
Synchronization Schemes for Internet of
Things and Edge Intelligence

Applications

Richard Olaniyan

School of Computer Science
McGill University
Montreal, Canada

September 2021

A thesis submitted to McGill University in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science.

© 2021 Richard Olaniyan

i

Dedication

Dedicated to my parents; Mr Olawole Olaniyan and Mrs Comfort Olaniyan, my

siblings; Helen, Olamide and Olatomi and my better half; Ololade, without whose

support and encouragement none of this would have been possible. Also, to the

entire McGill research community, who with their hard work, make this world a

better place!

ii

Acknowledgements

This research was sponsored in part by a Nigerian Presidential Special

Scholarship Scheme for Innovation and Development (PRESSID)/Petroleum

Technology Development Fund (PTDF), a Natural Sciences and Engineering

Research Council of Canada (NSERC) Discovery Grant, a Grad Excellence

Award in Computer Science, McGill University and an Ericsson/MITACS

Accelerate grant. The views and conclusions contained here are those of the

authors and should not be interpreted as necessarily representing official policies

or endorsements, either expressed or implied, of the sponsors.

I would like to express my heartfelt gratitude to my supervisor Prof.

Muthucumaru Maheswaran for his patience, motivation, enthusiasm, and

profound knowledge. His continuous guidance and feedback helped me to

improve the quality of my research and thesis writing. I would also like to thank

my committee members Jörg Kienzle and Clark Verbrugge for evaluating my

thesis and providing their invaluable comments and feedback.

I thank my fellow lab mates in Advanced Network Research Lab: Olamilekan

Fadahunsi, Richboy Echomgbe, Ben Yu, Jianhua Li, Xiru Xu and Tianzi Li for

their insightful inputs and stimulating discussions, and for all the fun we have had

together. I am thankful to the School of Computer Science, McGill University for

all facilities and resources that they provided to make my learning and research

effective and interesting.

Last but not the least, I would like to thank my family for supporting me

through the thicks and thins of the past years.

iii

Abstract

Devices controlled by cloud or edge resident coordinators are becoming an

important trend for creating Internet of Things (IoT) systems and smart

systems. The cloud provides a global perspective, while the edge provides low

latency and localized service to the devices. Coordinating these devices to work

collectively to solve problems with strict timing requirements in the presence of

disconnections is a challenge. An important coordination task is to have devices

perform the same action at the same point in time. With the large number of

devices and data being generated by millions of edge devices, there is a need for

a synchronization scheme to orchestrate the actions of multiple devices such that

they can line up their start times for tasks that require strict coordination. Clock

synchronization is necessary but not sufficient for such a system. A

synchronization scheme for an edge-based IoT system needs to handle issues such

as network disconnections, faults, failures, and mobility, all of which are

attributes expected from an edge-based system.

With the recent intersection of edge computing and artificial intelligence (AI)

applications, a new Edge AI paradigm has sufficed. Real-time AI applications

mapped on edge computing need to perform data capture, data

processing/intelligence extraction and device actuation within some tolerated

time bounds. Synchronization across devices is an important problem that needs

to be solved at the different stages of an AI application. Synchronized data

capture reduces the amount of time required in preprocessing data (data

aggregation, data cleaning, missing data handling, etc.). In the data processing

phase, synchronization is key in ensuring convergence, accuracy and speed of the

distributed training process across multiple edge devices. The actuation phase in

some cases requires some actions to be performed at the same time at different

devices, thus, the need for synchronization.

To solve the problem of synchronization in edge-based IoT, we propose three

task-based and two redundancy-based algorithms. We present a tree-hierarchical

architecture with controllers at different levels and devices at the leaf for

iv

synchronizing the operations of large collections of Internet of Things (IoT) such

as drones, Internet of Vehicles, etc. Tasks are differentiated into three categories

- synchronous (remote call with strict timing requirements), asynchronous

(remote call with relaxed timing requirement) and local (self-call of a device on

itself with relaxed timing requirement) depending on the execution mode and

requirements. We evaluate the performance of the algorithms using trace-driven

simulations and compare them to existing solutions. We identify the specific IoT

application domains and runtime conditions in which each algorithm adapts best.

We further propose a fast edge-based synchronization scheme that can time

align the execution of input-output tasks as well as compute tasks. The primary

idea of the fast synchronizer is to cluster devices into groups that are highly

synchronized in their task execution and statically determine synchronization

points using a game-theoretic solver. The cluster of devices uses a late

notification protocol to select the best point among the pre-computed

synchronization points to reach a time aligned task execution as quickly as

possible. We evaluate the performance of our synchronization scheme using

trace-driven simulations as well as an implementation in Ray - a Python

framework for programming distributed applications, and we compare the

performance with existing distributed synchronization schemes for real-time AI

application tasks. We show that our fast synchronizer delivers significant

performance improvements over existing solutions.

v

Résumé

Les appareils contrôlés par les coordinateurs résidents du cloud ou de périphérie

deviennent une tendance importante pour la création de systèmes Internet des

objets (IoT) et de systèmes intelligents. Le cloud offre une perspective globale

tandis que la périphérie fournit une faible latence et un service localisé aux

appareils. Coordonner ces dispositifs pour qu’ils fonctionnent collectivement pour

résoudre des problèmes avec des exigences de synchronisation strictes en présence

de déconnexions est un défi. Une tâche de coordination importante consiste à

demander aux appareils d’effectuer la même action au même moment. Avec le

grand nombre d’appareils et de données générés par des millions d’appareils de

périphérie, il est nécessaire de disposer d’un schéma de synchronisation pour

orchestrer les actions de plusieurs appareils afin qu’ils puissent aligner leurs

heures de début pour les tâches qui nécessitent une coordination stricte. La

synchronisation d’horloge est nécessaire, mais pas suffisante pour un tel système.

Un schéma de synchronisation pour un système IoT basé sur la périphérie doit

gérer des problèmes tels que les déconnexions réseau, les pannes, les pannes et la

mobilité, qui sont tous des attributs attendus d’un système basé sur la périphérie.

Avec l’intersection récente des applications de Edge computing et

d’intelligence artificielle (IA), un nouveau paradigme Edge AI a suffi. Les

applications d’IA en temps réel mappées à l’informatique de pointe doivent

effectuer la capture de données, le traitement des données / l’extraction de

l’intelligence et l’activation de l’appareil dans des limites de temps données. La

synchronisation entre les appareils est un problème important qui doit être résolu

aux différentes étapes d’une application d’IA. La capture de données

synchronisée réduit le temps nécessaire au prétraitement des données (agrégation

de données, nettoyage des données, traitement des données manquantes, etc.).

Dans la phase de traitement des données, la synchronisation est essentielle pour

garantir la convergence, la précision et la vitesse du processus de formation

distribué sur plusieurs périphériques de périphérie. La phase d’actionnement

dans certains cas nécessite que certaines actions soient effectuées en même temps

sur différents appareils, d’où la nécessité d’une synchronisation.

vi

Pour résoudre le problème de la synchronisation dans l’IoT basé sur la

périphérie, nous proposons trois algorithmes basés sur des tâches et deux

algorithmes basés sur la redondance. Nous présentons une architecture

arborescente avec des contrôleurs à différents niveaux et des dispositifs à la feuille

pour synchroniser les opérations de grandes collections d’Internet des objets

(IoT) tels que les drones, l’Internet des véhicules, etc. Les tâches sont

différenciées en trois catégories - synchrones (appel à distance avec exigence de

synchronisation stricte), asynchrone (appel à distance avec exigence de

synchronisation assouplie) et local (appel automatique d’un appareil sur

lui-même avec exigence de synchronisation assouplie) en fonction du mode

d’exécution et des exigences. Nous évaluons les performances des algorithmes à

l’aide de simulations basées sur les traces et les comparons aux solutions

existantes. Nous identifions les domaines d’application IoT spécifiques et les

conditions d’exécution dans lesquels chaque algorithme s’adapte le mieux.

Nous proposons en outre un schéma de synchronisation rapide basé sur les

bords qui peut aligner dans le temps l’exécution des tâches d’entrée-sortie ainsi

que des tâches de calcul. L’idée principale du synchroniseur rapide est de

regrouper les périphériques en groupes hautement synchronisés dans leurs

exécutions de tâches et de déterminer statiquement quelques points de

synchronisation à l’aide d’un solveur théorique des jeux. Le cluster d’appareils

utilise un protocole de notification tardive pour sélectionner le meilleur point

parmi les points de synchronisation précalculés afin d’atteindre une exécution de

tâche alignée dans le temps aussi rapidement que possible. Nous évaluons les

performances de notre schéma de synchronisation à l’aide de simulations pilotées

par trace ainsi que d’une implémentation dans Ray - un framework Python pour

la programmation d’applications distribuées, et nous comparons les performances

avec les schémas de synchronisation distribués existants pour les tâches

d’application d’IA en temps réel. Nous montrons que notre synchroniseur rapide

offre des améliorations de performances significatives par rapport aux solutions

existantes.

vii

Contents

References xvi

Chapter 1: Introduction 1

1.1 Overview . 1

1.2 Basic System Model . 5

1.2.1 Definition of Synchronization 5

1.2.2 Node Model . 5

1.2.3 Application Model . 7

1.3 Thesis Contributions . 9

1.4 Thesis Outline . 10

Chapter 2: Background and Related Works 12

2.1 Edge and Fog Computing . 12

2.1.1 Edge Computing . 12

2.1.2 Fog Computing . 14

2.2 Clock Synchronization . 15

2.3 Synchronization in Parallel and Distributed Systems 17

2.4 Nature–Inspired Synchronization 21

2.5 Synchronization in Real–Time Artificial Intelligence Applications . . 25

Chapter 3: Taxonomy and Motivation 29

3.1 Taxonomy of Synchronization in IoT 29

3.2 Motivation . 32

3.2.1 Synchronization in Fog/Edge–Based Internet of Things

Systems . 32

3.2.2 Synchronization in Artificial Intelligence Application Tasks . 36

Contents viii

3.2.3 Summary . 39

Chapter 4: Task–Based Synchronization Schemes for

Fog–Controlled Internet of Things 40

4.1 Overview . 40

4.2 Synchronization Scheduling Schemes 41

4.2.1 Naive quorum checking . 42

4.2.2 Sampling–based quorum checking 43

4.3 Static Synchronization Scheduling Algorithm (SSSA) 43

4.4 Dynamic Synchronization Scheduling Algorithm (DSSA) 46

4.5 Micro Batch Synchronization Scheduling Algorithm (MBSSA) . . . 49

4.6 Local Scheduler . 50

4.7 Experiments and Results . 51

4.7.1 Simulation Procedure . 51

4.7.2 Simulation Results . 52

4.8 Discussions and Summary . 62

Chapter 5: Redundancy-Based Synchronization Schemes for Fog–

Controlled Internet of Things 64

5.1 Overview . 64

5.2 Synchronous Scheduling Schemes with Redundancy 65

5.2.1 Status Update . 65

5.2.2 Quorum Checking . 67

5.3 Synchronous Scheduling Algorithms with Redundancy 68

5.3.1 Synchronous Scheduling Algorithm with Time–Based

Redundancy . 68

5.3.2 Synchronous Scheduling Algorithm with Component–Based

Redundancy . 71

5.4 Experiments, Results and Discussions 71

5.4.1 Impact of Controller Location on Synchronization 72

5.4.2 Configuration of Synchronization Experiments 72

5.4.3 Default Parameter Values and Measurements 74

5.4.4 Scalability of the adapted publish–subscribe update scheme . 75

Contents ix

5.4.5 Component redundancy . 75

5.4.6 Impact of finish time prediction accuracy 77

5.4.7 Performance Evaluation . 79

5.5 Summary . 82

Chapter 6: Fast Synchronization for Artificial Intelligence

Application Tasks 85

6.1 Overview . 85

6.2 System Model . 86

6.2.1 Node Model . 86

6.2.2 Application Model . 87

6.2.3 Basic Game Model . 88

6.3 Clustering . 90

6.4 Synchronization as a Game . 93

6.4.1 Game Specification . 93

6.4.2 Execution Time Distributions 94

6.4.3 Late Notification Protocol 95

6.4.4 Extensive Form of Synchronization Game 96

6.4.5 Synchronization Scenarios 99

6.5 Analysis of the Synchronization Game 101

6.5.1 Optimal Synchronization Options 101

6.5.2 Fixing the Synchronization Options 103

6.5.3 Fast Synchronization Algorithm 106

6.6 Simulations and Results . 109

6.6.1 Simulation Configuration . 109

6.6.2 Default Parameter Values and Measurements 110

6.6.3 Simulation Results and Discussions 111

6.6.4 Simulation Validation . 119

6.7 Synchronized Distributed Training 120

6.7.1 Training Details . 120

6.7.2 Evaluation and Discussions 121

6.8 Deployment Challenges . 125

Contents x

Chapter 7: Conclusion and Future Work 127

7.1 Conclusion . 127

7.2 Future Work . 129

References 131

xi

List of Figures

1.1 Basic multi–level node architecture with cloud, fog and device levels. 6

1.2 Task model showing synchronous (with subscript s), asynchronous

(with subscript a) and local (with subscript l) calls between

controllers and workers. 8

2.1 Architecture showing edge and fog computing. 13

2.2 Example showing the workings of bulk synchronous parallel (BSP)

and stale synchronous parallel (SSP) models. 27

3.1 Taxonomy of Synchronization in IoT. 31

3.2 Sample edge assisted autonomous driving scenario with the edge

server as the controller and cars as workers. 33

3.3 Sample drone delivery and bridge monitoring system. 35

3.4 Smart cars relying on smart highway for improved driving experience. 36

3.5 Distributed machine learning architecture. 37

3.6 Federated learning architecture. 38

4.1 Flow of the static synchronization scheduling algorithm. 44

4.2 Flow of the dynamic synchronization scheduling algorithm. 47

4.3 Flow of the micro batch synchronization scheduling algorithm. . . . 50

4.4 Quorum attempts for varying prediction accuracy. 54

4.5 Average execution time for varying execution time prediction

accuracy. 55

4.6 Failed sync tasks for varying number of quorum retries. 55

4.7 Average execution time for varying number of quorum retries. . . . 56

4.8 Quorum attempts for varying update processing cost. 57

4.9 Average execution time for varying update processing cost. 57

List of Figures xii

4.10 Average execution time vs number of machines for heavy

synchronization. 58

4.11 Average execution time vs number of machines for light

synchronization. 58

4.12 Average execution time vs number of machines for periodic sync

frequency. 59

4.13 Average execution time vs number of machines for sporadic sync

frequency. 60

4.14 Execution time for DSSA and DSSA–SAMPLE with varying

number of machines. 60

4.15 CDF showing the percentage of machines that ran sync task. 61

4.16 Failed sync tasks for varying node failure rates. 61

5.1 Multi–level hierarchical node model showing controller,

sub–controllers and worker nodes with worker nodes grouped. . . . 66

5.2 Sequence diagram showing the interactions between the controller

and workers at synchronization point. 69

5.3 Maximum synchronization rate per 10 s for varying

controller–worker delays. 73

5.4 Runtime per sync point comparing all–worker update sending and

the publish–subscribe update scheme for time–based redundancy. . 76

5.5 CDF showing percentage of sync task failures due to incomplete

results from clusters for minimum cluster sizes ranging from 1 to 4

for component–based redundancy. 76

5.6 CDF for the percentage of sync task failures caused by failed quorum

for different minimum cluster sizes for component–based redundancy. 77

5.7 Runtime per synchronization and percentage synchronization task

failure for task finish time prediction accuracy varying from 80% to

100%. 78

5.8 Runtime per sync point comparing the proposed time–redundant

synchronization algorithm with barrier and time slotted

synchronizations. 80

List of Figures xiii

5.9 Percentage of sync task failures caused by failed quorum for time–

redundant synchronization algorithm vs time slotted synchronization. 81

5.10 Runtime per sync point comparing the proposed

component–redundant synchronization algorithm with barrier and

time slotted synchronizations. 81

5.11 Percentage of sync task failures caused by failed quorum for

component–redundant synchronization algorithm vs time slotted

synchronization. 82

6.1 Node model for fast synchronization in edge–based AI application

tasks. 87

6.2 Adjusted Rand Index scores for 2, 3 and 4 clusters per cluster point. 91

6.3 Inter– and intra–cluster distances among clusters with 2, 3 and 4

clusters per point. 92

6.4 Number of devices per cluster including outliers for 2, 3 and 4

clusters per point. 92

6.5 Sample mixture model for a cluster with early and late distributions. 94

6.6 First pass of the extensive form of the two–player synchronization

game. Nodes A, B and C are non–terminal nodes where the game

proceeds to the second pass. The green node is a terminal node

with synchronization successful. The red nodes are terminal nodes

where synchronization failed. The vectors represent the

corresponding payoffs for player 1 and player 2. 97

6.7 Second pass of the extensive form of the two–player synchronization

game. The payoff for each of the node options A, B and C from pass

1 are shown. 98

6.8 Example of synchronization option scenarios. 100

6.9 Controller and workers actions during runtime in fast

synchronization scheme. 107

6.10 Runtime for short tasks (fixed clustering). 111

6.11 Runtime for short tasks (flexible iterative clustering). 112

6.12 Number of successful and failed synchronizations at different sync

options (fixed clustering). 113

List of Figures xiv

6.13 Number of successful and failed synchronizations at different sync

options (flexible clustering). 114

6.14 Ratio of workers that synchronized for short tasks (fixed clustering). 114

6.15 Ratio of synchronized workers for short tasks (flexible iterative

clustering). 115

6.16 Runtime for different task execution time variances. 115

6.17 Ratio of synchronized workers for different task execution time

variances. 116

6.18 Average computation and communication times for worker

execution variance of 2ms with 20 workers. 117

6.19 Average computation and communication times for worker

execution variance of 10ms with 20 workers. 118

6.20 Average communication overhead for varying worker–controller

message cost for 20 workers. 118

6.21 Average communication overhead for varying number of workers. . . 119

6.22 Number of training iterations required to reach 70% testing

accuracy for varying number of homogeneous workers. 122

6.23 Amount of time required to reach 70% testing accuracy for varying

number of homogeneous workers. 122

6.24 Amount of time required to reach 70% testing accuracy for varying

number of heterogeneous workers. 123

6.25 Training time versus testing accuracy for 8 homogeneous workers. . 124

6.26 Training time versus testing accuracy for 8 heterogeneous workers. . 124

xv

List of Tables

4.1 Symbols for synchronization algorithms. 42

4.2 Explanation of functions in SSSA. 45

4.3 Explanation of functions in DSSA. 48

4.4 Comparison of the different task synchronization algorithms. 63

5.1 Notations for redundancy–based synchronization algorithms. 67

5.2 Comparison of redundancy based synchronization schemes and

related works. 84

6.1 Notations used for synchronization game and analysis. 89

6.2 Comparison of our fast synchronization scheme and related works. 126

List of Tables xvi

List of Publications and Patent

Richard Olaniyan, Olamilekan Fadahunsi, Muthucumaru Maheswaran, and

Mohamed Faten Zhani. Opportunistic edge computing: concepts, opportunities and

research challenges. Future Generation Computer Systems, 89:633–645, 2018.

Richard Olaniyan and Muthucumaru Maheswaran. Synchronous scheduling algorithms

for edge coordinated internet of things. In 2018 IEEE 2nd International Conference

on Fog and Edge Computing (ICFEC), pages 1–10. IEEE, 2018.

Richard Olaniyan and Muthucumaru Maheswaran. Multipoint synchronization for fog-

controlled internet of things. IEEE Internet of Things Journal, 6(6):9656–9667, 2019.

Richard Olaniyan and Muthucumaru Maheswaran. A fast edge-based synchronizer for

tasks in real-time artificial intelligence applications. IEEE Internet of Things Journal,

2021.

Richard Olaniyan, Muthucumaru Maheswaran, Emmanuel Thepie Fapi,

Manoj Kopparambil Nambiar, and Bassant Selim. Edge device, edge server and

synchronization thereof for improving distributed training of an artificial intelligence

(ai) model in an ai system. (Application No. 63/151335) United States Patent and

Trademark Office, 2021.

1

Chapter 1

Introduction

1.1 Overview

Tightening environmental regulations and the need for meeting the demands of

increasing population are driving the need for smarter factories, intelligent

transport systems, smart buildings, and smart cities. The Industrial Internet of

Things (IIoT) [1, 2, 3] and many academic research projects (e.g., TerraSwarm

[4, 5]) have proposed paradigms for achieving this objective by connecting the

machines within these systems to fog-based controllers.

Internet of Things (IoT) [6, 7, 8, 9, 10] come in many shapes and sizes.

Because each IoT component will be handling a part of a problem domain,

cooperative computing among the IoT components is essential for solving many

interesting problems [11]. For example, the use of drones in activities such as

rescue missions after natural disasters is increasing with recent advancements in

drone technologies [12, 13, 14]. A synchronization mechanism is required to

ensure that the autonomous drones capture a specified part of the search area at

the same time. If the drones do not follow strict timing alignments, it will lead to

a poor reconstruction of the search area. As another example, take an

autonomous car, the car could form a swarm with other cars and roadside units.

1 Introduction 2

To drive successfully, the car needs assurance that data is collected within a

short time interval by the sensing and processing components of the swarm. The

car thus needs support from the swarm to ensure that its tasks are run

simultaneously across the different constituents.

Cooperating IoT [15, 16] need to run tasks of the application in a coordinated

manner. One such coordination is running the tasks at the same time. For

instance, drones lifting a workload need to exert the force at the same time so

that the effort adds up. To run the tasks at the same time, there is a need for

synchronization primitives that would launch the tasks with the start times lined

up at all IoT devices. Earlier works on synchronization in IoT have focused on

time/clock synchronization [17, 18, 19] where IoT devices have a common notion

of time. That is, IoT devices maintain the same clock with minimal skew. Just

having synchronized clocks is not sufficient because even with an earlier agreed

start time, the IoT devices could fail, disconnect from the swarm [5], or be busy

with a prior task. With tighter synchronization schemes, fine–grained tasks can

be run across the cooperating IoT while guaranteeing the desired quality of

synchronization (QoSync).

With the recent advances in fog computing [20, 21, 22], edge computing [23, 24,

25, 26] and 5G technologies [27, 28, 29] it is becoming increasingly possible to run

data-intensive applications closer to the devices that generate data with the lowest

possible latency (e.g., real–time video surveillance or tracking). IoT leverages fog

computing by having IoT controllers resident at the edge of the network thus

augmenting the computing capabilities of devices [30]. The services provided by

IoT controllers can be quickly accessed by IoT devices such as mobile phones or

vehicular nodes as they move around in different physical vicinities. Fog–controlled

IoT is thus enabling the creation of a coalition of resources among fog-resident IoT

controllers and IoT devices (swarm of machines [5]) that have larger computing

capabilities than any of the individual constituents. There is therefore a need for

new synchronization schemes and programming approaches to enable cooperation

and coordination among the constituents of the swarm while reducing operating

costs and energy consumption through efficient scheduling schemes.

1 Introduction 3

In the first part of this thesis, we focus on exploring the synchronization space

in fog–controlled IoT. We provide a definition and taxonomy for synchronization

in IoT. We propose and evaluate several synchronization scheduling algorithms

for strict simultaneous execution across a bunch of cooperating IoT nodes. The

scheduling algorithms need to ensure that the required quorum of nodes is available

before executing a synchronous task. The nodes do not start other tasks while

waiting for the synchronization condition.

Edge computing likewise has opened new grounds for computations to be done

at edge devices rather than shipping all computations to the cloud. With the

increasing number of smart devices and sensors, a vast amount of data will continue

to be generated. Gathering intelligence at the edge is a big challenge because

convolutional neural networks (CNN) [31, 32] and deep neural networks (DNN) [33,

34] require thousands (or sometimes millions or billions) of interconnected units

and parameters to train models [35, 36]. In order to extract real time intelligence

from the huge volume of data generated, processing needs to be done at the edge

close to where the data is generated [37, 38, 39]. However, most edge devices lack

the computing capacity to train and run deep learning (DL) models in a timely

manner [36].

A typical AI application can be broken down into three phases – sensing,

processing, and actuating. Sensing involves data acquisition, preprocessing, and

data cleansing. Processing involves training AI models and gathering intelligence

from captured data. Actuating involves using the intelligence gathered to take

further actions [40]. Artificial Intelligence (AI) applications are increasingly

thriving with the advancements in deep learning technologies and processing

technologies, leading to the large demand on processing and

optimization [41, 42]. This demand has necessitated the need for integrating edge

computing and AI [38]. AI on edge aims at extracting intelligence from

distributed edge data generated by edge devices with the goal of improving

overall performance [35].

Synchronization is a key issue both in the sensing phase: data capture and

processing phase: training AI models. The quality of data captured can be

1 Introduction 4

greatly improved through synchronization while maintaining a high capture rate.

Take for example, an edge-assisted autonomous driving system, the edge is

heavily involved in data capture, aggregation, and processing with the goal of

improving driving efficiency while ensuring safety. An autonomous driving

system consists of several sensors and thus, data from multiple sensors must be

combined [43]. Due to the real time and tight latency constraints required for

seamless autonomous driving, intelligence must be gathered from acquired data

in real time. Thus, AI model training and intelligence extracted from the data

must be in a timely and coordinated manner to ensure safe and efficient driving.

Having data from multiple sources that are time aligned reduces the extra time

spent in data aggregating and cleaning. Due to the vast number of devices that

will be capturing and generating data, synchronizing the data capture process

makes it easier to aggregate data from different sources and devices. It is also

easier to identify and fill gaps in data, as well as maintaining appropriate time

scales [44]. The success and accuracy of distributed training on the edge strictly

depends on the synchronization scheme adopted in aggregating shared parameters

or local updates. The parameter server framework [45, 46, 47, 48, 49] was proposed

as a way of aggregating updates from distributed devices.

To time align the task executions, we need to delay the fast tasks, which can

result in an overall throughput reduction. Instead of simply making the

synchronization point fuzzy, we introduce a task scheduling method that creates

alternative synchronization points by considering global tasks with

synchronization requirements along with local tasks that need no

synchronization. Many distributed AI/ML problems like federated learning at

the edge can benefit from such an efficient synchronization scheme.

In the later part of this thesis, we focus on developing fast synchronization

schemes for distributed data acquisition (sensing phase of an AI application) and

distributed training on edge devices (processing phase of an AI application). We

aim to minimize the number of messages and the communication overhead

incurred in reaching synchronization among distributed edge devices. For

distributed training, we aim to reduce training time (faster convergence) while

1 Introduction 5

maintaining high model accuracy.

