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ABSTRACT 

Detection and analysis of interictal epileptic discharges (IEDs) is widely used for 

the identification and localization of the epileptogenic focus during the pre-surgical 

evaluation of patients with intractable epilepsy. Electro-encephalography (EEG) 

and Magneto-encephalography (MEG) can measure the fast propagating IEDs, 

generated by spatially extended regions, thanks to their high temporal resolution 

(~1ms). Source localization methods, in particular the Maximum Entropy on the 

Mean (MEM) method, can provide reliable and accurate localization of the sources 

of EEG and MEG discharges together with their spatial extent along the cortical 

surface. However, EEG and MEG differ in their sensitivity to the orientation and 

location of neuronal sources, as a result of which some epileptic spikes are recorded 

only in EEG and some only in MEG. Therefore, this dissertation provides a new 

source analysis pipeline for combining the complementary information from EEG 

and MEG within a fusion framework in order to improve the localization of IEDs.  

The goal of this dissertation was achieved through three main projects. The first 

project was to design and develop an optimal EEG/MEG fusion strategy using the 

MEM method (MEM-fusion), which was then quantitatively evaluated using 

realistic simulations. The originality of MEM framework lies in its ability to 

incorporate the complementary information brought by EEG and MEG data 

through a spatio-temporal prior model; which allows for an efficient integration of 

the two modalities. MEM-fusion proved to be more accurate and robust than 

monomodal EEG/MEG localizations and other standard source localization 

approaches. We also investigated the impact of the number of EEG electrodes 

required for an efficient EEG-MEG fusion, suggesting that only 20 EEG electrodes 

can bring sufficient information missed by MEG. 

Performance of MEM algorithm has never been studied when dealing with high 

density EEG and MEG data on complex patterns of IEDs. In the second project, we 

used a realistic simulation pipeline that combined a biophysical distributed model 
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with a computational neural mass model to generate simultaneous high density 

EEG and MEG signals mimicking normal background and IEDs. The complex 

patterns of IEDs involved sources at different spatial extents, exhibiting 

propagation patterns and correlated activity. Comparing MEM with another source 

localization method also developed for its ability to recover spatially extended 

sources (4-ExSo-MUSIC), we showed their accuracy when localizing and 

characterizing complex patterns of IEDs using either EEG or MEG data.  

Finally, a common practice in EEG/MEG source analysis of IEDs involves 

selecting reproducible transients of IEDs, averaging them to improve the signal-to-

noise ratio before applying source localization. However, averaging effect is likely 

to filter out source activities, which vary slightly over each individual spike due to 

signal cancellation. Thus, single spike source localization seems appropriate for 

bringing important information carried by the individual spikes, more so when 

combining EEG and MEG data for source localization. To this end, the third project 

was to assess the clinical relevance of single spike source localization using MEM-

fusion. To do so, we proposed and validated a new source analysis approach 

involving clustering of single spike source localization results to provide a 

consensus map for the most reproducible and clinically reliable source localization 

results. The combination of MEM-fusion and consensus map was applied on 26 

patients with focal epilepsy, which yielded successful localization in all cases. This 

pipeline is able to overcome the limitations of averaged spike localization and 

offers an efficient way to characterize the most reproducible and reliable source 

results from clinical data, thus demonstrating the pertinence of MEM-fusion as a 

valuable non-invasive tool for pre-surgical evaluation of epilepsy. 
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ABRÉGÉ 

 

Détecter et analyser les décharges épileptiques inter-ictales (DEI) contribuent à 

l’identification et la localisation du foyer épileptogène, lors de l’évaluation pré-

chirurgicale des patients souffrant d'épilepsie réfractaire. 

L’Électroencéphalographie (EEG) et la Magnétoencéphalographie (MEG) 

permettent de mesurer les propagations rapides des DEI qui sont générées au niveau 

de régions spatialement étendues, et ce à l’aide d’une excellente résolution 

temporelle. Les méthodes de localisation de sources tels que le Maximum 

d’Entropie sur la Moyenne (MEM), autorisent la localisation précise des 

générateurs des signaux EEG et MEG, ainsi que leur extension spatiale le long de 

la surface corticale. Cependant, l’EEG et la MEG sont sensibles à différentes 

caractéristiques liées à l’orientation et la position des sources neuronales, de sorte 

que certaines DEI sont visibles seulement en EEG alors que d’autres seulement en 

MEG. L’objectif de cette thèse de doctorat est de proposer et valider une nouvelle 

méthode de fusion des informations complémentaires en EEG et MEG afin 

d’améliorer la localisation des DEI. 

Trois projets principaux ont permis d’atteindre notre objectif. Le premier projet a 

consisté en la réalisation d’une stratégie optimale de fusion EEG/MEG dans le 

cadre du MEM (MEM-fusion). Les performances du MEM-fusion ont été évaluées 

à l'aide de simulations réalistes. L’originalité du modèle MEM réside dans sa 

capacité à incorporer, de manière optimale, les informations complémentaires EEG 

et MEG dans un modèle spatio-temporel a priori. Le MEM-fusion s'est avéré plus 

précis et robuste que le MEM monomodal EEG ou MEG ainsi que d’autres 

méthodes classiques de localisation. L’impact du nombre d’électrodes EEG 

nécessaire à une fusion optimale a aussi été étudié, concluant qu’il suffisait de 20 

électrodes EEG pour apporter l’information additionnelle manquante en MEG.  

Les performances du MEM n’ont jamais été étudiées en présence de données EEG 

haute densité et de MEG lors de profils de DEI complexes. Dans ce deuxième 



 

vi 

projet, nous avons utilisé un modèle biophysique distribué couplé à un modèle de 

masses neurales afin de simuler des signaux EEG haute densité et MEG réalistes. 

Ces simulations consistaient en la génération de DEI complexes, impliquant des 

sources d’extensions spatiales différentes, associées à des activités corrélées ou se 

propageant. Le MEM a été comparé avec une autre méthode de localisation de 

sources précédemment développée dans le but de récupérer des sources étendues 

spatialement (4-ExSo-MUSIC).  

Finalement, lors de l’analyse de sources des DEI en EEG ou MEG, il est courant 

de sélectionner des décharges reproductibles et de les moyenner afin d’améliorer le 

rapport signal/bruit avant de localiser les sources. Cependant, l’effet de moyennage 

a tendance à supprimer la variabilité inhérente des pointes individuelles. Ainsi, 

localiser des DEI non moyennées semble plus appropriée pour prendre en compte 

une telle variabilité, notamment lorsqu’il s’agit de combiner EEG et MEG dans le 

cadre d’un processus de fusion. Le troisième projet consistait en l’évaluation de la 

pertinence clinique des localisations de DEI individuelles non moyennées à l’aide 

de la fusion MEM. Nous avons proposé et validé une nouvelle approche basée sur 

la classification hiérarchique de résultats de localisations de sources de DEI 

individuelles, afin d’estimer une carte de consensus spatial des localisations les plus 

reproductibles. Appliquée à l’analyse de données de 26 patients atteints d'épilepsie 

focale, notre approche combinant fusion MEM et estimation d’une carte de 

consensus a permis la localisation du foyer épileptique dans tous les cas, surmontant 

ainsi les limitations inhérentes à la localisation de DEI moyennées. Notre méthode 

permet d’extraire des résultats cliniques reproductibles et fiables, démontrant ainsi 

la pertinence de la fusion MEM en tant qu’outil non invasif lors de l’évaluation pré-

chirurgicale des patients épileptiques.  
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Introduction 

 

Epilepsy is a neurological disorder characterized by the tendency to have recurrent 

seizures. Approximately 50 million people worldwide have epilepsy (“WHO | 

Epilepsy,” 2016). Treatment options include antiepileptic drugs, surgery, vagus 

nerve stimulation, and ketogenic diet (usually in children) (Banerji and Pauranik, 

2011). Most patients (about 70%) have their seizures controlled with drug therapy 

but about 20-30% patients are refractory to all forms of drug therapy. An 

approximate estimate is that one half of patients with medically intractable epilepsy 

are potential candidates for epilepsy surgery (Engel, 1996). Epilepsy surgery allows 

to reduce or even stop the occurrence of seizures. Candidates for epilepsy surgery 

undergo an extensive pre-surgical evaluation, which aims at localizing the areas in 

the brain called the epileptogenic focus where the epileptic discharges are 

generated, and to determine whether surgical treatment can be considered. The 

evaluation also helps to precisely identify important structures in the brain, so that 

epileptogenic focus may be removed without causing damage to important nearby 

brain regions or causing only minimal functional loss.  

The state during which the seizure takes place is called the ictal state. Between 

seizures, abnormal neuronal discharges, the so-called interictal epileptic discharges 

(IEDs) may take place; they usually occur more frequently than the seizures. They 

are generated without any clinical manifestations, originating partially from brain 

regions similar to the ones involved during the seizures, i.e. from the epileptogenic 

focus. Analysis of IEDs is widely used as a marker of epilepsy  (Ebersole, 1997a, 

1997b; Noachtar and Rémi, 2009). The overall goal of this PhD dissertation 

consists in improving the localization of the epileptogenic focus using these 

markers, which is a crucial task during the pre-surgical evaluation of epilepsy 

surgery (Lüders and Awad, 1992; Chauvel et al., 1996). 
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During such a pre-surgical investigation, several anatomical or functional 

neuroimaging techniques are considered, for instance, scalp 

Electroencephalography (EEG), video-EEG monitoring, Magnetic Resonance 

Imaging (MRI), Single Photon Emission Computed Tomography (SPECT), 

Positron Emission Tomography (PET), functional MRI (fMRI), Magneto-

encephalography (MEG) and Intracranial EEG (iEEG) when available (Engel, 

1993, 1996; Jette and Wiebe, 2013). Each of these modalities brings 

complementary information to circumscribe the patient-specific underlying 

epileptogenic focus. For instance, an MRI scan can reveal structural abnormalities 

of the brain such as developmental malformation, tumor growths, scars, or other 

physical conditions that may be cause seizures. SPECT and PET, which monitor 

brain hemodynamic and metabolic processes, can identify brain regions exhibiting 

functional abnormalities associated with the epileptic tissues (e.g., glucose 

hypometabolism). EEG and MEG, which measure the bio-electrical and bio-

magnetic neuronal activity, respectively, can detect abnormal epileptic discharges 

non-invasively. iEEG which records bioelectrical activity can detect abnormal 

epileptic discharges from the cerebral cortex using electrodes placed directly on the 

exposed surface or inside the brain. In the present PhD dissertation, we focused on 

pre-surgical evaluation involving noninvasive techniques (EEG and MEG) to 

recover with high temporal resolution the generators of neuronal epileptic 

discharges.   

EEG and MEG are non-invasive electro-physiological techniques, which measure 

on the scalp the electric and magnetic fields generated by synchronous neuronal 

currents, respectively. The postsynaptic currents generated within the large 

pyramidal neurons of the cortical layer V, which are oriented perpendicularly to the 

cortical surface of the brain, are the main generators of EEG and MEG (Speckmann 

et al., 2004). Epileptic activity originates from abnormal excitability and 

synchronization of neurons. Because of their high temporal resolution (~1ms), EEG 

and MEG are the only non-invasive techniques that are able to directly detect and 

follow the fast propagating epileptic discharges (Stefan, 2009; Ebersole and 
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Ebersole, 2010; Lopes da Silva, 2013). To be detected from scalp EEG or MEG 

recording, the generators of epileptic discharges should be synchronized over a 

spatially extended region of several square centimeters, in order to result in a signal 

of sufficient amplitude visually distinguishable from the ongoing background 

activity (Cooper et al., 1965; Ebersole, 1997a; Mikuni et al., 1997; Merlet and 

Gotman, 1999; Oishi et al., 2002; Tao, Baldwin, Hawes-Ebersole, et al., 2007; von 

Ellenrieder et al., 2014a; Ramantani et al., 2014).  

Source localization methods using EEG and MEG data aim at locating within the 

brain the generators of EEG and MEG data measured from the scalp. In the context 

of epilepsy, an additional challenge lies in localizing the generators of transient 

epileptic discharges while recovering their spatial extension. In this regard, the 

teams of Dr. Grova and Dr. J.M. Lina work in close collaboration to develop and 

evaluate source localization methods within the Maximum Entropy on the Mean 

(MEM) framework. These methods provide reliable and accurate localization of the 

sources of EEG and MEG discharges together with their spatial extent along the 

cortical surface (Amblard et al., 2004; Grova et al., 2006, 2016, Chowdhury et al., 

2013, 2015; Lina et al., 2014; Heers et al., 2016). Although EEG and MEG are 

generated by the same neurophysiological processes, there are important 

differences concerning the way signals are generated. As a result, scalp EEG and 

MEG provide complementary information and different sensitivity to epileptic 

discharges. This means not all epileptic MEG discharges are accompanied by 

simultaneous EEG discharges, and conversely not all EEG discharges are 

accompanied by MEG discharges. Integrating these two modalities within the same 

framework can therefore bring in complementary information, thereby allowing 

better accuracy in source localization (Cohen and Cuffin, 1983; Sharon et al., 2007; 

Molins et al., 2008; Ebersole and Ebersole, 2010; Tanaka et al., 2010).  

The aim of this PhD dissertation project is to develop and carefully validate an 

optimal EEG-MEG fusion strategy using simultaneous EEG-MEG recordings to 

accurately localize the generators of IEDs, their spatial extent and propagation 

patterns. This, in turn, is expected to demonstrate the clinical relevance of source 
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localization from EEG-MEG fusion as a valuable non-invasive clinical tool during 

the pre-surgical investigation of patients with epilepsy. 

We hypothesized that the differences in sensitivity of the two modalities, the 

increased number of recording channels considered when fusing them, and the 

ability of MEM method to localize spatially extended sources, will provide an 

accurate localization of epileptic generators.  

This thesis is organized in the following way. Chapters 1, 2 and 3 will provide the 

necessary background. Chapter 1 will present the fundamental mechanisms 

underlying epilepsy and pre-surgical evaluation of epilepsy. It consists of a brief 

introduction to epilepsy, types and treatment of epilepsy, and pre-surgical 

evaluation. In Chapter 2, the reader will be introduced to the non-invasive 

electrophysiological techniques (EEG and MEG) by presenting their technical and 

biological basis. This chapter will first review the history of EEG and MEG. Then, 

there will be a discussion about the generators of electromagnetic activities, i.e. 

neurons, their anatomy, mechanisms involved in producing electric and magnetic 

fields, followed by differences in the sensitivities of EEG and MEG and their 

instrumentation. Chapter 3 will summarize the concept of source localization, 

describing some of the common source localization methods used to analyze the 

electric and magnetic fields. This will also include a detailed description of the 

MEM method, followed by a discussion on the validation of source localization 

methods. Then, a brief literature review on EEG/MEG source localization of IEDs 

will be presented, before reviewing the importance of combining EEG and MEG 

data in the context of localizing interictal spikes. Original contributions and details 

of the studies leading to the development, validation and application of the 

proposed EEG-MEG fusion strategy will be presented in Chapters 4, 5, and 6. 

Chapter 4 will present the first published manuscript (Chowdhury et al., 2015), 

which describes the developed MEM-based EEG-MEG fusion source localization 

method, its quantitative evaluation using realistic simulations, and its comparison 

with other standard source localization methods. This paper also investigates the 

impact of the number of EEG electrodes required when combining EEG with the 
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high density MEG within a fusion framework. Chapter 5 will present the second 

published manuscript (Chowdhury et al., 2016) involving a quantitative assessment 

of the MEM algorithm on complex patterns of IEDs using realistic simulations of 

EEG and MEG data generated from a neural mass model. In this study, the MEM 

algorithm was compared with an advanced source localization algorithm called the 

4-ExSo-MUSIC (4th order extended source multiple signal classification), which 

has also been developed for its sensitivity to the spatial extent of the generators of 

epileptic discharges. This was a collaborative study with the research team UMR 

INSERM U1099, Laboratoire de Traitement du Signal et de l'Image (Université de 

Rennes 1, France) who developed the 4-ExSo-MUSIC method. Chapter 6 will 

present the third manuscript, which studied the application of MEM-based fusion 

on clinical data, and an investigation of the impact of the number of EEG electrodes 

required during fusion on clinical data. Finally, Chapter 7 will conclude the thesis 

with a summary and a discussion of the findings, the contributions of this work, 

and conclusion.  
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1. Chapter 1  Fundamentals and pre-surgical 

evaluation of epilepsy 

 

This chapter will provide a brief overview on epilepsy, classification of seizures 

and epilepsy, treatment of epilepsy mainly focusing on epilepsy surgery and finally 

details on pre-surgical evaluation of intractable epilepsy. 

 

1.1. Epilepsy 

Epilepsy is among the most serious primary disorders of the brain and accounts for 

1% of the global burden of disease. Seizures are the primary manifestations of 

epilepsy, which occur when a population of nerve cells, or neurons, in the brain fire 

abnormally. This can lead to many symptoms such as a person's consciousness or 

actions are altered for a short period of time (seconds to minutes in general). 

Epileptic seizures can be caused by a wide variety of factors such as brain lesions, 

tumors, central nervous system disease, post-traumatic scar, family history (genetic 

component), or other abnormalities (whose cause may be not known).  

In ancient times, epileptic attacks were thought to be the result of invasion and 

possession of the body by supernatural forces, usually malign or evil influences, 

requiring exorcism, incantations or other religious or social approaches (Global 

Campaign against Epilepsy et al., 2005). Although first suggested by Hippocrates 

in the 5th century B.C., the concept of epilepsy as a brain disorder only began to 

take root in the 17th and 18th centuries. Until the middle of the 19th century, 

epilepsy was widely assumed to be a vascular disease, but in 1849 Robert Bentley 

Todd, who was influenced by Michael Faraday’s contemporary work on 

electromagnetism, came up with a new explanation to epilepsy that is based on the 

electromagnetic theory. Today it is known that epileptic seizures are due to 
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abnormal, synchronous and excessive electrical activity in the brain (Reynolds and 

Trimble, 2009). A wide range of different types of seizures and epilepsy syndromes 

have been identified. Patients are now treated with pharmacotherapy, with 

neurosurgical techniques, as well as with psychological and social support.  

 

1.2. Types of seizures and epilepsy syndrome 

The classification of seizures and epilepsy can be important for prognosis and 

treatment. The type of seizure depends upon several factors. One of the most 

important factors is the site of the abnormal electrical discharges. The 1981 

International league against Epilepsy (ILAE) seizure classification (“Proposal for 

revised clinical and electroencephalographic classification of epileptic seizures.,” 

1981) is the most widely accepted classification system, despite revisions in 

terminology and classification of seizures and epilepsy by the ILAE (“Proposal for 

revised classification of epilepsies and epileptic syndromes.,” 1989; Berg et al., 

2010; Fisher et al., 2016). It is based on clinical features, interictal and ictal EEG, 

and neuroimaging. It divides known epilepsy seizures into partial and generalized 

seizures, depending on their site of origin and propagation pattern Figure 1.1. 

When the seizures have onset on one region of the brain they are defined as focal 

seizures while the generalized seizures may rapidly involve a large portion of both 

hemispheres (Fisher and Saul, 2010). 
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Figure 1.1. The cerebrum is the largest part of the brain. The outermost layer of the 
cerebrum is the cerebral cortex, the gray matter. Each hemisphere of the brain is divided 
into: Frontal, Parietal, Temporal and Occipital lobes. Focal seizures have onset on one 
lobe or region of the brain. Generalized seizures may involve several lobes of both 
hemispheres. Modified from https://www.epilepsy.org.au/about-
epilepsy/understanding-epilepsy/human-brain-seizures. 

 

Epilepsy syndromes can be classified according to etiology (cause) and type of 

seizure. Based on etiology, epilepsy can be symptomatic, idiopathic, or 

cryptogenic. Symptomatic means that a cause of the disease has been identified as, 

for instance, head injury, cerebrovascular disorders, brain infections, cortical 

malformations, or brain tumors. Idiopathic denotes a presumed genetic origin 

without any visible structural brain lesion or other neurological signs or symptoms. 

Cryptogenic means that no cause has been identified but a structural rather than 

genetic cause is suspected. The number of cases falling in the cryptogenic category 

is actually decreasing with recent progress in genetic and neuroimaging studies, 

identifying more and more possible causes of the disease. If the seizures are focal, 

the epilepsy is said localization-related, whereas if the seizures are generalized, the 

epilepsy may be either generalized or localization-related. Most of the localization-

related epilepsies are the results of a suspected structural brain abnormality, even 

though it cannot always be identified. Localization-related epilepsies are usually 

divided into mesio-temporal and neocortical based on electroclinical semiology. 

Depending on which part of the cortex is affected, neocortical epilepsies can be 

frontal, parietal, occipital or neocortical temporal lobe epilepsy 1.  

 

1.3. Treatment of epilepsy 

The main clinical procedure when diagnosing epilepsy is a careful medical history 

with as much information as possible about what the seizures looked like and what 

                                                 

1 https://www.uptodate.com/contents/localization-related-focal-epilepsy-causes-and-clinical-

features#H10 
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happened just before they began, i.e. the initial seizure semiology. A second major 

diagnostic test in evaluating a patient with possible epilepsy is scalp EEG. Neuronal 

electrical activity, measured using scalp EEG, shows specific patterns that can 

assist the identification and classification of epileptic activity. Moreover, video-

EEG recording of the seizure episodes allows synchronous recording and display 

of EEG patterns and video-recorded seizure semiology, thus assisting the 

epileptologists in diagnosis and classification of the seizures and epilepsy 

syndrome. Treatment of epilepsy consists in controlling the occurrence and severity 

of the seizures using anti-epileptic drugs (AED). Generally, long-term drug therapy 

helps about 70% of the epileptic population to either become seizure free or reduces 

the occurrence of seizures, while the remaining 30% who are resistant to the drug 

therapy are considered for other forms of treatment (Berg, 2004). However, the type 

of treatment prescribed depends on several factors including the frequency and 

severity of the seizures, localization of the epileptogenic focus as well as the 

person's age, overall health and medical history.  

 

1.3.1. Epilepsy surgery 

Epilepsy surgery, which involves surgical resection of the epileptogenic zone (brain 

region that is responsible for the generation of the seizures), is one form of 

treatment (Genow et al., 2004). It is considered to be an appropriate solution to help 

patients who are in critical condition. Besides, surgically remediable epilepsies can 

be diagnosed using non-invasive procedures in most patients, and early surgical 

intervention is not only associated with seizure freedom in these patients but can 

prevent the development of irreversible psychological and social disabilities 

(Global Campaign against Epilepsy et al., 2005). Depending on the epilepsy 

syndrome and the ability to define clearly and resect completely the epileptogenic 

zone, 30–85% of epilepsy patients who underwent epilepsy surgery remain seizure-

free (Stippich, 2007). Some of the large epilepsy centers reported average seizure-

free rates of ~60% (Engel, 1993, 1996).  
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Sir Victor Horsley, recognized as pioneer of Neurological surgery, performed his 

first craniotomy in 1886 to effect a cure of epilepsy (Horsley, 1886; Feindel et al., 

2009). Until the invention of EEG in 1929 by Hans Berger (Niedermeyer and Lopes 

da Silva, 2005; Cacioppo et al., 2007), the main source of information for the 

surgery was the seizure semiology observed by the physician (Global Campaign 

against Epilepsy et al., 2005). The introduction of EEG into epilepsy diagnosis was 

important in the development of surgical techniques. Herbert Jasper’s work with 

Wilder Penfield at Montreal Neurological Institute (MNI) from 1937 led to 

increasing recognition of role of EEG in localization for epilepsy surgery (Feindel 

et al., 2009). They refined surgical techniques and developed diagnostic and 

localization techniques that included EEG, cortical stimulation, neuroradiology, 

Wada test, and neuropsychology. In recent years, the number of epilepsy surgeries 

is increasing especially in the developed countries due to important advancements 

in neuroimaging techniques and in pre-surgical epilepsy diagnosis with the help of 

interdisciplinary teams involving neurologists, neurosurgeons, radiologists, 

neurophysiologists, engineers, and mathematicians (Global Campaign against 

Epilepsy et al., 2005). 

A patient having refractory epilepsy (pharmaco-resistant epilepsy) whose quality 

of life is significantly impaired by epilepsy, may become an epilepsy surgery 

candidate if seizures are of focal origin. Focal epilepsy arises as a result of epileptic 

activity in a localized portion of the brain or epileptogenic focus. In those cases, the 

surgical resection of this focus can help eliminate the incidences of epileptic 

seizures. However, care must be taken to minimize the effects of the surgical 

procedure on potentially healthy brain regions surrounding the epileptogenic focus. 

Therefore, before surgery is considered, a comprehensive pre-surgical evaluation, 

aiming at mapping both the patient specific epileptogenic focus and surrounding 

eloquent areas is necessary. 
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1.3.2. Pre-surgical evaluation of epilepsy - diagnostic techniques 

The main goal of the pre-surgical evaluation of patients with intractable epilepsy is 

to determine the location of the epileptogenic zone. The evaluation requires 

prolonged video-EEG monitoring and other available exams, for instance, scalp 

EEG, MEG, Magnetic Resonance Imaging (MRI), Positron Emission Tomography 

(PET), Single Photon Emission Computed Tomography (SPECT), functional MRI 

(fMRI) in combination with EEG, and neuropsychological tests to pinpoint the 

exact location of the injured brain cells causing the seizures (Engel, 1993, 1996; 

Jette and Wiebe, 2013).  

The location of the damaged cells determines whether the surgery can be performed 

and what technique should be used. For example, scalp EEG is a non-invasive 

electrophysiological technique used to record the electric potentials produced by 

the neuronal activity related to the epileptiform discharges. MEG is also a non-

invasive electrophysiological technique used to record the magnetic fields 

produced by the same neuronal sources. MRI provides a structural estimate of the 

location of scar tissue or malformations of cortical development, which are major 

causes of intractable epileptic seizures. PET images reveal relative uptake of 

radioactively labeled glucose or neurotransmitters. They show areas of the brain 

with increased or decreased metabolism or neurotransmitter binding during a period 

of time shortly after the seizure. SPECT scans are images of cerebral blood flow 

averaged over the course of 40 s following the injection, made by measuring the 

distribution of a radioactively labeled tracer material as it travels though the blood 

vessels. When the injection is performed just at the beginning of the seizure, SPECT 

can depict the initial blood flow increase at the initiation of a seizure, this is the so-

called ictal SPECT (la Fougère et al., 2009). fMRI provides an indirect estimate of 

the location of active brain tissue by measuring the changes in venous blood oxygen 

levels produced by neuronal activity. EEG can be recorded simultaneously with 

fMRI to identify the timing of interictal events on EEG at millisecond resolution 

and spatially localize with fMRI at millimeter resolution (Gotman and Pittau, 

2011). Neuropsychology exam allows to evaluate areas exhibiting impairments in 
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specific cognitive functions in relation with the presumed epileptogenic focus, as 

well as medication effects, and emotional/psychological issues that may come up.  

Most epilepsy centers employ implantation of intracranial electrodes to 

complement the non-invasive evaluations in guiding surgical resections by 

providing precise localization of an epileptogenic zone and functional cortex 

(Jayakar et al., 2016). Intracranial EEG (iEEG) records the electrical potentials 

directly within the cortical layers by implanting electrodes surgicallyon or into the 

brain tissue (either on the surface using subdural grid/strips or in the depths of the 

brain using depth electrodes). The techniques and types of recordings used by the 

centers vary greatly. For instance, most major epilepsy centers in North America  

and Japan employ subdural electrodes or combination of subdural and depth 

electrodes while European epilepsy centers rely primarily on stereotactically 

inserted depth electrodes (sEEG), which were introduced by Bancaud and Talairach 

in the 1950s (Enatsu and Mikuni, 2016).  

Brain cells send and receive signals in a time span less than 10 milliseconds and 

multiple communications between several brain regions can occur in 200 to 300 

milliseconds. PET, SPECT and fMRI measure indirectly the brain activity through 

metabolism and hemodynamic processes respectively. Therefore, they offer an 

excellent spatial resolution but low temporal resolution. The high temporal 

resolution of MEG and EEG allows tracking communications between brain 

regions occurring in one hundredth to one third of a second. This excellent temporal 

resolution of EEG and MEG is similar to that of iEEG as both are almost directly 

measuring the activity of the neurons (Figure 1.2). However, implanted electrodes 

can only detect brain activity occurring within a few millimeters from the 

electrodes, therefore implantation should be targeted towards presumed regions 

where epileptic activity should be assessed. In addition, iEEG requires a 

neurosurgical procedure to implant electrodes on the surface or in the depths of the 

brain (Jayakar et al., 2016). Therefore, the added value obtained in terms of better 

spatial and temporal resolution in iEEG is counter-balanced by the additional 

morbidity that is necessarily associated with invasive methods. The combination of 
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non-invasive and high temporal resolution of MEG and EEG measurements make 

them particularly interesting when compared to other brain functional imaging 

modalities. The millisecond temporal resolution of both EEG and MEG make them 

ideal for the study of spontaneous, evoked, and induced oscillatory processes at 

different frequency bands such as analysis of interictal spikes (Hamandi et al., 

2016; Heers et al., 2016), ictal discharges (Pellegrino et al. 2016a), high gamma 

oscillations (Rampp et al., 2010; Jeong et al., 2013), high frequency oscillations 

(von Ellenrieder et al., 2016), functional connectivity and network analysis (Pittau 

and Vulliemoz, 2015) . 

 

Figure 1.2. Spatial and temporal resolution of the different diagnostic techniques 
along with their level of invasiveness. Extracted from (Gramfort, 2009). 

 

1.3.3. Pre-surgical evaluation of epilepsy - cortical zones  

Success of epilepsy surgery depends profoundly on the correct determination of the 

epileptogenic zone. This zone is defined as the minimum amount of cortex that has 

to be resected (inactivated or completely disconnected) to produce seizure freedom 

(Chauvel et al., 1996; Luders et al., 2006). This zone is estimated prior to surgery 

based on information available from initial seizure semiology, lesions seen in MRI 

images, video EEG long term monitoring, MEG, SPECT, PET, EEG-fMRI and 
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neuropsychological examination. The epileptogenic zone cannot be identified 

directly. It is a theoretical zone that can be estimated by a number of other “zones” 

(Figure 1.3). The following five zones have been determined as the standard 

cortical zones that can be measured during the pre-surgical evaluation using 

different diagnostic techniques (Rosenow and Lüders, 2001): 

1) Ictal onset zone: is the zone in which seizures are originating. This zone is 

always contained in the epileptogenic zone, but may be smaller than the 

epileptogenic zone. This area is determined primarily by EEG (invasive and 

non-invasive), but can also be defined by ictal SPECT and to a lesser degree 

by EEG-fMRI and MEG; 

2) Epileptogenic lesional zone: lesion (scar, tumor or malformation) causing 

epilepsy. This brain area is usually defined by anatomical imaging such as 

high resolution MRI. 

3) Symptomatogenic zone: zone that produces the first clinical manifestations 

of seizures. This area is determined by analyzing the initial seizure 

symptomatology. 

4) Irritative zone: is defined as the brain area producing abnormal transient 

synchronous discharges of nerve cell clusters between seizures (interictal 

discharges). The irritative zone or the generator of interictal epileptic 

discharges (IEDs), is one of the most important zones for locating the 

epileptogenic zone, since it can be non-invasively detected and localized 

using EEG and/or MEG. It is believed that the interictal spiking emanates 

from an area larger than that responsible for ictal onset (Hauf et al., 2012). 

Several studies  (Agirre-Arrizubieta et al., 2009; Brodbeck et al., 2011; Jung 

et al., 2013) validated EEG with electric source imaging and MEG with 

magnetic source imaging to show that the generator of IEDs had high spatial 

concordance with the epileptogenic zone, defined using either iEEG or 

surgical resection, and that the greater the overlap between the IEDs and the 

resected brain region the better was the seizure outcome. Therefore, an 
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accurate identification of the irritative zone can therefore be of crucial 

importance during pre-surgical evaluation (Bautista et al., 1999; Hufnagel 

et al., 2000; Ryvlin et al., 2014). 

5) Functional deficit zone: zone responsible for functional deficits. This area 

is usually larger than the seizure onset and the irritative zone. The increased 

or decreased metabolism observed in PET can be used to assess this area. 

In addition to neuroimaging methods, neuropsychological examinations 

and seizure semiology are also used for evaluation of this zone.  

 

Figure 1.3. Different cortical zones described in (Rosenow and Lüders, 2001). Taken 
from presentation on slideshare.net: http://www.slideshare.net/yashika54/paroxysmal-
dyskinesias. 

 

Pre-surgical evaluation consists in combining many sources of information from 

different diagnostic techniques to define the epileptogenic zone as precisely as 

possible. A number of techniques have been developed to enhance understanding 

of the dynamics of the underlying generators of epilepsy. For instance, source 

localization of the generators of epileptic activity using EEG, MEG or combined 

EEG-fMRI (Agirre-Arrizubieta et al., 2009; Brodbeck et al., 2011; Jung et al., 

2013). Also, EEG and/or MEG source imaging results are co-registered with 
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anatomical images from MRI and are reconstructed three dimensionally to show 

the exact region of activity. Furthermore, today it is widely accepted that epilepsy 

is a network disease, in which different parts of the brain are involved (Wilke et al., 

2011; Kramer and Cash, 2012; Dansereau et al., 2014; Pittau and Vulliemoz, 2015), 

and thus, understanding the networks causing epilepsy requires the evaluation of 

the information from the whole brain, which is only possible with noninvasive 

methods like EEG/MEG, EEG/fMRI, etc. It has also been recently shown that there 

is a good agreement between noninvasive EEG and MEG source reconstructions 

and fMRI responses (Heers et al., 2014). 

 

1.4. Interictal Epileptiform Discharges 

Seizures are infrequent events in the majority of patients, making recording of ictal 

EEG or MEG time-consuming and labor intensive. Although it is possible to 

observe ictal EEG in long term EEG recordings it is rare to record ictal MEG during 

the short duration of MEG recording. IEDs are spontaneous abnormal paroxysmal 

events occurring in between the seizures. In 1936, Gibbs and Jasper independently 

reported the interictal events as the focal signature of epilepsy which means IEDs 

arise from a network of distributed anatomical brain regions closely related to the 

epileptogenic zone. These events are generated by the brain without any clinical 

signs. They do not induce any patient movement and occur more frequently than 

the ictal discharges (seizures). This suggests IEDs as the hallmarks of epilepsy that 

can be easily recorded noninvasively using EEG or MEG. This leads to the 

possibility to study their signatures using other modalities, as for instance 

simultaneous EEG-fMRI recordings (Gotman and Pittau, 2011). As a result, 

investigation of interictal activity is an important aspect of pre-surgical evaluation 

of patients who are candidates for epilepsy surgery (Lüders and Awad, 1992; 

Chauvel et al., 1996).  

The following EEG/MEG patterns are classified as epileptiform discharges: spikes, 

sharp waves, spike–wave complexes, slow spike–wave complexes, polyspikes, and 
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seizure patterns (Noachtar and Rémi, 2009). To qualify as an IED, discharges 

should meet the following criteria as outlined for EEG by Walczak et. al in (Engel 

et al., 2008): 

1. They must be paroxysmal and distinct from the patient's normal background 

activity. 

2. They must include an abrupt change in polarity occurring over several 

milliseconds. 

3. The duration of each transient should be less than 200 ms. A spike has a 

duration of less than 70 ms; sharp waves have a duration between 70 and 

200 ms (Figure 1.4). 

4. The discharge must have a physiological field, with the discharge recorded 

from more than one electrode and a voltage gradient should be present. 

This definition of an EEG spike is based on its amplitude, duration, sharpness, and 

emergence from background. However, spikes in MEG have not yet been formally 

defined. In practice spikes are identified in MEG recording by using EEG as a 

guide, or by looking at EEG and MEG together and deciding on some general 

aspects of transients, or even by directly applying EEG spike criteria. Results from 

several studies showed that interictal epileptiform spikes recorded in EEG and 

MEG share some properties but differ in other characteristics, such as duration, 

sharpness, and shape (Merlet et al., 1997; Fernandes et al., 2005). Overall, 

identification of spikes by observers with EEG experience leads to reproducible 

and clinically valid results in MEG (Zijlmans et al., 2002).  
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Figure 1.4. Interictal epileptic discharge patterns recorded in human partial 
epilepsies with intracranial electrodes. (A) interictal spike; (B) group of interictal 
spikes from neocortical dysplasia; (C) sharp wave from a lesional partial epilepsy. 
Modified from (de Curtis et al., 2012). 

 

1.5. Conclusion 

In summary, the non-invasive electrophysiological techniques, EEG and MEG can 

track the underlying dynamics of IEDs at a high temporal resolution. This makes 

them particularly interesting, and complementary to other diagnostic techniques. 

The detection and analysis of the IEDs is crucial for the identification and 

localization of the epileptogenic zone, since their generators usually overlap with 

the region involved in the seizure onset. The irritative zone is one of the most 

important zones for locating the epileptogenic zone, since it can be non-invasively 

detected and localized using EEG and/or MEG and identification of the irritative 

zone correlates with better seizure outcome.  
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2. Chapter 2  Non-invasive electrophysiological 

investigation using EEG and MEG 

 

 

This chapter will elaborate further on the non-invasive EEG and MEG techniques. 

After reviewing their historical background, we will present the neuronal 

mechanisms involved in the generation of EEG and MEG signals, with specific 

emphasis on the generators of IEDs. The details describing the recording techniques 

for EEG and MEG will follow. Finally, the factors affecting the detectability of 

epileptic events in EEG and MEG will be discussed.  

 

2.1. History of EEG and MEG 

The recording of the electrical activity of the brain has a long history. In 1875, a 

British neuropsychologist, Richard Caton, was the first to measure the neural 

electrical phenomena in rabbits and monkeys (Caton, 1875; Swartz and Godensohn, 

1998; Niedermeyer and Lopes da Silva, 2005). A German neuropsychiatrist, Hans 

Berger, was the first to record electric potentials generated by the human brain 

(Figure 2.1), first reported in 1929 (Berger, 1969; Haas, 2003). Initially, Berger 

recorded EEG using one electrode placed on the frontal and one on the occipital 

part of the patient’s scalp, an electrocardiogram (ECG) channel and a time marker. 

He is also credited for inventing the word electroencephalogram as a graphic 

representation of the difference in voltage between two different cerebral locations 

plotted over time. With this early work as the foundation, EEG became the standard 

in clinical diagnostics of brain disorders from mid-1930s through the mid-1970s.  

Epileptiform spikes were first recorded by Fisher and Lowenback in 1934 and then 

in 1935 Frederick Gibbs, Hallowell Davis and William G. Lennox described 
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interictal spike waves (Lüders and Comair, 2001). Later in 1936 Gibbs and Jasper 

reported the interictal spike to be a marker of epilepsy. During the same year, 

Frederick Gibbs, Lennox and Erna Gibbs showed focal spikes and a localized 

seizure pattern during clinical focal seizure (Lüders and Comair, 2001). In 1950s, 

William Grey Walter developed an adjunct to EEG called EEG topography, which 

allowed for the mapping of electrical activity across the surface of the head. To 

obtain congruence among different laboratories, a standard electrode placement 

scheme called the 10-20 electrode placement system was proposed by Jasper in 

1958, basing the positioning on head anatomical landmarks. This standardization 

marked the beginning of modern electroencephalography. The number of 

electrodes used in research has increased over the years from around 19 of Jasper’s 

time to as many as 256 to 512 today (Gevins, 1993; Holmes, 2008). However, the 

10-20 system with 19 electrodes is still the dominant standard in routine clinical 

settings. Studies have shown the merit of dense-array EEG system consisting of 

more than 64 electrodes in improving the spatial resolution especially when source 

localization is applied, therefore, most current research is carried out with 64 to 128 

electrodes (Ryynänen et al., 2004; Lopes da Silva, 2013). 

 

Figure 2.1. First measure of EEG in 1924 that was reported in 1929 by a German 
neurophysicist, Hans Berger. First measure of MEG in 1968 measured by David Cohen, 
a physicist in University of Illinois. (Courtesy: Teaching slides on megcommunity.org).

 

In 1819, Hans Christian Orsted discovered that electric currents create magnetic 

fields. Magnetic fields produced by cerebral currents in humans (Figure 2.1) were 
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first measured in 1968 by David Cohen, a physicist at the University of Illinois, 

using room-temperature copper induction coils (Cohen, 1968). The magnetic fields 

picked up by these coils had a very low signal to noise ratio due to low sensitivity 

of the device and the presence of magnetic background noise and thus were difficult 

to use. Under normal conditions the magnetic fields generated by human brain are 

very weak, in the range of 10-12 to 10-15 T, which is much weaker than the earth’s 

magnetic field of 10-4 T or the one created by the 50/60 Hz current flowing in power 

lines (about 10-8 T). Other environmental sources of magnetic noise, for instance, 

any electrical devices or elevators also generate magnetic fields much larger than 

the ones produced by the human brain. The electrical activity in the heart and that 

associated with eye blinks and movements also create magnetic fields of at least an 

order of magnitude larger than the signals from the brain. Therefore, a magnetically 

shielded room was required to attenuate the magnetic noise from the environment. 

Cohen built a shielded room and used one of the first magnetometers employing 

SQUID (superconducting quantum interference device) sensors invented in 1962 

by James E. Zimmerman to record MEG in real time. These superconducting 

devices are extremely sensitive magnetic flux to voltage converters. To benefit 

from superconductive properties, the SQUIDs need to be maintained at liquid 

helium temperature (-269 °C). Using the SQUID sensors, David Cohen 

significantly improved his MEG device to record the signals with lower noise level 

in 1971 (Cohen, 2004). This time the signals were almost as clear as those of EEG. 

Epileptic activity was detected by MEG for the first time in 1982 (Barth et al., 

1982).  

The first MEG device used a single SQUID sensor; to map the magnetic field it 

was necessary to repeat the measurement at a number of points around the head of 

the subject. This was cumbersome, so MEG manufacturers began to arrange 

multiple sensors into arrays to cover a larger area of the head such as a system with 

5-7 coils in early 1980s, then system with about 20-40 sensors in the late 1980s. An 

important milestone was the introduction of the first helmet whole-head MEG 

system introduced in 1992 (Ahonen et al., 1993) that contained 122 sensors. It was 
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thus possible to study spontaneous activity of the brain and responses evoked by 

different kinds of stimuli simultaneously all over the cortex. At about the same time, 

CTF Systems Inc. introduced their whole-head system with 64 sensors (Vrba et al., 

1993). Today’s whole-head MEG systems can contain more than 300 SQUIDS 

connected to sensor coils in a configuration following the curvature of the head. 

Due to several theoretical analyses that showed a higher density would not lead to 

an increasing spatial resolution, the technological development in terms of 

increasing the number of sensors reached a stable stage (Preissl, 2005). The whole-

head system of CTF Systems Inc. was later upgraded to 143, 151 and 275 sensors, 

along with other manufacturers such as Elekta Neuromag TRIUX (with 306 

sensors), 4D Neuroimaging (with 148 or 248 sensors) and MEGvision (with 160 

sensors). 

Figure 2.2. For this thesis, simultaneous EEG-MEG recordings were performed using a 
56 channel EEG easycap (left) and 275 channel CTF MEG system (right). Extracted 
from http://www.easycap.de/e/products/products.htm and http://www.ctfmeg.com/ 
respectively. 

 

2.2. Neuronal generators of EEG and MEG signals  

In this section, we will discuss the underlying electrophysiological phenomena 

recorded with EEG and MEG. While EEG measures the differences of electric 
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potentials on the scalp, MEG measures the magnetic fields around the scalp. The 

EEG or MEG signal arises from temporally synchronized and spatially aligned 

postsynaptic electrical currents in populations of cortical neurons.  Mainly 

pyramidal cells located in layer V that are organized along cortical columns are 

involved in the generation of EEG and MEG signals (Hämäläinen et al., 1993). 

 

2.2.1. Anatomy 

An average human brain is composed of around 100 billion neurons (nerve cells), 

among which approximately 10 billion are the cortical pyramidal neurons. Each 

neuron may be connected to up to 10,000 other neurons, passing signals to each 

other via as many as 1,000 trillion synaptic connections.  

A typical neuron (see Figure 2.3) consists of a cell body or soma where the nucleus 

resides, a tree of dendrites that receive information from other neurons to the cell 

body, and an axon (a long extension of the nerve cell) that carries nerve signals 

away from the soma, ensuring distant communication with other neurons. The part 

of the axon where it emerges from the soma is called the axon hillock. All these 

portions of the neuron are contained within the neural membrane that separates the 

cytoplasm from the extra-cellular fluid. The axon of one neuron communicates with 

the dendrites of another neuron via the synapses present in the axon terminal. The 

cell body and the dendrites of the neuron are concentrated in the gray matter of the 

brain, the largest part of which is the cerebral cortex forming the surface of the 

brain (Hämäläinen et al., 1993). The cerebral cortex includes two main classes of 

neurons. The projection or principal neurons (e.g., pyramidal neurons) are cells 

that "project" or send information to neurons located in distant 

areas. Interneurons (e.g., basket cells) are generally considered to be local-circuit 

cells which influence the activity of nearby neurons. Most principal neurons form 

excitatory synapses on post-synaptic neurons, while most interneurons form 

inhibitory synapses on principal cells or other interneurons neurons (Figure2.3). 
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Figure 2.3. Cortical neuron. Schematic illustrations of a pyramidal neuron and 
magnified Excitatory and Inhibitory synapses. Modified from (Hämäläinen et al., 1993).

    

2.2.2. Physiological mechanisms of neuronal activity                         

Transmission of information is done uni-directionally within and between neurons, 

first along the axon and then across the synapse to the next nerve cell. The part of 

the synapse that is on the side of the axon is called the presynaptic terminal; the 

part on the side of the adjacent nerve cell is called the postsynaptic terminal. 

Between these terminals there is a gap called the synaptic cleft. When an action 

potential travelling along the axon reaches the pre-synaptic terminal, a chemical 

substance called a neurotransmitter is released in the synaptic cleft. This 

neurotransmitter will then activate the post synaptic terminal: the permeability of 

the membrane changes locally and specifically to different ions. Every cell has a 

voltage (difference in electrical potential) across its membrane called a membrane 

potential. Neuronal messages are transmitted through local changes in membrane 

potential. When a neuron is not sending any signal, the membrane potential of the 

neuron at rest is typically estimated to be -70 mV. Active mechanisms involving 

ion pumps and ion channels maintain the resting potential of a neuron. During 

chemical signaling the membrane potential of the post synaptic cell is altered 

temporarily by moving charges (mainly Na+, Cl- and K+ ions) across the cell 
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membrane. A synapse can be excitatory (generating an excitatory post-synaptic 

potential, EPSP) or inhibitory (generating an inhibitory post-synaptic potential, 

IPSP). The distributions of excitatory and inhibitory synapses within the dendritic 

tree are different; most inhibitory synapses are located close to the soma where they 

influence the electric potential of the soma more than the excitatory synapses which 

are concentrated further away, at dendritic spine (Hämäläinen et al., 1993) (Figure 

2.3). During an EPSP, the cell membrane becomes more permeable to Na+ ions, a 

high influx of positive charges results in an increased membrane potential causing 

depolarization. This potential change drives the polarity of a neuron closer to the 

generation of an action potential. On the other hand, during an IPSP, negative Cl- 

ions flood into the cell, which causes a decrease in membrane potential, or 

membrane hyper-polarization. This potential drives the polarity of a neuron further 

away from the generation of an action potential. Integration of EPSP's and IPSP's 

establishes the probability that the post-synaptic cell will fire, i.e. will trigger the 

generation of an action potential. An action potential is initiated at the axon hillock 

when enough depolarization accumulates to bring the membrane potential up to a 

threshold of around -55mV. The action potential (or a spike2) is a short duration 

(1ms) impulse exhibiting a positive difference of potential, travelling along the 

length of the axon, therefore ensuring distant transmission of information between 

neurons (Sherwood, 2008).  

a. Integration of postsynaptic potentials 

Both EPSPs and IPSPs are low-amplitude potentials. They are "graded" potentials, 

i.e. their amplitude reflects the intensity and duration of the interaction between the 

neurotransmitter and its receptor complex. Postsynaptic potentials do not 

regenerate as they spread along the membrane of a cell; they become smaller with 

distance from the synapse. A single EPSP would be too small to trigger an action 

potential in a postsynaptic cell. Temporal or spatial summation of the neighboring 

                                                 

2 which is different from interictal spikes that are generated by synchronized postsynaptic potentials  
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post synaptic potentials are actually needed to reach a specific depolarization level 

that can trigger the generation of an action potential in the postsynaptic cell. The 

duration of a post-synaptic potential (around 10 ms, in comparison to 1 ms for an 

action potential) allows temporal summation of several post synaptic potentials that 

are synchronized in time. Then, similar geometrical arrangements of the dendrites 

of a pyramidal cell and its neighbors allows summation of post synaptic potential 

in space. These summations apply to IPSP as well. Although, through summation, 

an IPSP can also counter the effect of an EPSP by favoring more hyperpolarization, 

thus preventing the occurrence of action potential. Therefore, if the neurons all have 

a similar orientation and all receive the same type of input, their PSPs will summate 

and may be measurable around the scalp. This is most likely to occur in cortical 

pyramidal cells located in the layer V of the cortex. In the pyramidal cells, their 

apical dendrites are oriented in parallel along the cortical sheet; therefore, the ionic 

current flowing in the dendrites towards the soma is also perpendicular to the 

cortical surface. Pyramidal neurons located in the layer V of the cortex, therefore, 

play an important role in the measurement of electric and magnetic fields around 

the scalp. 

