
ANALYZING TRENDS IN TEMPERATURE, PRECIPITATION AND 

STREAMFLOW DATA OVER SOUTHERN ONTARIO AND QUEBEC USING 

THE DISCRETE WAVELET TRANSFORM 

 

 

 

 

 

 

 

 

by 

 

Deasy Nalley 

 

Department of Bioresource Engineering 

 

McGill University, Montreal 

 

 

 

November 2012 

 

 

 

A thesis submitted to McGill University 

 

in partial fulfillment of the requirements of the degree of  

 

Master of Science 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Deasy Nalley, 2012 

      



II 
 

ABSTRACT 

 

 Analysis on hydroclimatic variables can provide information on how the climate 

has evolved over time. This can be accomplished through time series analysis. Trend 

analysis in hydroclimatic variables is challenging due to their non-stationary nature and 

the presence of noise and stochastic components in them. The principal objective of this 

study is to detect and analyze trends in mean surface air temperature, total precipitation 

and mean streamflow obtained from several stations in Ontario and Quebec, Canada. To 

accomplish this, we co-utilized the wavelet transform (WT) technique (more specifically, 

the discrete wavelet transform (DWT)) and the Mann-Kendall (MK) trend test. The time 

series used were decomposed via the DWT in order to separate their high-frequency and 

low-frequency components, prior to testing their statistical significance with the MK 

trend test. The trend (i.e. slowly changing processes) is assumed to be contained in the 

low-frequency component of the data. The trends in temperature, precipitation and flow 

are assessed on different bases: monthly, seasonal, and annual. Temperature trends for 

the different seasons (i.e. winter, spring, summer, and autumn) were also assessed.  

 In this study, we demonstrated the use of WT in extracting information contained 

in the time series that is not obvious in the raw data. The advantages of the WT technique 

are highlighted by its ability to extract time-frequency information contained in the 

analyzed time series  manifested in the form of periodicities ranging from intra-annual to 

decadal events. A new criterion is also proposed in this study where the relative error of 

the MK Z-values between the approximation component of the last decomposition level 

and the original data was used to determine the number of decomposition levels of the 

analyzed time series, the type of Daubechies (db) mother wavelet, and the border 

condition to be used in the DWT procedure. 

 The procedures contained in the methodology for trend analysis outlined in this 

study have not been explored in the existing literature. First of all, we tested for the 

presence of a significant autocorrelation in a time series prior to applying the MK test, 

which is often ignored in many trend detection studies. The time series were then 

decomposed via the DWT; the MK trend test and sequential MK test were then applied in 

order to determine the most significant periodic mode affecting the observed trends. In 
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this study, three versions of MK test were used, depending on the characteristics of the 

analyzed data. The original MK test was used on data that exhibit neither seasonality 

patterns nor significant autocorrelations. Seasonal MK test by Hirsch and Slack (1984) 

was used on the time series exhibiting seasonality cycles (with or without significant 

autocorrelations). Modified MK test by Hamed and Rao (1998) was used on data with 

significant autocorrelations.  

 Finally, combining the application of the DWT and MK test in trend assessment 

in hydroclimatic time series (especially in the context of Canadian studies) has not been 

explored. Therefore, the results obtained in this study contribute to furthering the overall 

understanding of climatic change in Southern Ontario and Quebec. Although the trends in 

the different variables studied are affected by different time periodicities, the study found 

that generally positive trends are more dominant. Among the most important findings of 

this study are: (i) all temperature data show positive values, which implies warming 

trends (ii) precipitation and flow trends are affected by fluctuations of up to four years, 

and (iii) annual positive trends in temperature may be attributed mostly by winter and 

summer warming. This suggests that if the temperature trends remain in the positive 

direction, other hydroclimatic indices may also experience significant changes in the 

future. 
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RÉSUMÉ 

 

 Quoique le système climatique soit très complexe, une analyse des variables 

hydroclimatiques peut indiquer l’évolution du climat avec le temps. Une analyse de séries 

temporelles peut servir à ces fins; plus spécifiquement, l’analyse des tendances des 

variables hydroclimatiques peut approfondir l’étude des retombées des changements 

climatiques. 

 L’analyse des tendances des variables hydroclimatiques est un défi en raison de 

leur caractère non stationnaire et la présence de bruit et d’autres éléments stochastiques. 

L’objectif principal de cette étude fut de détecter et d’analyser les tendances de différent 

types de données (débit, pluviométrie, température moyenne de l'air en surface), 

provenant de plusieurs stations en Ontario et au Québec (Canada). Ces stations sont 

concentrées dans le sud de ces provinces. Pour accomplir cette tâche, nous avons utilisé à 

la fois une technique de transformée par ondelettes  (TO) [spécifiquement une 

transformée d'ondelette discrète (TOD)] et le test standard d'analyse des tendances Mann-

Kendall (MK). Les séries temporelles furent décomposées par TOD afin de séparer à 

même les données les éléments à haute et basse fréquence, avant d’évaluer leur 

signification statistique avec le test MK. La tendance (i.e., le procédé à changement lent) 

est censé appartenir à l’élément à basse fréquence de la série temporelle. Les tendances 

du débit, de la pluie et de la température furent évaluées sur différentes échelles 

temporelles : mensuelle, saisonnière et annuelle. Les tendances temporelles de 

température pour les différentes saisons (hiver, printemps, été, automne) furent également 

évaluées. 

 Cette étude montra comment l’utilisation du TO permet d’identifier et extraire des 

informations présentes dans une série temporelle qui ne sont pas évidentes à première vue 

dans les données brutes, ou suivant qu’on applique seulement le test des tendances MK. 

Les avantages de la méthode TO sont manifestes dans son habilité à extraire des 

informations temps-fréquence (i.e., périodicité intra-annuelle à décennale selon le genre 

de données utilisées) de la série temporelle analysée. Nous proposons un nouveau critère, 

où l’erreur relative entre les valeurs-Z du test MK pour l’élément d’approximation du 

dernier niveau de décomposition et celui des données d’origine sert à déterminer le 
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nombre de niveaux de décomposition de la série temporelle analysée, le type d’ondelette 

mère de Daubechies (db), et les conditions de bordure devant servir à la TOD. 

 Particulièrement dans le contexte canadien, l’utilisation d’une combinaison de 

TOD et du test MK dans l'évaluation de tendances dans les séries temporelles de données 

hydoclimatques demeure rare. Les résultats de cette étude contribueront donc à une 

compréhension globale grandissante des changements climatiques du sud de l’Ontario et 

du Québec. Quoique les tendances des différentes variables étudiées suivent différentes 

périodicités temporelles, l’étude montre que les tendances à la hausse dominent. Parmi 

les plus importantes conclusions de cette étude sont: (i) les tendances de débit et de 

précipitation suivent des fluctuations de jusqu’à quatre ans, (ii) toutes les catégories de 

données de température montrent des tendances à la hausse, laissant entendre une 

tendance au réchauffement, et (iii) les tendances annuelles à la hausse de la température 

peuvent être attribuées à un réchauffement des hivers et étés. Cela implique que si les 

tendances de température demeurent à la hausse, d’autres indices hydroclimatiques 

montreront des changements dans l’avenir. 
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Figure 4.12.  Progressive Mann-Kendall graphs of the components of the seasonally-

based precipitation data from Ottawa CDA station. The upper and 

lower dashed lines represent the confidence limits (α = 5%); the solid 

and dashed progressive lines are the original and detail sequential MK 

lines, respectively. Based on the MK values and the sequential MK 

graphs, D3 and D4 (with approximations) were determined to be the 

most effective periodic components contributing to the trend production.
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Figure 4.13.  Examples of sequential Mann-Kendall graphs of the detail components 

of the annual flow data in order to determine the most dominant 

periodicity for trends (Sydenham River’s data were used in this 

example). The upper and lower dashed lines represent the confidence 

limits (α = 5%); the solid and dashed progressive lines are the original 

and detail sequential MK lines, respectively.    161 
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Figure 4.14. Examples of sequential Mann-Kendall graphs of the detail components of 

the annual precipitation data in order to determine the most dominant 

periodicity for trends (Ottawa CDA’s data were used in this example). 

The upper and lower dashed lines represent the confidence limits (α = 

5%); the solid and dashed progressive lines are the original and detail 

sequential MK lines, respectively.     162 

Figure 4.15.  Progressive Mann-Kendall graphs of all the original annual flow data 

used in the study. The upper and lower dashed lines represent the 

confidence limits (α = 5%). These graphs were used to determine the 

possible starting time of the observed trends for the different stations.
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Figure 4.16.  Progressive Mann-Kendall graphs of all the original precipitation data 

used in the study. The upper and lower dashed lines represent the 

confidence limits (α = 5%). These graphs were used to determine the 

possible starting time of the observed trends for the different stations.
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CHAPTER 1 – GENERAL INTRODUCTION 

 

1.1. Climate Change and its General Impacts 

  

Changes in climate are a result of both natural and human activities, particularly 

those that alter the chemistry of the atmosphere. Climate change itself is represented by a 

complex mixture of stressors involving elevated atmospheric greenhouse gas (GHG) 

concentrations, increased frequencies and intensities of extreme weather events, and 

alterations in temperature, precipitation, and hydrologic cycles (Durdu, 2010). 

Examples of human anthropogenic activities that have contributed to the elevated 

GHG include deforestation, industrial activities, agriculture-related processes, and most 

importantly the burning of fossil fuels (UNFCCC, 2007). Increased atmospheric carbon-

dioxide concentrations have especially been documented since the start of the Industrial 

Revolution. From this time, major changes in sectors such as agriculture, manufacturing, 

mining, transportations, and technology have taken place, resulting in the increased 

burning of fossil fuels (UNFCCC, 2007). It has generally been perceived that such 

conditions cause temperatures to increase (Scavia et al., 2002).  

The most recent assessment conducted by the Intergovernmental Panel on Climate 

Change (IPCC) reported an increase in the mean surface temperature of between 0.56
o
C 

and 0.92
o
C from 1906 to 2005 (IPCC, 2007). This increase is larger than what had been 

mentioned by the previous IPCC report, which mentioned that the global mean surface 

temperature has increased by approximately 0.3
 o

C to 0.6
 o

C from 1901-2000 (IPCC, 

2001).  

While the temperature is expected to increase practically everywhere over land, 

precipitation is expected to increase globally (IPCC, 2007). In many river basins 

precipitation is expected to increase, but in many others a decrease is expected instead 

(IPCC, 2007). In addition, precipitation intensities are expected to increase in some 

seasons or areas but decrease in others (IPCC, 2007). All these changes in the climate 

may threaten the global freshwater system and increase the uncertainty associated with 

hydrological processes (IPCC, 2007; Koutsouris et al., 2010). The IPCC (2007) 

documented with strong confidence that the impacts of climate change on freshwater 
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systems and their management are mostly caused by increases in temperature, sea level 

and precipitation variability that have been observed.  

Numerous studies all over the world have been conducted to analyze and forecast 

the impacts of climate change on hydrological variables, such as precipitation and 

streamflow. For example, Beyene et al. (2010) simulated the impacts of climate change 

on the hydrology of the Nile River basin and found that the basin is likely to have higher 

streamflow up to 2039 as a result of increased precipitation; however, from 2040 to 2099, 

streamflow is expected to decrease. Austin et al. (2010) used the Biophysical Capacity to 

Change and Cubic Conformal models together with different climate change scenarios in 

order to predict the impacts of climate change on Murray-Darling Basin in Australia. 

Their projections revealed that by the year 2070, the mean annual rainfall could decline 

and the potential evapotranspiration could go up – both by up to 25% (Austin et al., 2010). 

Shepherd et al. (2010) forecasted river flows in the Oldman River Basin draining the 

North American Rocky Mountains using projection analyses and hydroclimatic 

modelling. Using six different GCMs, both methods showed similar results: increased 

flow in spring and winter, and reduced flow in the summer. The latest report by the IPCC 

(2007) (Fourth assessment) presents a thorough assessment on the potential impacts of 

climate change on many aspects of fresh water systems. 

In Canada, many areas are also known to be sensitive to changes in precipitation 

that are associated with climate change (Environment Canada, 2004). For example, a 

reduction in the mean annual flow for the Great-Lakes-St. Lawrence watershed in the 

USA and Canada is projected to be between 4% and 24% over the next 90 years, due to 

increased evaporation (Croley, 2003). When analyzed using the Canadian General 

Circulation Model (CGCM I) where the concentration of CO2 is doubled, the sea ice in 

Hudson Bay practically vanished (Gough and Wolfe, 2001). Roy et al. (2001) also looked 

at the seasonal flooding associated with climate change in the Chateauguay River Basin, 

which is situated in southern Quebec. Using the outcome from the CGCM I and a 

coupled hydrology-hydraulics model, they forecasted that there would be dramatic 

increase in the amount of runoff, maximum discharge (up to 250%), and water level by 

2080-2100 (Roy et al., 2001). For drainage into high-latitude oceans (Artic and North 

Atlantic), Dery and Wood (2005) examined the total annual discharge in 64 Canadian 
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rivers for the period of 1964-2003. They found that the discharge was reduced by about 

10% from 1964 to 2003, which is in agreement with the decrease in the amount of 

precipitation for the period of 1964 to 2000 over areas in northern Canada (Dery and 

Wood, 2005).  

 

1.2. Trends in Hydroclimatic Indices 

 

As can be seen, the effects of changes in climate have attracted widespread 

interest in the fields of hydrology, meteorology and climatology. Most studies conducted 

to investigate the impacts of climate change on water resources concluded that climate 

change will have an adverse impact (or at least pose significant challenges) on water 

resources, both on quality and quantity. As such, it is crucial to understand how the 

effects of climate change on water resources are extended to nature and society. Canada 

holds a special role because it has approximately one tenth of the world’s renewable 

water; therefore, changes in its quantity and/or quality will have consequences beyond 

Canada’s border (Environment Canada, 2004). 

Since the climate is continuously changing, the investigation of climate change is 

linked directly with trends in different climatic indices. Many studies have been 

conducted in the fields of hydro-climatology and hydro-meteorology in order to detect 

and quantify the existence of trends. Some of the most common parameters included in 

these studies are temperature (Piŝoft et al, 2004; Prokoph and Patterson, 2004; Mohsin 

and Gough, 2010), streamflow (Zhang et al., 2001; Burn and Hag Elnur, 2002; Anctil and 

Coulibaly, 2004; Zume and Tarhule, 2006, Partal, 2010), precipitation (Kim, 2004; 

Mishra and Singh, 2010), surface runoff (Labat et al., 2004; Liu, et al., 2010), and 

snowpack (Hamlet et al., 2005), among others. Most of the studies observed that trends – 

positive or negative – have been variously attributed to climate change and climate 

variability. 

It is important to differentiate between climatic change and climate variability. 

Climate variability is the natural process of climate variation occurring within a period of 

time, whereas climate change refers to a long-term alteration in the climate itself 

(Kundzewicz and Robson, 2004). Changes can occur as a trend gradually, abruptly, or in 
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a more complex form (Xiong and Guo, 2004; Zhang et al., 2010). Climate variability may 

produce highly noticeable effects on hydrological records, which result in: (i) evidence of 

trends existing when the length of data used is short, but these trends may disappear if 

longer data are used, (ii) large climatic variation can effectively hide changes that are 

caused by climate change (Kundzewicz and Robson, 2004). As climatic changes continue 

to occur, we should expect to see more statistically significant trends in hydro-climatic 

data. This would provide evidence that the hydrologic regime will continue to change in 

the future – it is not a stationary system.  

 

1.3. Problems Faced in Time Series Analysis to Detect Trends 

 

Data are a central part of studies that attempt to detect trends and changes in 

hydro-meteorological processes. Hydro-meteorological data are usually characterized by 

non-stationary properties, and are composed of trend, periodic, autoregressive, and 

random residual factors (Kite, 1993). The trend is usually a result of changes in the 

structure, which are caused by natural or anthropogenic activities (e.g., climatic 

variability, land-use changes, etc). Periodicities are mainly associated with astronomical 

phenomena such as the earth’s rotation around the sun. Autoregressive components show 

that the information in the time series may be dependent on the magnitude of the 

preceding events.  Since hydrological processes may be affected by factors such as 

weather, vegetation cover, infiltration and evapotranspiration, they contain stochastic 

constituents, and multi-time scale and nonlinear properties (Wang and Ding, 2003). 

Trend detection and estimation in the presence of all these stochastic components is an 

essential part of hydrological studies. 

Some other issues that may be faced in trend detection studies are caused by the 

existence of data gaps in the records, and the presence of outliers and autocorrelation 

(Lattenmaier, 1988). To deal with this, many authors have employed the use of both 

parametric and non-parametric statistical tests. Shao et al. (2010) pointed out that most of 

the methods used in the literature are unable to detect both long-term trends and abrupt 

changes simultaneously. Common non-parametric approaches, such as the Mann-Kendall, 

the Wilcoxon–Mann–Whitney, t-test, and Pettitt’s, can only detect a monotonic trend or a 
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single abrupt change (Shao et al., 2010). Thus, the use of any one of these tests alone 

cannot efficiently detect trends in hydrological time series. This is because hydrological 

time series are known to often exhibit multiple abrupt changes and different trends, 

occurring in different periods, which are caused by inter-annual and decadal variability 

associated with the climate system (Peel and McMahon, 2006). Additionally, classical 

trend tests do not deal well with the effects of persistence and seasonality (Cluis et al., 

1989).   

Some authors have also attempted to detect the trend and abrupt change 

components in a time series separately (e.g., Zhao et al., 2008), but this approach is not 

statistically satisfactory because the conclusions obtained from the different tests may not 

be compatible (Shao et al., 2010). Though a single trend test is considered appropriate for 

trend testing and detection with specified start and end times, it does not illustrate 

whether any changes are due to gradual or abrupt occurrences (Zhang et al., 2010). 

Yue et al. (2002) and Mohsin and Gough (2010) recognized that a number of 

trend-related studies contained some flaws because when using trend detection tests, such 

as the Mann-Kendall test, the studies did not include testing for autocorrelation. They 

simply assumed that the observations contained in the time series being analyzed are 

serially independent. The effect of one data point on the next one (serial correlation) in a 

sequential times series can lead to a misleading interpretation (type I error) – the rejection 

of the null hypothesis will be more likely to occur when in fact it should be accepted 

(Kulkarni and von Storch, 1995; Hamed and Rao, 1998; Partal, 2010). Positive serial 

correlation can lead to an increase in type I error (Douglas et al., 2000), whereas the 

presence of negative serial correlation can lead to an increase in type II error (i.e., falsely 

accepting the null hypothesis) (Yue and Wang, 2002). As such, it is important to address 

the issue of serial correlation in a time series prior to applying a trend test. Since the MK 

test was used in this present study, the extended versions of the original MK test were 

applied in case of the existence of significant autocorrelations in the time series.  
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1.4. Time-Frequency Assessment of a Time Series 

 

When analyzing trends in hydroclimatic time series, not only is it important to 

check for whether the direction of trends is positive or negative, but also how these 

changes fluctuate within different time scales (e.g. intra-annual, inter-annual, decadal 

events). A traditional tool that has been frequently used to detect oscillatory signals is the 

Fourier Transform (FT), which uses sine and cosine basis functions. The FT has some 

major drawbacks. Since this method uses single-window analysis, it is unable to detect 

the properties of signals that are much shorter or longer than the size of the window 

(Torrence and Compo, 1998). Furthermore, the sinusoids used in FT are only localized in 

the frequency domain and not in time domain. Therefore, FT only provides time-

averaged results and extracts details from the signal frequency, but loses its temporal 

information (Drago and Boxall, 2002). As a result, the location of the frequency within 

the signal cannot be identified (Oh et al., 2003). Fourier analysis is more suited for fields 

that involve stationary processes, such as in electronics; but when the focus is shifted to 

hydrological processes, FT is not an ideal approach because earth-science processes 

involve signals that tend to have high fluctuations and are often not stationary (Labat, 

2005).  

The wavelet transform (WT) approach is a relatively recent advancement in the 

field of signal processing (Santos et al., 2001). Wavelet transforms analyze the non-

stationary variance at differing frequency levels of a time series by employing 

mathematical transformations. A signal to be localized is broken up into functions, 

known as wavelets. Unlike the FT that uses a single-window analysis, WT uses both 

narrow and wide windows at high frequencies and at low frequencies, respectively 

(Drago and Boxall, 2002). For the lower scale, this means the window size of the wavelet 

is compressed, which allows the tracking of abrupt changes or high frequency 

components in the signal. In contrast, the window size is stretched at higher scales, which 

allows for tracking slowly progressing events, or low frequency components in the signal. 

This demonstrates one of the biggest advantages of WT over FT, which is its ability to 

scale the wavelet according to its width (Santos et al., 2001). In addition to this, WT also 

deals well with jumps, shifts, and even discontinuous patterns in the data, which are 
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indeed often observed in hydro-meteorological data (Prokoph and Patterson, 2004; 

Adamowski et al., 2009).  

WT produces the time-frequency representation of the signals (or time series) 

being analyzed. In other words, wavelet transforms allow the one-dimensional time series 

to be decomposed into different levels of time-frequency space (i.e. two-dimensional 

information) (Zume and Tarhule, 2006; Kim, 2004). Thus, the major variability 

components or dominant modes can be identified, and their variation with time can be 

investigated (these features are not readily apparent in the raw signal) (Oh et al., 2003). In 

this study, WT was used to decompose the time series into their calculated number of 

decomposition levels and into their details (scales) and approximation components. The 

different detail components represent higher-frequency components (at lower detail 

levels) and lower-frequency components (at higher detail levels). Additionally, we 

assumed that the approximation component contains the trend element of the analyzed 

time series. The wavelet transform is discussed in more detail in sections 2.5, 3.2, and 4.2.  

 

1.5. Research Objectives 

 

A number of studies have recommended studying the trends for different 

hydroclimatic variables, so as to understand the relationship between hydrology and 

climate. In light of this, the main objective of this research is to analyze the trends that 

may exist in the time series of three hydroclimatic variables, namely precipitation, 

streamflow, and temperature. These parameters serve as good indicators of how the 

climate has evolved because: (1) studies on climate change indicate an increase in 

temperature, and patterns of precipitation have experienced changes in different parts of 

the world (Burn and Hag Elnur, 2002); (2) Streamflow tends to reflect how a catchment 

area as a whole has been responding to the variability in climate (Gaucherel, 2002). 

Zhang et al. (2009) also indicated that in order to understand the effects of climate change 

on global and regional water resources, information about the impacts of climate change 

on the spatiotemporal characteristics of precipitation is required.  

To accomplish the main goal of this study, the specific objectives are as follows: 
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1. To couple the WT technique and the MK trend test in analyzing trends in flow, 

precipitation, and temperature data from several flow and meteorological stations 

located in southern parts of Ontario and Quebec. 

2. To decompose the data of the variables used into their lower resolution components 

via the discrete wavelet transform (DWT) approach. 

3. To assess the significance of trends in the original data and in the time series resulting 

from the wavelet decomposition using the MK trend test.  

4.  To determine the most influential periodicity that affect trends by examining each 

periodic mode’s sequential MK trend line and how close its MK Z-value is compared 

to the original MK Z-value. 

One of the reasons that the DWT method is chosen is because many real-life occurrences 

in hydrology such as rainstorms, flood events, and streamflow are recorded in discrete 

manner (Wang and Ding, 2003). Since the procedure of applying the MK test on the 

decomposed hydroclimatic time series via the WT is considered very new, this 

application in a North American context (and more specifically, in Ontario and Quebec) 

is original. 

The evaluation of hydroclimatic trends on a smaller spatial scale (e.g. watershed 

scale) provides information on catchment dynamics (Gautam et al., 2010). The findings 

and results obtained from this study will be useful for many aspects of infrastructure 

design, modelling, and management of water resources (such as in planning and 

monitoring of integrated and adaptive water management programs). Trend detection and 

analysis in hydroclimatic variables can also bring out issues which need to be considered 

as part of adaptation and mitigation efforts associated with climate change. This implies 

that public policies created to address the impacts of climate change for a specific region 

should be done based on the knowledge for that particular region, rather than on the 

global climate change information (Clark et al., 2000). The results of trend analysis in 

these hydroclimatic variables can also be incorporated into prediction models of future 

scenarios applied to many different fields, such as in agriculture (e.g. growing seasons, 

irrigation schemes, crop productions) and food security, water supplies, extreme weather 

forecast, etc.  
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Although many trend detection studies have been conducted in Canada, using the 

DWT in conjunction with the MK test as part of the methodology has not been explored. 

As will be seen, the DWT provides very detailed information of the analyzed time series 

by extracting its different periodicities. Furthermore, applying the MK test and the 

sequential MK analysis enabled us to determine the periodic modes that are more 

influential for trends. Some potential drivers behind these dominant modes are also 

discussed.   

The results of this research should be useful for current and future water resources 

planning efforts in Ontario and Quebec, as it involves making reasonable predictions or 

assumptions about future hydro-climatic conditions. This study will also significantly 

contribute to current research in the field of trend detection in Canada, particularly in 

Ontario and Quebec. 

 

1.6. Thesis Outline  

 

This thesis is submitted in the format of papers suitable for journal publications. 

Chapter 1 of this thesis briefly discusses climate change and its general projected impacts 

on hydrological variables. It then links climate change with detecting trends in different 

hydroclimatic indices. Chapter 1 also presents the problem statement of this thesis, which 

contains some reviews about issues that arise when attempting to detect trends in 

hydroclimatic data, which have a nonstationary nature. The chapter then mentions the 

importance of investigating the variability of the different time-scale events (e.g. inter-

annual, decadal, etc.) that may be present in the data being analyzed. Finally, this chapter 

discusses how the WT approach can be used to efficiently extract information (including 

trends) from a time series; and then test the significance of the different detail and 

approximation components with the MK test.  

Chapter 2 presents a literature review related to the effects of climate change on 

hydrology, followed by detecting trends in hydroclimatic indices. Several common 

methods used to estimate and detect trends in hydroclimatic studies are also discussed, 

along with their strengths and weaknesses. In this chapter, the justifications for choosing 
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the methods employed in this study (i.e., coupling of the WT approach and the MK trend 

test) are also presented.  

Chapter 3 describes the application of the DWT and the MK test in assessing 

trends in surface air temperature series from a total of five stations in Ontario and Quebec 

during the period 1967 – 2006. The detailed procedures of data transformation using the 

DWT and how the MK test is used to assess the statistical significance of the different 

time series at different scales are described in this chapter. In chapter 3, we proposed a 

method where the relative error criterion is used to determine the type of Daubechies (db) 

mother wavelet, the boundary condition, and the number of decomposition levels in 

decomposing the data used via the DWT. The relative error used was of the MK Z-values 

of the approximation component and the original data. This chapter is being prepared for 

submission as a manuscript for a journal publication (and will be submitted to the Journal 

of Hydrological Processes).  

Chapter 4 presents the application of the DWT and the MK test in analyzing 

trends in streamflow and precipitation in Ontario and Quebec during the period 1954 – 

2008. This chapter discusses the different types of data used, which were obtained from a 

total of 13 flow and meteorological stations. The methodology follows what has been 

outlined in chapter 3. This chapter has been submitted as a manuscript to the Journal of 

Hydrology.  

Chapter 5 summarizes the main findings of this study and presents the general 

conclusions obtained from this work. Chapter 6 presents several recommendations that 

future studies can consider. Finally, chapter 7 explicitly lists the contributions to 

knowledge made by this present study. 
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CHAPTER 2 – LITERATURE REVIEW 

 

In this chapter, relevant methods used in trend detection in hydroclimatic studies are 

reviewed and discussed. In particular, the applications of the wavelet transform (WT) on 

streamflow, precipitation and temperature data are given to emphasize its applications 

and usefulness.  

 

2.1. General Implications of Changing Climate on Hydrology 

 

Changes in the earth’s climate can have multiple significant implications for 

hydrologic regimes. Increased concentrations of greenhouse gas (GHG) will cause much 

of the solar radiation to be trapped inside the earth, hence elevating its temperature 

(Trenberth, 1998). Rising global temperatures will lead to changes in the characteristics 

of the hydrologic cycle – influencing the spatiotemporal characteristics of precipitation 

and rainfall, runoff, and potential evapotranspiration (IPCC, 2007). For example, the 

intensification of the hydrologic cycle that has been observed can lead to a decrease in 

precipitation in subtropical areas, which then increases the probability of drought (Dai et 

al., 1998; Huntington, 2006). On the other hand, increased annual precipitation in the 

tropics and at high latitudes will lead to an increasing probability of floods (Huntington, 

2006). The melting of glaciers and rising sea levels as a result of climate change can 

threaten fresh water supplies (Jackson et al., 2001). These overall changes are likely to 

have a strong influence on the environment, including water resources availability and 

accessibility, and therefore pose challenges in water resources planning and management. 

On the global scale, the general pattern of climate change has been studied quite 

extensively and is no longer very controversial argument in the scientific world (Oreskes, 

2004). However, climate change has varying impacts in different geographical regions 

(i.e., it is not spatially uniform) (Clark et al., 2000; Burn and Hag Elnur, 2002), and the 

nature of these variations has a high degree of uncertainty. Having said this, hydro-

climatological parameters can serve as indicators in detecting and monitoring climate 

change as these variables have the tendency to reflect climatic changes (Burn and Hag 
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Elnur, 2002). Therefore, studying them is very useful in understanding the relationships 

between hydrology and climate. 

Recent studies have demonstrated the vulnerability of water resources to changes 

in temperature and precipitation characteristics (Lahmer et al., 2001; Ampitiyawatta and 

Guo, 2009). The environment, economy and society are largely dependent on water 

resources; thus, changes in the processes involved in the hydrological cycle will 

undoubtedly have significant implications on the environment and socio-economic 

profile (Arnell, 1999). Studies have also shown that since hydrologic conditions are 

different for different regions, the effects of climate change on local hydrological 

processes will differ within localities, even under the same climate setting (Zhang et al., 

2001). Therefore, it is important for policy and decision makers to carefully address 

changes caused by climate change when managing water resources. The consequences 

and risks associated with climate change should be properly managed not only at the 

local and regional level, but also at a smaller and more localized scale (Durdu, 2010).  

 

2.2. Trend Detection and Analysis in Hydroclimatic Variables 

 

Trend analysis in hydroclimatic variables is one way to assess how the climate 

has evolved over time. Trend detection refers to methods used to extract an underlying 

behavioral pattern in a time series that would otherwise be partly or fully hidden by noise. 

The detection of abrupt and gradual changes in hydrological and meteorological records 

has been explored in considerable detail by researchers. Information about spatiotemporal 

variability in hydroclimatic time series is of great importance from both scientific and 

practical viewpoints. For example, the interpretation of the significance of trends existing 

in the annual maximum (flood), mean, and low flows in rivers is very valuable for flow 

regulation (Tharme, 2003). This is because they are considered when designing flood 

mitigation structures, flood-protection systems, and water storage reservoirs. Trend 

detection and forecasting of low flow is of importance due to the quantity of water to be 

released downstream of a dam, in order to protect ecological integrity and sustainability 

(Smakhtin, 2001).   
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The detection and estimation of past trend changes and variability in 

hydroclimatic variables is also important for the understanding of potential future 

changes caused by factors that affect climate change. This applies especially to high-

latitude regions such as Canada, where climate change signals are anticipated to be 

stronger, and where the impacts of climate change may be more severe (Nicholls et al., 

1996). Boyer et al. (2010) noted that the hydrological regime of rivers at higher latitudes 

in the northern hemisphere (including Canada) could be dramatically modified as a result 

of the changes in temperature and precipitation during the current century, especially 

during winter and spring seasons. These modifications may include a reduction in mean 

annual discharge (Arora and Boer, 2001), increased evaporation (Croley, 2003), 

increased winter runoff (Payne et al., 2004), and less snowpack accumulation (Whitfield 

et al., 2003; Hamlet et al., 2005). 

Research undertaken in hydroclimatic fields provides a systematic framework for 

the study of how local and global space / time variations in the hydrologic cycle are 

affected by the climate system (IPCC, 2007). If it is indeed the case that trends exist in a 

hydroclimatic time series, it is then essential to analyze their significance and to confirm 

whether these trends occurred as a result of stochastic or more deterministic processes.  

In general, data used in planning and designing water resources and engineering 

projects imply an assumption of stationarity (Partal and Küçük, 2006; Burn et al., 2010). 

For example, for a long period of time, hydrologists considered floods to be events that 

resulted from stationary, independent and random processes. Such assumptions can 

probably no longer be integrated into the planning and design procedures of water 

resources works if the discussed global climate change (more specifically, due to 

anthropogenic-induced factors) is indeed occurring (Beyene et al., 2010).  

One of the goals of trend detection is to determine the main causes affecting these 

trends (Yu et al., 1993). With growing demand for water and problems related to water 

resources, it is essential to understand the effects of climatic variability/change on 

hydrological processes, as they are indicators of how the climate has changed over time 

(Burn, 1994). Additionally, analyzing and predicting the likely impacts of climatic 

change on water resources availability is very important to support sustainable water 

management and its future planning (Durdu, 2010). For example, in order to manage and 
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understand the causes of water shortages, it is important to investigate in detail the 

hydrological process of the area (Durdu, 2010). Furthermore, a thorough understanding 

of how changes in climate affect the hydrological processes in a watershed is needed in 

order to carry out work such as stormwater planning, water quality management, river 

restoration projects, etc. (Coats, 2010). One way to understand the changes in the 

hydrological processes in a watershed is by analyzing the trends involved in these 

processes (e.g. precipitation and streamflow). Trends in climate are partly caused by the 

increase in the concentration of GHGs in the atmosphere. Having said this, natural cycles 

of climate indices such the North Atlantic Oscillation (NAO), El Niño Southern 

Oscillation (ENSO), Pacific North American (PNA) – which are prominent in the 

Northern hemisphere – have been found to also affect the trends in temperature, 

precipitation, and streamflow (Wettstein and Mearns, 2002; Coulibaly and Burn, 2004; 

Anctil and Coulibaly, 2004; Bonsal et al., 2006; Damyanov et al., 2012; Fu et al., 2012).    

When attempting to detect trends in a natural series, it is important to be aware of 

the inherent variability of hydrologic time series. Differentiating between natural 

variability and distinct trends is not straightforward (Askew, 1987; Burn, 1994). 

Furthermore, analyzing hydroclimatic time series data is challenging since it can: be non-

normally shaped in distribution; have serial dependency, uneven spacing and timescale 

uncertainties (Koutsoyiannis and Montanari, 2007); and can also be subject to shifts and 

abrupt changes. The focus of trend analysis in hydrology is on determining the exact 

evolution of these hydroclimatic conditions and variables over time. However, problems 

can arise because the available data are usually: (i) limited in length, (ii) influenced by 

background noise (errors), and (iii) can consist of multiple signals, sections of increasing 

and decreasing trends, and sometimes discontinuities (Adamowski et al, 2009). 

In order to be able to draw useful and accurate conclusions about these changes, 

the acquisition of long-term data is a useful approach to adopt (De Jongh et al., 2006; 

Pekarova and Pekar, 2007). Studies conducted by different authors in analyzing 

hydroclimatic trends have used different lengths of data. Kahya and Kalayci (2004) and 

Burn and Hag Elnur (2002) consider a minimum of 31 and 25 years worth of data, 

respectively, are needed to acquire a valid mean statistic in analyzing trends in their flow 

data. However, Kundzewicz and Robson (2004) argue that due to the variation in climate, 
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data consisting of 30 years or less of records are considered insufficient for trend 

detection associated with climate change. Approximately four decades worth of data 

would be sufficient to determine the existence of possible trends in annual streamflow 

series and their dominant periodicities ( Ampitiyawatta and Guo, 2009; Partal, 2010). In 

light of this information, in this study, we used 55 years worth of data (for flow and 

precipitation) and 40 years worth of data (for temperature) in order to analyze their trends. 

