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Abstract

Over the past century, electric machines have been used in many applications and sizes,

ranging from washing machines and other home appliances to large pumps and fans within

the industrial sector. Typical procedures for designing them have advanced from analytical

formulations to the more recent finite element analysis for running physics simulations. This

latter tool allowed motor designers to arrive at design solutions operating close to reality

with minimal need of manufacturing hundreds if not thousands of electric machines.

Despite the simulation benefits, only the electromagnetic performances are generally

considered during a design process. Other physics, such as structural, acoustic and thermal,

are usually ignored and only verified for a selected design. This assumption could lead

to suboptimal solutions due to the tradeoffs among physical phenomena. Another issue is

the increase in simulation time while incorporating multiphysics simulations in the design

process. Depending on the modeling complexity, each motor simulation could take minutes or

even hours to solve which can be problematic when thousands of designs are to be analyzed

for different physics and operating points. Also, previous works often neglect using the

simulated data to understand the underlying relationships among design performances and

variables. In an optimization problem, only the final set of optimal solutions are analyzed

which does not necessarily provide information on how they were achieved for re-use.

To address these issues, this thesis proposes a multiphysics design process for synchronous

AC machines using a data-driven approach. Each stage of the proposed process is explained

using different case studies of a synchronous reluctance machine with a varying number

of slots and rotor barriers. Upon setting the initial specifications, thousands of motor ge-

ometries are simulated using electromagnetics, structural, acoustics, and thermal analyses

in days instead of months with the help of a high-performance computing system. A new

methodology known as barrier mapping is then introduced which relates the design spaces

of multiple-barrier rotors and systematically reduces their simulation time. Finally, the

acquired multiphysics datasets are statistically analyzed for all their performances and vari-

ables before recommending various optimal designs for different priorities. Extracting design

knowledge and guidelines can help a motor designer arrive at a more informed choice when

analyzing results and selecting an optimal design. While this thesis focuses on electric ma-

chines, the presented multiphysics design process is applicable to any physical device.



Résumé

Au cours du siècle dernier, les machines électriques ont été utilisées dans de nombreuses

applications et de nombreuses tailles, allant des machines à laver et autres appareils ménagers

aux grandes pompes et ventilateurs du secteur industriel. Les procédures pour les concevoir

sont évoluées des formulations analytiques à la plus récente analyse par éléments finis afin

d’exécuter des simulations physiques. Ce dernier outil a permis aux concepteurs des moteurs

de parvenir à des solutions de conception fonctionnant au plus près de la réalité avec un besoin

minimal de fabrication des centaines, voire des milliers, des machines électriques.

Malgré les avantages de la simulation, seules les performances électromagnétiques sont

généralement prises en compte lors du processus de conception. Les autres aspects physiques,

tels que structurel, acoustique et thermique, sont généralement ignorés et vérifiés unique-

ment pour une conception sélectionnée. Cette pratique pourrait mener à des solutions sous-

optimales en raison des compromis entre les phénomènes physiques. Un autre problème

est la durée de simulation augmentée lors qu’on incorpore des simulations multi-physiques

dans le processus de conception. Selon la complexité de la modélisation, la résolution de

chaque simulation de moteur peut prendre quelques minutes, voire plusieurs heures, ce qui

pourrait poser un problème lorsque des milliers de conceptions doivent être analysées pour

différents aspects physiques et points de fonctionnement. En plus, les ouvrages précédents

négligent souvent l’utilisation des données simulées pour comprendre les relations fondamen-

tales entre les variables et les indices de performance de conception. Dans un problème

d’optimisation, seulement les dernières solutions optimales sont analysées, ce qui ne fournit

pas nécessairement d’informations sur la façon dont elles ont été réalisées.

Pour résoudre ces problèmes, cette thèse propose un processus de conception multi-

physique pour les machines synchrones au courant alternatif en utilisant une approche pi-

lotée par les données. Chaque étape du processus proposé est expliquée à l’aide de différentes

études de cas d’une machine à réluctance synchrone avec un nombre variable d’emplacements

et de barrières de rotor. Lors de la définition des spécifications initiales, des milliers des

géométries proposées de moteur sont simulées à l’aide d’analyses électromagnétiques, struc-

turelles, acoustiques et thermiques, en quelques jours au lieu de plusieurs mois, à l’aide d’un

système informatique haute performance. Ensuite, une nouvelle méthodologie connue sous

le nom de cartographie de barrière est introduite. Elle relie les domaines de conception des



rotors à barrières multiples et réduit systématiquement leur temps de simulation. Finale-

ment, les données multi-physiques acquises sont analysées statistiquement pour toutes leurs

performances et variables avant de recommander divers modèles optimaux pour différentes

priorités. Développer les connaissances et les directives de conception aiderait les concepteurs

de moteur à faire un choix plus éclairé lors de l’analyse des résultats et de la sélection d’une

conception optimale. Bien que cette thèse se concentre sur les machines électriques, le pro-

cessus de conception multi-physique présenté sera applicable aux tous dispositifs physiques.
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Chapter 1

Introduction

1.1 Background

With the proliferation of electricity as a clean and reliable energy resource in the past century,

many industrial and energy companies have turned their attention to individual devices such

as electric motors. In a recent article published by the International Energy Agency, electric

motors were found to be the biggest sole-user of electrical energy. They consume nearly 53%

of the global electricity with the industrial and building sectors accounting for the most use.

Typically, electric motors are used to drive pumps, fans, compressors, and other sys-

tems with sizes ranging from less than 1 kW to beyond 1 MW for heavy-duty tasks. With

the advent of power electronic devices in recent years, efficient control of electric motors in

variable-speed drives (VSDs) has improved motor efficiencies and reduced operating costs

through energy savings [Mohan and Undeland, 2007]. As explained in [International Energy

Agency, 2016], system efficiencies can increase between 15% and 35% by replacing a me-

chanical throttle with a VSD, which can effectively change a motor’s speed based on a given

control strategy. To standardize minimum efficiency requirements on a global scale, the In-

ternational Efficiency Commission has introduced different efficiency classes, or categories,

for line-start and variable-speed motors in IEC 60034-30-1 and 60034-30-2 respectively. In

short, these requirements increase for high-order class numbers (denoted by IE1, IE2, IE3,

IE4) and larger motor sizes measured by their output power. Increasingly more countries are

adopting these efficiency standards to overcome future energy crises [McCoy and Douglass,

2014; Dorrell, 2014] since the total consumption is expected to rise more than 40% by 2040.
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Moreover, the automotive industry’s consumption of about 28% (7825 TWh) of primary

energy [US Department of Energy, 2011] has raised questions on the low efficiency levels

of traditional vehicles. A chief concern is the inefficient operation of internal combustion

(IC) engines typically used in hydrocarbon-based vehicles. Despite their benefit of providing

a high mileage and range compared to using a battery supply (for 1 kg, gasoline holds

about 12 kWh as opposed to 1 kWh of a lithium-ion battery), IC engines function at a

maximum efficiency of 40% around a specific speed and torque point [Ehsani et al., 2009].

The remaining losses contribute to unwanted heat energy or harmful air pollutants like

nitrogen oxides, carbon monoxides, and unburnt hydrocarbons. It is not surprising that

research and development of electric motors for hybrid and electric vehicles (HEVs) has been

given more attention in the past decade, as both traditional and new vehicle manufacturers

aim to reduce carbon emissions and fuel consumption within the transportation industry.

Electric motors can sustain high efficiency levels of up to 95% for urban and highway driving

cycles while matching or improving upon the drive performances of IC engines. In fact,

several technical targets have been set by the US Department of Energy for the year 2020

to further improve HEV performances. These include reducing the powertrain’s initial cost

as well as increasing its output power for a given mass and volume.

To meet these technical targets, HEV manufacturers typically employ rare-earth perma-

nent magnet (PM) motors, such as surface-mounted or interior permanent magnet (IPM)

types. Properly-designed PM machines have competitive advantages over other topolo-

gies including high torque-to-rotor-volume density, efficiency levels, constant power speed

range, and power factor (helps reduce inverter’s kVA sizing and overall system costs). How-

ever, recent fluctuations in the price and supply of rare-earth materials, such as high-grade

Neodymium Iron Boron (NdFeB), has led to further research activity in alternative motor

topologies with significantly less or no rare-earth material, while sustaining the targeted

efficiency and performance requirements [Boldea et al., 2014; Boglietti et al., 2014]. One

possible substitute is the synchronous reluctance machine (SynRM) which is comprised of

the same stator as a typical AC machine but its rotor only consists of ferromagnetic iron

laminations to create a magnetically-salient structure. By adding low-cost PMs into the

rotor structure, this PM-assisted SynRM (PM-SynRM) can compete with the performances

of IPM motors [Morimoto et al., 2001; Niazi, 2006; Vartanian and Toliyat, 2009].

Nevertheless, typical procedures to design electric machines in the early years relied on
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solving analytical models with approximations and individually manufacturing them before

experimentally testing their real-time performances. In constructing each motor design with

a specific geometry, sufficient volumes of iron laminations, copper windings, PMs and hous-

ing structures are required. These can subsequently add to the overall financial cost of the

final optimized product if multiple designs are to be experimentally tested. To tackle this

costly problem, researchers have developed numerical procedures to predict a given motor’s

performances, such as finite element analysis (FE/FEA) which accounts for complex ge-

ometries and material nonlinearities in solving the underlying physical and electromagnetic

partial differential equations (PDEs) [Silvester and Ferrari, 1996]. Specifically, Maxwell’s

Equations of Electromagnetism are used to form the underlying PDEs, and FEA can solve

them on a given domain (surface for 2-D or volume for 3-D) for a set of boundary conditions.

A benefit of using an FEA tool is its domain discretization: it allows users to change the

geometric shape, excitation currents, winding configurations, material properties and other

parameters without altering the problem definition [Lowther and Silvester, 1986; Jin, 2015].

While detailed FEA solutions can accurately and reliably solve low-frequency electromag-

netic problems for complex geometries, they are a computational bottleneck which presents

time issues when many models are to be solved. Typical design optimization procedures

may rely on direct-FEA function evaluations which quickly become costly for large problems

with a high number of design variables and objectives as well as multiple operating points.

Alternatively, selected regions of the design space could be sampled in advance and solved

using FEA in order to build a surrogate model, such as an artificial neural network (NN),

for interpolating data points [Giurgea et al., 2007; Salimi, 2018; Silva, 2018]. This approach

allows the optimization procedure to quickly evaluate objective or performance values using

a computationally cheaper model without having to solve the underlying PDEs again. The

final set of optimal solutions may then be validated with FEA to compute their relative

errors before reporting them to the designer. Fitting or training these surrogate models,

however, may be problematic when objective values vary greatly in particular regions of the

design space (i.e. multiple peaks and valleys). This may lead to prediction problems when

following general trends or inaccurately evaluating function values. Another issue relates to

the overfitting of data points which depends on the given problem and the surrogate model’s

hyperparameters (e.g. the number of hidden layer neurons in NNs).

On the other hand, electric machines are multiphysical by nature as they combine elec-
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tromagnetic, structural, thermal and acoustic domains in real operation. Simulating the

physical subsystems takes longer to reach steady-state due to the different timescales. For

example, a coupled electromagnetic-thermal simulation must run for a couple of seconds to

account for the relatively slow rise and fall of material temperatures [Ghorbanian, 2018].

Furthermore, automotive manufacturers normally require a motor’s efficiency map to pre-

dict a vehicle’s system losses and fuel economy in a dynamic simulation [Ehsani et al., 2009].

This map reports the motor’s efficiency for all its feasible torque and speed points which

means that many operating points need to be simulated. While a numerical method such

as FEA can aid this detailed calculation, prior knowledge of the input excitation conditions

is required to ensure optimal operation. Despite selecting only one design, the simulation

of hundreds of operating points after a preprocessing stage can further delay the analysis

phase and increase development time. Therefore, these problems may introduce an infeasible

timeline when many multiphysics models are to be solved, and industrial motor designers

may not be inclined to address the modeling complexity of surrogates when the accuracy of

optimal solutions are of utmost importance.

From the perspective of a software package, two objectives need to be considered during

the design and analysis of electric machines: reduce computational time while avoiding any

substantial compromise on the solution accuracy, and automate the simulation process as

much as possible. While the first issue is an ongoing investigation [Bramerdorfer et al., 2016;

Baranyai et al., 2017], the latter point has become more desirable given the recent shift to-

ward data-driven approaches (defined in Section 1.4). By replacing a single workstation with

a high-performance computing (HPC) system, sequences of time-consuming FEA simulations

can be significantly sped up by distributing the design variations onto parallel workstations.

Also, there has not been enough research on incorporating multiphysics of electric machines

within the design process. It is unknown whether the addition is required and whether the

impact is significant toward arriving at optimal designs. Most designers rely on electromag-

netic simulations and ignore the effect of other physical domains during the design phase.

Novel ways of treating multiphysics problems for electric machines, whether they are design

or analysis-oriented, have become a necessary research investigation area. Over time, these

approaches may replace traditional methods that rely on many assumptions or require de-

velopment time for setting up analytical or surrogate models. The sections below present a

brief theory of synchronous AC machines before discussing ongoing research and challenges.
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1.2 Theory of Synchronous AC Machines

In a synchronous AC machine, the stator consists of silicon steel laminations and polyphase

distributed windings as shown in Fig. 1.1. The insulated laminations decrease the eddy

currents induced by the varying magnetic field. Upon feeding AC excitation to the wind-

ings, the stator produces a rotating magnetic field that interacts with the rotor. Similar

to the stator structure, the rotor is comprised of silicon steel laminations and could include

permanent magnets (PMs), damper windings or a combination of them. During steady-state

operation, the mechanical rotation speed of the rotor shaft, Nm, is synchronized with the

supply or excitation electrical frequency, fe, through (1.1) where np is the number of poles.

For example, a mechanical rotor speed of 1800 RPM could be achieved in a 4-pole motor if

the supply frequency is 60 Hz.

Fig. 1.1 Cross-section of a 24-slot 4-pole outer stator with 3-phase windings.

Nm =
120fe
np

(1.1)
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The AC excitation fed to the polyphase windings can be represented as balanced, sinu-

soidal signals given in (1.2). In practice, however, the sinusoidal quantities are mixed with

higher order harmonics due to the machine geometry and switching effects in the inverter

drive. Here, Vs is the stator RMS line voltage, Is is the stator RMS line current, ωe is

the electrical angular speed, t is time, and φ is the power factor angle between Vs and Is,

commonly known as the displacement power factor. To better understand the relationship

in the time domain, Fig. 1.2 (a) displays the voltage and current waveforms for an electrical

period. Note that the current lags the voltage by the power factor angle φ. It is desired

to keep φ close to zero in order to achieve unity power factor, i.e. pf = cosφ ≈ 1. The

implication of this condition is explained through (1.3) and Fig. 1.2 (b). For a given input

active power Pin, a non-unity power factor increases the reactive power consumed, Qin, as

well as the required input apparent power, Sin, in VA.

va(t) =
√

2Vs cos (ωet)

vb(t) =
√

2Vs cos (ωet− 2π/3)

vc(t) =
√

2Vs cos (ωet+ 2π/3)

ia(t) =
√

2Is cos (ωet− φ)

ib(t) =
√

2Is cos (ωet− φ− 2π/3)

ic(t) =
√

2Is cos (ωet− φ+ 2π/3)

(1.2)

Sin = Pin + jQin

|Sin| =
Pin

cosφ
=
√

3VsIs
(1.3)

(a) (b)

Fig. 1.2 (a) AC voltage and current waveforms. (b) Power vector triangle.
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In motoring operation, the input electrical power, Pin, is fed by the polyphase stator

winding excitation as in (1.4). This equation is similar to that of Sin in (1.3) except that

the displacement power factor, cosφ, is included here.

Pin =
√

3VsIs cosφ (1.4)

For a given Nm speed, the output mechanical power, Pout, in W produced on the rotor

shaft relates through (1.5) to the mechanical torque, Tm, in Nm. This means that the output

power is affected by varying either Tm, Nm or both.

Pout = Tmωm = Tm
Nm

30/π
(1.5)

Due to the inherent losses in an electric machine, the output power is always less than

the input’s. Hence, the power flow or conservation can be represented in (1.6), where Ploss

corresponds to the motor losses, PCu is the conductor or copper loss in the stator windings,

PFe is the iron loss in the silicon steel material, Pmn is the PM eddy current loss and Pmech

is the mechanical loss on the shaft. In the initial electromagnetic design, Pmech is typically

ignored since this loss component captures the mechanical coupling. It consists of the friction

due to the bearings and between the moving parts and air, i.e. windage. These mechanical

losses vary to the third power of the motor speed Nm [Chapman, 2005].

Pin = Pout + Ploss

Ploss = PCu + PFe + Pmn + Pmech
(1.6)

In practice, it is desired to minimize Ploss so that less Pin is used to operate an electric

motor. Lower losses result in a smaller temperature rise across the motor components which

means that less heat is produced and dissipated. A lower motor temperature also places less

strain on the required cooling system. Therefore, this loss information can be alternatively

represented through the motor efficiency, η, given in (1.7) which ranges from 0% to 100%.

A 100% efficiency signifies an ideal system with no losses.

η =
Pout
Pin

=
Pout

Pout + Ploss
(1.7)
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1.2.1 Material Characteristics

A synchronous AC machine consists of copper, silicon steel, PMs and possibly aluminum.

Each material has different electrical and magnetic characteristics as explained below.

The conductor or copper windings are represented by an electrical resistance which con-

tributes to the Ohmic or copper loss, PCu, in (1.8), given no dampers and a single harmonic

are used. Here, Rs is assumed to be the AC phase resistance for a Y-connected winding, ρ is

the electrical resistivity, l is the winding length, A is the conductor’s cross-sectional area, α is

the temperature coefficient, and T is the winding temperature. The 0 subscript corresponds

to the ambient temperature condition. For copper, α = 0.00386 and ρ0 = 1.733×10−8 Ωm at

20◦C [Giancoli, 2004]. A couple of observations can be made from (1.8). First, PCu exhibits a

quadratic growth when the excitation is increased. Second, PCu linearly relates to Rs which

itself is a linear function of T . If the copper windings operate at a higher temperature, Rs

and PCu increase linearly.

PCu = 3RsI
2
s

Rs = ρ
l

A

ρ = ρ0

(
1 + α(T − T0)

) (1.8)

Fig. 1.3 (a) displays the ferromagnetic material characteristics of silicon steel for different

operating temperatures. Here, B is the magnetic field density and H is the magnetic field

intensity which depends on the supply current. For low excitation or small H values of

silicon steel, B increases linearly as seen in Fig. 1.3 (a). Beyond the knee point, however, B

begins to saturate which means that a much higher H is required to slightly boost B. This

comes at an expense of further increasing the supply current Is as well as the copper loss as

seen in (1.8). In addition, increasing the temperature up to 180◦ for silicon steel does not

significantly impact the iron magnetic characteristic.

The BH curves of NdFeB PM are shown in Fig. 1.3 (b). At no load, the remnant B

is around 1.2 T for this PM material. During machine operation, the stator field could

oppose that of the PM’s which means that B decreases for negative H. Beyond a certain

point known as the coercivity, the PM is completely demagnetized. This irreversible effect

occurs earlier at higher temperatures. Also, increased temperatures decrease the remnant B

resulting in less PM contribution to the machine [Hamidizadeh, 2016].
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(a) (b)

Fig. 1.3 Magnetic material characteristics for temperatures up to 180◦:
(a) silicon steel, (b) NdFeB PM [Ghorbanian et al., 2018a].

From the ferromagnetic material characteristic, the iron loss PFe can mainly be broken

down into two components given in (1.9): Physt is the hysteresis loss and Peddy is the eddy

current loss. The unknown coefficients, i.e. Khyst, Keddy, α and β, can be identified and

fit experimentally. For example, M-19 29 Ga is represented by Khyst = 9.68569 × 10−3,

Keddy = 4.12318× 10−5, α = 1.19792 and β = 1.79564. A detailed explanation of modeling

and calculating iron losses is provided in [Hussain, 2017].

PFe = Physt + Peddy = Khystf
αBβ +Keddyf

2B2 (1.9)

Due to alternating currents and rotating fields in a synchronous AC machine, the BH

curves of ferromagnetic cores follow different trajectories based on previous magnetic states

as in Fig. 1.4 (a). This effect is responsible for the hysteresis loss which is a function of

the peak induction level B and is represented by the BH loop’s area. Also, eddy currents

flow in closed loops on a plane perpendicular to the B field between the iron laminations as

displayed in Fig. 1.4 (b). These currents produce a loss similar to the Ohmic loss in (1.8),

where each lamination has a particular electrical resistance. The PM eddy current loss, Pmn,

behaves in a similar manner. If a ferromagnetic core was manufactured as a solid block, the

core’s electrical resistance would be much lower due to a higher cross-sectional area causing

an increase in the eddy currents and Peddy. This is the reason why ferromagnetic cores are

constructed and stacked using multiple insulated laminations of silicon steel.



1 Introduction 10 of 135

(a) (b)

Fig. 1.4 Iron loss components: (a) Hysteresis loops for different excitations.
(b) Eddy current loops in stacked ferromagnetic laminations.

Fig. 1.5 shows that the iron power loss, PFe, increases for higher magnetic flux density

or frequency. Also, the iron loss decreases for elevated temperatures due to the increased

electrical resistance of the ferromagnetic material. It should be noted that material properties

are generally uncertain in practice due to manufacturing processes of silicon steel laminations

or magnetization of PMs [Saleem, 2018]. Stochastic material models could be used to obtain

robust solutions in a design or optimization process [Li et al., 2017].

(a) (b)

Fig. 1.5 Iron power loss curves for different temperatures and frequencies:
(a) 50 Hz, (b) 200 Hz [Hussain, 2017].
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1.2.2 DQ Transformation

Given the polyphase nature of a synchronous AC machine, its electromagnetic quantities

(currents, flux linkages, voltages) are time-varying which can complicate the machine’s de-

sign, analysis, and control. To tackle this issue, the Park transformation is used to convert

a time-varying 3-phase balanced system into 3-phase constants, namely the direct, quadra-

ture and zero axes [Park, 1929]. The main requirement of this transformation is a rotating

reference frame, i.e. the rotor, based on field-oriented control (FOC) [Krause et al., 2012].

This means that the rotor’s mechanical position, θm, must be tracked at all times with the

help of a rotor position sensor. Then, the electrical position, θe, and angular frequency, ωe,

can be calculated using (1.10).

θe =
np
2
θm = ωet→ ωe =

dθe
dt

(1.10)

Assume that a 3-phase time-varying system or vector, fabc(t), is given as in (1.11). Let

the vector be composed of sinusoidal signals that are balanced with a peak value of Fs and

a phase shift denoted the “advance angle”, γ. In phasor form, fabc(t) can be visualized as a

vector rotating in a 2-D plane with a constant magnitude Fs at a fixed speed.

fabc(t) =

fa(t)fb(t)

fc(t)

 =

Fs cos(ωet+ γ)

Fs cos(ωet+ γ − 2π/3)

Fs cos(ωet+ γ + 2π/3)

 (1.11)

Then, the dq0 vector, fdq0, can be computed using fabc(t) and the Park transformation

matrix, Ks, as given in (1.12). Due to the balanced, sinusoidal nature of fabc(t) in (1.11),

the 0th component can be ignored. In steady-state, the direct and quadrature quantities are

constants in time and depend only on the sinusoidal magnitude, Fs, and advance angle, γ.

Ks =
2

3

sin θe sin (θe − 2π/3) sin (θe + 2π/3)

cos θe cos (θe − 2π/3) cos (θe + 2π/3)

1/2 1/2 1/2



fdq0 = Ksfabc(t) =

fdfq
f0

 =

−Fs sin(γ)

+Fs cos(γ)

0


(1.12)
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Fig. 1.6 illustrates an example of how the three time-varying ABC quantities in (1.11)

correpond to two constant dq values using (1.12) for a given γ value and a motor speed

Nm (or excitation frequency fe). Knowing that fd and fq are constants in time, the fdq0 or

simply the fdq vector is normally represented as a fixed vector in the 2-D plane of (fd, fq)

which is a rotating reference frame from the rotor’s point-of-view.

(a) (b)

Fig. 1.6 ABC-to-DQ Park transformation: (a) time waveforms, (b) phasors.

DQ Vectors

The stator currents, flux linkages, and voltages can all be converted to their dq forms as

given in (1.13). These dq quantities are all referred to the rotor’s reference frame and

provide a simplification of the electromechanical operation of a synchronous AC machine.

Field and damper windings, core losses, and cross-coupling effects are all neglected in this

section. From (1.13), it is observed that the stator current vector, Is, consists of the dq-

axis components, Id and Id, where Is is the current magnitude and γ is the advance angle

measured counterclockwise from the q-axis. A similar representation holds for the stator flux

linkage vector, λs, and the stator voltage vector, Vs. Other quantities include the load angle

δ, the PM flux linkage λm, the dq-axis stator inductances Ld and Lq, and the stator winding

resistance Rs. The steady-state vector diagram of Is, λs and Vs using (1.13) is represented

in Fig. 1.7 for a synchronous AC machine. For a motoring operation, the stator current

vector Is lies in the second quadrant where a negative Id value weakens the motor flux.
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Is =

[
Id

Iq

]
=

[
−Is sin γ

+Is cos γ

]

λs =

[
λd

λq

]
=

[
−λs sin δ

+λs cos δ

]
=

[
LdId + λm

LqIq

]
Vs = RsIs + jωeλs

=

[
Vd

Vq

]
=

[
Rs −ωeLq
ωeLd Rs

][
Id

Iq

]
+

[
0

ωeλm

]
(1.13)

Fig. 1.7 Vector diagram of a synchronous AC machine in the dq plane.

This steady-state vector diagram provides a useful visual tool to analyze the relationships

between the different electromagnetic vectors. It can be seen that the back EMF vector, Es,

is comprised of the inductive and PM flux linkage components and is perpendicular to the

λs vector. The power factor angle, φ, is measured between the current and voltage vectors,

and the load angle, δ, is measured from the q-axis to λs.
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If the Is vector is closer to Vs, i.e. higher power factor or cosφ, the inverter kVA size can

be reduced implying lower system costs. Also, the jωeLdId component dictates how far Vs is

vertically from Is which can result in a low power factor. To compensate for this effect, Ld

could be minimized since Id is fixed for a given ωe. Another approach to correct the power

factor is to increase λm which brings Vs closer to Is by affecting the vertical PM flux linkage

component jωeλm. This serves as the basis for PM-assisted motor designs that have a higher

power factor and produce more electromagnetic torque.

DQ Rotor Representation

Fig. 1.8 displays a synchronous AC rotor labeled with its different components. Within each

silicon steel lamination, air pockets known as flux barriers are used to control and guide the

magnetic flux paths through the flux carriers. Permanent magnets could be inserted inside

the rotor structure to assist the motor operation. The PM labels correspond to a radial

magnetization direction, i.e. ‘N’ for outward and ‘S’ for inward. In other words, ‘N’ signifies

that the outer radial end of the magnet is a North pole and the inner end is a South pole.

The flux barriers are structurally held together with the help of tangential ribs on the outer

periphery of the rotor. Also, the rotor d-axis is assumed to be oriented towards the minimum

inductance path, while the rotor q-axis points to the path of maximum inductance. This dq

convention follows that of [Park, 1929; Jahns, 1987; Soong and Miller, 1994]. As seen in Fig.

1.7, three parameters are required to characterize a synchronous AC motor: λm, Ld, Lq.

Fig. 1.8 Cross-section of a 4-pole inner rotor with permanent magnets.
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To estimate the PM flux linkage, the stator windings are opened and the rotor with PMs

is rotated at a given Nm speed corresponding to a ωe value through (1.1) and (1.10). This

rotating rotor field cuts the stator windings and produces a back EMF, Vs = Es, across the

motor terminals. Then, λm can be found using (1.14) with flux paths shown in Fig. 1.9 (a).

λm =
Es
ωe

(1.14)

For the d-axis inductance, the stator windings are fed with a current magnitude and an

advance angle, γ, of 90◦. This causes Is = Id and Iq = 0 from which the d-axis flux linkage,

λd, can be measured using the winding voltage to find Ld using (1.15). The PM flux linkage,

λm, is also needed. Notice in Fig. 1.9 (b) that these fluxes oppose and demagnetize the rotor

field and also pass through the d-axis, along the flux barriers and the tangential ribs.

Ld =
λd − λm

Id
(1.15)

Estimating the q-axis inductance is similar to the Ld case. However, a γ value of 0◦ is

used so that Is = jIq and Id = 0. Then, the measured λq can be used to calculate Lq in

(1.16). The fluxes pass through the q-axis, along the flux carriers as seen in Fig. 1.9 (c).

Lq =
λq
Iq

(1.16)

(a) (b) (c)

Fig. 1.9 Magnetic flux paths for estimating (a) λm, (b) Ld, (c) Lq.
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1.2.3 Electromagnetic Torque

For a 3-phase motor with np poles, the electromagnetic torque, Tem, along the ẑ-axis of the

rotor shaft can be calculated through the cross product of the stator flux linkage vector λs

with the stator current vector Is from (1.13) to result in (1.17). This Tem equation can be

expanded to isolate two components: PM torque, Tpm, and reluctance torque, Trel.

Tem =
3

2

np
2
λs × Is =

3

2

np
2

(
λdIq − λqId

)
ẑ

=
3

2

np
2

(
λmIq + (Ld − Lq)IdIq

)
ẑ

=
3

2

np
2
Ld

( λm
Ld
Is cos γ︸ ︷︷ ︸
Tpm

+
1

2
(ξ − 1)I2

s sin (2γ)︸ ︷︷ ︸
Trel

)
ẑ

(1.17)

When analyzing a motor performance, it is convenient to quantify the dq inductances

through the magnetic saliency ratio, ξ, given in (1.18). This ratio is normally greater than 1

for pure reluctance machines, but strictly equal to 1 for pure PM types. Also, the character-

istic current, Ich, in (1.18) should be close to the rated current for wide speed performance.

ξ =
Lq
Ld

Ich =
λm
Ld

(1.18)

Based on two conditions, different classes of synchronous AC machines can be created

as summarized in Table 1.1. By setting ξ = 1 and a non-zero PM flux linkage, a pure

PM machine is obtained with no rotor saliency. This means that no reluctance torque can

be produced. In the other extreme, setting a zero PM flux linkage and ξ 6= 1 provides

only a reluctance torque proportional to ξ. A hybrid scenario corresponds to an IPM or a

PM-assisted machine producing both torque components.

