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Abstract

This thesis examines the characterization and performance evaluation of sampled-data
control systems obtained with the digital redesign of continuous-time control systems.

The first part of the characterization is concerned with the Plant Input Mapping
(PIM) method which is the only digital redesign technique guaranteeing closed-loop sta-
bility provided the sampling period is non-pathological. Three modified PIM methods are
proposed to solve the issues of reducing the order and the number of controllers present in
a PIM-based control system. Furthermore, alternatives to the regular PIM method which
utilize classical discretization techniques on the systems relating the reference input to
the control input and the controlled output are proposed. To solve the polynomial Dio-
phantine equation involved in the PIM process, a set of guidelines is presented, rendering
the approach more systematic.

The second part of the characterization investigates the behavior of sampled-data
control systems in terms of (i) their responses to reference and disturbance inputs, (ii)
their internal and input-output stability, (iii) the controller block transfer functions, (iv)
their discrete-time sensitivity functions, (v) the induced norms of the closed-loop systems,
and (vi) the transform representation of the control input and controlled output. The
main objective of the characterization is to make clear the intuitive idea that a digitally
redesigned control system should approach, in a certain sense, its continuous-time coun-
terpart for sufficiently fast sampling frequencies. The time-domain characterization is
partly accomplished by employing a continuous-time lifting reformulation of the control
systems.

The performances of sampled-data control systems are evaluated via the L[>, L2
norms and ITAE index of the control-input and controlled-output errors, and the L*°-,
L?-induced norms of the systems of interest. The variation of the performance measures
with the sampling period is clarified and the superiority of the PIM methods over the
local digital redesign techniques, for relatively large sampling intervals, is analytically



. and quantitatively determined. Four simulation examples and one experiment illustrate
the effectiveness of the PIM methods over other digital redesign techniques and validate

the theorems developed on the characterization of sampled-data control systems.



Sommaire

Cette thése a pour but la caractérisation et ’évaluation de la performance des systémes
de commande & données échantillonnées tels qu'obtenus & partir de systémes évoluant en
temps continu en utilisant la méthode de reconception numérique.

La premiére partie de la caractérisation traite de la méthode globale de reconception
numérique connue sous le nom de Correspondance d’Entrée du Systéme sous Contréle
(CESC ou PIM en anglais). Dans le but de solutionner les problemes reliés au systéme
de commande & données échantillonnées fonctionnant en boucle fermée et obtenu avec la
méthode CESC, tels que le grand nombre de blocs présents et la possible augmentation
de 'ordre de la fonction de transfert associée & chacun des blocs, trois méthodes CESC
modifiées sont proposées. De plus, des alternatives & la méthode traditionnelle CESC sont
présentées. Celles-ci utilisent les méthodes de ’équivalence du bloqueur et de 'intégration
numnérique pour digitaliser le systéme reliant le signal d’entrée de la boucle a 'entrée du
systeme sous controle, et la méthode d’appareillage des pdles et zéros pour digitaliser le
systeme reliant le signal d’entrée de la boucle au signal de sortie du systéme sous contrdle.
La méthode d’élimination de matrice (eliminant matriz en anglais) et de factorisation de
I’espace de 1'état (state-space en anglais) sont étudiées en tant que moyens de solution
de I'’équation de Diophantine qui est associée & la méthode CESC. Particuliérement, les
conditions qui permettent d’obtenir une solution unique & I’équation de Diophantine sont
établies.

Les systemes de commande & données échantillonnées obtenus en utilisant la méthode
de reconception numérique sont analysés en ce qui a trait a leurs réponses aux signaux
d’entrée de référence et de perturbation, a leur stabilité interne et stabilité d’entrée-sortie,
au comportement des fonctions de transfert des blocs de commande, a leurs fonctions
de sensibilité a temps discret, aux normes induites de systémes a boucle fermée, et a la
représentation de la transformée de Laplace des signaux d’entrée et de sortie du systéme

sous contréle. La caractérisation est partiellement accomplie au moyen d’une reformu-



lation des systémes de commande & données échantillonnées basée sur la méthode dite
lifting, traduite ici par méthode d’augmentation. Le résultat principal concerne les con-
ditions suffisantes qui résultent en une convergence uniforme dans le temps des signaux
d’entrée et de sortie du systeme sous controdle, présent dans le systéme de commande a
données échantillonnées, a leurs homologues du systéme de commande évoluant en temps
continu, a mesure que la période d’échantillonnage est réduite. Un systéme de commande
a données échantillonnées qui posséde un tel comportement est appelé modeéle a données
échantillonnées d’un systéme & temps continu.

Lorsque les périodes d’échantillonnage sont relativement longues, I’évaluation de la
performance des systémes de commande & données échantillonnées est effectuée grace aux
normes L™ et L? des signaux d’entrée et de sortie du systéme sous contrdle, aux normes
induites de systémes & boucle fermée, et & I'indice de performance ITAE tel qu’appliqué
aux signaux d’erreurs. La quantification de la performance est accomplie pour quatre
simulations et une expérience. Ces applications illustrent I’efficacité des méthodes CESC
traditionnelle et modifiées en rapport avec d’autres méthodes de reconception numeérique,
et valident les théorémes sur la caractérisation des systemes de commande & données

échantillonnées.

iv
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regular PIM in Chapter 3, and for any sampled-data control
system in Chapter 4.

[A, B, C, D] A realization of Hy(g).

Ir(s), Qr(e), Tr(e) Transfer functions of discrete-time controller blocks.

Mr(g) Transfer function from sampled reference input

to sampled controlled output.

H(T) Response function of hold at control input.

S Ideal sampler.

™m Degree of numerator polynomial of G (g).

n Degree of denominator polynomials of Gr(¢) and G(s).

[ Degree of polynomial u(e) in equation (3.9).

T Degree of polynomial v(g) in equation (3.9).

P Degree of denominator polynomials of Hr(g), H(s), My(g), M(s).

(Bl Matrix or vector norm, depending on the case.
Il 2 L? norm of continuous-time signal (see p. 22) or

L2%induced norm of continuous-time system (see p. 21).
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L™ norm of continuous-time signal (see p. 21) or

L*°-induced norm of continuous-time system (see p. 21).
Degree of numerator polynomial of H(s), and of Hr(e) when the
regular PIM method is performed.

Degree of numerator polynomial of Mr(g).

Transfer function from sampled reference input to
discrete-time control input for control system obtained

with reduced-order, truncated PIM.

Transfer function from sampled reference input to
discrete-time control input for control system

obtained with reduced-order PIM.

Transfer functions used in the coprime factorization of Gr(g).
Transfer functions satisfying A(e)U(e) + B(e)V (e) = 1.
Stable polynomials each of degree n.

Constant row vector of length n.

Constant column vector of length n.

Linear system of equations.

Least-squares estimator of X.

Linear system of equations associated with the control system
obtained with the local digital redesign method.

Real constant given by €9 = #

Eigenvalue of closed-loop system matrix, see p. 32.
Eigenvector associated with A;, see p. 32.

Sensitivity of Mz (g) with respect to changes in Gr(g).
Sensitivity of Mr(g) with respect to changes in IIr(e).
Sensitivity of Mr(e) with respect to changes in I'r(g).

)

Sensitivity of Mr(e) with respect to changes in Qr(g).
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Claim of Originality

The work presented in this thesis has contributed to the fields of systems and control

in the following regards:

1. A characterization of the plant input mapping (PIM) method is performed in

N

Chapters 3 and 4. This is partly accomplished by a lifting reformulation of the
sampled-data and continuous-time control systems; a method extensively used in
the proofs of the propositions and theorems pertaining to the time-domain behav-
ior of sampled-data systems. A state-space formulation of the matched pole-zero
discretization is performed in Appendix B which provides a clear understanding of
the PIM method and the behavior of PIM-based systems from a structural point

of view.

