), whereas superficial tumours (N=3) did not follow a

specific trend (Figure 3–8(b)). The reason for this location dependent behaviour is

unclear. Further investigation is needed to confirm this dependence and to explore

its cause.
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Figure 3–8: The mean ADCs ± standard error are plotted for (a) deep intramuscular

tumours and (b) superficial tumours.
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3.3.4 Conclusion and further direction

Results of this preliminary study demonstrate that the pre-treatment mean tu-

mor ADC can partially differentiate myxoid-containing and non-myxoid containing

lesions, whereas skewness could act as a biomarker for this distinction. These high

ADC values in myxoid-containing lesions are due to the presence of the myxoid ma-

trix where free water is abundant in the extracellular spaces [53]. No significant

relationship was found between the mean, median, minimum, maximum, kurtosis,

entropy, skewness, percentile of the ADC distribution and tumour grade, tumour size

or treatment outcome. The therapy induced change in ADC pre-, mid-, and post-

treatment exhibit three distinct trends, corresponding to different cell behaviours

in response to radiation: immediate apoptosis and necrosis, initial cell-swelling fol-

lowed by apoptosis, and apoptosis followed by cell repopulation and fibrosis. All

three trends mark successful treatment; all the patient in this study demonstrate

no local reoccurrence after surgery. Finally, deep intramuscular tumours yield a

consistent response to radiotherapy, unlike superficial tumours.

On the other hand, there are also limitations to this study. The major limitation

is the small number of patients (N=8). At the time of this writing, more patients are

being recruited to participate in this study. Additional data will be analyzed in the

future to confirm our finding. The other challenge is to relate information obtained

from MR images to histology, due to missing spatial information of the histological

specimen. Image-guided biopsy could be considered in the future. Overall, the

findings from this study show that DW-MRI and ADC measurements are a promising

approach to soft-tissue sarcoma management.
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CHAPTER 4
Automated segmentation of soft tissue sarcoma into distinct pathological

regions using the apparent diffusion coefficient and T2 relaxation

”Find beauty not only in the thing itself but in the pattern of the shadows, the

light and dark which that thing provides.” - Junichiro Tanizaki

4.1 Preface

The core of this thesis consists of one manuscript:

Shu Xing, Carolyn R. Freeman, Sungmi Jung and Ives R. Levesque. ”Automated

Segmentation of Soft Tissue Sarcoma Into Distinct Pathological Regions Using the

Apparent Diffusion Coefficient and T2 Relaxation”, in preparation for submission to

Magnetic Resonance in Medicine.

At the time of this writing, this manuscript is in preparation for submission to

Magnetic Resonance in Medicine. The method section of this manuscript contains

repetitive information from Chapter 3, because the same data set was used for both

analyses.
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4.2 Contribution of Authors

As the first author of this manuscript, I designed, implemented and validated all

imaging methodology, performed the data analysis and drafted the paper. The con-

tributions of the co-authors are listed as follows.

Carolyn R. Freeman, MD : recruited the soft-tissue sarcoma patients and pro-

vided tumour contours.

Sungmi Jung, MD : performed histological analysis of soft-tissue sarcoma lesions

and provided the histological specimen photomicrographs.

Ives R. Levesque, PhD : As the candidate’s supervisor, Dr. Levesque provided

essential guidance and mentorship throughout the project, contributed to the data

analysis of the T2 maps and reviewed this manuscript.
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4.3 Abstract

Purpose: MRI is the imaging modality of choice for diagnosis and follow-up of

soft-tissue sarcomas. Pathological tissue types within the tumor, such as high cel-

lularity, high T2 content, or necrosis, can be interpreted with the combination of

T2-weighted images, diffusion weighted (DW-MRI) and apparent diffusion coeffi-

cient (ADC) maps. This interpretation is important for diagnosis and evaluation

of tumor heterogeneity. Conventionally, these tissue types are interpreted by visual

inspection which can be time-consuming and subjective. In this work, we propose a

novel method to automatically distinguish various pathological tissue types within a

tumor.

Theory: To automate the tissue segmentation process, we chose the measured T2

value (T2 map ) and the product of exp(−TE
T2

) · exp(−b · ADC) (simDWI map) to

represent the main physical characteristics captured by T2-weighted and DW-MRI

respectively. Next, the trio of values (ADC, T2, simDWI) of each tumor voxel is

compared against the average value from the reference muscle tissue. Each tumor

voxel is assigned to a distinct pathological class according to the parameter values

relative to the reference. Each class of tissue is represented by a different color.

Method: Axial DW-MRI and FSE images with fat saturation were acquired on a

1.5 T GE scanner in 5 patients with biopsy-confirmed sarcoma pre-, mid- and post-

radiotherapy. Muscle regions were identified on the DW-MRI (b = 0 s/mm2) for

each patient. The reference mean and standard deviation ADC, T2, and simDWI

values were calculated including muscle voxels from all patients in the study.