Table 1.1 Different Classes of Synchronous AC Machines
Type Condition 1 Condition 2 Tem
PM λm 6= 0 ξ = 1 Tpm
Reluctance λm = 0 ξ 6= 1 Trel
IPM λm 6= 0 ξ 6= 1 Tpm + Trel
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Fig. 1.10 (a) displays how the different torque components of an IPM machine vary

against the advance angle, γ, for a fixed current magnitude, Is, using (1.17). It is observed

that the peak values of the PM and reluctance torques occur at 0◦ and 45◦ respectively. This

means that depending on a motor geometry, the γ location of the maximum torque value

can change. For the electromagnetic torque, its peak value is normally between 0◦ and 45◦

since it includes both torque components.

It should be noted that Fig. 1.10 (a) assumes fixed values for λm, Ld and Lq. In practice,

λm is a function of temperature due to a lower remnant B in the magnet material seen in

Fig. 1.3 (b). On the other hand, Lq decreases for a higher Is value due to saturation as

displayed in Fig. 1.3 (a). When the ferromagnetic core is saturated, a higher Iq value can no

longer increase the machine flux along the q-axis shown in Fig. 1.9 (c). Hence, the growth

of λq is limited which diminishes Lq through (1.16) and also decreases the saliency ratio, ξ.

The d-axis inductance Ld is less affected by saturation when compared to Lq, since the d-axis

paths mostly consist of flux barriers. Fig. 1.10 (b) demonstrates the variation of Ld and

Lq against the stator current magnitude. This means that the γ location of the maximum

torque changes for higher temperatures or Is values. In some cases, cross-coupling effects

can affect the dq inductances, i.e. Ld and Lq would depend on γ.

(a) (b)

Fig. 1.10 (a) Torque components vs. advance angle for a fixed current mag-
nitude. (b) Variation of dq inductances against stator current magnitude.
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1.2.4 Electric Drive System

In an electric drive, a voltage-driven source is required to operate an electric motor. A

constant DC bus or link voltage, usually a battery supply, is connected directly to a closed-

loop current-regulated, pulse-width modulated (PWM) inverter. By connecting each output

phase of the PWM inverter between the DC link voltage and ground for different pulse

widths or duty cycles, the output line voltage attempts to emulate a sinusoidal waveform

in its fundamental component in order to excite the motor windings. The feedback signals

include the line currents and the rotor position, usually measured through hall-effect sensors,

encoders, resolvers, or sensorless position techniques. A current vector control algorithm

accepts command signals such as torque or speed to produce the PWM inverter control

signals. The inverter operation is demonstrated here through a Sine PWM method for a

3-phase, 2-level inverter as shown in Fig. 1.11.

Fig. 1.11 Electric drive system: inverter, motor, controller [Rosu et al., 2017].

By converting a constant DC link voltage, Vdc, into balanced 3-phase PWM voltages, the

inverter can drive the motor windings at a fundamental frequency, f1. The voltage amplitude

is modulated by comparing a triangular carrier waveform to a control sinusoidal voltage,

while the switching frequency, fsw, is varied by changing the carrier signal’s frequency [Mohan

and Undeland, 2007]. Every inverter leg of the 3-phase output consists of power transistors.

For phase A, the upper transistor T+
A connects the phase output to Vdc, and the lower

transistor T−A connects the phase output to ground. At any given time of the 2-level inverter
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operation, each phase output is either connected to Vdc or ground. For this inverter, a

PWM line waveform VLL similar to Fig. 1.12 is obtained. The fundamental component at a

frequency of f1 is buried within the PWM voltage and replicates a sinusoid. It is inevitable

that the visible switching introduces unwanted harmonics into the terminal voltage supply.

For any modulation scheme, it is important to introduce metrics that quantify a PWM

signal’s quality: ma is the amplitude modulation index in the linear region and mf is the

frequency modulation index given in (1.19). A higher mf value ensures that more chops per

electrical cycle represent the modulation signal. Increasing ma increases the fundamental

contribution of the PWM line voltage, V RMS
LL1

, to the available DC bus voltage, Vdc. However,

V RMS
LL1

cannot linearly increase for ma values beyond 1 and instead begins to saturate outside

the linear region. That is, V RMS
LL1

is a nonlinear function of ma as explained below.

ma =
2
√

2√
3

V RMS
LL1

Vdc

mf =
fsw
f1

(1.19)

Fig. 1.12 Effect of varying ma on the PWM line voltage, VLL, for a fixed mf .
The fundamental component, VLL1 , is shown as a dotted waveform.
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Fig. 1.13 shows the effect of varying ma on the PWM line voltage’s fundamental. There

are three distinct operation regions for any PWM scheme: linear, overmodulation and square-

wave. In the linear region, V RMS
LL1

varies linearly from 0 to 0.612Vdc for ma ranging from 0

to 1. This can be seen in the PWM waveforms of Fig. 1.12 for ma values of 0.25 and 0.75.

When the modulation signal’s amplitude grows larger than Vdc, the PWM scheme enters

the overmodulation region where ma is greater than 1. For periods of time, the modulation

signal is larger than Vdc causing the PWM line voltage to flatten with notches as shown in

Fig. 1.12 for ma of 2.0. Unfortunately, V RMS
LL1

can no longer increase linearly and enters the

knee point of a saturation curve. High-order harmonics start to dominate when compared to

the linear operation. For extremely high ma beyond 3.24, the PWM line voltage resembles

a square wave which sets a maximum limit of 0.78Vdc on V RMS
LL1

as displayed in Fig. 1.12.

Typical fluctuations of a PWM signal are no longer visible with only 4 switches in a single

period, i.e. each inverter switches only twice in one period. Low-order harmonics appear in

the square-wave operation except for triplen harmonics (3, 6, 9, ...). A major disadvantage

of the square-wave operation is that V RMS
LL1

can no longer vary for ma, and only Vdc can be

controlled. All these effects can be seen in the PWM waveforms of Fig. 1.12.

Fig. 1.13 Effect of varying ma on the PWM line voltage (fundamental).
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Fig. 1.14 illustrates a real-time control model for operating a synchronous AC motor

when mechanically coupled to a load motor or dyno. At the first stage, the speed request,

ω∗m, is compared with the actual motor speed, ωm, to produce the speed error, ∆ωm. The

actual speed is calculated using a speed observer and the rotor position, θm, that can be

measured by a magnetic encoder. This ∆ωm error is then fed to a proportional-integral

(PI) controller to generate the dq current references, I∗d,q. Next, these values are compared

with the actual dq currents, Id,q, that are computed using the measured line currents, Ia,b,c,

through current transducers and the ABC-to-DQ transformation block. Then, ∆Id,q is

regulated by a second PI controller to produce the dq voltage references, V ∗d,q, which are

converted to ABC quantities, V ∗a,b,c, through an inverse Park transformation. These ABC

voltages are mapped into time-varying duty cycles, d∗a,b,c, using the DC bus voltage, Vdc.

Finally, the inverter block generates PWM voltages to excite the motor’s polyphase windings.

This negative feedback transient loop is repeated until ω∗m matches the actual speed, ωm.

Hence, the motor’s field-oriented control consists of speed and current control loops, where

the latter operates at a higher bandwidth. On the other hand, the dyno is torque-controlled

using the torque sensor measurement, T , and a single current feedback loop. Note that the

PI controllers can be tuned using the motor’s lumped parameters. This real-time control

model was used in [Hussain et al., 2017] for analyzing the effects of PWM excitation on the

iron loss of a PM motor through experiment.

Fig. 1.14 Field-oriented speed control of a synchronous AC motor and torque
control of a dyno acting as a load.
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1.2.5 Modes of Operation

For an electric motor drive with limited inverter kVA capability, the motor characteristics

against speed, Nm, are visually represented in Fig. 1.15. These include the electromagnetic

torque, Tem, output power, Pout, stator voltage magnitude, Vs, stator current magnitude, Is,

advance angle, γ, and stator flux linkage magnitude λs. The corresponding mode diagram in

the (Id, Iq) plane is shown in Fig. 1.16. While the subsections below provide a brief summary

with the help of both figures, a detailed explanation of variable-speed performances can be

found in [Soong and Miller, 1994].

Fig. 1.15 Motor drive characteristics for different motor speeds.
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Fig. 1.16 Mode diagram including the maximum torque trajectory.

Mode I: Maximum Torque Per Ampere

From zero to base speed, NBase
m , the electromagnetic torque, Tem, is kept constant under

Mode I. In this operation, the stator current magnitude, Is, and the stator flux linkage, λs,

are also maintained. As the motor speed ramps up to NBase
m , both the output power, Pout,

and input voltage, Vs, increase linearly until the back EMF is equal to the terminal voltage.

The electromagnetic torque in (1.17) is a function of the motor’s lumped parameters, λm,

Ld and ξ, and the excitation conditions, Is and γ. By fixing Is for a given motor geometry,

dq inductances from Fig. 1.10 (b) are chosen to calculate ξ. The λm parameter can be

obtained in a similar way for a given temperature. This reduces the number of independent

parameters to only Is and γ for a fixed rotor structure. Fig. 1.10 (a) shows that for a constant

current Is, the torque-per-ampere curve follows a concave relationship with a local maximum

with respect to the advance angle, γ. This implies that an optimal γ operating point exists,

denoted as γMTPA, such that it maximizes the electromagnetic torque for a given current level
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Is, known as the Maximum-Torque-Per-Ampere (MTPA) control strategy. At high current

magnitudes, the torque-per-ampere curves shear toward 90◦ due to the saturating q-axis

inductance. The peak MTPA points require higher γ in order to demagnetize the saturated

rotor iron paths and allow the motor to run at higher torque at the expense of additional

rotor losses and decreased motor efficiency. Considering the maxima points for a range of

stator currents, the MTPA-current trajectory follows a nonlinear relationship which requires

knowledge of Ld and Lq for any Is value.

Mode II: Flux Weakening

Above base speed, the stator voltage can no longer grow beyond the motor’s back EMF, so it

is kept constant by weakening the motor flux by increasing γ. If Is is maintained at the same

time, Pout is kept constant as well ensuring that Tem follows a speed-reciprocal relationship in

Mode II. The phase voltage, Vs, known as the voltage-limit, can be represented in (1.20) using

its dq-axis components. During steady-state, the maximum current-limit is similarly defined

in (1.21). The voltage-limit is set by the battery supply voltage, while the current-limit is

governed by the drive’s thermal capacity. By expanding (1.20) using the stator voltage in

(1.13) and ignoring the winding losses, the voltage-limit ellipse equation can be written in

terms of ωe, Id and Iq. This means that for a fixed Vs, the radius of the voltage-limit ellipse

shrinks at higher speeds. Note that the maximum Vs directly relates to the DC bus voltage,

Vdc, through the inverter’s operation, e.g. square-wave limit as in Fig. 1.13.

V 2
s = V 2

d + V 2
q(

Vs
ωeLd

)2

=

(
Id +

λm
Ld

)2

+ ξ2I2
q

(1.20)

I2
s = I2

d + I2
q (1.21)

Referring to the (Id, Iq) plane of the mode diagram in Fig. 1.16, a current-limit circle

centered at the origin is plotted using (1.21) for a given Is. The constant-torque hyperbolas

are graphed using (1.17) to illustrate the feasible operational points for any rotor speed.

Multiple voltage-limit ellipses are displayed using (1.20) for different rotor speeds. The

voltage-limit ellipses are observed to be centered at -λm/Ld with its eccentricity governed by

ξ. A higher saliency ratio value further stretches the voltage-limit ellipse along the d-axis.
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Note that Nm grows by increasing the value of ωe through the drive frequency.

Given that the size of the voltage-limit ellipse shrinks for increasing rotor speeds through

(1.20), this smaller ellipse imposes fewer feasible dq current points. For producing the same

torque at a higher speed, the operating dq current point should move along the constant-

torque hyperbola outside the current-circle. However, the current-limit circle does not allow

this current magnitude to increase. The output torque is then forced to decrease, while the

dq current point shifts along the current-limit circle. This inherent tradeoff between the

current-limit circle and voltage-limit ellipse becomes more apparent at higher speeds.

The operation discussion above can be summarized as follows using Figs. 1.15 and 1.16.

Ranging from zero to rated motor speed, Mode I dictates a current-limited, constant-torque

region where the maximum torque is obtained for a given operating current magnitude and

MTPA advance angle γMTPA. The voltage-limit is still not violated, and point A in Fig. 1.16

corresponds to the boundary intersection of the constant-torque hyperbola with the current-

limit circle. After the rated motor speed, Mode II is both current and voltage-limited. Since

the voltage-limit ellipse has become smaller at a higher rotor speed, it is no longer possible to

sustain the same constant torque at point A. For higher speeds, the torque produced is forced

to decrease by moving along the feasible current-limit circle and maintaining constant power.

The intersection between the current-limit circle and voltage-limit ellipse is illustrated by the

bold trajectory line between points A and B: the current advance angle γ increases, while the

current magnitude Is is kept constant. Increasing γ demagnetizes the motor flux to maintain

the same back EMF, hence naming this strategy as Flux-Weakening (FW) control.

Mode III: Maximum Torque Per Volt

Beyond a certain speed in the FW region, NFW
m , the voltage-limit ellipse shrinks inside the

current-limit circle. This means that Is must be decreased, which affects Tem and Pout.

Between points B and D, Mode III represents a voltage-limited region to provide the highest

torque possible for a limited voltage supply. By intersecting the constant-torque hyperbolas

with the voltage-limit ellipse along a tangent, it is theoretically possible to reach an infinite

motor speed at point D. This voltage-limited strategy is known as Maximum-Torque-per-

Voltage (MTPV) control. However, an infinite motor speed is never reached and a maximum

mechanical speed, NMax
m , at point C is selected based on the peak mechanical stress levels

of the rotor structure.
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1.3 Literature Review

This section reviews the current research and challenges related to machine design, multi-

physics simulation, high-performance computing and efficiency maps while identifying gaps.

1.3.1 Synchronous Reluctance Machines

A synchronous reluctance machine produces reluctance torque through a magnetically salient

rotor structure using flux barriers. Through an ideal set of sinusoidally-distributed coils

excited by balanced sinewave currents, a smoothly-rotating stator field is produced in order

to force the salient rotor to rotate and align its primary magnetic axis with the stator field.

This helps to minimize the overall reluctance path between the stator and rotor structures

thereby producing reluctance torque. Fig. 1.17 displays a SynRM from ABB typically used

for fixed-speed applications such as fans, pumps, and compressors. The biggest difficulty

with pure SynRMs, however, is geometrically designing their rotor structures. In fact, Kostko

[1923] originally stated that a SynRM’s poor performance is directly correlated to its poor

geometric construction. By properly designing the stator and rotor lamination structures,

the SynRM torque performance can be optimized by forcing the machine flux through the

desired flux paths [Matsuo and Lipo, 1994; Soong et al., 1995].

Fig. 1.17 Synchronous reluctance motor [ABB, 2012].

In general, there are two SynRM rotor structures which differ by their axis of stack-

ing laminations: axially-laminated anisotropic (ALA) or transversally-laminated anisotropic

(TLA) as illustrated in Fig. 1.18. The rotor d-axis is oriented towards the minimum induc-

tance path, while the rotor q-axis is pointed to the maximum inductance path. ALA rotors



1 Introduction 27 of 135

are constructed by stacking multiple axially-laminated steel sheets in the radial direction,

while TLA rotors employ regular rotor laminations in the transverse direction. The ferro-

magnetic layers with iron segments are known as flux carriers, while the air insulated layers

are called flux barriers (or magnets in the case of PM-assisted rotors, as discussed later).

The barriers in TLA rotors are held together using the tangential ribs shown in Fig. 1.8.

The ALA rotor structure has a higher saliency ratio ξ than the TLA type as reported in

[Staton et al., 1993] since the ALA’s d-axis inductance is smaller. The lack of tangential ribs

in ALA rotors reduce the leakage flux passing through the flux barriers as seen from Fig. 1.9

(b). Nowadays, the TLA structure is preferred because it employs standard iron lamination

cutting similar to the manufacturing process of an induction machine (IM) stator.

(a) (b)

Fig. 1.18 SynRM rotor laminations [Fukami et al., 2008]: (a) ALA, (b) TLA.

Generally, SynRMs can produce higher torque and efficiency levels compared with IMs

for a constant power loss or operating temperature as presented in the theoretical and ex-

perimental results of [Lipo, 1991; Haataja, 2003; Boglietti et al., 2005]. At rated operation

for the same motor volume and winding temperature, a SynRM performs better due to the

elimination of the line-start cage which itself introduces rotor ohmic losses. This comparison

has also been experimentally validated through ABB’s recent SynRM production line rang-

ing from 17 to 350 kW in output power. ABB [2012] has demonstrated that their SynRMs

have smaller frame sizes and higher efficiency levels than their IM counterparts for supplying

the same torque. Other advantages of SynRMs include faster dynamic performance due to

smaller rotor sizes, synchronous speed behavior, simple rotor manufacturing using existing

IM infrastructure, and low material cost due to the absence of expensive rare-earth magnets

[Hendershot and Miller, 2010]. However, SynRMs generally suffer from significant torque

ripple which has been addressed for different problems as discussed below.
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Design Approaches

Moghaddam [2007] focused on the design of a 4-pole SynRM using a combination of FEA

and analytical methods for improving the average torque and torque ripple. In his 15 kW

application, Moghaddam found that increasing the number of flux barriers improved the elec-

tromagnetic performance in a saturating manner; there was no incremental benefit beyond

5 barriers. Also, he analyzed the sensitivity of the rib widths and airgap thickness on the

output performances from which he concluded that the flux carrier and barrier widths play

a prominent role in the rotor’s structure. Similarly, [Pellegrino et al., 2013] studied round

and angled-shaped flux barriers and reported that modeling two parameters per barrier (i.e.

barrier’s thickness and angular position at airgap) presents a good tradeoff between simu-

lation results and computational time. Fig. 1.19 shows three typical barrier shapes used.

(a) (b) (c)

Fig. 1.19 Typical SynRM barrier shapes [Lu et al., 2017; Vagati et al., 1998]:
(a) round, (b) angled, (c) fluid. Only a quarter rotor cross-section is shown.

In addition, a 2nd order response surface methodology coupled with central composite

sampling was used to diminish the torque ripple of a 6-slot 4-pole concentrated winding

SynRM [Park et al., 2006]. This slot/pole combination was unsurprisingly prone to torque

pulsation and a minimum torque ripple of 63.8% was achieved for a 5-barrier angled shape

compared to 109.8% for the initial model. To achieve low torque ripple SynRMs, Vagati

et al. [1998] have established a well-known analytical relationship between the number of

stator slots and rotor flux barriers for a given pole number based on magnetic equivalent

circuits. They stated and validated that per pole pair, the difference between the number of

stator slots and rotor slots should be 4 apart from each other to inhibit dominating torque

harmonics. From this relationship, the number of barriers can be chosen. Other combinations
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may or may not achieve lower torque ripple.

Furthermore, Howard et al. [2015] recently proposed an asymmetric flux barrier param-

eterization with more than 29 variables to model flux barrier shapes. The asymmetry can

be either defined to be a different flux barrier arrangement for each rotor pole or the rotor’s

d-axis. They applied it to 24-slot and 36-slot SynRMs with torque ripples of 5.7% and 3.9%

respectively while operating around 11 Nm and below 6000 RPM. Upon considering the same

two objectives, the torque ripple was further reduced by skewing the rotor, as in common

practice. Their results are not surprising since Sanada et al. [2004] have demonstrated earlier

that asymmetric flux barrier arrangements yield significantly lower torque ripples. Sanada

et al. compared symmetrical and asymmetrical structures of two IPM motors and a SynRM.

They reported that the torque ripples reduced from 65%, 69%, and 50% to 10%, 12%, and

10% respectively while roughly maintaining average torque values of around 1.4 Nm, 1.9

Nm and 1.1 Nm for the three motors. Fig. 1.20 illustrates these employed asymmetric flux

barriers. Likewise, Howard and Kamper [2016] extended their previous work by optimizing

their asymmetrical rotor model using a weighted factor approach for three objectives (aver-

age torque, torque ripple, power factor). Interestingly, it was demonstrated that a Pareto

optimal relationship exists between average torque and power factor in a per-unit objec-

tive space independent of power-level, pole number, and barrier number. In another work,

Degano et al. [2016] automatically designed a fluid 3-barrier SynRM for three objectives

(average torque, torque ripple, power losses) using a mixture of a stochastic optimization

method coupled with electromagnetic FEA and a computationally efficient approach (10

seconds per sample). Upon finding the Pareto front (i.e. the set of optimal solutions), a

design was selected with a low torque ripple of 8% and an average torque of around 117 Nm.

Another study of SynRM design methodology similarly kept the stator configuration fixed

and a 3-barrier round-shaped rotor was designed (6 geometric variables) to both increase the

average torque and decrease the torque ripple [Pellegrino et al., 2015]. Although the multi-

objective optimization found designs matching well with experimental results, it may not

be computationally efficient to explore across all 6 geometric design dimensions to find a

set of Pareto front solutions. This problem becomes more prominent during the global

search for optimal designs during the initial stage. To address this high dimensionality issue,

[Mohammadi et al., 2017a] found optimal designs of a multiple-barrier SynRM rotor for a

fixed stator using a computationally efficient approach (explained in detail in Chapter 3).
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(a) (b)

Fig. 1.20 Asymmetric flux barriers in SynRM rotors: (a) [Howard et al.,
2015], (b) [Sanada et al., 2004].

Optimal geometric relationships or constraints between different parameter spaces (single-

barrier and multiple-barrier rotors) were extracted to reach highly accurate optimal solutions

while saving computational time. An optimal region was first identified in the design space for

a single-barrier rotor. Next, this optimal region was mapped to a multiple-barrier topology in

order to constrain its sampling region during a multi-objective optimization. In addition to

reducing the torque ripple, a benefit of this approach was to neglect suboptimal solutions and

cluster optimal regions for the rotor optimization. A key difference with [Mohammadi et al.,

2016] was that two SynRM case studies were considered with different rotor configurations

(1, 2, 3, 4 flux barriers) for all possible variations in the feasible design space. Fig. 1.21

displays the two response surfaces of average torque and torque ripple as functions of the

widths of the flux carrier and barrier for a round-shaped single-barrier SynRM. Both surfaces

were characterized using NNs to map nonlinear relationships between the inputs and outputs

in order to save computational time, instead of using direct FEA evaluations. Note that the

average torque’s map is unimodal where the optimal solutions cluster together around a single

peak. This clustering provides useful information to motor designers on where to search for

optimal structures. The analysis also extended the work of Hudák et al. [2006] which fixed

the flux barrier ratio, otherwise known as the rotor insulation ratio, across all barriers.

However, they employed round-shaped barriers and assumed that average torque is more

desirable than torque ripple for the clustering of optimal solutions. It is worth considering

how the location of the optimal regions would change for a multiphysics problem.
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(a) (b)

(c) (d)

Fig. 1.21 [Mohammadi et al., 2016]: (a) Rotor variables of a round-shaped
single-barrier SynRM, (b) elliptical cluster of optimal solutions in the design
plane, (c-d) response surface maps of average torque and torque ripple.



1 Introduction 32 of 135

Permanent Magnet Assist

Although SynRMs cannot maintain a constant power speed range and suffer from poor

power factor, a slight addition of PMs in their rotor structures can help them compete di-

rectly with pure PM and IPM machines as demonstrated in [Bianchi et al., 2014] and in

the second generation design of Chevrolet Volt’s traction motor [Jurkovic et al., 2015]. For

instance, Ooi et al. [2013] demonstrated a round-shaped flux barrier design entirely filled

with low-cost ferrite magnets. Its efficiency levels exceeded 90% beyond base speed, while

the PM demagnetization was controlled at high currents by tapering the barrier edges and

including a center rib. The proposed motor could also meet the constant torque and power

regions required for traction applications. In [Cai et al., 2016], a PM-SynRM under study

(88% reluctance torque) was reported to have superior torque and flux weakening perfor-

mances compared to a V-shaped IPM motor (78% PM torque) with similar ratings and

ferrite magnets. Moreover, Vagati et al. [2014] presented general guidelines for the design

of PM-SynRMs with ferrite magnets based on analytical derivations using magnetic circuits

validated through FEA and experimental results. For example, one guideline states that

small and medium-sized machines with natural ventilation would not suffer from demagneti-

zation during transients. Due to their negative temperature coefficient, ferrite magnets may

need to be warmed up to avoid demagnetization at lower temperatures.

Nevertheless, a PM-SynRM with superior characteristics can be designed by following a

3-step process as outlined in [Lu et al., 2017] and followed in [Mohammadi, 2015] for a 200 kW

traction application. A flowchart for this PM-assisted SynRM design process is shown in Fig.

1.22. In Step 1, a SynRM’s stator is sized based on its cooling and electrical constraints as

described in [Pyrhonen et al., 2009; Hendershot and Miller, 2010]. For instance, the winding

configuration and stator slot area are set to withstand the maximum current densities during

normal and peak operations. Once the stator geometry and winding configuration are fixed,

the SynRM rotor is geometrically designed to maximize its saliency ratio thereby increasing

average torque while accounting for a low torque ripple. Next, all the rotor flux barriers are

filled with equivalent PMs (i.e. PMs with variable remnant flux densities not available in

the market) in order to meet the required power-speed characteristic in Step 2, especially in

the flux weakening region. While these equivalent PMs with varying remnant flux density

levels are not necessarily the final ones used during manufacturing, they are added to reach

constant power operation at rated condition. Finally, in Step 3, the equivalent PMs are
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replaced with commercial ones concentrated in specific regions of the rotor barriers. Their

locations may be influenced by possible demagnetizations and so must be carefully checked

in advance. It is noticeable from the above procedure that the second and third steps are

relatively straightforward once the baseline SynRM is readily available. Therefore, more

effort is required to design the geometry of SynRM rotors in the first stage by varying

the flux barrier shapes, widths, positions, etc. A further difficulty lies in accounting for

multiphysics problems which impact the selection of optimal designs.

Fig. 1.22 3-step design process for a PM-assisted SynRM [Lu et al., 2017].

1.3.2 Multiphysics Challenges

With increasing computational power in recent years, multiphysics simulations have been

a growing trend within industry and academia in order to model the different physical

phenomena present in science and engineering systems [Keyes et al., 2013; Rosu et al.,

2017]. This allows users to design optimized systems with more insight than just focusing

on individual subsystems. In terms of electric machines, there are three main physics which

influence their day-to-day operation: electromagnetic, mechanical and thermal.
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Fig. 1.23 presented in [Bracikowski et al., 2012] describes the coupling among the different

physical phenomena well. During startup, the machine’s windings are fed with electrical

voltage and current, Vs and is, which then produce magnetomotive force and flux, F and φ.

Next, the interaction of the stator and rotor fluxes generate an electromagnetic torque, Γem,

which rotates the shaft at a given speed, Ω. This increase in rotor speed limits the input

current due to the increasing back electromotive force, Eg. At the same time, the winding

resistance, Rs, the machine’s flux density, B, and the converter’s switching frequency, fs, all

introduce power losses which decrease the overall efficiency, η. These losses dissipate heat and

increase the temperature, T , of different components over time, based on the cooling system

used. This temperature rise affects the magnetic material characteristics and can degrade

performance. Similarly, the increase in shaft speed subjects the rotor to high centrifugal

forces that can expand and deform its structure. If not carefully designed, the rotor bridges

or ribs could approach the material yield strength and break. Also, the harmonics of the

airgap flux density, Bg, interact with the stator’s natural frequency causing resonance and

acoustic noise, Lp. Hence, it seems apparent how the different physical phenomena can

impact the overall behavior of an electric machine. Focusing only on the electromagnetic

performances during a SynRM’s design process may not account for all these effects.

Fig. 1.23 Multiphysics coupling in machines [Bracikowski et al., 2012].
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Mechanical Issues

The design of SynRMs poses significant challenges in terms of the machine’s electromagnetic

and mechanical performances as discussed in [Taghavi and Pillay, 2015]. For instance, one

way to maximize the saliency ratio for a given SynRM is to reduce its pole number. This,

however, degrades the machine’s average torque and torque ripple, while smaller pole num-

bers introduce manufacturing and thermal problems due to longer stator end windings. On

the other hand, increasing a SynRM’s pole number can increase its torque-to-volume density,

reduce its torque ripple, lower its converter ratings, and improve its mechanical robustness.

However, the feasibility of manufacturing rotor laminations becomes questionable for high-

pole small-sized motors. It is hard to geometrically fit all the flux carriers and barriers within

a constrained rotor space. In addition, the tangential ribs are important parameters to con-

sider in practical problems. Despite offering structural support to SynRM rotors operating

at high speeds, fluxes circulating along these ribs and flowing through the barriers typically

increase the d-axis inductance thereby reducing the electromagnetic torque. Ideally, they

should be as small as possible to eliminate the contribution of leakage fluxes.

In fact, Taghavi and Pillay analytically showed that the electromagnetic torque dimin-

ishes in proportion to the tangential rib’s width, lamination thickness, q-axis flux density,

and the square of the pole number. From a mechanical perspective, these widths should be

thick enough to withstand mechanical stress at different operating speeds and avoid radial

deformation. Once the maximum stresses are computed using structural FEA or analyt-

ical methods, the maximum allowable rotor speed can be estimated as demonstrated in

[Kolehmainen, 2010]. Compared to a traditional fixed bridge rotor with a large stress of

288 MPa along its bridges, Kolehmainen [2010] proposed a dovetail-type topology without

any supporting bridges to achieve a maximum stress below 80 MPa at 3000 RPM permit-

ting higher operating speeds (74% lower stress than steel’s 305 MPa yield strength). Fig.

1.24 demonstrates the stress distributions for the two topologies. This mechanical benefit,

however, compromised the electromagnetic performance since the average torque reduced by

about 18% against the traditional design. Hence, electromagnetic and mechanical perfor-

mances were in conflict with each other. Also, [Dziechciarz et al., 2016] similarly studied two

4-barrier SynRM rotors (round and fluid shapes) for their electromagnetic and structural

aspects. They reported that fluid-shaped barriers perform better and adding ribs to the

first barrier closest to the shaft is required to withstand maximum speed. In an alternative
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worst-case approach, Barcaro et al. [2014] performed analytical static stress analysis using

the centrifugal and magnetic pressure forces on an IPM rotor to accordingly find the min-

imum widths of the tangential ribs. Despite the problem’s simplification through algebraic

equations, the calculated analytical values of the maximum von Mises stress were always

found to overestimate the FEA solutions. This result suggests that static stress analysis

can be a useful tool to effectively remove infeasible rotor designs when performing electro-

magnetic simulations without the need for time-consuming structural FEA simulations. A

similar approach was also followed in [Lu et al., 2017].