 

2.3. Main Methods of Trend Analysis of Hydroclimatic Variables 

 

Trends in hydroclimatic variables can be examined in many different ways. Land-

based data, satellite data, statistical tests, computer-intensive approaches and models play 

significant roles in enhancing the understanding of the complex time and space variations 

in hydro-climatic systems. Prior to choosing the methods that will be used to study trends, 

it is important to take into account the characteristics of the data, such as data length and 

distribution, the structure of the sample, the possible types of existing trends (monotonic 

or stepwise), and the presence of persistence and seasonal fluctuations (Cluis et al., 1989).  

 Some of the more commonly used methods for trend investigation in 

hydroclimatic research involve the use of the bootstrap method (e.g. Douglas et al., 2000; 

Di Stefano et al., 2000; Chingombe et al., 2005), Monte Carlo simulation (e.g. Yue et al., 

2002b), the Spearman’s rho (SR) test (e.g. McLeod et al., 1991; Yue et al., 2002a), 

regression models (e.g. Svensson et al., 2005; Shao et al., 2010; Timofeev and Sterin, 

2010), the Mann-Kendall (MK) trend test (e.g. Burn and Hag Elnur, 2002; Yue et al., 

2003; Partal and Küçük, 2006; Partal, 2010), and non-parametric statistical tests (e.g. 

Birsan et al., 2005; Zhang et al., 2009; Durdu, 2010; Zhang et al., 2010; Liu et al., 2010), 

among others. Some of these commonly used methods are discussed in the following 

sections, along with their strength and weaknesses.  

Recently, a number of studies have also employed the use of wavelet analysis 

(WA) approaches in detecting and estimating trends in hydroclimatic time series (e.g. 

Kirkup et al., 2001; Anctil and Coulibaly, 2004; Kim, 2004; Prokoph and Patterson, 2004; 

Partal and Küçük, 2006; Adamowski et al., 2009; Partal, 2010). The use of wavelet 

transforms in detecting trends is usually combined with statistical tests such as regression 
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models or the MK test in order study these trends (e.g., Partal and Küçük, 2006; Zume 

and Tarhule, 2006; Xu et al., 2009; Adamowski et al., 2009; Partal, 2010).  

 

2.3.1. Parametric and Non-parametric Statistical Tests 

 

Both parametric and non-parametric statistical tests are used in trend detection in 

order to quantify the significance of trends in a time series (Durdu, 2010). These may 

include tests such as linear regression, ordinary least squares (OLS), regression 

autoregressive integrated moving average (ARIMA) models, the Spearman partial rank 

correlation test (SPRC), and the MK trend test, among others.  

The use of statistical tests involves testing of the null hypothesis – which assumes 

that the data are random and are not correlated (i.e., no trend will be observed) – against 

the alternative hypothesis (there will be a significant trend detected, either positive or 

negative). Although parametric tests are more powerful in nature, they have to satisfy the 

assumption of normal distribution, homoscedasticity, and independent observation (Önöz 

and Bayazit, 2003). If the assumptions made are not met, then the tests will yield 

unreliable results and interpretations, because the estimates of the significance level will 

not be correct (Kundzewicz and Robson, 2004).  

Non-parametric tests are used when the assumptions of the parametric tests 

cannot be fully met. Non-parametric tests have less strict assumptions and have a higher 

tolerance with respect to missing values and non-normal distribution (Cunderlik and Burn, 

2004). Since earth-based scientific phenomena (including hydrological processes) tend to 

have non-stationary characteristics and non-normal distributions, non-parametric tests are 

usually preferred over parametric tests in conducting a trend analysis (Hirsch and Slack, 

1984; Lattenmaier, 1988). Furthermore, hydrological data normally exhibit 

autocorrelation; therefore, data values are not independent. They may also show 

seasonality, which violates the assumption of constant distribution (Kundzewicz and 

Robson, 2004). 

It is important to note that both parametric and non-parametric tests still require 

that the observations be independent, since the existence of serial correlation can 

significantly impact trend determination leading to inaccurate conclusions (Adamowski 
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and Bougadis, 2003). Having said that, the strength of non-parametric tests is found in 

their exact level of significance (even if the data exhibit non-normal distributions) 

(Johnson, 2000). Helsel (1987) concluded that the advantages of non-parametric tests are 

as follows:  

1. Transformation of data is not required. 

2. The results produced should still be reliable even if data exhibit non-normal 

distribution. 

3. The tests are still powerful even though the distribution of samples is not symmetrical 

(skewed). 

4. The results of non-parametric tests should still be reliable even if there are outliers 

present in the data.  

 

2.3.2. The Bootstrap Method 

 

Kundzewicz and Robson (2004) recommended the bootstrap method for 

evaluating the significance level of a test statistic (when detecting change in a time series 

that occurs either gradually or abruptly). The bootstrap method is also known as a 

resampling method. The bootstrap approach does not require many assumptions about the 

available data and does not depend on the type of distribution of the sample (Yue and 

Wang, 2002). It has been found to be flexible, robust and powerful, and easy to 

implement (Simon and Bruce, 1991; Kundzewicz and Robson, 2004). In addition to this, 

it is suited to the characteristics of hydrological data, which are often strongly skewed, 

exhibiting seasonal and serial correlation, and having data gaps. 

Kundzewicz and Robson (2004) explained the basic principle of the bootstrap 

method in a very straightforward manner. If a trend does not exist in a time series, then 

the order of observations should not matter much; therefore, by resampling or shuffling 

these values of the time series, the gradients should not change by much either 

(Kundzewicz or Robson, 2004). The higher the number of bootstrapped samples created, 

the better the accuracy of the statistical estimates will be (Yue and Pilon, 2004). The 

process of shuffling is repeated many times and for each repetition the test statistic is 

calculated. If the test statistic of the original data is very different from the ones produced 
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by the shuffling procedures, the presence of a trend is very likely (Kundzewicz and 

Robson, 2004). If the test statistic of the original data is found to be among the values 

produced by the shuffling procedures, then it implies that the order of the observations in 

the data is not important; thus, the null hypothesis of no trend should be accepted 

(Kundzewicz and Robson, 2004). Several trend-detection studies have utilized the 

bootstrap method as part of their methodology. Examples of this can be found in studies 

conducted by Adamowski and Bougadis (2003), Yue and Pilon (2004), Burn et al. (2010), 

among others.  

In practice, it is usually impractical to actually draw all possible resamples. The 

bootstrap method also involves an intensive computation for measuring the accuracy of 

statistical estimates by creating bootstrapped samples from the original records (Yue and 

Pilon, 2004). In this study, we do not require a resampling method to analyze trends in 

the time series we explore because first of all, we aim to extract the different frequency 

components contained in our datasets – this cannot be accomplished using the bootstrap 

method. Furthermore, since one of the objectives of this study is to determine the most 

harmonious periodic component with regards to the original data (over the study period), 

we need a method that can provide sequential or progressive information on how the 

trend of a periodic component behaves in comparison to the trend of original data. As 

such, the bootstrap method is not employed in our study.    

 

2.3.3. Regression Analysis 

 

Regression analysis has been used in almost every field for data analysis, 

including in many trend assessments for hydrological related studies (e.g., Prokoph and 

Patterson, 2004; Caloiero et al., 2011; Timofeev and Sterin, 2010; Shao et al., 2010). 

Regression models are considered flexible and can be used with records which are not 

evenly spaced; therefore, many types of regression models have been used to trace trends 

(Hipel and McLeod, 1994). Since linear regression is fitted directly on to the data, it is 

very helpful for visual presentation (Svennson, et al., 2005).  

Linear regression is the simplest form of regression model and has been 

frequently used to indicate the presence of trends (e.g., McBean and Motiee, 2006). If the 
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calculated regression gradient is close to zero, the null hypothesis of no trend should be 

accepted. In contrast, if the gradient is very different from zero, then the null hypothesis 

should not be accepted. 

Some of the limitations of linear regression include its dependency on the normal 

distribution of the data and its high sensitivity to the presence of outliers (Svennson et al., 

2005). It may also cause non-homogeneous residuals (Jones, 2008). This implies that if 

the size of trends changes over a period of time, the residuals cannot be considered as 

being independent and having the same distribution (Shao et al., 2010). Another reason 

why classical regression would not be suitable to be used in our study is because this 

study aims to analyze the low- and high-frequency events and how they vary in time – 

classical regression does not explore the differing frequency characteristics of a time 

series (Goodwin, 2008) – the wavelet transform is therefore considered more suitable 

(see subsequent sections on wavelet transform for details).  

Andreas and Treviño (1997) compared wavelet-based method and the least 

squared regression in detecting linear and quadratic trends in a time series. They found 

that the wavelet-based method is more efficient because of the computational operations 

(Andreas and Treviño, 1997). Kim (2004) also noticed that trend values produced using 

the ordinary least squares is systematically larger compared to the values obtained from 

using wavelet analysis. This is because the wavelet transform method segregates the 

different periodic components from the trends, whereas the linear least square method 

incorporates the components into one total trend. 

 

2.3.4. The Mann-Kendall (MK) Trend Test 

 

The MK (Mann, 1945; Kendall, 1975) trend test is a rank-based test of 

randomness against monotonic trends (Zhang et al., 2001; Déry and Wood, 2005; 

Kallache et al., 2005; Zume and Tarhule, 2006, Burn et al., 2010). Numerous studies 

have employed the MK trend test in their data analysis in order to asses and identify 

trends in a time series. It is possibly the most widely used non-parametric test for trend 

detection in hydrological studies (Yue and Pilon, 2004; Hamed, 2008). This is because 

not only is it simple to use, but it is also resilient to skewed distribution, missing values 
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and values that fall outside the detection limit, and to the non-stationary nature of data 

(Lins and Slack, 1999; Partal and Küçük, 2006). Since it is rank-based, it placed 

emphasis on the order of the rank, and not on the actual value of the records themselves. 

Thus, if some values are missing or if an outlier is present, the results would not be 

affected much because the ranks would not significantly change. The hypothesis of the 

MK test is based on the occurrence of monotonic change, not a break change (Chaouche 

et al., 2010). The MK test, however, still performs well even if a break is present in the 

time series (Lemaitre, 2002; Chaouche et al., 2010). Chaouche (2010) also emphasized 

that changes in a time series that is affected by climate change, should occur in a more 

gradual manner. As such, the MK test was deemed to be suitable to be used in our study. 

Önöz and Bayazit (2003) compared the power of the t-test and the MK test in 

analyzing the annual streamflow series at 107 sites across Turkey by Monte Carlo 

Simulation. They found that the t-test had slightly more power than the MK test when the 

distribution is normal; however, for skewed distribution, the MK test was more powerful, 

particularly when the coefficient of skewness is high (Önöz and Bayazit, 2003). Similarly, 

when Yue and Pilon (2004) compared the power of the parametric t-test, the M-K test, 

the bootstrap-based slope test (BS-slope), and the bootstrap-based MK test (BS-MK), 

they found that the t-test and BS-slope test were more powerful than the rank-based tests 

for data having a normal distribution, regardless of the linearity of the trend. For data that 

are not normally distributed, the rank-based tests were much more powerful in detecting 

trends, regardless of their linearity (Yue and Pilon, 2004).  

 Although the MK test is robust and very useful in many hydrological studies, 

using the MK test on its own for detecting trends may not always be ideal. That is 

because the MK test does not account for the serial correlation that very often exists in a 

hydrological time series (Hamed and Rao, 1998; Yue et al., 2002b; Partal and Küçük, 

2006). The presence of serial correlation in a dataset may lead to a misleading result 

interpretation because it enhances the probability of finding a significant trend, when 

actually there is an absence of a significant trend. As such, in our study, each time series 

was first checked for whether a significant autocorrelation (more specifically, lag-1 

autocorrelation coefficient) exists. If a time series did not exhibit a significant 

autocorrelation, the original MK test was used to analyze the data. In the event that a 
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significant autocorrelation was present in a time series, we adopted the modified versions 

of the original MK test because these modified MK tests have shown that they are more 

powerful and thus, more suitable for data with significant autocorrelation (see the 

following sections for details on the modified MK tests by Hirsch and Slack, 1984; and 

Hamed and Rao, 1998). 

 

2.4. Addressing the Issue of Serial Correlation in Time Series Analysis 

 

Several proposals that attempt to deal with the presence of serial correlation in a 

time series have been made: (1) Prewhitening method by Kulkarni and von Storch (1995); 

(2) modified MK test by Hirsch and Slack (1984); (3) and modified MK test by Hamed 

and Rao (1998). These are discussed in the following sections. 

 

2.4.1. Prewhitening Method  

 

Kulkarni and von Storch (1995) proposed the prewhitening method to remove the 

autocorrelation from a dataset. A commonly used correlation coefficient (i.e., correlation 

coefficient between the value of the time series at time t and its value at time t-1) in 

determining whether an autocorrelation is present in a dataset is the lag-1 autocorrelation 

coefficient. If the calculated lag-1 autocorrelation coefficients of a time series is 

significant at a pre-specified significance level (e.g. the 5% level), the autocorrelation is 

eliminated through prewhitening procedures (before applying the MK trend) by assuming 

that the time series’ autocorrelation is an AR(1)-process. An autoregressive process of 

first order or an AR(1)-process is removed or reduced by subtracting the observation at 

time t-1 (that has been multiplied with its estimated autocorrelation at lag-1) from the 

observation at time t (Kulkarni and von Storch, 1995). This is done in order to create a 

time series that is independently sampled and identically distributed (iid). Kulkarni and 

von Storch (1995) used Monte Carlo simulations on 1000 prewhitened time series (with 

an AR (1) process originally) and with α = 5%, the prewhitening procedures produced 

rejection rates of the correct null hypothesis that are very close to the α value. Kulkarni 

and von Storch (1995) noted that the prewhitening method is not powerful for data with 
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large autoregressive coefficient (α) values or when the length of the time series is short. 

The prewhitening method has been used in Zhang et al. (2001); Burn and Hag Elnur 

(2002); and Mohsin and Gough (2010), among others.  

Yue and Wang (2002) evaluated the effectiveness of the pre-whitening procedure 

through a simulation process using the estimation of the first order autocorrelation 

coefficient produced by a Markov process that was coupled with trends. They found that 

the pre-whitening procedure is not fully effective in removing the effect of 

autocorrelation in the data when later detecting trends via the M-K test (commonly used 

on pre-whitened data), when the sequence of records do in fact show trending 

observations (Yue and Wang, 2002). Additionally, Yue at al. (2002b) also noted that by 

removing the positive serial correlation from the time series through the pre-whitening 

method, the magnitude of the trends that may be present in the series is reduced, and 

some of the trend components are also removed. On the other hand, removing the 

negative serial correlation using the same procedure may enhance the magnitude of the 

existing trends (Yue et al., 2002b). Therefore, the use of the pre-whitening procedure 

may lead to incorrect interpretations (Yue et al., 2002b), and was therefore not used in 

this study.  

 

2.4.2. Seasonal Kendall Test for Seasonal Data with or without Significant 

Autocorrelations 

 

The initial modification to the original MK test to remove the effect of seasonality 

in a time series was proposed by Hirsch et al. (1982). The effect of seasonality was 

removed by dividing the data into separate categories, and the MK trend test is then 

performed on the sum of the statistics from each season (Hirsch et al., 1982). This test 

however, does not solve the autocorrelation issue because the effect of serial dependence 

within the same season still exists (Yue et al., 2002b). 

Hirsch and Slack (1984) then proposed an extension to this seasonal MK test, 

which would be robust against autocorrelation in a time series. The ranks of the data 

values are ordered for each season and the MK test statistic for each season is calculated. 

In order to calculate the variance of the seasonal Kendall statistics, the value of the 
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covariance is not taken to be zero. Instead, the covariance is estimated using a consistent 

estimator defined by Dietz and Killen (1981) (Dietz and Killeen, 1981; Hirsch and Slack, 

1984) – sections 3.2.2.2 and 4.2.3.1 provide the equation for this estimator. However, in 

the event that there are neither missing values nor tied values, the Spearman’s correlation 

coefficients can be used to calculate the covariance (Lehman 1975; Conover, 1980; 

Hirsch and Slack, 1984). Although this modified version of the MK test is more powerful 

that the original MK for use with data exhibiting serial correlation, Hirsch and Slack 

(1984) noted that this test is not powerful when there is a strong long-term persistence in 

the dataset or when the length of records is very short (five years worth of data). Since 

the datasets used in this study are at least 40 years in length and many of them show 

patterns of semi-annual and/or annual cycles, this test is adopted when the analyzed time 

series show patterns of seasonality with or without the existence of a significant 

autocorrelation. 

 

2.4.3. A Modified Mann-Kendall (MK) Test for Data with Serial Correlation 

 

 Hamed and Rao (1998) proposed a modified MK test that modifies the variance 

of the MK test statistics for datasets exhibiting autocorrelation. They first demonstrated 

how the original MK test found a significant trend on a time series with an AR(1) process 

(ϕ = 0.4), when in fact the trend is only due to the effects between observations in that 

dataset. This is because the presence of significant positive autocorrelation 

underestimates the variance used to calculate the original MK test statistic. Hamed and 

Rao (1998) established a theoretical relationship that is used to calculate the variance of 

the MK test statistics when a significant autocorrelation is present in a dataset. The 

autocorrelation between the ranks of the data values is calculated first and then it is 

transformed to normalized data autocorrelation. From this, the variance of the MK test 

statistic is then calculated, which will not depend on the distribution of data. However, if 

there are a large number of observations in the dataset, the computational time may 

become an issue. To deal with this, an approximation formula to calculate the variance of 

S was developed by considering a correction factor for the autocorrelation found in the 

data. This correction factor is the autocorrelation function between the ranks of 
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observations. The empirical approximation formula was verified using numerical 

simulation. Empirically, Hamed and Rao (1998) found that this modified test is more 

powerful compared to the original MK test when an autocorrelation is present in the data. 

Since some of the datasets used in this study exhibit significant lag-1 autocorrelation, this 

modified version of the MK test is used in the data analysis of such data. 

 

2.5. Wavelet Transform in Hydroclimatic Studies and its Applications 

 

The use of WT acts as an effective method for analyzing and synthesizing the 

variable structure of a signal in time. WT is used in order to isolate different periodicities 

embedded in a time series and closely examine the composition of a signal (Piŝoft et al., 

2004; Prokoph and Patterson, 2004; Zume and Tarhule, 2006). It can identify 

components that may be considered important in a signal, at their exact temporal location, 

which otherwise may not be clearly detected by the use of regular statistical tests alone 

(Drago and Boxall, 2002). This is one of the most obvious strengths of the WT because it 

gives a more complete picture of the dynamics contained in the signal being analyzed. 

The use of wavelets has been applied in fields such as astronomy, geophysics, 

medical research, signal and image processing, image compressing, and tongue encoding 

(Santos et al., 2001; Wang et al., 2011). However, the use of WT in hydrology and 

climatology is still relatively rare even though it clearly has advantages over the classical 

Fourier analysis (Lau and Weng, 1995; Kim, 2004; Labat, 2005). Studies that have 

applied the WT approach in analyzing hydroclimatic time series have found it to be 

effective because it uncovers otherwise hidden phenomena in the time series (e.g. Partal 

and Küçük, 2006; Adamowski et al., 2009).  

The fundamental wavelet functions used in WT can localize time and frequency 

components of a signal simultaneously and also conserve the temporal features and 

periodic cycle patterns of a series without assuming stationarity, which makes WT an 

ideal tool for hydrologic related time-series analyses because climate and hydrology 

generally have a non-stationary nature. Wavelets can be stretched and translated into 

different resolutions in both frequency and time (Kim, 2004). The advantage of this is 

that it allows the observed time series to be transformed into wavelet coefficients 
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according to time and scale simultaneously. The wavelet coefficients can then be utilized 

in analyzing the long-term fluctuations (i.e. trends), or in the reconstruction of signals 

that are of interest (Adamowski et al., 2009). Not only are the dominant modes or 

periodicities revealed, but also how they have fluctuated in time (Torrence and Compo, 

1998).  

The application of the wavelet transform can be achieved in two ways: the 

continuous wavelet transform (CWT) and the discrete wavelet transform (DWT). In 

CWT, the analysis can be accomplished at all scales, and thus, all frequencies are 

detected (Adamowski et al., 2009). With DWT, the analysis is carried out in the dyadic 

scales (i.e. integer powers of two) (Chou, 2007). As such, the advantage of DWT lies in 

its ability to conserve the amount of information in the signal that is needed (Kulkarni, 

2000) by removing some redundancy of information in the wavelet coefficients; hence, it 

can more precisely distinguish the signal processes (Daubechies, 1992). In the DWT, 

signals are passed through high-pass and low-pass filters – this process produces detail 

and approximation coefficients. This process is repeated until the pre-determined number 

of decomposition levels has been reached (at each successive level of decomposition, the 

signal is down-sampled by a factor of 2) (Chaovalit et al., 2011). The approximation 

component of the last decomposition level resulting from the DWT application carries the 

most important information – which is referred to as data reduction (Chaovalit et al., 

2011). This is also an advantage of using the DWT instead of the CWT. Furthermore, 

signal reconstructions in DWT can be accomplished in a straightforward manner and 

usually the reconstruction is perfect (by up-sampling procedures), whereas signal 

reconstructions in CWT are complicated due to edge effects (Adamowski et al., 2009). 

Even so, both CWT and DWT have been employed in a variety of hydroclimatic studies. 

The use of CWT to study the variability of hydroclimatic data was explored by a number 

of authors such as: Gaucherel, 2002; Anctil and Coulibaly, 2004; Coulibaly and Burn, 

2004; Kim, 2004; Piŝoft et al., 2004; Zume and Tarhule, 2006; Adamowski et al., 2009; 

Kravchenko et al., 2011; Subash et al., 2011, etc. The use of DWT in examining the 

variability of several different hydroclimatic data has been performed in studies by 

Kulkarni, 2000; Drago and Boxall, 2002; Xu et al., 2009; Partal, 2010, among others. 
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2.5.1. Examples of Applications of Wavelet Transform on Temperature Data 

 

The WT technique has been applied to different temperature indices in order to 

detect trends and analyze the variability of different time scales contained in a time series. 

In this section, several examples are detailed in order to highlight the advantages of 

employing the WT technique as a part of a time series analysis.  

Piŝoft et al. (2004) analyzed trends and oscillations in the mean monthly 

temperature time series in the Czech Republic on four data sets: Prague-Klementinum 

(1775-2001), Brno (1848-2001), Mt Mileŝovka (1905-2001) and the gridded temperature 

(1901-2001) for the entire country. After taking the difference between the original series 

and the inverse of the WT, a positive trend in temperature was very obvious for every 

time series set. It also provided an idea of when specific events occur. For the Prague and 

Brno series, it was shown that temperatures started to increase around 1850 and 1890, 

respectively. For the gridded Czech series, temperatures started to rise in the 1970s. The 

wavelet power spectra (between 1930 and 2001) showed very noticeable oscillations 

centered around 8 and 12-14 years for all series. Apart from the relation of the 

temperature increase with anthropogenic-related factors, the increase has also been 

associated with atmospheric variability such as NAO cycles (Piŝoft and Kalvova, 2003). 

Oh et al. (2003) also argued that the increasing trend observed in northern 

hemisphere temperature has not only been caused by anthropogenic influences and 

natural variations in the climate as generally recognized, but could result partly from 

contributions of external forcing mechanisms such as volcanism and solar radiation 

activities. The application of the WT on solar activity data revealed strong oscillation 

around 85.3 and 10.9 years, which are very close to two classical solar modes: 85-year 

Gleissberg and 11-year sunspot cycle. The WA also revealed that during 1610-1960, 

there was a strong correlation between the solar forcing and the temperature at the low-

frequency scale (i.e. 85.3 years), but not so much at the high-frequency scale (i.e. 11 

years). This suggests that the temperature data used may not be very sensitive to the high 

frequency variations of solar activity. Although the climate system is undoubtedly a 

complex system, it can be seen that WT can be used as a tool to reveal hidden phenomena 
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in climate variability at different temporal scales that otherwise would be hidden by the 

strong background noise in the climate system (Piŝoft et al., 2004). 

WT has also been used in studies to detect the effects of anthropogenic-related 

activities. Prokoph and Patterson (2004) assessed temperature trends by comparing 

Ottawa (urban location) and two rural areas: Maniwaki, Quebec and Morrisburg, Ontario. 

The WT was used to describe the path of the trends over time because the time series 

may have abrupt jumps, temporal discontinuities, long wavelengths, and non-stationary 

high amplitude signals. This resulted in the recognition of four different temperature 

regimes, divided by abrupt changes: (i) 1890-1937 was characterized by non-periodic 

patterns of cycles with fluctuating wavelengths (e.g. 5.5 and 8 years), and short-term 

influences on temperature; (ii) 1937-1971 was characterized by 2-year cycles and low 

variation in temperatures; (iii) 1971-1989 was characterized by low temperature 

variability with high frequency cycles of about 2 years; (iv) Post 1989 was characterized 

by high temperature variations, as well as high cycle variations (e.g. 1.8, 3.7, 12 years 

wavelength). This clearly demonstrates how the WT was able to detect changes in trends 

including their periodic cycles, and the non-stationarities at different temporal scales in 

the time series data. Using regression, Prokoph and Patterson (2004) found that the 

temperature increase in Ottawa was 0.0138
o
C per year, in comparison to the rural stations, 

which had relatively unchanged temperature profiles. Finally, the results of the wavelet 

analysis revealed that the warming trend in Ottawa occurred mainly in multidecadal and 

interseasonal cycles, which are thought to be related with the heat island effects. 

Similarly, urbanization in the Greater Toronto Area (GTA) over the last several 

decades was thought to be one of the contributing factors that produced increasing trends 

in the annual mean temperature series (Mohsin and Gough, 2010). Using WA and the 

sequential M-K test, Mohsin and Gough (2010) were able to reveal that increasing 

temperature trends in urban and suburban stations began around the 1920s and continued 

until the 1960s.  

There have not been any studies that exclusively explored the use of the DWT 

technique and combined it with the Mann-Kendall trend test (especially using its 

modified version to account for seasonality and/or autocorrelation factors in a time series). 

Therefore, the application of these two approaches is very new.    
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2.5.2. Examples of Applications of Wavelet Transform on Precipitation and 

Streamflow Data 

 

The applications of the WT on different types of streamflow and precipitation 

data have been accomplished in a number of studies. Here we present examples aiming 

primarily to illustrate the usefulness of the WT technique.  

Santos et al. (2001) successfully applied the CWT to analyze the monthly total 

precipitation in Matsuyama city in Japan. They found strong peaks centered around 8-16 

months, which can also indicate periods of dry and wet years. An interesting point of the 

study was to show that results from previous studies using classical statistical analysis 

that concluded low-frequency periodicities (at 32 and 128 months) were important, are in 

fact misleading. Xu et al. (2009) analyzed trends in precipitation by focusing on the 

temporal variability of the 4-, 8-, and 16-year periodicities. This enabled them to see that 

generally the trends were positive and other important features of each periodic mode 

such as some turning points and amplitude of the fluctuations over time were also able to 

be observed.   

Long-term trend extraction in streamflow was studied by Adamowski et al., (2009) 

by means of CWT.  Using CWT, Adamowski et al. (2009) developed a new technique for 

long-term trend detection and estimation that can be used for hydroclimatic variables, 

which may contain discontinuities, multiple signals, and a mix of positive and negative 

trends. This method aimed to reconstruct signals of just a few periodic wavebands that 

are deemed important for trend reconstructions, and to correct the edge effect (associated 

with using CWT). The reconstruction technique for long-term trend determination of just 

the important periodicities was applied to several streamflow datasets in Canada. For 

example, for the Belly River station near Mountain View, Alberta, semiannual (at 4-6 

months) and annual (at 10-13 months) periodic wavebands were strongly dominating the 

data. With the edge effect correction, it was found that the annual and semiannual 

periodic components are much stronger compared to the low-frequency periodic 

wavebands. This illustrates how the use of CWT is able to identify and remove high-

frequency variability in order to extract the trend. When the multi-decadal variability (55-

year periodicity) was reconstructed, it was seen that it correlated with the Pacific Decadal 
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Oscillation (PDO) and North Atlantic Oscillation (NAO) cycles (Adamowski et al., 2009). 

Anctil and Coulibaly (2004) also used wavelet analysis to study the interannual 

variability of streamflow in southern Quebec and found a correlation in the waveband of 

2-3 years with the Pacific-North America (PNA) index since 1970. In contrast, Kim 

(2004) discounted the effects of large teleconnection patterns in precipitation variability 

over northern California. Using wavelet analysis, Kim (2004) separated the short, 

medium, and long periodic components of total precipitation in northern California 

(1905-2001). They found that after 1945, the behavior of these different components is 

different, and a new local maximum was identified. Kim (2004) believed that the positive 

trends in precipitation in northern California is caused by the effect of very low-

frequency and multi-decadal periodicities.      

Partal and Küçük (2006) used the WT technique to analyze the non-stationary 

characteristics and trends in Turkish precipitation data from Çanakkale, Balikersier, and 

Siirt stations. The CWT was applied to the original data to obtain general information 

about the periodic structure of the data. Using the DWT, the data were then decomposed 

into dyadic scales (from 2 – 32 years). With such a multi-resolution analysis, properties 

of the sub-series, such as its monthly and annual periods can be seen more clearly than in 

the original signal especially for trends. Common decadal events of 18 – 28 years were 

found to be important for producing trends for both Çanakkale and Balikersier stations, 

which are situated within the same region. An application of the WT on datasets from a 

different region (Siirt station) revealed that the DW2 component, which represents the 4-

year periodic mode, was responsible in producing the real trend (Partal and Küçük, 2006).  

Partal (2010) also employed the DWT to study trends in Turkish streamflow 

series from four stations: three stations in Sakarya Basin and one station in Sehyan Basin. 

All time series were decomposed into four decomposition levels (2 – 16 years). For all 

stations in the Sakarya Basin, the 16-year periodicity was found to be most important 

component that affects streamflow trends in the basin. The 16-year component had the 

highest correlation coefficient and the nearest trend value to the original data. When the 

method was applied to the Sehyan basin, it showed that the dominant periodic component 

was different – the 8-year periodicity was found to be the dominant mode. This suggests 

that dominant periodic components, responsible for producing a real trend, are different 
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for different climatic regions in Turkey. The findings of Partal and Küçük (2006) and 

Partal (2010), which found that the use of WT is able to consistently identify the periodic 

mode that affects trends within the same region or basin, affirms how WT can extract 

information in a time series that is not obvious in the raw data.  

Zume and Tarhule (2006) used the CWT and the Mann-Kendall trend test to 

analyze precipitation and streamflow trends in northwestern Oklahoma, USA over the 

period 1894-2003. They were able to illustrate how the use of CWT enables the analysis 

of data where anthropogenic impacts (in this case: ground water extraction) were 

superimposed on the variability of natural phenomenon (such as El Niño–Southern 

Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). This is done by analyzing 

the temporal distribution of peaks of the power spectrum produced by the CWT and 

correlating the data used with the large teleconnection patterns.   

To date, only Partal and Küçük (2006) and Partal (2010) have exclusively 

employed the DWT and the original MK test in order to detect trends in precipitation and 

streamflow. In this present study, we will extend this new approach to include testing for 

serial correlation and the use of different types of the MK test depending on the 

characteristics of the analyzed data – this approach is new, especially in the context of 

Canadian studies.     

  

2.6. References 

 

Adamowski, K., Bougadis, J., 2003. Detection of trends in annual extreme rainfall. 

Hydrological Processes, 17(18): 3547-3560. 

Adamowski, K., Prokoph, A., Adamowski, J., 2009. Development of a new method of 

wavelet aided trend detection and estimation. Hydrological Processes, 23(18): 

2686-2696. 

Ampitiyawatta, A.D., Guo, S., 2009. Precipitation trends in the Kalu Ganga Basin in Sri 

Lanka. The Journal of Agricultural Science, 4(1): 10-18. 

Anctil, F., Coulibaly, P., 2004. Wavelet analysis of the interannual variability in southern 

Québec streamflow. Journal of Climate, 17(1): 163-173. 

 



36 
 

Andreas, E.L., Treviño, G., 1997. Using wavelets to detect trends. Journal of 

Atmospheric and Oceanic Technology, 14(3): 554-564. 

Arnell, N.W., 1999. Climate change and global water resources. Global Environmental 

Change, 9(1): 31-49. 

Arora, V.K., Boer, G.J., 2001. Effects of simulated climate change on the hydrology of 

major river basins. Journal of Geophysical Research, 106(D4): 3335-3348. 

Askew, A.J., 1987. Climate change and water resources. IAHS Publication, 168: 421-430. 

Beyene, T., Lettenmaier, D., Kabat, P., 2010. Hydrologic impacts of climate change on 

the Nile River Basin: Implications of the 2007 IPCC scenarios. Climatic Change, 

100(3): 433-461. 

Birsan, M.-V., Molnar, P., Burlando, P., Pfaundler, M., 2005. Streamflow trends in 

Switzerland. Journal of Hydrology, 314(1–4): 312-329. 

Bonsal, B.R., Prowse, T.D., Duguay, C.R., Lacroix, M.P., 2006. Impacts of large-scale 

teleconnections on freshwater-ice break/freeze-up dates over Canada. Journal of 

Hydrology, 330 (1–2): 340-353. 

Boyer, C., Chaumont, D., Chartier, I., Roy, A.G., 2010. Impact of climate change on the 

hydrology of St. Lawrence tributaries. Journal of Hydrology, 384(1–2): 65-83. 

Burn, D.H., 1994. Hydrologic effects of climatic change in west-central Canada. Journal 

of Hydrology, 160(1–4): 53-70. 

Burn, D.H., Hag Elnur, M.A., 2002. Detection of hydrologic trends and variability. 

Journal of Hydrology, 255(1–4): 107-122. 

Burn, D.H., Sharif, M., Zhang, K., 2010. Detection of trends in hydrological extremes for 

Canadian watersheds. Hydrological Processes, 24(13): 1781-1790. 

Caloiero, T., Coscarelli, R., Ferrari, E., Mancini, M., 2011. Trend detection of annual and 

seasonal rainfall in Calabria (Southern Italy). International Journal of Climatology, 

31(1): 44-56. 

Chaouche, K., Neppel, L., Dieulin, C., Pujol, N., Ladouche, B., Martin, E., Salas, D., 

Caballero, Y., 2010. Analyses of precipitation, temperature and 

evapotranspiration in a French Mediterranean region in the context of climate 

change. Comptes Rendus Geoscience, 342(3): 234-243. 

 



37 
 

Chaovalit, P., Gangopadhyay, A., Karabatis, G., Chen, Z., 2011. Discrete wavelet 

transform-based time series analysis and mining. ACM Comput. Surv., 43(2): 1-

37. 

Chingombe, W., Gutierrez, J.E., Pedzisai, E., Siziba, E., 2005. A study of hydrological 

trends and variability of Upper Mazowe Catchment-Zimbabwe. Journal of 

Sustainable Development in Africa, 7(1): ISSN:1520-550 Fayetteville State 

University, Fayetteville, North Carolina. 