1.2 Basic System Model

We employ a tree–based controller–worker computing model for interconnecting

the components, where the cloud–level provides a global (bird–eye) perspective

for controlling the components and processing global analytics. The fog–level

components provide low latency service access and localization and are located

between the cloud level and the device level. Tight clock synchronization is

assumed across all levels in the tree by leveraging the hierarchical architecture

and the recent advancements in clock synchronization schemes.

The controller–worker architectural model is inspired by models such as multi–

robot systems [50, 51], Single Program Multiple Data (SPDM) [52] where tasks are

split into parts and simultaneously scheduled on multiple processors with different

input data to achieve parallelism and Software Defined Networking (SDN) [53, 54,

55] where programmable switches running the same application are coordinated

by a central controller and fog computing.

1.2.1 Definition of Synchronization

First, we give a definition for synchronization in the context of this thesis. We

define synchronization as the coordination of a set of nodes to harmonize on the

execution of a task by time aligning the start of the execution. Thus, for a number

of nodes to be considered synchronized, they need to have started the execution of

a (synchronous) task at the same point in time.

1.2.2 Node Model

The three–level hierarchical model consisting of the cloud, fog, and device levels

is shown in Fig. 1.1. Controllers can be resident at any of the three levels in the

1 Introduction 6

tree. Workers are at the leaves of the tree and only in the device level. This

architecture is suitable for achieving synchronization in IoT because it permits

worker nodes to join, leave, or move around, thus making changing membership

from one controller to the other possible. The device–level and fog–level controllers

provide localized and low latency services to the workers, which is necessary for

reaching synchronization in IoT systems.

FogFog

Cloud

Infrastructure nodes

Sub-
controllers

ControllerCloud
level

Fog
level

Workers

Device
level

Fig. 1.1 Basic multi–level node architecture with cloud, fog and
device levels.

Disconnection can occur between the workers and controllers, which can be

due to mobility, network disruption or node failure. Disconnected workers can

rejoin the system, or new workers join the system by connecting to a fog. Worker

nodes are isolated from each other and thus, no direct link exists between them.

Workers only communicate with the controller to which they are connected.

Communication between a worker and controller is bidirectional, that is, data

can flow both ways. The scope of the task being run determines what level of

1 Introduction 7

controller the workers communicate with. A global scope will require

communication to exist between the main controller (cloud–level controller) and

workers, either directly or through sub–controllers (fog and device level

controllers). A nonglobal scope involves workers communicating with the

fog–level controller, while a much more localized scope involves workers

communicating and working with only the device–level controller.

Assumptions

1. We assume heterogeneous workers with different but similar computational

and processing capabilities, and as such will have different execution times

for the same task with some variations.

2. Workers follow a single–threaded execution model inspired by the JAMScript

IoT programming language and runtime [56].

3. All the workers in the system are running the same application.

4. Workers can have faults and failures, but we expect faulty workers to get

repaired after some time.

1.2.3 Application Model

An application written for the model consists of local and remote function calls.

Local function calls are invoked at a single node in which they are triggered. The

remote function calls invoked by the controllers on sub–controllers and workers are

called downcalls. For instance, the root controller can downcall to the fog–level or

device–level controller. Downcalls from a node is usually to all the nodes under

it (one-to-many call). Calls by the workers to controllers at any level (i.e., one of

the cloud–level, fog–level, or device–level controllers) are called upcalls. Upcalls

are one–to–one calls (unicast).

The upcalls and downcalls can either be synchronous or asynchronous as shown

in Fig. 1.2. A synchronous call blocks the calling node until the remote execution

1 Introduction 8

Controller

WorkersUpcall

Sub-
controller

D
ow

nc
al

l

U
pc

al
l

Self
Call (wl)

Self
Call(cl)

Self call (cl)

(w2cs / w2ca)

(w
2c

s
/ w

2c
a)

(c
2w

s
/ c

2w
a)

Fig. 1.2 Task model showing synchronous (with subscript s),
asynchronous (with subscript a) and local (with subscript l) calls
between controllers and workers.

completes, while an asynchronous call is nonblocking. Because the upward and

downward calls can involve multiple workers, the synchronous execution of the

calls is not simple. In particular, we need to define the conditions under which the

group would provide a valid execution for a synchronous call.

When a controller makes a synchronous downcall, workers individually sign up

for executing the function. Once the controller receives commitments from enough

workers to run the function, the controller will proceed with the running of the

function on workers. The requirement is to start the execution precisely (assuming

the underlying clocks are synchronized) at the same time across all workers. This

is a hard problem because even the signed–up workers can become available to

execute the function at different times. Therefore, the function execution needs to

be scheduled across the workers such that the start–time skew and idle times at

the workers are simultaneously minimized.

We classify the tasks in our model based on function calls into the following

categories.

1 Introduction 9

1. Controller–to–worker asynchronous call: This is a call from a controller

to its worker nodes to run a task without having strict timing conditions,

that is, the controller does not wait during this period. We denote this task

as c2wa.

2. Controller–to–worker synchronous call: The controller sends a

command to all its worker nodes to start executing a task at the same

point in time. The controller waits until all worker nodes have finished

executing the task and returned an output. We denote this task as c2ws.

3. Worker–to–controller asynchronous call: This is a call from a worker

node to one of its controllers to run a task. The worker does not wait during

this period and continues with its own execution plan. This task is denoted

as w2ca

4. Worker–to–controller synchronous call: The worker node waits for an

acknowledgement from the controller that it has finished executing the task

associated with the call. We denote the task as w2cs.

5. Self calls: This is a call from a node to itself. It could be either a worker

node calling itself or a controller calling itself. A self triggered worker task

is called a local worker task and is denoted as wl, while a self triggered

controller task is denoted as cl.

1.3 Thesis Contributions

The four major contributions of this thesis are as follows:

1. We study synchronization in complex edge distributed systems where tasks

can have different timing requirements. We develop a taxonomy that

describes different synchronization strategies.

2. We develop new synchronization schemes that can handle various task

types (synchronous, asynchronous and local) and task graphs

1 Introduction 10

configurations (sporadic, periodic, dense and light). We use the well known

publish-subscribe messaging protocol to reduce communication overhead in

reaching synchronization. This thesis is the first study to optimize

synchronization tasks with local tasks.

3. We further incorporate fault tolerance into the synchronization schemes using

time and component redundancies and showed how it works. The schemes

developed provide capabilities such as handling not only synchronous tasks

but also local tasks among workers, as well as ahead-of-time computations

to minimize synchronization overhead, thus making them lightweight.

4. We develop a new and fast synchronization scheme for distributed training

in an edge environment. We achieve faster synchronization compared to

existing schemes by pushing computational intensive actions to static time

and using game theory to make optimal synchronization decisions, thus

making runtime activities as fast as possible. We minimize the controller’s

involvement and message overhead (which could be a major bottleneck)

using clustering and silent notifications.

1.4 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we provide some

background on edge computing, fog computing, clock synchronization

approaches, synchronization in distributed systems, nature–inspired

synchronization and synchronization in real–time AI applications. We provide an

overview of existing literature and works on synchronization in distributed

systems and IoT systems, as well as synchronization in distributed training in AI

applications. In Chapter 3, we develop a taxonomy for synchronization in IoT.

Motivating use cases and application scenarios as well as challenges in

synchronization in IoT systems and AI applications are likewise given in

Chapter 3. Chapter 4 introduces three novel task–based synchronization

algorithms for fog–controlled IoT. The evaluation of the proposed algorithms

through extensive simulations and detailed analysis of the results are likewise

1 Introduction 11

given. In Chapter 5 we introduce two new redundancy-based synchronization

algorithms for fog–controlled IoT. We evaluate the performance of our algorithms

through extensive simulations and comparing with existing synchronization

schemes. Chapter 6 presents a game–theoretic fast synchronization scheme for

distributed training in edge–based AI application tasks. The scheme is evaluated

using simulations and implementation and compared to existing schemes. A

summary of the thesis and possible future extensions of this research is given in

Chapter 7.

12

Chapter 2

Background and Related Works

2.1 Edge and Fog Computing

2.1.1 Edge Computing

Edge computing [23, 24, 25, 26] is a computing paradigm that enhances the

computational, storage and management capabilities of IoT systems by

processing data generated by IoT devices at the edge of the network. Edge

computing looks to minimize the shortcomings of cloud computing by reducing

data transfer over the network and processing data closer to where the data was

generated. The edge is defined as any computing or network resources that is

along the path between data sources and the fog layer, for example, smartphones,

gateways, etc, as shown in Fig. 2.1. With more demands being placed at the edge

of the network, there is a need to provide some performance guarantees that is

usually provided by the cloud such as security, privacy and reliability.

The two common implementations of edge computing are the

hierarchical [57, 58] and the software defined models [59]. The hierarchical model

is suitable for edge computing because edge servers can be deployed at different

distances from the end devices. The functions of the edge servers are thus

2 Background and Related Works 13

Edge
layer

Edge gateway

Cloud
layer

Device
layer

Sensors and Controllers

Fog
layer

Fog
servers

Cloud

Fig. 2.1 Architecture showing edge and fog computing.

defined based on their distances from the end devices. The software defined

models leverage Software Defined Networking (SDN) to manage the complexities

of large–scale edge computing systems. Edge computing has been integrated with

other domains such as mobile computing, vehicular computing and artificial

intelligence, leading to mobile edge computing (MEC) [60, 61, 62], vehicular edge

computing (VEC) [63, 64, 65] and AI on the edge (Edge AI) [36, 66, 67, 68]

respectively.

2 Background and Related Works 14

Mobile edge computing is an implementation of edge computing where the

radio access network (RAN) [69, 70] is the core of the edge [71]. Edge servers in

MEC are usually co–located with RAN controllers in a (micro) base station. MEC

servers not only offer computational resources to end devices, but also offer real

time information on the network status. Vehicular edge computing is a way of

integrating vehicular networks into MEC. The aim of VEC is to move computing,

communication, and storage resources closer to vehicular units. Vehicular units

by themselves are equipped with these resources, however, roadside units (RSUs)

which serve as edge servers are placed close to vehicles for acquiring, processing

and storing data from various vehicles [64].

Edge AI refers to systems that use machine learning algorithms to process data

by devices generated closer to the edge of the network, thus, closer to the data

source. Real time decisions can be made since there is no data offload involved.

Edge AI pushes processing and data closest to the point of interaction of users.

Using AI, edge computing applications can provide applications that have very

minimal latency, improved user experience, additional intelligence and eliminates

privacy issues.

2.1.2 Fog Computing

Fog Computing [20, 21, 22] is a distributed paradigm that advocates moving

computing closer to end devices by operating at the local area network. Fog

computing is an extension of cloud computing from the core network to the edge

network as shown in Fig. 2.1. Fog computing has to work in conjunction with the

cloud and 5G networks [27, 28, 29] to provide the computing power to the

applications. Some characteristics of fog computing are mobility, wireless access,

low latency, location awareness, large number of end devices, real–time

interaction, inter–operability and heterogeneity. These characteristics make fog

computing ideal for IoT applications and services. Some example cases where

fogs have been deployed as a platform for IoT are connected vehicles [72], smart

grids [73] and smart cities [74]. Smart grids and smart cities are also good

2 Background and Related Works 15

examples of where the richness of the fog and its relationship with the cloud is

used to deploy IoT applications. Fog computing improves reliability by making

applications immune to localized link disruptions. Fog computing likewise

improves privacy and security because of the local aspect it provides.

Traditional fog computing architectures follow a three–tiered structure, with

the fog in between the cloud and devices. With fog computing, computation,

storage, networking, decision–making, and data management need not only occur

in the cloud, but also occur along the IoT–to–Cloud path as data traverse to the

cloud (preferably close to the IoT devices). The horizontal platform in fog

computing allows computing functions to be distributed between different

platforms. In addition to facilitating a horizontal architecture, fog computing

provides a flexible platform to meet the data-driven needs of operators and users.

One of the key challenges in fog computing is programming. With fog

computing, we need to deal with clouds and edge devices as well. That is, the

programmer needs to identify the processing tasks for the global scope of the

cloud computing, local scope of fog computing, and device scope of edge

computing. Other potential issues that need to be resolved before having a fully

efficient fog computing system include fog networking, quality of service

(connectivity, reliability, capacity, and delay), computation offloading,

programming model, resource management, privacy and security [75].

2.2 Clock Synchronization

In IoT, clock synchronization [76, 77, 78, 79] has been a major focal point where

the main goal is to make IoT devices have the same notion of time, either real or

logical. The following quality metrics are the most important in clock

synchronization [80]: (i) clock skew – difference between system clocks and

external reference clock, (ii) clock offset – difference between any two system

clocks, and (iii) integration time – the time to synchronize a non–synchronized

system clock. Achieving clock synchronization in IoT introduces several

challenges because of varying environmental conditions, the desired low cost of

2 Background and Related Works 16

IoT devices/sensors, unstable network connections, limited bandwidth and

constrained capabilities (computation, communication and processing) of IoT

devices [81, 82, 83].

Several protocols have been proposed for clock synchronization in IoT and

wireless sensor networks [83]. Centralized (master–slave) solutions [84, 85]

consist of slave nodes synchronizing their clocks to using the master’s clock as a

reference while distributed (peer–to–peer) solutions [86, 87] have nodes that

communicate with one another to synchronize their clocks. Internal

synchronization clock protocols aim to minimize the offset among clocks in the

system while external synchronization involves synchronizing the clocks of nodes

in the system to an external real–world clock using a standard source such as

Universal Time (UTC) [88]. Probabilistic synchronization protocols provide only

some probabilistic guarantee on the tolerable maximum clock offset among the

clocks in the system, while deterministic synchronization protocols provide

guarantee on the maximum clock offset with certainty. A blockchain–based clock

synchronization was proposed in [89] for IoT where a consensus algorithm is used

to guarantee the real–time and security needs of IoT systems.

A clock synchronization algorithm was proposed using the time–triggered

architecture for TTEthernet, an extension of the standard Ethernet [81]. The

TTEhernet network has switches and end systems that are connected with

redundant channels to achieve fault tolerance. The three components of the

synchronization algorithm are synchronization masters, compression masters and

synchronization clients. The synchronization masters are responsible for sending

initial clock information state to compression masters, the compression masters

perform a convergence function on the information and send the new data back

to the synchronization masters, the synchronization clients get the clock

synchronization information from the synchronization masters and ensure that

only one data frame from a single synchronization master is used in each cycle.

A flooding time synchronization protocol was proposed in [85] to achieve micro–

second time synchronization range with scalability up to hundreds of nodes. The

algorithm synchronizes the local clocks of participating nodes using a single radio

2 Background and Related Works 17

message that is timestamped at both the sender and the receiver. A sender can

synchronize with multiple receivers in this protocol. In [90], an improved flooding

time synchronization protocol was proposed, where nodes do not need to send the

id and sequence number of the synchronization message. This is because the time

synchronization message is the same as the one sent previously.

2.3 Synchronization in Parallel and Distributed Systems

In gang scheduling [91, 92, 93, 94] and coscheduling [95, 96, 97] where tasks

of a parallel job are expected to be scheduled and executed at the same time,

synchronization is achieved by using busy waiting. In such systems, if tasks that

are dependent on each other are not scheduled and executed at the same time, it

can lead to starvation or deadlock. Thus, to achieve task synchronization, tasks

with dependents must wait for processors to be available until all the dependent

tasks can be scheduled at the same. Tasks have preemptive executions and thus,

a task can be suspended after it has started executing and continue execution at

a later point in time.

Coscheduling involves scheduling related processes or tasks to run in parallel.

There are frameworks consisting of dependent tasks or tasks that need to

communicate with one other for successful completion, and thus, must be

scheduled together [97]. There are distributed applications that require that

sub–tasks should be coordinated and synchronized, thereby bringing about the

need for a scheduling mechanism to guarantee this synchronization.

Coscheduling solves this problem by ensuring that communicating sub–tasks are

available for interaction when needed. For example, consider an application

where a running task needs to send a message to a task that has not been

scheduled, the task will keep waiting for a reply that is not forthcoming, which

will cause blocking in the execution of the application. There are two variations

of coscheduling namely implicit coscheduling and explicit coscheduling [95]. In

explicit coscheduling, all dependent tasks are scheduled at the same time, that is,

it is either all the tasks are scheduled together or none of the tasks is scheduled.

2 Background and Related Works 18

A global scheduling mechanism is employed in explicit coscheduling. In implicit

coscheduling, there is no strict enforcement of the rule that all tasks must be

scheduled together, rather, tasks can be scheduled independently using local

scheduling, but scheduling decisions are made in cooperation.

Gang scheduling is a stricter form of coscheduling where dependent tasks are

scheduled simultaneously. The tasks are usually from the same job or framework.

Gang scheduling ensures that tasks can communicate with one another at any

point in time and are thus scheduled concurrently. The main challenge of gang

scheduling is how to achieve high cluster utilization, this is because all the tasks

in a gang must wait until enough machines are available to run all the tasks

at once. In [91] they identified the optimal performance conditions and efficient

mean response time of jobs while ensuring fairness to different categories of gangs

(small and large gangs). Resource sharing among running tasks also incurs some

overhead in gang scheduling [98]. To solve the inherent problem of the neglect

of memory considerations in gang scheduling, a gang scheduling algorithm with

memory considerations was proposed in [92].

The Paxos [99] algorithm was proposed for achieving fault tolerance in

distributed systems. It uses a consensus algorithm to achieve a single and unified

update. Paxos employs a coordination model to achieve the goal of having a

single value accepted by all servers. The algorithm chooses a leader that serves

as the coordinator of all activities. It is assumed that there will be a leader at

every point in time. A more defined specification of the Paxos algorithm was

proposed in [100]. It was intended for helping system builders to realistically

implement the Paxos algorithm in their systems. The Paxos

protocol [101, 102, 103] ensures synchronization during a leader election by

doubling the progress timer to create more time for the completion of the leader

election and to allow newly elected leaders to have more time to complete global

ordering. Synchronization is likewise achieved by ensuring that servers only move

to a higher view (having a more up–to–date log) on suspecting a failed leader

and that the progress timer of a server is not already set.

In parallel computing models such as the bulk synchronous parallel (BSP)

2 Background and Related Works 19

model [104] where the execution model is broken into computation and

communication super steps, synchronization is achieved by using barriers.

Barrier synchronization involves processes stopping at the barrier until all other

processes reach the barrier [105, 106]. Thus, faster processes must wait for slower

processes, with the bottleneck being the slowest process. The BSP model [104]

consists of a sequence of supersteps. Computation and communication are

separated into different supersteps to decrease the burden on the programming of

synchronized parallel algorithms. The computation superstep consists of a few

small operations, while a communication superstep consists of transferring a data

word from one processor to the other. The communication superstep is defined in

terms of h–relations, where h is the maximum number of messages (words) sent

or received in a superstep. The communication time is determined by h and g,

where g is the time required to send a single word of data (usually measured in

terms of number of CPU operations). The synchronization cost L contains fixed

overhead costs such as data sending start–up costs and costs of global checking

to determine whether a superstep has been completed by all components.

Therefore, the cost of the communication superstep is given by:

T (h) = hg + L (2.1)

The cost of the computation superstep is defined as:

T (c) = c+ L (2.2)

where c is the maximum number of operations of a processor in a superstep. The

BSP model was further extended in [107] by introducing memory/cache size as a

new parameter and also using a hierarchical structure with an arbitrary number

of levels.

Time slotting has been adopted as a way of achieving synchronization in

wireless sensor networks [108, 109]. Dedicated synchronization time slots are

chosen, and devices attempt to perform synchronization tasks only in the

dedicated time slots. Time slotting suffers from straggling workers, as with

barrier synchronization. Slow workers will miss the dedicated synchronization

2 Background and Related Works 20

slot, which consequently results in the reduced synchronization quality or

synchronization failing.

A preemptive scheduling algorithm for synchronized task groups was

proposed in [110] where tasks are partitioned based on communication,

synchronization and mutex. Synchronization tasks having the same priority are

expected to arrive at the synchronization point (SP) at the same time and

cannot be pre–empted. The synchronization task with the maximum execution

time before the SP is scheduled to run first, while that with the maximum

execution time after the SP is scheduled to run immediately after the SP. In

[111], a preemptive synchronized scheduling policy was proposed for

synchronization tasks that share the same mutual exclusion resources under

homogeneous processors. Tasks are allowed to share resources based on a mutual

exclusion policy. Tasks that share mutually exclusive logical resources are

grouped into the same component and have a local scheduler. Whenever a global

scheduler decides on a component to be executed, the local scheduler decides

which task gets the resource access.

The synchronization–aware algorithm proposed in [112] bundles tasks by size

or mutex sharing and attempts to schedule them onto a processor. Bundles that

do not directly fit into a processor are put in a separate queue and sorted based

on their cost (the penalty of transforming a local mutex into a global mutex) in

increasing order. The bundle with the smallest cost is broken down into pieces,

with the largest piece determined by the size of the largest possible space in the

processors. If the process is not successful, a new processor is added, and the

partitioning process is repeated.

In real–time computing systems, synchronization is handled using

time–triggered controls where all synchronous activities are executed at some

predefined points in time [113, 114]. Synchronized clocks are used to achieve

synchronization in the systems by making each node have similar internal clocks.

Time synchronization schemes [17, 18, 115] have been developed for IoT to allow

devices have a common notion of time. In [17], a visible light produced by

light–emitting diodes (LEDs) is used by devices within that vicinity to

2 Background and Related Works 21

synchronize. Synchronization is achieved by allowing several LEDs to send out

binary signals at the same time and at predefined intervals, and devices

synchronize when there is a phase transition. In [18], a time synchronization

protocol was proposed to mitigate the effect of temperature change on hardware

clocks in IoT networks using time–slotted channel hopping.

Synchronization schemes in distributed systems cannot be directly applied to

IoT due to the following factors. (i) Node connectivity could be highly unstable

in IoT due to mobility and disconnection, unlike distributed systems where stable

connection exists among nodes. Synchronization schemes in distributed systems

are developed based on this assumption and are thus not suitable for highly

dynamic systems, (ii) the network topology rapidly changes due to nodes joining

and leaving in IoT, unlike distributed systems, (iii) there is an interaction with

physical things that have real–time window constraints in IoT unlike traditional

distributed systems which do not necessarily affect real world systems, and (iv)

nodes in IoT could be highly heterogeneous e.g., sensors, mobile phones, cars,

etc., unlike distributed systems where nodes have similar characteristics.

2.4 Nature–Inspired Synchronization

A common and naturally occurring synchronization is one noticed in

fireflies [116, 117, 118, 119, 120]. Male fireflies randomly emit flashes at night and

over a period, the flashes get synchronized. Analysis of firefly synchronization

has been carried out and lots of models have been developed over the years.

Pulse coupled oscillators (PCOs) [121, 122] have been used to study the

synchronization behavior in fireflies. PCOs refer to systems with interacting

(through pulses received from neighbors) oscillators that oscillate periodically in

time. Synchronization of PCO involves making the individual oscillators emit

pulses at the same time. Synchronization in fireflies is eventual, meaning that the

system goes through a process of communication among components and phase

adjustments before finally reaching synchronization. Synchronization in PCOs is

achieved by adjusting the phase of oscillators (using a phase modification

2 Background and Related Works 22

function) upon receiving a flash message from another oscillator.

Firefly inspired synchronization schemes have been proposed for wireless and

sensor networks in IoT [121, 122, 123, 124, 125]. The IoT sensors act as phase

coupled oscillators (PCO) that attempt to synchronize their phases based on some

phase adjustment function. The resultant synchronization is pairwise between

the oscillators that sent and received the flash messages. Well studied models for

achieving synchronization in PCOs include the Kuramoto model [118], Mirollo–

Strogatz [117] and Ermentrout model [119].

The Kuramoto model [118] consists of a population of n nearly identical and

coupled phase oscillators having frequencies ωi distributed with a given probability

density. The model assumes global coupling such that each oscillator is affected

by every other oscillator. The oscillators naturally run at their natural frequency.

The coupling among the oscillators tends to synchronize the oscillators with one

another. The phase dynamics of the oscillators is governed by the function:

φi = ωi +
n∑

j=1

Hij sin(θj − θi), i = 1, ..., n

The oscillators run incoherently when the coupling Hij is weak, however,

beyond a threshold, synchronization emerges. Kuramoto was able to prove that

there will be a phase transition to synchronization (convergence) and show that a

direct equation exists that gives the necessary coupling strength needed for

synchronization.

The Mirollo–Strogatz model [117] uses a simple communication and node

model. Nodes observe flashes from their neighbors, but do not care which

neighbor they received a flash from. The only state kept by a node is its internal

clock. The M&S model introduced non–linearity into the simple phase–advance

model by introducing a voltage variable. This allows for easier adjustment of the

sensitivity of the phase, depending on the actual phase upon receiving a flash

message. The rate of adjustment is determined by a firing function f(t) and the

2 Background and Related Works 23

pulse strength ε, which is a small constant < 1. Suppose a node receives a flash

message from a neighbor at time t
′
, it instantaneously jumps to a new interval

time t
′′
, where

t
′′

= f−1(f(t
′
) + ε)

If t
′′
> ω, the node immediately fires and resets its internal time to 0. Mirollo

and Strogatz proved that if the function f is concave down, monotonically

increasing, and smooth, the set of nodes (PCOs) will always converge regardless

of the number of nodes or their starting points.

The Ermentrout model [119] allows PCOs to synchronize at a nearly zero phase

difference. This model updates the frequency of an oscillator upon receiving a

flash message from a peer, rather than updating the phase as in other models.

The model has a phase response curve PRC that pushes the frequency high or low

depending on the point the flash message was received. Ermentrout proved that

the system converges to synchronization with very small difference in the phases

of the oscillators.

ω+ = ω + ε(ωn − ω) +

f+(φ)(Ωl − ω) if φ < 1
2

f−(φ)(Ωu − ω) if φ > 1
2

(2.3)

with

f+(φ) = max(
sin(2πφ)

2π
, 0) f−(φ) = −min(

sin(2πφ)

2π
, 0) (2.4)

where ωn is the natural frequency of the oscillator, Ωl and Ωu are the lower and

upper bounds on the frequencies of oscillators. The functions f+(φ) and f−(φ)

are non–negative periodic functions in the interval (0 < φ < 1) that slows down

or increases the frequency of a node. Function f+(φ) is positive when φ < 1
2

while

f−(φ) is positive when φ > 1
2
.

2 Background and Related Works 24

A synchronization scheme combining heartbeat synchronization and a firefly

inspired model for overlay networks was proposed in [123]. The proposed

protocol has two main parts, nodes selecting their peer list and processing a flash

message received to achieve synchronization. A game theoretic approach for

synchronizing pulse coupled oscillators was proposed in [126]. The model

developed is an extension of the well–known Kuramoto model for synchronizing

systems of oscillators. The game is noncooperative, with the oscillators in the

system competing against one another. An “oblivious solution” was developed

where individual oscillators do not have access to the full system state. The

oscillators make decisions strictly based on local states and a consistent average

value.

