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Abstract

A detailed modelling of contact dynamics involving general flexible multi-body sys­

tems of arbitrary kinematic architecture is considered. The components undergoing

direct contact (e.g., the end-effector of a manipulator and a satellite) are modelled

using the finite element method and the Lagrange multiplier technique. Special atten­

tion is paid to dynamic fidelity of contact dynamics. Contact geometric constraints

and corresponding contact forces are analysed and incorporated into the dynamical

equations. This model takes ioto account structural deformations and oscillations~

friction, time-varying contact area, and repeated contact/impact. wlulti-body sys­

tems, on the other hand, are handled by a modified Euler-Lagrange method based on

the Natural Orthogonal Complement (NOC). Thus, the system dynamics is composed

of a set of differential equations (either multi-body formulations or finite element

nodal displacement formulations) subjected to sets of algebraic equations expressing

kinematic or contact constraints. A systematic procedure for solving this system of

equations is formulated with special emphasis on computational efficiency.

This dynamic model is then used to design a composite controller which must

simultaneously achieve three goals: (1) trajectory tracking, (2) force control, and (3)

stabilization of the flexible degrees of freedom of the multibody system. The singular

perturbation method is used to obtain two reduced order models. Subsequently, the

slow subsystem is used to design a simultaneous position/force controller based on

impedance control, where an optimization method is incorporated to accommodate

manipulator redundancy. The fast subsystem is used to design a Linear Quadratic
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Regulator (LQR) to suppress structural vibrations.

A simulation environment is developed based on the above procedures and for­

mulations for the planar case. It is used to perform dynamic and control simulations

of a variety of contact scenarios involving multi-body systems. A comparative study

of the results indicates that a detailed contact dynamics model may be essential for

a realistic simulation of contact/impact, capture, and force control operations.
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RésUlllé

Une modélisation détaillée de la dynamique de contact est considérée pour des systèmes

de corps multiples généralement flexibles et d'architecture cinématique donnée. Les

composants soumis à des contacts directs (par exemple entre l'organe terminal d'un

robot manipulateur et un satellite) sont modélisés en utilisant la méthode des éléments

finis et la technique du multiplicateur de Lagrange. Une attention particulière est

portée à l'exactitude de la dynamique de contact. Les contraintes géométriques

de contact et les forces de contact associées sont analysées et intégrées dans les

équations de la dynamique. Ce modèle prend en compte des déformations et os­

cillations de la structure, la friction, la zone de contact variant avec le temps, les

impacts et contacts répétés. D'autre part, les systèmes de corps multiples sont

analysés avec la méthode modifiée d'Euler-Lagrange basée sur le Complément Na­

turel Orthogonal (CNO). Ainsi, la dynamique du système est composée d'un en­

semble d'équations différentielles (régissant la dynamique des corps multiples ou les

déplacements des nœuds des éléments finis) sujettes à des ensembles d'équations

algébriques représentant les contraintes de cinématique ou de contact. Une procédure

systématique pour résoudre ce système d'équations est détaillée en mettant l'accent

sur son efficacité numérique.

Ce modèle dynamique est alors utilisé pour concevoir un contrôleur hybride qui

doit atteindre trois objectifs en même temps: (1) suivre une trajectoire, (2) contrôler

la force, et (3) stabiliser les degrés de liberté flexibles du système de corps multi­

ples. La méthode des perturbations singulières est utilisée pour obtenir deux modèles

iii



•

•

•

d'ordre réduit. Par conséquent, le sous-système lent est utilisé pour contrôler simul­

tanément la position et la force en fonction du contrôle d'impédance, où une méthode

d'optimisation est incorporée pour prendre en compte la redondance du robot ma­

nipulateur. Le sous-système rapide est utilisé pour créer une Commande Linéaire

Quadratique (CLQ) pour supprimer les vibrations de la structure.

Un environnement de simulation est développé en fonction des procédures précédentes

et des formulations pour le cas plan. Il est utilisé pour obtenir des simulations de

dynamique et de contrôle à travers différents scénarios de contact impliquant des

systèmes de corps multiples. Une étude comparative des résultats montre qu'un

modèle détaillé de la dynamique de contact peut être primordial pour une simulation

réaliste des opérations de contact et d'impact, de capture et de contrôle de force .
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Clailll of Originality

The major contribution of this thesis is the development of a general formulation

for a detailed and efficient model of contact dynamics involving flexible multi-body

systems. Specifie contributions of this work are:

• Development of an efficient methodology for the formulation of a finite element

model of contacting bodies undergoing large displacements~with the use of the

symbolic software lVIAPLE V.

• Development of a systematic procedure for solving the equations of motion

of flexible multi-body systems of arbitrary kinematic architecture subjected to

sets of kinematic or contact constraints, with special emphasis on computational

efficiency.

• Design of a composite controller for trajectory tracking, force and vibration con­

trol of a spacecraft-mounted manipulator operating on a free-floating system.

• Development of a computer code for the simulation of contact dynamics and

force control of multi-body systems.

These contributions have been partIy reported in preliminary form in Kim & NIisra

(1997), Kim et al. (1997), Kim et al. (1998a), and Kim et al. (1998b) .
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N olllenclature

In this thesis, bold-face, lower-case, Latin and Greek letters denote vectors: bold­

face, upper-case, Latin and Greek letters denote matrices: and calligraphie and italic

letters generally represent sealar quantities such as material or geometric properties,

points, or indices. The term element refers to a finite element of a contacting body

(addressed in Chapter 2), link refers to a body in a multi-body system (addressed in

Chapter 3), and subsystem refers to either a contacting body or a multi-body system

(addressed in Chapter 4) .

Latin Symbols

ao, ... 1 a7 : Newmark integration parameters.

A : in Chapter 3, kinematie velocity constraint matrbc; in Chapter 5, desired appar­

ent mass matrix in impedance control.

hi : generalized eoordinates associated with the bending of link i.

B : in Chapter 2, strain-displacement transformation matrix; in Chapter 3, matrix

of shape functions.

Ci generalized nonlinear force vector of element, link, or subsystem i containing the

Coriolis and centrifugaI forces.

Ci damping matrix of element, link, or subsystem i.
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e : tracking error vector in impedance control.

E : modulus of elasticity.

E i : stress-strain constitutive matrix of element i.
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fCt : constraint force vector of element i.

F : vibration control state feedback gain matrix of reduced-order model.

gj : j-th constraint vector.

G : Guyan reduction matrix.

1 : area moment of inertia.

Inn: n X n identity matrix.

I hl : inertia matrix of the hub of link i.

Ji : in Chapter 2, Jacobian of element 'i relating the natural coordinate derivatives

to the local coordinate derivatives; in Chapter 5, Jacobian of the manipulator

system.

Ki : stiffness matrix of element, link, or subsystem i.

K d : desired apparent damping matrix in impedance control.

K p : desired apparent stiffness matrLx in impedance control.

L : transformation matrix from q ta CA).

!vIi : concentrated mass at the tip of link i .

Mi : generalized mass matrLx of element, link, or subsystem i.
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M : generalized mass matrix of a contacting body.

1\1 : generalized mass matrix of a multi-body system.

nk : unit normal to the target surface for contactor node k.

N : Natural Orthogonal Complement of the velocity constraint matrbc of a multi­

body system.

Ni : matrb:: of interpolating functions of element i.

p : inertial position vector of the origin of the local frame xyz of a contacting body.

Pi : position vector of the origin of (~Yi, Yi, Zi) \Vith respect to ("Xo , ~,Zo).

Ph : position vector of the tip of a multi-bodyfmanipulator system with respect to

its base.

P ji constraint matrLx resulting from the relationship between constraint j and sub­

system i.

qi : generalized coordinates of element, link, or subsystem i.

q : quaternion formed by either the Euler parameters or the linear invariants de­

scribing the orientation of a contacting body with respect to an inertiaI frame.

qi quaternion describing the orientation of (..Xi, Yi, Zd \Vith respect to (..Xo, }~, Zo).

ri in Chapter2, inertial position vector of a point on element i; in Chapter 3, posi­

tion vector of a point on link i measured with respect to the (~Yi, Yi, Zi) frame.

a rotation matrix describing the orientation of frame (.X"ù Yi, Zd \Vith respect to

(Xi-l, Yi-l, Zi-d·

R : rotation matrix describing the orientation of the local frame xyz of a contacting

body \Vith respect to X}~Z .

t : time variable.
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tA: unit tangential to the target surface for contactor node k.

Ti : kinetic energy of element or link i.

T : connectivity matrix.

Ui : potential energy of elernent or link i.

Ui : elastic displacement with respect to the undeformed position of a point in ele­

ment i measured in the local frame xyz.

ü! elastic displacement of node j in element i measured in the local frame xyz.

Vi extended velocity vector of link i.

Vi velocity vector of the origin of (Xi, Yi, Zd with respect to (Xo, y~, Zo).

vVj , vVk , vt!i : weighting factors in Gaussian Quadrature.

Xi : undeformed position vector of a point in element i with respect to the local frame

xyz.

x1 position vector of node j in element i with respect ta the local frame xyz.

Xref : reference or nominal trajectory of the end-effector.

xyz : local frame of a contacting body.

...yyZ : inertial frame of a contacting body.

(.X"ù li, Zd : local frame of link i.

(XI, Yi, Zd : inertial frame at the center of Earth.
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Greek Symbols

a, ,6, -y : Euler angles.

li : i-th contact force vector.

t5i : angular rotation vector of the tip of link z about the ("-X'i, Yi, Zi) a.xes due to

bending.

€ : perturbation parameter in singular perturbation controL

Ei : vector comprising the components of the strain tensor of element 'i.

TI : fast state variables in singular perturbation control.

(Ji : joint rotation of link i measured along the positive direction of the Zi axis.
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A : transformation matrix from w ta q.
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t/J : independent generalized coordinates of a multi-body system.

W : angular velocity of a contacting body measured in the xyz frame.

Wi : angular velocity of (...X"j, Yi, Zi) \Vith respect to (.Ko, }'~, Zo).

Wh : angular velocity vector of the tip of a multi-bodyjmanipulator system \Vith

respect to its base.

n orbital rate.
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Chapter 1

Introduction

1.1 Background and Motivation

Contact dynamics is becoming an important issue in space operations. Berthing or

docking of two spacecraft systems will become routine operations in the near future:

the Shuttle will dock with the Space Station during the latter's construction and

operation, and malfunctioning satellites will be serviced by the Shuttle or other free

flyers. These operations are likely to involve a veLocity differential between the two

contacting bodies, which can result in dynamic disturbances. It is important to

assess the effect of these disturbances to determine whether they endanger structural

safety and attitude stability of the space systems. ACter the initial impact. sustained

contact is desired in most operations. In this case, the control system must have

the capability to damp out the vibrations generated during impact, apply a desired

amount of force and prevent damage of parts due to overload.

Space robots are expected to play an increasingly significant role in these con­

tact operations. A major motivation behind this is to minimize the need for as­

tronaut Extra Vehicular Activity (EVA), which would greatly reduce mission costs

and hazards to the astronauts involved. The Canadian Shuttle Remote Nlanipula-
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Figure 1.1: Shuttle-mounted CANADARNI preparing to capture a payload

tor System (SRNIS, also known as CANADAR~I (Figure 1.1*)) represents state of

the art technology in the field of space-based, flexible manipulators. It has been

operational on board the Shuttle since 1981, and has been used for such activities

as payload berthing, deployment, and positioning, docking of the Shuttle \Vith the

space station rvlir, and such unexpected tasks as breaking of ice around a vent nozzle

(Nguyen et al. 1991). The l\IIobile Servicing System (~ISS) (Figure 1.2 t ), which is the

Canadian contribution to the International Space Station (ISS) ~ includes a large, 7

degree-of-freedom self-relocatable manipulator arm called the Space Station Remote

Nlanipulator System (SSRMS), and a smaller, dual-arm robot attached ta the tip

of the SSRrvIS known as the Special Purpose Dextrous rvlanipulator (SPDNI). The

SSRMS is designed ta perform the gross motions such as capture, manipulation and

berthing operations, while the SPD~I satisfies those operations requiring dextrous

-Figure downloaded from http://wv,rw.spar.cafspacefimages/
tFigure downloaded from http:j jspaceflight.nasa.govjmedialibraryf
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Figure 1.2: The Mobile Servicing System (MSS)

capabilities. The MSS is expected to play a major role in the assembly and external

maintenance of the Space Station. Sorne of its functions are: (i) removal of Space

Station elements and equipment from the shuttle cargo bay, (ii) Space Station exter­

nai maintenance induding changeout of Orbit Replaceable Units (ORU), actuation of

mechanisms, mating/demating utilities, (iii) transportation on the Space Station of

payloads such as Space Station elements, attached payloads and ORU's, (iv) deploy­

ment and retrieval of free flyers by capturing and maneuvering to appropriate sites

on the Space Station or deploying from the Station, and (v) EVA support induding

transporting or positioning of EVA crew (Stieber et al. 1998).

Most of these operations inevitably involve contact or constrained motions. But

contact maneuvers are generally recognized to be difficult operations for robotic ma­

nipulators (l\Ila & Carr 1998). The contact dynamics behaviour is coupled with

the entire manipulator and base dynamics, as weIl as the control system dynam-
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ics. Furthermore, space manipulators have sorne unique characteristics such as joint

flexibility, link flexibility, large size, absence of a fixed base. and the microgravity

environment of space. The CANADARlVI, for example, was designed ta manipulate

payload masses of up ta 30,000 kg in space, but is unable to lift its own weight on

Earth. These features make it difficult to conduct experiments with space manip"

ulators in an Earth laboratory environment, and simplified ground-based tests may

not be representative of the actual system in the space environment. Therefore, com­

puter simulation analyses hecome aIl the more essential to perform such tasks as

engineering design, feasibility, along with operations analysis and training.

During contact operations involving the CANA.DA.RNL which is the only oper­

ational space manipulator availahle today, aH contact activities are performed very

slowly, without any sensing capability to inform the operator of the magnitude of the

forces that the arm exerts on its surroundings. A force feedhack control can therefore

be a welcome addition ta the existing CANADARlVI or the new SSRlVIS control archi­

tecture to improve their performance for the current operational activities, as weIl as

to meet emerging requirements for Space Station operations. lVIost simulation efforts

on force control, however, have relied on quite simple contact models for verification

of the control schemes. As with most contact activities in space, an accurate contact

model can add ta a more reliable and sophisticated validation tool for candidate force

control algorithms.

The contact dynamical model used for analysis and simulation must then have

sufficiently high dynamic fidelity ta represent the reality. With the steady increase

of comput.p.r power over the years (according to lVloore's Law, it doubles every 18

months), it is possible to use increasingly accurate and sophisticated models. Ho\\'­

ever, computational efficiency is still important since sorne simulations will include

hardware-in-the-loop or human-in-the-Ioop components, which will require the ca­

pability for real-time simulation. In accordance with these considerations, the main

interest of this thesis lies in developing a dynamic formulation capable of simulat­

ing the detailed contact dynamics involving multi-body systems and control systems.
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But at the same time, special attention will be paid to computational efficiency so as

to explore the possibility of real-time implementation.

1.2 Contact Dynamics

rvlost methods of contact modelling that have appeared in the literature can be clas­

sified into two main categories: impulse-mornentum based rnethods and contact force

based methods. The impulse-momenturn based methods assume that impact occurs

instantaneously and separate the dynamic analysis of the system into two intervals:

before and after impact. Given the state of the system just before impact, principles

of energy and momentum are used to obtain rebound states at the end of impact.

Contact force based methods, on the other hand, analyse the contact geometric con­

straints and corresponding contact forces, and incorporate them into the dynamical

equations.

Among impulse-momentum approaches, the problem of a robotic manipulator im­

pacting the environment has been studied by several researchers. Zheng & Hemami

(1985) analyzed the dynamics of a robot colliding with the environrnent; a mathe­

matical model was derived to establish a relationship between the abrupt velocity

changes and the impulsive forces. Wang & Mason (1987) modelled the impact dy­

namics with friction in the planar case using a graphical method. Yoshida et al.

(1992) used the extended generalized inertia tensor (Ex-GIT) and the virtual mass

concept to formulate the impact dynamics of a system of free-floating links. AH these

works were restricted to rigid multi-body systems. Kim (1994) extended the work to

flexible multi-body systems. Impact was modelled from fully elastic to fully plastic

by introducing two parameters characterizing the impact: the energy loss parameter

and the friction parameter. Due to the complexity of actual physical processes of

impact, sorne general simplifying assumptions were made in aIl the above works in

order to render the problem amenable to mathernatical treatment. Sorne of these

assumptions are: (1) impact duration is instantaneous; (2) generalized coordinates
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remain unchanged during impact; (3) impact occurs at a point rather than a time­

varying area. Another major weakness of the impulse-momentum approach is that it

is not directly applicable to problems of sustained contact and friction between the

contacting bodies.

The contact-force based methods, on the other hand, do not make the assumption

of instantaneous impact duration and can naturally handle problems of sustained

contact and friction. This method can again be subdivided into three types: the

spring-dashpot approach, the classical Hertz contact theory approach, and the finite

element approach. The spring-dashpot approach, also referred to as the Kelvin-Voigt

model, is the simplest one, where the contact interface is modelled by a parallel and

(usually) linear spring-dashpot element. Because of its simplicity, this model has been

the preferred choice in most works on force control of manipulator systems (section

1.5).

The Hertz contact theory describes a relationship between the normal contact

force and the local contact deformation by means of material stiffness properties of

the contacting bodies and local contact surface geometry (Johnson 1985). Using

this simple relationship, the contact problem of complex muIti-body systems under­

going complicated contact tasks can be analysed with minimal computational cost

(~1a 1995, Val1ejo et al. 1992). This theory assumes that local contact deformations

can be described in a quasi-static manner and neglects the effects of elastic structural

oscillations. However, in aIl contact operations, initial impact is almost unavoidable,

where elastic waves are excited that interact with structural deformations as weIl as

local contact deformations. As time progresses. geornetric and material dispersion

of waves occurs, diminishing initial peak response. This early time response is im­

portant for prediction of the dynamics of impacting structures. Sorne researchers

have attempted ta add certain features absent in the original Hertz model. The lack

of an energy dissipation function, for exarnple, was accounted for by Lankarani &

Nikravesh (1990) by including a hysteresis damping function .

Among finite element approaches, several formulation methodologies have been
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advanced in the literature for solving contact problems. One approach is based on the

use of special gap or interface elements intervening between the surfaces of the bodies

in contact (Cook 1981). This approach is straightforward but in cases where the con­

tacting bodies are of complex or irregular shape or undergo large displacements! it is

inadequate and hence its use is restricted to simple geometries (Tissakht 1995). More

general approaches for solving contact problems in fini te element analyses are those

based on the variational formulations. These approaches can generally be cLassified

into two types (Cook 1981! Bathe 1982): (i) the Lagrange multiplier methods! and (ii)

the penalty method. Sorne variations or combinations of these two approaches have

also appeared in the literature! such as the augmented Lagrangian method (Sima &

Laursen 1992) and the mixed method (Shyu et al. 1989).

In the Lagrange multiplier method (Bathe & Chaudhary 1985. Chaudhary &

Bathe 1986, Hughes et al. 1976), the contact constraints are satisfied exactly by

introducing into the equations of motion a set of Lagrange multipliers representing

contact forces. Both the generalized coordinates and Lagrange multipliers are treated

as unknown variables, and therefore, the size of the resulting system of equations

increases due to the additional variables, i.e., the Lagrange multipliers.

The penalty method easily eliminates this drawback by assuming that the contact

pressure is equal to the amount of material penetration times a certain penalty pa­

rameter (Oden & Kikuchi 1982, de la Fuente & Felippa 1991). However. the contact

constraints are satisfied exactly only in the limit of infinite penalty values! while it is

weLl-known that penalty methods suffer from iLl-conditioning that worsens as penalty

values are increased. Other weaknesses of the penalty method are: (1) the solution

strongly depends on the particular choice of the penalty parameter, and (2) it violates

the principle of conservation of energy of the systems in contact because sorne of the

energy is stored in the ~penalty spring'.