Modified PIM techniques are proposed in Chapter 3. They provide solutions to
some of the inherent problems associated with the regular PIM method; that is,
increased complexity in terms of the number of controllers present in the loop and
the orders of the controllers. Chapter 3 also presents the first set of guidelines in

solving the Diophantine equations associated with the PIM methods.

From a time-domain perspective, the notion of sampled-data model, defined in
Chapter 2 and applied to sampled-data control systems in Chapter 4, helps establish
whether the control input and controlled output responses of digitally redesigned
control systems to reference and disturbance inputs can be made arbitrarily close
to those of the continuous-time control system. The first study of the behavior of
the loop signals, as T — 0, other than the control input and controlled output is
carried out in this thesis. The convergence in the induced norms of sampled-data

systems, as 7' — 0, to their continuous-time counterpart is provided as well.

xxi



. 4. The L°- and L?-induced norms of the systems relating the reference and distur-
bance inputs to the control input, the L* and L? norms and the value of the ITAE
index on the control-input and controlled-output errors between sampled-data and
continuous-time control systems are presented in Chapter 4. These tools allow a
control designer to compare quantitatively the performances of regular and modi-
fied PIM methods against that obtained with local methods for any finite sampling
period. The advantages of the PIM methods over the local digital redesign tech-
niques for relatively long sampling intervals are clarified via theorems and general

observations are made on the basis of the system representation provided in Section

4.1.



Chapter 1

Introduction

1.1 Motivation of the Research Work

In the field of automatic control, there exist three approaches to the design of sampled-
data control systems, which comprise discrete-time controllers in closed-loop with a
continuous-time dynamic system or plant: (i) direct discrete-time design, (ii) sampled-
data design, and (iii) digital redesign.

Direct discrete-time design consists of obtaining discrete-time controllers achieving
closed-loop stability and a desired performance, at the sampling instants, based on the
discrete-time plant model [1]. A well-known drawback associated with this method is
the possibility that the sampled-data control system possesses intersample ripples at its
plant input and output [2, 3]. In order to overcome the problem of intersample oscil-
lations, the method known as sampled-data design has received considerable attention
since the mid nineteen eighties. This method consists of designing discrete-time con-
trollers while taking into account the intersample behavior of the continuous-time signals
present in the sampled-data loop such as the disturbance and reference inputs, the con-
trol input, the controlled output, and the tracking error [4]. So far, the sampled-data
design approach has concentrated on optimal controller design, leaving the classical con-

trol design methods, such as PID and pole-placement [5], untouched despite the fact they



are widely used in industry. For instance, in [6], the L?-induced norm of sampled-data
control systems is optimized, with the intersample information considered in the process.
Researches on sampled-data design have also brought new control objectives. For exam-
ple, the works found in [7] and (8] provide necessary and sufficient conditions to achieve
ripple-free deadbeat control of sampled-data systems; that is, elimination of the ripples
in the continuous-time responses past some finite time instant.

This thesis is concerned with the third approach to the design of sampled-data control
systems: digital redesign. Digital redesign is the process of converting a continuous-time
control system to a sampled-data control system. The continuous-time control system
is composed of the plant and the controllers, which are all continuous-time systems, and
is assumed to satisfy the design specifications. Digital redesign of a continuous-time
control system has practical advantages over other methods such as the facts that the
sampling time can be selected from the knowledge of the continuous-time closed-loop
dynamics and that a large body of existing continuous-time methods can be put to use
in the design. The success of the digital redesign relies on the closed-loop stability at the
selected sampling rate, the relatively close performance, in terms of the signals of interest,
with that of the continuous-time control system, and the controller implementations with

few numerical problems.

1.1.1 Local Digital Redesign Methods

The digital redesign process involves two stages: (i) discretization of a system, and (ii)
implementation of the system. Traditionally, the digital redesign has been accomplished
in a local manner; that is, each controller block (i) is discretized using the conventional
discretizations, which can be found in [2], and (ii) is implemented at the same location
in the closed-loop as that of the continuous-time controller. This approach is named
local digital redesign. In this thesis, the discretization methods considered are equi-order
ones; that is, a continuous-time system is converted to a discrete-time system with a

transfer function having the same order as that of the continuous-time transfer function.
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Examples of such methods are the well-known hold-equivalent techniques [2], numerical
integrations such as the backward difference and Tustin’s method [1], and the matched
pole-zero methods [9, 10, 11]. The discrete-time systems obtained with these discretiza-
tions are termed, respectively, the invariant, the mapping, and the matched pole-zero
discrete-time models {12, 13]. The term discrete-time model refers to the fact that a
discrete-time system has a continuous-time counterpart which does not depend on the
sampling interval. Discretization methods not considered in this thesis are, for instance,
the second order Adams-Bashforth [14] and first-order hold equivalent [15] methods,
which result in discrete-time systems with orders higher than that of the continuous-
time system. The work in [16] studies the higher-order discrete-time models.

The main disadvantage of a local digital redesign approach is that the resulting
sampled-data control system usually requires relatively fast sampling frequencies for pre-
serving closed-loop stability and achieving a close performance to that of the continuous-
time control system [2]. This fact renders the design process an iterative one where the
designer must be extra careful in the selection of a sampling rate in order to avoid highly
oscillatory and unstable responses. In an age where digital processors are becoming
cheaper and faster, the requirement of fast sampling frequencies may not be viewed, at
first glance, as a negative factor. Yet, relatively slow sampling frequencies may be the
only choice available to a control designer; for instance, (i) in chemical processes where
the sampling times are typically slow and cannot be arbitrarily set for control purposes,
(il) in simple control algorithms for mass-production where one cent saved on the pur-
chase of a slow chip can be the deciding factor on the choice of a control law, (iii) in a
transportation system where the processor has limited computational power, the control
update could be required to be slowed down in an emergency situation in order to make
it possible for the processor to tackle the more important task at hand, or, as mentioned
in [17], to perform additional functions, and (iv) in the case of a flight control system

where a relatively slow microprocessor is chosen for proven reliability [18].



1.1.2 Global Digital Redesign Methods

With the digital redesign objective as stated previously, intuition suggests that the bet-
ter approach would be to perform an approximation to the closed-loop continuous-time
control system, as pointed out in [19]. Among the new methods subscribing to this
philosophy, which are named global digital redesign techniques, the one proposed in
[20] consists in obtaining a discrete-time controller such that the [2-induced norm of a
discrete-time multirate approximation to the weighted discretization error operator is
minimized. For sufficiently small sampling periods, closed-loop stability is guaranteed,
yet the local continuous-time control block must be stable in order to apply the method
and the resulting discrete-time control block may have crder higher than that of the
continuous-time controller; for instance, the example in [20] presents a continuous-time
control system with controller block of order one whereas the discrete-time controller
resulting from the digital redesign is of third order. In [21], the technique proposed is
to minimize the error between the frequency response of the discrete-time control sys-
tem and that of the continuous-time control system by adjusting the parameters of the
discrete-time controller block, which may be required to possess an order much higher
than that of the continuous-time control block for satisfactory steady-state performance.
The same type of process is carried out in [22] using the continuous frequency response
of the digital control system instead of the discrete-time frequency response. Again, con-
troller complexity can be high with this method. Another global digital redesign method
is that of [23], where the transfer function of a fixed-structure discrete-time control sys-
tem is inexactly matched to the step invariant model of the closed-loop system. The
major drawback of this approach is the requirement of minimum-phase plant model and
controller. An optimal digital redesign method, found in [24], consists in the following:
Given a continuous-time plant and a well-designed continuous-time controller, design a
discrete-time control system such that its continuous-time, closed-loop step responses, at
control input and controlled output, optimally match those of the continuous-time system

in the sense that a weighted sum of the energy of the associated error signals is mini-



mized. Two disadvantages of this method are the fact the discrete-time controller can
be of order higher than that of the continuous-time controller, hence an order reduction
technique should be employed as well, and the dependency on the reference input.