An emergent broadcast slot synchronization scheme inspired by firefly

algorithms was proposed in [122] for Internet of Things (IoT). Each node

maintains a time window that it can be awake during a steady state. Nodes in

the network go through three states to achieve synchronization. The first state is

the initialization state, where nodes start their random timers and identify their

neighbors. The nodes then transition to the synchronization state, here, the

nodes coordinate their synchronization error tolerance window with their

neighbors using a Pulse Coupled Oscillator (PCO) model with a phase

advancement function. A node becomes synchronized if its synchronicity is

greater than the synchronization threshold. Thereafter, the node moves into the

steady duty cycle state. In this phase, nodes only wake up during their

synchronization error tolerance window to exchange messages.

A PCO based synchronization scheme was proposed in [127] for the

synchronization of wireless sensor networks with a high degree of scalability.

Nodes have an internal clock that increase with a constant speed from 0 to a

specified period. Whenever a node crosses the specified period, its linearly

increasing phase is 1, it emits a message and resets it phase to 0. Nodes that

receive a message from another node update their internal clock and phase

according to an updating function. A refractory period is included immediately

after firing to introduce stability into the scheme. A synchronization scheme for

2 Background and Related Works 25

oscillator networks with stochastic behavior was developed in [128]. When an

oscillator’s phase reaches or passes 1, it resets its phase to 0 and then

probabilistically fires. Oscillators receive a pulse from other nodes after a

stochastic delay and update their phase according to a phase function.

Synchronization is reached when oscillators align their phases to form an

invariant subset of the state space and all oscillators within the subspace have

their phases synchronized.

2.5 Synchronization in Real–Time Artificial Intelligence

Applications

Synchronization is an important problem in iterative algorithms such as

distributed real–time ML, where the convergence rate and the per iteration times

are affected by it. The BSP model is one of the earliest ideas. While

BSP [104, 107, 129] guarantees total participation in synchronization, it performs

poorly in heterogeneous systems where devices can perform the same

computations in different amounts of time. This causes BSP to suffer a lot from

straggling devices. ASP [130, 131] is the other extreme, where workers do not

have to wait for one another.

The asynchronous parallel model (ASP) [130, 131] is a distributed training

method where training nodes propagate their updates to the parameter server as

soon as they are available without considering the other nodes. ASP is the slackest

form of synchronization, where worker nodes do not have to wait for one another.

Asynchronicity mitigates the effects of straggling workers as well as reduces the

extra communication overhead in synchronizing. However, due to the staleness in

updates and gradients, ASP takes much more iterations to reach convergence.

In [130], a parallel and decentralized ASP model was proposed for stochastic

gradient descent (SGD) [132, 133, 134, 135]. They sought to develop a

communication–efficient asynchronous algorithm for distributed training in a

heterogeneous environment while guaranteeing convergence. Each worker in the

2 Background and Related Works 26

system maintains a local model in its memory and undergoes the following steps

(i) sample a mini batch of data, (ii) compute the stochastic gradient, (iii) update

local model, and (iv) select random neighbor, average local model, and set the

local model to averaged model. The workers run the steps in isolation without

any global synchronization. They proved theoretically and experimentally that

the algorithm converges and has performance as good as its synchronous

counterpart. The asynchronous parallel stochastic gradient descent algorithm

proposed in [131] uses the one–sided asynchronous communication paradigm to

achieve fast convergence with linear scalability and some guaranteed accuracy.

The one–sided asynchronous communication paradigm uses early communication

of data to workers.

The BSP model was originally developed for parallel systems such as

Hadoop [136], MapReduce [137], Pregel [138] and Spark [139]. In BSP

distributed training models, the next training iteration only starts after all

workers have completed the previous iteration as shown in Fig. 2.2. BSP is a

more perfect match for a homogeneous distributed worker setup where workers

are expected to have relatively the same run time per iteration.

An improved BSP algorithm was proposed in [140]. The elastic BSP model

relaxes the strict synchronization in BSP to allow for faster and better

convergence. It differs from SSP by considering the processing capabilities of

workers and uses this information to schedule future synchronization points.

Fixing the synchronization barrier varies during training, depending on the

runtime environment. The model assumes a stable environment and predicts the

future iteration times of workers based on the most recent iterations. A greedy

look–ahead algorithm is then used to determine the next synchronization point

based on the predicted future iteration times of workers. The algorithm looks to

minimize the overall waiting times among the workers.

SSP [141, 142] takes a nuanced approach to solve the straggler problem by

relaxing BSP’s strict barrier condition as shown in Fig. 2.2. SSP allows devices

to proceed to the next iteration if the gap between the fastest and slowest device

is within a bound – called staleness value. Although, SSP leads to faster

2 Background and Related Works 27

Worker 1

Synchronization
barrier

(quorum = 100%)

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

AI tasks

Straggler Straggler

- BSP: Barrier synchronization
is as fast as the slowest
worker

- SSP: Bounded staleness is
allowed in synchronization.

staleness
threshold = 3

Fig. 2.2 Example showing the workings of bulk synchronous parallel
(BSP) and stale synchronous parallel (SSP) models.

execution and less wait time, the quality of synchronization is reduced compared

to BSP by allowing asynchrony. An SSP implementation enforces at least the

following requirements – bounded clock difference, timestamped updates, model

state guarantees, and read local writes.

A stale synchronous parallel (SSP) parameter server model for distributed

machine learning was proposed in [141]. Each worker maintains an internal clock

with which it updates shared parameters. Updates from each worker are

committed at the end of their internal clock. A worker might not immediately

see updates from other workers due to the different internal clocks operated by

the workers. The algorithm maintains a user–defined bounded staleness, which is

the largest tolerable gap between the fastest worker and the slowest worker. The

staleness is measured in terms of clock (iterations). The fastest worker is forced

to wait for the slowest worker to catch up whenever the gap between them is

more than the staleness threshold. They showed in [141] that their algorithm

outperforms both BSP and ASP algorithms. An eager SSP implementation was

2 Background and Related Works 28

proposed in [143] where updates from workers are eagerly propagated to the

parameter server. They showed that faster convergence can be achieved by

reducing the average staleness.

DSSP [144] was proposed as an improvement on the SSP model for deep

neural network training. In DSSP, rather than having a static staleness value, a

value is dynamically selected from a range of values based on real–time

processing speeds at runtime. Thus, the staleness value is continuously updated

among workers as the training process continues, with the goal of minimizing

waiting times or wasted work cycles. A synchronization controller is used to

monitor the progress of worker nodes and for making projections about future

execution progress. The goal of the dynamic staleness is to minimize the waiting

(idle) time on workers. The synchronization controller always finds the slowest

worker and after each update from a worker, it checks that the worker is no more

than the staleness threshold (iterations) away from the slowest worker. A similar

approach to DSSP was proposed in [145] where a performance monitoring model

is used to adjust the synchronization delay threshold.

29

Chapter 3

Taxonomy and Motivation

In this chapter, we provide a taxonomy of synchronization in IoT by exploring a

very wide range of operating conditions in edge IoT systems. We motivate the

need for synchronization in IoT and distributed AI applications, as well as provide

application scenarios and use cases.

3.1 Taxonomy of Synchronization in IoT

We classify synchronization in IoT as shown in Figure 3.1 based on the number

of controllers in the system, number of controllers at each synchronization point,

synchronization point time alignment, worker participation, worker node types,

worker mobility, quality of synchronization and quorum requirement. The

classifications are briefly explained as follows.

1. Total number of controllers: The number of controllers in an IoT system

could be single or many, depending on the scope of the system. In the case of

a single controller, all workers must be connected to the controller to be part

of the system. In a multi–controller system, workers connect to the controller

that is closest to them or assigned to their physical vicinity. Workers can

3 Taxonomy and Motivation 30

change controller membership as they move around.

2. Number of controllers at synchronization point: Synchronization

could be at a global scale or local scale. In a global synchronization, all the

controllers in the system must ensure that the devices under them

synchronize their activities on the given sync task. In a local

synchronization, only the subset of controllers that are affected by the

synchronization are involved in the synchronization process.

3. Synchronization point time alignment: All the controllers participating

in the synchronization can either orchestrate the devices under them to start

the execution of the sync task at the same time or at different times. Thus,

a single–controller system can only permit one aligned sync point, while a

multi–controller system can permit both an aligned and a non–aligned sync

point.

4. Worker participation: Some synchronization tasks require either all or

some specified number of the workers connected to a controller to partake in

the synchronization process. The participation of workers is dependent on

their availability to run the sync task and the requirements of the sync task

itself.

5. Node types: Synchronization in IoT is affected by node types. Nodes could

be homogeneous, having similar attributes or heterogeneous, having different

attributes.

6. Node mobility: Mobility is an important factor affecting synchronization

in IoT. Nodes could be mobile, such as hand–held devices, cars, etc., or fixed,

such as nodes placed on lamp posts.

7. Quorum requirement: The conditions at which synchronization can occur

are either having at least the required fraction of nodes available to run the

synchronous task (ratio–based quorum) or having the desired representation

per group of clustered nodes (cluster–based quorum).

8. Quality of Synchronization: In atomic synchronization, a sync task is

executed or fails depending on the quorum success or failure. In eventual

3 Taxonomy and Motivation 31

T
O

TA
L

 N
U

M
B

E
R

O

F

C
O

N
T

R
O

L
L

E
R

S

S
IN

G
L

E
M

A
N

Y

S
Y

N
C

 P
O

IN
T

T

IM
E

A

L
IG

N
M

E
N

T

A
L

IG
N

E
D

N
O

T

A
L

IG
N

E
D

C
O

N
T

R
O

L
L

E
R

S

A
T

 E
A

C
H

 S
Y

N
C

P

O
IN

T

S
O

M
E

A
L

L

S
Y

N
C

H
R

O
N

IC
IT

Y

A
T

O
M

IC

N
O

D
E

 T
Y

P
E

S

H
O

M
O

-
G

E
N

E
O

U
S

H
E

T
E

R
O

-
G

E
N

E
O

U
S

Q
U

O
R

U
M

R

E
Q

U
IR

E
M

E
N

T

R
A

T
IO

-
B

A
S

E
D

C
L

U
S

T
E

R
-

B
A

S
E

D

N
O

D
E

 M
O

B
IL

IT
Y

M
O

B
IL

E
F

IX
E

D

N
O

D
E

P

A
R

T
IC

IP
A

T
IO

N

S
O

M
E

A
L

L

E
V

E
N

T
U

A
L

Fig. 3.1 Taxonomy of Synchronization in IoT.

3 Taxonomy and Motivation 32

synchronization, the sync task is run regardless of whether the nodes are

initially synchronized or not, synchronicity is expected to increase with time.

3.2 Motivation

3.2.1 Synchronization in Fog/Edge–Based Internet of Things Systems

3.2.1.1 Use Cases

The use cases for synchronization in IoT are classified into the following three

aspects:

1. Capacity pool: IoT and other smart devices are usually limited in their

computing and sensing capabilities. Thus, there is a need for cooperation

among several devices to solve a much bigger problem than can be solved

by an individual device. The devices must pool their resources together in a

coordinated manner to be successful. An example is a self–driving car moving

on a smart higher. The car’s dedicated resources must be coordinated with

the smart highway resources for smooth and safe driving.

2. Data capture synchrony: Data synchronization [146] is an important

problem in IoT data acquisition. Using synchronous tasks for capturing

data allows us to precisely control the relative timing relations among the

data points. In data capture synchrony, different subset of nodes can be

made to synchronize at different points in time, thus achieving some level of

data ordering.

3. Resource usage synchrony: IoT devices consume resources (e.g. power)

for their operation; therefore, we need to use subset synchronization to

sequence the operating order of the IoT devices to minimize the maximum

resource usage profile. Take for example a smart lighting system consisting

of numerous light bulbs, to light up (cover) a particular area, only a subset

3 Taxonomy and Motivation 33

of the bulbs needs to be turned on at the same time. Synchronization can

be used to incrementally change the lighting intensity or maintain a

constant lighting intensity.

3.2.1.2 Deployment Scenarios

Here, three application scenarios where synchronization among devices is of high

importance are provided to motivate the need for synchronization and control

schemes in IoT.

1. Edge Assisted Autonomous Driving and Synchronized Data Capture

In a typical edge assisted autonomous driving system [147, 148], vehicles report

driving data to the edge server, while the edge server gather intelligence from the

data and forward driving instructions to the vehicles as shown in Fig. 3.3.

Controller activities

PHYSI CAL WORLD

Trajectory
and speed
prediction

Road Space
Allocation

Edge server
(Controller)

Vehicle
positions Workers

reporting
location

Controller
sending
driving

instructions

Fig. 3.2 Sample edge assisted autonomous driving scenario with the
edge server as the controller and cars as workers.

3 Taxonomy and Motivation 34

If the workers report their locations asynchronously over a period of time,

recreating vehicle positions at a particular point in time requires quite complex

time shifting and transformation algorithms. We cannot take a global snapshot of

vehicle positions in a meaningful way.

With synchronized data capture, it is easy to find how relative positions of

vehicles are changing over time. More intelligent predictions and inference can

be drawn from data with simple algorithms using synchronization. We can easily

observe real world state by doing measurements at the same time.

2. Bridge Health Monitoring

This is an example of the data capture synchrony use case as shown on the

right side of Fig. 3.3. Strain measurement at bridge joints and other important

points in the structure is required to maintain a close watch on the health of

a bridge structure [149]. To take high quality measurements, it is necessary to

coordinate the data capture operations such that they are made when the loading

is at a particular configuration. The loading configuration would be measured by

the position of the vehicles (captured by drones) on the bridge at that instant and

their weight.

The most accurate way of doing such a measurement is to actuate all involved

devices (sensors, drones, and vehicles) to run the measurement function at the

same time instant. If different devices run the measurement function at different

time points, a complex reconstruction procedure need to be executed to

determine the concurrent loading. The fine–grained measurements are only of

interest while the vehicles are on the bridge. That is, they do not need to

continue to take fine–grained position measurements and report them when they

are not on the bridge.

3 Taxonomy and Motivation 35

Fog level

Cloud
level

Sensor nodes taking
bridge health

measurements

Fig. 3.3 Sample drone delivery and bridge monitoring system.

3. Smart Car Leveraging Smart Highway Resources

A smart (autonomous) car carries enormous amount of computing, storage

and sensing capacities [150, 151, 152]. With fast wireless networks and edge

computing, smart cars can share their capacities with other cars or with the

roadside infrastructure and vice–versa. Such a swarm of cars will have

significantly augmented capabilities; that is, a smart car could have more

capabilities (i.e., higher level autonomy [153]) on a smart highway (SH) [154, 155]

than what is capable of on a normal highway as shown in Fig. 3.4.

Smart cars need up–to–date information about the status of the road (presence

of other cars and the road condition) and other driving conditions (such as weather)

3 Taxonomy and Motivation 36

Standalone car
relying on
dedicated
resources

Fog

Sensors

Fog

Smart highway resources combined with smart car
resources to form a swarm

Car relying on
swarm

resources

Fig. 3.4 Smart cars relying on smart highway for improved driving
experience.

to drive safely. The SH can be divided into segments, with each segment providing

virtual resources to the swarm of smart cars within its range. The shared pool of

resources including video cameras, pressure sensors, and speed monitors need to

operate synchronously to tackle the tasks in real time without creating backlogs

(i.e., a capacity pool use case for multipoint synchronization). The challenge here

is to deal with coalitions that are short–lived (i.e., coalitions created and destroyed

as cars move by) with low synchronization overhead.

3.2.2 Synchronization in Artificial Intelligence Application Tasks

3.2.2.1 Use Cases

1. Distributed machine learning: This is a multi–node machine learning system

designed to increase accuracy, improve performance and scale in terms of

data size by leveraging the processing and storage capacities of many nodes

as shown in Fig. 3.5. The parameter server framework was developed as

3 Taxonomy and Motivation 37

Workers

Data

Parameter Server

Fig. 3.5 Distributed machine learning architecture.

a means of aggregating gradient/model updates from distributed training

nodes. Existing distributed machine learning frameworks [49, 156, 157, 158]

use either the BSP, SSP, DSSP models or variations of the models. Most

distributed ML algorithms suffer from a bottleneck of synchronization [159],

especially edge–based distributed ML systems where the nodes can scale

to very large numbers. The speed of convergence is greatly reliant on the

synchronization approach adopted for aggregating partial updates from the

distributed nodes.

2. Federated learning [160, 161, 162, 163]: This is a collaborative machine

learning paradigm where computations are moved towards data as shown

in Fig. 3.6. A globally shared model is pushed towards where the data are,

for example, smartphones. A model can thus be collectively trained.

Federated learning preserves privacy while building powerful intelligent

systems. Synchronization is very useful in federated learning with the main

challenges of optimization and communication. There is a need for

aggregation of local model updates. The aggregation process must be

3 Taxonomy and Motivation 38

Server

Workers

Data DataData

Fig. 3.6 Federated learning architecture.

synchronized in order to get good results from the learning process.

3.2.2.2 Deployment Scenario (Smart Health)

Medical data and reports are usually very sensitive and private. However, it is

very difficult to collect extensive medical datasets in isolated hospitals and

medical centers. The insufficiency of data and medical centers wanting to keep

their patient’s data private have made the performance of machine learning

models to be unsatisfactory. Such a system will benefit from federated learning

where a common global model is shared amongst the participating medical

centers while keeping their data private. Only the trained local model is

uploaded to the global model after some predefined training iterations. The

challenge for training on such a system is in aggregating the local models from

the individual participants and defining some synchronization update rules.

3 Taxonomy and Motivation 39

3.2.3 Summary

We look to develop synchronous scheduling schemes for fog–controlled IoT and

AI application tasks where there is a need to check for the availability of nodes

before sending a task for execution especially for synchronous tasks, where there

are strict timing requirements. We expect that there will not be preemption of

tasks unlike in co– and gang scheduling [91, 95] and as such a task cannot be

stopped once it has commenced execution until it has finished the execution or

failed. There is a heterogeneous task setup with a combination of local,

asynchronous and synchronous tasks that need to be scheduled unlike the

firefly–based (PCO) synchronization schemes [121, 122, 123] where

synchronization is on a single flash message. The execution of a synchronous task

cannot proceed unless the synchronicity conditions are met, whereas in firefly

based (PCO) synchronization, eventual synchronization is sought for.

We look to extend beyond time synchronization [17, 18] by making sure that

nodes need not only have the same notion of time, but that there is the right

availability of nodes before executing a synchronous task. Node disconnection,

leaving, and joining are catered for by introducing quorum checking to verify the

availability and participation of nodes before executing a synchronous task. Fault

tolerance is achieved by introducing time and component redundancy.

40

Chapter 4

Task–Based Synchronization

Schemes for Fog–Controlled

Internet of Things

4.1 Overview

In this chapter, we introduce our solutions for solving the problem of

synchronization in a fog–controlled IoT system. Although clock synchronization

[19] is necessary, it is not sufficient for simultaneous task executions among

workers because workers could depart (due to disconnection or failure) or become

unavailable to execute the given task due to a prior overshooting task. The

synchronous tasks must be scheduled for execution only after receiving

confirmation regarding the availability of the required number of nodes. We

propose three synchronous scheduling algorithms based on the system model for

scheduling synchronous tasks with strict synchronicity requirements on multiple

nodes in the presence of other tasks. We evaluate the performance of the

proposed algorithms through extensive simulations under different runtime

conditions and analyze the results.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 41

4.2 Synchronization Scheduling Schemes

Fog–controlled IoT is composed of cloud – providing global services, fogs – located

closer to devices and providing low–latency services, and a massive number of

IoT devices (workers) – comprised of fixed and mobile nodes. We assume that

controllers can be resident in any of the three levels (cloud, fog, and device levels).

We assume that all the nodes (controllers and workers) in the system are single

threaded, i.e., they can only execute a single task at any point in time. The

proposed algorithms use the basic system model given in Section 1.2.

At start–up, the same application is loaded onto all nodes in the system. Thus,

we can keep track of the number of workers in the system. As workers join and

leave, the number of workers in the system change. Since worker nodes cannot be

standalone and need to be connected to a fog, the fog keeps track of the number

of workers connected to it. The fog also assumes that all workers under it will

run whatever task it triggers on them. We assume a heterogeneous system where

worker nodes have varying but similar processing and computational capabilities,

thus, worker nodes are expected to have different execution times for the same

task. Due to network disruptions, mobility, or node failure, disconnections can

occur between worker nodes and controllers. Disconnected workers can rejoin the

system by connecting to a controller, and new workers can only join the system if

they connect to a controller.

Depending on the amount of prior knowledge of the task graph (none, average

or extensive) and the task arrival pattern (sporadic, periodic, or frequent), we

develop three synchronization scheduling algorithms to handle a vast range of the

cases. The notations used in the algorithms are described as follows. Tcurr and Tnext

are the current task to be scheduled and the next task in the queue, respectively.

tavail represents the available time of a worker after finishing the execution of a

previous task.

To meet with the desired QoSync, there is a need to check for the availability

of workers before proceeding with executing a synchronous task c2ws, we call this

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 42

process quorum checking. The quorum check process involves workers updating

the controller of their availability to run the synchronous task. We execute the

quorum check task Tquorum to probe the controller if the required fraction of workers

is available to run the synchronization task, subject to the synchronization degree

α. Tquorum is scheduled to start at time τ which is a function of the synchronization

degree, distribution of execution times and the finishing time of the task on all the

workers before the synchronization point. The duration of Tquorum is dependent

on how long it takes for the worker to ask the controller about whether there is a

quorum and get a response. We perform quorum checking in two ways: naive and

the sampling–based quorum checking. Table 4.1 gives a summary of the symbols

used in the synchronization algorithms.

Table 4.1 Symbols for synchronization algorithms.

Symbol Description

Tcurr current task to be scheduled

Tquorum quorum check task

Tupdate status update task run by workers

tavail available time of a worker

λ time delay before re-attempting quorum

α ratio of workers required to pass quorum

τ predicted quorum check time

4.2.1 Naive quorum checking

The naive quorum checking requires all the workers in the system to participate

in the quorum checking process. Whenever a synchronization point is reached, all

available workers running the program send an update message to the controller to

report their availabilities by running Tupdate. The workers thereafter run Tquorum

to probe the controller to know if the desired quorum has been met.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 43

4.2.2 Sampling–based quorum checking

Sampling–based quorum checking works by randomly selecting some workers to

participate in quorum checking. We seek responses from the marked workers.

Assume that there are N workers in total, with s selected ones. Ideally, at the

synchronization point, we can get s responses. If we get k responses, we can

estimate the number of available workers as (k/s) ∗N .

4.3 Static Synchronization Scheduling Algorithm (SSSA)

The SSSA shown in Algorithm 1 is run at compile time and assumes that we have

prior knowledge of the task graph G . The task graph is topologically sorted with

higher priority given to synchronous task and asynchronous task in that order.

Ties between tasks of the same type are broken by giving priority to tasks with

lower expected execution time. The topologically sorted set S guarantees that

precedence constraints are maintained. SSSA produces a primary schedule and

other alternative schedules that are used when the primary schedule fails quorum

checking. The schedules are generated at compile time. The maximum number

of quorum retries to attempt at each synchronization point is given as an input

to the algorithm. The algorithmic flow is shown in Fig. 4.1. A description of the

functions in Algorithm 1 is given in Table 4.2.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 44

Execution
matrix

Topologically
sorted tasks

Quorum

successful?

InputMaximum
retries n

Task
graph

Sync task?

No

More
retries

Add to
alternate
schedule

Add to
primary/current

schedule

Yes

Yes

No

Maximum
retries
capped

Fig. 4.1 Flow of the static synchronization scheduling algorithm.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 45

Algorithm 1: Static synchronization scheduling algorithm

1 Input: Task graph G and maximum quorum retries.

2 Output: Primary and alternative schedules.

3 set S = top sort(G) and schedule counter m = 1

4 StatSchd(S, m, tavail):

5 while S 6= φ do:

6 if type(Tnext) = c2ws:

7 s schedule(Tupdate,m, tavail) and compute τ

8 if type(Tcurr) = c2ws:

9 s schedule(Tquorum,m, τ) ; . calls QuorumCheck(m)

10 if retries not exceeded:

11 StatSchd(S, m, tavail + λ)

12 else if retries exceeded:

13 remove(S, Tcurr)

14 StatSchd(S, m, tavail)

15 s schedule(Tcurr,m, tavail)

16 else if type(Tcurr) = c2wa ‖ type(Tcurr) = wl:

17 s schedule(Tcurr,m, tavail)

18 QuorumCheck(m):

19 if quorum = passed :

20 continue schedule m

21 else:

22 switch to schedule m++

Table 4.2 Explanation of functions in SSSA.

Symbol Description

top sort(G) topological sort of tasks in task graph G

StatSchd(S , m, tavail) function that accepts topologically sorted set of tasks
S , the schedule m, and time tavail

type(T) the type of task T : sync, async or local

s schedule(T,m, t) schedule task T in schedule m at time t

remove(S , T) remove task T from task set S

QuorumCheck(m) perform quorum check on current schedule m

The update sending tasks are scheduled on the workers one task before getting

to a synchronization point (Lines 6–7). The early sending of the updates allows

the controller to process the messages while the workers are busy executing tasks,

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 46

resulting in less wait times (wasted work cycles). After calculating the expected

variation τ in execution progress across workers, the quorum check task Tquorum

is scheduled (Line 9). If quorum passes, we schedule the sync task (Line 15)

and proceed with the current schedule (the mth schedule) (Line 20). However,

if quorum fails and there are still quorum retries left, an alternative schedule is

generated (Line 22) and the synchronization process is continued after waiting for

a delay λ (Line 11). If there are no retries left, the synchronization task is failed,

we generate an alternative schedule and then proceed to the next task (Lines 13–

14). c2wa and wl are scheduled immediately they get to the head of the queue in

S (Lines 16–17).

4.4 Dynamic Synchronization Scheduling Algorithm

(DSSA)

The DSSA shown in Algorithm 2 is run at the controller and executed at runtime.

Assumptions such as prior knowledge of the estimated execution time of tasks

and the structure of the task graph made in the static synchronization scheduling

algorithm are relaxed in the dynamic algorithm. DSSA assumes that we cannot

accurately predict task arrival pattern, thus, scheduling decisions are made on the

fly as tasks become available. Fig. 4.2 shows the flow of DSSA. We use [W] to

depict the scheduling actions that occur at the worker.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 47

Quorum

successful?