Ali the above-mentioned studies dealt with two single-body systems. Sorne re­

searchers extended the finite element formulation of contact problenls to general

multi-body systems (Wu & Haug 1990, Wasfy 1995). However, due to the complexity
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and computational cost involved in a full finite element contact model. sorne simpli­

fying assumptions and procedures were used. "Vu & Haug (1990) used a substructure

technique to analyse frictionless contact-impact of flexible multi-body systems. In

this approach, components that may come into contact are divided into substructures~

on each of which deformation modes are defined to account for elastic deformations

and vibrations. A constraint addition-deletion technique based on Lagrange multi­

pliers is used to account for contact and separation between a pair of contact nodes.

However, the contact nodes are predetermined, and thus large displacements and

sliding while in contact are not allowed. Wasfy (1995) presented a finite element

based technique for modeling contact-impact of flexible manipulators \Vith a fixed

rigid surface. The conservation of energy and momentum, or Newton's collision rule

and conservation of momentum, are used as velocity constraints on individual mass­

lumped nodes in contact with the rigid surface to obtain the post-impact velocities

of the nodes.

In this thesis, the Lagrange multiplier technique based on the finite element

method \Vas chosen ta madel contact dynamics of contacting bodies. This method

represents, to the author's knowledge, the most detailed formulation of contact dy­

namics, capable of modeling such phenomena as structural deformations, friction,

time-varying contact area, repeated contact/impact, and others, without making

douhtful assumptions about the nature of the physical contact mechanics. Its main

disadvantage compared with the penalty methods, namely increase in the number of

equations to be solved, is a minor inconvenience since at most, only 3 equations (3D

sticking case) are added for each node in contact.

Note that only the contacting bodies will be' modelled using the above-mentioned

approach. These bodies may weIl he connected to other bodies, as is the case of

the end-effector (a contacting body) with the rest of the manipulator (a multi-body

system). The dynamicai formulation of multi-hody systems are discussed in the

following section.

8
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Ivlethods of formulation and simulation of the dynamics of multi-body systems are

extensive. A detailed literature review, however, is beyond the scope of this thesis.

Only those works directly relevant to this thesis are described here.

The Newton-Euler method lends itself to very efficient recursive computations for

solving dynamics problems of seriai, rigid-link multi-body systems. However. this

method is not convenient for applicati()n to systems containing kinematic loaps or

flexible links. On the other hand, the Euler-Lagrange method is conceptually much

simpler, with the added advantage of not requiring the calculation of the constraint

forces. However, this method requires the evaluation of derivatives of energy terms

which are very lengthy for multibody systems.

Sorne energy based rnethods, however, are capable of circurnventing these difficul­

ties. In Kane's rnethod (Kane & Levinson 1983), the constraint forces are eliminated

from the equations of motion with the introduction of partial velocities and partial an­

gular velocities. Sirnilarly, in the method of Natural Orthogonal Complement (NOC)

(Angeles & Lee 1988, Cyril 1988, Cyril et al. 1991), the Lagrange equations are de­

rived for each individual component and then assembled ta obtain the equations of

motion of the whole system. This approach, however, introduces the non-working

constraint forces which are eliminated later by using the Natural Orthogonal Com­

plement (NOC) of the kinematic velocity constraint matrix. This method has the

simplicity of the Newton-Euler formulations which permit the analysis of one body

at a time, while it avoids the disadvantages of the usuai Lagrange formulations,

namely evaluation of derivatives of lengthy energy terms. Various types of flexible

systems have been analysed using this method: seriaI-type rnultibody systems (Cyril

et al. 1989), manipulators with kinematic loops (Fattah 1995, Cho 1995), and artic­

ulating truss structures (Boutin 1995).

Other energy methods attempt to develop O(N) algorithms, where lV is the num­

ber of bodies cornprising the system. In other words, in an O(N) algorithm, the
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number of arithmetic operations increases linearly with the number of bodies. Most

formulations are of O(N3
) because the computation of the inverse of the global mass

matrix requires O(J.V3 ) arithmetic operatians. Pradhan et al. (1997) developed an

O(N) algorithm where the kinetic and potential energy are derived for each individ­

ual body using a decoupled set of coordinates and then assembled to form the kinetic

and potential energy of the whole system. Next, a coordinate transformation is made

where the new set of coupled coordinates facilitates the expression of physical con­

straints between adjacent bodies. A unique feature of this transformation process is

that the new mass matrix can be factorized in terms of block diagonal matrices such

that its inversion is an O(1V) process. One disadvantage of this method~ however. is

that constraint forces are not eliminated but are treated as variables; therefore, the

number of equations increases with the number of constraint equations. This method

was applied to planar dynamics of flexible manipulators with N slewing deployable

links (Caron et al. 1998) and the dynamics of N-body tethered systems (Kalantzis

et al. 1998) .

In this thesis, the modified Euler-Lagrange method based on NOe was chosen

to model multi-body systems. This method is conceptually simple, systematic, com­

putationallyefficient, and combines the advantages of the Newton-Euler and Euler­

Lagrange methods. Further incentive for this choice was provided by the availability

of FLEXLINK (Cyril et al. 1989), an in-house general-purpose software package for

the dynamic simulation of serial-link flexible manipulators.

1.4 Integration of Contact Dynamics with Multi­

body System Dynamics

In this thesis, the main objective is a detailed modelling of contact dynalnics involving

general multi-body systems of arbitrary kinematic architecture. It is thus necessary to

bring together two fields of work: contact dynamics and multi-body system dynamics.
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Manipulator

Spacecraft

Payload

~ Manipulator UU1k

End-effector joint

Figure 1.3: Schematic diagram of a typical system under study

The bodies which undergo direct contact (such as the end-effector and payload) are

modelled using the finite element method (FEJ\tI) since contact effects such as local

contact deformations and friction occur near the area of contact, while the rest of

the multi-body systems are modelled using a flexible multi-body formulation based

on the method of Natural Orthogonal Complement (NOC) (Cyril et al. 1991). The

resulting equations of motion are then integrated by taking into account the kinematic

constraints at mechanical joints and contact surfaces. A schematic diagram of a

typical system under study is shown in Figure 1.3: a manipulator mounted on a

spacecraft is capturing a satellite (payload). In this case, the end-effector and satellite

(contacting bodies) are modelled using FElVI while the rest of the system is modelled

using a multi-body formulation.

These systems of equations are usually stiff (in the numerical analysis sense) and

nonlinear, and the number of finite element equations that describe the deformations

of the contacting bodies is large. In fact, the enormous computational cost involved

Il



• in simulating the dynamics of a full finite element contact model is the major reason

for resorting to less computationally demanding and simplified methods reviewed

in Section 1.2. Therefore, one of the major objectives of this thesis is ta explore

and develop computationally efficient methods and procedures without sacrificing

modelling accuracy.

For large systems of equations, several reduction methods are available in the

literature (for a comprehensive survey, see Noor (1994)). The response of the system,

which is origjnally described in terrns of a large number of generalized coordinates,

qn, is approxirnated by a combination of preselected global approximation vectors.

The problem is then reformulated in terms of a few discrete variables 1/Jr gjven by

(1.1)

•

•

where r is an n x r transformation matrix:. The crux of reduction methods is the

proper selection of global approximation rnethods. An ideal set of global approxima­

tion vectors was defined by Noor & Peters (1980) as one which ma..ximizes the quality

of the results and minimizes the total effort in obtaining them. This criteria depends

on the particular application, as weIl as on the system response characteristics being

approxirnated. Two commonly used reduction methods are modal truncation and

Guyan reduction. In modal truncation, the approximation matrix is made up of

columns of eigenvectors which, based on certain criteria, provide the most significant

contributions to the system dynamics. Usually, the higher the eigenfrequency. the

less is its contribution ta the overall dynarnics. Therefore, it is cornmon practice to

discard the higher frequency eigenvectors and retain the lower ones (e.g. :\lIa et al.

(1997), Boutin (1995)). In Guyan reduction (Cook 1981, Guyan 1965), also known as

the mass condensation method, the degrees of freedom are subdivided into two types

- slaves and masters where the slaves are dependent on the masters and thus disap­

pear from the final reduced set of equations. Several general methods for choosing

slaves and masters are available in the literature (Cook 1981, Noor 1994), but this

criteria is ultimately problem dependent .

The equations of motion of dynamical systems are usually second-arder nonlinear
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differential equations which require taking the inverse of a time-varying, configuration­

dependent mass matrix in sorne manner. In this thesis. there is particular interest

in inverting the mass matrix of a single contacting body but \vhose order is large

because of the large number of nodal degrees of freedom involved. Several methods

have been proposed ta compute the inverse of the mass matrLx ranging from taking

an algebraic inverse, to using traditional numerical inverse methods such as Cholesky

Decomposition (CD)(Bathe 1982). The algebraic inverse is only feasible for rela­

tively small systems, even with powerful symbolic manipulation programs such as

Mathematica, Nlaple, or AUTOLEV. Taking a numerical inverse at each integration

step is the most generally applicable method, but even CD requires O(lV3 ) arith­

metic operations to invert a symmetric and positive definite lV x lV mass matrix. In

the field of multibody dynamics, sorne novel techniques of formulating the dynamics

have been developed \Vith the express purpose of finding a more efficient way of tak­

ing care of this operation. In the O(N) algorithms discussed in Section 1.3 (Pradhan

et al. 1997, Caron et al. 1998, Kalantzis et al. 1998), the mass matrLx of each body

is inverted separately such that the overall effort of inverting the global mass matrix

is 0(1'1). Junkins & Schaub (1997) presented a technique for deriving the equations

of motion which yields a dynamical system with an identity mass matrix by intro­

ducing a quasivelocity vector. The problem of inverting a complicated mass matrix

is thus replaced by the problem of solving the corresponding eigenfactor differential

equations.

The above-mentioned methods and other procedures are investigated in this thesis

ta reduce the overaIl computational cast involved in the solution.

1.5 Trajectory, Force, and Vibration Control

The problem of force control of robotic manipulators has been \Videly studied by

many researchers (Raibert & Craig 1981, Craig 1986, Nlatsuno & Yamamoto 1994,

Hogan 1987, Lasky & Hsia 1991, Seraji & Colbaugh 1993, Nguyen et al. 1991, Khatib
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1987). Among the various force control schemes, the hybrid position/force control and

impedance control are the two unified (position and force) control algorithms. The

hybrid position/force scheme attempts ta directly control the end-effector's position

and applied force. At a typical contact point, the contact direction and end-effector

motion direction are approximately orthogonal to each other. Therefore. along the

motion direction, a pure position control is activated, and along the contact direction,

a pure force control is applied. The scheme is irnplemented by individually designing

a position and a force control law for each degree of freedom of the task space and

then integrating the overall control law through the use of so-called selection matrices,

which basically represent s\vitches that set the mode of control to be used for each

degree of freedom. One of the disadvantages of the hybrid position/control is that it

requires specifie knowledge of the motion and force directions of the task space.

Impedance control easily eliminates this problem; while most control schemes

are based on directly controlling position or force, impedance control assumes that

the control should be designed, not to control motion or force alone, but rather to

modulate and regulate the interaction between force and motion; in other words. to

regulate the mechanical impedance of the manipulator. This controller is Cartesian

task-space based (or operational space as in Khatib (1987)), which eliminates the task

of solving the inverse kinematics problem. It also uses a nonlinear dynamic decou­

pling approach, equivalent to joint-space based computed torque control or feedback

linearization technique, which fully exploits the knowledge of the dynamic model,

so that linear and decoupled control structures can he obtained. Impedance con­

trol works well where the characteristics of the environment are exactly known; in

the presence of parameter uncertainties, force-tracking becomes poor and additional

schemes must be incorporated into the control scheme to rectify this problem. Lasky

& Hsia (1991) proposed a double-Ioop controller where a conventional impedance

controller is implemented in the inner loop and a simple force-feedback controller in

the outer loop. Seraji & Colbaugh (1993) presented adaptive strategies to estimate

the environmental parameters and adjust online the required reference trajectory.
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The main concern in all these works, however, was on terrestrial rigid manipula­

tors. A major problem with controlling flexible manipulators is that in many cases

the flexible degrees of freedom become unstable and the control maneuver fails. Thus,

for a fully flexible manipulator system, the controller must not only track a certain

desired trajectory and apply a desired amount of force but must also stabilize the vi­

brations which are naturally excited, damping them out as fast as possible during its

path. However, these multiple objectives cannat be met with the use of conventional

rigid-manipulator controllers since there are not as many control inputs as output

variables.

Attempts to control a flexible multi-link manipulator using rigid manipulator con­

trol by simply ignoring the flexible effects are unsatisfactory when link deflections are

substantial. They either result in gross inaccuracies in the positioning of the end­

effector, or instability due to elastic effects. Bayo (1988) presented a feedfonvard

approach where an inverse dynamics problem is solved to calculate the joint torques

which would produce zero tip deflection of the manipulator links. Sorne researchers

(Baruh & Tadikonda 1989, Jaar et al. 1995, Caron et al. 1998) used the feedback

linearization technique or the computed torque method to control multi-link robotic

systems where the flexible dynamics were treated as ;disturbances' but \Vere not ex­

plicitly controlled. However, these schemes may fail for fast joint manoeuvres, as the

flexible dynamic 'disturbances' become large and unstable. Carusone & D'Eleuterio

(1993) employed gain scheduling of a series of steady-state optimal regulators based

on linearized dynamical equations about stationary configurations along the desired

manipulator trajectory. Others proposed the use of smart structures such as piezo­

ceramic actuators capable of applying transverse forces to the links, to damp out the

undesirable vibrations of the flexible links (Modi et al. 1993, Kalaycioglu et al. 1997).

However, this scherne necessitates the use of additional (piezo-ceramic) actuators

besides the conventional joint controllers.

One scheme that has been used to circurnvent the difficulty of achieving stabi­

Lization of the elastic effects using only conventional joint control is the singular per-
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turbation method (for a detailed theoretical presentation, see Kokotovic (1984). The

technique exploits the property that elastic vibration frequencies are usually greater

than the frequency content of the rigid body motion trajectory. Hence, highly coupled

differential equations of motion can be rearranged into two reduced-order systems,

consisting of a "slow1
' (rigid) subsystem and a ::fast" (flexible) subsystem, for which

the latter possesses a much faster time scale. The control scheme for each subsystem

may then be addressed separately, ta establish a composite control design. The at­

tractive feature of this strategy is that the control system cau be designed separately

using well-established control schemes suitable for each subsystem. For the slow sub­

system, any of the conventional control techniques used for rigid manipulators can

be applied, such as the computed torque or impedance control. The fast subsystem

turns out to be a linear time-varying system where the slow state variables act as pa­

rameters. Then, a linear state feedback control based on either the Linear Quadratic

Regulator (LQR) or the pole placement technique can be applied ta damp out the

flexible variables. This control was designed for seriai-type flexible-link manipula­

tors by Siciliano & Book (1988). wlatsuno & Yamamoto (1994) demonstrated its use

ta simultaneously control position and force of a two..degree-of-freedom flexible ma­

nipulator where the hybrid position/force control was used for the slow subsystem.

Boutin (1995) applied this control technique to artîculating truss structures.

Manipulators may aIso be redundant, i.e., the joint space dimension may be

greater than that of the end-effector task space (as in the case of the 7-joint SSRNIS).

NIanipulator redundancy has been exploited to achieve such goals as minimization of a

quadratic criterion (vVhitney 1969), minimization of joint torques (Chung et al. 1993),

or avoidance of joint limits, obstacles, or kinematic singularities. Extending vVhit­

ney's work, Khatib (1987) designed an operational-space based controller that mini­

mizes the instantaneous kinetic energy of the system to obtain an effective inverse of

the manipulator Jacobian, knowll as the inertia-weighted pseudoinverse.
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In this thesis, an efficient solution procedure of a detailed contact dynamics model of

general multi-body systems of arbitrary kinematic architecture is considered. The

bodies which undergo direct contact, referred to as contacting bodies. are mod­

elled using the Lagrange Nlultiplier technique based on the Finite Element :YIethod.

The modified Euler-Lagrange method based on the Natural Orthogonal Complement

(NOC) was chosen to model multi-body systems. These systems, by the nature of the

kinematic or contact constraints acting between them, may form arbitrary kinematic

configurations such as kinematic loops. or chains of tree- or seriaI-type topology. The

dynamics of the individual systems are then globally coupled~ and are accounted for

in a general integration of aIl the systems.

In order to render the dynamic simulation computationally efficient, the follo\ving

solution procedures are used in this thesis. Firstly, the computationally straightfor­

ward and economical Newmark method is used for the time integration of the equa­

tions of motion, with which the second order dynamical equations can be converted

into algebraic form. Secondly, algebraic manipulations are made of the resulting

equations in order to exploit the positive definite and positive semi-definite character

of the mass, damping and stiffness matrices and use the efficient Cholesky Decom­

position (CD) method for the inversion of matrices. Thirdly, the Guyan reduction

method is applied ta the sets of fini te element equations in arder to obtain a reduced

set of equations. Finally, efficient methods of obtaining the inverse of a configura­

tion dependent and time-varying mass matrix of large size are investigated and their

relative merits analysed and weighed against compromises in modelling accuracy.

This dynamic model is then used to design a composite controller which must

simultaneously achieve three goals: (1) trajectory tracking, (2) force control, and (3)

stabilization of the flexible degrees of freedom of the multibody system. The singular

perturbation method is used to obtain two reduced arder models; subsequently, the

slow subsystem is used to design a position/force controller based on impedance
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•

control, and the fast linear subsystem is used to design a Linear Quadratic Regulator

(LQR).

The detailed presentation of the above thesis description is organized into seven

chapters in the fol1owing manner:

Chapter 2 deals with the dynamical formulation of the contacting bodies using the

Finite Element NIethod (FENI). The dynamical equations of each element are derived

individually using the symbolic manipulator software lYlaple V. Then these equations

are assembled using the method of NOe to form the equations of motion of an entire

contacting body.

Chapter 3 presents the dynamical formulation of multi-body systems using the

method of NOC. The kinematics formulation is first presented. Then the dynamical

equations of each body is derived separately. Finally, the equations of motion of the

multi-body system are assembled using the method of NOC.

Chapter 4 deals with problems of integrating the various systems formulated in

ehapters 2 and 3. An arbitrary interconnecting assembly of these systems is consid­

ered. Several solution strategies are presented with a view to increasing the campu­

tational efficiency without sacrificing dynamic fidelity_

Chapter 5 is concerned with the implementation of a trajectory~ force, and vibration

control of the dynamical modeL A composite control strategy is presented based on

the Singular Perturbation method. Impedance control is used for the slow subsystem

and the Linear Quadratic Regulator (LQR) is used for the fast subsystem. ~/Ianip­

ulator redundancy is exploited to minimize the instantaneous kinetic energy of the

system.

Chapter 6 presents the computer code description, simulations, validations, results

and discussions.

Chapter 7 is devoted to conclusions and recommendations for further work.

Appendices provide sorne basic information and the details of certain derivations.
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•
Chapter 2

Finite EleInent Model of

Contacting Bodies

• 2.1 Introduction

•

This chapter describes the dynamical formulation of contacting bodies such as end­

effectors and payloads. The local contact phenomena such as contact deformations.

elastic oscillations and friction are modelled based on the finite element method.

A linear finite element model can be used when both strains and displacements of

the body to be modelled can be assumed to be infinitesimal. NIost space contact

activities are performed slowly and the generated forces are not severe. thus the

infinitesimal strain assumption holds good. However, for contact operations where

the end-effector and payload undergo prolonged contact with significant rigid-body

motion, such as when the end-effector is sliding along a path on the target body, the

second assumption, Le. the infinitesimal displacement assumption is not vaLid. Thus,

a nonlinear finite element model which incorporates large rigid-body displacements

but assumes infinitesimal strains is presented here.

The simulations and results presented in this thesis are confined to planar (2D)

motion. However, the formulations and notation presented in this thesis maintain
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•

the generality of a spatial (3D) motion, unless othenvise explicitly stated. Note that

in this thesis, bold-face~ lower-case, Latin and Greek letters denote vectors; hold­

face, upper-case, Latin and Greek letters denote matrices; and calligraphie and italie

letters generally represent scalar quantities such as material or geometric properties

or indices.