Chou, C.-m., 2007. Applying multi-resolution analysis to differential hydrological grey 

models with dual series. Journal of Hydrology, 332(1–2): 174-186. 

Clark, J.S., Yiridoe, E.K., Burns, N.D., Astatkie, T., 2000. Regional climate change: 

Trend analysis of temperature and precipitation series at selected canadian sites. 

Canadian Journal of Agricultural Economics, 48(1): 27-38. 

Cluis, D., Langlois, C., Coillie, R., Laberge, C., 1989. Development of a software 

package for trend detection in temporal series: Application to water and industrial 

effluent quality data for the St. Lawrence River. Environmental Monitoring and 

Assessment, 13(2): 429-441. 

Coats, R., 2010. Climate change in the Tahoe basin: Regional trends, impacts and drivers. 

Climatic Change, 102(3): 435-466. 

Conover, W.J., 1980. Practical nonparametric statistics, 2nd ed., John Wiley, New York, 

1980. 

Coulibaly, P., Burn, D.H., 2004. Wavelet analysis of variability in annual Canadian 

streamflows. Water Resources Research, 40(3): W03105. 

Croley, T.E. (2003). Great Lakes climate change hydrological impact assessment, IJC 

Lake Ontario—St. Lawrence River regulation study. (NOAA Tech. Memo. 

GLERL-126). Ann Arbor, Michigan: Great Lakes Environmental Research 

Laboratory. 

Cunderlik, J.M., Burn, D.H., 2004. Linkages between regional trends in monthly 

maximum flows and selected climatic variables. J. Hydrol. Eng., 9(4): 246-256. 

Dai, A., Trenberth, K.E., Karl, T.R., 1998. Global variations in droughts and wet spells: 

1900-1995. Geophys. Res. Lett., 25(17): 3367-3370. 

 



38 
 

Damyanov, N.N., Matthews, H.D., Mysak, L.A., 2012. Observed decreases in the 

Canadian outdoor skating season due to recent winter warming Environmental 

Research Letters, 7(1): 014028. 

Daubechies, I., 1992. Ten lectures on wavelets. Philadelphia: SIAM. 

De Jongh, I.L.M., Verhoest, N.E.C., De Troch, F.P., 2006. Analysis Of A 105-year time 

series of precipitation observed at Uccle, Belgium. International Journal of 

Climatology, 26(14): 2023-2039. 

Déry, S.J., Wood, E.F., 2005. Decreasing river discharge in northern Canada. Geophys. 

Res. Lett., 32(10): L10401. 

Di Stefano, C., Ferro, V., Porto, P., 2000. Applying the bootstrap technique for studying 

soil redistribution by caesium-137 measurements at basin scale. Hydrological 

Sciences Journal, 45(2): 171-183. 

Dietz, E.J., Killeen, T.J., 1981. A nonparametric multivariate test for monotone trend 

with pharamaceutical applications. Journal of the American Statistical 

Association, 76(373): 169-174. 

Douglas, E.M., Vogel, R.M., Kroll, C.N., 2000. Trends in floods and low flows in the 

United States: Impact of spatial correlation. Journal of Hydrology, 240(1–2): 90-

105. 

Drago, A.F., Boxall, S.R., 2002. Use of the wavelet transform on hydro-meteorological 

data. Physics and Chemistry of the Earth, 27(32–34): 1387-1399. 

Durdu, Ö.F., 2010. Effects of climate change on water resources of the Büyük Menderes 

River Basin, western Turkey. Turk. J. Agric. For., 34(4): 319-332. 

Fu, C., James, A.L., Wachowiak, M.P., 2012. Analyzing the combined influence of solar 

activity and El Niño on streamflow across southern Canada. Water Resour. Res., 

48(5): W05507. 

Gaucherel, C., 2002. Use of wavelet transform for temporal characterisation of remote 

watersheds. Journal of Hydrology, 269(3): 101-121. 

Goodwin, D.A., 2008. Wavelet analysis of temporal data. Dissertation, Department of 

Statistics, The University of Leeds, Leeds, UK. 

Hamed, K.H., 2008. Trend detection in hydrologic data: The Mann–Kendall trend test 

under the scaling hypothesis. Journal of Hydrology, 349(3–4): 350-363. 



39 
 

Hamed, K.H., Rao, A.R., 1998. A modified Mann-Kendall trend test for autocorrelated 

data. Journal of Hydrology, 204(1–4): 182-196. 

Hamlet, A.F., Mote, P.W., Clark, M.P., Lettenmaier, D.P., 2005. Effects of temperature 

and precipitation variability on snowpack trends in the western United States. 

Journal of Climate, 18: 4546-4561. 

Helsel, D.R., 1987. Advantages of nonparametric procedures for analysis of water quality 

data. Hydrological Sciences Journal, 32(2): 179-190. 

Hipel, K.W., McLeod, A.I., 1994. Time series modelling of water resources and 

environmental systems. Elsevier, Amsterdam. ISBN 0-444-89270-2, 1013 pp. 

Hirsch, R.M., Slack, J.R., 1984. A nonparametric trend test for seasonal data with serial 

dependence. Water Resources Research, 20(6): 727-732. 

Hirsch, R.M., Slack, J.R., Smith, R.A., 1982. Techniques of trend analysis for monthly 

water quality data. Water Resources Research, 18(1): 107-121. 

Huntington, T.G., 2006. Evidence for intensification of the global water cycle: Review 

and synthesis. Journal of Hydrology, 319(1–4): 83-95. 

IPCC. 2007. Climate change 2007: the fourth IPCC scientific assessment. In: M.L. Parry,  

O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson (eds). 

Intergovernmental Panel on Climate Change. Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA. 

Jackson, R. B., Carpenter, S. R., Dahm, C. N., McKnight, D. M., Naiman, R. J., Postel, S. 

L., Running, S. W, 2001. Issues in ecology: Water in a changing world. 

Ecological Applications, 11(4): 1027-1045. 

Johnson, R.A. (2000). Miller & Freund’s probability and statistics for engineers, Prentice  

Hall, Upper Saddle River, New Jersey. 

Jones, N.K., 2008. On the impact of recent climate change on seasonal floods—A case 

study from a river basin in southern Quebec. Canadian Water Resources Journal, 

33(1): 55-72. 

Kahya, E., Kalaycı, S., 2004. Trend analysis of streamflow in Turkey. Journal of 

Hydrology, 289(1–4): 128-144. 

Kallache, M., Rust, H.W., Kropp, J., 2005. Trend assessment: applications for hydrology 

and climate research. Nonlinear Processes in Geophysics, 12(2): 201-210. 

http://www.cambridge.org/features/earth_environmental/climatechange/wg2.htm


40 
 

Kendall, M.G., 1975. Rank Correlation Methods. Charles Griffin, London. 

Kim, S., 2004. Wavelet analysis of precipitation variability in northern California, U.S.A. 

KSCE Journal of Civil Engineering, 8(4): 471-477. 

Kirkup, H., Pitman, A.J., Hogan, J., Brierley, G., 2001. An initial analysis of river 

discharge and rainfall in coastal New South Wales, Australia using wavelet 

transforms. Australian Geographical Studies, 39(3): 313-334. 

Koutsoyiannis, D., Montanari, A., 2007. Statistical analysis of hydroclimatic time series: 

Uncertainty and insights. Water Resour. Res., 43(5): W05429. 

Kravchenko, V.O., Evtushevsky, O.M., Grytsai, A.V., Milinevsky, G.P., 2011. Decadal 

variability of winter temperatures in the Antarctic Peninsula region. Antarctic 

Science, 23(6): 614-622. 

Kulkarni, A., von Storch, H., 1995. Monte Carlo experiments on the effect of serial 

correlation on the Mann-Kendall test of trend. Meteorol. Z., 4(2): 82-85. 

Kulkarni, J.R., 2000. Wavelet analysis of the association between the Southern 

Oscillation and the Indian summer monsoon. International Journal of Climatology, 

20(1): 89-104. 

Kundzewicz, Z.W., Robson, A.J., 2004. Change detection in hydrological records—A 

review of the methodology. Hydrological Sciences Journal, 49(1): 7-19. 

Labat, D., 2005. Recent advances in wavelet analyses: Part 1. A review of concepts. 

Journal of Hydrology, 314(1–4): 275-288. 

Lahmer, W., Pfützner, B., Becker, A., 2001. Assessment of land use and climate change 

impacts on the mesoscale. Physics and Chemistry of the Earth, Part B: Hydrology, 

Oceans and Atmosphere, 26(7–8): 565-575. 

Lau, K.M., Weng, H., 1995. Climate signal detection using wavelet transform: How to 

make a time series sing. Bulletin of the American Meteorological Society, 76(12): 

2391-2402. 

Lehman, E.L., 1975. Nonparametrics: Statistical methods based on ranks, Holden-Day, 

San Francisco. 

Lemaitre, F., 2002. Recensement des tests de de´ tection de tendances ou de ruptures 

adapte´s a` l’analyse de stationnarite´ des re´gimes de crues en France. Travail de 

fin d’e´ tude. ENTPE, Cemagref Lyon, 94 p. 



41 
 

Lettenmaier, D.P., 1988. Multivariate nonparametric tests for trend in water quality. 

JAWRA Journal of the American Water Resources Association, 24(3): 505-512. 

Lins, H.F., Slack, J.R., 1999. Streamflow trends in the United States. Geophys. Res. Lett., 

26(2): 227-230. 

Liu, D., Chen, X., Lian, Y., Lou, Z., 2010. Impacts of climate change and human 

activities on surface runoff in the Dongjiang River Basin of China. Hydrological 

Processes, 24(11): 1487-1495. 

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica, 13(3): 245-259. 

McBean, E., Motiee, H., 2006. Assessment of impacts of climate change on water 

resources – A case study of the Great Lakes of North America. Hydrology and 

Earth System Sciences Discussions, 3(5): 3183-3209. 

McLeod, A.I., Hipel, K.W., Bodo, B.A., 1991. Trend analysis methodology for water 

quality time series. Environmetrics, 2(2): 169-200. 

Mohsin, T., Gough, W., 2010. Trend analysis of long-term temperature time series in the 

Greater Toronto Area (GTA). Theoretical and Applied Climatology, 101(3): 311-

327. 

Nicholls, N. et al., 1996. Observed climate variability and change. In Climate Change 

1995: The Science of Climate Change, 132-192, (Eds J. T. Houghton, L. G. M. 

Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell), Cambridge 

University Press, Cambridge, UK. 

Oh, H.-S., Ammann, C.M., Naveau, P., Nychka, D., Otto-Bliesner, B.L., 2003. Multi-

resolution time series analysis applied to solar irradiance and climate 

reconstructions. Journal of Atmospheric and Solar-Terrestrial Physics, 65(2): 191-

201. 

Önöz, B., Bayazit, M., 2003. The power of statistical tests for trend detection. Turkish 

Journal of Engineering & Environmental Sciences, 27(4): 247. 

Oreskes, N., 2004. The scientific consensus on climate change. Science, 306(5702): 1686. 

Partal, T., 2010. Wavelet transform-based analysis of periodicities and trends of Sakarya 

basin (Turkey) streamflow data. River Research and Applications, 26(6): 695-711. 

 

 



42 
 

Partal, T., Küçük, M., 2006. Long-term trend analysis using discrete wavelet components 

of annual precipitations measurements in Marmara region (Turkey). Physics and 

Chemistry of the Earth, 31(18): 1189-1200. 

Payne, J.T., Wood, A.W., Hamlet, A.F., Palmer, R.N., Lettenmaier, D.P., 2004. 

Mitigating the effects of climate change on the water resources of the Columbia 

River Basin. Climatic Change, 62: 233-256. 

Pekarova, P., Pekar, J., 2007. Teleconnections of inter-annual streamflow fluctuation in 

Slovakia with Arctic Oscillation, North Atlantic Oscillation, Southern Oscillation, 

and Quasi-Biennial Oscillation phenomena. Advances in Atmospheric Sciences, 

24(4): 655-663. 

Percival, D.B., Walden, A.T., 2000. Wavelet methods for time series analysis. Cambridge 

University Press, Cambridge, UK. 

Pišoft, P., Kalvová, J., 2003. Climate quantities interconnections and the wavelet 

transform of secular meteorological time series. . In WDS'03 Proceedings of 

Contributed Papers: Part III - Physics, Safrankova J (ed.). Matfyzpress: Prague: 

556-561. 

Pišoft, P., Kalvová, J., Brázdil, R., 2004. Cycles and trends in the Czech temperature 

series using wavelet transforms. International Journal of Climatology, 24(13): 

1661-1670. 

Prokoph, A., Patterson, R.T., 2004. Application of wavelet and regression analysis in 

assessing temporal and geographic climate variability: Eastern Ontario, Canada as 

a case study. Atmosphere Ocean, 43(2): 201-212. 

Santos, C.A.G., Galvão, C.d.O., Suzuki, K., Trigo, R.M., 2001. Matsuyama city rainfall 

data analysis using wavelet transform. Annual Journal of Hydraulic Engineering, 

JSCE, 45: 6. 

Shao, Q., Li, Z., Xu, Z., 2010. Trend detection in hydrological time series by segment 

regression with application to Shiyang River Basin. Stochastic Environmental 

Research and Risk Assessment, 24(2): 221-233. 

Simon, J.L., Bruce, P., 1991. Resampling: A tool for everyday statistical work. Chance, 

4(1): 22-32. 

 



43 
 

Smakhtin, V.U., 2001. Low flow hydrology: A review. Journal of Hydrology, 240(3–4): 

147-186. 

Subash, N., Sikka, A., Ram Mohan, H., 2011. An investigation into observational 

characteristics of rainfall and temperature in Central Northeast India—A 

historical perspective 1889–2008. Theoretical and Applied Climatology, 103(3): 

305-319. 

Svensson, C., Kundzewicz, W.Z., Maurer, T., 2005. Trend detection in river flow series: 

2. Flood and low-flow index series. Hydrological Sciences Journal, 50(5): 824. 

Tharme, R.E., 2003. A global perspective on environmental flow assessment: Emerging 

trends in the development and application of environmental flow methodologies 

for rivers. River Research and Applications, 19(5-6): 397-441. 

Timofeev, A., Sterin, A., 2010. Using the quantile regression method to analyze changes 

in climate characteristics. Russian Meteorology and Hydrology, 35(5): 310-319. 

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the 

American Meteorological Society, 79(1): 61-78. 

Trenberth, K.E., 1998. Atmospheric moisture residence times and cycling: Implications 

for rainfall rates and climate change. Climatic Change, 39: 667-694. 

Wang, W., Hu, S., Li, Y., 2011. Wavelet transform method for synthetic generation of 

daily streamflow. Water Resources Management, 25(1): 41-57. 

Wettstein, J.J., Mearns, L.O., 2002. The influence of the North Atlantic–Arctic 

Oscillation on mean, variance, and extremes of temperature in the northeastern 

United States and Canada. Journal of Climate, 15(24): 3586-3600. 

Whitfield, P.H., Wang, J.Y., Cannon, A.J., 2003. Modelling future streamflow 

extremes—Floods and low flows in Georgia Basin, British Columbia. Canadian 

Water Resources Journal, 28(4): 633-656. 

Xu, J., Chen, Y., Li, W., Ji, M., Dong, S., Hong, Y, 2009. Wavelet analysis and 

nonparametric test for climate change in Tarim River Basin of Xinjiang during 

1959-2006. Chinese Geographical Science, 19(4): 306-313. 

Yu, Y.-S., Zou, S., Whittemore, D., 1993. Non-parametric trend analysis of water quality 

data of rivers in Kansas. Journal of Hydrology, 150(1): 61-80. 

 



44 
 

Yue, S., Pilon, P., 2004. A comparison of the power of the t test, Mann-Kendall and 

bootstrap tests for trend detection. Hydrological Sciences Journal, 49(1): 21-37. 

Yue, S., Pilon, P., Cavadias, G., 2002a. Power of the Mann–Kendall and Spearman's rho 

tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 

259(1–4): 254-271. 

Yue, S., Pilon, P., Phinney, B., Cavadias, G., 2002b. The influence of autocorrelation on 

the ability to detect trend in hydrological series. Hydrological Processes, 16(9): 

1807-1829. 

Yue, S., Pilon, P., Phinney, B.O.B., 2003. Canadian streamflow trend detection: Impacts 

of serial and cross-correlation. Hydrological Sciences Journal, 48(1): 51-63. 

Yue, S., Wang, C.Y., 2002. Assessment of the significance of sample serial correlation 

by the bootstrap test. Water Resources Management, 16(1): 23-35. 

Zhang, Q., Xu, C.Y., Zhang, Z., Chen, Y.D., Liu, C.L., 2009. Spatial and temporal 

variability of precipitation over China, 1951-2005. Theoretical and Applied 

Climatology, 95(1-2): 53-68. 

Zhang, X., Harvey, K.D., Hogg, W.D., Yuzyk, T.R., 2001. Trends in Canadian 

streamflow. Water Resources Research, 37(4): 987-998. 

Zhang, Z., Dehoff, A., Pody, R., Balay, J., 2010. Detection of streamflow change in the 

Susquehanna River Basin. Water Resources Management, 24(10): 1947-1964. 

Zume, J., Tarhule, A., 2006. Precipitation and streamflow variability in Northwestern 

Oklahoma, 1894-2003. Physical Geography, 27(3): 189-205. 

 

 

 

 

 

 

 

 

 

 



45 
 

CONNECTING STATEMENT TO CHAPTER 3 

 

Chapters 1 and 2 revealed that a substantial body of evidence suggests that 

surface air temperature has been increasing in many parts of the world. The prevailing 

view is that the measurement of air temperature can be directly related to climate change; 

therefore, its trend assessment is of great importance. Useful methods used to extract 

trend information and its fluctuations from these climatic time series in the presence of 

noise and other stochastic elements are therefore, important to explore.  In light of this, 

chapter 3 focuses on trend detection in surface air temperature time series obtained from 

a total of five stations located in Ontario and Quebec, Canada by applying the discrete 

wavelet transform (DWT) and the Mann-Kendall (MK) trend test. In this chapter, a new 

criterion was proposed and used in the DWT procedure to determine: the number of 

decomposition levels, the type of Daubechies (db) mother wavelet, and the type of 

periodic extension. This new criterion is based on the relative error of the MK Z-values 

between the approximation component of the last decomposition level and the original 

data – it performs better compared to when the mean relative error criterion was used. 

The results of this Chapter have been submitted as a manuscript to the Journal of 

Hydrology. The manuscript has been co-authored by Deasy Nalley, Jan Adamowski, and 

Bahaa Khalil. 
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CHAPTER 3 – TREND DETECTION IN SURFACE AIR TEMPERATURE IN 

ONTARIO AND QUEBEC (1967 – 2006) USING THE DISCRETE WAVELET 

TRANSFORM 

 

Deasy Nalley, Jan Adamowski, Bahaa Khalil 

 

Abstract: 

 

This main purpose of this paper is to detect trends in surface air temperature over 

southern parts of Ontario and Quebec, Canada, for the period 1967-2006. More 

specifically, this paper aims to determine the most dominant periodic components that 

affect trends in different categories of temperature data: monthly, seasonally-based, 

seasonal (winter, spring, summer, and autumn), and annual time series, obtained from a 

total of five stations. In this study, the trend detection procedures involve the use of the 

discrete wavelet transform (DWT) technique, the Mann-Kendall (MK) trend test, and the 

sequential Mann-Kendall analysis – the combination of these procedures are considered 

new in climatic studies and have not been explored extensively. The number of 

decomposition levels, mother wavelet, and boundary condition were determined using the 

newly proposed criterion based on the relative error of the MK Z-values between the 

original data and the approximation component of the last decomposition level. The most 

dominant periodic components that are considered important for trends were determined 

using the sequential MK analysis and the difference in the MK Z-values between the 

detail components and the original data. In this study, it was found that for the higher 

resolution data (i.e. monthly and seasonally-based), high-frequency fluctuations from two 

to twelve months were more prominent for trends. The positive trends observed for the 

annual data are thought to be mostly attributed to warming during winter and summer 

seasons, which are manifested in the form of multiyear to decadal events (mostly between 

8 and 16 years). The use of the DWT is clearly highlighted by its ability to reveal the 

different characteristics in terms of time scale fluctuations of the different types of data 

used. 

 

Keywords: temperature series, trend detection, discrete wavelet transform, Mann-

Kendall trend test 
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3.1. Introduction 

 

According to the latest assessment report by the Intergovernmental Panel on 

Climate Change (IPCC), mean surface air temperature has experienced an increase 

between 0.56
o
C and 0.92

o
C from 1996 to 2005 (IPCC, 2007). The amount of carbon 

dioxide in the atmosphere has also increased by approximately 35% since the industrial 

revolution; most of this increase can be attributed to a variety of anthropogenic activities, 

especially deforestation and the combustion of fossil fuel (IPCC, 2007).  

Many studies that analyze the impacts of climate variability and climate change 

focus on the trends in surface air temperature. The United Nations Framework 

Convention on Climate Change (UNFCCC) and the IPCC consider air temperature an 

important index when evaluating how the climate has evolved over a long period of time. 

Changes in surface air temperature as a result of changing climate are very important as it 

may have serious ramifications on the hydrological cycle (and therefore, on water 

resources) and the surface energy budget (Vincent et al., 2007). Examples of these 

consequences resulting for temperature rise are: intensification of the hydrological cycle 

(Mishra and Singh, 2010), modification of hydrological indicators such as seasonal 

runoff, precipitation and streamflow, and potential evapotranspiration (Mimikou et al., 

2000; Labat et al., 2004), more severe flood discharges (Ludwig et al., 2004), sea-level 

rise (which has serious implications on the economy and societies in general) (Nicholls 

and Tol, 2006), and increased risks of health-related problems (Karaburun et al., 2011.), 

etc. 

Since global warming is directly linked to temperature, a large number of studies 

examining a variety of temporal and spatial coverage in temperature have been 

undertaken in many different parts of the world to assess its trends and to quantify the 

impacts of increasing temperature. Since climate variability differs from one climatic 

region to another, different findings associated with temperature changes and trends have 

been reported. Even so, most studies conducted in different parts of the world have 

emphasized trends in temperature indices are on the rise. For instance, Shrestha et al. 

(1999) found that the temperature patterns were increasing in Nepal after 1977, with a 

rate of increase ranging from 0.03 to 0.12
o
C per year. Domroes and El-Tantawi (2005) 
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reported upward mean temperature trends in northern Egypt over the period 1941-2000. 

Fan and Wang (2011) studied climate change by looking at the monotonic trends in 

annual and seasonal air temperature indices across Shanxi province in China. They found 

that there has been warming trends both in the mean annual temperature and seasonally, 

over the period 1959-2008. Karaburun et al. (2011) also analyzed the spatiotemporal 

patterns of temperature change in Istanbul, Turkey for the period of 1975 to 2006. In 

general, warmer temperatures were observed for seasonal and annual temperature indices. 

Although many studies found that all seasons showed positive trends, winter usually 

experiences the greatest warming (e.g. Lund et al., 2001; Rebetez and Reinhard, 2007; 

Fan and Wang, 2011). Fan and Wang (2011) observed that winter warming in Shanxi 

province of China was statistically significant at less than 0.1% significance level. 

Rebetez and Reinhard (2007) also found that the greatest warming occurred during winter 

(1975-2004) in Switzerland.  

It has been mentioned that the even though increases in temperature has been 

occurring in both the northern and southern hemispheres, the northern hemisphere has 

been experiencing more warming since the 1950s (Jones and Moberg, 2003; Chaouche et 

al., 2010; Karaburun, 2011). More specifically, North America is expected to experience 

warmer climate, in which the increase in the mean annual temperature could be more 

than the global mean warming in many parts of the world (IPCC, 2007). Moberg et al. 

(2005) analyzed the variation in temperature in the northern hemisphere by 

reconstructing long-term proxy data from tree-ring and sediments in lakes and oceans. 

They found that there has never been any period within the past 2000 years that is as 

warm as post 1990 (Moberg et al., 2005). Lund et al. (2001), who analyzed temperature 

trends during 1922-1996 in 359 stations located across the United States concluded that 

in general, the East and West Coasts, as well as the northern Midwest of the country, 

experienced increasing temperature trends. Lu et al. (2005) completed an extension of 

this study to cover 969 stations. The findings showed that the areas of warming were in 

accordance with those from Lund et al. (2001), but the magnitude of warming was 

slightly higher; all seasons experienced increasing temperature with winter having the 

most warming.  
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Zhang et al. (2000) mentioned that it may be easier to assess climate change in 

countries such as Canada because according to Nicholls et al. (1996), climate change that 

is due to anthropogenic impacts is foreseen to be more severe in high-latitude areas. As 

such, numerous authors have conducted studies on Canadian temperature trends, 

nationally and regionally, because climate change is a cause for concern in Canada. 

These studies include variables such as the mean annual temperature, seasonal 

temperatures, extreme temperatures, and diurnal temperature ranges, among others. At 

the national level it was found that the annual mean temperature has experienced an 

increase of approximately 1
o
C during the last half of the 20th century (Zhang et al., 2000). 

Zhang et al. (2000) provided comprehensive information on Canada’s temperature and 

precipitation trends. Their analysis on the gridded annual mean temperature datasets for 

areas below 60
o
N (for the period 1900-1998) revealed that although trends are not 

monotonic and there are differences regionally, there is a statistically significant increase 

in the mean annual temperature that was caused by the increases before the 1940s and 

after the 1970s. With respect to the different seasons, although all seasons experienced 

significant changes for different temperature parameters, it was noted that spring showed 

the greatest magnitude of temperature rise. Mohsin and Gough (2010) analyzed the 

temperature trends in a smaller spatial scale covering Toronto and the Greater Toronto 

area for the period 1970-2000. Based on linear trend analysis on the annual indices, it 

was concluded that Toronto Pearson exhibited the highest warming trend, which could 

partly be caused by anthropogenic activities (in this case, construction and urbanization). 

Similarly, Prokoph and Patterson (2004) found that the temperature increase in urban 

Ottawa was going up by more than 0.01
o
C per year compared to the nearby rural areas 

over the past 100 years; this warming trend was associated with the growth in population, 

and urban heat island effects.  

Many studies conducted in analyzing trends in temperature involve the use of the 

Mann-Kendall (MK) trend test. This trend test is usually preferred over other statistical 

tests because of its robustness and power. The MK test may be used even if the analyzed 

data does not follow a Gaussian normal frequency distribution (Kadioğlu, 1997). 

Chaouche et al. (2010) chose to employ the MK test in studying climatic indices 

(including temperature) in the context of climate change because they assumed that 
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trends are supposed to be slowly changing phenomena; but even if a break change occurs, 

the MK test is still found to be powerful. Having said this, the results obtained from using 

the original MK test are only accurate when the data being analyzed are free from serial 

correlation (Mohsin and Gough, 2010). Hirsch and Slack (1984) and Hamed and Rao 

(1998) proposed modifications to the original MK test in order to account for seasonality 

and serial correlation factors that may be present in a time series.     

As can be seen, studying trends in temperature associated with global warming is 

of great interest because of its wide range of impacts. When analyzing changes and trends 

in temperature, it is also crucial that information be obtained on how these changes 

fluctuate within different low- and high-frequency time scales, such as interannual, 

decadal, etc. (Baliunas et al. 1997). A spectral analysis method that has been found very 

useful for analyzing geophysical time series (which are often characterized by 

nonstationarity) is the wavelet transform (WT) (Lau and Weng, 1995; Lindsay et al., 

1996).  

Since temperature time series are normally of non-stationary nature, the WT is 

suitable for decomposing such one-dimensional time series into its two-dimensional 

(time-frequency) information (Lau and Weng, 1995; Torrence and Compo, 1998; Piŝoft 

et al., 2004). More specifically, it enables the quantification of how different scales in a 

time series fluctuate over some time intervals – it produces a time-frequency 

representation of a signal in the time domain (Percival and Walden, 2000; Piŝoft et al., 

2004). It has been acknowledged in many studies, that the WT is superior for use in 

analyzing non-stationary data compared to conventional spectral analysis methods, such 

as the Fourier transform (FT). The Fourier transform decomposes signals into sine wave 

functions, which have unlimited duration, whereas the wavelet transform, having 

irregular and non-symmetrical function shape, decomposes signals into wavelet functions 

having limited duration and zero mean (Drago and Boxall, 2002).  

Wavelet transform can be performed using the continuous or discrete modes, both 

of which have been applied in several climatological studies, including studying 

spatiotemporal patterns of temperature changes. Baliunas et al. (1997), for instance, 

employed the WT in order to analyze temperature trends and their time-scale information 

in central England. The results of their WA revealed the dominant periodic modes within 
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the range of 2 to 105, and how their amplitudes have varied over time. WA also allows 

for the determination of whether specific spectra are continuous with respect to time. For 

example, the 7.5-year scale is the most stable peak within the range and the other 

apparent strong time peaks were only dominant during certain time periods (Baliunas et 

al. 1997). Piŝoft et al. (2004) was able to demonstrate that the global wavelet spectrum of 

the continuous wavelet transform (CWT) had better accuracy in determining the years of 

local maxima for the longest time periods of the studied Czech temperature series 

compared to the Fourier transform. The wavelet power was able to reveal different 

features and activities of each periodic component. Similarly, Jung et al. (2002) and 

Prokoph and Patterson (2004) utilized the CWT to analyze the warming trends in the 

winter temperature data in South Korea and Ottawa, respectively. The results of the 

wavelet analysis (WA) for the winter temperature over South Korea revealed that the 

decadal-interdecadal events of 16 and 33 years were strongly persistent during 1954-1999 

(Jung et al., 2002). A slightly weaker inter-annual event of 4.9 years was found to be 

associated with the El Niño cycle (Jung et al., 2002). The results of WA in studying 

urban warming trends in Ottawa, Ontario as compared to the nearby rural areas, revealed 

that multidecadal and interseasonal fluctuations are thought to be the cause of winter 

heating in Ottawa, which is related to the urban heat island (Prokoph and Patterson, 2004). 

The majority of studies that employed WT in investigating trends in temperature 

used the CWT (e.g. Baliunas et al., 1997; Jung et al., 2002; Polyakov et al., 2003; Piŝoft 

et al., 2004; Prokoph and Patterson, 2004; Kravchenko et al., 2011, etc.). This is due to 

the fact that the CWT allows the analysis of data at all locations of time and space (Wang 

and Lu, 2009). However, this causes redundancy in the information produced by the 

CWT because a two-dimensional scalogram is produced rather than a one-dimensional 

time series (Percival, 2008). Furthermore, edge effects associated with the application of 

the CWT complicates signal reconstruction (Adamowski et al., 2009). If the DWT 

approach is chosen the work is simplified and efficient, through a decomposition process 

that is normally computed based on a dyadic discretization (Chou, 2007). This generates 

a compact representation of the analyzed signal (Wang and Lu, 2009) and thus, the 

redundancy of the information is reduced. When using the DWT, achieving perfect signal 

reconstruction is also relatively simple.  
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The main purpose of this study is to analyze trends in four temperature categories 

– monthly, seasonally-based, seasonal, and annual – by combining the use of the DWT 

approach with the MK trend test. The DWT is used to decompose the time series into 

their different lower-resolution components. The MK trend test was then applied to each 

time series resulting from the decomposition in order to check for their statistical 

significance. Sequential MK analysis was also used in determining the most dominant 

periodic modes that affect the trends in the different data types used in this study.  

The use of monthly data in this study allows for the investigation of short-term 

(high-frequency) variations in temperature over the study area. Seasonally-based data 

were used in order to address the seasonality factor encountered in the temperature time 

series – in this study it is seen that the 6-month and 12-month cycles are strongly 

apparent in the monthly time series (see section 3.5). Seasonal and annual data were used 

to investigate the low-frequency events in temperature changes. Additionally, as 

mentioned previously, temperature changes are not only observed in annual datasets, but 

also in different seasons. Karaburun et al. (2011) indicated that positive trends in annual 

data may not show that in some seasons the temperature trends are actually negative. 

Therefore, it is also important to analyze individual seasons separately. Karaburun et al. 

(2011) further emphasized that assessment on global warming should not only involve 

global and regional information, but also information from more localized. 

Although there are numerous trend detection studies in temperature that have 

been conducted in Canada, they have not given much focus in analyzing the high- and 

low-frequency components of the time series and how they vary over time, by using 

signal analysis techniques such as the WT. It is important to examine these variations on 

short- and long-term scales, such as inter-annual, annual, decadal, multi-decadal, etc. 

Additionally, temperature trend studies that focus on localized areas in Canada are still 

rare. Furthermore, to the best of our knowledge, using the DWT in combination with the 

Mann-Kendall trend test to analyze temperature trends in Canada has not been explored 

in any Canadian studies. 
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3.2. Theoretical Background 

 

3.2.1. Time-Scale Representation of Signals by the Wavelet Transform (WT) 

 

Wavelet transform is a mathematical tool that uses wave functions similar to sine 

and cosine functions, known as wavelets. A wavelet must satisfy the admissibility 

condition of having a zero mean (Farge, 1992; Torrence and Compo, 1998). These 

wavelets can be stretched and shifted and have flexible resolution in frequency and time 

domains (Lau and Weng, 1995). WT has been found to be very suitable for studying 

climate signals that possess characteristics such as nonstationarity, time-dependence, and 

having a wide range of variability localized in the time domain (Lau and Weng, 1995). 

The property of the WT in which it is localized in time and frequency domains is very 

useful because it allows for the extraction of the different modes of variability that vary 

in time (Lim and Lye, 2004). The window used in the WT can be adjusted to the whole 

time-frequency domain – it can be dilated and shifted with a resolution that is adjustable 

in both time and frequency domains (Lau and Weng, 1995). The narrow and wide 

windows are used to capture the high-frequency and low-frequency components of the 

signal, respectively (Lau and Weng, 1995). Therefore, WT is able to separate the short 

and long-period components of a signal (Drago and Boxall, 2002). This is the reason why 

the wavelet transform is more advantageous when used for decomposing signals with 

non-stationary characteristics, compared to the more conventional spectral analysis, such 

as the Fourier transform (FT) or windowed Fourier transform (WFT). FT employs the use 

of sine and cosine functions, which do not involve or produce any time information of the 

signals being analyzed; therefore, it cannot provide how information has changed from 

one time interval to the next (Lau and Weng, 1995). With the WFT, the window used to 

analyze a time series is fixed, so when there are many different frequencies involved in 

the time series, the fixed window picks up more of the high-frequency information and 

just a few low-frequency fluctuations (Lau and Weng, 1995).   

 Decomposing a time series using the WT technique involves translating the 

mother wavelet (using high-pass and low-pass filters) along the signal in a number of 

steps, which then produce wavelet coefficients. These wavelet coefficients measure the 
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correlation of the wavelet to the original signal at a specific scale as a function of time – 

this is the time-scale representation of the signal, which holds information about the 

magnitude and location of different events at difference scales (Lindsay et al., 1996; 

Drago and Boxall, 2002). Different scales use different stretched versions of the mother 

wavelet; hence, different wavelet coefficients are produced (Drago and Boxall, 2002).  

The WT can be performed via the continuous or the discrete approaches. Signal 

reconstructions from the wavelet coefficients are relatively simple to compute when 

using the DWT approach – this is done by using the inverse filter function of the wavelet 

transform (Torrence and Compo, 1998). Signal reconstructions for the CWT are 

somewhat problematic because of the redundancy in the time-scale information (Torrence 

and Compo, 1998). The DWT normally operates on dyadic scales, which are integer 

powers of two (Lindsay et al., 1996; Chou, 2007). This is one of the advantages of using 

the DWT as it is able to separate the signal being analyzed scale by scale (Lindsay et al., 

1996). For the discrete scale operation in the DWT, the signal decomposition starts out 

with the smallest scales and continues to larger scales, doubling in size for each round of 

operation. 