InputMaximum
retries n

Set of
available tasks

Sync task?

No
Maximum
retries
capped

More
retries

Add to
schedule

Yes

YesNo

Run local
scheduler after
sending update

message

Wait for ?

Fig. 4.2 Flow of the dynamic synchronization scheduling algorithm.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 48

Algorithm 2: Dynamic synchronization scheduling algorithm

1 Input: Task graph G and maximum quorum retries.

2 Output: Execution of the tasks.

3 set A = {set of available tasks}
4 DynaSchd(A,tavail):

5 while Tcurr = get tasks(A) and Tcurr 6= φ do:

6 if type(Tcurr) = c2ws:

7 d schedule(Tupdate, tavail) [W]

8 δ = compute slack()

9 LocalSchd(δ) [W]

10 d schedule(Tquorum, tavail) [W]

11 if quorum = failed && retries not exceeded:

12 DynaSchd(A, tavail + λ)

13 else if quorum = failed && retries exceeded:

14 remove(A, Tcurr) [W]

15 DynaSchd(A, tavail)

16 else if quorum = passed :

17 d schedule(Tcurr, tavail) [W]

18 else if type(Tcurr) = c2wa ‖ type(Tcurr) = wl:

19 d schedule(Tcurr) [W]

Table 4.3 Explanation of functions in DSSA.

Symbol Description

DynaSchd(A, tavail) function that accepts set of available tasks A and time
tavail

get tasks(A) get the current task in A

d schedule(T, t) schedule task T at time t

compute slack() computes time gap between available time and
expected quorum check time

remove(A, T) remove task T from task set A

Whenever we get to a synchronization point, the controller prompts the workers

to schedule the update sending task (Line 7). Before quorum checking takes place,

the controller triggers the local scheduler on ready workers (Line 9 – Algorithm 3)

to check if a local task can be run provided the execution time tl of the local task is

less than the computed slack δ (Line 8) in workers’ available times. This is done to

minimize wasted work cycles on the workers that reach the synchronization point

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 49

faster than others.

Quorum checking (Lines 10) is performed by the workers by probing the

controller to know if there is a successful quorum or not. If quorum is successful,

the c2ws task is scheduled on all available workers to run at the same time. If the

quorum fails and there are retries left, the workers wait for some time λ before

attempting the synchronization process again (Line 12). If all retries fail, the

synchronization task is failed (Line 14) and execution continues (Line 15). c2wa

and wl tasks are scheduled to run on at the earliest available times on the

workers (Line 19).

4.5 Micro Batch Synchronization Scheduling Algorithm

(MBSSA)

The MBSSA derives attributes from both SSSA and DSSA as shown in Fig. 4.3.

SSSA makes assumptions that the task graph and execution time distribution are

known but makes more pre–informed scheduling decisions, which becomes stale

after a while, especially for long–running applications. DSSA whereas assumes

that we do not have enough information on the tasks coming into the system

nor their execution time distribution and thus makes scheduling decisions on the

fly. MBSSA aims at grouping dynamically arriving tasks and runs the static

scheduling scheme on the group of tasks. MBSSA is particularly good for systems

where the communication cost between workers and controllers is high, and the

arrival pattern of tasks can be accurately predicted to some degree. The arrival

pattern of tasks is important because we do not want to keep tasks for too long

before forming a micro–batch.

MBSSA dynamically groups a set of incoming tasks into a microbatch and

schedules them statically. This eliminates the staleness in the scheduling decisions

of SSSA. New tasks that come after a microbatch is formed are grouped into a new

microbatch and prepared for scheduling. Micro batches could be formed based on

a predefined size or time slice (tasks that arrive within a particular time interval

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 50

Run SSSA on
micro-batch

Dynamically group
tasks into a micro

batch

Set of
available

tasks

Partial
schedule

Fig. 4.3 Flow of the micro batch synchronization scheduling
algorithm.

are grouped into a micro batch).

4.6 Local Scheduler

The local scheduling is an optimization scheme developed to minimize the

waiting of workers that get to the synchronization point earlier than other

workers. Since the workers do not communicate directly with each other but only

with the controller, workers on getting to a synchronization point have no

information about other workers. So, by running a local scheduler LocalSchd(δ),

a worker compares its current time with the predicted finish time δ across all

workers as shown in Algorithm 3.

Algorithm 3: Local scheduling algorithm for task–based synchronization

1 LocalSchd(δ):

2 L = {local worker task queue}
3 while get tasks(L) = wl do:

4 if tavail + tl ≤ δ:
5 schedule(wl)

6 revise available times(tavail, max t avail)

7 else:

8 continue

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 51

The local scheduler would run a local task (provided there is one) if the gap

between the predicted availability of the other workers δ and the local node’s

availability tavail is greater than the local task’s length. Otherwise, the local

scheduler would not schedule any local tasks and let the worker sit idle.

4.7 Experiments and Results

The purpose of the experiments is to use simulations to evaluate the performance

of SSSA, DSSA, and MBSSA under a variety of different conditions.

4.7.1 Simulation Procedure

We parameterized many variables for the simulations. The simulation parameters

are derived from system, application and environmental configurations. The wide

range of parameter variation allows for a higher degree of exploration into many

aspects of the system. The simulation parameters are

1. Prediction accuracy of execution time: how close the predicted execution

time of a task is to the actual runtime.

2. Execution time variance: deviation of the execution time of a task on

different workers.

3. Sample ratio: ratio of workers probed in sampling–based quorum checking.

4. Synchronization task frequency : frequency of synchronization tasks

(periodic/sporadic).

5. Synchronization task density : number of synchronization tasks in the task

graph (lightly synchronized/heavily synchronized).

6. Update processing cost : the individual cost of processing messages from

workers during quorum checking.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 52

7. Synchronization degree: ratio of the total workers required to pass quorum.

8. Quorum retries : number of times quorum checking is permitted to be

repeated before failing the sync task.

9. Node failure rate: the probability that a worker will temporarily fail before

rejoining at a later time.

We use randomly generated and differently structured task graphs in our

simulations. A task graph consists of 30 tasks (asynchronous, synchronous, and

local). We introduce machine heterogeneity and task heterogeneity into the

simulations. Task execution times are generated using a normal distribution with

a mean value of 100 ms and a variance of 20 ms. Machine heterogeneity is

included by varying the execution time of a task while running the simulations.

The variation follows a normal distribution, with the predicted value chosen as

the mean and the deviation specified as a parameter in the simulation. In

MBSSA micro batches are formed by grouping a set of tasks with a size of 5. To

model the heterogeneity of the workers, we use a normal distribution to represent

the execution time variation of a particular task across different workers [164]. τ

is computed by adding from one up to three times (covering from 68.27% to

99.73% of the normal distribution according to the three–sigma rule) the

standard deviation to the mean execution time.

4.7.2 Simulation Results

The following parameters are fixed in the simulations unless otherwise stated.

The number of independent runs of each simulation is 100 while each task graph

is continuously run in each simulation for 200 times, we set the communication

cost between machines to 20 ms, α is set to 0.7 and λ set to 50 ms. We randomly

fail machines with a probability of 0.1 after each task. The probability of a new

machine joining is set at 0.1, but machines can only join at the start of the

execution of a new run of the task graph. This is done to ensure that joining

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 53

machines will have all the necessary data required to run all tasks down the task

graph.

We measure the following parameters in our simulations. Execution time: the

time taken for a single run of a task graph. We divide the total execution time of a

simulation by the number of runs. In our results, we normalize the execution time

by the number of sync points. Quorum attempts : the total number of times the

quorum check process was attempted at all synchronization points. Failed sync

tasks : The total number of sync tasks that failed after exceeding the total number

of quorum retries.

To explore the impact of the accuracy in the prediction of the execution time

of tasks on SSSA, DSSA and MBSSA, we varied the standard deviation from the

predicted value from 0 to 20. A standard deviation of 0 means a perfect prediction

of the execution time of the tasks. The accuracy of prediction reduces as standard

deviation increases.

The number of quorum attempts increases as the prediction accuracy reduces

for all three algorithms. As the prediction accuracy reduces, SSSA performs worse

than DSSA in terms of number of quorum retries as seen in Fig. 4.4. The number of

quorum retries increases for MBSSA at a much lower rate compared to SSSA. The

average execution time of SSSA and MBSSA increases at a much faster rate than

DSSA as the prediction accuracy decreases. At lower prediction accuracy values

(higher standard deviation), DSSA performs better than SSSA and MBSSA as

shown in Fig. 4.5.

To determine the optimal number of quorum retries for a particular system,

environment and application setup, we varied the number of quorum retries keeping

other parameters constant. Fig. 4.6 shows the number of failed sync tasks for

different number of quorum retries. SSSA has the highest number of failed sync

tasks, closely followed by MBSSA and finally DSSA for a single quorum retry.

The number of failed sync tasks reduces for all three algorithms as the number

of quorum retries increases. All the algorithms converge at 3 quorum retries, at

which point the number of failed sync tasks is close to 0 and stays almost constant.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 54

 0

 0.5

 1

 1.5

 2

 2.5

0 5 10 15 20

Q
uo

ru
m

 a
tte

m
pt

s/
sy

nc
 ta

sk
s

Standard deviation

DSSA
SSSA
MBSSA

Fig. 4.4 Quorum attempts for varying prediction accuracy.

The average execution time for different quorum retry values is shown in

Fig. 4.7. The rate of increase in the average execution time for MBSSA reduces

drastically after 2 quorum retries, while it was after 3 quorum retries for SSSA

and DSSA. After 2 quorum retries, the average execution time of SSSA becomes

higher than MBSSA while DSSA has the lowest average execution time

regardless of the number of quorum retries.

We investigate the impact of changing the update processing cost on SSSA,

DSSA and MBSSA. An increasing cost of update processing has negative impact

on DSSA as the number of quorum attempts increases as update processing cost

increases. For SSSA, the number of quorum attempts decreases as the update

processing cost increases till it gets to a steady point after an update processing

cost of 10 ms while MBSSA remains unaffected as the update processing cost

changes as evident in Fig. 4.8.

The average execution time of SSSA increases at a much faster rate compared

to DSSA and MBSSA. DSSA has a lower average execution time than SSSA up

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 55

 720
 740
 760
 780
 800
 820
 840
 860
 880
 900
 920

 0 5 10 15 20

R
un

tim
e/

sy
nc

 ta
sk

s
(m

s)

Standard deviation

DSSA
SSSA
MBSSA

Fig. 4.5 Average execution time for varying execution time
prediction accuracy.

 0
 2
 4
 6
 8

 10
 12
 14

 1 1.5 2 2.5 3 3.5 4 4.5 5

Fa
ile

d
sy

nc
 ta

sk
s

Permitted quorum retries

DSSA
SSSA
MBSSA

Fig. 4.6 Failed sync tasks for varying number of quorum retries.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 56

 750

 800

 850

 900

 950

 1 1.5 2 2.5 3 3.5 4 4.5 5

R
un

tim
e/

sy
nc

 ta
sk

s
(m

s)

Permitted quorum retries

DSSA
SSSA
MBSSA

Fig. 4.7 Average execution time for varying number of quorum
retries.

until a processing cost of 10 ms. At higher update processing costs, SSSA has a

higher average execution time than DSSA. MBSSA has a lower average execution

time compared to both SSSA and DSSA regardless of the cost of update processing

as shown in Fig. 4.9.

We vary the density of sync tasks in task graphs used in the simulation. We set

the density between 3 and 7 sync tasks for lightly synchronized and between 8 and

12 sync tasks for heavily synchronized. MBSSA performs better in terms of average

execution time compared to SSSA and DSSA for lightly synchronized task graphs

while DSSA performs better than SSSA and MBSSA for heavily synchronized task

graphs as the number of machines increase as shown in Fig. 4.10 and Fig. 4.11.

We set the frequency of sync tasks to every 4 task for the periodic sync task

frequency and randomly vary the frequency for sporadic sync task frequency. We

show the results for varying the frequency of sync tasks in Fig. 4.12 – 4.13.

SSSA has the highest average execution time for both the periodic and sporadic

sync task frequency. DSSA has a lower average execution time for sporadic sync

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 57

 0

 0.5

 1

 1.5

 2

 2.5

1 2 5 10 20

Q
uo

ru
m

 a
tte

m
pt

s/
sy

nc
 ta

sk
s

Update processing cost (ms)

DSSA
SSSA
MBSSA

Fig. 4.8 Quorum attempts for varying update processing cost.

 750
 800
 850
 900
 950

 1000
 1050
 1100
 1150
 1200

 0 5 10 15 20

R
un

tim
e/

sy
nc

 ta
sk

s
(m

s)

Update processing cost (ms)

DSSA
SSSA
MBSSA

Fig. 4.9 Average execution time for varying update processing cost.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 58

 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 50 100 150 200

R
un

tim
e/

sy
nc

 ta
sk

s
(m

s)

Number of machines

DSSA
SSSA
MBSSA

Fig. 4.10 Average execution time vs number of machines for heavy
synchronization.

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600

 0 50 100 150 200

R
un

tim
e/

sy
nc

 ta
sk

s
(m

s)

Number of machines

DSSA
SSSA
MBSSA

Fig. 4.11 Average execution time vs number of machines for light
synchronization.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 59

 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 50 100 150 200

R
un

tim
e/

sy
nc

 ta
sk

s
(m

s)

Number of machines

DSSA
SSSA
MBSSA

Fig. 4.12 Average execution time vs number of machines for periodic
sync frequency.

task frequency and higher average execution time for periodic sync task frequency

compared to MBSSA.

We compare the results of using the naive quorum checking and sampling–based

quorum checking with a sample ratio of 0.3 as shown in Fig. 4.14. DSSA–SAMPLE

has a much lower execution time compared to DSSA because in DSSA–SAMPLE

only a subset of the machines is involved in the status updates and quorum check

process. However, this comes at a cost as shown in Fig. 4.15 where in some cases

(20% of the time) the percentage of machines that run the sync tasks is lower than

the actual required percentage (70%).

We measure the impact of disconnection on our algorithms by varying the

probability of nodes leaving and later rejoining the system. DSSA, SSSA, and

MBSSA are affected by increasing node failure rates similarly. The number of

failed sync tasks increases as the node failure rate increases as shown in Fig. 4.16.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 60

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 0 50 100 150 200

R
un

tim
e/

sy
nc

 ta
sk

s
(m

s)

Number of machines

DSSA
SSSA
MBSSA

Fig. 4.13 Average execution time vs number of machines for sporadic
sync frequency.

 700
 750
 800
 850
 900
 950

 1000
 1050
 1100
 1150

 0 50 100 150 200

R
un

tim
e/

sy
nc

 ta
sk

s
(m

s)

Number of machines

DSSA
DSSA-SAMPLE

Fig. 4.14 Execution time for DSSA and DSSA–SAMPLE with
varying number of machines.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 61

 0

 0.2

 0.4

 0.6

 0.8

 1

 55 60 65 70 75 80 85 90 95

Fr
eq

ue
nc

y

Synced machines (%)
Fig. 4.15 CDF showing the percentage of machines that ran sync
task.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 0.02 0.04 0.06 0.08 0.1

Fa
ile

d
sy

nc
 ta

sk
s

Node failure rate

DSSA
SSSA
MBSSA

Fig. 4.16 Failed sync tasks for varying node failure rates.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 62

4.8 Discussions and Summary

The prediction accuracy of the estimated execution time of tasks greatly impacts

the performance of the algorithms. SSSA is the most affected, because the schedule

is generated using the predicted values of task execution times. The larger the

deviation of the actual runtime value from the predicted value, the worse the

performance of SSSA. At higher prediction accuracy values SSSA and MBSSA

outperform DSSA, but at lower prediction accuracy values, DSSA outperforms

both SSSA and MBSSA in terms of average execution time because scheduling

decisions of DSSA are made on the fly and thus less impacted by changing the

prediction accuracy of execution time estimates.

We deduce from our simulations that there is an optimal value for the number of

quorum retries that should be permitted. The number of failed sync tasks becomes

constant for all three algorithms after a certain number of quorum retries (3),

increasing the number of quorum retries beyond this value results in no observable

performance gain as shown in Fig. 4.6. Likewise, the rate of increase in the average

execution time of all three algorithms becomes so small (close to 0) after a certain

number of quorum retries (3) as shown in Fig. 4.7. The value of quorum retries

after which no significant gain in performance is evident is the optimal value for

the number of quorum retries.

The number of quorum attempts for SSSA and MBSSA are similar under heavy

synchronization but under light synchronization, SSSA is higher for lower number

of workers. DSSA performs better than MBSSA in terms of execution time when

the sync task frequency is sporadic, but worse when the frequency is periodic.

Sampling–based quorum checking is more suited for cases where execution time of

an application is important than the synchronization degree (that is, the number

of workers that need to show up before running a sync task). All the algorithms

are affected by very similar rates for increasing node failure rates in terms of failed

sync tasks. Table 4.4 gives a summary of the three task–based algorithms.

4 Task–Based Synchronization Schemes for Fog–Controlled Internet of
Things 63

Table 4.4 Comparison of the different task synchronization
algorithms.

Metric SSSA DSSA MBSSA

Task graph
knowledge

Full knowledge
expected. Take
graph known at
compile time

Tasks arrive in
system dynamically
during runtime

Tasks are grouped
into batches as they
arrive

Schedule
generation
time

Compile time Runtime Runtime

Runtime
prediction
accuracy

Very high accuracy
needed for good
performance

Fairly good accuracy
is enough for good
performance

Average accuracy
is enough for good
performance

Deployment
scenario

Suitable for
predictable and
controlled systems
such as IIoT

Suitable for rapidly
changing system
such as vehicular
clouds

Suitable for systems
where arrival
pattern of tasks
is known.

64

Chapter 5

Redundancy-Based

Synchronization Schemes for

Fog–Controlled Internet of Things

5.1 Overview

In this chapter, fault–tolerant controller–based schemes for synchronizing the

execution of the tasks across a cooperating set of IoT devices are presented.

With a controller–based scheme, one of the issues is the location of the controller

itself. Fault tolerance is achieved using time redundancy and component

redundancy. The recent emergence of fog computing as a major complementary

technology to IoT is making it an ideal candidate to host our controller. The

primary focus of this chapter is on developing such synchronization schemes that

guarantee the desired quality of synchronization, QoSync subject to the

conditions under which synchronization is deemed successful. We use a

publish–subscribe status update scheme to minimize the communication

overhead in reaching synchronization. Quorum checking is done to ensure the

required degree of synchronization is met. We propose two redundancy–based

dynamic synchronous scheduling algorithms with different synchrony

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 65

requirements, and we evaluate the proposed algorithms using extensive

trace–driven simulations and compare them with existing approaches.

5.2 Synchronous Scheduling Schemes with Redundancy

Two dynamic synchronous scheduling algorithms with redundancy built into

them for scheduling tasks with varying time requirements on a bunch of IoT

nodes are developed. The unique aspects of the algorithms are an adapted

publish–subscribe status update scheme, quorum checking, redundancy, and the

local scheduler, which are explained in the following subsections. The focus of

the algorithms is to ensure that synchronous tasks are scheduled to run at the

same time across all workers. We make minor modifications to the node model as

shown in Fig 5.1. Workers can be grouped based on processing attributes or

physical location, depending on the application’s needs. The task model remains

the same as in Section 1.2.

One input to the synchronous scheduling algorithms is a set of available tasks.

The algorithms are expected to output a schedule of tasks that minimizes the

overall execution time and ensures that the desired degree of synchronization is

met with respect to the quorum requirements. A description of the notations used

in this chapter is shown in Table 5.1.

5.2.1 Status Update

Workers need to update the controller of their availability to partake in

synchronization upon reaching a synchronization point. The controller processes

this information serially due to its single–threaded nature. This causes the

message and communication overhead to scale linearly with the number of

workers. The overhead incurred can significantly increase the time to achieve

synchronization as the number of workers increases.

To mitigate this problem, we adapt the well–studied publish–subscribe

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 66

FogFog

Cloud

Infrastructure nodes

Sub-
controllers

ControllerCloud
level

Fog
level

Group of workers

Device
level

Fig. 5.1 Multi–level hierarchical node model showing controller, sub–
controllers and worker nodes with worker nodes grouped.

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 67

Table 5.1 Notations for redundancy–based synchronization
algorithms.

Symbol Description

Tcurr current task to be scheduled

Trbq ratio–based quorum check task

Tcbq cluster–based quorum check task

Tupdate status update task

tavail available time of a worker

λ time delay before re–attempting quorum

τ predicted quorum check time

scheme [165, 166, 167] to reduce the number of update messages sent to the

controller. Worker nodes are assigned a logical group which they join, and each

group is assigned a local broker. Workers in a group publish their availability to

the local broker. They also subscribe to the broker to know the peer availability.

Whenever a worker detects that the required number of peer workers are present,

it will publish a group availability message to the broker. The controller

subscribes to the group availability message but not to the local availability. The

controller thus ends up processing far less with the broker.

5.2.2 Quorum Checking

Quorum checking is done by workers to probe the controller on whether the

required conditions for proceeding to run the synchronization task are met. We

consider two types of quorum conditions. The first is based on the ratio of

workers available, and the second is based on cluster representation. A worker is

said to be available if it has finished executing its previous task and is physically

present to run the next task. The two types of quorum checking are ratio–based

(launched on workers by running Trbq) and cluster–based (launched on workers

by running Tcbq) quorums, both of which are previously explained in the

taxonomy in Chapter 3.1.

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 68

5.3 Synchronous Scheduling Algorithms with Redundancy

As seen in Fig. 5.2, upon getting to a synchronization point, the controller sends

a sync call (syncCall()) to the workers and the workers update the controller of

their status (pushStatus()).

The controller computes the predicted quorum check time τ based on the

status update from workers and sends the time to local schedulers on workers

(sendQCT(τ)). The local scheduler (localSCD(τ)) on a worker tries to minimize

wait time by comparing the available time of the worker with τ and estimates if

a local task (provided there is one in the local task queue) can fit within the gap.

Asynchronous and local worker tasks are scheduled as they become the current

task at the earliest available times on workers. The pseudocode for the algorithm

is shown in Algorithm 4. We use [W] to depict the scheduling actions that occur

at the worker.

We consider two types of redundancy–based synchronous scheduling

algorithms. The first uses time redundancy (where synchronization is attempted

based on waiting and a capped number of retries), and the second uses

component redundancy (where we expect at least a certain number of workers

within a cluster to be present before the quorum can be passed).

5.3.1 Synchronous Scheduling Algorithm with Time–Based

Redundancy

Here, the synchronization degree represents the ratio of workers that must be

available before the synchronous task can be run. Two important parameters

of the algorithm are the wait time λ (specifies how long to wait if the desired

number of workers are not available) and the maximum number of quorum retries

permitted per synchronization point.

Whenever the ratio–based quorum check task Trbq is scheduled (Line 9), the

controller computes the ratio of available workers. If the ratio of available workers

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 69

sendQCT

CONTROLLER

pushStatus()

computeQCT()

localScd
computeQ()

checkQ()

syncCall()

Alt
[if (quorum == passed)]

[Else]

computeSyncTime()

sendSyncTask()

syncAbort()

WORKERS

Fig. 5.2 Sequence diagram showing the interactions between the
controller and workers at synchronization point.

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 70

is greater than or equal to the expected synchronization degree (Line 12), the

controller computes the expected synchronous task start time and the synchronous

task is scheduled.

Algorithm 4: Pseudocode for redundancy–based synchronous scheduling

algorithms.

1 Let A = set of available tasks

2 SyncSchd(A):

3 while Tcurr 6= φ do:

4 if type(Tcurr) = c2ws:

5 pushStatus() [W]

6 τ = computeQCT()

7 localSCD(τ) [W]

8 revise available times(tavail, max t avail) [W]

9 schedule(quorum check task) [W]

10 Time–based redundancy:

11 r = getAvailableRatio()

12 if r >= sync degree:

13 schedule(Tcurr) [W]

14 else if r < sync degree && retries available:

15 SyncSchd(A, tavail + λ)

16 else if r < sync degree && no more retries:

17 syncAbort() [W]

18 Component–based redundancy:

19 e = computeRedundancy()

20 if e >= required redundancy :

21 schedule(Tcurr) [W]

22 else:

23 syncAbort() [W]

24 remove(A, Tcurr)

25 else if type(Tcurr) = c2wa ‖ type(Tcurr) = Wl:

26 revise available times(tavail, get ctrl avail time()) [W]

27 schedule(Tcurr) [W]

28 remove(A, Tcurr)

If the synchronization degree is not met and there are more retries left (Line

14), we delay for time λ and retry the process. However, if the synchronization

degree is not met and there are no more retries left, the synchronous task is failed

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 71

(Line 17). An example where time–based redundancy is useful is in bridge health

monitoring. If while trying to take measurements a failure occurs, the application

can proceed with its processing and repeat the bridge strain measurement at a

later point in time.

5.3.2 Synchronous Scheduling Algorithm with Component–Based

Redundancy

In this algorithm, workers are always part of a logical cluster as they move around

in the system (e.g., vehicles). At a synchronization point, after the update of the

workers’ status at the controller (Line 5) and the triggering of the local schedulers

(Line 7), the workers run the quorum check task (Tcbq). The controller computes

and checks whether the required level of redundancy is met by each cluster (Line

19–20). This computation is done by comparing the number of workers available

in each cluster with the expected number of devices per cluster. In the event of a

successful quorum, the synchronous task is scheduled to run. If the desired level

of redundancy is not met, the synchronous task is failed (Line 23).

Here, a synchronous task is marked as successfully completed if and only if at

least the required number of workers per cluster returns a result after executing

the synchronous task. Thus, the synchronization result is abstracted at the cluster

level. If the desired redundancy in output is not met, the synchronous task is

considered to have failed. An example of where component–based redundancy

is useful is in the drone transportation scheme. We do not want the drones to

perform the transportation task if we do not have the desired number of backup

drones available.

5.4 Experiments, Results and Discussions

First, experiments are conducted to measure the impact of controller location

(i.e., fog or cloud) on synchronization. Then, further experiments are conducted

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 72

to measure specific attributes of the performance of the proposed synchronization

algorithms. Finally, the performance of the proposed synchronization algorithms

is evaluated by comparing them with barrier synchronization [105, 106] and time

slotted synchronization [108].

5.4.1 Impact of Controller Location on Synchronization

In this experiment, traces from the OpenCloud Hadoop cluster from Carnegie

Mellon University Parallel Data Lab 1 are used. The workload is split into short

tasks ranging from 0.5 s to 4 s and long tasks ranging from 5 s to 12 s. The

controller–worker delay is varied from 5 ms to 500 ms. Performance is measured

using the synchronization rate (SR) which is the number of synchronizations per

unit time.