(a) (b)

Fig. 1.24 von Mises stress distributions for two SynRM rotor topologies in
[Kolehmainen, 2010] at 3000 RPM: (a) dovetail, (b) fixed bridge.

Thermal Issues

Power losses in electric machines contribute to heat production which is typically accounted

as part of the cooling requirements during an initial design stage. If a motor is not care-

fully designed to meet these requirements, certain regions inside its structure may heat up

excessively and cause irreversible effects such as breaking the winding insulation, demagne-

tizing segments of PMs or even exceeding the material’s Curie temperature. Most thermal

variations are linked with winding resistances while iron losses (hysteresis and eddy cur-

rent) contribute slightly as well. Accurately predicting an electric machine’s temperature

distribution can help in downsizing the machine and its cooling system. With respect to

PM-assisted SynRMs, particular attention must be invested during the design process to

avoid demagnetization in sensitive parts of PMs.
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Different approaches are used to predict the thermal performance of an electric motor

[Boglietti et al., 2009]: lumped parameter (LP) and FEA. A heat-transfer LP network is

similar to an electrical circuit where conduction, convection and radiation are all accounted

through thermal resistances (dependent on the geometric, material and cooling data). The

power losses act as input “currents” from which the nodal temperatures are computed. An

advantage of this thermal model is its computational speed which permits rapid thermal

calculations as discussed in [Mellor et al., 1991; Staton and Cavagnino, 2008]. Commercial

software such as Motor-CAD R© allow users to model such networks considering different

motor components, including the rotor and stator structures, windings, housing and cooling

system [Staton, 2005]. Another approach to find a motor’s thermal response is through

FEA. The power losses calculated using electromagnetic FEA are used to set up the thermal

FEA model that can handle complex geometries, 3-D end effects and individual winding

strands in a stator slot. Several works have attempted to couple electromagnetic and thermal

simulations together using different approaches as discussed below.

For example, Jiang and Jahns [2013] developed a two-way electromagnetic-thermal cou-

pled FEA model of a 30 kW fractional-slot concentrated winding surface PM machine to

check the machine’s safe operation. After setting the initial temperatures, a 2-D transient

electromagnetic simulation is run to feed the component losses to the 3-D thermal FEA.

If the temperature convergence criteria is not met, the process repeats for more coupled

iterations. Otherwise, the procedure stops and the final performances are reported after 2

to 6 coupled iterations. The same procedure is implemented in the MotorSolve R© package of

[Mentor-Infolytica Corporation, 2018] that relies on MagNet R© and ThermNet R©. While rated

current densities are typically chosen in the initial stage of the classical design process, Jiang

and Jahns demonstrated that these empirical values may not work in a practical setting due

to the winding’s insulation limit and PM demagnetization as shown in Fig. 1.25. Beyond

these limits, an electromagnetic model overestimates the produced torque and may gener-

ate incorrect results. It may become necessary to perform a coupled simulation to find the

maximum current density safe for operation. The authors even extended their previous anal-

ysis by reducing the PM motor’s total mass using a surrogate-based approach in [Jiang and

Jahns, 2014]. A NN was trained using 300 design samples to predict the maximum current

density (6 inputs, 1 output, 1 hidden layer with 12 neurons). In a direct-FEA optimization

approach, a single-objective problem was solved using differential evolution which evaluated
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1500 designs including 7500+7500 transient electromagnetic and static thermal FEA simula-

tions. All computations were reported to be completed in about 11 days on a single desktop

computer. Upon using a NN with electromagnetic FEA, coupled simulations were no longer

required and the optimization instead completed in about 4 days while reaching the same op-

timal solution as the direct-FEA optimization. Moreover, Sarikhani and Mohammed [2014]

tackled the multiphysics design optimization of a PM motor using electromagnetic FEA and

thermal lumped parameters. They formulated a multi-objective problem based on penalty

functions to reduce the PM’s temperature, copper and PM areas, torque and speed ripples,

and total mass while considering several constraints. Similarly, Wang et al. [2015] employed

a lumped parameter thermal model coupled with electromagnetic FEA for PM motors and

SynRMs. A reduced dependence was reported between operating temperatures with core

and rotor losses in both motor types thereby enabling partial decoupling of their problem.

This information helped them reduce the number of simulation iterations necessary for con-

vergence from six to two in order to reduce the total computation time. Lastly, Fatemi

et al. [2016b] optimized an IPM motor design while considering different cooling systems

and winding configurations (6 independent runs, 6600 designs each). For each configuration,

a parallel sensitivity analysis was carried out to find which geometric variables influence the

performance metrics.

(a) (b)

Fig. 1.25 Effects of coupled electromagnetic-thermal simulations [Jiang and
Jahns, 2013]: (a) torque and (b) temperature vs. current density.
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Acoustic Issues

Electric machines such as SynRMs may be prone to noise and vibration during normal use.

If motors are not carefully designed to inhibit vibrational harmonics, their physical struc-

ture will emit undesirable acoustic noise in the surrounding environments. Some examples

of possible noise sources include cogging torque (for PM-based motors), torque ripple, un-

balanced rotors with eccentricity, worn bearings, and improper load coupling [Yang, 1981;

Vijayraghavan and Krishnan, 1998].

In general, noise in electric machines arises from electromagnetic, mechanical, and aero-

dynamic sources [Gieras et al., 2005]. Also, magnetostrictive forces change the physical

dimensions of a magnetic material in response to the magnetization. These forces inside the

steel laminations of electric machines are insignificant, but cannot be ignored in transformers

[Gieras et al., 2005]. Experimental results presented in [Le Besnerais, 2016] indicate that

magnetostrictive effects do not need to be modeled when analyzing the acoustic noise in ro-

tating machinery for different power ranges. Since this research focuses on electromagnetic

calculations, only these sources are considered and primarily arise from the interaction of

the airgap magnetic field with the stator structure. The term “sound pressure level”, PSL,

is adopted instead of loudness to clarify the use of electromagnetic sources. Radial stresses

along the airgap cause the stator teeth and back iron to vibrate resulting in audible noise as

presented in Fig. 1.26. The rotor’s vibrational behavior on acoustic noise is generally ignored

for mechanical speeds below 100 kRPM as suggested in [Ede et al., 2002; Torregrossa et al.,

2011]. To calculate PSL, coupled FEA-based electromagnetic and structural simulations are

required which could be computationally expensive during the design process.

Over the years, related research has demonstrated semi-analytical methods for predicting

PSL to avoid time-consuming co-simulations. For instance, recent studies have proposed

simple, yet general approaches for different topologies of electric machines [Gieras et al.,

2007; Islam and Husain, 2009; Islam et al., 2014; Chauvicourt, 2018]. The main drawback,

however, was in modeling the stator core as a hollow, solid cylinder which neglects the slotting

effect of practical stators. Although this approximation simplifies analytical expressions for

computing the stator’s natural frequencies, fs, approximation errors may lead to inaccurate

predictions. In fact, Gieras et al. have identified this calculation as a significant challenge for

the development of fast and accurate PSL models. To address this problem and to represent

stator variables such as the tooth width, tip thickness and tang angle, a new methodology
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Fig. 1.26 Acoustic noise from electromagnetic sources [Gieras et al., 2005].

proposed in [Wang, 2017; Mohammadi et al., 2018b] and applied in [Rahman et al., 2017]

were used. While this procedure is an approximation to detailed acoustic analysis, it can

provide trends rather than accurate absolute values and identify low-noise regions while

sampling several designs of electric machines.

The calculation procedure for PSL which decouples the electromagnetic and structural

FEA simulations is explained as follows using Fig. 1.27. In Step 1, the motor design pa-

rameters are set including the geometry and excitation. Next in Step 2, electromagnetic and

structural analyses are performed using 2-D transient and 3-D modal FEA respectively. Once

the electromagnetic simulation reaches its steady-state, the normal component of the flux

densities in the airgap, Bn, is extracted. The stator’s modal analysis in the structural sim-

ulation produces fs. Then in Step 3, the magnetic stress or pressure wave, Pn, is computed

which in turn subjects the stator teeth to normal forces, Fn. The dominant amplitudes are

situated at 0, 1, and multiples of the number of poles and slots. During normal operation,

tangential components of the airgap flux density are usually much smaller than Bn and so

are generally neglected. Then at a given rotor speed, the harmonics of Fn interact with fs

causing physical deformations on the stator teeth through radial displacements, Amr. Sum-

ming Amr for all m vibration modes and r force harmonics leads to the sound pressure in

Pa, PS, and the sound pressure in dB, PSL. More details are presented in Section 2.2.3.
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Fig. 1.27 Semi-analytical procedure for sound pressure level calculation.

While the simulation constants are known in advance and Bn can be retrieved from

electromagnetic FEA, the difficulty lies in finding fs for calculating PSL. A structural FEA

package like NX Nastran R© of [Siemens PLM Software Inc., 2018] is required to accurately

find the natural frequencies for different stator configurations and geometries. If such a

specialized software is available, an accurate and effective way to quickly compute fs for

any stator geometry variation during the PSL prediction is to build a surrogate model, such

as a generalized regression NN [Specht, 1991], as suggested in [Wang, 2017]. A sampling

technique, such as a full factorial [Jurecka, 2007] or a Latin hypercube [Park, 1994], can be

used to systematically vary stator variables before fitting a NN model.

1.3.3 High-Performance Computing

Despite the benefit of using detailed FEA to predict a motor’s electromagnetic performances,

solving its nonlinear matrix equation for time-stepping problems introduces a computational

burden when thousands of models are to be solved. Time-stepping becomes necessary for

synchronous AC motors since the electromagnetic performances (e.g. torque, voltage, losses)

are a function of rotor position which is synchronized to the winding currents in field-oriented
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control as explained in Section 1.2. At every time step and rotor position, a nonlinear matrix

equation is solved (on the order of tens of thousands of degrees-of-freedom for typical 2-D

FEA models) which increases the computational requirements for motor design problems.

Risticevic et al. [2016] attempted to solve a topology optimization problem for an IPM

motor with a discretized 15×18 rotor grid (270 elements or variables, each containing either

iron, air or PM). They ran 100 CPUs in parallel to evaluate 80,000 designs at base speed to

solve their discrete optimization problem (time not reported). If more operation points or

different stator combinations are considered, the computational time required to arrive at

an optimal set of solutions or a Pareto front would be excessive (possibly requiring weeks of

simulations), forcing the motor designer to compromise the model’s complexity. An alterna-

tive approach to tackling such a computationally-intensive task is to employ a reduced-order

model of an electric motor such as a magnetic equivalent circuit (MEC) or a surrogate-based

approach that relies on FEA. For example, an FEA model can be evaluated in advance

for different inputs (such as geometric or excitation) to train and build a surrogate model

(e.g. low-order polynomial, kriging or NN) as a low-cost alternative for evaluating a motor’s

performances without additional FEA solutions [Silva, 2018].

While MECs provide analytical approximations for designing electric machines with sim-

plified geometries [Tariq et al., 2010], accurate prediction of motor performances is not

always possible. Nonlinear characteristics of magnetic materials including saturation play

a prominent role in the operation of synchronous AC motors. Through past experiences,

these nonlinearities can be taken into account through correction coefficients which may

also introduce unwanted approximations [Niazi, 2006]. Likewise, there are many unknown

variables in the early design stages which increase the computational expense of running

FEA simulations. Hence, Bramerdorfer et al. [2016] discussed different ways of accelerat-

ing FE-based optimization for electric machines. Some of the proposed suggestions include:

sampling using an effective design of experiments, setting up low-sized models for efficient

data transfer, imposing geometrical symmetry (e.g. half-pole across a rotor), benefiting from

circumferential and electrical periodicity, formulating proper optimization problems, employ-

ing state-of-the-art optimization algorithms, and quicker function evaluations such as those

using surrogates. With increasing computational power to parallelize simulation tasks, more

designs could be solved in less time especially using high-performance or cloud computing.

In summary, cloud computing allows users to access and use shared resources across the
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Internet [Gai and Li, 2012]. The concept of a “cloud” is used to create an abstraction layer

for users who may not necessarily know the intricate details of how their computationally

intensive tasks are being deployed and solved in parallel but are interested to obtain results

in less time. An interface between a novice user and the cloud service becomes important

for a complete abstraction of the cloud’s communication and distribution details. This new,

on-demand computing paradigm offers experts in many fields, including electric machines,

an unprecedented way to solve more complex problems (e.g. multiphysics design). It also

helps shift the focus of acquiring and maintaining up-to-date hardware from the user’s side

to online platforms. Various names are associated and used in the literature to describe this

concept with blurred differences among them, including high-performance, high-throughput

or distributed computing. A key benefit of cloud computing is its modularity and expand-

ability for solving computational tasks on a pay-as-you-go basis which provides cost-effective

approaches for data-intensive applications. However, its possible risks consist of security

breaches, lack of controllability, and openness with private data given which companies may

be reluctant to share their internal sensitive information. To tackle this security problem,

several enterprises are now building private cloud platforms using their resources and infras-

tructure to dedicate their computational needs with minimized security risk.

Moreover, the reduction of simulation times by decentralizing heavy computations has

been tested in previous works. Chan and Chau [1991] first employed a local distributed

computing platform to parallelize the design of electric machines. A graphics workstation was

assigned for the automatic mesh generation, a minicomputer for FEA computation, another

graphics workstation for visual evaluation, and several PCs for program editing, flexible data

management and portable data storage. Different problems were solved using this approach,

such as finding the Lorentz force in the end region of synchronous generators, calculating

the dynamic loss density and 3-D thermal fields of induction motors during starting, and

analyzing the electromagnetic performance of PM synchronous and DC brushless motors.

In a more recent study, General Motors developed their own HPC system as shown in Fig.

1.28 using a collection of recycled desktop computers [Smith, 2012a]. In this architecture, a

remote laptop was connected to the internal network consisting of N = 16 compute nodes

through a load sharing facility (LSF) master. The domain controller acted as the file server

and stored all the user files with 2 TB of disk storage. The license servers were set up to work

with Maxwell R©, HFSS R© and Q3D Extractor R© software of ANSYS to enable the distribution
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of parametric variations, model extraction, characterization and optimization for a traction

motor. Smith also reported a 16-times speedup using a 32-core HPC environment based

on 16×2-core compute nodes. The benchmark system, i.e. a single-core desktop computer,

took 72 hours to complete the same task as the HPC system which only used 4.5 hours.

However, the actual speedup should be 8-times instead since the number of cores per node

were not maintained in the performance comparison. Through the presented results, the

author estimated that the HPC system can double engineering productivity, explore more

design alternatives, reduce time to market, and improve motor performances. While these

benefits may not be generalizable for all engineering projects, they demonstrate the power

of relying on an HPC system for computationally-intensive and parallelizable tasks.

Fig. 1.28 HPC architecture of General Motors for distributed computing of
electromagnetic simulation using ANSYS software [Smith, 2012b].

Furthermore, Gope et al. [2011] solved a 322×322 capacitance matrix of an integrated

chip in an electromagnetic simulation using cloud computing and reported different speedups

and costs as a function of the core count. For one single core, it was estimated that the total

time taken would be 14.48 hours at US$ 28.56 whereas using eight cores would instead reduce

the total time to only 2.42 hours at US$ 4.76. Using 640 cores decreased the simulation’s

time to 4 minutes while the cost increased to US$ 10.66, suggesting a tradeoff relationship

between computational time and cost. An important issue to consider is that as the number

of cores increase, the overall speedup can no longer increase linearly due to communication



1 Introduction 45 of 135

overheads among the cores. Similarly, Simpson and Mellor [2015] optimized an E-core power

inductor for its multiphysics performances (2-D time-harmonic electromagnetic and 3-D

steady-state thermal) using the distributed resources of cloud computing. With the help

of 25 virtual machines (VMs), each one priced at US$ 0.43 per hour and consisting of 4

cores and 7.5 GB of RAM, a 3-objective problem (minimize inductance, maximize energy

density and minimize peak operating temperature) was solved 150 independent times using

particle swarm optimization with penalty functions (36 particles, 50 generations). For one

optimized design, the computation time and cost were 0.45 hours (11.25 compute hours for

25 VMs) and US$ 4.84, while 150 sequential optimization runs cost about US$ 725 for 68

hours (1688 compute hours for 25 VMs). If only one VM was used for this problem, the

total time would exceed 70 days and possibly impose an infeasible timeline for the research

project. The authors also noted that alternative optimization methods could be researched

to further reduce the total time and cost of using cloud computing resources. Nevertheless,

a tradeoff relationship between computational time and cost still remains and a reasonable

balance between the two must be selected based on the desired application.

Another study by Jiang et al. [2012] used high-throughput computing to optimize a 12-

slot 10-pole PM machine rated at 30 kW continuous. More than 4200 designs were solved to

reduce the motor’s total mass from 27.80 kg to 20.65 kg while maintaining good electromag-

netic performances. Differential evolution acted as the main optimizer with each generation

simulated in parallel (6 variables, 85 individuals, 50 generations). The same problem was

run twice to study the effect of parallelization on the solution’s accuracy and total time, once

using a single computer and then with 85 VMs. Although both approaches yielded similar

solutions, it was observed that the parallelized approach sped up the optimization by 28.7

times as opposed to a theoretical limit of 85. Reported reasons for this deviation arose from

the time required to perform the optimization procedure as well as communication overheads

in the cloud, as expected. Jiang et al. also mentioned that a comprehensive optimization

for electromagnetic, thermal and structural performances would become necessary in future

works using a parallelized approach. Moreover, Sizov et al. [2013] as well as Wang et al.

[2016] recently presented multi-objective optimization results for the large-scale design of

PM machines and SynRMs respectively using differential evolution. The latter solved two

problem formulations by simulating 10,200 designs (100 individuals, 51 generations) and

reported improvements in the average torque, torque ripple, efficiency, and power factor.
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Meanwhile, the previous work optimized the design of different PM motors on a single PC

workstation using 30,000 FEA design evaluations. While the works summarized above have

demonstrated the utility of cloud and high-performance computing of complex tasks, such

as the design and optimization of electric machines, not many studies have incorporated the

multiphysics evaluation of similar machines using an HPC platform for extracting knowledge

or guidelines in a design process. It is also unclear how to choose the number of VMs and

cost per VM, among other HPC parameters, for a given problem.

1.3.4 Efficiency Maps

In variable-speed traction applications, the electric drivetrain typically consists of a highly

efficient synchronous AC motor in order to meet the low energy consumption targets set by

the US Department of Energy [Yang et al., 2015]. Common examples include IPM motors

and PM-SynRMs [Boldea et al., 2014].

After optimizing a motor’s design for many objectives (e.g. average torque, torque ripple,

efficiency, power factor, etc.) using FEA simulations, the vehicle’s performance (e.g. total

energy usage and range) within an urban setting is predicted using a dynamic simulator as

in [Mahmoudi et al., 2015; Rahman et al., 2016]. A driving cycle with torque and speed

points displayed in Fig. 1.29 is used to compute the total energy use for a given efficiency

map. A prerequisite to this drive cycle analysis is the motor’s efficiency map, whose speed

and torque boundaries are imposed by the battery’s peak voltage and the motor’s thermal

limit respectively. Calculating these maps, however, requires developing a detailed model

of the electric motor before applying different motor control strategies at various operating

points. These include the Maximum-Torque-Per-Ampere, Flux Weakening and Maximum-

Torque-Per-Volt strategies explained in Section 1.2.5.

To characterize a synchronous AC motor, the dq-axis flux linkages need to be found.

In a constant parameter or linear model, all three control strategies can be applied using

approximate results at high current or speed operations [Soong and Miller, 1994; Goss et al.,

2013]. Despite its quick solution, the constant parameter model overestimates the perfor-

mance values and the lookup table method suggested in [Yang et al., 2015] is not flexible

enough for any motor. A more realistic approach includes saturation and cross-coupling

effects by modeling the dq flux linkage maps for different current magnitudes and advance

angles. Using least-squares regression, a 2nd order polynomial for two variables matched well
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Fig. 1.29 Torque & speed points in a vehicle driving cycle used to compute
energy use with the help of an efficiency map [Fatemi et al., 2016a].

with the current-driven FEA results in [Goss et al., 2013] and [Miao et al., 2016]. More-

over, ANSYS offers a fast approach to calculating efficiency maps by using an HPC system

running 2-D FEA models [Dlala et al., 2013]. They managed to utilize 96 cores leading to

a 90-times speedup for a parametric sweep of an IPM motor with 10,000 variations. In a

similar manner, the effect of geometrically scaling motors for the calculation of efficiency

maps was analyzed in [Stipetic and Goss, 2016], where the authors demonstrated simple

relationships to reuse available data with minimal loss of information.

Once the optimal excitation conditions are set based on the control strategies, the effi-

ciency or loss components (copper, iron, PM) at all operating points are either calculated

via direct FEA simulations [Mahmoudi et al., 2015; Rahman et al., 2016] or estimated via

inexpensive loss models [Goss et al., 2013]. However, it is currently unclear how the number

of FEA evaluations impacts the accuracy and computational requirements of building an effi-

ciency map. A reduced number of speed-torque points may be used to build an approximate

map with the help of a surrogate model for problems requiring quicker evaluation rather than

detailed analysis. It may be imperative to derive nonlinear motor control equations to con-

sider the significant effects of saturation and cross-coupling. In addition, the computational

aspects such as using different fitting functions need further investigation. By using such

an approach and combining it with a cloud computing platform, automotive manufacturers

and researchers could accurately compute the efficiency map of any synchronous AC motor

drive with a reduction of computational time.
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1.3.5 Summary of Literature Review

The literature review discussed above is summarized in table form as shown in Tables 1.2

and 1.3 from which several observations are made. First, there is no work which combines

all multiphysics phenomena, i.e. electromagnetic, structural, thermal and acoustic, for the

design or analysis of electric machines. It is widely known that these low-frequency devices

are multiphysical in nature, and most designers generally ignore their non-electromagnetic

performances due to increased modeling complexity and computational burden. This might

explain why the number of performances or objectives is generally less than three in the cited

literature (primarily average torque and torque ripple). At most, one more physical domain

was previously used along with electromagnetics, whether it relied on a finite element, a

lumped parameter or an analytical model. It is currently unknown how a multiphysics

analysis impacts the selection of optimal designs, especially for synchronous AC machines.

Second, there is a lack of published knowledge on the parameters used to set up an

HPC environment for motor design problems, with the exception of a few such as [Smith,

2012a; Ghorbanian, 2018]. These parameters include the number and specifications of virtual

machines which directly impact the tradeoffs of computational time and financial cost for

running HPC services. Given the recent increase in computing power and the ability to

model more complex systems through multiphysics, an interface to an HPC system can

provide potential users with more computational options based on their budget. There also

seems to be less information present on the effort, especially total simulation time, required

in solving such problems with only about half of the referenced works mentioning the number

of FEA calls or evaluations (generally on the order of tens of thousands).

Furthermore, the number of rotor barriers related to the rotor topology in synchronous

AC machines, such as IPM motors or SynRMs, was not varied in the studied optimization

problems. Most works kept this number fixed, e.g. 3 or 4 barriers, which could possibly

yield suboptimal designs. Increasing the number of barriers, subject to manufacturing and

structural constraints, generally helps improve the electromagnetic performance which is a

desired target for motor designers. Many works also neglect the relationship among differ-

ent numbers of barriers when designing these machines, since most solutions are generally

discarded and only the optimal designs are kept. It is unknown how different flux barriers

correlate with each other in the multiphysics domain. Understanding their relationships can

help provide insightful information to a motor design process.
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The following acronyms are employed in the two tables displayed below:

• Variable type: C: control, I: inverter, M: motor, R: rotor, S: stator.

• Objective type: A: acoustic, E: electromagnetic, T: thermal.

• Machine topology: IM: induction, IN: inductor, IPM: interior permanent magnet,

PM: permanent magnet, SR: switched reluctance, SyR: synchronous reluctance.

• Multiphysics model: AN: analytical, FE: finite element, LP: lumped parameter.

• Sampling method: CC: central composite, FF: full factorial, LH: Latin hypercube.

• Optimization method: DE: differential evolution, GA: genetic algorithm, GM: gra-

dient method, NN: artificial neural network, PS: particle swarm optimization, RS:

response surface, SA: sensitivity analysis, SLP: sequential linear programming, SLS:

sequential least squares, TO: topology optimization, WF: weighted factor.

Table 1.2 Summary on efficiency map calculation. Full forms can be found
above or in the List of Acronyms.



1
In

tro
d
u
ction

50
of

135

Table 1.3 Summary of literature review. Full forms are found above or in the List of Acronyms.
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1.4 Thesis Objective

Given the research gaps in the related works discussed above, the main goal of this thesis

is to propose a multiphysics design process (MPDP) for synchronous AC machines using

a data-driven approach. The term “data-driven” in this thesis is defined to be the con-

cept of acquiring or gathering data from a device’s simulation for the purpose of extracting

knowledge and guidelines. Fig. 1.30 illustrates the flowchart of the proposed MPDP. This

procedure is an alternative to that presented in [Ghorbanian et al., 2018b] by incorporating

electromagnetic (E), structural (St), acoustic (A) and thermal (T) analyses in the perfor-

mance evaluation. In brief, the MPDP consists of 6 stages which are either internally handled

or require user interaction. Each stage is explained in the subsequent chapters with the help

of a synchronous reluctance machine case study.

1.4.1 Contributions

The main contributions of this thesis are:

1. To incorporate multiphysics-based analysis of synchronous AC machines within the

design process, such as electromagnetics, structural, acoustics, and thermal fields, in

order to study their effects on the selection of optimal design solutions (selected pub-

lications: [Mohammadi et al., 2018a,b]);

2. To extract design knowledge of synchronous AC machines for different topologies with

the help of FE-based simulations and statistical analysis for speeding up the design

process (selected publications: [Mohammadi et al., 2017a, 2018a]);

3. To test the use of high-performance computing and report its associated parameters

for the design and analysis of synchronous AC machines (e.g. number of VMs, total

cost and time, VM size, overheads); and

4. To develop a computationally efficient algorithm for generating detailed efficiency maps

of synchronous AC machines (selected publication: [Mohammadi and Lowther, 2017]).
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Fig. 1.30 Flowchart of the proposed multiphysics design process (MPDP).
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1.4.2 Thesis Outline

The thesis is divided into the following chapters:

• Chapter 2 Multiphysics Simulation Challenges: The user interacts with the

MPDP to set the initial specifications of a synchronous AC machine (classical, sizing,

simulation) in Stage 1. The process then internally creates and samples the design space

in Stage 2 before evaluating different multiphysics performances, i.e. electromagnetics,

structural, acoustics, and thermal. The use of high-performance computing and its

associated parameters for electromagnetic simulations are also discussed. Next, Stage

3 is presented for filtering undesirable solutions based on different constraints.

• Chapter 3 Restricting the Design Space of Multiple-Barrier Rotors: The

explanation of the MPDP halts here in order to explain the barrier mapping method-

ology. This proposed method helps restrict the design space of multiple-barrier rotors

through various motor models. Two different examples, i.e. only electromagnetic

and electromagnetic with acoustic analyses, are demonstrated to show the computa-

tional effectiveness of the barrier mapping methodology based on statistical analysis

for different-sized machines.

• Chapter 4 Multiphysics Knowledge Extraction and Design Selection: The

MPDP continues from Chapter 2 to internally extract design knowledge and guidelines

as well as perform barrier mapping in Stage 4. Then, the process interacts with the

user to show how different solutions are clustered together in Stage 5, before selecting

optimal designs based on the user requirements in Stage 6. Finally, a single optimal de-

sign selected for its weighted-best multiphysics performance is assisted with PMs. The

variable-speed behavior of this PM-SynRM, including its efficiency map, torque/power

versus speed characteristic and demagnetization plots, is also demonstrated.

• Chapter 5 Conclusion: A summary of this thesis and its findings are presented

along with recommendations for future work.

• Appendix A Correlation Coefficients: Two different correlation coefficients, namely

the Pearson and the Spearman, are briefly described and compared with the help of

equations and visual examples. Throughout this thesis, the Spearman correlation co-

efficient is preferred to the Pearson.
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• Appendix B Incorporating Control Strategies within Design Optimization:

Two different methodologies to incorporate control parameters into the design opti-

mization of synchronous AC machines are presented and compared. A metric is used

to quantify the conflict level between the average torque and torque ripple for two

case studies: an IPM and a SynRM. Using 2-D finite element analysis simulations, the

results demonstrate that the traditional approach of lumping the control and design

variables together can lead to poor designs, especially when the conflict is high.

• Appendix C Efficiency Map Calculation for Synchronous AC Motors: Non-

linear motor control equations are derived and used for the study of efficiency map

calculation while accounting for both saturation and cross-coupling effects. Two syn-

chronous AC motors are considered, including the 2010 Prius IPM and a PM-SynRM,

with all procedure steps outlined in detail.

• Appendix D Additional Results: To further justify the use of the MPDP, addi-

tional results are presented for the two synchronous reluctance machine case studies.

These results include histograms of components temperatures for different numbers of

barriers, correlation plots of multiphysics performances for different numbers of slots

and barriers, correlation plots of design metrics for different numbers of slots and bar-

riers, and barrier mapping of multiphysics performances for different top percentiles.
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Chapter 2

Multiphysics Simulation Challenges

In this chapter, the MPDP in Fig. 1.30 starts by interacting with the user to set the ini-

tial specifications. This first stage detailed in Section 2.1 defines the classical, sizing and

simulation specifications which are all required prior to collecting results. These include

selecting the slot-pole combination and parameterizing the machine geometry, among oth-

ers. Next, the simulation process in Section 2.2 begins Stage 2 by creating and sampling

the machine’s design space. Different multiphysics performances are then evaluated using

electromagnetic (E), structural (St), acoustic (A) and thermal (T) analyses. The use of a

high-performance computing service and its associated parameters are discussed. Finally,

the undesirable solutions are filtered in Stage 3 based on various constraints.

2.1 Stage 1: Initial Specifications (interact)

Stage 1 of the MPDP requires the user to interact with the software in order to set different

specifications. The procedure for each substage is described in the subsections below.

2.1.1 Classical Specifications

First, the classical or general specifications must be selected which include the stator geome-

try, the winding layout, the numbers of slots and poles, the rated voltage and the base speed.