 The decomposition of a time series xt, via the wavelet transform is accomplished 

using the following function (Lau and Weng, 1995): 
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where   (which is greater than zero) represents the scaling factor,   is the translation 

factor, and  ( ) is the analyzing wavelet. The wavelet coefficients (C) via the continuous 

wavelet approach for the time series xt (with equal time interval, dt), is calculated as 

follows (Lau and Weng, 1995): 
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where    is the complex conjugate number based on the scaling (s) and translation (a) 

factors. The wavelet coefficients (w) via the discrete wavelet approach for the time series 

(with dyadic grid arrangement) is calculated as follows (Partal and Küçük, 2006): 
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3.2.2. The Original Mann-Kendall (MK) Trend Test 

 

 The original MK test is based on Mann (1945) and Kendall (1975). It is a rank 

correlation test for two sets of observations between the rank of the values and the 

ordered values in the dataset. The null hypothesis of the MK test for a dataset (Xh , h = 1, 

2, 3, . . ., n) is that the dataset is independent and identically distributed (Yue et al., 2002). 

The alternative hypothesis would state that a monotonic trend is contained in the dataset. 

The calculation of the MK test statistic, which is also known as the Kendall’s tau, is as 

follows (Yue et al., 2002): 
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Xi denotes the ordered data values, and n is the length of observations; the sign test is 

(Yue et al., 2002): 
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When the number of observations is greater than 10, the Kendall’s tau    has a 

distribution that is approximately normal with zero mean (Hamed and Rao, 1998; 

Adamowski and Bougadis, 2003). The variance of the statistic    can then be calculated 

using the following equation (Kendall, 1975; Yue et al., 2002): 
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   represents the number of ties to the extent h. The standardized test statistic for the 

Mann-Kendall test, which is approximately normally distributed and having a zero mean 

and variance of one, can then be calculated using (Yue et al., 2002): 
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Positive and negative Z values indicate that the direction of the trend is upward and 

downward, respectively. The calculated Z value is then compared to the standard normal 

variate at some level of statistical significance (α) (Hamed and Rao, 1998). In a two-sided 

test, if the calculated | | is greater than Zα/2, it implies that there is a significant trend (i.e. 

the null hypothesis should not be accepted). 

 

3.2.3. Modified Mann-Kendall (MK) Trend Test 

 

 One issue that is very important to investigate prior to applying the MK test is the 

possible existence of serial correlation in the time series being analyzed. It has been 

widely recognized that the original Mann-Kendall trend test should only be applied to test 

for a trend in a dataset that does not exhibit serial dependency (Hamed and Rao, 1998; 

Adamowski and Bougadis, 2003; Mohsin and Gough, 2010). If the original Mann-

Kendall test is used on a time series that exhibits positive serial correlation, the likelihood 

of finding trends is enhanced, when in fact, there is no trend; and vice versa (Hirsh and 

Slack, 1984; Hamed and Rao, 1998). Hamed and Rao (1998) tested a time series with an 

AR(1) of 0.4 using the original MK test and they were able to demonstrate that the 
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significant positive trend found (at the 5% significance level) was merely due to the 

effect of autocorrelation in the data. 

Modifications to the original MK test to account for autocorrelation issues have 

been proposed. The seasonal Kendall test proposed by Hirsch and Slack (1984) is suitable 

for use with data that exhibit seasonality pattern and autocorrelation (Kundzewicz and 

Robson, 2004). Using a Monte Carlo experiment, Hirsch and Slack (1984) were able to 

show that the seasonal Kendall test can be used with data exhibiting serial correlation; 

however, this modified MK test is not powerful when there is a very strong long-term 

persistence or when the record length is very short (less than five years worth of monthly 

data).  

Another modification to the original Mann-Kendall test was developed by Hamed 

and Rao (1998) for autocorrelated data. Hamed and Rao (1998) developed a formula 

based on an empirical approximation/experiment, which modifies the variance of the 

original MK test statistic. This is because if a significant autocorrelation is present in a 

time series, the variance of the original MK test is underestimated, and vice versa.  

 

3.2.3.1. Modified Mann-Kendall (MK) Test for Data with Seasonality Patterns with 

or without Significant Autocorrelations 

 

This modified version of the Mann-Kendall test was developed by Hirsch and 

Slack (1984) in order to deal with the seasonality and serial correlation in a time series. 

Let the matrix: 
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The matrix x is a dataset containing observations recorded over v seasons for u years 

(without any missing or tied values) (Hirsch and Slack, 1984). The ranks of the data in 

matrix x are represented by matrix r (Hirsch and Slack, 1984): 
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Since the values within each season are ranked among themselves, the ranks (riz) are 

computed using the following equation, and where each column in matrix r is a 

permutation of (1, 2, …, n) (Hirsch and Slack, 1984): 
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The test statistics Sz is calculated using (for each season): 
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The test statistics for the seasonal Kendall is the calculated using: 
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 is the variance of ( z),    and denotes the covariance of ( z,  w). The estimator of the 

covariance is  ̂    and was explained by Dietz and Killeen (1981): 
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where     is represented by: 
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and     is calculated using: 
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In the case where there are no tied values and no missing values,     is simply the 

Spearman’s correlation coefficient for z and w seasons. When there are no missing values, 

the estimator of the covariance becomes (Hirsch and Slack, 1984): 
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Hirsch and Slack (1984) demonstrated that by using these consistent estimators for the 

covariance in order to calculate the variance of the seasonal Kendall test statistic, the 

assumption of independence in a time series is no longer required. 

 

3.2.3.2. Modified Mann-Kendall (MK) Test for Significantly Autocorrelated Data 

 

Hamed and Rao (1998) developed another modified version of the MK test, 

which is intended to address the issue of serial correlation structures in a dataset when 

detecting its trend. Hamed and Rao (1998) investigated the effect of serial correlation on 
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the mean and variance of the original Mann-Kendall test; they came up with an empirical 

approximation for the variance for the MK test, which is considered suitable for 

autocorrelated data. This is because the existence of serial correlation in a dataset can 

change the variance of the original MK test (the existence of positive autocorrelation will 

cause the variance of S to be underestimated and the existence of negative autocorrelation 

will cause the opposite effect). Hamed and Rao (1998) used their proposed modified 

version of the MK test and precipitation and streamflow series exhibiting autocorrelation 

and found that the power of the test is the same as that of the original MK test with better 

accuracy when data exhibit autocorrelation.    

In this version of the modified MK test, Hamed and Rao (1998) altered the 

calculation of the variance of the test statistic S: 
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 * denotes the effective number of samples required to account for the autocorrelation 

in the dataset (autocorrelation between ranks is used instead of between the actual data 

values to evaluate   
 ). The notation    

 ⁄  is the correction factor associated with the 

autocorrelation of the data. Empirically,    
 ⁄  is expressed by (Hamed and Rao, 1998): 
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  ( ) symbolizes the autocorrelation function between the ranks of the observations, 

computed using the inverse of equation (3.20) (Kendall, 1975; Hamed and Rao, 1998). 

This transforms the rank autocorrelation into the normalized data autocorrelation, as the 

estimate of the normalized autocorrelation structure is needed to evaluate the variance of 

S for data X whose distribution may not be normal or rather arbitrary (Hamed and Rao, 

1998): 

 ( )       (
 

 
  ( ))                        (    ) 

 



61 
 

3.3. Data and Study Sites 

 

Data from a total of five meteorological stations located in southern Ontario and 

Quebec were used in this study. The Harrow, Vineland, Belleville and Peterborough 

stations are located in Ontario and the Val d’Or station is located in Quebec. These are 

the only stations in Ontario and Quebec that satisfy the requirement of having 40 years 

worth of data without any missing values, and as such only these data sets were used in 

this study. The locations of the stations used in the study are shown in figure 3.1; and the 

key features of the stations are given in table 3.1 – joint stations indicate that records 

from nearby stations were combined in order to produce longer time series. The detail of 

how data from nearby stations were combined can be found in Mekis and Vincent, 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. A map of the weather stations used in this study. 
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Table 3.1. Key features of the meteorological stations used in this study. 
 
Station Name Province Station Location Elevation (m) Joint Station 

  Latitude (
o
) Longitude (

o
)   

Harrow ON 42.0 -82.9 182 Yes 

Vineland ON 43.2 -79.4 79 Yes 

Belleville ON 44.2 -77.4 76 No 

Peterborough ON 44.2 -78.4 191 Yes 

Val d'Or QC 48.1 -77.8 337 No 

 

The data used in this study came from the second generation homogenized 

temperature data of Environment Canada. These homogenized temperature data are 

specially developed for trend studies in climatic indices. Adjustment procedures on 

monthly and daily maximum and daily minimum temperature indices were implemented 

to create the first generation homogenized temperature data. The adjustments were 

applied in order to account for non-climatic shifts such as station relocations, changes in 

recording procedures and automation (Vincent and Gullet, 1999). These non-climatic 

shifts may cause inhomogeneities in the temperature data, which in turn leads to 

inaccurate trend estimates if the data were to be used for trend analysis (Zhang et al., 

2000). In the second generation homogenized sets, the spatial and temporal coverage of 

temperature data have been improved. Furthermore, additional adjustment procedures 

were implemented in order to solve the bias caused by the redefinition of the end time of 

the climatological day, which occurred as of July 1, 1961 (refer to Vincent et al., 2009 for 

the details of the adjustments). The adjustment procedures in the second generation 

homogenized datasets involved adjusting the daily minimum temperatures, which are 

based on hourly data for the period 1961-2007 – the adjustment in any one day was 

between 0.58-12.58
o
C (Vincent et al., 2009). We believe that by using the homogenized 

temperature data in this study, the results of our trend analysis are more reliable. 

There are four categories of temperature data analyzed in this study: (i) monthly,  

(ii) seasonally-based, (iii) seasonal (i.e. winter, spring, summer, and autumn), and (iv) 

annual. The data spanned from 1967 to 2006, with the exception of station Harrow, 

whose annual and autumn data end in 2005 due to missing observations at the end of 

2006. Forty years worth of data is considered sufficient to conduct a trend analysis study 

(Partal, 2010). A number of authors have also used forty years worth of data or less, for 
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their trend analysis studies in hydroclimatic indices (e.g. Domroes and El-Tantawi, 2005; 

Chaouche et al., 2010; Makokha and Shisanya, 2010; Karaburun et al., 2011).  

The monthly data contain observations starting from January 1967 to December 

2006 (with the exception of station Harrow whose monthly time series ends in August 

2006). Seasonally-based data use information from each season in a year continuously 

from winter 1967 to autumn 2006 (with the exception of station Harrow whose 

seasonally-based data ends in summer 2006). The standard climatological season was 

used. Each winter data record was obtained by averaging the December to February 

values; each spring data record was obtained by averaging the March to May values; each 

summer data record was obtained by averaging the June to August values. Finally, each 

autumn data record was obtained by averaging the September to November values. For 

seasonal data, each season (winter, spring, summer, and autumn) was analyzed separately 

(there was one value every year for each season).    

Monthly data were analyzed in order to investigate the short-term fluctuations that 

could affect the temperature trends. These fluctuations could include cycles such as intra-

annual and inter-annual cycles (as will be seen in section 3.4 the decompositions of 

monthly data represent fluctuations ranging from two to 64 months).  Seasonally-based 

time series were analyzed in order to investigate whether the strong semiannual and 

annual seasonal patterns that are apparent in temperature time series play a role in 

affecting the temperature trends (it will be seen in section 3.5 that the temperature time 

series used in this study exhibit strong cycles at six and 12 months).. Annual time series 

were included in the study in order to investigate events that are fluctuating in long terms, 

such as multi-year and decadal events. Similarly, analyzing each season separately 

allowed us to study the long-term event fluctuations. Additionally, seasonal data were 

included because it has been shown in several Canadian studies that changes in 

temperature do not only occur in annual data but also within the different seasons (e.g. 

Zhang et al., 2000; Vincent et al., 2007).    
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3.4. Methodology 

 

This study employed the DWT approach to decompose the surface air 

temperature time series obtained from a total of five stations located in southern Ontario 

and Quebec. The wavelet decomposition was applied to the different data types used in 

order to analyze the high- and low-frequency events that affect the temperature 

fluctuations over the study area. The data used were: monthly, seasonally-based, seasonal, 

and annual. The trend component is assumed to be contained in the low-frequency part of 

the time series. The MK trend test was then applied to the different detail and 

approximation components (and also to the detail plus approximation series) resulting 

from the time series decomposition. This was done to determine their statistical 

significance, as well as to identify the periodic modes that affect the trends in each data 

type. 

  The data analysis in this study was carried out using procedures summarized as 

follows:  

1. The presence (or lack thereof) of serial correlation was checked for each dataset. 

2. The presence (or lack thereof) of seasonality patterns in each dataset was determined 

using their correlograms. 

3. Using the DWT approach, each dataset was decomposed into its detail and 

approximation components. 

4. The MK trend test and the sequential MK analysis were applied to the original 

datasets and to the different detail and approximation series produced by the wavelet 

decomposition. 

5. The most common periodicities that are responsible for the observed trends were 

determined by examining the sequential MK graphs and the MK Z-values of the 

detail (plus approximation) components, and then comparing them to that of the 

original data.  
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3.4.1. Serial Correlation and Seasonality Analyses  

 

In order to identify if the time series exhibited non-random characteristics, the 

serial correlation test was applied. The issue of serial correlation was first investigated 

prior to applying the trend test on a time series. This is because the original Mann-

Kendall test should only be used when the data points in a time series are not serially 

correlated with each other (Mohsin and Gough, 2010). If serial correlation exists in a time 

series, it increases the likelihood to reject the null hypothesis of no trend, when in fact the 

null hypothesis should be accepted (Yue et al., 2002). This is because the variance of the 

Mann-Kendall test statistics is underestimated (Hamed and Rao, 1998). 

In this study, the autocorrelation in each time series was examined and 

correlograms were produced. Autocorrelation coefficients at lag-1 are commonly used to 

examine whether a time series exhibit non-random characteristics (e.g. Partal and Kahya, 

2006; Mohsin and Gough, 2010). Lag-1 autocorrelation coefficients were computed using 

the following equations (Yue et al., 2002; Mohsin and Gough, 2010): 
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R represents the first autocorrelation coefficient (i.e. lag-1) of the time series xt ,   ̅  

represents the mean of the data, and n is the number of data points in the time series. If 

the lag-1 autocorrelation coefficient is found to be within the interval defined by equation 

(3.22), it can be concluded that the time series does not exhibit a significant 

autocorrelation. On the contrary, if the calculated lag-1 autocorrelation coefficient is 

found to be outside of the interval, it can be said that the time series exhibits a significant 

autocorrelation at the 5% significance level. 



66 
 

The correlograms or autocorrelation plots depicting the autocorrelation functions 

of the time series being analyzed in this study were obtained using IBM SPSS Statistics 

19. If an autocorrelation coefficient value crosses the upper or lower confidence limits, 

then that autocorrelation is significant (see an example in figure 3.2: the lag-1 

autocorrelation coefficient is the first one on the plot). The correlograms were also used 

to identify whether cycles of seasonality were present in a particular time series. If there 

were repeated oscillating patterns that continued for many lags, it was concluded that the 

analyzed time series exhibited seasonality patterns (as shown in figures 3.2 and 3.3). 

 

3.4.2. Discrete Wavelet Transform (DWT) Applications on Different Temperature 

Time Series  

 

Time series decomposition via the DWT was computed using the multilevel one-

dimensional wavelet analysis function and performed in MATLAB. The signal (i.e. time 

series) is convolved (processed) with low-pass and high-pass filters, followed by a dyadic 

discretization or downsampling procedure, in order to produce the approximation and 

detail coefficients. These coefficients are re-adjusted to the entire signal to determine 

their contribution to the original signal (Dong et al., 2008). The signal is then 

reconstructed by using the multilevel one-dimensional wavelet reconstruction function 

using the same low-pass and high-pass filters. 

Daubechies (db) wavelets were used as the mother wavelet in the time series 

decomposition. The Daubechies wavelets were used in this study because of their ease of 

use, compact support, and orthogonality (Ma et al., 2003; Vonesch et al., 2007), which 

implies that the wavelets have non-zero basis functions over a finite interval, and also full 

scaling and translational orthonormality properties (Popivanov and Miller, 2002; de 

Artigas et al., 2006). These properties are very important for localizing events when 

analyzing signals that are characterized by time dependency – this localizing property 

also implies that wavelets can be adjusted to accommodate both high and low frequencies 

of the analyzed signals (Wang et al., 1998; Popivanov and Miller, 2002). Changing the 

scale in order to improve the accuracy of data analysis (during the DWT procedure) is 

relatively straightforward with the Daubechies wavelet due to its compact support and 
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orthogonality (Ma et al., 2003). Furthermore, the compact support provided by the 

Daubechies wavelet has fewer degrees of freedom (associated with the wavelet 

coefficients), which is ideal for analyzing signals with complex structures (Ma et al., 

2003). The scaling function of a Daubechies wavelet also represents polynomials with 

order up to N/2-1 very well. In order to determine the db type to be used in the data 

analysis of a particular time series, the Daubechies wavelets, db1 to db 10 were tried out.  

Border extensions were also considered important because when performing the 

DWT decomposition on signals with finite length, the issue of border distortion effects is 

introduced. This happens because convolution processes cannot occur outside the ends of 

signals that have limited length due to information being unavailable outside the borders 

(Su et al., 2011). Extending the ends of the signal produces several extra coefficients 

during the decomposition process, which are needed in order to ensure a perfect signal 

reconstruction. There are three border extensions that are normally used in the DWT: 

zero padding, periodic extension, and boundary value replication (symmetrization). Zero-

padding uses zeros outside of the original support of the mother wavelet, to pad the signal 

being analyzed; periodic padding recovers the signal beyond the original support by 

periodic extension; and symmetrization – which is the default mode in MATLAB – 

assumes that signals outside the original support can be recovered by symmetric 

boundary replication (de Artigas et al., 2006). The inverse discrete wavelet transform 

(IDWT) was then run in MATLAB to ensure perfect signal reconstruction. 

 Both the mean relative error (MRE) and the relative error (RE) were tried out as 

criteria in order to calculate the number of decomposition levels, and determine the 

border extension type and the type of mother wavelet used. The lowest MRE and RE 

values were sought. The mean relative error (MRE) was calculated using the following 

equation (Popivanov and Miller, 2002; de Artigas et al., 2006): 
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where    is the original data value of a signal whose number of records is n, and    is the 

approximation value of   . The relative error criterion is a new criterion proposed in this 
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study and is based on the error of the MK Z-values between the last decomposition level 

and the original data. The relative error was calculated using the following proposed 

formula: 
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    represents the MK Z-value of the original time series; and     is the MK Z-value of 

the approximation component of the last decomposition level of the DWT.  

In the monthly time series used in this study, there were 480 data points in each 

dataset, with an exception of station Harrow having only 476. The following equation 

was proposed by de Artigas et al. (2006), who conducted a study on monthly 

geomagnetic activity indices, to calculate the number of decomposition levels: 
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where v represents the number of vanishing moments of a db wavelet, n is the number of 

records in a monthly-based time series, and L is the maximum decomposition levels. In 

MATLAB, the number of vanishing moments for a db wavelet should be only half of the 

length of its starting filter. For example, if using the db3 mother wavelet in MATLAB, it 

implies that the wavelet is Daubechies3, which has a 6-point filter length. It should also 

be noted that if the number of data points in a time series is not exactly in a dyadic format 

(as is the case in this study), the DWT computation in MATLAB would be performed 

using the next dyadic arrangement. Therefore, with either 476 or 480 data points (in the 

monthly time series), the value of n in equation (3.25) would be represented by 2
9 

= 512 

(which is the next dyadic format from 476 or 480). So, for example, if db3 wavelet is 

used on the monthly data, the number of decomposition level, L, would be 6.68 (seven 

levels would then be used).  
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Similarly, for the seasonally-based time series, there were either 159 (for station 

Harrow) or 160 data points. In MATLAB, the DWT computation would use 256 (2
8
) as 

the number of data points. If db3 was used in equation (3.24) for the seasonally-based 

data, the calculated L would be 5.68 (six levels would then be used).  

When the MRE criterion was used to determine the number of decomposition 

levels (using different db types and extension border conditions), the differences in the 

MRE between different decomposition levels were not noticeable. For example, for 

station Vineland’s annual data, the MRE for four decomposition levels using different db 

wavelets were: 0.06-0.07, 0.055-0.059, and 0.11-0.22 using periodic extension, 

symmetrization, and zero-padding border, respectively. The MRE for five decomposition 

levels for the same station were: 0.06-0.08, 0.06-0.07, and 0.19-0.24 using periodic 

extension, symmetrization, and zero-padding border, respectively. When the relative 

error criterion was used on this station, noticeable differences were observed. For 

Vineland’s annual data, the relative errors obtained from using four decomposition levels 

were: 0.01-1.58, 1.00-3.40, and 0.03-1.84 using periodic extension, symmetrization, and 

zero-padding borders, respectively. For the same data, the relative errors obtained from 

using five decomposition levels were: 0.02-2.16, 0.58-7.66, and 0.04-2.60 using periodic 

extension, symmetrization, and zero-padding extension, respectively. Therefore, for 

Vinaland’s annual data, four decomposition levels were used (the lowest relative error of 

0.01 was obtained from using db6 wavelet). The latter is an example of how the number 

of decomposition levels was determined on a case by case basis in this study.  

As can be seen, using the relative error criterion was more precise for the 

temperature data used in this study. The noticeable differences in the relative error were 

not only seen for Vineland station, but for all other stations as well. In light of this, the 

relative error criterion (of the MK Z-values between the approximation component of the 

last decomposition level and the original time series) was used instead of the MRE to 

determine: (i) the mother wavelet to be used in the DWT procedures; (ii) the extension-

border method to be used in the DWT procedures; and (iii) the number of decomposition 

levels up to which the analyzed time series should be decomposed. This was done by 

seeking the lowest MK Z-value relative error produced. Another example is for 

Vineland’s monthly data (Z = +3.39), where the lowest MK Z-value relative error of 
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0.046 was obtained by employing the periodic extension condition and db3 mother 

wavelet (at six decomposition levels). Therefore, six decomposition levels were used to 

analyze the monthly time series of the Vineland station. Similarly, for station 

Peterborough’s seasonally-based data (whose MK Z-value is +2.48), the lowest MK Z-

value relative error of 0.057 was produced by using the periodic extension condition and 

db7 mother wavelet (at four decomposition levels). Therefore, four decomposition levels 

were used to analyze the seasonally-based time series of the Peterborough station.    

For the annual and seasonal data, there was 40 years worth of annual data, except 

for station Harrow annual and autumn data, which have only 39 years worth of annual 

data. With the dyadic scale arrangement (integer powers of two) in the DWT procedure, 

the annual and seasonal data could be decomposed up to five decomposition levels, in 

which the last decomposition level is represented by the 32-year periodic mode. However, 

we did not always need to decompose the annual and seasonal time series into five levels 

because even three of four levels may be sufficient. Again, the lowest MK Z-value 

relative error was sought in order to determine the appropriate number of time series 

decomposition levels. In addition, the lowest MK Z-value relative error was also used to 

determine the type of db wavelet (db1-db10) and the type of border extension (zero-

padding, periodic extension, or symmetrization), to be used during the DWT procedure. 

Generally, the lowest MK Z-value relative errors were obtained when the periodic 

extension border was used. For example, for station Harrow’s winter data (Z = +1.97), 

the MK Z-value relative errors for the periodic extension, symmetrization, and zero-

padding extension ranged from 0.06-2.26, 0.11-3.61, and 0.24-2.26, respectively. The 

lowest MK Z-value relative error of 0.06 was produced using db7 wavelet at three 

decomposition levels – therefore, station Harrow’s winter time series was decomposed 

into three levels, using the db7 wavelet and the periodic extension mode. For other data 

sets, the number of decomposition levels and the mother wavelet may vary. For example, 

the lowest MK Z-value relative error of 0.05 for Harrow’s summer data (Z = +2.87) was 

observed when the periodic extension was used (with db5 at five levels of 

decomposition). Thus, Harrow’s summer time series was decomposed into five 

decomposition levels using the db5 wavelet and the periodic extension border.  
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3.4.3. The Mann-Kendall (MK) Trend Test 

 

The Mann-Kendall trend test is a rank-based test that has been very commonly 

used to test for randomness against trends in the field of climatological studies. The MK 

test statistic S and the variance were calculated (see equations 3.4 and 3.6, respectively) 

for each dataset in order to obtain the standard normal value, Z score (see equation 3.7). 

In the data analysis of this study, the significant level used was α = 5% (or 95% 

confidence intervals) for a two-sided probability. The absolute value of this Z score was 

then compared to the critical two-tailed Z-value (area under the normal curve) of α/2. The 

Z values in a two-tailed test for α = 5% are ± 1.96. If the calculated MK Z-score is outside 

the range of -1.96 and +1.96, the trends are statistically significant. The MK test tests the 

null hypothesis of no trend (independent observations and they are ordered randomly) 

against the alternative hypothesis of positive or negative monotonic trends over time that 

is present in the dataset being analyzed (Hirsch and Slack, 1984; Mohsin and Gough 

2010; Karaburun et al., 2011). 

 

3.4.3.1. Applications of the Original and Modified Versions of the Mann-Kendall 

(MK) Trend Test 

 

Since the monthly and seasonally-based time series in this study exhibited 

seasonality patterns (some with significant autocorrelations at lag-1), the modified Mann-

Kendall test by Hirsch and Slack (1984) was used. For the annual and seasonal datasets, 

the original Mann-Kendall test and the modified Mann-Kendall test by Hamed and Rao 

(1998) were employed, depending on whether the dataset being analyzed was free from a 

significant autocorrelation or not. If the correlogram of a time series did not portray 

significant autocorrelation functions (at α = 5%), then the original Mann-Kendall test was 

applied to the original data and to the detail, approximation and detail (plus 

approximation) components resulting from the time series decomposition. If, on the other 

hand, the correlogram of a time series showed a significant autocorrelation function (at 

lag-1), then the modified Mann-Kendall test by Hamed and Rao (1998) was used.  
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3.4.3.2. Sequential Mann-Kendall (MK) Analysis 

 

The Mann-Kendall test was employed sequentially in order to analyze how the 

trends in each time series used in this study have fluctuated over the study period. This is 

useful because positive and negative trends, which may or may not be significant, can be 

observed in the sequential MK graphs (Makokha and Shisanya, 2010). Additionally, with 

sequential MK analysis, we could also observe if a series of significant positive and 

negative trends may cancel each other out and thus, produce an MK Z-value that is not 

significant at the end of the study period. Some authors have used the sequential MK 

analysis to identify the start of significant trends (e.g. Esteban-Parra et al., 1995; 

Makokha and Shisanya, 2010). The sequential Mann-Kendall analysis in this study was 

also used to determine the time periodicities that are considered the most influential in 

affecting the temperature trends over the study area (see the following section: 3.4.4). 

The progressive MK values were calculated using the appropriate MK test (i.e. 

original or the modified version) for each dataset, from the start to the end of the study 

period. The progressive MK values were then graphed. In the sequential MK graph, the 

upper and lower lines correspond to the confidence limits of the standard normal Z values 

at α = 5%. The upper and lower confidence limits therefore correspond to +1.96 and -

1.96, respectively. When the progressive MK value crosses either of the confidence limit 

lines, it indicates a significant trend at the 5%-significance level – crossing the upper line 

implies a significant positive trend, whereas crossing the lower line implies a significant 

negative trend.  

It is important to recall that the standard normal Z-score can be used in the MK 

test only when the number of observation in a dataset is more than 10. With this in mind, 

the accuracy of the first 10 MK values (up to year 1976) in the sequential MK graphs 

may be overlooked. 

 

 

 

 



73 
 

3.4.4. Determining the Most Dominant Periodic Components that Affect 

Temperature Trends 

 

The most dominant periodic components that affect the temperature trends over 

the study area were determined in two steps. First, the MK Z-values of each of the detail 

components with its approximation added were compared to the MK Z-value of their 

respective original data. Secondly, the sequential Mann-Kendall values of each of the 

detail components (with its approximation added) were graphed along with the sequential 

Mann-Kendall values of the original data. The periodic components that are considered 

the most dominant in affecting the trends in temperature over the study area are the ones 

whose MK Z-values were close to that of the original data and whose sequential MK 

graphs were observed to be harmonious with the sequential MK of the original series. 

We also tested a number of combinations of detail components with 

approximation series (e.g. D1 + D2 + Approximation) in order to see if two or more 

periodic modes are influencing trends observed for a specific time series, but the results 

produced were not conclusive (based on the observations of the MK Z-values and the 

sequential MK graphs). For example, Harrow’s spring temperature data has an MK Z-

value of +1.67; based on the nearest MK Z-value and the sequential MK graphs (see 

figure 4.10), D3 (plus A5) component is considered the most influential periodicity for 

trends (see section 3.5.6 for more detail). When we combine different detail components 

(with approximation), even when D3 is present, it does not always produce MK Z-values 

that are close to the MK Z-value of the original data and/or good sequential MK graphs. 

For example, D1 + D3 + A5 only gives an MK Z-value of +0.62; D2 + D3 + A5 had an 

MK Z-value of only +0.57. However, D2 + D5 + A5 produced a relatively close MK Z-

value of +1.48, which is close to the MK Z-value of the original data (+1.67); although 

neither D2 nor D5 was considered important periodicities for trends. Therefore, in this 

study we only chose to include analysis on individual detail components (with their 

respective approximation components added).      
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3.5. Results and Discussions 

 

3.5.1. Preliminary Data Analysis 

 

3.5.1.1. Serial Correlation and Seasonality Factors 

 

The trends of temperature time series from a total of five meteorological stations 

in southern Quebec and Ontario were analyzed in order to determine the periodic modes 

that affect the observed trends. The data used are: monthly, seasonally-based, seasonal 

(winter, spring, summer, and autumn), and annual. All the monthly data experienced 

significant lag-1 autocorrelation coefficients, which indicate that the observations within 

the datasets are not independent. When the autocorrelation analysis was run on the 

seasonally-based, seasonal, and annual data, the lag-1 autocorrelation coefficients were 

not significant; with the exception of the annual data from station Vineland (R = 0.35). It 

is commonly expected that a monthly time series would have a stronger autocorrelation 

compared to its annual time series (Hirsch and Slack, 1984). The lag-1 autocorrelation 

coefficients for the data used in this study are summarized in table 3.2. 

 

Table 3.2. Lag-1 autocorrelation functions (ACFs) of the different temperature data types. 

 Harrow Vineland Belleville Peterborough Val d'Or 

Monthly Data 0.84* (S) 0.84* (S) 0.84* (S) 0.84* (S) 0.84* (S) 

Seasonally-

based Data 

0.004 (S) 0.008 (S) 0.006 (S) 0.003 (S) 0.001 (S) 

Winter Data 0.14 0.12 0.19 0.05 -0.10 

Spring Data 0.05 0.14 0.07 -0.01 -0.02 

Summer Data 0.03 0.03 -0.06 0.01 -0.10 

Autumn Data -0.05 0.12 0.09 0.02 -0.04 

Annual Data 0.29 0.35* 0.28 0.12 -0.004 

* indicates a significant trend value at α = 5% 

(S) indicates the presence of seasonality 

 

The correlograms of all the monthly data showed strong seasonality patterns as 

there are repeated cyclical fluctuations. Semiannual and annual seasonality patterns are 

very strongly apparent in all the monthly data as there are high coefficients at every sixth 
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lag (figure 3.2). This is again confirmed by the correlograms of the seasonally-based data, 

where the autocorrelation functions are much higher at every second lag (figure 3.3). The 

second and fourth lags in the seasonally-based data correspond to six and 12 months 

cycles, respectively.  

 

3.5.1.2. The Mann-Kendall (MK) Test on Original Data 

 

Due to the presence of a seasonality pattern in the monthly and seasonally-based 

data, the modified version of the Mann-Kendall test by Hirsch and Slack (1984) was used 

to test for trend significance in these data sets. As for the seasonal and annual data sets, 

which exhibited an absence of serial correlation, the original Mann-Kendall test was used 

(except for the Vineland station’s annual data). The modified Mann-Kendall version by 

Hamed and Rao (1998) was used on the annual data for Vineland station.  

As shown in table 3.3, all of the trend values show positive signs, which indicate 

that all temperature indices analyzed in this study have positive trends. For the monthly, 

seasonally-based, and annual data analysis, all stations are experiencing statistically 

significant positive trends (at the 5%-level). For the seasonal data, most stations are 

experiencing significant positive trends for the winter season (except for station Val d’Or) 

and for the summer season (except for station Peterborough); although the MK Z-value of 

Val d’Or winter and Peterborough summer are +1.80 +1.87, respectively, which are just 

slightly below +1.96. Only station Vineland showed a significant trend value for the 

spring season; and there was no station with significant trend values for autumn.  

 

Table 3.3. Mann-Kendall Z-values of the original time series for the different temperature 

data types. 
 Harrow Vineland Belleville Peterborough Val d'Or 

Monthly Data 3.25* 3.39* 3.33* 2.45* 2.80* 

Seasonally-

based Data 

3.09* 3.25* 3.26* 2.48* 2.57* 

Annual Data 2.88* 3.15* 3.58* 2.49* 2.18* 

Winter Data 1.97* 1.97* 2.60* 2.37* 1.80 

Spring Data 1.67 2.15* 1.59 1.09 1.03 

Summer Data 2.87* 2.81* 2.59* 1.87 1.98* 

Autumn Data 1.21 1.73 1.69 0.91 1.38 

* indicates a significant trend value at α = 5% 
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Figure 3.2. Examples of the monthly data correlograms: stations Harrow (left) and 

Vineland (right). High coefficient values at every sixth lag indicate the presence of 

semiannual and annual seasonality patterns. The upper and lower confidence limits are 

shown by the straight lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Examples of the seasonally-based data correlograms: stations Harrow (left) 

and Vineland (right). High coefficient values at every second lag indicate the presence of 

semiannual and annual seasonality patterns. The upper and lower confidence limits are 

shown by the straight lines. 
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3.5.1.3. The Number of Decomposition Levels for the Different Time Series 

 

The number of decomposition levels for each time series was determined using 

the MK Z-value relative error criterion. As seen in tables 3.4-3.10, the numbers of 

decomposition levels may not all be the same for the same temperature index. For 

example, for the annual data, the number of decomposition levels for station Vineland is 

four, but for all the other stations the number of levels is five. Similarly, for the winter 

data analysis, station Harrow only has three levels of decomposition while the other 

stations have five. These differences were caused by the differences in the mother 

wavelet used giving the lowest relative error.       

 Since only the DWT approach was used, the scales are arranged in a dyadic 

format (integer powers of two) from the lowest scale. Therefore, D1 represents the 2-unit 

periodic components, D2 represents the 4-unit periodic components, D3 represents the 8-

unit periodic components, and so on. An example of time series decomposition used in 

this study via the DWT is given in figure 3.4, representing monthly data analysis for 

station Harrow. In this result section, station Harrow will be presented in detail for the 

different data analysis. It should be noted that the MK Z-values discussed in the results 

section are of the detail components with its approximation added. We found that after 

the addition of the approximation components to their details, the interpretation of the 

MK Z-values become more sensible. Furthermore, since the approximation components 

are representative of the large-scale variability (i.e. trends) (Craigmile et al., 2004; 

Kallache et al., 2005), it makes sense to add them to the detail prior to applying the 

appropriate Mann-Kendall test.  