From Fig. 5.3, it can be observed that a task graph consisting of short jobs has

much higher SR compared to a task graph consisting of long tasks. Additionally,

increasing the controller–worker delay from 5ms to 500ms has very little impact

on the task graph with long tasks compared to short tasks because the long tasks

take a significant portion of the overall runtime, thus minimizing the impact of the

controller–worker delay. A task graph with short tasks consisting of synchronous,

asynchronous, and local tasks has a higher SR compared to the one consisting of

only synchronous tasks. This is because with only synchronization tasks, status

updates and quorum checking need to be performed at each synchronization point,

therefore adding more overhead to the overall runtime. Having controllers closer

to the workers increases the SR for short running tasks, thus making the case for

fog–resident controllers as opposed to cloud–resident controllers.

5.4.2 Configuration of Synchronization Experiments

The following configurations are used to define the system, application, and

environmental parameters. The wide range of parameter variation allows for a

1http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 73

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5 25 125 625

M
ax

 s
yn

c
ra

te
/ 1

0s

Controller-worker delay (ms)

Only-sync short-tasks
All-types short-tasks
All-types long-tasks

Fig. 5.3 Maximum synchronization rate per 10 s for varying
controller–worker delays.

higher degree of exploration into many aspects of the system. Measurement

traces from experiments using Dropbox between the period of 28th June to 3rd

July 2012 [168] are used as the task dataset. The experiment consists of 900, 000

storage operations from different geographical locations and, thus, varying

transfer speeds. This mimics an edge environment with varying network speeds

and geographically distributed workers. The execution times vary from a

minimum time of 23 s to a maximum time of 269 s.

To model the mobility of worker nodes, the Shanghai (China) taxi GPS report

of Feb 20, 2007 [169] is used. The report consists of 4316 taxis reporting their

location, speed, angle of movement and occupancy at given intervals over a period

of 24 hours. Each taxi has a unique identification number. The taxi traces are

preprocessed and only the location and timestamp details are extracted. The taxis

upload their details at irregular intervals in the trace, varying from 15s to 63s.

Re–sampling is done at 30s and the position of the taxis are recorded at regular

intervals, thus having a total of 2880 time points. To make it easier to map the

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 74

location of workers to a 2–dimensional representation, we convert from the GPS

decimal degrees longitude–latitude format to the Universal Transverse Mercator

coordinate system, which represents locations on the earth’s surface using a 2–

dimensional Cartesian coordinate system.

The parameters used in the simulations are as follows. (i) Synchronization

degree: ratio of the total machines required to pass quorum, (ii) minimum cluster

size: the minimum number of workers that must be present in a cluster before

it can be formed, (iii) wait time: The amount of time that should elapse before

attempting quorum checking again, (iv) quorum retries : the maximum number

of times quorum checking is allowed, (v) worker size: The maximum number of

workers that can be present in the system at any point in time, (vi) number of

clusters : The maximum number of clusters that can be formed at any point in

time, and (vii) prediction accuracy : A measure of how accurately the predictor

predicts the finish time of tasks across all workers prior to the synchronization

point.

5.4.3 Default Parameter Values and Measurements

The following parameters are fixed in the simulations unless otherwise stated.

The number of independent runs of each simulation is 100 while each task graph is

continuously run in each simulation for 200 times, the communication cost between

machines is set to 200 ms, status update cost is set to 1 s, synchronization degree

is set to 0.7 and λ set to 20 s. Workers randomly fail with a probability of 0.1 after

each task. The probability of a new machine joining is set at 0.1, but machines

can only join at the start of the execution of a new run of the task graph. This is

done to ensure that joining machines will have all the necessary data required to

run all tasks down the task graph.

Task graphs consist of 30 tasks in total with varying number of synchronous

tasks. 10 task graphs are used to represent different applications in our

simulation runs. Heterogeneity among the worker nodes is introduced by making

the execution time of a task on multiple workers follow a Gaussian distribution.

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 75

The following parameters are measured in the simulations. (i) Runtime: this

is the time taken for a single run of a task graph normalized by the number of

synchronization points, (ii) extra quorum attempts : the total number of times the

quorum check process was attempted after the initial attempt at all

synchronization points, and (iii) failed sync tasks : The total number of sync

tasks that failed after exceeding the total number of quorum retries or due to

incomplete results from clusters.

5.4.4 Scalability of the adapted publish–subscribe update scheme

The benefits of the publish–subscribe message update scheme is shown in Fig. 5.4

while varying the number of workers from 10 to 4000. Fig. 5.4 shows the runtime

per synchronization point for the publish–subscribe and all–worker update

methods for the ratio–based quorum checking. From the graph, it can be

observed that as the number of workers increase, the runtime per synchronization

point increases at a similar rate with respect to the number of workers for the

all–worker update while for the publish–subscribe update there is no significant

increase in the runtime per synchronization point as the number of workers

increase. This is because regardless of the number of workers in the system, the

number of messages sent to the controller using the publish–subscribe is bounded

by the number of logical clusters formed.

5.4.5 Component redundancy

In component–based redundancy, the workers are grouped into clusters. To reach

a quorum to execute a synchronous task, at least a given number of workers must

be available in each cluster. However, for a synchronization task to be considered

successful, at least one worker from each cluster must complete the execution of the

task and return the expected output to the controller, otherwise, the synchronous

task is considered to have failed.

The minimum required number of worker(s) per cluster is varied from 1 to

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 76

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10 100 1000

R
un

tim
e/

sy
nc

 p
oi

nt
 (s

)

Number of machines

All-update
PubSub-update

Fig. 5.4 Runtime per sync point comparing all–worker update
sending and the publish–subscribe update scheme for time–based
redundancy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
D

F

Percentage sync failure due to incomplete results

clus-size=1
clus-size=2

clus-size=3
clus-size=4

Fig. 5.5 CDF showing percentage of sync task failures due to
incomplete results from clusters for minimum cluster sizes ranging from
1 to 4 for component–based redundancy.

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 77

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
D

F

Percentage sync failure due to quorum

clus-size=1
clus-size=2

clus-size=3
clus-size=4

Fig. 5.6 CDF for the percentage of sync task failures caused by
failed quorum for different minimum cluster sizes for component–based
redundancy.

4, the synchronization task failures are measured and shown in Figs. 5.5 – 5.6.

Figs. 5.5 and 5.6 show the synchronization tasks failure percentage due to failed

quorum and incomplete results from clusters, respectively. The percentage of

synchronization task failure due to failed quorum and incomplete results from

clusters both decrease as the minimum cluster size increases. This is because the

probability of having workers show up during the quorum check process increases

as the minimum cluster size increases.

5.4.6 Impact of finish time prediction accuracy

The local scheduler uses the predicted availability of the workers to determine

whether it can schedule a local task before starting the synchronous task. In

Fig. 5.7, the impact of finish time prediction accuracy on the runtime per

synchronization point and the synchronization task failure rate with

component–based redundancy and publish–subscribe update schemes are

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 78

 4900
 5000
 5100
 5200
 5300
 5400
 5500
 5600
 5700
 5800

100% 95% 90% 85% 80%
 5

 10

 15

 20

 25

 30

 35

R
un

tim
e/

sy
nc

 p
oi

nt
 (s

)

Pe
rc

en
ta

ge
 s

yn
c

ta
sk

 fa
ilu

re

Finish time prediction accuracy

Runtime/sync-point
Sync-failure(%)

Fig. 5.7 Runtime per synchronization and percentage
synchronization task failure for task finish time prediction accuracy
varying from 80% to 100%.

measured.

When the prediction accuracy is 100%, it was observed that the smallest

runtime per synchronization is 4940 s and the smallest synchronous task failure

rate of 8%. While at a finish time prediction accuracy of 80%, an average of 5730

s was observed for the runtime per synchronization point and a 30%

synchronization task failure. The runtime per synchronization point increases by

16% while the percentage synchronization task failure increases by 263.3% as the

finish time prediction accuracy reduces from 100% to 80%. This shows the high

impact that the finish time prediction accuracy has on the success of the

synchronization task.

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 79

5.4.7 Performance Evaluation

The performance of the proposed synchronization schemes (time–redundant and

component–redundant synchronization) is evaluated by comparing them with

barrier synchronization and time–slotted synchronization. In barrier

synchronization, on getting to a sync point, workers send an update message to

the controller and wait until a signal is received from the controller saying that

they can proceed to run the sync task. The condition for proceeding with the

barrier execution is that all workers must reach the sync point.

In time–slotted synchronization, the workers’ executions are split into time

slots. Dedicated synchronization time slots are chosen with the hope that workers

will be available to run the sync task at the specified time slot. The dedicated

synchronization time slots are chosen by fixing the slots at µ+ 1.5σ (accounts for

an 86.6% accuracy), where µ is the average execution time and σ is the standard

deviation.

Figs. 5.8 – 5.11 show the runtime per synchronization point and percentage

synchronization task failure for the synchronous scheduling algorithm with the

proposed time–redundant and component–redundant synchronization algorithms,

barrier synchronization and time slotted synchronization, respectively. The

minimum cluster size for component redundancy is fixed at 3 while comparing

the synchronization schemes.

It can be observed from Figs. 5.8 and 5.10 that barrier synchronization has

the highest runtime, followed by the time–redundant synchronization algorithm

and then time slotted synchronization. Barrier synchronization takes longer

because faster workers need to wait for stragglers at the barrier and cannot

proceed until the slowest worker reaches the barrier. This is unlike the

time–redundant synchronization algorithm that was proposed here, where the

synchronization point is moved dynamically depending on the availabilities of

workers and, the local scheduling mechanism is used to minimize wasted work

cycles due to waiting. Time slotted synchronization is faster because there are

dedicated synchronization slots that are not moved regardless of workers

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 80

availability.

Figs. 5.9 and 5.11 show the percentage synchronization task failure due to

failed quorum for the proposed time–redundant and component–redundant

algorithms, and the time–slotted synchronization scheme. The percentage of sync

task failures for the time–slotted synchronization scheme is higher than that for

the proposed time–redundant and component–redundant synchronization

algorithms as shown in Figs. 5.9 and 5.11 respectively. In Fig. 5.11, it can be

observed that the percentage of sync task failures reduces as the number of

workers increases. This is because there are more devices per cluster and thus,

there are more redundant devices which increases the chances of reaching the

desired quorum. Time slotted synchronization have higher sync task failure rates

because the synchronization slots are fixed, and when there are straggling

workers, synchronization cannot proceed.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 1000

R
un

tim
e/

sy
nc

 p
oi

nt
 (s

)

Number of machines

Time-Redundant Sync
Barrier Sync
Time Slotting

Fig. 5.8 Runtime per sync point comparing the proposed time–
redundant synchronization algorithm with barrier and time slotted
synchronizations.

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 81

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 100 1000

Sy
nc

 ta
sk

 fa
ilu

re
 (%

)

Number of machines

Time-Redundant Sync
Time Slotting

Fig. 5.9 Percentage of sync task failures caused by failed
quorum for time–redundant synchronization algorithm vs time slotted
synchronization.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 100 1000

R
un

tim
e/

sy
nc

 p
oi

nt
 (s

)

Number of machines

Component-Redundant Sync
Barrier Sync
Time Slotting

Fig. 5.10 Runtime per sync point comparing the proposed
component–redundant synchronization algorithm with barrier and
time slotted synchronizations.

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 82

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 100 1000

Sy
nc

 ta
sk

 fa
ilu

re
 (%

)

Number of machines

Component-Redundant Sync
Time Slotting

Fig. 5.11 Percentage of sync task failures caused by failed quorum
for component–redundant synchronization algorithm vs time slotted
synchronization.

5.5 Summary

The challenge for the synchronization algorithms is to keep synchrony between

the task executions despite disconnections and task execution overshooting. The

synchronization scheduling algorithms use two ideas: time–based and component–

based redundancies. Experiments are conducted to evaluate the performance of

the proposed algorithms and to explore the different trade–offs between the two

approaches. We observe that time–based redundancy is suitable for applications

where repeating the task executions is acceptable. Whereas, the component–based

redundancy is needed for applications that cannot wait for task re–executions.

We find that using a publish–subscribe update scheme reduces the

communication load on controllers; thus, effectively reducing the overall

execution times of the synchronous tasks. It was observed that increasing the

level of redundancy for component–based redundancy decreases the runtime and

reduces the percentage of sync task failures. Likewise, the prediction accuracy of

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 83

the finish time of tasks on the workers has a significant impact on the runtime

and synchronization task failure. The proposed algorithms have shorter runtimes

than barrier synchronization and have less synchronization task failures when

compared to time slotted synchronization. A comparison of the proposed

synchronization schemes and related works is shown in Table 5.2.

5 Redundancy-Based Synchronization Schemes for Fog–Controlled
Internet of Things 84

M
e
tr

ic
T

im
e
–

R
e
d
u
n
d
a
n
t

S
y
n
c

C
o
m

p
o
n
e
n
t–

R
e
d
u
n
d
a
n
t

S
y
n
c

B
a
rr

ie
r

S
y
n
c

T
im

e
S
lo

tt
in

g

S
tr

a
g
g
le

r
m

it
ig

a
ti

o
n

Y
es

,
u
si

n
g

ti
m

e
d
el

ay
Y

es
,

u
si

n
g

re
d
u
n
d
an

t
co

m
p

on
en

ts

Y
es

,
u
si

n
g

d
y
n
am

ic
sl

ot
ti

n
g

N
o

Q
u
o
ru

m
re

q
u
ir

e
m

e
n
t

Y
es

–
ra

ti
o

b
as

ed
Y

es
–

m
in

im
u
m

cl
u
st

er
re

p
re

se
n
ta

ti
on

N
o

Y
es

–
fu

ll
p
ar

ti
ci

p
at

io
n

A
d
a
p
ta

b
il

it
y

to
d
y
n
a
m

ic
sy

st
e
m

s

V
er

y
ad

ap
ta

b
le

V
er

y
ad

ap
ta

b
le

M
in

im
al

ad
ap

ta
b
il
it

y
N

ot
ad

ap
ta

b
le

L
o
ca

l
ta

sk
s

Y
es

Y
es

P
os

si
b
ly

N
o

D
e
p
lo

y
m

e
n
t

sc
e
n
a
ri

o
S
u
it

ab
le

fo
r

d
y
n
am

ic
sy

st
em

s
w

it
h

to
le

ra
b
le

ti
m

e
d
el

ay

S
u
it

ab
le

fo
r

sy
st

em
s

w
it

h
to

le
ra

b
le

re
d
u
n
d
an

t
co

m
p

on
en

ts

S
u
it

ab
le

fo
r

sy
st

em
s

w
it

h
k
n
ow

n
ex

ec
u
ti

on
p
at

te
rn

s

S
u
it

ab
le

fo
r

sy
st

em
s

w
it

h
h
om

og
en

eo
u
s

m
ac

h
in

e
se

tu
p

Table 5.2 Comparison of redundancy based synchronization
schemes and related works.

85

Chapter 6

Fast Synchronization for Artificial

Intelligence Application Tasks

6.1 Overview

Intelligent systems such as self–driving cars and robots can work either

autonomously (i.e., doing all necessary processing by themselves) or

collaboratively with other self–driving cars or robots and roadside

infrastructures [170]. For instance, self–driving cars can collaborate with smart

highways to increase the safety and overall performance under diverse scenarios.

We consider the later scenario that needs fine–grained orchestration of all tasks

that are executed by the different components in the larger intelligent

system [171, 172]. These systems heavily rely on artificial intelligence (AI) or

machine learning (ML) and need to process the AI/ML tasks within specified

timing constraints. To meet task processing requirements, intelligent systems

have often relied on cloud computing [173]. However, the recent emergence of

edge computing has introduced an alternative to cloud computing that can host

data closer to the devices and allow faster turnaround times for the AI/ML

tasks [38, 35, 174]. We consider task synchronization (i.e., time alignment of task

executions) across different computing nodes for edge–hosted AI/ML

6 Fast Synchronization for Artificial Intelligence Application Tasks 86

applications.

In this chapter, we develop a fast synchronization scheme by minimizing the

number of messages required to reach synchronization using a late notification

protocol and clustering. The clustering is done such that worker nodes with a high

probability of staying tightly synchronized to some bounds are put in the same

cluster. To achieve fast synchronization, we limit the controller involvement in

making the synchronization decisions. We evaluate the proposed synchronization

scheme using trace–driven simulations. We implement the synchronization scheme

in Ray1 and compare its performance with existing synchronization models for

distributed machine learning.

6.2 System Model

6.2.1 Node Model

A hierarchical computing model is used in our system as shown in Fig. 6.1. Nodes

at the bottom of the hierarchy are called workers. The nodes at upper levels of

the hierarchy are called controllers. The controllers could be at three levels –

device, fog, and cloud levels. Worker nodes can communicate with one another

leveraging the underlying fast Wi–Fi local broadcasts. This architecture is suitable

for achieving fast synchronization in AI application tasks and edge–based systems

because it permits the controller to monitor the progress of workers and allows

clustering of workers to reduce the message overhead.

Workers are expected to update the controller of their execution progress as

they execute a given program. The controller uses these updates to cluster workers.

Thus, workers are always part of a logical cluster. However, the clustering details

are used only at a synchronization point. The workers know their clusters and

the number of workers in each cluster in the system. Tight clock synchronization

is assumed across nodes in all levels of the hierarchy. The tree structure can be

1https://docs.ray.io/en/latest/

6 Fast Synchronization for Artificial Intelligence Application Tasks 87

D1

Fog (F2)Fog (F1)

Cloud (C1)

Local communication allowed among workers

Fog-level
controllers

Global
controller

D2 D3

Device-level
controllers

Outliers

Cluster 1 Cluster 2

Fig. 6.1 Node model for fast synchronization in edge–based AI
application tasks.

leveraged in ensuring that clocks on all nodes are synchronized.

6.2.2 Application Model

An application written for our system consists primarily of three task types –

synchronous, asynchronous, and local tasks. The three tasks can be at the

controller or at the worker. Synchronous and asynchronous tasks are remote calls

triggered by the controller on a worker or by a worker on the controller. Local

tasks are tasks that are triggered by a node on itself. Synchronous tasks

triggered by the controller on workers require that all (or at least a certain ratio

6 Fast Synchronization for Artificial Intelligence Application Tasks 88

of) workers start the execution of the task at the same time. A return result of

the execution of a synchronous task on the calling node is expected, unlike

asynchronous and local tasks. In this work, we focus on remote calls from the

controller to workers as it poses the most challenge of coordinating the activities

of plenty workers. Synchronous, asynchronous, and local tasks on workers are

denoted as Tws, Twa and Twl respectively.

We include another task called the checkpoint task Tcp. The checkpoint task

allows workers to report back to the controller on their execution time/progress.

Check pointing is a way for the controller to monitor the progress of worker nodes

and to make better clustering and scheduling decisions. Tasks are created such

that workers can know when they get to the half–way point in the execution of

the task. This is done such that workers can detect if they will be late in finishing

the task.

6.2.3 Basic Game Model

We consider a system where nodes can be grouped into clusters such that nodes

within a cluster are expected to remain synchronized within some specified bounds.

All worker nodes must be connected to a controller to be considered part of the

system. We can thus view the controller as a mediator (i.e., trusted third–party).

The game is abstracted at the cluster level, that is, the game is between clusters

and the strategies are at the cluster level. However, the utilities derived by workers

are strictly based on the worker’s participation in the synchronization process. The

notations used in this work are shown in Table 6.1.

There are two basic choices that can be made by a worker upon getting to a

sync point – wait for sync or do not wait for sync (late notifications can be sent).

The factors to be considered by a node in making a choice include the waiting

time, the option of running another task, late notifications, and how fast the

decision to sync can be made. The controller (mediator) uses the game in making

synchronization decisions and scheduling the sync options. The controller specifies

c sync options based on the choice that maximizes the total utility derived. At

6 Fast Synchronization for Artificial Intelligence Application Tasks 89

runtime, late notifications are used to change decisions, it gives a way for workers

to skip a particular sync option and choose another option or quit synchronization.

Table 6.1 Notations used for synchronization game and analysis.

Symbol Description

i Worker i, i = 1, 2, . . . , N .

Ck Each worker is part of a cluster k, k = 1, 2, . . . ,m.

|Ck| Size of cluster k.

|Ns| Number of workers that run a sync task.

ωi(t) Cost of waiting for t time units by worker i at sync point.

tiav Expected available time of worker i.

tcs Sync time option c, c = 1, 2, 3.

Sc Utility derived by each worker for running sync task at sync option

c.

Fc Cost of aborting sync at sync option c.

Li(tl) Utility derived by worker i for executing local task with execution

time tl.

δ(t) waiting cost before receiving late notification after time t.

α Worker quorum for synchronization.

The various components of the game are:

1. Player: A strategic decision maker in the context of the game. These are

two clusters in our case. They make the decisions whether to sync or not at

any given sync option.

2. Strategy: The actions of players which include wait for sync, no wait due to

lateness and no wait due to late notification received. All players will try to

find the best strategy to maximize their payoff.

3. Payoff: This is the benefit or loss derived by a player based on a particular

outcome of the game. Payoff is the difference between utility derived and

6 Fast Synchronization for Artificial Intelligence Application Tasks 90

the cost incurred. Positive payoff is gotten only when synchronization is

successful.

6.3 Clustering

We cluster nodes in the system for two main reasons – (i) to reduce the number

of messages required for synchronization, and (ii) to help the controller in making

better scheduling decisions. Clustering of workers is done by the controller using

the reports received from workers whenever they reach a reporting point. Thus,

the workers are continuously reporting their execution progress to the controller at

each report point. The clustering of workers must be done such that workers with

similar execution progress over time are put in the same cluster. That way, we are

expecting that workers within the same cluster will remain closely synchronized.

In our synchronization game, we expect that only the largest two clusters will

participate in synchronization. We therefore conduct initial experiments to

motivate the need for clustering workers and to determine if the choice of having

two major clusters is valid. We use the Density–Based Spatial Clustering of

Applications with Noise (DBSCAN) clustering algorithm [175] to group workers

into clusters. DBSCAN groups together points that are close to each other based

on a distance measurement (usually Euclidean distance) and a minimum number

of points. It marks the points that are in low–density regions as outliers.

We run four example neural network training tasks using Python’s sklearn

MLPClassifier and MLPRegressor on sklearn’s Iris dataset continuously on 54

physical machines. We collect the runtime of each iteration for each task. We

collect a total of 6, 000 data points and create clusters using 500 data points with

overlapping data points of 100 for the next cluster created. The first clustering

point uses data points 1 − −500, the second clustering point uses data points

401 − −900 (with data points 401 − −500 overlapping with the first clustering

point), the third uses data points 801 − −1300 (with data points 801 − −900

overlapping with the second clustering point) and so on. We thus have a total of

6 Fast Synchronization for Artificial Intelligence Application Tasks 91

2-Clusters 3-Clusters 4-Clusters
Clusters per clustering point

0.0

0.2

0.4

0.6

0.8
R

an
d

in
de

x
sc

or
e

Fig. 6.2 Adjusted Rand Index scores for 2, 3 and 4 clusters per
cluster point.

60 clustering points.

To evaluate the clusters created, we adjust the maximum distance and

minimum number of samples per cluster to control the number of clusters

formed. We measure the adjusted Rand index score (similarity measure between

two clustering) for the cases where 2, 3 and 4 clusters are formed as shown in

Fig. 6.2. We use a pairwise comparison of all clusters formed at each clustering

point in evaluating the adjusted Rand index score by making each clustering

point the ground truth class label to be used as reference. The adjusted Rand

Index score decreases as the number of clusters formed per clustering point

increases. This is because more cluster stability is expected when we have two

clusters only. As the number of clusters formed increase, there is a higher

tendency of machines changing clusters from one clustering point to the other.

The inter– and intra–cluster distances when 2, 3 and 4 clusters are formed

are shown in Fig 6.3. The average intra–cluster distance for 2 clusters formed

6 Fast Synchronization for Artificial Intelligence Application Tasks 92

2-Clusters 3-Clusters 4-Clusters
Clusters per clustering point

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Di
st

an
ce

Intra-cluster distance
Inter-cluster distance

Fig. 6.3 Inter– and intra–cluster distances among clusters with 2, 3
and 4 clusters per point.

C1 C2OUT C1 C2 C3OUT C1 C2 C3 C4OUT
0

5

10

15

20

25

30

N
um

be
r

of
 D

ev
ic

es

2-Clusters
3-Clusters
4-Clusters

Fig. 6.4 Number of devices per cluster including outliers for 2, 3 and
4 clusters per point.

6 Fast Synchronization for Artificial Intelligence Application Tasks 93

is higher than those of 3 and 4 clusters. The average inter–cluster distance for

2 clusters is lower than those of 3 and 4 clusters per clustering point. This is

because for 2 clusters formed, each of the two clusters is covering a wider range

and the maximum distance between machines within a cluster is higher. However,

the distance between the two clusters will be reduced compared to 3 and 4 clusters

per clustering point. When 2 clusters are formed per clustering point, an average

of 20% of workers are outliers. For 3 clusters per clustering point the average

outlier’s percentage value is 15% and 17% for 4 clusters per clustering point as

shown in Fig. 6.4.

6.4 Synchronization as a Game

6.4.1 Game Specification

We model the game as a cooperative game that is used to find the optimal strategy

of players regarding synchronization. We choose a cooperative game because there

are a different number of choices to be made depending on the choice of the

other player. The goal is to form a quorum large enough for synchronization

to happen. Thus, to achieve synchronization, the required quorum α of workers

must be available to run the sync task. The total utility Uc derived from running

a sync task at sync option c is equally divided across all workers regardless of the

size of the cluster they are a part of.

Sc = Uc

|Ns|

The total utility derived from running a sync task is a function of how soon the

synchronization occurs and successful completion of the synchronization task. An

earlier sync option will yield a higher utility compared to other later sync

options. Therefore, players have a higher incentive to cooperate better and

sooner to maximize their payoff. We consider a two–cluster game. The game has

a fast and a slow cluster. Workers are grouped into clusters based on their

execution progress. There could be outliers (workers that do not fall into any of

6 Fast Synchronization for Artificial Intelligence Application Tasks 94

the two major clusters). Outliers can be part of another cluster, but they are not

considered in the game. They proceed with the execution schedule and plan

created by the outcome of the game. We keep track of the clusters only at

synchronization points.

6.4.2 Execution Time Distributions

The execution progress of workers is tracked by the controller through checkpoints

in the application. The controller creates distributions for the two clusters for

the expected finish time of the task before the sync point from their previous run

of the application tasks. Each cluster is represented by a mixture distribution of

two Gaussian distributions. The first distribution, Dearly = G(µea, σ
2
ea) represents

the early execution times distribution of the cluster while the second distribution,

Dlate = G(µla, σ
2
la) represents the late execution times distribution of the cluster.