In this thesis, two stators with different slot-pole combinations are considered as shown in

Fig. 2.1: 24-slot 4-pole and 30-slot 4-pole. Each stator has a specific winding layout, a base

speed of 2000 RPM and a supply DC bus voltage of 42V.
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(a) (b)

Fig. 2.1 Cross-sections of the selected SynRM stators: (a) 24-slot, (b) 30-slot.

2.1.2 Sizing Specifications

After setting the classical specifications, a SynRM must be sized to obtain its first working

design as discussed in [Hendershot and Miller, 2010; Taghavi and Pillay, 2014; Lu et al.,

2017]. Sizing accounts for the electrical, magnetic and thermal loadings of the electric mo-

tor, particularly during transient operations. Different metrics such as the stator-to-rotor

diameter ratio, torque-to-rotor volume and recommended flux density values in different

components are typically used. This substage also considers the cooling requirements which

are application-dependent. For example, the rated current density of the studied SynRMs

is set based on natural cooling (less than 5 A/mm2).

2.1.3 Simulation Specifications

Next, the simulation environment must be set up and starts with model parameterization.

For an experienced user, it is possible to parameterize the stator or select alternative rotor

topologies such as the ones displayed in Fig. 1.19 or 1.20. While the stator geometry and

winding are assumed to be fixed here, a TLA rotor geometry with round-shaped barriers is

varied to demonstrate how the MPDP functions. A visual example of the studied SynRM

geometry is displayed in Fig. 2.2 and has fixed design parameters and information given in

Table 2.1. For consistency among design variations, the rated current density is kept fixed.
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Table 2.1 Fixed SynRM Design Parameters and Information
24-slot 30-slot

Number of slots 24 30
Number of poles 4 4
Supply voltage Vdc 42 42
Rated speed RPM 2000 2000
Rated RMS current density A/mm2 4.5 4.5
Rated RMS current A 10 10
Stack length mm 76.0 76.0
Airgap thickness mm 0.5 0.5
Stator outer diameter mm 94.0 94.0
Stator inner diameter mm 51.5 51.5
Back iron thickness mm 7.55 8.25
Tooth width mm 3.0 2.4
Tooth tip thickness mm 0.8 0.8
Slot opening width mm 0.8 1.5
Tooth tang angle ◦ 30 30
Rotor outer diameter mm 50.5 50.5
Rotor yoke thickness mm 5.0 5.0
Width of tangential ribs mm 0.5 0.5
Winding connection type Y Y
Winding phase resistance mΩ 118.8 110.5
Winding factor % 96.6 95.1
Coil fill factor % 40.0 44.7
Bare slot area mm2 70.0 53.2
Turn length mm 318 282
Number of turns 12 5
End winding outer diameter mm 81.7 77.3
End winding height mm 26.4 21.8
End winding resistance mΩ 62.0 51.0
End winding inductance µH 48.2 19.0
Stator core mass kg 1.84 1.86
Stator winding mass kg 0.90 0.83
Core material M-19 29 Ga
Conductor material Copper
Barrier material Air
Cooling method TENV
Emissivity 0.85 0.85
Housing thickness mm 4.18 4.18
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Fig. 2.2 View of the 24-slot SynRM geometry. Color representation: gray for
iron, white for air, orange for copper.

In a SynRM rotor, the flux barrier and flux carrier constitute its two main electromagnetic

components. As its name suggests, a flux barrier consists of a non-ferromagnetic material

enabling a high magnetic reluctance path, while it is the opposite case for a flux carrier.

To optimize a SynRM rotor for its multiphysics performances, different numbers of barriers

denoted by nb are considered here ranging from 1 to 4. For a given nb, the vector of design

parameters, x, in (2.1) constitute the width of the kth flux carrier, Wck , the width of the kth

flux barrier, Wbk , the inset width of the barrier center, Wf , and the rotor inner radius, Rri.

Here, k represents the barrier number with the index starting from the rotor shaft toward

the airgap. The tangential rib width, Wt, was kept fixed at 0.5 mm, as it is shown in Chapter

3 that Wck and Wbk are more nonlinearly correlated with each other than with Wt.

x = [Wc1 ,Wb1 , ...,Wc(nb)
,Wb(nb)

,Wf , Rri] (2.1)

In addition, different design metrics are defined in (2.2) as follows: Wc and Wb are the

sum of all carrier and barrier widths respectively [Mohammadi et al., 2016], and a is the

total flux barrier ratio [Bianchi, 2013]. The linear summation of Wc and Wb is performed

to establish a mapping between the multiple- and single-barrier spaces. The simplification

is justified by assuming that parallel fluxes flowing through multiple smaller flux carriers
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can be represented by the flux in a single carrier. These metrics later become useful when

comparing different designs. For consistency, the rotor outer radius, Rro, the rotor yoke

thickness, Wry, and the stack length, Lstk, are kept fixed, whereas Rri depends on (2.3).

Wc =

nb∑
k=1

Wck

Wb =

nb∑
k=1

Wbk

a =
Wb

Wc +Wb

(2.2)

Rri = Rro − (Wc +Wb)−Wry (2.3)

Both Wck and Wbk are modeled by intersecting different circular radii from a fixed center

controlled by Wf and are symmetric about the center of each pole. In order to avoid im-

practical designs, geometrical constraints discussed in [Mohammadi et al., 2016] are set on x

resulting in the feasible set for the entire design space, denoted by F∆. This feasible design

set is constrained using (2.4) by lower bounds and a total width limit, Wlim, to ensure that

two adjacent poles do not intersect. Also, the per-unit widths of Wc and Wb are calculated

with respect to Wlim. Fig. 2.3 illustrates the corresponding variables for 1, 2, 3 and 4 barriers

on a 1/4th rotor cross-section. The systematic evaluation of x can yield optimal SynRMs as

shown in [Matsuo and Lipo, 1994; Vagati et al., 1998; Pellegrino et al., 2015].

F∆ =


Wck ≥ Wt ∀k

x Wbk ≥ Wt ∀k
Wc +Wb ≤ Wlim

Wt ≤ Wf ≤ (Rso −Rro)

 (2.4)
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(a) (b)

(c) (d)

Fig. 2.3 Round-barrier rotor parameterization of a SynRM for different nb
with labeled design variables: (a) 1-barrier, (b) 2-barrier, (c) 3-barrier, (d)
4-barrier. A quarter model is shown due to a pole periodicity. Color represen-
tation: gray for iron, white for air. Both Rro and Wry are kept fixed.
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Subsequently, the objective priorities must be selected and are generally application-

dependent. In most cases, the torque ripple is to be minimized while maximizing the average

torque. These two objectives would then be ranked higher than the rest in the MPDP. Next,

the user is permitted to select the required analyses (i.e. E, St, A, T). If none are selected,

all of them could be performed and presented in later stages to guide the user toward a more

realistic design. For the last step of Stage 1, the user is notified about using an HPC system

to speed up the total simulation time. In brief, multiple VMs or workstations simulate the

different design variations in parallel before reporting all the results. More details on the

design space creation and the performance evaluation are discussed below.

2.2 Stage 2: Multiphysics Simulation Process (internal)

Stage 2 is handled internally where the MPDP creates and samples the design space based

on the parameterization specified in Stage 1. Each sample is then simulated for the chosen

analyses, e.g. electromagnetic, as explained below.

2.2.1 Design Space Creation

Prior to calculating the multiphysics objectives, a design of experiments is necessary to

sample the rotor design spaces using an appropriate method such as the Latin hypercube

[Jurecka, 2007]. Here, the entire design spaces of the 1, 2, 3 and 4-barrier SynRM rotors

consisting of 3, 5, 7 and 9 variables according to (2.1) were sampled using the Latin hypercube

with the maximin criterion. It was ensured that none of the provided points violate the

geometric constraints set by F∆. This resulted in 314, 1066, 3242 and 5998 samples used

for varying the four rotor geometries across their entire design spaces. Next, close neighbors

within a specified distance were removed to ensure uniqueness of designs. In each case, the

number of samples was increased incrementally until the entire design space was uniformly

covered. The user could also be prompted by the MPDP if more samples are required for a

better space representation.

For instance, Fig. 2.4 demonstrates how the design variables (scaled in per-unit) are

distributed for the 3-barrier rotor with the help of a correlation plot. This plot, which

is regularly used throughout this thesis and in [Ghorbanian, 2018], consists of histograms

for each variable along the diagonal, pairwise scatter plots between variables on the lower-
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triangle, and Spearman correlation coefficients for each pair on the upper triangle. Note

that the Spearman correlation is preferred to the Pearson, since the former measures the

pairwise rank correlation and can handle monotonic nonlinearities (explained using examples

in Appendix A). To illustrate the meaning behind the correlation values, a positive coefficient

indicates a monotonically increasing relationship, whereas a negative value is for a decreasing

case. A coefficient close to 0 suggests no correlation between the variable pair which supports

the null hypothesis for a p-value greater than 0.05. Also, Cohen et al. [2014] provide the

following guidelines for interpreting correlation strengths: 0.10 for small, 0.30 for medium

and 0.50 for high. While Wf is observed to be more uniform in Fig. 2.4, the other widths are

skewed below 0.33 due to geometrical constraints. Higher Wck and Wbk values are removed

to ensure there is enough separation between the barriers of two adjacent poles. Also, these

variables are more negatively correlated than with Wf due to their summation constraints in

(2.4). The correlation values, however, are all small due to the sampling procedure. Similar

behaviors are observed for the other barrier datasets, i.e. 1, 2 and 4.

Fig. 2.4 Correlation plot of 3-barrier design variables.
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2.2.2 Simulation Coupling

When simulating the performance of an electric machine, its physics can be decoupled de-

pending on the application. For the synchronous reluctance in this thesis, the simulation

coupling is summarized in Fig. 2.5 based on the following assumptions:

• Electromagnetic-Thermal: A one-way coupling is used. As in Fig. 1.3 (a), there is a

small variation of the magnetic characteristics of silicon steel for different temperatures.

This does not significantly affect other electromagnetic performances. Also, no PMs

were used for the SynRM design which can be sensitive to a temperature rise.

• Structural-Electromagnetic: There is a small structural effect on BH curves of silicon

steel for the rated speed of 2000 RPM, since the maximum von Mises stress on the

rotor is less than 10 MPa [Hussain, 2017]. Also, the centrifugal forces dominate the

magnetic forces [Barcaro et al., 2014]. Hence, the two physics were decoupled.

• Structural-Acoustic: Only resonances in the stator structure are used. Rotor vibrations

can be ignored for speeds below 100 kRPM [Ede et al., 2002].

• Electromagnetic-Acoustic: Only the electromagnetic source is used since the power

rating is less than 15 kW, i.e. small-sized machine [Ver and Beranek, 2006].

Fig. 2.5 Multiphysics simulation coupling.
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2.2.3 Performance Evaluation

After the sampling procedure, a suitable function evaluator must take each design variation

to compute the multiphysics performances according to the given application. In an electric

machine such as a SynRM, this includes, but is not limited to, electromagnetic, structural,

acoustic and thermal analyses. While all the multiphysics performances are computed here,

it is up to the user to select which ones are necessary for the later stages. The subsections

below describe how each objective is computed for every analysis.

Electromagnetic Analysis

With the help of the electromagnetic FEA tool in [Mentor-Infolytica Corporation, 2018],

transient 2-D FEA simulations are used to compute the SynRM’s electromagnetic objectives

as well as to account for its complex geometry and material nonlinearities. At each time

instant, the rotor orientation is synchronized to the excitation frequency to feed the windings

with a 3-phase sinusoidal current waveform at rated condition. Through the motor’s phase

and pole periodicity, only 1/6th of an electrical period is used to compute the average torque,

Tavg, defined in (2.5) and the peak-to-peak torque ripple, Trip, in (2.6). Here, N is the number

of rotor positions and T is the instantaneous torque vector.

Other objectives include the power factor, pf , the iron power loss, PFe, the efficiency,

η, the RMS voltage, Vrms, the d-axis inductance, Ld, and the saliency ratio, ξ. The normal

component of the airgap flux densities, Bn, are computed and saved for the acoustic analysis

(discussed later). In general, it is desired to maximize Tavg, pf , η and ξ, while Trip, PFe,

Vrms and Ld are to be minimized. It should be noticed that the winding power loss remains

constant across all design samples since the stator winding layout and the current density

are kept fixed. Hence, PFe and η are interchangeable objectives here.

Tavg =
1

N

N∑
i=1

Ti (2.5)

Trip =
|max(T )−min(T )|

Tavg
(2.6)

To ensure simulation consistency among all rotor designs, the MTPA strategy is employed

using the formulation in (B.1) and the procedure explained in Section 3.2.2. Appendix B
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includes relevant information on how to incorporate control strategies (e.g. MTPA) within

an optimization routine, which also applies to Stage 2 of the MPDP. Briefly speaking, the

MTPA strategy maximizes Tavg with respect to the current advance angle, γ, for each design

variation x at a fixed current magnitude. The result is the optimal MTPA angle, γMTPA. If

other operating points or detailed efficiency maps are required, the computationally-efficient

procedure in Appendix C can be used which relies on modeling synchronous AC machines

using nonlinear flux linkage maps (accounts for saturation and cross-coupling effects).

Moreover, using the dq model of a SynRM comprised of Ld and ξ for the given current

density, the MTPA flux linkage, λMTPA
s , is calculated using (2.7). Then, the base speed,

NBase
m , of each design variation is computed in (2.8) as discussed in [Soong and Miller, 1994]

and illustrated in Figs. 1.15 and 1.16. It is assumed that the maximum per-phase voltage,

V Max
s , is 2/π times the DC bus voltage based on the square-wave limit of a 2-level inverter

explained in Section 1.2.4. This voltage can be much closer to the DC voltage for the space

vector modulation of a 3-level inverter. Basically, NBase
m is computed by intersecting the

current-limit circle and the voltage-limit ellipse at the MTPA operating point for V Max
s . It

is desired to maximize NBase
m in practice which occurs if the Vrms required is not larger than

V Max
s . Beyond this base speed, constant torque can no longer be achieved which is a key

requirement for pure SynRMs in pump and fan applications [ABB, 2016]. Hence, NBase
m is

another electromagnetic objective which is to be maximized for increasing the output power.

λMTPA
s = LdI

Max
s

√
sin2 γMTPA + ξ2 cos2 γMTPA (2.7)

ωBasee =
V Max
s

λMTPA
s

=
2

π

Vdc
λMTPA
s

NBase
m =

30

π

ωBasee

np/2

(2.8)

Structural Analysis

Once the electromagnetic objectives have been obtained, it is necessary to analyze a SynRM’s

structural performance. The tangential ribs of a SynRM closest to the rotor outer diameter

must be sized accordingly to reduce their mechanical stress during high operating speeds.

This is particularly important in industrial applications that require high reliability and

long service life. In addition, a SynRM’s rotor must not be run at speeds higher than the
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maximum one as approximated in (2.9). Here, NCalc
m is the calculated mechanical speed

(i.e. 2000 RPM in this work), σ is the critical stress computed in the SynRM rotor, and

σs is the yield strength of electrical steel which is around 300 MPa [Barcaro et al., 2014].

The unknown quantity here is σ which can be computed using a 3-D linear statics solver

through a structural FEA package [Siemens PLM Software Inc., 2018] or using an analytical

equation in a worst-case approach [Barcaro et al., 2014]. Fig. 2.6 below shows the maximum

von Mises stress distribution for a given 4-barrier rotor running at 2000 RPM simulated

using a 3-D linear statics solver. As expected, it is observed that the critical stress occurs

at the tangential ribs which connect the flux barriers. This stress is primarily caused by the

centrifugal forces pushing the ribs outward when running at high speeds. The critical stress

using structural FEA, σFEA, was computed for every design sample.

NMax
m = NCalc

m

√
σs
σ

(2.9)

Fig. 2.6 Maximum von Mises stress distribution for a SynRM 4-barrier rotor.
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Similarly, the critical stress of the tangential ribs can be analytically computed using

static stress analysis in (2.10). The total force, F , is decomposed into the centrifugal force,

Fc, and the normal component of the magnetic force, Fm. Here, Mr is the rotor flux carrier

mass, Rt is the radius of the tangential rib from the origin, Ag is the circumferential area

of the tangential rib, P 0
n is the constant magnetic pressure wave in the airgap computed

through Bn. Then, the analytical form of the maximum stress, σAna, can be easily found

for every design sample x without the need for a structural FEA package. As discussed in

[Barcaro et al., 2014], this analytical approach was found to safely overestimate the actual

critical stress, σFEA, which means that NMax
m of the analytical case would be smaller.

F = Fc + Fm ≈MrRtω
2
m + AgP

0
n

σAna =
F

WtLstk

(2.10)

To quantify possible deviations of these mechanical performances, a series of factors

are defined below in (2.11). First, kS is the safety factor which compares the maximum

permissible speed to the base condition. While kS should be a high value from a mechanical

perspective, this approach does not utilize NBase
m well. Since a SynRM is mostly operated

below base speed using the MTPA strategy, NMax
m is almost never reached. If kS is already

beyond 1.5, the structural integrity is already guaranteed for speeds exceeding NBase
m by 50%.

The second one is the stress correction factor, kC , defined as the ratio between the analytical-

and FEA-based stress (or inverse of max speeds). A motor designer can empirically use kC

to correct for the σAna calculated. Third, kF is the ratio of the centrifugal force to the

total force on the tangential ribs. If this ratio is close to 1, this ensures that the structural

and electromagnetic simulations are loosely related in terms of the critical stress in the

tangential ribs and can be safely decoupled in a multiphysics analysis. Hence, kS and kF are

to be maximized, while kC is to be minimized.

kS =
NMax
m

NBase
m

kC =

√
σAna
σFEA

=
NMax
m,FEA

NMax
m,Ana

kF =
Fc

Fc + Fm

(2.11)
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Acoustic Analysis

After the structural simulation, an acoustic analysis is performed to compute the SynRM’s

sound pressure level, PSL, using the analytical/FEA-based approach discussed in [Gieras

et al., 2005; Islam et al., 2014]. A detailed explanation is provided in the same section of

the flowchart shown in Fig. 1.27 for the noise computation.

In summary, the sound pressure level due to electromagnetic sources is calculated using

Bn from the electromagnetic analysis and using the stator natural frequencies, fs, computed

via modal analysis from a structural FEA package [Siemens PLM Software Inc., 2018]. Table

2.2 provides fs for both SynRM stators. As the harmonics of the normal airgap magnetic

pressure wave, Pn, and normal force, Fn, computed in (2.12) get closer to fs, then the

stator teeth are subjected to larger radial displacements, Amr, as shown in (2.13), thereby

resonating and causing sound pressure, PS, in the surrounding air based on (2.14). This

pressure value is then compared to a sound reference in order to finally calculate PSL in dB

using (2.15). Therefore, the PSL objective is to be minimized. Here, wst is the tooth width,

Lstk is the stack length, µ0 is the permeability of free space, Fnr is the rth amplitude of the

normal force, fer is the rth harmonic frequency, fsm is the mth mode of the stator’s natural

vibration, Ms is the stator mass (iron core and winding), ζm is the mth harmonic of the

damping factor, ρ0 is the air density, c0 is the speed of sound, and np is the number of poles.

Table 2.2 Stator Natural Frequencies fs in Hz (first 10 modes)

Mode 1 2 3 4 5 6 7 8 9 10
24-slot 2177 5522 8673 10380 11092 11423 11581 11722 11777 11821
30-slot 2459 6227 9551 10994 11567 11788 11909 12015 12132 12160

Pn ≈
B2

n

2µ0

=
Fn

wstLstk
(2.12)

Amr =
Fnr/[(2πfsm)2Ms]√

[1− (fsm/fer)
2]2 + [2ζm(fsm/fer)]

2
(2.13)

PS = 2πρ0c0np
∑
m

∑
r

Amr (2.14)

PSL = 10 log10

(
PS

2× 10−5

)
(2.15)
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Thermal Analysis

Finally, the thermal results are computed using transient 3-D FE simulations for a totally

enclosed non-ventilated cooling system [Mentor-Infolytica Corporation, 2018]. Different com-

ponents, such as the housing, cores, and windings, were included. At every transient itera-

tion, the total losses from the electromagnetic simulations are used to find the corresponding

temperature distribution across all components at rated operation. Given the computational

expense of running many simulations on a single workstation, the steady-state temperatures

were not used to perform an additional electromagnetic analysis (HPC services were unavail-

able for thermal analysis). Also, results were only collected for the 24-slot SynRM.

Fig. 2.7 (a)-(b) show the transient response and the temperature distribution for a sample

design. It is observed that the steady-state was reached in 20 iterations and that the winding

and rotor core are among the hottest components. Appendix D displays the histograms of

the component steady-state temperatures for the minimum, average and maximum cases.

Since more than 15 thermal performances were calculated, it is imperative to check whether

the thermal problem can be reduced. The correlation plot shown in Fig. 2.8 indicates that

the average temperatures of all components have strong positive correlations (above +0.7).

This means that only a few performances can be used to represent the thermal results.

Therefore, two objectives, namely the average winding temperature, TW , and the average

rotor core temperature, TR, are used. Here, TW is averaged by the coil and end windings

temperatures as in (2.16). It is desired to minimize both TW and TR.

TW =
T leftend + Tcoil + T rightend

3
(2.16)

For all designs, the histograms of steady-state average component temperatures in Fig.

2.9 indicate that the hottest component is the stator winding due to copper loss, running

below 80◦C. This permits a higher current rating given that copper insulation can withstand

up to around 150◦C [Jiang, 2014]. After re-running the thermal simulations for peak transient

operation, i.e. RMS current density of 9 A/mm2 at twice the rated condition, it is observed in

Fig. 2.10 (a) that there is a strong linear relationship between the rated and peak operations

(correlation above +0.98) for both TW and TR across all designs. This means that the rated

temperatures can be used to predict the peak temperatures.
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(a) (b)

Fig. 2.7 3-D thermal analysis results for an example SynRM: (a) transient
temperature response, (b) steady-state temperature distribution [◦C]. Note that
a single slot is modeled using the stator’s periodicity.

Fig. 2.8 Correlation of average component temperatures for 24-slot 3-barrier:
housing (H), left end plate (LEP), left inner bearing (LIB), left outer bearing
(LOB), right end plate (REP), right flange (RF), right inner bearing (RIB),
right outer bearing (ROB), rotor core (RC), rotor filler (RF), shaft (Sh), stator
back iron (SBI), stator coil side (SCS), stator left end winding (SLEW), stator
right end winding (SREW), stator slot (SS), stator tooth (ST).
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Also, the results indicate that the winding temperatures heat to around 180◦C due to

natural cooling. As seen in Fig. 2.10 (b), a current density of 8 A/mm2 is recommended

for transient peak operation to keep the winding insulation below its thermal limit. Similar

results were observed for the other barrier datasets.

Fig. 2.9 Histograms of average component steady-state temperatures from
3-D thermal analysis: 24-slot 3-barrier.

(a) (b)

Fig. 2.10 (a) Average rotor and winding temperatures at rated and peak
operations. (b) Average winding temperature against RMS current density.
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Multiphysics Objectives

In summary, electromagnetic (E), structural (St), acoustic (A) and thermal (T) analyses are

performed to compute different multiphysics performances. These objectives are collectively

shown within (2.17) in the form of 12 independent objectives with respect to the design

variable vector, x and the MTPA advance angle, γMTPA. Note that the structural objectives

do not depend on γMTPA, since the simulation only relied on centrifugal forces as explained

in Section 2.2.2.

E 1. max. Tavg
(
x, γMTPA

)
E 2. min. Trip

(
x, γMTPA

)
E 3. max. pf

(
x, γMTPA

)
E 4. min. PFe

(
x, γMTPA

)
or

max. η
(
x, γMTPA

)
E 5. min. Vrms

(
x, γMTPA

)
E 6. max. ξ

(
x, γMTPA

)
E 7. min. Ld

(
x, γMTPA

)
E 8. max. NBase

m

(
x, γMTPA

)
St 9. max. kS

(
x
)

or

max. NMax
m

(
x
)

A 10. min. PSL
(
x, γMTPA

)
T 11. min. TW

(
x, γMTPA

)
T 12. min. TR

(
x, γMTPA

)

(2.17)
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2.2.4 High-Performance Computing

For each SynRM stator, i.e. 24-slot and 30-slot, there are 10,620 samples across the four bar-

rier datasets (314+1066+3242+5998). This resulted in 21,240 samples in total, which poses

computational problems during the performance evaluation stage, especially the electromag-

netic analysis. In addition, more than 1 transient electromagnetic simulation is required

for all design variations to find γMTPA for use in (2.17) due to the MTPA control strategy.

For instance, in this thesis, an electromagnetic FE model discretizes its 2-D geometry using

around 25,000 triangle mesh elements and simulates for approximately 4 minutes on a single

workstation. Considering the total sample size of 21,240 variations and 3 runs per model for

the MTPA strategy on a single workstation, the total simulation time would take around

177 days (6 months) to complete, that is for only one operating point!

To speed up the time-consuming electromagnetic simulations, a distributed computing

approach is employed by simulating multiple models in parallel as shown in Fig. 2.11 through

an HPC platform [Microsoft Azure, 2018]. Parallel VMs of size A1v2 (specs: 1 core, 2.1 GB

RAM, 10.7 GB SSD storage) for a Price of CA$ 0.065 per hour per VM are used. The total

duration, denoted by Time, includes the time required to set up a cluster of virtual machines

(CC: cluster creation), deploy and run the required tasks as well as download all the results

(DR: deploy and run), and remove the cluster (CR: cluster removal). As shown in (2.18),

Time represents the total simulation time per dataset, Unit is the unit time per sample and

VM, and Cost is the total cost to run the HPC in the cloud platform. Here, nSample is the

number of samples in the dataset and nVM is the number of virtual machines used. Cost

adds 1 to nVM since a master VM is required to coordinate the other VMs responsible for

running the simulations. The flowchart of Fig. 2.12 describes the steps followed for running

the electromagnetic simulation in the HPC system.

Time = TimeCC + TimeDR + TimeCR

Unit =
Time

(nSample)(nVM)

Cost = (Price)(nVM + 1)(TimeDR)

(2.18)
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Fig. 2.11 Modeling parallelization through high-performance computing.

User System

1.1 Interact with user

1.2 Pre-process models

3.1 Post-process results

Local Database

4.1 Store results

4.2 Organize data

1.0 Send data to user

High-Performance Computing

2.1 Create cloud cluster of VMs (CC)

2.2 Receive models from user (DR)

2.3 Deploy & run models (DR)

2.4 Send solutions to user (DR)

2.5 Remove cloud cluster (CR)

Fig. 2.12 Flowchart for high-performance computing.
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A summary of the HPC simulations is shown in Table 2.3, where each dataset is repre-

sented by one row. Note that more samples were simulated to study the effect of different

numbers of VMs on the simulation times and costs. That is, the datasets listed in the first 5

rows were not used in the MPDP. Also, the Cost is computed with respect to the DR time

since the cluster of VMs is only available for use during that period.

Table 2.3 Summary of HPC Simulations for Electromagnetic Analysis
TimeCC TimeDR TimeCR Time Unit Cost

ns nb nSample nVM [hours] [hours] [hours] [hours] [sec] [$]
24 4 20 1 0.94 2.78 0.12 3.84 691.35 0.36
24 1 220 10 1.16 2.75 0.12 4.04 6.60 1.97
24 2 840 10 1.31 10.98 0.15 12.44 5.33 7.85
24 3 924 10 1.24 12.43 0.12 13.80 5.38 8.89
24 4 990 20 0.96 6.89 0.13 7.99 1.45 9.41
24 1 314 30 0.84 1.43 0.15 2.42 0.93 2.88
24 2 1066 30 0.84 4.81 0.15 5.80 0.65 9.70
24 3 3242 30 0.84 14.90 0.15 15.89 0.59 30.02
24 4 3000 40 0.93 11.70 0.16 12.79 0.38 31.17
24 4 2998 40 0.93 11.50 0.16 12.60 0.38 30.65
30 1 314 20 0.94 2.17 0.13 3.23 1.85 2.96
30 2 1066 20 0.94 7.63 0.13 8.69 1.47 10.41
30 3 3242 40 0.91 11.15 0.16 12.21 0.34 29.71
30 4 3000 40 0.91 10.43 0.16 11.50 0.34 27.81
30 4 2998 30 0.89 14.30 0.15 15.34 0.61 28.81

For the 24-slot case study, the total HPC times took approximately 3, 6, 16 and 26

hours (CA$ 3, CA$ 10, CA$ 30 and CA$ 62 of Cost) for the four datasets respectively.

Also, the Time and Cost of the 30-slot case study are observed to be slightly higher due

to the increased stator and winding complexity. A few more observations can be made

from Table 2.3. First, TimeCC and TimeCR are approximately constant with averages and

standard deviations of 0.97±0.15 and 0.14±0.02 hours respectively. This means that only

TimeDR varies with respect to nSample and nVM . Second, the utilization ratio defined in

[Ghorbanian, 2018], i.e. UR = TimeDR/T ime is observed to be higher than 88% meaning

that the VMs in the HPC platform are used well for this application. A computational

bottleneck, reported in [Ghorbanian, 2018], was the download of electromagnetic solutions

(results and fields) during DR. In this work, only the results were saved which practically
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reduces the download portion. Third, the Cost of running both case studies is around CA$

204 which is a reasonable tradeoff for reducing the total time to 4.2 days.

Moreover, Figs. 2.13 and 2.14 show the Unit and speedup respectively against the number

of VMs. An inverse relationship is observed which corresponds to a time-versus-cost tradeoff.

The number of VMs can be chosen when the incremental benefit of increasing the number

of VMs does not significantly change the simulation time. This helps to reduce Cost which

was performed by choosing mostly 30 or 40 VMs for the datasets. Due to the negligible

download time, i.e. each solved result for a design sample was in the order of kilobytes, the

speedup is almost linear with respect to the number of VMs. However, the speedup did not

scale linearly for the case study in [Ghorbanian, 2018] since the downloaded files consisted

of solved FEA models that are megabytes large. There are fewer communication overheads

in the employed HPC system when simulating the considered electromagnetic FE models.

Fig. 2.13 HPC simulation report: time-vs-cost.

Fig. 2.14 HPC simulation report: speedup against number of VMs.
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Since the HPC platform was unavailable for the structural and thermal analyses, they

were run on individual workstations for the following specifications: Intel Xeon E5-1650 (6

cores, 3.50 GHz) with 32 GB of RAM. Each 3-D structural FEA evaluation with around

30,000 tetrahedral elements took about 40 seconds on average resulting in a total simulation

time of 5 days for 10,620 samples (same rotor variations for both stators). The axial or stack

size was fixed at 8 laminations since it was observed that increasing the number did not

significantly change the maximum von Mises stress. Therefore, 8 laminations were chosen

based on a computational tradeoff for the structural analysis.

