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A B S T R A C T 

This research presents a new, more efficient computational scheme for complex 

periodic flows, and brings forward two novel ideas. The first consists in the use 

of a Fourier space time representation in conjunction with a high-order spatial 

discretization. The second is based on the efficient treatment of the resulting set 

of equations using a fast, implicit solver. This thesis describes the formulation and 

implementation of the proposed framework. Firstly, a high-order spectral difference 

scheme for the Euler equations is introduced. Secondly, the non-linear frequency 

domain method resolving the unsteady behavior of the flow is discussed. Thirdly, a 

mathematical and experimental validation of the proposed algorithm is carried out. 

Numerical experiments performed in this thesis suggest that the methodology could 

be an attractive new avenue for large scale time-dependent problems, alleviating 

the computational cost traditionally associated with such simulations. 
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A B R E G E 

Cette recherche presente un nouveau schema numerique destine aux ecoulements 

periodiques complexes et met de l'avant deux nouvelles idees. La premiere con-

siste en l'utilisation d'une representation temporelle en serie de Fourier, liee a une 

discretisation spatiale d'ordre eleve. La seconde repose sur le traitement efficace 

des equations obtenues, grace a l'utilisation d'une methode iterative implicite. En 

premier lieu, cette these introduit le schema d'ordre eleve intitule "difference spec-

trale". En second lieu, nous presentons la methode non-lineaire du domaine des 

frequences utilisee pour calculer les effets non-stationnaires. En dernier lieu, on 

realise une validation mathematique et experimental du schema. Les simulations 

effectuees suggerent que cette methodologie est une alternative attrayante, per-

mettant de reduire les couts de calcul traditionnellement associes aux problemes 

instationnaires complexes. 
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C H A P T E R 1 
Introduction 

High-fidelity simulation of periodic flows is a challenging and computationally in-

tensive task. Typically, one should ensure that the spatial features of the solution 

are all captured with adequate resolution. Similarly, all the relevant time-scales 

must also be present to accurately reflect the unsteady behavior of the physical 

system. Thus, for complex systems, these requirements will dictate the use of very 

fine spatial and temporal discretizations, leading to prohibitive computational costs 

that are unacceptable for practical applications. 

A case of particular interest to aeronautical engineers is the simulation of helicopter 

rotors. Indeed, when sustaining forward flight, the rotor of an helicopter experi-

ences complex flow situations. Due to the additional rotation-induced velocity, a 

shock wave develops on the advancing side of the rotor. On the retreating side, 

the blade's velocity relative to the air decreases and as the blade approaches the 

stall angle, a region of separated flow is generated. Furthermore, each blade of 

the rotor influences the next through the so-called blade-vortex interaction. Due 

to the pressure difference between the lower and upper side of the rotor, a vortex 

roll-up is created at the tip of each blade. The vortex shed by a blade travels 

downstream, eventually meeting the next incoming blade and changing its an-

gle of incidence. Consequently, the global flow pattern is largely influenced by 

those interconnected flow phenomena, making reliable rotorcraft simulation noto-

riously challenging. Other equally difficult cases exist, and a non-exhaustive list 

includes vortical flows over multi-element airfoils, leading edge vortex shedding, 

flutter/buffet prediction and turbomachinery analysis. Although these cases have 
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already been successfully studied, they represent the state-of-the-art in aerospace 

computational fluid dynamics (CFD) and would benefit from more efficient solu-

tion techniques. 

In an effort to efficiently tackle complex flow simulations, the CFD and numer-

ical analysis communities have been extensively exploring so-called higher-order 

methods. The rational behind high-order numerical schemes is that maximizing 

the accuracy of an algorithm is generally more cost-effective than employing the 

"brute force" solution of increasing the mesh density. In this work, this concept is 

employed in both space and time to create an accurate and efficient scheme for the 

simulation of periodic flows. The end goal of the research is the formulation of a 

novel approach where high-order schemes are employed to alleviate the simulation 

costs associated with the aforementioned applications, and allow the computation 

of previously intractable periodic problems. This chapter introducing numerical 

tools employed in this thesis is divided in three parts. Section (1.1) presents back-

ground material on high-order spatial discretizations for hyperbolic equations and 

discusses some of the established methodologies. Section (1.2) introduces spec-

trally accurate time representation methods for periodic flows, while section (1.3) 

enumerates the objectives of the present research. 

1.1 High-Order Spatial Discretization 

Second-order accurate finite-volume solvers have reached a level of maturity where 

large scale viscous computations can be realized within a few hours. However, for 

vortex dominated cases, second-order formulations are overly diffusive and fail to 

crisply capture the evolution of vortrical structures unless grid adaptation is used 

in the vicinity of the vortex. Trying to circumvent this limitation, many high-

order alternatives have been proposed and shown to be significantly more effective. 
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To introduce these types of discretization along with the potential benefits, let us 

consider a generic high-order numerical method. This method is said to be of order 

k if the error in the approximated functional decays at the kth power of the grid 

spacing h, 

e oc hk. 

Thus, when the grid density is doubled, the error of a fourth order solution de-

creases by a factor of 16, compared to a decrease of 4 for a second-order one. On 

the other hand, high-order solutions are also more expensive to compute and a fair 

comparison between low- and high-order methods can only be done by evaluat-

ing the error level with respect to the number of degrees-of-freedom (DOF) in the 

solution. For a scheme of fixed order, decreasing the mesh size, or h-refinement, 

results in a constant rate of convergence, qualified as algebraic. For a fixed grid, in-

creasing the scheme's order, or p-reftnement, results in an accelerating convergence 

rate, qualified as exponential or spectral. A generic convergence plot comparing 

algebraic and exponential convergence rates is presented in Fig. (1-1). From this 

simple argument, it follows that using high-order schemes is more effective than 

employing finer meshes. Indeed, for low error tolerances, high-order methods will 

require fewer degrees of freedom and therefore will be more efficient. 

Log(DOF) 

Figure 1-1: Illustration of algebraic and exponential convergence 
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The early attempts at creating high-order methods for compressible flows were 

deeply rooted in the pioneering work of Godunov [1]. His first-order numerical 

scheme assumed piecewise-constant flow variables that were discontinuous from 

cell to cell. Doing so, Godunov's method reduced the complex evolution of the 

gas-dynamics equations to Riemann initial value problems, where the interaction 

between two constant states needed to be considered. Godunov suggested to solve 

this simpler problem exactly, but its solution can also be approximated in some 

way. Later, Van Leer [2, 3] extended the scheme to second-order accuracy by intro-

ducing the MUSCL reconstruction technique. Using neighboring cells, his scheme 

estimated the solution's slope to correct the left and right state of each Riemann 

problem, allowing a piecewise-linear data representation. This extrapolation pro-

cedure can be used to achieve higher-order accuracy, as demonstrated by Colella 

and Woodward [4] who presented the third-order PPM formulation. Since then, 

numerous high-order schemes have been constructed by building upon the foun-

dations laid by Godunov and Van Leer. In fact, literature on high-order methods 

is quite abundant and a thorough presentation of all numerical schemes falls well 

beyond the scope of this introduction, and only the most popular ones will be pre-

sented. A more complete description of established high-order schemes is given in 

the review papers of Ekaterinaris [5] and Wang [6] for structured and unstructured 

grids respectively. 

In the late 1980's, Harten and Osher [7, 8] introduced an arbitrarily high-order 

extrapolation method, giving rise to the essentially non-oscillatory (ENO) scheme 

for hyperbolic equations. Similarly to Van Leer's MUSCL extrapolation, the ENO 

schemes employ a polynomial reconstruction using the information available in the 

neighborhood of a cell. However, if a sufficiently large set of neighbors is included 

in the stencil, the reconstruction is no longer unique and multiple polynomials with 
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the desired order of accuracy may be computed. Harten and Osher's idea was to se-

lect the least oscillatory reconstruction available, thereby promoting stability near 

discontinuities. As a consequence of this choice, the ENO schemes present excel-

lent accuracy and are oscillation-free in the limit of an infinitely fine computational 

mesh. Subsequently, extensions of the scheme to multidimensional and unstruc-

tured grids were considered by many researchers [9, 10, 11, 12, 13]. Although 

quite successful, the ENO schemes are hardly optimal since they select only one 

A;th—order accurate reconstruction based on the 2k — 1 points made available. To 

remedy this situation, Jiang and Shu [14] and Liu et al. [15] proposed the weighed 

essentially non-oscillatory (WENO) scheme designed to maximize the accuracy of 

ENO methods. In this scheme, the final extrapolated flow variable is given by 

a convex combination of all reconstruction stencils. The optimal combination is 

computed through weighting factors, themselves based on some smoothness norm. 

Near a discontinuity all weights but one go to zero, and the scheme chooses the least 

oscillatory stencil, recovering the ENO formulation. In smooth regions however, a 

weighted average of the possible stencils is used such that 2k — 1 t h order accuracy 

is achieved. In addition to accuracy benefits, the WENO method also presents 

smoother numerical fluxes and better convergence to steady-state than their ENO 

counterparts. The extension to unstructured grid was considered by Friedrich [16] 

and Hu and Shu [17]. A review of ENO and WENO schemes is presented in [18]. 