Results: Based on the collective intensity patterns of the quantitative T2, simDWI,
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and ADC maps, regions of high T2 content, high cellularity content, and necrosis

were distinguished for various tumor types. The segmentation results are consistent

with pathological observations from biopsy.

Conclusions: We successfully automated the process of differentiating radiologi-

cally significant tumor regions including high cellularity content, high T2 content,

necrosis, and fibrous tissues in soft tissue sarcoma.

Key words: diffusion-weighted imaging; soft-tissue sarcoma; tissue segmentation
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4.4 Introduction

Magnetic resonance imaging (MRI), due to its excellent soft-tissue contrast,

is the major imaging modalities for diagnosis, staging and follow-up of many soft-

tissue tumours [65]. T1 and T2 relaxation characteristics obtained from conventional

MRI sequences, such as fast spin-echo, allow the differentiation of abnormal lesions

from normal tissues. Diffusion weighted MRI (DW-MRI) is an addition to the con-

ventional MRI sequences for more accurate clinical diagnosis and cancer treatment

evaluation. DW-MRI reveals information about the stochastic Brownian motion of

water molecules on a microscopic level within tissues, which can be quantified by

the apparent diffusion coefficient (ADC). It has been shown to differentiate benign

and malignant lesions in the liver based on their apparent diffusion coefficient ADC,

to aid diagnosis in gynaecological cancers, and to distinguish different components

of brain tumours [66, 67, 68, 69]. In oncologic imaging, the biological premises for

using DWI is that compared to benign or normal tissues, malignant tissues have

higher cellularity, i.e. water diffusion is more restricted in malignant lesions [22].

Restricted water diffusion results in decreased signal loss and therefore increased

signal intensity of malignant lesions on high b-value DW images, allowing for vi-

sual assessment. However, high b-value DW images also reflects the water content.

Tissue that contains a large amount of water, such as massive liquefactive necrosis,

causes increased signal intensity on high b-value images as well. In addition, water

movement is a highly complex process and can also be affected by perfusion, tissue

organization, extracellular space tortuosity and the integrity of cell membranes [65].

Therefore, to avoid misinterpretation, it is important to review DW images, ADC
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maps and the morphological features from the associated conventional MR sequences

in combination [65, 66, 63].

Several tissue types can be interpreted with the combination of T2-weighted,

high b-value DW images and calculated ADC maps, as shown in Table 4–1, repro-

duced from Khoo et al, Koh et al and Patterson et al [65, 66, 63]. Tissue differen-

tiation within the tumour can help physicians to accurately identify the malignant

lesions. Conventionally, these tissue types are interpreted by visual inspection, which

is time-consuming. In this work, we propose a novel method to automatically differ-

entiate tissue types within the tumour, using normal muscle tissue as a reference.

Table 4–1: Interpretation of tumour tissues from diffusion-weighted images. This
table is constructed based on [49, 51, 52].

Intensity of
image on
T2-weighted
image

Intensity of image
on high b-values
DW-MRI (800 to
1000 s/mm2)

Intensity
of image
on ADC

Interpretations

High High High T2-shine through; often proteina-
ceous fluid

High-
intermediate

High Low Tumour generally of high cellular-
ity; rarely coagulative necrosis or
abscess

High Low High Fluid; liquefactive necrosis, lower
cellularity; gland formation

Low-
intermediate

Low Low Fibrous tissue with low water
content with/without viable tu-
mour cells
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4.5 Theory

We start by considering how physicians visually differentiate tissue components

within the tumour. The image intensity of the lesion is compared with some reference

tissue in the background from the T2-weighted, high b-value DW images and the

ADC maps, on a slice by slice basis. The image intensity pattern from these three

images are then compare to the tissue type interpretation in Table 4–1. Notice that

each voxel of T2-weighted and DW images contains the arbitrary MR signals, which

depend on a number of factors, such as the type of sequence, imaging coils, field

strength etc. The ADC map, on the other hand, is a parametric map that bears the

value of the physical parameter (i.e. ADC) in each voxel. In order to automate the

visual analysis process, we first bring these three images into a comparable space by

quantifying the main physical parameters measured by T2-weighted and high b-value

DW images.

4.5.1 Qualitative to Quantitative

T2-weighted image highlights differences in the T2 relaxation time of tissues.

Quantitative T2 mapping is therefore an obvious choice to represent the physical

characteristics captured by T2-weighted images.

Selecting a quantitative parameter to represent non-zero b-value DW images is

more challenging. In the presence of paired magnetic field gradients, spins dephase

and rephase proportional to the gradient lobe area of a diffusion weighted Echo

Planar Imaging (EPI) sequence. At the echo time (TE), the loss of phase coherence

in the transverse magnetization due to the spin-spin relaxation process produces a

spin-echo amplitude attenuation, proportional to exp(−TE/T2). If a given voxel
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contains moving spins during TE, an additional spin-echo amplitude attenuation is

introduced due to further loss of phase coherence. This attenuation is due to the

diffusion process and quantified as exp(−b · ADC). Overall, the signal for non-zero

b-value DW images can be expressed as Equation. 4.1 [70].