The global digital redesign approaches presented above suffer from three problems:
(1) the complexity of the continuous-time controllers can be increased in the discrete-
time domain; (2) most digital redesign processes require complicated mathematics, where
some closed-loop parameter of the sampled-data control system is optimized; and, (3)
the conditions of applications are quite stringent. As pointed out in [25], with simple
controllers, there are fewer problems or bugs in the software, their effects are easier
to understand, and the requirements on the computations are lessened with respect to
more complex controllers. As for the optimization, a simpler approach would be to use
classical discretization methods on the closed-loop control system, as is done with the
digital redesign method in [23] but with the controller implementations and discrete-
time plant model recovering the exact closed-loop discrete-time system transfer function.
A consequence of the third problem is that some continuous-time control systems are
excluded from the digital redesign process. As far as the author is aware, only the Plant
Input Mapping (PIM) method, introduced in [26], is based on the discretization of a

closed-loop system and can be applied to the most general situation, as explained next.

1.1.3 Rationale of the Plant Input Mapping Method

Although restricted to linear, time-invariant systems, the PIM method is the only known
global digital redesign approach which can be utilized in the case of unstable, non-
minimum phase and multi-input, multi-output (MIMO) controllers and plants [27]. Fig-
ure 1.1 illustrates the flow of ideas involved in carrying out the PIM method. The four
steps yielding the PIM-based control system are: (1) calculation of the transfer function
relating the reference input to the control input, which is defined as the Plant Input
Transfer Function (PITF) of the continuous-time control system; (2) discretization of

the PITF with the matched pole-zero method to obtain the discrete-time PITF; (3) dis-



. cretization of the continuous-time plant to a discrete-time model; (4) determination of
the discrete-time controller blocks from the knowledge of the discrete-time PITF and
plant model. The process of the PIM method is explained in more details in Section 3.1.

Continuous-time Continuous-time
T plant controller blocks
»| Continuous-time
PITF Step 1
Discrete-time
PITF
Step 2
i -
Discrete-time
plant model
Step 3
Discrete-time
controller blocks Step 4
I Figure 1.1: Conceptual flow of ideas in the PIM method

The PIM method relies on two characteristics of linear, time-invariant, single-input,
single-output (SISO) single-loop feedback control systems: (1) closed-loop stability of the
system relating the reference input to the controlled output is necessary and sufficient
to guarantee the stability of the system relating the reference input to the control input
[14]; and, (2) the equi-order matched pole-zero discretization can be performed on the
continuous-time PITF and the resulting discrete-time system can be implemented as
a single-loop, internally stable discrete-time control system by solving a Diophantine
equation [28]. Point (1) can be seen as a cancellation of the plant poles by the zeros
of the stable PITF, so that unstable poles of the plant, if any, do not appear in the
transfer function relating the reference input to the controlled output. For instance,

consider the linear, time-invariant continuous-time control system of Figure 1.2, where



G(s) = b(s)/a(s) and C(s) = 7(s)/d(s). The closed-loop transfer function is given by

Foya Y(s) _ Gs)C(s) b(s)7(s)

M(s) = R(s) 1+G(s)C(s) a(s)d(s) + b(s)n(s) (1-1)
and the continuous-time PITF, by
Beale® Ol _  asms) (1.2)
R(s) 1+ G(s)C(s) a(s)d(s)+b(s)n(s)
It then follows that
M(s) = H(s)G(s) (1.3)

and the poles of the plant model are cancelled by the zeros of the continuous-time PITF.
This pole-zero cancellation is a consequence of the feedback and occurs with all linear,
time-invariant feedback control systems. With PIM, the stability of the continuous-time
PITF is carried over to the discrete-time PITF. Point (2) implies that by discretizing
the PITF with the matched pole-zero method, there exists an implementation structure
for which the discrete-time closed-loop system is internally stable. The key in finding
such structure for the SISO case is to solve a polynomial Diophantine equation [29] of

the form
a(p)u(p) + b(p)v(p) = d(p) (1.4)

where p is the complex variable, a(p) and b(p) are the denominator and numerator
polynomials, respectively, of the discrete-time plant model, and d(p) is the denominator
polynomial of the discrete-time PITF. The polynomials u(p) and v(p) are used in the
determination of the discrete-time controller transfer functions according to a procedure

found in [30].
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Figure 1.2: Feedback control system

1.1.4 Aspects of the Plant Input Mapping Method Requiring
Investigation

The literature on the PIM method reveals that its characterization has not been ex-
hausted and that there remain several questions to be answered. This subsection reviews
the issues that the author considers as important. [t should be pointed out that some of

them apply to the other digital redesign methods as well.

Discrete-Time Control System

The currently available works on PIM examine the sampled-data control systems at the
sampling instants only. For instance, in [31], the stability of the discrete-time control
system is considered, leaving out the input-output stability over all times and its con-
nection with the internal stability of the discrete-time closed-loop system. Input-output
stability of a general sampled-data control system has been studied in [32] and [33],
where the important aspect of sampling period pathologicity is discussed, yet for the
1-block sampled-data control system only. Of course, a discrete-time analysis has some
merits. The most obvious being the study of the limiting behavior of the discrete-time
control system as the sampling period is reduced. That is, with the knowledge that a
discrete-time system has a continuous-time counterpart, a pointwise-in-time connection
can be established between the continuous- and discrete-time systems, as the sampling
period is shortened [34]. As an example, consider continuous- and discrete-time sys-

tems subjected to the same continuous-time input, which is sampled before entering the



discrete-time system. Suppose that, for a given sampling period, one takes any fixed
time instant over the continuous time set and takes the norm on the difference between
the value of the output of the continuous-time system at that time instant with that of
the discrete-time system at the closest sampling time. The process is repeated for several
different sampling periods. Then, as the sampling period is reduced, the norm of the dif-
ference in amplitudes will tend to zero. This relation exists between the continuous- and
discrete-time PITF's when the PIM method is employed [27]. However, the very nature
of a sampled-data control system prevents having to compare the outputs of discrete-
and continuous-time systems; that is, both sampled-data and continuous-time control
systems generate continuous-time outputs.

Another drawback of the current discrete-time characterization of PIM is that it
does not address the issue of convergence of the discrete-time controller blocks to their
continuous-time counterparts as the sampling period is reduced, instead only the discrete-
time PITF convergence is studied {35]. The convergence, in some sense, of the discrete-
time controller block representations to their continuous-time counterpar€s for relatively
fast sampling frequencies arises from the desire to have the discrete-time loop signals,
connected to the exterior world with a digital-to-analog converter, behaving as closely
as possible to the corresponding signals of the continuous-time control system; that is,
if each block is relatively close to its continuous-time counterpart, so will be the loop
signals. Why would one want arbitrarily close signals, in the time domain, between the
continuous-time and sampled-data systems? This is because the loop signals of a control
system may be required to lie within prescribed limits for reasons which mmay be related
to the actuators or any other device that restricts the amplitude of the signals.

The discrete-time treatment of sampled-data systems is not akin solely to the current
works on PIM. In [36], discrete-time and continuous-time systems are compared as to
their input-output behaviors at the sampling instants. This type of analysis ignores the
intersample information associated with sampled-data control systems. For example, if a

sampled-data system matches the response of a continuous-time system at the sampling



instants, for a given input, it does not mean that it offers a satisfactory performance
over the continuous-time set. On the other hand, even if a sampled-data system has a
response different from that of a continuous-time system, at the sampling instants, it
can still offer a relatively close response to that of the continuous-time system over the
continuous time. Clearly, the intersample information has to be taken into account in

the analysis of sampled-data systems.