In parallel to ENO and WENO methods, another class of vastly popular high-

order schemes was developed by applying the concept of numerical flux to the 

finite-element method (FEM). The idea of the so-called Discontinuous Galerkin 

(DG) method was first presented by Reed and Hill [19] to solve the neutron trans-

port equation. In a series of papers, Cockburn and Shu [20, 21, 22, 23] extended the 

framework to compressible flows and Bassi and Rebay [24, 25] demonstrated the 
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DG method by obtaining formal high-order accuracy for Euler and Navier-Sokes 

equations. The revolutionary concept behind the DG scheme is the adoption of 

a flow representation that is discontinuous from one element to another, marking 

a major paradigm shift from the continuous Galerkin FEM. Inside the elements, 

a polynomial solution is formed by considering the product of discrete nodal val-

ues and nodal basis functions. These discrete values are updated by solving a 

variational statement arising from the weak form of the conservation law. The 

governing equation is multiplied by a test-function and integrated over the cell. 

Applying integration by parts leads to a volume integral and a surface flux inte-

gral. The volume and surface terms are evaluated through numerical quadrature 

as in the continuous Galerkin FEM, but the flux integration is calculated in a 

finite-volume (FV) fashion. At each face quadrature point, the left and right state 

is evaluated using the solution polynomial. There, a Riemann problem is solved 

to obtain the discrete numerical flux vector utilized in the quadrature. Employing 

this approach, adapted from the Godunov methods, is an elegant way of accounting 

for the wave-like structure of hyperbolic equations and stabilizes the finite-element 

approach that is otherwise unstable for convection-dominated flows. In recent 

literature, there has been a pronounced interest in the DG method due its par-

ticularly compact data representation. Indeed, unlike ENO and WENO methods, 

the high-order accuracy is achieved by including additional solution points at the 

element level. Accordingly, finite-difference reconstructions spanning multiple cells 

are traded for elemental basis functions, giving to the DG scheme the geometrical 

flexibility that finite element methods are known for. Moreover, the limited inter-

cell coupling allows to vary the polynomial resolution from element to element, 

facilitating the implementation of hp-adaptive solvers. Finally, the compactness of 

the DG method is also advantageous to multiprocessor computing where it usually 
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displays near-ideal parallelization efficiency. For a complete discussion of the his-

tory and development of the DG method refer to [26, 27] and the references therein. 

Recently, other attractive alternatives to ENO/WENO and DG schemes have been 

proposed. Wang, Liu and their collaborators [28, 29, 30, 31, 32, 33] proposed the 

spectral volume (SV) method for hyperbolic conservation laws. This scheme is 

conceptually similar to the DG method as it also employs element-wise discontin-

uous polynomial solutions but differs in how its degrees of freedom are updated. 

Each spectral volume is subdivided in control volumes (CV) where the flow solu-

tion is piecewise-constant. Shape functions defining a high-degree polynomial are 

employed to interpolate the solution within the spectral volume. At the bound-

ary of two CVs, the polynomial is smooth and the analytical flux vector is used 

to compute the local flux value. At the boundary between to adjacent spectral 

volumes, the data is usually discontinuous and a Riemann problem is solved to 

compute the flux. Once the discrete fluxes are obtained, high-order quadratures 

are used to integrate the fluxes and update the solution in a fashion similar to FV 

methods. The SV formulation is simpler and more intuitive than the DG scheme as 

no test function is involved. However, the extension to three-dimensional problems 

requires a large number of integration nodes and the method looses some of its 

efficiency. To eliminate this drawback, quadrature-free implementations have been 

explored [34], 

Even simpler formulations may be derived by employing high-order difference 

schemes based on staggered-polynomials. This type of discretization was pioneered 

by Kopriva and Kolias [35, 36] as the staggered-grid multidomain method for struc-

tured meshes. In a later effort, Liu et al. [37] applied similar concepts and devel-

oped the spectral difference (SD) scheme for unstructured tetrahedral grids in an 
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attempt to create a more efficient spectral volume scheme. Like the SV and DG 

methods, the solution is element-wise discontinuous but the equations are kept 

in differential form. Consequently, the formulation is free of test functions and 

quadrature rules, making it highly economical. Each cell is assigned a number of 

solution points and corresponding basis functions to create a high-degree polyno-

mial. This polynomial is then utilized to extrapolate the solution to a second set 

of nodes holding the fluxes. Inside the cell, the analytical flux vector is evaluated, 

whereas a Riemann solver is employed where the solution is discontinuous. The 

fundamental difference with the SV method is that instead of integrating the fluxes, 

the SD scheme creates a second polynomial from discrete flux values. In turn, this 

polynomial is differentiated to compute the flux divergence needed for the residual 

evaluation. The extension of the SD scheme to the Euler and Navier-Stokes equa-

tions was established by Wang et al. [38] and May et al. [39]. Similarities between 

the SD scheme and DG and SV methods have been drawn by Huynh [40] and Van 

den Abeele et al. [41] respectively. Van den Abeele et al. [42] also presented a 

thorough analysis of the method and propose alternative nodal placements, leading 

to a broad class of possible SD schemes. 

The high-order scheme for periodic flow presented in this thesis is based on the 

SD discretization method. This choice was motivated by the high-order that the 

scheme can achieve, and the availability of structured and unstructured formula-

tions. By employing the differential form of the equations, the SD is both simpler 

and more efficient than the equivalent DG or SV schemes. Moreover, its compact 

data representation made it an attractive choice, providing additional flexibility 

over WENO discretizations of equivalent order. Finally, since all operations are 

performed at the element level, the developed NLFD-SD framework is largely in-

dependent of the type of SD implemented, and is applicable to all formulations 
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as described by Van den Abeele et al. [42]; including the original staggered-grid 

multidomain method of Kopriva et al. [35, 36] and the unstructured SD of Liu et 

al. [37], 

1.2 Spectral Temporal Representation 

Most CFD algorithms are designed for very general problem statements. Typically, 

one distinguishes steady-state problems from time dependent ones, and chooses 

the solution algorithm on that basis. For steady cases, the fastest way to reach 

a converged state is sought and first-order implicit schemes are generally favored. 

For unsteady problems with large timescales, higher-order implicit schemes based 

on the backward difference formula or implicit Runge-Kutta methods allow large 

time-steps while maintaining good temporal accuracy. Finally, for unsteady prob-

lems where a fine sampling of the temporal spectrum is needed, explicit multistep 

integration schemes are the most efficient alternative. In the context of steady 

periodic flows however, the previously mentioned alternatives are far from optimal. 

Employing a time-accurate method requires an initial guess and the equations are 

integrated forward in time until the transient errors are sufficiently decayed. As a 

result, most of the effort is thus spent in achieving a periodic state, rather than 

sampling the true evolution of a flow period. 

In 1993, Hall and Clark [43] approached periodic flow problems from a different 

perspective, suggesting a radical departure from time accurate methods. In their 

harmonic balance technique, the unsteady disturbances are assumed to be small 

and the flow variables are linearized about their mean value. Invoking the period-

icity of the solution, the unsteady components of the solution are expanded in a 

Fourier series and solved for using a predetermined number of harmonics. The cost 

of an unsteady computation then becomes proportional to the cost of one steady 
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flow computation, multiplied by number of temporal modes desired. For inviscid 

flows, Hall and Clark demonstrated reasonable accuracy and a speedup of one to 

two orders of magnitude. 

When considering viscous cases however, the amplitude of unsteady phenomena 

is considerable and linearization errors may be large. To accommodate those ef-

fects, Hall et al. [44] introduced the fully non-linear harmonic balance for Euler 

and Navier-Stokes equations. McMullen et al. [45, 46] also proposed an alterna-

tive scheme named the non-linear frequency domain method (NLFD) where the 

flow equations are solved in the Fourier space directly. The latter is realized in 

a pseudo-spectral fashion where real and Fourier space information is exchanged 

through fast-Fourier transform. McMullen et al. also presented the gradient based 

variable time period method (GBVTP), an adaptive algorithm for flows where the 

time period is unknown a-priori. Similarly to other spectral time representations, 

the NLFD exhibits remarkable accuracy characteristics. Indeed, by employing the 

spectral space, the NLFD inherits the exponential convergence of Fourier series. 

This remarkable feature is numerically demonstrated by Nadarajah [47] for tran-

sonic viscous cases. 

More recently, Gopinath and Jameson [48] have presented the time spectral (TS) 

method as an alternative to the NLFD scheme. The TS method eliminates the ex-

plicit use of fast Fourier transforms (FFT) in the computation by coupling the real 

space time instances with a pre-multiplied Fourier collocation matrix. The GBVTP 

method was also incorporated in the framework [49]. The researchers demonstrated 

spectral accuracy, but concluded that a high-order spatial discretization is required 

to reap the full benefits of the fast convergence of Fourier series. 
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1.3 Objectives of this Research 

The aim of this research is to create an efficient and accurate computational method 

for compressible periodic flows. Indeed, traditional numerical schemes show severe 

limitations when applied to strongly non-linear unsteady flows, such as those en-

countered in rotorcraft simulation. For that reason, the challenges presented by 

these cases motivate the development of more specialized methodologies, tailored 

to cope with complex flow features and unsteady phenomena. 

To this intent, a novel, alternative simulation strategy is presented in this thesis. A 

numerical framework is developed to solve the inviscid flow equations possessing pe-

riodic solutions. The framework's objective is to obtain an improved accuracy level 

while reducing the computational cost inherent to time-dependent simulations. To 

achieve this goal, a high-order spectral difference (SD) scheme is combined with a 

non-linear frequency domain (NLFD) solver. The advantageous numerical proper-

ties of these schemes are complementary and ensure high-order accuracy in both 

time and space, allowing the computation of detailed flow solutions. Furthermore, 

employing the NLFD spectral temporal representation incorporates directly the 

periodicity of the solution within the framework, permitting an efficient treatment 

of the unsteady effects. 