S(b,TE)SE = S0 · exp(−
TE

T2

) · exp(−b · ADC) (4.1)

where the signal at a given b-value is proportional to the signal amplitude S0.

S0 includes contributions from proton density and incomplete T1 relaxation effects,

which is constant for a given voxel with negligible b and TE. The signal also depends

on the echo time (TE), the spin-spin relaxation time (T2), the diffusion-sensitizing

gradient b and the ADC. It is obvious from this equation that the major physical

characteristics are captured by the product of two exponential terms. For a given

b-value, T2 and ADC are the only two variables in this product, both reflecting the

intrinsic property of tissue. Therefore, the dot product of these two exponentials,

exp(−TE
T2

) · exp(−b · ADC), is used to construct the surrogate map, or simulated

DWI (simDWI), to represent the high b-value DW images.

Now, instead of interpreting tissue types from the combination of signal based

T2-weighted and DW images along with ADC maps, as in Table 4–1, the quantitative

maps of T2, simDWI and ADC are used for tissue segmentation.

4.5.2 Reference Region Based Segmentation

In order to automate the previously mentioned visual analysis process, a refer-

ence tissue must be selected. Since soft tissue sarcoma is most commonly developed

in the extremities where muscle is abundant, muscle was chosen to be the reference
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tissue in this study. A global average of muscle from all patients is computed for

T2, simDWI and ADC maps, denoted as µm,1, µm,2, and µm,3, respectively. This is

under the premise that T2 and ADC reflect the intrinsic properties of a given tissue,

neglecting any artifactual effects of the imaging coil or magnetic field strength effect

on T2 and ADC measurements. For a given quantitative map, the value from each

voxel in the tumour is then compared to the global average of the reference tissue

following a two-step process. Figure 4–1 provides a simple schematic of this setup,

where T and M denotes the tumour ROI and muscle ROI, and xk represents the

value of each tumour voxel.

T

M

T

M

T2 map ADC mapexp(-TE/T2)exp(-bADC)

Figure 4–1: A schematic diagram of the T2 map (k=1), the surrogate map of

exp(−TE
T2

) · exp(−b · ADC) (k=2) and ADC map (k=3). x represents the image

intensity of each voxel in the tumour and k represents the type of quantitative map.

xk is compared against the global mean of the reference tissue, i.e. muscle (M), for

each quantitative map. A binary decision is then made on which tissue type this

voxel belongs to.
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The combinatory relative intensities of tumour voxels with regards to muscle

voxels from T2, surrogate and ADC maps, yield four distinct combinations. Each

combination is assigned to a different class of tissue, represented by a different colour.

The tumour is then visualized by tissue types represented by different colours.

Step 1: A binary decision is made on which tissue type a voxel belongs to,

according to the interpretation in Table 4–1. Each tissue type is represented by a

different colour.

If x1 > µm,1, x2 > µm,2, x3 > µm,3, T2-shine through, assign voxel as red.

If x1 > µm,1, x2 > µm,2, x3 < µm,3, High cellularity tumour, assign voxel as green.

If x1 > µm,1, x2 < µm,2, x3 > µm,3, Necrosis, fluid, assign voxel as blue.

If x1 < µm,1, x2 < µm,2, x3 < µm,3, Fibrous tissue, assign voxel as grey.

Step 2: The degree of confidence that a voxel belongs to its corresponding tissue

type correspond to the individual colour saturation, quantified by the square root of

sum difference squared between xk and µm,k. A greater colour saturation indicates

greater degree of confidence.

coloursaturation =

√√√√ 3∑
k=1

(
xk − µm,k

σm,k

)2 (4.2)

4.6 Methods

4.6.1 Patient

5 patients (3 females and 2 males; age range 48-81 years) were recruited with

histological confirmed soft-tissue sarcoma to participate in this clinical study. All
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tumours were malignant including one undifferentiated pleomorphic spindle cell sar-

coma, one myxoid liposarcoma, one myxoid/round cell liposarcoma, one myxofi-

brosarcoma, and one synovial sarcoma. Lesions were located in the thigh(3), arm(1),

and chest wall (1). Recruited patients satisfied the following criteria: (a) A biopsy

must be down within 8 weeks prior to registration. (b) The tumour must be surgi-

cally resectable. (c) The patient must be fit for surgery. (d) The patient must be

at least 18 years old. (e) For females with childbearing potential, a serum βHCG

must be done 2 weeks prior to registration and the patient must practice adequate

contraception. Patients with rhabdomyosarcoma, Ewing sarcoma, osteosarcoma and

Kaposi sarcoma, metallic objects in the body, prior radiotherapy or excisional biopsy

leading to the removal of the majority of the tumour were excluded from this study.

The study was approved by the Research Ethics Board of the McGill University

Health Center and written informed consent was obtained from each patient.