We assume that the distribution of the execution times of local tasks on workers

in both clusters are known. The distribution is a mixture of models, and is defined

as Dlo
early = G(µlo ea, σ

2
lo ea) and Dlo

late = G(µlo la, σ
2
lo la).

Late
distribution

(Dlate)

Early
distribution

(Dearly)

Time

Pr
ob

ab
ilit

y
de

ns
ity

Fig. 6.5 Sample mixture model for a cluster with early and late
distributions.

6 Fast Synchronization for Artificial Intelligence Application Tasks 95

6.4.3 Late Notification Protocol

The main goal of clustering the workers in our system is to reduce the message

overhead required in reaching synchronization. Thus, workers in a cluster are

expected to remain synchronized and make the same synchronization decisions.

The late strategy that involves sending late notifications to inform the other cluster

of lateness requires sending messages. To reduce the number of messages required

in classifying a cluster as late, we develop a late notification protocol where 3

messages are expected to be received from workers in a particular cluster for the

cluster to be regarded as late. We assume that workers can detect when they will

be late when they get to 50% of the current task execution based on the predicted

finish time of the cluster for that task.

The first worker in a cluster that detects it will be late sends out a late

notification to workers in the other cluster. After the first notification, the

probability of a having a second late notification sent is 2/N for each late worker,

thus, if half of the workers are late, we expect the second late notification to be

sent. The probability of having a third late notification sent is 1/N for each late

worker. Thus, if all the workers in a cluster are late, we expect a total of 3 late

notifications to be sent.

A cluster could get stuck at a sync option if late notification broadcast messages

are lost due to network partitioning. Network partitioning could cause temporary

or complete isolation. A worker that is temporarily isolated is only disconnected for

one or a few iterations, while a completely isolated worker is totally disconnected

from other workers in the system. To ensure safety in case of temporary isolation,

we embed previous late notifications in new late notifications. Thus, the second

late notification will contain the first late notification. If the first late notification

gets lost due to network partitioning, workers in the other cluster will get both

late notifications embedded in the second notification. A worker that is completely

isolated will synchronize personally until it gets connected back.

6 Fast Synchronization for Artificial Intelligence Application Tasks 96

6.4.4 Extensive Form of Synchronization Game

The controller in our system needs to create a static schedule with different sync

options and broadcast the schedule to worker nodes. To fix these sync options,

the controller uses a game between worker nodes abstracted at the cluster–level.

The controller creates the schedule based on the outcome of the game that is

expected to yield the maximum payoff. The protocols for choosing which points

to synchronize at by the workers is specified by the game. The game is played

at the cluster level, although synchronization is done by the workers. If a cluster

makes a decision, we expect that all workers within the cluster are going to make

the same decision as the cluster. Unexpected behavior during runtime is tackled

using late notifications.

The first pass of the extensive form of the game with two players (clusters)

is shown in Fig. 6.6. The strategy profiles for both clusters include {sync, no–

sync–late, no–sync–late–notification}. In the first pass, there are four possibilities

as shown in Fig. 6.6; (i) both clusters synchronize at the first sync option (green

node), (ii) sync aborted because one of the clusters is stuck at first sync option

(red node), (iii) sync option skipped because both clusters are late (purple node),

and (iv) sync option skipped because one cluster got late notification.

The second pass is similar to the first pass, and it originates from the

nonterminal nodes in the first pass as shown in Fig. 6.7. The choices are the

same as in the first pass. However, the payoff is cumulative, that is, the payoff

derived after the second pass is the addition of that derived in the first pass and

second pass. The second pass likewise has 3 non–terminal nodes as in the first

pass. The third and final pass starts with the nonterminal nodes in the second

pass. All the exit nodes in the third pass are terminal nodes. The payoff after

the third pass is the sum of all payoffs at all the passes.

We make the following assumptions.

Assumption 1: The utility Ss1 derived by a worker from synchronizing at

the first option is much greater than the utility Ss2 derived from synchronizing at

6 Fast Synchronization for Artificial Intelligence Application Tasks 97

no wait LNwait for sync

no wait L

no wait L

no wait LNwait for sync
no wait L

no wait L

wait for sync

1

2 2
2

no wait L: Player will not wait due to lateness.
no wait LN: Player will not wait due to late notification received.

: Both players synchronized at sync point.
: One of the players is stuck at the sync point.
: Both players are late.
: Both players skip the sync point.

A B C

Fig. 6.6 First pass of the extensive form of the two–player
synchronization game. Nodes A, B and C are non–terminal nodes
where the game proceeds to the second pass. The green node is a
terminal node with synchronization successful. The red nodes are
terminal nodes where synchronization failed. The vectors represent
the corresponding payoffs for player 1 and player 2.

the second option and the third sync option S3, regardless of any added utility L
derived from running a local task.

Ss1 > Ss2 > Ss3

Ss1 > Ss2 + L > Ss3 + L
(6.1)

Thus, the earlier the synchronization is attempted, the more the payoff that is

gotten. The payoff from synchronizing at a later time can never be more than the

payoff of synchronizing at an earlier time.

6 Fast Synchronization for Artificial Intelligence Application Tasks 98

no wait LNwait for sync

no wait L

no wait L

no wait LNwait for sync

no wait Lno wait Lwait for sync

1

2 2
2

A

B

C

D E F

Fig. 6.7 Second pass of the extensive form of the two–player
synchronization game. The payoff for each of the node options A,
B and C from pass 1 are shown.

Assumption 2: The cost of aborting sync increases downwards from the first

sync option to the third sync option.

Fs1 < Fs2 < Fs3 (6.2)

What this means is that it is better to abort synchronization at the first sync

option and move on with the execution plan, rather than wait until other options

to abort sync.

Assumption 3:The utility Sc derived from synchronizing at a sync option c is

greater than the cost Fc of aborting sync at a sync option c which is in turn greater

than the utility derived from running a local task l.

6 Fast Synchronization for Artificial Intelligence Application Tasks 99

Sc > Fc > L (6.3)

Assumption 4:The utility L derived from running a local task is always greater

than the cost of waiting to get a late notification δ(t)

L > δ(t) ∀ workers (6.4)

Assumption 5: The strategy (sync, sync) at the first sync option is Pareto

optimal since there is no other strategy set that gives a higher payoff.

There are other game strategies that give an optimal solution depending on the

runtime operation of the clusters. The strategies (sync, sync) at second and third

sync options are also optimal solutions to the game depending on what happens

at runtime. However, the Pareto optimal solution is the one where both clusters

synchronize at the first sync option as evident from Assumption 1.

6.4.5 Synchronization Scenarios

Fig. 6.8 shows different synchronization option scenarios between two clusters.

Cluster C1 is the fast cluster while cluster C2 is the slow cluster. tav1 and tav2

are the expected available times of cluster C1 and C2, both of which are gotten

from the distributions D1
norm and D2

norm respectively. The scenarios and the payoff

breakdown are explained as follows.

1. Both clusters waiting for synchronization (Fig. 6.8a): The synchronization

point is fixed such that the desired quorum is met and the cluster property

is satisfied. If both clusters choose to wait for synchronization and they

finally synchronize, they get a payoff of S−ω(t). The payoff for successfully

synchronizing is the utility gained from executing the sync task at the first

sync option minus the waiting cost incurred by each cluster respectively.

6 Fast Synchronization for Artificial Intelligence Application Tasks 100

C1

tav2

tav1

ts1 ts1

C2

(a) C1 and C2 waiting to sync at sync
option 1.

C1

tav2

tav1

ts1 ts1

ts2 ts2

C2

(b) C1 and C2 are late but did not notify
each other.

C1 C2

tav2

tav1

ts1 ts1

(c) Sync is aborted because C1 gets stuck
at sync option 1.

C1

tav2

tav1

ts1 ts1

tav1'

ts2 ts2

late notification

C2

(d) C1 and C2 skip sync option 1 due to
late ack from C2 to C1.

C1

tav2

tav1

ts1 ts1

tav1'

ts2 ts2

late notification

C2

(e) Sync is aborted because C2 gets stuck
at second sync option.

C1

tav2

tav1

ts1 ts1

tav1'

ts2 ts2

late notification

C2

late notification

ts3 ts3

(f) C1 and C2 proceed to sync option 3
after running local tasks.

Fig. 6.8 Example of synchronization option scenarios.

6 Fast Synchronization for Artificial Intelligence Application Tasks 101

2. Both clusters late without notification (Fig. 6.8b): When both clusters are

late for synchronization and did not send out any notifications, they both

proceed to the next synchronization point and get a payoff of 0 each for the

current synchronization option.

3. One cluster waiting and the other late (Fig. 6.8c and 6.8e): If one of the

clusters is waiting for synchronization and the other cluster is late to the sync

point without any notification, the first cluster will get stuck. This is because

the fast cluster will proceed to run the sync task without quorum and fail.

In this case, the sync operation is aborted, and the payoff is −(F + ω) for

the fast cluster, while the late cluster gets a payoff of −F. In the case of

Fig. 6.8e, cluster C1 gets an additional payoff of L − δ for running a local

task.

4. One cluster sends late notification (Fig. 6.8d and 6.8f): If the first cluster

sends a late notification to the second cluster, the second cluster does not

wait again. Both clusters skip the sync point. If the first cluster sent the

notification before the second cluster becomes available, it incurs a cost of

0 or δ otherwise if it waits for some time before getting the notification.

The first cluster (cluster that sent the late notification) gets a payoff of 0

while the second cluster gets a payoff of L − δ which is the utility derived

from running a local task minus the cost incurred in waiting before the late

notification was received.

6.5 Analysis of the Synchronization Game

6.5.1 Optimal Synchronization Options

Let (V1,V2) be the payoff vector for cluster 1 (fast cluster) and cluster 2 (slow

cluster) respectively and the cumulative payoff P = V1+V2. The optimum solution

S∗ to the game is defined as:

6 Fast Synchronization for Artificial Intelligence Application Tasks 102

S∗ = arg min
tcs

max
P

2∑
i=1

Vi (6.5)

The highest payoff is gotten when both clusters decide to wait for

synchronization at the first sync option. The combination of both strategies by

both clusters forms a Nash equilibrium since neither cluster can get a higher

payoff by switching to a different strategy as evident in Assumption 1. Thus, if

one cluster chooses to wait for synchronization, it knows that the other cluster

has no incentive to not wait for synchronization. To determine the optimal

number of sync options, we look at different scenarios in the game. We have two

clusters arriving at the sync point: a fast and slow cluster. The first choice will

be to attempt synchronization at the point where we expect to meet the desired

quorum. According to Assumption 1 and the payoff got from synchronizing

(Sc − ω(t)), a higher payoff is gotten if synchronization is attempted as soon as

we have quorum such that ω(tw) will be close to 0. Thus, the first sync option

looks to minimize (ω(tw1) + ω(tw2)).

If the slower cluster gets late to the first sync option, there is a need for a

second sync option. The second option must be fixed such that it maximizes

the cumulative payoff (P). The earlier cluster will look to get a higher payoff by

running a local task. When a cluster is late, it has no incentive not to inform the

other cluster by sending a late notification. The optimal option is to fix the second

sync option such that if (L1(tl) > ω(tw2), then the fast cluster executes a local task

before attempting synchronization again. Else if (L1(tl) < ω(tw2), synchronization

is attempted immediately after the late cluster becomes available. This guarantees

that the cumulative payoff for both clusters is maximized.

In a case where the fast cluster executing the local task overshoots the second

sync option, it has no incentive not to inform the second cluster. The second

cluster can in turn run a local task to improve the cumulative payoff P if (L2(tl) >

ω(tw2)) and the third sync option can be fixed after the expected finish time of

the local task on the second cluster. Otherwise, if running the local task does not

improve the cumulative payoff, synchronization can be attempted immediately

6 Fast Synchronization for Artificial Intelligence Application Tasks 103

after. Beyond this point, there is no guarantee that an optimal solution can be

found that guarantees a higher cumulative payoff since both clusters would have

executed local tasks and there is no other way to improve the cumulative payoff

pending synchronization. Thus, it is not an optimal strategy to keep waiting for

synchronization beyond this point.

In the case where a cluster is unable to make the first synchronization option,

the next optimal solution is to attempt to run any local task if available and go

to the second synchronization option. The explanation above still stands since

no cluster has any incentive to defect from waiting if the other cluster waits.

According to Assumption 2, a cluster will prefer to wait for synchronization if it

expects its local task to overshoot the sync option. To get S∗, it is imperative to

fix the sync options such that the number of expected workers from both clusters is

greater than or equal to the desired quorum. Synchronization must be attempted

at the earliest possible options.

6.5.2 Fixing the Synchronization Options

Given that we have the mixture distributions D1 and D2 for the execution times

of the fast and slow clusters C1 and C2 respectively, and likewise the distribution

of the expected execution time of local tasks on both clusters, we can fix the

three synchronization options. The expected available times of the clusters can

be chosen from the mixture distributions by choosing the desired percentile p(x).

The percentile values are used because we expect workers in a cluster to make the

same decisions.

The sum Z of two normally distributed independent random variables X and

Y is also normally distributed.

6 Fast Synchronization for Artificial Intelligence Application Tasks 104

X = G(µx, σ
2
x)

Y = G(µy, σ
2
y)

Z = G(µx + µy, σ
2
x + σ2

y)

(6.6)

First Synchronization Option: For the first sync option, we are interested

in getting the time value t1s such that the desired percentile p on both clusters

is available, and the desired quorum is met. The percentile is sampled from the

early execution distribution D1
early and D2

early for both clusters. We use the early

execution distribution to fix the first synchronization option as early as possible.

Let X1 and X2 be the time values that correspond to the chosen percentiles on both

distributions for both clusters. The time t1s for the first synchronization option can

be fixed by solving the following equation:

minimize t1s

subject to p(x) |C1|+ p(x) |C2| ≥ αN,

X1 = p(x){D1
early},

X2 = p(x){D2
early},

t1s = max(X1, X2)

(6.7)

Second Synchronization Option: The second sync option is fixed such that

the faster cluster, say C1 either waits for the slower cluster, say C2 (which is late)

or executes a local task (if available) if it increases the cumulative payoff. The

percentile for the expected available time t2av is drawn from the distribution D2
late.

6 Fast Synchronization for Artificial Intelligence Application Tasks 105

The second sync option t2s is gotten by solving the equation:

minimize t2s

subject to

p(x1) |C1|+ p(x2) |C2| ≥ αN,

X
′

1 = X1 if L1(t
1
l) < ω(tw2),

X
′

1 = X1 + p(x1){D1
early + Dlo1

early} if L1(t
1
l) ≥ ω(tw2),

X
′

2 = p(x2){D2
late},

t2s = max(X
′

1, X
′

2)

(6.8)

X
′
1 is the time point where we expect a certain percentile of the workers in the

faster cluster to be available to synchronize. If cluster C1 executes a local task,

X
′
1 is gotten by getting the desired percentile from the sum of the distributions

{D1
early and Dlo1

early} as explained in Equation 6.6.

Third Synchronization Option: The last synchronization option is fixed to

cater for the situation where the cluster (C1) running the local task is late to the

second sync option and sends a late notification to cluster C2. The other cluster C2

can decide to wait or run a local task. This is dependent on which of the choices

increases the cumulative payoff. The new expected available time of C1 is drawn

from the distribution Dlo
late. t

3
s is fixed by solving:

minimize t3s

subject to

p(x
′

1) |C1|+ p(x
′

2) |C2| ≥ αN,

X
′′

1 = X1 + p(x
′

1){D1
early + Dlo1

late},

X
′′

2 = X
′

2 if L2(t
2
l) < ω(tw1),

X
′′

2 = X
′

2 + p(x
′

2){D2
late + Dlo2

early} if L2(t
2
l) ≥ ω(tw1),

t3s = max(X
′′

1 , X
′′

2)

(6.9)

6 Fast Synchronization for Artificial Intelligence Application Tasks 106

X
′′
1 is the time point where we expect a certain percentile of the workers in

the faster cluster to have finished executing the local task. We switch to the late

local task execution distribution Dlo1
late since the cluster is late. X

′′
1 is drawn from

the sum of the distributions {D1
early and Dlo1

late}. If cluster C2 executes a local task,

X
′′
2 is drawn from the sum of the distributions {D1

early and Dlo1
early} as explained in

Equation 6.6.

6.5.3 Fast Synchronization Algorithm

The synchronization algorithm shows the processes and decisions made by the

controller and workers as shown in Algorithm 5 and Fig. 6.9. The algorithm

outputs different runtime actions that can be taken by the clusters depending on

the runtime configurations. The available times of fast and slow clusters C1 and

C2 are t1av and t2av respectively. The runtime synchronization flow is shown in

Fig. 6.9. The controller computes the synchronization schedule and fixes the three

synchronization options for each synchronization point by solving Equations 6.7

– 6.9. Asynchronous tasks are run as soon as the workers become available.

6 Fast Synchronization for Artificial Intelligence Application Tasks 107

R
u

n
 asyn

c task at
n

ext availab
le

tim
e

E
xecu

te tasks
b

ased
 o

n

sch
ed

u
le

R
ep

o
rt execu

tio
n

p

ro
g

ress to

co
n

tro
ller

C
reate clu

sters an
d

g

en
erate

d
istrib

u
tio

n
s

S
yn

c task?

A
ttem

p
t

syn
c

o
p

tio
n

 i
Y

es (i =
 0)

N
o

3 late
n

o
tificatio

n
s?

Y
es (i++)

i < 3

Y
es

R
u

n
 syn

c task
at syn

c o
p

tio
n

i

N
o

C
o

n
tro

ller

W
o

rkers

N
o

C
o

m
p

u
tes

sch
ed

u
le

Fig. 6.9 Controller and workers actions during runtime in fast
synchronization scheme.

6 Fast Synchronization for Artificial Intelligence Application Tasks 108

Algorithm 5: Synchronization algorithm

1 Controller:

2 Fix the three sync options t1s, t2s and t3s by solving Equations 6.7, 6.8 and 6.9

respectively

3 forall workers do:

4 First sync option:

5 if (t1av ≤ X1) and (t2av ≤ X2):

6 execute(Tsync, t
1
s);

7 end;

8 elif (t1av ≤ X1) and (t2av > X2) and send(C2, late notify):

9 if t1l ≤ t1s − t1av:

10 execute(Tlocal, t
1
av);

11 proceed to line 18 ;

12 elif (t1av > X1) and (t2av > X2):

13 proceed to line 18 ;

14 elif (t1av ≤ X1) and (t2av > X2) and no late notify :

15 abort(sync);

16 end;

17 Second sync option:

18 if (t1av′ ≤ X
′

1) and (t2av′ ≤ X
′

2):

19 execute(Tsync, t
2
s);

20 end;

21 elif (t1av′ > X
′

1) and (t2av′ ≤ X
′

2) and send(C1,late notify):

22 if t2l ≤ t2s − t2av:

23 execute(Tlocal, t
2
av);

24 proceed to line;

25 elif (t1av ≤ X1) and (t2av > X2) and no late notify :

26 abort(sync);

27 end;

28 Third sync option:

29 if (t1av′′ ≤ X
′′

1) and (t2av′′ ≤ X
′′

2):

30 execute(Tsync, t
3
s);

31 end;

32 elif (t1av′′ ≤ X
′′

1) and (t2av′′ > X
′′

2):

33 abort(sync);

34 end;

The function execute(Tsync, t
n
s) means that the sync task Tsync should be

executed at sync option n and start executing at time tns . For the first sync

6 Fast Synchronization for Artificial Intelligence Application Tasks 109

option, if both clusters become available before the predicted available times

(Line 5), the sync task is executed by the workers at the first sync option (Line

6). However, if the slower cluster is late and sends a late notification to the faster

cluster, the faster cluster can run a local task before proceeding to the second

option if the local task can fit in the space (Lines 8–10). If both clusters are late

to the first sync option, they both proceed to the second sync point.

Synchronization is aborted whenever a late cluster does not send a late

notification (Lines 14–15 and 25–26).

At the second sync option, the same operations apply as in the first sync option.

However, if the faster cluster is late in executing the local task, the slower cluster

can likewise decide to execute a local task before proceeding to the third sync

option if it can fit (Lines 22–23). The sync task is executed at the third sync

option only if both clusters are available at the predicted available times (Lines

29–30). Else, synchronization is aborted, and that particular synchronization point

is considered to have failed.

6.6 Simulations and Results

6.6.1 Simulation Configuration

We use a task graph (DAG) with a mixture of synchronous, asynchronous, and

local tasks. The task graph is similar to those used in Bulk Synchronous Parallel

(BSP), Stale Synchronous Parallel (SSP) [141] and Dynamic Stale Synchronous

Parallel (DSSP) [144] approaches for synchronizing parameter updates in

distributed machine learning and neural networks. The models usually have the

following four steps. (i) Compute gradients using local weights, (ii) push the

gradients to the parameter server to compute the global weights, (iii) pull new

computed global weights from the parameter server, and (iv) update local

weights using global weights.

These models assume that workers are only involved in the model training

6 Fast Synchronization for Artificial Intelligence Application Tasks 110

and updating process. However, in our work, we consider the case where workers

are not only involved in model training, but also in the data capture process

and usage of the model’s output. We introduce local tasks to show activities

where the workers need to do some personal computations for effective functioning

of the running application. Local tasks are triggered at runtime based on the

application’s needs and configurations.

The execution time of a single task on workers is based on a mixture

distribution. One for the fast execution and the other for slow execution. We use

traces from the clustering experiments as the dataset for the execution time of

tasks in our simulations. The times are split into two to depict short (µ = 25ms)

and long tasks (µ = 80ms).

The parameters in the simulations are as follows. (i) Synchronization degree:

ratio of the total machines required to pass quorum, (ii) worker size: The

maximum number of workers present in the system at any point in time, (iii)

simulation rounds : The number of times the task graph is continuously run, and

(iv) clustering frequency : This is the rate at which re–clustering is done by the

controller.

6.6.2 Default Parameter Values and Measurements

The following parameters are fixed in the simulations unless otherwise stated.

The number of independent runs of each simulation is 100, while each task graph

is continuously run in each simulation for 200 times (rounds). Worker–worker

message cost is set at (µ = 2ms, σ = 0.3) and worker–controller message cost is

set at (µ = 25ms, σ = 2). The synchronization degree is fixed at 0.7. Local tasks

execution times vary from 5ms to 10ms. Clustering cost is set at 20ms. The same

task graph is run on all workers.

The following parameters are measured in the simulations. (i) Runtime/sync

point : the time taken for a single iteration of a task graph divided by the number

of sync points, (ii) sync success/failure: the total number of times synchronization

6 Fast Synchronization for Artificial Intelligence Application Tasks 111

was successful or failed at different synchronization options, and (iii) participation:

the ratio of the total devices that synchronized at a sync point.

6.6.3 Simulation Results and Discussions

6.6.3.1 Single vs Flexible Clustering

We measure the impact of re–clustering on the runtime per sync point, quorum

participation, sync success at different options, and sync failure. We consider

single (fixed) clustering where workers are clustered only once in the system, thus,

workers belong to the same cluster all through the execution. We likewise consider

the case where clustering is done after a few iterations (set to 5).

Fig. 6.10 and 6.11 shows the runtime per sync point for single and iterative

clustering for varying number of workers, respectively. The runtime per sync point

for single clustering is smaller compared to that for iterative clustering. This is

 0

 0.2

 0.4

 0.6

 0.8

 1

 94 95 96 97 98 99 100 101 102

Fr
eq

ue
nc

y

Iteration runtime/sync point (ms)

5-workers
20-workers
100-workers
500-workers
1000-workers
5000-workers

CDF for short tasks (Single Clustering)

Fig. 6.10 Runtime for short tasks (fixed clustering).

6 Fast Synchronization for Artificial Intelligence Application Tasks 112

 0

 0.2

 0.4

 0.6

 0.8

 1

 98 99 100 101 102 103 104 105 106 107 108 109

Fr
eq

ue
nc

y

Iteration runtime/sync point (ms)

5-workers
20-workers
100-workers
500-workers
1000-workers
5000-workers

CDF for short tasks (Iterative Clustering)

Fig. 6.11 Runtime for short tasks (flexible iterative clustering).

due to extra cost incurred in re–clustering. However, iterative clustering has more

sync successes at the first sync option compared to single clustering as well as

less failed synchronizations as shown in Fig. 6.12 and 6.13. This is because the

schedule generated by the cluster using the execution progress distributions of the

clusters is updated as re–clustering is done, thus, improving the accuracy of the

schedule. Single clustering has more sync participation than iterative clustering

for varying number of workers as seen in Fig. 6.14 and 6.15. This is because more

workers are expected to be available at the second and third sync options, as there

are more sync successes at those options for single clustering.

6.6.3.2 Worker Heterogeneity

To measure the effect of heterogeneity of workers on our algorithm, we vary the

execution time deviation of tasks across workers and explore the impact it has on

runtime per sync point and quorum participation. Increasing the standard

deviation of a task among several workers increases the possibility of having

6 Fast Synchronization for Artificial Intelligence Application Tasks 113

 0

 50

 100

 150

 200

 250

 300

 350

Opt1 Opt2 Opt3 Sync-Fail

5-wrks
20-wrks

100-wrks
500-wrks

1000-wrks
5000-wrks

Sync success for single clustering

Fig. 6.12 Number of successful and failed synchronizations at
different sync options (fixed clustering).

stragglers. The task execution time deviation is varied from 1.5ms to 6ms for

100 workers and short tasks as shown in Fig. 6.16. The runtime per sync point

increases as the variance of task execution time across workers is increased from

1.5ms to 6ms. The average sync participation for all execution time variances is

about 0.75 with execution time variance of 1.5 having a slightly higher average.

As the execution time variance increases, we have higher sync participation

deviation as shown in Fig. 6.17.

6.6.3.3 Comparison with Other Synchronization Protocols

We evaluate the performance of our algorithm (Fast Sync) by comparing it with

the BSP, SSP and DSSP synchronization protocols frequently used in training

distributed machine learning models. For BSP, we fix the synchronization barrier

at the time point where the last worker finishes executing the task before the sync

point. Thus, fast workers need to wait for slow workers at the synchronization

6 Fast Synchronization for Artificial Intelligence Application Tasks 114

 0

 100

 200

 300

 400

 500

 600

Opt1 Opt2 Opt3 Sync-Fail

5-wrks
20-wrks

100-wrks
500-wrks

1000-wrks
5000-wrks

Sync success for iterative clustering

Fig. 6.13 Number of successful and failed synchronizations at
different sync options (flexible clustering).