For the 3-D thermal transient analysis, each model required 1.5 minutes to run the

electromagnetic analysis before running the transient thermal simulation for 2.5 minutes.

This resulted in a total of around 4 minutes per sample using the same workstation, i.e. Intel

Xeon E5-1650 (6 cores, 3.50 GHz) with 32 GB of RAM. The simulation times correspondingly

took 1, 3, 9 and 17 days for the four barrier datasets. Similar times are reported for the 30-

slot case study. Note that only 1 coupled iteration was used for reducing total computational

times, i.e. the electromagnetic analysis fed into the thermal one without another feedback

loop. While this assumption may impact the accuracy of results, all the samples are affected

and the MPDP compares their trends.

Since the acoustic analysis relied on the electromagnetic results along with the stator

natural frequencies using the semi-analytical procedure described in Fig. 1.27, the sound

pressure level values were calculated without any computational issues. All the acoustic

results for both cases were obtained on the order of minutes.

2.3 Stage 3: Filtering Undesirable Solutions (interact)

Once the multiphysics performances of all design samples are evaluated, various constraints

must be set in Stage 3. This ensures practical designs are used in subsequent stages [Ghor-

banian and Lowther, 2017]. While certain limits can be preset within the MPDP, such as

the maximum operating temperature, other thresholds could be based on the knowledge of

an experienced user. For example, the rotor design widths, Wck and Wbk , can be checked as

to whether they are within manufacturing tolerances. Otherwise, the MPDP can continue

to the knowledge extraction stage explained in Chapter 4.
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2.4 Summary

The first three stages of the MPDP displayed in Fig. 1.30 were discussed and explained

in this chapter. These stages include: (1) setting the initial specifications by the user (i.e.

classical, sizing and simulation settings), (2) running the multiphysics simulation process

internally (electromagnetic, structural, acoustic, thermal), and (3) filtering undesirable solu-

tions based on a user’s constraints. Specifically, the parameterization, the design metrics and

the geometric constraints of a SynRM rotor with round-shaped barriers were demonstrated.

Two different stators, i.e. the 24- and the 30-slot, were also introduced for comparing results

in subsequent chapters. For each of the four rotor datasets considered in this chapter (i.e.

1, 2, 3 and 4 barriers), Latin hypercube sampling with the maximin criterion was used to

sample and cover the corresponding design space. Next, different multiphysics performances

were simulated, which included electromagnetic (average torque, torque ripple, power factor,

iron loss or efficiency, RMS voltage, saliency ratio, d-axis inductance, base speed), structural

(safety factor or maximum mechanical speed), acoustic (sound pressure level), and thermal

analyses (average winding temperature, average rotor temperature). Also, the use and ben-

efit of an HPC system were discussed in the context of generating electromagnetic results.

Due to the distributed nature of simulating many models in parallel, the computational

time was significantly reduced from months to days when compared to simply running on a

single or few workstations. A linear speedup was reported due to negligible communication

overheads in the HPC system for the considered finite element models.
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Chapter 3

Restricting the Design Space of

Multiple-Barrier Rotors

With a deviation from the MPDP, which continues in Chapter 4, this chapter introduces

the concept of barrier mapping, useful in the design process. This numerical methodology,

proposed in Section 3.1, reduces the number of computations required to optimally design

the rotor of SynRMs with multiple barriers. Optimal geometrical constraints of a multiple-

barrier SynRM rotor can be found to restrict its corresponding design space. This approach

can handle the curse of dimensionality when the number of geometric parameters increases

and can reduce the number of initial samples required prior to a multi-objective optimization.

In Section 3.2, barrier mapping is applied to two electromagnetic objectives, i.e. average

torque and torque ripple. Different numbers of rotor flux barriers are statistically analyzed

to find their respective design correlation for high average torque solutions. From this in-

formation, optimal geometrical constraints are then found to restrict the design space of

multiple-barrier rotors. Statistical analysis of the considered SynRMs demonstrates a design

similarity between the different numbers of flux barriers.

Next, barrier mapping is extended to acoustic analysis in Section 3.3. The two elec-

tromagnetic objectives and the sound pressure level are considered using a surrogate-based

multi-objective approach to extract optimal design regions. Similar to Section 3.2, these

regions or constraints help decrease the computational time required during the sampling

procedure of a multiple-barrier design. Adding the sound pressure level objective is found to

affect the previous results by spreading the Pareto front solutions across the design space.
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3.1 Barrier Mapping Methodology

Compared to a single-barrier rotor, more variables are needed to accurately model a multiple-

barrier rotor’s geometry as in (2.1) and seen in Fig. 2.3. Additional parameters introduce the

curse of dimensionality since more computational effort is required to sample the design space

prior to starting an optimization process. To tackle this issue, a generalized methodology

called barrier mapping is proposed as illustrated in Fig. 3.1. Instead of directly sampling

the entire design space of an M -barrier rotor with k variables per barrier using ND samples,

a 1-barrier rotor is initially explored using N1 samples. After statistically analyzing the

different performances (e.g. average torque, torque ripple), the M -barrier rotor is sampled

in its optimal region derived from the 1-barrier’s optimal space using NM samples only.

Finding this restricted region of the M -barrier rotor’s design space would then require fewer

samples, as shown by the inequality in (3.1).

Hence, the sections below use the proposed barrier mapping methodology to arrive at

optimal SynRM designs for two examples: (1) only electromagnetic objectives in Section 3.2,

and (2) a combination of electromagnetic and acoustic objectives in Section 3.3.

(N1 +NM) ≤ ND (3.1)

Fig. 3.1 Barrier mapping methodology for design space restriction.
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3.2 Electromagnetic Example

This section based on [Mohammadi et al., 2017a] applies the barrier mapping methodology

for two electromagnetic objectives for two SynRM models.

3.2.1 Rotor Geometric Design

Table 3.1 displays the fixed design parameters of two SynRM models. Model A uses liquid

cooling and is a relatively large motor sized for a Class IV electric vehicle, while Model B is

a smaller motor rated at 250 W. Both models were chosen to compare the effectiveness of

the proposed approach for different slot-per-pole combinations and motor sizes. The number

of poles is selected based on the method presented in [Mohammadi et al., 2016].

Table 3.1 Fixed SynRM Design Parameters
Parameter Model A Model B
Number of slots/poles 33/8 12/4
Stator’s outer diameter 325 mm 75 mm
Rotor’s outer diameter 220 mm 40 mm
Stack length 275 mm 34 mm
Airgap thickness 0.75 mm 0.50 mm
RMS current density 20.0 A/mm2 10.0 A/mm2

Cooling method Liquid Natural Convection

The rotor geometric design follows the one defined in Chapter 2.1.3. The same metrics

and constraints specified in (2.2) and (2.4) are used. A difference, however, is that the width

of the kth tangential rib, Wtk , is added to x in (2.1) for Model B. The Wtk of Model A is

fixed at 1 mm. Also, the flux barrier ratio, ak, is defined in (3.2) for every k.

ak =
Wbk

Wck +Wbk

(3.2)

Next, a full factorial approach, explained in [Jurecka, 2007], is used to sample the

multiple-barrier designs for both Model A and Model B in F∆. This sampling approach

helps later in Section 3.2.5 when a relative measure of the design space restriction is calcu-

lated. Table 3.2 lists the sampled parameters for each model, while Table 3.3 displays the

number of FEA samples computed per barrier number. Also, these samples include different

variations of ak which was kept constant across every barrier in [Hudák et al., 2006].
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Table 3.2 Variable Design Parameters
Parameter Symbol Model A Model B
Current advance angle γ Varied Varied
Width of flux carrier k Wck Varied Varied
Width of flux barrier k Wbk Varied Varied
Width of tangential rib k Wtk Fixed Varied
Inset width of barriers Wf Fixed Varied

Table 3.3 Number of FEA Samples
k Model A Model B

1 barrier 91 806
2 barrier 1366 21250
3 barrier 5004 6722
4 barrier 6436 -

3.2.2 Simulation Setup

For every design sample, the procedure described in Section 2.2.3 is adopted to compute

Tavg and Trip as in (2.5) and (2.6) respectively. Next, the MTPA control strategy is used

to relatively compare each rotor design. The average reluctance torque Tavg (post-processed

from 2-D FEA solutions) is maximized for a given current level Is by varying the current

advance angle γ [Matsuo and Lipo, 1994; Soong et al., 1995]. Upon examining the simplified

dq representation of Tavg in (3.3), the dq rotor inductances, Ld and Lq, depend on the rotor

geometry in each design. This implies that a single γ (e.g. 45◦) cannot be used for all rotor

variations and an alternative sub-optimization model is required to find the maximum Tavg

with respect to γ at a fixed Is.

Tavg =
1

2

3

2

np
2

(
Lq − Ld

)
I2
s sin 2γ (3.3)

3.2.3 Objective Space

Once all the MTPA samples in Table 3.3 are computed, the non-dominated Pareto front

solutions for both models are plotted in Fig. 3.2. Here, Tavg is maximized, while Trip is

minimized. In short, these optimal points in the (Tavg,Trip) objective space demonstrate a

tradeoff relationship.
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(a) (b)

Fig. 3.2 Pareto solutions in the objective space: (a) Model A, (b) Model B.

As the number of rotor barriers increases, the corresponding fronts move toward higher

Tavg and lower Trip values. For instance, a 3-barrier rotor design of Model A can provide

a (Tavg,Trip) of (875 Nm, 2%) as displayed in Fig. 3.2 (a). Referring to the analytical

recommendation presented in [Vagati et al., 1998], a 33-slot, 8-pole SynRM with the lowest

torque ripple requires a 3-barrier configuration which correlates well the different Pareto

fronts. Interestingly, a 4-barrier configuration does not improve the torque performance

which signifies an optimal relationship between the number of stator slots and rotor flux

carriers. A similar trend is also observed in Fig. 3.2 (b) for Model B where multiple-barrier

rotors have better torque performances.

3.2.4 Design Space

Once the Pareto front solutions are computed, e.g. Fig. 3.2 for Models A and B, it is

desired to visualize how these optimal solutions align together and cluster in the design

space. Hence, all the high-Tavg solutions are constrained using (3.4) for Models A and B.

Here, FHT represents the set of high-Tavg set of designs of each case study. Note that a

relative measure using TMAX
avg is employed for the constraint since the multiple-barrier Pareto

fronts are far away from the 1-barrier’s. Then, FHT is mapped into the (Wc,Wb) design space

using (2.2) as illustrated in Fig. 3.3 (a)-(b) respectively. Different ellipses, εk, are computed
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such that each εk encapsulates FHT per barrier number k [Mohammadi et al., 2016]. The

procedure to analytically capture these high-Tavg Pareto solutions is described as follows.

FHT =
{
x|Tavg(x) ≥ 0.90TMAX

avg

}
(3.4)

First, the convex optimization given in (3.5) is formulated. For a given set of optimal

design points such as FHT, the area of the ellipse ε is minimized such that the interior of ε

contains all the given design points [Boyd and Vandenberghe, 2004]. Second, the unknown

parameters of ε in (3.5) are computed which include the matrix A and the vector b, each of

size 2. Here, A and b govern the eccentricity and the center of ellipse ε respectively, and W

is the vector of the mapped widths to the single-barrier plane.

max .
√

detA

s.t.
∥∥AW + b

∥∥
2
≤ 1

W = [Wc,Wb]
T

(3.5)

(a) (b)

Fig. 3.3 FHT solutions in (Wc,Wb) design space: (a) Model A, (b) Model B.
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Upon solving (3.5), it is observed that the ε constraints in Fig. 3.3 (a)-(b) are similar

to the constant-Tavg contour lines in Fig. 1.21 (c). For example, ellipse ε1 constrains the

design region of optimal 1-barrier solutions. Note that the multiple-barrier ellipses (e.g. ε2,

ε3, ε4) are affine transformations of ε1 and visually verify (2.2), by overlapping with ε1.

The location of the high-Tavg solutions, FHT, in the 1-barrier space can then help identify a

restricted region in a multiple-barrier space through (2.2) and reduce the number of samples

needed to optimize a rotor geometry.

Although the ellipses indicate an optimal region in the (Wc,Wb) plane, useful information

about the flux barrier ratios ak is lost by only using (2.2). To find the optimal ak values, FHT

is further constrained for low Trip using (3.6) for both Model A and Model B. Here, FOPT

represents the set of optimal solutions satisfying the high-Tavg and the low-Trip constraints

to compute ak using (3.2). The TREQ
rip value for Models A and B are set to be 5% and 50%

respectively. This extra condition constrains the multiple-barrier space to an optimal region.

FOPT =
{
x|FHT ∩ Trip(x) ≥ TREQ

rip

}
(3.6)

Subsequently for both case studies, the per-unit ranges of optimal ak values for each

barrier number k are used to compute the total flux barrier ratio, a, using (2.2) as shown

in Table 3.4. This table also includes the range for the total width, Wc + Wb, imposed by

(2.4). Furthermore, it is observed that the set of optimal solutions tends to cluster near the

width limit line, Wc + Wb = Wlim. This means that optimal rotor designs are inclined to

distribute their flux barriers starting from the rotor’s outer diameter to the extreme limit

near an adjacent pole. The a ratio ranges in Table 3.4 agree well with the suggested range

[0.3, 0.5] in [Matsuo and Lipo, 1994] to produce the highest average torque.

Table 3.4 Optimal Parameter Range [Min, Max]

Model k a [pu] Wc +Wb [pu]
A 2 [0.50, 0.79] [0.87, 1.00]

3 [0.40, 0.79] [0.87, 1.00]
4 [0.40, 0.73] [0.87, 1.00]

B 2 [0.29, 0.67] [0.74, 0.94]
3 [0.34, 0.77] [0.73, 0.92]
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3.2.5 Comparison of Computational Efforts

The previous two subsections verified the benefit of using the proposed methodology as

shown in Fig. 3.1 by analyzing the objective and design spaces for both case studies. Upon

mapping the multiple-barrier space to a single-barrier one using (2.2), the relative accuracy of

optimal solutions remains consistent as visualized in Fig. 3.3. However, a direct comparison

of the computational effort required for the two methodologies is still necessary.

Hence, the N1, ND and NM variables in (3.1) are set using the total number of FEA

samples listed in Table 3.3. For instance, if a 2-barrier design of Model A is required,

the direct methodology using a full factorial sampling sets ND = 1366, while the proposed

methodology sets N1 = 91 and N2 = 357. Here, N2 includes the set of optimal solutions,

FA
OPT, for the 2-barrier dataset of Model A. A similar analysis is performed for all barrier

numbers and both models as in Table 3.5. Then, the total reduction percentage, Rk, for

each barrier number k is calculated using (3.7). This percentage value represents the sample

reduction in the proposed approach with respect to the direct methodology in Fig. 3.1.

Rk =
ND − (N1 +Nk)

ND

(3.7)

Table 3.5 Computational Comparison of Methodologies
Model k ND N1 +Nk Rk

A 2 1366 91+ 357 67%
3 5004 91+1792 62%
4 6436 91+2770 56%

B 2 21250 806+704 93%
3 6722 806+794 76%

For example, the search space of the multiple-barrier rotor is reduced by around 67% and

62% for the 2-barrier and 3-barrier rotors of Model A respectively. It should be noted that the

3-barrier dataset is not constrained as much as the 2-barrier case because the 3-barrier rotor

has a lower torque ripple in general. This will be explained in the next subsection using

histograms. Therefore, the computational efforts required to generate the set of optimal

solutions in Fig. 3.3 is significantly reduced by using the proposed design methodology.
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3.2.6 Statistical Analysis

In addition to the above discussions, statistical analyses of Model B’s results are presented

below to correlate the design parameters and the objective values. Note that Model A is

ignored in this analysis since two of Model A’s parameters were fixed as shown in Table 3.2.

For the 1-barrier, 2-barrier and 3-barrier datasets, Fig. 3.4 shows the histograms of Model

B’s average torque and torque ripple. Generally speaking, it is observed that the average

torque increases and the torque ripple reduces in the 2- and 3-barrier cases. Also, the two

modes of Fig. 3.4 (a) appear as one peak for the 3-barrier case. Similar trends were also

observed for Model A. In addition, the normal distribution statistics (mean and standard

deviation) of Model B are listed in Table 3.6 using all the FEA samples described in Table

3.3. The improved torque performance validates the key benefit of using multiple-barrier

rotors for SynRMs. Also, the flux plots of two optimal designs of Model B in Fig. 3.5

demonstrate how the flux lines are more evenly distributed for the 3-barrier rotor resulting

in lower torque ripples as in Fig. 3.2.

Table 3.6 Normal Distribution Statistics of Model B

k Statistic Tavg log10(Trip)

1 Mean 0.489 Nm 2.077%

Std. Dev. 0.160 Nm 0.222%

Num. of Samples 806 samples

2 Mean 0.624 Nm 1.900%

Std. Dev. 0.121 Nm 0.203%

Num. of Samples 21250 samples

3 Mean 0.700 Nm 1.770%

Std. Dev. 0.087 Nm 0.191%

Num. of Samples 6722 samples
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(a) (b) (c)

Fig. 3.4 Performance histograms for Model B. [Top] Tavg, [Bottom]:
log10(Trip). (a) 1-barrier, (b) 2-barrier, (c) 3-barrier.

(a) (b)

Fig. 3.5 Flux density distribution at rated condition of Model B’s selected
designs: (a) 2-barrier, (b) 3-barrier. Only a quarter cross-section is shown.
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Furthermore, the Spearman rank correlation coefficients (explained in Appendix A) are

computed in terms of the design parameters of the 1-barrier, 2-barrier, and 3-barrier datasets.

In short, if the Spearman coefficient of two parameters is greater than zero, then their nonlin-

ear correlation is also positive. Fig. 3.6 (a)-(c) displays the variable clustering dendrograms

for the three datasets respectively which help visualize a hierarchy of variable correlations

[McIntosh et al., 2016].

For instance, it is observed in Fig. 3.6 (a) that Wc and Wb in a 1-barrier configuration

are more nonlinearly correlated to each other than perhaps Wf or even Wt. For the 2-barrier

case in Fig. 3.6 (b), Wt1 and Wt2 are more correlated with each other and with Wf as well.

Also, the Wc1 , Wb1 , Wc2 and Wb2 parameters are heavily correlated to each other per barrier

number k. This suggests that more samples are required to account for these nonlinear design

parameters. In addition, the 3-barrier dataset in Fig. 3.6 (c) shows that the Wtk parameters

cannot be ignored since they are coupled together with Wf for each k. As expected, each flux

barrier and carrier combination Wck and Wbk are again heavily correlated. The innermost

tangential rib controlled by Wt2 is also correlated with Wf indicating that adding more design

parameters is necessary for accurately modeling multiple-barrier SynRM rotors.

(a) (b) (c)

Fig. 3.6 Variable clustering for Model B: (a) 1-, (b) 2-, (c) 3-barrier.
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3.3 Electromagnetic with Acoustic Example

This section based on [Mohammadi et al., 2018b] applies the barrier mapping methodology

for average torque, torque ripple and sound pressure level for Model A. The structural

integrity of the SynRM rotor for fixed speed operation is also analyzed.

3.3.1 Rotor Geometric Design

Similar to Section 3.2.1, the rotor design of Model A (33-slot 8-pole SynRM) follows that

defined in Chapter 2.1.3. Its rotor speed was set to 500 RPM for the objective calculation,

and its fixed design parameters are shown in Table 3.1.

3.3.2 Objective Calculation

Multi-objective optimization is computationally-intensive especially when FEA simulations

are used for the function evaluations. Also, modeling multiple flux barriers requires more

variables compared to a single barrier, which increases the computational burden. To over-

come this issue, a surrogate-based approach is used where a fixed number of designs are

evaluated using FEA before the optimization stage. Three different barrier datasets (1, 2

and 3) are considered and each one is sampled as in Table 3.3. Every objective per dataset is

modeled using a surrogate to quickly evaluate solutions during the optimization procedure.

To ensure the rotor’s structural integrity during rated operation, static stress analysis

discussed in Section 2.2.3 is performed to find the maximum allowable speed, NMax
m . The

analytical critical stress, σAna, is calculated using centrifugal and electromagnetic forces as in

(2.10). Here, Nm is 500 RPM and P 0
n is set as 0.25 MPa based on average flux density values.

This worst-case approach overestimates the stress calculated via structural FEA. Across all

the design samples, Mr varied from 14 kg to 46 kg. This implies that NMax
m computed using

(3.8) varies from 1200 RPM to 1800 RPM using a safety factor, kS, of 1.2. Hence, this result

confirms that the fixed Wt value for all sampled rotors offers sufficient structural support for

this fixed speed application.

NMax
m = Nm

√
σS

kSσAna
(3.8)
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Electromagnetic: average torque and torque ripple

For every design sample, the procedure in Section 2.2.3 is used to compute Tavg and Trip as

in (2.5) and (2.6) respectively. Both objectives are calculated using the MTPA strategy to

fairly compare all rotor designs below base speed. Each FEA evaluation using the MTPA

strategy took about 6 minutes on average using an Intel Xeon E5-1650 (6 cores, 3.50 GHz)

with 32 GB of RAM.

Acoustic: sound pressure level

Similarly, the sound pressure level, PSL, is calculated using the calculation procedure ex-

plained in Section 2.2.3. The harmonics of airgap Bn resonate with the stator structure

through fs causing radial displacements and sound pressure in the surrounding air.

3.3.3 Surrogate Modeling

After sampling the three datasets (i.e. 1, 2, 3-barrier) and calculating all the performances,

the surrogate models are fitted to each objective as a function of x. As in [Mohammadi et al.,

2016], a Bayesian regularization backpropagation neural network with one hidden layer, 2nb

inputs, and one output is selected per objective. The training, validation and testing sets

are randomly divided into 60%, 10% and 30% per dataset. Also, a standard procedure is

used to train each objective network by incrementally varying the number of neurons until

convergence is met. This process stops when the coefficient of determination, R2, of the

training, validation and testing sets are all above 0.95. Hence, the number of neurons of

(Tavg,Trip,PSL) were then set to be (5,5,5), (10,15,10) and (15,25,15) for the three datasets.

Fig. 3.7 shows the response surfaces of Tavg, Trip, PSL, and γMTPA of the 1-barrier

dataset. Similar to [Mohammadi et al., 2016], fewer neurons are needed to fit Tavg because

its response surface is unimodal. The opposite holds for Trip due to its many peaks and

valleys. Also, γMTPA varies between 35◦ and 65◦ within the design space indicating the need

of using the MTPA control strategy. Moreover, it is visually observed that PSL conflicts with

Tavg and Trip. That is, the location of maximum Tavg in the (Wc,Wb) design space does not

correspond to the minimum PSL location. Thus, the electromagnetic constraint in Section

3.2.4 for restricting the design space does not hold when dealing with the PSL objective.
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(a) (b)

(c) (d)

Fig. 3.7 1-barrier response surfaces: (a) Tavg, (b) Trip, (c) PSL, (d) γMTPA.
Each dot corresponds to a sampled design evaluated using an FEA simulation.

Moreover, Fig. 3.8 compares all the sampled values of the Tavg, Trip and PSL objectives

using boxplots. As the number of barriers increases, all three objective values improve due

to lower harmonics in the air gap; i.e. Tavg increases, Trip decreases, and PSL decreases. Also,

their ranges get smaller for higher nb tending toward optimal designs. Since PSL’s range is

around 3 dB, this logarithmic value signifies a scaling factor of 2 for the range of PS.
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(a) (b) (c)

Fig. 3.8 Objective boxplots for datasets: (a) Tavg, (b) Trip, (c) PSL.

3.3.4 Multi-Objective Optimization

When formulating a multi-objective problem, it is important to ensure that the objectives

are not redundant. Based on the methodology described in [Freitas et al., 2013], the conflict

level between each objective pair was computed using the available FEA samples. A conflict

value of 100% means that improving one objective implies that the other deteriorates, while

0% signifies total harmony. The average conflict for (Tavg, Trip), (Tavg,PSL) and (Trip,PSL)

are computed to be 62.2%, 64.7% and 49.3% respectively.

Therefore, these conflict results indicate that all objectives are needed in the problem

formulation. Also, the optimal design region using only the (Tavg,Trip) pair in [Mohammadi

et al., 2016] will probably be affected. Upon fitting all the neural network surrogates, a

multi-objective genetic algorithm (MOGA) was used to solve (3.9) for ten independent runs

per barrier dataset [Kalyanmoy, 2001]. In brief, MOGA follows a natural selection process

by searching the design space and keeping good solutions across different populations using

different operators. For the three datasets, the number of generations was set to 400nb (i.e.

400, 800, 1200), while the population size was set to 200nb (i.e. 200, 400, 600). Each run

took 5, 15 and 45 minutes respectively for the three datasets.

min.
x

(
− Tavg(x), Trip(x), PSL(x)

)
s.t. x ∈ F∆

(3.9)
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3.3.5 Results and Discussion

After the optimization, the Pareto front solutions with the top 90% of Tavg values denoted

FHT using (3.4) were obtained per dataset. Fig. 3.9 (a)-(c) show their objective projections

for the 1-barrier SynRM. For (Tavg,Trip) in Fig. 3.9 (a), the highest, yet undesirable values

of PSL lie along the sub-Pareto front as expected from the high objective conflicts. Similar

behaviors are observed in Fig. 3.9 (b)-(c). Moreover, Fig. 3.9 (d)-(f) illustrate all the

non-dominated solutions in the (Wc,Wb) design plane. As expected, improving one objective

compromised others within the design space. For example, the solutions with smallest PSL

are located near the middle as shown in Fig. 3.9 (d) while those with the lowest Trip values

are situated along the extremes on Fig. 3.9 (e).

Also, the optimal ellipse region computed in Fig. 3.3 for (Tavg,Trip) does not completely

match with the current points. Adding PSL as an extra objective has spread the Pareto

optimal solutions in Fig. 3.9 (d)–(f). Similar outcomes were observed for the 2- and 3-barrier

datasets. Hence, the optimal design regions can be constrained by lower and upper bounds

of Wc, Wb and Wc+Wb as shown in Table 3.7. Fig. 3.10 displays these constrained regions

in the (Wc,Wb) plane, where the multiple-barrier ones are situated within the 1 barrier’s.

The percentage area occupied AOPT for each region with respect to F∆ is computed for

each dataset. The presented results indicate that the 1-barrier constraints can reduce the

sampling time prior to a multiple-barrier rotor optimization even upon adding the PSL

objective. In contrast, the sampling quality of multiple-barrier rotors can be improved by

focusing a computational budget within the 1-barrier optimal region as validated below.

Table 3.7 Optimal Per Unit Ranges of Design Variables
nb 1 2 3
Wc 0.15 0.20 0.23

0.60 0.47 0.57
Wb 0.39 0.50 0.57

0.75 0.79 0.73
Wc+Wb 0.83 0.93 0.93

1.00 1.00 1.00
AOPT 11.7% 3.6% 2.2%
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(a) (d)

(b) (e)

(c) (f)

Fig. 3.9 Pareto front solutions of 1-barrier dataset: (left): projections for
each objective pair. (Right): solution locations in the (Wc,Wb) design plane.
Scatter colors display each objective value’s variation. Note: optimal ellipse
corresponds to optimizing only (Tavg,Trip) as shown on the right-hand plots.
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Fig. 3.10 Optimal design regions or constraints for different nb.

Two methodologies are compared to design a 3-barrier SynRM rotor: unconstrained

and constrained. The unconstrained approach sampled a 3-barrier design space using 1950

points. Meanwhile, the constrained method explored the 1-barrier space using 90 designs

before sampling a constrained 3-barrier space using the 1-barrier’s optimal region with 1860

points [Mohammadi et al., 2017a]. Then, both approaches followed the procedure shown

above to compute their Pareto solutions. Their objective histograms are displayed in Fig.

3.11. Despite the fixed computational budget (1950=90+1860), the constrained approach

produced more solutions with high Tavg while keeping low Trip and PSL values. Hence, the

constraints shown in Fig. 3.10 can help improve the optimization quality while designing

multiple-barrier SynRM rotors. Also, a selected 3-barrier rotor cross-section is displayed

in Fig. 3.11 relative to its objective values. This rotor design can then be refined for

manufacturability and typical operation.
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Fig. 3.11 Comparison of objective histograms. Selected 3-barrier rotor:
x∗ = [4.4,3.8,2.9,9.0,4.2,3.1] mm, (T ∗avg,T

∗
rip,P

∗
SL) = (886 Nm, 4.2%, 79.9 dB).

3.4 Summary

The proposed barrier mapping methodology helped restrict the design space of multiple-

barrier rotors through different SynRM models. A single-barrier space was used to find a

restricted region of the multiple-barrier space which provides geometrical constraints to a

multi-objective optimization. Less computational effort is required to handle the curse of

dimensionality when the number of geometric parameters increases. It was demonstrated

here that the proposed methodology reduced the number of required FEA samples by more

than 56% for the electromagnetic example. Moreover, multiple-barrier rotors were shown to

improve the torque performance (i.e. average torque increases and torque ripple decreases)

of SynRMs based on the presented statistical analysis. Also, it was observed that adding

the sound pressure level did not yield the same non-dominated solutions for a 33-slot 8-pole

SynRM rotor as shown in Fig. 3.10. This occurred due to the tradeoff relationships that exist

between the electromagnetic and acoustic objectives. Optimal ranges of design variables were

found for high average torque solutions. The results indicate that the numerical knowledge

gained from a 1-barrier’s design space can constrain the design region of a multiple-barrier

rotor to reduce the problem’s computational burden.
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Chapter 4

Multiphysics Knowledge Extraction

and Design Selection

The MPDP from Chapter 2 continues here to provide multiphysics guidelines and selection

criteria for the design of synchronous reluctance machines. From a sampled design space of

various rotor geometries, the self- and mutual-correlations of different physical performances

defined in (2.17) are internally evaluated within Stage 4 as will be explained in Section 4.1.

Statistical analysis is conducted to extract knowledge for relating the design and objective

spaces to each other. The barrier mapping technique introduced in Chapter 3 is also used

to cluster optimal solutions for different numbers of barriers.

Next in Stage 5 of Section 4.2, it is demonstrated that not all the objectives must be

incorporated into the design process since some of them are non-conflicting. Due to the

inter-dependency of the computed objectives, only some are used to search the design space

and select optimal solutions for different user requirements and tradeoffs. With the help of

a software package, a motor designer can evaluate which design variables should be changed

and by how much in order to fulfill the design specifications. Lastly in Stage 6 of Section 4.3,

multiple designs are internally selected based on the user requirements specified previously.