Control Input and Controlled Output

The works on PIM study the system relating the sampled reference input to the discrete-
time control input, disregarding what happens in between the sampling instants at the
control input. Two factors motivate the study of the control input over all time instants:
(i) with the PIM method, the difference between the continuous-time and sampled-data
control systems, as perceived by the plant, occurs at the continuous-time control input,
hence any means of keeping the size of this error small involves investigation of all time
instants; and (ii) from a practical point of view, the physical limits of the actuators require
that the amplitude of the control input lies within achievable values. Control input
studies do not abound in the literature which is concerned with the digital redesign of
continuous-time control systems, despite the issues of practicality and stability associated
with such signal. At least, in [2], the importance of the control input is acknowledged in
the sense that it could be the cause of ripples at the controlled output. By selecting a
non-pathological sampling period, ripples can take place when the control input has an
oscillatory behavior. The obvious way then to understand the occurrence of intersample
ripples at controlled output is to investigate the control input behavior and the source of
its unwanted oscillations.

At the controlled, or plant, output, a time domain analysis which treats the continuous-
time signal, and not just its sampled version, has been carried out in [27]. There, the
uniform-in-time convergence of the controlled output of the PIM-based sampled-data

control system to its counterpart in the continuous-time control system has been stated.
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However, the class of reference inputs considered in [27] is too vast for the study of the
uniform-in-time convergence of the control input. The reason is that the bounded con-
tinuous signals may have ever-increasing derivatives over some time intervals. Reducing
T to any positive value cannot change the fact that the, possibly, biproper discrete-time
PITF is unaffected by the peaks reached by the reference input over portions of the time
line. This point is illustrated for one particular continuous signal f(t) shown in Figure
1.3, where 8 < oo and T € (0,00). For a given T, it is seen that in the interval [3T,4T),
the information is lost when sampled. Then one could sample at a faster rate. However,
since the signal is made up of triangles of ever-increasing slopes, there exists at least
one time interval, such as [T, (x + 1)T") in the figure, where the spike-like behavior is
not transmitted by the sampler, for any T € (0,00). For the continuous-time control

system, a biproper continuous-time PITE transmits the spike occurring in the interval

[T, (k + 1)T).

f(t)

?

B+

; : : — - : >t
T 2T 3T 4T T  (ctD)T

Figure 1.3: Bounded continuous signal

Intuition suggests that, even if the finite-T" performance of a sampled-data control
system cannot be easily characterized, at least as the uniform sampling period T is
reduced, the time domain performance, at the control input and controlled output, is
expected to approach that of the continuous-time control system. However, to achieve
such behavior, what conditions should be imposed on the sampled-data control system,

and in what sense does the rapprochement take place? As far as the author is aware,
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no work has looked into this aspect from a perspective applicable to all digital redesign
methods, especially for the control input signal.

Performance of PIM-Based Sampled-Data Control Systems for Relatively

Large Sampling Periods

The study of PIM-based sampled-data control systems for relatively large sampling pe-
riods has been confined to a sensitivity analysis of the so called discretization error [27].
There is no quantitative comparison of the performance of PIM-based control systems
with systems based on some other global or local digital redesign methods. Furthermore,
there is no explanation to the responses obtained with PIM-based control systems for
relatively long sampling intervals. As of now, only simulation response plots are provided
to show how PIM fares against other discretization methods, both local and global, and
this is done for a finite set of sampling periods, on simple low-order plants and for the
unit step reference input. For instance, the performances of digital model-reference flight
control systems of a VTOL aircraft obtained with PIM and the local digital redesign us-
ing the Tustin’s mapping method are compared for five different sampling periods in [30].
The PIM- and Tustin-based digital flight controls of the T-2 aircraft are simulated for
three sampling periods in [35]. In all those simulations, PIM has performed in a superior
manner to the local digital redesign methods for these relatively long sampling intervals.
This is in the sense that the control input and controlled output of PIM-based control
systems are close to their counterpart of the continuous-time system, as assessed quali-
tatively with the response plots. Still, validating the hypothesis that PIM is superior to

the other known digital redesign methods with only a few step responses is inconclusive.

Disturbance Rejection

So far, researchers have emphasized the behavior of PIM-based control systems with
respect to a reference input, and only the work in [26] discusses briefly the disturbance-

rejection behavior of a PIM-based control system via a parameterization technique. How-
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ever, only step-type disturbances are considered. Since the plant evolves in continuous-
time and disturbances can represent physical phenomena, it is natural to enquire about
the behavior of sampled-data control systems subjected to a wider class of disturbance in-
puts than the step. This lack of work in the disturbance-rejection area can be attributed
to the limitations of the conventional analytical tools, such as the transfer functions in
s or z and the state-space form [37], which consider either the continuous-time or the
discrete-time domain. A topic related to the disturbance response of a control system is
the sensitivity of the closed-loop system with respect to variations in plant and controller
parameters. Still, the behavior of the sensitivity functions of the closed-loop discrete-time

systems with the sampling period has not been investigated for the PIM-based systems.

Diophantine Equation Solution

The theoretical basis of the Diophantine equation has been studied in numerous papers.
In [38], a review of the use of Diophantine equations in control is provided. A fractional
representation approach to the analysis and synthesis of continuous-time control systems,
in which a parameterization of the stabilizing controllers is obtained, is reported in {39].
A polynomial Diophantine equation is used in [5], where the structure of a continuous-
time feedback control system is fixed and the transfer function of a controller block is
obtained based on the desired closed-loop poles. A similar process is carried out in [2],
although for a discrete-time control system design.

The PIM method requires the solution to a discrete-time Diophantine equation. How-
ever, the PIM literature lacks the steps and algorithms allowing one to numerically solve
the Diophantine equation involved in the process. Of course, there exist several methods
such as that based on matrix algebra in [29]. Yet, the effect of using the different solution
methods on the performance of a PIM-based control system is unknown. In addition, the
requirements on the orders of the different transfer functions involved is not addressed
in any work on PIM. Until these points are clarified, the behavior of the solution to

the discrete-time Diophantine equation as the sampling interval is shortened cannot be
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compared against that of the Diophantine equation associated with the continuous-time

control system.

Implementation Considerations

By implementation considerations it is meant the complexity of the controllers, the num-
ber of controllers present in the loop, the magnitudes of the transfer function coefficients,
the realization structure [40] of each discrete-time block and the discrete-time operator
used in the transfer functions. These considerations become especially critical when the
discrete-time controllers are implemented with fixed-point arithmetic and a restricted
number of bits. The main reason for using fixed-point processors is that they are gen-
erally cheaper than their floating-point counterparts [41]. Another reason which may
justify the use of fixed-point processors is that, generally, a fixed-point hardware has
a less complicated logic circuit, and consequently a smaller chip size, than that of a
floating-point processor [42].

Depending on the manner in which the Diophantine equation is solved, the discrete-
time controllers could be of higher order than the blocks of the continuous-time control
system [43]. Furthermore, the number of controllers present in the sampled-data con-
trol system could be greater than that in the continuous-time control system [14]|. For
example, if a continuous-time control system consisting of one controller in closed-loop
with the plant is digitally redesigned with the regular PIM method, there will result up
to two additional controller blocks in the discrete-time implementation. The problem
of increased number of controllers has been investigated in [44]. There it is shown that
the number of controllers in the continuous-time control system can be preserved in the
sampled-data control system by performing a minimization of the H° norm of the error
transfer function between the reference input and the control input. However, the con-
troller orders are not taken into account with such an approach, and consequently the
discrete-time controller orders can still be high relative to the orders of the continuous-

time controllers.
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An increase in complexity, from the points of view of controller order and controller
number, is not appealing for practicing engineers. This is so mainly for reasons of prac-
ticality in the handling of the controllers, i.e. high—order controllers necessitate long
off-line computational processes when modified, increased burden on the processor in
real-time, more pronounced finite wordlength effects [45], and costs. It is also known
that a relatively fast sampling rate cannot be selected when the computation time as-
sociated with a general complex discrete-time control scheme is long [46]. Furthermore,
from the viewpoint of performance comparison of the local digital redesign and the PIM
methods, the differences in controller block orders and numbers may be perceived as
making the evaluation an unfair one.