 0.75

 0.8

 0.85

 0.9

 0.95

 1

5 20 100 500 1000 5000

Sy
nc

 p
ar

tic
ip

at
io

n

Number of Workers

Sync participation for Single clustering

Fig. 6.14 Ratio of workers that synchronized for short tasks (fixed
clustering).

6 Fast Synchronization for Artificial Intelligence Application Tasks 115

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

5 20 100 500 1000 5000

Sy
nc

 p
ar

tic
ip

at
io

n

Number of workers

Sync participation for iterative clustering

Fig. 6.15 Ratio of synchronized workers for short tasks (flexible
iterative clustering).

	0

	0.2

	0.4

	0.6

	0.8

	1

	90 	92 	94 	96 	98 	100 	102 	104 	106 	108 	110

Fr
eq
ue
nc
y

Iteration	runtime/sync	point	(ms)

std=1.5
std	=	3
std	=	4.5
std	=	6

CDF	for	different	execution	time	variances

Fig. 6.16 Runtime for different task execution time variances.

6 Fast Synchronization for Artificial Intelligence Application Tasks 116

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

1.5 3 4.5 6

Sy
nc

 p
ar

tic
ip

at
io

n

Execution time variance (ms)

Sync participation for different execution time variances

Fig. 6.17 Ratio of synchronized workers for different task execution
time variances.

barrier. For SSP, we set the staleness threshold s to 3 and, 5 with each threshold

unit being equivalent to 5ms. For DSSP, we set s to 3 and the rmax = 7; this is

the maximum allowable execution distance between the fastest and lowest worker

beyond s. We consider a task graph with two asynchronous tasks, a single sync

task, and two local tasks. For each iteration, we split the execution time into

computation, communication, and clustering times.

To measure the effect of worker heterogeneity on the algorithms, we measure

the execution runtime for our algorithm and the other synchronization models

with worker execution time variance of 2ms and 10ms across 20 workers as shown

in Fig. 6.18 and 6.19 respectively. Fig. 6.18 shows the average runtime for our

algorithm (Fast Sync), BSP, SSP and DSSP with worker execution time variance

of 2ms while Fig. 6.19 shows for varying worker execution variance of 10ms. Our

algorithm performs best in both cases, both in terms of computation time and

communication cost. DSSP performs almost as well as our algorithm, with BSP

performing worst in both cases. Our algorithm outperforms DSSP because DSSP

6 Fast Synchronization for Artificial Intelligence Application Tasks 117

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

BSP SSP-3 SSP-5 DSSP Fast-Sync

Ti
m

e
(m

s)
Computation

Communication
Clustering

Combined runtime for worker variance = 2ms

Fig. 6.18 Average computation and communication times for worker
execution variance of 2ms with 20 workers.

is heavily reliant on the assumption that worker execution times do not vary (or

varies minimally) over different iterations.

We vary the worker–controller communication cost from 25ms to 75ms to

measure the impact of network on all algorithms as shown in Fig. 6.20. Our

algorithm incurs the least communication overhead for any given

worker–controller communication cost. DSSP performs better than both SSP’s,

while BSP performs worst. The communication overhead incurred by our

algorithm increases at a lower rate compared to the other algorithms as the

worker–controller communication cost is increased. This is because our algorithm

has a bounded number of messages sent within the system.

We increase the number of workers from 5 to 100 to measure how scalable the

algorithms are in terms of average communication overhead. Our algorithm

outperforms other algorithms for increasing number of workers as shown in

Fig. 6.21. Increasing the number of workers has a smaller impact on our

algorithm compared to the other algorithms, where the communication overhead

6 Fast Synchronization for Artificial Intelligence Application Tasks 118

 0

 50

 100

 150

 200

 250

BSP SSP-3 SSP-5 DSSP Fast-Sync

Ti
m

e
(m

s)
Computation

Communication
Clustering

Combined runtime for worker variance = 10ms

Fig. 6.19 Average computation and communication times for worker
execution variance of 10ms with 20 workers.

 0

 50

 100

 150

 200

 250

 300

BSP SSP-3 SSP-5 DSSP Fast-Sync

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (m
s)

25ms
50ms
75ms

Varying worker-controller communication cost

Fig. 6.20 Average communication overhead for varying worker–
controller message cost for 20 workers.

6 Fast Synchronization for Artificial Intelligence Application Tasks 119

is directly proportional to the number of workers. All other algorithms have a

significant increase in the communication overhead as the number of workers is

increased from 5 to 100.

 0

 50

 100

 150

 200

 250

BSP SSP-3 SSP-5 DSSP Fast-Sync

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (m
s)

5-workers
20-workers

100-workers

Communication overhead for varying number of workers

Fig. 6.21 Average communication overhead for varying number of
workers.

The BSP, SSP, and DSSP algorithms have been proven to converge. The BSP

algorithm will always converge, but the runtime is heavily affected by stragglers.

The SSP and DSSP algorithms will converge provided the staleness threshold is

within some bound. Our scheme ensures that we have at least a certain ratio of

devices to the available before synchronization proceeds. This helps in ensuring

that the algorithm will converge.

6.6.4 Simulation Validation

The BSP, SSP, and DSSP synchronization models for training distributed machine

learning models and neural networks have been well studied. The results in [142]

and [141] show that SSP converges to a consensus faster than BSP. The time to

6 Fast Synchronization for Artificial Intelligence Application Tasks 120

reach convergence for SSP reduces as the number of machines increases, unlike in

BSP. Both the BSP and SSP have been found to converge provided the staleness

threshold for the SSP is within some bounds. The results in [144] show that DSSP

converges faster than SSP in the same corresponding range.

Our results are similar to those in [142], [141] and [144] with regard to execution

time. BSP takes a longer time to complete a specified number of iterations, while

SSP and DSSP take less time. However, our algorithm outperforms BSP, SSP, and

DSSP in terms of execution time.

6.7 Synchronized Distributed Training

6.7.1 Training Details

We train a deep residual neural network model [176], ResNet20 with 20 layers

and 270, 000 parameters on the CINIC–10 classification dataset with 10

classes [177] in batches of 128. The dataset contains images from CIFAR–102 and

ImageNet database images3 which is split into three parts (train, validation and

test), each with 90, 000 images. We combine the train and validation dataset in

our experiments for training and use the test dataset for evaluating the accuracy

of the model.

The ResNet20 model is trained on both a homogeneous and heterogeneous

cluster on Amazon Web Services (AWS) EC2 spot instances to mimic an edge

computing system. The homogeneous cluster consists of 3 g4dn.4xlarge instance

types each with 1 GPU, 16 virtual CPUs, 65GB RAM and a network of up to 25

Gigabit. The heterogeneous cluster is used to depict a case where workers have

varying computing, processing, and network capabilities. Thus, some workers are

expected to be faster than others. The heterogeneous cluster consists of a mixture

of 3 AWS EC2 instance types: g4dn.4xlarge (1 GPU, 16 virtual CPUs, 65GB

2https://www.cs.toronto.edu/~kriz/cifar.html
3http://image-net.org/download-images

6 Fast Synchronization for Artificial Intelligence Application Tasks 121

RAM and a network of up to 25 Gigabit), g4dn.2xlarge (1 GPU, 8 virtual CPUs,

32GB RAM and a network of up to 25 Gigabit) and g3s.xlarge (1 GPU, 4 virtual

CPUs, 31GB RAM and a network of up to 10 Gigabit). We use the density–based

spatial clustering of applications with noise (DBSCAN) clustering algorithm [175]

to group workers into clusters. DBSCAN groups together points that are close

to each other based on a distance measurement (usually Euclidean distance) and

a minimum number of points. It also marks the points that are in low–density

regions as outliers.

6.7.2 Evaluation and Discussions

We evaluate the performance of our algorithm by comparing its performance

against the ASP, BSP, and SSP (with different staleness threshold) parameter

server models. We implement all the frameworks, including our synchronized

distributed training algorithm in Ray4; a Python framework for developing

distributed applications. We measure the training times, training iterations, and

testing accuracy for all models for different runtime configurations.

We run the experiments for varying number of workers. Fig. 6.22 shows the

number of training iterations required to reach a 70% testing accuracy for the

trained ResNet20 model. BSP requires the least number of training iterations for

all sets of workers as shown in Fig. 6.22, but each iteration for BSP takes much

longer as shown in Fig. 6.23. This is because BSP uses a barrier and all updates

from workers must be applied at the parameter server before the workers proceed

to the next iteration. The SSP variations with staleness values of 3; SSP3 and

5; SSP5 require less training iterations and times to reach 70% testing accuracy

compared to the ASP implementation for the homogeneous cluster setup. Our

algorithm spends the least number of iterations and time in reaching 70% accuracy

for varying number of workers. The time to reach 70% accuracy decreases as the

number of workers increases. This is because more batches are trained when there

are more workers.

4https://docs.ray.io/en/latest/index.html

6 Fast Synchronization for Artificial Intelligence Application Tasks 122

 0

 10

 20

 30

 40

 50

 60

 70

 80

BSP ASP SSP3 SSP5Fast-Sync

Tr
ai

ni
ng

 it
er

at
io

n
(in

 1
00

0'
s)

2-Workers
4-Workers
8-Workers

16-Workers
32-Workers

Fig. 6.22 Number of training iterations required to reach 70% testing
accuracy for varying number of homogeneous workers.

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

BSP ASP SSP3 SSP5Fast-Sync

Tr
ai

ni
ng

 ti
m

e
(s

)

2-Workers
4-Workers
8-Workers

16-Workers
32-Workers

Fig. 6.23 Amount of time required to reach 70% testing accuracy
for varying number of homogeneous workers.

6 Fast Synchronization for Artificial Intelligence Application Tasks 123

 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700

BSP ASP SSP3 SSP5Fast-Sync

Tr
ai

ni
ng

 ti
m

e
(s

)
2-Workers
4-Workers
8-Workers

16-Workers
32-Workers

Fig. 6.24 Amount of time required to reach 70% testing accuracy
for varying number of heterogeneous workers.

To explore the effect of heterogeneity and to introduce some stragglers among

the workers, we train the ResNet20 model in both the homogeneous and

heterogeneous setup. The training time to reach 70% accuracy is shown in

Fig. 6.23 and 6.24 for the homogeneous and heterogeneous cluster setup

respectively. The training time to reach 70% testing accuracy increased for all

frameworks, with ASP being less impacted with an average training time

increase of 8% closely followed by our algorithm with a 12% increase in training

time. BSP was most impacted with an increase of 22% followed by SSP3 and

SSP5 respectively.

Finally, we measure the testing accuracy vs training time for 8 workers for

both the homogeneous and heterogeneous cluster setups. BSP reaches 45%

accuracy faster than other frameworks for the homogeneous cluster setup at 200s

training time. Beyond this point, all other frameworks reach higher testing

accuracy compared to BSP. Our algorithm performs as well as ASP for earlier

training times and as well as the SSP implementations for later training times as

6 Fast Synchronization for Artificial Intelligence Application Tasks 124

 35

 40

 45

 50

 55

 60

 65

 70

 75

 200 400 600 800 1000 1200 1400

Te
st

in
g

Ac
cu

ra
cy

 (%
)

Training Time (s)

BSP
ASP

SSP3
SSP5

Fast-Sync

Fig. 6.25 Training time versus testing accuracy for 8 homogeneous
workers.

 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75

 200 400 600 800 1000 1200 1400

Te
st

in
g

Ac
cu

ra
cy

 (%
)

Training Time (s)

BSP
ASP

SSP3
SSP5

Fast-Sync

Fig. 6.26 Training time versus testing accuracy for 8 heterogeneous
workers.

6 Fast Synchronization for Artificial Intelligence Application Tasks 125

shown in Fig. 6.25. For the heterogeneous cluster setup, our algorithm achieves

an accuracy higher or as good as SSP and ASP for all training times as shown in

Fig. 6.26. This is because our algorithm uses clustering to group workers

together and the communication among workers is greatly reduced compared to

the other models. A table of comparison of our synchronization scheme and

related parameter server training models is provided in Table 6.2.

6.8 Deployment Challenges

The following are the potential challenges of deploying our fast synchronization

scheme in a real edge–AI system.

1. Heterogeneity on the edge: One of the main issues of distributed or

decentralized edge systems is related to the inter–operability of

heterogeneous devices and technologies [178]. Although our algorithm

mitigates the effects of stragglers, heterogeneous devices with a wide range

of execution times for the same tasks will be a bottleneck in realizing fast

synchronization.

2. Node faults and failures: Our algorithm incorporates fault tolerance using

the late notification protocol, clustering and quorum requirements. However,

in a distributed edge system with a high rate of node faults, failures, and

recoveries, it becomes a more difficult task to achieve fast synchronization.

Even with the optimally fixed synchronization options, an unstable system

will be a major issue in reaching synchronization.

3. Network Connectivity: Connectivity among nodes is very important in

having fast synchronization. The controller needs to be able to send

messages (partial schedules, current cluster composition, etc.). The workers

also need to be able to communicate among one another and with the

controller. An unstable network will be a huge hindrance to the

performance of our algorithm.

6 Fast Synchronization for Artificial Intelligence Application Tasks 126

M
e
tr

ic
F
a
st

S
y
n
c

A
S
P

B
S
P

S
S
P

D
S
S
P

S
tr

a
g
g
le

r
m

it
ig

a
ti

o
n

Y
es

,
u
si

n
g

cl
u
st

er
in

g,
q
u
or

u
m

an
d

la
te

n
ot

ifi
ca

ti
on

N
o

N
o

Y
es

,
u
si

n
g

fi
x
ed

b
ou

n
d
ed

st
al

en
es

s

Y
es

,
u
si

n
g

fl
ex

ib
le

b
ou

n
d
ed

st
al

en
es

s

M
e
ss

a
g
e

o
v
e
rh

e
a
d

L
ow

V
er

y
lo

w
V

er
y

h
ig

h
M

o
d
er

at
e

H
ig

h

S
y
n
c

sl
a
ck

N
ot

al
lo

w
ed

A
ll
ow

ed
B

ou
n
d
ed

F
le

x
ib

le
b
u
t

b
ou

n
d
ed

A
d
a
p
ta

b
le

to
d
y
n
a
m

ic
sy

st
e
m

s

H
ig

h
ly

ad
ap

ta
b
le

A
d
ap

ta
b
le

N
ot

ad
ap

ta
b
le

A
d
ap

ta
b
le

A
d
ap

ta
b
le

Table 6.2 Comparison of our fast synchronization scheme and
related works.

127

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we explore synchronization in fog–controlled IoT and AI

application tasks. We motivate the need for synchronization in fog–controlled

IoT and AI application tasks with use cases and application scenarios. We

provide a definition and taxonomy for synchronization in IoT. We develop a

system model for mapping applications with and without synchronization

requirements to a fog–controlled IoT system. We propose three task–based

synchronization algorithms and two redundancy–based synchronization

algorithms for task synchronization in IoT. We further propose a game theoretic

synchronization approach for AI application tasks.

For the task–based synchronization, we design three synchronization

algorithms; static (SSSA), dynamic (DSSA) and micro batch (MBSSA)

synchronization algorithms. We evaluate their performance using extensive

simulations. We observe from our simulations that SSSA is best suited for

systems where there is an accurate or almost accurate estimate of the execution

time of tasks. Thus, in systems such as IIoT where the behavior of machines is

controlled and predictable, SSSA will be a good choice for synchronization

7 Conclusion and Future Work 128

scheduling. In systems such as vehicular cloud computing and smart things

where the behavior of individual components cannot be predicted as they are

easily affected by mobility and environmental conditions, DSSA is a better choice

for achieving synchronization. MBSSA is best suited for systems where the

arrival pattern of tasks is sporadic and the cost of communication between

workers is high. Thus, the tasks can be grouped together and sent as a

micro–batch, thereby reducing the cost that would have been incurred by sending

the tasks individually.

To introduce fault tolerance into task synchronization in IoT, we design two

dynamic synchronization schemes that use the following ideas, respectively: time–

based and component–based redundancies. We conduct trace–driven experiments

to benchmark and evaluate the performance of the task–based and redundancy–

based synchronization algorithms compared to existing solutions.

We observe that time–based redundancy is suitable for applications where

repeating task execution is acceptable. While component–based redundancy is

suitable for applications where redundancy at the device level is needed,

specifically, applications that cannot wait for task reexecutions. Updating the

controller with the progress of task execution is important for synchronization

scheduling. We find that using a publish–subscribe update scheme reduces the

communication load on controllers. Thus, effectively reducing the overall

execution time of the synchronous tasks. We observe that an increase in the level

of redundancy for component–based redundancy decreases the runtime and

reduces the percentage of sync task failure. We also observe that the prediction

accuracy of the finish time of tasks on workers has a significant impact on the

runtime and synchronization task failure. The proposed redundancy–based

algorithms have shorter runtimes compared to barrier synchronization and have

fewer synchronization task failures when compared to time–slotted

synchronization.

Additionally, we present a game theoretic synchronization approach for AI

application tasks. Our approach reduces the number of messages needed in

reaching synchronization through the use of clustering and a

7 Conclusion and Future Work 129

disconnection–tolerant late notification protocol. Existing protocols such as BSP,

SSP, and DSSP decide the synchronization time only when the workers get to the

synchronization point. A lot of messages are then needed in reaching a consensus

on synchronization. We develop a game to help in deciding the optimal number

of synchronization options and in fixing them. Thus, during runtime, workers do

not need to communicate with each other to reach, postpone, or abort

synchronization. The only messages sent during the synchronization process are

late notifications, which are bounded.

We report on a simulation study that evaluates the benefits of our fast

synchronization scheme. In particular, we explore the performance of our

synchronization scheme under different operation conditions. We show that our

scheme performs well with increasing number of workers and increasing

heterogeneity among workers. We compare our scheme with the BSP and SSP

(with different staleness thresholds) and show that our scheme performs better or

as well as both BSP and SSP.

We further implement the fast synchronization algorithm in Ray (a Python

framework for distributed applications) and evaluate its performance by comparing

it with ASP, BSP and SSP models under different cluster setups. We train a

ResNet20 model on all the frameworks on AWS EC2 using the CINIC–10 dataset.

We show that our algorithm performs better or as well as other models for varying

number of workers and different cluster configurations.

7.2 Future Work

One area of future work is to handle device mobility across the fogs in

fog–controlled IoT. In particular, with vehicular clouds, we can have vehicles

joining and leaving different fog zones as they travel. The synchronization

scheduler needs to control the vehicle–to–fog associations to minimize

synchronization task failures due to mobility. We look to develop prediction

models to forecast the availability of nodes in a rapidly changing network model,

7 Conclusion and Future Work 130

which will eliminate the need for quorum checking. Extending the micro

batching idea to not just tasks but devices to achieve more localization is a

future research direction. We also look to apply machine learning for completion

time prediction and incorporate that into synchronization scheduling.

As part of future work, we would like to test our task synchronization

approaches in a real setting. An implementation will explore real network

conditions, connection between nodes, communication delays, mobility, faults,

and failures.

Another area of future work is to extend the current game–theoretic

synchronization approach to having more than 2 clusters. This way, we have

more fine–grained clusters that will have higher probability of staying tightly

synchronized. Finally, we hope to fully implement our synchronization scheme

into a framework and programming language for AI application tasks. This

would allow us to evaluate our synchronization scheme under real–life scenarios.

131

References

[1] S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert, Industrial
Internet of Things and Cyber Manufacturing Systems, pp. 3–19. Cham:
Springer International Publishing, 2017.

[2] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial
internet of things: Challenges, opportunities, and directions,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724–4734, 2018.

[3] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial
internet of things (iiot): An analysis framework,” Computers in industry,
vol. 101, pp. 1–12, 2018.

[4] E. Latronico, E. A. Lee, M. Lohstroh, C. Shaver, A. Wasicek, and M. Weber,
“A vision of swarmlets,” IEEE Internet Computing, vol. 19, no. 2, pp. 20–28,
2015.

[5] E. A. Lee, B. Hartmann, J. Kubiatowicz, T. S. Rosing, J. Wawrzynek,
D. Wessel, J. Rabaey, K. Pister, A. Sangiovanni-Vincentelli, S. A. Seshia,
et al., “The swarm at the edge of the cloud,” IEEE Design & Test, vol. 31,
no. 3, pp. 8–20, 2014.

[6] H. Chaouchi, ed., The Internet of Things: Connecting Objects. Hoboken,
NJ, London: Wiley-ISTE, 2010.

[7] X. Cui, “The internet of things,” in Ethical ripples of creativity and
innovation, pp. 61–68, Springer, 2016.

[8] F. Wortmann and K. Flüchter, “Internet of things,” Business & Information
Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015.

[9] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,” International
journal of communication systems, vol. 25, no. 9, p. 1101, 2012.

References 132

[10] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22,
no. 7, pp. 97–114, 2009.

[11] S. F. Abedin, M. G. R. Alam, N. H. Tran, and C. S. Hong, “A fog based
system model for cooperative iot node pairing using matching theory,” in
Network Operations and Management Symposium (APNOMS), 2015 17th
Asia-Pacific, pp. 309–314, IEEE, 2015.

[12] L. Apvrille, T. Tanzi, and J.-L. Dugelay, “Autonomous drones for assisting
rescue services within the context of natural disasters,” in General Assembly
and Scientific Symposium (URSI GASS), 2014 XXXIth URSI, pp. 1–4,
IEEE, 2014.

[13] A. Valsan, B. Parvathy, V. D. GH, R. Unnikrishnan, P. K. Reddy, and
A. Vivek, “Unmanned aerial vehicle for search and rescue mission,” in
2020 4th International Conference on Trends in Electronics and Informatics
(ICOEI)(48184), pp. 684–687, IEEE, 2020.

[14] S. Mayer, L. Lischke, and P. W. Woźniak, “Drones for search and rescue,”
in 1st International Workshop on Human-Drone Interaction, 2019.

[15] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooperating
devices: A consensus approach for massive iot networks,” IEEE Internet of
Things Journal, vol. 7, no. 5, pp. 4641–4654, 2020.

[16] S. Karnouskos, “The cooperative internet of things enabled smart grid,”
in Proceedings of the 14th IEEE international symposium on consumer
electronics (ISCE2010), June, pp. 07–10, 2010.

[17] X. Guo, M. Mohammad, S. Saha, M. C. Chan, S. Gilbert, and D. Leong,
“Psync: Visible light-based time synchronization for internet of things (iot),”
2016.

[18] A. Elsts, X. Fafoutis, S. Duquennoy, G. Oikonomou, R. J. Piechocki, and
I. Craddock, “Temperature-resilient time synchronization for the internet of
things,” IEEE Transactions on Industrial Informatics, 2017.

[19] Y.-C. Wu, Q. Chaudhari, and E. Serpedin, “Clock synchronization of wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 124–
138, 2011.

[20] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, pp. 13–16, ACM, 2012.

References 133

[21] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards
a comprehensive definition of fog computing,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 5, pp. 27–32, 2014.

[22] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of
things realize its potential,” Computer, vol. 49, no. 8, pp. 112–116, 2016.

[23] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
2016.

[24] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50,
no. 1, pp. 30–39, 2017.

[25] W. Shi and S. Dustdar, “The promise of edge computing,” Computer, vol. 49,
no. 5, pp. 78–81, 2016.

[26] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for the
internet of things: A case study,” IEEE Internet of Things Journal, vol. 5,
no. 2, pp. 1275–1284, 2018.

[27] Q. C. Li, H. Niu, A. T. Papathanassiou, and G. Wu, “5g network capacity:
Key elements and technologies,” IEEE Vehicular Technology Magazine,
vol. 9, no. 1, pp. 71–78, 2014.

[28] P. Khodashenas, J. Aznar, A. Legarrea, C. Ruiz, M. Siddiqui, E. Escalona,
and S. Figuerola, “5g network challenges and realization insights,” in 2016
18th International Conference on Transparent Optical Networks (ICTON),
pp. 1–4, IEEE, 2016.

[29] I. Chih-Lin, S. Han, Z. Xu, Q. Sun, and Z. Pan, “5g: rethink mobile
communications for 2020+,” Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2062,
p. 20140432, 2016.

[30] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[31] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural
network for modelling sentences,” arXiv preprint arXiv:1404.2188, 2014.

[32] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of
a convolutional neural network,” in 2017 International Conference on
Engineering and Technology (ICET), pp. 1–6, Ieee, 2017.

References 134

[33] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural
network models for practical applications,” arXiv preprint arXiv:1605.07678,
2016.

[34] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of
deep neural network architectures and their applications,” Neurocomputing,
vol. 234, pp. 11–26, 2017.

[35] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.

[36] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions on
Wireless Communications, vol. 19, no. 1, pp. 447–457, 2019.

[37] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
ai: Intelligentizing mobile edge computing, caching and communication by
federated learning,” IEEE Network, vol. 33, no. 5, pp. 156–165, 2019.

[38] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE network, vol. 32, no. 1,
pp. 96–101, 2018.

[39] A. H. Sodhro, S. Pirbhulal, and V. H. C. de Albuquerque, “Artificial
intelligence-driven mechanism for edge computing-based industrial
applications,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 7, pp. 4235–4243, 2019.

[40] S. B. Calo, M. Touna, D. C. Verma, and A. Cullen, “Edge computing
architecture for applying ai to iot,” in 2017 IEEE International Conference
on Big Data (Big Data), pp. 3012–3016, IEEE, 2017.

[41] Y. Bengio, Y. LeCun, et al., “Scaling learning algorithms towards ai,” Large-
scale kernel machines, vol. 34, no. 5, pp. 1–41, 2007.

[42] T. J. Sejnowski, The deep learning revolution. Mit Press, 2018.

[43] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of the
IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[44] M. Rhudy, “Time alignment techniques for experimental sensor data,”
International Journal of Computer Science and Engineering Survey, vol. 5,
no. 2, p. 1, 2014.

References 135

[45] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam:
Building an efficient and scalable deep learning training system,” in 11th
{USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14), pp. 571–582, 2014.

[46] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai,
G. R. Ganger, P. B. Gibbons, et al., “Exploiting bounded staleness to speed
up big data analytics,” in 2014 {USENIX} Annual Technical Conference
({USENIX} {ATC} 14), pp. 37–48, 2014.

[47] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang, et al., “Large scale distributed deep
networks,” Advances in neural information processing systems, vol. 25,
pp. 1223–1231, 2012.

[48] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine learning
with the parameter server,” in 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14), pp. 583–598, 2014.

[49] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,
A. Kumar, and Y. Yu, “Petuum: A new platform for distributed machine
learning on big data,” IEEE Transactions on Big Data, vol. 1, no. 2, pp. 49–
67, 2015.