4.6.2 MRI Acquisition

Echo planar imaging (EPI) based DW-MR images were acquired with a 1.5 T

MR scanner (GE Healthcare, Waukesha WI, USA) at b = 0, 100, 500, 800 s/mm2

at three stages of the radiotherapy course: pre-(week 1), intra-(week 4) and post-

radiotherapy (week 9). All 5 patients received surgery in week 10. The field-of-view,

number of slices and slice thickness were adapted for each patient ranging from,

290mm to 400mm, 21 to 44 slices, and 6 or 7 mm respectively. The matrix size

256x256, the echo time (TE) = 88 ms and the repetition time (TR) = 5000 ms

remained constant across patients. Axial fast spin echo images were also acquired

using 2D fast spin echo (FSE) sequence with fat saturation. The TR was between
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3.95 s and 6.65 s, and the echo train length (ETL) was 9. Data were acquired twice

with different TEs: a long TE (64 to 83 ms ) and a short TE (9 to 12 ms). The

sequence with long TE is sensitive to T2 weighting, therefore producing T2-weighted

images. The images with short TE are proton density weighted. These two set of

images were used to create T2 maps. The matrix size was 256x256, reconstructed

to 512x512 by zero-padding. The field-of-view (FOV), number of slices, and slice

thickness were adapted for each patient, ranging between 120 and 320 mm, 31 to 45

slices, and 4 or 5 mm, respectively.

4.6.3 Data analysis

The ADC of each voxel can be quantified by Eq. 4.3 with a minimum of two b

values [57].

Sj

S0,j

= exp(−b× ADCj) (4.3)

where j represents the voxel index, Sj is the signal intensity at a given voxel with

nonzero diffusion gradient b, S0,j is the signal intensity at a voxel without diffusion

gradient, b is the gradient factor and ADC is the apparent diffusion coefficient.

Mapping of the apparent T2 was performed by fitting a linear 2-parameter model

to the logarithm of the FSE signal at every voxel (Eq. 4.4).

ln(Sj(TEi)) = ln(S0,j)−
1

T2,j

(TE)i (4.4)

Where i = 1, 2 representing two different TEs, and j = voxel index. An example

T2-weighted image acquired by the FSE sequence (long TE) and calculated T2 map

are shown in Figure 4–2.
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(a) (b)

Figure 4–2: (a) The axial T2-weighted images were acquired using 2D FSE with fat

saturation. (b) T2 map was computed with data collected at 2 different TEs: long

TE selected by the scanner, and short TE. The lesion is contoured in red dotted

lines.

Relative to muscle, the lesion is composed of high T2 tissues. Fat should theo-

retically have lower T2 values than muscle. However, due to the use of fat saturation

in the imaging sequence, only the water hydrogen protons in the fat region are de-

tected. Hence, the bright signal in the fat region observed from Figure 4–2 (a) and

(b) reflects primarily the water hydrogen protons. It is important to acknowledge

that some lipid-based protons still contributes to the T2 relaxation of water pro-

tons through interaction effects, which can bias the T2 measurement. Regions where

fat saturation failed due to poor shimming were excluded from the fit, after visual

inspection of the short TE data.
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Tumour contours were defined on axial T2-weighted images by an experience

physician using commercially available software (MIM software, Cleveland, United

States). DW-MR images were registered onto axial T2-weighted images using the

rigid registration function in MIM, to correct for motion and misalignment between

images. The quantitative T2, exp(−TE
T2

) · exp(−b ·ADC) and ADC maps were com-

puted with in house programs written in MATLAB (The MathWorks Inc., Natick,

MA).

Reference Tissue

Muscle regions of interest (ROIs) were identified on each slice using the DW b=0

s/mm2 images (dotted lines in Fig.4–3(a)). These ROIs were then copied onto the

quantitative T2, simDWI and ADC maps. The total muscle voxels from all patients

in this study for each map were plotted and fitted to a gaussian function, where their

global means and standard deviations were computed. As an example, Fig. 4–3(b)

demonstrates the ADC distribution of the muscle from all patients. The distribution

appears to be gaussian with a R2 of 0.987. The global mean and standard deviation

were estimated from the fit to a gaussian function as 0.00101 ± 0.00003 mm2/s and

0.000266 ± 0.00005 mm2/s, respectively.
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Figure 4–3: Patient with myxoid liposarcoma. (a) Dotted lines mark the muscle

ROIs, contoured on DW-MR images with b=0 s/mm2. (b) A gaussian function

G(x)=a · e(−(x−b
c

)2 is fitted to the distribution of muscle ADCs from all patients,

normalized to the total number of voxels (black squares). The red line represents

the fitted curve. The ADC distribution of muscle appears to be gaussian with a R2

of 0.987.

4.7 Results

The quantitative approach taken in the reference region based segmentation

method is under the premise that T2 and ADC reflect the intrinsic properties of a

given tissue. We first validate this assumption by plotting the probability density

function against the muscle ADC and T2 measurements from each patient in Fig.

4–4(a) and Fig. 4–4(b) respectively.
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Figure 4–4: (a) Probability distribution of muscle ADCs across patients yield a

similar mean value. (b) Probability distribution of muscle T2s across patients yield

a similar mean value.