The work performed can be split into two categories. One consists in the implemen-

tation and validation of a steady SD solver. The other concerns the incorporation 

of the NLFD method in the SD code. The different milestones and subtasks of the 

project are presented below. 

Implementation of the 2D Spectral Difference solver 

• Implement the SD solver. 
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• Validate the accuracy of the scheme on various test cases. 

• LU-SGS for acceleration of steady solutions. 

Incorporation of the NLFD method 

• Augment the SD solver with an NLFD temporal representation. 

• Adapt the LU-SGS to the NLFD framework. 

• Validate the temporal scheme and solution procedure. 

• Demonstrate the approach for periodic flow problems. 

My contributions arising from this investigation are summarized by two novel ideas. 

First, the use of a Fourier space time representation in conjunction with a high-

order spatial discretization. A unified formulation is derived, and the high-order 

accuracy of the method is demonstrated in both space and time. Second, the 

efficient solution of the discretized system using a fast, implicit solver. A lower-

upper symmetric Gauss-Seidel (LU-SGS) procedure for the NLFD equations is 

derived and an innovative treatment of the unsteady source term equation (3.39) 

and Fourier space Jacobian equation (3.44) is presented. The approach is validated, 

and offers a drastic improvement over the explicit methods used by previous re-

searchers. Ultimately, the developed algorithm should constitute an attractive new 

avenue for large scale time-dependent problems, alleviating the computational cost 

traditionally associated with such simulations. 

This study is divided into three sections. First, the Euler equation, governing 

the motion of compressible inviscid fluids are derived from first principles. The 

subsequent reformulation of those equations allowing their numerical solution is 

also presented. Secondly the mathematical formulation forming the building blocks 

of the NLFD-SD scheme are explained. All the numerical methods used in the 
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scheme or in its validation are derived. Lastly multiple test cases are performed to 

validate and benchmark the proposed algorithm. 
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C H A P T E R 2 
The Euler Equations 

This chapter presents the complete derivation of the Euler equations for inviscid, 

compressible fluids. In section 2.1, the fundamental concepts of mass, momentum 

and energy conservation are applied to obtain a rigorous mathematical model. The 

resultant system of integral equations is then manipulated and a formulation suit-

able to the computation of periodic flow problems is presented in section 2.2. 

2.1 Integral Form of the Euler Equations 

In this section, the conservation law for mass, momentum and energy are derived. 

For the sake of the discussion, we will consider a control volume fi, denote its 

surface dtt, the unit vector pointing in the normal direction n, and characterize 

the flow by its velocity v. The governing equations will arise from the flux balance 

over that control volume. 
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2.1.1 Conservation of Mass 

The law of mass conservation states that inside a control volume Q, no mass can be 

created or destroyed. The time rate of change of the total mass inside that control 

volume may be expressed using the density p as 

I / / * 1 <2j> 
The mass exchanged trough the boundary of the control volume is obtained as 

a product of the density, area and normal convective velocity. Consequently, the 

mass flux across a infinitesimal boundary segment dS is 

p [v.n) dS. (2 .2) 

Since no source terms or diffusion effects are considered, then the mass conservation 

equation is the balance between the accumulation term and mass flux across the 

boundary 

[ p dQ + I p (v.n) dS = 0. (2.3) 
ut Jq Jon 

2.1.2 Conservation of Momentum 

The equation concerning the conservation of momentum is obtained by applying 

Newton's second law. It is stated that a change in momentum is caused by the net 

force acting on a mass element. The rate of change of momentum pv in the control 

volume is given by 

I <2-4» 
The momentum flux across an infinitesimal boundary segment is obtained as a 

product of the transported quantity pv, the area and the normal convective velocity. 

pv (v.n) dS. (2.5) 
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Finally, the change in momentum is caused by forces acting on the mass element. 

In the Euler equations, the gravitational and viscous effects are neglected, hence 

the only net force is due to the pressure imposed on the control volume 

p.n dS. (2.6) 

The balance of the accumulation, momentum flux and pressure terms lead to: 

[ pv dQ+ (f pv (v.n) dS + <f pndS = 0. (2.7) 
ut Jn Jan Jen 

2.1.3 Conservation of Energy 

The equation concerning the conservation of energy is derived from the first law of 

thermodynamics. Any change in the total energy in the control volume is created 

from the work acting on the volume, or net heat flux into it. The total energy of a 

fluid E is obtained as the sum of its internal energy per unit mass e and its kinetic 

energy 

E = e + ^\v\2. (2.8) 

In the control volume, the total energy per unit volume pE is conserved; its time 

variation being given by 

h S / E d n - M 

The total energy flux trough a boundary segment reads: 

pE (v.n) dS. (2.10) 

Finally the work done on the control volume is only due to pressure since viscous 

effects are neglected. On the boundary this reads 

p (v.n) dS. (2 .11) 
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The balance of the accumulation, total energy flux and work done on the control 

volume terms leads to: 

[ pE + I pE (v.n) dS+ <f p (v.n) dS = 0. (2.12) 
dt Jq J da J on 

2.1.4 Pressure closure 

The Euler equations are well-posed only if a closure equation for the pressure 

is provided. This relationship is obtained by assuming an ideal gas obeying the 

following equation of state 

p = pRT, (2.13) 

and considering the general relation between total entalpy H, total energy and 

pressure 
| 2 

H = h + ^ - = E+~. (2.14) 
2 p 

Using the definitions R = cp — cv, 7 = cp/cv and the enthalpy relation for a perfect 

gas h = cpT, one obtains 

p = ( 1 - l ) p ( E - l - ^ p J . (2.15) 

2.2 Differential Form of the Euler Equations 

From a computational standpoint, it is more efficient to gather equations (2.3), 

(2.7) and (2.12) and treat the Euler equations in the following vector form 
/ wdQ+(f F.n dS = 0, (2.16) 

dt Jq /an 

where w is the vector of conserved variables and F is the inviscid flux vector. In 

our computational framework, the motion of solid bodies will be represented using 

a Lagrangian approach. Consequently, for unsteady cases the inviscid flux vector 
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is modified to account for the grid velocity b. 

Fm = F - b w. (2.17) 

Considering the motion of the grid and applying Gauss' divergence theorem, equa-

tion (2.16) becomes 

/ Jn 

dw 
~dt 

+ V.FM dn = 0. (2.18) 

The integral relationship (2.18) must hold for any control volume S7, implying that 

the integrand is null. Thus, the Euler equations in differential form are 

dw 
8t 

+ V . F M = 0, (2.19) 

where w is the vector of conserved variables and FM = ( / , g) are the inviscid flux 

vectors, given by 

w = 

p p(u -bx) p(v -by) 

pu 
>,f = < 

pu{u -bx) +P pu{y -by) 
>,f = < 9= < 

-by) 

pv pv(u -bx) pv(v -by) +p 

pE(u -bx) +pu 
* 

pE(v -by) +pv 
* 

> .(2.20) 

Here, bx and by are the cartesian grid velocities and p is computed using (2.15). 
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C H A P T E R 3 
Computational framework 

This chapter presents the proposed non-linear frequency domain-spectral difference 

scheme for the periodic Euler equations. Section (3.1) presents the formulation and 

implementation of the spectral difference (SD) spatial discretization. Section (3.2) 

describing the temporal discretizations used in this work is separated in two parts. 

Firstly, the explicit and implicit time-accurate integration strategies used for vali-

dation purposes are presented, then the NLFD time spectral method is discussed. 

3.1 Spectral Difference Spatial Discretization 

The basis for the spectral difference solver of order A; is a superposition of two grids 

within each computational cell. Their arrangement within the reference element 

spanning (£,77) 6 [—1,1] x [—1,1] is illustrated on Fig. (3-1). This particular 

choice corresponds to the Chebysev-Gauss-Lobbato basis, and the staggered-grid 

multidomain formulation of Kopriva [35, 36] is recovered. The first grid holds the 

conserved variables and is chosen such that a polynomial solution of degree k — 1 

may be supported. The coordinates of those so-called solution points are given by 

the Gauss-Chebyschev quadrature points 

Similarly, the fluxes are computed on a second grid supporting a polynomial of 

degree k. Those flux points are given by the Gauss-Lobatto points 

(3.1) 

Xs+1/2 = cos (71--H , s = 0 , 1 , . . . , k. (3.2) 
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Figure 3-1: Solution (•) and flux ( • ) points for the third-order SD scheme 

Once the nodal placement is defined, Lagrange polynomials are introduced to create 

an interpolation basis 

k 
X ^ ) , (3.3) 

X s ' 
= n fc 

w w = n ( * ~ X T ) • <3-") 

The product of those Lagrange polynomials in each spatial direction define the 

shape functions rj) used to interpolate the discrete solution within the cell. 

w(£,r1) = {(p}T{w}, (£,77) G [—1,1], (3.5) 

where 

In a similar manner, we introduce the shape functions ip(£,7/) and rj) for in-

terpolating the fluxes in the £ and rj direction respectively. 