When implementing a control algorithm, the discrete-time operator € = (z —1)/T in
the complex plane, or § = (q—1)/7 [47] in the time domain, where q is the shift operator,
should be the preferred choice since it provides superior coefficient representation and
computational properties than the conventional shift, or z operator, in the presence
of finite number of bits and fixed-point arithmetic, especially in the case of relatively
fast sampling [48, 49, 50]. Moreover, the € operator should be used when solving the
Diophantine equation, as mentioned in [26], [29] and [51], as opposed to the z operator.

There has not been any experiment using the PIM method reported in the litera-
ture. Until the PIM technique is applied to an actual experimental setup, where the
aforementioned considerations should come into play, it will remain a theoretical idea

only.

Alternatives to the PIM Method Based on the Same Rationale

The main idea of PIM is to discretize a closed-loop system rather than a local controller
block. However, only the matched pole-zero discretization and an ad hoc method pro-
posed in [52], which restricts the reference input to be piecewise-constant, have been
used to discretize the continuous-time PITF. The possibility of having other digital re-

design methods based on the same rationale as that of PIM has not been investigated.
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The questions still remain as to the use of classical discretization techniques, other than
the matched pole-zero method, on the continuous-time PITF. Furthermore, discretizing
a closed-loop system different from the one relating the reference input to the control

input is still an open issue.

1.2 Modern Approaches to the Analysis of Sampled-
Data Control Systems

During the recent years, the study of sampled-data control systems has shifted from one
directed toward a discrete-time domain analysis to one which considers the continuous-
time signals present in the loop. To do so, the lifting of continuous-time signals and
systems is performed on the sampled-data and continuous-time control systems so that
all elements involved in the analysis can be characterized under a unified framework. The
induced norms of systems and norms of signals are evaluated in order to quantitatively
determine the performance of a sampled-data control system. Before clarifying these

modern approaches, the systems studied in this thesis are explained.

1.2.1 Continuous-Time and Sampled-Data Control Systems

The continuous-time feedback control system is shown in Figure 1.4(a). The linear,
time-invariant, continuous-time plant has transfer function G(s). The system relating
the reference input to the control input is denoted as H. The reference input 7(t) is

assumed to lie in the following normed linear space

L%%[O,oo) = {7(’5) € 1’3\5[0,00) 302};}3& lf(t)l < oo} (1.5)

where PC[0, co0) denotes the set of real piecewise-continuous time functions over [0, c0),
and ||, the absolute value. In the figure, the Laplace transform of a signal such as 7(t) is

written as R(s).
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The digital redesign process is performed on the continuous-time control system and
results in a sampled-data control system with a general structure shown in Figure 1.4(b),
where the system relating the reference input to the control input is HHsS. Ht represents
the discrete-time system relating the sampled reference input to the discrete-time control
input. In the figure, the discrete-time transfer functions are written in terms of the &
operator. For instance, the Delta transform [29] of the sampled reference input signal
e, & > 0, is given by

D {rer} éz re(Te +1)7*T (1.6)
k=0

and is denoted as Rrp(e) in Figure 1.4(b). In addition, Ur(s) represents the Laplace
transform of the continuous-time control input of the sampled-data control system, i.e.
ur(t), where the subscript T refers to the dependence on the sampling period. The
ideal sampler S maps a signal in L%[Om) to one in (¥, where |% denotes the linear
space of functions from the set of integers to R having finite supremum norm, such that
Yer = Y(t)|ipr, & = 0. H is a one-interval hold which is assumed to comprise finitely
many points of discontinuity, is synchronized with S, and transforms real sequences in
[¥ to signals in L%gé[o,oo) such that ur(t) = H(t — kT)ukr, kT <t < (k+1)T, k£ > 0,
where H(t — kT) is the response function of the hold [53].
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Figure 1.4: (a) Continuous-time and (b) sampled-data control systems

With the knowledge of the continuous-time and sampled-data control systems in-

volved, the characterization of the systems can be more clearly understood.

1.2.2 Continuous-Time Lifting

This subsection reviews the process of continuous-time lifting. The continuous-time lift-
ing method, introduced in [54], conceptually reformulates a linear, periodic system into
a linear, time-invariant one [4]. Contrary to the perspective on sampled-data systems
where signals are considered only at the sampling instants, lifting allows to keep track
of the intersample information and to preserve algebraic and topological properties of
signals and systems [55].

The lifting of a function f(t) € L% can be visualized as a partitioning of its time

(0,00)
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trajectory into an infinite number of piecewise-continuous functions, each of which being
a copy of f(t) within the time interval kT, (k + 1)T) for k& > 0, as shown graphically on
Figure 1.5. The lifted signal is represented as a sequence {ﬁ;_r(’r) }2 - The step & lies
in Z*, which is the set of non-negative integers. Each element of the sequence, such as
the kth element ﬁ'T(T), is a function in 55[0, T), where 55[0, T) is the set of piecewise-

continuous functions over [0, T). Let the set of such sequences as {ﬂ,T(T) }2., be denoted

as g and the normed, linear space [ P01 be defined as

= {{fk,T(r)}z';o € lagpm * Swp (sup |fur(r)) < oo} (%
The lifting is therefore a transformation between functions in LS 0,00 a.nd I 0.1y ; that
is, the lifting represented as L is a linear mapping denoted as L : LP 0,00 l‘;c[o .

xR
lPC[O T T L?E[o,m)'

One important characteristic of the lifting of signals is the fact it is norm-preserving [56].

On the other hand, the inverse lifting operation is expressed as L™!

f(t) _
Lifting .0 %o fo fLo o

—— T [[CEE

——t————————t P >
0 T 2T 3T 4T ST 0 ) 4 . .

Figure 1.5: Lifting of a continuous-time signal

In this work, when f(¢) is lifted to the sequence {ﬁ.,T(T)}ZiO, {Fer(T)}2, is called the
lifted equivalent of f(%).

Systems dealing with signals in (&, at their input and output are called lifted

PC,T) ;Y
systems. The lifted equivalent of H, in Figure 1.4(a), is H 2 LHL! and that of HHrS,
in Figure 1.4(b), H/H?S' & LHH7SL™*. The lifted output of the hold can be expressed
as Uy () = H(T)urr, 0 < 7 < T, and the discrete-time output of SL™! subjected to

:T;le(T) is rer = 'r‘\;c_T(O), k > 0. Lifted sampled-data systems such as m are time-
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invariant in the sense that a unit shift of the input sequence results in a unit shift of the
output sequence.

The continuous-time lifting used in this thesis is that developed in [56], where a
system’s input and output are lifted and the state of the system is perceived at the
sampling instants. Other works, such as [54] and [57], provide a lifting method which
considers the trajectory of the state over the continuous time. Both types of lifting
and result in the same input-

[0,00)
output expression for lifted systems. However, the former is better suited for a description

perform the same transformation on signals in L%“é

of continuous-time and sampled-data systems in which the states of the continuous- and
discrete-time systems lie in a common space.

In this thesis, the continuous-time lifting is used extensively in the proofs of propo-
sitions and theorems concerned with the characterization of the sampled-data control

systems in the time domain.

1.2.3 Induced Norms of Systems, Norms of Signals and Perfor-
mance Index

The quantification of the performance of a sampled-data control system can be accom-
plished in three ways. First, the gain, or induced norm, of the system can be evaluated
for a given sampling period. Two, the signals which are of interest can be measured with
norms appropriate to the space in which they exist. Third, a performance index can be
employed on the relevant continuous-time signals.