 

Figure 2.4. Generation of EEG and MEG signals. (A) Electric currents (red arrow) in 
active neurons drive extracellular (volume) currents (yellow lines) within the head, 
which gives rise to a potential distribution (V) on the scalp. The currents also generate a 
magnetic field (green lines; B) outside of the head; here the direction of the magnetic 
field follows (according to the right-hand rule) the direction of the net intracellular 
currents (red arrow). (B) The main contribution to EEG and MEG signals comes from 
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post-synaptic currents (red arrows) in the apical dendrites of pyramidal neurons. 
Extracted from (Hari and Parkkonen, 2015). 

 

b. Intracellular and Extracellular currents 

Both action potentials and post-synaptic potentials are associated with movements 

of ions, resulting in currents occurring within the cell: the so-called intracellular 

currents. They are accompanied by passive extracellular currents, which close the 

electric circuit and thus prevent the accumulation of electric charge (Figure 2.4 B). 

For instance, when an EPSP is generated in the dendrites of a neuron an 

extracellular voltage is created that is more negative than elsewhere along the 

neuron, resulting from Na+ currents flowing inside the neuron’s cytoplasm. The 

current completes a loop further away from the excitatory input (Na+ flows outside 

the cell), to create as a positive voltage. This process can last hundreds of 

milliseconds. On a macroscopic scale, this situation can be modeled as a current 

dipole exhibiting a region of positive flux of ions (current) which is referred to as a 

source, and at a small distance a region of negative flux of ions referred to as a sink. 
The macroscopic ohmic return currents closing the current loop are commonly 

referred to as volume currents while the current dipole equivalent to the primary 

source is called the primary current.  

The patterns of the electric potentials on the scalp and magnetic field components 

are orthogonal, under the assumption of a spherically symmetric head conductivity. 

The “right-hand rule” can be used to estimate the orientation of the magnetic field 

generated by neuronal currents (see Figure 2.4). The electric potential measured 

by EEG and the volume currents set forth by the primary currents are directly 

related by the Ohm's law (Jackson and Bolger, 2014). In conclusion, EEG and MEG 

quantify the same neuronal processes but providing complementary information 

regarding the underlying generators. EEG and MEG measurements are, therefore, 

more informative when they are combined during data acquisition and analysis 

(Pflieger et al., 2000). 
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Figure 2.5. Action potential versus Postsynaptic potential. (A) Currents involved in 
the generation and propagation of action potential in the pre-synaptic neuron are bi-
directional forming two opposing dipoles; post-synaptic currents have uni-directional 
currents forming only one dipole. (B) Time behavior a postsynaptic potential and an 
action potential. Modified from (Hämäläinen et al., 1993). 

 

2.3. Action potential vs postsynaptic potential 

As illustrated in Figure 2.5, two kinds of bioelectrical signals are generated at the 

neuronal level: (i) the action potential propagating along the axon and (ii) the post-

synaptic potentials. An action potential is generated when the sum of all 

postsynaptic potentials reaches a threshold of -55 mV. Because a propagating 

depolarization wave is quickly followed by hyperpolarization of the membrane, an 

action potential can be modeled as two opposing current dipoles, therefore resulting 

in a quadrupolar structure producing electrical potentials and magnetic fields 

decreasing at 1/r3 with the distance (Milstein and Koch, 2008). On the other hand, 

post-synaptic currents can be modeled by a single current dipole, therefore 

producing electrical potentials and magnetic fields decreasing as 1/r2.  

Consequently, the contribution of action potentials on scalp EEG and MEG can be 

neglected since the decrease of the magnetic or electric fields with the distance is 

faster than that of dipoles. Moreover, the action potentials only last for a duration 

of 1ms, while the post synaptic potentials last for about 10ms; which is slow enough 

to allow temporal integration of the contribution from nearby neurons (Figure 2.5). 

Thus, EEG and MEG signals are produced in large parts by the post synaptic 

potentials. 
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2.4. EEG recordings  

An EEG recording system comprises several electrodes (recording electrodes as 

well as a reference and a ground electrode), an amplifier with filters, analog to 

digital converter, the acquisition computer and dedicated softwares allowing 

visualization and analysis of the recorded waveforms. Abrasive gel followed by the 

application of conductive paste is generally needed to ensure good electrical 

conductivity between electrodes and the skin.  

During an EEG recording session, the electric potential is recorded simultaneously 

from several sites. The combination of all electrodes together with the reference 

and the ground electrode compose the channels. The electrode configuration is 

called a montage. A typical montage would include at least 21 channels, or more, 

with some system allowing up to 512 channels. The choice of the reference 

electrode varies for different systems and applications such as vertex electrode 

(Cz), linked-ears, linked-mastoids, ipsilateral-ear, contralateral-ear and tip of the 

nose. For the ground electrode, forehead (Fpz) or an ear location are usually 

preferred, but sometimes the wrist or the leg can also be considered. 

The international 10-20 system (Jasper, 1958) standardized physical placement and 

designations of electrodes on the scalp (Figure 2.6). The head is divided into 

proportional distances from prominent skull landmarks that are the nasion, peri-

auricular points (left and right ear), and the inion, thus providing adequate coverage 

of most regions of the brain. The nasion is located at the bridge of the nose 

immediately beneath the forehead, and the inion is the lowest point of the skull 

from the back of the head, normally indicated by a bony. The distance from the 

anatomical landmark to the electrode positions were at 10% distance while the 

electrodes are separated at a distance of 20% from each other. Each electrode is 

specified by a letter name related to the general underlying cortical region or lobe 

(Frontopolar - Fp; Frontal - F; Temporal - T; Central – C; Occipital - O; Parietal - 

P) and a subscript reflecting its position relative to the midline. Therefore, even and 
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odd numbers refer to the right and to the left hemispheres respectively, while z 

(zero) refers to an electrode placed on the midline. More detailed EEG montage can 

also be considered by notably adding extra electrodes within the spaces between 

the existing 10-20 systems, leading to the so-called 10-10 system (Chatrian et al., 

1985) (see Figure 2.6C for an example) or 10-5 system (Oostenveld and Praamstra, 

2001). 

 

Figure 2.6. The international 10-20 system seen from (A) left and (B) above the 
head. A  = Ear lobe, C  = central, Pg = nasopharyngeal, P  = parietal, F  = frontal, 
Fp = frontal polar, O  = occipital. (C) Location and nomenclature of the intermediate 
10% electrodes, as standardized by the American Electroencephalographic Society. AF 
- intermediate between Fp and F, FT - between F and T, TP - between T and P, CP - 
between C and P, PO - between P and O. Modified from Sharbrough et al., (1991). 

 

Duration of EEG data collection can vary depending on the application, as long as 

the electrical contact can be maintained. Typically, EEG is recorded with person in 

supine position for only 30 minutes (routine EEG), but data can be collected over 

the course of a day to examine brain function during normal daily activity (24-h 
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EEG or ambulatory EEG), during sleep (polysomnography) or even for several 

days in hospital settings in an epilepsy monitoring unit (video-EEG monitoring). 

 

2.5. MEG Recordings 

As mentioned in Section 2.1, MEG records very weak magnetic fields of the brain 

which are in the range of 10-12 to 10-15 T. For instance, they are much weaker than 

the earth’s magnetic field of 10-4 T. The challenge of MEG recording is mainly to 

measure the magnetic fields produced by neuronal activity, while attenuating the 

influence of external magnetic noise. A typical MEG device is composed of the 

magnetic field sensors (SQUID), detection coils connected to the SQUIDs, a 

cryostat, and a magnetically shielded room.  

The SQUID (superconducting quantum interference device) is a superconducting 

ring interrupted by one or two "weak links" called Josephson junctions (Josephson, 

1962). By applying a suitable bias to the voltage across (or the current through) the 

junction, the SQUID becomes a periodic function of the magnetic flux going 

through the SQUID loop. The high sensitivity of the SQUID stems from the fact 

that the period of this function is very small; this value is called a flux quantum 

(Körber et al., 2016). In practical, contemporary MEG magnetometers have a 

typical magnetic field noise at frequencies higher than a few Hz is 2 - 3  fT/sqrt(Hz) 

(Hämäläinen et al., 1993). 

In practice the SQUID loop is small and magnetic field containing relatively low 

spatial frequencies are recorded by integrating the field over a larger spatial scale 

with help of a superconducting flux transformer connected to the SQUID. Due to 

superconductivity, frequency response of a SQUID magnetometer extends down to 

dc, unlike in a traditional resistive induction-coil magnetometer. The simplest type 

of a flux-transformer is the magnetometer (Figure 2.7), which comprises a single 

superconducting pickup coil (or a few turns), situated as close as possible to the 

subject's head. Magnetometer measures some component of the magnetic field 

directly. Such devices are extremely sensitive but also pick up all environmental 
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changes in magnetic field. When the pickup coil configuration includes two coils 

connected in series but wound in opposite directions, the sensor is then called a 

gradiometer. If the magnetometers are next to each other in a horizontal plane, the 

sensor is called a planar gradiometer, and if the coils are one above the other, the 

sensor is called an axial gradiometer. Gradiometers are used to measure spatial 

gradient of magnetic field in a specific direction (in fT/cm). Magnetic interference 

from distant sources (in the form of noise source) will be relatively uniform across 

the two coils, thus resulting in dampening of the disturbance. Conversely, nearby 

cerebral sources will produce different fields at the two coil sites and brain signals 

thus not significantly dampened. 

 

 

Figure 2.7. Common pick up coil geometries. (A) magnetometer, (B) planar 
gradiometer, (C) axial gradiometer. Modified from (Hämäläinen et al., 1993). 

 

As the systems incorporate superconducting materials, they must be operated at 

liquid helium temperature (4 K= -269° C). To maintain the cryogenic conditions, 
the sensor array is immersed in a large container (Dewar) of liquid Helium. Heat 

conduction is eliminated by two-wall structure with a vacuum in between while 

heat radiation losses are minimized by a radiation shield in the vacuum space. 

The need for helium for cooling is a major maintenance cost factor for MEG 

systems. Finally, MEG recordings require a magnetically shielded room in order to 

dampen the environmental magnetic fields. Some MEG devices, such as the CTF 
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system installed in our institution, are also equipped with additional reference 

sensors to pick up environmental noise to further correct for their influence MEG 

brain sensors.  

Since MEG acquisition consists in placing the head in a helmet and MEG sensors 

are not attached to the head of the subject, immobility during the acquisition is 

absolutely needed. Consequently, in the context of epilepsy, MEG acquisitions are 

usually limited to a maximum of 1 or 2 hours of acquisition and are therefore 

generally confined to interictal state recordings. To track the head movements, the 

location and orientation of the head with respect to the MEG sensor array are 

monitored based on three-dimensional digitization of several anatomical landmarks 

(nasion and pre-auricular point), and by head position indication (HPI) coils that 

are affixed on the scalp (Uutela et al., 2001). The MEG system used for the studies 

in this thesis is the CTF system with 275 sensors (SQUIDs) coupled with axial 

gradiometers (Figure 2.8). 

 

Figure 2.8. Schematic representation of the whole head coverage with 275 MEG 
sensors in a CTF system. Each sensor is named with 5 digits and the first is always M 
for MEG. The small figure on the upper right corner shows the second and the third 
characters and the bigger figure shows the last three digits of the sensor name. Taken 
from Aydin (2015). 

 



34 

 

34 

2.6. EEG and MEG in epilepsy 

There are several factors determining if and how the transient epileptic discharges 

are detectable in EEG or MEG scalp recordings: the spatial extent of the underlying 

activated cortex, its depth from the surface, the amplitude of the activity and the 

orientations of the dipoles, conductivity of intervening tissues as well as the density 

of the recording channels. This section will discuss some of these factors. The key 

differences between EEG and MEG have also been presented in Table 2.1. 

 

2.6.1. Spatial extent of the generators of IEDs recorded using EEG 

and MEG  

To allow sufficient signal amplitude to be distinguishable from ongoing EEG and 

MEG background traces, the generators of epileptic discharges should be spatially 

extended on the cortex. Several studies addressed this important issue specifically 

and showed that the extent of the involved cortex is different for MEG and EEG.  

In MEG and EEG, the current generator is described by an equivalent current dipole 

Q. The current dipole density q is defined as q = Q / θ in units of nA.m/mm2, where 

Q is the dipole moment expressed in units of nA.m and θ is the surface area of the 

active cortical volume. Since the current density q is independent of the size of 

active tissue, it is expected to be more uniform than Q and may serve as an effective 

physiological constraint when solving the inverse problem. Recently, it has been 

shown that the maximum value of current dipole moment density q associated with 

synchronous population activity is uniform (1-2 nA.m/mm2) across a wide range of 

brain structures (Murakami and Okada, 2015). Considering this, if the maximum 

value of q is constrained to be 1 nA.m/mm2, the epileptiform response reported by 

(Oishi et al., 2002) as a mean Q value of 137 and 275 nA.m for two patients would 

imply that the minimum size of active tissue was actually 137-275 mm2. Thus, these 

results confirm the fact that the size of epileptiform tissue is not a point source as 

assumed by the equivalent current dipole representation of the generator. 
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The earliest study (Cooper et al., 1965) that compared subdural and scalp EEG 

recordings showed that only widely synchronized components of the cortical 

activity could be observed on scalp recording. In this study that was based on a 

simple phantom model involving a large piece of fresh wet skull, Cooper and 

colleagues proposed that 6 cm2 area of cortical activity was necessary to produce 

scalp-recordable electrical potentials. However, this value can be arguable given 

that the in vitro design of their study was hardly comparable to the generation of 

human EEG. Ebersole and colleagues studied simultaneous recordings from 

intracranial (subdural electrodes) and scalp electrodes on temporal lobe epilepsy 

patients and he suggested that a minimal cortical activation area of 6-8 cm2 was 

required to produce discernible scalp EEG potentials (Ebersole, 1997a). 

Accordingly, from the analysis of simultaneous intracranial depth EEG and scalp 

EEG recordings, Merlet and Gotman never observed very focal activity, occurring 

only at one intracranial contact, when a spike was present at the surface of the scalp. 

At least 8 intracranial contacts needed to be able to detect a interictal discharge on 

scalp EEG traces (Merlet and Gotman, 1999), therefore confirming previous 

findings of Ebersole and Cooper. 

These earlier studies were followed by several others involving simultaneous 

intracranial subdural and scalp EEG recordings to further assess the scalp EEG 

detectability of cortical source in Temporal Lobe Epilepsy (TLE) (Tao et al., 2005; 

Tao, Baldwin, Ray, et al., 2007) and Frontal Lobe Epilepsy (FLE) (Ramantani et 

al., 2014). While Ramantani and colleagues showed that cortical sources generating 

scalp-detectable spikes presented a median of 6cm2 of activated cortical surface in 

FLE patients, Tao and colleagues demonstrated that at least 10 cm2 of synchronous 

or temporally overlapping cortical activity was usually necessary to produce scalp-

recordable EEG spikes in TLE. Tao and colleagues also suggested that much larger 

cortical source areas, involving 20 to 30 cm2, are often associated with spikes 

detected on scalp EEG, while mentioning that intracranial spikes involving extent 

less than 6 cm2 were never detected on scalp EEG traces. However, these studies 

did not take into consideration the effect of the non-conducting substrate of the 
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subdural grid on the scalp EEG. This important issue was carefully addressed using 

realistic simulations models by von Ellenrieder and colleagues, who showed how 

the amplification/attenuation associated with the subdural grid and skull holes may 

affect the results of simultaneous scalp and subdural measurements (von 

Ellenrieder et al., 2014a). Their results suggest that the minimum extent of cortical 

generators needed to obtain epileptic discharges visible on the scalp is lower than 

the usually accepted values of 10 to 20 cm2, with a high probability of generators 

in the range from 4 to 8 cm2 able to produce visible scalp activity. The difference 

is explained by the attenuation of the scalp potential by the non-conducting 

substrate of the cortical grid in simultaneous scalp and cortical recordings, that 

resulted in an overestimation of the underlying required extent. 

From simultaneously recorded MEG and electrocorticography (ECoG) analysis, 

Mikuni et al. and Oishi et al. showed that an area of at least 3 cm2 for frontal regions 

and 4 cm2 for temporal regions must be synchronously active to be detectable in 

MEG (Hari, 1990; Mikuni et al., 1997; Oishi et al., 2002). From temporal lobe 

studies of simultaneous intracranial EEG, it has been estimated that at least 6 to 8 

cm2 of basal lateral cortex is necessary for MEG detection of spikes (Mikuni et al., 

1997; Baumgartner et al., 2000; Oishi et al., 2002). 

 

2.6.2. Effect of source orientation in EEG and MEG measurements 

Visibility of the EEG and MEG signal sources is largely determined by the 

orientation of the anatomical sources (Haueisen et al., 2012). Since the generators 

of these anatomical sources are essentially the pyramidal cells (Hari, 1990), they 

are oriented parallel to each other and mainly perpendicular to the circumvoluted 

cortical surface. Therefore, cell assemblies along the crest of a cortical gyrus are 

considered as mainly radial when approximating the shape of the head as a sphere 

and represents about 30% of the cortex cell assemblies. Cell assemblies within the 

wall of a sulcus or from basal cortex are considered as tangential sources (i.e. 

parallel to the spherical head surface) and constitute around 70% of the cortex. This 
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anatomical approximation is extended to the physiology assuming that pyramidal 

cells and their dendrites are evenly distributed along the cortex. Research indicates 

differential sensitivities of MEG and EEG to the sources along the cell assemblies 

(Figure 2.9). EEG and MEG measurement at any position on the scalp will consist 

of the sum of influences from many sources of electric and magentic fields 

considering the brain consists of many dipoles. MEG favors the tangential sources 

(Hämäläinen et al., 1993; Ahlfors et al., 2010). Magnetic fields created by 

tangential sources spread outside of the “spherical” head towards sensors. On the 

other hand, magnetic fields generated by radial sources do not spread outward 

towards sensors. EEG is sensitive to both tangential and radial sources but EEG 

spikes are usually obscured by the radially oriented background brain noise coming 

from deep regions in the brain (Ahlfors et al., 2010). For large patches of cortical 

activations extending over a region where the surface normal changes, and 

therefore, also the orientation of the source elements changes, cancellation of the 

EEG and MEG signals occurs. In particular, cancellation occurs when the activation 

involves opposing walls of a sulcus or a gyrus, which can lead to loss in signal 

magnitude thus affecting the relative signal-to-noise ratio of EEG and MEG 

(Ahlfors et al., 2009; Goldenholz et al., 2009; Huiskamp et al., 2010). 

 

Figure 2.9. Contribution of different cortical areas to EEG and MEG signals. Top left: 
Simulation of a cortical activation. Top right: simulation of dipolar currents. Bottom left: 
Only pyramidal neurons with tangential and oblique orientation relative to the head surface 
contribute to MEG signal. Bottom right: EEG signal is dominated by activities from 
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radially oriented sources. Tangential sources contribute to the signal, but in a smaller 
extent. Extracted from (Wyllie et al., 2012). 

 

2.6.3. Effect of volume conduction on EEG and MEG 

measurements 

The electric potential distribution generated by the synchronized neural activity is 

attenuated and distorted by resistive layers of tissue such as the cerebro-spinal fluid 

(CSF), dura, skull, and scalp. This provides, at scalp level, a distorted view of the 

underlying brain activities. In particular, those various layers, and especially the 

combination of a poorly conducting skull layer followed by the conducting skin 

layer, results in a significant spatial blurring effect at scalp level. Such volume–

conduction-induced blurring effect is the main cause of the poor spatial resolution 

of scalp EEG (Srinivasan et al., 1996; Nunez and Srinivasan, 2006; Jackson and 

Bolger, 2014).  

On the contrary, MEG is largely insensitive to the uncertainty and variations in 

skull conductivities (Vorwerk et al., 2014). For example, changes in the thickness 

of the skull over different regions of the cortex do not affect the MEG 

measurements. Therefore, spatial resolution of MEG is better than EEG (Barkley, 

2004; Baumgartner and Pataraia, 2006). It is important to note that this difference 

between EEG and MEG due to volume conduction has a more important role in 

regard to head modeling accuracy than sensitivity per se, this issue will be discussed 

in the next chapter. 

 

2.6.4. Detection rates of EEG and MEG epileptic discharges 

Several studies have compared the spike detection rates in simultaneously recorded 

EEG and MEG (Hillebrand and Barnes, 2002; Yoshinaga, 2002; Lin et al., 2003; 

Iwasaki et al., 2005; Ramantani et al., 2006; Ossenblok et al., 2007; Scheler et al., 

2007). MEG generally showed larger spike detection rates than scalp EEG. Scheler 

and colleagues studied 100 patients with both temporal and extra-temporal lobe 
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epilepsy and found spikes in MEG only in 22%, spikes in EEG only in 7%, but 71% 

of spikes were found in both EEG and MEG (Scheler et al., 2007). Haueisen and 

colleagues suggested that the ratio between the number of tangential and radial 

sources were approximately 3:1 (Haueisen et al., 2012). Therefore, since MEG 

favors tangential sources, for sources in realistic heads it is rare that MEG will be 

completely blind to a source due to the orientation (Cohen and Cuffin, 1983). 

Another possible cause of higher MEG spike detection rates in these studies is the 

higher number of MEG sensors considered when compared to surface EEG. Only 

few studies compared spike detection rate in MEG with high density EEG (70, 71). 

Knake and colleagues studied 70 candidates for epilepsy surgery who underwent 

simultaneous 70-channels EEG and 306-channels MEG recordings (Knake et al., 

2006). They reported that interictal spikes were detected in 72% of the patients for 

MEG and 61% for EEG. Spikes were identified by both modalities in 55.7% of the 

patients and combined sensitivity of EEG and MEG was found to be 75%. MEG-

only spikes occurred in 13% and EEG-only spikes in 3% of the patients. Their study 

overall suggested that not all epileptic MEG discharges are accompanied by 

simultaneous EEG spikes, while, conversely, not all EEG spikes are accompanied 

by MEG spikes. This can be attributed to the influence of the complementary 

sensitivities of the two techniques and to the characteristic of the generator of the 

discharge such as spatial extent, amplitude of the activity, orientations and distance 

to the sensors. They finally concluded that epileptic spike detection can be 

improved by analyzing a combination of EEG and MEG data. 

Several authors have investigated the sensitivity of MEG versus EEG to the type of 

epilepsy. While MEG detected more spikes compared to EEG in neocortical 

epilepsies (Nakasato et al., 1994), EEG was superior in the detection of spikes in 

mesio-temporal epilepsies (Yamazaki et al., 2012). Detecting epileptic activity in 

the mesial temporal cortex and deep orbitofrontal cortices directly by MEG was 

difficult because gradiometers are relatively insensitive to deep sources (Mikuni et 

al., 1997; Oishi et al., 2002; Huiskamp et al., 2010). Detection rates of epileptic 

activity in anterior temporal epilepsies were comparable for EEG and MEG. MEG 
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seems to have better sensitivity than EEG to sources in posterior lateral cortex (Lin 

et al., 2003). 

 

2.7. Conclusion 

This chapter discussed the key differences between EEG and MEG, summarized in 

Table 2.1. IEDs represent the summation of postsynaptic potentials from abnormal 

hypersynchronous pyramidal neurons located perpendicular to the cortical surface. 

Furthermore, to be visible in EEG and MEG the generators of IEDs have to be 

spatially extended.    
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Table 2.1. Differences between EEG and MEG (modified from (Wyllie et al., 2012)) 

 

 

EEG MEG 

Signals result from differences in surface 
potentials by secondary extracellular 
volume currents 

Signals result from extracranial magnetic 
fields produced directly by intracellular 
neuronal currents 

Dominated by radial sources 
(predominantly pyramidal neurons in 
gyral crowns) 

Mainly generated by tangential sources 
(sulcal and/or basal pyramidal neurons) 

Tangential sources contribute to the signal 
in a smaller extent 

Discards any information in a radial 
direction 

Conductivity information needed for 
accurate modeling. 

Little information about electrical 
conductivities are usually needed for 
accurate modeling. 

Detectable on scalp when at least 4-8 cm2 
of the cortex is synchronously active 

Requires activation of 3-4 cm2 of cortex 
to be detected on scalp 

Widely available Limited availability 

Cheap Expensive 

Usually limited to 30 (max. 64) electrodes 
in clinical routine and up to 512 in 
research 

High number of sensors (up to >300) 

Long preparation time Short preparation time 

Electrodes fixed on scalp 

Sensitive to head movements since 
sensors are not fixed to the head, 
therefore immobility is required during 
recording 

Mobile/portable 
Acquisition limited within the shielded 
room 

Suitable for long-term recordings Recording time is limited 

Interictal and ictal recordings Mainly interictal, ictal recordings rare 
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3. Chapter 3  Source localization of IEDs using 

EEG and MEG 

 

Source localization or source imaging of EEG or MEG data employs scalp 

measurements to estimate brain current sources, that are generating those scalp 

signals, during a specific physiological or pathological process. The problem of 

EEG/MEG source localization requires two steps: (i) the forward problem consists 

in estimating EEG and MEG signals from the knowledge of the underlying 

neuronal current sources  within a given volume conductor head model (Hallez et 

al., 2007), (ii) the inverse problem refers to the estimation of the neural source 

strength, location and time course from the measured EEG and MEG signal (Grech 

et al., 2008).  

The main difficulty when solving the EEG or MEG inverse problem, which is our 

overall objective, arises from the fact that more than one source configuration 

within the brain can account for the observed signals measured on the scalp. 

Therefore, the inverse problem is a so-called ill-posed problem that does not admit 

a unique solution (Hadamard, 1902). To limit the number of possible solutions to 

provide relevant or “possible” source configurations, assumptions must be made on 

the organization of those underlying generators (source model) and its surrounding 

environment (the volume conductor model or head model). Consequently, before 

proposing strategies to solve the inverse problem, one needs to solve the forward 

problem, which is well-posed (i.e. it admits a unique solution) built upon the 

specification of a source model and a head model. 

The overall structure of this chapter is: (i) forward problem, (ii) inverse problem, 

(iii) validation, and (iv) source localization of epileptic activity. 
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Notations 

All matrices and vectors are written in bold letters. Deterministic matrices, such as 

G, are written in italics upper case, whereas deterministic vectors, such as m, are in 

italics lower case. Deterministic scalar quantities, such as r, are in italics lower 

case. When describing algorithms in the statistical framework, a random vector, 

such as m, is written in non-italics bold lower case. The matrix I stands for the 

identity matrix. Estimator of A is represented by A෡. ‖A‖ி stands for Frobenius norm 

of A. The transpose of A is indicated by AT. 

 

3.1. Forward problem: from neural currents to EEG and MEG 

distributions 

Given a known current source distribution within the brain, the forward model 

computes corresponding EEG and MEG signals, given specific source and head 

models. The forward problem is a well-posed problem. However, the accuracy of 

the solution depends on the accuracy of the so-called source and head models. The 

next sections will describe the most frequently used source and head models before 

describing methods to solve the forward problem.  

 

3.1.1. Source model 

The source model specifies the underlying organization of the generator of current 

sources giving rise to EEG and MEG signals. The most common approach consists 

in modeling neuronal current sources using the equivalent current dipole (ECD) 

model (Henderson et al., 1975). Each dipole represents a current source and sink of 

equal amplitude separated by a small distance. A piece of active cortex is assumed 

to behave as a dipole layer representing a focal area of the cortex with a large 

number (i.e. at least 105 cells) of parallel-oriented pyramidal neurons that are 

simultaneously active. A macro-column of cortex actually forms a current dipole 

layer, which can be considered as a single equivalent current dipole, modeling the 
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activity of the whole region, when observed at a distance much larger than the 

dimensions of the area of active cortex. Assuming that only a few restricted areas 

are active simultaneously, brain activity can then be modeled by modeling the 

sources using a small set of ECDs, representing the activity within few well 

localized brain regions, thus defining a so-called discrete source model (Koles, 

1998). 

In contrast to those models assuming brain activity to be generated by few discrete 

ECDs (less than 5 in general), more realistic source models have been proposed. 

Guided by some knowledge regarding cortical anatomical organizations, they 

consist in the so-called distributed source models, for which a large number (usually 

several thousands) of ECDs with fixed positions are considered. These anatomical 

constraints might consist in distributed dipolar sources within the gray matter 

volume or along a tessellated mesh of the cortical surface, whereas dipole 

orientations might either be free or constrained to be normal to the cortical surface 

(Dale and Sereno, 1993). 

 

3.1.2. Volume conductor model (head model) 

The volume conductor model plays a critical role in source localization since this 

is the essential part of the modeling that aims at mimicking in a realistic manner 

the way neuronal sources give rise to the signals recorded outside of the head. The 

head model actually takes into account mathematically both the electromagnetic 

(e.g., conductivity values for the brain, skull and scalp) and geometrical (e.g., 

shape) properties of the solution space. Specifying the head or volume conductor 

model consists in introducing a set of simplification hypothesis regarding the 

geometry and conductivity properties of the different head tissues, in order to solve 

the forward problem by solving Maxwell’s equation (as described in the next 

section). 

Several head models involving different levels of realism and complexity have been 

proposed and can be broadly categorized into three categories: 1) spherically 
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symmetric model; 2) boundary element model (BEM) and 3) finite element model 

(FEM). In terms of complexity and computational burden, the spherical model 

represents the simplest, the BEM the intermediate and the FEM the most complex 

model (Hallez et al., 2007). BEM and FEM models are typically developed from 

high resolution structural MRI scans of individual subjects and can better account 

for individual anatomical differences, providing therefore more realistic head 

models.  

The oldest and simplest model is the spherical model, which assumes that the head 

can be represented as one or a series of homogenous concentric spheres with one 

sphere per major category of head tissue (scalp, skull, cerebrospinal fluid and 

brain). Such head models consisting of simple geometrical shapes allow the 

calculation of surface electrical potentials and magnetic field (i.e. solving 

Maxwell’s equations) using an analytical solution (Rush and Driscoll, 1969). The 

first proposed volume conductor model of the human head consisted of a 

homogeneous sphere (Frank, 1952). However, it was soon noticed that the skull 

tissue had a conductivity which was significantly lower than the conductivity of 

other scalp and brain tissues. Therefore, the volume conductor model of the head 

needed further refinement and a three-shell concentric spherical head model was 

introduced. The three-spherical head model (de Munck and Peters, 1993; Zhang, 

1995; Mosher, Leahy, et al., 1999), which has been most frequently used, 

approximates the head as a set of nested concentric and homogenous spheres, in 

which the skull, scalp and brain are modeled as different layers with different 

conductivities. These models can be generated and solved very efficiently, but their 

accuracy is limited especially for EEG data whereas they can be considered as 

sufficiently accurate for MEG (Hämäläinen and Sarvas, 1989; Mosher, Leahy, et 

al., 1999). Note that for MEG an intermediate modeling approach has been 

proposed: the overlapping spherical model (Huang et al., 1999). In this model, a 

best fit spherical model of the brain is estimated iteratively for each individual 

sensor.  



46 

 

46 

In the boundary element methods, only tissue boundaries between regions 

exhibiting different conductivity values are modeled (Mosher, Leahy, et al., 1999), 

typically the scalp, the outer skull and the inner skull surfaces. The realistic 

boundaries or surfaces are segmented from an anatomical MRI and then discretized 

into a finite number of surface elements. The volume between two adjacent surfaces 

is then assumed to be characterized by one homogeneous and isotropic (i.e. 

identical throughout the region and in every direction) conductivity value. Solving 

the forward model using BEM requires calculating electrical potentials and 

magnetic field on every surface, i.e. at every vertex or centroid of the discretization 

elements (e.g., triangles or quadrilaterals). Although the BEM clearly represents an 

improvement and more realistic model than the three-spherical head model, it is not 

capable of modeling anisotropic3 conductivities or discontinuous boundaries, such 

as holes in the skull. Additional geometrical constraints are imposed by BEM 

models, as every surface should actually correspond to a closed surface and 

adjacent surfaces should not be connected or too close from each other. The 

numerical accuracy of the BEM deteriorates when surfaces are too close together. 

This numerical inaccuracy can be mitigated using the OpenMEEG4 (Gramfort et 

al., 2010) approach called the Symmetric BEM method (Kybic et al., 2006; 

Gramfort et al., 2011) which has been shown to be the most accurate than other 

implementations of BEM.  

The FEM, unlike the other methods, can account for the actual head shape and 

tissue discontinuities, and accommodate anisotropic tissue in the conductivity 

model of the head volume, allowing detailed 3-D information on tissue conductivity 

for every region (Pruis et al., 1993). For instance, FEM methods allow modeling 

the impact of the different hard bone and soft bone components of the skull 

(Dannhauer et al., 2011). For the FEM model, the electrical potentials or magnetic 

                                                 

3 Anisotropy refers to the property of having different values when measured in different directions. 

4 http://openmeeg.github.io/ 
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fields are calculated throughout the entire volume, which leads to a larger number 

of calculations, when compared to BEM. The advantages of the volume-based 

methods include the possibility of introducing a nearly unlimited number of 

conducting regions and potentially incorporating anisotropy (Vorwerk et al., 2014). 

Any approach proposed to solve the forward problem relies on assumptions 

regarding the geometrical shape and the conductivity profiles of the volume 

conductor. Whereas significant improvements have been made using MRI-based 

segmentation to model accurately the geometry, an important difficulty still relies 

on the fact that accurate measurements of electrical conductivities and magnetic 

permeability values for all biological tissues are generally unknown. This issue is 

quite problematic for BEM and even more for FEM models.  

 As mentioned in Section 2.6.3, EEG scalp potentials are highly attenuated and 

spatially smeared by the combination of the very low conductivity of the skull 

followed by a conductive skin layer; whereas MEG is less distorted by the resistive 

properties of the skull. This leads to higher sensitivity of EEG to errors in forward 

problem while MEG forward solutions are more robust. In general, modeling only 

the inner skull surface, assuming the skull to be an insulator, is sufficient to provide 

accurate solutions of the forward model in MEG (Hämäläinen and Sarvas, 1989; 

Mosher, Leahy, et al., 1999).  In fact, even the single sphere or series of overlapping 

spheres models are often adequate for MEG head modeling (Huang et al., 1999). 

Those surfaces that are important for the degradation of scalp EEG signals, namely 

the inner and outer layers of the skull and outer layer of the scalp, should be 

segmented from three-dimensional MRI or CT to generate a realistic head model. 

In clinical practice, BEM model are most commonly used, particularly when the 

goal is to perform source localization within the “non-spherical” parts of the brain 

such as the base of the skull. For instance, the accuracy of correctly localizing 

sources of activity within the temporal lobe is improved considerably using more 

realistic models. Even without having access to a patient’s individual MRI, the 

benefits of a realistic head model can be obtained by using one derived from 

standardized head models (Silva et al., 1999). Silva and colleagues compared 
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spherical, individual realistic, and standard realistic head models for localizing the 

source of epileptic EEG signals. They showed that realistic head models increased 

dipole localization accuracy compared to spherical model but the difference 

between individual and standard models was less than 1 cm (Silva et al., 1999), 

thus indicating the importance of realistic head model in EEG. Henson and 

colleagues compared a single sphere, an overlapping sphere and a BEM forward 

model to find the solution to MEG inverse problem (Henson et al., 2009a). This 

study suggested that BEM was superior to both single sphere and overlapping 

sphere in terms of localization accuracy, clearly justifying the need for the extra 

computation.  

Finally, another important consideration in head modeling, especially for EEG, is 

the conductivity values of the different head tissues. Indeed, it is critical to assign 

as accurate conductivity values as possible. In many cases, conductivity values are 

introduced using values reported from previous literature studies, providing 

estimates through several experimental studies, such as in-vivo (e.g. electrical 

impedance tomography) (Oostendorp and Delbeke, 1999; Lew et al., 2009), 

intracranial and scalp recordings (Lai et al., 2005; Zhang et al., 2006) and in-vitro 

(such as a piece of skull in saline) (Oostendorp and Delbeke, 1999) measures. These 

studies have reported consistent and similar conductivity values for the brain and 

scalp (ranging from 0.12 to 0.48 S/m), reporting consistently conductivity value 

significantly larger than the skull conductivity value. However accurate estimation 

of the skull conductivity is less straightforward and several studies have reported 

more inconsistent skull conductivity values ranging between 0.006 and 0.080 S/m 

(Oostendorp and Delbeke, 1999; Malmivuo and Suihko, 2001; Hoekema et al., 

2003; Lai et al., 2005; Zhang et al., 2006; Huiskamp, 2008; Lew et al., 2009; 

Vallaghé and Clerc, 2009; Fangmin Chen, 2010). Studies with patients (Huppertz 

et al. 2001; Ossenblok et al. 2007; Birot et al. 2014; Heers et al. 2016; Pellegrino et 

al. 2016a) have shown that using approximate conductivity ratios (such as brain-

to-skull conductivity ratio) with an accurate geometrical description of the head 

might yield reasonable, verifiable results for both cortical and deep EEG sources. 
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The brain-to-skull conductivity ratio has long been accepted as being 1:80 (Geddes 

and Baker, 1967; Rush and Driscoll, 1969). This was largely based on 

extrapolations from measurements reported by Rush and Driscoll demonstrating 

that the skull conductivity was 1:80 times that of saline solution (Rush and Driscoll, 

1969). Most recent papers suggest that the commonly accepted 1:80 brain-to-skull 

conductivity ratio is not recommended anymore and a range of between 1:10 to 

1:50 ratios should rather be considered. In this thesis, we have used the BEM model 

with the inner skull, outer skull and the scalp surfaces and adopted the 

corresponding conductivity values of 0.33:0.0165:0.33 S/m respectively (Ferree et 

al., 2000; Hoekema et al., 2003; Lai et al., 2005), and we used the OpenMEEG 

BEM implementation available in the Brainstorm software5 (Tadel et al., 2011) to 

solve the EEG and MEG forward model.  

 

3.1.3. Electric potential and magnetic field computation 

Given a source model of the generators of currents within the brain, a volume 

conductor model providing the geometry and conductivity properties of the 

different head tissues and sensors positions (and orientations, accurately co-

registered with the head) (Schwartz et al., 1996), the forward model is solved using 

Maxwell’s equations of the propagation of electric and magnetic fields in non-

homogeneous tissues. For biological sources, the electric and magnetic fields are 

calculated on the basis of a “quasi-static approximation of Maxwell’s equations 

(Plonsey and Heppner, 1967). Based on the quasi-static condition, magnetic and 

electric fields become independent from each other and all fields and currents 

behave as if they were stationary at each instant. They are actually not static because 

the neural activity changes with time. But these changes are slow compared to the 

electromagnetic propagation effects. Therefore, under this approximation the 

                                                 

5  
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potential and electric field expressions are exactly the same as those used in the 

presence of steady-state or non-time-varying currents.  

Under those quasi-static approximations, the time derivatives of the electric field 

and magnetic fields are close to zero, resulting in the following set of governing 

equations: 

1) According to the integral equations, Gauss’ law for electricity states that the 
electric flux (E) out of any closed surface is proportional to the total charge 
enclosed within the surface. The corresponding differential equation for 
Gauss’ law for electricity therefore states that the divergence of the electric 
field (E) is 

׏  . E ൌ ఘ

ఌబ
   

where ׏	. is the divergence operator, ρ is the charge density, ߝ଴ 

are the electric permittivity of free space 

(3-1)

2) According to the integral equations, Gauss’ law for magnetism states that 
the net magnetic flux (B) out of any closed surface is zero. The 
corresponding differential equation for Gauss’ law for magnetism therefore 
states that the divergence of the magnetic field (B) is null 

׏  . B ൌ 0 (3-2)

3) According to the integral equations, Faraday’s law of induction states that 
the line integral of the electric field around a closed loop is equal to the 
negative of the rate of change of magnetic flux through the area enclosed 
by the loop. In the static state, it becomes zero. The corresponding 
differential equation therefore states that the curl of the electric field (E) is 

 
ൈE׏ ൌ െ

ࣔB

ࣔt
ൎ 0 

where ׏ൈ is the curl operator and t is the time 

(3-3)

4) According to the integral equation, Ampère’s law states that in case of static 
electric field, the line integral of magnetic field around a closed loop is 
proportional to the electric current flowing through the loop. The 
corresponding differential equation therefore states that the curl of the 
magnetic field is 
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ൈB׏ ൌ ଴Jߤ ൅ ଴ߝ଴ߤ

߲E

ݐ߲
ൎ  ଴Jߤ

where ߤ଴ is the magnetic permeability of free space, J is the 

current density 

(3-4)

In the quasi-static approximation, since ׏ൈE	ൌ	0, electric field (E) can then be 

expressed as a gradient field from a scalar quantity, therefore introducing the notion 

of scalar electrical potential V as 	E ൌ െ6 ܸ׏. Then, the total current density J can 

be expressed as the sum of the primary current (JPሻ (the actual generators we aim 

at localizing) with the macroscopic volume currents (ߪE) (ohmic currents):  

 J ൌ JP ൅ JP	Eൌߪ െ (3-5) ܸ׏ߪ

	where ߪ	 is the conductivity of the medium. From equation (3-4) and the vector 

identity that divergence of a curl is zero (׏.  .0	ൌ	J	.	׏ 0), it follows that	ൌ	ൈB׏

Thus, equation (3-5) can be re-written as ׏. ሺܸ׏ߪሻ ൌ  JP, which yields (assuming	.׏

constant ߪ) the following Poisson’s equation	

 
∆ܸ ൌ	

1
ߪ

JP (3-6)

where ∆	denotes the Laplacian operator, which is the divergence of a gradient ሺܸ׏ሻ. 

This Poisson’s equation connects the electric potential (coming from the volume 

current distribution) to the primary current distribution. As a solution to equation 

(3-4), in free space, the magnetic field is given by the Biot-Savart law, 

 
ሺxሻ࡮ ൌ

଴ߤ
ߨ4

න
JሺxᇱሻൈX

ଷ‖ࢄ‖
dxᇱ  (3-7)

where X	ൌ	x	‐	x', and x is the location where the field is computed and x' is the 

location of the source and ൈ denotes the vector cross product. From this equation, 

                                                 

6 The minus sign indicates that the electric field is actually oriented from an area with a high potential 

to an area with a low potential 
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we can see that the magnetic field is inversely proportional to the square of the 

distance between the source and the detector.   

However, within the head, one cannot assume the conductivity sigma to be constant 

and therefore the original equation ׏. ሺܸ׏ߪሻ ൌ  should be solved. Under	JP	.׏

specific simplification hypothesis, such as assuming that the head consists of a set 

of contiguous regions (representing the brain, skull and scalp for instance) each 

characterized of constant isotropic conductivity ߪ,	then the Biot-Savart law can be 

re-written as a sum of contributions of the primary and volume conduction currents 

(Hämäläinen et al., 1993): 

 
ሻ࢞ሺ࡮ ൌ ሻ࢞଴ሺ࡮	 ൅

଴ߤ
ߨ4

෍ሺ
ij

σ௜ െ ௝ሻߪ ඾Vሺx'ሻ
X

ଷ‖ࢄ‖
݀Sij

ᇱ
 

with ࡮଴ሺxሻ ൌ
ఓబ
ସగ
׬

JPሺxᇱሻൈX

య‖ࢄ‖
dxᇱ  

(3-8)

where B0(x) is the magnetic field due to the primary current only. The second term 

is the volume conduction current contribution to the magnetic field formed as a sum 

of surface integrals (Sijሻ, typically over the brain-skull, skull-scalp, and scalp-air 

boundaries (when considering a multiple sphere or BEM volume conduction 

models). A similar equation can be used to compute the electric potential, 

 
൫ߪ௜ ൅ Vሺxሻ	௝൯ߪ ൌ ଴V0ሺxሻߪ2	 െ

1
ߨ2

෍ሺ
ij

௜ߪ െ ௝ሻߪ ඾Vሺx'ሻ
X

ଷ‖ࢄ‖
݀Sij

ᇱ
 

                                     where  V0ሺxሻ ൌ
ଵ

ସగఙబ
׬

JPሺx'ሻ.	X

య‖ࢄ‖
dxᇱ  

(3-9)

 where V0(x) is the electrical potential at the 3D location x created by the primary 

current distribution JPሺx′ሻ, and the operator “.” denotes the dot product. These 

above two general equations states that the electric potentials and magnetic fields 

can be calculated if we know the primary current distribution JPሺx′ሻ and the 

potential V(x′) on all surfaces of the volume conduction model. Therefore, 

equations (3-8) and (3-9) represent the integral solution of the forward problem, 
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which can be solved either analytically for certain symmetries such as spherical 

symmetry, or numerically with BEM or FEM approaches. Detailed reviews on 

forward solutions with mathematical emphasis can be found in the cited papers 

(Hämäläinen et al., 1993; Pruis et al., 1993; Kybic et al., 2006; Hallez et al., 2007; 

Gramfort et al., 2011). 

Basically, the EEG and MEG forward problems consist in solving the Poisson’s 

equations to find V(x) and B(x) at a sensor positioned outside the head at x, elicited 

by a single current dipole source, with dipole moment u and positioned at x'. The 

single equivalent current dipole, as described in Section 3.1.1, is the most widely 

used source model in EEG/MEG forward problem. In mathematical terms, it 

comprises a current source and sink at infinitesimal distance apart. A current dipole 

is characterized by position x' and moment u, which incorporates the orientation ϕ 

and strength u of the current. 

 Jሺxሻ ൌ u δሺx ‐ x'ሻ  (3-10)

where δሺxሻ is the Dirac delta function. The total neuronal current is then viewed as 

the superposition of thousands of such current dipoles. Thanks to superposition 

principle, this leads to solving the Poisson’s equation to find the electric potential 

and the magnetic field on the measurement points for different configurations of x' 

and u within the source space Thus, for q sensors and r dipoles, V(x) can be 

discretized in a matrix G of size q ൈ 3r, where each column of the matrix represents 

the electric potential produced by a unit current dipole at a given position and 

oriented according to one of the three orthogonal directions. This matrix is usually 

referred to as the lead field matrix, which describes the sensitivity distribution of 

the sensors. The lead field matrix for the magnetic field B(x) can be obtained in a 

similar manner.  As shown in equations (3-8) and (3-9), both V(x) and B(x) are 

linearly related to the neural current sources when the position of the sources is 

fixed (note that the effect of the position of the sources is non-linear, since it is 

decreasing as the inverse of the square of the distance). Following this, the 
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relationship between the EEG/MEG measurements and the sources inside the brain 

is given by the linear model, 

 
൥
݉1
⋮

mq

൩ ൌ ቎
g1(x'1,ϕ1) ⋯ g1(x'r,ϕr)

⋮ ⋱ ⋮
gq(x'1,ϕ1) ⋯ gq(x'r,ϕr)

቏ ൥
u1
⋮
rݑ

൩ 

 

m = Gሺሼx'i,ϕiሽሻ j     with  i = 1,…,r 

(3-11)

where the vector m is q ൈ 1 and contains the collection of data measured by all the 

q recording channels, while the vector j = [u1, . . . , ݑr]
T is 3r ൈ 1 and contains the 

dipole strengths in the 3 orientations of the moments for the r equivalent current 

dipole sources located at fixed locations contained in the lead field G. Thus, the 

predicted forward data G({x'i,ϕi}) j, given by the linear generative model in 

equation (3-11) is further used in the inverse problem. 

This model can be readily extended to include a time component t, when 

considering time evolving activities at every dipole location. Therefore, for q 

sensors, r dipoles, and τ discrete time samples, the spatio-temporal model can 

therefore be represented as, 

 M = G J (3-12)

where M is the matrix of data measurements of size q ൈ τ, and J is the matrix of 

dipole moments of size 3r ൈ τ. Here the columns of the time series matrix J are the 

corresponding time series for each dipole in every orientation. G is a q ൈ 3r matrix 

that does not dependent on time. 

 

3.2. Inverse problem: From EEG and MEG signal to neural 

currents 

Solving the EEG or MEG inverse problem, given the forward model is an ill-posed 

problem that does not admit a unique solution unless further assumptions are made. 
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However, based on the existing knowledge about the anatomical and neuro-

physiological basis of the brain signals, a priori assumptions or constraints 

regarding the underlying sources can be considered to solve the inverse problem 

and identify one solution. These prior assumptions are essential, since they 

determine whether the solution is limited to only explaining the data or if the 

solution actually supports neuro-physiological information about where the signals 

were generated in the brain. Consequently, any source localization method solving 

the inverse problem depends on these a priori assumptions. 

To estimate the EEG and MEG neuronal sources, three types of general approaches 

based on different a priori assumptions on sources have been proposed: 1) dipole 

fitting approaches, 2) dipole scanning approaches, and 3) distributed source 

imaging approaches. For a review, we are referring the reader to (Baillet and 

Mosher, 2001; Grech et al., 2008). 

Before introducing the different inverse solutions, let us define the generative 

model  

 M = G J൅ (3-13) ࡱ

as the q ൈ τ spatio-temporal matrix containing the measurement data under analysis 

in the presence of measurement noise E (dimension q ൈ τ). The objective of the 

inverse solutions is then to estimate J from the measured data M and the estimated 

lead field matrix G, while taking into account the influence of the noise E. 

 

3.2.1. Dipole fitting approach 

One approach to EEG/MEG inverse problem is to assume that neuronal activity of 

interest is generated by an individual or few ECDs of unknown locations, 

orientations and amplitudes (Scherg and Von Cramon, 1986; Ebersole, 1997a; 

Wendel et al., 2009). Several types of dipole models can be considered: moving 

dipoles (with unknown position, orientation and amplitude), rotating dipoles (with 

fixed position and unknown orientation and amplitude) or fixed dipoles (with fixed 
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position and orientation but unknown amplitude). While orientation and amplitude 

can be estimated using a least square approach, estimating the location of those 

ECDs consist in solving iteratively a non-linear problem (Mosher et al., 1992; 

Huang et al., 1998; Uutela et al., 1998). The locations and orientations of these 

dipoles can then be represented and mapped on the anatomical MRI. The dipole 

fitting approach can be applied for fitting a single dipole at a single time sample of 

the measurements or it can be performed over a time period of several time samples 

(Michel et al., 2004; Hara et al., 2007).  