Vijfov) = h + i ( 3 - 7 ) 

A A t v ) = hi(£).l j+1/2(ri). (3.8) 
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With the basis function defined, the SD scheme can be summarized with the fol-

lowing four steps: 

I. Interpolate w from the solution to the flux points. 

II. Calculate the discrete flux vector F = ( / , g) at each flux point. 

III. Calculate V . F using the derivatives of the flux polynomial. 

IV. Advance the solution forward in time. 

Step I is achieved by multiplying the discrete solution values by the appropriate 

basis function, as expressed by (3.5). Step II consist of evaluating the flux vector at 

each flux point. At the inner points, the solution is continuous and the analytical 

expression for the flux vector is used. At the boundary however, the solution is 

allowed to be discontinuous from one cell to another. For this reason, a Riemann 

solver is used to retrieve a stable, single-valued normal flux. In our implementation, 

the Rusanov [50] and Roe [51] fluxes are available and are computed as 

/„RUSANOV = l[ti + f « - ( K - b \ + c)(w«-w% (3.9) 

/nROE = \[fi: + ^-R\k\R-1{wR-wL)i (3.10) 

where c is the speed of sound, b the mesh velocity, R the right eigenvector matrix 

and |A| the entropy-fixed absolute eigenvalues. In the SD scheme, the tangential 

flux is also required and can be either evaluated locally and left discontinuous, or 

averaged across the boundary. In this work, the first option is chosen. In practice, 

the treatment of this tangential component seems to be of minor importance [39]. 

Finally the full flux vector F = ( / . g) can be reconstructed by rotating the normal 

and tangential components to the Cartesian coordinates. 

/ = Tlx f n + tx f t 

9 = ny fn + ty ft 

21 



Step III consists of constructing a polynomial from the discrete flux values and 

taking its derivatives to form the flux divergence. This is done in one single step 

by using the derivative of the basis function (p and ip. For example, the / flux is 

interpolated from the discrete values { / } by 

m , v ) = M T { / } ^-direction, (3.12) 

m , v ) = M T { / } ^-direction. (3.13) 

Therefore its spatial derivatives are 

ftfor,) = (3.14) 

f n & v ) = { ^ } T { / } . (3.15) 

As the reconstruction is universal for all the cells of the domain, the values of ip̂  

and %j).n at the solution points are computed in a pre-processing step for the reference 

element only. The derivatives of the g flux is treated in the same manner. Finally, 

applying the chain rule, we can obtain the divergence of the fluxes in physical space 

using the appropriate metric terms given in appendix A 

Y7 a df c , df , d9 C d9 to 

or in terms of the discrete nodal values 

v . F = U n f { f } + v M n f i f } + Z v W e f i a } + v y M T { g } - (3.17) 

The formulas for the metric terms r/x, and r]y are given in appendix A. By 

defining the residual operator as the discrete flux divergence, the SD discretization 

results in a set of ordinary differential equations, expressed as 

^ + R(w) = 0. (3.18) 
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The step IV consisting of marching the solution in time is achieved by applying the 

method of lines. Indeed, the discretization reduced the system of partial differen-

tial equation to a set of coupled ordinary differential equations and any standard 

integration scheme can be applied to solve (3.18). The different approaches used 

in this work are presented in section (3.2). 

Some precautions must be taken when mapping operations from physical to com-

putational space. Indeed, it is well known that high-order methods are particularly 

sensitive to the representation of curved boundaries [24, 30, 39]. For that purpose, 

cells with quadratic edges are used to accommodate the curvature of solid walls. 

This is realized by adding a node to each segment representing a curved surface, 

then using the resulting high-order metrics. In this research, this additional node 

is obtained through a globally interpolated B-Spline. Bassi [24] reports that the 

improvement due to high-order boundaries is mainly related to the correct dis-

tribution of the normal vectors. To take this into account, the normal vectors 

are computed from the analytical derivatives of the fitted B-Spline. All the airfoil 

simulations to be presented have benefited from this high-order boundary approach. 

3.2 Temporal Discretization 

This section presents the various computational methods used to treat the tem-

poral evolution of the solution. Firstly, the explicit Runge-Kutta scheme used in 

this work is described in subsection (3.2.1). Secondly, the lower-upper symmetric 

Gauss-Seidel used to accelerate the convergence of steady problem is derived in 

subsection (3.2.2). Thirdly, a second-order dual-time stepping scheme is formu-

lated in subsection (3.2.3). Lastly, the NLFD approach is presented in subsection 

(3.2.4), where the emphasis is put on the solution procedure and the integration 

within the complete NLFD-SD scheme. 
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3.2.1 Explicit Runge-Kutta 

In this work, explicit computations are realized using a multistep Runge-Kutta 

(RK5) scheme. Equation (3.18) is integrated from time level n to time level n + 1 

by letting i — 1 —> 5. 

w° = wn, 

WZ+1 = wn_a. At (3.19) 

wn+1 = w5. 

For unsteady problems, we seek to maximize the accuracy and coefficients providing 

second-order accuracy [52] are used. 

a i = 1/4, a 2 = 1/6, a 3 = 3/8, a 4 = 1/2, a 5 = 1. (3.20) 

For steady problems, the order of the integration scheme does not play a role in the 

final steady-state solution. Consequently, we adopt the modified stage coefficients 

given by Van Leer [53], trading formal accuracy for an enlarged stability region. 

Our numerical experiments have shown that the time step restriction is favorably 

relaxed. 

«i = .0695, a 2 = 0.1602, a 3 = 0.2898, a 4 = 0.5060, a 5 = 1. (3.21) 

3.2.2 Lower-Upper Symmetric Gauss-Seidel 

To accelerate the convergence to steady-state, Sun et al. [54] have introduced 

the lower-upper symmetric Gauss-Seidel (LU-SGS) solution algorithm for the SD 

scheme. Being based on a backward Euler discretization of the temporal deriva-

tive, it is theoretically unconditionally stable, and first-order accurate. The main 

advantage of the LU-SGS is that the degrees of freedom of the solution are solved 

in a coupled manner by sweeping through the domain rather than solving a linear 

system. Due to this unique feature, the LU-SGS presents the efficiency associated 
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with implicit schemes without the associated memory penalty. 

The derivation starts with the equations in semi-discrete ODE form (3.18), which 

are discretized using the Euler backward formula. For each cell c, we write 

,.,n+1 _ ...n 

At + - R c = - ^ K ) - (3-22) 

We linearize the residual, distinguishing between the cell's and the neighbor's con-

tributions 

+ = " W (3.23) 

716/c 

To accelerate the convergence to steady-state, the scheme employs a Gauss-Seidel 

approach where the latest available solution is used. This allows to transfer the 

neighbor's contribution to the right-hand side. Noting by '*' the latest available 

update, we write 

nb^c 

The equation (3.24) will be solved iteratively. Not ing ' s ' the sweep iteration and 

factorizing the left-hand-side (LHS) leads to 

( s + 1 ) - <i*+1 = - £ -««" - <3-25) v ' nb^c 

It is possible to further simplify the scheme by approximating the neighboring cell's 

contributions. Using first order Taylor approximations, the right-hand-side (RHS) 
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of (3.25) is modified in the following fashion 

= K 1 - * - W ' o . OWnb 
nb^tc 

-Rc(w^w*nb), 

4-
dw, 

(3.26) 

We obtain (3.26) since the latest available update term [w;"+1 — id™]* for cell c is 

necessarily the one computed at the previous sweep level. A remarkable fact is that 

the off-diagonal blocks dRc/dwnb have disappeared from the formulation, reducing 

considerably the storage requirements.The simplified RHS is replaced in equation 

(3.25) 

- (3.27) 

Finally, the scheme is manipulated to find 

1 = (3.28) 

where — w'";}s can be viewed as an approximate Newton step as At tends to 

infinity, and where [u>™+1's+1 — u»"+1,A'] is its update computed from the sweeping 

process. Equation (3.28) is solved for each cell using a lower-upper factorization 

until the time-step is sufficiently converged. 

3.2.3 Dual Time Stepping 

A popular approach for time dependent computations is to employ the second-

order backward difference formula (BDF2) as a base to the implicit discretization. 

In that case, the semi-discrete scheme (3.18) becomes 

+ = _ f l K + 1 ) ( 3 2 9 ) 
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One approach to solve equation (3.29) is employing a dual-time stepping strategy. 

An unsteady residual gathering the time terms and the original residual is defined 

as 

3w* - Awn + w 
R* = ^ + R(w*), (3.30) 

where w* is an approximation to wn+1. As a consequence, each time step consists 

of solving the following steady problem in pseudo-time 

dw* 
= (3-31) 

At convergence, the pseudo-time derivative vanishes and w* = wn+1. In our im-

plementation, the LU-SGS scheme described in section (3.2.2) is used to efficiently 

solve the inner iterations. In addition, further improvements are obtained by ini-

tializing the iteration with the following extrapolated estimate 

„ 3wn - 4w""1 + wn~2 

<uess = W" + ^ • (3-32) 

3.2.4 Non-Linear Frequency Domain 

In contrast with the other techniques presented, the non-linear frequency domain 

(NLFD) method is specialized to the class of problems with periodic solutions. One 

period of the flow evolution is decomposed into different discrete time instances. 

Each of those discrete flow "snapshots" are then assembled together in Fourier 

space where the harmonic content of the flow is determined. 

Figure 3-2: NLFD conceptual sketch 
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Using the periodicity assumption, the state vector w and residual R may be rep-

resented by separate Fourier series: 

N_ 
2 

w= weik\ R= ]T Reikt, (3.33) 

2 K ~ 2 

where i = 1- Those expressions are replaced in the semi-discrete form (3.18) and 

using the orthogonality property of the Fourier series, yields a separate equation 

for each wavenumber k: 

ikiik + Rk = 0. (3.34) 

To solve the above equation a pseudo-time derivative is added, and the resulting 

equations are integrated to steady state, at which point (3.34) is satisfied. 

dwk 

dr 
+ ikwk + Rk = 0. (3.35) 

In the original implementation by McMullen et al. [45, 46, 55], integration to 

steady-state is done using a multistage Runge-Kutta method. For comparison 

purposes, we have employed the five-stage scheme presented in section (3.2.1). 