A schematic diagram of the end-effector, which is a typieal eontacting body in

contact operations, is shown in Figure 2.1. Two reference frames are chosen as

shown: the inertial frame .."Y"Y·Z, and the local frame xyz, or body-fixed frame. which

is defined as one having the same rigid-body motion as the body to which it is

attached. The rigid-body motion ean then he fully deseribed by the position and

orientation of the local frame xyz with respect to ..-YYZ. The position of the origin of

the xyz frame can be described by the position vector p, while its orientation ean be

represented by the rotation tensor R. The nine elements of matrix R are the direction

cosines which descrihe the orientation of xyz a.xes with respect to ....YYZ a.xes. Due

to the orthogonality property of R, there are six constraint equations involving the

nine elements:

(2.1)

where 133 is a 3 x 3 identity matrix. Renee there are 3 independent parameters

which ean be represented as generalized eoordinates, 4, using a three-component

representation such as the Euler angles, or roll, yaw, and pitch angles. such that

(2.2)

•

In the planar case illustrated in Figure 2.1, "Y is the same as () (shown in Figure

2.1), while a and {3 are both zero. The orientation vector 4 ean also be represented

by a four-parameter set or quaternion such as Euler parameters or linear invariants

(Cyril 1988). If a three-eomponent representation is ehosen, the three eoordinates

are independent, but singularity problems are introduced. On the other hand, if a

four-parameter set is chosen, then the four eornponents of the orientation vector q
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• are fiOt independent but constrained by

(2.3)

The angular velocity of the body, w, and the time derivative of q are related by

w=Lq

q=Aw

(2.4)

( a) -)_al>

•

•

where L and A are 3 x 3 matrices if q is made up of Euler angles, and 3 x 4 and

4 x 3 respectively if q is made up of a four-parameter seta For ease of mathematical

representation as weIl as physical interpretation. Euler angles are chosen here to

represent body orientation.

The position of an arbitrary point on element i given by Xi and elastic displace­

ment given by Ui are measured with respect to the local frame xyz. "Vith this kine­

matic representation, the nodal positions will not change and aH volume integrations.

which are nodal-position dependent, will need to be computed (symbolically) only

once. The reference frames and coordinates for other contacting bodies are chosen in

the same way.

The basic procedure in the derivation of the equations of motion of each contacting

body is as fo11ows: The equations of motion of each element are derived symbolically

using the symbolic manipulator software lvlaple V and the equations of motion of

the whole system are assembled using a method which is a simplified application of

the method of Natural Orthogonal Complement (NOC) (Cyril et al. 1991). The use

of Maple V lends to computational efficiency because computations such as volume

integrations and algebraic manipulations and simplifications can be done off-line.

The results of the lvlaple program can be input to a FORTRAN code where the

individual sets of equations of motion are assembled.
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Figure 2.1: Coordinate Systems of a Typical Contacting Body

•

•
o

Element i~
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2.2 Dynamics of an Individual Element

The equations of motion of a single element can be derived using the Lagrangian

formulation. The position of an arbitrary point in an element i can be expressed as:

ri = p + R(Xi + Ui) (2.6)

•

where ri is the inertial position vector of the point, p is the inertial position vector of

the origin of the local frame xyz, Xi and Ui are respectively the undeformed position

vector and the elastic displacement with respect to the undeformed position of the

point measured in the xyz coordinate frame (see Figure 2.1), and R is the rotation

matri.x which describes the orientation of the local frame with respect to the inertial

frame. The velocity of the point can be obtained by differentiation with respect to
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• time:

ri = P + R.w X (Xi + tli) + RÙi

where w is measured in the xyz coordinate system.

(2.7)

The system must be discretized before Lagrange's equations can be applied.

Isoparametric finite elements are used in this spatial discretization, i.e., the same

shape functions are used for the interpolations of the element displacements and the

element coordinates. Using this approach,

(2.8)

(2.9)

where, if m is the number of nodes of the i-th element. and X1 and ~ are position

vectors and elastic displacements of node j of element i, then Xï, and Ûi are 3m x 1

vectors of nodal coordinates and displacements given by

.... [ .... 1
x· u·• 1 1

.... 2 -2
Xi U i

~
~j

u·1 1

~ Ûi
-j yf -j vi- - Xi - l1i -

xt -j 1

l1i :;..i .Ü!':'i 1

~m
.... m
Ui

and Ni is a 3x3m matrix of interpolating functions. Appendix A.1 discusses isopara­

metric interpolating functions of various types of elements. Substituting equations

(2.4), (2.8) and (2.9) into equation (2.7):

(2.10)

•

where Ni is the cross-product matrix associated with (Xi + Ui)' Here, the cross­

product matrLx A associated with a vector a = [ux uy uz]T is the skew-symmetric

matrix of a given by

0 -Uz ay

A= U Z 0 -Ux

-ay ax 0
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•

so that for an arbitrary vector b,

a x b =Ab

Then, matrix Ni can be expressed as

0 -Ni3 (Xi + Ûï) N i2 (Xi + ûd

Ni = N i3 (Xï + Ûï) 0 -Nil (Xi + Ûï)

-Ni2 (Xi + ûd Ni1(Xï + Ûï) 0

where

Nil

NI - N i2

N i3

Equation (2.10) can further he expressed in compact form:

where

and Q.i is the vector of generalized velocities given by

(2.11)

(2.12)

Ii
Q.i= ci (2.13)

Ûi

The kinetic energy of element i cao he expressed as

•
which can be recast in matri.x form as

24
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• where Mi is the mass matrix given by

1 -RNiL RNi

=1 -LTNTRT LTNTNiL TNT dmi
1 -L i Ni

NTRT -NfNiL NfNiz

(2.15)

(2.16)

The mass matrix can also be expressed in the foLIowing block form:

MJ:1P M1:'° Mfu
t t

M i = pOT M OO MOu (2.1ï)M-t t t

M1:'uT Mf!uT
M~U

t 1 t

The above sub-matrices may be partitioned as

• MfU=RMr
M~o= LTM~8L

z z

M?U= LTM?u

M:u
= 1NfNidmi

where

(2.18)

(2.19)

(2.20)

(2.21 )

(2.22)

(2.23)

•

(2.24)

(2.25)

(2.26)

(2.27)

This unique partitioned representation of the mass matrLx will be used later in Section

4.3.1 to develop an efficient method of inversion of a large matri..x.
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(2.28)

• The differential mass of the element dmi can he expressed in terms of natural

coordinates (Appendix A.l), !;T/(, such that a certain integral

M ab = /.abdm i

may be rewritten as

(2.29)

(2.30)•

where Pi is the density of the element (which, assuming constant! may be taken out

of the integral) and Ji is the determinant of Ji which is the Jacobian relating the

natural coordinate derivatives to the local coordinate derivatives:

fS. !S. fS. Xi
a~ 811 a(

J i = ~ !!1li. ~ Xï= Yia~ ar, a(
{& {& ~ Zi
a~ ar, 8(

Volume integrations expressed in this form can he carried out using the n-point

Gaussian Quadrature (Cook 1981), given by
n n n

M ab ~ Pi L L L JtVjltVkJtIt"I.ab(çj, TJk, (dJi(Çj, TJk, (d
j k 1

where çj, T/k and (l are appropriate sampling points, and ~Vj, JtVk, and Jtlti are cor-

responding weighting factors. Volume integrals of equations (2.23-2.27) are carried

out using this method.

The potential energy of element i can be expressed as

Ui = ~ / E;(Tid\l- (2.31)

where €i and tri are vectors comprising the components of the strain and stress

tensors. The stresses and strains are related by a constitutive equation, known as the

generalized Hooke's law:

(2.32)

•
where E i is the stress-strain constitutive matrix. The displacements and strains are

related by

(2.33)
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• where 8 denotes a matrix of function derivatives:

Œx f x
a 0 0ax

a y f-y 0 a 08y

(1:: f- z 0 0 a
az

CTi= Ei = ô=

T xy TXlJ
a 8 08y 8x

TYZ 0 a a
T yz 8z ay

T::x TZX
a 0 a
az 8x

Using equation (2.9), equation (2.33) becomes

(2.34)

•
where

(2.35)

Using equations (2.32) and (2.34), the potential energy of element i can be expressed

in matrix form as

•

1 TU· = -q. K·q·
1 2 1 1 1

Vector qi is the set of generalized coordinates of element i given by

p

q

and Ki is the stiffness matrix given by

o 0 0

K i = 00 0

o 0

where
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(2.40)

• As already mentioned with respect to the computation of the mass matri.x~ the volume

integration of equation (2.39) is carried out using the n-point Gaussian Quadrature.

The equations of motion of the element can he ohtained using Lagrange's equa-

tions:

d 8Ti cm aUi

dt (-a·)- -a + -a = Xiqi qi qi

where Xi contains aIl the non-conservative generalized forces. The final form of the

equations of motion for an element i can then he written as

(2.41 )

•

where Mi is the mass matrix, Ki is the stiffness matrix, Ci is the nonlinear vector

comprising the centrifugai and Coriolis forces, fi is the external force vector and fCI

represents the nonworking constraint forces acting on interelement nodes. Note that

equation (2.41) is computed in its entirety in symbolic form in the ~laple V program

and is done off-line.

2.3 Dynamics of an Entire Contacting Body

The equations of motion of a whole contacting body can he assembled as follows:

M4 + Kq + c(q, il) = f + le

where

Ml 0 0 KI 0 0

M= 0 M 2 0
K=

0 K 2 0

0 0 MN 0 0 K N

ql Cl f l fCI

q= q2 c= C2 f=
f2

le =
fcz

• (}N eN fN fCN
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• and N is the number of elements of the contacting body_ lVIany nodal coordinates

repeat themselves in the q vector, and the relationship between q and q, which rep­

resents a set of minimum number of independent nodal coordinates, can be expressed

as

q=Tq

where T is a constant connectivity matrix made up of ones and zeros. Hence,

il = Tq and &= Tq

(2.45)

(2.46)

Representing the equations of motion in terms of the new set of coordinates q we

have

•
MTq + KTq + c(q,q) = l + le

Premultiplying the above equation by TT we obtain

Mq + Kq + c(q, q) = f

where

M=TTMT

K=TTKT

(2.47)

(2.48)

The term TTfc , which does not appear in the equations of motion, is eliminated

because the constraint forces Cc do not generate any power in the system, i.e.,

•
-T'te
q le = 0

or qTTTfe = 0

Since the elements of the vector q are independent, equation (2.50) leads to

T'"'T fc = 0
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• Damping effects are complex phenomena which are not simple to model mathe­

matically. Since damping characteristics depend on the overall frequency content of

the system, the damping matri.x is in general not assembled from element damping

matrices~ but is constructed using the mass and stiffness matrices of the complete

element assemblage together with experimental results on the amount of damping

(Bathe 1982). One practical approach to modelling damping is Rayleigh 's propor­

tional damping (Bathe 1982, James et al. 1989), where it is assumed that the damping

matrix is proportional to either or both the mass and stiffness matrices:

Here, a and j3 are constants which can be obtained for two typical values of natural

frequencies Wi and corresponding damping factors (i' by performing a modal analysis

on the linear elastic equations of motion where rigid body modes and nonlinear forces

are removed:

•

C=aM+,8K

Mq+Cq+Kq=O

The modal transformation is given by:

(2.51 )

(2.52)

q = U6 ; q = DeS q=U6

where U is the modal matrix and Ô is the vector of principal coordinates. Substituting

the above equations into equation (2.52) and premultiplying by UT ~

(2.53)

Using the orthogonality relationships between the eigenvectors relative to the mass

and stiffness matrices, the following relationship can he obtained:

where n is the number of independent generalized coordinates. For two known sets

of values of W r and (r we can obtain Q and {3. Then, equation (2.48) can he rewritten

with the inclusion of damping effects as•

2(rwr = a + {3w; ~ r = 1, ... , n

Mq + Cq + Kq + c(q, q) = f
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• 2.4 Contact Constraints

This section describes the kinematics associated with contact constraints. These

constraints are then incorporated into the equations of motion using Lagrange muLti­

pLiers. The basic conditions of contact along the contact surfaces are that no material

overlap can occur; this is also called the impenetrability condition. As a resuLt. con­

tact forces develop on the surface of contact upon the contacting bodies. which are

equal and opposite. The local normal forces can only exert compressive action: the

tangential tractions satisfy a Law of frictional resistance.

Contact between two bodies can be determined by checking whether the minimum

distance between them is zero (lVla 1995). For two arbitrarily given bodies, there

always exists a unique minimum distance between them, which can be found using

the following optimization problem:

•

•

Yc

y

o X

Figure 2.2: Schematic diagram of nodes in contact

min{~ (r i - r j ) T ( ri - r j) }
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• where ri and rj are the position vectors of points i and j on the surface of each

contacting body. Consider Figure 2.2, which shows in a schematic diagram a typical

contact problem. Two generic contacting bodies are shown, where arbitrarily one is

called contactor and the other target. Coordinate ..X}~Z represents the inertial frame

whereas XeYeZe and XtYtZt are local a..xes of the contactor and target respectively.

To simplify the formulation, it is assumed that the contactor contains the finite

element boundary nodes that come iuto contact with the target segments or nodes; i.e.,

the compatibility of surface displacements is only enforced at the discrete locations

corresponding to the contactor nodes. For a certain contactor node k in contact with

the target surface, a local contact frame can be identified, where Dk denotes the unit

normal to the target surface and tk denotes a unit tangential vector. The position of

node k can be described by the summation-

• whereas a target point m can be expressed by

r m = Pt + Rt(Xm + u m )

( ? --)_.o,

(2.58)

where Re and R t denote rotation matrices describing the orientation of the contac­

tor and target bodies respectively \Vith respect to the inertial frame. The contact

conditions can be established by calculating the distance of contactor node k on the

contaetor boundary to the target boundary, as

(2.59)

•

where m is the point on the target boundary such that (rk-rm)T(rk-rm) is minimum.

2.4.1 Frictionless Contact

In the absence of friction, the contact conditions can be expressed in mathematical

form using the so-called Kuhn-Tucker conditions (Parisch & Lubbing 1997) (also

-Note here that, consistent with the notation used in Section 2.2, i: and û denote vectors cor­

responding to discrete nodal points, whereas x and u denote vectors corresponding to arbitrary

points.
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• known as Signorini conditions (Tissakht 1995)):

gn= 0 (2.60)

(2.61 )

(2.62)

The first statement, equation (2.60), defines the impenetrability condition and states

that the bodies are allowed to separate but not to penetrate. The second, equation

(2.61), defines that the normal traction, tn , can only exert compressive action. The

third, equation (2.62), states that the normal traction is non-zero only when the gap

becomes zero, and vice-versa.

Vectors Xm and Dm can be obtained by linear interpolation between nodes that

make up the segment s on which point m lies (Figure 2.3 for 2D case); hence

•
p

X m = L ,8srxsr
r=l

p

Dm = L PsrÛsr
r=l

(2.63)

(2.64)

where p is the number of nodes making up the segment s, xsr and û sr represent

the positions and deformations of the said nodes, and /3sr are interpolating functions

constrained by

In matrix farm,

where

p

L /3sr = 1
r=l

Dm = Csûs

(2.65)

(2.66)

(2.67)

•
Xsl Ûsl

xs =
Xs2

Ûs =
Ûs2

xsp û sp
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• Figure 2.3: Definition of variables

/351 0 0 /352 0 0 /3sp 0 0

Cs = 0 /3sL 0 0 PS2 0 0 13sp 0

0 0 /3s1 0 0 ,1352 0 0 .!3sp

In the 2D case illustrated in Figure 2.3,

__ { X.4 }
Û s = {

ÛA } Cs = [~ 0 1 - ,B

l:~]X s - (2.68)
XB ÛB fi 0

where

AppendL-x: A.2 provides details on the derivation of the corresponding matri..-x: Cs for

3D elements.•

T/3= tk(xm- xB)/d

d= tkexA - XB)
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• 2.4.2 Contact with Friction

Using Coulomb's law, two states of friction can be identified: sticking and stiding.

The procedure used to decide whether a contact node is sticking, sliding or separating

will be discussed in Chapter 4.

\Vhen node k is sticking, constraints are enforced in both the normal and tangen­

tial directions:

(2. ï1)

•

If node k is in sliding contact, a constraint is enforced only in the local normal

direction, as in equation (2.60) for frictionless contact:

(2.ï2)

while in the tangential direction, Coulomb's la\v of frictional resistance is satisfied. If

the normal traction becomes tensile, then no constraints are enforced and node k is

separated from point m.

2.5 Equations of Motion with Contact Constraints

For a generic contactor node k in contact \Vith a point m on a target segment s, the

material overlap gk for a general sticking contact can be expressed using equations

(2.71), (2.57), and (2.58):

The Lagrange multiplier technique is used to take this constraint into account, and

from equation (2.55), the equations of motion of the contactor and target can he

expressed as follows:

• Mcqc + CcCtc + Kcqc + cc(qc, qc) + p~T>..k = f c

Mtqt + Ctqt + Ktqt + Ct(qt, 4t) + p~T>..k = ft
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( ? --)_. ((

(2.76)

• Rere, )./; is the vector of Lagrange multipliers representing contact forces which en­

force the associated contact constraints \Vith respect to Dode k, subscripts c and t

denote contactor and target values respectively, and

P~ = 8g
k = 8~k = [Ô~k â~k 8~k]

ôqc 8qc âpc ô&e 8ûc

P~ = 8g
k = 8g

k = [âgk â~k Ô~k]
ôqt ôqt (}Pt ôqt ÔÛt

Differentiation of equation (2. ï3) and use of equation (2.67) lead to

~/ =Pc + Rcwc x (Xk + Ûk) + Rcftk

- Pt - Rtwt x (Xm + u m) - RtCsfts = 0 (2.78)

where

(2.79)

(2.80)

(2.81 )

(2.82)

Wc = Lcêic

Wt = Ltqt

Then, from equations (2.76) and (2.77)

P~ = [I3x3 -Rc(Xk + Uk)Lc Re Oc]

P~ = - [I3x3 -Rt(Xm+ Um)Lt RtCs Ot]

where matrices Oc and 0t denote zero elements belonging respectively to aH nodes

•
of the contactor other than node k. and aH nodes of the target other than nodes si,

(i = 1,'" ,p). Also, X k • lib X m and U m are the cross-product skew-symmetric

matrices of Xk, Ûk, X m and Um respectively.

When node k is in sliding contact, the constraint is expressed by equation (2.72):

(2.83)

(2.84)

where it is assumed that the angular velocity of the normal vector nk is identical to

that of the ta'rget. Renee,

• pk,(slide) - [T TR (X U)L TR ]c - n k - n k c k + k c n k c Oc

P k,(slide) __ [T TR (X U)L kTN-
t - nk -nk t m + m t + g k

(2.85)

(2.86)
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•

•

where Nk is the cross-product skew-symmetric matrLX associated with Dk'

So far, the problem of accounting for the contact constraints due to a single

arbitrary node k was presented. The canstraint equations with respect ta aIl n"

contacting nodes can be assembled as follows:

pl pl ..\1 gl
c t

p2 p2 ..\2 g2
Pc =

c P t =
t

..\= g=

pn- pn- ..\n- n-
e t g

Matrices p~ and P~, and vectors ..\k, and gk in equations (2.73) . (2.74) and (2.75)

are then substituted by Pc, Pt, ..\, and g respectively.

37



•

•

•

Chapter 3

Dynarnics of Multi-Body Systems

The method of derivation of the dynamical equations of multi-body systems presented

by Cyril (1988) and Cyril et al. (1991) will be used in this work. A summary is

presented in this chapter but Cyril (1988) should be referred to for further details .

3.1 Kinematics

3.1.1 General Description

A typical multi-body system may consist of a main body (a spacecraft) that serves

as a platform on which other bodies (such as a multi-link robotic manipulator) are

mounted. As an example, a spacecraft with a 2-link robotic manipulator capturing

a payload is shown in Figure 3.1. The inertial frame (Xr, Yr, Z1) is located at the

center of the Earth. The orbital frame (Xo , YOl Zo) is located at the spacecrafes

center of mass Cs and rotates at the orbital rate f2. The system frame (..:yh Yi, Zr) is

engraved on the spacecraft so that its orientation relative to the orbital frame defines

the attitude of the spacecraft, represented by the pitch, roll and yaw angles. Finally,
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•
Figure 3.1: Schematic diagram of a typical multi-body system

a local frame·, (Xi, Yi, Zi), is attached to each individual body i, as shown in Figure

3.1.

To describe the kinematics of an individual body i, the so-called extended vectors

are used. The extended position vector of body i is defined as

(3.1)

•

where

• Pi = the position vector of the origin of the local frame (..Yi, Yi, Zd with respect

to ("~o, ~,Zo) (see Figure 3.2).