Although, dipole fitting approach is a well-established procedure and has been 

widely used for source localization of epileptic spikes for decades, few important 

issues and limitations should be pointed out. One main limitation of dipole fitting 

approaches when applied to epileptic discharges is that they are modeling the 

activity of point-like source, whereas we have already mentioned that the 

generators of epileptic spikes are spatially extended over several square centimeter 

of cortex (see Section 2.6.1). Moreover, several studies also pointed out that dipole 

fitting approaches might be inaccurate when applied in low SNR conditions 

(Shiraishi, Ahlfors, et al., 2005; Hara et al., 2007). Another difficult aspect with 

these methods is to decide the number of sources that can be identified from the 

data.  

Several indicators of the quality of the fit, such as the goodness of fit (GOF) or the 

residual variance are used, to quantify the concordance between the potentials or 

fields estimated from the ECD and the actual measurements. Generally, single ECD 

do not provide a GOF of 100%, i.e. 100% of the measured data cannot be explained 

by a single ECD due to the oversimplification of this source model. A threshold is 

thus set for these indicators to choose the best fitting ECDs and discard the ECDs 

below the threshold. This threshold is set subjectively and can vary from user to 

user. Finally, one should be aware that when localizing EEG or MEG data with 

dipole fitting approaches in cases where the underlying assumption are not fully 

respected (few very focal generators), source localization might be completely 
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misleading even when showing good quality indices (GOF) (Kobayashi et al., 

2005). 

 

3.2.2. Dipole scanning approaches 

Dipole scanning approach (Mosher et al., 1992; Bénar et al., 2006; Gaetz and 

Cheyne, 2006) are actually an extension of the single dipole fitting approach, 

particularly addressing the difficult issue of the number of dipoles to be considered 

in a standard dipole fitting approach. The idea of dipole scanning approaches is to 

test the relevance of fitting a fixed or rotating dipole on every point of a 3D grid 

within the source space and estimate a metric showing how likely such dipole could 

explain EEG and or MEG data. Dipole scanning approaches results in 3D maps for 

which only local maxima should be considered since they represent the most 

relevant dipoles. As a dipole model estimated iteratively for each point of the grid, 

it will suffer from the same modeling limitation as the dipole fitting approach in 

presence of a spatially extended generator. Some of the known dipole scanning 

approaches are the beam-forming approach (Baillet and Mosher, 2001), Multiple 

Signal Classification approach (MUSIC) (Mosher et al., 1992), its extension 

recursive MUSIC (R-MUSIC) and recursively applied and projected MUSIC 

(RAP-MUSIC) (Mosher and Leahy, 1998).  

The beamforming approach consists in estimating, iteratively for each point of the 

grid, a spatial filter to enhance only the signal coming from this specific location, 

while removing signals from other sources. A widely used beamformer approach 

actually consists in the so-called linearly constrained minimum variance (LCMV) 

method (Van Veen et al., 1997), which attempts to minimize the beamformer output 

power subject to a unity gain constraint for the grid location of interest, 

 min
Wd

tr(Wd
TCmWd) subject to Wd

୘Gd ൌ (3-14) ࡵ

where Cm ൌ ൣMMT൧is the data covariance matrix (dimension q ൈ q), Gd is the q ൈ 

3 lead field matrix at source location x' considering the three orientations for each 
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source location, tr stands for trace The solution of this optimization problem is 

given by  Wd ൌ (Gd
TCm

-1Gd)
-1

Gd
TCm

-1, thus providing for every source location x' 

on a grid the q ൈ 3 spatial filter matrix. Consequently, by applying this spatial filter 

on the data Wd
୘M, we obtain the parametric source activity at source location x'. 

LCMV beamformer quantifies the contribution of a source localized at x' to the 

data. Finally, by simply changing the location x' iteratively, we can produce a 3D 

map of beamformer estimates of the neuronal activity at any location.  

The synthetic aperture magnetometry (SAM) approach (Vrba and Robinson, 2001) 

is an extension of the LCMV beamformer with the exception that an optimal dipole 

orientation vector for each location on the grid is estimated in order to maximize 

the power-to-noise output ratio (thus providing “pseudo-Z” score maps). A 

frequency domain extension of these beamformer approaches is entitled dynamic 

imaging of coherent sources (DICS) (Gross et al., 2001). DICS actually consists in 

estimating a spatial filter matrix optimized for some specific frequency band, using 

a cross-spectral density matrix for the data covariance matrix. 

By construction beamformer approaches are not appropriate when dealing with 

correlated sources, since the spatial filter aims at focusing on the activity on one 

source while removing the influence of the others (Sekihara et al., 2002).  

Moreover, beamformer spatial filter being only computed from the lead field and 

data covariance matrices, beamformer approaches are sensitive to errors in the head 

model (Wax and Anu, 1996) and to the number of independent data samples that 

are necessary for the robust and stable estimation of data covariance statistics 

(Cheyne et al., 2006; Oswal et al., 2014). Therefore, beamformers ideally require 

long, stationary episodes of data. This can be an issue when dealing with epilepsy 

data as it cannot be guaranteed that such long segment of data without epileptic 

events will be present from the short duration of EEG/MEG recordings. 

MUSIC is another dipole scanning approach which assumes that there are fewer 

sources than sensors, that the sources are uncorrelated and that the noise is white. 

Based on singular value decomposition (SVD) of the data time series	ࡹ ൌ  ,୘ࢂߑࢁ
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a signal subspace Ud is first identified from the noise subspace. Ud is the signal 

subspace spanned by the d first left singular vectors of U, while the noise subspace 

is spanned by the remaining left singular vectors. The whole brain volume is then 

scanned in order to assess which source locations actually contribute to the signal 

subspace (Mosher et al., 1992), which is equivalent to contributing the least to the 

noise subspace. Therefore, the MUSIC cost function to be minimized is, 

 

܌ࣧ ൌ
ฮ(I - UdUd

T)Gdฮ2

2

‖Gd‖2
2 ൌ

ฮPUd
٣ Gdฮ2

2

‖Gd‖2
2  (3-15)

where PUd
٣  is the orthogonal of the signal subspace projection operator ࢊࢁ۾, which 

therefore results in a projection onto the noise subspace. This cost function is 

minimal when Gd corresponds to one of the most likely source locations and 

orientations. Other MUSIC strategies, such as RAP-MUSIC, iterates the MUSIC 

cost function after each source is found by projecting the signal subspace away 

from the lead fields corresponding to the sources already found (Mosher and Leahy, 

1998; Mosher, Baillet, et al., 1999). However, the practical aspects of MUSIC and 

its variations remain limited by their sensitivity in the accurate definition of the 

respective signal and noise subspaces.  

 

Localization of extended sources using dipole scanning approaches: Whereas 

most dipole scanning approach exhibits same limitation as dipole fitting method 

when assuming an ECD model for every point on the grid, some attempts have been 

made to allow reconstruction of spatially extended generators, for instance,  

beamforming using cortical patches(Limpiti et al., 2006; Hillebrand and Barnes, 

2011) or the 2q-ExSo-MUSIC (2q-th order extended source MUSIC) algorithm 

(Birot et al., 2011). Yet these methods make it difficult and computationally very 

demanding to localize several correlated, simultaneously active extended source 

regions, which are subsequently referred to as patches. We have used the 2q-ExSo-

MUSIC algorithm for the study in chapter 5, therefore, details on this method can 

be found in Section 5.4.1c of chapter 5. 
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3.2.3. Distributed source imaging (dSI) approach 

Whereas previous methods consisted in estimating the contribution of every source 

within a grid iteratively, distributed source imaging techniques are imaging 

approaches, attempting to estimate a 3D distribution of the underlying current 

density for every time sample of the recorded EEG or MEG signals. These 

approaches are considering distributed source models (Section 3.1.1), consisting 

either in ECD dipole distributed within the entire brain or just along the cortex 

(Dale and Sereno, 1993; Daunizeau et al., 2006; Grova et al., 2006). Anatomical 

constraints can therefore be introduced by defining the source space within the gray 

matter volume or along the cortical surface. Triangular lattices are generally used 

to represent the cortical surface, while tetrahedral or hexahedral lattices are used to 

represent the interior of the head, such as the gray matter volume. The typical lattice 

spacing ranges from 1 mm to 1 cm. Each lattice point represents a single ECD for 

which the orientation could either be fixed perpendicular to the cortical surface, or 

kept completely free. Since the position of all the dipoles is now fixed, the 

localization problem becomes linear since only amplitude (and eventually 

orientations) should be estimated from the data. Mathematically, these models are 

linear but largely underdetermined problems, because the number of observation 

points (usually a few hundreds) is much less than the number of source coefficients 

that must be identified (usually several thousands). Consequently, additional 

constraints on the sources amplitudes should be incorporated in order to find a 

unique solution for these distributed inverse problems.  

Two main approaches have been proposed to handle these issues: 1) regularization 

which favors features consistent with the available a priori knowledge on the 

solution, and 2) probabilistic approaches which makes statistical inferences 

(Bayesian or entropic) about the real source configuration based on the information 

given by the measurements and some a priori knowledge about the sources. In most 

cases, the same methods can generally be described within both frameworks.  
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a. Regularization techniques 

All regularization methods actually consist in estimating a stable solution to the 

inverse problem by tuning a trade-off between the quality of data fit and the 

regularizing function (a priori constraint). One such regularization method 

commonly used is the Tikhonov regularization to find the estimate of J (i.e. J෠ሻ that 

minimizes the following cost function, 

 J෠ ൌ 	 argmin
J

൛ሺሺM-GJሻTLm(M-GJ)ሻp+λ൫JTLjJ൯
p
ൟ (3-16)

Here, the first term on the right hand side is a data fit term that expresses the 

deviation of the estimate from the measurements. The last term is the regularizing 

term that describes the a priori constraints on the sources, thus promoting solutions 

with certain properties while penalizing others. In equation (3-16), Tikhonov 

regularization is defined by a p-norm formulation, where, p = 1 or 2 would therefore 

correspond to L-1 norm or L-2 norm versions of the regularization. λ is the 

regularization hyperparameter that controls the trade-off between the data fit and 

the a priori constraint. This regularization hyperparameter can be chosen by the 

user through various methods such as the Morozov discrepancy principle 

(Morozov, 1966) or the L-curve approach. In this thesis, we considered the L-curve 

method (Hansen, 2000), which consists in choosing the regularization 

hyperparameter by plotting the data fit against the regularizing term for different 

values of λ. Then, the L-shaped corner of this L-curve provides the optimal trade-

off value for λ that minimizes the two terms. Lm and Lj are weighting matrices for 

the data and the regularizing term, respectively. Different choices of those 

weighting matrices lead to different variants of the distributed inverse solutions.  

Here we described some of the well-known inverse solutions based on Tikhonov 

regularization principle: 

 Classical regularized minimum-norm estimate (MNE) (Hämäläinen and 

Ilmoniemi, 1994): assumes the current density distribution of the solution 
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to exhibit minimum energy property. The minimum norm solution is 

obtained when choosing a L-2 norm Tikhonov regularization. Considering 

the weighting matrices Lm ൌ	Σ௘	 and Lj ൌ	Σ௦ in equation (3-16) as the 

inverse covariance matrices of the sensor noise and sources respectively, 

the estimated MNE solution is, 

 J෠MNE = argmin
J

ሼ‖Σ௘(M-GJ)‖2+λ‖Σ௦J‖2ሽ  

           ൌ	 (GΣ௘GT+λ Σ௦)
-1

 GTΣ௘M =  WMNEM  

(3-17)

In standard MNE, the covariance of the sources is set to be the identity. 

WMNE is the MNE linear inverse operator. By estimating a minimum energy 

solution, this approach will then naturally tend to bias source localization 

results towards more superficial sources, as they have the strongest coupling 

to the sensors and will require less amplitude. MNE has been used as a 

standard approach for model comparison and performance evaluation 

throughout this thesis. 

 Weighted minimum norm (wMNE) (Ioannides et al., 1990; Lin et al., 

2006): In order to compensate for the tendency of MNE to favor superficial 

sources, in wMNE the inverse of the source covariance matrix Lj ൌ	Σ௦ is 

no longer proportional to the identity matrix; instead, the source covariance 

matrix contains a weighting factor for each source, aiming to remove the 

bias towards superficial sources. Σ௦ can have different forms but the 

simplest one is based on the norm of the columns of the matrix G, also 

known as lead field normalization. This results in the general weighted 

MNE solution (J෠wMNE). Other forms of weighting includes spatial 

smoothness constraint (described below), fMRI priors or information from 

other imaging modalities (Liu et al., 1998; Phillips et al., 2002). 

 LORETA (low-resolution electromagnetic tomography) (Pascual-Marqui 

et al., 1994): This is another form of weighting which combines the lead 
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field normalization of wMNE with Laplacian operator to introduce a 

constraint of spatial smoothness between neighboring sources. LORETA is 

then based on the search for solution with maximum spatial smoothness, 

while normalizing the columns of G to give all sources (close to the surface 

and deeper ones) the same opportunity of being reconstructed. Originally, 

LORETA was proposed for volumetric source localization, but it is also 

referred to as cLORETA (cortical LORETA) when it is applied on cortical 

surface grid (Wagner et al., 1996). 

 dSPM (dynamic statistical parametric mapping) (Dale et al., 2000): has 

been proposed as another approach to compensate for depth bias, through 

noise-normalization procedure. The output of dSPM is, therefore, no longer 

an estimate of the neural current distribution, but rather a statistical measure 

of brain activity. Here, the estimated current at each source location is 

divided by an estimate of the noise at that location, which can be obtained 

by applying WMNE to the noise covariance matrix Σ௘.  

MWJ

W WΣWW
-

dSPMdSPM

MNEMNEeMNEdSPM diag

~ˆ

~
)

~~
(

~ 1








 T

 (3-18) 

 sLORETA (standardized LORETA) (Pascual-Marqui, 2002): is an 

alternative approach for depth-bias compensation of the minimum-norm 

solutions, using another noise-normalization procedure. Here, the estimated 

current at each source location is divided by the total variance of the 

estimated sources, instead of using just the variance due to noise.  
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W WΣGGWW
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 (3-19) 



64 

 

64 

Note that this method has been shown to produce unbiased, zero-error 

localization of point sources, but in noise-free conditions only (Pascual-

Marqui, 2002). 

 Sparse source imaging: Due to the spatial blurring characteristic of L2-

norm based solutions, sparse source imaging approaches have been 

introduced, with the objective of representing cortical current density 

distribution with minimal non-zero coefficients (sparseness). Spatial 

sparsity can be imposed directly on the sources by using L1-norm, thus 

favoring the localization of focal generators. 

 J෠MCE	ൌ	argmin
																					J

ሼ‖Σ௘(M-GJ)‖2+λ‖Σ௦J‖1ሽ (3-20)

These L1-norm based methods, also called minimum current estimate 

(MCE), were reported to produce over-focused inverse solutions, always 

shrinking to only few points of activated area. To overcome this, sparseness 

was explored in the transformed domain such as the variation-based sparse 

cortical current density (VB-SCCD). This approach is based on the so-

called variational map that characterizes variations in amplitude between 

adjacent dipole sources (Ding, 2009a). Another approach that makes use of 

sparsity in a transformed domain considers a spatial wavelet transform that 

permits to compress the signals through a sparse representation. A 

combination of this wavelet-based prior and the variation-based prior has 

been considered in a recent method called the variation and wavelet based 

sparse source imaging (VW-SSI) (Zhu et al., 2014). 

Note also that L1-norm based estimates usually provide very noisy 

unrealistic estimates of the time course of the underlying sources. 

Combination of L1 prior in space with L2 prior in time have been proposed 

to overcome this issue (Vega-Hernández et al., 2008; Gramfort et al., 2012). 
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b. Probabilistic approaches using Bayesian inference 

An alternative statistical framework to handle the under-determined model of a 

distributed inverse problem is Bayesian inference. Within the Bayesian inference 

all forms of uncertainty are expressed in terms of probability distribution and all 

variables (measurements, sources and noise) are modeled as random variables. To 

this end, Bayes’ theorem provides a flexible way for incorporating a-priori 

information (additional constraint on sources) into source estimation by means of 

probability distributions, 

 
pሺJ|Mሻ= 

pሺM|Jሻ p(J)

p(M)
 (3-21)

Here, pሺM|Jሻ is the data likelihood, i.e. a statistical distribution modeling data 

generation from the sources that depends mainly on the forward model and on the 

noise statistical distribution. p(M) is the distribution characterizing the data. The 

term p(M) is linked to  the notion of model evidence, especially when assessing the 

influence of different models or parametrization within a hierarchical Bayesian 

framework, such as Bayesian model averaging or model selection (Trujillo-Barreto 

et al., 2004; Henson et al., 2009a). p(J) is the distribution modeling the information 

we have on the sources without taking into account any measurements. This is the 

a priori knowledge or model of the sources. The left hand term pሺJ|Mሻ is the 

conditional distribution of the sources knowing the data. This is also called the a 

posteriori distribution of the sources. Once known, it will provide the distribution 

of the intensities of the sources, conditioned by the measured data. In Bayesian 

inference, this distribution is considered the solution to the inverse problem. In 

practice, a good assumption is to assume that the sources J and noise E exhibit a 

Gaussian distribution and their respective covariances are known. A common way 

to exploit the information contained in the a posteriori distribution is to infer a point 

estimate for the value of J. Maximum a posteriori (MAP) estimate is one such way 

that finds the estimator J෠MAP of J that maximizes the posterior distribution of J 

given the measurements M.  
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 J෠MAP ൌ argmax	
					J

pሺJ|Mሻ   (3-22)

Assuming different models on the covariance of the source prior in p(J), it is 

possible to associated Bayesian approaches to standard solutions like MNE or 

LORETA as introduced in Section 3.2.3a (Grova et al., 2006). The concept of 

Tikhonov regularization technique and the Bayesian inference using MAP 

estimator are actually equivalent and often lead to similar algorithms and solutions. 

For example, the MAP estimate with Gaussian noise and a priori source amplitudes, 

and identity matrix for the source covariance model is equivalent to the Tikhonov 

regularized minimum norm solution. A detailed derivation of this equivalence has 

been shown in Kaipio and Somersalo (2005).  

Note that hierarchical Bayesian approach provides a very flexible way to develop 

several models and to assess the relevance according to the data using model 

evidence (Friston et al., 2002; Phillips et al., 2005; Friston et al., 2008).  These 

models may consist in setting source covariance model as a linear combination of 

several components, while the hyperparameters tuning the contribution of every 

component could be estimated from the data using Restricted Maximum Likelihood 

techniques.  In this context, methods like Multiple Sparse Prior model, Minimum 

norm model called “IID” and a LORETA-like model called “COH” within a 

Hierarchical Bayesian framework have been proposed (Friston et al., 2008).  These 

methods will not be further pursued in this thesis but we have studied them 

extensively in the context of source localization of epileptic discharges, as 

demonstrated in (Chowdhury et al., 2013). 

 

c. Probabilistic approaches using entropic inferences 

The solution of inverse problem can also be addressed within the framework of 

Maximum Entropy on the Mean (MEM) (Jaynes, 1957; Amblard et al., 2004). In 

the context of EEG/MEG inverse problem, the idea of the MEM framework is to 

formalize hypothesis using a priori model and then further correct such a model 

using additional information from EEG/MEG measurements, while entropy 
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maximization will ensure regularization of the problem. MEM not only provides a 

promising alternative to the Bayesian probabilistic methodology, but also proposes 

an improvement to the distributed source model by incorporating flexible prior 

models, introducing the notion of regions of activation controlled by hidden random 

variables that tunes the state of activation. One of the key property of the MEM 

approach is its ability to recover spatially extended sources, while exhibiting very 

little distant spurious sources (Chowdhury et al., 2013; Grova et al., 2016; Heers et 

al., 2016). These topics are central to this thesis and will be further developed in 

the next chapters. 

 

Mathematical formulation of the MEM framework: Within a probabilistic 

approach, j is the r-dimensional continuous random variable that describes the 

dipole current intensities. This random variable is associated with the probability 

distribution dpሺjሻ=pሺjሻdj where j ∈ Թr.  

With the objective to estimate the probability distribution dpሺjሻ=pሺjሻdj, the MEM 

framework regularizes the inverse problem by incorporating prior information on j 

in the form of a reference distribution dν(j). Then, the Kullback Leibler divergence 

or ν-entropy defined by: 

 
Sν(dp) =	-න log ൬

dp(j)

dν(j)
൰

j

dp(j) = -න f(j) log(f(j)) dν(j)

j

 (3-23)

measures the amount of information brought by the data with respect to the prior 

dν, where f is a ν-density of dp defined as, dpሺjሻ=fሺjሻdνሺjሻ. Being a pseudo-distance 

between the reference distribution dν and any ν-density dp, this entropy is always 

negative. 

In order to introduce a data fit constraint, let us denote ԧm as the set of probability 

distributions on j that explains the data on average: 
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dp ∈ ԧm: 
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 
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 

j
m

e
G I  (3-24)

where Εdpሾjሿ ൌ ׬ j dpሺj ሻԹ  is the mathematical expectation of j with respect to the 

probability distribution dp, Iq is a (qxq) identity matrix. Then, the MEM solution 

consists in selecting dpො in ԧm that maximizes the ν-entropy, thus choosing the 

distribution fulfilling the data fit constraint that is the closest (in terms of Kullback 

Leibler divergence) to the reference distribution dν: 

 dpො = argmaxdp ∈ ԧm
Sν(dp) (3-25)

In the above MEM optimization, the ν-entropy is strictly a convex function that 

needs to be maximized under constraints, which is equivalent to minimizing an 

unconstrained strictly concave Lagrangian function. In this formulation, the 

Lagrangian parameters κ and λ are introduced to add constraints to the objective 

function Sν(dp), as follows: 

 ( , , ) ( ) ( [ ]) (1 ( ))T
dpL dp S dp dp        m j jG   

( , , ) ( ) log ( ) ( ) ( [ ]) (1 ( ))T
dpL dp f f d dp        j j j m j jG    

(3-26)

where the first term is the ν-entropy, the second term is the data fit constraint, and 

the last term expresses the constraint that dp(j) should be a probability distribution. 

Therefore, the optimal solution ˆ( , , )dp     of this optimization problem calculated 

via the Lagrangian formalism, i.e. , ,arg min ( , , )dp L dp   , provides: 
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where   is the maximum of the non-linear optimization of a convex function ( )D   

in a q-dimensional space, thus accepting a unique solution. In practice, the 

optimization problem depends only on the parameter λ which is the same dimension 

as the number of sensors (q). Note that ( )D   in equation (3-27) describes both the 
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prior knowledge encompassed in the reference measure dν and the measurements 

m that define the space ԧm formalizing our data fit constraint (equation (3-23)).  

 argmax ( )D   ,  

where 
1

( ) ( )
2

T T T T

e eD F  m Σ ΣG      
(3-28)

The normalizing constant in equation (3-26), ( )Z( )
TFe 
  G  is the partition 

function and F  is the free energy associated with the reference distribution dν, 

defined as the log of the partition function.  

  ( ) log ( )
T

F e d   ξ jξ j  with   Tξ G  (3-29)

and eΣ is the noise covariance matrix for noise measurement E which is estimated 

as a diagonal matrix with a different value for each channel; thus taking into 

account the noise levels of each individual channel. 

The MEM estimate of the source amplitudes ĵ  is then computed as the 

mathematical expected value of the distribution dpො: 
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Therefore, the MEM estimate of the sources’ amplitudes j could then be re-written 

as the gradient of the free energy F : 

 ˆ ( ) | TMEM F 
 

ξ
j ξ G 

 (3-31)

 

Definition of the reference distribution within the MEM framework: MEM 

relies on its inherent flexibility of introducing constraints or knowledge about the 

sources through the definition of the reference distribution dν. To do so, brain 

activity was considered to be organized into K cortical parcels, each parcel showing 

a homogeneous activation state (Amblard et al., 2004). A Data Driven 
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Parcellization (DDP) method was used to perform full parceling of the tessellated 

cortical surface into non-overlapping parcels (Lapalme et al., 2006). This spatial 

parcelling is driven by the Multivariate Source Pre-localization (MSP) technique 

(Mattout et al., 2005), which is a projection method providing a probability-like 

coefficient (MSP score) between 0 and 1 for each dipolar source characterizing its 

contribution to the data. The key aspect of DDP lies in the pre-localization of the 

sources of brain activity using the MSP method followed by a region growing 

algorithm. To do so, seed points were iteratively selected among the dipoles 

showing the highest MSP coefficients. Region growing around each seed points 

was then iterated until a given spatial neighborhood order, resulting in a partition 

of the whole brain into K parcels. This way of choosing the seed points and 

parceling ensured dipoles contributing to the same underlying generator to be 

gathered within the same parcel, whereas dipoles contributing to distinct generators 

to be associated within distinct parcels. For more details on the DDP method please 

refer to Chowdhury et al. (2013). DDP is therefore providing a partition of the 

whole cortical surface into K non-overlapping parcels.  

Each cortical parcel k is then characterized by an activation hidden state variable 

Sk, describing if the parcel is active or not. Assuming a collection of mutually 

independent parcels, the reference distribution dν is defined as a factorization of the 

joint probability distribution of the K parcels: 

 
        

1

 1  ,
K

k
k k k k k kd d   



    j j μ Σ j j  (3-32)

where  S 1k kProb    is the probability of the kth parcel to be active. kj  denotes 

the random vector modeling the intensities of the rk sources in the kth parcel. When 

the parcel is active )1S( k , the dipole intensities within the kth parcel are modeled 

using a Gaussian distribution  ,k kμ Σ , where kμ  and kΣ  represent 

respectively the mean and the covariance of the rk dipoles within the kth parcel.  
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When the parcel is inactive )0S( k , the dipole intensities are modeled using a 

Dirac distribution  , thus allowing to "shut down" the corresponding parcel. 

Incorporating the cortical parcels through reference distribution in the MEM 

framework: When equation (3-30) is applied to the reference distribution 

introduced in equation (3-31), the MEM estimate of the sources in each parcel k 

can be found to be:   

 ˆ [ ]ˆk
ME

T
k kM k k μ Σj G  

where 
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ˆ
(1 )exp( ( ))
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(3-33)

             (A8) 

where ,kF   is the free energy corresponding to the kth parcel when active (i.e.
 
Sk = 

1), given by: 

  ,  
1

2
TT T T T

k k k kkk kF  μ Σ      G G G G  (3-34)

and kG  is the ( )kq r  submatrix of G for the kth parcel. 

When incorporating the cortical parcels through the reference distribution dν in the 

MEM framework, the first step was to define the parameters ( k , kμ , kΣ ) of each 

cortical parcel. Based on the initialization of these parameters, different variants of 

MEM-based inverse methods have been proposed (Grova et al., 2006; Chowdhury 

et al., 2013). In this thesis, we will focus on coherent-MEM (cMEM) method which 

has been extensively studied and validated using simulated and clinical EEG/MEG 

data (Chowdhury et al., 2013; Grova et al., 2016; Heers et al., 2016; Pellegrino et 

al., 2016a). In the cMEM method, the parameters were initialized as follows: 

 k was initialized as the median of the MSP scores of the dipoles within the 

corresponding parcel. 
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 Considering the Gaussian distribution of the active state to be a zero mean 

distribution, kμ of each parcel was initialized to zero.  

 The source covariance kΣ  of each parcel was initialized with an additional 

constraint of local spatial smoothness in each parcel. This spatial 

smoothness model assumes that nearby dipoles are more likely to have 

similar intensities. In order to introduce local spatial smoothness over a 

geodesic surface, a diffusion-based spatial prior was used, as proposed by 

Harrison et al. (Harrison et al., 2007). This diffusion-based spatial prior was 

constructed using the Green’s function of the adjacency or spatial 

connectivity matrix defined over the geodesic cortical surface. For further 

details the reader can refer to Chowdhury et al. (2013). 

cMEM method was designed specifically for the localization of spatially extended 

generators of IEDs. Quantitative assessment of cMEM method, using simulations 

and clinical data, demonstrated the relevance of using cortical parcels with spatial 

smoothness prior in source localization methods to detect the spatial extent of the 

sources. Performance of cMEM method has been compared with multiple source 

localization approaches (dipole fitting, MNE, dSPM, sLORETA, IID, COH and 

Multiple Sparse Prior model) (Chowdhury et al., 2013; Grova et al., 2016; Heers et 

al., 2016; Pellegrino et al., 2016a; Pellegrino et al., 2016c) and it was shown that 

cMEM provided better localization accuracy and was able to recover the spatial 

extent of the sources better than the other source localization methods. More 

specifically, cMEM was sensitive to a large range of spatial extent (3 cm2 to 30 

cm2), which is favorable when localizing the generators of IEDs. Although the 

parcellization was crucial in regularization of the inverse problem, the accuracy of 

the underlying parcels was not required to obtain an accurate cMEM solution i.e. 

the number or size of the parcels and the type of data used to obtain the spatial 

clustering did not affect the cMEM solution. These aspects of cMEM method 

clearly justify its use in this thesis for the localization of the generators of IEDs.  
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3.3. Validation of source localization methods using simulation 

models 

Validation of EEG/MEG source localization approaches in the case of epileptic 

spontaneous events is a difficult task, especially since there is usually no gold 

standard available when analyzing EEG and MEG clinical data. Therefore, 

quantitative evaluation of source localization results are difficult to make and 

qualitative evaluation requires the expertise of a neurologist. A first solution 

consists in providing quantitative evaluation of the properties of the source 

localization approaches using simulation models that can mimic the generation of 

epileptic discharges. However, the organization of neural activity in the brain is 

complex and the relationship between the underlying generators and the recorded 

electro-magnetic signals, governed by Maxwell equations, might be difficult to 

model in a very realistic manner. It is accepted that simulations are providing a 

simplified configuration of what the reality might be. For instance, simple static 

simulation models commonly consider a single dipole (Fuchs et al., 1998; Pascual-

Marqui, 2002) or an extended patch of uniform activity (Liu et al., 2002; Trujillo-

Barreto et al., 2004; Grova et al., 2006; Chowdhury et al., 2013) as theoretical 

generators. A single dipole does not mimic the spatially extended epileptic 

generators, whereas the simulation model involving a single static patch of uniform 

activity can be extended to simulate different spatial extents of the source but does 

not model the temporal dynamics within the patch. However, sufficient level of 

realism can still be obtained by considering the set-up of real EEG or MEG 

recordings as well as real background signals to add noise to simulated data. Such 

an approach to validate the sensitivity of the source localization methods to recover 

spatially extended sources using the static patch model has been used in chapter 4 

(more details on this model can be found in Section 4.4.5a of chapter 4). A variant 

of the single static patch mimicking the propagation of epileptic discharges between 

two regions has also been considered and is described in Section 4.4.5a.  

Amongst the most realistic modeling approaches considered in simulations, 

neuronal computational models have been proposed to mimic the relationship 
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between the neuronal activity and the measured EEG/MEG data. Biologically 

inspired neuronal mass models (Wilson and Cowan, 1972; Lopes da Silva et al., 

1976; Traub, 1979; Jansen and Rit, 1995; Wendling, 2005; Cosandier-Rimélé et al., 

2007) have been widely used to study and model brain activity at the microscopic 

and macroscopic levels. In the particular context of modeling epileptic activity, 

Wendling and colleagues proposed a macroscopic model to simulate spatially 

extended epileptic discharges by coupling multiple populations of cells (Wendling 

et al., 2000). An extension of this model, using a spatio-temporal approach 

(Cosandier-Rimélé et al., 2007) combining a biophysical distributed source model 

with a computational neural mass model has been used in this thesis. More details 

on this model can be found in Section 5.4.2 of chapter 5. 

The problems and limitations that we face with data recorded in clinical practice 

have to be considered during the validation using simulation models. It is actually 

difficult to properly handle all possible sources of variability inherent to real data 

such as properties of the noise, variations in electrode/sensor placements, 

inhomogeneities of the head surface, contribution of artifacts to some channels, and 

many others. However, the eligibility of the source localization approaches for 

application on clinical data, can still be carefully evaluated with more reliability if 

the simulation environment takes into consideration various factors affecting the 

detection of IEDs on EEG and MEG. These factors include for instance the 

possibility for spatially extended generators and propagation patterns in IEDs, 

different types of physiological artifacts to be cleaned or removed, structural 

abnormalities that needs to be taken into account during head modeling or the 

coverage of the head with sufficient number of electrodes and sensors. Some of 

these factors have been already discussed in Section 2.6. When using simulations 

for validation, it is also important to avoid the so-called inverse crime i.e. one 

should not produce simulated data with the same lead-field matrix used for the 

inversion. This topic has been discussed in details in (Kaipio and Somersalo, 2005) 

and will be considered in chapters 4 and 5.  
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3.4. Application of EEG and MEG source localization to clinical 

data 

Whereas detailed evaluation within a fully controlled simulation environment is the 

first thing to investigate when proposing a new source localization method, in this 

next section, we will review the various aspects of source analysis of IEDs when 

applied on clinical data. 

 

3.4.1. Averaged or single spike source analysis 

A first and most crucial step of source analysis of IEDs is the spike detection phase. 

Detecting spikes not only depends on the morphology and signal-to-noise ratio, but 

also of the training and experience of the observer. Subsequently, the population of 

spikes should be grouped into distinct categories, which is generally performed on 

the basis of visual inspection by an EEG/MEG reviewer. Each single epileptic spike 

might also exhibit a low SNR condition, since they might be highly contaminated 

by background noise. Therefore, a common practice in source analysis is to average 

the time-locked spike signals in each group to increase the SNR of spike field maps, 

thus, allow for more accurate reconstruction of the sources (Bast et al., 2004; Hara 

et al., 2007; Tanaka et al., 2010). However, averaging effect is also likely to filter 

out source activities which are slightly variable over each individual spike. For 

instance, interictal spikes do not remain confined to a single neuronal population in 

a single cortical patch; rather, they propagate within milliseconds to involve cortical 

areas away from the initial generator (Alarcon et al., 1994; Baumgartner, Lindinger, 

et al., 1995; Emerson et al., 1995; Gotman, 2003; Zumsteg et al., 2006). This entails 

spatio-temporal source analysis of EEG and MEG data to detect and characterize 

possible propagation patterns associated to IEDs (Tanaka et al., 2010). Averaging 

these spikes exhibiting propagation patterns may enhance the overall signal-to-

noise ratio but the differences in the origin between single spikes may get lost in 

the averaging process. Therefore, source localization of the single spikes seems 

more appropriate for detecting the onset and propagation patterns of IEDs while 
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creating a balance between taking into account inherent spike variability and the 

SNR (Hong et al., 2010; Tanaka et al., 2014). For this purpose, we chose to deal 

with single spike localizations in this thesis, in order to fully benefit from the 

complementarity of EEG and MEG recordings (chapters 4 and 5), while proposing 

a new method to assess the reliability and reproducibility of single spike source 

localization results by estimating a consensus map in chapter 6. 

 

3.4.2. Performance of source localization methods applied to 

clinical data 

The overall objective is the application of source localization approaches to clinical 

data and to evaluate how they behave in realistic configurations. As listed and 

described in Section 3.2, there exists several source localization and imaging 

approaches that have their advantages and limitations when it comes to localizing 

IEDs. In a special issue of Journal of Clinical Neurophysiology from 1999, a 

number of research groups (Fuchs et al., 1999; Michel et al., 1999; Scherg et al., 

1999) analyzed the same epileptic data set to validate different EEG source imaging 

(MNE, wMNE, LORETA) and source localization approaches (dipole fitting and 

MUSIC). This systematic comparison led to the conclusion that each source 

localization approach had its limitations and failed under certain conditions, and 

that several distinct solutions were possible (Ebersole, 1999). They finally 

suggested that the use of several approaches is probably required to obtain reliable 

results in clinical practice. From a review on 25 clinical studies (until year 2008) of 

electromagnetic source imaging targeting epilepsy surgery (Leijten and Huiskamp, 

2008), it was reported that 21 out of 25 studies performed single dipole fitting, 

whereas, only 6 studies also included MUSIC and distributed source imaging 

approaches. While rather simple compared to other available methods, dipole 

fitting is effective as demonstrated by clinical studies; suggesting that focal 

epileptic networks mostly localized in a confined volume can be adequately 

described by a single center of gravity. However, it is clear from the Section 3.2 
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that there exists more complex methods that seem more appropriate for describing 

spatially extended and dynamic networks involved during epileptic activity. 

Moreover, dSI approaches recovering the extent of the generators of epileptic 

activity seem the most suitable when targeting epilepsy surgery, although their 

efficacy and validity within a clinical context have yet to evaluated. A recent review 

by Tanaka and Stufflebeam (Tanaka and Stufflebeam, 2014) discussed the benefits 

and feasibility of dSI approaches compared to dipole fitting approach in the 

evaluation of epilepsy. Based on a recent European survey, the use of dSI methods 

has become more common in the different epilepsy surgery centers (Mouthaan et 

al., 2016). Note the cMEM method which is central in this PhD thesis has been 

extensively validated for source localization of IEDs on clinical data and has been 

compared with various other dSI approaches (Heers et al., 2014; Grova et al., 2016; 

Heers et al., 2016; Pellegrino et al., 2016a). cMEM provides overall robust, 

accurate and reproducible results, with the advantage of being sensitive to the 

spatial extent of the generator, while being robust to spurious distant secondary 

sources. In a recent study from our group (Pellegrino et al., 2016c), cMEM has been 

compared extensively with dipole fitting approach on a large cohort of patient data 

(340 different spikes types from 49 patients) to further assess the superior 

performance of cMEM method. This indicates that MEM-based method should 

definitely complement or even completely substitute dipole fitting in the daily 

clinical practice. 

 

3.4.3. Validation of non-invasive source localization results 

In order to further assess the clinical relevance of EEG or MEG source localization, 

several approaches have been considered such as qualitative or quantitative 

comparison of source localization results with iEEG findings, with resected brain 

volume and post-operative outcome, with visible structural abnormalities in MRI 

and sometimes its influence on the implantation strategy for intracranial electrodes.  

Many studies compared MEG source localization with data from Electro-

CorticoGraphy (ECoG) confirmed satisfactory accuracy (Nakasato et al., 1994; 
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Oishi et al., 2002). Lower values of concordance were rarely described. Knowlton 

and colleagues prospectively compared localization accuracy of noninvasive 

epilepsy workup, namely MEG localization, ictal SPECT and PET, at a sublobar 

level with invasive EEG recording in 72 patients (Knowlton et al., 2008a; Knowlton 

et al., 2008b). They reported MEG localization sensitivity and specificity 

consistently better than those obtained for PET and SPECT. In addition, 

localization concordance with seizure onset zone was found to be 78% in patients 

with lateral temporal lobe epilepsy, 76% in those with mesial temporal lobe and 

45% in patients with extra-temporal lobe epilepsy. Direct clinical impact was 

demonstrated by high success of surgery in patients with non-localized iEEG 

findings, where the decision was actually based on a combination of MEG, SPECT, 

and PET findings. Agirre-Arrizubieta and colleagues reported concordant MEG 

localization in 90% of lateral temporal spikes, 80% of inter-hemispheric and peri-

central spikes, 60% of superior frontal spikes, 40% of orbitofrontal spikes, and 0% 

of mesial temporal spikes (Agirre-Arrizubieta et al., 2009). These findings suggest 

that MEG localization performs significantly better when the epileptic focus is not 

in the mesial temporal lobe, owing to the difficulties of MEG in recording and 

localizing deep sources within the mesial temporal lobe. Brodbeck and colleagues 

compared the accuracy of EEG source localization with post-surgical outcome on 

55 patients (Brodbeck et al., 2011). The sensitivity of EEG source localization was 

84% and its specificity 88%, suggesting good performances for both patients with 

temporal lobe epilepsy and extra temporal lobe epilepsy. They also showed that 

EEG localization performed at least as well, and often better, than structural MRI, 

PET and SPECT.  

 

3.4.4. Spatial resolution of EEG and MEG 

Spatial resolution of the EEG sensors influences the accuracy of source 

localization. It has been widely acknowledged that the spatial resolution of the 10–

20 system is not sufficient for modern brain research (Gevins et al., 1994; Michel 

et al., 2004; Babiloni et al., 2009; Brodbeck et al., 2011; Yamazaki et al., 2012; 
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Lopes da Silva, 2013); since including only 21 coarsely sampled measurement 

electrodes only covers the top half of the head. The first step to improve the spatial 

resolution of EEG is then to increase the number of EEG electrodes. Electrode 

arrays that approximate the 10-10 system actually allows more accurate results 

(Ryynänen et al., 2004). In a study in which 128 channels of scalp EEG were 

progressively down-sampled to 64-32-21 channel recordings, Lantz et al. 

documented an improvement in source localization accuracy for up to 64 channels 

(Lantz and Grave de Peralta, 2003). In fact, adding more electrodes provided little 

additional accuracy because of the influence of other factors, such as the widely 

debated value of the skull’s relative conductivity, which has a great impact on the 

accuracy of source localization. Additionally, the spatial resolution of dense array 

EEG systems (128–512 electrodes) is extremely sensitive to measurement noise 

(Gevins et al., 1994; Ryynänen et al., 2004; Malmivuo, 2012; Lopes da Silva, 

2013). Lastly, some sensors might measure more artifacts than others due to their 

location near active muscles. Thus, for different EEG measurements conducted in 

different environments, the appropriate number of electrodes may vary 

considerably. 

Based on combined EEG and MEG data analysis, several studies (Fuchs et al., 

1998; Sharon et al., 2007) have indicated that the coverage of the whole head using 

dense sampling of EEG and MEG channels is required for obtaining good source 

localization accuracy. Most clinical centers commonly use the conventional 10-20 

EEG system or a 10-10 EEG system. When EEG and MEG are recorded 

simultaneously, the set-up of 64 electrodes requires a long preparation time and can 

be a great discomfort for the subject wearing the EEG cap inside the MEG helmet. 

On the other hand, the large number (~300) of MEG sensors uniformly distributed 

around the whole head provides a dense spatial sampling and requires no 

preparation time for placing the head inside the helmet. MEG provides a higher 

spatial resolution than EEG not only due to an inherently more accurate forward 

model but, also the typically greater number of sensors used in MEG relative to 

EEG (Ossenblok et al., 2007; Klamer et al., 2015). However, a clinically relevant 
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point is the risk of misinterpretation of MEG data when no simultaneous EEG is 

analyzed. MEG and EEG sources reflect the different anatomical aspects of the 

activated source because of the different sensitivities of both modalities to the 

orientation of underlying neuronal currents (Section 2.6.2).  There is no doubt that 

by analyzing combined EEG and MEG data we can already achieve dense spatial 

sampling with the large number of MEG sensors; and the addition of an appropriate 

number of EEG electrodes can bring the additional complementary information to 

complete the picture of the activated source. These aspects were specifically 

explored in this thesis using both simulations (chapter 4) and clinical data (chapter 

6). 

 

3.5. Combined EEG and MEG source analysis 

As discussed previously, fusion of EEG and MEG can bring additional information 

from either modality due to their differential properties. The key differential 

properties are the effect of volume conduction (Section 2.6.3 and Section 3.1.2), 

the detection rate of spikes owing to their sensitivity to the source orientation 

(Section 2.6.2 and Section 2.6.4), and their spatial resolution owing to the dense 

spatial sampling of recording channels (Section 3.4.4). In general, fusion of 

multimodal data can be achieved through three possible integration strategies: 1) 

Comparative integration – both modalities are analyzed independently and then 

the results are compared (Bast et al., 2007; Kirsch et al., 2007), 2) Constrained 

integration – one modality is used to analyze the other one (Grova et al., 2008; 

Henson, 2010; Ou et al., 2010), and 3) Symmetrical integration – Jointly analyze 

the data of different modalities using multimodal generative models (Fuchs et al., 

1998; Molins et al., 2008; Ding and Yuan, 2013; Hong et al., 2013). In the context 

of this thesis, since EEG and MEG relate to the same neuronal dynamics when 

acquired simultaneously (Molins et al., 2008), we were interested in the 

symmetrical integration which allows for a full integration, or fusion of EEG and 

MEG data. This type of fusion entails inverting a single “generative” model that 

explains both types of data. This model must relate the same hypothetical neuronal 
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causes (e.g., time courses of neuronal activity in circumscribed brain regions) to 

each type of data, using modality-specific “forward models”. Therefore, the fusion 

generative model can be written as, 
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where the concatenation of GEEG (the EEG lead field matrix) and GMEG (the MEG 

lead field matrix) gives the combined EEG+MEG lead field matrix, J is the 

unknown current density matrix, MEEG and MMEG are the observed EEG data and 

MEG data, while EEEG and EMEG are the EEG and MEG additive measurement 

noise. The different measurement units and scales of EEG and MEG (Volts and 

Tesla respectively) and the different sensor noise levels require the normalization 

of the data before they may be used jointly for source estimation within a fusion 

framework. The different measures have to be transformed to a common basis and 

this can be done by referencing each sensor to its individual noise statistics 

(Baumgartner, Deecke, et al., 1995). One method to automatically determine the 

noise level of each sensor is to use the standard deviation of measurement noise 

(Fuchs et al., 1998; Henson, 2010; Ding and Yuan, 2013). This normalization 

method is named the SNR transformation (Pflieger et al., 2000). Note that the 

superscript “s” in equation (3-34) represents the normalized data, lead field 

matrices and noise.  

Several studies have suggested the added value of combining EEG and MEG data 

during source analysis (Yoshinaga, 2002; Pataraia et al., 2005; Bast et al., 2007; 

Ebersole and Ebersole, 2010). It has also been shown that simultaneous EEG and 

MEG recordings are super additive, i.e. they provide more information that is 

relevant to source localization of combined EEG and MEG data than the sum of 

both monomodal information. Several fusion strategies have been proposed to 

evaluate the advantage of combining EEG and MEG data using different inverse 

operators such as the dipole fitting approach (Fuchs et al., 1998; Huang et al., 2007), 

LCMV beamformer approach (Hong et al., 2013), MNE and dSPM (Liu et al., 
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2002; Sharon et al., 2007; Molins et al., 2008), VB-SCCD (Ding and Yuan, 2013) 

and Multiple Sparse Prior method (Henson et al., 2009b). Most of these EEG/MEG 

fusion approaches differed in the way data were normalized and concatenated 

before applying the inverse operator. Some of the proposed methods consist in 

channel-wise SNR transformation (Fuchs et al., 1998), incorporation of intermodal 

noise covariance (Ko and Jun, 2010), minimization of mutual information for 

channel selectivity (Baillet et al., 1999), row normalization of lead-field matrices, 

weighted normalization (Hong et al., 2013), and integration within a Bayesian 

framework (Henson et al., 2009b). It is important to emphasize that none of these 

fusion approaches were designed or evaluated for the localization of spatially 

extended generators of epileptic activity, which is the main purpose of this thesis.  

In this thesis, we proposed to combine EEG and MEG data within cMEM 

framework to take advantage of its excellent localization accuracy and its 

sensitivity to the spatial extent of the generators of underlying epileptic activity. An 

originality of fusion within the MEM framework is that it has the flexibility to 

incorporate the complementary information provided by EEG and MEG through 

the prior model. Consequently, MEM fusion will be driven not only by the 

symmetrically concatenated EEG and MEG data, but also by the fusion prior model 

per se.  More details on this fusion approach can be found in chapter 4. 

 

3.6. Conclusion 

In this chapter, the reader was introduced to the different aspects of source 

localization methods. In the context of source localization of IEDs, we will be 

focusing on distributed source imaging approaches, and specifically, cMEM 

method, which has been established for its ability to localize the spatially extended 

generators of epileptic activity. Since the main goal of this thesis is to propose and 

validate an EEG-MEG fusion approach within the MEM framework, we have 

compared its performance with other distributed source imaging approaches such 

as MNE, dSPM, sLORETA and 4-ExSo-MUSIC. We have also pointed out that 
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averaging spikes before source localization can lead to loss of information due to 

variability exhibited by individual spikes. In order to detect the onset and 

propagation patterns of IEDs, it is recommended to perform single spike 

localization. It is also important to emphasize that when combining EEG and MEG 

data, we can achieve whole head coverage with the densely sampled MEG sensors 

and addition of an appropriate number of EEG electrodes can bring additional 

complementary information relevant for promoting accurate source 

reconstructions. 
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4. Chapter 4  Manuscript 1: MEG-EEG 

information fusion and electromagnetic source 

imaging: from theory to clinical application in 

epilepsy 

 

4.1. Context 

Detection and source analysis of IEDs is widely used in pre-surgical evaluation of 

patients with intractable epilepsy. As outlined in the previous chapters, EEG and 

MEG records the same neuronal dynamics with high temporal resolution, but due 

to the differences in their sensitivity, to the orientations of the sources notably, some 

epileptic spikes are visible only on EEG and some only on MEG, in addition to the 

ones that are visible on both EEG and MEG. Following this, the added value of 

combining EEG and MEG data during source analysis has been suggested in 

several other studies, but none has been designed or evaluated for the localization 

of spatially extended generators of epileptic activity. As outlined in chapter 4, 

cMEM source localization algorithm has been well-established and carefully 

evaluated for its ability to recover these spatially extended generators with excellent 

accuracy. Therefore, in this dissertation, we proposed the development of an 

optimal EEG-MEG fusion approach using the cMEM framework to efficiently fuse 

the complementary information brought by EEG and MEG data, to reach dense 

sampling of recording channels, and to achieve sensitivity to the location and spatial 

extent of the sources. The following manuscript describes the development and 

validation of this fusion approach for its ability to localize the generators of IEDs, 

their spatial extent and propagation patterns. In case of epilepsy data, which are 

spontaneous events, usually there is no clear gold standard to validate the behavior 

of the source localization algorithm. Therefore, as a first step of this dissertation, 

this manuscript includes the evaluation of the properties of the fusion strategy using 
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well-controlled simulation models mimicking spatially extended generators and 

propagation patterns. This manuscript also investigated the impact of combining 

only few EEG electrodes with the whole head covered MEG sensors within the 

EEG-MEG fusion framework.   