The mean muscle ADCs from each patient are centred around 0.001 mm2/s,

whereas the mean muscle T2 are also centred around a common mean of 49 ms. This

characteristic allows us to calculate a global mean and standard deviation for ADC

and T2 from muscle ROIs cross all patients, which during tissue segmentation are

applied to images across all patients. The standard deviation of muscle ADCs and

T2s were computed as 0.0003 mm2/s and 20 ms, respectively. Looking at the ADC

and T2 distributions more closely, we observe a slight anatomy dependence for both

parameters. The mean muscle ADC and T2 values from the arm are slightly higher

than those from other anatomies.
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4.7.1 Tissue Segmentation

In 5 patients who completed the imaging study at pre-, mid- and post-radiotherapy,

all four types of tissues including high cellularity tumour, proteinaceous fluid, necrosis

and fibrous tissue were identified within each lesion. Three sample pre-radiotherapy

cases featuring proteinaceous fluid, high cellularity tumour and necrosis are discussed

in detail here. Figure 4.7.1 illustrates the tissue segmentation of histology confirmed

myxoid/round cell liposarcoma. As the name suggests, this type of lesion consists

of loosely spaced myxoid extracellular matrix and densely packed round cells. Com-

pared to muscle, the lesion exhibits higher intensities on T2-weighted (Figure 4.7.1

(a)), high b-value DW images (Figure 4.7.1(b)) and ADC maps (Figure 4.7.1 (c)).

The combination of the quantitative T2 (Figure 4.7.1 (d)), simDWI (Figure 4.7.1 (e))

and ADC map demonstrates the same ”high (H)”, ”high (H)”, ”high (H)” pattern.

According to Table 4–1, this pattern is interpreted as ”T2-shine through” or proteina-

ceous fluid. The voxels with this pattern are assigned colour red with our proposed

tissue segmentation method. In Figure 4.7.1 (f), we show that myxoid/round cell

liposarcoma is predominately composed of high T2 content, likely due to the extra-

cellular myxoid matrix. The colour saturation indicates the degree of confidence that

a given voxel belongs to this type. In this case, the brighter red regions are likely to

be more myxoid rich than the darker red regions. The green regions in the middle

of the tumour classify the high cellularity tumour, possibly the round cell portion.

These observations are consistent with the histological findings shown in Fig. 4.7.1

(g) where clusters of round cells are located among large area of water abundant

myxoid matrix. Parts of the lesion on the left lower edge are incorrectly classified
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as necrotic tissue, represented by the colour blue. This originates from the bright

band at the lower edge of the lesion on the ADC maps, which is an artifact due to

imperfect rigid registration among DW images with different b-values.
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Figure 4–5: Patient with high grade myxoid/round cell liposarcoma in the left thigh.

The lesion shows higher intensity (H) compare to the reference tissue in (a) Axial

T2-weighted image acquired using 2D-FSE with fat saturation, (b) DW-MR image

of one image slice acquired with with b = 800 s/mm2, (c) ADC map calculated with

b=100, 800 s/mm2, (d) T2 map and (e) Surrogate map constructed with exp(−TE
T2

) ·

exp(−b · ADC). (f) This pattern is interpreted as T2-shine through or high T2

content, correctly identified by the tissue segmentation method. high T2 content is

represented by colour red. The colour intensity is normalized to the mean intensity of

each colour from the entire tumour. (e) Histological specimen shows lots of myxoid

area with clusters of round cells. 68



The second type of tissue identified in Table 4–1 features high lesion intensity

on T2-weighted and high b-value DW images, but low lesion intensity on the cal-

culated ADC map. This ”high (H)”, ”high (H)”, ”low (L)” pattern is commonly

seen in malignant lesions, which results from increased cellularity and restricted dif-

fusion [65]. Figure 4.7.1 demonstrates the tissue classification of synovial sarcoma, a

malignant lesion with densely packed cells. The lesion appears to be bright on T2-

weighted (Figure 4.7.1 (a)) and high b-value DW images (Figure 4.7.1 (b)). However,

the ADC map (Figure 4.7.1 (c)) demonstrates low intensity within the lesion. This

pattern is also observed on the combination of quantitative T2 (Figure 4.7.1 (d)),

simDWI (Figure 4.7.1 (e)) and ADC maps. Our segmentation method identifies the

majority of the tumour as high cellularity malignant tissue, represented in green.