• qi = a vector defining the orientation of (...Yi , Yi, Zi) \vith respect to ("x·o , ~, Zo).

As discussed in Section 2.1, either a three parameter set of Euler angles or a

four parameter set of quaternions may be used.

• hi = a finite-dimensional vector of discretized deformation coordinates of the

flexible body with respect to (Xi, Yi, Zi)'

• A local frame is defined as one which has the same rigid-body motion as the body to which it

is attached (Section 2.1).
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• The extended velocity vector is defined as

_ {-T T b·T}T
Vi - Vi W i i

where

(3.2)

•

• Vi = the velocity of the origin of the body-fi.xed axes ("'\""i~ Yi, Zi) with respect

to (..-Y"o, r~, Zo).

• Wi = the angular velocity of (Xi, Yi, Zi) with respect to ("'\""0' Y~, Zo).

• hi = the time derivative of hi relative to the (X"i, ri, Zd frame.

3.1.2 Discretization of Flexible Links

Let ri be the position vector of an arbitrary point on the flexible body i \Vith respect

to the (Xi, Yi, Zi) axes (Figure 3.2). If we define iù ji and lez as unit vectors parallel

to axes Xi, Yi and Zi respectively and Xi, Yi and Zi as the coordinates of any point

in the (.-Yi , Yi, Zil frame, then ri can be expressed as

(3.3)

•

where /.Li denotes the displacement of the point due to structural deformation. If the

link is modelled as a slender beam, Yi and Zi can be approximated as zero. The com­

ponent of #-Li in the Xi direction is due to the axial shortening effect, that is related

to centrifugaI stiffening, which cao be assumed negligible for small rotation rates. Its

two other components in the yi and Zi directions, which are due to displacements

in bending, can be discretized using different methods, among 'which are: (i) the

assurned modes method (Cyril 1988), (ii) the cubic-splines rnethod (Cho 1995), and

(iii) the fini te element rnethod (Fattah 1995). The finite element method and the

cubic splines method allow the rnodelling of complicated structures having nonhomo­

geneous materiai properties and nonuniform cross-sections. However, these methods

generally require a large nurnber of generalized coordinates. The assumed modes
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• method, on the other hand, requires only a small number of lower frequency modes

ta model the system with sufficient accuracy~ although the calculation of exact shape

functions is restricted ta relatively simple systems. Since flexible manipulator links

can usually be approximated as slender beams, the assumed modes method is chosen

here for the discretization of the flexible links. The bending displacements can thus

be written as
m

J.Li(2) (x, t) - L cPij(xdbij(t)
j==l

(3.4)

(3.5)

•

m

J.Li(3) (x, t) = L <Pij(xdbi(m+j)(t)
j=l

where <Pij stands for a shape function of link i, and m is the number of shape functions

used to model the elastic deformation of the flexible body in each direction. The shape

functions must be admissible functions, i.e., they must satisfy at least the geometric

boundary conditions (Meirovitch 1967). In compact form,

(3.6)

where Bi(xd is a 3 x 2m matrix of shape functions and hi is the vector of elastic

generalized coordinates given by

0 0 0 0

Bi(xd = <Pi 1(xd cPim(xd 0 0 (3.7)

0 0 <Pi 1(xd cPim(xd

hi = {bi1 bi2 ... bim bi(m+1) . .. bi (2m) }T (3.8)

The rotation of the tip of the link with respect to (..Yi , Yi, Zd due to its structural

deformation, 6 i (its z-component is shawn in Figure 3.2), can be expressed as

•

t5i = Di(li)bi

where

0 0 0 0

Di(ld = 0 0 -<P~l (li) -<P~m(li)

<Ph (li) <P~m (li) 0 0

(3.9)

(3.10)

li is the length of the beam, and ( )' represents differentiation \Vith respect ta Xi.
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•

•

link i+l

Xi+l

Figure 3.2: 2D schematic diagram of the i-th body and its coordinates

3.1.3 Recursive Relations

The rotation matri.x describing the orientation of the local frame ("\i, Yi, Zi) with

respect to the orbital frame (Xo, }~, Zo) is defined as follows:

(3.11 )

where a describes the orientation of (.Xi , Yi, Zd with respect to (..Yi-l, Yi-l, Zi-d.

For each body, the position of its origin (X"i, ri, Zi) with respect to that of

(.X"o, Yo, Zo) is defined by the following recursive relation:

where (Ji is the angle between .."<i and X i - l under rigid body conditions (i.e. no

deformations in flexible links). It is assumed here that joints between adjacent links•

The corresponding translational and angular velocities can be written as:

Vi = Vi-l + Wi-l x ri-l(li-r) + Pi-l'

Wi = "'i-l + 6i - l + 8i Z i

(3.12)

(3.13)

(3.14)
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• are revolute (refer to Cyril (1988) for corresponding expressions with prismatic joints) .

Further differentiation of equations (3.13) and (3.14) lead to the corresponding linear

and angular accelerations:

Vi = Vi-l + Wi-l x Wi-l x ri-l (li-d + Wi-l x ri-dli-d

+2Wi-l x jLi-l + Pi-l

Wi = Wi-l + 6i - 1 + Wi-l x 6i - 1 + iiiZi + (Wi-l + 6i -d x Bizi

3.2 DYOaIIlics

(3.15)

(3.16)

•

The usual practice in Lagrangian dynamics is to consider the dynamical system as a

whole, Le., the potential and kinetic energy expressions of the system are obtained en­

tirelyand used to derive the equations of motion of the whole system. In the method

of Natural Orthogonal Complement (NOC) used here, the Lagrange equations are

obtained for each body separately and then assembled to derive the equations of

motion of the system. The resulting nonworking constraint forces are conveniently

eliminated using the NOC of the kinematic velocity constraint matrbc. This nlethod

combines the advantages of the Newton-Euler and Lagrange methods, namely, capa­

bility for systematic analysis of each body separately, and convenient application to

systems containing flexible bodies.

3.2.1 Dynamics of an Individual Body

The position of an arbitrary point on body i can be expressed as

•
Pi = Pi + ri

Differentiating, its velocity is given by

where ri is the derivative of ri relative to the (Xi, Yi, Zi) frame.
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• Using equations (3.3) and (3.6), the above eqllation may be expressed as

(3.19)

where ~ is the cross-product skew symmetric matrLx associated with the local posi­

tion vector ri. This equation may further be expressed in matrix form as follows:

(3.20)

where

(3.21 )

and Vi is the extended velocity vector as defined in equation (3.2).

where Pi is the mass per unit length, N[i is the concentrated mass (if any) at the tip of

the link, and I hi is the hub moment of inertia. Also, assuming that links are long and

slender, the effects of rotary inertia can be neglected according to Euler-Bernoulli

beam theory. Letting

•
The kinetic energy of a flexible link i can be expressed as:

T,. = .!:. rlt p·(x)p·Tp' ·dx + .!:.Nf.p·!(l-)p.. (l-) + .!:.w!Ih.w.
1 2 Jo lIt 2 t 1 t 1 t 2 l , 1

(3.22)

(3.23)

where

(3.24)

and using equation (3.20), equation (3.22) may be rewritten as

where the extended mass matrLx Mi can be obtained from

•
(3.25)

(3.26)
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• Neglecting gravity, the potential energy due to the elastic strain energy stored in

a flexible beam i can be written as:

(3.27)

where E and 1 are the modulus of elasticity and the area moment of inertia respec­

tively. Again using Euler-Be1TLoulii beam theory, the effects of shear deformations

have been neglected. Then~ letting

where

"U - B"h.r-i - i l (3.28)

dl' 0. lm

and the symbol ' denotes differentiation with respect to Xï, the potential energy can

be rewritten in matrÏ..x form as•
B~' =

l

o
."({Jil

o

o

o

o

.A."
\Pd

o
o
'ff

<Pim

(3.29)

(3.30)

where

(3.31 )

If structural damping of the links is to be incorporated in the ulodel, the nlodulus

of elasticity, E, may be replaced by the modified modulus of elasticity, E* (.James

et al. 1989), defined as follows:

a
E* = E(l + LIat)

where LI is a damping parameter which can be found experimentally.

(3.32)

•
Having obtained the kinetic and potential energy expressions of body i, the dy­

namical equations of motion of body i are derived using Lagrange's equations:

d 0Ii ari 8Ui
dt (8qi) - 8qi = Xi - 8qi' i = 1, ... ,N. (3.33)
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• where Xi contains ail the non-conservative generalized forces. Upon substitution of

the kinetic and potentiai energy expressions into the above equation~ the equations

of motion of body i can be derived in the following fonn:

(3.34)

•

where cPf is the vector of generalized externai forces~ clJf contains the system forces

such as centrifugaI and Coriolis forces as weIl as stiffness and dissipative forces, and

cjJf contains the generalized constraint forces (Cyril 1988). Note that if quaternions

are used for the representation of body orientation, an algebraic constraint force also

will result. The means to eliminate it was presented by Cyril (1988), by virtue of

which the said constraint does not appear in equation (3.34).

3.2.2 Dynamics of an Entire Multi-Body System

Upon assembling the equations of motion of an iV-body multi-body system, the

constrained equations of motion of the system can be written as:

Mv = cjJE + clJs + t:/Jc (3.35 )

where

Ml 0 0

0 M2 0
M= (3.36)

0 0 MN

is the generalized extended mass matrLx of the system and v, clJE, cjJs, and t:/Jc repre­

sent the generalized extended acceleration vector, the generalized extended external,

system, and constraint forces, respectively:

•
Vl clJf t:/Jî

v= V2
clJE =

cIJ:
clJs = clJi

VN cIJ~ clJt
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• The kinematic constraints acting at joints between adjacent links can be derived from

linear and angular velocity constraint relations which can be written in the following

compact form:

Av=O

where A is the kinematic velocity constraint matrix. and 0 is a zero vector.

(3.38)

It is preferable to express the equations of motion in term of a minimum set of

independent generalized coordinates: which can be defined as follows:

(3.39)

•

where 1/J I represents the spacecraft's attitude degrees of freedom, for example, pitch.

yaw, and roll. For the remaining IV -1 bodies, 1/Ji for a flexible body i which is linked

to the preceding body by a revolute joint can be written as:

(3.40)

Using kinematic relations (3.13) and (3.14), the generalized extended velocity v can

be expressed in tenns of the independent generalized velocities 1/J as

y = N1/J

Upon substitution of equation (3.41) into equation (3.38): we obtain

AN1/J = 0

This relation must hold for any vector 1p, hence,

AN=O*

(3..11)

(3.42)

(3.43)

where 0* is a zero matrix. By virtue of the above relationship, N is called the Natural

Orthogonal Complement of the velocity constraint matrix A.

By definition, the constraint forces cPc do zero work, i.e., they do not introduce

any power onto the system. Hence,

• fi = yTc/JC = 0

i.e., fi = if,T NT c/JC = 0
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• Since 1p is an independent vector, it follows that

Furthermore, differentiating equation (3.41), v can be ohtained as follows:

v = N1/J + N1/1

(3.46)

(3.47)

•

Pre-multiplying equation (3.35) hy NT, the constraint forces can he eliminated

by virtue of equation (3.46); then using equation (3.4ï) the independent dynamical

equation of motion of the multi-body system can he expressed as follows:

M1b = c(1/J, ip) + f (3.48)

where

M=NTMN (3.49)

C = NT[tPs - MNip] (3.50)

f= NTcjJE (3.51 )

Here, M is the generalized mass matri.x of the system. which is symmetric and positive

definite. Vector f represents the generalized external forces, and the vector c contains

the Coriolis, centrifugaI, stiffness, and damping terms.

If forces are applied at the tip of the multi-body system (e.g., the end-effector of

a manipulator), then the equations of motion may he rewritten as

(3.52)

where À represents a vector of forces and moments in Cartesian coordinates associated

with applied loads and P is the system Jacobian, which can he expressed as

p = [:: ] (3.53)

•
where

p = [8Ph
1 81/1 l

P _ [8W h2- .
81/11

(3.54)

(3.55)



•

•

•

and Ph and Wh are the position and angular velocity vectors of the tip with respect

to the base of the multi-bodyjmanipulator system.
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•
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Chapter 4

Integration of Systelll Equations

4.1 Introduction

The goal of this chapter is to describe the integration of general multibody systems of

arbitrary kinematic architecture as shown in Figure 4.1. The whole system is made

up of subsystems each of which may be a contacting body or a multi-body system

of serial- or tree-type kinematic chains and open- or closed-Ioop configurations. The

equations of motion for contacting bodies are derived in Chapter 2 and expressed in

the form of equations (2.74) and (2.75) and those for multi-body systems are pre­

sented in Chapter 3 and expressed in the form of equation (3.52). Different constraint

relationships are associated with each subsystem. Constraints ,vhich result from the

impenetrability condition when one body contacts another are generally temporary

and time-dependent because the contact surface may he in sticking or sliding contact,

its geometry and area may change, or may completely separate. Such constraints are

hereafter referred to as contact constraints. On the other hand, constraints ex­

isting at joints between subsystems (such as the joint connecting the end-effector

and a manipulator system) are permanent and depend on the particular kinematic

architecture of a system. Such constraints will be referred to as kinematic COD­

straints. A subsystem, whether a contacting body or a multi-body system, may be
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• constrained by either or both of these two types of constraints. Letting N and n

he respectively the number of suhsystems and constraint relations of a system, the

equations of motion of each subsystem and associated constraints can be recast in

the following general form:

n

Miqi + Ciqi + Kiqi + Ci(qi,qi) + L P~Àj = fi, i = 1·· ·IV (4.1)
j=1

with the constraint relations given by

(4.2)

•

where Tk and Sk are the two subsystems which are involved in the k-th constraint,

and Pr", and Ps", are the respective position vectors of the point of application of the

k-th constraint expressed in qrk and ~", coordinates. If subsystem i is a multi-body

system, the stiffness and dissipative forces may be taken out of the nonlinear force

vector C in equation (3.52) and expressed separately as done in equation (4.1). In

equation (4.1)

·f . h P agj
l 't = Tj, S j t en ji = -a'

qi
else Pji = 0 (4.3)

•

In other words, matrix P ji exists only if subsystem i is involved in the j-th constraint;

otherwise it is zero.

When k stands for a constraint corresponding ta contact, equation (4.2) is a

contact constraint and expresses the basic contact condition of no material overlap,

and bath gk and P ki depend on those time-dependent conditions such as which nodes

are in contact and which of these nodes are in sticking or slirling friction. However,

this information is not known a priori; thus the solution procedure is iterative (Bathe

& Chaudhary 1985, Chaudhary & Bathe 1986). This procedure is described in detail

in the following sections.
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Rest of Subsystem

• • •

Contact constraints

• • •

• 4.2

Figure 4.1: General multibody systems in contact

Full Solution of Equations of Motion

(4.5)

(4.4)

•

4.2.1 Time Integration

The differential equations of motion given by equation (4.1) are nonlinear and may

be stiff·, such that an integration method which efficiently takes these characteris­

tics into account such as Gear's method would be ideal. However. due ta the large

number of equations which are usually encauntered in fini te element analysis, a com­

putationally less expensive route offered by the Newmark method is used here. In

this method, the following propagation schemes are used:

Ctt+Llt = Ctt + [(1 - <5)qt + (<5)qt+~tl~t

• A [( 1 ) .. .. ]ô 2qt+.1.t = qt + qtut + 2" - Q qt + aqt+~t / t

where a and <5 are parameters that can be selected to obtain integration accuracy

and stability. The Newmark method is a direct implicit integration algorithm which

• A system is said to be stiff if the ratio between its largest and smallest eigenvalues is large.
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• is unconditionally stable and introduces no artificial damping if a > 1/4 and 8 = 1/2

are used. It was shown by Chaudhary & Bathe (1986) that a = 1/2 and c5 = 1/2 are

effective choices for time integration of dynamic contact equations because both the

criteria of energy and momentum conservation are satisfied by the solution. provided

that the time step employed, ~t, is sufficiently smal!.

Using these two equations (4.4) and (4.5), qt+.:lt and qt+~t can he expressed ln

terms of the unknown displacement vector qt+~t only. Therefore, these expressions

of qt+.:lt and étt+âl can now he substituted into the differential equations (4.1) and

converted into algebraic ones:

•

n
- T -Ki(t+ât)qi(l+~t) + L P ii(t+.:lt)Ài(t+~t) = ri(t+~t), i = 1 ... lV

)=1

where

Î'i(t+~t) = fi(t+ât) + Mi (aoqi(l) + a2éti(t) + a3qi(t»

+Ci(alqi(t) + a4éti(t) + asQi(l» - Ci(t+~t)

and ao, .. " a7 are Newmark integration parameters given by

(4.6)

(4.7)

(4.8)

1
a - .

o - Q~t2'

6
a4 = - -1;

Œ

811
a - . a - . a3 = - - l'

1 - Q~t' 2 - a~t' 2a'
~t 6

a5 = T(a - 2); a6 = ~t(l - 8); a7 = 8~t

•

4.2.2 Solution of a System of Nonlinear Equations

Both equations (4.2) and (4.6) are now in algebraic form but are nonlinear. These

nonlinearities are introduced not only by the term Ci(t+~t) appearing in i\(t+~t) of

equation (4.8), but also by the nonlinear nature of the contact problem: boundary

conditions at the contact surface change during the motion of the contact body under

consideration, and these conditions are not known a priori. Therefore, a nonlinear

solver must be used to solve for unknown vectors qi(t+~t) and Ài(t+~t) from equations
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• (4.6) and (4.2). The Newton-Raphson method is chosen to carry out this task. This

method is an iterative algorithm which attempts to find the solution of a nonlinear

algebraic equation of the form given by

h(x) = 0 (4.9)

Assuming that in the iterative solution we have evaluated X(i-l) ~ then a Taylor series

expansion gives

(4.10)

or

(4.11 )

•
where higher order terms were neglected and

By expressing equations (4.6) in the form of equation (4.9) we have

n
- - "" T -fi(t+~t) = Ki(t+~t)qi(t+~t) + L-t P ji(t+~t)Àj(t+~t) - ri(t+~t) = 0,

j=l

i = 1·· ·lV (4.12)

•

The Newton-Raphson method can now be applied. However, for the above equations,

it is not easy to evaluate the derivative term : in equation (4.11). But since the

Newton-Raphson method is an iterative procedure (reason for which higher arder

terms in the Taylor series are neglected), it is not absolutely necessary to obtain the

derivative exactly. An approximate term will also work although at the cost of slower

convergence. AIso, with this approach, care must he taken so that the approximated

derivative is close enough to the exact one such that the solution does not diverge.

Sorne assumptions are now made to facilitate the computation of the derivative term.

The matrices and vectors in equations (4.2) and (4.12) which are dependent on the

unknown variables qi are:
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• It is assumed that aIl the above vectors and matrices are "weakly" dependent such

that they may be considered constant during t -+ t + At, except vectors PT", and

Ps", whose derivative terms are Ph, (i = Tk, Sk). With this assumption, we can now

apply the Newton-Raphson method for the [-th iteration as given by equation (4.11).

Omitting the subscript t + At, equations (4.6) and (4.2) may be expressed as:

n
Kl-1 ~q~ + ~ pl~lT ~~l. = _fl-1

1 1 L-)1 JI'
j=l

P L-lA l +pl-1/\ 1 __ l-l
kT", ~qTk ksI., ~~k - gk ,

i=1···LV

k = 1···n

(4.13 )

(4.14)

Equations (4.13) and (4.14) may now he solved simllitaneously. It follows from equa­

tion (4.7) that since matrix Mi is positive definite, and Ki and Ci are positive semi­

definite, Ki resllits in a positive definite matrix. An efficient method which exploits

the symmetry and positive definiteness of the Ki matrices is now presented.

The efficient Cholesky Decomposition is used to invert the Ki matrices in equation

• (4.13):

i = 1···N (4.15)

where the superscript l \Vas removed for convenience. Inserting the above equation

for i = Tk and i = Sk into eqllation (4.14), the resulting equation can be expressed in

the form given by

where

n

LRkj~Àj = gk, k = 1···n
j=l

(4.16)

(4.17)

(4.18)

•
Equation (4.17) is expressed in a general form. In light of equation (4.3), the fo1Lowing

observations can he made about Rkj . If k = j then both terms on the right hand

sicle of equation (4.17) exist, thus

(4.19)
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• If k =1= j then either one or both terms will he equal to zero. One term will he nonzero

if either Tk or Sk is equal to either Ti or Si; in other words, a common suhsystem is

involved in the k-th and j-th constraint equations. Denoting the common subsystem

hy cki'

- - -1 Tif cki exists, then R k] = P kCkj K Ck) P jc,,:)

else Rki = o.