The manuscript was published as (Chowdhury R. A., Zerouali Y., Hedrich T., Heers 

M., Kobayashi E., Lina J.M., Grova C. MEG–EEG Information Fusion and 

Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy, 

Brain Topography, 2015 May 28, DOI: 10.1007/s10548–015–0437–3) 

 

4.2. Abstract 

The purpose of this study is to develop and quantitatively assess whether fusion of 

EEG and MEG (MEEG) data within the Maximum Entropy on the Mean (MEM) 

framework increases the spatial accuracy of source localization, by yielding better 

recovery of the spatial extent and propagation pathway of the underlying generators 

of Interictal Epileptic Discharges (IEDs). The key element in this study is the 

integration of the complementary information from EEG and MEG data within the 

MEM framework. MEEG was compared with EEG and MEG when localizing 

single transient IEDs. 

The fusion approach was evaluated using realistic simulation models involving one 

or two spatially extended sources mimicking propagation patterns of IEDs. We also 

assessed the impact of the number of EEG electrodes required for an efficient EEG-

MEG fusion. MEM was compared with Minimum Norm Estimate (MNE), dynamic 

Statistical Parametric Mapping (dSPM), and standardized low-resolution 

electromagnetic tomography (sLORETA). The fusion approach was finally 

assessed on real epileptic data recorded from two patients showing IEDs 

simultaneously in EEG and MEG. 

Overall the localization of MEEG data using MEM provided better recovery of the 

source spatial extent, more sensitivity to the source depth and more accurate 
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detection of the onset and propagation of IEDs than EEG or MEG alone. MEM was 

more accurate than the other methods. MEEG proved more robust than EEG and 

MEG for single IED localization in low signal-to-noise ratio conditions. We also 

showed that only few EEG electrodes are required to bring additional relevant 

information to MEG during MEM fusion. 

 

4.3. Introduction 

A successful pre-surgical evaluation in epilepsy entails the accurate detection of the 

onset of epileptic discharges, their spatial extent and propagation patterns (Stefan, 

2009; Tanaka and Stufflebeam, 2014). Interictal Epileptic Discharges (IEDs), 

occurring between seizures in epilepsy, are commonly used as markers of epilepsy 

(Staley and Dudek, 2006). These are spontaneous transient activities that are clearly 

distinguishable from background activity. The high temporal resolution of Electro-

Encephalography (EEG) and Magneto-Encephalography (MEG) allows the 

detection of the fast propagating IEDs more efficiently than other imaging 

techniques (Stefan, 2009; Ebersole and Ebersole, 2010). MEG can detect epileptic 

activity from background activities when a cortical area greater than 4 cm2 is 

synchronously involved (Mikuni et al., 1997). EEG requires the activation of a 

larger region of the cortex (at least 10 cm2) to detect epileptic activity on the scalp 

recordings (Ebersole, 1997a; Tao, Baldwin, Hawes-Ebersole, et al., 2007; von 

Ellenrieder et al., 2014b). Source analysis of EEG and MEG data is commonly used 

to localize the generators of brain activities that are detectable on the scalp (Stefan 

et al., 2003; Knowlton and Shih, 2004; Noachtar and Rémi, 2009; Wendel et al., 

2009). Spatio-temporal source analysis of EEG and MEG data may be useful  for 

accurate detection and estimation of propagation patterns of epileptic discharges 

(Tanaka et al., 2010, 2014). In order to detect the onset and propagation patterns of 

IEDs, source localization of single spike is more appropriate than averaged spike. 

Indeed, averaging spikes may enhance the signal-to-noise ratio but the differences 

in the origin between single spikes may get lost in the averaging process (Bast et 

al., 2004, 2006). EEG and MEG are sensitive to different aspects of neuronal 
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activity (Cohen and Cuffin, 1983; Sutherling et al., 1987; Hämäläinen et al., 1993; 

Baumgartner and Pataraia, 2006; Funke et al., 2009; Yu et al., 2010; Haueisen et 

al., 2012). Integrating these two modalities can bring in complementary 

information thereby allowing better accuracy in source imaging. Symmetrical 

fusion of EEG and MEG data is possible since the two modalities can relate to the 

same neuronal dynamics (temporal information) when acquired simultaneously 

(Molins et al., 2008). 

Several studies have reported the added value of combining the complementarities 

of EEG and MEG data when performing source localization. These so-called EEG-

MEG fusion methods allow improving the spatial resolution of source analysis by 

increasing the number of recording channels (EEG electrodes + MEG sensors) and 

the overall head surface coverage. Using single Equivalent Current Dipole (ECD) 

approach on simulated EEG/MEG and electrical median nerve stimulation data, 

Fuchs et al., 1998 suggested that deep sources mainly contribute to EEG data while 

superficial and tangential sources contribute mainly to MEG data. (Baillet et al., 

1999) proposed a joint EEG/MEG analysis, aiming at minimizing the mutual 

information between the two modalities, thus enhancing their respective 

complementarities. This EEG/MEG fusion strategy demonstrated reduced 

sensitivity to noise and improved localization accuracy. Using L2-based Minimum 

Norm Estimate (MNE) and its variants, such as dynamic Statistical Parametric 

Mapping (dSPM), several studies demonstrated the added value of fusing 

EEG/MEG data using either simulated data (Liu et al., 2002), visual evoked 

responses (Sharon et al., 2007) and electrical median nerve stimulation (Molins et 

al., 2008). The advantage of combining EEG and MEG data was also evaluated 

using other inverse operators, such as sparse source reconstruction (Ding and Yuan, 

2013) on simulated data, linearly constrained minimum variance beamformer 

approach on simulated and auditory data (Hong et al., 2013) or Multiple Sparse 

Prior methods on face evoked responses (Henson et al., 2009b). However, to the 

best of our knowledge, there exists no prior study that performed source analysis 
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using EEG/MEG fusion data to optimize the source localization of spatially 

extended generators of propagating epileptic discharges. 

ECD solutions have been extensively used for localizing the sources of focal 

interictal spikes but distributed source localization methods are ideal for estimating 

distributed network of brain activity seen during most IEDs (Barkley and 

Baumgartner, 2003; Kobayashi et al., 2005). Some of the well-known and widely 

used distributed methods are MNE (Hämäläinen and Ilmoniemi, 1994) and Low 

Resolution Electromagnetic Tomography (LORETA) (Pascual-Marqui et al., 

1994). We proposed the Maximum Entropy on the Mean (MEM) (Amblard et al., 

2004) as an interesting framework with good sensitivity in recovering the spatial 

extent of the sources, when using simulated EEG data (Grova et al., 2006), 

simulated MEG data (Chowdhury et al., 2013; Lina et al., 2014), when comparing 

EEG/MEG sources to fMRI BOLD responses to epileptic discharges (Grova et al., 

2008; Heers et al., 2014) and when comparing EEG/MEG sources to intracranial 

EEG findings (Heers et al., 2015). When applied to EEG or MEG data, MEM 

proved to be more accurate in recovering the source spatial extent, than MNE, 

LORETA and their variants within the hierarchical Bayesian framework (Friston et 

al., 2008). Therefore, the purpose of this study is to assess whether symmetrical 

fusion of EEG and MEG data within the MEM framework increases the spatial 

accuracy of the localization, by yielding better recovery of the spatial extent and 

propagation patterns of the underlying generators of epileptic discharges.  

 

4.4. Methods and Materials 

4.4.1. EEG-MEG inverse problem using distributed sources 

The EEG-MEG inverse solution presented in this study uses a distributed source 

model where a large number of dipolar sources are distributed along the cortical 

surface. Considering the anatomical constraint that the orientation of each dipole is 

fixed perpendicular to the local cortical surface (Dale and Sereno, 1993), the linear 

relationship between the source amplitude and the data is given by:   
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EGJM +=  (4-1) 

where M is the (q×τ) signal matrix acquired on q EEG or MEG channels at τ time 

samples. E models an additive measurement noise ((q×τ) matrix). J is (r×τ) 

unknown matrix of the current intensity of the p dipolar sources along the 

tessellated cortical surface. G is the (q×r) lead field matrix obtained by solving the 

forward problem i.e. by estimating the contribution of each unit dipolar source on 

the sensors (Hallez et al., 2007).  

 

4.4.2. Maximum Entropy on the Mean (MEM) Framework 

To regularize the ill-posed inverse problem, the MEM framework incorporates 

prior information on J in the form of a reference distribution )(jd . This reference 

distribution is a realistic spatial model that assumes brain activity to be organized 

into K (K<<r) cortical parcels showing homogenous activation states. This type of 

spatial clustering into K parcels (Figure 4.1a) was obtained using a Data Driven 

Parcellization (DDP) technique (Lapalme et al., 2006). To do so, first a projection 

method, namely the Multivariate Source Pre-localization (MSP) (Mattout et al., 

2005) was applied to estimate a probability-like coefficient (MSP score) between 0 

and 1 for each dipolar source on the cortical mesh, characterizing its contribution 

to the data. Then, using a region growing algorithm starting from the local optima 

of the MSP map, a parcellization of the full cortical surface into K non-overlapping 

parcels was estimated (see (Chowdhury et al., 2013) for further details). 
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Figure 4.1. Maximum Entropy on the Mean (MEM) framework. (a) MEM initialization of 
the reference distribution d : spatial clustering model that assumes brain activity to be 
organized into K cortical parcels showing homogenous activation state. This type of spatial 
clustering is obtained using data driven parcellization technique. After the definition of the state 
variable of the parcel, this dν will be used to regularize the inverse problem.  (b) MEM 
regularization algorithm: ԧm represents the set of all the probability densities dp  that satisfy the 

data goodnes of fit . Given the prior information on J  in the form of reference distribution d
, the relative ν-entropy ( )(dpS ) measures the amount of information brought by the data M, 

with respect to the reference distribution )(jd . 

 

Starting from this DDP, the reference distribution was modelled as follows:  

        
1

 1  ,
K

k
k k k k k kd d   



    j j μ Σ j j  (4-2) 

Each cortical parcel k, assumed to be independent from the others, is characterized 

by an activation state kS , describing if the parcel is active )1S( k  or not )0S( k

. )1S(  kk Prob   is the probability of the kth parcel to be active, which was 

initialized as the median of the MSP scores of the dipoles within the corresponding 

parcel. When the parcel is active )1S( k , the dipole intensities within the kth 

parcel are modeled using a Gaussian distribution  ,k kμ Σ  where kμ  and kΣ  
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represent respectively the mean and the covariance of the pk dipoles within the kth 

parcel. When the parcel is inactive )0S( k , the dipole intensities are modeled 

using a Dirac distribution  , thus allowing to "shut down" the corresponding 

parcel. 

Within the MEM framework, we consider the amplitude of the sources J  to be 

estimated as a multivariate random variable described by a probability distribution 

)()()( jjj dfdp  , where f is a ν-density of dp. Given the prior information on J  

in the form of reference distribution dν, the relative ν-entropy ( ( )S dp ) measures 

the amount of information brought by the data, with respect to the reference 

distribution )(jd  (Amblard et al., 2004). Defining ԧm  as the set of probability 

measures on J  that explains the data,  )()( jj jM dfG , on average (see Figure 

4.1b), the MEM solution consists in selecting ˆdp  that maximizes the ν-entropy and 

is the closest distribution to the reference distribution d : 

ˆ arg max ( )
Mdp Cdp S dp  (4-3) 

under the constraints: 0][  JM dpG  and  1)(jdp , where  )(][ jjJ dpdp . 

The MEM estimate of the source intensities Ĵ  is then found to be the expected 

value of the distribution ˆdp :  

ˆ
ˆ [ ]dp J J  (4-4) 

Such a regularization framework allows estimating the MEM solution through the 

optimization of a convex function within a q dimensional space, iteratively for each 

time sample. During the MEM optimization process, a noise covariance model is 

considered which is estimated as a diagonal matrix with a different value for each 

channel; thus taking into account the noise levels of each individual channel. For 

details on the MEM formulation, please refer to (Chowdhury et al., 2013). 



92 

 

92 

In the present study, we will consider the coherent-MEM (cMEM) implementation, 

as described in (Chowdhury et al., 2013). In cMEM, additional constraint of local 

spatial smoothness in each parcel was introduced using diffusion-based spatial 

priors (Friston et al., 2008) in the initialization of the source covariance of every 

parcel ( kΣ ). The mean intensity of every parcel ( kμ ) was initialized to zero. The 

spatial neighborhood order considered during the region growing procedure 

(cluster scale) has been fixed to a scale of 4, leading to approximately K=200 

parcels of size ≈2.5 cm2. 

 

4.4.3. Multimodal EEG-MEG fusion within the MEM framework 

The proposed EEG-MEG fusion within MEM framework consists of a 3-step 

fusion process, summarized in Figure 4.2: 

Step 1.  Normalization and concatenation of the data and lead field matrices 

from the two modalities. In order to integrate the two modalities, it is important 

to scale them to a common basis since they have different units and orders of 

magnitude. To do so, we applied a global mean signal to noise ratio (SNR) 

transformation of the data and the lead field, as described in (Fuchs et al., 1998) 

and (Ding and Yuan, 2013). This SNR transformation consisted in estimating 

normalized dimensionless measures of EEG and MEG, using the mean standard 

deviation of some baseline data. Baseline data ( EEGE  and MEGE ) consisted of real 

EEG and MEG background segments with the same duration (τ) as the data of 

interest M and exhibiting no epileptic discharges. 

2
* *

1
*

( ( , ) ( ))
( )

1
t

E i t E i
i














 with * *

1

1
( ) ( , )

t

E i E i t


 

   
(4-5) 

where *  refers to EEG or MEG, i is the index of the EEG or MEG channels, and t 

is the index of the τ time samples. 
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The mean standard deviation of the baseline over all sensors was then estimated as 

follows:  

*

1
*

*

))((

q

i
q

i




  
(4-6) 

where *q  is the number of EEG or MEG channels. The SNR transformation 

consisted in scaling the data and lead field matrices as follows:  

*
*

* 
M

M s  (4-7) 

*
*

* 
G

G s  (4-8) 

Based on the scaled data and lead field matrices, the EEG-MEG fusion could be 

formalized using the following concatenation along the rows of the matrices (Fuchs 

et al., 1998; Henson et al., 2009b; Ding and Yuan, 2013):  



























s
MEG

s
EEG

s
MEG

s
EEG

s
MEG

s
EEG

E

E
J

G

G

M

M  (4-9) 

Where ( s
EEGE   and s

MEGE ) refer to the scaled noise matrices. The symmetrical 

fusion of EEG and MEG will be further denoted by MEEG.  

Step 2. Parcellization of the cortical surface using the fusion of MSP scores 

(MSPMEEG). An originality of the MEM framework is to incorporate the 

complementary information provided by EEG and MEG through the reference 

distribution dν. To do so, MSP scores were first computed from each modality 

separately ( EEGMSP  and MEGMSP ), to assign for each modality a coefficient of 

activation of the sources. MSP was actually applied on a singular value 

decomposition of the scaled data: 

T
***

s
* = VYUM , where  * = EEG or MEG (4-10) 
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where *U  is an orthogonal q×q matrix in which the lth column vector is the sensor 

signature of the lth component. *V  is an orthogonal τ×τ matrix, T
*V denotes the 

transpose of *V . *Y is an q×τ matrix whose diagonal contains the singular values of 

s
*M  . With a selection of l functionally informed vectors *U , MSP scores were 

quantified by projecting the normalized lead field *G  onto the normalized data *U  

(normalization by the norm of each column). 

)diag(= s
*

T
**

Ts
** GUUGMSP  where    * = EEG or MEG (4-11) 

With such a projection MSPEEG or MSPMEG scores estimated a probability-like 

coefficient assessing the contribution of each dipolar source to the corresponding 

EEG and MEG data. A second level of EEG/MEG fusion was then introduced, 

using a logical OR operation (∨) on MSPEEG and MSPMEG scores, in order to taken 

into account the contribution of the dipolar sources either to EEG or MEG or both 

data.     

)(-+=

=

MEGEEGMEGEEG

MEGEEGMEEG

MSPMSPMSPMSP

MSPMSPMSP




 (4-12) 

where  denotes the Schur (Hadamard) product of the two matrices leading to 

element-wise multiplication of their elements. DDP was then applied using these 

fused MSP scores ( MEEGMSP ) in order to obtain parcellization of the full cortical 

surface driven by information provided by MEEG fusion data.  

 

Step 3.  Initialization of the probability of activation of each parcel k  using

MEEGMSP . Given the parcellization obtained in Step 2, we then considered a 3rd 

level of the EEG/MEG fusion by using the median of the fused MSP scores (

MEEGMSP ) within the kth parcel to initialize k i.e. the probability of each parcel 

to be active (cf. Section 4.4.2, equation (4-2)). 
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This three-level fusion scheme was proposed to integrate the complementary 

information provided by both modalities within the MEM framework. Then starting 

from the initialized reference model dν estimated from fused MEEG data, MEM 

regularization was used to find a solution from SNR-transformed concatenated 

MEEG data, as illustrated in Figure 4.2. 

 

4.4.4. Minimum Norm Estimate and other variants with L-curve 

method 

In the present study, we will compare the performance of cMEM with MNE method 

and two noise-normalized variants of MNE -  dynamic statistical parametric 

mapping (dSPM) (Dale et al., 2000) and standardized low-resolution 

electromagnetic tomography (sLORETA)  (Pascual-Marqui, 2002).  

(a) MNE: With the assumption that all sources are independent and have same 

energy, MNE solution ( MNEĴ ) provides the minimum energy of the current 

distribution J (Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 1994). The 

L-curve method (Hansen, 2000) was used to estimate the regularization hyper-

parameter (λ), allowing the best balance between data fit (
2

GJM - ) and the 

a priori constraint (
2

J ), within the following optimization scheme:  