In operator notation, let £ : X — Y be a linear, bounded transformation from X to Y,
which are both normed, linear spaces. The smallest number A for which || Fz|l, < Az«

holds for all z € X is called the induced norm of F, ||F||,_; that is,
IFlx—y =inf {A: [|Fzlly < Allzllc, Vo€ X, A >0}. (1.8)
An equivalent form is the least upper bound on the norm of the output given an input
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of unit norm [58]:
|Fllx_y = sup {||Fzly, Yz € X}. (1.9)

I" le
In this thesis, when the operator maps signals from X to itself, the induced norm is
denoted simply as [[F||x - The L*- and L2-induced norms of a linear, time-invariant
continuous-time system H are given by (1.10) and (1.11) [59], respectively, where w

represents the frequency, §(¢) is the impulse response of H, and j = v/—1.

[l = [ mla (1.10)
_ t=0 _
IE|,. = _ S [H(jew)| (1.11)

For a linear, time-invariant discrete-time system Hrp, its (*°-induced norm [60], with T

weighting, and [*-induced norm [4, 61] are defined as follows:

Bl = > lgerl-T (1.12)
k=0
el — 1
el = suwp [Ee(S) (1.13)
—7/T<w<n/T

where g 7 is the response of the system Hr to the discrete-time impulse input Ok T given

by

L k=0
Ser =4 T (1.14)
0, k>1.

The L*- and L*-induced norms of sampled-data systems can be found in [62] and [63],
respectively.
For a continuous-time signal, such as e(¢), the L® and L? norms are respectively given

by (1.15) and (1.16).

le®)llze = sup_le(®) (1.15)

<t<oco



le@ll. = ( /c e dt) ” (1.16)

=0

The L? norm can represent the square root of the energy of a signal [59]. For a discrete-

time signal e r, the [® and /2 norms are defined as follows:

lexzllie = sup |err (1.17)
k>0
leezlle = Z|8k,T|2'T- (1.18)
k=0

The L* and L? norms could be applied to the continuous-time signals of a sampled-data
control system or to the difference between the control inputs of the sampled-data and
continuous-time control systems, also known as control-input error, and similarly for the
controlled outputs, also named controlled-output error. The signal norms complement
the conventional step response design specifications and facilitate the performance eval-
uation over a wide range of sampling frequencies; that is, relying on a scalar quantity to
determine the performance of a sampled-data system is a simpler task than having to go
through the long process of generating response plots over a wide range of sampling rates.
Furthermore, the norms serve as criteria in the selection of the sampling period at which
to perform the digital redesign process. Generally, a digital redesign method resulting in
the smallest error signal norms among the digital redesign methods, for a given 7', would
be the preferred choice. Still, the norms should be used in conjunction with other system
parameters, such as the location of the closed-loop poles, in order to clarify the shapes
of the responses of a sampled-data system for a given sampling interval.

The literature on sampled-data systems encompasses several works using the concepts
of induced norms of systems and norms of signals for performance evaluation. As stated
in [60], the magnitude of a signal is best controlled by using a time-domain specification,
and thus norms of signals are useful in this sense. In [64], the degradations of two sampled-

data control systems obtained with the local digital redesign are quantified as a function
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of the sampling period. There they emphasize the norm of the sensitivity functions of
the given sampled-data control systems, which is shown to grow in magnitude as the
sampling period is increased whereas it approaches that of the continuous-time system
when the sampling interval is reduced. They come to the important conclusion that with
the local digital redesign, the choice of T" should not be solely based on the achievement of
closed-loop stability; in fact, it should include consideration of the desired performance,
in terms of the value of the sensitivity norm. In [65], a sampled-data design is performed
by minimizing an approximation to the L*°-induced norm of the system relating an
exogenous input such as the reference, or disturbance, to the tracking error. A similar
process is carried out in [62] and in [66], where the L norm of the signals of interest
are considered. For example, a sampled-data system should reject disturbances while
tracking reference inputs, both having finite L> norm. In {67], the L2%-induced norm of
the system relating the disturbance input to the plant output is considered. A sampled-
data controller is designed such that the L2-induced norm of the closed-loop system
from the continuous-time disturbance to the continuous-time plant output is less than a
specified bound. Formulas for the L>-induced norms of sampled-data systems are given
in [68].

The performance evaluation based on norms and induced norms has been extensively
studied for the sampled-data design of control systems. However, it has been absent with
the digital redesign approach.

A simplified approach to the analysis of the response of a system is to use a sin-
gle, positive real quantity which tells a designer about the performance of the system
subjected to a known input. The L? and L° norms are such quantities. The so called
Integral of Time-multiplied Absolute-value of Error (ITAE) index is another. The ITAE
index, or criterion, denoted as Iz, in this thesis, is given by (1.19) for the continuous-time
signal e(f) : T'i

Ir, = /t=0t|e(t)|dt, 0<T:< oo (1.19)

where T; is a fixed time instant. In [69] this index is used to measure the error between
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a linear, time-invariant continuous-time system’s step response and the step input; the
control design yielding the smallest value of the ITAE index is proclaimed as the best
design. The relevance of this index can be seen as follows. In assessing the step response

performance of a second order system given by

1

= e L o9ra L1 2
s2+2(s+1 (1.20)

G(s)
the work in [70] found that the smallest value of the ITAE index occurs for a damping
ratio ¢ of 0.7, which offers a relatively good compromise between speed of response and
overshoot. It is not the only performance index available, yet it is known to offer a clear
distinction between the optimum value and the others in the context of the evaluation
of the step response behavior, as explained in [69].

As far as the author is aware, the ITAE index has never been used in the performance
assessment of sampled-data control systems. It could serve, for instance, to evaluate the
control-input and controlled-output errors between sampled-data and continuous-time

control systems as functions of the sampling period.

1.3 Objective of the Thesis

The objective of the thesis is threefold: (1) provide solutions to the unresolved issues as-
sociated with the regular PIM method; (2) characterize digitally redesigned sampled-data
control systems with emphasis placed on the systems obtained with the PIM methods;
and (3) quantitatively compare the performances of sampled-data control systems against
that of the continuous-time control system upon which the digital redesign originates.
In order to solve the issues concerned with the complexity of the controllers obtained
with the PIM method and their possible great number in the sampled-data loop, three
global digital redesign methods are introduced in Chapter 3 based on the same rationale
as that of PIM. These methods are the truncated, reduced-order and reduced-order plus
truncated PIM methods. In this thesis, the three methods are also known as the modified
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PIM methods. Alternatives to the PIM approach which use a different technique than
the matched pole-zero method to discretize the PITF and rely on the discretization of the
closed-loop system relating the reference input to the controlled output are succinctly
presented in Chapter 3; their details can be found in Appendix C. Furthermore, two
ways of solving the Diophantine equation associated with the current PIM method are
presented in Chapter 3. These are the eliminant matrix method and the state-space
factorization. Emphasis is placed on assessing the degree requirements and the conditions
yielding a unique solution to the Diophantine equation.

In Chapter 4, the digitally redesigned sampled-data control systems are characterized
in terms of the time-domain behavior of the loop signals, the transfer functions of the
discrete-time blocks and the robustness characteristics. The continuous-time lifting is
used to represent the behavior of the sampled-data systems for any sampling frequency
selected in the digital redesign. The lifting method, which was first employed in the
characterization of digitally redesigned control systems in [71], allows one to explicitly
formulate the errors between the corresponding continuous-time signals of the sampled-
data and continuous-time control systems, and to understand the mechanisms of the
digital redesigns, in particular what makes the PIM method work well for relatively large
sampling periods. Conditions are provided such that the control input and controlled
output of a sampled-data control system converge uniformly in time, as the sampling in-
terval is reduced, to those respective signals of the continuous-time control system upon
which the digital redesign is based. A sampled-data system satisfying such elementary
requirement is called a sampled-data model of a continuous-time system, a notion defined
in Chapter 2. The convergence of the transfer functions of the discrete-time controller
blocks to their continuous-time counterpart, in a sense explained in Chapter 4, is estab-
lished. The by-product of this discrete-time investigation is the characterization of the
behavior of the loop signals other than the control input and controlled output when T is
relatively small. The convergence in the induced norms of the sampled-data systems, as

the sampling period is decreased, is also studied. Concerning the performance evaluation
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of a sampled-data control system for any non-pathological sampling period, the quantifi-
cation is obtained via the L* and L? norms of the control-input and controlled-output
errors, the L*°- and L?-induced norms of the systems of interest, and the ITAE index
on the error signals. The behavior of the performance measures with increasing sam-
pling interval and the influence of the discrete-time closed-loop poles on the responses is
explained in Chapter 4.