Useful guidelines for selecting the appropriate motor speed and voltage ratings are also pro-

posed while considering structurally-reliable designs. Among the final solutions, an optimal

SynRM design is assisted with permanent magnets in Section 4.4 to achieve variable-speed

performance beyond base speed. Its demagnetization distribution and efficiency map are

computed to validate its performance improvement.
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4.1 Stage 4: Multiphysics Knowledge Extraction (internal)

4.1.1 Knowledge Extraction

The 24-slot 3-barrier dataset is used to show the correlation plots for important electromag-

netic, acoustic and structural performances in Figs. 4.1 and 4.2. To visualize the design

tradeoffs through examples, a generalized selection function, gS, defined in (4.1) is used to

choose different designs based on a least sum-square-error. This single-objective function

takes in a vector of M performances or objectives in per-unit, f(·) = [f1, f2, ..., fM ], and the

objective weights, k, that specify the relative importance of each objective. For a uniformly

distributed k, the returned solution is the closest point in the objective space to the utopia

point, i.e. best solution of each individual objective.

gS
(
k,f(x)

)
= min

x∈F∆

M∑
i=1

ki

(
fi(x)−min

(
fi(x)

))2

M∑
i=1

ki = 1

(4.1)

Based on this selection criteria, five multiphysics optimization problems (4.2) were solved

to arrive at five different designs. These selected geometries, i.e. D1, D2, D3, D4 and D5,

are highlighted to provide design guidelines with respect to each other. Designs D1-D3 only

considered electromagnetic performances, D4 included both electromagnetic and acoustic,

and D5 was selected based on electromagnetic, acoustic and structural. A similar correlation

plot of design metrics defined in Section 2.2.1 is displayed in Fig. 4.3. The flux density

distributions of the selected designs are shown below the correlation plots for convenience.

A summary of the performances, design metrics and variables are listed in Table 4.1.

D1 : E → gS
(
[−Tavg, Trip]

)
D2 : E → gS

(
[Trip,−pf ])

D3 : E → gS
(
[−ξ, Ld]

)
D4 : E + A → gS

(
[−NBase

m , PSL]
)

D5 : E + A + St → gS
(
[−Tavg, Trip,−pf, PFe, Vrms,−ξ, Ld,−NBase

m , PSL,−kS, kC ]
)

(4.2)
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Table 4.1 Selected Design Performances and Variables (24-slot 3-barrier)

Symbol Unit D1 (l) D2 (6) D3 (F) D4 (�) D5 (:)

Tavg Nm 0.90 0.77 0.92 0.56 0.79

Trip % 8.88 29.58 43.18 61.81 20.83

pf 0.48 0.59 0.55 0.47 0.41

PFe W 3.96 2.24 3.17 2.69 4.22

Vrms V 27.67 19.24 24.27 18.76 28.78

ξ 2.68 3.29 3.73 2.52 2.19

Ld mH 1.82 1.21 1.14 1.27 2.26

PSL dB 57.80 56.28 57.04 55.56 56.64

NBase
m RPM 1925 2415 2270 2922 1841

kS 6.97 7.97 4.69 6.21 6.18

kC 1.90 2.05 1.18 1.97 1.72

kF 0.99 0.99 0.97 0.98 0.99

Wc pu 0.58 0.35 0.26 0.45 0.69

Wb pu 0.29 0.64 0.67 0.55 0.15

Wc +Wb pu 0.88 0.98 0.93 0.99 0.84

a pu 0.34 0.64 0.72 0.55 0.18

Wc3 mm 3.06 1.10 3.09 0.78 2.92

Wb3 mm 1.49 3.98 0.96 1.91 0.87

Wc2 mm 2.57 2.11 0.88 2.59 1.99

Wb2 mm 2.58 2.44 1.31 2.16 3.92

Wc1 mm 1.26 1.04 4.29 3.04 0.84

Wb1 mm 1.67 3.07 2.29 1.31 0.95

Wf mm 15.11 12.53 16.06 12.54 14.24

Rri mm 7.61 6.52 7.43 8.46 8.75
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Fig. 4.1 (Top) Correlation plot of 24-slot, 3-barrier electromagnetic performances. (Bottom)
Flux density distributions of selected designs: l for [−Tavg,Trip], 6 for [Trip,−pf ], F for [−ξ,Ld],
� for [PSL,−NBase

m ], : for all objectives.
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Fig. 4.2 (Top) Correlation plot of 24-slot, 3-barrier acoustic and structural performances. (Bot-
tom) Flux density distributions of selected designs: l for [−Tavg,Trip], 6 for [Trip,−pf ], F for
[−ξ,Ld], � for [PSL,−NBase

m ], : for all objectives.



4
M

u
ltip

h
y
sics

K
n
ow

led
ge

E
x
traction

an
d

D
esign

S
election

103
of

135

Fig. 4.3 (Top) Correlation plot of 24-slot, 3-barrier design metrics in per-unit. (Bottom) Flux
density distributions of selected designs: l for [−Tavg,Trip], 6 for [Trip,−pf ], F for [−ξ,Ld], � for
[PSL,−NBase

m ], : for all objectives.
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According to Figs. 4.1, 4.2 and 4.3 and Table 4.1, design knowledge and guidelines can

be extracted as discussed below:

• Higher power factor levels, pf , can be achieved regardless of the torque ripple, Trip.

This is supported by their near-zero correlation coefficient.

• The average torque, Tavg, possesses a long left-tailed distribution which means that its

outliers consist of sub-optimal designs in terms of itself. However, the iron power loss

distribution, PFe, is closer to a Gaussian one indicating that these outliers may not

necessarily correspond to sub-optimal designs.

• Unlike other performances, the torque ripple, Trip, does not reveal any recognizable

trend in variation as shown in the second column of Fig. 4.1. This is also observed

in the correlation coefficients of itself with respect to other performances where the

second row values of Fig. 4.1 are smaller than the rest.

• The largest correlation occurs between the saliency ratio, ξ, and power factor, pf , as

supported in [Matsuo and Lipo, 1994]. Maximizing the average torque, Tavg, leads to

an average level of iron power loss, PFe.

• Optimizing the saliency ratio, ξ, is in accordance with optimizing the power factor,

pf , as well as the d-axis inductance, Ld. They could be considered as non-conflicting

performances to quantitively reduce the number of optimization objectives.

• Design 1 with higher Tavg and lower Trip requires a larger supply voltage to fulfill the

rated current density. This reduces the base speed, NBase
m .

• Either a small or large value of Ld can cause a decrease in the average torque, Tavg.

• As per Table 4.1, selecting based on [Trip,−pf ] or [PSL,−NBase
m ], i.e. Designs 2 and 4,

requires a smaller Wf while this does not hold true for other designs.

• Thicker flux barriers, i.e. Designs 2-4, as in Fig. 4.1 and Table 4.1 are needed to

achieve an improved power factor and losses, i.e. [−pf ,PFe]. This means that the rotor

flux is more concentrated in the thinner flux carriers. However, the flux carrier width,

Wck , should be generally higher for [−Tavg,Trip], i.e. Design 1.
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• Interestingly, Design 5 with an optimal weighted value of all the objectives reveals

the largest kF . This means the contribution of the magnetic flux density, Bn, to the

total radial force on the tangential ribs is small (or the centrifugal force dominates).

Therefore, a weakly coupled magnetic and structural analysis returns a satisfactory

optimal design. Large kF values are also observed for designs with low NBase
m .

• Except for Design 3 with improved [Trip,−pf ], the analytical stress analysis in (2.10)

overestimates the FEA results by about 2 times for all selected designs. Hence, the

corresponding stress should be corrected using kC which is in the range [1.2, 3.6].

• Design 4 with the improved [PSL,−NBase
m ] is the quietest motor with the lowest sound

pressure level, PSL. All other selected designs are at least 1 dB louder which is more

than 1 standard deviation away. On the other hand, its base mechanical speed, NBase
m ,

is the highest among all selected designs and samples.

• The high correlation between kC and kS represents the ratio of the analytical maximum

speed (through static stress analysis) and the base speed.

• The safety factor, kS, of all selected designs is larger than 4.6 which indicates that the

widths of tangential ribs, Wtk , can be safely reduced to improve the electromagnetic

performance. Otherwise, its value permits high-speed operation through PM-assist.

• Although the base speed, NBase
m , is not included in Design 3 with optimal [-ξ,Ld], it has

one of the largest NBase
m among all five designs. This occurs due to a reduced Ld value

which impacts (2.7) and (2.8). If a high base speed is required, Ld must be minimized.

• The range of the total barrier ratio, a, for the selected designs supports those suggested

in [Matsuo and Lipo, 1994]. Also, the sum of Wc and Wb are higher than 0.8 which

can serve as a useful design constraint for optimal solutions.

• The location of Design 1 with optimal [−Tavg,Trip] in the (Wc,Wb) design plane, i.e.

row 2 and column 1 of Fig. 4.3, is almost in the middle and is surrounded by other

designs. This suggests that Tavg could behave in a unimodal manner with respect to

(Wc,Wb) as shown in Fig. 3.7. Once other objectives are considered, the design changes

due to tradeoffs.
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In summary, the five selected solutions are located in distinct regions of the scatter plots

shown in Figs. 4.1, 4.2 and 4.3, revealing that completely different design variables are

required to satisfy various goals. For example, if the user’s target is to only improve the

electromagnetic performance of an electric machine, the selected design would be different

from the case when another physical objective, such as sound pressure level, is added. Also,

a requirement for extracting the design guidelines listed above was to statistically analyze a

given dataset (procedure described in Section 2.2). With the help of a data-driven approach

such as the MPDP, this dataset (containing thousands of sample points) can be simulated

and analyzed with flexibility even when the motor topology changes (e.g. SynRM, PM-

SynRM, IPM). From the perspective of the MPDP, it does not matter what the individual

performances mean as long as the designer’s prioritized targets in a specific application are

addressed. Providing such knowledge can help the user make a more informed choice for

a motor design. If different physical disciplines are incorporated into this procedure, other

optimal solutions can be extracted, possibly different from those in Fig. 4.1.

4.1.2 Barrier Mapping

Until now, only one of the barrier datasets, i.e. 24-slot 3-barrier, was analyzed to extract

design knowledge and guidelines. It may also be required to show the effect of varying the

number of barriers, nb, on the multiphysics performances based on the acquired samples.

One way to demonstrate this relationship is through a histogram for each objective as shown

in Fig. 4.5. For each histogram plot, the corresponding distribution of the performance is

visualized for the 1, 2, 3 and 4 barrier datasets. The results are also compared between the

24 and 30-slot cases as shown in Fig. 4.5 (a)-(b). While there are 10 performances displayed

in total, the user can be prompted to view only the histograms of interest. For example,

only the electromagnetic and structural distributions could be displayed instead of all. Note

that the thermal performances were not included here since they were not obtained for the

30-slot case as mentioned above and cannot be compared for the two stator cases.
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(a) (b)

Continued on next page.
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(a) (b)

Fig. 4.5 Performance histograms for different nb: (a) 24-slot, (b) 30-slot.
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Hence, the following points are observed for every objective shown in Fig. 4.5:

• Average torque: as nb increases from 1 to 4, the Tavg distributions converge to high

values for both 24 and 30-slot cases, while their variances decrease. The 1-barrier

dataset is more spread out indicating that there are many sub-optimal solutions.

• Torque ripple: as nb increases from 1 to 4, the Trip distributions decrease to lower

values for both models. However, their variances do not decrease as much when com-

pared to the Tavg distributions. The 1-barrier dataset still includes many sub-optimal

solutions which are practically undesirable. The 30-slot values are generally lower due

to the stator’s fractional slot-pole combination (i.e. 30/4 = 7.5, while 24/4 = 6.0).

Nevertheless, lower Trip of around 10% can be achieved for more barriers.

• Power factor, efficiency and saliency ratio: behave similar to the Tavg distributions.

• RMS voltage: the distributions converge to a median value for both cases as the number

of barriers increases. Also, the average Vrms values are lower for the 30-slot case due

to lower average Ld values.

• d-axis inductance: behaves similar to the Tavg distributions (minimization direction).

• Sound pressure level: the 1-barrier dataset does not seem to follow a known distribution

for the number of samples used with peaks situated in different locations. This could

be due to the higher airgap harmonics affecting Bn and PSL. However, the Vrms

distributions tend toward lower values for higher nb with a relatively wide variance

indicating that the rotor structure influences the airgap harmonics.

• Base speed: behaves similar to the Vrms distributions (maximization direction).

• Safety factor: as nb increases from 1 to 4, the positively-skewed kS distributions con-

verge to lower values for both cases, while their variances decrease as well. The 1-barrier

dataset includes many optimal solutions with values beyond 12 because the maximum

von Mises stress at the tangential rib is lower for the single barrier’s larger area. Higher

nb designs subject their tangential ribs to more stress.

Appendix D includes detailed histogram plots of the minimum, average and maximum

component temperatures at steady-state for all four barrier datasets of the 24-slot SynRM.
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While the component temperatures are within safe limits, comparing Figs. D.1 to D.4

indicates that increasing nb also increases the component temperature by about 1◦C on

average. In addition, the ranges of all component temperatures (i.e. minimum to maximum)

are almost similar to one another with the exception of the housing. Since the motor is

naturally cooled, the surrounding environment permits the external housing structure to

dissipate its heat, thereby enabling a variable thermal gradient on its outer surface. This

can also be seen in the temperature distribution in Fig. 2.7 (b) where the maximum housing

temperatures are concentrated in the middle due to the underlying heated components.

Next, it is desired to find how the different barrier datasets of SynRMs relate to each other

for every multiphysics performance in a common design space. Using the procedure described

in Chapter 3, the barrier mapping technique is performed to visualize the optimal solutions

for each objective in the 1-barrier design plane. When different datasets are collected, the

linear or nonlinear constraints defining optimal design regions are found so that the MPDP

can decrease the simulation time for future designs. Figs. 4.6 and 4.7 show the barrier

mapping for the 24-slot dataset of the top 5% and 10% percentile solutions for each objective

in (Wc,Wb) using (2.2). Appendix D includes similar plots for the 30-slot case.

Previously, Sections 3.2 and 3.3 demonstrated that the computational effort to sample

higher nb rotor designs reduces by using the 1-barrier’s optimal region. It is observed from

Figs. 4.6 and 4.7 that design clustering occurs for Tavg, pf , η, ξ, Ld, N
Base
m , TW and TR.

Varying the top percentile cutoff does not affect the clustered objectives, but instead changes

the coverage area of the optimal solutions in the 1-barrier design plane. This means that

these objectives are good candidates to constrain higher nb design spaces for increasing the

sampling quality in Stage 2. The choice is left to the user to select an appropriate objective

for the barrier mapping technique. For example, Tavg can be chosen if it is listed as a high

priority objective in Stage 1.

Also, the higher nb solutions, e.g. 4-barrier, tend to be subsets of the lower nb designs, e.g.

1-barrier, in the (Wc,Wb) plane, thereby ensuring a minimal loss of information by setting

the design constraints. Other objectives such as Trip or kS do not reveal any substantial

relationship between the barrier datasets. It is interesting to note that as nb increases, the

location of optimal solutions tends to converge close to the limit line, i.e. Wc +Wb = 1, and

cluster near Wc ≈ Wb. This means that the total barrier ratio, a, is almost close to 0.5 for

optimal designs as mentioned in [Matsuo and Lipo, 1994; Bianchi, 2013].
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Fig. 4.6 Barrier mapping for 24-slot multiphysics performances in (Wc,Wb)
plane for top 5% percentile solutions. Tavg average torque, Trip torque ripple,
pf power factor, η efficiency, Vrms RMS voltage, ξ saliency ratio, Ld d-axis
inductance, NBase

m base speed, kS safety factor, PSL sound pressure level, TW
average winding temperature, TR average rotor temperature.
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Fig. 4.7 Barrier mapping for 24-slot multiphysics performances in (Wc,Wb)
plane for top 10% percentile solutions. Tavg average torque, Trip torque ripple,
pf power factor, η efficiency, Vrms RMS voltage, ξ saliency ratio, Ld d-axis
inductance, NBase

m base speed, kS safety factor, PSL sound pressure level, TW
average winding temperature, TR average rotor temperature.
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4.1.3 Global Knowledge Analysis

Before proceeding to the next stage, advanced users can ask the MPDP to perform a global

knowledge analysis of the simulated dataset as explained below.

Referring to the histograms of the multiphysics performances in Fig. 4.5, not all of them

are symmetric or appear to be normally distributed. For example, the average torque’s

distribution is asymmetric about its peak and has a left skew. This means that more than

half of its samples are concentrated on the left tail. Since the other performances can be

similarly analyzed, the mean, µ, the median, µ̃, and the standard deviation, σ, are computed

for the 24-slot case across all barrier datasets and tabulated in Table 4.2. Similar trends are

observed in Table 4.3 for the 30-slot case. Both tables indicate that σ decreases when the

number of barriers, nb, increases for all performances. For larger nb values, the performances

converge to a point with less degree of variation due to the geometric constraint in (2.4) and

the increased sample size. With the exception of kS, the mean values of all performances

either improve (e.g. η) or stay relatively the same (e.g. NBase
m ) as nb increases. When

more barriers are packed into the rotor, the smaller areas of the tangential ribs increases the

critical stress values, thereby reducing kS and the maximum mechanical speed.

In addition to the normal statistics, the degree of asymmetry for a distribution (i.e. how

much it leans to one side of its mean) can be calculated to check whether the distribution

favors optimal solutions or not. For example, most average torque values are concentrated

toward the high end (i.e. left skew) which directly benefits maximizing this performance.

The skewness, defined as S, provides such as a measure and is calculated using (4.3). It relies

on the third standarized moment for a given performance labeled as X, where E[·] is the

expected value. Typically, the skewness values of S range from around -4 to +4, similar to

the domain of the standard normal curve. When the skewness is negative, the distribution

is known to have a left tail (e.g. average torque Tavg). On the other hand, a positive value

signifies a right tailed distribution (e.g. safety factor kS). The strength of skewness S can

be interpreted from its values; the distribution is highly skewed to one side if |S| > 1.5

(e.g. efficiency η), moderately skewed for 0.5 < |S| < 1.5 (e.g. RMS voltage Vrms), and

approximately symmetric about its mean when |S| < 0.5 (e.g. saliency ratio ξ).

S = E
[(X − µ

σ

)3]
(4.3)
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Table 4.2 Performance Statistics for the 24-slot Datasets: µ± σ (µ̃)

Performance 1-barrier 2-barrier 3-barrier 4-barrier

Tavg Nm 0.73±0.12 (0.75) 0.86±0.07 (0.88) 0.91±0.05 (0.92) 0.93±0.04 (0.94)

Trip % 50.7±14.4 (50.6) 38.9±10.5 (37.7) 32.8±9.7 (31.7) 28.2±8.2 (27.2)

pf 0.42±0.08 (0.45) 0.48±0.05 (0.49) 0.50±0.03 (0.51) 0.51±0.02 (0.51)

η % 78.9±4.1 (79.9) 81.9±1.5 (82.3) 82.8±0.8 (83.0) 83.1±0.6 (83.3)

Vrms V 26.5±2.8 (26.8) 26.4±1.6 (26.4) 26.5±1.0 (26.6) 26.7±0.8 (26.9)

ξ 2.58±0.65 (2.57) 2.87±0.46 (2.91) 2.99±0.29 (3.03) 3.04±0.21 (3.07)

Ld mH 1.87±0.68 (1.75) 1.66±0.37 (1.57) 1.58±0.21 (1.55) 1.57±0.14 (1.55)

NBase
m RPM 2124±302 (2084) 2064±152 (2052) 2034±92 (2021) 2015±75 (1997)

PSL dB 58.3±1.4 (58.5) 57.8±0.9 (57.6) 57.7±0.7 (57.6) 57.5±0.6 (57.4)

kS 11.3±4.1 (10.1) 8.1±1.3 (8.0) 7.5±0.9 (7.46) 7.3±0.7 (7.2)

TW
◦C 75.7±0.6 (75.9) 76.0±0.4 (76.2) 76.2±0.3 (76.4) 76.3±0.3 (76.5)

kS
◦C 75.1±0.6 (75.3) 75.4±0.4 (75.6) 75.6±0.3 (75.7) 75.7±0.3 (75.9)

Table 4.3 Performance Statistics for the 30-slot Datasets: µ± σ (µ̃)

Performance 1-barrier 2-barrier 3-barrier 4-barrier

Tavg Nm 0.65±0.11 (0.67) 0.77±0.06 (0.78) 0.81±0.04 (0.82) 0.83±0.03 (0.84)

Trip % 37.2±11.6 (37.0) 24.8±7.1 (24.4) 19.4±6.1 (18.7) 15.9±5.3 (15.2)

pf 0.43±0.08 (0.45) 0.49±0.05 (0.50) 0.51±0.03 (0.52) 0.52±0.02 (0.52)

η % 78.8±4.2 (79.5) 81.6±1.5 (82.0) 82.5±0.9 (82.8) 82.9±0.6 (83.0)

Vrms V 23.5±2.5 (23.7) 23.3±1.5 (23.3) 23.3±1.0 (23.4) 23.5±0.8 (23.6)

ξ 2.71±0.78 (2.64) 2.98±0.56 (3.01) 3.07±0.33 (3.11) 3.12±0.24 (3.15)

Ld mH 1.61±0.64 (1.50) 1.42±0.36 (1.35) 1.36±0.20 (1.33) 1.35±0.14 (1.33)

NBase
m RPM 2414±364 (2359) 2346±181 (2338) 2314±111 (2299) 2290±86 (2272)

PSL dB 56.7±1.0 (56.5) 56.1±0.8 (56.1) 55.9±0.6 (55.9) 55.7±0.5 (55.7)

kS 10.0±3.7 (8.9) 7.1±1.2 (7.0) 6.6±0.8 (6.6) 6.4±0.6 (6.4)



4 Multiphysics Knowledge Extraction and Design Selection 115 of 135

The skewness values calculated using (4.3) across all datasets are presented in Tables 4.4

and 4.5 for the 24- and 30-slot cases respectively. Generally, the skewness sign or direction

is maintained for a given performance when the number of barriers is varied. For example,

the average torque Tavg distributions are left skewed for the 1, 2, 3 and 4-barrier datasets in

both cases. However, only the 1-barrier dataset for ξ and PSL seem to be outliers as they

have opposite signs as shown in bold. This may be attributed to the low number of points

used for the 1-barrier dataset (i.e. 314 samples).

In addition, the relative strength of S, labeled accordingly as “+” and “-” for positive

and negative skewness, is also shown for each performance. It is observed that the following

performances are all left-skewed: Tavg, pf , η, Vrms, ξ, TW and TR. This inherent skew

benefits their maximization as previously described in (2.17), except for Vrms, TW and TR

which must be minimized. On the other hand, the distributions of Trip, Ld, N
Base
m , PSL and

kS are all right-skewed where most of their values tend to lower ends. Apart from NBase
m and

kS, all these right-skewed performances benefit from their respective asymmetry which then

favors their minimization. Moreover, the positive/negative skewness benefit, which considers

the sign of S and the minimization or maximization direction for a given performance, is

displayed as Y/N respectively. Each physics, whether electromagnetic, structural, acoustic or

thermal, has at least one performance with a negative skew benefit. This result indicates that

these performances or objectives should be prioritized during an optimization or selection

process since their distributions work against the desired outcome.

While this information can be shared with an advanced user, the MPDP can use this

global knowledge to notify a non-experienced user on the importance of including or priori-

tizing certain multiphysics performances in a given application. For example, although the

left-skewed distribution of efficiency, η, statiscally benefits finding an optimal solution, this

result does not hold for the distributions of NBase
m and kS. Both these performances tend to

produce lower values which works against their desired maximization. The strength of S is

also useful to emphasize the effect of a distribution’s skew on selecting optimal designs. Afer

performing the global analysis, the user can decide on filtering undesirable solution subsets

(e.g. outliers). It is also possible to present the relationship between objectives and design

variables. For example, the user could request to decrease the widths of the tangential ribs in

order to improve the electromagnetic performance instead of further increasing NMax
m from

kS as in (2.9), since the rated speed may be sufficient for a given application.
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Table 4.4 Skewness S of Multiphysics Performances for the 24-slot Datasets

Number of barriers Strength Skew

Performance 1 2 3 4 Low Med. High Benefit?

Tavg Nm -1.55 -1.52 -1.79 -1.57 - Y

Trip % +2.06 +0.33 +0.56 +0.50 + Y

pf -1.11 -1.14 -1.27 -1.19 - Y

η % -3.38 -2.02 -2.20 -1.80 - Y

Vrms V -0.75 -0.78 -1.09 -1.66 - N

ξ -0.01 -0.36 -0.60 -0.61 - Y

Ld mH +0.85 +0.95 +1.05 +0.90 + Y

NBase
m RPM +0.81 +1.18 +1.53 +1.88 + N

PSL dB -0.51 +0.03 +0.37 +0.35 + Y

kS +1.19 +0.83 +0.49 +0.32 + N

TW
◦C -1.24 -2.24 -2.24 -2.36 - N

kS
◦C -1.28 -2.25 -2.21 -2.31 - N

Table 4.5 Skewness S of Multiphysics Performances for the 30-slot Datasets

Number of barriers Strength Skew

Performance 1 2 3 4 Low Med. High Benefit?

Tavg Nm -1.54 -1.47 -1.71 -1.51 - Y

Trip % +1.57 +0.57 +0.34 +0.88 + Y

pf -1.06 -0.95 -1.17 -1.08 - Y

η % -3.36 -1.96 -2.11 -1.72 - Y

Vrms V -0.95 -0.72 -0.86 -1.34 - N

ξ +0.12 -0.05 -0.50 -0.55 - Y

Ld mH +0.82 +0.87 +1.02 +0.86 + Y

NBase
m RPM +0.81 +1.04 +1.28 +1.58 + N

PSL dB +0.00 +0.32 +0.44 +0.27 + Y

kS +1.22 +0.87 +0.51 +0.31 + N
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4.2 Stage 5: Post-Computation Interaction (interact)

After extracting design knowledge in the previous stage, Stage 5 initiates a post-computational

interaction with the user by providing a general summary and a list of recommendations.

For instance, the correlation plots of the performances and design variables in Figs. 4.1,

4.2 and 4.3 could be presented for a given dataset (e.g. 24-slot 3-barrier). These correlation

plots can be coupled with a visual cursor to navigate through different points. If a user

selects one point on a scatter plot, e.g. that of (Tavg,Trip) in Fig. 4.1, the selected design has

corresponding points on other scatter plots, e.g. that of (kS,PSL) in Fig. 4.2, or (Wc,Wb)

in Fig. 4.3. Choosing another point shifts the previously selected one to a new location on

the scatter plots, thereby demonstrating tradeoff relationships among various performances

and metrics. Providing such an option can help the user to arrive at a more informed choice

with statistical justification. An example of this cursor tool has been implemented in Section

4.1.1 using the five selected designs. Moreover, the clustering of optimal solutions shown in

Figs. 4.6 and 4.7 indicates that the 4-barrier dataset generally improves all performances and

can be recommended to the user. A list of important objectives with high priorities can be

suggested for applying the barrier mapping technique (e.g. Tavg is suitable, while Trip is not).

In brief, this technique can reduce the computational time required for running multiphysics

simulations of multiple-barrier SynRMs (explained in Chapter 3). A summary of the design

knowledge and guidelines listed above can also be presented. While a correlation plot is a

useful statistical tool for the design process, it may be difficult to use since it requires a

user’s interaction to understand the relationships of different performances. Another way to

systematically illustrate how these multiphysics objectives are related is to use an objective

aggregation tree through rank-based conflict [Silva, 2018] which is explained below.

From a given dataset with m multiphysics objectives and n samples, a vector of m-

objective values, fi(x
(i)), for each sample i is constructed to form the set, F = {f1, ...,fn}.

Then, the conflict for each performance pair (fi,a,fi,b) is estimated by Cab, a conflict measure

proposed in [Freitas et al., 2013] and given by (4.4). Here, Ri,a and Ri,b are the associated

ranks of sample x(i) for a performance pair, e.g. (Tavg,Trip). As an example, Ra = 1 for the

sample with highest Tavg, Rb = 1 for the sample with lowest Trip, Ra = 2 for the sample

with the second highest Tavg, and so on. By this Cab measure, a 100% conflict means that

one performance improves at the expense of another, while 0% signifies total harmony; i.e.,
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both objectives improve simultaneously. Any midway value implies a non-uniform tradeoff

between the two performances over the design space.

Cab =

∑n
i=1 |Ri,a −Ri,b|∑n
i=1 |2i− n− 1|

(4.4)

To construct an objective aggregation tree, the conflict between each pair of objectives

is computed using (4.4). Pairs with the lowest conflicts are combined as a single objective.

Then, the conflict between the new aggregated performance and another objectve is com-

puted. This procedure repeats until the conflicts among all pairs of objectives and their

aggregations are found. Finally, the aggregation tree is constructed by placing the lowest

conflicting pairs at the bottom, while the total combined objective with the highest conflict is

located at the top. If the conflict between a performance pair is low (e.g. < 10%), then one of

them can be removed without affecting a many-objective optimization problem [Silva et al.,

2018]. Choosing which objectives to aggregate is based on how much loss of information is

acceptable for the design process and is quantified through the conflict percentages.

Fig. 4.8 displays the aggregation tree for the 24-slot 4-barrier dataset. Similar trees are

observed for the other datasets, such as Fig. 4.9 for the 30-slot 4-barrier case. Objectives

located near the bottom are more closely tied to one another than the ones shown above.

For example, the 4% conflict between TW and TR indicates that considering both objectives

is redundant. A similar argument holds for the following objective pairs: (Vrms,N
Base
m ),

(pf ,ξ) and (Tavg,η). However, kS, PSL and Trip are situated higher up in the aggregation

tree meaning that they are more conflicting with the other performances. For example, the

total aggregated objective located at the top has a 90% conflict which cannot be ignored.

To address this issue, non-redudant objectives can be selected to reduce the complexity of

finding an optimal solution. It can be seen that Tavg, Trip, pf , Vrms, kS, PSL and TW are all

independent objectives that cannot be ignored without a loss of information. Therefore, all

these objectives highlighted in Fig. 4.8 with boxes are considered for the MPDP while focus-

ing on the 24-slot 4-barrier case. Another dataset could be used for building the aggregation

tree, such as that for the 30-slot 4-barrier in Fig. 4.9, as long as the initial specfications set

in Stage 1 are met. Now, the user is ready to select optimal designs based on the presented

solutions in the next stage.
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Fig. 4.8 Aggregation tree using rank-based conflict (24-slot, 4-barrier).
Selected objectives are boxed corresponding to analysis colors.