The application to the NLFD equations gives 

w°k = 

wi+1 = — on AT (3.36) 

wn
k
+1 = w5

k. 

where R*(wk) — —ikwk — and the coefficients a,; are given by (3.21). 

A faster rate of convergence may be obtained by replacing the multistep integration 

by an implicit technique. For that purpose, we adapt Sun et al.'s [54] implicit LU-

SGS method, presented in section (3.2.2). As previously stated, the NLFD solution 

strategy implies driving to steady-state each modal equation (3.35). However, the 
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Fourier coefficients Wk and / 4 are complex numbers, thus creating an equation for 

both real and imaginary parts 

^ + R R - k w l = 0, (3.37) 
OT 

- ^ + R! + kwK = 0. (3.38) 
OT 

Since these equations are coupled through the source term ikuik, a fully implicit 

scheme would require to solve them simultaneously. To preserve the simplicity of 

the original NLFD method, we keep this source term explicit, allowing us to solve 

the real and imaginary parts separately. For each cell, we write 

1 _ ^n 

AT 
D71+1 E>" 

n , , . — n . . . = -Rn
c - i k w ( 3 . 3 9 ) 

We linearize the residual, distinguishing between the cell's and the neighbor's con-

tributions 

^ s r 5 + f t - + E H - < i = - (3.40) 

nb/c 

Next, we apply the Gauss-Seidel and noting b y ' s ' the sweep iteration and by '*' 

the latest available update 

{£ + §) " = " E It " " * " < 3 ' 4 1 ) 

\ / nb/c 

It is possible to further simplify the scheme by approximating the neighboring cell's 

contributions f)Ft 
RHS = - E ^ T W 1 - ^J 

UWnf) nb^c 

-Rc(w?,w*nb) 

4 -
dw, 
BR 

(3.42) 

c du>r
 L c cJ 
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Using this approximation, the scheme simplifies to 

( - L + f t ) - = - + + • ^3-43) 

In the practical implementation of the scheme, the left-hand side matrix of (3.43) 

is assembled and stored in factorized lower-upper form for the real and imaginary 

parts of all the modes of each cell, at all discrete time instances. Using a sym-

metric sweeping pattern, we solve each cell sequentially by doing triangular solves 

until the time step is deemed sufficiently converged. Since we only require a steady 

state solution to (3.35), partial convergence of each time step is sufficient and thus, 

the minimum number of sweeps that guarantees convergence are used. As noted 

by Fidkowski[56], solution schemes based on a local linearization of the residual 

can fail if a poor initial guess is used. Indeed, it is possible to predict a negative 

density or pressure in the early stages of the solution procedure. To prevent such 

non-physical quantities, a first-order accurate solution is computed and used to 

initialize the iterative NLFD-SD scheme. The low order operator is significantly 

less stiff but provides an excellent first guess. 

The residual in Fourier space is obtained using a pseudo-spectral approach. A 

flow period is divided in a number of n distinct time steps where the time de-

pendent real space residual is calculated. Using a discrete Fourier transform, the 

(n + l ) / 2 first modes of the spectral residual R*k are obtained and used in (3.43). 

Similarly, w is calculated from wk by using the inverse Fourier transform. Using 

this pseudo-spectral method also considerably simplifies the computation of the 

scheme's Jacobian. Indeed, using the chain-rule we have that: 

OR 8R 8Rr dwr 

dw ^ dRr dwr dw ' 
r=1 
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where r denotes the time steps in real space. Moreover, noticing that dR/dR 

and dw/dw are simply the coefficients forming the basis functions of the forward 

and inverse Fourier transforms, we conclude that the spectral Jacobians are easily 

calculated as a linear combination of the real space Jacobians. This method is 

significantly simpler than formally expressing R as a function of w and taking the 

appropriate derivatives. 

The algorithm of the NLFD-SD scheme is summarized by Fig. (3-3). On this 

figure, the operations effectuated in real space (time domain) are shown in blue 

and the Fourier space (frequency domain) operations are in black. The steady-state 

solution of the equations (3.35) is obtained by sequentially applying the following 

steps to each cell of the domain: 

I. Start with n real space instances w. 

II. Use spectral difference discretization to obtain R and dR/dw for each. 

III. Compute R and dR/dw using discrete Fourier transform. 

IV. Compute RHS and retrieve stored LHS. 

V. Compute update Sw* and correct Fourier space coefficients w accordingly. 

VI. Obtain updated w using inverse discrete Fourier transform. 

VII. Move to next cell. 

t ime domain 

Figure 3-3: NLFD flow chart 
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3.3 Implementation Details 

All the mathematical algorithms presented in this chapter were implemented from 

scratch, without recycling older code. All the solvers developed were written using 

Fortran 90 and share the same spectral difference discretization routines. However, 

it was found easier to have separate codes corresponding to each class of test 

case. The cases were performed on a computer cluster running the Linux Red 

Hat Enterprise 3 operating system and consisting of 2.2GHz AMD Operon 248 

processing units having 2GB of memory per node. Finally, the grids for the airfoil 

cases were created using Hyperg, a hyperbolic grid generator written by Prof. 

Jameson from Stanford university. 
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C H A P T E R 4 
Validation 

This chapter presents the validation procedure for the NLFD-SD scheme where 

three cases are considered. Firstly, the spectral-difference implementation is vali-

dated on the vortex advection problem in subsection (4.1). This test case is also 

used to verify the accuracy of the RK5 and LU-SGS time marching schemes. Sec-

ondly, subsection (4.2) presents a parametric study where the subsonic flow over an 

airfoil is considered. Finally the NLFD-SD scheme is demonstrated in subsection 

(4.3) where the proposed methodology is applied to compute the subsonic flow over 

an oscillating airfoil. 

4.1 Vortex Advection 

To numerically evaluate the accuracy of our SD solver, we chose to solve the vortex 

advection of Shu [18]. In a mean diagonal flow, perturbations in the velocity and 

temperature fields are added such that an isentropic vortex is created. 

{p,u,v,p) = (1,1,1,1), (4.1) 

= (4.2) 

8 7 7 T 2 

e = 5, (4.4) 

= (4.3) 

where r2 = x2 + y2, x = x — 7, y = y — 7. If the domain is infinitely large, 

the Euler equations admit an exact solution that is the passive advection of the 

original vortex along the mean flow at a mean velocity of (1,1). To replicate this 

condition, we solve the problem on a computational domain of size [0,14] x [0,14] 

33 



with periodic boundaries. This domain is discretized using five uniform structured 

grids of successive refinements. The coarser grids are generated from the fine 

grids by eliminating every other point. The numerical fluxes are evaluated using 

the Roe's [51] Riemann solver. The simulations are integrated to t = 2 using 

the five-stage Runge-Kutta scheme using the coefficient (3.20). The time step was 

chosen sufficiently small to ensure time step independent solutions where the spatial 

discretization error dominates. An example of the final solution on the coarsest 

grid is presented in Fig. (4-1). 

r 

mm \ i i i i ! • 
rho: 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

Figure 4-1: Vortex advection problem, 30x30, SD3: solution grid and computed 
density 

To evaluate the level of error in the computed solution, the root-mean-square 

(RMS) and maximum (MAX) norms are defined based on the density field. 

n y / 2 

eMAX = max|/9i - Pexactl, eRMS = I - y ^ \Pi - Pexactl2 • (4.5) 
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To demonstrate the accuracy of the scheme, numerical simulations are conducted 

and compared using the first- through fourth-order SD schemes (SD1-SD4). The 

evolution of the RMS density error as a function of the grid size is presented in 

Fig. (4-2). As expected, a linear error decay is obtained, where the slope of each 

line approximates the scheme's order. From this plot, it is deduced that the formal 

order of convergence is achieved for all four formulations. Fig. (4-3) also presents 

the measured RMS error as a function of the number of degrees of freedom (DOF) 

of the solution. It can be noted that for a prescribed number of unknowns, the 

fourth-order SD scheme yields the lowest level of error, demonstrating the benefits 

of high-order formulations. Finally, the quantitative data for those simulations is 

detailed in Table (4-1). A nearly ideal order of accuracy is reported for all simu-

lations in both RMS and MAX errors norms. 

To validate the time marching algorithms, the 30 x 30 third-and fourth-order accu-

rate simulations are repeated using the LU-SGS integration scheme. Figures (4-4) 

and (4-5) presenting the error as a function of the time step compare the LU-SGS 

results to those obtained with the RK5 scheme. In the asymptotic range, the error 

of the LU-SGS simulation decreases linearly with a slope of about one, thereby 

numerically verifying its formal first-order temporal accuracy. Moreover, the LU-

SGS computations also converge to a level of precision similar to the RK5 results 

once the temporal error is sufficiently decayed. This clearly demonstrates that the 

implicit formulation preserves the spatial high-order accuracy of the SD scheme. 

However, being first-order in time, the implicit LU-SGS is much more diffusive and 

requires smaller time steps than the RK5 method to achieve a converged error level. 