 

3.5.2. Monthly Temperature Data Analysis 

 

As shown in table 3.4, all stations are experiencing significant positive trends. 

Based on the lowest relative error of the MK Z-values, all monthly time series were 

decomposed into six decomposition levels (D1 – D6), except for station Val d’Or whose 

data were decomposed into five levels (D1 – D5). The results of the Mann-Kendall test 

showed that none of the individual detail components showed significant MK Z-values, 
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except for the D6 component of station Vineland (Z = +2.03) (table 3.4). After the 

addition of the approximation components to their respective detail components, it is 

observed that most of the trend values became significant (α = 5%). By examining the 

sequential Mann-Kendall graphs, and by comparing the MK Z-values of the detail 

components and the original data (an example is given in figure 3.5), it is found that the 

periodic modes responsible for trends are relatively similar for all stations. Figure 3.5 

illustrates how the most dominant periodic component(s) are chosen – although 

graphically, all detail components show harmonious trend lines, details that have the 

closest MK Z-values to that of the original data are D1 and D2. Therefore, for station 

Harrow’s monthly temperature data, 2-month and 4-month periodicities are the most 

dominant ones for trends. Similarly, for stations Belleville, Peterborough, and Val d’Or, 

the most dominant periodic modes for trends were also observed to be the D1 and D2 

components. Station Vineland’s most dominant detail component for trends is observed 

to be the D1 component (i.e. the 2-month periodicity). The trends for the monthly data in 

all stations seem to be affected by high-frequency fluctuations ranging from two to four 

months. The D6 component – representing the 64-month periodicity – of station Vineland 

is not seen as the most influential periodic component for trend. Although none of the 

most dominant periodic components for any of the stations are between six and 12 

months, it is still worthwhile to investigate their seasonally-based data, in order to 

investigate whether the semiannual and annual seasonal cycles may be contributing to the 

observed warming trends in temperature over the study area. 

 

3.5.3. Seasonally-based Temperature Data Analysis 

 

The appropriate number of decomposition levels for the seasonally-based time 

series was determined to be four (for stations Peterborough and Val d’Or) and six (for 

stations Harrow, Vineland, and Belleville). Again, this difference in the number of 

decomposition level was due to the lowest relative error of the MK Z-value – whichever 

level produced the lowest relative error for a particular time series, that number of 

decomposition levels was used. Particular attention is given to the D1 and D2 

components because they represent the 6-month and 12-month periodicities. These time 
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modes are important in this study because of the seasonality factor observed in the 

monthly and seasonally-based time series. As can be seen in table 3.5, the D2 component 

seems to be the most frequently observed as the most dominant periodic mode affecting 

trends – all stations have D2 as one of the most dominant components (except for Val 

d’Or). The D3 and D4 components were also seen as being important in some stations. 

An example of the sequential MK analysis to see the most harmonious detail component 

(with the approximation added) for the seasonally-based data is shown in figure 3.6. As 

can be seen, the yearly fluctuations, which are represented by the D2 component, are also 

contributing in affecting the warming trends in temperature over the study area. 

 

Table 3.4. Mann-Kendall Z-values of the monthly temperature series: original data, 

details components, approximations, and a set of combinations of the details and their 

respective approximations. The most effective periodic components for trends are 

indicated in bold format. 
 

 Harrow Vineleand Belleville Peterborough Val d'Or 

Original 3.25* 3.39* 3.33* 2.45* Original: 2.80* 

D1 -0.37 -0.36 0.31 0.00 D1: 0.75 

D2 1.49 0.90 0.53 0.71 D2: -0.02 

D3 -0.35 -0.67 -0.48 -0.50 D3: 0.41 

D4 0.03 0.43 0.46 0.52 D4: 0.04 

D5 -0.38 0.59 0.63 0.68 D5: 0.16 

D6 1.06 2.03* 1.45 1.63 A5: 2.83* 

A6 3.32* 3.55* 3.24* 2.43* D1 + A5: 3.20* 

D1 + A6 3.30* 3.53* 3.63* 2.56* D2 + A5: 3.27* 

D2 + A6 3.15* 3.91* 3.62* 2.55* D3 + A5: 2.18* 

D3 + A6 1.30 1.68 1.69 0.73 D4 + A5: 1.43 

D4 + A6 1.17 1.74 1.57 1.15 D5 + A5: 2.10* 

D5 + A6 1.56 2.59* 2.40* 1.65  

D6 + A6 3.63* 4.19* 4.19* 3.71*  

* indicates a significant trend value at α = 5% 
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Figure 3.4. Station Harrow’s original monthly temperature series and its decomposition 

via the DWT using db3 wavelet, into six levels (D1-D6 and A6). 
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Figure 3.5. Sequential Mann-Kendall graphs of station Harrow’s monthly temperature 

data. The progressive trend lines of the original data are represented by the solid lines and 

the trend lines of the detail components (with their approximation added) are represented 

by the dashed line. The upper and lower dashed lines represent the confidence limits (α = 

5%).  
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Table 3.5. Mann-Kendall Z-values of the seasonally-based temperature series: original 

data, details components, approximations, and a set of combinations of the details and 

their respective approximations. The most effective periodic components for trends are 

indicated in bold format. 
 

Harrow Vineland Belleville Peterborough Val d’or 

Original 3.09* Original 3.25* Original 3.26* Original 2.48* Original 2.57* 

D1 0.50 D1 -0.26 D1 0.31 D1 0.43 D1 0.17 

D2 0.19 D2 0.31 D2 0.53 D2 -0.13 D2 0.10 

D3 -0.29 D3 0.25 D3 -0.48 D3 0.15 D3 0.50 

D4 0.08 D4 0.51 D4 0.46 D4 0.50 D4 0.53 

D5 0.40 D5 -0.27 D5 0.63 A4 2.62* A4 2.58* 

D6 1.95 D6 2.01* D6 1.45 D1 + A4 2.84* D1+A4 2.97* 

A6 2.69* A6 3.11* A6 3.24* D2 + A4 2.36* D2+A4 2.96* 

D1 + A6 4.14* D1 + A6 4.06* D1 + A6 3.63* D3 + A4 2.13* D3+A4 2.46* 

D2 + A6 2.99* D2 + A6 3.16* D2 + A6 3.62* D4 + A4 3.15* D4+A4 2.55* 

D3 + A6 2.90* D3 + A6 3.36* D3 + A6 1.69     

D4 + A6 3.14* D4 + A6 3.70* D4 + A6 1.57     

D5 + A6 3.88* D5 + A6 3.02* D5 + A6 2.40*     

D6 + A6 4.39* D6 + A6 4.97* D6 + A6 4.19*     

* indicates a significant trend value at α = 5% 

 

3.5.4. Annual Temperature Data Analysis 

  

For station Vineland’s annual temperature time series the lowest MK Z-value 

relative error was observed at four decomposition levels; the rest of the annual data had 

their lowest MK Z-value relative error when five decomposition levels were used. All the 

MK Z-values showed significant positive trends. For stations Harrow and Vineland, the 

D3 components (with approximations) were considered to be the most dominant 

periodicity affecting the temperature trends in the annual data (table 3.6). The MK Z-

values of the D3 components for these stations showed the closest MK Z-values to the 

values of the original data; the sequential Mann-Kendall graphs are also harmonious with 

those of the original data (an example is given in figure 3.7). This implies that the 

observed trends in the annual data of stations Harrows and Vineland are affected by 8-

year periodicity. For station Belleville, the 32-year periodicity is the most dominant one; 

and for stations Peterborough and Val d’Or, the 16-year mode is considered the most 

influential for trends.  
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Figure 3.6. Sequential Mann-Kendall graphs of station Harrow’s seasonally-based 

temperature data. The progressive trend lines of the original data are represented by the 

solid lines and the trend lines of the detail components (with their approximation added) 

are represented by the dashed lines. The upper and lower dashed lines represent the 

confidence limits (α = 5%). 
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Table 3.6. Mann-Kendall Z-values of the annual temperature series: original data, details 

components, approximations, and a set of combinations of the details and their respective 

approximations. The most effective periodic components for trends are indicated in bold 

format. 
 

Harrow Vineland Belleville Peterborough Val d’Or 

Original 2.88* Original 3.15* Original 3.58* Original 2.49* Original 2.18* 

D1 -0.15 D1 0.55 D1 0.36 D1 0.22 D1 -0.01 

D2 0.31 D2 0.59 D2 0.48 D2 0.80 D2 1.04 

D3 0.51 D3 1.25 D3 0.69 D3 0.52 D3 -0.13 

D4 0.68 D4 2.92* D4 3.23* D4 0.85 D4 1.78 

D5 3.70* A4 3.11* D5 3.32* D5 2.37* D5 2.50* 

A5 2.85* D1 + A4 2.37* A5 3.72* A5 2.37* A5 2.37* 

D1 + A5 1.62 D2 + A4 2.27* D1 + A5 1.29 D1 + A5 0.66 D1 + A5 0.17 

D2 + A5 1.98* D3 + A4 2.90* D2 + A5 2.02* D2 + A5 2.78* D2 + A5 1.32 

D3 + A5 2.71* D4 + A4 4.93* D3 + A5 1.92 D3 + A5 1.41 D3 + A5 0.41 

D4 + A5 3.80*   D4 + A5 4.42* D4 + A5 2.16* D4 + A5 2.25* 

D5 + A5 4.94*   D5 + A5 3.23* D5 + A5 5.28* D5 + A5 3.88* 

* indicates a significant trend value at α = 5% 

 

3.5.5. Winter Temperature Data Analysis 

 

 Analyzing temperature trends in winter is important because several studies have 

mentioned that winter experiences very important warming trends in the northern 

hemisphere and countries such as Canada and the USA (e.g. Jones and Briffa, 1992, Lu et 

al., 2005, Vincent et al., 2007,  Mohsin and Gough, 2010). In this study, it is also 

confirmed that winter warming is very apparent because except for station Val d’Or, all 

stations have significant positive trends with MK Z-values that are relatively high. Even 

for Val d’Or, the winter MK Z-value (+1.80) is also just slightly below +1.96.  
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Figure 3.7. Sequential Mann-Kendall graphs of station Harrow’s annual temperature data. 

The progressive trend lines of the original data are represented by the solid lines and the 

trend lines of the detail components (with their approximation added) are represented by 

the dashed lines. The upper and lower dashed lines represent the confidence limits (α = 

5%).  

 

The winter time series for station Harrow was decomposed into three levels, and 

the remaining time series were decomposed into five levels (table 3.7). The winter 

temperature trends for station Harrow are mostly affected by the 2-year and 8-year 

periodicities (i.e. D1 and D3 components) (figure 3.8). Peterborough station’s most 

dominant periodicity is the D4 component, which represents the 16-yearly cycle. For 
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station Vineland, although only D5 (with approximation component) was found to be 

statistically significant (Z = +5.28), the MK Z-value is not the closest one to the original 

data Z value (+1.97). Although D3 and D4 (both with approximation) are not statistically 

significant, their MK Z-values are closest to that of the original data. Graphically, D3 and 

D4 have good sequential harmony with the original data compared to D5 (figure 3.9). 

Therefore, it may be said that for station Vineland, D3 and D4, which represent 8-year 

and 16-year fluctuations, are the ones affecting the trend. Similarly, for station Belleville, 

D4 and D5 have MK Z-values that are statistically significant; however, the D3 

component has the closest MK Z-value (Z = +1.64) to that of the original data (Z = +2.60) 

with better sequential MK compared to D4 and D5. Table 3.7 summarizes the MK Z-

values for the winter temperature data decompositions, as well as the periodic modes that 

are considered most influential in affecting winter temperature trends. Similar to the 

results of the annual data analysis, the winter warming trends are also mostly affected by 

periodic events of eight years or greater (in the case of winter temperature trends, the 

dominant periodicities are mostly between eight and 16 years). These important 

periodicities may perhaps be related to the variability of natural climatic phenomena such 

as the large-scale atmospheric circulations; some of the major oscillations affecting 

eastern Canada are discusses in this section. For example, the dominant periodicities of 8-

16 years found in this study may be associated with the North Atlantic Oscillation (NAO), 

which are known to strongly exhibit inter-annual to decadal variability with some of the 

major peaks being centered around 2.1, 8 and 24 years (Cook et al., 1998; Anctil and 

Coulibaly, 2004). The NAO is a very important large-scale climatic phenomenon in the 

northern hemisphere (Anctil and Coulibaly, 2004), especially in central and eastern 

Canada (Damyanov et al., 2012). Many studies have found that the NAO is strongly 

associated with temperature trends over the northern hemisphere (e.g. for Canada: 

Wettstein and Mearns, 2002; Bonsal et al., 2006; Damyanov et al., 2012). Positive phases 

of the NAO cycles tend to cause above-normal temperature; it has been mentioned that 

the NAO has been in its positive phase since 1970 (Anctil and Coulibaly, 2004). As 

observed in this study, all of the temperature data categories are showing positive trends. 

Hasanean (2001) also mentioned that the NAO variability is strongest in winter and the 

winter NAO cycle is very effective in affecting temperature variability in mid-latitude 
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areas. In addition to this, El Niño and the Pacific North American (PNA) cycles have also 

been considered important natural cycles in central and eastern Canada. Most likely they 

are also contributing to the important periodicities of trends observed in this study (or the 

combination of these natural factors). For example, Bonsal and Shabbar (2011) found that 

between 1950 and 2008, half of the occurrences of PNA in Canada coincided with the El 

Niño. It is important to also note that the variability in these large-scale teleconnection 

patterns is related to factors such as solar activities or radiative forcing (mostly observed 

at the 11-year solar cycle period). Several studies have found that there are similar 

cyclical behavior between surface temperatures and the 11-year solar cycle, which may 

contribute to the observed global warming to some extent (e.g. Lassen, 1991; Erlykin et 

al., 2009; de Jager et al., 2010; Solheim et al., 2011). Although solar activities and its 

effects on the atmospheric circulation are not likely to be exclusive factors in affecting 

the apparent temperature rise over southern Ontario and Quebec (as there are various 

anthropogenic-related factors), they should also be considered when investigating the 

current state (and future predictions) of climate change over the study area. As can be 

seen, the complexity of the climate system (in addition to anthropogenic activities) makes 

it very challenging to determine the exact cause of the periodicities of the trends observed 

in this study (or in any climatic trend studies). 

 

3.5.6. Spring Temperature Data Analysis 

  

Most stations did not experience a significant temperature increase for the spring 

season, except for Vineland. This is somewhat inconsistent with the findings from several 

studies that analyzed seasonal temperatures in mid-latitude areas (including Canada). 

Zhang et al (2001) found that spring experienced the greatest warming in southern 

Canada. Vincent et al., 2007 also emphasized that there is a significant warming for 

spring season in southern Canada during the period 1953-2005. This disagreement could 

be caused by the differences in the geographical locations of the stations used and the 

time period chosen. The stations are only concentrated around the most south-westerly 

parts of Ontario and Quebec. Even so, these differences suggest that it is also important 

to conduct a more localized assessment of trends in temperature. 
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Table 3.7. Mann-Kendall Z-values of the winter temperature series: original data, details 

components, approximations, and a set of combinations of the details and their respective 

approximations. The most effective periodic components for trends are indicated in bold 

format. 
 

Harrow Vineland Belleville Peterborough Val d’Or 

Original 1.97* Original 1.97* Original 2.60* Original 2.37* Original 1.80 

D1 -0.10 D1 0.06 D1 0.24 D1 0.01 D1 0.22 

D2 0.29 D2 -0.13 D2 0.41 D2 0.15 D2 -0.06 

D3 -0.20 D3 0.90 D3 0.06 D3 0.38 D3 -0.38 

A3 2.09* D4 0.41 D4 2.69* D4 0.83 D4 0.85 

D1 + A3 1.88* D5 2.37* D5 3.95* D5 2.34* D5 2.39* 

D2 +A3 2.69* A5 2.37* A5 2.74* A5 2.37* A5 2.37* 

D3 +A3 2.23* D1 + A5 1.08 D1 + A5 1.08 D1 + A5 1.13 D1 + A5 0.52 

  D2 + A5 1.11 D2 + A5 1.55 D2 + A5 1.34 D2 + A5 0.80 

  D3 + A5 1.41 D3 + A5 1.64 D3 + A5 1.60 D3 + A5 0.71 

  D4 + A5 1.76 D4 + A5 5.04* D4 + A5 2.39* D4 + A5 2.27* 

  D5 + A5 5.28 D5 + A5 4.91* D5 + A5 5.21* D5 + A5 5.28* 

* indicates a significant trend value at α = 5% 

 

Even though significant spring warming is experienced only by one station, all of 

the spring temperature time series were still decomposed and analyzed. The data from 

stations Harrow and Belleville were decomposed into five levels; stations Vineland’s and 

Peterboroug’s data were decomposed into three levels; and station Val d’Or spring time 

series was decomposed into four levels. As revealed in table 3.8, the D3 (8-year 

periodicity) component is the one considered most influential for the spring temperature 

trend in stations Harrow and Peterborough. For stations Vineland, it is the D2 (4-year 

periodicity) that is responsible for trends; and for stations Belleville and Val d’Or, D1 (2-

year periodicity) is the most dominant for trend. An example of spring temperature 

analysis using the DWT and sequential MK analysis is shown in figure 3.10 (station 

Harrow is used). It should be noted that for station Harrow, the dominant 8-year 

periodicity is consistent with the observations in the winter and annual data. Even though 

spring temperature trends over the study area are mostly not significant, the trend values 

are all positive. It is also possible that positive and negative trends may cancel each other 

out over the study period. Therefore, it is important to determine the most dominant 

periodic modes for trends as it helps to understand the fluctuations that affect the spring 

temperature. 
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Figure 3.8. Sequential Mann-Kendall graphs of station Harrow’s winter temperature data. 

The progressive trend lines of the original data are represented by the solid lines and the 

trend lines of the detail components (with their approximation added) are represented by 

the dashed lines. The upper and lower dashed lines represent the confidence limits (α = 

5%).  
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Figure 3.9. A comparison of the sequential Mann-Kendall graphs among D3, D4, and D5 

(all with approximation added) of station Vineland’s winter temperature data. The 

progressive trend lines of the original data are represented by the solid lines and the trend 

lines of the detail components are represented by the dashed lines. The upper and lower 

dashed lines represent the confidence limits (α = 5%).  

 

3.5.7. Summer Temperature Data Analysis 

 

 In addition to the winter season, it has also been pointed out by other Canadian 

studies that the summer season also experiences significant important warming although 

sometimes to a lesser extent compared to winter warming (e.g. Vincent et al., 2007; 

Mohsin and Gough, 2010). In this study, all stations are experiencing significant positive 

summer temperature trends, except for Peterborough. The summer temperature time 

series were decomposed into four levels (for stations Belleville, Peterborough and Val 

d’Or) and five levels (for stations Harrow and Vineland). Table 3.9 summarizes the 

decomposition of the summer temperature time series and the MK Z-values of the 

different detail components, and the details plus their respective approximations.  
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Table 3.8. Mann-Kendall Z-values of the spring temperature series: original data, detailsc 

omponents, approximations, and a set of combinations of the details and their respective 

approximations. The most effective periodic components for trends are indicated in bold 

format. 

 
Harrow Vineland Belleville Peterborough Val d’Or 

Original 1.67 Original 2.15* Original 1.59 Original 1.09 Original 1.03 

D1 0.69 D1 0.22 D1 0.83 D1 0.10 D1 0.48 

D2 -0.08 D2 0.43 D2 -0.10 D2 0.08 D2 1.11 

D3 0.78 D3 1.13 D3 -0.15 D3 0.41 D3 -0.85 

D4 7.38* A3 2.19* D4 3.58* A3 1.25 D4 1.97 

D5 6.47* D1+A3 2.53* D5 0.24 D1+A3 0.55 A4 0.92 

A5 1.67 D2+A3 1.99* A5 1.67 D2+A3 0.31 D1+A4 0.52 

D1 + A5 0.73 D3+A3 3.25* D1 + A5 0.92 D3+A3 0.71 D2+A4 1.88 

D2 + A5 0.15   D2 + A5 0.36   D3+A4 0.00 

D3 + A5 0.87   D3 + A5 0.08   D4+A4 2.69 

D4 + A5 7.10*   D4 + A5 3.97*     

D5 + A5 6.05*   D5 + A5 0.80     

* indicates a significant trend value at α = 5% 

 

Looking at table 3.9 it is clear that the detail components (with approximation) whose 

MK Z-values are closest to those of their respective original data, consist of D3 and D4 

components, which represent the 8-year and 16-year time periodicities. Figure 3.11 

shows an example of the sequential MK analysis on Harrow’s summer temperature series, 

and how the D2 and D3 components (with approximation) show that their trend lines 

behave similarly with respect to the original trend line. It is interesting to note that the 

most dominant periodicities in stations Harrows and Peterborough are again consistent 

with their results from the annual and winter data analysis: D3 for Harrow and D4 for 

Peterborough. In addition, it is verified that in the summer data analysis, the most 

influential periodocities that affect the trends are made up of multiyear and decadal 

events (between eight and 16 years). The agreement found in annual, winter, and summer 

temperature trends could suggest that the upward trends in the annual temperature over 

the study area may be contributed mostly by the increase in winter and summer 

temperatures.  
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Figure 3.10. Sequential Mann-Kendall graphs of station Harrow’s spring temperature 

data. The progressive trend lines of the original data are represented by the solid line and 

the trend lines of the detail components (with their approximation added) are represented 

by the dashed lines. The upper and lower dashed lines represent the confidence limits (α 

= 5%).  
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Table 3.9. Mann-Kendall Z-values of the summer temperature series: original data, 

details components, approximations, and a set of combinations of the details and their 

respective approximations. The most effective periodic components for trends are 

indicated in bold format. 
 

Harrow Vineland Belleville Peterborough Val d’or 

Original 2.87* Original 2.81* Original 2.59* Original 1.87 Original 1.98* 

D1 0.66 D1 0.85 D1 -0.29 D1 0.78 D1 -0.50 

D2 0.55 D2 0.45 D2 0.59 D2 -0.24 D2 0.38 

D3 2.23* D3 2.53* D3 1.39 D3 1.69 D3 1.15 

D4 2.25* D4 -0.38 D4 5.35* D4 -0.78 D4 4.53* 

D5 3.62* D5 3.32* A4 2.35* A4 1.90 A4 1.85 

A5 2.74* A5 2.74* D1 + A4 0.48 D1 + A4 1.39 D1+A4 -0.08 

D1 + A5 1.50 D1 + A5 1.53 D2 + A4 1.67 D2 + A4 0.57 D2+A4 0.92 

D2 + A5 1.92 D2 + A5 1.62 D3 + A4 2.25* D3 + A4 2.57* D3+A4 2.09* 

D3 + A5 3.97* D3 + A5 4.09* D4 + A4 5.23* D4 + A4 1.74 D4+A4 2.88* 

D4 + A5 4.70* D4 + A5 3.41*       

D5 + A5 5.00* D5 + A5 4.58*       

* indicates a significant trend value at α = 5% 

 

3.5.8. Autumn Temperature Data Analysis 

  

Although it is noted that all the MK Z-values for autumn temperature from 

different stations are positive, autumn is the only season in which none of the stations 

explored in this study experience significant trends (table 3.10). This observation is not 

surprising as it is in agreement with several studies where autumn has the least number of 

stations with significant warming (see for example: Vincent et al., 2007). The autumn 

temperature series were decomposed into four levels (for stations Harrow, Belleville, and 

Peterborough) and three levels (for stations Vineland and Val d’Or). Table 3.10 shows 

that the most influential periodic components to affect the trends in spring temperature 

are slightly different from station to station. For station Harrow and Peterborough, it is 

the D2 (4-year mode); for station Vineland, it is the D3 (8-year mode); and for stations 

Belleville and Val d’Or, it is the D1 (2-year mode) – again, these important periodic 

modes coincide with some of the major peaks of the NAO cycle (i.e. 2 and 8 years).  
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Figure 3.11. Sequential Mann-Kendall graphs of station Harrow’s summer temperature 

data. The progressive trend lines of the original data are represented by the solid lines and 

the trend lines of the detail components (with their approximation added) are represented 

by the dashed lines. The upper and lower dashed lines represent the confidence limits (α 

= 5%).  
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Table 3.10. Mann-Kendall Z-values of the autumn temperature series: original data, 

details components, approximations, and a set of combinations of the details and their 

respective approximations. The most effective periodic components for trends are 

indicated in bold format. 
 

Harrow Vineland Belleville Peterborough Val d’Or 

Original 1.21 Original 1.73 Original 1.69 Original 0.91 Original 1.38 

D1 0.15 D1 0.43 D1 0.03 D1 -0.03 D1 -0.03 

D2 -0.05 D2 0.76 D2 0.01 D2 0.27 D2 -0.08 

D3 -0.07 D3 -1.50 D3 0.48 D3 -0.15 D3 0.18 

D4 0.8 A3 1.88 D4 0.66 D4 -0.27 A3 1.51 

A4 1.16 D1+A3 2.16* A4 1.88 A4 0.85 D1+A3 1.53 

D1 + A4 1.81 D2+A3 2.06* D1 + A4 1.48 D1 + A4 1.11 D2+A3 1.72 

D2 + A4 1.31 D3+A3 1.76 D2 + A4 1.90 D2 + A4 1.01 D3+A3 1.68 

D3 + A4 2.69*   D3 + A4 1.90 D3 + A4 0.76   

D4 + A4 1.86   D4 + A4 2.46* D4 + A4 -0.48   

* indicates a significant trend value at α = 5% 

 

Although the NAO may not be the only factor that influences the temperature variability 

over the study area, it can potentially be considered an important factor. An example of 

autumn temperature decomposition and sequential MK analysis is given in figure 3.12. 

As can be seen, generally the trends in autumn temperatures are characterized by events 

between two- and eight-year fluctuations. This is inconsistent with the annual, winter, 

and summer trends where most of the trends are dominated by fluctuations that are 

greater than eight years. This could suggest that autumn has minimal contribution 

towards the warming trends observed in the annual temperature series over the study area.    
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Figure 3.12. Sequential Mann-Kendall graphs of station Harrow’s autumn temperature 

data. The progressive trend lines of the original data are represented by the solid lines and 

the trend lines of the detail components (with their approximation added) are represented 

by the dashed lines. The upper and lower dashed lines represent the confidence limits (α 

= 5%).  

 

3.6. Conclusions and Recommendations 

 

Surface air temperature trends from a total of five stations located in Ontario and 

Quebec were analyzed using the wavelet transform and the Mann-Kendall trend test. The 

spatial coverage may not be very representative of the entire two provinces due to the low 

number of stations used in this study. The reason for this is because of the length of data 

chosen for this study, which requires 40 years worth of data with no missing values. Even 

so, there are some findings observed in this study which are in agreement with previously 

conducted trend studies in Canadian temperature. 

The use of the DWT prior to applying the Mann-Kendall test on the time series 
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1975 1980 1985 1990 1995 2000
-6

-4

-2

0

2

4

6

Z
 V

al
ue

Year

1975 1980 1985 1990 1995 2000
-6

-4

-2

0

2

4

6

Z
 V

al
ue

Year

1975 1980 1985 1990 1995 2000
-6

-4

-2

0

2

4

6

Z
 V

al
ue

Year

1975 1980 1985 1990 1995 2000
-6

-4

-2

0

2

4

6

Z
 V

al
ue

Year

D1+A4 D2+A4 

D3+A4 D4+A4 



97 
 

decomposing the original time series into its detail and approximation components and 

testing them with the Mann-Kendall test, we were able to obtain information about the 

most dominant periodic modes that affect trends in the different datasets from the stations 

explored in this study.  

The southern parts of Ontario and Quebec are experiencing warming temperature 

trends. This is observed in all of the data types used in this study. For the monthly data 

analysis, it was found that high-frequency periodicities ranging from two to four months 

are responsible for the trends. Annual cycles are also found to be very influential in 

affecting the trends in seasonally-based data. The use of monthly and seasonally-based 

data is seen to be useful in determining the influence of higher-frequency events (short-

term fluctuations) on the observed trends. Since the data are based on daily measurements, 

there could be many daily (high-frequency) variations that may be contributing to the 

trends in the higher resolution data used in this study (i.e. the monthly data). Examples of 

these daily variations are: variation in solar radiation (which can be associated with 

seasonality), cloud cover, albedo, air moisture content, soil heat capacity, and 

atmospheric wind movements that can have significant effects on the diurnal temperature 

(Gough, 2008). Gough (2008) also emphasized that in mid-latitude regions, mid-latitude 

cyclones may produce temperature clusters whose effects may last for a month. These 

daily variations may be very strong, and thus, conceal the effects of low-frequency 

periodicities (i.e. higher detail component levels of the DWT).  

The analysis of the lower-resolution data (i.e. annual, winter, spring, summer, and 

autumn) revealed that low-frequency periodicities were found to be important in affecting 

the trends in temperature over the study area. For the annual time series, the most 

important periodic modes that affect the trends are made up of multiyear and decadal 

events, mostly between eight and 16 years. From the seasonal point of analysis, winter 

and summer are experiencing the most uniform trends in temperature, where all the sites 

are experiencing significant positive trends (except for Val d’Or winter). The results of 

the winter and summer analysis are also the most consistent with those of the annual data, 

in which most of the influential periodic components affecting the trends are between 

eight and 16 years. More specifically, station Harrow’s most dominant periodic modes 

for the annual and seasonal data are all made up of multiyear events fluctuating around 
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eight years. These findings may be associated not only with anthropogenic activities such 

as the effect of the urban heat island, but also with the variability of climate indices such 

as the NAO (which has some major peaks at eight and 24 years).   

Based on the findings of this study, it can be suggested that the long-term trends 

in temperature over the study area may be associated with the winter and summer 

warming. Apart from the possible relation of the temperature trends with the large 

teleconnection pattern (in this study, we suggest the effect of the NAO cycle – see the 

discussions in the results section), there are other possible causes of winter and summer 

warming, which have been investigated in several past Canadian studies. Vincent et al. 

(2007) concluded that winter warming in Canada is due to an increase in dewpoint and 

specific humidity. Additionally, Prokoph and Patterson (2004) associated winter warming 

in urban settings in eastern Ontario with the heat island effect. Summer warming is 

associated with the increase in air moisture, especially around the Great Lakes and St. 

Lawrence areas (Vincent et al., 2007).  

We recommend that future studies should consider more climatic indices in order 

to investigate the possible causes of summer and winter warming in southern Ontario and 

Quebec. More specifically, correlation analysis can be explored between the different 

important periodic components, which are responsible for trends and the different 

teleconnection patterns, such as the NAO and possibly other major large scale climatic 

indices in Canada (e.g. the El Niño Southern Oscillation (ENSO) and Pacific-North 

American (PNA)). This way, more quantitative assessments on the possible drivers 

behind the observed variability in temperature trends can be obtained. Other local factors 

such as the effect of urban heat island, specific humidity, and dew point may also be 

included in a more quantitative analysis in order to determine how they have contributed 

to the temperature warming over the study area. In this way, we can potentially obtain 

information on how the temperature trends over the study area are attributed to 

anthropogenic impacts (e.g. urbanization, urban heat island effect, etc.) and to natural 

variability such as the large-scale climatic teleconnection patterns (e.g. NAO, ENSO, 

PNA, etc.). Future studies can look into developing methods that aim to differentiate the 

impacts between natural climatic variability and human-caused climate change. In this 

present study, we have established the baseline information about the important 
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periodicities that affect the temperature trends over southern Ontario and Quebec. This 

then can be incorporated into the methods/model aiming to investigate how natural 

fluctuations and anthropogenic activities can affect the temperature trends over southern 

Ontario and Quebec – i.e. climate change associated with cycles of natural processes (e.g. 

effect of radiative forcing) or with human activities (e.g. measured in levels of 

greenhouse gas).   

The impacts that warming temperatures may have on precipitation, and therefore 

streamflow, over the study area should also be investigated (e.g. winter warming may be 

associated  with higher winter precipitation, snowfall-total precipitation relationship, etc.). 

Since changes in temperature will affect the processes involved in the hydrological cycles, 

analyzing the linkages between temperatures (or the potential large-scale teleconnection 

patterns that potentially drive the changes in temperature) and the hydrological processes 

is crucial for understanding the long-term fluctuations involved in thy hydrological 

processes and to better manage water resources. The results obtained in this study in 

terms of discovering the main periodicities that affect the temperature trends (long-term 

component of the temperature data sets used) over southern Ontario and Quebec, can be 

incorporated when correlation analyses are made among temperatures and the different 

climatic phenomena and hydrological processes. 

Finally, it will also be very useful to include more stations (perhaps with longer 

data records) in future studies to get more representative results for the whole province. 

However, suitable interpolation methods to fill the missing records found in many 

stations have to be carefully researched in order to minimize the errors associated with 

interpolations. In this study, only five stations were included because they are the only 

ones that have complete records (with no missing values) for forty years.   
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CONNECTING STATEMENT TO CHAPTER 4 

 

As introduced in chapter 1 and reviewed in chapter 2, trend detection in 

hydrological time series associated with climate change is of significant importance. This 

is also true for Canada – trend detection is important not only at the national and regional 

level, but should also be looked at a more localized spatial coverage. This chapter focuses 

on the application of the discrete wavelet transform (DWT) and the Mann-Kendall trend 

test on streamflow and precipitation time series obtained from a total of 13 stations in the 

southern part of Ontario and Quebec. Using the DWT in conjunction with the MK test is 

a very new approach in studying hydroclimatic trends, especially in the context of 

Canadian studies. In this chapter, a new criterion proposed in chapter 3, which is based 

on the relative error of the MK Z-values to determine the number decomposition levels, 

mother Daubechies (db) wavelet, and the periodic extension to be used in the DWT, is 

used. 

The results of this chapter have been accepted for publication in the Journal of 

Hydrology (DOI:10.1016/j.jhydrol.2012.09.049) and have been presented at the 2012 

NABEC-CSBE/SCGAB Joint Meeting and Technical Conference, July 15-18, 2012, 

Orillia, Ontario, Canada. The manuscript is co-authored by Deasy Nalley, Jan 

Adamowski, and Bahaa Khalil. 
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CHAPTER 4 – USING DISCRETE WAVELET TRANSFORMS TO ANALYZE 

TRENDS IN PRECIPITATION AND STREAMFLOW IN QUEBEC AND 

ONTARIO (1954 – 2008)  

 

Deasy Nalley, Jan Adamowski, and Bahaa Khalil 

 

Abstract: 

 

This paper aims to detect trends in mean flow and total precipitation data over southern 

parts of Quebec and Ontario, Canada. The main purpose of the trend assessment is to find 

out what time scales are affecting the trends observed in the datasets used. In this study, a 

new trend detection method for hydrological studies is explored, which involves the use 

of wavelet transforms (WT) in order to separate the rapidly and slowly changing events 

contained in a time series. More specifically, this study co-utilizes the discrete wavelet 

transform (DWT) technique and the Mann-Kendall (MK) trend tests to analyze and detect 

trends in monthly, seasonally-based, and annual data from eight flow stations and seven 

meteorological stations in southern Ontario and Quebec during 1954-2008. The 

combination of the DWT and MK test in analyzing trends has not been extensively 

explored to date, especially in detecting trends in Canadian flow and precipitation time 

series. The mother wavelet type and the extension border used in the wavelet transform, 

as well as the number of decomposition levels, were determined based on two criteria. 