[50] A. Gautam and S. Mohan, “A review of research in multi-robot systems,” in
Industrial and Information Systems (ICIIS), 2012 7th IEEE International
Conference on, pp. 1–5, IEEE, 2012.

[51] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Fog-enabled multi-robot
systems,” in 2018 IEEE 2nd International Conference on Fog and Edge
Computing (ICFEC), pp. 1–10, IEEE, 2018.

[52] S. Cervini, “System and method for efficiently executing single program
multiple data (spmd) programs,” Mar. 8 2011. US Patent 7,904,905.

[53] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[54] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian,
“A software defined networking architecture for the internet-of-things,” in
2014 IEEE network operations and management symposium (NOMS), pp. 1–
9, IEEE, 2014.

References 136

[55] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer,
and O. Koufopavlou, “Software-defined networking (sdn): Layers and
architecture terminology,” RFC 7426, 2015.

[56] R. Wenger, X. Zhu, J. Krishnamurthy, and M. Maheswaran, “A
programming language and system for heterogeneous cloud of things,” in
Collaboration and Internet Computing (CIC), 2016 IEEE 2nd International
Conference on, pp. 169–177, IEEE, 2016.

[57] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, and
E. Benkhelifa, “The future of mobile cloud computing: integrating cloudlets
and mobile edge computing,” in 2016 23rd International conference on
telecommunications (ICT), pp. 1–5, IEEE, 2016.

[58] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, pp. 1–9, IEEE,
2016.

[59] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub, and
E. Benkhelifa, “Sdmec: Software defined system for mobile edge computing,”
in 2016 IEEE International Conference on Cloud Engineering Workshop
(IC2EW), pp. 88–93, IEEE, 2016.

[60] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI white paper, vol. 11, no. 11,
pp. 1–16, 2015.

[61] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet of
things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22–29, 2016.

[62] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge computing:
A taxonomy,” in Proc. of the Sixth International Conference on Advances in
Future Internet, pp. 48–55, Citeseer, 2014.

[63] S. Raza, S. Wang, M. Ahmed, and M. R. Anwar, “A survey on vehicular
edge computing: architecture, applications, technical issues, and future
directions,” Wireless Communications and Mobile Computing, vol. 2019,
2019.

[64] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge
computing and networking: A survey,” Mobile Networks and Applications,
pp. 1–24, 2020.

References 137

[65] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Ave: Autonomous vehicular edge
computing framework with aco-based scheduling,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 12, pp. 10660–10675, 2017.

[66] Y.-L. Lee, P.-K. Tsung, and M. Wu, “Techology trend of edge ai,” in 2018
International Symposium on VLSI Design, Automation and Test (VLSI-
DAT), pp. 1–2, IEEE, 2018.

[67] J. P. Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund, “Edge-ai in
lora-based health monitoring: Fall detection system with fog computing and
lstm recurrent neural networks,” in 2019 42nd international conference on
telecommunications and signal processing (TSP), pp. 601–604, IEEE, 2019.

[68] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, and S. Dustdar,
“Towards a serverless platform for edge {AI},” in 2nd {USENIX} Workshop
on Hot Topics in Edge Computing (HotEdge 19), 2019.

[69] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “Softran: Software defined
radio access network,” in Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking, pp. 25–30, 2013.

[70] Y.-J. Ku, D.-Y. Lin, C.-F. Lee, P.-J. Hsieh, H.-Y. Wei, C.-T. Chou, and A.-C.
Pang, “5g radio access network design with the fog paradigm: Confluence of
communications and computing,” IEEE Communications Magazine, vol. 55,
no. 4, pp. 46–52, 2017.

[71] B. Liang, V. Wong, R. Schober, D. Ng, and L. Wang, “Mobile edge
computing,” Key technologies for 5G wireless systems, vol. 16, no. 3,
pp. 1397–1411, 2017.

[72] S. Park and Y. Yoo, “Network intelligence based on network state
information for connected vehicles utilizing fog computing,” Mobile
Information Systems, vol. 2017, 2017.

[73] A. Kumari, S. Tanwar, S. Tyagi, N. Kumar, M. S. Obaidat, and J. J.
Rodrigues, “Fog computing for smart grid systems in the 5g environment:
Challenges and solutions,” IEEE Wireless Communications, vol. 26, no. 3,
pp. 47–53, 2019.

[74] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos,
“Fog computing for sustainable smart cities: A survey,” ACM Computing
Surveys (CSUR), vol. 50, no. 3, pp. 1–43, 2017.

References 138

[75] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications
and issues,” in Proceedings of the 2015 workshop on mobile big data, pp. 37–
42, 2015.

[76] M. Rausch, B. Müller, B. Hedenetz, and A. Schedl, “Clock synchronization
in a distributed system,” Mar. 25 2008. US Patent 7,349,512.

[77] Q. Li and D. Rus, “Global clock synchronization in sensor networks,” IEEE
Transactions on computers, vol. 55, no. 2, pp. 214–226, 2006.

[78] K. Xie, Q. Cai, and M. Fu, “A fast clock synchronization algorithm for
wireless sensor networks,” Automatica, vol. 92, pp. 133–142, 2018.

[79] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and
A. Vahdat, “Exploiting a natural network effect for scalable, fine-grained
clock synchronization,” in 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18), pp. 81–94, 2018.

[80] A. Bondavalli, A. Ceccarelli, L. Falai, and M. Vadursi, “Towards making
nekostat a proper measurement tool for the validation of distributed
systems,” in Eighth International Symposium on Autonomous Decentralized
Systems (ISADS’07), pp. 377–386, IEEE, 2007.

[81] W. Steiner, F. Bonomi, and H. Kopetz, “Towards synchronous deterministic
channels for the internet of things,” in Internet of Things (WF-IoT), 2014
IEEE World Forum on, pp. 433–436, IEEE, 2014.

[82] S. K. Mani, R. Durairajan, P. Barford, and J. Sommers, “A system for clock
synchronization in an internet of things,” arXiv preprint arXiv:1806.02474,
2018.

[83] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchronization
for wireless sensor networks: a survey,” Ad hoc networks, vol. 3, no. 3,
pp. 281–323, 2005.

[84] C. Lenzen, T. Locher, P. Sommer, and R. Wattenhofer, “Clock
synchronization: Open problems in theory and practice,” in International
Conference on Current Trends in Theory and Practice of Computer Science,
pp. 61–70, Springer, 2010.

[85] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time
synchronization protocol,” in Proceedings of the 2nd international conference
on Embedded networked sensor systems, pp. 39–49, 2004.

References 139

[86] P. Jia, X. Wang, and K. Zheng, “Distributed clock synchronization based on
intelligent clustering in local area industrial iot systems,” IEEE Transactions
on Industrial Informatics, vol. 16, no. 6, pp. 3697–3707, 2019.

[87] L. Schenato and F. Fiorentin, “Average timesynch: A consensus-based
protocol for clock synchronization in wireless sensor networks,” Automatica,
vol. 47, no. 9, pp. 1878–1886, 2011.

[88] U. Schmid, “Synchronized utc for distributed real-time systems,” Annual
Review in Automatic Programming, vol. 18, pp. 101–107, 1994.

[89] K. Fan, S. Sun, Z. Yan, Q. Pan, H. Li, and Y. Yang, “A blockchain-based
clock synchronization scheme in iot,” Future Generation Computer Systems,
vol. 101, pp. 524–533, 2019.

[90] N. Xu, X. Zhang, Q. Wang, J. Liang, G. Pan, and M. Zhang, “An improved
flooding time synchronization protocol for industrial wireless networks,” in
2009 International Conference on Embedded Software and Systems, pp. 524–
529, IEEE, 2009.

[91] H. D. Karatza, “Scheduling gangs in a distributed system,” International
Journal of Simulation: Systems, Science Technology, UK Simulation Society,
vol. 7, no. 1, pp. 15–22, 2006.

[92] A. Batat and D. G. Feitelson, “Gang scheduling with memory
considerations,” in Parallel and Distributed Processing Symposium, 2000.
IPDPS 2000. Proceedings. 14th International, pp. 109–114, IEEE, 2000.

[93] Z. C. Papazachos and H. D. Karatza, “Gang scheduling in multi-core clusters
implementing migrations,” Future Generation Computer Systems, vol. 27,
no. 8, pp. 1153–1165, 2011.

[94] G. L. Stavrinides and H. D. Karatza, “Scheduling different types of gang
jobs in distributed systems,” in 2019 International Conference on Computer,
Information and Telecommunication Systems (CITS), pp. 1–5, IEEE, 2019.

[95] P. G. Sobalvarro, S. Pakin, W. E. Weihl, and A. A. Chien, “Dynamic
coscheduling on workstation clusters,” in Workshop on Job Scheduling
Strategies for Parallel Processing, pp. 231–256, Springer, 1998.

[96] K. Deng, K. Ren, M. Zhu, and J. Song, “A data and task co-scheduling
algorithm for scientific cloud workflows,” IEEE Transactions on Cloud
Computing, vol. 8, no. 2, pp. 349–362, 2015.

References 140

[97] T. Harris, M. Maas, and V. J. Marathe, “Callisto: Co-scheduling parallel
runtime systems,” in Proceedings of the Ninth European Conference on
Computer Systems, pp. 1–14, 2014.

[98] E. Frachtenberg, F. Petrini, S. Coll, and W.-c. Feng, “Gang scheduling with
lightweight user-level communication,” in Parallel Processing Workshops,
2001. International Conference on, pp. 339–345, IEEE, 2001.

[99] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32, no. 4,
pp. 18–25, 2001.

[100] J. Kirsch and Y. Amir, “Paxos for system builders: An overview,” in
Proceedings of the 2Nd Workshop on Large-Scale Distributed Systems and
Middleware, LADIS ’08, (New York, NY, USA), pp. 3:1–3:6, ACM, 2008.

[101] O. Padon, G. Losa, M. Sagiv, and S. Shoham, “Paxos made epr:
decidable reasoning about distributed protocols,” Proceedings of the ACM
on Programming Languages, vol. 1, no. OOPSLA, pp. 1–31, 2017.

[102] Á. Garćıa-Pérez, A. Gotsman, Y. Meshman, and I. Sergey, “Paxos consensus,
deconstructed and abstracted,” in European Symposium on Programming,
pp. 912–939, Springer, Cham, 2018.

[103] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui, “Apus: Fast and scalable
paxos on rdma,” in Proceedings of the 2017 Symposium on Cloud Computing,
pp. 94–107, 2017.

[104] L. G. Valiant, “A bridging model for parallel computation,” Communications
of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[105] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, “Mizan: a system for dynamic load balancing in large-scale
graph processing,” in Proceedings of the 8th ACM European Conference on
Computer Systems, pp. 169–182, ACM, 2013.

[106] P. Jakovits, S. N. Srirama, and I. Kromonov, “Stratus: A distributed
computing framework for scientific simulations on the cloud,” in 2012
IEEE 14th International Conference on High Performance Computing and
Communication & 2012 IEEE 9th International Conference on Embedded
Software and Systems, pp. 1053–1059, IEEE, 2012.

[107] L. G. Valiant, “A bridging model for multi-core computing,” Journal of
Computer and System Sciences, vol. 77, no. 1, pp. 154–166, 2011.

References 141

[108] E. Vogli, G. Ribezzo, L. A. Grieco, and G. Boggia, “Fast join
and synchronization schema in the ieee 802.15. 4e mac,” in 2015
IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), pp. 85–90, IEEE, 2015.

[109] I. Ozil and D. R. Brown, “Time-slotted round-trip carrier synchronization,”
in 2007 Conference Record of the Forty-First Asilomar Conference on
Signals, Systems and Computers, pp. 1781–1785, IEEE, 2007.

[110] S. Zeng, B. He, and J. Jiang, “A scheduling algorithm for synchronization
task in embedded multicore systems,” Journal of Computational Information
Systems, vol. 10, no. 19, pp. 8531–8541, 2014.

[111] F. Nemati, M. Behnam, and T. Nolte, “Multiprocessor synchronization
and hierarchical scheduling,” in Parallel Processing Workshops, 2009.
ICPPW’09. International Conference on, pp. 58–64, IEEE, 2009.

[112] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated task scheduling,
allocation and synchronization on multiprocessors,” in Real-Time Systems
Symposium, 2009, RTSS 2009. 30th IEEE, pp. 469–478, IEEE, 2009.

[113] R. Rajkumar, Synchronization in real-time systems: a priority inheritance
approach, vol. 151. Springer Science & Business Media, 2012.

[114] A. Vrancic, “Synchronization of distributed systems,” Sept. 26 2006. US
Patent 7,114,091.

[115] S. G. Yoo, S. Park, and W.-Y. Lee, “A study of time synchronization methods
for iot network nodes,” International journal of advanced smart convergence,
vol. 9, no. 1, pp. 109–112, 2020.

[116] A. Tyrrell, G. Auer, and C. Bettstetter, “Fireflies as role models for
synchronization in ad hoc networks,” in Proceedings of the 1st international
conference on Bio inspired models of network, information and computing
systems, p. 4, ACM, 2006.

[117] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled
biological oscillators,” SIAM Journal on Applied Mathematics, vol. 50, no. 6,
pp. 1645–1662, 1990.

[118] Y. Kuramoto, “Self-entrainment of a population of coupled non-linear
oscillators,” in International symposium on mathematical problems in
theoretical physics, pp. 420–422, Springer, 1975.

References 142

[119] B. Ermentrout, “An adaptive model for synchrony in the firefly pteroptyx
malaccae,” Journal of Mathematical Biology, vol. 29, no. 6, pp. 571–585,
1991.

[120] Y. Sun, Q. Jiang, and K. Zhang, “A clustering scheme for reachback firefly
synchronicity in wireless sensor networks,” in Network Infrastructure and
Digital Content (IC-NIDC), 2012 3rd IEEE International Conference on,
pp. 27–31, IEEE, 2012.

[121] Y.-W. Hong and A. Scaglione, “A scalable synchronization protocol for large
scale sensor networks and its applications,” IEEE Journal on Selected Areas
in Communications, vol. 23, no. 5, pp. 1085–1099, 2005.

[122] P. Yadav, J. A. McCann, and T. Pereira, “Self-synchronization in duty-
cycled internet of things (iot) applications,” IEEE Internet of Things
Journal, vol. 4, no. 6, pp. 2058–2069, 2017.

[123] O. Babaoglu, T. Binci, M. Jelasity, and A. Montresor, “Firefly-inspired
heartbeat synchronization in overlay networks,” in Self-Adaptive and Self-
Organizing Systems, 2007. SASO’07. First International Conference on,
pp. 77–86, IEEE, 2007.

[124] R. Leidenfrost and W. Elmenreich, “Establishing wireless time-triggered
communication using a firefly clock synchronization approach.,” in WISES,
pp. 1–18, Citeseer, 2008.

[125] I. Bojić and M. Kušek, “Fireflies synchronization in small overlay networks,”
in 32nd International Convention on Information and Communication
Technology, Electronics and Microelectronics, MIPRO 2009, 2009.

[126] H. Yin, P. G. Mehta, S. P. Meyn, and U. V. Shanbhag, “Synchronization
of coupled oscillators is a game,” IEEE Transactions on Automatic Control,
vol. 57, no. 4, pp. 920–935, 2011.

[127] R. Pagliari and A. Scaglione, “Scalable network synchronization with pulse-
coupled oscillators,” IEEE Transactions on Mobile Computing, vol. 10, no. 3,
pp. 392–405, 2011.

[128] J. Klinglmayr, C. Kirst, C. Bettstetter, and M. Timme, “Guaranteeing global
synchronization in networks with stochastic interactions,” New Journal of
Physics, vol. 14, no. 7, p. 073031, 2012.

[129] K. Siddique, Z. Akhtar, E. J. Yoon, Y.-S. Jeong, D. Dasgupta, and
Y. Kim, “Apache hama: An emerging bulk synchronous parallel computing

References 143

framework for big data applications,” IEEE Access, vol. 4, pp. 8879–8887,
2016.

[130] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in International Conference on
Machine Learning, pp. 3043–3052, PMLR, 2018.

[131] J. Keuper and F.-J. Pfreundt, “Asynchronous parallel stochastic gradient
descent: A numeric core for scalable distributed machine learning
algorithms,” in Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, pp. 1–11, 2015.

[132] D. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine stochastic gradient descent,”
Advances in Neural Information Processing Systems, vol. 31, pp. 4613–4623,
2018.

[133] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” IEEE Transactions on
Signal Processing, vol. 68, pp. 2155–2169, 2020.

[134] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochastic
gradient descent,” in Advances in neural information processing systems,
pp. 2595–2603, 2010.

[135] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, “Sarah: A novel method
for machine learning problems using stochastic recursive gradient,” arXiv
preprint arXiv:1703.00102, 2017.

[136] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[137] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[138] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pp. 135–146, 2010.

[139] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al.,
“Spark: Cluster computing with working sets.,” HotCloud, vol. 10, no. 10-
10, p. 95, 2010.

[140] X. Zhao, M. Papagelis, A. An, B. X. Chen, J. Liu, and Y. Hu, “Elastic bulk
synchronous parallel model for distributed deep learning,” in 2019 IEEE

References 144

International Conference on Data Mining (ICDM), pp. 1504–1509, IEEE,
2019.

[141] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. Ganger, and E. P. Xing, “More effective distributed ml via a stale
synchronous parallel parameter server,” in Advances in neural information
processing systems, pp. 1223–1231, 2013.

[142] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson, K. Keeton,
and E. Xing, “Solving the straggler problem with bounded staleness,” in
Presented as part of the 14th Workshop on Hot Topics in Operating Systems,
2013.

[143] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. Xing, “High-
performance distributed ml at scale through parameter server consistency
models,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 29, 2015.

[144] X. Zhao, A. An, J. Liu, and B. X. Chen, “Dynamic stale synchronous parallel
distributed training for deep learning,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pp. 1507–1517,
IEEE, 2019.

[145] J. Zhang, H. Tu, Y. Ren, J. Wan, L. Zhou, M. Li, and J. Wang, “An
adaptive synchronous parallel strategy for distributed machine learning,”
IEEE Access, vol. 6, pp. 19222–19230, 2018.

[146] F. Liu and W. Guo, “The design and implementation of mina-based smart
home data synchronization system,” in 2015 Fifth International Conference
on Instrumentation and Measurement, Computer, Communication and
Control (IMCCC), pp. 1612–1616, Sept 2015.

[147] H. Wang, B. Kim, J. Xie, and Z. Han, “E-auto: A communication scheme
for connected vehicles with edge-assisted autonomous driving,” in ICC 2019-
2019 IEEE International Conference on Communications (ICC), pp. 1–6,
IEEE, 2019.

[148] L. Gillam, K. Katsaros, M. Dianati, and A. Mouzakitis, “Exploring
edges for connected and autonomous driving,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 148–153, IEEE, 2018.

References 145

[149] S. Muddala, D. K. Divya, P. Nimbalkar, and R. Patil, “Iot based bridge
monitoring system,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 5, no. 2,
pp. 2044–2047, 2019.

[150] D. J. Glancy, “Autonomous and automated and connected cars-oh my: first
generation autonomous cars in the legal ecosystem,” Minn. JL Sci. & Tech.,
vol. 16, p. 619, 2015.

[151] M. Campbell, M. Egerstedt, J. P. How, and R. M. Murray, “Autonomous
driving in urban environments: approaches, lessons and challenges,”
Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 368, no. 1928, pp. 4649–4672, 2010.

[152] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt, et al., “Towards fully autonomous
driving: Systems and algorithms,” in 2011 IEEE Intelligent Vehicles
Symposium (IV), pp. 163–168, IEEE, 2011.

[153] M. N. Hasan, S. Didar-Al-Alam, and S. R. Huq, “Intelligent car control for a
smart car,” International Journal of Computer Applications, vol. 14, no. 3,
pp. 15–19, 2011.

[154] J. Marquez-Barja, B. Lannoo, D. Naudts, B. Braem, C. Donato,
V. Maglogiannis, S. Mercelis, R. Berkvens, P. Hellinckx, M. Weyn,
et al., “Smart highway: Its-g5 and c2vx based testbed for vehicular
communications in real environments enhanced by edge/cloud technologies,”
in EuCNC2019, the European Conference on Networks and Communications,
IEEE, 2019.

[155] U. Z. A. Hamid, H. Zamzuri, and D. K. Limbu, “Internet of vehicle
(iov) applications in expediting the implementation of smart highway of
autonomous vehicle: A survey,” in Performability in Internet of Things,
pp. 137–157, Springer, 2019.

[156] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[157] Y. Hu, D. Niu, J. Yang, and S. Zhou, “Fdml: A collaborative machine
learning framework for distributed features,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2232–2240, 2019.

References 146

[158] A. Elgabli, J. Park, A. S. Bedi, M. Bennis, and V. Aggarwal, “Gadmm: Fast
and communication efficient framework for distributed machine learning.,”
Journal of Machine Learning Research, vol. 21, no. 76, pp. 1–39, 2020.

[159] W. Wang, C. Zhang, L. Yang, J. Xia, K. Chen, and K. Tan, “Divide-and-
shuffle synchronization for distributed machine learning,” arXiv preprint
arXiv:2007.03298, 2020.

[160] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[161] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[162] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in
International Conference on Machine Learning, pp. 4615–4625, PMLR, 2019.

[163] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[164] A. M. Al-Qawasmeh, A. A. Maciejewski, H. Wang, J. Smith, H. J. Siegel,
and J. Potter, “Statistical measures for quantifying task and machine
heterogeneities,” The Journal of Supercomputing, vol. 57, no. 1, pp. 34–50,
2011.

[165] J.-Y. Huang, P.-H. Tsai, and I.-E. Liao, “Implementing publish/subscribe
pattern for coap in fog computing environment,” in 2017 8th IEEE Annual
Information Technology, Electronics and Mobile Communication Conference
(IEMCON), pp. 175–180, IEEE, 2017.

[166] A. Ganesh, “Publish/subscribe model in a wireless sensor network,” Sept. 15
2009. US Patent 7,590,098.

[167] Y. Huang and H. Garcia-Molina, “Publish/subscribe in a mobile
environment,” Wireless Networks, vol. 10, no. 6, pp. 643–652, 2004.

[168] R. Gracia-Tinedo, M. S. Artigas, A. Moreno-Martinez, C. Cotes, and P. G.
Lopez, “Actively measuring personal cloud storage,” in Cloud Computing
(CLOUD), 2013 IEEE Sixth International Conference on, pp. 301–308,
IEEE, 2013.

References 147

[169] S. Liu, Y. Liu, L. M. Ni, J. Fan, and M. Li, “Towards mobility-
based clustering,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 919–928, ACM,
2010.

[170] Y. C. Shin and C. Xu, Intelligent systems: modeling, optimization, and
control. CRC press, 2017.

[171] S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, “Towards smart factory
for industry 4.0: a self-organized multi-agent system with big data based
feedback and coordination,” Computer Networks, vol. 101, pp. 158–168,
2016.

[172] J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination of
connected and automated vehicles at intersections and merging at highway
on-ramps,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 5, pp. 1066–1077, 2016.

[173] L. Lovén, T. Leppänen, E. Peltonen, J. Partala, E. Harjula, P. Porambage,
M. Ylianttila, and J. Riekki, “Edge ai: A vision for distributed, edge-native
artificial intelligence in future 6g networks,” The 1st 6G Wireless Summit,
pp. 1–2, 2019.

[174] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge
intelligence: the confluence of edge computing and artificial intelligence,”
IEEE Internet of Things Journal, 2020.

[175] K. M. Kumar and A. R. M. Reddy, “A fast dbscan clustering algorithm by
accelerating neighbor searching using groups method,” Pattern Recognition,
vol. 58, pp. 39–48, 2016.

[176] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778, 2016.

[177] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, “Cinic-10 is
not imagenet or cifar-10,” arXiv preprint arXiv:1810.03505, 2018.

[178] J. Portilla, G. Mujica, J.-S. Lee, and T. Riesgo, “The extreme edge at the
bottom of the internet of things: A review,” IEEE Sensors Journal, vol. 19,
no. 9, pp. 3179–3190, 2019.

	References
	Introduction
	Overview
	Basic System Model
	Definition of Synchronization
	Node Model
	Application Model

	Thesis Contributions
	Thesis Outline

	Background and Related Works
	Edge and Fog Computing
	Edge Computing
	Fog Computing

	Clock Synchronization
	Synchronization in Parallel and Distributed Systems
	Nature–Inspired Synchronization
	Synchronization in Real–Time Artificial Intelligence Applications

	Taxonomy and Motivation
	Taxonomy of Synchronization in IoT
	Motivation
	Synchronization in Fog/Edge–Based Internet of Things Systems
	Synchronization in Artificial Intelligence Application Tasks
	Summary

	Task–Based Synchronization Schemes for Fog–Controlled Internet of Things
	Overview
	Synchronization Scheduling Schemes
	Naive quorum checking
	Sampling–based quorum checking

	Static Synchronization Scheduling Algorithm (SSSA)
	Dynamic Synchronization Scheduling Algorithm (DSSA)
	Micro Batch Synchronization Scheduling Algorithm (MBSSA)
	Local Scheduler
	Experiments and Results
	Simulation Procedure
	Simulation Results

	Discussions and Summary

	Redundancy-Based Synchronization Schemes for Fog–Controlled Internet of Things
	Overview
	Synchronous Scheduling Schemes with Redundancy
	Status Update
	Quorum Checking

	Synchronous Scheduling Algorithms with Redundancy
	Synchronous Scheduling Algorithm with Time–Based Redundancy
	Synchronous Scheduling Algorithm with Component–Based Redundancy

	Experiments, Results and Discussions
	Impact of Controller Location on Synchronization
	Configuration of Synchronization Experiments
	Default Parameter Values and Measurements
	Scalability of the adapted publish–subscribe update scheme
	Component redundancy
	Impact of finish time prediction accuracy
	Performance Evaluation

	Summary

	Fast Synchronization for Artificial Intelligence Application Tasks
	Overview
	System Model
	Node Model
	Application Model
	Basic Game Model

	Clustering
	Synchronization as a Game
	Game Specification
	Execution Time Distributions
	Late Notification Protocol
	Extensive Form of Synchronization Game
	Synchronization Scenarios

	Analysis of the Synchronization Game
	Optimal Synchronization Options
	Fixing the Synchronization Options
	Fast Synchronization Algorithm

	Simulations and Results
	Simulation Configuration
	Default Parameter Values and Measurements
	Simulation Results and Discussions
	Simulation Validation

	Synchronized Distributed Training
	Training Details
	Evaluation and Discussions

	Deployment Challenges

	Conclusion and Future Work
	Conclusion
	Future Work

	References