 
  MWMΣGΣGΣG

JGJMJ

s

~~~~~~
+-argmin=ˆ

1

22

J

MNEdd

MNE


 TT +


 (4-13) 

where, MΣM
~~ -1/2

d and GΣG -1/2
d

~
 are the spatially whitened data and gain 

matrices, respectively. MNEW
~

 is the classical MNE inverse operator with sΣ  as the 

identity source covariance matrix and dΣ  as the diagonal noise covariance matrix 

of the whitened data resulting in an identity matrix.  In order to evaluate EEG/MEG 

fusion using MNE, data were normalized as in equation (4-7) and (4-8), spatially 
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pre-whitened and concatenated as in equation (4-9), and MNE was then directly 

applied to concatenated matrices.  

Both dSPM and sLORETA are derived from MNEW
~

 by normalizing the rows 

of the inverse operator.   

(b) dSPM (Dale et al., 2000):  The estimated current at each source location is 

divided by an estimate of the noise at that location, which can be obtained by 

applying  MNEW
~

 to the signal covariance matrix as follows: 

MWJ

W WΣWW
-

dSPMdSPM

MNEMNEdMNEdSPM diag

~ˆ

~
)

~~
(

~ 1








 T

 (4-14) 

(c) sLORETA (Pascual-Marqui, 2002): consists in a similar approach, but the 

normalization is obtained from the variance of the estimated sources, instead 

of using just the variance due to the noise component.  

MWJ

W WΣGGWW

sLORETAsLORETA

MNEMNEdMNEsLORETA diag

~ˆ

~
)

~~
(

~ 1-








 TT )+(

 (4-15) 

Whereas MNE localization is biased towards more superficial sources, dSPM and 

sLORETA actually implicitly perform some “depth weighting” because of the 

noise normalization—sources with generally higher amplitude will be normalized 

by higher noise levels or source variances (Hauk et al., 2011). 

 

4.4.5. Evaluation procedure 

The proposed MEM fusion approach was evaluated in a well-controlled 

environment using realistic simulations of EEG and MEG interictal epileptic 

spikes. The geometry and the anatomy of our simulation environment were derived 

from a real patient’s dataset. 
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a. Realistic simulations 

Geometry dataset. Simultaneous EEG/MEG acquisition was performed on a 

patient with focal epilepsy using a 275 channel CTF-MEG system (272 active 

sensors) and a 54 channel EEG-cap (Easy-cap, Herrsching, Germany) at a sampling 

rate of 1200Hz. The 54 EEG electrodes were placed according to the 10-20 system 

with additional electrodes according to the 10-10 system especially covering the 

inferior temporal and parietal regions (FT9, P9, FT10, and P10). Written informed 

consent for this study was obtained from the patient. EEG and MEG data containing 

no traces of IEDs were recorded from this patient, which was used in the simulation 

model to create realistic noise. 

Anatomy dataset. A high resolution T1-weighted anatomical MRI of the same 

patient was used to segment the surfaces of the brain to obtain a realistic head 

model. The distributed source model was obtained by segmenting the gray-white 

matter interface from the MRI using BrainVISA-4.2.1 software7 (Mangin et al., 

1995). The source model consisted in a realistic 3D mesh of the cortical surface 

(8000 vertices, 4mm resolution). Using the OpenMEEG (Gramfort et al., 2011) 

implementation in Brainstorm software (Tadel et al., 2011), we generated a 3-layer 

EEG Boundary Element Method (BEM) model consisting of the inner skull, outer 

skull and the scalp (conductivity values of 0.33:0.0165:0.33 S/m) and a 1-layer 

MEG BEM model consisting of the inner skull (conductivity value of 0.33 S/m). 

Static simulation model. These simulations were similar to the ones considered in 

(Chowdhury et al., 2013). 100 simulation configurations involving one spatially 

extended source exhibiting spiking activity were randomly generated on the cortical 

mesh. The position of each source was selected by choosing a seed point randomly 

on the cortical surface mesh. The spatial extent of each source was obtained by 

region growing around the seed following the cortical surface using spatial 

                                                 

7 http://www.brainvisa.info 
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neighborhood order se=3 (≈ 4 cm2) and  se =4 (≈ 12 cm2). The time course of the 

simulated sources was the time course of an epileptic spike modeled with three 

Gamma functions, although only signal around the main peak of the spike was 

analyzed. Let us refer Jth  as the simulated theoretical current distribution obtained 

from the spatial distribution of the simulated sources together with the 

corresponding time course. EEG and MEG data were then simulated by applying 

the forward model EEGG  and MEGG  to the simulated current density, respectively. 

Realistic physiological noise was extracted from a 3 mins segment of EEG/MEG 

background activity acquired on the selected patient and added to the simulated 

data. The amplitude of the background activity trials was scaled to ensure a signal-

to-background ratio of 1 (0 dB) for most superficial sources when using reference 

source amplitude of 9.5 nA.m for each dipolar source along a patch of 6 cm2. 

Consequently, the SNR of the realistic simulated data varied depending upon the 

location and extent of the underlying sources. In this set of 100 simulations, the 

SNR ranged approximately between 1 to 12. Note that as opposed to our previous 

study (Chowdhury et al., 2013), here only 1 trial of background EEG/MEG data 

was used in the simulations, thus mimicking the occurrence of single non-averaged 

spikes. 

We considered the following indicators to characterize the simulations:  

1. Eccentricity - Eccentricity is defined as the mean Euclidean distance between 

all vertices of the simulated patch and the center of the head model8. Most 

superficial sources had an eccentricity value higher than 80 mm. Sources with 

eccentricity ranging between 60 mm and 80 mm corresponded mainly to 

                                                 

8 The center of head was defined with the fiducial points marked during EEG/MEG acquisition. It 

is the point which is equidistant to the left and right peri-auricular points, at the same height of the 

location of the nasion. 
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mesio-temporal sources and the ones with eccentricity lower than 60 mm 

corresponded to the sub-cortical sources. 

2. Cancellation index - This index estimates the amount of overlap between signal 

patterns of individual sources within an active patch leading to signal 

cancellation (notably caused by dipolar sources oriented in opposite directions 

on both walls of a sulcus), as proposed by (Ahlfors et al., 2009).  
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where i is the index of summation over all q sensors, l is the index of 
summation over all elements in the set of Φ active dipoles located within the 

simulated patch. g(i,l) is the value of the ith row and lth column of the lead 
field matrix G. This index ranges between 0 and 1, Ic=1 indicates full 
cancellation and Ic=0 indicates no cancellation effect. 

Spatio-temporal simulation model. 100 simulation configurations were randomly 

generated on the cortical mesh, involving activation of two spatially extended 

sources following the same time course but presenting a 15 ms delay between them. 

These simulations were proposed to mimic axonal propagation between two distant 

spike generators, with significant overlap between the time courses of the two 

generators. The sources were spatially separated by a fixed geodesic distance of 73 

mm (i.e. a spatial neighborhood order of 10) and both sources were located in the 

same hemisphere. The velocity of this simulation model mimics the velocity of real 

propagating spikes (varying from 1 m/s to 40 m/s) (Emerson et al., 1995). This type 

of propagation is concordant with literature and can express a remote activation of 

a neural network connected to an active population by a fiber tract (Baumgartner, 

Lindinger, et al., 1995; Huppertz et al., 2001). For this set of 100 simulations, the 

spatial neighborhood order was se =3 consisting of sources with spatial extent 

ranging from 2 cm2 to 6 cm2. One trial of real background was added on noise-free 

simulated data. The amplitude of the background activity trials was scaled to ensure 
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a larger signal-to-background ratio (3 ≈ 4.7 dB) than the static simulations as the 

spatio-temporal simulations involve more complex source patterns to recover. 

Consequently, the SNR for this set of propagating spikes ranged approximately 

between 2 to 9. 

 

b. Impact of the number of EEG electrodes considered during 

MEEG fusion 

The static simulation model was considered to generate EEG and MEG data, while 

the impact of three different EEG configurations derived from the 10-10 electrode 

placement system was evaluated: A complete EEG setup involving 54 EEG 

electrodes (see Figure 4.7a EEG topography for the 54 EEG electrodes set-up), 

and two down-sampled montages involving respectively 32 and 20 EEG electrodes 

(see Figure 4.9a EEG topographies for the two down-sampled EEG electrodes set-

up). Note that the 20 EEG electrodes set-up was similar to the conventional 10-20 

EEG system used in most clinical centers. 

 

c. Impact of Model-error 

We are aware that the use of same head model during forward and inverse problem 

can lead to the best case scenario in any simulation study. In order to mimic real 

data scenario, one can introduce noise in the measurement through mis-modeling 

in simulations (Wang and Ren, 2013). We evaluated the robustness of cMEM 

method by varying the tissue conductivities in the EEG forward model during EEG 

and MEEG source localization. The correct modeling of head tissue conductivities, 

especially the conductivity ratio of the skull relative to brain and scalp is an 

important parameter that determines the accuracy of the forward and inverse 

solution especially in EEG. In the literature (Oostendorp and Delbeke, 1999; Lai et 

al., 2005; Zhang et al., 2006; Lew et al., 2009), similar conductivity values for the 

brain and scalp (ranging from 0.12 to 0.48 S/m) have been reported. However, 
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estimation of the skull conductivity has been reported to be more inconsistent with 

values ranging between 0.006 and 0.080 S/m (Hoekema et al., 2003). We 

extrapolated from past studies (Oostendorp and Delbeke, 1999; Malmivuo and 

Suihko, 2001; Lai et al., 2005; Zhang et al., 2006; Huiskamp, 2008; Vallaghé and 

Clerc, 2009; Fangmin Chen, 2010) a range of brain-to-skull conductivity ratio (that 

will be denoted Rbs) to be tested: Rbs ranging between 1:15 and 1:25 was found 

acceptable for the adult brain. For this test, we performed two sets of simulations. 

In the first set, we simulated EEG signals using different Rbs (randomized between 

1:15 to 1:25 following a normal distribution with mean 1:20 and standard deviation 

of 1:3.3) of the EEG head model for 50 randomly placed sources and localized these 

sources using EEG head model at one Rbs (1:20). In the second set, we considered 

the same Rbs of 1:20 for both simulation and localization over the same 50 sources 

as the first set. Then we compared the localization accuracy (AUC) of cMEM on 

the two set of simulations for EEG and MEEG data. 

 

d. Validation metrics 

As the Ground Truth was fully controlled using simulated data, we considered the 

following validation metrics to evaluate the performances of MNE and cMEM 

source localization methods when applied on EEG, MEG or MEEG data. Some of 

the metrics have been described in further details in our previous studies, 

(Chowdhury et al., 2013) and (Grova et al., 2006).  

1. Area Under the Receiver Operating Characteristic (ROC) curve, AUC - was 

used to assess the detection ability of the localization methods. The AUC index 

looks at the normalized energy of each source at a specific time sample. In case 

of static simulations, the energy at the main peak (0 ) of the simulated spike 

was considered. For the 2-source spatio-temporal simulations, the AUC index 

was estimated separately at the peak of each source spike while removing the 

contribution of the vertices of the second source. Since the spatio-temporal 

simulation involved activation of two sources separated by a temporal delay of 
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15ms (with some temporal overlap), it was possible to estimate AUC for each 

source separately at the time of their peak. 

This detection accuracy index (between 0 and 1) integrates sensitivity and 

specificity of the source localization methods to reconstruct the spatial extent 

of the source against the Ground Truth, by varying a detection threshold 

between 0 and the maximum of reconstructed current density. More details on 

AUC estimation can be found in APPENDIX A. An AUC value greater than 

0.8 was considered good detection accuracy. 

 

2. Spatial Dispersion (SD) - proposed in (Molins et al., 2008), measures both the 

spatial spread of the estimated source distribution around the true source 

location and the localization error between the estimated source distribution 

and the true source location. Let us denote by Ĵ  the result of the source 

localization method to be evaluated. Then, ),(ˆ 0ij  represents the amplitude of 

the current density distribution estimated for a dipolar source i on the cortical 

surface at the main peak of IED (0 ). To measure the SD of this solution, we 

weight the amplitude of all the r cortical sources by their minimum distances 

from the simulated patch using the following formula:  
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where )),((min lil D 	provides the minimum Euclidean distance between the 

source i and the sources l in the simulated patch.   denotes the set of indices 

of the dipoles in the simulated patch and this minimum distance is zero when 

the source i belongs to  . SD values close to zero means there is no active 

source outside the simulated patch. Large SD values could be caused either by 

the presence of sources far away from the true source that are contributing to 
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the estimated solution (spurious sources) or by the spatial spread of the 

reconstructed source around the true extent of the simulated patch.  

 

3. Shape Error (SE) - In order to assess the accuracy of the reconstructed time 

courses within the simulated patch, we proposed the metric SE as the root mean 

square of the difference between the normalized theoretical source distribution 

( Jth ) and the normalized estimated source distribution ( Ĵ ). Therefore, SE for 

a simulated source was estimated as follows: 

Let us consider ),( tijth  and ),(ˆ tij , where i   and t is the time parameter.  
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subscript “n” in njth  or nĵ  denotes the normalization of the matrix Ĵ so that 

its values are between -1 and 1, for example:  ),(max
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the maximum over t time samples. 

 

e. Application of MEM fusion on clinical data 

We evaluated our proposed MEEG fusion method on clinical data acquired from 

two patients with intractable focal epilepsy. We selected IEDs that occurred 

simultaneously in both EEG and MEG signals, while making sure that the 

individual IED on either EEG or MEG had high SNR (at least SNR of 1). SNR was 

estimated as the ratio between the maximum signal measured at the peak of the 

spike (over all channels) and the standard deviation of some baseline data (two 

seconds of data showing normal traces with no epileptic activity). We also carefully 

checked that the selected IEDs exhibited similar topographic maps. 
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Patient 1 is suffering from a cryptogenic focal epilepsy with a left fronto-temporal 

epileptic focus (defined by EEG telemetry and seizure semiology). In Patient 2 a 

Focal Cortical Dysplasia (FCD) was diagnosed based on the MRI in the left frontal 

opercular region. These patients participated as research subjects of the project 

entitled: “Application of magnetoencephalography in the assessment of the 

epileptic focus” (Dr. E. Kobayashi being the principal investigator for this project). 

Written informed consent for this study was obtained from the patients. 

Analysis of the IEDs involved:  

1. Data acquisition - Simultaneous EEG/MEG recordings were acquired using a 

275 channel CTF-MEG-system using a 54 channel EEG-cap. EEG electrodes 

were placed according to the 10/20 system, with additional electrodes 

according to the 10/10 system covering the inferior temporal and parietal 

regions. EEG/MEG signals were recorded with patients at rest in a supine 

position. No filters were applied to the MEG recording and a hardware high 

pass filter of 0.03Hz was used for the EEG. The sampling rate was 2400Hz.  

2. Pre-processing of EEG/MEG data – Standard CTF software was used to 

process the data offline. Data were down-sampled to 600 Hz and DC-offset 

was removed. Filtering included 0.3-70Hz bandpass filter (butterworth, 4th 

order) and 60Hz notch filter (and its harmonics). Any bad channels were 

removed.  

3. Visual analysis and marking of EEG/MEG data - IEDs were visually marked 

by a clinical neurophysiologist (MH). Only simultaneous EEG and MEG 

spikes were analyzed. 

4. Pre-processing of image data - Preprocessing of MRI data, co-registration and 

forward model estimation were done similarly to the simulated data in Section 

4.4.5a Anatomy dataset.  

5. Solving the inverse problem - We performed single spike localization of EEG, 

MEG and MEEG data using cMEM.  
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Single spike source localization was performed within a time window of 700 ms 

around the peak of the marked spike (200 ms before and 500 ms after). For each 

single spike, we identified (based on the SNR level), the first significant MEG peak 

and the first significant EEG peak, since these two peaks were not always 

synchronous.  

 

4.5. Results 

4.5.1. Performance of fusion approach on static simulation 

We observed an overall good detection accuracy for cMEM on all modalities 

(median AUC>0.8) for sources with spatial extents se=3 and 4 (Figure 4.3a and 

Figure 4.3b). Similarly to our previous findings in Grova et al., (2006) and 

Chowdhury et al., (2013), MNE was less sensitive than cMEM to the spatial extent 

of the sources, showing overall lower AUC values. For the first time, we also 

clearly demonstrated that cMEM performed better than dSPM and sLORETA when 

recovering the spatial extent of the underlying generators. Notice the better 

performance for all the methods when using MEEG, as opposed to EEG or MEG 

alone. The validation metric SD exhibited clearly lower values for cMEM when 

compared to MNE, dSPM and sLORETA (Figure 4.4), suggesting less spatial 

spread around the true source and /or less distant spurious sources. From Figure 

4.4a and Figure 4.4b, we observed that for all the methods the median of SD 

distribution for MEG was larger than for EEG and MEEG suggesting the presence 

of more spurious sources mis-localized outside the active region for MEG.  The 

shape of the distribution for SD values when using MEG had long tails towards 

larger values. We checked that this was caused by misleading reconstructions for 

simulated mesial or deep generators. Interestingly, for all the methods, SD values 

for MEEG were the lowest indicating a more accurate estimation of the spatial 

extent of the generators and less spurious sources outside the simulated region, 

when compared to EEG and MEG localizations. 
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Figure 4.3. Distribution of AUC results over 100 simulations of randomly placed single 
static source for source localization methods, MNE, cMEM, dSPM and sLORETA on the 
three modalities (EEG, MEG and MEEG). (a) Boxplot representation of AUC values for 
simulated sources with spatial extent se=3, (b) Boxplot representation of AUC values for 
simulated sources with spatial extent se=4. (Horizontal line, AUC = 0.8). Color code for each 
modality: EEG in green, MEG in blue and MEEG in red. 
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Figure 4.4. Distribution of SD results over 100 simulations of randomly placed single static 
source for source localization methods, MNE, cMEM, dSPM and sLORETA on the three 
modalities (EEG, MEG and MEEG). (a) Boxplot representation of SD values (in mm) for 
simulated sources with spatial extent se=3. (b) Boxplot representation of SD values (in mm) for 
simulated sources with spatial extent se=4. Color code for each modality: EEG in green, MEG in 
blue and MEEG in red. 
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Figure 4.5. AUC as a function of eccentricity of the sources for 100 simulations involving 
randomly placed single static source at different locations for source localization methods 
MNE, cMEM, dSPM and sLORETA on the three modalities (EEG, MEG and MEEG). (a) 
AUC values obtained for MNE, (b) for cMEM, (c) for dSPM, and (d) for sLORETA when 
localizing simulated sources with spatial extent se=3. Solid lines are the moving average of the 
AUC values for the respective methods. Horizontal line, AUC = 0.8, Vertical lines: eccentricity 
= 60 mm and 80 mm. Color code for each modalities: EEG in green, MEG in blue and MEEG in 
red. 

 

The behavior of AUC as a function of the eccentricity of the simulated sources is 

presented in Figure 4.5. As expected, for all the three modalities, we noticed better 

localization for superficial sources (eccentricity>80 mm, AUC>0.8 for cMEM) 

than for mesial and deeper sources (eccentricity<60 mm) for MNE and cMEM. 

EEG performed slightly better than MEG for most mesial sources (60 

mm<eccentricity<80 mm). However, dSPM and sLORETA provided similar 
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localization accuracy for sources at all eccentricities; thus confirming that these 

methods are indeed less biased towards superficial sources. MEEG improved the 

detection accuracy of the methods for sources at all eccentricities. Overall, cMEM 

on MEEG data proved to be the most accurate (AUC>0.8) method showing good 

spatial accuracy for most sources, mainly superficial but also for some deeper ones. 

We also checked that the largest SD values in Figure 4.4a and Figure 4.4b were 

mainly due to mis-localized deep sources with low eccentricity (results not shown). 

As a particular example, Figure 4.6 illustrates the ability of cMEM, MNE, dSPM, 

and sLORETA to localize a right superior frontal simulated source using EEG, 

MEG and MEEG data. Source localization results are presented over the inflated 

cortical surface, using Brainstorm software (Tadel et al., 2011). AUC and SD 

values were in agreement with visual inspection. We observed the largest AUC 

values (0.97) and smallest SD value (1.9) for cMEM when localizing MEEG data 

(Figure 4.6b). This result along with the findings from Figure 4.3 and Figure 4.4 

suggests that MEEG localization using cMEM was the most accurate method in 

detecting the spatial extent of the source. SD for MNE was very large, especially 

for EEG and MEG localizations whereas for dSPM and sLORETA, SD was very 

large for all the three modalities. This corroborates with the visual analysis, 

showing an overestimation of the spatial extent and the presence of several spurious 

sources located far from the active region (in fronto-mesial and temporal regions 

notably), whereas the maximum of reconstructed activity was indeed accurately 

estimated. Overall, for all the methods, we noticed an improvement in spatial 

accuracy when localizing MEEG data, when compared to monomodal EEG and 

MEG localizations. 
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Figure 4.6. Qualitative assessment for example of static simulation. Visual analysis of source localization 
results together with AUC and SD values for a single static simulated source with area = 4.4 cm2 and 
eccentricity 75 mm. All source localization results are presented as the absolute value of the current density at 
the peak of the spike, normalized to its maximum activity and thresholded upon the level of background 
activity. (a) Theoretical simulated source: area and eccentricity of the cortical source; associated simulated 
EEG and MEG signal and topography for all 54 EEG and 272 MEG channels respectively; Cancellation index 
for the simulated source in EEG, Ice = 0.41 and in MEG, Icm = 0.71; SNR for EEG signal, SNREEG = 6.3 and 
for MEG signal, SNRMEG = 2.7. (b) Source localization results obtained using cMEM on EEG, MEG and MEEG 
data. (c) Source localization results obtained using MNE on EEG, MEG and MEEG data. (d) Source 
localization results obtained using dSPM on EEG, MEG and MEEG data. (e) Source localization results 
obtained using sLORETA on EEG, MEG and MEEG data. 

 

 

Figure 4.7 illustrates the localization of a left deep cingulate simulated source with 

cMEM, MNE, dSPM, and sLORETA when considering EEG, MEG and MEEG 
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data. Overall, for all the methods, AUC and SD values showed that MEEG 

improved the localization, especially since fusion lead to higher AUC values and 

lower SD values than when considering MEG and EEG alone. MEEG localization 

using cMEM involved sources well localized on the left hemisphere, but with larger 

amplitudes towards the more superficial and fronto-polar vicinity of the generator. 

As expected, due to the implicit depth-weighting behavior of dSPM and sLORETA, 

these methods were able to recover the deeper aspects of the source (anterior 

cingulate sulcus) more accurately than cMEM or MNE. However, despite the fact 

that the main generator was found, both sLORETA and dSPM presented also 

spurious sources in the deeper regions of both hemispheres (including posterior 

cingulate gyrus and thalamus), resulting in misleading evaluation (i.e. high SD 

values and low AUC values). We noticed these spurious deep sources even in the 

previous example involving just a superficial source (Figure 4.6d and Figure 

4.6e).  
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Figure 4.7. Qualitative assessment for an example of static simulation. Visual analysis of source 
localization results together with AUC and SD values for a single static simulated source with area = 4 cm2 
and eccentricity 63 mm. All source localization results are presented as the absolute value of the current density 
at the peak of the spike, normalized to its maximum activity and thresholded upon the level of background 
activity. (a) Theoretical simulated source: area and eccentricity of the cortical source; associated EEG and 
MEG topography; Cancellation index for the simulated source in EEG, Ice= 0.49 and in MEG, Icm= 0.25; SNR 
for EEG signal, SNREEG = 2.8 and for MEG signal, SNRMEG= 3.8. (b) Source localization results obtained using 
cMEM on EEG, MEG and MEEG data. (c) Source localization results obtained using MNE on EEG, MEG and 
MEEG data. (d) Source localization results obtained using dSPM on EEG, MEG and MEEG data. (e) Source 
localization results obtained using sLORETA on EEG, MEG and MEEG data. 
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4.5.2. Impact of the number of EEG electrodes considered during 

MEEG fusion 

Figure 4.8a presents the distribution of AUC values obtained on 100 static 

simulations, when decreasing the number of EEG electrodes. As expected, we 

observed a decrease of AUC for EEG source localization when reducing the 

number of EEG electrodes, for both MNE and cMEM methods (in green). 

However, the accuracy of MEEG localization (in red) using cMEM was quite 

robust to the number of EEG electrodes involved, reaching excellent performances 

(median AUC >0.8) even when only 20 EEG electrodes were added to the 272 

MEG sensors. Figure 4.8b presents the distribution of SD values obtained on 100 

static simulations, when decreasing the number of EEG electrodes. cMEM on 

MEEG showed the smallest SD values suggesting a more accurate sensitivity to the 

spatial extent, whatever was the number of EEG electrodes considered. These 

results are suggesting that the addition of only 20 EEG electrodes to the 272 MEG 

sensors will be sufficient to bring relevant information in the fusion, thus providing 

localization with good spatial accuracy. 

Figure 4.9 illustrates cMEM localization for the left deep cingulate source 

presented in Figure 4.7, when considering two subsampled EEG electrodes 

configurations. Localization of this deep source was difficult as none of the 

configurations were able to recover accurately the deeper aspects of the source. The 

SD values showed that MEEG improved the localization, especially since any 

fusion configuration lead to lower SD values than EEG for the three EEG electrodes 

configurations (see Figure 4.7b and Figure 4.9). For EEG source localization, the 

maximum amplitude source was localized on the wrong hemisphere for all three 

EEG configurations. However, from Figure 4.7b for the 54 EEG electrodes 

configuration, EEG localization improved as it was indeed able to find a strong 

source within the simulated patch along with the strong source on the opposite 

hemisphere. MEEG localization for the three EEG configurations involved more 

accurately the deeper aspects of this anterior cingulate source, with sources well 

localized on the left hemisphere, but with larger amplitudes towards the more 
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superficial and fronto-polar vicinity of the generator. Note that some spurious 

sources in the left frontal neocortex were also localized. 

 

Figure 4.8. Evaluation of the source localization methods for three configurations of EEG 
electrodes using the detection accuracy index AUC and SD values. (a) Distribution of AUC 
values using boxplot representation over 100 simulated sources with spatial extent se=3 for MNE 
and cMEM methods applied on: (from left to right) 272 MEG sensors in blue, 54, 32, and 20 
EEG channels in red and 272 MEG + 54 EEG, 272 MEG + 32 EEG, 272 MEG + 20 EEG 
channels in red. (b) Distribution of SD values using boxplot representation over 100 simulated 
sources with spatial extent se=3 for MNE and cMEM methods applied on: (from left to right) 
272 MEG sensors in blue, 54, 32, and 20 EEG channels in red and 272 MEG + 54 EEG, 272 
MEG + 32 EEG, 272 MEG + 20 EEG channels in red. 
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Figure 4.9. Qualitative assessment to evaluate the impact of the number of EEG electrodes 
using static simulation presented in Figure 7. Visual analysis of source localization results 
together with AUC and SD values for a single static simulated source with area = 4 cm2 and 
eccentricity 63 mm. (a) Theoretical simulated source. (b) Source localization results obtained 
using cMEM method for 20 EEG electrode configuration on EEG and MEEG data. (c) Source 
localization results obtained using cMEM method for 32 EEG electrode configuration on EEG 
and MEEG data. 

 

 

4.5.3. Performance of fusion on spatio-temporal simulations 

Figure 4.10 reports the distribution of AUC values obtained for source 1 and source 

2 (at their respective peak, separated by a 15ms delay) when using spatio-temporal 

simulations of propagating epileptic spikes. For each source, AUC distributions 

over 100 configurations are presented for cMEM and MNE methods and each 

modality. We observed that for all the modalities cMEM performed better than 

MNE in detecting the spatial extent of the propagating sources (higher AUC median 
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values for both the sources when using cMEM). MEEG localization using cMEM 

provided the highest AUC values for both source 1 and source 2. EEG source 

localization was found slightly less accurate for source 2 than for source 1 (lower 

AUC median value). For both MEG and MEEG, similar level of detection accuracy 

was found for both sources. This could be explained by the fact that the electrical 

potentials of the two sources will further mix because of larger overlap of the 

topographies of the two sources in EEG for the given sensor arrays, which is less 

the case with the magnetic fields measured in MEG. Consequently, MEG and the 

information from MEG provided in the fusion helped to separate the two sources.  

 

Figure 4.10. Evaluation of the source localization methods on the three modalities using 
AUC values over 100 spatio-temporal simulation configurations involving two randomly 
placed sources showing propagation within 15 ms duration between source 1 and source 
2. Boxplot representation of AUC values for source 1 and source 2 with spatial extent se=3. 
Color code for each modalities: EEG in green, MEG in blue and MEEG in red for the methods 
MNE and cMEM. 
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Figure 4.11. Evaluation of the source localization methods on the three modalities using 
SE estimates over 100 spatio-temporal simulation configurations involving two randomly 
placed sources showing propagation within 15 ms duration between source 1 and source 
2. (a) Boxplot representation of SE values obtained for reconstruction of source 1 and source 2 
using MNE method. (b) Boxplot representation of SE values obtained for reconstruction of 
source 1 and source 2 using cMEM method. Color code for each modalities: EEG in green for 
source 1 and black for source 2, MEG in blue for source 1 and cyan for source 2 and MEEG in 
red for source 1 and magenta for source 2. (c) Normalized mean time course of source 
reconstruction obtained for source 1 (left plot) and source 2 (right plot) using MNE and cMEM 
on EEG, MEG and MEEG data. Color code: black (solid line) for theoretical time course, EEG 
in green, MEG in blue, MEEG in red, solid line for MNE and dashed line for cMEM. 

 

Analysis of the reconstructed time courses is shown in Figure 4.11. We observed 

that SE was clearly smaller for MNE (Figure 4.11a) than for cMEM (Figure 4.11b) 

for both sources in EEG localization. For MEG and MEEG localizations, SE for 

MNE was still slightly smaller than SE for cMEM, but we found a clear 

improvement on cMEM SE for MEG and MEEG when compared to EEG. 



119 

 

119 

Moreover, MNE was able to reproduce the shape of the time course of first source 

better than the second source (larger SE for source 2). This could be explained by 

the fact that the SNR for source 1 was higher than source 2 since there was no 

mixing between the first and second source at the time of localization of source 1. 

The excellent performance of MNE in reconstructing the shape of the time course 

was rather expected, because MNE is a linear estimator. On the other hand, we 

provided here the first evaluation of the temporal behavior of cMEM localization. 

As cMEM sources consisted in non-linear estimates for each time sample 

independently, it was not obvious that it would reconstruct temporally smooth time 

courses. These first results are quite encouraging, especially for MEEG estimates 

providing almost similar temporal accuracy as MNE. 

Figure 4.12 presents our results for a simulated spatio-temporal propagation from a 

left pre-frontal region to a left posterior superior frontal region. MNE and cMEM 

were able to localize accurately these two superficial sources, but with different 

sensitivity when recovering the spatial extents and the time courses. EEG 

localizations for both methods over-estimated the spatial extent by presenting large 

spatial spread around the true extent of the source (higher SD values than for MEG 

and MEEG). MEG localizations slightly under-estimated the spatial extent of the 

sources and also showed few distant spurious sources. This is probably due to the 

fact that the cancellation effect in MEG was very high (Icm = 0.78 for source 1 and 

0.82 for source 2) and MEG was not able to recover the radial aspects of these 

generators. On the other hand, MEEG localizations provided a better estimation of 

the source spatial extent. From the visual inspection which is also in agreement 

with the metrics (Source 1: AUC = 0.97, SD = 4.7, and SE = 0.21; Source 2: AUC 

= 0.94, SD = 6.4, and SE = 0.15), MEEG localization using cMEM provided the 

most accurate detection of the sources with their respective spatial extents and time 

courses. The normalized mean time courses of source reconstruction for these two 

sources are presented in Figure 4.11c. We observed that MNE was the most 

accurate in reconstructing the time course of source 1 (in green, blue and red solid 

lines for EEG, MEG and MEEG respectively). This behavior is in agreement with 
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the lowest SE values (SE <0.15) estimated for source 1 when using MNE Figure 

4.12. SE for source 2 using MNE and cMEM were the highest (SE >0.35) in EEG 

localization, which is also evident from the shape of the reconstructed time course 

in Figure 4.11c. Both MNE and cMEM were able to recover the time courses of 

the two sources better in MEEG than EEG or MEG (Figure 4.11c). Note that for 

MEEG, cMEM provided very accurate time course reconstructions around the 

peaks of source 1 and 2, whereas the amplitude decreased faster than MNE for 

lower SNR signals more distant from the peaks, illustrating the ability of cMEM to 

shut down the parcel.  

 

4.5.3.1. Robustness to Model-error 

Figure 4.13 presents the effect on localization accuracy when using correct Rbs 

versus incorrect Rbs on EEG (black plus signs) and MEEG (green circle) data using 

cMEM method. We found that the cMEM method is robust to this mis-modeling in 

the simulation protocol as the localization accuracy when using incorrect Rbs in the 

EEG head model does not differ much from results obtained when using correct 

Rbs. In a recent study, Wang and Ren tested the effect of correct and incorrect Rbs 

using simulations of EEG data when adding background noise or not (Wang and 

Ren, 2013). They showed that despite using the same Rbs in the EEG head model 

for simulation and localization there still exist localization errors in EEG source 

localization. This error was caused by contamination of the EEG data with 

background noise. This supports our simulation protocol where we added real 

background noise to both EEG and MEEG data. 
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Figure 4.13. Test for robustness to model-error in simulation protocol. Plot showing the 
effect on localization accuracy when using correct Brain-to-skull conductivity (Rbs) ratio versus 
incorrect Rbs on EEG and MEEG data using cMEM method: EEG (black plus sign) and MEEG 
(green circle) (x-axis: AUC value for incorrect Rbs, y-axis: AUC value for correct Rbs). 

 

4.5.4. Application of cMEM fusion approach on clinical data 

For patient 1, we identified six left fronto-temporal spikes fulfilling our selection 

criteria. Source localization was performed on each of these single spikes and 

results from all the spikes were then averaged (supplementary Figure S4.1). Figure 

4.14 presents one of the single spike source localization results on EEG, MEG and 

MEEG data obtained using cMEM. For each spike, we identified two peaks in MEG 

(the first MEG peak occurring 26.7 ms before the second MEG peak) and one in 

EEG (second MEG peak was synchronous with the EEG peak). All single spike 

source localizations demonstrated propagation of activity from the left orbitofrontal 

region (at time point 1 = -26.7 ms, MEG peak) to the left temporal neocortex (time 

point 2 = 0 ms, EEG/MEG peak) in MEEG localizations. In MEG localizations, we 

observed the left orbitofrontal source along with a right fronto-mesial source at time 
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point 1. On the other hand, EEG localizations (at time point 2, EEG peak) found 

mainly a left temporo-polar source while presenting also a right temporal source. 

When averaging the localization of the six spikes (supplementary Figure S4.1), we 

found mainly the left orbito-frontal source in MEG at time peak 1, a left temporal 

neocortical source in EEG at time peak 2, while MEEG fusion described nicely the 

propagation between these two regions, suggesting the benefit of integrating EEG 

and MEG data using cMEM. The clinical seizure semiology of this patient 

suggested that the seizures originated from the left frontal lobe. Left fronto-

temporal IEDs were recorded in EEG and MEG. This propagation from orbito-

frontal to temporal neocortex identified by MEEG using cMEM is quite a plausible 

pattern of propagation for this type of epilepsy, following a well-known white-

matter connection pathway.  
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For Patient 2, we identified four left frontal spikes fulfilling our selection criteria. 

Single spike localizations were performed on these four spikes and then average of 

these four source localization results were obtained. In all the four single spike 

localization results (Figure 4.15), we noticed that EEG localization found a left 

frontopolar source, whereas, MEG localization presented mainly two sources: one 
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in the left inferior frontal gyrus and another in the inferior part of the left pre-central 

gyrus. However, MEEG fusion identified the main source in the inferior part of the 

left pre-central gyrus but with a slightly different spatial distribution than MEG pre-

central source. The average of four single spikes localization (supplementary 

Figure S4.2) reproduced similar results as seen in each single spike, suggesting 

good reproducibility. These results are rather interesting, since MEEG identified 

mainly a source in the inferior part of left pre-central gyrus, that was in perfect 

overlap with the FCD of the patient, whereas sources identified by EEG or MEG 

did not overlap with the anatomical lesion. The clinical seizure semiology of this 

patient also suggested an involvement of the inferior central region. 

Figure S4.1. Patient 1 - Average of six single spike localizations. (a) EEG and MEG signal 
for the respective spike type (vertical black line = 0 ms in time, red line is the respective time 
point for selected EEG or MEG peaks)). (b) EEG and MEG topographies for time point 1 (MEG 
peak) and time point 2 (EEG peak). (c) Source localization results using cMEM method for EEG 
data, MEG data and MEEG data. 
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Figure 4.15. Patient 2 - Single spike localization. (a) EEG and MEG signal for the respective 
spike type (vertical black line = 0 ms in time, red line is the respective time point for selected 
EEG or MEG peaks)). (b) EEG and MEG topographies for time point 1 (EEG peak and MEG 
peak). (c) Source localization results using cMEM method for EEG data, MEG data and MEEG 
data. 
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Figure S4.2. Patient 2 - Average of four single spike localizations. (a) EEG and MEG 
signal for the respective spike type (vertical black line = 0 ms in time, red line is the 
respective time point for selected EEG or MEG peaks)). (b) EEG and MEG 
topographies for time point T1 (EEG and MEG peak). (c) Source localization results 
using cMEM method for EEG data, MEG data and MEEG data. 
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4.6. Discussion 

The purpose of this study was to propose and validate a new symmetrical 

EEG/MEG fusion strategy using the MEM framework. We provided an extensive 

evaluation of MEEG fusion when localizing single, non-averaged, epileptic spikes, 

using either realistic simulations or clinical data. Our results demonstrated the 

robustness of MEM-based fusion approaches to low SNR conditions of single spike 

localization and when recovering spatio-temporal propagations of epileptic 

discharges.  

 

4.6.1. Why applying fusion to single spike localization? 

For EEG and MEG to detect IEDs from background activity, the underlying 

generators should be spatially extended (Mikuni et al., 1997; Tao, Baldwin, Hawes-

Ebersole, et al., 2007; Huiskamp et al., 2010). Although, single dipole fitting is 

currently the most common and clinically accepted method for the purpose of 

epileptic focus localization (Bast et al., 2004), distributed source models are more 

suitable for localizing the spatially extended generators of IED (Tanaka and 

Stufflebeam, 2014). When localizing IEDs, several epileptic spikes showing a 

similar morphology and field maps are usually averaged to improve the SNR and 

then source analysis is performed on the averaged spikes (Bast et al., 2004; Hara et 

al., 2007; Tanaka et al., 2010). Several studies (Bast et al., 2004, 2006) explored 

the pros and cons of averaging spikes and suggested that averaging will confound 

any important spatio-temporal information present in each individual spikes due to 

cancellation of signals. Therefore, spatio-temporal source analysis of single spike 

will be more appropriate to provide information on the spike onset and propagation 

pattern by creating a balance between increasing SNR and spike variability (Tanaka 

et al., 2014). Moreover, single spike analysis of combined EEG and MEG 

recordings is favorable to take full benefit of the complementarities between these 

two modalities (Pataraia et al., 2005).  
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4.6.2. Why cMEM based Fusion approach? 

With the present study, we were able to show that single spike analysis using 

cMEM on EEG/MEG fusion data improved the spatial accuracy of spatially 

extended source reconstruction. 

Symmetrical fusion of EEG and MEG within the MEM framework took place at 

three levels: 1) Normalization and concatenation of the data and lead field matrices, 

2) data driven parcellization, and 3) initialization of the probability of activation of 

each parcels. As a first step, the data and the lead field matrices of each modality 

were normalized by the standard deviation of the respective background activity, 

using the SNR transformation method described in (Fuchs et al., 1998) and (Ding 

and Yuan, 2013). Different normalization methods have been proposed in previous 

works for combining EEG and MEG data. The motive behind using the SNR 

transformation method in our study was to account for the different physical units 

of MEG (Tesla) and EEG (Volt) and for their different noise content. Therefore, 

this modality-specific normalization seems appropriate for multimodal fusion of 

EEG and MEG. Most of other EEG/MEG fusion approaches differed in the way 

data were normalized and concatenated before applying the inverse operator. Some 

of the proposed methods consist in channel-wise SNR transformation (Fuchs et al., 

1998), incorporation of intermodal noise covariance (Ko and Jun, 2010), 

minimization of mutual information for channel selectivity (Baillet et al., 1999), 

row normalization of lead-field matrices, weighted normalization (Hong et al., 

2013), and integration within a Bayesian framework (Henson et al., 2009b). Note 

that we have tested our simulations with both global and channel-wise SNR 

transformation and there is no significant difference in the final result of fusion. 

However, it is important to mention that a more accurate noise covariance model 

was taken into account during the MEM optimization process, rather than starting 

by a pre-whitening of the data as it is usually considered. In the present study, the 

noise covariance model was estimated as diagonal but with a different value for 

each channel, thus taking into account the noise level of each individual channel.   
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However, the second and third levels described in the present MEM fusion 

framework are specific to our proposed method. We believe that using fusion MSP 

scores ( MEEGMSP ) for the whole cortex parcellization and for the initialization of 

the probability of each parcel to be active played an important role in combining 

the complementary information from EEG and MEG in the fusion process. In 

equation (4-12), we estimated MEEGMSP  using a logical OR operator to integrate 

EEGMSP  and MEGMSP  maps. Note that other fusion strategies could have been 

investigated at this level as well, as for instance using minimized mutual 

information for each source (proposed in (Baillet et al., 1999)) to reduce the 

redundancy between the two modalities. 

 

4.6.3. Static simulations of realistic IEDs 

Using AUC metric to assess the detection accuracy of the source localization 

methods, we have demonstrated an overall higher spatial accuracy of MEEG 

localization when compared to the mono-modal localizations for all the evaluated 

methods (cMEM, MNE, dSPM and sLORETA). We also observed that the single 

spike localization of MEEG data improved the detection accuracy of the sources at 

all eccentricities when compared to EEG or MEG localizations (Figure 4.5). This 

suggests that deeper sources can be localized more accurately with the fusion due 

to the increase in the number of recording channels and fusion of complementary 

information from EEG and MEG. We indeed showed that EEG data were likely to 

be more sensitive to deeper sources than MEG data measured using gradiometers, 

whereas MEEG fusion provided most accurate results. 

SD seems an interesting metric for the evaluation of EEG, MEG and MEEG 

localizations. SD is influenced by both the spatial spread around the source and the 

presence of spurious sources. In Figure 4.4a, Figure 4.4b and Figure 4.8b, we 

noticed that all the methods provided overall lower SD values for MEEG 

localization when compared to MEG and EEG localizations while cMEM 

performed better than MNE, dSPM and sLORETA for all modalities. This indicates 
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that MEEG localizations presented less spatial spread of the solution around the 

true extent of the source or less spurious activities distant from the true source than 

EEG or MEG localizations. The simulation model used in this study involves a 

static patch of uniform activity, which has been extended to simulate different 

spatial extents of the source. In this model, the patch extends in all direction with 

uniform intensity, which is not fully realistic. This can indeed be a drawback, 

especially for MEG, when the patch included two opposing walls of sulcus leading 

to an increased amount of signal cancellation and low SNR signal. EEG simulated 

signals showed overall higher SNR due to the contribution of gyral sources. 

Therefore, most of the sources simulated in this study provided lower SNR for 

MEG simulated signals than for EEG simulated signals. This simulation bias 

explains the large variance observed in the distribution of SD values in MEG 

localizations; especially showing long tails towards large SD values (See one 

example in Figure 4.6). We also checked that most results involving large SD 

values corresponded to simulations exhibiting a low SNR (deep sources or large 

cancellation effect).  

 

4.6.4. Impact of the number of EEG electrodes for fusion 

Scalp EEG is sensitive to both radial and tangential components of the sources, 

whereas MEG is mainly sensitive to the tangential components of the sources 

(Hämäläinen et al., 1993). As a result, in addition to the spikes seen by both 

modalities, it is not rare to detect EEG spikes where no MEG spikes are visible and 

vice versa (Iwasaki et al., 2005; Knake et al., 2006; Ramantani et al., 2006; 

Kakisaka et al., 2013). Spike visible on EEG only are explained by the better 

sensitivity of EEG to deeper and radially oriented source. Spikes visible on MEG 

only are explained by the sensitivity of MEG to mainly tangentially oriented 

sources and less influence of the skull resistivity leading to better SNR of MEG 

signal for sources in superficial, neocortical areas (Goldenholz et al., 2009; 

Huiskamp et al., 2010; Kakisaka et al., 2013). It would therefore be important to 

consider fusion of both modalities even when the spike is detectable on only one of 
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the two modalities (Zijlmans et al., 2002). With fusion, we could probably improve 

these conditions where the spike is at low SNR in one of the modality but this was 

out of the scope of this study and will be considered in further studies. Difference 

in the EEG and MEG source analysis results can also be explained by the difference 

in the number of measurement sites between EEG and MEG. Most MEG systems 

are equipped with more than 100 sensors uniformly distributed around the whole 

head, which provides high spatial sampling. On the other hand, when recording 

EEG data only, high density montages involving 64, 128 or 256 channels are 

needed to ensure reliable EEG source analysis (Lantz and Grave de Peralta, 2003; 

Babiloni et al., 2009; Brodbeck et al., 2011; Yamazaki et al., 2013). However, most 

clinical centers commonly use the conventional 10-20 EEG system for recording 

epileptic patients, which lacks the high spatial sampling required for the improved 

localization accuracy in EEG (Zelmann et al., 2013).  

Analysis of combined EEG and MEG measurements from simultaneous recording 

was suggested to bring additional information missed by either modalities (Stefan 

et al., 1990; Fuchs et al., 1998; Iwasaki et al., 2005; Sharon et al., 2007; Babiloni 

et al., 2009) But, recording simultaneous EEG and MEG data is time consuming to 

set-up many EEG electrodes and can be associated with some discomfort for the 

subject wearing the EEG cap inside the MEG helmet, thus limiting the duration of 

the acquisition. We were able to show that MEEG localization using cMEM was 

quite robust to the number of EEG electrodes involved, reaching excellent 

performances (median AUC >0.8 and median SD values <10) even when only 20 

EEG electrodes were added to the 272 MEG sensors (Figure 4.8). These results 

suggest that the addition of only 20 EEG electrodes to the 272 MEG sensors, 

making sure that these electrodes were covering the lower aspects of both temporal 

lobes, will be sufficient to bring relevant information for the fusion, thus providing 

localization with good spatial accuracy. However, the example in Figure 4.7b and 

Figure 4.9 showed that all the 54 EEG electrodes were needed for recovering the 

deeper aspects of the source even in fusion. This could be explained by the fact that 

MEG performs poorly in detecting deep source locations in medial areas such as 
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cingulate gyrus (Molins et al., 2008). Therefore, for most sources only 20 EEG 

electrodes in the fusion were sufficient but for few other sources the addition of 

well-placed EEG electrodes might be needed to cover the sites of interest. This 

raises an important question whether what are the best positions of EEG electrodes 

such that EEG’s information about the deeper and radially oriented sources can be 

effectively added to the MEG information in fusion. This point will be addressed 

in further details in a subsequent study but was out of the scope of this one.  

 

4.6.5. Spatio-temporal simulations of realistic IEDs 

Assessing neuronal propagation during interictal spikes may take benefit from 

spatio-temporal source analysis of EEG and MEG data (Hara et al., 2007; Tanaka 

et al., 2010, 2014). Using dSPM (Shiraishi, Stufflebeam, et al., 2005; Hara et al., 

2007) and MNE (Tanaka et al., 2014), previous studies investigated the spatio-

temporal source reconstruction of propagated MEG spikes. Although they based 

their results on averaged spikes localization due to the difficulty in localizing the 

low SNR individual spikes, it is more reliable to perform single spike localization 

to recover accurate information on the spike onset and propagation (cf. Section 

4.6.1). In addition, by combining simultaneously occurring EEG and MEG spikes, 

the SNR for individual spikes can be increased and complementary information 

from both modalities will lead to better representation of the propagation patterns 

(Bast et al., 2004). Therefore, in the present study, simulations of two spatially 

extended propagating sources, with overlapping time courses, were used to assess 

the performance of MEEG localization using cMEM. We observed that MEEG 

localization using cMEM provided the highest detection accuracy for both source 

1 and source 2 (Figure 4.10). Because of the overlap of topographies of the two 

sources in EEG, detection accuracy of source 2 was lower than source 1 in EEG 

localizations for both MNE and cMEM. On the other hand, MEG localizations 

provided similar detection accuracy for both sources due to smaller overlap 

between the topographies of the two sources. MEEG localization using MNE 

behaved similarly to EEG localization in detecting source 2 indicating the influence 
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of spatial blurring effect of EEG in the fusion. Interestingly, MEEG localization 

using cMEM showed good performance in separating the two sources with the help 

of additional key information brought by MEG that was nicely taken into account 

with the MEM fusion framework (Figure 4.10 and Figure 4.12). This shows that 

the fusion of EEG and MEG within the MEM framework is able to improve upon 

the spatial resolution of EEG localization due to the complementarities of the two 

modalities.  

In this study, through Shape Error metric (Section 4.4.5d), cMEM reconstructed 

time courses were evaluated for the first time. cMEM being a non-linear 

localization procedure applied independently and iteratively on each time sample 

of the data, the reconstruction of smooth time courses was not obvious, as opposed 

to MNE that consists in applying a linear projector to the data. While MNE provides 

excellent accuracy in reconstructing the shape of the time courses of spatio-

temporal overlapping sources, it was an important finding that cMEM estimates for 

MEEG data were able to provide very good accuracy as well (Figure 4.11).  

The main interest of this study was the fusion of EEG and MEG data within the 

MEM framework and comparison of cMEM method with MNE as the reference 

method was sufficient for this study. To address the issue of bias towards superficial 

sources known in MNE, we also included in our evaluation two noise-normalized 

variants of MNE: dSPM and sLORETA. Based on the results on static simulations, 

we concluded that despite the depth weighting property of dSPM and sLORETA, 

cMEM still provided an overall better spatial accuracy than dSPM and sLORETA, 

especially in the context of recovering source spatial extent. We did not provide a 

comparison of the cMEM method with the previously compared Hierarchical 

Bayesian methods (namely, Independent and Identically Distributed model-IID and 

spatially Coherent model - COH) as proposing MEEG fusion in this Bayesian 

framework was not the purpose of the study. However, in a recent paper from our 

group (Heers et al., 2015), we demonstrated the excellent performance of cMEM 

when compared to IID and COH, evaluating EEG/MEG source localization of IEDs 

on 15 patients, using intracranial EEG as a reference. Whereas we are fully aware 
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that analysis using realistic simulations suffers from some bias, these recent results 

demonstrated the applicability of our methods on real data. Moreover, following a 

similar strategy than the one proposed by (Wang and Ren, 2013), we showed that 

EEG and MEEG source localization using cMEM method was robust to the model-

error introduced in the simulation protocol, and especially errors in brain-to-skull 

conductivity ratios. Currently, studies are in progress (Chowdhury et al., 2014) 

based on improved simulation paradigms: realistic simulations generated by neural 

mass model (Cosandier-Rimélé et al., 2010) and comparison of cMEM with other 

non-linear method such as 4-ExSo-MUSIC (Birot et al., 2011). Different variants 

of the MEM approach are now available for users as a toolbox (namely, BEst: Brain 

Entropy in space and time) in the Brainstorm software (Tadel et al., 2011), and the 

tutorial introducing this toolbox can be found here 9. 

 

4.6.6. Performance of fusion on clinical data 

A detailed clinical validation of cMEM fusion was out of our scope and will be 

considered for future studies. However, we illustrated the behavior of cMEM fusion 

on two clinical cases. For patient 1, MEEG localization found mainly the 

propagation of activity from left orbito-frontal to left temporal neocortex when 

MEG found mainly the orbito frontal and EEG found the temporal neocortex 

activity. This is interesting to see that we were able to find clear propagation 

pathway between the frontal lobe and the ipsilateral temporal lobe only when using 

MEEG localizations. Such reproducible findings on few single spikes suggest a 

good accuracy of the fusion cMEM method. However, for the purpose of providing 

clinically useful results, the consensus between many spikes should be certainly 

investigated. Recently, (Aydin, Vorwerk, Duempelmann, et al., 2014) showed that 

combined EEG-MEG source analysis reveals the propagation pathways in 

complete agreement to stereo –EEG (sEEG), while single modality EEG or MEG 

                                                 

9 http://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst 
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might only be sensitive to complementary parts of the epileptic activity. A study 

using Diffusion Tensor Imaging (Lin et al., 2008) described the connection between 

the anterior temporal lobe and the inferior frontal lobe to be mediated by the 

uncinate fasciculus (Makris and Pandya, 2009); thus supporting a well-known 

anatomical substrate for the propagation patterns identified for patient 1. Generally 

ipsilateral cortical propagation occurred within 30 ms (Zumsteg et al., 2006); which 

was also what we noticed in the propagation pattern presented in patient 1 (within 

26.7 ms). It was shown in (Tanaka et al., 2010) that spatio-temporal analysis of 

averaged MEG data provides more accurate information on spike propagation than 

averaged EEG data. This was consistent with our findings in patient 1, even though 

we did not localize averaged data but we presented the average of six single spike 

localization results. The propagation pattern was not found by EEG localization but 

both the primary (orbitofrontal) and secondary (temporal neocortex) source were 

found in the average of MEG localization results (supplementary Figure S4.1). It 

was shown in (de Jongh et al., 2005) that the SNR of MEG is higher than EEG for 

frontal areas so MEG yields more spikes than EEG for frontal lobe epilepsy. The 

lower SNR spikes in EEG for frontal areas may explain why it was difficult to 

localize the orbito-frontal onset when using EEG only. 

For Patient 2, MEEG using cMEM identified mainly a source in the inferior part of 

the left pre-central gyrus, which was in perfect overlap with the FCD of the patient. 

On the other hand, EEG and MEG localization identified mainly frontal sources 

which were probably secondary sources. A source closely related to the FCD was 

identified with MEG only on single spike localization. However, only MEEG 

enhanced the generators in the lesion as the primary source with largest amplitude. 

(Bast et al., 2004) investigated nine patients with localization-related epilepsy and 

FCD, and showed that it was important to average the EEG and MEG spikes from 

lesional zone to obtain an accurate localization of the MRI-defined lesion (Bast et 

al., 2004). (Heers et al., 2012) showed that the localization of averaged interictal 

MEG spikes was useful in locating subtle MR imaging abnormalities showing peri-

insular lesion. (Hisashi Itabashi, 2014) studied six patients with FCD and showed 
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that source localization of averaged EEG and MEG spikes can confirm the 

existence of abnormalities associated with FCD based on MR imaging. On the other 

hand, we showed that localization of single spike of MEEG data found the origin 

of the spike consistently within the FCD lesion in patient 2. This confirms the 

advantage of localization of combined EEG and MEG data even in low SNR 

conditions. This is also in complete agreement with a recent study (Aydin et al., 

2015), which investigated the contribution of combined EEG/MEG in comparison 

to single modality EEG or MEG source analysis of the epileptic activity using a 

dipole scanning approach.  They validated their results with sEEG, where no major 

dipole cluster was noticeable neither with EEG nor with MEG around the active 

contacts in sEEG, while there were clear clusters around the active contacts in 

MEEG. They showed that MEEG localizations were not simply the union of EEG 

and MEG results but a rather complex interplay of both modalities compensating 

their relative shortcomings.   

 

4.7. Conclusion 

In this paper, we proposed symmetrical fusion of EEG and MEG within MEM 

framework as a novel method for localizing the onset and propagation patterns of 

spatially extended generators of IEDs. Effective integration of the complementary 

information from EEG and MEG in cMEM was demonstrated based on realistic 

simulations and illustrated on real epileptic data. Overall, for both mono-modal and 

multimodal data we noticed better performance of cMEM than MNE, dSPM and 

sLORETA in detecting the spatially extended and propagating sources. Our 

findings suggest that it is better to perform EEG-MEG fusion when localizing 

single spikes using cMEM: 1) To yield better recovery of the source spatial extent. 

2) To improve the sensitivity to source depth. 3) To represent better the spatio-

temporal propagation patterns of the underlying generators of epileptic discharges. 