The first criterion is the mean relative error of the wavelet approximation series and the 

original time series. In addition, a new criterion is proposed and explored in this study, 

which is based on the relative error of the MK Z-values of the approximation component 

and the original time series. Sequential Mann-Kendall analysis on the different wavelet 

detail components (with their approximation component added) that result from the time 

series decomposition was also used and found to be helpful because it depicts how 

harmonious each of the detail components (plus approximation) is with respect to the 

original data. This study found that most of the trends are positive and started during the 

mid-1960s to early 1970s. The results from the wavelet analysis and Mann-Kendall tests 

on the different data types (using the 5% significance level) reveal that in general, intra- 

and inter-annual events (up to 4 years) are more influential in affecting the observed 

trends. 
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4.1. Introduction 

 

The intensification of the hydrologic cycle is one of the most evident effects 

caused by climate warming (Ampitiyawatta and Guo, 2009; Zhang et al., 2009; Durdu, 

2010). Changes in hydrological processes may in turn affect the overall availability and 

quality of water resources, and alter the spatiotemporal characteristics of hydrologic 

occurrences, such as the timing of flow events, and the frequency and severity of floods 

and droughts (Mishra and Singh, 2010; Burn et al., 2010). High-latitude areas have been 

projected to experience more severe impacts associated with climate change (Zhang et al., 

2001). Labat et al. (2004) who studied the global and continental runoff associated with 

temperature increases found that North America is very vulnerable to recent climate 

change. One of the most significant consequences of temperature increases and changes 

in precipitation patterns is the dramatic modification of the hydrologic regimes of 

northern rivers (Boyer et al., 2010).  

The impacts of changing climate in Canada vary from one area to another and 

have been studied by numerous authors, both at the national and regional scale. Studies 

on trends of various hydro-climatic indices reveal a variety of results; both positive and 

negative trends were found across different parts of Canada. According to Ehsanzadeh et 

al. (2011), who analyzed Canadian low flows, there is a positive trend in winter low 

flows (including in eastern Canada), but the trends are negative in western Canada. 

Summer low flows are found to exhibit positive trends in central Canada, but the trends 

are negative in regions such as eastern Ontario and Quebec (Ehsanzadeh et al., 2011). 

Similarly, Adamowski and Bocci (2001) found that there is a significant positive trend in 

the yearly low flow in western Quebec and southern Ontario; however, the opposite was 

observed for central and eastern Canada for the same variable. The latest assessment by 

the Intergovernmental Panel on Climate Change (IPCC) also stated that annual 

precipitation has increased over much of North America, especially in northern Canada, 
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but has decreased in the Canadian Prairies (IPCC, 2007). Recent changes in annual total 

precipitations in Canada were between -10% and +35% (Zhang et al., 2001). 

One of the predicted effects of climate change in Quebec is the increase in the 

intensity and frequency of heavy floods, resulting from heavy precipitation (Assani et al., 

2010). McBean and Motiee (2006) also found that there are significant upward trends at 

the 5%-level in flow and precipitation for the Great Lakes watershed over the period of 

1930-1990. These findings are relatively consistent with the predictions of the General 

Circulation Models (GCMs) for the year 2050 (McBean and Motiee, 2006). The results 

of the Canadian General Circulation Model (CGCMI) and a coupled hydrologic-

hydraulic model used by Roy et al. (2001) predicted that the magnitude of heavy 

precipitation occurrences will increase significantly in Quebec; and Burn and Hag Elnur 

(2002) observed that annual maximum flows were increasing in southern Quebec (the 

Great Lakes and St. Lawrence areas). Zhang et al. (2000) found that the annual 

precipitation has gone up by between 5% and 35% in southern Canada for the period of 

1900-1998. Using a hydrological model on different future climatic scenarios (based on 

greenhouse gas emission scenarios), Boyer et al. (2010) also projected that in the next 

100 years there will be changes in river discharges for both the north and south shores of 

the St. Lawrence River. 

It is not surprising that many of the arguments made concerning both climate 

variability and climatic change are directly related to the detection of trends (or lack 

thereof) in hydroclimatic parameters such as temperature, precipitation, and streamflow 

(Birsan et al., 2005). Changes in the patterns and other characteristics of precipitation 

caused by the daily, seasonal, yearly, and decadal variations should be monitored because 

they have important ramifications (Ampitiyawatta and Guo, 2009). It is therefore 

essential to investigate trends associated with hydrological events in order to better assess 

the potential future impacts of climatic change on water resources (e.g. at the regional 

level). Hydrologic variables are also regarded as useful indicators of how the climate has 

changed and varied over time (Burn and Hag Elnur, 2002). It has been suggested that 

public policies tailored to consider the effects of regional climate change could be 

modified to cater for a specific eco-zone. This would take into account knowledge of 
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local climatic and hydrological trends, rather than general patterns of global climate 

change (Clark et al., 2000).  

One way to accomplish trend assessments is through time-series analysis. Using 

observational data instead of the output of a model minimizes the uncertainties associated 

with the modelling process such as assumption concept simplifications (Svensson et al., 

2005). Studies have applied several methods to detect and quantify trends in precipitation 

and streamflow data. Some of the more common methods found in the recent literature 

involve the use of the bootstrap methods (Adamowski and Bougadis, 2003; Cunderlik 

and Burn, 2004; Abdul Aziz and Burn, 2006; Burn et al., 2010); regression models 

(Svensson et al., 2005; Shao et al., 2010; Timofeev and Sterin, 2010); and non-parametric 

statistical tests (Birsan et al., 2005; Zhang et al., 2009; Durdu, 2010; Zhang et al., 2010; 

Liu et al., 2010). The Mann-Kendall (MK) trend test (Mann, 1945; Kendall, 1975) is 

probably the most widely used non-parametric test in detecting monotonic trends (Yue 

and Pilon, 2004; Hamed, 2008). The most attractive features of this test are that it is 

powerful even for skewed distributions (Önöz and Bayazit, 2003), simple to compute, 

and resilient to non-stationary data and missing values (Partal and Küçük, 2006; 

Adamowski et al., 2009). A noticeable weakness of the MK test is that it does not 

account for serial correlation, which is very often found in precipitation and streamflow 

data (Hamed and Rao, 1998; Partal and Küçük, 2006). McBean and Motiee (2006) also 

specified that the MK test may not necessarily detect non-linear trends. As a result, the 

MK test is often used in conjunction with other methods or models for trend-related 

studies in hydrology. 

More recently, the wavelet transform – a relatively recent development in signal 

processing – has also emerged as a tool used in trend analysis (Wang et al., 2011). 

Wavelet transform has a major advantage over classical signal analysis techniques such 

as the Fourier Transform, which only uses a single-window analysis, resulting in time-

averaged results that lose their temporal information (Torrence and Compo, 1998; Drago 

and Boxall, 2002). The main issue with the fixed window size used in the Windowed 

Fourier Transform is that it loses the time localization at high frequencies when the 

window is sliding along the time series because there are too many oscillations captured 

within the window. It also loses the frequency localization at low frequencies because 
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there is only a few low-frequency oscillations included in the window (Santos et al., 

2001). The wavelet transform can handle these issues by decomposing a one-dimensional 

signal into two-dimensional time-frequency domains at the same time (Adamowski et al., 

2009). Unlike sine waves, which are the main functions used in Fourier analysis, 

wavelets are usually irregular and asymmetric in shape. This property makes a wavelet 

ideal for analyzing signals that contain sharp changes and discontinuities – a localized 

signal analysis (Quiroz et al., 2011). Wavelet transforms use different window sizes, 

which are able to compress and stretch wavelets in different scales or widths; these are 

then used to decompose a time series (Santos et al., 2001). Narrow windows are used to 

track the high-frequency components or rapidly-changing events of the analyzed signals 

(which are represented by the lower detail levels), whereas wider window sizes are used 

to track the signals’ low-frequency components including trends (which are represented 

by the higher detail levels and the approximation component) (Santos et al., 2001; 

Cannas et al., 2006). Additionally, wavelet analysis is able to show many properties of a 

time series or data that may not be revealed by other signal analysis techniques, such as 

trends, discontinuities, change points, and self-similarity. In summary, the wavelet 

transform is capable of analyzing a wider range of signals more accurately when 

compared to the Fourier analysis (Nolin and Hall-McKim, 2006; Goodwin, 2008). The 

results of wavelet analysis can be used to determine the main components or modes in the 

time series that may contribute to producing trends (Kim, 2004). These results can then 

be used to examine the temporal patterns of both a signal’s frequency and time domains 

(Labat, 2005; Wang et al., 2011).  

Several different studies conducted to analyze trends in streamflow and 

precipitation in different climate settings have employed the use of wavelet-based 

methods. Zume and Tarhule (2006) used the continuous wavelet transform and the MK 

test to analyze the variability of precipitation and streamflow in northwestern Oklahoma 

for a period of over 100 years. They found that both annual precipitation and streamflow 

experience interannual to decadal variability. Xu et al. (2009) studied the impact of 

climate change in the Tarim River basin in China for the period of 1959–2006, by 

approximating non-linear trends in annual temperature, precipitation, and relative 

humidity time series using a wavelet-based decomposition and reconstruction technique. 
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They found that all variables showed non-linear trends and/or fluctuating patterns, 

especially at the 4-and 8-year scales. Partal (2010) analyzed streamflow datasets from 

four stations with different climatic conditions in Turkey, three from the Sakarya basin 

and one from the Seyhan basin. The study found different scales were responsible for the 

different trends in different climatic areas. In the Sakarya basin, the real trends were 

associated with the 16-year periodic component, whereas in the Seyhan basin, the trends 

were associated with the 4-year and 8-year modes.  

The main purpose of this study is to combine the use of the discrete wavelet 

transform (DWT) technique and the Mann-Kendall trend tests in order to investigate 

trends in streamflow and precipitation datasets in Ontario and Quebec by analyzing their 

monthly, seasonally-based, and annual time series. The analysis of monthly to yearly data 

should allow this study to investigate the rapidly and slowly changing events in the 

datasets used. The trend analysis is done by examining the behaviour and fluctuation of 

high-frequency and low-frequency components of the available time series, and whether 

they are contributing to the possible existence of trends in these series. This is important 

because although research on trend assessment of flow and precipitation has been 

conducted in different parts of Canada, they have rarely focused on the details of the 

time-scale fluctuations or cycles that affect the trends in flow and precipitation in Ontario 

and Quebec. There could be longer cycles than daily or seasonal fluctuations that exist to 

affect the trends in these variables, which will be explored in this present study.  Using 

the DWT technique in conjunction with the MK test has not been extensively explored to 

date, in analyzing streamflow and/or precipitation data (especially in Canadian studies). 

Additionally, a new criterion of using the relative error of the trend values between the 

original data and the approximation component of the DWT is proposed and successfully 

applied in this study. The usefulness of this new criterion for the DWT procedure is 

discussed in detail in section 4.4.3.  

In this study, the possible existence of significant autocorrelations and seasonality 

patterns in the data sets used is first checked. Following this, each time series is 

decomposed via the DWT approach into its appropriate number of decomposition levels 

(the explanation on how to determine the appropriate number of decomposition levels is 

provided in section 4.4.3). Finally, depending on the characteristics of the analyzed time 
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series (e.g. the presence or absence of significant autocorrelations or seasonality cycles), 

the most suitable MK test is applied to the original data and the series resulting from the 

DWT decomposition. Although this type of detailed information is very important to be 

explored and included in the methodology, it is often overlooked or missing in most 

published trend detection/estimation studies.     

Water resource planners and managers can use the results obtained from this 

study to address issues in water resources that are associated with climate variability, by 

creating appropriate policies and strategies. Some potential applications include the 

implementation of useful adaptation and mitigation strategies as a response to climate 

change; the optimization of various hydrologic structural designs such as dams and 

reservoirs; and improvements in stormwater planning (Coats, 2010) and flood protection 

projects. In addition, in order to improve the forecasting precision of water resources for 

current and future management, an accurate understanding of the temporal variations of 

hydrologic variables is vital (Nolin and Hall-McKim, 2006). The authors of this paper 

believe that the findings from this study can serve as a baseline reference for future 

research and watershed planning/management, and will advance the understanding of 

precipitation and streamflow dynamics in Canada and at the smaller, watershed-scale in 

Quebec and Ontario.  

 

4.2. Theoretical Background 

 

4.2.1. Wavelet Transforms (WT) 

 

A WT is used to mathematically decompose a signal into multiple lower 

resolution levels by controlling the scaling and shifting factors of a single wavelet – the 

mother wavelet Ψ. This is accomplished by using a high-pass filter and a low-pass filter. 

A wavelet function is a function having a wave shape and limited but flexible length with 

a mean value that is equal to zero, and is localized in both time and frequency domains. 

The term wavelet function generally refers to either orthogonal or non-orthogonal 

wavelets (Torrence and Compo, 1998).  
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One of the main reasons to utilize wavelet-based methods in hydrological studies 

is due to its robust property – it does not involve any possibly incorrect assumptions of 

distribution and parametric testing protocols (Kisi and Cimen, 2011). The WT also filters 

out the high-frequency components of a signal (de Artigas et al., 2006). Wavelet 

transforms involve shifting forward the wavelet in a number of steps along an entire time 

series, and generating a wavelet coefficient at each step. This measures the level of 

correlation of the wavelet to the signal in each section. The variation in the coefficients 

indicates the shifting of similarity of the wavelet with the original signal in time and 

frequency. This process is then repeated for each scaled version of the wavelet, in order 

to produce sets of wavelet coefficients at the different scales. The lower scales represent 

the compressed version of the mother wavelet, and correspond to the rapidly changing 

features or high-frequency components of the signal. The higher scales are the stretched 

version of a wavelet, and their wavelet coefficients are identified as slowly changing or 

low-frequency components of the signal. Therefore, wavelet transforms analyze trends in 

time series by separating its short, medium, and long-period components (Drago and 

Boxall, 2002).  

WT can be performed using two approaches: Continuous Wavelet Transform 

(CWT) and Discrete Wavelet Transform (DWT). CWT operates on smooth continuous 

functions and can detect and decompose signals on all scales. Examples of mother 

wavelets used in CWT are the Morlet and Paul wavelets, among others. DWT may use 

mother functions such as the Mallat or à trous algorithms, which operate on scales that 

have discrete numbers. The scales and locations used in DWT are normally based on a 

dyadic arrangement (i.e. integer powers of two) (Chou, 2007). DWT is especially useful 

for time series containing sharp jumps or shifts (Partal and Küçük, 2006). One 

requirement of DWT is that the mother wavelet has to have an orthogonal basis, while a 

non-orthogonal wavelet can be used with either DWT or CWT.  
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4.2.1.1. Continuous Wavelet Transform (CWT) 

 

For a time series, xt, that has a continuous scale but a discrete recording sequence 

and t = 0, . . ., t – 1, then the wavelet function (Ψ), which depends on a time variable (η), 

is generally defined as (Partal and Küçük, 2006):  
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where t represents time; variable γ is the translation factor (time shift) of the wavelet over 

the time series; and variable s ranging from 0 to +∞ denotes the wavelet scale (scale 

factor). When γ = 0 and s = 1,   ( )  represents the mother wavelet – all wavelets 

following this computation are the rescaled (translated and dilated) versions of the mother 

wavelet. In order to be acceptable as a wavelet, the function   ( ) has to satisfy the 

condition of having zero mean (implying the existence of oscillations) and be localized in 

time-frequency space (Torrence and Compo, 1998). As can be seen in equation (4.1), 

when s is less than 1, Ψ(η) corresponds to a high-frequency function; when s is greater 

than 1, Ψ(η) corresponds to a low-frequency function.  

The wavelet coefficients (WΨ) of CWT for the time series xt (with equal time 

interval, δt), is calculated using the convolution of xt with the scaled and translated 

versions of the wavelet,   ( ) (Partal and Küçük, 2006): 
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where the asterisk symbol represents the complex conjugate numbers. If the scale (s) and 

translation (γ) functions are smoothly changed according to time t, a scalogram can be 

produced from the calculation, revealing the amplitude of a specific scale and how it 

fluctuates over time (Torrence and Compo, 1998). 

 



117 
 

4.2.1.2. Discrete Wavelet Transform (DWT) 

 

Although CWT is able to locate specific events in a signal that may not be 

obvious, one of the main disadvantages of the CWT is that the construction of the CWT 

inverse is more complicated (Fugal, 2009). In practice this may not always be desirable 

because often, signal reconstructions are needed (Fugal, 2009). In addition, the use of the 

CWT can generate too many data (coefficients) and is more difficult to implement. It 

may also be more desirable to choose the DWT over CWT because CWT does not 

produce information in the form of a time series, but rather in a two-dimensional format 

(Percival, 2008). This causes a high amount of redundant information produced by CWT 

and the coefficients are correlated spatially and temporally (Percival, 2008). If the DWT 

is chosen, the process of transformation is simplified and the amount of work is reduced; 

yet, it still produces a very efficient and accurate analysis (Partal and and Küçük, 2006). 

This is because the DWT is normally based on the dyadic calculation of position and 

scale of a signal (Chou, 2007). The DWT of a vector is the outcome of a linear 

transformation resulting in a new vector that has equal dimensions to those of the initial 

vector (Chou, 2011). This transformation is the decomposition process. The discretization 

of wavelet functions is accomplished using a logarithmic uniform spacing that has a 

coarser resolution at higher scales (Mallat, 1989; Daubechies 1990).  

 Some important features of DWT are: i) at each scale, the number of 

convolutions using orthogonal wavelets is proportional to the width of the wavelet 

function at that particular scale (Torrence and Compo, 1998; Kulkarni, 2000); ii) the 

wavelet spectra generated are in discrete steps and give a very compact representation of 

the signal (Kulkarni, 2000); iii) due to its orthogonal property, signal reconstruction is not 

complicated (Torrence and Compo, 1998); and iv) results of transformations using DWT 

do not contain the unwanted relation between the wavelet coefficients, which are 

observed in the CWT (i.e. DWT removes the redundant information within the wavelet 

coefficients in order to better identify processes contained in signals) (Daubechies, 1992). 

DWT adopts the following form (Partal and Küçük, 2006):   
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Ψ denotes the mother wavelet; a and b are integers, which represents the amount of 

dilation (scale factor) and translation of the wavelet, respectively;  s0 denotes a dilation 

step whose value is unchanged and is greater than 1; and γ0 symbolizes the location 

variable whose value is greater than zero. Generally, for practical reasons, the values for 

s0 and γ0 are chosen to be 2 and 1, respectively (Mallat, 1989; Daubechies, 1992). This is 

the DWT dyadic grid arrangement (i.e. integer powers of two; logarithmic scaling of the 

translations and dilations). If a time series exhibits discrete properties, with a value of xt, 

occurring at a discrete time t, the wavelet coefficient (Wψ (a,b)) for the DWT becomes 

(Partal and Küçük, 2006):  
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The wavelet coefficient for the DWT is calculated at scale s = 2
a
 and location γ = 2

a
b, 

revealing the variation of signals at different scales and locations (Partal and Küçük, 

2006). Since most precipitation and streamflow data are sampled in discrete intervals, it 

makes sense to use the DWT.  

 

4.2.2. The Mann-Kendall (MK) Trend Test 

 

The computation of the MK S-statistic value from the raw data can yield a large 

positive or negative value for S, indicating a positive or negative trend, respectively. The 

null hypothesis (Ho) of the MK test assumes that the ranked data (Xc , c = 1, 2, 3, . . ., n-1) 

and (Xd, d = c + 1,…, n) belong to a sample of n independent and identically distributed 

random variables. The alternative hypothesis (H1) of the two-sided test assumes that the 

distributions of Xc and Xd are not identical for all c, d ≤ n with c ≠ d (Partal, 2010). The 

S-statistic of the MK test is computed as (Hirsch and Slack, 1984): 
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Xc and Xd denote the ranked values of the data, and n is the length of the data record. For 

data that are distributed identically and independently with a zero mean, the variance for 

the    statistics can be calculated as (Adamowski and Bougadis, 2003):  
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tc represents the summation of t, which is the number of tied values to the extent of c. The 

statistics of the Mann-Kendall test, Z, is then given as (Xu et al., 2009): 
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The statistic of the MK test, Z, given in equation (4.8) can be used where the 

number of records, n, is larger than 10. The trend’s significance is assessed by comparing 

the Z value with the standard normal variate at the pre-specified level of statistical 

significance (Hamed and Rao, 1998). In a two-sided trend test, with alpha (α) 

representing the significance level, the null hypothesis should not be accepted if | | > Zα/2; 
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this suggests that the trend is significant. A positive Z-value at the significance level 

implies that there is a positive trend, whereas a negative value indicates a negative trend. 

The probability value (p-value) obtained from the MK Z-value can be used to verify the 

significance of a trend. If the p-value is less than the pre-determined significant level (e.g. 

α = 5%) or greater than the confidence level (if α = 5%, confidence level = 95%), it 

means that the null hypothesis of no trend cannot be accepted.  

 

4.2.2.1. Modified Mann-Kendall (MK) Trend Tests that Account for Seasonality and 

Autocorrelation Structures in the Data 

 

It is well known that the original Mann-Kendall test does not consider the 

autocorrelation factor that may be present in the time series being analyzed. The presence 

of an autocorrelation in a dataset may lead to inaccurate interpretations of the MK test. A 

time series exhibiting positive autocorrelation causes the effective sample size to be less 

than the actual sample size, thereby increasing the variance and the possibility of 

detecting significant trends when in fact, there are no trends (Hamed and Rao, 1998; 

Ehsanzadeh et al., 2011). On the contrary, the existence of negative autocorrelation in a 

time series enhances the possibility of accepting the null hypothesis (absence of 

significant trends), when actually, there are significant trends (Ehsanzadeh et al., 2011). 

There have been several approaches developed that deal with the effects of 

autocorrelation in a time series. Yue et al. (2002) developed the Trend-Free Pre-

whitening method (TFPW) – the trend component is assumed to be linear, and is first 

removed before the pre-whitening procedure is applied. Kumar et al. (2009) found that 

for data that have significant autocorrelation coefficients extending beyond the first lag, 

the TFPW method was not the best method to account for all these significant 

autocorrelations. In the present study, significant autocorrelations may be present for 

more than just one lag in several time series. Therefore, the TFPW method is not 

considered in this study. 

Hirsch and Slack (1984) proposed a modified MK test that accounts for 

seasonality and serial dependence factors. This method separates observations into 

different seasons, which eliminates the dependence problem between seasons (Hirsch et 
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al., 1982; Hirsch and Slack, 1984). This method, however, is not as powerful when there 

is long-term persistence (with autoregressive parameter > 0.6) or when there are less than 

five years worth of monthly data (Hirsch and Slack, 1984). 

Hamed and Rao (1998) proposed another modified version of the MK test in 

order to deal with the issue of autocorrelation structures for all lags in a dataset, because 

autocorrelations may still exist past the first lag (note: seasonality issues are not taken 

into consideration in this modified version of the MK test). Since the presence of 

autocorrelation underestimates the variance if calculated using the MK formula for 

uncorrelated data, the method by Hamed and Rao (1998) modifies the calculation for the 

variance of the MK test statistics when the data are serially correlated by using an 

empirical formula (see section 4.2.2.3.). When applied to autocorrelated data with a large 

sample size, this test was found to be practically as powerful as when the original MK 

test is applied to independent data (Hamed and Rao, 1998).  

 

4.2.2.2. Modified Mann-Kendall (MK) Test to Account for Seasonality and 

Autocorrelation by Hirsch and Slack (1984) 

 

Hirsch and Slack (1984) modified the original Mann-Kendall trend test to account 

for seasonality and autocorrelation factors present in a dataset. Let the matrix: 
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where the data in the matrix x represent a series of observations recorded over k seasons 

for j years (without any tied values) (Hirsch and Slack, 1984). The ranks of the data in 

matrix x are represented in the following matrix (Hirsch and Slack, 1984): 
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Since the values within each season are ranked among themselves, the calculation of the 

rank (rdz) becomes (Hirsch and Slack, 1984) (for c and d notations, see equation (4.5)): 
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The test statistic Sz is calculated using (for each season): 
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The test statistics for the seasonal Kendall is calculated using: 

 

   ∑  

 

   

                          (    ) 

 

with variance of: 
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 is the variance of ( z),     denotes the covariance of ( z,  w). The estimator for the 

covariance  ̂   was developed by Dietz and Killeen (1981), which is as follows: 
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With no missing values, the estimator of the covariance becomes (Hirsch and Slack, 

1984): 
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Where     and    
  are calculated using: 
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However, in the event that there are no ties and no missing data values,    
  is simply the 

Spearman’s correlation coefficient for seasons z and w (Hirsch and Slack, 1984). By 

adopting the estimates of     to calculate the variance   , the test no longer needs the 

assumption of independence (Hirsch and Slack, 1984). 

 

4.2.2.3. Modified Mann-Kendall Test for Autocorrelated Data by Hamed and Rao 

(1998)  

 

Since using the original MK for autocorrelated data underestimates the variance 

of the data, the calculation of the variance of the test statistics S is altered and given by an 

empirical formula (Hamed and Rao, 1998): 
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where n* is the effective number of sample size needed in order to account for the 

autocorrelation factor in the dataset. The notation    
 ⁄  is the factor that represents the 

correction associated with the autocorrelation of the data. Empirically, the correction is 

expressed by (Hamed and Rao, 1998): 

 

 

  
 
     (

 

         
)  ∑(   )(     )(     )  ( )

   

   

                  (    ) 

 

  ( ) symbolizes the autocorrelation function between the ranks of the observations, 

computed using the inverse of equation (4.19) (Kendall, 1975; Hamed and Rao, 1998). 

This transforms the rank autocorrelation into the normalized data autocorrelation, as the 

estimate of the normalized autocorrelation structure is needed to evaluate the variance of 

S for data X whose distribution may not be normal or rather arbitrary (Hamed and Rao, 

1998). 
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4.3. Study Sites and Datasets  

 

The monthly, seasonally-based and annual flow and precipitation data from a total 

of eight Reference Hydrometric Basin Network (RHBN) stations and seven 

meteorological stations, respectively, were analyzed.  These stations are located in 

Ontario and Quebec, Canada. Six of the RHBN stations used are located in Ontario, and 

two are in Quebec. The smallest drainage area of the flow stations is 181 km
2
 and the 

largest one is 22,000 km
2
. As for the meteorological stations, there are three situated in 

Quebec, and one in Ontario. The two Quebec RHBN stations – Richelieu River and 

Eaton River – are located in the south western corner of the province, on the south shore 

portion of the St. Lawrence stream. Four RHBN stations in Ontario (the Neebing, North 

Magnetawan, Black, and Sydenham rivers) are located around the Great Lakes basin. The 

Missinaibi and Nagagami rivers (Ontario) are the most northerly stations. The locations 
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of the flow and precipitation stations are shown in figure 4.1 and the key features of the 

RHBN stations and the meteorological stations are summarized in tables 4.1 and 4.2, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. A map of the flow and precipitation stations used this study. 

 

Monthly datasets were chosen because it includes the analysis of short-term 

monthly variations such as the intra-annual and inter-annual cycles. Seasonally-based 

values were examined to allow the analysis of seasonal cycles (it will be seen later that 

most time series – especially flow time series – exhibit strong annual cycles). Annual 

datasets were analyzed in order to study the long-term fluctuations (e.g. multi-year, 

decadal, and multi-decadal events) that are potentially present in the flow and 

precipitation time series. 

One of the advantages in using monthly datasets compared to annual datasets in 

trend detection is that annual data values may not deal well with the presence of missing 

records (which causes the annual summary value to be biased), and the seasonality factor 
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(Hirsch and Slack, 1984). If both factors (missing data and seasonality) are present in a 

yearly time series, the trends detected may simply be caused by the yearly variation in the 

sampling schedule (Hirsch and Slack, 1984). Having said this, a monthly time series has 

more autocorrelation issues compared to a yearly time series (Hirsch and Slack, 1984). 

Therefore, this present study chose to incorporate monthly and annual data in order to 

thoroughly analyze the variations and trends of flow and precipitation within the study 

area.    

 

Table 4.11. Unregulated RHBN gauging stations in Ontario and Quebec recording the 

streamflow data, which were used in this study. 

 
Station Id. 

 
Station Name Province 

Latitude 

(
o
) 

Longitude 

(
o
) 

Drainage Area 

(km
2
) 

02AB008 

Neebing River 

near 

Thunderbay 

ON 48.38 -89.31 187 

 

02EA005 

 

North 

Magnetawan 

River Near 

Burk's Falls 

 

 

ON 

 

45.66 

 

 

-79.37 

 

 

321 

02EC002 

Black River 

Near Washago 

 

ON 
44.71 

 

-79.28 

 
1521 

02FB007 

Sydenham 

River Near 

Owen Sound 

ON 
44.52 

 

-80.93 

 
181 

 

02OE027 

 

Eaton (Riviere) 

Pres De La 

Riviere Saint-

Francois-3 

 

 

QC 

 

 

45.46 

 

 

 

-71.65 

 

 

 

642 

02OJ007 

Richelieu 

(Riviere) Aux 

Rapides Fryers 

 

QC 
45.39 

 

-73.25 

 
22000 

04JC002 

Nagagami 

River At 

Highway No. 

11 

 

ON 
49.77 

 

-84.53 

 
2410 

04LJ001 

Missinaibi 

River At 

Mattice 

ON 
49.61 

 

-83.26 

 
8940 
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Table 4.2. Meteorological stations in Ontario and Quebec recording the precipitation data, 

which were used in this study. 

Station Id. Station Name Province 
Latitude 

(
o
) 

Longitude 

(
o
) 

Joint 

Station 

Elevation 

(m) 

6022476 Fort Frances A ON 48.7 -93.43 Yes 342 

 

6068150 

 

Sudbury A 

 

ON 

 

46.6 

 

-80.8 

 

Yes 

 

348 

 

6085700 

 

North Bay A 

 

ON 

 

46.4 

 

-79.4 

 

Yes 

 

370 

 

6105976 

 

Ottawa CDA 

 

ON 

 

45.4 

 

-75.7 

 

No 

 

79 

 

6139525 

 

Windsor A 

 

ON 

 

42.3 

 

-82.9 

 

Yes 

 

190 

7025250 

Montreal/Pierre 

Elliot Trudeau 

Intl. A 

QC 
45.5 

 

-73.8 

 

Yes 

 

36 

 

7060400 Bagotville A QC 48.33 -71 No 159 

 

4.3.1. Selection Criteria for the RHBN Flow Stations and Meteorological Stations 

 

The stations used in this study were chosen based on the regulation type (for flow 

stations), and the completeness and length of their available records for the period of 

1954-2008. The three main criteria used for this selection are summarized as follows: (1) 

there must be an absence of hydrological structural controls upstream of a RHBN 

gauging station (for flow stations only). Upstream controls and regulation, such as 

reservoir storage or containment structures, hydropower activities, and water diversions 

may have considerable impacts on the quality of data (Yue and Pilon, 2005). As a 

consequence, less accurate frequency analysis and interpretation may be obtained. 

Therefore, this study only considered gauging stations, which are stated as “natural” 

according to Environment Canada. (2) Stations must have a record length of at least 55 

years, starting from 1954 to 2008. In order to obtain a valid mean statistic in assessing 

trends in flow associated with climate change, Kahya and Kalayci (2004) and Burn and 

Hag Elnur (2002) consider at least 31 and 25 years worth of data, respectively, are 

required. Furthermore, Partal (2010) considered 40 years’ worth of data adequate for 

trend analysis studies. Therefore, we concluded that having 55 years worth of data would 

be sufficient for the purpose of trend detection in our study. The start and end years in 

this study were chosen because they would give the highest number of stations in Quebec 

and Ontario to be analyzed without any missing records. (3) Although up to three-percent 
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missing data is considered acceptable for meteorological studies (Mishra and Singh, 

2010), this study chose to include only stations with fully complete records over the 

chosen time period. This was done in order to avoid possible uncertainties associated 

with the computation of extrapolation procedures. Criterion number 1 was applied only to 

the flow stations; criteria number 2 and 3 were applied to both flow and precipitation 

stations. In summary, there are a total of eight RHBN stations in Ontario and Quebec that 

meet the three selection criteria. As for the meteorological stations, there are a total of 

seven meteorological stations in Ontario and Quebec that have a record length of 55 years 

without missing values. 

 

4.3.2. Flow Data 

 

The monthly, seasonal, and annual average flow data were obtained from the 

Environment Canada HYDAT database. Only data from stations that are categorized as 

RHBN were chosen. First, the RHBN designation for a station indicates that its data 

accuracy is further evaluated qualitatively by local experts by taking into consideration 

the hydraulic condition of that particular station (Coulibaly and Burn, 2004). Secondly, 

the stage-discharge relationship and channel geometry were considered, and the 

reliability of data records influenced by ice conditions was checked (Zhang et al, 2001). 

Thirdly, the RHBN stations represent pristine or stable hydrological conditions, having at 

least 20 years of good-quality data (Zhang et al., 2001). In summary, only RHBN 

gauging stations were included in this study in order to ensure that good-quality data are 

used. In addition to this, many Canadian studies on flow trend and variability have also 

used data from selected RHBN stations because of their record length and reliability (e.g. 

Burn and Hag El Nur, 2002; Coulibaly and Burn, 2004; Ehsanzadeh and Adamowski 

2007; Ehsanzadeh et al., 2011; etc).  

The flow data used in this study cover the period from January 1954 to December 

2008, except for Eaton River station that has records ending in September 2008. The data 

analysis therefore covers the years 1954-2008 (except for Eaton River which only covers 

up to 2007 due to the incomplete 2008 data).  
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4.3.3. Precipitation Data 

 

The monthly, seasonally-based and annual total precipitation data were obtained 

from Environment Canada’s second generation adjusted and homogenized precipitation 

database (with trace corrections to account for trace amounts of both rainfall and 

snowfall). The detailed explanation of the adjustment procedures can be found in Mekis 

and Vincent (2011). Daily rainfall and snowfall measurements were adjusted separately – 

the adjusted rainfall and snow-water equivalent make up the daily total precipitation 

(Mekis and Vincent, 2011). Mekis and Vincent (2011) also applied several statistical 

adjustments to the original daily data (which were taken from the National Climate Data 

Archive of Environment Canada). These procedures address issues regarding changes in 

location, modifications to recording instruments, faulty equipment, and alterations to 

recording procedures. These corrections were done to ensure that factors such as wind 

undercatch, evaporation losses, and gauge specific wetting losses for specific types of 

rain-measuring instruments, have been taken into account. Other improvements and 

revisions that were also implemented by Mekis and Vincent (2011) in these second 

generation datasets include: better rain-gauge adjustment procedures, improved snow-

water equivalent maps, better adjustment procedures to trace records due to more 

accurate metadata information, and further tests on the combined stations. Since the 

datasets contained in the second generation adjusted precipitation data have been 

developed mainly for climate-related research, their quality is very suitable for the 

purpose of this study.  

Many precipitation stations included in the second-generation datasets have long 

records as a result of data combinations among nearby stations (Mekis and Vincent, 

2011). The procedures and adjustments involved in joining the data of nearby stations are 

given in detail in Mekis and Vincent (2011). The stations used in this study were 

combined stations, except for the Ottawa CDA and Bagotville A stations (table 4.2). All 

precipitation stations used have data that extend prior to 1954. Station Sudbury A has 

incomplete data for year 2008; therefore the data analysis for this station only covers up 

until 2007. To be consistent with the analysis of the flow trends, it was decided to use the 

common period of 1954-2008. Kumar et al. (2009) suggested that the same length of 
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records should be used when analyzing trends of different variables to avoid misleading 

conclusions.  