Fig. 4.9 Aggregation tree using rank-based conflict (30-slot, 4-barrier).
Selected objectives are boxed corresponding to analysis colors.
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4.3 Stage 6: Design Search and Selection (internal)

In Stage 6, the MPDP considers the evaluated performances, the user’s constraints and

priorities, and the acquired knowledge from the previous stage to begin searching the design

space. The aim here is to suggest the best possible designs to the user based on the inputs

received in the previous stages. To visualize and select optimal designs, the generalized

selection function, gS(·), defined in (4.1) is used to find five different SynRM designs for

the 24-slot 4-barrier dataset. A similar selection procedure could be performed for the 30-

slot 4-barrier case but is not performed here. The 4-barrier dataset was chosen, since it

was previously shown in Sections 3.2, 3.3 and 4.1.2 that increasing the number of barriers

generally improves the SynRM’s performance, while lower nb values lead to sub-optimality.

Among the selected designs specified in (4.5), D1 considers two electromagnetic objec-

tives. D2-D4 individually combine electromagnetic with either structural, acoustic or thermal

performances. For D1-D4, k was set to a uniform objective weighting, while D5 considers all

multiphysics performances from the aggregation tree in Fig. 4.8. However, a heavier Trip

weight is set (to avoid high torque ripple designs) with the rest distributed evenly among

Tavg, pf , Vrms, PSL, kS and TW . Hence, the chosen objectives weights are shown in (4.6).

The flux density distributions of the five selected designs are shown in Fig. 4.10 (a)-(e). A

summary of the performances, design metrics and variables are listed in Table 4.6.

D1 : E → gS
(
[−Tavg, Trip]

)
D2 : E + St → gS

(
[−Tavg, Trip,−kS]

)
D3 : E + A → gS

(
[−Tavg, Trip, PSL]

)
D4 : E + T → gS

(
[−Tavg, Trip, TW ]

)
D5 : All → gS

(
[−Tavg, Trip,−pf, Vrms, PSL,−kS, TW ]

)
(4.5)

D1 : E → k = [0.5, 0.5]

D2 : E + St → k = [0.33, 0.33, 0.33]

D3 : E + A → k = [0.33, 0.33, 0.33]

D4 : E + T → k = [0.33, 0.33, 0.33]

D5 : All → k = [0.1, 0.4, 0.1, 0.1, 0.1, 0.1, 0.1]

(4.6)
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From the selected designs in Table 4.6, the multiphysics tradeoffs are clearly observed.

In short, D1 has the lowest Trip, D2 permits high speed operation (i.e. NMax
m of 15751 RPM)

due to the high kS value, D3 is the quietest motor at 56.46 dB, and D4 has the lowest

winding and rotor temperatures (i.e. 75.63◦C and 75.01◦C). It is interesting to note that

D4 has the highest NMax
m at 16630 RPM while it minimized TW . On the other hand, D5

generally performs well for all objectives with its Trip being around 11%. For all cases, Tavg is

relatively high (>0.9 Nm) due to the high saliency ratios (>3.1). If Trip needs to be further

minimized, the rotor could be skewed by one slot pitch, i.e. 15◦, to result in a Trip of 2.47%,

2.30%, 2.72%, 4.85% and 3.86% for D1-D5 respectively with less than 6% deviation in the

other performances. Finally, the user is asked whether any of the selected designs satisfy

the original targets. If not, the MPDP returns to Stage 5 as shown in Fig. 1.30 to reset the

constraints and priorities before searching for new solutions.

The correlation plot of all the 24-slot 4-barrier performances mentioned in (2.17) is dis-

played in Fig. 4.11. Also, the same plot for the design metrics is shown in Fig. 4.12. Other

correlation plots (i.e. performance and design metrics) are shown in Appendix D for the

24 and 30-slot cases and for all four barriers. Note that since the 30-slot dataset does not

include thermal results, D4 and D5 are set differently as specified in the corresponding figure

captions. From the two correlation plots, similar design knowledge to that in Section 4.1.1

can be extracted. For example, there is not enough evidence to suggest that Tavg is correlated

with Vrms, PSL, NBase
m , kS and TW . This means that it is important to treat these objectives

as independent from each other during the selection process. Another guideline would be

that pf and Vrms are negatively correlated indicating a harmonious relationship, since pf

must be maximized and Vrms minimized. Also, the design metrics in Fig. 4.12 correspond

well with the cluster of optimal solutions obtained though barrier mapping in Figs. 4.6 and

4.7. This means that the 4-barrier design can be arrived at by using fewer FEA samples

based on the optimal constraints from the 1-barrier design plane. These constraints can be

initially suggested to the user and set in Stage 1 of the MPDP.
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Table 4.6 Summary of Selected Designs (24-slot, 4-barrier)

Type Symbol Unit D1 D2 D3 D4 D5

E

Tavg Nm 0.987 0.972 0.977 0.969 0.989

Trip % 9.14 11.74 16.75 26.16 11.04

pf 0.529 0.524 0.517 0.545 0.529

η % 83.92 83.75 83.75 83.79 83.95

Vrms V 26.87 26.74 27.22 25.59 26.90

ξ 3.29 3.22 3.15 3.53 3.30

Ld mH 1.46 1.48 1.54 1.30 1.46

NBase
m RPM 1993 2004 1967 2105 1992

St
kS 7.32 7.86 7.43 7.90 7.54

NMax
m RPM 14589 15751 14615 16630 15020

A PSL dB 57.60 57.75 56.46 58.35 57.27

T
TW

◦C 76.53 76.51 76.53 75.63 76.47

TR
◦C 75.95 75.92 75.96 75.01 75.86

Metrics

Wc pu 0.49 0.48 0.50 0.34 0.44

Wb pu 0.41 0.45 0.39 0.60 0.45

Wc+Wb pu 0.90 0.93 0.89 0.94 0.89

a pu 0.45 0.49 0.44 0.64 0.50

Variables

Wc4 mm 3.18 1.66 2.10 1.55 2.89

Wb4 mm 1.50 1.57 1.76 2.08 2.27

Wc3 mm 1.66 1.11 2.60 1.42 1.33

Wb3 mm 1.06 1.75 1.27 1.83 1.46

Wc2 mm 1.01 3.70 1.69 1.26 1.47

Wb2 mm 1.91 1.97 1.55 3.52 1.61

Wc1 mm 1.69 1.32 1.22 1.57 1.33

Wb1 mm 1.74 2.10 1.31 2.82 1.76

Wf mm 8.98 4.98 9.46 3.05 6.74

Rri mm 6.51 5.07 6.76 4.20 6.13



4 Multiphysics Knowledge Extraction and Design Selection 123 of 135

(a) (b)

(c) (d)

(e)

Fig. 4.10 Flux density distributions at rated condition of selected SynRM
designs (24-slot, 4-barrier): (a) D1, (b) D2, (c) D3, (d) D4, (e) D5.
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Fig. 4.11 (Top) Correlation plot of 24-slot, 4-barrier performances. (Bottom) Selected designs:
l for [-Tavg,Trip], 6 for [-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [-Tavg,Trip,TW ], : for all.
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Fig. 4.12 (Top) Correlation plot of 24-slot, 4-barrier design metrics. (Bottom) Selected designs:
l for [-Tavg,Trip], 6 for [-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [-Tavg,Trip,TW ], : for all.
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Focusing on the correlation plots in Figs. 4.11 and 4.12 and selected design summary of

Table 4.6, the following design knowledge and guidelines can be extracted:

• For these following objective pairs, there is a strong positive correlation (above +0.7).

Depending on the selected objective, its pair objectives could be ignored when using

(4.1). For example, choosing either pf or η would be sufficient.

– average torque Tavg with pf , η and ξ

– power factor pf with η, ξ and NBase
m

– efficiency η with ξ

– RMS voltage Vrms with Ld, TW and TR

– saliency ratio ξ with NBase
m

– d-axis inductance Ld with TW and TR

– average winding temperature TW with TR

• A strong negative correlation (below -0.7) exists for these pairs. Similarly, redundant

selection objectives can be removed.

– power factor pf with Vrms and Ld

– RMS voltage Vrms with ξ and NBase
m

– saliency ratio ξ with Ld

– d-axis inductance Ld with NBase
m

– base speed NBase
m with TW and TR

• There is no pairwise correlation (coefficient near 0) between such pairs. These non-

correlated performances cannot be ignored and could be used as objectives.

– average torque Tavg with PSL, kS, TW and TR

– torque ripple Trip with pf , ξ and kS

– efficiency η with kS

– sound pressure level PSL with kS
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• The range of temperature values is 1◦C, and D4 has the lowest temperature among all.

The values indicate that the selected motors operate within safe thermal limits.

Table 4.7 compares the relative performances of the selected designs with respect to each

other using the correlation plot in Fig. 4.11. Each row corresponds to a selected design, while

the columns show the multiphysics objectives. The highlighted cells indicate the objectives

used for selection as in (4.5). In each cell, one of three markers are used: ‘+’ corresponds

to an improvement, ‘-’ is for a worsening, ‘o’ indicates an average value. For instance, D1

has improved values in Tavg and Trip (selected objectives) as well as in η. However, its

Vrms, Ld, N
Base
m , kS, PSL and TW values all are worse compared to other selected designs.

This result indicates that using only electromagnetic objectives does not yield an optimal

solution for other multiphysics objectives. A similar outcome holds as well for D2-D4, where

different selection criteria yield different solutions. On the contrary, D5 has a relatively good

performance for all objectives without any worsening. Its Tavg, Trip, η and Vrms values have

improved while other objectives are about average. Therefore, the five selected solutions

located at various design regions show that completely different design variables are required

to satisfy different design goals. This finding provides a need for a data-driven design process

to address a designer’s targets in a specific application. Providing such knowledge can help

the user make a more informed choice for a motor design. If different physical disciplines are

incorporated into this procedure, other optimal solutions can be extracted, possibly different

from that in Figs. 4.11 and 4.12.

Table 4.7 Summary of Relative Performances of Selected Designs.
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4.4 Performance Improvement through PM-Assist

After an optimal SynRM design is selected in Stage 6 of the MPDP, the user may ask for PMs

to be added into the rotor structure to result in a PM-SynRM. While this motor type relies

more on reluctance torque, its additional PM content permits it to run in flux-weakening

operation at higher speeds [Morimoto et al., 2001]. This feature becomes especially important

in traction applications to maintain a constant power. Lu et al. [2017] suggested a useful

procedure summarized in Fig. 1.22 to transform a SynRM design into a PM-assisted one.

Design D5 from the previous section is used as an example in Step 1 of Fig. 1.22 to transform

it into a PM-SynRM, named as D∗5 in the discussion below.

In Step 2 of Fig. 1.22, all the rotor barriers are filled with a fictitious PM with remnant

flux density, B′r. Next, the PM flux linkage, λm, and Ld are found using electromagnetic FE

simulations, and the characteristic current, Ich, is computed using (4.7). In order to have

a constant power speed range (CPSR) for the rated current, Ich must get close to the rated

current (i.e. 10 A) or the d-axis flux linkage, λd, must reach near 0. If not, B′r must be

adjusted accordingly to directly vary λm assuming that Ld is relatively constant. Fig. 4.13

shows how Ich, λd, Ld and λm vary for different values of B′r. Once this condition is achieved,

a specific PM such as NdFeB or a ferrite with remnant flux density, Br, is chosen in Step

3. Then, (4.8) is used to find the PM volume, Vm, based on the equivalent PM volume, V ′m.

For the case of D∗5, B′r is 0.2 T, V ′m is 54 mL, Br is 1.2 T, Vm is 9 mL and Ich is 11.4 A for

NdFeB 38/23. The flux density distribution of D∗5 is shown in Fig. 4.14, where its PMs are

concentrated along the barrier centers. A similar procedure can be used for ferrite magnets.

Fig. 4.13 Ich, λd, Ld, λm vs. equivalent PM remnant flux density.
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Ich =
λm
Ld

(4.7)

Vm
V ′m

=
B′r
Br

(4.8)

Fig. 4.14 Flux density distribution at rated condition of PM-SynRM D∗5.

Table 4.8 compares the performances of the PM-SynRM, D∗5, with its original SynRM

D5. The relative percentage improvement of performances is defined as ∆P . Both Tavg and

pf significantly improved by adding PMs which enabled a higher ξ and nonzero λm, i.e.

13mWb (torque: 61% reluctance + 39% PM). A higher pf means that the inverter size can

be reduced. In terms of the structural and thermal analyses, similar behaviors to that of D5

were noticed. The PMs are mechanically safe since they are inserted inside the barriers.

Table 4.8 Performance Comparison of PM-SynRM.
Perf. Tavg Trip pf η Vrms ξ
Value 1.627 Nm 12.72% 0.791 89.6% 27.72V 4.76
∆P 65% 1.68% 50% 7% 3% 44%
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In addition, the efficiency map of D∗5 displayed in Fig. 4.15 was calculated using the

computationally-efficient procedure described in Appendix C. Two torque-speed envelopes

are plotted on top for the continuous (4.5 A/mm2) and peak (9.0 A/mm2) conditions. Briefly

speaking, the efficiency map was found as follows: first, the nonlinear dq flux linkages were

computed for different dq currents using electromagnetic FE analysis. Various control strate-

gies were then applied to find optimal dq currents for every torque and speed value. Next,

these points were used to compute the motor losses in order to interpolate and visualize its

efficiency map shown in Fig. 4.15. To better compare the variable-speed performance of D∗5

with D5, their torque-speed and power-speed characteristics are displayed in Fig. 4.16 for

the rated condition. Note that D5 with no PMs has a drooping power beyond base speed,

whereas the PM-SynRM design, D∗5, can operate well up to 14000 RPM for the same con-

stant power. In other words, D∗5 has a high CPSR value of more than 3.5. This maximum

speed was selected based on kS in Table 4.6 which still permits a mechanical safety factor of

1.12. If the provided power is beyond the user requirements, the machine can be downsized

to lower its volume and mass.

Fig. 4.15 Efficiency map of PM-SynRM D∗5.
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Fig. 4.16 Comparison of torque-speed and power-speed characteristics of PM-
less design D5 and PM-assisted design D∗5.

For the peak current condition at high speed, it is necessary to check for irreversible

demagnetization. The electromagnetic FE solver [Mentor-Infolytica Corporation, 2018] is

used to plot the demagnetization proximity (DP) and flux density fields as shown in Fig.

4.17. The DP is defined such that negative values are safe, while positive values mean

irreversible demagnetization in those PM regions. Fig. 4.17 (a) proves that the inserted

PMs are not close to demagnetization and can be safely used.

(a) (b)

Fig. 4.17 Field distributions of PM-SynRM D∗5 at (200% 79◦) flux-weakening
condition: (a) demagnetization proximity, (b) flux density.
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From a cost perspective, the prices discussed in [Bianchi, 2013] can be used to evaluate

the material expense of producing D∗5 whose total mass is 3.49 kg. For example, rare-earth

PMs were quoted at 70 US$/kg in 2013. This corresponds to a total cost of US$ 15.45 for

the following: magnet US$ 5.00 (0.07 kg), iron US$ 2.77 (2.52 kg), copper US$ 7.68 (0.90kg).

The addition of PM in D∗5 provides many performance benefits at a low material cost.

4.5 Summary

The last 3 stages of the 6-stage MPDP in Fig. 1.30 were discussed and explained in this

chapter: (4) extracting design knowledge and guidelines, (5) performing barrier mapping for

relating different rotor topologies (i.e. 1, 2, 3, and 4 barriers), interacting with the user after

computation to show how the solutions are clustered together for different objectives (i.e.

average torque, power factor, efficiency, saliency ratio, d-axis inductance, base speed, average

winding and rotor temperatures), statistically analyzing the global results, and (6) finally

selecting optimal designs based on a user’s requirements using a weighted-sum approach.

With the help of correlation plots and the selected designs for different problems (e.g.

only electromagnetic, or electromagnetic + acoustic + structural), tradeoff relationships

among the multiphysics performances were observed. When the number of barriers was

increased, nearly all performances showed statistical improvement for both the 24- and 30-

slot case studies. It is interesting to note that not all performances tend toward the same

optimization direction (minimization or maximization); some of their distributions were

skewed in the opposite direction (e.g. safety factor), suggesting that these performances

should be prioritized. Using objective aggregation trees based on a conflict measure, the

multiphysics problem was simplified by reducing the number of objectives from 12 to 7.

Also, a single SynRM design with optimal multiphysics performances was assisted with

PMs to achieve many performance improvements such as wide speed operation, high power

factor and low demagnetization proximity at peak conditions. All of these benefits were

obtained while maintaining the strengths of a pure SynRM which includes low material cost,

robustness, and high torque-to-volume ratio.
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Chapter 5

Conclusion

This thesis has described a data-driven, multiphysics design process to statistically analyze

and generate design knowledge for synchronous AC machines, e.g. interior or surface perma-

nent magnet types. Specifically, a synchronous reluctance machine with round-shaped rotor

barriers for different slot-pole combinations has been investigated under a single operating

condition. Finite element analysis was used to simulate thousands of different motor de-

signs by varying geometrical parameters in order to acquire their multiphysics performances.

These 12 objectives include: average torque, torque ripple, power factor, iron power loss or

efficiency, RMS phase voltage, saliency ratio, d-axis inductance and base speed for the elec-

tromagnetic analysis, safety factor or maximum mechanical speed for the structural analysis,

sound pressure level for the acoustic analysis, and average winding and rotor temperatures

for the thermal analysis. Multivariate design spaces corresponding to multiple-barrier rotors

consisting of both optimal and suboptimal possibilities were created and statistically ana-

lyzed to address various design targets, including those defined in electrified transportation.

From the multiphysics analysis, it was proven that several very different final design

choices can be produced, depending on the user’s choice and application requirements. For in-

stance, considering only electromagnetic objectives compromised other performances, which

necessitates incorporating the different physics during the design process in order to arrive

at optimal multiphysics solutions. Also, the skewness of some performance distributions was

observed to be statistically opposite to the optimization direction, such as the safety factor.

By relying on a data-driven approach, the proposed design process can arrive at final designs

which can satisfy a user’s specifications and priorities.
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All these results arose from the comprehensive knowledge gained from the design process

and its different stages which can be transferred to software packages for future design and

optimization purposes. For example, it was found that the centrifugal force contributes

to at least 95% of the total force (electromagnetic and structural combined) for all design

variations. This means that the critical mechanical stress on the tangential ribs can be

optimized with a loosely coupled electromagnetic-structural analysis. In addition, general

guidelines that relate the design variables to the selected objectives have been proposed.

These can help motor designers to systematically define design constraints for optimization.

Specifically, it was observed that simultaneously increasing the power factor and reducing

the iron power loss (or maximizing the motor efficiency) was possible by using thicker flux

barriers for the analyzed case study. Another knowledge is that the voltage rating was related

to other objectives from which an appropriate DC bus voltage limit can be determined.

While the proposed multiphysics design process was only applied to a synchronous re-

luctance machine as a case study, the design process is expected to be generalizable for

other machine topologies (e.g. interior or surface permanent magnet types) and possibly

other physical devices; the design process focuses on statistically analyzing performances

and variables irrespective of a device’s behavior. It was also demonstrated that the elec-

tromagnetic simulation time was significantly reduced from months to days with the help

of a high-performance computing system. Given the tradeoff relationship of computational

time and the number of virtual machines, the latter quantity was chosen near the knee point

to avoid a high financial cost of renting virtual machines in the employed cloud platform.

Suggestions on how to choose this HPC parameter have been discussed.

Other stages of the design process included: analyzing the conflicts among objectives for

simplifying the problem’s complexity (dimensionality reduction), handling of multiphysics

design constraints, tradeoff analysis of performances or objectives, introducing and using the

barrier mapping technique for relating different design spaces in order to effectively reduce

the computational effort, and selecting optimal designs based on a user’s specifications and

priorities. Finally, an optimal machine design was further improved by adding permanent

magnet material within its rotor structure to fulfill the requirements of recent technologies

such as electric vehicles. This magnet assist was found to be suitable for variable-speed

drives with a wide range of operating speeds. Lastly, a computationally efficient algorithm

for generating detailed efficiency maps was developed and used for evaluating the final design.
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5.1 Future Work

Since the work presented in this thesis is a fundamental step toward defining a multiphysics

design process based on a data-driven approach, the extracted knowledge and guidelines

were mostly visualized in order to show how they work as a proof of concept. Future works

can extend the demonstrated ideas by automating the knowledge extraction stage within a

software package by using artificial intelligence or an advanced expert system. For example,

with the help of the computed correlation coefficients, the software can suggest to the user on

which objectives to prioritize based on the underlying application. Some examples include

high-speed applications which prioritize the structural integrity of an electric machine, while

small-sized machines with tight cooling constraints concentrate on the thermal aspects.

Despite the use of a high-performance computing system for the electromagnetic analysis

(helped reduce computational time), other physical analyses were simulated on lab work-

stations which limited the possibility of coupling the different physical phenomena. For

example, electromagnetic and thermal analyses must be coupled especially when permanent

magnets are involved. In brief, the magnet power loss is computed using an electromag-

netic simulation which in turn causes its temperature rise after a thermal analysis. This

temperature change would then affect the magnetic properties of the permanent magnets,

which requires re-running the electromagnetic simulation for the updated performances. In

this thesis, a one-way coupling was assumed (only electromagnetic, then thermal), whereas

a fully-coupled simulation could modify or add to the suggested design guidelines. This

outcome can especially occur for other motor types such as the interior permanent magnet.

Also, future studies can expand the presented case study by including the stator struc-

ture within the multi-physics design process or using alternative rotor topologies such as the

angled or fluid barrier shapes. The challenge, however, lies in defining additional geometric

parameters for different topologies that can be used for performing barrier mapping in order

to transform a multiple-barrier design to single-barrier one. Lastly, the electromagnetic anal-

ysis only included a single operating condition, i.e. Maximum Torque Per Ampere, for the

simulation process. Other conditions for balanced or faulty cases could be considered given

the means presented here to visualize and relate many objectives, such as the correlation plot

or the aggregation tree. If a distributed computing approach is maintained, different points

on the efficiency map could be used to design an optimal motor for a given drive cycle.
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Appendix A

Correlation Coefficients

Correlation coefficients are useful measures to show the correlation or statistical dependence

between two variables X and Y which could be design parameters or performances. For

example, if X and Y are positively correlated, an increased X value leads to an increase in

Y , and vice versa. The same argument holds for decreasing values. For negative correlation,

a decrease in X generally results in an increased Y value, and vice versa.

Hence, this appendix briefly defines two useful correlation coefficients, namely the Pearson

and Spearman, and describes their similarities and differences with the help of examples.

Other correlation coefficients such as the Kendall exist, but are not used in this thesis.

A.1 Pearson Correlation Coefficient

The Pearson correlation coefficient, denoted by ρPXY , of two variables X and Y provides a

measure of their linear correlation [Pearson, 1896]. Its values range from −1 to +1. A ρPXY
value of +1 indicates that X and Y have a strong positive linear correlation. On the other

hand, a coefficient value of −1 signifies a strong negative linear correlation. The value of ρPXY
can be calculated using (A.1), where cov(X, Y ) is the covariance of X and Y , and σX , σY

are the standard deviations of the two variables respectively. The covariance cov(X, Y ) is

computed using the expectation in (A.1), where µX , µY are the means of X and Y .

ρPXY =
cov(X, Y )

σXσY

cov(X, Y ) = E
[
(X − µX)(Y − µY )

] (A.1)
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A main assumption for using the Pearson coefficient is the linear relationship between X and

Y . If the two variables are not linearly correlated, then ρPXY does not offer a good correlation

measure. Instead, the Spearman coefficient can be used as explained below.

A.2 Spearman Correlation Coefficient

For two variables X and Y , the Spearman correlation coefficient, ρSXY , measures their rank

correlation which effectively shows their monotonic relationship [Spearman, 1904]. This

means that the Pearson requirement for linearity is not required for the Spearman. To

calculate ρSXY , the values of X and Y must first be individually ranked from smallest to

largest resulting in their ranks rX and rY respectively. Then, the Spearman coefficient is

calculated using (A.2) which is similar to Pearson’s formula in (A.1) with the exception of

using ranks rX and rY instead of X and Y .

ρSXY =
cov(rX , rY )

σrXσrY
(A.2)

A.3 Comparison and Examples

The following examples demonstrate the similarities and differences of the Pearson ρPXY and

Spearman ρSXY . For linear functions (whether positive or negative), both coefficients are

observed to be the same in Fig. A.1, since the ranking of variables is preserved.

(a) Y = 5X − 1 (b) Y = −4X + 3

Fig. A.1 Strong linear correlations between variables X and Y .
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However, when the relationship between X and Y is not linear yet monotonic, then the

Pearson ρPXY suffers and produces values different from +1 and −1. This effect is more

prominent when there are outliers in the studied dataset (i.e. Pearson ρPXY is more sensitive

to outliers). As shown in Fig. A.2, the Spearman ρSXY are maintained at +1 and −1, since

Y is monotonically increasing or decreasing with respect to X.

(a) Y = X5 (b) Y = tan(X)

Fig. A.2 Strong correlations between variables X and Y .

In Fig. A.3, both the Pearson ρPXY and the Spearman ρSXY are close to zero. This could

mean that the relationship X and Y is random or non-existent as in Fig. A.3 (a). Otherwise,

there could be a strong correlation as in Fig. A.3 (b) which neither coefficients can capture.

(a) Random independent sampling (b) Y = X2

Fig. A.3 Weak correlations between variables X and Y .
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Appendix B

Incorporating Control Strategies

within Design Optimization

This appendix based on [Mohammadi et al., 2018c] presents a comparison of methodologies

to incorporate control parameters into the design optimization of synchronous AC machines.

A metric is used to quantify the conflict level between the average torque and torque ripple

for an interior permanent magnet machine and a synchronous reluctance machine. Using 2-D

finite element analysis simulations, the results demonstrate that the traditional approach of

lumping the control and design variables together can lead to poor designs, especially when

the conflict is high.

B.1 Introduction

In recent years, the design of synchronous AC machines, like synchronous reluctance and

interior permanent magnet motors, has undergone significant improvement through opti-

mization research. As discussed in previous works [Pellegrino et al., 2015; Freitas et al.,

2013; Mohammadi et al., 2016], both discrete (e.g. number of slots or poles) or continuous

(e.g. the width of tooth/flux barrier) variables are considered in a machine’s initial sizing.

However, various performance indices (e.g. average torque, torque ripple) are required

during an optimization procedure and, generally evaluated using FEA. Often, each index de-

pends on control variables (e.g. for an applied control strategy) which adds more complexity

to the existing optimization formulation. For instance, the Maximum-Torque-Per-Ampere
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control strategy of a synchronous AC machine defined by (B.1) finds the advance angle, γ,

which maximizes the average torque, Tavg, for a fixed current magnitude below base speed.

max.
γ

Tavg(γ)

s.t. γl ≤ γ ≤ γu

(B.1)

A general methodology was proposed in [Mohammadi et al., 2017b] to incorporate a motor

control strategy, e.g. MTPA in (B.1), as a subproblem within an optimization framework.

Using one γ value for all rotor designs may not yield accurate results due to the variation

of dq inductances [Mohammadi et al., 2016]. Furthermore, the torque ripple, Trip, as well as

Tavg were improved when the MTPA strategy was used for a V-shaped IPM motor. Despite

this positive outcome, it was noticed that the direct approach (i.e. simpler optimization

without a control strategy but with γ added as an additional design variable) was superior

to the proposed methodology for the 3-barrier SynRM.

To explain these results, it was hypothesized that Tavg and Trip were not conflicting near

the SynRM’s initial design; i.e. minimizing Trip implies maximizing Tavg. Hence, the outcome

of SynRM shows that minimizing Trip in terms of γ would incorporate the MTPA control

strategy automatically. It also suggests that the two performances can be in harmony for

some design regions which may permit using a computationally cheaper methodology instead.

Moreover, using a direct approach as followed in [Pellegrino et al., 2015] and [Wang et al.,

2016] may not always yield optimal designs for synchronous AC machines when motor control

strategies are considered in the design optimization.

Therefore, this work extends the analysis presented in [Mohammadi et al., 2017b] by

quantitatively measuring the conflict between Tavg and Trip using the method presented in

[Freitas et al., 2013] and testing the proposed methodology for different initial designs. The

goal is to explain why and when the direct methodology works, which, in turn, would help

to save computational time. Also, results in both IPM and SynRM optimization-related

problems indicate that by using conflict analysis, the optimization’s performance can be

predicted within a local design region.
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B.2 Methodology

Typically, the design optimization of any electrical machine involves two sets of variables;

design variables, x, that are set by the designer, and control variables, c, which depend

on the employed control strategy. In a direct optimization framework, both x and c are

treated together as lumped variables to the global optimization as shown in Fig. B.1 (a).

Conversely, in Fig. B.1 (b), a control strategy emulator (CSE) computes the optimal control

parameters by solving a unidimensional problem such as (B.1). This becomes important

during normal operation, because c may assume values which are completely different from

the ones found by the optimization method. In this work, the Golden search method with

parabolic interpolation (GSM), described in [Brent, 2013] is used as the CSE. This method

showed superior performance over other deterministic ones in [Mohammadi et al., 2017b].

(a) (b)

Fig. B.1 Motor optimization methodology [Mohammadi et al., 2017b].
(a) Direct. (b) CSE-based.

Next, the procedure for computing the conflict level between Tavg and Trip is described

for an initial design, x0, of d dimensions. Within its neighborhood, ∆0, a Latin hypercube

sampling is performed to obtain its set of local samples, X0, as in (B.2). Here, n is the total

number of local samples and ∆0i = x0i ×∆. In this work, 300 local samples were used per

initial design and the percentage deviation, ∆, is 20%. Fig. B.2 displays the procedure for

a design with 2 variables, x01 and x02 .
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X0 = {x(1)
0 , ...,x

(n)
0 } (B.2)

Fig. B.2 Local samples (•) about an initial point (�) for conflict assessment.