We also showed that the addition of only few EEG electrodes brings additional 

information missed by MEG, in order to allow an optimal EEG-MEG fusion. 
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4.9. Appendix A  

AUC estimation: To assess how a source localization method could be sensitive 

to the spatial extent of the underlying generator, AUC metric was adapted by 

(Grova et al., 2006) to fit the context of a distributed source model, in order to take 

into account that there are quite more inactive dipolar sources than active sources 

in our simulation schemes.  

This detection accuracy index is estimated when the Ground truth is available, 

where ROC curves are generated by plotting the sensitivity against the false 

positive detection rate for different detection thresholds, ( [0,1])  . Normalized 

energy for both the estimated and the simulated current distribution were used to 

quantify the amount of true positive (TP), true negative (TN), false negative (FN), 

and false positive (FP) for each threshold  . 

 ( ) ( ) ( ( ) ( ))sensitivity TP TP FN       

 ( ) ( ) ( ( ) ( ))specificity TN TN FP       

However, to interpret the area under the ROC curve as a detection accuracy index, 

one should provide the same number of active and inactive sources to the ROC 

analysis. Considering the p dipolar sources on the cortical surface, only few dipoles 

were actually active (pa) compared to the large number of inactive dipoles (p - pa). 

Therefore, selection of same number of inactive sources as the active sources is 

required. This was done by randomly selecting inactive sources among the p - pa 
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sources located within the immediate spatial neighborhood of the simulated source 

(AUCclose) or among the local maxima of the reconstructed activity located far from 

the simulated source (AUCfar). Final AUC index was then computed as a mean of 

the AUCclose and AUCfar. 
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5. Chapter 5  Manuscript 2: Complex patterns of 

spatially extended generators of epileptic 

activity: Comparison of source localization 

methods cMEM and 4-ExSo-MUSIC on High 

Resolution EEG and MEG data  

 

5.1. Context 

In chapter 4, we demonstrated the ability of cMEM source localization to accurately 

reconstruct the spatio-temporal propagation patterns of the underlying generators 

of epileptic activity based on simple simulation model and on two examples of 

clinical data. This interesting finding motivated us to further explore the behavior 

of cMEM on more realistic simulations mimicking complex patterns of epileptic 

discharges. A fair comparison between EEG and MEG localization entails the use 

of densely sampled recording channels and realistic forward models during EEG 

and MEG source analysis (chapter 3). Besides, the performance of cMEM 

algorithm has never been studied when dealing with high resolution EEG and MEG 

data or on complex patterns of IEDs. Furthermore, it is essential to compare the 

performance of cMEM with another advanced source localization algorithm that 

has also been established for its ability to localize the spatially extended generators 

of IEDs. In line with this, 4-ExSo-MUSIC (4th order Extended Source Multiple 

Signal Classification) is one such distributed source localization algorithm that was 

implemented by the research team UMR INSERM U1099, LTSI (Laboratoire de 

Traitement de l'Image et du signal) in Université de Rennes 1, France. This led to 

the next study of this dissertation, which was a collaborative study with the LTSI 

team. With their expertise (Dr. Isabelle Merlet and Dr. Laurent Albera, the main 

collaborators for this project) in spatio-temporal simulations based on neural mass 
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model, we were able to generate fully realistic simulations mimicking different 

patterns of IEDs. 

Therefore, manuscript 2 presents this collaborative study involving a quantitative 

assessment of cMEM and 4-ExSo-MUSIC using a highly realistic simulation 

pipeline that combines a biophysical distributed model with a computational neural 

mass model to generate simultaneous high resolution EEG and MEG signals 

mimicking normal background and epileptic discharges.   

This manuscript was published as (R.A. Chowdhury, I. Merlet, G. Birot, E. 

Kobayashi, A. Nica, A. Biraben, F. Wendling, J.M. Lina, L. Albera, C. Grova. 

Complex patterns of spatially extended generators of epileptic activity: 

Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high 

Resolution EEG and MEG data, NeuroImage, August 2016 (In Press)). 

 

5.2. Abstract 

Electric Source Imaging (ESI) and Magnetic Source Imaging (MSI) of EEG and 

MEG signals are widely used to determine the origin of interictal epileptic 

discharges during the pre-surgical evaluation of patients with epilepsy. Epileptic 

discharges are detectable on EEG/MEG scalp recordings only when associated with 

a spatially extended cortical generator of several square centimeters, therefore it is 

essential to assess the ability of source localization methods to recover such spatial 

extent. 

In this study we evaluated two source localization methods that have been 

developed for localizing spatially extended sources using EEG/MEG data: coherent 

Maximum Entropy on the Mean (cMEM) and 4th order Extended Source Multiple 

Signal Classification (4-ExSo-MUSIC). In order to propose a fair comparison of 

the performances of the two methods in MEG versus EEG, this study considered 

realistic simulations of simultaneous EEG/MEG acquisitions taking into account 

an equivalent number of channels in EEG (257 electrodes) and MEG (275 sensors), 

involving a biophysical computational neural mass model of neuronal discharges 
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and realistically shaped head models. cMEM and 4-ExSo-MUSIC were evaluated 

for their sensitivity to localize complex patterns of epileptic discharges which 

includes (a) different locations and spatial extents of multiple synchronous sources, 

and (b) propagation patterns exhibited by epileptic discharges. Performance of the 

source localization methods was assessed using a detection accuracy index (Area 

Under receiver operating characteristic Curve, AUC) and a Spatial Dispersion (SD) 

metric. Finally, we also presented two examples illustrating the performance of 

cMEM and 4-ExSo-MUSIC on clinical data recorded using high resolution EEG 

and MEG. 

When simulating single sources at different locations, both 4-ExSo-MUSIC and 

cMEM exhibited excellent performance (median AUC significantly larger than 0.8 

for EEG and MEG), whereas, only for EEG, 4-ExSo-MUSIC showed significantly 

larger AUC values than cMEM. On the other hand, cMEM showed significantly 

lower SD values than 4-ExSo-MUSIC for both EEG and MEG. When assessing the 

impact of the source spatial extent, both methods provided consistent and reliable 

detection accuracy for a wide range of source spatial extents (source sizes ranging 

from 3 to 20 cm² for MEG and 3 to 30 cm² for EEG). For both EEG and MEG, 4-

ExSo-MUSIC localized single source of large signal-to-noise ratio better than 

cMEM. In the presence of two synchronous sources, cMEM was able to distinguish 

well the two sources (their location and spatial extent), while 4-ExSo-MUSIC only 

retrieved one of them. cMEM was able to detect the spatio-temporal propagation 

patterns of two synchronous activities while 4-ExSo-MUSIC favored the strongest 

source activity.  

Overall, in the context of localizing sources of epileptic discharges from EEG and 

MEG data, 4-ExSo-MUSIC and cMEM were found accurately sensitive to the 

location and spatial extent of the sources, with some complementarities. Therefore, 

they are both eligible for application on clinical data. 
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5.3. Introduction  

ElectroEncephaloGraphy (EEG) and MagnetoEncephaloGraphy (MEG) have been 

widely used as a non-invasive technique to identify brain activation patterns 

associated with normal or pathological processes. Due to their high temporal 

resolution, these techniques are particularly appropriate for following the time 

course of activation during fast transients such as evoked potentials, epileptic 

discharges or specific oscillatory patterns (Lopes da Silva, 2013). In the particular 

context of epilepsy, interictal epileptic discharges (IEDs), recorded between 

seizures with MEG and EEG in the form of spikes, spike and waves, sharp waves, 

provide important information on the spatial organization of the epileptogenic 

network, provided that they can be localized accurately. It is now admitted that 

IEDs recruit a rather large area of cortex in a quasi-synchronous manner.  Thus, to 

be detected on surface recordings, a minimum area of 4−8 cm2 for EEG (Cooper et 

al., 1965; Ebersole, 1997a; Merlet and Gotman, 1999; Tao, Baldwin, Hawes-

Ebersole, et al., 2007; von Ellenrieder et al., 2014b) and of 3−4 cm2 for MEG (Hari, 

1990; Mikuni et al., 1997; Oishi et al., 2002) has been suggested as activated during 

IEDs. Therefore, not only is it important to localize the origin of IEDs but also to 

recover their spatial extent and estimate the temporal course of their activity. This 

task can become particularly challenging when several distributed regions with 

highly synchronized activity are simultaneously active or are involved during a 

propagation process. 

To meet this challenge, source localization approaches continue to be developed 

over the past 40 years and have helped to better define the spatial properties of the 

regions underlying EEG or MEG transients. The reconstruction of spatially 

extended cortical sources entails the use of distributed source models, as  equivalent 

current dipole modeling can be misleading for large sources (Kobayashi et al., 

2005). Several studies have proposed to localize extended cortical patches using 

beamformer (Limpiti et al., 2006; Hillebrand and Barnes, 2011), probabilistic 

approaches based on maximum entropy (Amblard et al., 2004; Grova et al., 2006; 

Chowdhury et al., 2013), subspace-based approaches (Birot et al., 2011), tensor-
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based techniques (Becker et al., 2015), and methods using sparsity in a transformed 

domain (Ding, 2009a; Zhu et al., 2014). Several of these methods showed 

sensitivity to source spatial extents when assessed using controlled simulations 

(Jerbi et al., 2002; Kincses et al., 2003; Limpiti et al., 2006; Ding, 2009a; Cheyne 

et al., 2010; Huiskamp et al., 2010; Birot et al., 2011; Bouet et al., 2012; Chowdhury 

et al., 2013; Lina et al., 2014; Becker et al., 2015) and/or when applied on real 

epileptic activity (Cheyne et al., 2010; Huiskamp et al., 2010; Jung et al., 2013; Zhu 

et al., 2013; Chowdhury et al., 2015; Grova et al., 2016; Heers et al., 2016).  Among 

them, two approaches, developed separately by our two research teams, have been 

quantitatively studied for their ability to localize spatially extended sources of 

epileptic events, based both on simulations and real EEG and/or MEG data. The 

first method is a probabilistic approach based on maximum entropy, known as 

coherent Maximum Entropy on the Mean (cMEM), which employs a full brain 

parcellization model by incorporating two spatial priors: Data Driven Parcellization 

(DDP) and spatial coherence prior to model locally spatially smooth cortical 

parcels. Then, based on the state of activation of the parcels, cMEM is able to switch 

off some parcels while creating contrast of source intensities among other parcels. 

The method takes advantage of whole cortex parcellization and spatial smoothness 

constraint to properly recover the spatial extent of sources (Amblard et al., 2004; 

Grova et al., 2006; Chowdhury et al., 2013; Grova et al., 2016; Heers et al., 2016). 

The second method is a subspace-based MUSIC-like approach, known as 4-ExSo-

MUSIC (4th order Extended Source Multiple Signal Classification), specifically 

adapted to localize extended sources by exploiting the strong synchronization of 

dipoles within each extended source (Birot et al., 2011). The use of 4th order 

statistics in 4-ExSo-MUSIC offers robustness with respect to Gaussian noise and 

modeling errors. In some recent studies (Chowdhury et al., 2013, 2015; Grova et 

al., 2016; Heers et al., 2016), it was shown that cMEM is able to recover the spatial 

extent and the propagation pattern of sources more accurately than Minimum Norm 

Estimate (MNE) (Hämäläinen and Ilmoniemi, 1994), standardized Low Resolution 

brain Electromagnetic Tomography (sLORETA) (Pascual-Marqui, 2002), dynamic 
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Statistical Parametric Mapping (dSPM) (Dale et al., 2000) and various hierarchical 

Bayesian approaches (Friston et al., 2008). In other separate studies (Birot et al., 

2011; Becker, Albera, Comon, Haardt, et al., 2014a), 4-ExSo-MUSIC estimated the 

spatial extent of generators of epileptic activity with more accuracy than other 

MUSIC-based approaches, sLORETA, CHAMPAGNE (Wipf et al., 2010), 

Minimum Current Estimate (MCE) (Uutela et al., 1999), or Mixed Norm Estimate 

(MxNE)  (Ou et al., 2009).  

In the present contribution, our first objective was to carefully compare these two 

methods. To do so, we used a common ground-truth well-controlled simulation 

environment involving complex patterns of source configurations in particular with 

respect to the number of sources, their spatial properties, and their level of 

synchronization. To this end, we used a highly realistic simulation pipeline that 

combines a biophysical distributed dipole source model with a computational 

neural mass model (Cosandier-Rimélé et al., 2008) to generate simultaneous EEG 

and MEG synthetic signals mimicking normal background and epileptic discharges. 

Most of the studies that have compared MEG and EEG on clinical data, were 

acquired using fewer EEG electrodes than MEG sensors (Barkley and 

Baumgartner, 2003; Malmivuo, 2012; Lopes da Silva, 2013). These studies have 

demonstrated that MEG localization was more accurate. However, some simulation 

studies have suggested higher accuracy of EEG localization when an equivalent 

number of EEG and MEG channels are used (Liu et al., 2002; Song et al., 2015). 

The advent of dense array EEG caps and of source estimation techniques resulted 

in a higher spatial accuracy (Ryynanen et al., 2006; Babiloni et al., 2009; Brodbeck 

et al., 2011; Gavaret et al., 2015). Other studies also demonstrated that 

improvement in terms of localization can be attained when using a high density 

scalp electrodes and realistic geometry head models (Lantz and Grave de Peralta, 

2003; Wang et al., 2011; Birot et al., 2014; Klamer et al., 2015). Therefore, to get 

the best of each modality simultaneously, the present study makes use of 

realistically simulated high resolution EEG (HR-EEG) and MEG data while taking 
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into account an equivalent number of channels, realistically shaped head model and 

simultaneous recordings.  

The outline of the paper is as follows. First, introduction of the two source 

localization methods (cMEM and 4-ExSo-MUSIC) is proposed, followed by the 

description of the realistic simulation dataset. Then, an explanation of the 

evaluation process and the performance criteria to assess the source localization of 

both the methods is given. This is followed by the description of the clinical dataset. 

Then the results, discussion and conclusion are provided. 

 

5.4. Methods and materials 

The goal of this study was to compare the performance of the cMEM and 4-ExSo-

MUSIC algorithms on different patterns of IEDs seen in HR-EEG and MEG data, 

mainly to compare the ability of the methods: 

 To recover the location and spatial extent of the spatially extended 

generators of IEDs. 

 To identify the propagation patterns exhibited by IEDs. 

 To handle multiple sources of IEDs with different levels of synchrony.  

 

5.4.1. Source localization algorithms 

a. EEG/MEG inverse solution using distributed source model 

It is commonly admitted that the EEG/MEG signals recorded at the head surface 

mostly reflect the activity of pyramidal cells within the cortex. These activities can 

be modelled by current dipoles distributed along the cortical surface, and oriented 

orthogonally to the cortical surface (Dale and Sereno, 1993). Using this anatomical 

constraint, the relationship between source amplitudes and EEG/MEG 

measurements can be expressed by the following linear model: 

( ) ( ) ( )t t t= +m G j e  (5-1) 
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where m(t) is a q-dimensional vector of the EEG/MEG signal measured with q=275 

MEG sensors or 257 EEG electrodes at time t. e(t) models an additive measurement 

noise at time t. j(t) is an r-dimensional vector standing for the unknown current 

density along the cortical surface (r≈8000: unknown dipolar moment amplitudes) 

at time t. G is the (qxr) lead field matrix obtained by solving the forward problem 

to estimate the contribution of each dipolar source on the sensors. 

To describe cMEM and 4-ExSO-MUSIC that are statistical algorithms, we 

introduce a random vector m (respectively j and e) to model the ߬ recorded samples 

{m(t)} (respectively {j(t)} and {e(t)}). According to equation (5-1), m can be 

related to j and e as follows: 

m = j+eG  (5-2) 

Within the distributed dipole layer, defined as the source space , each dipole is 

characterized by its location  and its current density j(). Thus, to describe the 

4-ExSo-MUSIC algorithm (Section 5.4.1c) equation (5-2) is reformulated as: 

( ) j( )
 

 


 m eg  (5-3) 

where j() is a component of vector j representing the activity of a dipole at location 

 and g() is a column vector of matrix G representing the contribution of a unitary 

dipole located at  to the set of EEG/MEG sensors. 

 

b. cMEM algorithm  

In the MEM framework (Amblard et al., 2004), j being the r-dimensional 

continuous random variable that describes the dipole intensities, this variable has 

the probability distribution ( ) ( ) dp p dj j j  where j ∈ Թr. 

To regularize the inverse problem, the MEM framework incorporates prior 

information on j in the form of a reference distribution ( )d j . Then, the Kullback 

Leibler divergence or ν-entropy defined by: 
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( )
( ) log ( ) ( ) log( ( )) ( )

( )

dp
S dp dp f f d

d 


 
    

 
 
j j

j
j j j j

j
 (5-4) 

measures the amount of information brought by the data with respect to the prior 

d , where f is a ν-density of dp  defined as, ( ) ( ) ( )dp f dj j j . Being a pseudo-

distance between the reference distribution d  and any ν-density dp , this entropy 

is always negative. 

In order to introduce a data fit constraint, let us denote m  as the set of probability 

distributions on j that explains the data on average: 

                                mdp :  
 

0dp 
    

 

j
m

e
qG I  (5-5) 

where [ ] ( )dp dp  j j j


 is the mathematical expectation of j with respect to the 

probability distribution dp , Iq is a (qxq) identity matrix. 

Then, the MEM solution consists in selecting ˆdp  in ԧm that maximizes the ν-

entropy, thus choosing the distribution fulfilling the data fit constraint that is the 

closest (in terms of Kullback Leibler divergence) to the reference distribution dν : 

ˆ argmax ( )
mdpdp S dp   (5-6) 

Such a regularization framework allows us to estimate the MEM solution through 

a non-linear optimization of a convex function within a q-dimensional space, 

iteratively for each time sample. This solution is unique and describes only what 

we “know”: the prior knowledge encompassed in the reference measure dν , and 

the measurements {m(t)} that define the space ԧm formalizing our data fit constraint 

(equation (5-5)). During the MEM optimization process, the noise covariance 

model is estimated as a diagonal matrix with a different value for each channel; 

thus taking into account the noise levels of each individual channel. 

The MEM estimate of the source intensities ĵ  is then computed as the mathematical 

expected value of the distribution ˆdp : 
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ˆ
ˆ [ ]dp j j  (5-7) 

Definition of the reference distribution dν : MEM relies on its inherent flexibility 

of introducing constraints or knowledge about the sources through the definition of 

the reference distribution d . To do so, we considered brain activity to be 

organized into K cortical parcels, each parcel showing a homogeneous activation 

state (Amblard et al., 2004). We used a Data Driven Parcellization (DDP) method 

to perform full parceling of the tessellated cortical surface into non-overlapping 

parcels (Lapalme et al., 2006). This spatial parcelling is driven by the Multivariate 

Source Pre-localization (MSP) technique (Mattout et al., 2005), which is a 

projection method providing a coefficient for each dipolar source characterizing its 

contribution to the data. For more details on the  DDP method please refer to 

(Chowdhury et al., 2013). 

Each cortical parcel k is characterized by an activation state Sk, describing if the 

parcel is active or not. Assuming a collection of mutually independent parcels, the 

reference distribution d  was defined as a factorization of the joint probability 

distribution of the K parcels: 

        
1

 1  ,
K

k
k k k k k kd d   



    j j μ Σ j j  (5-8) 

where  S 1k kProb    is the probability of the kth parcel to be active. kj  denotes 

the random vector modeling the intensities of the rk sources in the kth parcel.   

refers to the Dirac distribution allowing to “shut down” inactive parcels when 

0S k .  ,k kμ Σ  is a Gaussian distribution modeling the intensities of the kth 

parcel when active )1S( k , where kμ  and kΣ  represent the mean and the 

covariance, respectively, of the rk sources within the kth parcel. For more details on 

MEM regularization technique refer to Appendix A. 

In the present study, we considered the variant of MEM algorithm called coherent-

MEM (cMEM) implementation, as described in (Chowdhury et al., 2013). In 

cMEM, additional constraint of local spatial smoothness in each parcel was 
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introduced using diffusion-based spatial priors (Friston et al., 2008) in the 

initialization of the source covariance of every parcel ( kΣ  ${Sigma}_{k}$). This 

diffusion-based spatial prior is constructed using the Green’s function of the 

adjacency or spatial connectivity matrix defined over the geodesic cortical surface 

(Harrison et al., 2007). The mean intensity of every parcel ( kμ ) was initialized to 

zero. The probability of activation ( k ) of each parcel k was initialized at each time 

sample as the median of the MSP coefficients of all the rk sources within the kth 

parcel. The spatial neighborhood order considered for the parcels has been fixed to 

a scale of 4, leading to approximately K=200 parcels of size ≈2.5 cm2. Please refer 

to (Chowdhury et al., 2013) for further details on the initialization of these 

parameters. 

MEM approach is now available for users as a toolbox (namely, BEst: Brain 

Entropy in space and time) in the Brainstorm software (Tadel et al., 2011) and the 

tutorial introducing this toolbox can be downloaded (“Tutorials/TutBEst - 

Brainstorm,” 2015). 

 

c. 4-ExSo-MUSIC algorithm 

4-ExSo-MUSIC is a subspace-based method which aims at extending the classical 

MUSIC method (Schmidt, 1986; Mosher et al., 1992) to the case of distributed 

sources by means of higher order statistics (Birot et al., 2011). More particularly, 

the sources to be localized are assumed to exhibit dipoles with highly synchronized 

activities (Birot et al., 2011). This property is justified by the fact that EEG/MEG 

signals, to be detectable on scalp, arise from the summation of highly synchronized 

neuronal assemblies over a spatially extended region.  

Then, the EEG/MEG data can be considered as the sum of the epileptic activities 

arising from the subset   and normal background activity arising from  \, 

such that the EEG/MEG vector is represented as follows: 
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\

( ) j( ) ( ) j( ) ( ) j( )
     

     
  

      m e ε
Ω

g g g  (5-9) 

where the sum over   models the contribution of the epileptic activity, i.e. the 

sources of interest while the sum over  \  models the contribution of the 

background activity, i.e. the sources of non-interest. In addition, let the term ε  

model the physiological background and the instrument noise, which can be seen 

as a Gaussian random vector of unknown spatial covariance and independent from 

the epileptic sources. 

4-ExSo-MUSIC aims at estimating the spatial support  of the generators of 

epileptic activity. 4-ExSo-MUSIC reformulates the spatial support  as the union 

of B circular shaped disks b, where 1 ≤ b ≤B. The search for this spatial support 

 is actually formulated within a grid containing pseudo-disks of different size over 

the whole cortical surface. Since the source space is a triangular mesh of the cortical 

surface, these pseudo-disks of different size were constructed around each vertex 

on the cortical surface. Each disk was composed of a maximum of 500 adjacent 

vertices. This set of pseudo-disks of different size for every vertex defines the so-

called 4-ExSo-MUSIC grid. The model assumes that all dipolar sources belonging 

to one disk b should exhibit the same current density jb (and consequently the 

same time course). Then, equation 9 can be reformulated as follows: 

1 1
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B B
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where the bth column vector of the mixing matrix H() and the bth component of 

the source random vector 1[ j ,..., j ]T
B j are h(b) and jb, respectively. 

Each set of contiguous distinct disks b represents a so-called Extended Source 

(ExSo). Moreover, 4-ExSo-MUSIC relies on the assumption that the current 

densities of the ExSos do not follow a Gaussian distribution, which is an 

appropriate assumption for most of the signals of interest in EEG/MEG such as 
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interictal epileptic signals (Nurujjaman et al., 2009). Therefore, the method 

considers the 4th order cumulants (and more particularly their matrix form called 

quadricovariance) of m to reduce the penalizing effects of the random vector noise 

ε (i.e. the background cerebral activity and the instrument noise) that can be seen 

as a Gaussian and spatially correlated noise. The important property exploited here 

is that the 4th order cumulant of a Gaussian distribution is zero, therefore one can 

hypothesize that 4-ExSo-MUSIC would be robust with respect to the presence of 

background activity and instrumental noise. 

Exploiting the linear model proposed in equation 10, the quadricovariance matrix, 

C4,m, of the data can be written as a function of  as follows: 

2 2( ) ( )
T

4,m 4, j     C H C H  (5-11) 

where H()2 is the Kronecker product of the matrix H() by itself and C4,j is the 

quadricovariance matrix of j . Note that there is no more contribution from the 

noise ε  since its quadricovariance is zero. Therefore, the 4th order signal subspace 

of interest, defined as span{H()2}, can be directly estimated from the 

quadricovariance matrix C4,m since span{H()2} = span{C4,m}. 

To do so, the 4th order signal subspace of interest is obtained from an eigenvalue 

decomposition of C4,m. 4-ExSo-MUSIC then exploits the fact that the vector 

h(b)2 must lie in the 4th order signal subspace computed from C4,m. 

The spatial support 1 b B b     of epileptic dipoles was identified by 

concatenating all the candidates b such that h(b)2 belongs to the 4th order signal 

subspace. To do so, the 4-ExSo-MUSIC algorithm consists in scanning the cortex 

with a grid of disks to estimate the candidates h(b)2 that minimizes the following 

criterion:  
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where E4,m is the matrix of the eigenvectors associated with the non-zero 

eigenvalues of C4,m. Providing an exhaustive search to estimate this criterion on 

every pseudo-disk of the 4-ExSo-MUSIC grid would not be feasible because of 

computational cost. Therefore, a first scan of the cortex with a coarse grid of disks, 

for which the size of the disks was fixed to 20, is performed. With this first scan, a 

region in the cortex is selected according to the corresponding values of the metric. 

To define this region, the 200 lowest values of the "first-scan-metric" are identified, 

and the 200 corresponding disks of size 20 are concatenated. Then the original 4-

ExSo-MUSIC grid (disk sizes varying from 1 to 500 dipoles) is used but only on 

this selected region. Finally, the relative contribution of a disk to the 4th order 

signal subspace (also called metric, as estimated through the second term 
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 of equation (5-12)), allowed estimating the most 

appropriate disk size for every selected vertex. At the end of this second step, every 

vertex is then associated with a pseudo-disk of specific size (between 1 to 500 

dipoles) and a metric value. This metric quantifies the contribution of all the dipoles 

of the pseudo-disk to the signal subspace.  

Finally, the Goodness-Of-Fit (GOF) criterion (equation (5-13)) is used in order to 

select the optimal concatenation of those pseudo-disks.  

2
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t t

t



m m

m
 (5-13) 

where {mrec(t)} corresponds to the data that is reconstructed from the estimated 

source configuration and {m(t)} is the measured data matrix. The source 

configuration that provides the lowest GOF value is considered the best fit for the 
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actual ExSo. This provides a binary map of the estimated source, also called the 

thresholded 4-ExSo-MUSIC map that is stable along time. 

The time course of the estimated source configuration was obtained from a least 

square fit between the mixing matrix H() for the estimated source configuration 

and the measured data {m(t)}.  

Similarly, to all-MUSIC approaches, it is required to indicate the number of 

underlying ExSos a priori in the 4-ExSo-MUSIC approach. Assuming X as the 

number of underlying sources expected a priori, the number of underlying sources 

considered by 4-ExSo-MUSIC was set to X(X+1)/2 when the sources were assumed 

to be correlated and as X when the sources were assumed to be independent. 

 

5.4.2. Evaluation using realistic simulations 

In order to evaluate and compare cMEM and 4-ExSo-MUSIC within a controlled 

environment, realistic simulations of EEG and MEG data were generated based on 

information regarding the number and position of the EEG/MEG channels during 

a simultaneous EEG/MEG data acquisition using a 275 channel CTF-MEG system 

and a HR-EEG EGI system (257 electrodes). The distributed source space consisted 

in a mesh (8000 vertices) of the cortical surface that was obtained by segmenting 

the gray-white matter interface from a subject’s anatomical MRI using BrainVISA-

4.2.1 software10 (Mangin et al., 1995). Using the OpenMEEG (Gramfort et al., 

2011) implementation in Brainstorm software (Tadel et al., 2011), we generated a 

3-layer EEG Boundary Element Method (BEM) model consisting of the inner skull, 

outer skull and the scalp surfaces, with corresponding conductivity values of 

0.33:0.0165:0.33 S/m respectively (Ferree et al., 2000; Hoekema et al., 2003; Lai 

et al., 2005). For the MEG forward problem, we considered a 1-layer BEM model 

consisting of the inner skull surface, with brain conductivity value of 0.33 S/m.  

                                                 

10 http://www.brainvisa.info 
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We used a biophysical distributed dipole source model with a computational neural 

mass model (Wendling et al., 2000; Wendling, 2005) to generate normal 

background and epileptic spike-like activity. The reader may refer to (Cosandier-

Rimélé et al., 2007, 2008, 2010) for detailed description of neural mass model and 

of the pipeline used to simulate data. In brief, we assumed a spatio-temporal source 

model where the neocortical pyramidal neurons were the main contributors of 

EEG/MEG signals. This source space was modeled by a dipolar layer distributed 

along the cortical surface, where each dipole corresponded to a distinct neuronal 

population of the neural mass model (Figure 5.1A). Time activities of all dipoles 

of the source space were generated with the neural mass model in which excitation 

and inhibition parameters of each neuronal population can be adjusted to obtain 

either epileptic spikes or background activity (Figure 5.1B). With an appropriate 

setting of coupling parameters between populations, a spatially extended generator 

exhibiting highly synchronized epileptic activity was constructed. The spatially 

extended source was made of contiguous triangles manually outlined using a mesh 

visualization software (Paraview, Kitware Inc., NY, US) (Figure 5.1C). Dipoles 

within the spatially extended source were associated to coupled neuronal 

populations, tuned to generate highly correlated epileptic activity. The remaining 

triangles of the mesh were then grouped into 1000 clusters. The dipoles of each 

cluster were then associated to a neuronal population tuned to generate normal 

background activity. These populations were not coupled in order to generate 

uncorrelated background activity. Moreover, when two spatially extended 

generators were simulated, spike propagation from a population i to a population l 

was obtained by assigning the same time course to the two populations and then 

introducing a propagation delay drawn randomly between 16 and 20 ms (Figure 

5.1B). According to the scenario considered, we varied the size, location, number 

of sources or the level of synchronization between neuronal populations and the 

time delay between populations’ activities.  

Once the amplitude of each elementary dipole is known the forward problem is 

applied in order to compute the corresponding EEG and MEG signals (Figure 
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5.1D). Then, the inverse problem consisted in inferring the sources of activity {j(t)} 

based on the simulated measurement at the sensors’ level {m(t)}. Each trial 

consisted in the simulation of a 10s segment of EEG/MEG data (5120 time samples 

at 512 Hz) following different simulation schemes. For the inverse problem, in the 

EEG gain matrix a slightly different value was used for the skull conductivity - 

0.0150 S/m instead of 0.0165 S/m. 

The following scenarios have been considered. For each scenario, 20 EEG and 

MEG trials were simulated, each consisting of a new realization for the spiking 

activity and for the background activity. Consequently, each trial consisted of at 

least 3 or more spikes simulated within a 10 s window: 

1. A single source at 10 different locations: posterior bank of the central sulcus 

(CS), basal temporal region (BT), mesial orbito-frontal gyrus (OF), supplementary 

motor area (SMA), inferior parietal region (P), insula, lateral orbito-frontal region, 

temporal pole, superior temporal region and occipital region. The source size was 

around 10 cm2. 

2. A single source with different spatial extents at three different locations: posterior 

bank of the central sulcus (CS), basal temporal region (BT), inferior parietal region 

(P). The source area was set to 0.5 cm2, 1 cm2, 2 cm2, 3 cm2, 4 cm2, 5 cm2, 7.5 cm2, 

10 cm2, 20 cm2, and 30 cm2. 

3. Two sources with synchronous activities: inferior temporal (patch 1) and parietal 

(patch 2) source of size 10cm2 each. Time course of dipoles were highly 

synchronized in each source. In order to mimic two synchronous activities, the 

dipoles of the parietal source were attributed with the same temporal dynamics as 

the dipoles of the inferior temporal source. 

4. Two sources with propagated activity: inferior temporal (patch 1) and parietal 

(patch 2) source of size 10cm2 each. Time course of dipoles were highly 

synchronized in each source but activities attributed to dipoles of the parietal source 

were temporally delayed with respect to activities attributed to the dipoles of the 
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temporal source. The temporal delay was randomly chosen between 16 and 20 ms 

for each realization of propagating activity.   

 

Figure 5.1. Spatio-temporal simulation protocol. (A) Source model (Geometry): Distributed 
source model providing spatial features of the spatio-temporal simulations where the source 
space was modeled by a dipolar layer distributed along the cortical surface and each dipole 
corresponds to a distinct neuronal population. (B) Source model (Activity): Simulation of 
temporal features using biophysical computational neural mass model where each neuronal 
population is made of two subsets of neurons: pyramidal cells (P) and local interneurons (I1, I2, 
I3). Pyramidal cells receive excitatory input (green arrows) from pyramidal cells of other 
populations and inhibitory input (red arrows) from interneurons. The interneurons only get 
excitatory input from the pyramidal cells.  A connection from a given population i to a 

population l is characterized by a parameter i lK  which represents the degree of coupling, which 
models the average density of action potentials fired by the pyramidal cells of one population as 
an excitatory input to the pyramidal cells of another population. Normal background and 
epileptic spike-like activities were obtained from two different settings of model parameters: 
excitatory and inhibitory gains in feedback loops, degree and direction of coupling between 
interconnected populations. These settings are used to simulate the time-course of “focal 
epileptic sources” (i.e. patches generating epileptic spikes) with surrounding normal background 
activity. Null coupling but increasing excitation/inhibition ratio generates epileptic spike 
activities. (C) Simulation pipeline: Assigning epileptic activity to the dipoles of the manually 
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drawn extended source and background activity to all the dipoles on the mesh after grouping 
them into 1000 clusters. Then, application of the BEM forward model, to obtain simulated EEG 
and MEG signal. 

 

To analyze these scenarios, first the peak of the spikes was identified and marked 

on the simulated EEG/MEG signals. In case of very small sources where the signal-

to-noise ratio of EEG and MEG signals was very low, the timing of epileptic 

discharge was detected from the simulated source dynamic within the generator. 

In the scenarios 1 and 2, cMEM and 4-ExSo-MUSIC approaches were applied on 

a window of 500ms around the peak of the averaged EEG and MEG spike 

(generally 3 or more spikes were averaged for each trial). Therefore, we localized 

20 averaged spikes for each of the 10 different source locations. For scenarios 3 

and 4, a 500 ms window around the peak of the spike that was extracted from the 

10 s of EEG and MEG data, then single spike localization was performed using 

cMEM and 4-ExSo-MUSIC. For the 4th scenario, since cMEM provides a sample-

by-sample result, we could present the source maps at the peak of the first spike 

and delayed spike. Since, 4-ExSo-MUSIC provides a result over a time interval, we 

considered a first window involving some background activity to few samples after 

the peak of the first spike and a second window from the onset of the second spike 

until few 100 samples after the second peak. For scenarios 1, 2 and 3 we indicated 

the number of a priori source as 1 (cf. Section 2.1.1.2, X=1 for independent source) 

and for the 4th scenario, we indicated the number of correlated sources (X(X+1)/2, 

where X=2 for 2 correlated sources) a priori to the 4-ExSo-MUSIC method. 

All the source localization results using cMEM have been presented after an Otsu 

threshold, which is obtained by taking the absolute value of the current density at 

the peak of the spike, normalized to its maximum activity over the whole cortical 

surface. This normalized map was then thresholded upon the level of background 

activity, through histogram analysis (Otsu, 1979). 4-ExSo-MUSIC results are 

presented as a binary map obtained after thresholding the 4-ExSo-MUSIC metric 

based on GOF measure (cf. Section 2.1.1.2). 
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5.4.3. Evaluation criteria 

To characterize the properties of the simulations, the following criteria were used: 

 

(a) Signal-to-Noise Ratio (SNR) of the simulated EEG and MEG signals: this is 

defined as the standard deviation ratio between the signal around the peak and the 

background activity. 

 

(b) Cancellation index (Ic): This index estimates the amount of overlap between 

signal patterns of individual sources within an active patch leading to signal 

cancellation (notably caused by dipolar sources oriented in opposite directions on 

both walls of a sulcus), as proposed by (Ahlfors et al., 2009).  
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where i is the index of summation overall q sensors, l is the index of summation 

over the set of dipoles in the simulated patch  . ( , )i lg  is the value of the ith row 

and lth column of the lead field matrix G. This index ranges between 0 and 1, Ic=1 

indicates full cancellation and Ic=0 indicates no cancellation effect. 

In addition, the following two validation criteria were used to compare the source 

localization results obtained using cMEM and 4-ExSo-MUSIC algorithm for the 4 

simulation scenarios. These two criteria were used to assess the detection accuracy 

and the ability to recover the spatial extent of the generators. To be able to compare 

the source density map of cMEM with the 4-ExSo-MUSIC metric (which is a 

probability map), we considered the logarithm of the non-thresholded metric for 4-

ExSo-MUSIC. 4-ExSo-MUSIC metric provides a source map that is stable along 

time and cMEM provides a spatio-temporal source map. For cMEM, we therefore 
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considered the source map at the main peak ( 0 ) of the simulated spike for the 

following evaluation criteria. 

 

(c) Area Under the Receiver Operating Characteristic (ROC) Curve, AUC: 

was proposed in (Grova et al., 2006) as a  detection accuracy index (between 0 and 

1),  to assess the sensitivity of a source localization method to the spatial extent of 

the underlying generator. An AUC value greater than 0.8 was considered a good 

detection accuracy. The AUC index is assessing towards a Ground Truth the 

normalized energy of a source map at a specific time sample.  

AUC was estimated based on available Ground Truth, whereby, ROC curves were 

generated by plotting the sensitivity against the false positive detection rate for 

different detection thresholds, ( [0,1]) . Normalized energy for both the estimated 

and the simulated current density distribution were used to quantify the amount of 

true positive (TP), true negative (TN), false negative (FN), and false positive (FP) 

for each threshold   . 

However, in such context, ROC analyses are biased by the fact that a source 

simulation would correspond to quite more negative samples (several thousand 

sources) than positive ones (few hundred sources). In order to avoid such a bias, we 

proposed a strategy to consider the same number of active and inactive sources for 

ROC analysis (Grova et al., 2006). Considering the r dipolar sources along the 

cortical surface, only few dipoles were actually active (ra) compared to the large 

number of inactive dipoles (r − ra). Therefore, selection of same number of inactive 

sources as the active sources was done by randomly selecting inactive sources 

among the r − ra sources located within the immediate spatial neighborhood of the 

simulated source (AUCclose) or among the local maxima of the reconstructed 

activity located far from the simulated source (AUCfar). Final AUC index was then 

computed as a mean of AUCclose and AUCfar indices. 

In case of simulations involving a single source, the energy at the main peak of the 

spike was considered.  
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For the 3rd scenario involving two synchronous sources, the AUC index was 

estimated separately at the peak of each spike while removing the contribution of 

the vertices of the second source.  

For the 4th scenario involving two propagating sources, as explained in Section 

5.4.2, the two spikes were extracted separately to localize the sources. Therefore, it 

was possible to estimate AUC index at the peak of each spike while removing the 

contribution of the vertices of the second source. 

 

 (d) Spatial Dispersion (SD): This index, proposed in (Molins et al., 2008), 

measures both the spatial spread of the estimated source distribution around the true 

source location and the localization error between the estimated source distribution 

and the true source location. Let us denote by ĵ  the result of the source localization 

method to be evaluated. Then, ˆ( , )0i j  represents the amplitude of the current 

density distribution estimated for a dipolar source i on the cortical surface at the 

main peak of the spike ( 0 ).  

To measure the SD of this result, we weight the amplitude of all the r cortical 

sources by their minimum distances from the simulated patch using the following 

formula:       
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where min ( ( , ))l i l D 	provides the minimum Euclidean distance between the 

source i and the sources l in the simulated patch.   denotes the set of indices of the 

dipoles in the simulated patch and this minimum distance is zero when the source i 

belongs to  . SD values close to zero means there is no active source outside the 

simulated patch. Large SD values could be caused either by the presence of sources 

far away from the true source that are contributing to the estimated solution 
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(spurious sources) or by the spatial spread of the reconstructed source around the 

true extent of the simulated patch.  

 

(e) Shape Error (SE): this is the root mean square of the difference between the 

normalized simulated current density ( jth) and the normalized estimated current 

density ( ĵ ). This will assess the accuracy of the reconstructed time courses within 

the simulated patch. For 4-ExSo-MUSIC, all the dipoles within the estimated 

source have the same reconstructed time course. This time course was obtained 

from a least square fit between the lead field matrix for the estimated source 

configuration and the measured data (Section 5.4.1c). Therefore, SE was estimated 

as follows: 

Let us consider ( , )jth i t  and ˆ( , )j i t , where i  and t is the time parameter.  
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( )card   is the number of elements in the set  . The subscript “ n ”  in njth  or 

ˆ
nj  denotes the normalization of the matrix ĵ  so that its values are between -1 and 

1, for example:  
( , )

max ( , )
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j i t
j i tj

j i t  .  maxt  is the maximum over t time 

samples. 

 

5.4.4. Application on clinical datasets 

Simultaneous recording of HR 257-EEG and 275-MEG was not feasible since the 

HR-EEG system was available at the Neurological department of the Rennes 

Hospital in France while the MEG system was available at the Montreal 
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Neurological Hospital in Canada. Therefore, from each center, we selected one 

clinical dataset from a patient with intractable focal epilepsy with available Ground 

Truth information such as intracranial depth EEG (iEEG) findings and MRI visible 

lesion (Focal Cortical Dysplasia (FCD) in both cases). Patient 1 had a 275-MEG 

recording and Patient 2 had a 257-EEG recording. 

For patient 1, a suspected right orbitofrontal FCD was seen on MRI. This patient 

underwent a full presurgical evaluation at the Montreal Neurological Hospital and 

the acquisition was done at the MEG center of Université de Montréal on a 275 

channel CTF whole-head MEG system. MEG data were bandpass filtered between 

0.3 and 70 Hz after a DC-offset removal, and 60 Hz notch filter was further applied. 

Interictal spikes were independently visually marked in MEG traces using the 

DataEditor software (MISL, Vancouver, Canada) by a clinical neurophysiologist 

(E.K.). A total of 26 MEG spikes were found and averaged. MEG source 

localization was performed on the averaged spike. iEEG investigation with eight 

implanted electrodes (10±18 contacts; length: 2 mm, diameter: 0.8mm; 1.5 mm 

apart, placed intracranially according to Talairach’s stereotactic method in the right 

hemisphere) was further guided by the MEG source localization results within the 

suspected MRI lesion and revealed a focal ictal and interictal activity in the right 

lateral orbitofrontal region. The patient provided written informed consent for this 

study as approved by the Montreal Neurological Institute Research Ethics Board.   

Patient 2 also presented a FCD visible on MRI in the left mesial orbitofrontal 

region, just above the rectus gyrus. This patient underwent a full presurgical 

evaluation at the Neurological department of Rennes University Hospital, including 

257-channels EEG recordings (EGI, Eugene, USA). EEG data were band pass 

filtered between 0.3 and 100Hz. These data were reviewed for presence of IEDs by 

the clinical neurophysiologist (I.M.). On these scalp recordings a clear 

subcontinuous spike activity could be recorded interictally at the most frontopolar 

electrodes. A total of 85 spikes were extracted away from ocular, muscle or cardiac 

artifacts, and averaged. Source localization was applied on the averaged spike. 

During the second phase of his presurgical evaluation, the patient also underwent 
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intracerebral iEEG recordings with 9 implanted electrodes (10±18 contacts; length: 

2 mm, diameter: 0.8mm; 1.5 mm apart) placed intracranially according to 

Talairach’s stereotactic method in the left frontal and temporal region. iEEG 

revealed a sub-continuous interictal activity, similar in morphology with that 

observed on scalp EEG, maximal in the contacts located within and around the focal 

lesion in the left mesial orbito-frontal region but spreads to the cingulate and to the 

lateral orbitofrontal region. The patient provided written informed consent for the 

use of his clinical data as requested by the Institutional Review Board of Rennes 

University Hospital.  

For both clinical dataset, we presented source localization results from cMEM, 4-

ExSo-MUSIC and from another standard source localization method - sLORETA 

(Pascual-Marqui, 2002) that is implemented in the brainstorm toolbox (Tadel et al., 

2011).  

To present the 4-ExSo-MUSIC results, we provided the thresholded 4-ExSo-

MUSIC map using the GOF criterion. Both cMEM and sLORETA results displayed 

over the cortical surface were thresholded at 30% of the maximum amplitude, 

following a similar approach as proposed in (Heers et al., 2016). 

 

5.5. Results 

5.5.1. Evaluation using realistic simulations 

The results obtained for the first 5 source locations (CS, BT, OF, SMA, and P) of 

the first scenario, involving a single spatially extended source, are illustrated on 

Figure 5.2. The results on the remaining 5 source locations have been provided as 

supplementary figure (Figure S5.1). The localization of single 10 cm² sources was 

accurate (AUC>0.8) and was relatively similar for both 4-ExSo-MUSIC and 

cMEM, for most locations tested and for both EEG and MEG. EEG and MEG data 

simulated from these sources exhibited reasonable SNR and Ic values, although the 

SNR in the case of MEG signals was most of the time slightly lower than that of 

EEG, except for the SMA and the post-central source (tangential orientations). For 
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these 10 cm2 single sources, 4-ExSo-MUSIC performed slightly better than cMEM 

for deep sources or for sources close to the interhemispheric line (OF and SMA 

source in Figure 5.2). For instance, sources localized with cMEM in the basal 

temporal region and in the orbitofrontal region were more lateral than their actual 

location, whereas for the SMA sources, cMEM recovered mainly the most 

superficial aspects of the generators. On the other hand, cMEM sources were 

slightly more accurate than 4-ExSo-MUSIC for the CS generator (for EEG mainly) 

and for the P generator (for MEG mainly). To summarize the differences in 

performance of the two methods, we pooled together all the 200 source localization 

results (obtained from the 20 trials of the 10 source locations) and performed non-

parametric Wilcoxon signed rank test to compare AUC and SD in cMEM versus 4-

ExSo-MUSIC and in EEG versus MEG. We also tested whether the median of AUC 

distribution was significantly larger than 0.8, since AUC value of 0.8 is usually 

considered as a good level of detection accuracy (Chowdhury et al., 2013). From 

these tests, we noticed that overall, 4-ExSo-MUSIC performed statistically 

significantly better than cMEM for EEG in terms of AUC (p<0.001), although both 

methods provided overall excellent results since they were all showing median 

AUC significantly larger than 0.8 for both EEG and MEG (p<0.005). On the other 

hand, AUC results for MEG did not show any statistically significant difference 

between the two methods (p=0.24). Based on SD, cMEM exhibited SD values 

significantly smaller than 4-ExSo-MUSIC for EEG (p<0.001) and for 

MEG (p<0.005). In Figure 5.3, we provided a plot of AUC values as a function of 

SNR for all the 200 source localization results. We observed that the low AUC 

values in EEG and MEG for both cMEM and 4-ExSo-MUSIC were coming mainly 

from simulations when the source location was deep and the SNR was low. SE 

values were estimated for these single source activities (provided in Figure 5.2) 

and it was observed that the SE values were slightly lower for 4-ExSo-MUSIC than 

cMEM when localizing these single source activities, indicating a slightly better 

reconstruction of the temporal dynamics of the source using 4-ExSo-MUSIC. 
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Figure 5.2. Single Source analysis. EEG and MEG source localization results (with their 
corresponding validation metrics: AUC, SD and SE values) using cMEM and 4-ExSo-MUSIC 
on simulated sources of spatial extent 10 cm2 in (A) Basal temporal gyrus (BT), (B) 
Supplementary motor area (SMA), (C) Orbito-frontal (OF), (D) Central sulcus region (CS), and 
(E) Parietal source (P). All the source localization results were displayed over the inflated 
cortical surface obtained from Brainstorm software toolbox. In this figure, we presented source 
localization results of cMEM after an Otsu threshold, which is obtained by taking the absolute 
value of the current density at the peak of the spike, normalized to its maximum activity and 
thresholded upon the level of background activity (Otsu, 1979). We presented two maps for 4-
ExSo-MUSIC results: 4-ExSo-MUSIC metric map and the GOF thresholded binary map to be 
able to compare between the original and thresholded source maps. 
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Figure 5.3. Plot of AUC as a function of Signal-to-Noise Ratio (SNR) for all 200 single source 
localization results pooled together. (A) EEG source localization. (B) MEG source localization. 
Color code: cMEM in red color and 4-ExSo-MUSIC in blue. Black horizontal line showing 
AUC=0.8, considered a good level of detection accuracy. 

 

For 3 of these locations (BT, P and CS), results with respect to the source spatial extent 

are provided on Figure 5.4 and Figure 5.5. In general, the localization was assessed as 

accurate (i.e. median AUC value >0.8) when the source area encompassed at least 2cm² 

for cMEM and 3cm² for 4-ExSo-MUSIC. For EEG and for the BT and P source, small 

source areas were better retrieved with cMEM while large source areas were better 

estimated with 4-ExSo-MUSIC. For MEG, both cMEM and 4-ExSo-MUSIC exhibited 

similar performance levels, with accurate reconstructions for spatial extent larger than 

2cm2 for P and larger than 4cm2 for BT. For smaller extent (<3cm2) both methods 

exhibited large variabilities in their AUC scores (Figure 5.4). We noticed from the source 

localization results visually that both methods notably failed to recover the 0.5cm2 BT 

sources from MEG data. The bad performance of 4-ExSo-MUSIC for EEG small sources 

was due to a wrong localization of the source while the moderately “bad” performance of 

cMEM for EEG large sources was due to an underestimation of the source spatial extent. 

Note that in MEG, median AUC values were close but below 0.8, for both methods and 

for most spatial extents (except slightly better results for extents larger than 7.5 cm²). 

Actually, in most of those cases, only the most lateral portion of the BT generator was 
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retrieved whereas most of the deepest aspects were always missed by both methods in 

MEG. Regarding the CS source, a different pattern was observed. cMEM clearly 

outperformed 4-ExSo-MUSIC for all sizes except for large sources (20 and 30 cm² 

sources). This was observed both for EEG and MEG signals.  

 

Figure 5.4. Boxplot representation of AUC distribution for three simulated sources (BT, P 
and CS) at 10 different source spatial extents (0.5 cm2, 1 cm2, 2 cm2, 3 cm2, 4 cm2, 5 cm2, 7.5 
cm2, 10 cm2, 20 cm2, and 30cm2) obtained over 20 simulated trials of the same configuration. 
(A) EEG source localization. (B) MEG source localization. The middle column represents the 
simulated source at 10 cm2 to display the regions on the cortical surface. Color code: cMEM in 
red color and 4-ExSo-MUSIC in blue, Cancellation index (Ic) in gray ranging between 0 and 1, 
SNR in black ranging between 0 and 10. 
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Figure 5.5. Boxplot representation of SD distribution for one simulated source (CS) at 10 
different source spatial extents (0.5 cm2, 1 cm2, 2 cm2, 3 cm2, 4 cm2, 5 cm2, 7.5 cm2, 10 cm2, 
20 cm2, and 30cm2) obtained over 20 simulated trials of the same configuration. (A) EEG 
source localization. (B) MEG source localization. The middle column represents the simulated 
source at 10 cm2 to display the region on the cortical surface.  Color code: cMEM in red color 
and 4-ExSo-MUSIC in blue. 

 

Both EEG and MEG simulated from the post central source we had similar range 

of SNR and Ic except for the 30 cm2 source for which MEG signal underwent higher 

signal cancellation and presented lower SNR than EEG (Figure 5.4). There was no 

clear relationship between SNR or Ic values and the performance of source 

localization: for instance, SNR values were higher for small BT sources than for 

the medium ones, while localization accuracy was increased. For the CS MEG 

source, the SNR gradually increased with the source area, while a trend towards a 

slight performance decrease was observed. As shown in Figure 5.5, SD values were 

consistently lower for cMEM than for 4-ExSo-MUSIC in the CS region, suggesting 

that 4-ExSO-MUSIC had a tendency to slightly overestimate the spatial extent, 

whereas cMEM more likely slightly underestimated the spatial extent. A similar 

behavior of the SD values was also observed for the BT and P regions (results not 

shown). 

In the presence of two synchronous sources, cMEM retrieved properly both 

sources. For EEG signals, the spatial extent was slightly underestimated, and for 

MEG signals the temporal source was anterior to the actual location, while missing 

the main radial components of this generator. 4-ExSo-MUSIC retrieved the 

temporal source but largely overestimated its size, and was not able to localize the 
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second source in the parietal region, neither from EEG nor from MEG data (Figure 

5.6A).  

 

Figure 5.6. Two source analysis: (A) Synchronous activities - Simulated sources of spatial 
extent 10 cm2 in temporal (patch 1) and parietal (patch 2) region. EEG source localization results 
(with their corresponding AUC values) using cMEM and 4-ExSo-MUSIC. MEG source 
localization results (with their corresponding AUC values) using cMEM and 4-ExSo-MUSIC. 
(B) Propagating activity - Simulated sources of spatial extent 10 cm2 in temporal region at peak 
1 and parietal region at peak 2 after 20ms of delay. EEG source localization results (with their 
corresponding AUC and SE values) using cMEM and 4-ExSo-MUSIC. MEG source 
localization results (with their corresponding AUC and SE values) using cMEM and 4-ExSo-
MUSIC. Here, we presented source localization results of cMEM after an Otsu threshold and 
for 4-ExSo-MUSIC results the GOF thresholded binary map were presented. 
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Figure 5.7. Reconstructed temporal dynamics illustrated for a single trial of the 
propagating sources presented in Figure 5B. (A) Theoretical source dynamics showing the 
time course of every single dipole of the two epileptic patches generated by the neural mass 
model in a 10s window consisting of four events (row 1 left) and a 450ms window segment 
extracted from the 10s window (row 1 right). (B) Simulated EEG signal extracted after marking 
the peaks of the two sources in the propagation pattern (row 2 left), 4-ExSo-MUSIC window for 
localizing temporal source (peak 1) is in pink box and window for localizing the propagated 
parietal source (peak 2) is in blue box; (row 2 right) shows the source dynamics reconstructed 
using 4-ExSo-MUSIC for the temporal and parietal sources in the respective windows; (row 3 
left) shows the full 10s window of simulated EEG signal used for cMEM localization; (row 3 
middle) shows the source dynamics reconstructed using cMEM for the full 10s window; (row 3 
right) shows the zoomed time course reconstructed using cMEM. (C) Simulated MEG signal of 
the propagation pattern (row 4 left), 4-ExSo-MUSIC window for localizing temporal source 
(peak 1) is in pink box and window for localizing the propagated parietal source (peak 2) is in 
blue box; (row 4 right) shows the source dynamics reconstructed using 4-ExSo-MUSIC for the 
temporal and parietal sources; (row 5 left) shows the full 10s window of simulated MEG signal 
used for cMEM localization; (row 5 middle) shows the source dynamics reconstructed using 
cMEM for the full 10s window; (row 5 right) shows the zoomed time course reconstructed using 
cMEM. 

 

When the activity of the second source was delayed by 20 ms to mimic a 

propagation pattern, the maximum of spikes was first detected on electrodes 

(respectively MEG sensors) facing the temporal region and then at electrodes 

(MEG sensors) facing the parietal region for both modalities. From both EEG and 

MEG data, cMEM localized well the temporal source at the earliest spike peak and 

the parietal source at the delayed peak (Figure 5.6B). Conversely, for EEG signal, 

4-ExSo-MUSIC largely overestimated the temporal source at the first peak and the 

parietal one at the second peak. In that case, the estimated source included both the 

temporal and the parietal sources. Finally, for MEG signals, 4-ExSo-MUSIC 

missed both sources. SE values were estimated for these propagating source activity 

(provided in Figure 5.6B) and it was observed that the SE values were lower for 

cMEM than for 4-ExSo-MUSIC indicating a better reconstruction of the temporal 

dynamics of the source using cMEM for this scenario. Figure 5.7 displays the 

actual and the estimated time course of two sources with propagating activity. In 

this realization the temporal delay between the two sources was 20 ms. cMEM 

localization was applied on the full 10s window of the simulated EEG and MEG 

data. In Figure 5.7B and Figure 5.7C, we presented the temporal dynamics of the 



173 

 

173 

reconstructed sources. The activity of sources reconstructed from EEG with cMEM 

reproduced the 20 ms time delay observed in the simulated source signals. 

Moreover, a clear difference in the amplitude between the first and second source 

was observed that matched the results reported on Figure 5.6B. Indeed, for EEG 

signals, the source activity reconstructed for the temporal source was stronger than 

for the parietal source, while for MEG the reverse was observed. 4-ExSo-MUSIC 

was applied on two separate windows extracted for the two spikes as explained in 

Section 2.2. Since 4-ExSo-MUSIC assumes the same temporal dynamics for all the 

dipoles within the extended source we were able to reconstruct a global time course 

for each source from EEG and MEG data (in Figure 5.7B and Figure 5.7C). In 

agreement with the results reported on Figure 5.6B for 4-ExSo-MUSIC on EEG 

signal, we noticed that the reconstructed time courses were able to mimic the shape 

of the spiking activity for the two sources, however, the propagation delay was not 

well-represented. On the other hand, 4-ExSo-MUSIC on MEG signal failed to 

localize the two sources, which is also evident from the reconstructed time course 

that was not able to characterize the temporal dynamics of the simulated sources.  

 

5.5.2. Application on clinical datasets 

Figure 5.8 illustrates source localization results obtained from MEG data of Patient 

1. As shown in Figure 5.8A, this patient was exhibiting almost continuous large 

amplitude interictal spikes culminating at the level of right frontal MEG sensors. 

cMEM localized the spikes in the right orbitofrontal region (Figure 5.8B). This 

localization was in agreement with the area identified as the epileptogenic zone 