Chapter 5 provides five applications of digitally redesigned control systems. Compar-
ative and quantitative assessments of the performances attained with some of the most
widely used local digital redesign methods, the optimal global digital redesign method
reported in [24], and the PIM methods are conducted. The tools used to evaluate the
performance of the sampled-data control systems, as explained in Chapters 3 and 4,
enable an explicit demonstration of the effectiveness of the regular and modified PIM
methods over the local and other modern global digital redesign techniques through four
simulation examples and one experiment. In addition, the control applications validate

the theorems presented in the previous chapters.
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Chapter 2

Preliminaries

In order to clarify the concepts and terminology involved in the chapters that follow, the
main assumptions, the definitions pertaining to the signals and systems, and the notion of
stability as understood in this thesis are given. In particular, restrictions on the choice of
the sampling period and hold at control input are established in Section 2.1, the class of
exogenous inputs admitted in the analysis and the novel concept of sampled-data model
of a continuous-time system are defined in Section 2.2, and the internal stability at the
sampling instants and its relation with the individual blocks present in the sampled-data

loop are given in Section 2.3.

2.1 Main Assumptions

Throughout this thesis, the following are assumed to hold unless explicitly stated other-

wise:
1. The systems are linear, SISO and have zero initial conditions.

2. The continuous-time control systems, on which digital redesign is carried out, are
performing in a satisfactory fashion when they satisfy the requirements of stability,

disturbance rejection and reference input tracking.
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3. T represents the period of sampling and lifting which is chosen to be non-pathological

with respect to the plant under control. The sampling period T is non-pathological
with respect to G(s), which has a realization given by [Ag, Bg, Cg, Dg], provided
that Az has no two eigenvalues with equal real parts and imaginary parts that
differ by an integral multiple of 27/7 [4]. When the PIM method is carried out,
T is also chosen to be non-pathological with respect to the continuous-time PITF.
The non-pathologicity of 7" with respect to the plant is needed, for instance, to pre-
vent extra pole-zero cancellations in the discrete-time plant model. On the other
hand, 7 is chosen as non-pathological to the continuous-time PITF when the PIM

method is performed in order to preserve the order of the transfer function.

. The hold, which is located at the control input of the sampled-data control system,

is assumed to have a bounded response function and not to introduce discrete
zeros in the hold-equivalent model of the plant which cancel poles of the model at
non-pathological T" values. The reader is referred to [72] for more details on the

subject.

2.2 Time-Domain Concepts

The following definitions present the basic concepts used in the time-domain analysis of
sampled-data control systems. Definitions 2.2.1 to 2.2.3 introduce the possible spaces
in which the exogenous inputs to the sampled-data and continuous-time control systems
may lie.

Definition 2.2.1 &j is defined as the space of functions which have a finite supremum

norm and are continuous on the time set [0, c0), and independent of 7T".0q

Definition 2.2.2 & is defined as the space of functions which have a finite supremum

norm and are uniformly continuous over [0, o), and independent of T".x<

Definition 2.2.3 &3 is the space of functions which have a finite supremum norm and
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are constant in each of the intervals [T, (k + 1)T) on [0,00), for £ = 0,1,2,... and
T € (0,00).<

Note that Sg, S; and S, are subspaces of L;’%[o o0)" Definition 2.2.4 applies specifically
to sampled-data control systems, whereas Definition 2.2.5 could be applied to a piecewise-
constant approximation of a reference input sent to the continuous-time and sampled-data

control systems.

Definition 2.2.4 A bounded reconstructed signal is defined as the output of a hold

4 4 o
and therefore is in LFé[o,oo) |

Definition 2.2.5 A staircase equivalent of a signal in Sy or S is obtained by passing
the signal which lies in Sy or S; through an ideal sampler followed by a zero-order hold
(ZOH), both of which have period T'. Staircase equivalents are in Ss.6<

oo

The following definition considers the metric between two signals in I3 Z0.1)"
Definition 2.2.6 A signal expressed in lifted form as {7k r(7)}2, is said to converge
uniformly in time as T — 0 to a continuous-time signal given by {§k,T(T)}z°=0 in the

lifted form if
lim | sup 4 sup |Ger(r) ~Tur(r)| | = 0. o (2.1)
T—0 |kelo,00) | ref0,1)

With the knowledge of the metric between two lifted signals, a sampled-data system
can be characterized in terms of its input-output behavior with respect to a continuous-

time system, as presented in the following definition.

Definition 2.2.7 A sampled-data system is said to be a sampled-data model of a
continuous-time system if its output is converging uniformly in time to that of the
continuous-time system, as 7' — 0, when its input is converging uniformly in time to

that of the continuous-time system. e

Obviously, a particular case of the above definition is when the sampled-data and continuous-

time systems are subjected to the same input.



2.3 Stability of Continuous-Time and Sampled-Data
Control Systems

Before giving the meaning of stability as understood in this thesis, the notion of composite

state is introduced.

Definition 2.3.1 The composite state of a closed-loop system is obtained by stacking

the state of each dynamic block present in the loop into one state.>«

For instance, consider the system of Figure 1.4(b). Let the state of a realization of Qr(¢)
be zq, k7, that of IIz(e) be zm, kr, that of I'r(g), zry k1 and the state of the hold-

equivalent plant model, zg, 7. Then a discrete-time composite state of the sampled-

data control system is
— T T T T T
Zer = [Zag k1 Tl o T Top T Tor kT (2.2)

for each k£ > 0 and T". With the knowledge of the realization of each block present in the

sampled-data control system, the state equation of the discrete-time closed-loop system

can be expressed as
Oz = Az + BT (2.3)

where 6zxr = (Tk+1,7 — Tr,7)/T [29] and rir is the sampled reference input. When
the reference input is set to zero and the initial composite state zo r is finite, then the

zero-input composite state for any £ > 0 and T is given by

= (TA -+ I)kl‘oy'_'p (24)

Tk, T lzero-input

where I is the identity matrix. A similar development can be carried out for the

continuous-time control system of Figure 1.4(a).

Definitions 2.3.2 to 2.3.4 present the meaning of stability.
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Definition 2.3.2 A linear, time-invariant continuous-time closed-loop system is said
to be internally stable if, given any finite initial condition to the composite state, the

zero-input composite state approaches zero as t — co.xx

Definition 2.3.3 A linear closed-loop system is said to be internally stable at the
sampling instants if, given any finite initial condition to the composite state, the zero-
input composite state approaches zero, at the discrete-time instants k7", as &k — oo, for
T € (0, 00).x

.

Definition 2.3.4 A linear system is input-output stable if every input in L PE10,00) results

. . reo
in an output in L}—,-C—:[om) 1

For a linear, time-invariant continuous-time closed-loop system, internal stability war-
rants internal stability at the sampling instants. For a sampled-data control system, the
following theorem establishes internal stability in terms of the behavior at the sampling

instants.