Equation (4.16) may also be expressed in the following matrix fornl:

(4.20)

R~À=g

where

~Àl gl Ru R 12

~À=
~À2

g=
g2

R=
R21 R 22

• ~Àn gn Rnl Rn2

(4.21)

It turns out that matrix R is both symmetric and positive definite: the proofs are

presented in Appendix B. Thus, the ~À/s can he obtained from equation (4.21) hy

the inversion ofR using Cholesky Decomposition, and the ~q/s can then he obtained

from equation (4.15). Then, variables for the [-th iteration may be updated ta

q~ = q~ -1 + ~q~ i = 1 ... lV
1 1 l'

(4.22)

(4.23)

The acceleration and velocity terms of each suhsystem at t + .ùt are calculated by

rearranging the Newmark propagation schemes (4.4) and (4.5), such that,

•
(4.24)

(4.25)
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• 4.2.3 Updated Contact Conditions after Iteration l - 1

The contact conditions after iteration l-l, represented by the constraint vector g~-I,

the contact matrix P~i 1 and the contact force vector "'Y~-1 given by

(4.26)

•

•

where T denotes a contact constraint and i a contacting body, are included in equa­

tions (4.13) and (4.14). It is discussed by Chaudhary & Bathe (1986) that the direct

use of these contact conditions can lead to serious errors of linearization. Further-

more, it is also argued that although the decision on whether a contactoT node is

releasing or is in sticking or sliding conditions is perhaps most quickly determined

based on considering the total and relative magnitudes of the calculated nodal point

forces, this method can lead to sorne numerical difficulties. 1t is deemed more ef­

fective to establish the condition at a contactoT node from the accumulated effects

and conditions of the contactoT segments adjacent to the node. Then~ a new set of

updated contact conditions is obtained by the following procedure:

• The distributed segment tractions, T, are recovered on the contactor surface

such that they are equivalent (in the virtual work sense) to the nodal contact

r 1-110rces, "'YT •

• New distributed segment tractions~ T, are updated to satisfy Coulomb~s law

of friction, which is further discussed in Section 4.2.4. The updated contactoT

surface nodal forces~ .:y~-l, are obtained as consistent nodal loads corresponding

to the updated segment tractions. The updated states of contactoT nodes,

represented by sticking, sliding and tension release, are determined based on

the states of adjoining contactor segments. These updated nodal states are

then used to obtain the updated constraint vector and contact matrix, g~-1 and

P-'~lTl •

• The corresponding target surface updated nodal contact forces are obtained

from the contactor surface updated nodal forces by considering static equilib-
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•

•

rium of the contact region (as described in Section 2.4) .

The above procedure for updating the contact conditions is presented in detail for

the two-dimensional and the general three-dimensional cases in Appendix C. These

updated contact conditions, namely g~-l and P~iLand ..:y~-l, are incorporated into

equations (4.13) and (4.14) before proceeding with the [-th iteration.

4.2.4 Contact Friction

In sorne previous work on friction (Karnopp 1985. Haessig & Friedland 1991)~ it was

decided that the best friction model was one which assigns a certain small region of

velocity -Vh < v < Vh, such that if the relative velocity between two sliding bodies

faIls inside this region, the sliding friction switches to sticking and v = O. This

model is not only amenable to computational treatment but also accounts for the

discontinuous manner in which real systems become stuck. Then, when the sticking

friction force becomes greater than the limiting friction force th, the friction mode

s,vitches back ta sliding. Thus, it is assumed here that the decision from sliding to

sticking is solely dependent on the velocity Vh, which may be found experimentally.

This model may be accurate enough for simple bodies subject to friction, but for

complicated systems where the normal force and contact area change over time, the

limiting velocity Vh may depend on these and other factors as weil, such that it is no

longer safe ta predetermine a constant value of Vh. Therefore, a different model is

proposed here, as described below.

At every time step, where the system may be in sticking or sliding contact, a test

is done and the force which will bring the system ta a sticking contact for the current

time step is calculated. If this calculated force is greater than the limiting friction

force fh, then the system is sliding, if not then sticking. This model can be thought to

be similar to the previous models except that the concept of the limiting velocity Vh is

only implicitly used, and this value is dependent on the various dynamic conditions

of the system such as acceleration, velocity, normal force, and contact area. This
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•

•

model is used ta simulate the dynamics of a simple system undergoing friction, and

the results are compared \Vith those found in previous work. The system is illustrated

in Figure 4.2, where m = O.lkg and K = lOON/m. The nominal and constant sliding

friction force is chosen as O.21V and the limiting sticking friction force as O.25~V. The

system is initially at rest and the point P undergoes motion as xo(t) = vot! where

Vo = O.002m/s. The results for the motion and fdction force of mass mare shown

in Figure 4.3. For this simple system, both the proposed model and previous models

(such as Karnopp and the bristle models (Haessig & Friedland 1991)) yield similar

results. However, in this system neither normal force nor contact area are time­

dependent. For the proposed model, if, for example, the normal force changes for the

same mass (as in impact dynamics), the limiting velocity Vh will adjust itself online

and become larger as the force becomes larger. which is in agreement with intuition.

Changes in other parameters which become a factor in friction can he accounted for

in the same way. In previous models, Vh will have to be found experimentally every

time these parameters change and must he done off-line.

Va

In

Figure 4.2: Single body in friction

Another issue of interest in modelling friction is how to represent the transitional

phases when friction changes from sticking to sliding and when the relative sliding

velocity changes sign. The classical friction model shown in Figure (4.4 a) shows

the friction force and direction changing instantaneously at v = O. However, in

reality they cannot change instantaneously but must occur over a finite period of

time, though this duration may he extremely small. This transitional period of time
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•

should be modelled not only for physical accuracy but also for numerical stability.

Changes during this transition (-vs < v < vs) are represented linearly as shawn in

Figure (4.4 b). Four regions or modes of friction can he identified: (0) is the sticking

region, (1) is the sliding region of transition from sticking to sliding, (2) is the sliding

region, and (3) is the sliding region of transition when the relative velocity changes

signa Switches from one region to another must follow sorne rules. For example, the

friction mode may switch from the sticking region (0) to sliding region (1) but not

to region (3). "Vith a view to a systematic procedure, sorne rules are defined. From

the proposed model discussed above one may infer that the friction mode can switch

from any region to region (0), i.e., sticking is allowed from any sliding region as long

as the test for stiction (discussed above) is satisfied. Furthermore, the rules presented

in Table (4.1) also apply.
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Figure 4.4: Two friction models: (a) Classical, (b) Proposed

Table 4.1: Rules on switching from one region to another

From region Allowed to

go to region

0 0, 1

1 0, 1, 2

2 0,2,3

3 0,2,3

4.2.5 Convergence Criteria

Convergence of solution is accepted after iteration l if the following criteria are si­

multaneously satisfied:

• Energy convergence criterioD. The energy due to the unbalanced force at

iteration l is small in comparison ta the energy at first iteration:
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• • Force convergence criterion. The Euclidean norm of the unbalanced force

is small in comparison to that of the total externa1 load:

(4.28)

• Contact force convergence criterion. The change in the contact force

vector prior to updating, 7, is small:

117l
-

1
- '"Yl

-
2

11

117l
-

1 + 0.00111
(4.29)

Constants fE, fF and fe are the energy. force and contact force convergence tolerances,

respectively. In equation (4.29), a small number of 0.001 makes the denominator non­

zero in case no contact conditions exist during iteration l - 1.

4.3 Simplified Solutions of Equations for Contact-

• ing Bodies

4.3.1 Efficient Computation of the Inverse of Matrix K

The inverse of matrLx Ki in equation (4.15), where i belongs to a contacting body and

henceforth omitted for brevity, can be computed using 3 methods. The first method

is the simple inversion of the positive definite and symmetric matrix K using the

Cholesky Decomposition (CD). This procedure requires about Cl = nr /6 operations

where nt is the order of the matrix to be inverted. 1t is therefore computationally

quite expensive.

To formulate the second and third methods, matrices M, K and C can be recast,

using the partitioned representation of equations (2.17)-(2.27), (2.38), and (2.51), as

follows:

• M=
[ ] [ ] [

T

T Oou Moo Mou T Oou

o~ L..u ~ M uu o~ Iuu]
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•
where

[

000
C=

OT
ou

[

000
K=

OT
ou

(4.31 )

(4.32)

and the orthogonality property of the rotation matrbc (RRT = 1) \Vas used in equa­

tion (4.30). Equation (4.30) can further be expressed in compact form as•
where

Also note that

- TM=TcMTc

K=TcKTb

C=TcCTb

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

•
In light of equations (4.36), (4.39), and (4.40), equation (4.7) may be recast as

- - TK=TcKTc
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where

K = K+aoM+a1C

Matrix K may be inverted in symbolic form as

where

- -1 [Hoo Hou]H=K =
~ H uu

- -T [T Oou]Tc=Tc =
O~ I uu

and using the relationship R-1 = R T and equations (2.4)-(2.5):

- -T [R 0]T=T =
o A

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

Noting that matrices K and C are constant, the only time-varying quantity that

matrix K is dependent on is the independent nodal displacement vector û. The second

method consists in realizing that for most contacting bodies of interest, Û < < x.
Then, we can assume that x + û ~ x such that K now becomes a constant matrix

and may be inverted offline only once. Thus, from equation (4.42)

(4.46)

•

where T is the only time-varying quantity in the expression. The inversion of matrix

K therefore requires only C 2 = 2(np + no)3 + (np + no)2nu operations to compute

online, where np , no and nu are respectively the number of translational. rotational

and elastic degrees of freedom of the contacting body.

If, however, the elastic deflections are substantial and cannot be neglected, we

pursue the third method. 1t can easily be verified from equations (2.17) and (2.18)-
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• (2.27) that out of the 6 independent sub-matrices of K given by

K pp K po Kpu
K= -T K oo Kou (4.47)K po

-T -T KuuKpu Kou

only Kos, K po and Kou are dependent on û and the others are constant. '-IVe can

rearrange K as

where the subscript c comprises terms related ta p and u, i.e., the translational and

elastic degrees of freedom. Given an equation of the form

•
[:~ :::]{: }={::}

the solution may he obtained in symbolic form as

{:}=[~ :::]{::}
From equation (4.48) we can obtain

From equation (4.51), Xc may he isolated as

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

where we note that K cc is a constant matrLx and may he inverted offline only once.

Substituting the above into equation (4.50),

•
where

Xo = ~ -Ibo - ~-lrbc

- --1r= KocKcc

- -T
~= K oo - rKoc
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• Table 4.2: Comparison of required operations for the three methods of inversion

1 Nlethod ~ 2D 3D

1 (3 + n u )3/6 (6 + n u )3/6

2 9nu + 54 36nu + 432

3 3n~ + 18nu + 38 7n~ + 69nu + 212

Substituting equation (4.53) into equation (4.52L

(4.56)

(4.57)

•

•

Comparing equation (4.49) \Vith equations (4.53) and (4.56), the inverse of matrL"{ K

may be expressed as

[

~-1 -â-lr]
K- l = H =

_rT~-l K;l+rT~-lr

The online computation of matrL"{ H requires the calculation of the inverse of only

one no x no matrix, namely ~. 'vVe may now use equation (4.46) to calculate J(-1.

In total, this method of computing j(-l requires C3 = 2non~ + 2n~nc + n~ + n~ +

n~/6 + 2n~ + n~(no + nu) operations.

Table 4.2 compares the 3 methods in terms of required operations in 2D (np

2, no = 1) and 3D (np = 3, no = 3) cases. The computational cost of method 1 is

proportional to n~, method 2 to nu, and method 3 to n~. Figure 4.5 shows ratios of

the computational cost of methods 1 and 2 over method 3 (C1/C3 and C 2 /C3 ). As

expected: method 2 is by far the most efficient in most cases. For 2D cases, method

3 becomes more efficient than method 1 if nu > 14, or the number of finite element

nodes exceeds 7. For 3D cases, this is so if nu > 34, or the number of finite element

nodes exceeds Il. From these comparisons, it can be concluded that if the contacting

body's elastic displacements are very small compared \Vith its physical dimensions,

method 2 should be used for maximum computational efficiency. Otherwise, method

3 should be used where the number of nodes is greater than 7 for 2D cases and Il

for 3D cases, which are the usual situations in finite element analysis.
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•
4.3.2 Guyan Reduction

Due to the large order of the sets of finite element equations for contacting bodies,

use of a reduction method is desirable in order to obtain a smaller set of equations of

motion and thus increase computational efliciency. The Guyan reduction method. also

known as the mass condensation method (Guyan 1965, Cook 1981), is appropriate

in systems where two different types of degrees of freedom (d.o.f.) can be readily

identified, namely ;~slaves" and "masters". The slaves are chosen from the set of

d.o.r. 's on which no external forces are applied, and likely candidates are those with

high KidJ\-lii ratio. The equations of motion (4.1) corresponding ta contacting bodies

can then be rearranged in terms of master and slave d.o.r. 's in the following form:

•
(4.58)
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• The first set of equations in equation (4.58) pertaining to the slave d.o.r. 's can be

taken out as

(4.59)

where E'l=l pr and f s are both zero and hence do not appear in the above equation.

The principal assumption of the Guyan reduction method is that in the above system

of equations, which carries no external load, the elastic forces play the dominant role

and inertia, damping and nonlinear forces are negligible. In other words, the stiffness

rnatrix K alone dictates how slaves will follow masters. Renee, qs can be expressed

as a function of qm:

•
Therefore,

where

~ = -K~lKsmqm (4.60)

(4.61 )

(4.62)

Substituting the above equation and its first and second time derivatives into the

original equations and premultiplying by G T , we obtain

where

n

MRqm + CRqm + KRqm + cn(q, q) + L P~Àj = f R
j=l

(4.63)

Note that G is a constant matrix. Thus, matrices M R , CR, and KR retain the same

structure as the original matrices, so that the same computationally efficient rnethods

presented in section 4.3.1 are still valid with respect to the new Guyan-reduced forrns.•

M R = GTMG; CR = GTeG;

CR = GTc; P~ = GTpT = P~;

KR = GTKG;

f R = GTf = fm'
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• The constraint equations are dependent only on the master d.o.f. 's and thus, these

equations can be rewritten as

(4.64)

•

The equations of motion of the contacting bodies and the contact constraint rela­

tions are now expressed in terms of the master d.o.f. 's and the order of the equations

are reduced to the number of master d.o.r. 's.

4.3.3 Elimination of the Flexible Portion of the Nonlinear

Forces

Contacting bodies are generally solid objects with high stiffness to mass ratio. Vibra­

tions and deformations of such bodies are negligible under normal conditions, unless

they are acted upon by large contact forces or undergoing impact of short duration.

Rayleigh showed that very little vibration is induced in a body ·under the influence

of forces of duration long in comparison with its natural periods. Therefore, under

no-contact conditions, the contacting bodies may be considered rigid, and only rigid

body motion need be included in the equations of motion:

(4.65)

where subscript T denotes rigid terms. When contact occurs, however, large contact

forces of short duration make flexibility and vibration effects important, such that

flexible variables must be included in the dynamical model:

(4.66)

•
where subscript f denotes flexible terms. The inertia and stiffness forces are large:

however, the contribution of the flexible coordinates on the nonlinear forces due

ta centrifugaI and coriolis forces, cf, remains relatively small. The validity of this

assumption was further verified through comparisons of various simulation results
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(Chapter 6). This means that one may safely eliminate the nonlinear force vector cf

both in contact and no-contact cases, without compromising accuracy; on the other

hand, a great deal of computer time is saved.

Note that the three siulplifying methods presented in Section 4.3 apply only to

the finite element models of cantacting bodies, not ta multi-body systems.
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Chapter 5

Force Control

5.1 Introduction

This chapter is devoted to the design of a controller for flexible multi-body systems.

Of particular interest is the case where the multi-body system is a multi-link ma­

nipulator with an end-effector at its tip for performing a variety of contact tasks.

A typical control task would be to maneuver the end-effector along a given path,

position it at a particular location, such as a grapple fi..-xture of a payload, and apply

desired amounts of force on the surface. The design of a controller for such a task

is applicable to rigid manipulators as weIl. However, flexible manipulators present

another concern not shared by the counterpart rigid manipulators: instability in the

elastic vibrations of the links.

It has been reported by several researchers (e.g., Chiou & Shahinpoor (1989),

Modi et al. (1993)) that for a manipulator system \Vith link and/or joint flexibility,

the flexible degrees of freedom can become unstable and cause maneuver failure. The

discontinuous repeated contact/impact between the manipulator and the environment

can further contribute to the instability of the system. Thus, for a fully flexible

manipulator system, the controller must not only achieve trajectory tracking and

force control on the contact surface but must also stabilize the vibrations which are
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naturally excited during its operation. However, a flexible manipulator system is

characterized by having a greater number of generalized coordinates than control

inputs. This problem leads to consideration of a singular perturbation control as

discussed in Section 1.5. According to the singular perturbation theory, two reduced

order systems can be identified: a slow subsystern whose state variables tum out to

be those of the rigid manipulator, and a fast subsystem whose states are composed of

the flexible coordinates and velocities. In other words. the gross motion of the system

is approxirnated by the slow reduced subsystem. while the discrepancy between the

full model and the slow subsystem represents the fast subsystem. Then, the design of

the full flexible model can be split into two separate designs of the two reduced-order

systems, i.e., a co'mposite control can be pursued (Siciliano & Book 1988).

For the slow subsystem, any of the well-established control techniques developed

for rigid manipulators can be applied. In this thesis, a position and force controller

based on impedance control is used. Impedance control is a model-based control

scheme: it attempts to make the physical system behave like a desired model (target

impedance) by linearizing and decoupling the actual dynamics using a combination

of feedhack (servo) and feedforward (model-based) control. As such, it suffers from

sorne common disadvantages of model-based controllers. Firstly, impedance control

requires exact knowledge of the dynamic and kinematic parameters of the manipulator

system to design its controllaw and achieve decoupling and linearizing of the closed­

loop error dynamics. In reality, however, it is often not possible to obtain an exact

model, especially such effects as high-frequency unrnodelled dynamics, measurement

noise, and joint friction. Secondly, the dynamics of the system must be computed and

fed online into the controller. In order to al1eviate computational demands, a two-Ievel

control system architecture may be used: the model-based portion of the controller

may be taken out of the servo loop and run at a slower rate. Both these defects

lead to a nonlinear and coupled error dynamics which may hehave in a complicated

way. These considerations also leave open such issues as rohustness and sensitivity

of the controller. However, for simplicity, these issues will fiOt be addressed in this
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thesis; i.e., it is assumed that the dynamic and kinematic parameters are known

exactly and that the computational power is suflicient to meet the demands of online

computatation of inverse dynamics.

Another disadvantage exclusively pertinent to impedance control is that it requires

exact knowledge of environment parameters in order to achieve good force tracking.

In this thesis, it is again assumed for simplicity that these parameters are indeed

known exactly. However, in practical situations where this is not the case, additional

strategies must be implemented to provide improved force tracking capability (Lasky

& Hsia 1991, Seraji & Colbaugh 1993).

The fast subsystem turns out to be a linear time-varying system where the slow

state variables play the role of parameters. Therefore~ any linear controller may be

designed to damp out the flexible variables of the system. In the present work~ the

Linear Quadratic Regulator (LQR) was chosen to meet this objective. The control

strategy selected involves feedback of the full state, which is not usually available

in practice, such that implementation of state observers is recommended for future

work. Also, ideal actuators with no torque limitations were assumed.

5.2 Singular Perturbation Method

The singular perturbation method described in this section is based on the work by

Siciliano & Book (1988), where the technique was successfully applied to the control

of a two-link flexible manipulator.

The dynamical equations of motion of the multi-link manipulator system to be

controlled can be cast as:

where M is the mass matrix, q is the vector of generalized co-ordinates, the vector c

contains the velocity dependent inertia terms as weIl as damping terms, Tt represents•
Mq + Kq = C + Tt - JTfext (5.1)
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• the control torques, J is the Jacobian of the manipulator, and fext is the external force

vector. Equation (5.1) may be partitioned in terms of rigid and flexible variables as

where

o

Kffqf
(5.2)

•

•

- Tf r = Cr - J r fext ;

- T
ff= Cf - Jffext.