Part of this lesion is classified as high T2 content, shown in red. This observation

is consistent with the histological findings shown in Figure 4.7.1 (g), where cells are

closely spaced.
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Figure 4–6: Patient with low grade synovial sarcoma on the forearm. The lesion

shows higher intensity (H) compare to the reference tissue in (a) Axial T2-weighted

image acquired using 2D-FSE with fat saturation, (b) DW-MR image of one im-

age slice acquired with with b = 800 s/mm2, (d) T2 map, and (e) Surrogate map

constructed with exp(−TE
T2

) · exp(−b ·ADC). The lesion demonstrates low intensity

(L) on (c) ADC map calculated with b=100, 800 s/mm2. (f) Tissue segmentation

identifies abundant high cellularity tissue, represented in green. The colour inten-

sity is normalized to the mean intensity of each colour from the entire tumour. (e)

Histological specimen shows high cellularity.
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A form of cell injury that results in the loss of membrane integrity, namely

necrosis, is observed in a patient with undifferentiated pleomorphic spindle cell sar-

coma (UPS) in the abdomen (Fig.4.7.1). In the necrotic regions, water experiences

approximately unrestricted diffusion [71]. Necrotic tissue demonstrates high inten-

sity on T2-weighted images (Figure 4.7.1 (a)) and has ADCs close to the value of

free water (Figure 4.7.1 (c)), but low intensity on high b-value DW images (Fig-

ure 4.7.1 (b)). The combination of the quantitative T2 (Figure 4.7.1 (d)), simDWI

(Figure 4.7.1 (e)) and ADC map demonstrates ”High (H)”, ”Low (L)”, ”High (H)”

pattern. The voxels with such pattern are assigned the colour blue with our seg-

mentation method. Figure 4.7.1 (f) illustrates the tissue segmentation of UPS, a

highly dynamic soft-tissue lesion. Green regions representing high cellularity tumour

and red regions representing high T2 content are both observed in the lesion. The

necrotic area is identified in blue. One could further confirm this by extracting a

histological specimen from the necrotic area. Notice that there are black voxels in

the necrotic region on the T2 map. These are artifacts due to imperfect estimation

of T2. The black voxels in the segmentation map (Figure 4.7.1 (f)) are the result of

these artifacts.
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PET-FDG on T2FS

Figure 4–7: Patient with undifferentiated pleomorphic spindle cell sarcoma in the

abdomen. The necrotic tissue (contoured in red dotted lines) shows higher intensity

(H) compare to the reference tissue in (a) Axial T2-weighted image acquired using

2D-FSE with fat saturation, (c) ADC map calculated with b=100, 800 s/mm2, and

(d) T2 map. The necrotic tissue demonstrates low intensity (L) on (b) DW-MR

image of one image slice acquired with with b = 800 s/mm2 and (e) simDWI. (f)

Tissue segmentation shows the heterogeneity of the tumour. The colour intensity is

normalized to the mean intensity of each colour from the entire tumour. The necrotic

area in the tumour is coloured in blue.
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With the reference region based segmentation method, we have successfully

automated the tissue segmentation process to differentiate high T2 content, high

cellularity tumour, necrotic, and fibrous tissues for each patient at pre-, mid- and

post-radiotherapy. The percentage composition of each tissue type, computed by

dividing the total number of voxels from each category over the total number of

tumour voxels, are summarized in Table 4–2.

Table 4–2: Tumor composition (% of the total tumour volume)

Tumor type Time point Red Green Blue Grey Artifact Other
Myxofibrosarcoma pre 96.6 2.4 0.6 0.00 0.4 0.00

mid 97.0 1.2 0.9 0.0 0.8 0.1
post 80.8 0.1 18.1 0.0 0.9 0.2

Myxoid/round cell pre 90.0 1.7 8.0 0.0 0.3 0.0
liposarcoma mid 82.4 2.4 13.4 0.0 1.6 0.2

post 81.7 1.9 15.9 0.0 0.4 0.1
Myxoid liposarcoma pre 93.1 5.7 0.8 0.0 0.1 0.3

mid 74.0 4.9 16.8 0.1 0.3 3.9
post 94.9 2.5 2.5 0.0 0.0 0.1

Synovial sarcoma pre 24.0 73.8 0.7 0.1 0.5 0.9
mid 74.8 8.3 16.1 0.1 0.1 0.6
post 34.1 0.9 57.5 0.0 0.1 7.4

UPS pre 61.6 13.0 19.3 0.0 5.9 0.2
mid 66.8 6.7 20.3 0.0 6.0 0.2
post 75.1 7.0 10.9 0.0 6.7 0.3

Columns labeled Red, Green, Blue and Grey represent high T2 content, high

cellularity tumour, necrotic tissue and fibrous tissues, respectively. The column

labeled Artifact includes voxels with negative or zero ADC or T2 values. These

artifacts are due to noise or poor fitting during the generation of ADC and T2 maps,
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therefore does not reflect actual physical properties of tissue. The last column in this

table contains the percentage voxels which exhibit a different pattern than the four

tissue types included in our segmentation.