Since the scheme is destined for steady computations where we use the largest time 

step possible, this deficiency is of minor importance only. 
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Figure 4-2: Vortex advection problem: Density error as a function of grid size 

Figure 4-3: Vortex advection problem: Density error as a function of degrees of 
freedom 
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Log10(At) 

Figure 4-4: Vortex advection problem, 30x30, SD3: Density error as a function of 
time step 

Log10 (a t) 

Figure 4-5: Vortex advection problem, 30x30, SD4: Density error as a function of 
time step 
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Order Grid D.o.f. RMS error RMS order MAX error MAX order 
30 x 30 3600 .32597e-01 - ,36220e+00 -

60 x 60 14400 .23076e-01 0.4983 ,25648e+00 0.4979 
1 120 x 120 57600 ,14263e-01 0.6941 ,15431e+00 0.7330 

240 x 240 230400 .80307e-02 0.8287 ,83311e-01 0.8893 
480 x 480 921600 .42818e-02 0.9073 .43273e-01 0.9450 

30 x 30 14400 ,33752e-02 - ,39141e-01 -

60 x 60 57600 .87539e-03 1.9470 ,10222e-01 1.9370 
2 120 x 120 230400 ,21616e-03 2.0178 .23557e-02 2.1174 

240 x 240 921600 ,53175e-04 2.0233 .56093e-03 2.0703 
480 x 480 3686400 .13163e-04 2.0143 .13923e-03 2.0104 

30 x 30 32400 .28735e-03 - ,46465e-02 -

60 x 60 129600 .35207e-04 3.0289 .59742e-03 2.9593 
3 120 x 120 518400 .45436e-05 2.9540 .76179e-04 2.9713 

240 x 240 2073600 .58932e-06 2.9467 .96220e-05 2.9850 
480 x 480 8294400 .75185e-07 2.9705 ,12054e-05 2.9968 

30 x 30 57600 ,24684e-04 - .43526e-03 -

60 x 60 230400 .16228e-05 3.9270 .25705e-04 4.0818 
4 120 x 120 921600 ,10171e-06 3.9960 .18959e-05 3.7611 

240 x 240 3686400 .60305e-08 4.0760 .12003e-06 3.9814 
480 x 480 14745600 .38354e-09 3.9748 .71053e-08 4.0784 

Table 4-1: RMS and MAX density errors and orders of accuracy for the vortex 
advection problem 
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4.2 Steady Subsonic Airfoil 

To validate the implemented SD solver on a more complex problem involving solid 

boundaries, a steady airfoil problem is tackled. The second- through fourth-order 

SD schemes (SD2-SD4) are used to solve the flow around a NACA0012 airfoil in 

subsonic regime. The freestream Mach number is M ^ = 0.5 and the angle of in-

cidence is a = 2°. All simulations use Roe's [51] numerical flux, a quadratic solid 

wall representation and a far-field boundary condition based on Riemann invari-

ants with vortex correction. Meshes of size 128 x 32, 91 x 20 and 64 x 16 are used 

respectively, such as to keep the number of degrees of freedom uniform between the 

three runs. The time integration is performed using the implicit LU-SGS scheme. 

To numerically quantify the solution accuracy, the spurious entropy production 

is compared. Indeed, it can be shown that the subsonic steady Euler equation 

are isentropic, thus any deviation from the free stream entropy S ^ is due to the 

numerical viscosity introduced by the discretization scheme. As a consequence, the 

local entropy deviation serves as an elegant error estimator, and can be computed 

as 

Similarly, the numerical drag coefficient cd can be used as an error norm since sub-

sonic inviscid flows follow D'Alembert's paradox and are free of drag. 

The computational grids and the resulting pressure contours are shown in Fig. (4-6) 

through Fig. (4-8). While the second-order solution exhibits oscillations, the high-

order solutions are quite smooth and well resolved. Although all simulations have 

6.5 x 104 DOF, the high-order solutions appear to be more accurate. Figure (4-

9) presents the entropy profile along the airfoil for each solution. The average 

(4.6) 
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entropy level in the domain is 9.64 x 10~5, 3.47 x 10 - 5 and 1.64 x 10~5 for the 

second- through fourth-order simulations. Accordingly, the third- and fourth-order 

schemes represent improvements by a factor of 3 and 6 respectively. The computed 

drag coefficients for the three simulations are 1.6 x 10~4, 8 x 10~5 and 6 x 10~5; 

predicting a similar trend. The quantitative figures confirm that the high-order SD 

schemes are less diffusive and the spurious viscosity accounts for less than a drag 

count (10"4). 

Next, the exponential convergence of the SD scheme is explored. To do so, the 

order of accuracy the scheme is increased while keeping the computational mesh 

fixed. The very coarse grid utilized is shown in Fig. (4-10 a). The error level corre-

sponding to the first- through fifth-order computations are presented in Fig. (4-10 

b). In this figure, the accelerating rate of convergence is clearly visible, indicating 

that spectral accuracy under p-refinement is achieved even for this relatively com-

plex case. It should be noted that this property was lost for the SD of order six 

and above. Venkatakrishnan et al. [57] also experienced a similar limitation with 

high-order finite-element schemes. Those researchers suggested that the slope dis-

continuity of NACA airfoils' trailing-edge limits the convergence rate of high-order 

methods. This assertion is consistent with the trailing-edge entropy spike present 

on Fig. (4-9). 

Since this validation case possesses a steady state solution, we will also use it to 

perform a parametric study of the implicit LU-SGS time stepping scheme. The 

comparison against the five-stage explicit integration scheme is done using the 

third-order scheme on the 128 x 32 grid. Figures (4-11) and (4-12) display a com-

parison of the explicit and implicit schemes and investigates the effect of time step, 
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number of sweeps, as well as the effect of freezing the Jacobian matrix. Figure (4-

11 a) presents the effect of the time step on the convergence of the LU-SGS, the 

number of symmetric forward and backward sweeps being kept to three. In this 

figure, the RMS residual is plotted against the wall clock time, given in tenth of a 

second (1/10 sec). As it can be observed, the implicit method is far more efficient to 

the explicit method and allows for a CFL number four orders of magnitude larger, 

and thus converges as much as 27 times faster. The effect of the number of forward 

and backward Gauss-Seidel sweeps are compared in Fig. (4-1 lb). The primary mo-

tivation is to reduce the number of sweeps to solve approximately each time step, 

thereby reducing the total computational cost while still ensuring the stability of 

the scheme. Figure (4-11 b) illustrates that three sweeps is the minimum allowed 

for this test case, while adding more sweeps slows down the computation. Next, 

we explore the effect of freezing the Jacobian matrix. In Sun et al.'s [54] paper, it 

is reported that the performance of the LU-SGS method can be further improved 

by using a matrix freezing strategy. Indeed, the computation and factorization of 

the cells' Jacobians is a relatively costly procedure which can be bypassed by using 

the same matrix for multiple time steps. To this end, the Jacobians are kept frozen 

once the RMS residual drops below 10~2. Figure (4-12 a) shows the convergence 

rate for freezing frequencies of 0, 3, 10 and 20 time steps where a 17% improvement 

over the normal scheme is noticed. Finally, for sake of completeness, the optimal 

parameters for the LU-SGS are also tested using the other SD formulations on the 

same grid. Figure (4-12 b) studies the effect of the order of accuracy on the conver-

gence rate, and the RMS residual is plotted against the number of iterations. The 

first-and second-order schemes exhibits a slightly faster convergence rate due to a 

higher allowable CFL number; however, both the third-and fourth-order schemes 

display similar rates. 
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(a) Mesh 128x32 

Figure 4-6: NACA 0012, = 0.5, a = 2°: Second-order computation 
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(a) Mesh 128x32 

Figure 4-7: NACA 0012, M ^ = 0.5, a = 2°: Third-order computation 
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(a) Mesh 128x32 

Figure 4-8: NACA 0012, M^ = 0.5, a = 2°: Fourth-order computation 
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x 10" 

— e - SD2 RMSs= =9.64E--05 

— e - SD3 RMSs= =3.47E--05 

— e - SD4 RMSg= =1.64E--05 

^-fr-e-e O O O O O O O O 0 0 00000009990 

Figure 4-9: NACA 0012, M ^ = 0.5, a = 2°: Entropy profile 
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(a) Computational grid 

(b) Error v.s. order 

Figure 4-10: NACA 0012, M ^ = 0.5, a = 2°: Spectral convergence 



(a) Effect of time step 

(b) Effect of number of sweeps 

Figure 4-11: NACA 0012, M ^ = 0.5, a = 2°: Comparison between the RK and 
LU-SGS schemes 
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(a) Effect of freezing frequency 

• SD1, LUSGS, CFL=1E4 
-SD2, LUSGS, CFL=1E4 
-SD3, LUSGS, CFL=1E2 

- # — SD4, LUSGS, CFL=1E1 

1000 1500 
Iteration 

3000 

(b) Effect of scheme's order 

Figure 4-12: NACA 0012, M ^ = 0.5, a = 2°: Comparison between the RK and 
LU-SGS schemes contd. 

48 



4.3 Pitching Subsonic Airfoil 

In this last validation problem, the full NLFD-SD scheme is employed to com-

pute the the flow about an oscillating airfoil. This simulation problem serves as 

a demonstration for the proposed framework. The case examined consists of a 

pitching NACA64A010 airfoil at a free-stream Mach number of M ^ = 0.502, the 

pitching movement being given by: 

a(t) = am + a 0cos (uit), about x/c = 0.269, (4.7) 

where a m = —0.22°, aQ = 1.02° with reduced frequency u>r = = 0.1. This 

corresponds to the CT — 2 case of Davis [58], whose experimental results will be 

used to validate the scheme. Two examples of computational grids are shown in 

Fig. (4-13). We use a quadratic boundary representation, Rusanov's [50] numerical 

flux and three sweeps per time step for the LU-SGS solver. 