according to focal ictal and interictal activity recorded during iEEG investigation 

(pink outline). A small FCD was also suspected in this region, further confirmed 

after surgery (right orbitofrontal resection, seizure free for 12 months after the 

surgery). 4-ExSo-MUSIC also localized the source of MEG spikes in the 

orbitofrontal region. This localization was contiguous with the iEEG area, but more 

mesial (Figure 5.8C). Results obtained with sLORETA showed a widespread area 

that included the iEEG outlined region but also involved the mesial aspect of the 
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orbitofrontal region and the mesio-temporal region (Figure 5.8D). Note that 

additional intracerebral electrodes implanted in temporal regions did not exhibit 

any epileptic activity. 

 

Figure 5.8. Source localization results on MEG data of 26 averaged spikes recorded from 
patient 1, displayed over the inflated cortical surface. (A) MEG signal and topography at the 
peak of the signal. (B) cMEM source localization results thresholded at 30 % of the maximum 
amplitude, (C) 4-ExSo-MUSIC results thresholded using GOF criterion. (D) sLORETA results 
thresholded at 30% of the maximum amplitude. Pink color outline over the cortical surface 
represents the right orbitofrontal region showing maximal ictal and interictal activity in iEEG 
recordings. 

 

Figure 5.9 illustrates source localization results obtained from HR-EEG data of 

Patient 2. This patient had large amplitude interictal spikes recorded at the level of 

left frontal electrodes (Figure 5.9A). cMEM localized the spikes mainly in the left 

frontal pole and in the lateral orbitofrontal region (Figure 5.9B). This localization 

was more lateral and anterior to the lesion area (FCD) from where subcontinuous 
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spikes where recorded with iEEG (pink outline). On the other hand, 4-ExSo-

MUSIC localized the spikes near the anterior cingulate gyrus, above and deeper 

than the region identified from iEEG investigation (Figure 5.9C). sLORETA 

localized the source in the left lateral orbitofrontal region with ghost sources (Hauk 

et al., 2011) located far from the lesion, in temporo-mesial regions notably (Figure 

5.9D). 

 

Figure 5.9. Source localization results on EEG data of 85 averaged spikes recorded from 
patient 2, displayed over the inflated cortical surface. (A) MEG signal and topography at the 
peak of the signal. (B) cMEM source localization results thresholded at 30 % of the maximum 
amplitude, (C) 4-ExSo-MUSIC results thresholded using GOF criterion. (D) sLORETA results 
thresholded at 30% of the maximum amplitude. Pink color outline over the cortical surface 
represents the lesion visible on MRI in this patient. 
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Table 5.1.  Comparison of 4-ExSo-MUSIC and cMEM algorithms. 

Algorithm Advantages Disadvantages 

4-ExSo-MUSIC 

 

1) Sensitive to spatially extended 

sources 

2) Robust to Gaussian Noise 

3) Statistical thresholding 

technique for the source map 

available 

1) High computational complexity 

2) Requires a priori knowledge 

about the number of sources 

3) Requires a sufficiently large 

number of time samples to 

estimate the data statistics 

4) Difficulty in localizing highly 

correlated extended sources 

5) Difficulty in detecting 

propagation patterns of sources 

cMEM 

 

1) Sensitive to spatially extended 

sources 

2) Provides source maps for each 

time sample 

3) Does not need a priori 

knowledge about the number 

of sources 

4) Ability to shutdown parcels 

that are not active helps to 

eliminate false-positives from 

the solution space 

5) Able to localize highly 

correlated sources with their 

spatial extent 

6) Able to detect propagation 

patterns of correlated sources 

1) Computationally expensive for 

long data lengths or large number 

of dipoles in the source space, 

since the localization requires a 

non-linear optimization for each 

time sample 

2) Slightly overestimates the size of 

small sources and underestimates 

the size of large ones 

3) No statistical thresholding 

technique available for source 

maps 
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5.6. Discussion 

This study carefully compared the performances of two distributed source 

localization methods, cMEM and 4-ExSo-MUSIC, in order to assess their ability to 

localize the different patterns of IEDs, within a realistic simulation environment. 

While these two methods have been well-established previously for their sensitivity 

to the spatial extent of the sources of IEDs, it was important to evaluate their 

behavior on complex spatio-temporal patterns of IEDs such as including multiple 

sources, propagation patterns, and correlated sources. Both methods demonstrated 

the importance of factorizing multiple dipole activity within parcels of extended 

source in order to recover the spatial extent of the sources (Chowdhury et al., 2013; 

Birot et al., 2011; Heers et al., 2016; Becker et al., 2014b). However, differences 

between these two algorithms exist both at the level of a priori source model 

definition and regularization technique. While both methods assume parcellization 

of extended activity, 4-ExSo-MUSIC strongly relies on the non-Gaussianity of the 

source activity while cMEM assumes a Gaussian mixture distribution of source 

activity in its prior model (i.e. in the definition of the reference distribution d ). 

However, cMEM inference is actually a Bayesian inference, where the a priori 

model is used to guide the solution informed by the data. Consequently, even if the 

Gaussian assumption is not completely fulfilled (cf. non Gaussianity of spiking 

activity), the inference model can still be valid and applicable. The ability of cMEM 

model to shutdown parcels that are not active during the regularization process 

permit to discard false positives in the solution space. On the other hand, the use of 

4th order statistics in 4-ExSo-MUSIC helps to eliminate the contribution of the 

background activity if it is assumed to be Gaussian, while allowing a more accurate 

reconstruction of the generators of epileptic discharges assumed to be non-

Gaussian. These two respective properties of the two algorithms play an important 

role in providing solutions with an excellent contrast following the true extent of 

the source and exhibiting less distant spurious activity, unlike most conventional 

source localization methods such as MNE, sLORETA or dSPM (Chowdhury et al., 

2013; Becker et al., 2015; Heers et al., 2016). Note that these more conventional 
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source localization techniques, do recover accurately the maximum of the activity 

in most cases but not the spatial extent of the generators. Since 4-ExSo-MUSIC 

makes use of higher order statistics, the use of longer data sets to reduce the 

variance associated with estimating the higher order statistics is required. cMEM 

provides an estimate for each time sample, as long as we have a good estimate of 

the noise covariance matrix. In terms of computational time, for a reasonable length 

of the data (~500ms window), 4-ExSo-MUSIC takes only few minutes while 

cMEM takes around 20 mins to process the data on a linux computer with Intel 

Core 2 Quad processor at a speed of 2.66 GHz and 8 GB of RAM. On the other 

hand, 4-ExSo-MUSIC involves computation of large matrices leading to high 

computational complexity, thus requires high performance processors (Table 5.1). 

Through this study, we showed that, in most of the considered simulation 

configurations, both cMEM and 4-ExSo-MUSIC were indeed sensitive to the 

spatial extent of the generators of IEDs. In previous studies, cMEM was evaluated 

in MEG on simulated sources with spatial extent ranging between 3 cm2 and 30 

cm2 (Chowdhury et al., 2013) and 4-ExSo-MUSIC was evaluated in EEG on 

sources with spatial extent ranging between 0.5 cm2 and 20 cm2 (Birot et al., 2011). 

In the present study, we evaluated the two methods on sources with spatial extent 

ranging between 0.5 cm2 and 30 cm2. Both methods provided consistent and 

reliable detection accuracy for a wide range of source spatial extents (source sizes 

ranging from 3 to 20 cm² for MEG and 3 to 30 cm² for EEG). For both EEG and 

MEG, 4-ExSo-MUSIC localized the larger sources better than cMEM but failed to 

localize most small sources. This was also shown in previous studies (Birot et al., 

2011; Becker et al., 2014a). For all the three sources (CS, BT, and P), we noticed 

an overall slightly better sensitivity to the spatial extent of the larger sources on 

EEG data. This could be explained by the fact that these large sources lead to a 

higher signal cancellation in MEG than in EEG signals (Figure 5.4 and Figure 

5.5). This higher cancellation of MEG signal for the large sources can be justified 

by the selective sensitivity of MEG to mainly tangential activities (Ahlfors et al., 

2010). 4-ExSo-MUSIC performed slightly better than cMEM for deeper sources 
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and this can be explained by the additional depth weighting applied during the 4-

ExSo-MUSIC optimization step through normalization of the lead field matrix (cf. 

equation (5-12) in Section 5.4.1c).  

In the presence of two correlated sources (active at the same time or after a delay), 

4-ExSo-MUSIC could not separate the two correlated sources. 4-ExSo-MUSIC 

identified only one patch and largely overestimated its spatial extent in the two 

cases of two source simulations (Figure 5.6 and Figure 5.7). This can be explained 

by the fact that during 4-ExSo-MUSIC scan for the 2 correlated sources, the search 

was performed using a grid constructed for a single source (as explained in Section 

5.4.1c) which then finds one patch that is largely overestimated. To improve the 

performance of 4-ExSo-MUSIC for the two sources scenarios, a grid search 

accounting for all combinations of two sources of two different spatial extents 

should have been considered. Such a situation would be extremely demanding in 

terms of computation time and would require some statistical test to assess the 

number of generators to consider. Note that a similar statistical approach 

accounting for all possible combinations of 1, 2 or 3 equivalent current dipoles has 

been proposed in (Bénar et al., 2005) and an F-test was used to infer the number of 

sources to consider. Such an approach within the context of 4-ExSo-MUSIC, in 

order to assess the number of sources in addition to the size of each patch, is feasible 

in theory but not in practice because of computational load. On the other hand, 

cMEM was able to well-distinguish between the two sources (their location and 

spatial extent). The difference in the sensitivity of EEG and MEG to the two sources 

(patch 1 and patch 2) was also visible in the cMEM source reconstruction. While 

the temporal source was more sensitive to EEG than MEG, the parietal source was 

more sensitive to MEG than EEG. This explains the larger source amplitude for 

temporal source than parietal source in EEG source reconstruction using cMEM 

and vice versa in MEG source reconstruction using cMEM. Even though cMEM is 

a non-linear estimation of the source amplitude iteratively for each time sample, 

with no constraint on temporal smoothness, it was interesting to see the temporal 

dynamics of the sources reconstructed by cMEM exhibiting smooth time course, 
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mimicking the dynamics of the simulated spike temporally with the two sources 

peaking at a delay of 20 ms. This ability of cMEM can therefore be particularly 

interesting when applying methods to identify brain networks using the source time 

course and perform connectivity along the spike (Ana Coito, 2015). The 

reconstructed time course using 4-ExSo-MUSIC was reliable as long as the source 

was well localized. For example, in Figure 5.2, the SE values for the reconstructed 

time course using 4-ExSo-MUSIC was very low indicating that 4-ExSo-MUSIC 

was able to reconstruct the temporal dynamics of single source activity with high 

accuracy. On the other hand, for the propagating activity, 4-ExSo-MUSIC found 

only the strongest source activity (temporal source in EEG and parietal source in 

MEG), which also explains why the reconstructed time course from 4-ExSo-

MUSIC did not contain a clear peak for each of the two source activities at a delay 

of 20 ms. 

In previous studies, 4-ExSo-MUSIC on one side (Birot et al., 2011; Becker et al., 

2014b) and cMEM on the other side (Chowdhury et al., 2013, 2015; Heers et al., 

2016) were each compared with other standard source localization approaches such 

as MNE, sLORETA and their variants within the hierarchical Bayesian framework, 

tensor based methods and methods exploiting sparsity. In this context, and using 

simulations, cMEM and 4-ExSo-MUSIC proved to be most sensitive to the spatial 

extent of IEDs. cMEM has been extensively applied on clinical epilepsy data in 

several studies (Heers et al., 2012; Chowdhury et al., 2015; Grova et al., 2016; 

Heers et al., 2016). Recently, it was also shown that the accuracy of cMEM could 

be further increased by exploiting the fusion of EEG and MEG (Chowdhury et al., 

2015). In addition, it was also shown that cMEM is well-adapted to the study of 

complex spatio-temporal patterns such as seizures (Heers et al., 2012). On the other 

hand, to date, 4-ExSo-MUSIC has only been evaluated in a few epilepsy cases 

(Becker et al., 2014a). Further work will have to consider larger groups of patients 

in whom the reliability of results can be evaluated with other investigations such as 

intracerebral recordings. In the meantime, other methods were proposed to remedy 

the problem of  several correlated sources (Becker et al., 2014b; 2014a; Becker et 
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al., 2015). Among them an approach that imposes sparsity on the variational map 

of the sources by characterizing the variations in the amplitude between adjacent 

dipoles as in (Ding, 2009b) as well as sparsity on the estimated source distribution 

itself has recently shown promising results (Becker et al., 2014a). Nevertheless, 

further validation is required in particular regarding the choice of some 

regularization parameters. In a recent study, Zhu et al., 2014 also showed 

that variation (V-) and wavelet (W-) based sparse source imaging (SSI) can be 

combined in order to exploit both the capability of recovering source boundaries 

(and thus source extents) and of compressing sources for better sparse 

reconstructions. This method applied on simulations as well as experimental data 

(language and motor responses), was able to recover the source spatial extents and 

to distinguish between multiple sources of activity better than the standard MNE 

and other variations of SSI methods. In a similar context, promising methods have 

been proposed within the Hierarchical Bayesian modeling (HBM) framework 

(Lucka et al., 2012; Strobbe et al., 2016). Lucka et al., 2012 proposed a fully-

Bayesian inference method that was developed to localize focal sources, to correct 

depth localization, a well-known source of systematic error of many current density 

reconstruction methods, and to separate single sources in multiple-source scenarios. 

Strobbe et al., 2016 proposed a variational Bayesian approach called the multiple 

sparse volumetric priors (MSVP) to localize distributed sources and demonstrated 

the potential of a Bayesian approach to estimate the underlying sources of interictal 

activity. The MSVP approach seems inspired from a previously proposed method 

called COH-s, which was introduced in Chowdhury et al., (2013). COH-s consisted 

in a model combining spatially extended parcels (coming from MEM-based 

parcellization) and smoothness constraint as covariance components within a 

hierarchical Bayesian model and inference based on restricted maximum likelihood 

estimate (Friston et al., 2006, 2008). In Chowdhury et al., (2013) we showed that 

MEM was more robust and reliable than COH-s method especially in regards to the 

scale of the underlying parcellization. All these recently developed promising 

approaches should be considered in future comparative work.  
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One main feature of the present study was not only to compare cMEM and 4-ExSo-

MUSIC together but also to quantify their respective ability to retrieve the spatial 

extent from EEG versus MEG signals. In previous studies, when EEG and MEG 

source localization were compared on clinical datasets, EEG recordings used a 

relatively small number of electrodes (typically<64) when compared to MEG (275) 

(Barkley and Baumgartner, 2003; Malmivuo, 2012; Lopes da Silva, 2013). In such 

a context, most of these clinical studies demonstrated that source localization from 

MEG signals was more accurate than EEG. Yet, in line with theoretical studies 

(Gevins, 1993; Srinivasan et al., 1996, 1998) showing that higher spatial resolution 

can be obtained with closely spaced electrodes, it has been reported that a clear 

improvement in terms of localization accuracy can be attained in epileptic patients 

when EEG is acquired with high density scalp electrodes cap, typically more than 

120 electrodes (Lantz and Grave de Peralta, 2003; Holmes et al., 2008, 2010; 

Brodbeck et al., 2011; Yamazaki et al., 2012, 2013). This is even more true when 

the data are processed with realistic geometry head models (Wang et al., 2011; Birot 

et al., 2014) using appropriate brain-to-skull conductivity ratios (Huiskamp et al., 

1999; Lantz and Grave de Peralta, 2003; Wang and Ren, 2013) or by calculating 

the calibrated skull conductivity from EEG/MEG data as recommended by Aydin 

et al., 2014.  

Accordingly, some simulation studies suggested similar level of accuracy of EEG 

versus MEG source localization for an equivalent number of EEG and MEG 

channels (Liu et al., 2002; Song et al., 2015). Our results are in agreement with 

these results. In most simulation scenarios, EEG source localization yielded similar 

or better results than MEG source localization. The only exception was the case of 

a source in the wall of the central sulcus, which is a favorable situation for MEG in 

terms of orientation. Given that these are simulations, we are also dealing with the 

best case scenario for EEG source localization in terms of the head modeling. 

Therefore, the results from the simulation studies will always be a bit more in favor 

of EEG when compared to MEG. Recent comparisons on normal subjects, 

performed with a comparable number of channels for EEG (257) and MEG (275) 
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in  a motor and sensory task, have also confirmed this trend (Klamer et al., 2015). 

They demonstrated that EEG localization can reach similar or better accuracy than 

MEG localization when the same number of channels was considered, provided 

that an accurate individual EEG head model was used. Both modalities have their 

pros and cons based on their sensitivity. Therefore, to take advantage of the 

information from the two modalities, fusion of simultaneously recorded EEG-MEG 

data should be considered as a relevant option whenever it is possible (Aydin, 

Vorwerk, Küpper, et al., 2014; Chowdhury et al., 2015). Aydin et al., 2014 showed 

on real data that a simultaneous analysis of EEG and MEG can take advantage of 

the fusion information, but it might also need calibrated realistic head models with 

appropriate conductivities especially for EEG head model. On the other hand, 

combined EEG-MEG data analysis using cMEM method on simulations have been 

shown to be robust to the modeling error such as using incorrect skull conductivities 

(Chowdhury et al., 2015). 

In practice, simultaneous EEG and MEG recordings with similar number of EEG 

and MEG channels is not commonly performed. However, in the particular case of 

patients with epilepsy, simultaneous recordings would be very important as 

epileptic spikes recorded at different time might arise from slightly different 

regions. Therefore, to ensure that strictly the same source arrangement was at the 

origin of EEG and MEG signals, we conducted our study in the framework of 

simultaneous simulated EEG and MEG signals, taking into account an equivalent 

number of channels, and a realistically shaped head model. These simulations were 

also mandatory to quantify the performance of source localization approaches 

providing a “Ground Truth” that is otherwise difficult to reach when working with 

clinical data. In patients with epilepsy, the exact spatio-temporal organization of 

brain region(s) from where the IEDs arise cannot be defined with certainty. At best, 

it can be inferred from intracerebral recordings, that are usually not performed 

simultaneously with scalp EEG or MEG, except on rare occasions (Dubarry et al., 

2014) and that have limited spatial sampling. The use of realistic simulation models 

that can mimic the epileptic generators is therefore a necessary step to validate the 
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EEG/MEG source analysis techniques. In this realistic simulation framework, it is 

also necessary to avoid the so-called “inverse crime” (i.e. using the perfectly 

accurate geometric model for both inverse and forward problem). Therefore, to take 

this issue into account, we decided to modify slightly the skull conductivity values 

between the forward model considered for simulations and the one considered to 

solve the source localization inverse problem. However, we would like to point out 

that there are other ways to further avoid this so-called inverse crime as suggested 

in (Lucka et al., 2012), where they used different grids for simulation and source 

localization. The use of real measured background activity can also be an option, 

especially in low SNR conditions (Kobayashi et al., 2005; Grova et al., 2006; 

Chowdhury et al., 2013, 2015). In the present study we decided to consider a 

realistic biophysical model for simulation, allowing to simulate accurate time 

courses of synchronized epileptic discharges along the spatial extent of the source 

as proposed and evaluated in (Cosandier-Rimélé et al., 2007), instead of assuming 

a uniform simulation profile. 

The organization of neural activity in the brain is very complex and the relationship 

between underlying generators and recorded electro-magnetic signals is difficult to 

model. The simple static simulation models commonly used are a single dipole 

(Fuchs et al., 1998; Pascual-Marqui, 2002)  or patch of dipoles with uniform 

activity (Liu et al., 2002; Trujillo-Barreto et al., 2004; Grova et al., 2006; 

Chowdhury et al., 2013). This patch with uniform activity can be extended to 

simulate different spatial extents of the source but does not model accurately the 

individual temporal course of dipoles constituting the patch. The fact that the patch 

extends in all directions with uniform intensity is not realistic and can be a 

drawback for MEG and EEG. This bias is expected to have more influence on 

MEG. Indeed, since MEG is selectively sensitive to sulcal sources when, for 

instance, a patch including two opposing walls of a sulcus would lead to an 

increased amount of signal cancellation when exactly the same time course is 

assigned along the patch (Ahlfors et al., 2009). Therefore, more realistic simulation 

models are required for modeling epileptic activity. Amongst the most realistic 
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modeling approaches, neuronal computational models have been proposed. 

Biologically inspired neuronal mass models (Wilson and Cowan, 1972; Lopes da 

Silva et al., 1976; Traub, 1979) have been widely used to study and model brain 

activity. In this context realistic microscopic and macroscopic models have been 

proposed and evaluated. The macroscopic models, also called “lumped” models, 

are more adapted to model spatially extended activities by coupling multiple 

populations of cells. These biologically inspired neuron models can provide 

accurate description of the temporal activity of epileptic events (Wendling et al., 

2000; Wendling, 2005). To describe the spatial features of the extended source, 

dipolar layer distributed along the cortical surface can be considered where each 

dipole corresponds to a distinct neuronal population. With this spatio-temporal 

model, that allows to vary the geometry of the source while keeping a realistic 

description of the temporal source, signals resembling real epileptic events can be 

generated at the level of intracerebral contact, EEG electrodes (Cosandier-Rimélé 

et al., 2007, 2008, 2010) or MEG sensors (Badier et al., 2007). This model provided 

the ideal framework to evaluate cMEM and 4-ExSo-MUSIC using a common 

simulation environment for EEG and MEG sources in epilepsy. In particular, in 

such a realistic framework, we could assess in detail the ability of source 

localization methods to reconstruct precisely the time course of sources in scenarios 

simulating propagation patterns.  

In order to test the accuracy of cMEM and 4-ExSo-MUSIC on clinical EEG and 

MEG data, we chose patients for whom the existence of a very focal lesion allows 

for making strong hypothesis on the origin of epileptic interictal activity. The other 

interest of choosing patients with focal cortical dysplasia was that sources of 

interictal activity are meant to stay relatively stable in space (Bast et al., 2004). 

Therefore, averaging of spikes could be performed with a minimal risk of mixing 

activities arising from different spatial configurations, and therefore without 

increasing the spatial smoothness of the source estimates. This is not always the 

case however, therefore, averaging should be considered cautiously, and the sub-

averaging technique proposed by (Aydin et al., 2015) can be considered for 
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activities whose spatial position changes in a dynamic manner within the 

epileptogenic tissue. In patient 1, both cMEM and 4-ExSo-MUSIC were able to 

retrieve a source of IEDs that was in concordance with the iEEG findings and the 

lesion suggested on MRI, in line with our quantitative MEG/iEEG comparison 

provided in Figure 5.2 of (Grova et al., 2016). In this case, cMEM provided better 

sensitivity to the spatial extent than both 4-ExSo-MUSIC and sLORETA. For 

patient 2, the result of both methods was slightly away from the small mesial FCD. 

This result was too lateral for cMEM, and too deep for 4-ExSo-MUSIC. It is 

interesting to notice however that these two “mislocations” corresponded to brain 

areas where epileptic spikes were spreading. In this regard, these localizations were 

not fully consistent with depth recordings but could not be considered as misleading 

either. In both the clinical cases, sLORETA was able to localize the sources but 

retrieved also a widespread area, with spurious sources in regions that were not 

shown to be involved during intracerebral interictal spikes. cMEM and 4-ExSo-

MUSIC are therefore good candidates to be used in clinical practice of source 

localization of epileptic discharges and to guide iEEG implantation, although 

further validation on more clinical datasets is required but was out of the scope of 

the present study. 

 

5.7. Conclusion 

In this paper, we quantitatively assessed the behavior of two source localization 

methods, cMEM and 4-ExSo-MUSIC, when localizing complex spatio-temporal 

patterns of IEDs using simulations of EEG and MEG data generated from 

biophysical computational neural mass model. While both the methods were 

studied separately and well-established for their sensitivity to the spatial extent of 

the generators, our goal was to compare the two methods together on a common 

ground of well-controlled realistic simulations while taking into account 

simultaneously recorded HR-EEG and MEG data. Overall, our results demonstrate 

the eligibility of both 4-ExSo-MUSIC and cMEM for application on clinical data 

due to their high sensitivity to the location and spatial extent of the generators of 
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epileptic discharges in EEG and MEG. The superior performance of 4-ExSo-

MUSIC when dealing with single source of large signal-to-noise ratio, and superior 

performance of cMEM when dealing with complex spatio-temporal propagation 

patterns suggests that the two methods provides interesting complementarities that 

should be taken into account when localizing clinical data. 
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5.9. Appendix A 

MEM regularization: In the MEM optimization (equation (5-4)), the ν-entropy is 

strictly a convex function that needs to be maximized under constraints, which is 

equivalent to maximizing an unconstrained strictly concave Lagrangian function. 

In the Lagrangian function, the Lagrangian parameters κ and λ are used to add 

constraints to the objective function ( )S dp , as follows: 

( , , ) ( ) ( [ ]) (1 ( ))T
dpL dp S dp dp       m j jG   

( , , ) ( )log ( ) ( ) ( [ ]) (1 ( ))T
dpL dp f f d dp        j j j m j jG    

(5-A1) 

where the first term is the ν-entropy, second term is the data goodness of fit, and 

the last term expresses the constraint that ( )dp j  must be a probability distribution. 

Therefore, the MEM formalism consists in a duality principle where the primal 

solutions (equation (5-6) and (5-7)) are given as a function of the Lagrange 

multipliers (equation (5-A1) and (5-A5), respectively). 
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Therefore, the optimal solution ˆ( , , )dp     of this optimization problem calculated 

via the Lagrangian formalism, i.e. , ,arg min ( , , )dp L dp   , provides: 

ˆ ( ) ( )
( )

T

e
dp d

Z


j

j j



G



 

 (5-A2) 

where   is the maximum of the non-linear optimization of a convex function 

( )D   in a q-dimensional space, thus accepting a unique solution. In practice, the 

optimization problem depends only on the parameter   which is the same 

dimension as the number of sensors (q). 

 

argmax ( )D    , where 
1

( ) ( )
2

T T T T

e eD F  m Σ ΣG      (5-A3) 

and the normalizing constant in equation (5-A2), ( )Z( )
TFe 
  G  is the partition 

function and F  is the free energy associated with the reference distribution  d , 

defined as the log of the partition function.  

 ( ) log ( )
T

F e d   ξ jξ j  with  Tξ G  (5-A4) 

and 
eΣ  is the noise covariance matrix for e in equation 1. 

It can then be shown that the primal solution in equation (5-7) giving the MEM 

estimate of the sources’ intensities j could then be related to the dual solution as the 

gradient of the free energy F : 

ˆ ( ) | TMEM F 
 

ξ
j ξ G   (5-A5) 

When applied to the reference distribution introduced in equation (5-8), the MEM 

estimate of the sources in each parcel k can be found to be:   

ˆ [ ]ˆk
ME

T
k kM k k j μ Σ G   (5-A6) 
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where 
,

ˆ
(1 )exp( ( ))

k
k T

k k k kF


 


   G 

 (5-A7) 

where ,kF   is the free energy corresponding to the kth parcel when active (i.e.
 
Sk = 

1), given by: 

 ,  
1

2
TT T T T

k k k kkk kF  μ   G G G Σ G     (5-A8) 

and kG  is the ( )kq r  submatrix of G for the kth parcel. 
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Figure S5.1. Single Source analysis. EEG and MEG source localization results 
(with their corresponding validation metrics: AUC, SD and SE values) using 
cMEM and 4-ExSo-MUSIC on simulated sources of spatial extent 10 cm2 in (F) 
Insula, (G) Lateral orbito-frontal, (H) Temporal pole, (I) Superior Temporal 
region, and (J) Occipital region. All the source localization results were 
displayed over the inflated cortical surface obtained from Brainstorm software 
toolbox. In this figure, we presented source localization results of cMEM after 
an Otsu threshold, which is obtained by taking the absolute value of the current 
density at the peak of the spike, normalized to its maximum activity and 
thresholded upon the level of background activity (Otsu, 1979). We presented 
two maps for 4-ExSo-MUSIC results: 4-ExSo-MUSIC metric map and the GOF 
thresholded binary map to be able to compare between the original and 
thresholded source maps. 
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6. Chapter 6  Manuscript 3: Reproducibility of 

EEG-MEG fusion source analysis of interictal 

spikes - relevance in pre-surgical evaluation of 

epilepsy 

6.1. Context 

Based on the studies in Chapter 4 and 5, it is well-established that cMEM 

methodology is eligible for application on clinical data. The MEM-fusion approach 

presented in Chapter 4 provides a new source analysis framework for combining 

EEG and MEG, resulting in improved accuracy of IEDs localization. In Chapter 5, 

we assessed the ability of cMEM to recover accurately more complex propagation 

patterns of IEDs, when considering either high density EEG or MEG. We showed 

that cMEM was complementary to 4-ExSo-MUSIC, another probabilistic 

framework developed to recover the spatial extent of the IEDs sources, with 

improved performance of cMEM when dealing with complex propagation patterns. 

To this end, application and validation of MEM-fusion approaches on clinical data 

and assessing its overall clinical relevance is the main objective of this dissertation.  

As explained in Section 3.4.1, source localization of single spike offers a good 

balance between the SNR and spike variability. In Chapter 4, we demonstrated that 

MEM-fusion was robust to low SNR conditions of single spikes and takes full 

benefit of the complementarities between EEG and MEG in fusion. Therefore, we 

propose to study the reproducibility of single spike source localization when 

combining EEG and MEG data. 

We therefore developed and validated a new methodological source analysis 

pipeline involving clustering of single spike source localization results to provide a 

consensus map for the most reproducible and clinically reliable source localization 

results. Therefore, manuscript 3 presents the evaluation of such an approach when 

applied to a database of 26 patients with focal intractable epilepsy.  
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This manuscript is in preparation for publication as (R.A.Chowdhury, Pellegrino 

G., Aydin U., Lina J.M., Dubeau F., Kobayashi E., Grova C. Reproducibility of 

EEG-MEG fusion source analysis of inter-ictal spikes - relevance in pre-surgical 

evaluation of epilepsy) 

 

6.2. Abstract 

Fusion of electroencephalography (EEG) and magnetoencephalography (MEG) 

using Maximum Entropy on the Mean method (MEM-fusion) provides accurate 

localization and sensitivity to the spatial extent of the generators of inter-ictal 

epileptic discharges (IEDs). Our goal is to assess the clinical relevance of single 

spike source localization (SSSL) using MEM-fusion. We proposed a systematic 

approach for clustering SSSL results to find the most reliable and consistent source 

map (consensus map) among the reconstructed single spike sources.  

Thirty-four types of IEDs were analyzed from 26 patients with a well-defined 

epileptic focus. SSSLs were performed on EEG, MEG and EEG-MEG fusion. 

Consensus maps were estimated using hierarchical clustering in the source space. 

Qualitative (spike-to-spike reproducibility rate (SSR)) and quantitative 

(localization error and spatial dispersion) assessments were done using the epileptic 

focus as clinical reference. The impact of the number of EEG electrodes in fusion 

was also assessed. 

Fusion SSSL provided better results than EEG or MEG alone. Fusion found at least 

one cluster that was concordant with the clinical reference in all cases and the 

concordant cluster was always the one involving the highest number of spikes. 

Fusion yielded highest SSR (EEG = 55%, MEG = 71 %, fusion = 90%) and lowest 

localization error. Adding only 21 EEG electrodes was sufficient for accurate EEG-

MEG fusion.  

MEM-fusion with consensus map approach provided an automatic way of finding 

the most reliable and concordant generators of IEDs. We therefore demonstrated 
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the pertinence of SSSL using MEM-fusion as a valuable non-invasive tool for pre-

surgical evaluation of epilepsy. 

 

6.3. Introduction 

Epilepsy is a neurological disorder caused by recurrent seizures and it affects 

approximately 50 million people worldwide (“WHO | Epilepsy,” 2016). Epilepsy 

surgery offers the possibility of a reduction or elimination of the seizures to drug 

resistant patients. Candidates for epilepsy surgery undergo an extensive pre-

surgical evaluation, which aims at localizing the brain areas where the seizures are 

generated (epileptogenic focus) and to determine whether surgery is feasible 

(avoiding any functional loss). Inter-ictal epileptic discharges (IEDs) are 

spontaneous abnormal neuronal discharges occurring in between the seizures 

without any clinical manifestations. Their generators usually overlap with the 

region involved in the seizure onset (Hauf et al., 2012). The localization of the IEDs 

generator called irritative zone (IZ) is therefore an important marker for  the study 

of intractable focal epilepsy (Bautista et al., 1999; Hufnagel et al., 2000; Ryvlin et 

al., 2014).  

Electroencephalography (EEG) and Magnetoencephalography (MEG) are two non-

invasive electrophysiological techniques able to track IEDs at high temporal 

resolution. They possess specific complementary properties and their combination 

can be extremely informative in the assessment of the generators of IEDs. 

Simultaneously recorded EEG and MEG showed that MEG is overall more 

sensitive to spikes but some spikes could be detected in EEG and not in MEG 

(Hillebrand and Barnes, 2002; Yoshinaga, 2002; Lin et al., 2003; Iwasaki et al., 

2005; Ramantani et al., 2006; Ossenblok et al., 2007; Scheler et al., 2007). This is 

largely determined by their sensitivity to the orientation of the anatomical sources 

(Haueisen et al., 2012). MEG is selectively sensitive to sources that are tangential 

to the skull surface (fissural or sulcal walls) (Hämäläinen et al., 1993). EEG is 

sensitive to both tangential and radial sources (crest of the cortical gyri) but EEG 

spikes originating from deeper  regions are often obscured by the radially oriented 
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background ongoing activity, since these generators are located closer to the scalp 

sensors (Ahlfors et al., 2010). Since the ratio between tangential source and radial 

sources is approximately 3:1 (Haueisen et al., 2012), MEG is overall more sensitive 

than EEG (Cohen and Cuffin, 1983). On the other hand, MEG fails to detect deeper 

cortical sources (such as mesial temporal and deep orbitofrontal cortices) because 

of the rapid fall of the magnetic field with depth when using axial gradiometers 

(Mikuni et al., 1997; Oishi et al., 2002; Huiskamp et al., 2010), the lack of direct 

contact between MEG sensors and skin, and head movements inside the MEG 

helmet causing noisy data. Therefore, MEG and EEG sources reflect different 

anatomical aspects of the activated sources because of their relative sensitivities. 

As a result, epileptic spike detection can be significantly improved by analyzing 

simultaneously recorded EEG and MEG data; thus taking advantage of the 

complementarities of the two techniques. 

MEG is sensitive to smaller generators than EEG, albeit both techniques require the 

activity of a brain region to be synchronized over a spatially extended region of 

several square centimeters in order to result in a signal visually distinguishable from 

the ongoing background (Cooper et al., 1965; Ebersole, 1997a; Mikuni et al., 1997; 

Merlet and Gotman, 1999; Oishi et al., 2002; Tao, Baldwin, Hawes-Ebersole, et al., 

2007; von Ellenrieder et al., 2014a; Ramantani et al., 2014). EEG and MEG source 

localization techniques are used to localize the generators of epileptic discharges 

but the main challenge lies not only in localizing the generators but also accurately 

recovering their spatial extension. Source localization with the coherent Maximum 

Entropy on the Mean (cMEM) method has been shown to provide reliable and 

accurate localization of the sources of EEG and MEG discharges together with their 

spatial extent along the cortical surface (Grova et al., 2006; Chowdhury et al., 2013, 

2015; Grova et al., 2016; Heers et al., 2016).  

Spatial resolution of EEG and MEG influences the localization accuracy of source 

localization. MEG tends to provide higher spatial resolution than EEG due to 

mainly two reasons. Firstly, EEG scalp potentials are highly attenuated and 

spatially smeared by the very low conductivity of the skull; whereas MEG is less 
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distorted by the resistive properties of the skull. This leads to higher sensitivity of 

EEG to errors in skull modeling while MEG forward problem is more robust in this 

aspect (Hämäläinen and Sarvas, 1989; Mosher, Leahy, et al., 1999). Secondly, the 

number of MEG sensors (whole head coverage) when compared to usually 

considered to EEG system (10-20 or 10-10 system) is typically larger (Ossenblok 

et al., 2007; Klamer et al., 2015). However, it has been demonstrated that 

improvement in EEG localization accuracy can be attained when using high density 

electrodes and realistic geometry head models (Liu et al., 2002; Lantz and Grave 

de Peralta, 2003; Ryynanen et al., 2006; Wang et al., 2011; Birot et al., 2014; 

Klamer et al., 2015; Song et al., 2015; Chowdhury et al., 2016). Actually, it has 

been shown that simultaneously acquired EEG and MEG data are super additive, 

i.e., their combination provide more information relevant to source localization 

than the sum of the monomodal information (Pflieger et al., 2000). With the aim to 

better recover the location and the spatial extent of the generators of IEDs, we 

previously proposed an EEG-MEG fusion source localization approach using the 

cMEM framework (hereafter denoted as MEM-fusion) (Chowdhury et al., 2015). 

Based on simulated data, we showed that MEM-fusion yields higher localization 

accuracy (more accurate, robust and sensitive to the spatial extent) than monomodal 

source localizations. In this study, we further evaluate this method on clinical data, 

proposing a methodology to also assess the reproducibility and reliability of SSSL 

results.  

The first and one of the most crucial steps in source analysis is the spike detection. 

It is a common practice to visually review EEG/MEG data and to classify and group 

spikes based on their morphology, topography, and signal-to-noise ratio (SNR). 

Usually inter-ictal spikes reveal varying morphology and topography, and most 

single spikes actually show low SNR signals that are highly contaminated by 

background noise. Therefore, reproducible transient spikes with similar spatio-

temporal patterns are usually grouped into distinct categories and averaged to 

improve the SNR before applying any source localization method (Bast et al., 2004; 

Hara et al., 2007; Tanaka et al., 2010; Wennberg and Cheyne, 2014). Some studies 
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also adopted automatic cluster analysis (at sensor level) to align and classify the 

spikes on the basis of their spatial distribution followed by equivalent current dipole 

analysis of each cluster average (Van ’t Ent et al., 2003; Ossenblok et al., 2007). 

Ossenblok et al., (2007) reported that cluster analysis and localization failed in 

several cases due to either a large variability between single spikes within one 

cluster or due to strong background activity leading to low SNR cluster averages. 

Moreover, averaging can also lead to some signal cancellation, which is more likely 

to filter out source activities that vary slightly over each individual spike (Ahlfors 

et al., 2009). In this line, Aydin et al., (2015) combined bootstrap techniques and 

sub-averaging to increase SNR while preserving some of the between spike 

differences. In order to maintain a balance between the SNR while respecting 

inherent spike variability, we proposed to consider single spike source localization 

(SSSL). Moreover, we previously demonstrated the robustness of MEM-fusion in  

low SNR conditions usually encountered when performing SSSL (Chowdhury et 

al., 2015). Therefore, we hypothesized that SSSL of combined EEG and MEG data 

through MEM-fusion can take full benefit of the complementarities between the 

two modalities to characterize the underlying generators of IEDs. 

Following SSSL, we also proposed a new method based on spatial correlation to 

estimate a consensus map summarizing the most reliable and consistent source 

maps among the reconstructed single spike sources. The consensus map was used 

to assess spike-to-spike reproducibility of SSSL results. 

Based on combined EEG and MEG data analysis, several studies have indicated 

that the coverage of the whole head using dense sampling of EEG and MEG 

channels is crucial to achieve high localization accuracy (Fuchs et al., 1998; Sharon 

et al., 2007; Chowdhury et al., 2016). We previously demonstrated using simulated 

data that combining EEG and MEG within the MEM-fusion framework provided 

accurate results even when only few EEG electrodes were involved (Chowdhury et 

al., 2015). In the present study, we further evaluate the impact of the number of 

EEG electrodes to be considered during MEM-fusion on clinical data. 
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6.4. Materials and methods 

6.4.1. Patient selection 

This study was approved by the Montreal Neurological Institute (MNI) Research 

Ethics Board and all procedures were conducted in compliance with the Code of 

Ethics of the World Medical Association (1964 Helsinki declaration and its later 

amendments). All patients signed a written informed consent prior to participation 

in the EEG-MEG acquisition. Among the patients who underwent a simultaneous 

EEG-MEG recording for pre-surgical evaluation at the MNI, we retrospectively 

selected those patients fulfilling the following inclusion and exclusion criteria. 

Inclusion criteria: 1) focal neocortical epilepsy; 2) available ground truth 

information such as intracranial EEG (iEEG) findings, well-defined epileptogenic 

lesion, and resection area from epilepsy surgery; 3) good quality anatomical MRI 

to obtain an accurate segmentation of head surfaces, which is required for realistic 

individual head modeling; 4) sufficient number of spikes (at least 10 spikes). 

Exclusion criteria: 1) multifocal or widespread epileptic focus; 2) deep generators; 

3) large magnetization artifacts.  

Acquisitions were done at the Psychology Department of the University of 

Montreal from September 2006 until July 2012 and later at Montreal Neurological 

Institute and Hospital. We selected 26 patients, from whom totally 34 different 

types of markers involving spikes, spike and wave discharges (spike-wave) and 

slow waves were marked. It is important to mention that most of these patients who 

were selected for EEG-MEG investigation consisted in challenging cases from a 

clinical point of view.  

 

6.4.2. MEG-EEG data acquisition and pre-processing 

Simultaneous EEG-MEG recordings were performed using a CTF MEG system 

(MISL, Vancouver, Canada) with 275 axial gradiometers and 54 EEG electrodes 

arranged on a cap according to the 10-20 system, plus additional electrodes 

according to the 10-10 system (F1, FPZ, F2, AF7, AF3, AFZ, AF4, AF8, FT9, FC5, 
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FC3, FC1, FCZ, FC2, FC4, FC6, FT10, C1, C2, CP5, CP3, CP1, CPZ, CP2, CP4, 

CP6, P9, P1, P2, P10, PO7, PO3, POZ, PO4, PO8 - Easy-cap, Herrsching, 

Germany). Note that in the CTF MEG system most of the recordings were done 

using 272 MEG sensors since 3 channels were bad. Additional electrodes were used 

to record electro-cardiogram and electro-oculograms. EEG electrode positions and 

the head shape were digitized using a Polhemus 3D localizer (Colchester, NH). The 

CTF system is equipped with reference sensors that waere used to calculate 

synthetic 3rd order gradients to reduce magnetic background interferences. During 

the acquisition, the head position of the subject was tracked using localization coils 

placed on three fiducial points (nasion, left and right peri-auricular points). 

Sampling rates for EEG/MEG acquisitions were either 1200 Hz or 2400 Hz. To 

minimize head movement, all recordings were done with subjects lying down in a 

supine position. Recording at rest lasted for 1 hour, with 10 runs of six minutes 

each. Brainstorm software (Tadel et al., 2011) was used to pre-process EEG/MEG 

data offline. Data were down-sampled to 600 Hz, synthetic 3rd order gradient noise 

correction was applied to MEG data, DC-offset was removed, EEG was re-

referenced to average montage, and 60 Hz notch filter (and its harmonics) was 

applied (Heers et al., 2012, 2016). EEG and MEG data were visually inspected and 

inter-ictal spikes were marked using the DataEditor software (MISL, Vancouver, 

Canada) by two experienced neurophysiologists (GP and EK). The spikes were 

marked at their peak. EEG/MEG spikes were further filtered at 0.3-70 Hz bandpass 

filter (butterworth, 4th order) prior to source localization. 

 

6.4.3. MRI data acquisition, analysis and head modeling 

High-resolution anatomical 3T MRI (Siemens Tim Trio 3T scanner) were acquired 

at the Brain Imaging Center of the MNI, using a T1W MPRAGE sequence (1mm 

isotropic 3D images, 192 sagittal slices, 256 × 256 matrix, TE (echo time) 52.98 

ms, TR (repetition time) 52.3 s). The MRI was processed using BrainVISA-4.2.1 
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software 11, allowing the segmentation of the surfaces of the skin and the gray-white 

matter interface which was then used as the source space for source imaging 

(Mangin et al., 1995). The MRI, the skin surface, and the cortical mesh tessellated 

from the gray-white matter interface were imported to the Brainstorm software for 

subsequent processing. MRI-MEG co-registration was performed by applying a 

surface fitting between the anatomical head shape derived from the MRI and the 

head points digitized using the Polhemus system at the time of the EEG-MEG 

acquisition. Individual three-layer Boundary Element Method (BEM) surfaces 

(inner-skull, outer-skull and skin) were constructed. The EEG and MEG forward 

models were computed using the OpenMEEG BEM (Kybic et al., 2006; Gramfort 

et al., 2011) implementation in Brainstorm software, using a three-layer BEM 

model consisting of the inner skull, outer skull and the scalp surfaces, with 

conductivity values of 0.33 : 0.0165 : 0.33 S/m, respectively (Ferree et al., 2000; 

Gonçalves et al., 2003; Hoekema et al., 2003; Lai et al., 2005). 

 

6.4.4. EEG-MEG distributed source localization method 

The EEG-MEG inverse solutions evaluated in this study use a distributed sources 

model where a large number of dipolar sources were distributed along the cortical 

surface. Considering the anatomical constraint that the orientation of each dipole is 

fixed perpendicular to the local cortical surface (Dale and Sereno, 1993), the linear 

relationship between the source amplitude and the measurements is given by: 

   

 M = G J ൅  (6-1) ࡱ

where M is a q ൈ τ signal matrix acquired on q EEG/MEG channels at τ time 

samples. E models the additive measurement noise (q ൈ τ matrix). J is a r ൈ τ 

                                                 

11 http://www.brainvisa.info 
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unknown matrix of the current density of the r dipolar sources along the tessellated 

cortical surface. G indicates the q ൈ r lead field matrix obtained by solving the 

forward problem, thus estimating the contribution of each dipolar source on the 

sensors. The objective of the inverse solution is to estimate J from the measured 

data M and the estimated lead field matrix G.  

a. cMEM inverse solution 

Every source localization approach consists in solving an ill-posed inverse problem 

(Baillet and Mosher, 2001). Therefore, some a priori knowledge should be 

incorporated within a regularization framework in order to estimate a unique 

solution. In the MEM framework, we consider the amplitude of the sources J to be 

estimated as a multivariate random variable j of dimension r, with a probability 

distribution ( )dp j . To regularize the inverse problem, the MEM framework 

incorporates prior information on j in the form of a reference distribution  ( )d j  

(Amblard et al., 2004). This reference distribution is a realistic spatial model that 

assumes the brain activity to be organized into K (K << r) cortical parcels showing 

homogenous activation states. This type of spatial clustering is obtained using a 

Data Driven Parcellization (DDP) technique (Lapalme et al., 2006). This DDP 

consisted in a region growing approach where the seeds were identified as dipolar 

source on the cortical mesh more likely to contribute to the data. Such contribution 

was quantified using a projection method, the Multivariate Source Pre-localization 

(MSP) technique (Mattout et al., 2005), that provides a probability-like coefficient 

(MSP score) between 0 and 1 for each dipolar source on the cortical mesh, 

characterizing the contribution of each source to the data. 

In the MEM reference model, a hidden state variable is associated to each parcel in 

order to model the probability of the parcel to be active. Note that the probability 

of being active of each parcel was initialized using the median of the MSP scores 

of all the sources within the parcel. Then, based on the state of activation of the 

parcels, MEM inference is able to specifically switch these parcels on or off and to 

estimate a contrast of source intensities within the selected active parcels. cMEM 
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method, which is a variant within MEM framework, further imposes a spatial 

smoothness constraint along each cortical parcel in the reference distribution  ( )d j  

(Harrison et al., 2007). Then, the MEM principle aims at estimating the distribution 

(ˆ )dp j  that maximizes the amount of information brought by the data, with respect 

to the reference distribution ( )d j (Jaynes, 1957; Amblard et al., 2004). The 

resulting current density distribution jመMEM is estimated using MEM regularization, 

iteratively for each time sample, as the first moment (or Mathematical expectation) 

of the distribution (ˆ )dp j , (i.e., jመMEM = Edpොሾjሿ). For more details on cMEM 

methodology and implementation please refer to (Chowdhury et al., 2013). 

In our previous study (Chowdhury et al., 2013), quantitative assessment of cMEM 

method demonstrated the benefits of whole cortex parcellization in detecting 

spatially extended sources. Moreover, EEG-MEG fusion using cMEM (denoted 

MEM-fusion) has been shown to provide excellent localization accuracy and 

sensitivity to the underlying spatial extent of the sources (Chowdhury et al., 2015). 

The MEM-fusion methodology is briefly described in the next section. 

b. MEM fusion 

The integrated EEG-MEG analysis was performed by the symmetrical fusion of 

normalized EEG and MEG measurements as follows: 
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 (6-2) 

In order to integrate the two modalities efficiently, it was first important to scale 

them to a common basis since they have different units. To do so, we have applied 

SNR transformation of the data and the lead field, using the mean standard 

deviation of their respective background activity ( EEGE , MEGE ) for all sensors of a 

modality (Fuchs et al., 1998; Ding and Yuan, 2013); thus creating unit-less 

measures of EEG and MEG. The superscript “s” in equation (6-2) represents the 

scaled data, lead field matrix and noise.  
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One striking feature of multimodal data fusion within the MEM framework is its 

ability to incorporate the complementary information provided by EEG and MEG 

data through the reference distribution d . In other words, the probability of 

activation of each parcel has been initialized by the fusion of the MSP scores 

obtained from both EEG and MEG data.  To integrate the contribution of the 

sources to either or both the EEG and MEG data, we therefore applied the logical 

OR operation on the MSP scores of the two modalities: 

 = + - ( )MEEG EEG MEG EEG MEGMSP MSP MSP MSP MSP  (6-3) 

where  denotes the Schur (Hadamard) product of the two matrices leading to 

element-wise multiplication of their elements. These MEEGMSP  scores then further 

impacted both the estimation of the parcels through DDP and the initialization of 

their probability of being active, putting forward cortical parcels for which the 

median of the fusion MSP scores was high. This type of fusion during the definition 

of the reference model can lead to an efficient way to integrate complementary 

information from the two modalities. This is a modeling particularity and 

originality of the MEM model when compared to other fusion approaches. Then 

starting from this reference model based on the fusion MSP scores, the MEM 

regularization technique was used to find the MEM solution for fusion data. For 

more details on the MEM fusion, the reader can refer to (Chowdhury et al., 2015). 

 

6.4.5. EEG-MEG source analysis 

Our standard clinical investigation involves averaging spikes with similar 

morphology and topography to improve the SNR of the EEG/MEG signals and then 

applying the source localization method (Heers et al., 2014, 2016; Pellegrino, 

Hedrich, Chowdhury, et al., 2016b). To provide a comparison between standard 

monomodal EEG and MEG source localization results, we first presented the 

results from these standard averaged spike EEG/MEG source localizations for all 

34 spike types (range, 11 to 287 spikes per type), from 26 patients selected for this 
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study. cMEM method allows localizing EEG/MEG data in the time domain; thus 

providing source maps for each time sample. We extracted the spike signals for a 

window of -100 ms to 100 ms with 0ms being the peak of the spike, whereas a 2 s 

baseline window was selected for noise covariance estimation. The averaged spike 

of each marker type was analyzed using monomodal EEG and MEG source 

localization. In this study, source localization results only at the peak of the spikes 

were considered. 

As explained earlier, SSSL using cMEM method is suitable for retrieving important 

information available at the individual spike level. Therefore, in this study we have 

also analyzed the single spikes from each marker type using EEG, MEG and EEG-

MEG fusion. Then, we have proposed an approach for clustering all the 

reconstructed single spike sources to estimate a consensus map. This approach will 

be described in the next section.  

 

6.4.6. Estimation of consensus map to assess spike-to-spike 

reproducibility 

The purpose of estimating a consensus map was to assess the reproducibility of a 

reliable and consistent source map across all the reconstructed single spike source 

maps. To do so, SSSL was first applied and then a similarity index between all 

source maps based on their spatial correlation was estimated. Later on, the source 

maps were clustered using a hierarchical clustering approach and the single spike 

source maps belonging to each cluster were averaged to obtain the averaged source 

maps (will be further denoted as cluster map). Finally, the most reproducible and 

reliable cluster map was chosen as the one with highest number of spikes, which 

will be called a consensus map.  

Since SSSLs were applied within a window of -100 ms to 100 ms around the peak 

of the spike, the consensus map was estimated along a specific window length 

around the peak of the spike, in order to recover the main spatio-temporal patterns 

of the spikes. Since we included spikes, spike-waves and slow waves in our 
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analysis, the window length considered to estimate the consensus map was adjusted 

accordingly. As per the criteria outlined by Walczak et. al in (Engel et al., 2008), 

the duration of each transient IEDs should be less than 200ms; a spike has a duration 

of less than 70ms whereas sharp waves have a duration of 70 to 200ms. Therefore, 

the chosen window of analysis for estimating the consensus map was 50 ms for 

spikes and 100 ms for the spike-waves and slow waves.  

The procedure for the estimation of the consensus map is described in the following 

steps: 

Step 1. Normalization of the reconstructed source maps 

cMEM reconstructed current density distribution, or source maps, obtained for each 

single spike will be denoted with  jመ, a r ൈ τ matrix, where r is the number of source 

dipoles and τ is the number of time samples of the selected time window of interest. 

The mean of the estimated current source density was first subtracted from the 

source maps to obtain zero-mean maps. Then, source maps were normalized 

between 0 and 1 using the Frobenius norm as follows, 	jመ
௡
ൌ
หjመห

ฮjመฮ
ி

൘ . Frobenius 

norm is the square root of the sum of the square of the coefficients of a matrix. The 

purpose of this normalization is to retrieve the spatio-temporal shape of all the 

source maps within a selected window length, thus, to recover similar dynamic 

patterns.  

Step 2. Estimation of the similarity index based on absolute correlation measure 

Considering that there were N source maps for each spike type, the absolute 

correlation measure (a scalar value) between normalized source maps was 

considered as a similarity index. Considering two normalized source map, 	aො௡ሺi,jሻ 

and 	b෠
௡
ሺi,jሻ , the similarity was given by, 

 
s(	aො௡, b෠

n
) = ෍෍ሺ aො௡(i,j) . b෠ 

n
(i,j) ሻ

r

i=1

ఛ

j=1

 (6-4) 
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using element-wise product of the two matrices. Then, the similarity matrix 

containing the absolute correlation measures between every combination of N 

source maps was given by S, an N ൈ N matrix with Sሺu,vሻ ൌ sሺjመ
	n

u, jመ
	n

vሻ for u and v 

= 1, …, N.  

From this similarity index, a dissimilarity matrix estimated as Ð = 1 – S, was 

introduced to hierarchical clustering purposes. 

Step3. Hierarchical clustering of source maps 

Given a set of N objects to be clustered, and a dissimilarity matrix Ð, we applied 

hierarchical clustering to indentify clusters of most reproducible spatio-temporal 

source maps among all SSSL. Hierarchical clustering was applied using the 

generalized Ward’s method (Ward, 1963) of agglomerative clustering; using the 

Lance-Williams recursive formula (Lance and Williams, 1967) for updating 

dissimilarities between the clusters (Batagelj, 1988; Marrelec et al., 2015). The 

clustering was initialized with the dissimilarity values from Ð as the distance 

between the N objects, which was then followed by updating the cluster distance 

using Lance-Williams formula (equation (6-5)). For example, considering the 

disjoint clusters Ci, Cj, and Ck with respective sizes ni, nj and nk, the updated cluster 

distance can be computed recursively as follows: 

 
݀൫Ci	∪	Cj, Ck൯= 

ni+nk

ni+nj+nk
 dሺCi, Ckሻ +

nj+nk

ni+nj+nk
 d൫Cj, Ck൯ 

െ 
nk

ni+nj+nk
 d൫Ci, Cj൯ 

(6-5)

where d(Ci, Cj) denotes the distance between clusters Ci and Cj and ݀൫Ci	∪	Cj, Ck൯ 

the distance between the merged cluster (Ci,Cj) and third cluster Ck.  

This procedure yields a hierarchy of clusters represented as a binary tree, denoted 

as a dendrogram. A dendrogram is a tree diagram that shows the nested structure 

of the partitions and how the various clusters are linked at each level of hierarchy. 

There is a numerical value (called linkage value) associated with each level of the 

method where the branches (i.e. clusters) join. This linkage value usually represents 
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the distance d(Ci, Cj) between the two clusters to be merged. The scale for this 

linkage value is shown on the vertical axis in Figure 1. Ward’s linkage method has 

been shown to perform well with noisy data, which is in agreement with the analysis 

of source maps obtained from low SNR single spike localizations. The linkage 

function provided in the MATLAB R2015 release was used for this 

implementation. 

Mojena’s upper tail stopping rule (Mojena, 1977) was then considered for 

thresholding the dendrogram to infer an optimal classification. Mojena’s stopping 

rule attempts to find the level in the hierarchy implying a significant jump in the 

dendrogram heights, indicative of the merging of two dissimilar clusters. If d h+1 is 

the linkage value at (h+1) hierarchy level, dത  and ߙd are the average and standard 

deviation of the linkages for h previous levels of hierarchy, respectively. Then, 

Mojena’s stopping rule consists in cutting the tree at the first hierarchical clustering 

level that satisfies the following rule ሺ	d	h+1
൐ dത	+	cαdሻ, where c is a constant. 

Mojena suggested a range of value for c, but it has been shown that the value of c 

can vary depending on the data (Milligan and Cooper, 1985) and was not 

straightforward to assess. Therefore, Martinez and Martinez, (2004) instead 

recommended the visual inspection of a break in the evolution of the standardized 

cluster linkages ቀd
h+1

ିdത

αd
ቁ as a function of the number of clusters, which does not 

require the estimation of on the constant c.  An elbow or a break in the plot should 

therefore be interpreted as an indication of the number of clusters. This visual 

approach was used in our study. See Figure 6.1 for an example where the break at 