4.8 Discussion

The proposed reference region based segmentation successfully automated the

tissue segmentation process. Based on the collective intensity patterns of the quanti-

tative T2, surrogate exp(−TE
T2

) ·exp(−b ·ADC) and ADC maps, high T2 content, high

cellularity tissue, necrosis and fibrous tissues can be distinguished. We took an inno-

vative approach in this method by designing a surrogate exp(−TE
T2

) · exp(−b ·ADC)

map to replace the high b-value DW images. The product of two exponentials

exp(−TE
T2

) · exp(−b · ADC) carries the relative contribution from T2 and ADC. De-

pending on the value of T2 and ADC, either exp(−TE
T2

) or exp(−b · ADC) will be-

come the major contributor to the surrogate image. When the lesion ADC and T2

are both high relative to muscle, their weighted contribution plays a crucial role

in distinguishing T2-shine through from necrosis. As water diffuses unrestrictedly

in necrotic areas, necrotic tissues tend to have a much higher ADC than that of

high T2 content, but similar T2 values. Therefore, while little change is observed in

exp(−TE
T2

), exp(−b · ADC) decreases significantly for necrotic tissues, causing them

to appear darker than muscle on the surrogate map.

The quantitative approach of using T2, simDWI and ADC maps, instead of the

signal based T2-weighted, high b-value DW image and ADC maps, has many advan-

tages. Since T2 and ADC reflect the intrinsic properties of a given tissue, a global

mean and standard deviation of ADC and T2 can be computed from muscle ROIs
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cross all patients, which during tissue segmentation is applied to images without

identifiable muscle. For instance, the UPS lesion shown in Figure 4.7.1 is located

in the abdomen, where muscle regions are difficult to find. Our tissue segmenta-

tion method is still able to distinguish different tissue types within this lesion, by

applying the global mean and standard deviation of ADC and T2, computed from

muscle regions in the other patients. Moreover, considering ADC and T2 values are

theoretically independent of coil loading or field strength, their global means and

standard deviations can be used to perform tissue segmentation on future patients,

therefore, muscle contouring will no longer be necessary.

The reference region based segmentation also has disadvantages. Its limitation

lies in the imperfection of the T2 and ADC measurements. As shown in Figure 4–4,

the mean muscle ADC and T2 values from the arm are slightly higher than that from

other anatomies. In other words, the estimated global mean muscle ADC and T2 are

lower than the actual muscle means for this patient. This patient was diagnosed with

synovial sarcoma in the forearm, illustrated in Figure 4.7.1. Our tissue segmentation

method identified 74% of the lesion as high cellularity tumour along with 24% high

T2 content. If the actual muscle mean ADC and T2 from the arm are used, 93% of

the lesion is classified as high cellularity tumour. This discrepancy occurs in voxels

whose ADC value is smaller than the actual mean muscle ADC in the arm, but

greater than the global mean muscle ADC. Since the relative ADC intensity of lesion

to muscle is the one separating high T2 content from high cellularity tumour, the

difference the mean muscle ADCs causes a different classification for these voxels.

Now, the higher average muscle ADC and T2 in the forearm could be due to its
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inherent biological difference from the muscle in other anatomies. Yanagisawa et al.

has reported different ADC values found in the skeletal muscles: the ankle dorsiflexor

and the erector spinae muscles [72]. Another possible cause for the discrepancy in

the mean muscle ADC and T2 measurements is the choice of the receiving arrays.

The forearm was imaged with a HD TR knee coil, whereas the other patients were

imaged with a 8 channel body coil. Although the T2 and ADC theoretically reflects

the intrinsic properties of the tissue, in reality, the choice of receiving arrays and

coil loading could still have artifactual effects on the estimation of these quantitative

parameters. Further controlled experiments are needed to confirm the exact cause

for the higher mean muscle ADC and T2 in the forearm.

Table 4–2 summarized the percentage composition of each tissue type in the

lesions at three stages of radiotherapy. At the pre-radiotherapy stage, the tumour

percentage composition obtained from tissue segmentation easily separates myxoid-

containing lesions from non-myxoid-containing lesions. All myxoid-containing lesions

including myxofibrosarcoma, myxoid/round cell liposarcoma and myxoid liposar-

coma have more than 90 % high T2 content. On the other hand, the non-myxoid

containing lesion, synovial sarcoma, only has 24.01 % high T2 content. 73.77 % of

the lesion is classified as high cellularity malignant tissue. UPS is a highly hetero-

geneous tumour, composed of 61.61% of high T2 content, 13.03% of high cellularity

malignant tissue and 19.31% of necrosis. We suspect that part of this lesion also

contains myxoid matrix. However, further histological analysis is needed to confirm

this hypothesis.
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Post-radiotherapy effects can also be evaluated. Koh. et al reported that ef-

fective anticancer treatment results in tumour lysis, loss of cell membrane integrity,

increased extracellular space and therefore an increase in water diffusion [73]. In

4 out of 5 patients in our study, the percentage of high cellularity malignant tis-

sue consistently decreases from pre-, mid- to post-radiotherapy. Myxoid/round cell

liposarcoma, however, demonstrates increased high cellularity malignant tissue, as

treatment progresses. All the patients in this study exhibit no local reoccurrence,

post-operation. Patient with myxoid/round cell liposarcoma developed lung metas-

tasis 6 month after the surgery, whereas no lung metastasis were found in other

patients. One might speculate that the increase in high cellularity tissue signifies

poor treatment results, related to the development of metastasis. Nonetheless, more

patients are needed to confirm this speculation.