 

4.4. Methodology 

 

Three data types were used in the data analysis: monthly, seasonally-based, and 

annual. Monthly time series allowed for the investigation of the short-term fluctuations 

that affect the flow and precipitation. Since annual cycles were strongly apparent in most 

monthly data, the seasonal average flow and the seasonal total precipitation were used to 

assess if these annual cycles may have an influence on trends in flow and precipitation 

data – the second decomposition level in the seasonally-based data represented the yearly 

(12-month) cycle. Finally, annual data were used in order to assess the long-term 

fluctuations of streamflow and precipitation over the study area.  

The procedures for data analysis are organized in the following order: 

1.  Autocorrelation tests or analysis were performed for each of the precipitation and 

streamflow series in order to check for the presence of a serial correlation and 

seasonality patterns.  

2. Each time series was decomposed via the discrete wavelet transforms (DWT) 

using Daubechies wavelets, splitting the signal into its approximation and detail 

components. 

3. The Mann-Kendall tests were computed on the original data, the detail time series, 

as well as on the combinations of each of the detail components plus their 

approximations.  

4. The sequential Mann-Kendall analysis was applied to every time series, starting 

from the original series to the different detail components, approximations, and 

the combinations of the details with their approximations.    

5. The periodic component(s) responsible for trends in each dataset were determined 

based upon the MK Z-values and the sequential MK graphs of each periodicity.  

6. The sequential MK graphs of the original annual time series were analyzed and 

used to determine the starting point of a trend increase or decrease. This was done 
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in order to examine whether these starting times are similar among the different 

flow and precipitation stations.  

The following sections describe each of these steps in detail. 

 

4.4.1. Autocorrelation Analysis 

 

The presence of significant autocorrelation in a time series can compromise the 

interpretation of its trend analysis because it can alter the dispersion of the data 

distribution by changing the variance. This then increases the occurrence of type I error 

(Yue et al., 2002), in which a significant trend may be found when in fact the null 

hypothesis should be accepted (Hamed and Rao, 1998; Partal, 2010). It is expected that 

the monthly and seasonally-based data would have more autocorrelation issues compared 

to the annual data. An autocorrelation assessment in the monthly and seasonal datasets 

was accomplished by using the following equation (Yue et al., 2002; Mohsin and Gough, 

2010): 
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R is the lag-1 autocorrelation coefficient of the sample data xt    ̅  ,   ̅  is the sample mean, 

and n is the number of observations in the data. If the calculated lag-1 autocorrelation 

coefficient is within the interval defined by equation (23), it can be assumed that the 

monthly or seasonal dataset does not contain a significant autocorrelation. If, on the other 

hand, the calculated R is found to be outside of the range, the corresponding dataset is 

assumed to exhibit a significant autocorrelation at the 5% significance level. For the 

annual datasets, their correlograms showing the ACFs of each dataset for several lags 

were analyzed and used to determine whether the data are autocorrelated. 
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4.4.2. Seasonality Factor 

 

The monthly and seasonally-based flow and precipitation time series were 

checked for seasonality by examining their correlograms. These correlograms were used 

to visually determine the presence (or lack thereof) of seasonality patterns, or of any 

cyclical and oscillatory behavior. Looking at the original data, many time series display 

the patterns of significant autocorrelation and annual cycles. It is important to note that 

the detail components of signal decomposition in WT can be associated with factors such 

as seasonal cycles, and other influencing variables that may be external to the time series 

(Choi et al. 2011). Therefore, the correlograms of the detail components were used to 

check whether any cyclical patterns were still present post-decomposition.  

 

4.4.3. Time Series Decomposition via the Discrete Wavelet Transform (DWT) 

 

The conventional discrete wavelet analysis of signals was performed on each flow 

and precipitation time series using the multilevel 1-D wavelet decomposition function in 

MATLAB (MATLAB Wavelet Toolbox). This produces the wavelet transform of the 

input data at all dyadic scales. Rather than relying on an upsampling procedure, the DWT 

relies more on downsampling, which is excellent for denoising (Fugal, 2009).  The mean 

flow and total precipitation input signals (data) are all one-dimensional. 

Decomposing the signals using specified filters (wavelet and scaling functions) 

produces two types of coefficients: the approximation or residual, and detail vectors 

(Chou, 2007). These coefficients resulted from the convolution of the original signal with 

a low-pass filter and a high-pass filter. The low-pass filter is the scaling function and the 

high-pass filter is the wavelet function. The convolutions of signals with the low-pass 

filter produced the approximation coefficients, which represent the large-scale or low-

frequency components of the original signal. Convolutions with the high-pass filter 

produced the detail coefficients, which represent the low-scale or high-frequency 

components (Bruce et al., 2002). The process of signal decomposition was repeated 

multiple times, decomposing the original signal into several different lower-resolution 

components (Partal, 2010).  
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The detail and approximation coefficients produced from the signal 

decomposition were then reconstructed since they are merely intermediate coefficients. 

These have to be re-adjusted to the entire one-dimensional signal in order to enable the 

investigation of their contribution to the original signal (Dong et al., 2008). This 

contribution may be reflected in the different time scales such as intra-annual, inter-

annual, decadal, and multi-decadal.  

The Daubechies (db) wavelets were used in this study because they are commonly 

used mother wavelets for the DWT in hydro-meteorological wavelet-based studies. 

Daubechies wavelets provide compact support (Vonesch et al., 2007), indicating that the 

wavelets have non-zero basis functions over a finite interval, as well as full scaling and 

translational orthonormality properties (Popivanov and Miller, 2002; de Artigas et al., 

2006). These features are very important for localizing events in the time-dependent 

signals (Popivanov and Miller, 2002).  

Relatively large numbers of data points used in this study were from the monthly 

and seasonally-based datasets. For the period of 55 years, there were 657 or 660 data 

points for the monthly sets and 219 or 220 for the seasonally-based sets, depending on 

when the records ended in 2008. In order to avoid unnecessary levels of data 

decomposition in these larger datasets, the number of decomposition levels had to be 

determined first. This number is based upon the number of data points, as well as the 

mother wavelet used. The highest decomposition level should correspond to the data 

point at which the last subsampling becomes smaller than the filter length (de Artigas et 

al., 2006). According to de Artigas et al. (2006), who analyzed monthly geomagnetic 

activity indices, if v is the number of vanishing moments of a db wavelet and n is the 

number of data points in a monthly-based time series, the maximum decomposition level 

L is calculated using the following equation: 
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 In MATLAB, the number of vanishing moments for a db wavelet is half of its 

starting filter length. For example, db5 in MATLAB refers to the Daubechies5 wavelet, 
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which has a 10-point filter length. If one uses db5 to analyze the monthly data, for 

example, in equation (4.24), with v equal to 5, the resulting maximum level of 

decomposition for the monthly data is 6.20 (the DWT performed in MATLAB would 

consider the data up to the next dyadic arrangement, which is 1024 data points instead of 

660).  

Smoother db wavelets (db5-db10) were then tried for each monthly and 

seasonally-based dataset. Smoother wavelets are preferred here because the trends are 

supposed to be gradual and represent slowly-changing processes. Smoother wavelets 

should be better at detecting long-term time-varying behavior (good frequency-

localization properties) (Adamowski et al., 2009). In addition to this, several trend studies 

used smoother db mother wavelets (e.g. Kallache et al., 2005 used least asymmetric LA 

(8); de Artigas et al., 2006 used db7). With the smoother db wavelets, the levels of 

decomposition resulting from the calculations using equation (24) were between 5.8 and 

6.8 (for monthly-based data), and 3.8 and 4.8 (for seasonally-based data). Therefore, six 

and seven levels; and four and five levels were tried for the monthly and seasonally-based 

data, respectively.  

The border conditions were also taken into consideration when performing the 

DWT. This is because for signals with a limited length, convolution processes cannot 

proceed at both ends of the signal since there is no information available outside these 

boundaries (Su et al., 2011). This is referred to as the border effect (Su et al., 2011). As a 

result, an extension at both edges is needed. Border extensions that are commonly used 

are zero-padding, periodic extension, and symmetrization – all of which have their 

drawbacks, due to the discontinuities introduced at both ends of the signals (de Artigas et 

al., 2006; Su et al., 2011). The default extension method used in MATLAB is 

symmetrization, which assumes that signals outside the original support can be recovered 

by symmetric boundary replication (de Artigas et al., 2006). Zero-padding pads the signal 

with zeros beyond the original support of the wavelet; periodic padding assumes that 

signals can be recovered outside of the original support by periodic extension (de Artigas 

et al., 2006). The inverse discrete wavelet transform (IDWT) was then computed to 

ensure perfect signal reconstruction.  
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For each monthly dataset, six and seven levels of decomposition were tried for each 

smooth db wavelet. In order to determine the smooth mother wavelet and the extension 

mode to be used in the data analysis for each data type and dataset, two criteria were used. 

The first criterion used was proposed by de Artigas et al. (2006): all three extension 

modes for each db wavelet were employed in order to determine the extension method, 

and the db type, that would produce the lowest mean relative error (MRE). The mean 

relative error (MRE) was calculated using the following equation (Popivanov and Miller, 

2002; de Artigas et al., 2006): 
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where    is the original data value of a signal whose number of records is n, and      is 

the approximation value of     . The second criterion is the one proposed in this study 

and is based on the relative error   )(  ). Each of the extension modes for each of the 

smooth db wavelets was examined in order to determine the combination (of border 

condition and the mother wavelet) that would produce the lowest approximation Mann-

Kendall Z-value relative error   (  ). The computation of the relative error was done 

using the following proposed equation: 
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where Za is the MK Z-value of the last approximation for the decomposition level used, 

and Zo is the MK Z-value of the original data. 

For the monthly datasets, the calculated MREs did not differ significantly among 

the different border conditions and the different db wavelet types used, for the six and 

seven levels of decomposition. However, once the        calculations were completed, the 

lowest errors were generally obtained for six decomposition levels. Therefore, for the 

monthly data analysis, six decomposition levels were used in their DWT procedures (the 

db type and border extensions may vary from one station to another). The        was then 

used to determine the db type as well as the border extension to be used for the data 
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analysis. Using the monthly total precipitation for station Montreal/Pierre Elliot Trudeau 

as an example, the MREs for the different db types and border extensions were between 

0.42 and 0.43 (this applied both for six and seven decomposition levels). The ranges of 

the        for six decomposition levels were: 97.35-341.05, 44.78-421.94, and 17.46-

134.65 using zero-padding, periodic extension, and symmetrization borders, respectively. 

As can be seen, there were very noticeable differences in the relative errors among the 

different extensions. For this station, the lowest         produced was by using the 

symmetrization border with db9   (  : 17.46, MRE: 0.42).   

For the seasonally-based data analysis, similar procedures to that of the monthly 

data analysis were used, in order to find the levels of decomposition, db type, and border 

extension that would produce the lowest MRE and       . Four and five levels of 

decomposition were tried with different border conditions for the different smooth db 

wavelets. The lowest MRE and      were obtained when four levels of decomposition 

were used. Therefore, four levels of decompositions were used for the seasonally-based 

data analysis, but the extensions and db types may vary for the different stations.   

For the annual data, similar observations were seen where the MREs of the 

different border conditions did not show substantial differences. The differences in the 

relative errors were also more noticeable among the different border extensions and the 

different db wavelets. Since the annual datasets have 55 years worth of records, they 

could be decomposed up to five levels, which correspond to 32 years. Even so, four 

decomposition levels – which have a maximum of 16 years in fluctuation – were also 

explored. The      and MRE of four decomposition levels were then compared to those 

of five decomposition levels. So, four and five levels of decompositions were assessed 

for the annual data. The MREs between the two levels did not produce significant 

differences, but lower relative errors were observed for four decomposition levels. For 

example, for the North Magnetawan River station, the MREs for levels four and five were 

0.17-0.22 and 0.17-0.25, respectively. The lowest relative errors for this station were 

observed when the periodic border extension was used at four decomposition levels with 

different db types    (    0.98-4.97). Therefore, for this station, four decomposition 

levels were used in the DWTs, with the periodic extension border and db10 wavelet – this 

produced the lowest relative error (i.e. 0.98). The same procedures were applied to the 
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rest of the annual datasets – four decomposition levels were used, but the extension 

condition and db wavelet types may vary from one station to another. 

 

4.4.4. Applying the Mann-Kendall (MK) Trend Tests  

 

For each study location, the MK test S-statistic and its variance were calculated in 

order to obtain the test’s Z standard normal value. The absolute value of this Z-value was 

then compared to the critical two-tailed Z-value (area under the normal curve) 

corresponding to the significant level of α/2 (this study used α = 5%). The Z values in a 

two-tailed test for α of 5% are ± 1.96. If the Z-value obtained from the MK calculation is 

found outside the boundary of -1.96 and +1.96, then that indicates that the trends detected 

are significant. 

For the monthly and seasonally-based datasets, the modified MK test by Hirsch 

and Slack (1984) was used because all of these time series showed seasonality patterns 

and most of them exhibited significant lag-1 autocorrelations. For the annual datasets, the 

original MK test was applied to datasets that did not exhibit significant autocorrelation. 

The modified MK test by Hamed and Rao (1998) was applied to two annual datasets 

(Richelieu River and Montreal/Pierre Elliot Trudeau) because they possessed significant 

autocorrelations. These corresponding MK tests for the different data types were 

computed on the original time series, the time series resulting from the wavelet 

decomposition (details and approximations), and on a set of combinations of the details 

plus their respective approximations.  

 

4.4.5. Sequential Mann-Kendall (MK) Analysis 

 

The progressive MK values were calculated for the data used ranging from the 

beginning of the study period to the end (e.g. Partal, 2010). These MK values were 

obtained using the different MK tests for the different data characteristics (mentioned in 

section 4.4). The MK values were portrayed as line graphs and when the line crosses the 

upper or lower confidence limits, it is an indication that there is a significant trend 

because the calculated MK value is greater than the absolute value of the normal standard 
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Z value (at the 5% significance level). By using this significance level, it is implied that 

the upper confidence limits in a sequential MK graph represent the Z-value of +1.96, 

whereas the lower confidence limits represent the Z-value of -1.96. The purpose of 

conducting the sequential MK tests and graphing the results is to see how the trends 

fluctuated over the study period. Sequential MK analysis also allowed the depiction of a 

combination of a set of significant upward and downward trends in a time series that may 

cancel each other, resulting in a non-significant final MK Z-value for that specific dataset.  

It is important to note that the normal approximation may be used on the MK test 

to obtain the Z-value only when the number of data points is greater than 10. Additionally, 

the power of the modified MK test by Hirsch and Slack (1984) is considered acceptable 

when seasonal datasets have at least 10 years worth of monthly values. In light of this, the 

present study considered the MK values to be accurate starting from the 10
th

 year since 

the beginning of the data record, which is 1963. Although all of the sequential MK 

graphs presented in this paper cover the entire study period from 1954-2008, the portions 

covering the first 10 years of the graphs may be overlooked. The sequential MK 

analysis/graphs on the original annual flow and precipitation series were also used to 

examine and determine the possible starting time point (years) in which the apparent 

trends started to appear. The results obtained from the different stations can be compared 

in order to see whether the starting times shared any similarity.  

 

4.4.6. Determining the Most Dominant Periodic Components for Trends 

 

The procedures for determining the periodic component(s) that are most dominant 

for trends in a time series consisted of two parts. Firstly, the sequential MK graphs of 

each detail components (with its approximation added) were examined with respect to 

their original data. These comparisons were done in order to find the detail components 

(with approximation added) whose progressive trend lines behave in the most similar 

manner with respect to their original data. Secondly, the MK Z-value for each of the 

detail components was compared to the MK Z-value of the original data to see if they are 

close (even if the values were not statistically significant). The periodic component(s) 
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that satisfied these two requirements were considered the most dominant periodicities 

affecting the production of trends. 

In determining the most influential periodic component for trends, different 

combinations of detail components were also tried and tested. For example, if a time 

series was decomposed into four decomposition levels, we also tested several 

combinations of detail components (with the approximation added) such as D1 + D2 + 

A4, etc. We found that the results of using these combinations were not always 

conclusive. For example, the most dominant periodicity for station Richelieu River is the 

D4 component (with approximation) (table 4.9; see section 4.5.4) but in a combination of 

D3 + D4 (with approximation), the MK Z-value increased very significantly to +8.05. 

This is not close to the MK Z-value of the original data, and its sequential MK graph was 

not harmonious with the original data. Hence, we chose to only present the results using 

individual detail components (with its approximation added). This provides clearer 

information about the most dominant periodicities responsible for trends because of the 

closeness of the MK Z-values (between the individual most dominant periodic mode and 

the original data) and the sequential MK graph (which showed a harmonious trend line 

between the individual most dominant periodic mode and the original data). This was not 

always observed when the different detail components were combined.  

 

4.5. Results and Discussions 

 

4.5.1. Preliminary Data Analysis 

 

Flow and total precipitation time series (from the beginning of 1954 to the end of 

2008) from eight flow stations and seven meteorological stations in Quebec and Ontario 

were analyzed for trends. First, the autocorrelation analysis was applied to each of the 

monthly, seasonally-based, and annual data flow and precipitation series in order to 

determine the significance of the lag-1 autocorrelation and to assess seasonality patterns. 

The summaries of flow and precipitation ACF values for their monthly, seasonally-based, 

and annual data are presented in tables 4.3 and 4.4, respectively.  
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Table 4.3. Lag-1 Autocorrelation Functions (ACFs) of the original monthly, seasonally-

based, and annual flow series. 

Flow Station Monthly data Seasonally-based data Annual data 

Neebing River 0.34* (S) -0.20* (S) 0.25 

North Magnetawan River 0.27* (S) -0.25* (S) 0.08 

Black River 0.42* (S) -0.13* (S) 0.09 

Sydenham River 0.43* (S) -0.07 (S) 0.21 

Nagagami River 0.41* (S) -0.07 (S) 0.05 

Missinaibi River 0.32* (S) -0.26* (S) 0.13 

Eaton River 0.19* (S) -0.31* (S) 0.07 

Richelieu River 0.69* (S) 0.10* (S) 0.34* 
* indicates significant lag-1 serial correlations at α = 5%. 

(S) indicates the presence of seasonality cycles 

 

Table 4.4. Lag-1 Autocorrelation Functions (ACFs) of the original monthly, seasonally-

based, and annual precipitation series. 
 

Precipitation Station Monthly data Seasonally-based data Annual data 

Fort Frances A 0.30* (S)  -0.03 (S) -0.02 

Sudbury A 0.09* (S) -0.02 (S) 0.03 

North Bay A 0.12* (S) 0.02 (S) 0.21 

Ottawa CDA 0.02 (S) -0.02 (S) 0.19 

Windsor A 0.06* (S) 0.03 (S) -0.22 

Montreal/Pierre Elliot Trudeau 0.08* (S) -0.04 (S) 0.28* 

Bagotville A 0.02 (S) 0.05 (S) 0.06 
* indicates significant lag-1 serial correlations at α = 5%. 

(S) indicates the presence of seasonality cycles 

 

As can be seen, the serial correlation in the flow series is more pronounced 

compared to that of the precipitation series. This is perhaps due to the nature of Nordic 

rivers, which have flows that may lag by many months (Anctil and Coulibaly, 2004). The 

seasonality patterns were then visually determined based also on these correlograms. All 

monthly and seasonally-based data for both streamflow and precipitation show patterns 

of seasonality; the cycles are much clearer in flow data. The presence of strong annual 

cycles – especially in the flow data – is seen and indicated by the high ACF values that 

repeat at about every 12
th

 lag (for monthly data) and every 4
th

 lag (for seasonally-based 

data) - see figures 4.2 and 4.3 for examples. The influence of this yearly cycle on trends 

is looked into in more detail in the seasonally-based data analysis, where the second level 

of decomposition represents the 12-month periodic mode.  
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Three MK tests were employed to examine the presence of trends in the original 

time series and those resulting from the wavelet decomposition. Ideally, the modified MK 

test by Hirsch and Slack (1984) should be used when a time series shows a seasonality 

pattern (with or without a significant autocorrelation). If a time series only exhibits a 

significant autocorrelation without the seasonality effect, the modified MK by Hamed 

and Rao (1998) should be used. The original MK test should be used when a time series 

exhibits neither a seasonality pattern nor significant lag-1 ACFs.  

In order to examine how the trends have progressed over time, the sequential MK 

tests were applied to the original data and to the time series of the different periodic 

components obtained from the discrete wavelet decomposition. It is important to examine 

the sequential MK values because a mix of positive and negative trends may be present in 

the same time series. The sequential MK analysis can also help to determine how the 

trend of a detail component may explain the trends found in the original data. Indeed, in 

this study, the behavior of the trend lines of the detail components (plus approximation) 

is important. Therefore, not only the MK Z-values of these details are considered when 

determining the most influential periodic component(s) on the trend, but also how 

similarly their trend lines fluctuate with respect to trend line of the original data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Examples of annual cycles in the monthly series (left: Richelieu River; right: 

Montreal/Pierre Elliot Trudeau) are seen in these correlograms as there are higher ACF 

values at every 12
th

 lag. The upper and lower solid lines represent the confidence 

intervals. 
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Figure 4.3. Annual cycles are also seen in the seasonally-based series (left: Richelieu 

River; right: Montreal/Pierre Elliot Trudeau), where the values of ACFs at every 4
th

 lag 

are higher compared to the other lags. The upper and lower solid lines represent the 

confidence intervals. 

 

4.5.2. Monthly Data Analysis 

 

Each monthly average flow and total precipitation dataset was decomposed into 

six lower resolution levels via the DWT approach. The detail components represent the 2-

month periodicity (D1), 4-month periodicity (D2), 8-month periodicity (D3), 16-month 

periodicity (D4), 32-month periodicity (D5), and 64-month periodicity (D6). The A6 

represents the approximation component at the sixth level of decomposition. Examples of 

the application of the discrete wavelet transform on monthly flow and precipitation series 

are shown in figures 4.4 and 4.5, respectively. These figures show the results when the 

DWT technique is used to decompose a time series. As can be seen, the lower detail 

levels have higher frequencies, which represent the rapidly changing component of the 

dataset, whereas the higher detail levels have lower frequencies, which represent the 

slowly changing component of the dataset. The approximation components (A6) in 

figures 4.4 and 4.5 represent the slowest changing component of the dataset (including 

the trend). It should be noted that due to space limitation, the results of every station are 

not presented graphically. The authors of this paper chose to only include the results of 
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several stations, which were chosen with the purpose of illustrating the application of the 

DWT technique in conjunction with the MK trend test. 

 

4.5.2.1. Monthly Average Flow Data  

 

The application of the MK test on the eight original flow series over the study 

period showed a mix of positive and negative trends. Increasing trends are seen as being 

more dominant since five out of the eight flow stations show positive trend values. Three 

stations experience significant trend values, two being positive (Sydenham River and 

Richelieu River) and one negative (Missinaibi River). Table 4.5 shows the MK values for 

the original series, their detail components (Ds), approximations (A6), and the 

combination of the Ds with the approximation added to them. It can be seen in table 4.5 

that except for the D1 components of Black River (Z = 2.00) and Eaton River (Z = 1.96), 

none of the MK values of the different individual details (D1-D6) is statistically 

significant, even for stations whose original series showed significant MK values. For 

Sydenham River, Richelieu River, and Missinaibi River – whose original MK Z-values 

are significant, their approximation (A6) trend values are also significant.  

A very interesting finding is that after the approximation components (A6) were 

added to the different details, many of the trend values became statistically significant. 

This is not only observed for stations with significant original trend values (i.e. 

Sydenham River, Missinaibi River, and Richelieu River), but also North Magnetawan 

River, which did not have a significant original trend value (Z = +1.09). This is perhaps 

due to MK Z-value of the A6 component being relatively high (Z = 1.85). Higher MK Z-

values were also obtained in most cases, after the addition of the A6, compared to the 

MK values of the corresponding detail (D) alone (table 4.5). In addition, the trend 

directions after the addition of A6 are also always in agreement with those of the 

corresponding original data (except for the D1 component for station Eaton River). It is 

clear that the approximation components have an effect on the original data because these 

approximations should carry most of the trend component. Furthermore, as supported by 

the information in table 4.5, the results of the MK trend analysis on the detail components 

can be better interpreted after the addition of their respective approximation components. 
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In light of these observations, graphs presented in this study are of the detail components 

with their respective approximations added. Discussions concerning the detail 

components also refer to the details plus their approximations. This is also applied to the 

seasonally-based and the annual data analysis, for both flow and precipitation variables. 

 

Table 4.5. Mann-Kendall values of the monthly flow series: original data, details 

components (D1-D6), approximations (A6), and a set of combination of the details and 

their respective approximations. The most effective periodic components for trends are 

indicated in bold format. 

 
Data Neebing 

River 

N. 

Magnetawan 

River 

Black 

River 

Sydenham 

River 

Nagagami 

River 

Missinaibi 

River 

Eaton 

River 

Richelieu 

River 

Original -0.26 1.09 1.26 3.10* 1.19 -2.05* -0.42 3.18* 

D1 -0.64 0.68 2.00* -0.95 0.52 -1.25 1.96* -0.39 

D2 -0.37 -0.20 0.38 -0.46 -1.09 0.85 -0.12 -0.38 

D3 0.50 0.22 0.77 0.87 -0.32 -0.10 0.00 0.73 

D4 0.00 -0.36 -0.10 0.06 0.06 -0.28 -0.21 0.12 

D5 -0.06 -0.28 -0.20 -0.02 0.06 -0.06 0.03 -0.18 

D6 -0.18 -0.30 0.23 0.15 0.22 0.01 0.50 0.35 

A6 -1.17 1.85 1.17 3.08* 1.20 -3.69* -0.38 3.37* 

D1+A6 -1.01 2.47* 1.56 3.47* 1.26 -3.05* 0.14 3.54* 

D2+A6 -0.81 2.50* 1.44 3.66* 0.51 -2.53* -0.15 3.66* 

D3+A6 -1.00 2.60* 1.11 3.07* 1.05 -2.73* -0.10 3.44* 

D4+A6 -0.92 2.34* 1.17 2.95* 1.22 -2.70* -0.49 3.23* 

D5+A6 -0.76 1.90 1.13 2.61* 1.17 -2.68* -0.37 2.91* 

D6+A6 -1.62 2.25* 0.99 3.69* 1.15 -2.94* -0.38 3.64* 
* indicates significant trend values at α = 5%. 

 

Since all of the monthly flow data exhibit significant lag-1 ACFs and clearly 

portray seasonality patterns, the MK values presented in table 4.5 were obtained by using 

the modified MK test by Hirsch and Slack (1984), which accounts for seasonality and 

autocorrelation factors. The detail components (with A6) that are considered to be the 

most representative of the trend in the original data are indicated in table 4.5. The 

dominant periodic components vary from one station to another, which could be due to 

their different locations and sizes of drainage area. Generally speaking, the most 

influential periodicities over the study area are between D3 and D5. This indicates that 

the events between 8 and 32 months are the main drivers behind the observed trends. An 

example of how sequential MK graphs of the different periodic components portray their 

trend lines with respect to those of the original data is shown in figure 4.6 (station used: 

Sydenham  
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Figure 4.4. Sydenham River’s original monthly flow series and its transforms via the 

DWT using db9 wavelet, into six decomposition levels (D1-D6) and one approximation 

(A6). 
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Figure 4.5. Montreal/Pierre Elliot Trudeau’s original monthly flow series and its 

transforms via the DWT using db9 wavelet, into six decomposition levels (D6-D6) and 

one approximation (A6). 
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Figure 4.6. Sequential Mann-Kendall graphs of station Sydenham River monthly data 

displaying the progressive trend lines of each detail (with the approximation added). The 

upper and lower dashed lines represent the confidence limits (α = 5%); the solid and 

dashed progressive lines are the original and detail sequential MK lines, respectively. 

 

River). As for the D1 components of the Black River and Eaton River stations, it is seen 

that they are not the best representative periodic mode and after the addition of the A6 

components, the MK Z-values became insignificant. This suggests that the 2-month 

periodicity is not contributing to the trend for the Black River and Eaton River stations. It 

also makes sense that the D1 periodicity for these stations is not the most dominant mode, 

because even though their MK Z-values are significant, the trend values of the original 

data are not significant. 

D1+A6 D2+A6 

D3+A6 D4+A6 

D5+A6 D6+A6 
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4.5.2.2. Monthly Total Precipitation Data  

  

For the monthly precipitation data, all the MK values for the original data were 

positive, except for station Montreal/Pierre Elliot Trudeau, which has a very weak 

negative trend value (Z = -0.0049). Three stations – North Bay A, Ottawa CDA, and 

Windsor A – had statistically significant upward trend directions with Z = +3.67, +2.39, 

and +2.38, respectively. After applying the MK test separately to the detail (D1-D6) and 

approximation (A6) components of each of the precipitation series, relatively similar 

findings were encountered to those of the flow results. None of the individual detail 

components alone showed significant MK values, even for the precipitation stations 

whose original series exhibited significant trends (table 4.6). Only after the addition of 

the A6 component did several MK values become statistically significant. 

 

Table 4.6. Mann-Kendall values of the monthly precipitation series: original data, details 

components (D1-D6), approximations (A6), and a set of combination of the details and 

their respective approximation. The most effective periodic components for trend are 

indicated in bold format. 

 
Data Fort 

Frances 

A 

Sudbury 

A 

North 

Bay A 

Ottawa 

CDA 

Windsor 

A 

Montreal/Pierre 

Elliot Trudeau 

Bagotville 

A 

Original 0.71 1.85 3.67* 2.39* 2.38* -0.0049 0.75 

D1 -0.23 -0.68 -0.83 -1.09 0.01 0.01 -0.10 

D2 0.34 -0.68 0.18 -0.03 -0.05 0.65 0.39 

D3 -0.70 -0.32 -0.60 0.23 -0.30 -0.27 -0.93 

D4 0.18 -0.13 -0.03 0.15 -0.04 -0.16 0.34 

D5 0.02 0.27 0.14 -0.17 0.50 0.28 0.02 

D6 -0.33 0.12 0.15 0.16 1.00 0.53 0.43 

A6 0.63 2.04* 4.18* 2.41* 3.47* 0.08 0.77 

D1+A6 1.20 2.59* 3.43* 1.98* 2.87* 0.07 1.58 

D2+A6 1.79 2.72* 3.85* 2.01* 3.05* 0.73 1.03 

D3+A6 1.28 2.62* 3.78* 2.12* 3.43* -0.23 0.92 

D4+A6 1.01 2.06* 3.45* 1.85 1.87 -0.08 1.08 

D5+A6 0.76 1.79 3.64* 2.00* 2.84* 0.22 0.73 

D6+A6 1.03 2.98* 4.15* 2.68* 2.93* 0.61 1.29 
* indicates significant trend values at α = 5%. 

 

Due to the presence of seasonality cycles, and in some, autocorrelation, the MK 

test by Hirsch and Slack (1984) was used in the monthly total precipitation data analysis. 

The results of the monthly precipitation data analysis show how the approximation 
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components of the decomposition affect the detail components by increasing their trend 

values (in most cases) as reflected by the higher MK values (table 4.6). This shows that 

the trend component is indeed contained within the approximation part of the wavelet 

transform, implying that the trends are changing slowly and gradually (see the A6 graphs 

in figures 4.4 and 4.5); and are perhaps long-term. Some of the long-term trend values are 

statistically significant, as shown by the Z values of the approximation components in 

table 4.6. The abrupt fluctuations can be considered noise and are reflected in the lower 

details (Ds) – these alone are not significant. Table 4.6 also shows that for most of the 

stations higher periodic modes (especially D5) are more prominent in affecting the trend 

structures found in the monthly total precipitation data. As with the flow monthly data 

analysis, the trends are mostly affected by higher periodicities (low-frequency events). 

Here, the importance of decomposing a dataset prior to analyzing its trends using the 

wavelet transform is highlighted. Although the application of the MK test on the original 

data did not necessarily show the presence of significant trends, the results of the 

application of the MK test on the decomposed data may reveal some significant values.  

 

4.5.3. Seasonally-based Data Analysis  

 

The presence of annual cycles in the monthly-based time series analysis led us to 

incorporate the seasonally-based data in our trend analysis. Again, the seasonally-based 

data also confirms the presence of annual cycles in some datasets as the ACFs show high 

values at every 4
th

 lag (examples are given in figure 4.3). Each seasonally-based time 

series was decomposed into four detail components (D1-D4) and one approximation (A4). 

D1, D2, D3, and D4 represent the 6-month, 12-month, 24-month, and 48-month 

fluctuations, respectively. The A4 component corresponds to the approximation of the 

fourth decomposition level. As can be seen, the D2 component in the seasonally-based 

data decomposition represents the annual (12-month) periodicity. This is very useful in 

determining whether or not the annual cycles can explain the trends found in the flow and 

precipitation data.  

Most of the first level of decomposition (D1) of the seasonally-based series – and 

sometimes the D2 component as well – portray a strong yearly cycle because the 
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corresponding ACF values are high at every 4
th

 lag (illustrated in figure 4.7). The 

repeating cycles do not dampen over time. Oscillating patterns may also be observed at 

higher decomposition levels, but they dampen as the number of lags increases (see figure 

4.8 for example). Similar behavior was also seen in the components resulting from the 

addition of each detail to its approximation (D+A4). The oscillations observed in the 

correlograms of the lower decomposition levels are actually expected because they 

should capture the oscillating properties (such as the seasonality) of the time series, thus 

filtering the stochastic components of the time series (Popoola, 2007). On the other hand, 

the ACFs of the approximation component should not have any oscillating behavior or 

behave in the manner of seasonal fluctuations, even if the original time series shows 

seasonality patterns (Popoola, 2007). Figure 4.9 displays the ACFs of several 

approximation components (A4 in this case); as can be seen, there is an absence of 

oscillatory patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Examples of correlograms of the D1 periodic components (left: Neebing 

River; right: Missinaibi River) of the seasonally-based data, which display strong annual 

cycles as seen in their repeated high values at every 4
th

 lag. Note that the cycles do not 

dampen over time. 
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4.5.3.1. Seasonally-based Average Flow Data 

  

As with the monthly flow data analysis, there is also a mix of positive and 

negative trends observed in the seasonally-based flow data. In fact, the directions of trend 

of the seasonally-based datasets are in agreement with the directions of their monthly 

data counterparts. For example, Neebing River, Missinaibi River and Eaton River stations 

experience negative trends in their monthly data, and also in their seasonally-based data. 

Only two out of the eight flow stations showed statistically significant trends: Sydenham 

River (Z = +3.13) and Richelieu River (Z = +3.06) (table 4.7).   

Table 4.7 shows that none of the individual detail components alone (including 

D2) showed statistically significant MK Z-values. Again, after the addition of the A4s to 

their respective details, many of the MK Z-values became higher and statistically 

significant, emphasizing that the approximations carry most of the trend component. An 

example of the sequential MK analysis is shown in figure 4.10 (station used: Sydenham 

River).   