Subscripts rand f denote rigid and flexible terms respectively. The inverse of the

mass rnatrix may be expressed as

and equation (5.2) may be recast as

Q.r = H rr ( <Ir, qf )fr (qr let-, qf, qf) + Ur f (qr, qf)ff (qr, qr, qf' qf )

-Hrf(qn qf)Kffqf + Hrr(qn qf)T (5.3)

Q.f = H fr (qr, qf) fr (qr, qr l qf' qf) + Hff (qr, qf )ff (qr. qr, qf, qf)

-Hff(qn qf)Kffqf + Hfr(qrl qf)T (5.4)

Provided that the stiffness coefficients are of the sarne order of magnitude, it is

appropriate to extract a cornmon scale factor k such that

K = (lfk)Kfjl k ~ 1

and the elastic forces are defined as

Defining

1
J..L="k'
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and premultiplying equation (5.4) by K we obtain

qr = H rr (qr, /-l~)fr (qr, qr, J-le, /-lé) + Brf (qr, J-l~)ff (qr, qr, /-le, /-lé)

-Hrf(qr, /-lE)e + Hrr(qr, J.1.~)T (5.5)

J.1.ë = Hffr(qr. J.1.e)fr (qr' qr, /-le, J.1.é) + Hff f(qr, J.1.E)ff(qr, qr, J.1.(, J-lé)

-Hf/f(qr, J.1.e)e + Hffr(qr, J.1.e)T (5.6)

where

H f/ r = KHfr

Hfff=KHff

To establish the two reduced subsystems, equations (5.5) and (5.6) will be written

in the state space farm. The following state variables are defined:

(5.ï)

where the perturbation parameter € is defined as

(5.8)

With these forms, equations (5.5) and (5.6) become

. ? -? 2 - ?
X2 = Hrr(XiT czdfr(Xl, X2, €-Zl, fZ2) + Hr/(XIT f zr)ff(Xt, X2, CZl. fZ2)

-Hr/(Xl' f2Zr)Zl + Hrr(xt, €2Zr)T

(5.9)

(5.10)

(5.11 )

•
(5.12)

Now using the basic assumption of singular perturbation theory of large time scale

separation between the two subsystems, we obtain the slow subsystem equations of

75



• motion by letting the perturbation f ~ O. Formally setting f = 0 in equations (5.9)

and (5.10):

X2= H rr (XI,0)fr (XI!X2'O,0) + H rf (XI,0)ff(Xl,X21 0,0)

-Hrf(XI,O)ZI + Hrr(XI, O)T

(5.13)

(5.14)

where the overbars are used ta indicate that the system \Vith € = 0 is considered.

The quasi-static elastic force Zl may be abtained from equation (5.12) as

(5.15)

•

Ta obtain the fast subsystem, a new time scale i is defined as

i = tif

and implemented into equations (5.9)-(5.12) ta obtain

dXI
di = fX2 (5.16)

dX2 ? -? ? - ?
di = f{Hrr(Xh czdfr(Xl, X2, f-Zl, fZ2) + Hrf(Xl' czdff(Xil X2, CZI, fZ2)

-Hrf(xt. f2Zdzl + Hrr(Xl, f2zdT} (5.17)
dZ l
-- = z? (5.18)
dt -

dzi 1 ? - 2 I? - ')di = H fr(XI' czdfr(xt, X2, f Zl, fZ2) + Hff(XI, f-zdff(Xl: X2, CZh fZ2)

-H'ff(XI! f2Zdzi + H'fr(XI' f2 ZdT (5.19)

Now, as f ~ 0, only equations (5.18) and (5.19) remain, and by defining the fast

state variables as

{::}={ (5.20)

•
the fast subsystem is described by

d1JI
di = 112

dTJ2 1 - ,-di = H fr(Xl, O)fr(XI I X2, 0, 0) + Hff (XL, O)ff(Xl l X2, 0, 0)

-H'ff(Xb O)ZI + H'fr(Xh O)T
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• where, for differentiations with respect ta the fast time scale, the quasi-static force

varies slowly such that

dZ l
-- ~O
dt

(5.23)

If we substitute Zl from equation (5.15) into equation (5.22), the fast subsystem

simplifies to

d1II-- = 112dt

d~2 = -H'Jf(x[,0)111 + H'Jr(XL,O)Tf

(5.24)

(5.25)

which is expressed in a linear state form where the slow variables Xl act as parameters.

The control input for the fast subsystem T f~ is given by

TJ=r-T.

• 5.3 Composite Control

Once the full flexible system has been split into two reduced-order models, the design

of the feedhack control for the full system can be split into two separate contraIs

T and T f ~ and the composite control torque for the full-order system can then be

obtained from

'ï=T+rf· (5.26)

•

Figure 5.1 shows the following coroposite control approach in a block diagram. The

overall control diagram is divided into two boxes (in dashed lines): slow control and

fast control.

5.3.1 Slow Control

For the slow control, using equation (5.15), equation (5.14) may be recast as
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where the following easily verifiable relation was used:

It is realized that equation (5.27) is equivalent to equation (5.1) with flexible terms

neglected. Equation (5.27) may now be used to design a position/force controller

based on well-established control schemes suitable for rigid manipulators.

Most control schemes are joint-based, i.e., the desired trajectory is specified in

terms of time histories of joint position, velocity and acceleration! and trajectory

errors are developed by differencing these values from the corresponding desired ones.

However. in typical contact operations of a manipulator, it is desirable ta specify the

manipulator's task in terms of appropriate motions of its end-point (end-effector).

This means that it is necessary ta translate the end-point motion into a corresponding

set of joint motion specifications, Le., inverse kinematics must be carried out, which

is known ta be a difficult computational problem. Impedance control avoids this

difficulty by specifying the manipulator's behaviour in Cartesian space: the measured

joint position of the manipulator is transformed by means of direct kinematics into a

Cartesian description of the end-effector position, and tracking errors are specified in

Cartesian space. The velocity and acceleration of the end-effector in Cartesian space

can be approximated respectively by

x= Jr(qr)qr

X = Jr(qr)qr + jr(qr, qr)4r

(5.28)

(5.29)

For non-redundant manipulators, the generalized accelerations may readily be

obtained by straightforward inversion of the Jacobian as

(5.30)

•
However, manipulator systems may he redundant, Le., there is an infinite number

of joint motions which can achieve a certain end-effector trajectory (e.g. the 7-joint

SSRMS). This is because the manipulator has more than the minimum nurnber of
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• mechanical degrees of freedom to perforrn tasks. For redundant manipulators, the

inverse of the .Jacobian, J;l in equation (5.30) does not exist; in this case, redundancy

may he exploited to satisfy a certain optimality criterion such as minimization of

actuator joint torques or a quadratic criterion. One such optimization method \Vas

developed by Khatib (1987) which minimizes the instantaneous kinetic energy

constrained by

The effective inverse of the .Jacobian which satisfies the above optimization is called

the inertia-weighted pseudoinverse (Khatib 1987) which can be expressed as

• J + - M-lJT(J M-lJT)-l
At- TT T T TT T (5.31)

Therefore, the generalized accelerations can be expressed using equation (5.31) as

.. = M-lJT(J M-lJT)-l(" _ j . )qT TT r T TT T X Tqr (5.32)

Impedance control is based on specifying the desired behaviour of the system with

respect to the external force exerted hy the end-effector on the environmenL which

is referred to as the target impedance. Since the dominant behaviour of manipulator

systems along each degree of freedom is that of a second order system, a reasonable

target impedance is usually also chosen as second order (Hogan 1987):

where e is the tracking error vector defined as the difference between the actual

end-effector trajectory x and its reference (or nominal) trajectory x Te!:

• e = x - x Te/
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• and A, K d and K p are matrices representing respectively the desired apparent mass~

damping, and stiffness of the manipulator tip. These matrices are usually chosen

as constant and diagonal to provide system decoupling. The desired external force

is achieved indirectly by an appropriate choice of the reference position trajectory.

If the boundary of the environment to he contacted is known to be Xw. then the

steady-state reference position of the end-effector normal to the contact surface may

be chosen as

n _ n ~ k-1J.n
Xre! - X w ' p ext,d (5.35)

•

where the superscript n denotes the normal to the contact surface~ f:Xt.d is the desired

contact force on the environment~ and kp is a diagonal element of K p •

Letting

r = (J M-1JT)-lr r rT r

the control torques which provide linearizing and nonlinear decoupling action on the

system dynamics can be obtained by selecting the fol1owing control structure:

_ AT'" , A "'T
T = J r r r T - dr + J r fext (5.36)

Vector Tf is sometimes referred ta as the servo portion of the control law and the rest

as the model-based portion (Craig 1986). Î'r~ dr, and î r are estimates of rr, dr~ and

J r respectively. Assuming exact measurement of system parameters~ the estimated

values are identical to the real ones, and the symbol ... can henceforth be dropped.

The servo portion of the control law can he selected as

(5.37)

•
where x· is selected to satisfy the target impedance (equation (5.33)):

(5.38)
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• Substituting equations (5.37) and (5.38) into equation (5.36), the control torques for

the slow subsystem can be expressed as

(5.39)

•

It is worth noting that although these torques are calculated based on the rigid

model, the effectiveness of the control scheme is assessed based on the original flexible

system.

5.3.2 Fast Control

For the fast control, equations (5.24) and (5.25) may be expressed as

(5.40)

where 17 = [."i ."f]T, and if m and n are respectively the number of flexible degrees

of freedom and the number of actuator torques, then

[
Omm Imm] [ Omn ]D= : E= .

-H'ff Omm' H'fr

Provided that matrix E insures controllability of the states (Readman 1994L the

Linear Quadratic Regulator (LQR) can now be applied to this system. The LQR

performance index which optimizes tracking error and energy expenditure may be

expressed as

(5.41)

where Q and Rare symmetric weighting matrices which must be positive semi­

definite and positive definite respectively. Expressing the feedhack control law as

•
Tf = -F."

the optimal control gain which minimizes the performance index J is given by

F = R-1ETp
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where matrix P is the solution to the matrLx Ricatti equation,
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•
Chapter 6

Simulations, Discussions and

Results

• 6.1 Program Description

•

The program developed to perform the dynamic simulations involving contact of

multi-hody systems \Vas written in the FORTRAN language. Although the formu­

lations described in this thesis were for general spatial (3-dimensional) motion. the

simulation program is restricted to planar dynamics. It is felt that the study of planar

dynamic simulations alone will give sufficient insight into the formulation presented

in this thesis, and also provide a solid basis for a full 3D implementation of contact

dynamics of multi-body systems.

Also, as already mentioned in Chapter 2, the computation of the equations of

motion of individual finite elements of contacting bodies were carried out in symbolic

form using the symbolic manipulator software lVIAPLE V. In the program, computa­

tions ta be performed for dynamic simulation may be divided into ofJline and online

operations.
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amine com.putations

Initial operations before time integration:

• Read input file: structure definition (length, mass, type of joints~ kinematic

architecture, finite element mesh. etc). initial conditions (qt=o ~ qt=o) ~ simulation

specifications (tf' ~t, tolerances, etc).

• For each subsystem~ compute initial mass and stiffness matrices.

• For each subsystem, compute representative values of natural frequencies; then

compute damping constants and damping matrix.

• For contacting bodies, if Guyan reduction method is used, compute matrix G

of equation (4.62), and new matrices M, ë and K of equation (4.63).

• For contacting bodies, if 2nd or 3rd methods (described in Section 4.3.1) are used

to calculate matrix i{-l of equation (4.15), perform necessary matrix algebra to

compute constant terms included in equations (4.46) and (4.57), respectively.

Online com.putations

Integrating from time t to t + ~t:

• Newton-Raphson iteration:

1. For each subsystem: compute or assemble, depending on method used

(Section 4.3.1) and whether Guyan reduction is used (Section 4.3.2). the

mass, damping and stiffness matrices, and matrices K and i(-l.

2. For contacting bodies, update the conditions of contact·, based on the

procedure described in Section 4.2.3.

3. For each subsystem~ update i{ and f of equation (4.13), and for each

constraint set, update g of equation (4.14).

• In the first iteration, assume sticking contact, as discussed in Section 4.2.4.
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4. For each subsystem, compute~..\and ~q from equations (4.21) and (4.15)

respectively. Update q and..\ from equations (4.22) and (4.23) respectively.

5. If convergence criteria outlined in Section 4.2.5 is satisfied, stop iteration:

othenvise, go back to step 1. Usually, 2 or 3 iterations are found to be

sufficient for convergence.

• If composite control is used for force, trajectory and vibration control, slow con­

trol torques are obtained from equation (5.39), and fast control from equation

(5.42), where F is the matrix of LQR control gains.

• Output results: generalized coordinates and velocities, forces, torques, etc.

• Go to next time step.

Apart from the use of FLEXLINK (Cyril et al. 1989) to model multi-body systems,

a few other external subroutines were included in this program:

• Natural frequencies of subsystems are calculated using the EISPACK libraryof

FORTR..-\N subroutines.

• The solution of the Ricatti equation (5.44) and of the optimal LQR control gain

F in equation (5.43) are obtained hy caUs to a FORTR..~N subroutine Library

created hy CASCADE (Computer-Aided Systems and Control Analysis and

Design Environment) and found in Netlib, a repository of public domain math­

ematical software. The LQR control gains, which are manipulator-configuration

dependent, can therefore he calculated on-line at any desired sampling rate.

6.2 Program Validation

As validation tests of the FEM program, the impact problems of simple structures

that can he handled analytically using Hertz's theory are simulated and the rcsults

compared. An example considered by Chaudhary & Bathe (1986) is used here for the
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• sake of comparison. The direct impact of two spheres is shown in Figure 6.1. Due ta

the symmetrical nature of the problem and contacting bodies! a..xisyrnmetric elements

may be used ta model a single sphere which is considered to come into contact \Vith

a fiat rigid surface. A final grid size of 128 elements was chosen (comparable to the

example in Chaudhary & Bathe (1986) L which satisfies the requirements for good

convergence of resultst and sufficient number of contact nodes in the contact area.

Figure 6.2 shows the finite element mesh used, where a finer grid \Vas constructed

near the contact area.

Identical
spheres

~•
L

x

•

Figure 6.1: Impact of identical spheres

The radius of each sphere is taken as R = 5! the Poisson's ratio v = 0.3. the mass

density p = 0.01, and the initial speed of impact as Va = 3 (values have no units! as in

Chaudhary & Bathe (1986)). The Young's modulus was varied between 102 to 10.5•

The quasi-static description of elastic impact between two spheres (or bodies which

make contact over a circular area) , based on Hertz theory, can be found in .Johnson

(1985) and is given in AppendLx D. The impact dynamic simulation results obtained

using the present finite element formulation are compared with those calculated using

Hertz theory. Figures 6.3 and 6.4 show the force and displacement of the center of

tFurther grid refinement (increase in the number of elements) did not yield appreciably better

results.

87



•

•

2~

:[
.~ a
Ils
1
>-

-2"'"

-4-

r---~

""\
\

\/

/
/

'/
IVVV V

A'../ ./'"

-2 a 2 4 6
x-axis Cm)

8

-

-

-

Figure 6.2: Finite element mesh of half a radial cross-section of a sphere

mass of one of the spheres through the duration of impact~ and Figure 6.5 shows

the developed normal contact tractions along the contact surface from the center ta

its boundary at the time of maximum deformation (which occurs at half the total

impact time). AIl values are nondimensionalized as follows:

f
f*'

t
t* '

P-,
Po

r

a

•

where f* and u* are respectively the contact force and displacement of a sphere at

half the impact time t*, which are also the maximum values hecause t* is the time

of maximum elastic compression before rebound starts. Pressure Po is the contact

traction at the center of the contact circle of radius a at t*. AlI these values pertain

ta those of the quasi-static Hertz theory (see Appendix D for further details). It is

interesting to note in Figures 6.3 and 6.4 that as the Young's modulus E is increased,

the results obtained from the present formulation approach those obtained using
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Hertz theory. This is so even though as E is increased, the contact radius decreases

and fewer number of nodes are available ta represent the details of contact mechanics

(see Figure 6.5). This is to be expected because Hertz theory is based on a quasi­

static nature of contact which means that the deformation is assumed to be restricted

to the vicinity of the contact area and ta be given by the statical theory: elastic wave

motion in the bodies is ignored and the total mass of each body is assumed to be

moving at any instant with the velocity of its centre of mass (Johnson 1985). This

quasi-static assumption can be used if the duration of the impact is long enough to

permit stress waves to traverse the length of the contact body many times. In other

words•. Hertz theory is valid only if the ratio of contact time ta wave time. which

is of the order of (JE/p/VO)l/5. is much greater than unity. Thus. it makes sense

that as E increases and the ratio increases. the results found using the two methods

approach one another. Table 6.1 compares values of f\ u*, and t* obtained using

the present formulation and Hertz theory for different values of Young's modulus. It

clearly shows that the difference decreases as E increases.
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Table 6.1: Comparison of results obtained from the present formulation and Hertz

theory

E Present FonIlulation Hertz theory Percent Difference

f* = 134.4 f* = 117.0 14.9 %

102 u* = 0.4434 u* = 0.5034 11.3 %

t* = 0.2250 t* = 0.2467 8.8 %

f* = 323.1 f* = 293.9 9.9 %

103 u* = 0.1838 u* = 0.2004 8.3 %

t* = 0.090 t* = 0.0982 8.3 %

f- = 1952.0 f- = 1854.6 5.2 %

105 u* = 0.0303 u" = 0.0318 4.7 %

t* = 0.0150 t* = 0.0156 3.8 %

As mentioned in Section 1.3, the subsystems which are categorized under "multi­

body systems" are modelled using FLEXLINK (Cyril et al. 1989), an in-house general­

purpose software package for the dynamic simulation of serial-link flexible manipula­

tors. Substantial program verification \Vas carried out by Cyril (1988), and subsequent

users of the prograrn (Jaar 1993, Kim 1994).

Partial verification of the program as a whole \Vas done by comparison of results of

the system rebound dynamics with those obtained using an impulse-momentum ap­

proach described in Section 1.2 (Kim 1994). However, no simulation result \Vas found

available in the literature on impact or sustained-contact dynamics of multi-body

systems that studies what happens during impact or sustained contact. Generally,

impulse-momentum approaches assume that impact occurs instantaneously and use

principles of energy and momentum conservations, along \Vith certain assumptions

about the energy loss (e.g. coefficient of restitution) and friction during impact, to

obtain rebound states at the end of impact. For certain assumed values of these

parameters, the rebound dynamics results may agree quite weIl with those obtained

using the finite element formulation. However, the choice of these parameters is ar-
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bitrary, and is usually determined based on experimental results. Thus, one of the

benefits of carrying out a full finite element simulation of impact/contact dynamics~

despite its computational cost, is that such impact characteristics as energy loss and

friction can be obtained without the need of elaborate experiments, by using more

commonly available material properties such as damping ratios and coefficients of

friction.

Three efficient solution methods for contacting bodies which do not compromise

solution accuracy are used: (i) the second method of computing K and i(-l presented

in Section 4.3.1; (ii) Guyan reduction method (Section 4.3.2): and (iii) elimination

of the flexible portion of the nonlinear forces (Section 4.3.3). The validity of these

methods have been verified through comparative studies of the simulation results of

various scenarios (most of the simulation cases described later in this chapter): it was

found that in aIl cases the use of these methods produce very close results to those

obtained using the full solution method.

With respect to the second method of computing K and K- 1 , the validity of

the assumption that deformations are negligible compared to the dimensions of the

body and thus can be eliminated from the mass matrLx, is further demonstrated us­

ing a problem addressed by Nlisra et al. (1998). This paper considers the dynamics

of flexible appendages connected to a spinning rigid spacecraft with an offset from

the spacecraft center of mass, as shown in Figure 6.6. It was observed that neglect­

ing second and higher order tenus in elastic displacements and velocities from the

equations of motion resulted in an inaccurate and different response from that of

the full nonlinear analysis. In fact, the response turned out to become unstable for

positive offset (Figure 6.6-(a». The present method \Vas applied to this system, i.e.,

only the elastic displacements from the mass matrix \Vere removed from the equa­

tions of motion: the response of the system turned out to be indistinguishable from

that of the full nonlinear analysis. This result further demonstrates the validity of

the present method, even for different and more sensitive systems, where the elastic

displacements are relatively larger than those dealt \Vith in this thesis.
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• Finally, in aH uncontrolled simulation cases where there is no energy input inta

the system, the total energy of the system \Vas plotted against time to verify the

principle of energy conservation.