Using the NLFD technique, we solve the flow for a given number of modes using the 

third-order spectral difference operator. First, the simulation is performed using a 

single mode above the fundamental frequency on a set of progressively finer grids 

ranging from 32 x 8 to 256 x 64. The spatial convergence of the lift coefficient for 

each time instance is presented in Table (4-2). It can be observed that using a 

128 x 32 grid ( « 6 x 105 d.o.f) ensures that each lift coefficient is well within 1% of 

the final values. This resolution is then considered sufficiently fine for engineering 

precision and will be used for the subsequent computations. 

Figure (4-14) presents the lift hysteresis obtained with 1, 2 and 3 modes above 

the fundamental frequency. As it can be noticed, the three curves are nearly indis-

tinguishable, suggesting that a single mode is sufficient to capture the lift history. 

This is in agreement with McMullen[55] who also demonstrated the adequacy of a 
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Order Grid D.o.f. ci 
a = -0.2200° a = -1.1033° a = 0.6633' »0 

3 32 x 8 9216 
3 64 x 16 36864 
3 128 x 32 147456 
3 256 x 64 589824 
4 96 x 24 147456 

-0.0137 -0.1278 0.0529 
-0.0130 -0.1312 0.0526 
-0.0124 -0.1323 0.0525 
-0.0124 -0.1323 0.0528 
-0.0126 -0.1324 0.0529 

Table 4-2: NACA 64A010, M ^ = 0.502, aQ = ±2°, wr = 0.1: Lift convergence 
study 

single mode for smooth inviscid flow around a pitching airfoil. To further confirm 

the convergence of the NLFD method, the real and imaginary parts of the first 

mode of cp are plotted to monitor the unsteady pressure distribution in spectral 

space. Figure (4-15) shows that the three simulations yield similar results that 

are in excellent agreement with Davis' experimental values. The detail frame in 

Fig. (4-15b) confirms that one mode captures the general pressure trend. The 

curves representing the two and three modes simulations are completely overlap-

ping, proving that mode-independence is achieved and that at least two modes are 

required to get converged pressure distributions. 

To characterize the efficiency of the implicit NLFD-SD solver, the simulation using 

one mode is solved using the explicit five-stage RK method as well as the LU-SGS 

scheme using different parameters. Figure (4-16a) presents the comparison be-

tween the convergence rate obtained with each integration technique. As for the 

steady case, the LU-SGS allows for a larger time step and thus converges about 

twenty times faster. However, the detail frame shows that if the time step cho-

sen is too large, the scheme becomes unstable and the first mode diverges, which 

may be attributed in part to the explicit treatment of the unsteady source term 

in equation (3.39) of the LU-SGS scheme. Nevertheless, a significant speedup is 
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achieved, and this restriction is deemed acceptable. Further improvements are re-

alized trough matrix freezing. Since each spectral Jacobian assembled requires to 

calculate multiple real space Jacobians, the gains realized are higher than that for 

the steady case. Figure (4-16b) shows that those Jacobians can indeed be frozen 

without loss of stability or efficiency. By keeping the same matrices for ten consec-

utive time steps, we see another 40% decrease in the computing time, making the 

scheme almost 30 times faster than the explicit solution. Figure (4-17) presents 

the comparison between the RK5 and LU-SGS with optimal parameters for sim-

ulations using two and three modes. As for the single mode case, the LU-SGS 

strategy has a rate of convergence larger by more than an order of magnitude. It 

is also shown that all modes converge approximately at the same rate for both the 

explicit and implicit solvers. Lastly, we compare the convergence rate of the fun-

damental frequency as shown in Fig. (4-18) and study the effect of increasing the 

number of modes. As illustrated, the convergence rates are almost identical with a 

slightly lower rate for the single mode case. Similar results can be obtained using 

the fourth-order spectral difference scheme together with the NLFD. Table (4-2) 

shows that even on a coarse grid, the predicted c; values are in agreement with the 

fine (256 x 64), third-order simulations. A convergence plot for that simulation is 

presented on Fig. (4-19). 

Next, the NLFD method is compared and numerically validated against a time 

accurate strategy. With that intent, we repeat the case of Davis using the dual time 

stepping scheme (DTS) presented in subsection (3.2.3). To allow a fair comparison, 

both NLFD and DTS use the same spatial discretization. The computational mesh 

of size 38 x 8 is illustrated on Fig. (4-13 b) and is used together with a third-order 

SD formulation. Moreover, each time step of the DTS computation is solved to 

machine zero, as shown on Fig. (4-20). The obtained lift coefficient evolution using 
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1024 time steps per period is presented on Fig. (4-21) and compared to the NLFD 

results using 8 modes. A perfect qualitative agreement is obtained between the 

two solutions. Tables (4-3) and (4-4) present the mean and first modes of q as the 

temporal resolution is increased. It can be noticed that the final values agree to the 

fifth significant digit, implying that both schemes are mathematically equivalent 

at convergence. To reach this convergence criterion, the NLFD needed 7 modes 

and required a CPU time of 2e5. To achieve the same periodic solution, the time 

accurate strategy needed 1024 time steps over 7 periods, and required a CPU time 

of 1.6e6. On that basis, a speedup of eight is reported for that test case. 

Modes q C[ 
1 -,3006177e-01 .9622533e-02 + .5233166e-01i 
2 -,3069420e-01 .9699423e-02 + ,5235933e-01i 
3 -.3065299e-01 .9860353e-02 + ,5271320e-01i 
4 -,3064547e-01 ,9869166e-02 + ,5268716e-01i 
5 -.3067235e-01 ,9872353e-02 + .5271095e-01i 
6 -.3066414e-01 ,9873912e-02 + ,5271737e-01i 
7 -.3066367e-01 ,9873386e-02 + ,5271651e-01i 
8 -.3066368e-01 .9873379e-02 + ,5271649e-01« 

Table 4-3: NLFD, q and q 

Time steps 
12 
24 
32 
48 
64 
128 
192 
256 
512 
1024 

Q 
.3055247e-01 
.3063185e-01 
.3065331e-01 
.3066665e-01 
.3066744e-01 
.3066621e-01 
.3066499e-01 
.3066446e-01 
.3066387e-01 
.3066372e-01 

.9117501©-

.9692436e-

.9778853e-

.9836489e-

.9865998e-

.9869606e-

.9871778e-

.9872511e-

.9873183e-

.9873328e-

Q 
02 + 
02 + 
02 + 
02 + 
02 + 
02 + 
02 + 
02 + 
02 + 
03 + 

.5187977e-01i 

.5239203e-01z 

.5251898e-01i 

.5262420e-01« 
,5269342e-01« 
.5270356e-01i 
.5271083e-01i 
.5271332e-01« 
.5271570e-01i 
.5271630e-01i 

Table 4-4: Dual time stepping, q and q 
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As a final demonstration of the robustness of the NLFD-SD scheme, we perform 

the simulation on two additional reduced frequencies, u r = 0.05 and u r = 0.2. Fig-

ures (4-22) present the lift hysteresis for each of these runs. Once more, the curve 

representing one, two and three modes above the fundamental frequency overlap, 

indicating a mode-converged simulation. For reference, the lift hysteresis of the 

previous case is also presented. We observe that the increased reduced frequency 

induces the maximum lift produced in the flow cycle. Figures (4-23 illustrate the 

unsteady pressure distribution in spectral space. Both the real and imaginary pres-

sure distributions confirm that one mode is sufficient; however, from the inset at 

least two are required to get a converged pressure distribution. CPU run times are 

presented in Fig. (4-24 a) and are very comparable with (4-17 b), illustrating the 

independence of the implicit solver with respect to the simulated flow condition. 

Lastly, Fig. (4-24 b) shows the convergence of the lift coefficient at several different 

time instances as a periodic steady state flow is realized. Clearly, the c; values of 

each time instance stabilize well before the residual reaches machine zero, indicat-

ing that the periodic simulation can be halted prematurely if engineering accuracy 

is required. 
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(a) 128x32 

(b) 32x8 

Figure 4-13: NACA 64A010: Computational meshes 
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Figure 4-14: NACA 64A010, M ^ = 0.502, a 0 = ±2°, ujr = 0.1: q hysteresis 

55 



(a) real(cp) 

X 

(b) imag(cp) 

Figure 4-15: Numerical and experimental first mode of c, 
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RK, CFL=2E-2, Mode 0 
RK, CFL=2E-2, Mode 1 

— O — LUSGS, CFL=5E1, Mode 0 
- O - LUSGS, CFL=5E1, Mode 1 
— • — LUSGS, CFL=5E2, Mode 0 
- a - LUSGS, CFL=5E2, Mode 1 

LUSGS, CFL=5E3, Mode 0 
- A - LUSGS, CFL=5E3, Mode 1 
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(a) Effect of time step 
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RK, CFL=2E-2, Mode 0 
RK, CFL=2E-2, Mode 1 
LUSGS, CFL=5E1, Mode 0, 0 Freeze 
LUSGS, CFL=5E1, Mode 1, 0 Freeze 
LUSGS, CFL=5E1, Mode 0, 3 Freeze 
LUSGS, CFL=5E1, Mode 1, 3 Freeze 
LUSGS, CFL=5E1, Mode 0, 10 Freeze 
LUSGS, CFL=5E1, Model , 10 Freeze 

0.5 1.5 
CPU 

2.5 

x 106 

(b) Effect of matrix freezing 

Figure 4-16: Comparison between the RK5 and LU-SGS schemes for a one-mode 
NLFD simulation 
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- 1 0 -