After the local samples are chosen, a vector of performance values, fi(x
(i)
0 ) comprised

of (Tavg,Trip) for each local sample i, is constructed to form the set, F = {f1, ...,fn}. The

conflict between Tavg and Trip is then estimated by the conflict measure, Cab, proposed in

[Freitas et al., 2013] and described by (B.3). Here, Ri,a and Ri,b are the associated ranks of

sample x
(i)
0 for Tavg and Trip respectively. For example, Ra = 1 for the sample with highest

Tavg, Rb = 1 for the sample with lowest Trip, Ra = 2 for the sample with the second highest

Tavg, and so on. By this measure, a 100% conflict means that one performance improves

at the expense of another, while 0% signifies total harmony; i.e., an improvement in Tavg

implies an improvement in Trip. Any midway value implies a non-uniform tradeoff between

the two performances over the design space.

Cab =

∑n
i=1 |Ri,a −Ri,b|∑n
i=1 |2i− n− 1|

(B.3)
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B.3 Problem Statement

Equations (B.4) and (B.5) define the optimization problems to be solved by the direct and

CSE-based (i.e., MTPA in this chapter) methods, respectively. Here, Trip is to be minimized

and the vector of design variables x is restricted within the ∆0 neighborhood about x0.

This neighborhood constraint ensures physical feasibility as well as consistency between the

optimization’s design space and that used by the conflict measure.

Since optimal solutions may no longer achieve improved Tavg over the initial design, es-

pecially in regions of high conflict, the inequality constraint for Tavg guarantees non-negative

values, i.e., motoring operation. Note that there is a significant difference among both for-

mulations. For the direct approach in (B.4), γ is added as an extra design variable. On

the other hand, the MTPA-based approach in (B.5) emulates the control strategy by finding

its optimal γMTPA to maximize Tavg for a given current magnitude and x. Other control

strategies could be tackled in a similar manner.

min.
x,γ

Trip(x, γ)

s.t. Tavg(x, γ) ≥ 0

(x−∆0) ≤ x ≤ (x+ ∆0)

(B.4)

min.
x

Trip(x, γ)

s.t. γMTPA = argmax(Tavg(x, γ))
γMTPA

Tavg(x, γMTPA) ≥ 0

(x−∆0) ≤ x ≤ (x+ ∆0)

(B.5)

The V-shaped IPM motor described in [Motorsolver, 2015] and a 3-barrier SynRM

(round-shaped barrier) are used as test cases. While both motors have a similar stator

geometry and configuration shown in Table B.1, their rotors are geometrically different. Fig.

B.3 show the rotor design variables. To ensure feasibility, the IPM’s V-shaped layer and

the SynRM’s flux barriers are both constrained inside the rotor. The instantaneous torque

waveform, T , is computed for a fixed sinusoidal current excitation using transient 2-D FEA,

which benefit from 4-pole and 3-phase periodicities to reduce computation time. Then, Trip

and Tavg are post-processed from T similar to that described in [Mohammadi et al., 2016].
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Table B.1 Fixed Design Parameters of IPM and SynRM
Parameter Value Parameter Value

Number of slots/poles 12/4 Airgap thickness 0.5 mm
Stator outer diameter 75 mm RMS current density 10.0 A/mm2

Rotor outer diameter 40 mm Core material M-19 29 Ga
Rotor inner diameter 11 mm Magnet material NdFeB 32/16
Stack length 34 mm Barrier material Air

(a) (b)

Fig. B.3 Motor model cross sections. (a) IPM. (b) SynRM

B.4 Optimization Results

To assess the connection between the conflict and the performance of the two optimization

methods, it was necessary to compare both methodologies for different initial points with

various conflict levels. Hence, more than 15 initial base designs that are physically feasible

were randomly chosen for the IPM and SynRM. Next, every design was optimized for Trip

based on the problems defined in (B.4) and (B.5) to compare the results of the direct and

MTPA methodologies. Similar to [Mohammadi et al., 2017b], the pattern search method

[Audet and Dennis Jr, 2002] was used as the main optimizer. Each design evaluation using a

2-D FEA simulation took about 10s on average for an Intel Core i7-3517U (quad core, 1.90

GHz) with 8 GB of RAM. Every MTPA calculation required around six FEA evaluations.

Table B.2 presents the final solution values of each motor in ascending order of the initial
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point’s conflict level. Every row corresponds to one initial design, while the columns list the

final values of Trip, Tavg, and γMTPA of the two approaches. The base values of the initial

samples are shown for comparison with the methods. The total number of FEA evaluations

for the two methods are displayed as well. Hence, certain observations can be made based

on the presented results. As expected, Tavg was forced to be compromised for high-conflict

designs since Trip is minimized. Interestingly, the MTPA converged to better solutions in 32

out of the 33 instances (∼97% success, shown by highlighted cells). Even when the levels

of conflict are relatively low, the direct method is unable to converge to the true optimal

solution (i.e., under MTPA control). Furthermore, the use of the direct approach can lead

to solutions that are worse than the initial design when the conflict level is very high (shown

in bold). This is especially noticeable for the SynRM example. In contrast, the MTPA

approach is generally more robust to the level of conflict than the direct method.

Table B.2 Optimization Results for Each Design Sample (Direct, CSE PoV).
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Fig. B.4 (a) and (b) shows the torque ripple convergence curves for one IPM and one

SynRM design, respectively. The displayed trajectories include the MTPA, the direct from its

own point-of-view (PoV) and the direct from the CSE’s perspective. The CSE’s perspective

is generated by calculating the MTPA advance angle γMTPA using (B.1) to recompute Trip

for each solution generated by the direct method. This analysis shows that while the direct

methodology “thinks” it reaches a lower Trip solution, its CSE PoV could obtain worse

results indicating that the direct method does not actually optimize for Trip. However, this

is not surprising since the CSE was not incorporated in the optimization formulation of

(B.4). Moreover, the MTPA methodology performed better than its direct counterpart by

improving Trip in both examples and quickly arrives near the final solutions. In terms of the

number of FEA evaluations, the MTPA methodology takes longer to reach its final solution.

However, as observed from the convergence curves in Fig. B.4, the MTPA’s trajectory

settles near the final solution within 800 evaluations. Beyond this point, there is a minimal

improvement in Trip. Also, the Spearman rank coefficient ρ was calculated for each design

between the two direct trajectories to show their level of association. For example, a -0.48

value for Fig. B.4 (a) demonstrates that the self PoV and CSE PoV trajectories of the

direct methodology are negatively correlated since they affect Trip in the opposite directions.

Similarly, the Spearman ρ of each design was calculated in Table B.2 to determine how the

direct methodology’s path is affected by suboptimal advance angles (negative values shown

in bold). From here onward and in Table B.2, the direct results only refer to the CSE PoV

since the advance angle needs to be optimized for a given design.

To visually compare the MTPA and direct methodologies, Fig. B.5 displays two polar

plots of the Trip improvement for the IPM and SynRM examples with every initial design’s

cross section shown. Each angle represents one sample design and a radial value signifies

the Trip improvement of each approach from the base value. Since the improvement is to be

maximized, the larger polar plot of the MTPA approach demonstrates its superiority over

its direct counterpart, regardless of the initial design or conflict level.
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(a) (b)

Fig. B.4 Convergence curves for torque ripple [%]. (a) IPM (ID of 10, Cab =
78.32%, ρ = -0.48). (b) SynRM (ID of 9, Cab = 67.02%, ρ = +0.76). Refer to
Table B.2 for ID number of each motor example.

(a) (b)

Fig. B.5 Polar plots of the torque ripple improvement over the base values
in ascending order of conflict. (a) IPM. (b) SynRM. Each initial design’s cross
section and ID is shown. The solid line (•) represents the MTPA methodology,
while the dotted line (�) represents the direct methodology (CSE PoV).
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B.5 Conclusion

This appendix presented a detailed comparison of two different optimization methodologies

using a quantitative measure of conflict. The torque ripple was minimized subject to a

positive average torque constraint. Two different case studies were considered, namely, a

V-shaped IPM motor and a three-barrier SynRM, where their rotor geometries were opti-

mized while their stators were kept fixed. In total, more than 30 initial designs were used

for testing. It was demonstrated that the CSE-based methodology, which incorporates the

MTPA control strategy, generally performs better than a direct approach regardless of the

conflict level, initial design, or motor case study. Also, the CSE-based approach can help

users include the control variables, such as the current advance angle, in the main optimiza-

tion procedure through an inner optimization loop. The displayed convergence curves of

torque ripple indicate that the actual path taken by the direct methodology from the CSE

PoV (normal operation) can be significantly different from what is expected. Therefore, the

direct approach cannot be relied upon for the design optimization of synchronous ac motors

due to its poor performance.
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Appendix C

Efficiency Map Calculation for

Synchronous AC Motors

After designing and optimizing an electric machine, efficiency maps are needed to predict a

vehicle’s performance in a dynamic simulation. Calculating efficiencies at various torque and

speed points, however, requires prior knowledge of the input excitation conditions, such as

the current magnitude and advance angle, in an electromagnetic finite-element analysis sim-

ulation. Hence, this appendix chapter based on [Mohammadi and Lowther, 2017] derives and

uses nonlinear motor control equations (MTPA, FW, MTPV) in the study of efficiency map

calculation while accounting for both saturation and cross-coupling effects. Two synchronous

AC motors are considered in this work, including the 2010 Prius IPM and a PM-assisted

synchronous reluctance machine, with all procedure steps outlined in detail. This procedure

has been used to calculate the efficiency maps of PM machines and PM-assisted SynRMs

ranging from 50 kW to 100 kW ratings in [Rahman et al., 2016, 2017].

C.1 Procedure

In this work, the computation of a motor’s efficiency map follows the detailed procedure

outlined in Algorithm 1. The employed variables are described below in Section C.2, while

the described steps are illustrated in Section C.5 through an example.
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Algorithm 1 Efficiency map calculation

Result: Efficiency map ηFEA as a function of (N ∗,T FEA
em )

1 FEA Sampling: compute (λFEA
d ,λFEA

q ) given (IFEA
s ,γFEA)

2 Motor Characterization: nonlinear least-squares curve fitting

Find λNL
d/q(Is) using (λFEA

d/q ,IFEA
d ,IFEA

q )

Find INL
d/q(λs) using (IFEA

d/q ,λFEA
d ,λFEA

q )

3 Control Strategies: for a given IMAX
s

MTPA: calculate (IMTPA
s ,γMTPA) & NBase

FW: calculate (NFW,IFW
s ,γFW)

MTPV: calculate (NMTPV,IMTPV
s ,γMTPV)

Post-process (N ∗,I∗s ,γ∗) using MTPA, FW, MTPV values

4 Efficiency Map: compute (ηFEA,T FEA
em ) given (N ∗,I∗s ,γ∗) & interpolate

C.2 Nonlinear Motor Control

Before deriving the nonlinear motor control equations for the three strategies, the main pa-

rameters need to be introduced. The dq convention used here follows that in [Soong and

Miller, 1994]. First, the stator current vector, Is, is represented by (C.1) in the Cartesian

coordinate system using the d-axis current, Id, and the q-axis current, Iq. An alternative

representation utilizes Polar coordinates, where Is is the current magnitude and γ is the cur-

rent advance angle. The reference point of γ is taken from the q-axis with a counterclockwise

positive rotation.

Is =

[
Id

Iq

]
=

[
−Is sin γ

+Is cos γ

]
(C.1)

Similarly, the stator flux linkage vector, λs, is represented by (C.2). Here, λd and λq

are the dq-axis flux linkages, and λs and δ are the flux linkage magnitude and load angle.

To account for saturation and cross-coupling effects of λs as a function of Is, the nonlinear

dq-axis flux linkages, λNL
d and λNL

q , are also denoted. Note that either coordinate system



C Efficiency Map Calculation for Synchronous AC Motors xxxi of lvii

could be used. As described later in Section C.3, λNL
d and λNL

q are individually characterized

by a nonlinear curve for different (Is,γ) points at a fixed motor speed. Furthermore, both λs

and Is contribute to the electromagnetic torque, Tem, in a 3-phase synchronous AC motor

as shown in (C.3), where np is the number of poles.

λs =

[
λd(Is, γ)

λq(Is, γ)

]
=

[
−λs sin δ

+λs cos δ

]
=

[
λNL

d

λNL
q

]
(C.2)

Tem =
3

2

np
2
λs × Is =

3

2

np
2

(
λdIq − λqId

)
(C.3)

C.2.1 Maximum-Torque-Per-Ampere (MTPA)

Below base speed operation, the motor’s back EMF has not matched the terminal winding

voltage which means that the input voltage has not yet been constrained [Soong and Miller,

1994]. The MTPA control strategy is then applied to minimize the motor’s copper losses.

For a given Is, Tem is maximized to find an optimal γMTPA using (C.4). This condition leads

to a nonlinear equation which requires the first-order derivatives of λNL
d and λNL

q to solve

for γMTPA. From zero to base speed, commonly known as the Constant Torque region, the

corresponding Tem values are computed at every speed using a fixed (Is,γ
MTPA).

dTem
dγ

= 0→ tanγ =
+λNL

q + dλNL
d /dγ

+λNL
d − dλNL

q /dγ
(C.4)

Moreover, the electrical base speed, ωeBase
, is calculated using (C.5). Here, Vdc is the DC

bus voltage. It is assumed that the 2-level inverter is operating at its square-wave limit and

the MTPA flux linkage magnitude, λMTPA
s , is computed using (C.2).

ωeBase
=

2

π

Vdc
λMTPA
s

(C.5)

C.2.2 Flux Weakening (FW)

Above base speed operation, the motor’s back EMF has exceeded the maximum terminal

winding voltage so the MTPA strategy cannot be employed anymore [Soong and Miller, 1994].

Thus, the FW strategy ensures that Is is maintained while the voltage limit ellipse in (C.6) is

satisfied. The machine’s flux is weakened by reducing Id or varying γ for different speeds. In
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practice, injecting large amounts of negative Id could increase the risk of demagnetization.

Here, Vs is the stator phase voltage, and Vd and Vq are the dq-axis voltages. In vector

form, Vs is a function of λs using the electrical speed, ωe, as shown in (C.7). The stator

winding’s resistive losses are ignored, due to their small effect on the control compared to

ωeλs. Substituting (C.7) in (C.6) yields (C.8) which consists of λNL
d and λNL

q . From base to

max speed operation, known as the Constant Power range, this nonlinear FW equation is

solved for every ωe to find γFW.

V 2
s = V 2

d + V 2
q (C.6)

Vs =

[
Vd

Vq

]
= jωeλs = ωe

[
−λNL

d

+λNL
q

]
(C.7)

(
2

π

Vdc
ωeBase

)2

=
(
λNL
d

)2
+
(
λNL
q

)2
(C.8)

C.2.3 Maximum-Torque-Per-Volt (MTPV)

Beyond a certain speed in the Constant Power region, the FW strategy can no longer produce

a nonzero Tem. For an infinite-speed machine, the center of the voltage limit ellipse is located

inside the current limit circle which suggests that both Is and γ must be varied [5]. Hence,

the MTPV strategy maximizes Tem for a given Vdc or λs to find an optimal δMTPV through

(C.9). This equation requires the nonlinear dq-axis currents, INL
d and INL

q , as a function of

λs and δ as shown in (C.10). Once δMTPV is found at a given speed, IMTPV
s is then computed

using (C.10) and (C.1).

dTem
dδ

= 0→ tanδ =
+INL

q + dINL
d /dδ

−INL
d + dINL

q /dδ
(C.9)

Is =

[
Id(λd, λq)

Iq(λd, λq)

]
=

[
Id(λs, δ)

Iq(λs, δ)

]
=

[
INL
d

INL
q

]
(C.10)
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C.3 Curve Fitting Functions

The three equations presented above for the MTPA (C.4), FW (C.8) and MTPV (C.9)

control strategies depend on the evaluation of the nonlinear functions, λNL
d , λNL

q , INL
d and

INL
q , as well as their first-order derivatives which is discussed below. Fitting a Nth-order

polynomial to the nonlinear function λNL
d (Is) for 2 variables can be represented via (C.11).

Here, a denotes the vector of unknown coefficients and X denotes the vector of self and

cross terms of Is. Similarly, the first-order derivative of λNL
d (Is) with respect to γ is shown

in (C.12), where XD is the derivative vector of X.

λNL
d (Is) = aTX (C.11)

dλNL
d (Is)

dγ
= aTXD (C.12)

For instance, a 2nd-order polynomial and its derivative form are shown in (C.13) and

(C.14). Given a set of points (IFEA
s ,γFEA), λNL

d is fitted using nonlinear least-squares re-

gression to find a. A similar analysis is expected for other nonlinear functions. Moreover,

alternative fitting functions could be used provided the accuracy is not affected.

λNL
d (Is) = +a1I

2
d + a2Id + a3I

2
q + a4Iq + a5IdIq + a6 (C.13)

dλNL
d (Is)

dγ
= −2a1IdIq − a2Iq + 2a3IdIq + a4Id + a5(I2

d − I2
q ) (C.14)

C.4 Model Specifications

In order to test the nonlinear control equations presented above, two different motors were

studied. First, the 2010 Toyota Prius IPM motor has been considered since its design details

and performances have been published in [Olszewski et al., 2011]. Second, a PM-SynRM

rated at a higher power was chosen due to its lower PM torque contribution. It was originally

designed in [Rahman et al., 2016] as an alternative to a rare-earth PM machine for a Class IV

step van electric vehicle. Fig. C.1 displays the cross-sectional geometries of the Prius IPM

and PM-SynRM, and Table C.1 below provides a summary of their design specifications.
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(a) (b)

Fig. C.1 Motor cross-sectional geometry: (a) Prius IPM, (b) PM-SynRM.

Table C.1 Model Design Specifications
Parameter/Dimension Prius IPM PM-SynRM
Number of poles/slots 8/48 8/33
DC bus voltage 650 V 650 V
Maximum speed 13500 RPM 6000 RPM
Peak power 60 kW 200 kW
Stator’s outer diameter 264 mm 355 mm
Rotor’s outer diameter 160 mm 240 mm
Active stack length 51 mm 125 mm
Air gap thickness 0.75 mm 1.00 mm
Rated RMS line current 80 Arms 375 Arms
Number of turns 11 turns 3 turns
Rated current density 13 A/mm2 10 A/mm2

Peak current density 26 A/mm2 27 A/mm2

Total mass 20.4 kg 75.8 kg
Magnet material NdFeB 44/15 MQP-B+ 897/780
Core material M-19 29 Ga M-19 29 Ga
Cooling method Liquid Liquid
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C.5 Results and Discussion

Relying on the procedure described in Algorithm 1, the specified steps are performed to

compute the motor efficiency maps.

In Step 1, the dataset (λFEA
d ,λFEA

q ) was computed for a given input (IFEA
s ,γFEA) using

2-D FEA simulations. The motor speed was kept fixed and the winding was excited using

a sinusoidal current. Both λFEA
d and λFEA

q were computed using only the fundamental

component of the flux linkage waveforms. Here, IFEA
s was varied for 0%, 100% and 200% of

the rated condition to capture the saturation effects. Also, γFEA was varied in steps of 10◦

from 0◦ to 90◦ to account for the cross-coupling.

In Step 2, the motors are characterized by individually fitting their flux linkage datasets to

2nd-order polynomial curves using (C.13). Once the unknown coefficients, a were computed,

the two interpolated maps of the PM-SynRM were calculated using (C.11) and (C.13) as

illustrated below in Fig. C.2. The Prius IPM’s flux linkage maps are similar, so were not

reproduced here.

(a) (b)

Fig. C.2 Nonlinear flux linkage maps for PM-SynRM: (a) λNL
d , (b) λNL

q .

Furthermore, Table C.2 shows the individual values of a for the Prius IPM and PM-

SynRM. As expected from typical synchronous AC motors and Fig. C.2, λNL
d (Is) depends

more on Id, Iq and 1 than the other inputs. This result also indicates that cross-coupling

effects cannot be ignored when the entire (Id,Iq) plane is considered for motor control. In
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fact, a6 represents the PM flux linkage in a constant parameter model. In contrast, λNL
q (Is)

seems to be dependent on Id, I
2
q and Iq as seen from Fig. C.2, where a3 signifies the prominent

saturation effect. The squared norm of the residuals, σ2, are low compared to the range of

flux linkage values which indicate a good fit. Also, INL
d and INL

q were similarly calculated

using a 4th-order polynomial.

Table C.2 Flux Linkage Characterization

λNL
d (Is) Prius IPM λNL

q (Is)

a1 +5.813e-7 a4 +4.827e-5 a1 –1.797e-6 a4 +3.706e-3

a2 +1.546e-3 a5 –2.067e-6 a2 –3.792e-4 a5 +1.373e-6

a3 –7.026e-7 a6 +1.432e-1 a3 –9.753e-6 a6 –9.203e-4

σ2 = 3.894e-4 σ2 = 1.169e-3

λNL
d (Is) PM-SynRM λNL

q (Is)

a1 +9.068e-8 a4 +2.547e-5 a1 –1.457e-7 a4 +9.405e-4

a2 +4.168e-4 a5 –1.271e-7 a2 –1.545e-4 a5 +1.443e-7

a3 –2.949e-8 a6 +7.777e-2 a3 –5.513e-7 a6 –1.300e-3

σ2 = 8.218e-4 σ2 = 3.633e-3

Once the motors were characterized, Step 3 was executed at different values of IMAX
s , for

instance, 50%, 100%, 150% and 200% of the rated current. For each current magnitude, the

MTPA, FW, and MTPV operation points were computed for speeds ranging from zero to

a maximum limit as specified in Table C.1. As a first test, the MTPA torque curves were

computed as a function of γ using (C.3) and (C.11) for both motors. There was a good

agreement between the maximum torque trajectory and the one obtained through FEA.

As explained in [Soong and Miller, 1994], mode diagrams in the dq current plane allow

control engineers to visualize the maximum torque trajectory as the motor speed, N , is

increased. Fig. C.3 (a) and (b) show the corresponding diagrams for both motors. Due to

the low PM content of the PM-SynRM, the MTPV control plays an important role at higher

speeds at different currents. Conversely, the FW control dominates for the Toyota IPM.

Moreover, both mode diagrams can be converted to a more familiar form as in Fig. C.3

(c) and (d) which displays the torque, current magnitude and advance angle as a function of

speed for different IMAX
s . Although the predicted torque values are not necessarily accurate
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due to the fundamental assumption of the dq flux linkages (since higher order harmonics are

ignored), the control operation points are nevertheless the same.

In Step 4, the efficiency, η, and torque values are computed using 2-D FEA simulations

given the (N ∗,I∗s ,γ∗) values found in Step 3. Then, an artificial neural network similar

to the one described in [Mohammadi et al., 2016] was used to interpolate and create an

efficiency map for less computational effort as opposed to direct FEA evaluations. A 2-

input network with 1 hidden layer of 5 neurons was used. Also, the root-mean-square-error

(RMSE) between FEA and interpolated values of η was calculated. To balance between

accuracy and over-fitting, the training set’s division was varied while the validation set was

fixed and the remaining samples were included in the testing set. Referring to Fig. C.4

below, a training set division of 60% was chosen to compute the efficiency maps in Fig. C.5.

Table C.3 specifies the neural networks’ performances for both case studies. Moreover, the

efficiency map of the Prius IPM in Fig. C.5 seems relatively close to the one reported in

[Olszewski et al., 2011], while the inverter losses are ignored.

Fig. C.4 Root-mean-square-error curves for varying training set ratios.

Table C.3 Neural Network Performances for Two Efficiency Maps

Motor #Samples Train. Valid. Test. RMSE

Prius IPM 90 0.9971 0.9796 0.9526 26.45%

PM-SynRM 44 0.9999 0.9960 0.9992 2.84%
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(a) (b)

(c) (d)

Fig. C.3 [Top] Mode diagram for different current magnitudes with dotted
maximum torque trajectory: (a) Prius IPM, (b) PM-SynRM.
[Bottom] Performances vs. speed curves: (c) Prius IPM, (d) PM-SynRM.
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(a) (b)

Fig. C.5 Motor efficiency map: (a) Prius IPM, (b) PM-SynRM.

C.6 Conclusion

In brief, this work derived nonlinear motor control equations general for any synchronous AC

motor which account for saturation and cross-coupling effects of the dq flux linkages. Upon

characterizing the 2010 Prius IPM and a PM-SynRM, the current magnitudes and advance

angles at different speeds were calculated to compute the corresponding efficiency and torque

values using 2-D FEA simulations. The two efficiency maps were then interpolated with the

help of a simple neural network.

For the nonlinear least-squares curve fitting, a 2nd and a 4th-order polynomial worked best

for the flux linkages and currents respectively. Moreover, higher-order polynomials, sigmoid

and arc tangent fitting functions all yielded erroneous results while computing the maximum

torque trajectory in the mode diagram. Furthermore, a reduced-order model of the efficiency

map could possibly be used instead of FEA simulations to reduce computational time at the

expense of solution accuracy.
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Appendix D

Additional Results

This appendix includes additional results computed for the two synchronous reluctance ma-

chine case studies as part of the multiphysics design process (MPDP). Captions include

relevant information for the selected designs. For example, “l for [-Tavg,Trip]” represents

the marker used on scatter plots for the optimal design of average torque and torque ripple

based on the selection function defined in (4.1). For an explanation on how to interpret

correlation plots, please refer to Section 2.2.1.

• Fig. D.1: Histograms of component temperatures for 24-slot 1-barrier

• Fig. D.2: Histograms of component temperatures for 24-slot 2-barrier

• Fig. D.3: Histograms of component temperatures for 24-slot 3-barrier

• Fig. D.4: Histograms of component temperatures for 24-slot 4-barrier

• Fig. D.5: Correlation plot of multiphysics performances for 24-slot 1-barrier

• Fig. D.6: Correlation plot of multiphysics performances for 24-slot 2-barrier

• Fig. D.7: Correlation plot of multiphysics performances for 24-slot 3-barrier

• Fig. D.8: Correlation plot of multiphysics performances for 24-slot 4-barrier

• Fig. D.9: Correlation plot of multiphysics performances for 30-slot 1-barrier

• Fig. D.10: Correlation plot of multiphysics performances for 30-slot 1-barrier
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• Fig. D.11: Correlation plot of multiphysics performances for 30-slot 1-barrier

• Fig. D.12: Correlation plot of multiphysics performances for 30-slot 1-barrier

• Fig. D.13: Correlation plots of 24-slot design metrics (1/2/3/4-barrier)

• Fig. D.14: Correlation plots of 30-slot design metrics (1/2/3/4-barrier)

• Fig. D.15: Barrier mapping of multiphysics performances for 30-slot (top 5%)

• Fig. D.16: Barrier mapping of multiphysics performances for 30-slot (top 10%)
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(a) Minimum, Average, Maximum (b) Minimum, Average, Maximum

(c) Minimum, Average, Maximum (d) Minimum, Average, Maximum

Fig. D.1 Histograms of component steady-state temperatures from 3-D ther-
mal analysis: 24-slot 1-barrier.
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(a) Minimum, Average, Maximum (b) Minimum, Average, Maximum

(c) Minimum, Average, Maximum (d) Minimum, Average, Maximum

Fig. D.2 Histograms of component steady-state temperatures from 3-D ther-
mal analysis: 24-slot 2-barrier.
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(a) Minimum, Average, Maximum (b) Minimum, Average, Maximum

(c) Minimum, Average, Maximum (d) Minimum, Average, Maximum

Fig. D.3 Histograms of component steady-state temperatures from 3-D ther-
mal analysis: 24-slot 3-barrier.
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(a) Minimum, Average, Maximum (b) Minimum, Average, Maximum

(c) Minimum, Average, Maximum (d) Minimum, Average, Maximum

Fig. D.4 Histograms of component steady-state temperatures from 3-D ther-
mal analysis: 24-slot 4-barrier.
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Fig. D.5 (Top) Correlation plot of 24-slot, 1-barrier performances. (Bottom) Selected designs:
l for [-Tavg,Trip], 6 for [-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [-Tavg,Trip,TW ], : for all.
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Fig. D.6 (Top) Correlation plot of 24-slot, 2-barrier performances. (Bottom) Selected designs:
l for [-Tavg,Trip], 6 for [-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [-Tavg,Trip,TW ], : for all.



D
A

d
d
ition

al
R

esu
lts

x
lv

iii
of

lv
ii

l 6 F � :

Fig. D.7 (Top) Correlation plot of 24-slot, 3-barrier performances. (Bottom) Selected designs:
l for [-Tavg,Trip], 6 for [-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [-Tavg,Trip,TW ], : for all.
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Fig. D.8 (Top) Correlation plot of 24-slot, 4-barrier performances. (Bottom) Selected designs:
l for [-Tavg,Trip], 6 for [-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [-Tavg,Trip,TW ], : for all.
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Fig. D.9 (Top) Correlation plot of 30-slot, 1-barrier performances. (Bottom) Selected designs:
l for [-Tavg,Trip], 6 for [-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [PSL,-kS ], : for all.
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Fig. D.10 (Top) Correlation plot of 30-slot, 2-barrier performances. (Bottom) Selected designs:
l for [-Tavg,Trip], 6 for [-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [PSL,-kS ], : for all.
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Fig. D.11 (Top) Correlation plot of 30-slot, 3-barrier performances. (Bottom) Selected designs:
l for [-Tavg,Trip], 6 for [-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [PSL,-kS ], : for all.
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Fig. D.12 (Top) Correlation plot of 30-slot, 4-barrier performances. (Bottom) Selected designs:
l for [-Tavg,Trip], 6 for [-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [PSL,-kS ], : for all.
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Fig. D.13 Correlation plots of 24-slot design metrics: (a) 1-barrier, (b) 2-
barrier, (c) 3-barrier, (d) 4-barrier. Selected designs: l for [-Tavg,Trip], 6 for
[-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [-Tavg,Trip,TW ], : for all.
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Fig. D.14 Correlation plots of 30-slot design metrics: (a) 1-barrier, (b) 2-
barrier, (c) 3-barrier, (d) 4-barrier. Selected designs: l for [-Tavg,Trip], 6 for
[-Tavg,Trip,-kS ], F for [-Tavg,Trip,PSL], � for [PSL,-kS ], : for all.
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Fig. D.15 Barrier mapping for 24-slot multiphysics performances in (Wc,Wb)
plane for top 5% percentile solutions. Tavg average torque, Trip torque ripple,
pf power factor, η efficiency, Vrms RMS voltage, ξ saliency ratio, Ld d-axis
inductance, NBase

m base speed, kS safety factor, PSL sound pressure level, TW
average winding temperature, TR average rotor temperature.
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Fig. D.16 Barrier mapping for 30-slot multiphysics performances in (Wc,Wb)
plane for top 10% percentile solutions. Tavg average torque, Trip torque ripple,
pf power factor, η efficiency, Vrms RMS voltage, ξ saliency ratio, Ld d-axis
inductance, NBase

m base speed, kS safety factor, PSL sound pressure level.
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