Another indication of successful therapy is the formation of necrosis. With the

exception of UPS, all the other lesions have greater percentage of necrotic tissue

at post-radiotherapy than that at pre-radiotherapy. For myxoid liposarcoma and

UPS, the necrotic percentage increased from pre- to mid-radiotherapy and decrease

from mid- to post-radiotherapy. A possible explanation for this behaviour is that

phagocytosis, tissue compaction and regeneration of native tissue could happen after

necrosis formation. Hence, part of the necrotic tissues might be removed and replaced

with connective tissues or native tissues.

4.9 Conclusion

In this work, we have successfully automated the process of differentiating high

T2 contents, high cellularity tumours, necrotic and fibrous tissues in the tumour.
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Compare to background tissues, the image intensity of these four types of tissues in

the lesion demonstrate distinct patterns on the T2-weighted, high b-value DW images

and ADC maps as (High, High, High), (High, High, Low), (High, Low, High) and

(Low, Low, Low) respectively. Since both T2-weighted and high b-value DW images

are signal based, quantitative T2 maps and simDWI map were generated to replace

them. In other words, instead of interpreting tissue types from the combination of

signal based T2-weighted and DW images along with ADC maps, the quantitative

maps of T2, simDWI and ADC are used in this study. Using muscle as a reference

tissue, the reference region based segmentation was applied to the quantitative T2,

simDWI and ADC maps from 5 soft-tissue sarcoma patients at pre-, mid- and post-

radiotherapy. The segmentation results at pre-radiotherapy stage are consistent with

tumour histology. Radiotherapy induced effects were also assessed here. We found

that in 4 out of 5 patients, high cellularity malignant tissue decreased as treatment

progressed. An increasing percentage of necrosis was also observed with radiotherapy.

The major limitation of this work is the small number of patients (N=5). More

clinical data are needed to further evaluate this method.
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CHAPTER 5
Conclusion

The topic of interest in this thesis is to use diffusion weighted MR imaging to

evaluate therapy response and to better understand the microenvironment of soft

tissue sarcoma. As part of a broad study, conventional T2-weighted and diffusion

weighted images were acquired in patients with diagnosed soft-tissue sarcoma before,

during and after pre-operative radiotherapy.

In this work, we have shown that the pre-treatment mean tumor ADC can par-

tially differentiate myxoid-containing and non-myxoid containing lesions, whereas

skewness could act as a biomarker for this distinction. These high ADC values in

myxoid-containing lesions are due to the presence of the myxoid matrix where free

water is abundant in the extracellular spaces [53]. No significant relationship was

found between the mean, median, minimum, maximum, kurtosis, entropy, skewness,

percentile of the ADC distribution and tumour grade, tumour size or treatment

outcome. The therapy-induced change in ADC exhibit three distinct trends, corre-

sponding to different cell behaviours in response to radiation: immediate apoptosis

and necrosis, initial cell-swelling followed by apoptosis, and apoptosis followed by

cell repopulation and fibrosis. All three trends mark successful treatment; all the

patient in this study demonstrates no local reoccurrence after surgery. Finally, deep

intramuscular tumours yield a consistent response to radiotherapy, unlike superficial

tumours.
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In the effort to better understand the tumour microenvironment, we proposed

a reference region based segmentation method which successfully automated the

process of differentiating high T2 contents, high cellularity tumours, necrotic and

fibrous tissues in the tumour. This method uses the combination of quantitative

T2 map, the surrogate exp(−TE
T2

) · exp(−b · ADC) map and ADC map. Each voxel

intensity in the lesion is compared against the average intensity of the reference tissue

for all three maps. Their combinatory pattern yield four distinct combinations. Each

combination is assigned to a different tissue class, represented by a different colour.

Using muscle as a reference tissue, the reference region based segmentation was

applied to 5 soft-tissue sarcoma patients at pre-, mid- and post-radiotherapy. The

segmentation results at pre-radiotherapy stage are consistent with tumour histology.

Radiotherapy induced effects were also assessed here. We found that in 4 out of 5

patients, high cellularity malignant tissue decreased as treatment progressed. An

increasing percentage of necrosis was also observed with radiotherapy.

The major limitation in this study is the small number of patients. A total

of 10 patients were recruited for this study. Usable MR images acquired at pre-

radiotherapy were available for 8 out of 10 patients. Only 5 out of 10 patients have

completed the study at pre-, mid- and post-radiotherapy. At the time of writing,

more patients are being recruited to participate in this study. The data will be ana-

lyzed to confirm our findings. The other challenge is to relate information obtained

from MR images to histology, due to missing spatial information of the histological

specimen. Image-guided biopsy could be considered in the future. Nevertheless, we
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have shown that diffusion weighted MRI is a valuable tool for understanding the

microenvironment of soft tissue sarcoma and the evaluation of treatment response.
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