‘2’ indicates 2 clusters. 

Step 4. Generation of consensus map 

With the help of the hierarchical clustering, we were able to group the source maps 

that were spatially similar into clusters. At this stage, we performed an average of 

the source maps within each cluster to provide a cluster map. This type of averaging 

helped in avoiding any sort of signal cancellation or loss of information, problems 

often faced during averaging at the signal level. Finally, we obtained spatio-
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temporal cluster maps but for this study we focused only on the results at the peak 

of the averaged cluster spike. From all of the cluster maps, the one with highest 

number of spikes representing the most reliable and reproducible source maps was 

chosen as the consensus map.  

 

6.4.7. Comparison of the consensus map approach on EEG, MEG 

and fusion data 

To evaluate the source localization results obtained from EEG alone, MEG alone 

and EEG-MEG fusion for every single spike, we considered a qualitative and a 

quantitative evaluation against the available ground truth, denoted as the clinical 

reference. Definition of the irritative zone (IZ) as a clinical reference for the source 

localization results was based on the available clinical information for each patient. 

This information consisted of (in the order of priority, not all factors were available 

for every patient): resected region, iEEG ictal and inter-ictal findings, and epileptic 

lesions such as focal cortical dysplasia (FCD) detected on MRI. Refer to Table 6.1 

for details. Whenever the resection did not lead to seizure freedom, information 

based on iEEG findings or lesions were considered. Based on such information, 

two expert neurophysiologists (GP and EK) manually drew the IZ on each patient's 

MRI based cortical mesh. This clinical reference or IZ was used for both qualitative 

and quantitative assessment. 

 

a. Qualitative assessment 

We visually categorized the cluster maps as either concordant, sub-lobar 

concordant or discordant with the presumed IZ.  

 A cluster map was assessed as concordant with the presumed IZ whenever 

the vertex of the cluster map exhibiting the maximum source amplitude 

(source maximum) was inside the IZ.  

 A cluster map was assessed as sub-lobar concordant with the presumed IZ 

whenever the source maximum was within the sub-lobar region of the IZ. 
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We identified 10 sub-lobar regions per hemisphere based on anatomical 

atlas (Agirre-Arrizubieta et al., 2009; de Gooijer-van de Groep et al., 2013). 

These regions consisted in the central, parietal, and occipital lobes; the 

frontal lobe was divided in the frontal superior, medial, inferior, and fronto-

orbital regions; and the temporal lobe into the lateral and mesial regions. 

The same atlas was used in our previous study and has been illustrated in 

Figure 2 of that paper (Heers et al., 2012). 

 A cluster map was assessed as discordant with the presumed IZ whenever 

the source maximum was outside the sub-lobar region. 

Spike-to-spike reproducibility rate (SSR) 

In order to assess the reproducibility of the SSSL results, we proposed an estimation 

of the spike-to spike reproducibility rate (SSR). This rate was calculated as the total 

number of single spikes belonging to the concordant cluster divided by the total 

number of single spikes localized for that specific marker type. This means that all 

the single spike sources included in the concordant cluster map were considered as 

reproducible sources.  

 

SSR ൌ

No. of single spikes included in the cluster map  
concordant with IZ

Total no. of single spikes localized
ൈ100 (6-6)

 

b. Quantitative assessment 

Based on the manually drawn clinical reference (IZ), quantitative assessment of the 

source localization results were also evaluated using the following two metrics: 

1. Minimum distance (Dmin): minimum Euclidean distance expressed in 

mm between the source maximum and the presumed IZ. This represents the 

localization error. 

2. Spatial dispersion (SD): This metric (Molins et al., 2008) was used in our 

previous studies based on clinical and simulation data (Heers et al., 2012; 

Chowdhury et al., 2015; Grova et al., 2016; Heers et al., 2016). It measures 

both the spatial spread of the estimated source distribution around the IZ 
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and the localization error between the estimated source distribution and IZ. 

We weight the amplitude of all the r cortical sources by their minimum 

distance from the set of cortical sources belonging to the IZ. Let us denote 

( , )0i τĵ  as the amplitude of the current density distribution estimated for a 

dipolar source i on the cortical surface at the main peak of the spike (0 ).  
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where min ( ( , ))l i l D 	provides the minimum Euclidean distance between the 

source i anywhere in the cortical surface and the sources l in the IZ.   

denotes the set of indices of the dipoles belonging to the IZ. This minimum 

distance is zero when the source i belongs to . SD values close to zero 

means that the estimated source was inside the IZ. A high value of SD 

means there are sources far away from the IZ that are contributing to the 

estimated solution or that the reconstructed source map was spatially spread 

around the IZ. 

Quantitative assessment using the above two metrics was done to compare the 

performances of the three modalities. Kruskal-Wallis H test, which is a rank-based 

non-parametric test, was used to determine if there were statistically significant 

differences between the three modalities, i.e. if the performance (Dmin or SD) of 

the SSSL using cMEM was different based on the modality (EEG alone, MEG 

alone and EEG-MEG fusion). Post hoc comparison tests to determine which of the 

groups differed from each other were then applied using Dunn’s non-parametric 

pair-wise multiple comparison test. These comparisons were Bonferroni corrected 

at a significance level of 0.05/3 = 0.0167. Two main questions were addressed in 

this analysis: 
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1. Does fusion provide an overall improved performance when compared to 

EEG alone and MEG alone?  

To test this, for each of the modality, we pooled together the metric (SD or 
Dmin) values obtained for all the clusters including concordant, sub-lobar 
concordant and discordant clusters from the 34 marker types. 

2. Does the cluster with the highest number of spikes exhibit concordant 

results with the presumed IZ?  

To test this, for each modality,	we pooled together the metric (SD or Dmin) 
values for only the cluster with the highest number of spikes from the 34 
marker types. 

 

6.4.8. Impact of the number of EEG electrodes in the fusion 

In our previous study based on realistic simulations, interestingly we showed that 

addition of only 20 EEG electrodes to the high density MEG sensors was sufficient 

to bring additional information missed by MEG in fusion (Chowdhury et al., 2015). 

To further validate these findings on clinical data, we assessed the impact of fusion 

source localization on the 34 markers when using either the whole 54 EEG 

electrodes (following the 10-10 system of electrode placement) and two down-

sampled montages involving 32 EEG electrodes and 21 EEG electrodes (following 

the standard 10-20 system of electrode placement) with the 272 MEG sensors. The 

application of the consensus map approach (Section 6.4.6) applied on the fusion 

configuration (54 EEG+272 MEG) resulted in a consensus map for each marker 

type, and the spikes within each consensus map were retrieved from three fusion 

configurations: 1) 54 EEG+272 MEG, 2) 32 EEG+272 MEG, and 3) 20 EEG+272 

MEG. These spikes were further averaged for the three configurations to perform 

averaged spike source localization. 

  



                                         

Markers 
(Patients) GEEinoiseLyregruS

EEG source 
localization

Averaged spike

 MEG source 
localization

Averaged spike
A/Nnoiger lartnec tsoPA/N)1P( 1M

A/Nnoiger lartnec tsoPA/N)1P( 2M

M3 (P2) L OF mesial encephalocele removed L F IED: L Hc and L fronto-mesial; Ictal: L OF mesial and L 
mesial T; F > T

M4 (P2) L OF mesial encephalocele removed L F IED: L Hc and L fronto-mesial; Ictal: L OF mesial and L 
mesial T; F > T

M5 (P3) Small cortical resection of the RF 
lobe near its upper convexity noiseL R :latcI ;noiseL R :DEIlattigasarap F R 

,F .liB :latcI ;R>L F .lib esuffiD :DEIlamroN F laisem L)4P( 6M  max L SMA

M7 (P5) L F lesion L ant. F, parasagittal IED: L perilesion and lesion, bil. F; Ictal: Bil. F max lesion 
and perilesion

A/N.tna R A/N)6P( 8M

M9 (P7) R Occ lobe, extension of resection Normal IED: R T and post. T and precuneus; Ictal:R pre-cuneus, R 
Superior Occ

M10 (P8) N/A L Hippocampal malrotation IED : L mesial T >> R. - Ictal : no focus identified

M11 (P9) R OF R hemimegalencephally IED: R OF, lat. and ant. Insula, R Am and Hc; Ictal: R OF and 
ant. Insula, also opercular region

M12 (P9) R OF R hemimegalencephally IED: R OF, lat. and ant. Insula, R Am and Hc; Ictal: R OF and 
ant. Insula, also opercular region

M13 (P9) R OF R hemimegalencephally IED: R OF, lat. and ant. Insula, R Am and Hc; Ictal: R OF and 
ant. Insula, also opercular region

M14 (P9) R OF R hemimegalencephally IED: R OF, lat. and ant. Insula, R Am and Hc; Ictal: R OF and 
ant. Insula, also opercular region

 .tna dna ytixevnoc F dim ,FOR :DEIF0 R noitceser FO R)01P( 51M T neocortex, Ictal: R OF

M16 (P11) L sensory hand and face Normal IED: L. Post. Rolandic mid convexity; Ictal: L. Post. Sensory 
cortex

M17 (P11) L sensory hand and face Normal IED: L. Post. Rolandic mid convexity; Ictal: L. Post. Sensory 
cortex

lamroNlaisemotnorf R)21P( 81M IED: R Hc>SMA>mid cingulate gyrus>mesial OF; Ictal: R T 
(ill-defined), R SMA followed by rapid propagation

lamroNlaisemotnorf R)21P( 91M IED: R Hc>SMA>mid cingulate gyrus>mesial OF; Ictal: R T 
(ill-defined), R SMA followed by rapid propagation

F Rnoisel F R)31P( 02M IED: superficial contact SMAa, SMAm or SMAp, R CP; Ictal: 
R SMA overlapping with structural lesion

F .tna dna laisem RA/N)41P( 12M IED: Bil. F R>L; Ictal: Bil. F R>L, R F or bil. F widespread 
changes

lamroNA/N)51P( 22M IED:R parasagittal central (deep contacts RSMAP, RCP); 
Ictal:  R parasagittal central

M23 (P16) R mid F R mid F convexity IED: mid portion R F convexity; Ictal: same contacts

M24 (P17) L amygdalohippocampectomy
Cerebral herniation of the L OF 
region through orbital bone, left 

hippocampus malrotation

IED:L neocortical and mesial T; Ictal: LT, neocortical and 
mesial

A/Nelop F Relop F R)81P( 52M

M26 (P19) R post. neocortex, Inf. P Normal IED: multifocal and widespread T, P ,neocortex, Hc and 
lingual gyrus; Ictal:diffuse changes and non-localizing

M27 (P19) R post. neocortex, Inf. P Normal IED: multifocal and widespread T, P ,neocortex, Hc and 
lingual gyrus; Ictal:diffuse changes and non-localizing

M28 (P20) L F resection at the level of the 
lateral O gyrus L OF IED: R mesial T lobe, hippocampus > amygdala, Ictal: likely 

R mesial T lobe

M29 (P21) R ant. T lobectomy
R T hippocampal atrophy and gliosis. 

L middle cranial fossa 
meningoencephalocele.

N/A

M30 (P22) R ant. T, R OF and and extension in 
the R OF L ant. Cingulate OF IED:L FT(max. ant. Cingulate + T pole),  L post. Hc+Am; 

Ictal: L ant. Cingulate and ant. T

M31 (P23) N/A Bil. Hippocampal atrophy IED: multifocal temporomesial bil. independent (> R); Ictal: 
from the R and the L T structures

A/NF ralucrepo LA/N)42P( 23M

A/N)suryg lartnecerp peed( xetroc F L A/N)52P( 33M

FO R :latcI ;FO R :DEIFO Rnoitceser FO R)62P( 43M

Table 6.1. Summary of the 26 patients (34 marker types) with details on the available ground truth information
from surgery outcome, lesion and iEEG findings. For each of the 34 marker types, the averaged spike source 
localization results using EEG and MEG data have been provided in the last two columns. 
Based on visual inspection, the results that were concordant with the presumed IZ (clinical reference) have 
been marked in blue color, the sub-lobar concordant results have been marked in orange and discordant 
results have been marked in gray color. 
L: Left, R: Right, T: Temporal, F: Frontal, P: Parietal, Occ: Occipital, O: Orbital, ant.: anterior, post.: posterior, 
Inf.: inferior, bil.: bilateral, Hc: Hippocampus, Am: Amygdala; 
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6.5. Results 

6.5.1. EEG and MEG averaged spike localization – standard 

clinical approach 

Table 6.1 summarizes the 34 different marker types with details on the available 

ground truth information. It also lists the results of EEG and MEG averaged spike 

localization on the 34 markers. Based on the visual assessment, we found 8/34 

(23%) cases in MEG and 11/34 (32%) cases in EEG that were discordant with IZ. 

There were 4/34 (12%) cases that were discordant with IZ in both EEG and MEG. 

Therefore, neither EEG nor MEG averaged spike localization brought clinically 

relevant information for 12% of the cases studied. 

Consequently, we tried to pinpoint the possible reasons for the failures in the EEG 

and MEG averaged spike localizations. Some possible reasons were: 

 Effect of source orientation or depth – EEG or MEG was not sensitive to 

the relative orientation and location of the generators. 

 Low SNR - data were too noisy, resulting in low SNR conditions even after 

spike averaging. The reasons for noisy data were either noisy background 

data or high impedances of the EEG electrodes. Low SNR was noticed also 

when the patient was not well-positioned inside the MEG helmet resulting 

in sensors far from the region of interest. 

 Spurious localization – Source localization method failed to find the source 

of interest due to complex source topography. 

 Spike Variability – Spikes from different runs were averaged and the 

variability between the peaks of the individual spikes in EEG was very high. 

To summarize the results, one of the most common reason for the failure of source 

localization (M3, M4, M5, M29, M32, M33 for EEG; M5, M10 and M32 for MEG) 

was due to the fact that EEG or MEG were not sensitive to the orientation and 

location of the generators of spikes, especially for generators located in too deep 

structures. The second common reason was due to low SNR or noisy data (M11, 

M18, M24 for EEG; M4, M11, M33 for MEG). The SNR was measured as the 
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standard deviation ratio between the signal around the peak and the background 

activity. M4, M11, M18 and M33 data exhibited SNRs less than 2. For M24, the 

impedance between many EEG electrodes and the scalp were very high resulting 

in noisy EEG signals. Next most common reason for the failure of source 

localizations was the complex source topographies leading to spurious localizations 

(M28, M33 for EEG; M9 for MEG). Finally, failure for EEG averaged spike source 

localization in M16 was due to spike variability. All these reasons clearly indicate 

the limitations of the standard approach of monomodal averaged spike source 

localization. In order to overcome such limitations, we proposed to combine SSSL 

and EEG-MEG fusion. 

 

6.5.2. Application of consensus map approach on EEG alone, MEG 

alone and EEG-MEG fusion  

Figure 6.1 illustrates an example of the application of the consensus map approach 

on a patient (M23) involving 97 spikes marked on EEG and MEG data. In this 

patient, the IZ has been marked in the right mid frontal region based on the surgical 

resection (post-surgical outcome was Engel 1), outlined in green on the cortical 

surface. In this figure, for each modality, we have presented the dendrogram 

obtained from Ward’s hierarchical clustering method and the plot of the 

standardized cluster linkages against the number of clusters. The first break in this 

plot provided the thresholding level in the dendrogram to obtain the number of 

clusters. For EEG, the first break in the plot was noticed at 2, indicating that there 

were two distinct clusters among the 97 SSSL results. From the two clusters, cluster 

1 containing 26 spikes and cluster 2 containing 71 spikes were both sub-lobar 

concordant with the IZ (Figure 6.1A). For MEG, the first break was noticed at 3 

indicating that there were three distinct clusters. From the three clusters, cluster 1 

containing 21 spikes was discordant with IZ, presenting a distant source in the left 

fronto-mesial region. Higher number of spikes were included in cluster 2 (43 

spikes) and cluster 3 (33 spikes) that were both concordant with IZ (Figure 6.1B).  
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For fusion, we determined 3 distinct clusters. While the cluster exhibiting the 

lowest number of spikes (cluster 2 with 15 spikes) presented sub-lobar concordance 

with IZ, cluster 1 (39 spikes) and cluster 3 (43 spikes) with higher number of spikes 

were both concordant with IZ (Figure 6.1C). Overall, the highest number of spikes 

presenting concordance with IZ was found in fusion with a total 82 spikes, whereas 

MEG provided concordance with IZ for 76 spikes. This indicates a higher spike-to-

spike reproducibility in fusion when compared to MEG or EEG alone. This 

suggests that the consensus map providing the most reliable and reproducible 

source was found as the concordant cluster with the highest number of spikes.  

Figure 6.1. Example of consensus map estimation. On a patient (M23) with clinical reference 
(IZ) located in mid right frontal region, as outlined in green on the cortical surface. A total of 97 
spikes have been marked in both EEG and MEG data. Results on EEG, MEG and fusion are 
presented. Column 1 shows the dendrogram obtained from Ward’s hierarchical clustering, x-
axis: Object number and y-axis: cluster linkage value. Column 2 shows the plot of the 
standardized cluster linkage against the number of clusters, red arrow points towards the first 
break or elbow in the plot indicating the number of clusters; x-axis: number of clusters and y-
axis: cluster linkage value. In this plot, only the first 10 hierarchical levels have been shown. The 
next columns show the cluster maps displayed over the inflated cortical surface obtained through 
the Brainstorm software toolbox. (A) EEG consensus map approach presenting 2 clusters with 
cluster 1 containing 26 spikes and cluster 2 containing 71 spikes. Cluster 1 and 2 are sub-lobar 
concordant with IZ. (B) MEG consensus map approach presenting 3 clusters with cluster 1 
containing 21 spikes, cluster 2 containing 43 spikes and cluster 3 containing 33 spikes. Cluster 
1 is discordant with IZ, cluster 2 and 3 are concordant with IZ. (C) Fusion consensus map 
approach presenting 3 clusters with cluster 1 containing 39 spikes, cluster 2 containing 15 spikes 
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and cluster 3 containing 43 spikes. Cluster 1 and 3 are concordant with IZ. Cluster 2 is sub-lobar 
concordant with IZ. 

 

6.5.3. Comparison between averaged spike localization and 

consensus map on single spike localizations 

Figure 6.2 illustrates the results of averaged spike source localization and SSSL 

results using the consensus map approach on a patient (M8), for whom the IZ was 

identified in the right anterior frontal region with the presence of a FCD in the MRI. 

In total, 40 spikes were marked. EEG averaged spike localization was successful in 

localizing the IZ (Figure 6.2A). However, MEG averaged spike localization found 

the source in a sub-lobar region, anterior to the lesion (Figure 6.2B). After applying 

the consensus map approach on EEG, MEG and fusion, we were able to find at 

least one cluster in all three modalities that was fully concordant with IZ. In all 

three modalities, this concordant cluster was also the one exhibiting the highest 

number of spikes (Figure 6.2 C, D and E). 

Figure 6.2. Comparison of averaged spike localization results with consensus map approach 
on the single spike localization results. Example on a patient (M8) with FCD in the right anterior 
frontal region (IZ), outlined in green on the cortical surface. A total of 40 spikes have been marked 
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on EEG and MEG data. (A) EEG source localization on average of 40 spikes, showing the averaged 
EEG signal with SNR= 2.4, the topography at the peak of the spike, and the source localization 
result which is concordant with IZ, presented on the inflated cortical surface. (B) MEG source 
localization on average of 40 spikes, showing the averaged MEG signal with SNR= 1.6, the 
topography at the peak of the spike, and the source localization result which is sub-lobar concordant 
with IZ, presented on the inflated cortical surface. (C) Consensus map approach applied on EEG 
single spike source localizations presenting 2 clusters. Cluster 1 containing 13 spikes that is 
discordant with IZ. Cluster 2 containing 27 spikes that is concordant with IZ. (D) Consensus map 
approach applied on MEG single spike source localizations presenting 2 clusters. Cluster 1 
containing 12 spikes that is discordant with IZ. Cluster 2 containing 28 spikes that is concordant 
with IZ. (E) Consensus map approach applied on fusion single spike source localizations presenting 
2 clusters. Cluster 1 containing 12 spikes that is discordant with IZ. Cluster 2 containing 28 spikes 
that is concordant with IZ. 

 

Figure 6.3 illustrates the results of averaged spike localization and SSSL results 

using the consensus map approach on a patient (M16) who underwent surgical 

resection of the posterior rolandic mid convexity region (IZ, outlined in green on 

the cortical surface in Figure 6.3). A total of 18 spikes have been marked on EEG 

and MEG data. EEG averaged spike localization failed to localize the IZ, while 

MEG averaged spike localization found the source in the sub-lobar region of the 

IZ. As in previous example, we again noticed that the consensus map approach on 

single spike localization was able to help finding at least one cluster of spikes that 

was fully concordant with IZ, indicating the advantage of applying the consensus 

map approach on single spike localizations over averaged spike localizations. Also, 

in this case, the other clusters found in the three modalities were sub-lobar 

concordant with the presumed IZ. The concordant clusters exhibited the highest 

number of spikes only in EEG (cluster 1 with 11 spikes) (Figure 6.3C) and in 

fusion (cluster 2 with 12 spikes) (Figure 6.3E), whereas in MEG only the smallest 

cluster involving 6 spikes was concordant with IZ (Figure 6.3D). 
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Figure 6.3. Comparison of averaged spike localization results with consensus map approach 
on the single spike localization results. Example on a patient (M16) with resection in the left 
posterior rolandic region (IZ), outlined in green on the cortical surface. A total of 18 spikes have 
been marked on EEG and MEG data. (A) EEG source localization on average of 18 spikes, showing 
the averaged EEG signal with SNR= 6.5, the topography at the peak of the spike, and the source 
localization result which is discordant with IZ, presented on the inflated cortical surface. (B) MEG 
source localization on average of 18 spikes, showing the averaged MEG signal with SNR= 2.9, the 
topography at the peak of the spike, and the source localization result which is sub-lobar concordant 
with IZ, presented on the inflated cortical surface. (C) Consensus map approach applied on EEG 
single spike source localizations presenting 2 clusters. Cluster 1 containing 11 spikes that is 
concordant with IZ. Cluster 2 containing 7 spikes that is sub-lobar concordant with IZ. (D) 
Consensus map approach applied on MEG single spike source localizations presenting 2 clusters. 
Cluster 1 containing 6 spikes that is concordant with IZ. Cluster 2 containing 12 spikes that is sub-
lobar concordant with IZ. (E) Consensus map approach applied on fusion single spike source 
localizations presenting 2 clusters. Cluster 1 containing 6 spikes that is sub-lobar concordant with 
IZ. Cluster 2 containing 12 spikes that is concordant with IZ. 

 

In summary, in all three examples illustrated in Figure 6.1, Figure 6.2 and Figure 

6.3, only in fusion the concordant cluster was always the one exhibiting the highest 

number of spikes thereby suggesting higher spike-to-spike reproducibility rate in 

fusion when compared to EEG alone and MEG alone.  
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6.5.4. Consensus map approach – Qualitative assessment 

We performed SSSL on a total of 1435 spikes from 34 marker types. We 

categorized these 1435 spikes sources into concordant, sub-lobar concordant, or 

discordant results with the presumed IZ. For instance, all spikes contained in the 

concordant clusters were categorized as concordant spikes. Similarly, the sub-lobar 

concordant and discordant spikes were obtained from the sub-lobar concordant and 

discordant clusters, respectively. Figure 6.4A illustrates a pie chart of the 

percentage of spikes that provided concordant, sub-lobar concordant and discordant 

results with IZ when considering SSSLs of EEG alone, MEG alone and fusion data. 

While EEG yielded the lowest percentage of spikes that provided concordant results 

with IZ (Spike-to-Spike Reproducibility SSR = 55%), MEG performed better than 

EEG with SSR = 71% of spikes exhibiting concordant results. On the other hand, 

fusion showed the highest spike-to-spike reproducibility and reliability with 90% 

of spikes providing concordant results with IZ. This was the case when considering 

all marker types together. Interestingly, when studying the distribution of SSR 

values at the level of each marker type (Figure 6.4B), we also noticed that overall 

fusion provided higher SSR when compared to EEG alone or MEG alone. Fusion 

provided 100% SSR in 18/34 markers, whereas 100% SSR was noticed only in 9/34 

markers for MEG and 6/34 markers for EEG. On the other hand, 0% SSR (source 

localization failure) was observed for 8/34 cases in EEG and 6/34 cases in MEG, 

whereas for fusion the lowest SSR value 42%. This suggests a high reliability of 

fusion SSSL results using the consensus map approach when compared to EEG or 

MEG alone. We noticed that the SSR of fusion was lower than the one observed 

for either EEG or MEG in only 4/34 markers. Those were marker number 19 (EEG 

had a higher SSR), 28 (both EEG and MEG had higher SSR), 31 (EEG has higher 

SSR) and 32 (MEG has higher SSR). Note that the order of the markers was sorted 

in descending order based on SSR values, therefore, the marker numbers in Figure 

6.4B do not match with the marker numbers in Table 6.1. 

With reference to Section 6.5.1, we also observed that by applying the consensus 

map approach on SSSL results, out of 11 cases of averaged spike localizations that 
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failed in EEG, 9 of them were localized within the IZ and localization remained 

unsuccessful for 2 of them. Finally, out of the 34, there were 3 additional cases 

(M10, M26, and M27) that failed to localize the IZ after applying the consensus 

map approach. In MEG, out of 8 cases for which averaged spike localization failed, 

7 of them showed improved localization after applying the consensus map 

approach; resulting in either concordant or sub-lobar concordant results. Finally, 

for fusion, we noticed that the consensus map approach improved the localization 

in 100% of the cases, exhibiting at least one cluster fully concordant with the 

presumed IZ for each marker type. Note that in 33/34 cases the cluster involving 

the highest number of spikes was indeed the one concordant with the IZ.  

Figure 6.4. Qualitative assessment of consensus map approach. (A) Pie charts illustrating the 
comparison of location of source with respect to IZ in EEG, MEG and fusion single spike 
localization. The values in the charts represent the percentage of spikes that provided 
concordant (in blue color), sub-lobar concordant (in orange color) and discordant (in gray 
color) results in each modality from the total number of 1435 spikes that were localized for 34 
marker types. EEG presented 55% spike-to-spike reproducibilty rate (SSR), MEG 71% SSR 
and fusion presented the highest SSR of 90%. (B) Chart comparing the SSR across the three 
modalities (EEG, MEG and fusion) for each of the 34 marker type. EEG in orange, MEG in 
yellow and fusion in green color; x-axis: markers type, y-axis: SSR in percentage. At the level 
of each marker type, fusion provided an overall higher SSR than EEG alone and MEG alone.  
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6.5.5. Consensus map approach – Quantitative assessment 

a. Fusion performed better than monomodal localizations 

The first test was to see if fusion provided an improved performance when 

compared to EEG alone and MEG alone. Figure 6.5A shows the boxplot 

representation of the Dmin values pooled together from all the clusters of the 34 

marker types in EEG alone, MEG alone and fusion. We found an overall significant 

effect of the modality over Dmin values (H(2) = 10.6, p=0.005). Post-hoc paired 

comparison showed that fusion provided significantly lower Dmin than EEG 

(p=0.004) but neither the differences between fusion and MEG (p=0.054), nor 

between EEG and MEG (p=0.6) were statistically significant. Figure 6.5B shows 

the boxplot representation of the SD values pooled together from all the clusters of 

the 34 marker types in EEG alone, MEG alone and fusion. We found an overall 

significant effect of the modality over SD values (H(2) = 8.68, p=0.013). Post-hoc 

paired comparison showed that fusion provided SD values significantly lower than 

EEG (p=0.009) but were not significantly different from MEG (p=0.24). We found 

no statistically significant differences in SD between EEG and MEG (p=0.3). 

Figure 6.5. Quantitative assessment to compared the performances of monomodal SSSL with 
fusion SSSL using the quantitative metrics Dmin and SD. Boxplot representation of (A) Dmin 
values and (B) SD values pooled together from all the clusters (including concordant, sub-lobar 
concordant and discordant clusters) of the 34 marker types in EEG alone, MEG alone and fusion. 
Post-hoc paired comparison: ** represents statistically significant difference with p<0.005; * 
represents statistically significant difference with p<0.0167.  
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b. Concordant cluster with highest number of spikes 

The second test was to see if the cluster involving the highest number of spikes 

exhibited a concordant result with the presumed IZ. For fusion, Dmin values were 

zero for all clusters involving the highest number of spikes (Figure 6.6A), except 

for two clusters: one cluster was sub-lobar concordant (within 3mm distance) with 

the IZ, and another cluster that was discordant with the IZ. MEG also provided 

concordant results with IZ for most of the clusters with the highest number of 

spikes. Only few cases (6/34 cases) provided either sub-lobar concordant or 

discordant results with IZ. On the other hand, for EEG, the cluster with the highest 

number of spikes did not exhibit concordant results with IZ in most of the cases 

(median Dmin്0). When considering only the clusters with the highest number of 

spikes, we also found an overall significant effect of the three modalities on Dmin 

distribution (H(2) = 15.6, p<0.001). Post-hoc paired comparison showed that 

Fusion provided Dmin values significantly lower thanEEG (p=0.0003) but the 

differences between fusion and MEG (p=0.364) or EEG and MEG (p=0.03) were 

not statistically significant. For SD applied on clusters with the highest number of 

spikes (Figure 6.6B), we found no statistically significant effect of the three 

modalities (H (2) = 5.2, p=0.07). 

Figure 6.6. Quantitative assessment using the metrics Dmin and SD to find if the cluster with the 
highest number of spikes exhibited the concordant result with the presumed IZ. Boxplot 
representation of the (A) Dmin values and (B) SD values pooled together for only the cluster with 
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highest number of spikes from each marker type in EEG alone, MEG alone and fusion. Post-hoc 
paired comparison: *** represents statistically significant difference with p<0.001. 

 

 

Figure 6.7. Radar chart summarizing the qualitative and quantitative assessment of EEG 
alone, MEG alone and fusion in terms of the average SD, average Dmin and the percentage of 
discordant spikes from the 1435 spikes in the 34 marker types. EEG (in orange) with averaged 
SD = 50mm, Dmin = 28mm and percentage of discordant spikes = 29%. MEG (in yellow) 
with averaged SD = 46mm, Dmin = 25mm and percentage of discordant spikes = 21%. Fusion 
(in green) with averaged SD = 41mm, Dmin = 12mm and percentage of discordant spikes = 
6%. Fusion has the smallest triangle indicating the advantage of combining EEG and MEG 
for the localization of inter-ictal spikes. 

 

To summarize the qualitative and quantitative assessments, the radar chart in 

Figure 6.7 shows that MEG performed better than EEG by presenting lower SD, 

lower Dmin, and lower discordance rate but the smallest triangle corresponded to 

fusion indicating the advantage of combining EEG and MEG for the localization of 

single inter-ictal spikes. 

 

6.5.6. Impact of the number of EEG electrodes in fusion 

We also tested the impact of the three EEG electrode set-up in fusion for all 34 

marker types, when applied on averaged signals corresponding to the consensus 
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map obtained with the complete set up (54 EEG and 272 MEG sensors). Overall, 

all three configurations achieved similar level of accuracies for most marker types. 

33/34 cases presented concordant results with IZ for the 54 EEG+272 MEG set-up 

(cf. Section 6.5.5b). Concordant or sub-lobar concordant results with IZ were found 

in 31/34 cases (19 concordant) for 32 EEG+272 MEG and in 30/34 cases (21 

concordant) for 20 EEG+272 MEG set-up.  

Figure 6.8 illustrates two examples (M25 and M8) of the source localization results 

for the three configurations. Figure 6.8A presents the source localization results on 

a patient (M25) with surgical resection in the right fronto-polar region (IZ, outlined 

in green in the figure) with an Engel 1A outcome. All three configurations provided 

sources concordant with the IZ, however, recovered different aspects of the 

activated cortical patch. Figure 6.8B, presents the source localization results on a 

patient with an FCD in the right anterior frontal region, as outlined in green in the 

figure. Similar to M25, all three configurations showed concordance with IZ, while 

being sensitive to different aspects of the activated cortical patch.  

Figure 6.8. Impact of the number of EEG electrodes in fusion – two examples illustrating 
the performance of the three fusion configurations with different number of EEG electrodes: 1) 
54 EEG+272 MEG, 2) 32 EEG+272 MEG, and 3) 20 EEG+272 MEG. (A) Source localization 
results on M25, a patient with surgical resection in the right fronto-polar region (IZ, outlined 
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in green color) with an Engel 1A outcome. (B) Source localization results on (M8), a patient 
with an FCD in the right anterior region, as outlined in green color. All the three configurations 
recovered the source that was concordant with the IZ.  

 

 

6.6. Discussion 

The objective of this study was to demonstrate the relevance of EEG-MEG fusion 

data source analysis for pre-surgical evaluation of epilepsy. The advantage of 

performing single spike localization of fusion EEG-MEG data is two-folds. 

Combining EEG and MEG data can help bring additional information missed by 

either modality, and localizing single spikes can bring important information that 

may be lost during averaging of the spikes. The advantage of performing single 

spike localization using MEM-fusion is two folds as well. First, MEM-fusion can 

provide superior localization accuracy and is sensitive to the spatial extent of the 

epileptic sources. Second, MEM-fusion is robust to the low SNR conditions of 

single spike localization (Chowdhury et al., 2015). As opposed to source 

localization of averaged map providing only one localization result, performing 

single spike source localization allows building a consensus map to find the most 

reliable and reproducible source maps. In this study, we proposed and evaluated a 

systematic approach for clustering single spike source localization results to 

provide a consensus map. With the application of the consensus map approach on 

fusion SSSL results, we were able to provide successful localization of the IZ in all 

34 markers studied here, where standard monomodal localization of averaged 

spikes resulted in failures in 8/34 cases for MEG and 11/34 cases for EEG. 

Moreover, an important finding is that we showed that fusion significantly 

improved the spike-to-spike reproducibility when compared to monomodal single 

spike source localizations, i.e., from 55% in EEG and 71% in MEG to 90% in 

fusion. Finally, we demonstrated that using the consensus map approach on fusion 

data, the cluster with the highest number of spikes provided consistently concordant 
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results with IZ; thus providing an automatic way of finding the most reliable, 

reproducible and concordant source localization result. 

With a number of studies (Cohen and Cuffin, 1983; Pflieger et al., 2000; Yoshinaga, 

2002; Zijlmans et al., 2002; Pataraia et al., 2005; Bast et al., 2007; Ebersole and 

Ebersole, 2010; Aydin et al., 2015) having reported the added value of combining 

EEG and MEG data during source analysis; there are several fusion source 

localization methods that have been proposed to evaluate the advantage of 

combining EEG and MEG data. They have been designed using different inverse 

operators such as the dipole fitting (Diekmann et al., 1998; Fuchs et al., 1998; 

Huang et al., 2007), beamformer (Hong et al., 2013), minimum norm estimate 

(Babiloni et al., 2001, 2004)  and its noise normalized variant  (Liu et al., 2002; 

Sharon et al., 2007; Molins et al., 2008), sparse source imaging (Ding and Yuan, 

2013), and Bayesian approach (Henson et al., 2009b). Most of them were evaluated 

on simulations of focal activity (Fuchs et al., 1998; Liu et al., 2002; Babiloni et al., 

2004; Huang et al., 2007; Ding and Yuan, 2013)  or coherent sources (Hong et al., 

2013), some were evaluated on experimental data such as auditory responses (Hong 

et al., 2013), face evoked responses (Henson et al., 2009b), visual evoked responses 

(Sharon et al., 2007) or responses elicited by electrical median nerve stimulation 

(Fuchs et al., 1998; Molins et al., 2008) and on epilepsy data (Diekmann et al., 

1998). To the best of our knowledge, MEM-fusion seems the only fusion approach 

designed and evaluated for localizing spatially extended generators of epileptic 

activity, thus making it more appropriate for this clinical application.  

In the context of localizing epileptic activity, single spike source localization of 

fusion data has been done with a dipole fitting approach, albeit on a small number 

of patients (6 patients) and with limited MEG/EEG coverage (32 EEG and 22 MEG 

channels) (Diekmann et al., 1998). The dipole fitting fusion strategy involved 

mainly one level of fusion, i.e., the symmetrical fusion of normalized EEG and 

MEG data. At the normalization step, data were weighted by the modality-specific 

residual variance (obtained after performing dipole fitting on the monomodal data). 

Consequently, the modality that led to a model with low residual variance was 



227 

 

227 

given a higher weight. However, a lower residual variance does not necessarily 

locate a source better than the other and it does not guarantee correct source 

localization (Kobayashi et al., 2005). In the MEM-fusion strategy, symmetrical 

fusion of EEG and MEG data took place at three levels within the MEM framework. 

At the first level, the data and the lead field matrices of each modality were 

normalized by the standard deviation of the respective background activity and then 

concatenated. The second and third level involved the use of fusion MSP scores for 

the whole cortex parcellization and for the initialization of the probability of each 

parcel to be active; which played an important role in combining the 

complementary information from EEG and MEG in the fusion process (cf. Section 

6.4.4 b). Reliability of the source localization methods when performing single 

spike localization is crucial. Wennberg and Cheyne, (2014) studied the reliability 

of dipole fitting approach when performing single spike localization. They reported 

that dipole fitting resulted in a scatter of source solutions even when localizing the 

same single spikes. This was mainly attributed to the limitations in reliability of the 

dipole fitting method when dealing with low SNR data (Ossenblok et al., 2007). 

Aydin et al., (2015) also studied the scatter size with respect to SNR by using sub-

averages and found that not only the scatter size but also the center of the scatter 

was affected by the lower SNRs of single spike localizations. In addition, this 

scattered solution was mainly driven by noise and not necessarily reflecting an 

extended region. On the other hand, the principle behind the cMEM method 

attempts to model the spatial extent of the single spike source activity (Chowdhury 

et al., 2013; Heers et al., 2014; Chowdhury et al., 2015; Heers et al., 2016). In our 

previous study, we have shown that cMEM method was also robust to distant and 

spurious sources; which can be attributed to the ability of cMEM method to switch 

off parcels that are less likely to contribute to the recorded spike signals (Heers et 

al., 2016). These features of cMEM makes it more suitable for the localization and 

decomposition of simultaneously active sources; thus providing the possibility to 

separate spike and background activity. Moreover, the high spike-to-spike 
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reproducibility rate (90%) in the MEM-fusion (Figure 6.4) suggests an excellent 

reliability of the MEM-fusion single spike source localizations. 

Spike averaging has been adopted in most studies (Bast et al., 2004; Hara et al., 

2007; Tanaka et al., 2010; Heers et al., 2012, 2014; Wennberg and Cheyne, 2014; 

Heers et al., 2016) to increase the SNR and improve the reliability of the source 

localization solutions. However, it is well known that variability of the waveform 

of individual spikes is not uncommon in epileptic patients (Köhling et al., 2000; 

Aydin et al., 2015). Therefore, averaging effect is more likely to filter out source 

activities which slightly varied over each individual spike, by signal cancellation 

and consequently possible localization errors. Based on the standard averaged spike 

localizations results (Section 6.5.1) obtained in this study, we noticed that in many 

cases averaging did not increase the SNR nor did it decrease the noisy nature 

background data; thus resulted in localization errors. We found 11/34 cases in EEG 

and 8/34 cases in MEG that failed, providing source localization results discordant 

with the IZ. There were 4/34 cases that were discordant with the IZ in both EEG 

and MEG. In contrast, after applying the consensus map approach on single spike 

localization results of these cases, we were able to obtain reliable source solutions 

for all of them. Applying SSSL and consensus map on EEG or MEG data, we first 

noticed an overall improvement in the localization accuracy of EEG (discordant – 

5/34, sub lobar concordant – 3/34) and MEG (discordant - 1/34, sub lobar 

concordant – 3/34). This shows that single spike localization can create a balance 

between the spike variability and SNR, thus indicating that single spike localization 

is preferable whenever possible. The consensus map approach proposed in this 

study serves as a new and promising way of overcoming the limitations of averaged 

spike localizations and extracting the most reliable and reproducible source among 

the single spike sources. It is also important to emphasize that by applying the 

consensus map approach on MEM-fusion results, we were able to achieve excellent 

spike-to-spike reproducibility and reliability for all studied cases. We were able to 

find at least one cluster that was fully concordant with the presumed IZ, resulting 

in successful localization in all the 34 cases. Moreover, in 33/34 cases, the cluster 
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involving the highest number of spikes was indeed the one showing full 

concordance with the reference. 

In the literature, it has been shown that MEG provides a higher localization 

accuracy than EEG, which is mainly attributed to considerably lower effects of 

compartments outside the inner skull surface in MEG forward problem and to the 

dense sampling of MEG sensors (Ossenblok et al., 2007; Vorwerk et al., 2014; 

Klamer et al., 2015). However, to further improve the localization accuracy of 

MEG, it is recommended to fuse EEG to the high density MEG to bring the 

complementary information missed by MEG (e.g. involvment of radial sources or 

deeper generators). This is exactly what we have noticed in our results. In the 

quantitative analysis using Dmin, we found lowest localization errors in fusion. 

Based on SD, we noticed that fusion localizations presented an overall less spatial 

spread of the solution around the true extent of the source or less spurious activity 

distant from the true source than EEG. MEG provided comparable spatial 

dispersion than fusion. 

Whole head coverage can be achieved with the high density MEG sensors but MEG 

can mainly bring information about the tangential component of the underlying 

neuronal sources. In our previous study (Chowdhury et al., 2015), we suggested 

that the addition of only 20 or 32 EEG electrodes would be sufficient to bring 

additional information about the source within an MEM fusion framework. This in 

turn would help reduce the preparation time required for EEG electrodes set-up 

during simultaneous EEG-MEG recordings and patient’s discomfort inside the 

MEG helmet. A previous study based on simulations (Babiloni et al., 2004) showed 

that the use of simultaneous 29 EEG sensors during the MEG measurements carried 

out with 153 sensors returned an accuracy of the cortical source estimate 

statistically similar to that obtained by combining 64 EEG and 153 MEG sensors. 

In the present study we validated the same concept on clinical data showing that 

the localization accuracy was overall comparable for the three configurations of 

fusion involving 21, 32 and 54 EEG electrodes combined with 272 MEG sensors. 
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The consensus map approach provides a spatio-temporal source map, which is well-

suited for the study of propagation patterns or other complex epileptic patterns. In 

our recent study (Chowdhury et al., 2016), we have shown the accuracy of cMEM 

method on high density EEG and MEG data to localize and characterize the 

complex patterns of epileptic discharges. Therefore, the combination of consensus 

map approach with the cMEM algorithm as proposed in this study has future scope 

for studying the spatio-temporal features of epileptic discharges but this was out of 

scope of the present investigation. 

 

6.7. Conclusion 

The main goal of this study was to assess the clinical relevance of EEG-MEG fusion 

data source localization as a non-invasive tool for pre-surgical evaluation of 

epilepsy. We proposed and validated a systematic approach for clustering single 

spike source localization results at the source level using hierarchical clustering to 

provide a consensus map for the most reproducible and clinically reliable source 

localization results. While the consensus map approach brought an improvement in 

the analysis of monomodal source localization results (when compared to averaged 

spike localization), it was its combination with MEM fusion that indeed provided 

successful localization in all cases. MEM-fusion with consensus map yielded 

excellent spike-to-spike reproducibility and also presented the most consistent and 

clinically relevant results in the cluster involving the highest number of spikes. The 

consensus map approach serves as a new and promising method as it is able to 

overcome the limitations of averaged spike source localization and facilitates an 

automatic way of extracting the most reproducible and reliable source from clinical 

data without any ground truth information. In conclusion, we demonstrated that 

single spike source localization using MEM-fusion with the help of consensus map 

approach can be used as a valuable non-invasive tool during pre-surgical 

investigation of patients with epilepsy. 
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7. Chapter 7 General discussion 

 

7.1. Summary of contributions 

To expand the clinical utility of source localization of IEDs during pre-surgical 

evaluation of epilepsy, it was essential to first develop a source localization 

technique that can accurately recover the location and spatial extent of the 

underlying generators of IEDs. In this context, source localization method within 

the MEM framework have been developed and evaluated through collaborative 

studies with the team of Dr. J.M. Lina and Dr. Grova (Amblard et al., 2004; Grova 

et al., 2006, 2016, Chowdhury et al., 2013, 2015; Lina et al., 2014; Heers et al., 

2016; Pellegrino et al., 2016a; Pellegrino et al., 2016b).  

Following an initial evaluation of MEM performance when localizing the 

generators of EEG IEDs (Grova et al., 2006), I have been personally involved in 

the development and validation of a new variant of MEM called cMEM during my 

Master’s thesis project, which set the benchmark for this research and resulted in a 

first publication in PLoS One journal (Chowdhury et al., 2013). Whereas the main 

methodological feature was to introduce a local spatial smoothness prior within 

each parcel of the MEM model, cMEM not only provided the most reliable and 

accurate localization of the sources when compared to other standard source 

localization algorithms but also proved to be sensitive to the spatial extent of 

sources ranging from 3 to 30 cm2 (Chowdhury et al., 2013). This detailed study also 

consisted in our first evaluation of cMEM performance when applied to MEG data, 

comparing cMEM with several methods developed within the hierarchical 

Bayesian framework (Friston et al., 2008). This was also the first time we reported 

that the presence of an underlying parcelization model was essential for cMEM to 

be sensitive to the spatial extent, whereas results were actually stable for different 

spatial scales of such parcelization. I have also been involved in the implementation 
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of cMEM method within Brainstorm software (Tadel et al., 2011) as a plug-in 

toolbox entitled BEst: Brain Entropy in space and time12.  

Following this, the accuracy of EEG and MEG source localization of IEDs using 

cMEM has been extensively validated and well-established on clinical data through 

several clinical studies performed in the team and for which I contributed (Heers et 

al., 2014, 2015; Pellegrino et al., 2016a). First, the spatial concordance between 

fMRI bold responses and EEG/MEG sources of averaged IEDs reconstructed using 

cMEM was evaluated (Heers et al., 2014). While, EEG/MEG sources were 

concordant with the most significant BOLD response in 20 out of 21 patients, there 

were 3 patients showing only MEG sources and 2 patients only EEG sources 

concordant with the BOLD responses. In a second study, EEG/MEG sources were 

compared with iEEG findings on 15 patients (Heers et al., 2015) comparing cMEM 

with the same hierarchical Bayesian methods introduced in Chowdhury et al., 

(2013). We showed that MEG sources were concordant with iEEG findings in 73% 

of the cases whereas EEG sources in 57% of the cases. In these studies, cMEM 

provided robust, accurate and reproducible results and offered the significant 

advantage of being sensitive to the spatial extent of the generator to be targeted for 

invasive EEG or brain surgery.  

Parallel to this, I have also been involved in the development of a time-frequency 

based extension of cMEM called wavelet MEM (wMEM) developed to accurately 

localize oscillatory/rhythmic activity (Lina et al., 2014). This led to the 

investigation of non-invasive EEG/MEG source localization of ictal discharges 

using wMEM, which was compared with ictal iEEG findings as the ground truth 

information (Pellegrino et al., 2016a). In this study, ictal MEG sources were 

concordant with iEEG for 90% of the cases and ictal EEG sources were concordant 

for 64% of the cases. The implications of these studies is that source localization of 

combined EEG and MEG data within a fusion framework may improve the 

                                                 

12 BEst plug-in: http://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst 
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localization accuracy, by taking full benefit of the complementarity between EEG 

and MEG. An inherent restriction to the analysis of ictal discharges is that 

simultaneous EEG/MEG recordings are usually only approximately one hour long, 

so the chances to record seizures are very low. Therefore, combined EEG and MEG 

localization of IEDs remains an important contribution in the pre-surgical 

evaluation of epilepsy patients, further confirmed by the fact that in Pellegrino et 

al., (2016a) we showed that most ictal source localization were actually concordant 

with IEDs localizations.  

The work presented in this dissertation builds on and contributes to work in the 

field of source localization of IEDs using combined EEG and MEG data, to reliably 

localize non-invasively the epileptogenic focus during pre-surgical evaluation of 

patients with epilepsy. Although a number of studies have investigated source 

localization of combined EEG and MEG data, attention was given mainly to 

localizing focal activity with no strong focus on recovering the spatial extent of the 

sources (Diekmann et al., 1998; Fuchs et al., 1998; Babiloni et al., 2001; Liu et al., 

2002; Babiloni et al., 2004; Huang et al., 2007; Sharon et al., 2007; Molins et al., 

2008; Henson et al., 2009b; Ding and Yuan, 2013; Hong et al., 2013). The MEM-

fusion approach developed during this dissertation and described in Chapter 4 

addressed this aspect, providing superior localization accuracy and better sensitive 

to the spatial extent of the epileptic sources than other standard methods such as 

MNE, dSPM or sLORETA. These characteristics of MEM-fusion along with its 

robustness to the low SNR condition of single spike localization shown on 

simulated data allowed to further explore single spike localizations on clinical data.  

Chapter 6 presented the evaluation of MEM-fusion on a large cohort of 26 patients 

with focal epilepsy. In this study, we proposed and clinically validated a pipeline 

for MEM-fusion source analysis of single IEDs. This pipeline was intended to 

improve source analysis of IEDs at multiple steps. For instance, the idea of single 

spike localization of IEDs can overcome the limitations of averaging effect by 

creating a balance between the SNR of the signal while taking into account the 

variability between the individual spikes. Moreover, the idea of clustering the 
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results of single spike localizations through the consensus map approach helped to 

assess spike-to-spike reproducibility in order to propose reliable and stable source 

localization results for clinical purposes. On the other hand, performing source 

localization on one averaged spike would not allow assessing reproducibility and 

reliability of the results.  Overall, in this study we showed that 1) source localization 

of combined EEG and MEG data helped bring additional information missed by 

either modality alone, 2) MEM-fusion yielded higher spike-to-spike reproducibility 

rate than when considering EEG alone and MEG alone, and 3) the cluster with the 

highest number of spikes provided the most concordant result with clinical 

reference; thus providing an automatic way of finding the most reliable and 

reproducible source to be considered for clinical purposes.  

Errors in EEG source localization can be reduced by increasing the number of EEG 

electrodes as well as by the coverage of whole head surface with electrodes (Song 

et al., 2015). It has been shown in several studies that electrode arrays that 

approximate the 10-10 system are better than the conventional 10-20 system (Lantz 

and Grave de Peralta, 2003; Ryynänen et al., 2004) and the improvement in source 

localization accuracy was noticed for up to 64 channels, higher density EEG 

systems (128 to 256 channels) were actually more sensitive to noise (Lopes da 

Silva, 2013). On the other hand, when combining EEG and MEG data within a 

fusion framework, whole head coverage with dense spatial sampling of sensors can 

naturally be achieved thanks to whole head MEG device. This raised the question 

whether how many EEG electrodes should be required in fusion for bringing 

additional information that is missed by MEG. This was addressed in Chapter 4 

through a simulation study, where we have shown that fusion of only 20 EEG 

electrodes together with 272 MEG sensors was sufficient for providing an optimal 

EEG-MEG fusion. This was further evaluated on clinical data in Chapter 6, where 

it was observed that the localization accuracy was similar for fusion of 272 MEG 

sensors with either 21, 32 and 54 EEG electrodes. Practical implications of using 

few EEG electrodes during simultaneous EEG-MEG recordings involve reduction 
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in the preparation time required for EEG electrodes set-up and also reduce eventual 

patient discomfort inside the MEG helmet.  

The performance of cMEM algorithm was carefully compared with several 

distributed source localization algorithms such as methods implemented within the 

hierarchical Bayesian framework (IID, COH and multiple sparse prior), standard 

MNE, dSPM, and sLORETA. It should be noted that none of these methods were 

actually developed for their ability to recover spatially extended sources. Whereas 

COH, which consists in combining a minimum norm prior and a spatial smoothness 

prior within a hierarchical Bayesian model (Friston et al., 2008) could provide 

accurate results complementary to cMEM (Heers et al., 2015), it should be noted 

that MNE approaches are actually not sensitive to the underlying spatial extent of 

the sources as demonstrated in Zhu et al., (2014). Therefore, a fair comparison, in 

the context of epilepsy, was achieved by comparing cMEM with 4-ExSo-MUSIC 

as both methods have been well-established for their ability to localize the spatially 

extended generators of IEDs. Chapter 5 presented the quantitative validation of 

cMEM and 4-ExSo-MUSIC for their ability to localize complex patterns of IEDs 

such as propagation patterns and correlated activity. Realistic simulations of 

simultaneous EEG-MEG data were generated using a biophysical computational 

neural mass model and realistically shaped head models while taking into account 

equivalent number of channels in EEG and MEG. Therefore, this study consisted 

also in our first evaluation of the performance of cMEM on high-density EEG data 

(256 electrodes). Both cMEM and 4-ExSo-MUSIC localized single spatially 

extended sources with high accuracy for both EEG and MEG data. However, only 

cMEM was able to reconstruct accurately complex propagation patterns and 

correlated activities. Through this study, a complete validation of the cMEM 

algorithm was achieved, and the eligibility of cMEM for studying the underlying 

spatio-temporal dynamics of IEDs was demonstrated.  
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7.2. Future directions 

The development of cMEM and MEM-fusion opened new avenues for research and 

clinical applications. In this section several new directions of research using cMEM 

or MEM-fusion are summarized.  

1. EEG source localization during simultaneous EEG-fMRI recording is 

possible yet challenging, as the EEG signal is heavily corrupted by MR-

induced artefacts. The excellent accuracy of EEG source localization of 

IEDs using cMEM on high density EEG data has been evaluated in Chapter 

5. Moreover, since we demonstrated the robustness of cMEM in low SNR 

conditions, we assume it should be feasible to study the reproducibility of 

EEG source localization of IEDs using high density EEG data (256 

electrodes) recorded during simultaneous EEG-fMRI session. The main 

objective of this project currently handled by T. Hedrich (PhD candidate in 

the lab) is to improve fMRI data analysis from reproducibility and clustering 

of spike-to-spike source localization results. To assess the feasibility, the 

results of source localization of high density EEG data recorded outside the 

MR scanner and inside the MR scanner will be compared. Preliminary 

results  demonstrated the ability of cMEM to provide reproducible results 

on EEG data recorded both inside and outside the scanner (Hedrich et al., 

2016). 

2. Results from EEG and MEG source localization of IEDs using cMEM have 

been used to guide the selection of region of interest for the set-up of 

optimal montage during prolonged simultaneous recordings of EEG with 

functional Near Infra-Red Spectroscopy (fNIRS) on patients with epilepsy 

(Pellegrino et al., 2016b). This study allowed assessing accurately the 

hemodynamic response elicited by IEDs in term of local fluctuations in oxy 

and deoxy-hemoglobin fluctuations. Moreover, recent promising results 

suggested the possibility to apply MEM framework for local 3D 

reconstruction of fNIRS data from scalp recordings (Cai et al., 2016). These 
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new results offer the possibility to analyze EEG and NIRS data 

symmetrically within the MEM-fusion framework. 

3. We have already shown that the addition of only few EEG electrodes was 

sufficient to bring additional information to EEG-MEG fusion for most 

clinical cases studied in Chapter 6. It raises an important question, whether 

the few EEG electrodes should be set-up homogeneously along the scalp 

surface or whether setting them up in a densely sampled montage to cover 

a pre-defined region of interest would result in improving source 

localization reliability. This should allow for a further improvement in the 

spatial resolution of EEG, offering the chance to bring better information 

regarding deeper or radially oriented sources that are usually missed in 

MEG. 

4. Several recent studies have also suggested that both interictal and ictal 

activity should arise from the activity of dynamic epileptogenic cortical 

networks. The epileptogenic network is defined as the area involved in 

generation and spread of epileptic activity. In case of focal epilepsies, the 

epileptic activity begins in a spatially localized epileptogenic zone, which 

further recruits connected areas in a cascade of spreading activity from the 

central focus outward through both normal and abnormal tissues, to 

different parts of the brain. Thus, understanding the propagation and 

maintenance of the functional connectivity and network configurations in 

complex brain regions in epilepsy may open avenues for improved surgical 

procedures or even alternative non-surgical treatments, allowing treating 

the epilepsy as a network rather than as a focus (Wilke et al., 2011; Pittau 

and Vulliemoz, 2015). To this end, an avenue for research using MEM-

fusion to study functional networks involved in insular epilepsy has been 

initiated by the group of Dr. D. Nguyen at Université de Montréal (Zerouali 

et al., 2016).  

5. Using the MEM-fusion strategy within the time frequency domain, wMEM-

fusion has also been developed and it is now being explored for the 
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localization of sleep spindles within the team of Dr J.M. Lina at Ecole de 

Technologie Supérieure. 

6. According to the study in Chapter 5, cMEM provides an accurate 

localization and characterization of the spatio-temporal dynamics of IEDs. 

Furthermore, the proposed consensus map approach can actually provide a 

spatio-temporal map summarizing most reliable propagation patterns. 

Therefore, we plan to assess the relevance of MEM-fusion with spatio-

temporal consensus maps approach to further investigate the spatio-

temporal features occuring during the propagation of epileptic discharges. 

7. In a recent study (Pellegrino et al., 2016c), cMEM method has been 

compared with dipole fitting approach on a large cohort of 49 patients 

resulting in 340 studies, further demonstrating the superior performance of 

cMEM method when compared to dipole fitting approach as described in 

the guidelines of the American Clinical MEG Society (Bagić et al., 2011). 

This study implies that MEM-based method should definitely complement 

or even substitute dipole fitting in the daily clinical practice. 

Finally, the different variants of MEM including cMEM, wMEM, MEM-fusion, 

and wMEM-fusion are now freely available for users in the Brainstorm software 

(Tadel et al., 2011) as a plug-in toolbox namely, BEst: Brain Entropy in space and 

time (http://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst).    
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