(a)

JI

(b)

•

•

Figure 6.6: Spinning spacecraft and appendages with an offset a

6.3 Impact Dynamics

First~ the frictionless case of impact dynamics is considered, follawed by the case of

impact with friction. Control is not applied in the following cases, except in Section

6.5.

6.3.1 Frictionless Case

The problem of a spacecraft-mounted two-link flexible manipulator system impacting

a satellite is considered here, as seen in Figure 6.7. No friction is assumed to be acting

at the contact surfaces. The spacecraft and the manipulator system are treated as

"multi-body systems" , and the end-effector and satellite to be captured as "contacting

bodies". The spacecraft is assumed rigid, and its orbital rate n (angular velocity of

the orbital frame with respect to the inertial frame) is taken as 1.157 x IO-3rad/sec.

The problem of orbit maintenance is not considered, Le., it is assumed that the
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center of mass of the spacecraft follows a prescribed orbital trajectory. The satellite.

however, is modelled as a free-floating body. The manipulator links are [Ilodelled as

Euler-Bernoulli beams, and the assumed modes method (Meirovitch 1967) is used for

the discretization of the bending motion, where eigenfunctions of a cantilever beam

are chosen as the admissible functions (Section 3.1.2). One mode was used to model

each link. 1t has been reported by sorne researchers (Cyril 1988. Fattah 1995, .Jaar

1993) that the first one or two modes play the dominant roles in many situations;

thus, fairly good accuracy can be achieved with only one mode.

The satellite is modelled as an octagonal body and the end-effector as a U-shaped

gripper. The end-effector is chosen to play the role of contactor, and the satellite the

role of target. A finite element mesh, made up of 4-node quadrilateral (QUAD4) and

3-node triangular (CST) elements, is constructed on these two bodies, where a finer

grid is applied near contact surfaces, as shown in Figures 6.8 and 6.9. The Young's

modulus of the end-effector and payload were taken as E = 7 x 101O (N/m2
) •

The three computationally efficient solution rnethods for contacting bodies, men­

tioned in Section 6.2, \Vere applied on the end-effector and payload after verification

of their validity. For Guyan reduction, the master degrees of freedom, comprising

approximately 35% of the total number of degrees of freedom, were chosen to include

those pertaining to potential contacting nodes and those \Vith lower K ü !lV[ii ratio.

This arrangement yielded a computer simulation time of less than 20% of that of the

full model, with negligible discrepancy in the results. The elimination of the flexible

portion of the nonlinear forces, discussed in Section 4.3.3, further contributed to an

additional30% reduction in simulation time.

The contact scenario (Figure 6.7) is as follows: the manipulator system reaches out

to capture the satellite but rebounds with almost no loss of energy. The only source

of energy loss is in the form of structural damping of 1% of the critical damping for

contacting bodies and flexible links. The material specification of the system is given

in Table 6.2. The non-zero initial conditions immediately before impact are given in

Table 6.3. All the generalized coordinates and velocities corresponding to the flexible
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degrees of freedom are initially assumed to be equal ta zero. The manipulator joint

rates are such that just before impact \Vith the payload, the end-effector moves in the

local horizontal direction with a speed of 0.1 m/sec (Figure 6.7). The basic solution

methods, system specifications. configurations and initial conditions outlined above

apply throughout this chapter unless othenvise stated, in which case sorne features

may be added or modified to the existing system description.

Manipulator

Orbit

Spacecraft

Figure 6.7: Impact scenario

Table 6.2: rvIaterial specification of the system

Body length mass El .Jzz

(m) (kg) (iVm2
) (kgm2 )

Spacecraft NIA 1 x 105 NIA 8 x 105

Link 1 8.13 163 88,100 3591

Link 2 8.13 163 88,100 3591

End-effector NIA 2.3 NIA 0.18

Payload NIA 884.3 NIA 2495

El = Flexural stiffness

.Jzz = l\'Ioment of inertia about origin (joint)

The forces acting at the end-effector joint during impact are shown in Figure 6.10.

AlI x and y directions in these figures refer to those of the corresponding local reference
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Table 6.3: Initial conditions of the system

Body Generalized GeneraLized

Coordinates (0) Velocities (o/s)

Spacecraft 01=0 (JI =0

Link 1 O2 =67.3 O2 =0.911

Link 2 03 =45.4 03 =-1.82

End-effector (}4=0 84 =0.911

Payload Op=O Op=0
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• Figure 6.8: Finite element rnesh of the end-effector

96



•
2

1.5

0.5
g
~ 0
al
1
>-

-0.5

-1

-1.5

-2

Figure 6.9: Finite element mesh of the payload•
-2 -1 o

x-axis (m)
1 2

•

frames (Figures 6.8 and 6.9). It can be seen that the duration of impact is about

3.5 x 10-0

' sec. As expected, the end-effector joint force is quite high in the y-direction

(normal to the contact surface) and reaches a maximum of approximately 15 x 104 1V

at half the impact time, which is also the point of maùmum compression. It can

also be observed that the force due to elastic vibrations of the end-effector resulting

from impact is non-negligible even after impact, which is contrary to the assumption

of Hertz theory. In the x-direction (tangential to the contact surface) the force is

relatively insignificant due to the assumption of frictionless .contact (ft/ fn ~ 0.002).

The total energy of each of the three subsystems (spacecraft-mounted manipulator

system, end-effector and payload) are plotted in Figure 6.11 (orbital energy is not

included). The end-effector initially has negligible total energy but builds potential

energy as it deforms until a maximum is reached at half the impact time and then

returns to its initial condition at the end of impact. The manipulator, on the other

hand, starts out with a sizeable kinetic energy, loses sorne of it until half impact-

97



•

•

•

time where it is mostly made up of elastic energy due to the deflections of the links,

and regains sorne kinetic energy during the rebound phase of impact. The payload

initially has no energy but gains sorne kinetic energy imparted by the manipulator

during impact. The addition of all three plots is equal to the total energy of the whole

system which must be a constant as shown in Figure 6.12. The displacements of the

end-effector joint and payload-center are shown in Figure 6.13. In the y-direction. the

displacement of the end-effector is comparable in profile to that of the elastic sphere

presented in Section 6.2, while in the x-direction, the displacement profiles of both the

end-effector and payload are scarcely affected by the impact~ due to the assumption

of frictionless surfaces. The velocities of the end-effector joint and payload-center

are shown in Figure 6.14. The rotation angle of the end-effector \Vith respect to the

payload and the rotation angle of the payload are shown in Figure 6.15. With respect

to the motion of the end-effector joint, unlike its displacement profiles (Figure 6.13)

which do not show oscillatory behaviour because its motion is constrained by the tip

of the rnanipulator, its rotational motion contains oscillatory behaviour. However,

these angles, along with the payload displacement in the x direction, are quite small

with both bodies because the resultant impact force acts approximately along the

line joining their centers of nlass. The rotation rates are shown in Figure 6.16.

The post-impact simulation results are shown in Figures 6.17 - 6.20. Figure 6.17

shows the joint angles of the manipulator during the first 50 seconds after impact,

where (Ji is the attitude drift of the spacecraft. while (J2 and (J3 are the angles of

rotation of the two links. Structural damping was included in the system (1 % of

critical damping), which has the effect of damping out the vibrations of the links

(Figure 6.19), and also results in the graduaI decay of the total energy of the multi­

body system (Figure 6.18). Figure 6.20 shows snapshots of the post-impact rebound

motion of the manipulator system and payload at every 10 seconds. The manipulator

stretches out to impact against the payload, and rebounds as it folds back on itself.
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6.3.2 Impact with Friction

In this case, it is assumed that there is friction acting at the contact surfaces. Coulomb

friction, based on the model described in Sections 4.2.3 and 4.2.4 1 is applied on the

contact surfaces with J-ls = 0.2 and /-ld = 0.15. The forces acting at the end-effector

joint during impact are shown in Figure 6.21. In the y direction, the force profile is

similar to that of the frictionless case, but in the x direction 1 unlike the frictionless

case 1 substantial force is observed due to the frictional effects. The total energy of each

of the three systems are plotted in Figure 6.22 and the addition of aIl three plots is

shown in Figure 6.23. The displacements of the end-effector joint and payload-center

are shown in Figure 6.24. Also, the velocities of the end-effector joint and payload­

center are shown in Figure 6.25. The rotation angles of the respective bodies are

shown in Figure 6.26. When comparing these results with those of the frictionless

case, one can observe a substantial change in displacement of the payload in the x­

direction, and also an increase in the rotation of the contacting bodies because in this

case there is a friction force acting in the local x-direction at the contact surfaces,

which provides a moment about their centers of mass. The rotation rates are shown
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in Figure 6.27.

The post-impact simulation results are shown in Figures 6.28-6.31. The results

are similar to the frictionless case of Section 6.3.1, but due to the tangential contact

force component resulting from friction, the payload acquires a small counterclockwise

rotational speed and the manipulator system rebound trajectory is also influenced by

this frictional force (see Figure 6.31 and compare with 6.20). Comparing the energy

decay of the two cases (Figures 6.18 and 6.29L the frictionless impact case seems

to excite more link vibrations for link 3, sa that a higher percentage of post-impact

energy decay is observed in this case.
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Figure 6.27: Rotation rates of contacting bodies: friction case.
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6.3.3 Other Impact Scenarios

A few other impact scenarios are considered here. The same system parameters

and initial conditions as in previous cases were used here except that two antennas~

modelled as Bexible beams~ are added to the satellite to be captured~ where the

corresponding revolute joints may be either free or locked. The two antennas are

identical and have the following material properties: mass (m) = 50 kg ~ length (l) =
5 m, Bexural stiffness (El) = 5 X 103 lV.m2 , and moment of inertia about joint (Jzz )

= 416.67 kg. m 2 • To ease computational demands, softer elastic moduli were used to

model the contacting bodies: E ee = 105 Nlm2 and Ep = 106 1Vjm2
. In cases 1 and 2,

the initial configuration of the system is as shown in Figure 6.32. In case 1 the antenna

joints are free, and in case 2 they are locked. Figures 6.33-6.38 and 6.39-6.43 show

the impact dynamics response of the system for cases 1 and 2 respectively. The tip

deflections of the antennas in the two cases show drastic differences. The frequency of

vibration in case 1 is much higher than in case 2~ which is due to the coupling with the

rigjd-body rotational dynamicst . On the other hand, larger amplitudes of vibration

are observed in case 2. The translational and rotational motion of the payload in

case 1 is greater that in case 2 which means that the locked antenna joints in case 2

provide greater resistance to the motion of the main payload body.

A different normal direction of the contact surface results in quite different post­

impact dynamics. A. vertical orientation of the payload at the beginning of impact as

shown in Figure 6.44, results in the post-impact dynamics trajectory shown in Figure

6.45 for the free antenna joint case, and Figure 6.46 for the locked antenna joint case.

1t is interesting to note that the vertical orientation of the payload causes friction

to act in the opposite direction to that of the two previous cases, which produces a

clockwise rotation of the payload (as opposed to counterclockwise in cases 1 and 2;

compare, for example, the respective payload rotations in Figures 6.38 and 6.45).

t Another way of interpreting this result is that in case 1, the boundary conditions of the antennas

correspond to those of a pinned-free beam, whereas in case 2 they correspond to a clamped-free beam.

The natural frequencies of a clamped-free beam are lower than those of a pinned-free beam.
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• 6.4 Capture Dynamics

•

In this section, the case where the end-effector successfully captures the satellite (as

opposed to rebound) is considered. The contact scenario is illustrated in Figure 6.47.

Coulomb friction, based on the model described in Sections 4.2.3 and 4.2.4, is applied

on the contact surfaces with ILs = 0.2 and J.Ld = 0.15. An antenna, modelled as a

flexible beam which has the same material specification as in Section 6.3.3, is attached

to the satellite by a revolute joint.

The simulation of capture dynamics is dependent on the type of capture mecha­

nism which is employed. But regardless of the type, the capture mechanism should

essentially fuifiIl three functions: (i) the resulting dynamic forces must be reduced as

much as possible; (ii) these forces must he damped out and; (iii) sorne type of latch­

ing or grasping mechanism must exist so that eventually the two impacting bodies

become rigidly connected. With the purpose of keeping things as general and simple

as possible, the following type of capture mechanism, illustrated in Figure 6.48, is
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Figure 6.47: Initial capture scenario

assumed in this case: as soon as initial contact occurs, the grasping mechanism allows

two spring-dashpot systems to join two pairs of grapple points, where for each pair

one point is located on the end-effector and one on the payload. The spring compo­

nent forces the two contacting bodies towards each other and the dashpot component

damps out the resulting vibrations until eventual rigid attachment .

The forces produced by the capture mechanisrn must he accounted for in the

dynarnical mode!. Let the positions of the two pairs of grapple points on the end­

effector and payload be (rel' r Pt) and (re2 , r P2). Then the forces being exerted by the

capture mechanism are

(6.1)

where

(6.2)

and K c and Cc are diagonal matrices containing spring and damping constants. Then

the following terrns must be added to fi of equation (4.1), where i corresponds to the

end-effector and payload suhsystems:

where, if qe and qp are the generalized coordinates of the end-effector and payload•
fe = J~ ff + J~f~

Cp = -J~l ff - J~2f~

(6.3)

(6.4)
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• respectively, then

J _ arej

ej - 8qe'

J . - arpl
Pl - 8Qp ,

j = 1,2

j = 1,2

(6.5)

(6.6)

The spring and damping constants used here are Kc = 5 x 10-l1V/m and Cc = 4 X

104 .N.sec/m respectively.

•
Payload

Manipulalor link

End-effeclor joint

•

Figure 6.48: Capture mechanism

The simulation results during the capture operation are shown in Figures 6.49­

6.52. The forces acting at the end-effector joint during capture are shown in Figure

6.49. As seen in Figure 6.50, which is an expanded view of Figure 6.49, five repeated

impacts occur at A, B, C, D and E until eventual rigid attachment at about 3.5 x 10-3

seconds. This phenomena can be seen by the abrupt changes in an otherwise smooth

oscillatory profile of the joint forces. The displacements of the end-effector joint

and payload center are shown in Figure 6.51. The relative rotation angle between

the end-effector and payload and the rotation angle of the payload are shown in

Figure 6.52. Fluctuations in the relative angle are observed from the moment of

contact because the mismatch in the rotations of the payload and end-effector cause

misalignment between the two contacting surfaces and the torque which thus arises

induces rotations of the end-effector joint. These phenomena complicate the whole
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• capture operation as already seen by the abrupt changes in contact forces and rotation

angles of the end-effector.
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Figure 6.49: End-effector joint forces during capture. (-- x-dir, - y-dir)•

•

The results for post-impact simulations (0 ~ t < 100sec.) are shown in Figures

6.53 to 6.56. The joint angles are plotted against time in Figure 6.53. The fh plot

shows the attitude drift of the spacecraft and the Op plot shows the rotation of both

the end-effector and payload. The total energy of the system is shown in Figure 6.54.

During the first 10 seconds, the energy is seen to decay gradually by a slight amount

which is caused by loss of energy due to structural damping in the manipulator links.

Aftenvards, it maintains a steady value. The tip deflections of the two links of the

manipulator and payload are shown in Figure 6.55. As predicted by the energy

plot, the vibrations are seen to be almost damped out after about 10 seconds. It is

interesting to note the smaller link tip deflections and energy decay here compared to

those of impact scenarios in section 6.3, due to the extra constraints imposed by the

payload inertia at the tip of the manipulator. The trajectory of the whole system for

100 seconds after impact is shown in Figure 6.56. The post-capture motion can he

explained as follows: After successful rigid capture, the manipulator arms continue
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Figure 6.52: Rotation angles of contacting bodies during capture.

stretching until the singularity configuration (at about 50 sec), at which time a

moment is induced in both the payload and the base of the spacecraft which causes

the first to initiate a change in its direction of rotational and translational motion,

and the second to experience significant attitude drift (note the larger attitude drift

angle here compared to those of impact scenarios in section 6.3). The attitude drift

of the spacecraft is an undesirable result, but the post-capture behaviour of the

payload, which is shown to move towards the spacecraft, suggests that judicious

approach conditions of the manipulator before capture may be advantageously used

for uncontrolled satellite retrieval operations.

6.5 Trajectory, Force, and Vibration Control

•
The problem of a spacecraft-mounted flexible manipulator system applying desired

amounts of force on desired locations of the payload is considered. The spacecraft

can he thought of as the first link and its center as the base of the manipulator sys-
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126



•

•

•

10

1=0 sec

-s

-tOI::...---...L.20---...L..'S---,.l-O------IS---......O---_....l:S--=

(ml

Figure 6.56: Configuration of the system from time = 0 to 100 sec after capture.

tem. Then the manipulator is redundant, so that the optimization method based on

Khatib's (1987) inerlia-weighted pseudoinverse is used here to obtain a path which

minimizes the instantaneous kinetic energy of the system (section 5.3.1). The re­

spective Young's modulus of the end-effector and payload material are taken as

Eee = 1 x 105 (iV/m2 ) and Ep = 7 x l06(1Vjm2 ). The mass and moment of iner­

tia of the payload are 35,530 kg and 1.01 x 106 kg. m 2 respectively.

The manipulator is initially free and at rest with respect to the orbital frame:

its joint angles being fh = 00, 82 = 300
: and f}3 = 1200

• Subsequently, control is

applied in 3 stages (see Figure 6.57). Stage (1): the end-effector attempts ta make

a smooth direct contact with the payload. To simulate the fact that in reality there

is bound to be a small velocity differential between the contacting bodies just before

contact, an error value of 2mm is added to the ideal final position of the end-effector

(location of surface of payload), such that there is actually a small impact. Stage

(2): a desired force of 15 N is slowly appIied on the payload. Stage (3): the end­

effector is commanded to follow a straight vertical line along the payload surface

while maintaining the constant desired force. A difficulty \Vith achieving this task is
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• that the payload moves as load is applied to it, and its motion is not known a priori.

Therefore, the nominal (reference) trajectory of the end-effector is divided into two

parts as follows:

x,. = x p + x,./p (6.7)

•

where X r , x p , and x,./p are the nominal trajectory of the end-effector~ the location

of the payload reference frame (engraved on the body, as in Figure 6.57), and the

reference trajectory of the end-effector ,vith respect to the payload reference frame,

respectively. The trajectory x p must be fed online, while x,./p may be planned offline.

x

1

Spacecraft
Payload

Figure 6.57: Controlled contact scenario

The fol1owing sinusoidal reference trajectory was chosen for x,./p:

•

Xr/p(t) = c + a{ta - bsin(ta/b)}

where

a = (xn - Xrn)/(tn - tm)

b = (tn - tm)/(27r)

c=Xm

and m and n denote the initial and final values of each stage, respectively.
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The following values were used in the simulation:

A = [80 0] (kg); K d = [100 0] (lV.slm);
o 80 0 100

K p = [80 0] (lV/ m); "Po = { 1 } (m);
o 80 8.63

Xo = { 0 } (m); Xl = { 0 } (m);
-0.5 0.002

X2 = { 0 } (m); xI = { 0.5 } (m);
0.1875 0.1875

ta = Osee; t l = 6sec: t2 = 14sec: t f = 20sec.

Subscripts 0, 1,2, and f represent the initial, end of stage 1~ end of stage 2 and final

(end of stage 3) values of Xr/p, respectively.

One of the conditions of applicability of the singular perturbation method is that

the elastic vibration frequencies must be much greater than the frequency content of

the rigid body motion (such as, ratio ~ 10 (Boutin 1995)). Since in this particular case

the lowest natural frequency of the manipulator is 16 rad/sec (final configuration)

whereas the frequency content of the rigid body motion is 1 rad/sec (from equation

(5.33) ), the use of the singular perturbation method is valide

The solution of the matrLx Ricatti equation (5.44) can be computationally inten­

sive such that it may not be possible to compute it online at each servo tick. But

in most cases, the main purpose in vibration control is to clamp out the defiections

at steady state; thus, the LQR gain matrices can be designed also on the basis of

the final joint configuration, provided that under that particular choice the fast vari­

ables will not go unstable along the slow trajectory. It was found through simulation

results that this was indeed so in this case and in many others. In this \Vay, the so­

lution of the Ricatti. equations for each joint configuration can be avoided (Siciliano

& Book 1988) .