RK, CFL=2E-2 , Mode 0 
- - RK, CFL=2E-2 , Mode 1 

- RK, CFL=2E-2 , Mode 2 
•O— LUSGS, CFL=5E1, Mode 0 
O - LUSGS, CFL=5E1, Mode 1 
O LUSGS, CFL=5E1, Mode 2 

x 10 

(a) 2 modes 

<z> 
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-10 RK, CFL=2E-2, Mode 0 
RK, CFL=2E-2, Mode 1 

- RK, CFL=2E-2, Mode 2 
RK, CFL=2E-2 , Mode 3 

-O— LUSGS, CFL=5E1, Mode 0 
O - LUSGS, CFL=5E1, Mode 1 
O- LUSGS, GFL=5E1, Mode 2 
O LUSGS, CFL=5E1, Mode 3 

- 1 5 
1 2 5 

CPU 
8 9 10 

x106 

(b) 3 modes 

Figure 4-17: Comparison between the RK5 and LU-SGS schemes for two and three 
modes NLFD simulations 
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Figure 4-18: Effect of the number of modes on the convergence rate of the zeroth 
mode 

Figure 4-19: SD4, 96 x 24, 1 mode: Residual convergence 
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Figure 4-20: Dual time stepping (12 steps/period): Inner iterations convergence 
for the first period 

0.1 r 

0.05 

o 

-0.05 -

Figure 4-21: Dual time stepping and NLFD lift hysteresis 
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a 

(a) c;(q), lot = 0.05 

(b) ci(a), ior = 0.2 

Figure 4-22: NACA64A010, u r = 0.05 and u r = 0.2: Lift hysteresis 
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0.15 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
X 

(a) imag(cp), cur = 0.2 

(b) imag(cp), ujr = 0.05 

Figure 4-23: NACA64A010, u r = 0.2 and u r = 0.2: Unsteady pressure distribution 
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(a) Residual convergence, 3 modes, wr = 0.2 
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(b) c; convergence, 3 modes, ujr = 0.2 

Figure 4-24: NACA64A010, and u r = 0.2: Residual and lift convergence 
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C H A P T E R 5 
Conclusion 

An high-order scheme in both space and time has been developed to efficiently 

tackle the simulation of potentially complex, compressible flow phenomena with 

periodic solutions. This newly developed NLFD-SD scheme was obtained by com-

bining a high-order spectral-difference space discretization with a non-linear fre-

quency domain approach. For more efficiency, an implicit lower-upper symmetric 

Gauss-Seidel solver was introduced to solve the resulting set of non-linear equa-

tions. This chapter recapitulates the results demonstrated in this thesis, and opens 

the door to possible future work. 

5.1 Space Discretization 

The research presented focused on the high-order discretization of the Euler equa-

tions. A parametric study for the vortex advection problem and the steady subsonic 

NACA0012 airfoil was realized. From these cases, it was demonstrated that high-

order solutions are consistently more accurate than lower-order ones, even for an 

equal number of unknowns. Moreover, we showed that spectral-like convergence 

may be obtained by refining the degree of the polynomial flow representation. The 

accuracy and flexibility offered by this approach will be key in tackling complex, 

vortex-dominated problems for which this scheme is designed. 

5.2 Temporal discretization 

The implemented spectral-difference solver was tested with various temporal dis-

cretization. Firstly, a multistage Runge-Kutta scheme and an implicit LU-SGS 

were compared. We showed that when calibrated optimally, the LU-SGS converged 
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to steady state as much as 30 times faster and its explicit counterpart, while pre-

serving the high-order accuracy of the space discretization. In a second time, the 

SD solver was augmented with the NLFD spectral temporal discretization, and we 

demonstrated the feasibly of the NLFD-SD scheme on a pitching airfoil simulation. 

On this test case, we obtained an excellent agreement with the available wind tun-

nel data, and showed that only two temporal modes are required to capture the 

full unsteadiness of the flow. More over, we also adapted the LU-SGS scheme for 

the solution of the NLFD equations. Numerical experiment demonstrated that the 

novel implicit approach accelerated the convergence by over an order of magnitude. 

Finally the framework was thoroughly validated against the dual time stepping ap-

proach. The mathematical equivalence of both approaches was proven numerically, 

and the NLFD scheme presented a speed-up factor of eight over the time accurate 

scheme. 

5.3 Future Work 

The results presented in this thesis provide a strong foundation for future work. 

Some potential projects are listed below. 

5.3.1 Strong Non-Linearities 

One obvious extension of the work presented in this thesis is the application of 

the scheme to strongly non-linear unsteady flows. This would imply extending 

the solver to the transonic regime and including viscous effects in the formula-

tion. We have examined multiple alternatives to develop an effective and robust 

shock-capturing methodology for the spectral difference method. Although optimal 

limiting strategies for the DG, SV and SD scheme is still an open topic, our current 

developments are showing encouraging results. Figure (5-1) shows a second-order 

steady transonic computation. In the vicinity of the shock, a shock detector is 
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employed to trigger flux limiting within the SD scheme. This approach stabilizes 

the scheme near steep gradients while retaining a sharp shock profile. Improved 

monotonicity criterion and overall robustness are currently explored. 

5.3.2 Adaptive Solution Method 

Another interesting avenue to investigate would be the incorporation of an adap-

tive solution methodology in the NLFD-SD solver. Firstly, the performance and 

accuracy of the method could easily be increased by allowing a variation of the 

solution polynomial from cell to cell. Secondly, the mesh could be optimized as 

the solution progresses. Thirdly, the number of modes utilized could be adjusted 

to the strength of the local unsteadiness. 

Figure (5-2) presents preliminary p-adaptation results for a steady subsonic NACA 

airfoil. The case is computed with the second-order and third-order SD, as well as 

a mixed formulation. For the latter case, the cells near the airfoil were manually 

flagged to employ a third-order polynomial, while the rest of the domain uses the 

cheaper second-order formulation, as shown of Fig. (5-3). For the mesh resolution 

chosen, the second-order scheme is clearly inadequate and only the third-order 

scheme produces an acceptable solution. The mixed formulation however, achieves 

similar results as the third-order scheme at a fraction of the computational cost, as 

it can be verified on Fig. (5-4). Table (5-1) where the lift, drag and entropy values 

are presented confirms this trend. Coupled with an error estimation algorithm, 

this adaptive solution method could be a reliable and efficient path to high-quality 

solutions, in a fully automated manner. 
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Ci cd Entropy 
2nd order 0.65787 0.00225 5.640e-04 
3 rd order 0.66785 0.00039 7.038e-05 

Mixed 0.66322 0.00087 6.852e-05 

Table 5-1: NACA 0012, M ^ = 0.4, a = 5°: Force coefficients and spurious entropy 
level 

5.3.3 Alternative SD formulations 

The NLFD-SD scheme is largely independent of the type of SD scheme employed. 

Consequently, other location of the solution and flux points could be employed, 

perhaps leading to improved numerical properties. An extension the unstructured 

and three-dimensional grids would also be of interest. 
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(a) Mesh 256x64: Limited cells 

Figure 5-1: NACA 0012, M ^ = 0.8, a = 1.25°: Second-order computation 
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(a) Second-order 

(b) Third-order 

(c) Mixed 

Figure 5-2: NACA 0012, M ^ = 0.4, a = 5°: Second-order, third-order, Mixed 
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Figure 5-3: NACA 0012, = 0.4, a = 5°: Second-Order (•), Third-order (•) 

Figure 5-4: NACA 0012, M ^ = 0.4, a = 5°: Convergence 
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Appendix A 

For the computation of the metric terms, two possibility arise as domain cells have 

straight edges, while cells near solid wall have curved edges. For both cases, we can 

write the transformation from computational to physical space using the inverse 

metrics 

X x6 Xjj £ 
y Vi Vn V 

Consequently, the direct metrics terms are obtained by inverting the system 

t = i * . 

£2/ = 

1 
Vx = - j yt, 

l 

% — j xv 

J = X^y^-Xr, yt. 

In the case of domain cells, the cell geometry is defined by its four vertex, as shown 

on Fig. (5-5). 

Figure 5-5: Definition of a straight-sided cell 

71 



The direct metric terms are given by 

= 1 { - X 1 + X 2 + X 3 - X < ) + 1 ( X 1 - X 2 + X 3 - X A ) , 

Xn = ^(-yi + y2 + y3-yi) + ^(yi-y2 + y3-yA), 

Vt = ^ - x2 + x3 + .x4) + | (.X: - x2 + .x3 - x4), 

Vn = ^(-yi-y2 + y3 + y4) + |(yi-2/2 + y3-y4)-

In the case of boundary cells, a mid-edge node is added to the four vertex to 

accommodate curved walls. 

Figure 5-6: Definition of a boundary cell 

The direct metric terms are given by 

xt = \ ( - a ; i + x2 + x3 - £4) + | +X2 — 2X5) f j £ f j 

+ - (xi - x2 + x3 - x4) + — (-Xi -x2 + 2x5) 

Xv = | ( - y i + y2 + y 3 - va) + | (s/i + y2 - 2y5) 
77 £T) 

+ ^ (yi - 2/2 + y 3 - 3/4) + y (-2/1 - 2/2 + 2 ys) 

1 £ Vi = ^ (^3 + - 2x5) + - (xi - .X2 + .X3 - .X4) + — ( X\ - x2 + 2.X5) 
1 i i 2 

yv = ^ ( y 3 + y 4 - 2 y 5 ) + - ( y i - y 2 + y 3 - y 4 ) + j ( - y i - y 2 + 2y5) 
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