As shown in table 4.7, none of the most dominant periodicities were represented 

by the D1 component, indicating that the 6-month fluctuation is not responsible for the 

observed trend. There are four stations for which the D2 components represent one of the 

most dominant periodicities affecting the observed trends. These stations are: Black River, 

Nagagami River, Missinaibi River, and Eaton River. Therefore, for these stations, their 

trends are affected by the annual periodicities (the MK sequential graphs for these D2 

components are given in figure 4.11). The D3 and D4 components, which represent the 

24- and 48-month time modes, are also seen to be important in affecting the trends.  

It can be seen that the seasonally-based data are important variables to be 

included to assess the flow and precipitation trends in this study. This is because the 

monthly-based data analysis skipped the 12-month time scale as the third and fourth 

dyadic scales in the monthly data decomposition correspond to 8 and 16 months, 

respectively. 
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Figure 4.8. The correlograms of the D1-D4 components of Nagagami River’s seasonally-

based data. The D1 and D2 components have high ACF values at every 4
th

 lag, which 

indicates the presence of 12-month cycles. D3 and D4 show some patterns of oscillations 

that may dampen over time, which are not considered annual cycles. 
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Figure 4.9. The correlograms of several approximation components (A4) of the 

seasonally-based data showing a lack of constant oscillations. 
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Figure 4.10. Illustration of the sequential Mann-Kendall graphs of the D1 – D4 

components (with approximation) of the seasonally-based data in order to determine the 

most dominant periodic component for trend (Sydenham River’s data were used in this 

example). The upper and lower dashed lines represent the confidence limits (α = 5%); the 

solid and dashed progressive lines are the original and detail component sequential MK 

lines, respectively. 

 

4.5.3.2. Seasonally-based Total Precipitation Data 

 

All the MK Z-values for the original seasonally-based total precipitation data 

showed positive trends (table 4.8); three stations experienced statistically significant 

trends: North Bay A (Z = 2.81), Ottawa CDA (Z = 2.31), and Windsor A (Z = 2.39), 

which is in agreement with the results of the monthly total precipitation data. Again, it is 

seen that none of the individual detail components show significant trend values. 

Significant trends that were observed for A4 components belong to the three stations that 

have significant original trend values. The MK values of the detail components for the 

stations whose A4 components were not significant (Fort Frances, Sudbury A, 

Montreal/Pierre Elliot Trudeau, and Bagotville A) remain insignificant even after the 

addition of their respective approximations. This may indicate that the long-term trends 

D1+A4 D2+A4 

D3+A4 D4+A4 
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for these stations are not statistically significant as shown by their A4 components of the 

annual data, which were indeed insignificant and have the lowest absolute MK Z-values 

(see the following subsections). 

Table 4.8 also shows the periodic components that are the most influential in 

affecting the trends in the seasonally-based total precipitation data. It is seen that the 

annual periodicity (D2) does not contribute to the trend production in the total 

precipitation data. This insignificant contribution can also be partly explained by the 

weaker annual cycles observed in the precipitation data, in comparison to the flow data. 

Most of the precipitation trends are affected by the D3 and D4 components, except for 

station North Bay A, where D1 is considered the most dominant periodic component. We 

can suggest that the periodic components that mainly affect trends in the seasonally-based 

total precipitation are the 24- to 48-month time scales (2-4 years). An example of the 

sequential MK graphs for the different periodic components portraying their trend lines 

with respect to their original data is given in figure 4.12 (station used: Ottawa CDA). 

 

Table 4.7. Mann-Kendall values of the seasonally-based flow series: original data, details 

components (D1-D4), approximations (A4), and a set of combination of the details and 

their respective approximations. The most dominant periodic components for trend are 

indicated in bold format. 

 
Data Neebing 

River 

N. 

Magnetawan 

River 

Black 

River 

Sydenham 

River 

Nagagami 

River 

Missinaibi 

River 

Eaton 

River 

Richelieu 

River 

Original -0.27 1.43 1.36 3.13* 1.31 -1.78 -0.22 3.06* 

D1 -0.43 -0.20 0.89 -0.85 0.60 -0.43 -0.06 -0.45 

D2 -0.05 0.44 -0.46 0.61 -0.07 0.14 0.01 0.00 

D3 0.21 -0.59 0.16 -0.29 0.01 0.18 0.05 0.05 

D4 0.10 0.52 0.38 -0.27 0.00 0.14 -0.11 -0.04 

A4 -1.10 1.43 1.24 2.99* 1.53 -3.59* -0.77 3.52* 

D1+A4 -0.82 2.36* 0.91 3.75* 1.76 -3.19* -0.72 3.70* 

D2+A4 -0.99 2.09* 1.52 3.73* 1.14 -2.32* -0.53 3.76* 

D3+A4 -0.45 1.64 0.92 2.54* 1.80 -2.48* -0.54 2.97* 

D4+A4 -1.05 1.83 0.81 3.47* 1.36 -2.81* -1.17 3.51* 
* indicates significant trend values at α = 5%. 
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Table 4.8. Mann-Kendall values of the seasonally-based precipitation series: original data, 

details components (D1-D4), approximations (A4), and a set of combination of the details 

and their respective approximation. The most dominant periodic components for trends 

are indicated in bold format. 
 
Data Fort 

Frances 

A 

Sudbury 

A 

North 

Bay A 

Ottawa 

CDA 

Windsor 

A 

Montreal/Pierre 

Elliot Trudeau 

Bagotville 

A 

Original 0.72 1.32 2.81* 2.31* 2.39* 0.15 0.77 

D1 0.29 -0.66 -0.51 0.47 -0.11 -1.70 -0.96 

D2 0.00 0.04 -0.23 -0.45 0.31 0.43 0.22 

D3 0.15 0.16 -0.02 0.41 -0.41 -0.25 0.06 

D4 0.59 0.00 0.93 0.22 -0.20 -0.19 0.21 

A4 0.81 1.76 5.09* 2.31* 2.41* 0.19 0.62 

D1+A4 1.45 1.55 3.39* 2.94* 2.09* -0.17 0.64 

D2+A4 0.21 1.53 4.13* 2.17* 2.23* 0.03 0.63 

D3+A4 0.64 1.55 4.01* 2.35* 1.21 -0.40 0.33 

D4+A4 1.12 1.17 4.12* 2.59* 2.36* 0.02 0.72 
* indicates significant trend values at α = 5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Sequential Mann-Kendall graphs of the D2 components, which represent the 

12-month periodic components from several seasonally-based flow data. These trend 

lines show good matches with respect their original trend lines. The upper and lower 

dashed lines represent the confidence limits (α = 5%); the solid and dashed progressive 

lines are the original and detail component sequential MK lines, respectively. 

Black River Nagagami River 

Missinaibi River Eaton River 
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Figure 4.12. Progressive Mann-Kendall graphs of the components of the seasonally-based 

precipitation data from Ottawa CDA station. The upper and lower dashed lines represent 

the confidence limits (α = 5%); the solid and dashed progressive lines are the original and 

detail sequential MK lines, respectively. Based on the MK values and the sequential MK 

graphs, D3 and D4 (with approximations) were determined to be the most effective 

periodic components contributing to the trend production. 

 

4.5.4. Annual Data Analysis  

 

The trend analysis of the monthly and seasonally-based data suggests that there is 

a possibility of longer time-periodicity than just 48 and 64 months (which are the last 

periodic modes in the seasonally-based and monthly data decompositions, respectively). 

Many of the trends in the monthly and seasonally-based data are influenced by the higher 

time periodic components (i.e. lower-frequency events). The argument that there may be 

higher time periodicities affecting the trend in streamflow and precipitation is also 

reflected in the approximation components of the DWTs, which should carry the trend 

element (slowest-changing events) of the time series: (1) many approximation 

components in the data analysis showed significant MK Z-values; and (2) higher MK Z-

D1+A4 D2+A4 

D3+A4 D4+A4 
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values of the detail components were observed after the addition of their respective 

approximations. Annual time series were then analyzed in order to obtain a more 

thorough trend analysis. Each annual time series was decomposed into four levels, which 

correspond to the 2-year, 4-year, 8-year and 16-year variations. 

Although there is a mixture of positive and negative trends in the annual flow, 

most of the stations exhibit positive trends. Three streamflow stations have experienced 

significant trend: Sydenham River (Z = 2.37), Missinaibi River (Z = -2.23), and Richelieu 

River (Z = 2.92) (table 4.9). Indeed, most studies focusing on streamflow trends in 

Canada have generally found that the flow trends in Canadian rivers are not uniform. 

There are areas that experience positive trends while others are experiencing negative 

trends (due to factors such as temperature, amount of precipitation, and 

evapotranspiration).   

For the annual total precipitation, only stations North Bay A (Z = +3.57) and 

Ottawa CDA (Z = +2.50) experienced significant trend values (table 4.10). It is worth 

mentioning that all of the original annual precipitation data (as well as most of the 

monthly and seasonally-based precipitation data) show positive trend values – this 

prevalent increase in trends in the total precipitation seen in this study are in agreement 

with findings from several other precipitation studies. For example: Mekis and Hogg 

(1999) found that total annual precipitation in many parts of Canada is on the rise; Stone 

et al. (2000) reported that total annual precipitation in the south of Canada experienced an 

increase (from 1895-1996); Zhang et al. (2000) found that the total annual precipitation 

has increased across Canada by 5%-35%. Groleau et al. (2007) also found that 30% of 

the weather stations in southern Quebec and New Brunswick, Canada, experienced 

significant positive trends during winter rainfall.  

The periodic component(s) considered the most influential in affecting trends in 

flow and precipitation data are indicated in tables 4.9 and 4.10, respectively. Examples of 

determining the most dominant periodic components that affect the production of trends 

in annual flow and precipitation series are given in figures 4.13 and 4.14, respectively. 

There are a few individual detail components (without approximation) that showed 

significant trend values (tables 4.9 and 4.10). However, these components do not end up 

being considered the most influential time periodicities to affect the trends. For example, 
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in table 4.9, the MK Z-value of the D4 component of Black River station is 2.38, but it is 

not found to be the most dominant periodic component for trend. It is also seen that the 

difference in MK Z-value between the D4 (with approximation) and the original data is 

high. It is therefore not expected that the D4 detail component in Black River station 

would be the most influential component to affect the trend. This illustrates that when 

analyzing trends in a dataset via the wavelet transform, not only should the final MK 

value for the different components be considered, but also their sequential MK values in 

comparison to the original data. Tables 4.9 and 4.10 show that the dominant periodic 

components playing major roles in affecting the trends in the annual data are not uniform. 

The most common dominant periodicities are D1 and D2 (both with approximations 

added). This is an indication that the trends in the annual data over the study area are 

mainly characterized by 2- to 4-year periodic events (interannual fluctuations).    

 

Table 4.9. Mann-Kendall values of the annual flow series: original data, details 

components (D1-D4), approximations (A4), and a set of combination of the details and 

their respective approximation. The most influential periodic components for trends are 

indicated in bold format. 
 

Data Neebing 

River 

N. 

Magnetawan 

River 

Black 

River 

Sydenham 

River 

Nagagami 

River 

Missinaibi 

River 

Eaton 

River 

Richelieu 

River 

Original -0.50 0.91 0.73 2.37* 1.12 -2.23* -0.46 2.92* 

D1 -0.13 0.00 -0.19 -0.01 0.15 -0.16 0.22 0.19 

D2 -0.04 0.30 0.10 -0.15 0.17 -0.15 0.27 0.12 

D3 0.57 -0.13 0.06 0.51 0.25 -0.30 -0.28 0.46 

D4 -1.63 3.66* 2.38* 2.15* 1.22 -0.41 -0.55 0.15 

A4 -0.48 1.80 1.15 2.66* 1.96* -2.12* -0.79 3.09* 

D1+A4 -0.57 1.39 0.55 1.42 0.49 -1.73 -0.60 2.61* 

D2+A4 -0.73 1.55 0.68 1.47 0.96 -2.12* -0.87 2.98* 

D3+A4 -0.19 0.94 0.80 2.51* 0.94 -2.47* -0.97 1.99* 

D4+A4 -3.03* 3.95* 4.33* 3.17* 3.44* -4.57* -1.16 3.09* 
* indicates significant trend values at α = 5%. 

 

The progressive MK graphs of the annual data give indications that most of the 

trends – positive or negative – visibly started during the period from 1965 to early 1970s 

(figures 4.15 and 4.16). This timing is important as it has been noticed in several 

Canadian studies that 1970 serves as a point of change in streamflow and precipitation 

activities in relation to the atmospheric variability affecting Canadian climate, such as the 

Pacific/North America teleconnection (PNA) and the North Atlantic Oscillation (NAO). 
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Indeed, these periodic modes may also be associated with the North Atlantic Oscillation 

(NAO), which has one of its main peaks centered at 2 years (Cook et al., 1998; Anctil and 

Coulibaly, 2004). Fu et al. (2012), who studied the influence of solar activities and El 

Niño on streamflow in southern Canada, indicated that there is a correlation between 

streamflow activities and solar activities at 11 and 22 years. The correlation between 

streamflow actitivities in southern Canada and the El Niño cycles is at the 2-7 year 

periodicities (Fu et al., 2012). The combined effect of solar activities and El Niño is 

found at 18-32 years (Fu et al., 2012). Here, as can be observed in table 4.9, the most 

common dominant periodicities are 2-4 years, which could also be related to the El Niño 

effect. The Richelieu River’s most dominant periodicity is the 16-year mode, which may 

be a result of the combined effect of solar activities and the El Niño cycle. Prokoph et al. 

(2012) also found that the maximum annual streamflow activities in southern Canada 

have strong 11-year cycles, which match the 11-year solar radiation activities. It is also 

suggested that the effects of ENSO and NAO on precipitation, which in turn affect the 

streamflow activities in southern Canada, are also evident (Prokoph et al., 2012). It is 

very likely that multiple factors are affecting the precipitation and streamflow trends over 

the study area.   

 

Table 4.10. Mann-Kendall values of the annual precipitation series: original data, details 

components (D1-D4), approximations (A4), and a set of combination of the details and 

their respective approximation. The most influential periodic components for trends are 

indicated in bold format.  
 
Data Fort 

Frances 

A 

Sudbury 

A 

North 

Bay A 

Ottawa 

CDA 

Windsor 

A 

Montreal/Pierre 

Elliot Trudeau 

Bagotville 

A 

Original 0.68 1.24 3.57* 2.50* 1.70 0.33 0.95 

D1 0.54 -0.16 -0.13 -0.41 0.04 0.06 -0.33 

D2 0.12 -0.28 0.39 0.19 0.33 0.25 -0.55 

D3 0.00 -0.18 0.70 0.49 0.96 0.58 0.99 

D4 1.32 2.51* 1.87 3.21* 2.31* -0.70 1.09 

A4 1.22 1.45 4.91* 2.45* 2.15* -0.02 1.28 

D1+A4 0.68 1.34 2.35* 0.00 1.05 -0.31 -0.29 

D2+A4 1.06 1.39 3.51* 0.51 1.93 0.00 -0.12 

D3+A4 0.65 2.45* 4.27* 1.84 3.27* 0.25 0.90 

D4+A4 2.89* 3.82* 5.31* 3.14* 5.26* -0.91 1.63 
* indicates significant trend values at α = 5%. 
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Figure 4.13. Examples of sequential Mann-Kendall graphs of the detail components of 

the annual flow data in order to determine the most dominant periodicity for trends 

(Sydenham River’s data were used in this example). The upper and lower dashed lines 

represent the confidence limits (α = 5%); the solid and dashed progressive lines are the 

original and detail sequential MK lines, respectively. 

 

In Figure 4.15 it is observed that at six out of the eight flow stations, there were 

upward trends that started between 1965 and 1970. In four out of these six stations, the 

trends stopped between 1980 and 1985, followed by either downward trends or no trends. 

Figure 4.16 shows that positive trends started around 1965 at five out of the seven 

meteorological stations. Anctil and Coulibaly (2004), who analyzed the interannual 

variability of Quebec streamflow, also placed an importance on the year 1970 because 

there was a positive correlation between the streamflow activity (especially at the 2-3 

year band) and the PNA index since around 1970. Similarly, Coulibaly and Burn (2004), 

who analyzed annual Canadian streamflow, also found 1970 as the change point in flow 

activity. They found that the PNA and the NAO are the main dominant teleconnection 

patterns for the period of 1950-1999 and after 1970, respectively (Coulibaly and Burn, 

2004). Stone et al. (2000) studied the variability in Canadian precipitation and its 

D1+A4 D2+A4 

D3+A4 D4+A4 
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intensity and related them to the PNA and NAO. Different seasons and regions responded 

differently to the atmospheric variation, but both the NAO and the PNA were found to 

have a statistical significance in affecting precipitation intensity over Canada. For 

example, the NAO (positive phase) has a significant impact, which affected the 

precipitation intensity during a few three-month seasons in eastern Canada (Stone et al. 

2000). The NAO has been in a positive phase since around 1970 (Anctil and Coulibaly, 

2004). The PNA also significantly affected the precipitation increase during autumn and 

winter seasons in Ontario and southern Quebec, during the second half of the 20
th

 century 

(Stone et al., 2000). Therefore, the trends observed in this study, both in flow and 

precipitation data, could be related to the activity of these influential hydroclimatic 

indices.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Examples of sequential Mann-Kendall graphs of the detail components of 

the annual precipitation data in order to determine the most dominant periodicity for 

trends (Ottawa CDA’s data were used in this example). The upper and lower dashed lines 

represent the confidence limits (α = 5%); the solid and dashed progressive lines are the 

original and detail sequential MK lines, respectively. 

 

 

D1+A4 D2+A4 

D3+A4 D4+A4 



163 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. Progressive Mann-Kendall graphs of all the original annual flow data used in 

the study. The upper and lower dashed lines represent the confidence limits (α = 5%). 

These graphs were used to determine the possible starting time of the observed trends for 

the different stations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. Progressive Mann-Kendall graphs of all the original precipitation data used 

in the study. The upper and lower dashed lines represent the confidence limits (α = 5%). 

These graphs were used to determine the possible starting time of the observed trends for 

the different stations. 
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4.6. Conclusions and Recommendations 

 

The DWT and the MK tests were applied on the mean flow and total precipitation 

datasets, over southern parts of Quebec and Ontario, in order to analyze their trends. The 

results of the trend analysis showed that there are positive and negative trends; however, 

they were dominated mostly by positive trends. In order to determine the most 

appropriate Daubechies (db) wavelet type and border condition in the DWT procedure, 

not only were the MREs considered, but also the MK Z-value relative errors. This 

additional criterion proposed in this study was found to be very useful because the 

differences in the      were much more noticeable compared to the differences in the 

MREs. In this study, the proposed relative error criterion served as a better indicator in 

determining the number of decomposition levels, the mother wavelet, as well as the 

extension border to be used in the data analysis – these issues have not been addressed 

properly or in any detail in the existing literature.  

Although the periodic components that affect the trends are not all the same for all 

stations, a generalization can be made. For the monthly, seasonally-based, and annual 

flow data analysis, the most common periodic components that were found to be the most 

effective in producing the observed trends are 8-32 months, 12-48 months (1-4 years), 

and 2-4 years, respectively. For the monthly, seasonally-based, and annual precipitation 

analysis, the periodicities most commonly seen as the most important components are 32-

months, 24-48 months (2-4 years), and 2-4 years, respectively. This may be correlated to 

the NAO cycle because one of the main peaks of the NAO cycles is centered around 

2.1years (Cook et al., 1998; Anctil and Coulibaly, 2004), which seem to coincide with 

many of the main periodic components of the lower resolution data found in this study. 

As can be seen, the different data types produced relatively similar conclusions in terms 

of the most influential periodicities for trends. It may be concluded that for the mean flow 

and total precipitation over the study area, the trends are influenced by fluctuations of up 

to four years. Although there is a total of 13 stations used in this study, similar 

conclusions were obtained – this could be attributed by the fact that the stations are 

located in relatively close proximity to each other. Therefore, similar climatic factors are 

affecting the regions in which these stations are located. 
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The use of the DWT in this study clearly demonstrated how time-scale 

information can be extracted from a dataset – this information can then be applied to 

studying how the trends observed in the data were affected by certain time scales. Even 

for stations that did not exhibit significant trend values for their original data, the 

decomposition of these data via the DWT was able to identify the time scales that are 

considered important in affecting the trends. This was accomplished by applying the MK 

trend tests on the different time modes (detail components). With the sequential MK tests, 

we were also able to identify the possible starting time in which the trend in a dataset 

started to appear. In the datasets used in this study, an importance is placed at the time 

between 1965 and 1970 because most of the trends appeared to start around that time.  

Anctil and Coulibaly (2004) and Coulibaly and Burn (2004) showed the positive 

correlation between streamflow/precipitation activities with the PNA cycles since 1970. 

In this study, most of the flow and precipitation trends started between 1965 and 1970. Fu 

et al. (2012) also indicated the existence of positive correlations between streamflow in 

southern Canada and solar activities and El Niño cycles. As can be seen, a number of 

long-term changes in climate are also factors that may affect the streamflow and 

precipitation trends over the study area - there is no single factor that acts as the driver for 

the observed trends over the study area. This is reflected by the different large 

teleconnection patterns whose cycles seem to coincide with the dominant periodicities. 

Future studies could incorporate some quantitative linkages between the most dominant 

periodicities that affect trends (both in flow and precipitation) and the climatic descriptor 

cycles (or how the combined effects of these climatic descriptors influence the 

streamflow and precipitation over the study area). This may potentially explain the time-

frequency characteristics that affect the trends in streamflow and precipitation over 

Quebec and Ontario. It would also be beneficial to include more stations from different 

hydrographic regions within Ontario and Quebec, as well as in other Canadian provinces 

in order to compare the periodic components that affect the trends in these other areas. 

Additionally, the implications of these time-frequency characteristics of trends on 

regional water resources can be looked at in more detail.  

Finally, the results obtained from this present study presented some baseline 

information about the important periodicities that affect the flow and precipitation trends 
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over southern Ontario and Quebec. This information can be integrated into the 

methods/models aiming to investigate how natural fluctuations (e.g. changes in climate, 

fluctuations of climate indices, etc.) can affect flow and precipitation trends over southern 

Ontario and Quebec. Furthermore, the analysis obtained from this study can serve as 

grounds for basing the water resources design and planning within the watershed covered 

by the study area, as it involves making reasonable predictions or assumptions about 

future hydro-climatic conditions. 
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CHAPTER 5 – SUMMARY AND CONCLUSIONS 

 

 

5.1. General Summary 

 

 

The use of both the discrete wavelet transform (DWT) and Mann-Kendall (MK) 

trend test to analyze and detect trends in hydroclimatic data has not been explored in 

much detail in the existing literature, especially in the context of Canadian studies. This 

study presents the results of the applications of the DWT and the MK trend test in 

analyzing trends in three hydroclimatic indices, namely temperature, precipitation and 

streamflow over parts of southern Ontario and Quebec, Canada. The data for the mean 

temperature (monthly, seasonally-based, seasonal, and annual) span from 1967 to 2006; 

the data for the mean streamflow and total precipitation (monthly, seasonally-based, and 

annual) span from 1954 to 2008   

DWT decomposes a time series in the dyadic scale, which implies that the first 

scale is 2
1
 and the subsequent scales are arranged in higher integer powers of two. By 

doing so, the work is simplified but still produces accurate information because the 

redundancy in the wavelet coefficients is removed. Perfect signal reconstructions in DWT 

are also easily achieved. Each dataset used in this study was decomposed into several 

levels of decomposition. This study proposed a new criterion to be used in the DWT 

procedure, which is based on the relative error of the MK Z-values between the 

approximation component and the original data. The proposed criterion was successfully 

applied in this study in determining: (i) the type of Daubechies (db) mother wavelet to be 

used for time series decomposition; (ii) the type of border extension to deal with the 

effects of border distortion; and (iii) the number of decomposition levels for the analyzed 

data. 

The MK test and sequential MK were applied to the time series resulting from the 

decomposition in order to determine the most dominant periodic mode that affects the 

trend in each dataset. However, prior to applying the MK test, each time series was 

checked for whether significant autocorrelations are present in the data because the 

presence of either significant positive or negative autocorrelations can lead to inaccurate 

result interpretations. Three types of MK tests were used: the original MK was used when 
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the analyzed time series had neither seasonality patterns nor a significant autocorrelation; 

the modified MK test by Hirsh and Slack (1984) was used when the time series showed 

seasonality cycles with or without a significant autocorrelation; and the modified MK by 

Hamed and Rao (1998) was used when the analyzed time series exhibited a significant 

autocorrelation. As expected, all of the monthly and seasonally-based temperature, 

precipitation and flow data exhibited seasonality patterns (some with significant lag-1 

autocorrelation coefficient). For this reason, the modified MK test by Hirsch and Slack 

(1984) was used on these data. Significant autocorrelations in annual data were only 

observed for three stations in total – Vineland (temperature), Montreal/Pierre Elliot 

Trudeau (precipitation), and Richelieu River (flow). As such, these were the only three 

stations whose annual data were analyzed using the modified MK test by Hamed and Rao 

(1998). All the other annual data were analyzed using the original MK test.    

Based on the findings observed in this study, we may conclude that the 

applications of the DWT to extract the low- and high-frequency components in a time 

series prior to testing them with the MK test is very useful in detecting and analyzing 

trends in hydroclimatic variables. To analyze these trends, it was also found that it was 

very useful to examine different types of data (in this case, monthly, seasonal, and annual) 

in order to obtain more thorough results.  

 

5.2. Trends in Temperature, Precipitaiton and Streamflow 

 

All types of temperature data show warming trends as reflected by the MK Z-

values being all positive. For high-resolution temperature data (i.e. monthly and 

seasonally-based data), the trends are more affected by high-frequency intra-annual 

fluctuations, which perhaps subdued the underlying trends. On the other hand, longer 

time-periodic components (multiyear and decadal variability) are more prominent in 

affecting the trends for the annual and seasonal data – 8- and 16-year periodic modes are 

the most commonly seen as the most influential periodicities. It was further concluded 

that the apparent warming in annual temperature was attributed to the increase in winter 

and summer temperatures, which also have similar most dominant periodicities to that of 

the annual data. 
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Data analysis using the DWT and the MK tests revealed that streamflow and 

precipitation trends are dominated by positive trends; and that the trends in the study area 

are mostly affected by similar periodicities: intra-annual and inter-annual events, up to 

four years. Since all of the flow and precipitation stations are situated relatively close to 

each other, it may be said that the similarity is caused by similar climatic factors 

influencing the study area. Furthermore, it is apparent that the trends in streamflow and 

precipitation started approximately during the mid-60s to early 70s, which could be 

related to climatic fluctuations such as the PNA and NAO (which are major climatic 

phenomenon in the northern hemisphere).  

Although linking the trends in temperature with the trends in precipitation and 

streamflow was not done quantitatively in this work (as it was not part of the objectives 

of this study), we suggest that warming trends in temperature have affected the 

precipitation trends, and hence the streamflow. This is because all trends in the different 

temperature data types are positive and most trends in streamflow and precipitation are 

also positive. 

In annual temperature data, 8- to 16-year periodicities seem to be the most 

dominant for trends, but in streamflow and precipitation, the main periodicities for trends 

are 2-4 years. We suggest that the common large-scale teleconnection variability that 

may be responsible for the apparent trends in temperature, precipitation and streamflow 

(in combination with other climatic factors and anthropogenic activities, such as the 

urban heat island effect, urbanization, humidity, dew point, evapotranspiration, etc.) is 

the NAO cycle. This is because some of the main peaks of the NAO cycles are centered 

at 2 and 8 years, which seem to coincide with most of the main periodic components of 

the lower resolution data found in this study. Although there were no quantitative 

analyses made between the NAO and any of the variables studied, we suggest that the 

NAO (which is a major teleconnection pattern in the northern hemisphere) may be one of 

the major drivers behind the observed trends. This hypothesis needs to be explored 

quantitatively in a future study. Apart from the NAO, PNA and El Niño cycles, solar 

activities may also act as important drivers for the streamflow and precipitation trends as 

past studies in Canada (e.g. Anctil and Coulibaly, 2004; Coulibaly and Burn, 2004; Fu et 

al., 2012) indicate the existence of positive correlations between streamflow/precipitation 
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and these large-scale teleconnection patterns that are important in the Northern 

Hemisphere. Anctil and Coulibaly (2004) and Coulibaly and Burn (2004) showed the 

positive correlation between streamflow/precipitation activities with the PNA cycles 

since 1970. In this study, most of the flow and precipitation trends started between 1965 

and 1970. 

Finally, some of the findings observed in this study were in accordance with other 

trend studies conducted in Canada while others were not in agreement with other trend 

studies conducted in Canada. Zhang et al. (2000) and Vincent et al. (2007) observed that 

the spring season showed significant temperature warming in southern Canada, but in our 

study we observed that the spring season does not show significant warming as most 

stations’ trend values are not significant and are very low. We suspect that it may be 

caused by the different study period and/or length of data chosen. As well, stations’ 

geographical areas may also make a difference; the areas covered in this study were 

rather more localized, concentrated around the southern parts of Ontario and Quebec. 

There are also results obtained in this study that are in accordance with the findings of 

other studies. For example, we found that autumn temperature seems to be the season 

with minimal warming in temperature, which is in agreement with the study conducted 

by Vincent et al. (2007). Our study also found that the winter season experiences the 

most significant warming, which is also in agreement with Canadian temperature trend 

analysis studies, such as those conducted by Vincent et al. (2007) and Mohsin and Gough 

(2010). General trends in the precipitation data that was explored in this study also 

showed positive trends, which are also commonly observed in many parts of Canada, as 

shown by studies such as Mekis and Hogg (1999), Stone et al. (2000), Zhang et al. (2000), 

and Groleau et al. (2007).   
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CHAPTER 6 – RECOMMENDATIONS FOR FUTURE STUDIES 

 
Based on the findings and discussions provided by this study, it is recommended that 

future studies include the following in their work: 

 

1. Apply the combination of the discrete wavelet transform (DWT) and the Mann-

Kendall (MK) trend test to additional variables that seem to also directly affect 

the observed trends in this study (e.g. minimum/maximum temperatures, diurnal 

temperature range, evapotranspiration rate, infiltration, surface runoff, etc.), and 

compare the results to those obtained from this study in order to see if there are 

any similarities in terms of the most dominant periodic components for trends, 

and whether they may contribute to the periodicities of the observed trends.  

2. Assessment of the relationship between the temperature, precipitation and 

streamflow data. Also, the correlation between the three variables and the 

teleconnection patterns that seem to be important in driving the trends observed in 

this study should be explored (i.e. the NAO, PNA, ENSO, and solar activities). 

The use of the cross wavelet transform – which is based on the continuous 

approach of the wavelet transform – can be explored by analyzing two variables 

(or time series) that show high common power within similar regions in terms of 

time-frequency space. If two time series have strong power at a certain waveband 

(during a certain period), their cross wavelet analysis can be used to confirm 

whether that specific waveband is actually significant. So, this method could be 

useful in examining the correlation of temperature and streamflow, for example, 

and relate the important wavebands resulting from the cross wavelet analysis to 

some major peaks of large-scale teleconnection patterns. In this way, the plausible 

teleconnection patterns that best explain the variability of temperature, 

precipitation and streamflow can be identified. The combined effects of more than 

one teleconnection pattern on temperature, streamflow, and precipitation could 

also be investigated.  

3. Evaluate the performance of the newly proposed criterion (to be used in DWT 

procedures), which is based on the relative error of the MK Z-values (between the 

approximation at the last decomposition level and the original data) to determine 
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the appropriate number of decomposition levels, the type of Daubechies (db) 

mother wavelet, and the extension border type of the above mentioned and other 

climatic variables. 

4. Explore the use of other types of mother wavelets (e.g. Least Asymmetric – LA) 

for the DWT decomposition and compare the results with those obtained in this 

study.  Since different wavelet filters have different shapes, it is important to find 

wavelets that would capture the shape of a time series well. 

5. Include more sites from Ontario and Quebec, and perhaps from other Canadian 

provinces, to compare the general trends and the main periodic modes responsible 

for trends. However, since the length of data ideally should be at least 40 years 

and many stations would have missing data records, suitable interpolation 

methods to fill these missing data values have to be carefully researched and 

assessed, in order to avoid errors associated with the interpolation.  
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CHAPTER 7 – CONTRIBUTIONS TO KNOWLEDGE 

 

This research was carried out to provide original contributions to knowledge in 

the area of trend detection and analysis in hydroclimatic variables, and more specifically 

in temperature, precipitation and streamflow in Canada (especially in southern Ontario 

and Quebec). The main contributions of the research presented in this thesis are: 

1. Development and application of a new trend assessment method for 

hydroclimatic data that is based on coupling the discrete wavelet transform 

(DWT) and the different versions of the Mann-Kendall (MK) trend test, 

depending on the characteristics of the analyzed data. The DWT was used to 

separate the analyzed data into its high-frequency and low-frequency 

components/periodicities. The MK test is used to test for the trends of these 

different periodicities.  

2. In this study, we determine the most influential periodicities affecting 

hydroclimatic trends in temperature, precipitation and streamflow over 

southern parts of Ontario and Quebec.  This included a clear step by step 

methodology, which has not been addressed in detail in the existing literature: 

 Testing for autocorrelation prior to applying a trend test – this step is 

often ignored in many trend detection studies. 

 Decomposing the analyzed data via the DWT. 

 Choosing the appropriate MK test based on the characteristics of the 

data. Many trend detection studies do not indicate how they chose to 

use the MK test (for example the original MK test should not be used 

when there is a significant autocorrelation in the data). To date, there 

have not been any trend detection studies in the hydroclimatic field 

that employed the three different versions of the MK tests as used in 

this study. This research clearly defined the criteria for using the 

different MK tests in our study: 

i. Original MK test was used on data that exhibited neither 

seasonality patterns nor significant autocorrelations. 
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ii. Modified MK proposed by Hirsch and Slack (1984) was used 

on data that exhibited seasonality patterns (with or without 

significant autocorrelations). 

iii. Modified MK test proposed by Hamed and Rao (1998) was 

used on data that exhibited only significant autocorrelations. 

 Applying sequential MK analysis on the original time series and on 

each detail component (with approximation added) to compare how 

harmonious the trend lines are. The appropriate MK test is run 

sequentially from the beginning to the end of the study period, which 

is important because sequential MK values (and graphs) show that 

positive and negative trends may be present in the same dataset at 

different times. In our studies, the sequential MK test is also applied to 

the time series that are produced from the DWT decomposition in 

order to obtain information on how similarly the trend line of each 

detail component progresses with respect to the trend line of the 

original data. Although sequential MK analysis has been used in many 

trend detection studies, to our knowledge, it has not been used in 

conjunction with the DWT. 

 Determining the most influential periodic mode(s) that affect trends 

based on the MK Z-values and the sequential MK analysis. Again, 

even though sequential MK analysis has been used to detect trends, 

using it together with the MK Z-values to determine important 

periodicities for trends has not been explored. 

3. Proposal of a new criterion that is based on the relative error of the MK Z-

values between the approximation component (of the last decomposition level) 

and the original data, which can be used to determine: 

 The number of decomposition levels in the DWT. 

 The type of Daubechies (db) mother wavelet to be used in the DWT 

procedure. 
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 The type of extension border to be used in the DWT that would best 

deal with the issue of border distortion as convolution processes 

cannot proceed outside the ends of signals with finite length. 

It is the first time that the relative error of the MK Z-values is used as a criterion 

in order to determine the above points to be used in the DWT procedure. Since the 

approximation component is assumed to contain the trend of the analyzed data, it 

makes sense to use an approximation MK Z-value that is close to the original 

value. The application of this criterion was found to be very useful in this study.   
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