When manipulator links are rigid, the controller is seen to achieve the desired
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• trajectory and force with great precision (not shown). However, when links are

flexible, basically two different controllers are at work: one which attempts to achieve

the desired trajectory and force, and the other which attempts to suppress the induced

vibrations. Since the same torques atternpt to achieve both objectives. neither result

is perfect during contact operations. The trajectory deviates slightly from the desired

path, and a constant steady-state error appears in the applied force due to steady­

state link deflections. This steady state error, however, can be circumvented by

incorporating a corrective term to xI as follows:

(6.9)

•

•

where x le' X f' fd and fa are the corrected final trajectory, the pre-planned final

trajectory, the desired force, and the actual force, respectively.

Figures 6.58 and 6.59 show the path of the end-effector in orbital and payload

coordinates respectively. It can be seen that the end-effector traces the desired tra­

jectory quite efficiently (Figure 6.59), even while in contact with the payload. In

Figure 6.60 it can be seen that the force applied on the payload in the y-direction

reaches a steady value of 15 LV, as desired. Both Figures 6.59 and 6.60 show that

the end-effector undergoes sorne bounces before reaching sustained contact. During

this transitional phase, the end-effector is not able to track the desired trajectory;

however, during the ensuing sustained-contact phase, the controller is seen to quickly

regain its tracking capability.

Figure 6.61 shows the x and y displacements of the payload center of mass due to

the applied contact forces, and the rotation of the payload caused by the end-effector

rnoving along the payload surface, thus producing a counterclockwise moment about

its center of masSa Figures 6.62 and 6.63 show respectively the applied torques and

the joint angles of the spacecraft and manipulator links. The spacecraft is seen to

undergo sorne attitude drift, which is due to the absence of an attitude controller.

The spacecraft was simply treated as an additional link and was controlled to sat­

isfy the redundancy optimization criteria based on Khatib's (1987) inertia.weighted

pseudoinverse, which minimizes the instantaneous kinetic energy of the global space-
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• craftjmanipulator system. Lastly, Figure 6.64 shows the tip deflections of the two

links, where substantial steady-state deformations are observed in link 2. although

oscillations have been damped out. In link 1. control torques act at both ends of the

link, which have the effect of reducing its steady state defiectioD.
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Figure 6.58: X and Y coordinates of the end-effector \V.r.t. the orbital frame. Actual

trajectory.
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Chapter 7

Conclusions

In this chapter, a summary is presented of the work done in the thesis and conclusions

are drawn based on its results. Sorne suggestions for future work are also put forward .

• 7.1 Summary and Conclusions

•

The main interest of this thesis was in the development of a dynamic formulation

capable of simulating contact dynamics involving multi-body systems. The bodies

which undergo direct contact, referred to as contacting bodies, were modelied using

the finite element method and the Lagrange lVlultiplier technique for contact con­

straints, and multi-body systems \Vere modelled using a modified Euler-Lagrange

approach based on the method of Natural Orthogonal Complement. These systems

are coupied due to kinematic and contact constraints acting between them. Thus,

the overall system dynamics is composed of a set of differential equations (either

multi-body formulations or finite element nodal displacement formulations of the

contacting bodies) subjected to sets of algebraic equations expressing kinematic or

contact constraints. A systematic and efficient procedure for solving this system of

equations was presented. In this dynamic formulation, special attention was paid to:
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• Dynamic fidelity of contact mechanics. Unlike the impulse-momentum ap­

proaches which neglect what happens during impact! and the Hertzian ap­

proaches which neglect effects of elastic structural vibrations, the approach

presented in this thesis models the detailed mechanics of contact by using a

finite element approach! analyses the contact geometric constraints and corre­

sponding contact forces, and incorporates them into the dynamical equations.

This method is capable of modeling such phenomena as structural deformations.

elastic vibrations, friction, time-varying contact area, repeated contact/impact,

and others, without making doubtful assumptions about the nature of the phys­

ical contact process.

• Computational efficiency. In order to render the dynarnic simulation compu­

tationally efficient, the following solution procedures were used in this thesis.

Firstly, the computationally straightforward and economical Newmark method

\Vas used for the time integration of the equations of motion, with which the

second order dynamical equations can be converted into algebraic form. Sec­

ondly, algebraic manipulations were made of the resulting equations in order

to exploit the positive definite and positive semi-definite character of the mass,

damping and stiffness matrices and use the efficient Cholesky Decomposition

method for the inversion of matrices. Thirdly, efficient rnethods of obtaining the

inverse of a configuration-dependent and time-varying mass matrix of large size

\Vere considered and their relative merits analysed and weighed against com­

promises in modelling accuracy. Fourthly, the Guyan reduction method was

applied to the sets of finite element equations in order ta obtain a reduced set

of equations. Finally, the flexible portion of the nonlinear forces of contacting

bodies was analysed and its effects found to be negligible both during contact

and no-contact phases (Section 4.3.3).

In order ta control manipulator-type multi-body systems which may he required

ta handle maneuvers where the end-effector performs contact operations on the en­

vironment, it is necessary ta design a controller capable of achieving trajectory, force
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and vibration control. Thus, the dynamic model \Vas used to design a composite

controller which must simultaneously achieve these three goals. The singu.lar per­

turbation method was used to obtain two reduced order models. Subsequently, for

the slow subsystem, impedance control was used along with an optimization method

based on Khatib's (1987) inertia-weighted pseudoinverse to accommodate manipula­

tor redundancy. For the fast subsystem. the LQR method was chosen to suppress

link vibrations.

A FORTR.~N program was developed to perform dynamic and control simulations

involving contact of multi-body systems. Efficient solution methods for contacting

bodies outlined previously were included and validated. The program \Vas then used

to run simulations on three different types of contact dynamics scenarios involving a

spacecraft-mounted robotic system and a satellite system:

1. Impact dynamics: the manipulator end-effector hits the payload but rebounds

after impact. It \Vas observed that structural vibrations of contacting bodies

are non-negligible factors (contrary to the assumption of Hertz theory) which

should be taken into account for a detailed contact dynamics modelling. It

was also round that friction has significant effects on the post-impact motion

or trajectory of the system.

2. Capture dynamics: a capture mechanism \Vas employed so that the manipulator

achieves successful rigid capture of the payload. It \Vas observed that surface

misalignments between contacting bodies, friction effects, repeated impacts and

structural vibrations aIl combine ta substantially complicate the overall capture

operation and dynamics. This suggests that simplified contact models such as

the impulse-momentum and Hertzian approaches may not capture the cornplex­

ity involved in a contact operation.

3. Controlled dynamics: torques were applied at manipulator joints to achieve

trajectory, force, and vibration control. The controller was successfully tested in

the presence of aIl previously mentioned factors which affect the overall contact
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• process. However, during contact a steady-state tracking and force error was

observed due to elastic link deflections. A corrective action was proposed and

used to remedy this problem. In general, it was found that contact maneuvers

are much more difficult to control than no-contact maneuvers. It is coneluded

that a detailed contact model is essential for a rigorous validation of control

systems.

7.2 Suggestions for Future Work

The following points may provide a platform for new research activities in the field

of contact dynamics and force control of multi-body systems:

•

•

• Development of a three-dimensional simulation program for contact dynamics

of multi-body systems. Although the formulations described in this thesis were

for general spatial motion, the simulation program \Vas restricted to planar

dynamics.

• Investigation of alternative integration architectures. In this thesis, aIl systems

of equations \Vere integrated using the Newmark method at the same time step

size. However, depending on the characteristics of each subsystem, different

integration methods may be more suitable (e.g. Gear's method for stiff sys­

tems), and different time step sizes may he more appropriately used for greater

computational efficiency (e.g. for slower varying systems, larger step sizes may

be used. However, coupling between systems of equations must be accounted

for by periodic exchanges of data). The ultimate objective of this investigation

is to obtain an optimal tradeoff between accuracy and speed of execution.

• Inclusion of orbital dynamics. It \Vas assumed here that the center of mass of

the spacecraft follows a prescribed orbital trajectory. However, control maneu­

vers and contact operations may cause significant deviation from this assumed
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orbital path. The base motion, in turn, is likely to affect the dynamic behaviour

of the rest of the system due to dynamic coupling.

• Attitude control. In this thesis, the spacecraft was treated as an additional

link, and was controlled to satisfy the optimization criteria of minimum instan­

taneous kinetic energy of the global spacecraftjmanipulator system. However,

this method results in a slight attitude drift of the spacecraft. which may he

undesirable.

• Inclusion of alternate or additional control techniques. Alternate control meth­

ods should be investigated when vibration frequencies are not considerably

greater than those of the rigid body motion, in which case the singular per­

turbation method is not suitable for successful control. The use of integrai

manifolds (Spong et al. 1987) to obtain a more accurate reduced order model.

and the use of smart structures for active vibration control are possible options

to he explored. AIso, the implementations of force tracking strategies and state

observers should be considered in the more realistic case where exact knowledge

of environment parameters and full state feedhack are not feasible .
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Appendix A

Interpolating Functions of Finite

Elements

A.t Shape Functions of Isoparametric Elements

This section describes a few commonly used isoparametric elements and correspond­

ing shape functions.

A.l.1 2D Elements

For a four-node quadrilateral element (QUAD4) shown in Figure A.l, the interpola­

tion matrix in equations (2.8) and (2.9) is given by

Ni = [:1 ;\ 1:21~2 :3 ;3 :4 1~4]
where
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• 1
N 4 = --(ç - 1)(1] + 1)
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(a) (b)

•
Figure A.l: A QUAD4 element in (a) xy space, Cb) çT/ space

A constant strain triangle element (CST) can be obtained by degradation of the

QUA.D4 element as

l.V2 0 JV34

o iV2 0
(A.2)

where

A.l.2 3D Elements

•

A soLid hexahedral or brick elernent is shown in Figure· A..2. The corresponding

interpolating matrbc is given by

Ni = [iVt I 3 x3 N 2I3x3 iV3 I 3x3 N 4 I3x3 ..lVsI3x3 iV6 I3x3 N 7 I3x3 N g I3 x3] (A.3)

Here, I 3x3 is a 3 x 3 identity matrix and

(A.4)

where Çi, "li and (i are natural coordinates of node i.
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A.2

Figure A..2: A brick element in (a) xyz space, (b) ç.1]( space

Kinematics of Contact for 3D Elements

This section describes, for 3D elements of target bodies, the interpolating functions

used to obtain positions and elastic deformations of arbitary points with respect to

those of segment nodes. This procedure is based on the work by Chaudhary & Bathe

(1986).

Assume that the target surfaces are discretized using four-node quadrilateral seg­

ments as shown in Figure A.3. The equation relating the position and displacement

of an arbitrary point p on segment s to those of the nodes A. , B, C, and D of the seg­

ment is needed in the development of the constraint equations. A centroidal position

o is defined within the segment such that

1
Xo = 4"(XA +XB +xc +XD) (A.5)

•
Assuming that point p lies in the triangle .4BO as shown in Figure A.4, its position

and displacement is linearly interpolated over the triangle as follows:

(A.6)
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•
Figure A.3: Contact kinematics of a 3D element

where 0, /3, and, are triangular area coordinates of point p satisfying the same

relationship as equation (2.65), i.e.,

0+/3+7=1

In light of equation (A.5),

1
x p = 4{(4a + ,)XA + (4/3 + ,)XB + ,Xc + "fXD} (A.ï)

where the new forms of interpolating functions also satisfy equation (2.65). Then,

analogaus ta equation (2.68) for 2D cases, here we have

X s =
Xc

XD

Us =
Oc

Uo

(A.8)

• where I 3x3 is a 3 x 3 identity matrix.
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Figure A.4: An arbitrary triangle
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Appendix B

Sytntnetry and Positive

Definiteness of R in Equation

(4.21)

Symmetry of R

A matrix is symmetric if it is equal to its transpose. From equations (4.19) and

(4.20), since matrix K is symmetric, it follows that

-T ... -1 T ... -1 T T
R kk = (PkTkKrk P kTk + PkSkKSJ: P kSk )

... -1 TT'" -1 T T= (PkrJ:Krk PkTJ + (PkSkKsk P kSk )

... -1 T - -1 T -= PkrkKrk P krk + PkSkKsk P kSk = R kk

- T ... -1 TT'" -1 T -
R kj = CPkCkj KC/ej P jekj ) = P jc/c] K Ckj P kCk] = R jk

Positive definiteness of R

One way of proving positive definiteness of R is by showing that for any nonzero

vector a

153



• Expanding V

We may organize this series by collecting terms of the same subsystems as

(B.l)

where for a subsystem k, which is involved in constraint equations Cl, .... Crr&1c ~ we

have

•

Letting

equation (B.2) can be expressed as

Letting

mk

b k = L éÏe.k
ci=l

we have

(B.2)

•
since K;l is positive definite. Now, from equation (B.l), since the individual Qk'S

are positive, V is positive.
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Appendix C

U pdated Contact Forces After

Iteration l - 1

This Appendix describes in detail the calculation of the updated contact nodal forces

..:y, discussed in Section 4.2.3. The procedure is based on the formulation presented

by Chaudhary (1985).

C.l Recovery of segment tractions

The traction recovery calculation assumes that the interpolation of tractions over

each segment is linear and bilinear for 2D and 3D cases respectively, and that the

tractions are continuous across the segment boundaries. Figures C.I and C.2 show

respectively for 2D and 3D cases the distribution of segment tractions over a generic

contactor segment j. The consistent nodal loads corresponding to the distributed

segnlcnt tractions are given by

•
(C.I)
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l

segment j

Figure C.I: 2D: Contactor traction distribution over segment j

tm.

(2x2) Gauss
integration point

Figure C.2: 3D: Contactor traction distribution Qver segment j
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where Ti is the matrix of nodal point values of the segment tractions given by

tk tk tk
x y z

[~ t; ] . t l
t~ t~

2D: T j = 3D: T j = x (C.2)
t l

t~ tm tm tm
x x y z

tn tn
t~x y

r j is the matri.x of consistent nodal forces corresponding ta the segment tractions

given by

,; 1'; "'f~

2D: r j = [ ,~ ':] 3D: ri =
,~ !~ ,~

(C.3)
,~ !~ , ,r: ,m ,r:y

,r; ,; ,~

(e.g. ,; is the x-component of the consistent nodal load at node k due to the dis­

tributed segment tractions over segment j only. The total force --yk at node k is

the sum of contributions from the tractions acting over aIl segments adjoining node

k) and G i is a coefficient matrLx relating nodal values of segment tractions to the

corresponding consistent nodalloads. For the 2D case, G j is given by

di [2 1]G j =b-
612

(CA)

where b is the width of the contact segments, and di is the length of segnlent j. For

the 3D case, it is evaluated by (2 x 2) numerical integration (Bathe 1982) as

(C.5)

where H is a symmetric matrix of the bilinear interpolation functions at the (2 x 2)

Gauss integration points given by

•
ku hl2 hl3 hl4

H=
h22 h23 h2-l

h33 h34

h44

(C.6)
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• Specifically,

kll = h22 = h33 = k44 = 0.62200B4i

k l2 = h23 = k34 = kl4 = 0.16666666

k l3 = h24 = 0.04465820

ivlatrix J j is a diagonal matrix of values of the Jacobian determinant at the (2 x 2)

Gauss integration points, such that

Jil 0 0 0

0 Jj2 0 0
Ji = (C.7)

0 0 Ji3 0

0 0 0 Jj4

Using equation (C.1) and summing the constributions from ail contactorsegments.

a coefficient matrix relating the nodal values of segment tractions to the nodal contact

forces is constructed:

• r=GT (C.B)

A Gauss elimination solution is performed on the above equation to obtain the un­

known nodal values of the segment tractions T.

C.2 Friction U pdate of Segment Tractions

Using the recovered segment tractions, the total segment contact force, K,j, is obtained

from

where

(C.9)

• 2D: G T = bd
j

{ 1} 3D: G T
T =

- T 2 l '
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hUJl + hl2 J2 + h 13 J3 + h14 J"

h12 J l + h22 J2 + h23 J3 + h24 J4

h13J 1 + k23 J 2 + h33 J3 + h34 J4

hl4 J l + k2"J2 + h34 J3 + h44 J4
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• Also,

(C.ll)

(C.12)

•

where K,j and Kj are the total normal and tangential segment contact forces respec­

tively. These values are used in the procedure for updating the segment tractions ta

enforce Coulomb's law of friction.

Now, the friction update of segment tractions is as follows:

• Condition for tension release. A contactor segment experiences tension

release after iteration l - 1 if the total normal segment contact force is tensile,

or

(C.13)

The segment tractions are then updated to zero:

(C.14)

(C.15)

where Tj is the matrix of updated nodal point values of segment tractions and

f j is the matrLx of consistent segment nodal point forces corresponding to the

updated tractions over segment j.

• Condition of sliding contact. A contactor segment experiences sliding con­

tact after iteration l - 1 if the total segment tangential force exceeds the total

segment static frictional capacity, or

(C.16)

•
where

(C.17)

(C.lS)
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• The tangential components of the nodal point tractions of segment j are up­

dated as follows:

•

2D: T~ = [P -t]T 3D: Tto = [it PPP]TJ • t. , J. • • •

where

(
Id) t-t. = K j ""j

t. tA.'
K j ]

XJd is the dynamic sliding frictional force (see Section 4.2.4) given by

..,.Id _ 1/ _Tnn-J - ,-d~j i ~

and Aj is the area of segment j given by

The updated segment tractions and nodal forces are obtained as

- n - tTJo= T· +T,
J J

where

(C.19)

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

Note that the direction of the updated tangentiaI force is the same as for the

force rj.

• Condition of sticking contact. A contactor segment experiences sticking

contact aCter iteration l - 1 if the total segment tangential force is less than the

total segment static frictional capacity, or

•
The segment tractions satisfy Coulomb's law of friction and thus

Tj = T j

rj = r j
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Table C.I: State of contactor node as decided by states of adjoining contactor seg­

ments

One adjoining Other adjoining State of

segment segments contactor node

Sticking Sticking Sticking

Sticking Sliding Sticking

Sticking Tension Release Sticking

Sticking Not in contact Sticking

Sliding Sliding Sliding

Sliding Tension Release Sliding

Sliding Not in contact Sliding

Tension Release Tension Release Tension Release

Tension Release Not in contact Tension Release

By summing the updated segment nodal forces, the total updated contact forces

at the contactor nodes, i, are obtained. ACter the friction update calculation for the

contactor segments, the algorithm determines the conditions of sticking, sliding and

tension release at the contactor nodes as shawn in Table C.l.
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Appendix D

Hertz Theory of Elastic Impact

According to the Hertz theory of quasi-static elastic and collinear impact of two

spheres or bodies which make contact over a circular area (Johnson 1985), the

compression-time relationship is given by

8* d(8/8*)
t = Vo / {I _ (<5/<5*)5/2}'/2 (0.1)

Here, 8 is the relative displacement of the sphere centers and Va is the relative speed

of approach immediately before impact:

(D.2)

(0.3)

where U1 and 'U2 are the displacements of the center of mass of body 1 and 2 respec­

tively. The ma.ximum compression, 8*, is given by

(
1- '}) 2/5* ::>mvo

8 = 16RI/2E* (DA)

where, if ml, RI, El and m2, R2 , E2 are the mass, radius and Young's nlodulus of

body 1 and 2 respectively, then

•
1 1 1
-=-+-
m ml m2
1 1 1
-=-+­
R R 1 R2

1 1 - v2 1 - vi_ 1+
E* El E2
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• Since the impact is perfectly elastic and frictionless, and the energy absorbed in wave

motion is neglected, the defonnation is perfectly reversible. The total time of impact

Tc, is therefore twice the time of maximum compression t*, and is given by

* cS* 1 d (cS / 8* ) cS*
Tc = 2t = 2 Va 1 {1 _ (cS/cS*)5/2 } 1i2 = 2.94 Vo

The relationship between the deformation and contact force is given by

and the speed of compression is given by

(0.8)

(0.9)

(0.10 )

The pressure distribution along the contact surface proposed by the Hertz theory is

• where Po is the pressure at the center of the contact circle given by

_(6/E*2) 1/3
Po - 'Jr3R2

(0.11)

(0.12)

•

r is the distance of a point from the center and a is the radius of the contact circle.
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