Theorem 2.3.1 The sampled-data control system of Figure 1.4(b) is internally stable
at the sampling instants if and only if all of the eigenvalues of the matrix A in (2.3) lie

in the region of the e-plane given by |Te + 1| < 1. <

Proof: (i) If: Using equation (2.4), the norm on the zero-input composite state can be

bounded as follows

||| < T4+ DA -z (25)
for each k, where ||-|| denotes vector or matrix norm depending on the case. As k& — o0,
11 {| 26t s | < 0, T4+ D]l (26)

which approaches zero when the eigenvalues of A liein [Te +1| < 1.
(ii) Only if: The proof uses contradiction. Assume the opposite to what has to be

shown; i.e., that at least one of the eigenvalues of A lies outside the stability region.
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With the initial state selected to be the eigenvector p; associated with an eigenvalue A;

outside the stability region,

Jim |(TA+ I)*p4|
Jim [[(T'A; + 1)"p|
= lm (TA; + 1% - lpsl (2.7)

k]._l_.If‘()lo “ Zk,T lzero-input

does not approach zero. This contradicts the initial argument.O
Note that the rapprochement between the z and € planes is simply given as ¢ = (z—1)/7T
[29].

Necessary and sufficient conditions on the transfer functions of the individual discrete-
time controllers can also be developed to guarantee internal stability at the sampling

instants.

Theorem 2.3.2 Consider the sampled-data control system of Figure 1.4(b) where

Gorle) = % () = jl—ég Mr(e) = jlj—g; Lr(e) = j:—g (2.8)

The closed-loop system is internally stable at the sampling instants if and only if the
characteristic polynomial of the discrete-time closed-loop system, ds(e)(d;(g)ds(g)a(e) +

n;(e)nz(€)b()), has no roots in [Te + 1| > 1.«

Proof: Obvious, by noticing that the roots of the characteristic polynomial are the same
as the eigenvalues of the A matrix in (2.3).0
A consequence of internal stability at the sampling instants is given by the next

theorem.

Theorem 2.3.3 Consider a sampled-data control system which is internally stable at
the sampling instants, as illustrated in Figure 2.1. When the reference input, disturbance
and sensor noise are bounded at the sampling instants, then the following are bounded:

the discrete-time control input ugr, the sampled controlled output y,r, the input to
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Qr(e), and the outputs of the blocks I'r(g) and IIr(g). 0

Proof: Figure 2.1 shows the sampled-data control system with all the signals considered

at the sampling instants. In the figure, the capital letters denote the Delta transforms

of the corresponding discrete-time signals which are expressed in lower case letters. The

disturbance input could be arising in the discrete-time domain or be the sampled version

of dr = HSd, where d is a bounded continuous-time signal and H is the same hold

as that in the hold-equivalent model of the plant. The transfer functions relating the

exogenous inputs Rr(g), Dr(e) and Wr(g) to the outputs Er(e), Ur(e), Zr(e), Vr(e)

and Yr(e) are given in matrix form as

Er(e)
Ur(e)
Zr(g)
Vr(g)
Yz (e)

where

1
p(e)

Iz (e)d1(g)ds(e)a(e)
Iz (e)ni(e)ds(e)a(e)
Hr(e)n1(e)ds(€)b(e)
[z (e)n1(e)ns(e)b(e)
IIr(e)n;(e)ds(e)b(e)

—di (e)nz(e)b(e)
d1(g)ds(e)a(e)
dy(g)ds(e)b(e)
d1 (g)ns(e)b(e)
d;(g)ds(e)b(e)

—d;(e)ns(e)ale) |
—ny(£)ns()ale)
di (€)ds(e)ale)
di (e)ns(e)a(e)

—ny(e)na(e)ble)

p(e) = di(e)ds(e)a(e) + ni(e)na(e)b(e)-

RT(E)
Dr(e)
[/VT(E)

(2.9)

(2.10)

From the internal stability at the sampling instants of the closed-loop system, each trans-

fer function of (2.9) has all of its poles in |Te 4 1| < 1. Thus, exogenous inputs bounded

at the sampling instants result in bounded discrete-time loop signals [4].0
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Eice) Dre) —>Ur(¢)
R+(g) + L ¥+
*‘8—>HT(8) X {(e) @ > Gr(g) Yr(e)
V()
I T(8) < l
Vi(e) Z:(¢)

Figure 2.1: Discrete-time control system

The internal stability at the sampling instants as examined by Theorems 2.3.1 to

2.3.3 is connected to the input-output stability in Chapter 4.
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Chapter 3

Global Digital Redesign Methods

The primary aim of this chapter is to propose global digital redesign methods which solve
the issues of reducing the order and the number of controllers present in a PIM-based
control system. The secondary goal is to show the existence of alternative digital redesign
methods which are based on the matched pole-zero discretization of the closed-loop sys-
tem relating the reference input to the controlled output, and the discretization of the
PITF performed with a method other than the matched pole-zero technique. The chapter
is organized as follows. Section 3.1 presents the regular PIM method and two means of
solving the discrete-time polynomial Diophantine equation: the eliminant matrix method
and the state-space factorization. Three modified PIM methods are provided in Section
3.2. These are the truncated, the reduced-order, and the reduced-order plus truncated
PIM methods. The steps in obtaining the controllers with each method are detailed,
and in Subsection 3.2.2, the behavior as T — 0 and the stability of the discrete-time
control system obtained with the reduced-order PIM method are studied. Finally, two
alternative digital redesign methods based on the classical discretization of a closed-loop

system are given in Section 3.3.
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3.1 Regular Plant Input Mapping Method

A description of the steps involved in performing the regular PIM method and two means

of solving the Diophantine equation are provided in the next subsections.

3.1.1 Design Steps

The regular PIM-based discrete-time control system is obtained in four steps, as illus-

trated in Figure 1.1.

Step 1: Knowing the control blocks composing the internally stable continuous-time

control system of Figure 1.4(a) and the plant given by

=\ b(s) _ bnS™ 4+ bp_1s™ L 4 - - +by5 + b

G(s) = a(s)  @nS" + Byl 4o+ 315 + 3o (3-1)
where m< n, the continuous-time PITF H(s) can be calculated as
wooy _ _ Qs)I(s)
He) = 8T e)80) (3-2)
Furthermore, let
iy T8 o (s ply _ Ts(s)
Qs) = 36) II(s) = ()’ ['(s) T(s) (3.3)
and rewrite the PITF as
H(S) _ ﬁQ(S)ﬁl(S)H:;(S)E(S) (34)

— dy(s)da(s)ds(s)a(s) + da(s)m1(s)ma(s)b(s)

where the numerator degree is ¢ and that of the denominator is p.

Step 2: Discretize H(s) to Hy(e) using the matched pole-zero method such that the

36



following conditions are met [27]:

7131% Hr(e)| _eroy = H(s), pointwise in s,
— ==
Hr ()l e, = H(s)|

(3.5)

s=sg '’

where s is a real constant such that 0 < sg << 1, gg = (e®°T —1)/T, T > 0, and Hy(e) £
Hr(2)|,_rey,- For a state-space formulation of the matched pole-zero discretization, the

reader is referred to Appendix B.

Step 8: Discretize G(s) to the hold-equivalent discrete-time model G £ SGH with

transfer function

be)  bme™ 4 bm g™+ ... +bhie+ by

= 3.6
a(e) Ane™ + ap 1™+ ...+ aje+ag (3.6)

GT(E) =

where m< m < n. This model depends on the hold selected at the control input of the

sampled-data control system, as shown in Figure 1.4(b).

Step 4: Implement Hr(g) as an internally stable, single-loop feedback control system with
a structure as shown in Figure 1.4(b). In order to do so, first rewrite the discrete-time
PITF as

_ m(e)a(e)

Hr(e) = " 0= (3.7)

where m(g) is of degree (¢ —n) and is that polynomial in the numerator of Hr(e) whose

roots are different from the poles of the hold-equivalent model of the plant, and
d(g) = dpe® + dp_16P7 1 + ... + d12 + dp. (3.8)
Then solve the Diophantine equation given by

u(e)a(e) +v(e)b(e) = d(e) (3.9)

37



for u(e) and v(e), where

w(e) = we +u1e7 4+ ue +ug (3.10)

v(e) = v +v1€7 T 4.+ uie + . (3.11)

The conditions on the degrees of the polynomials in equation (3.9) which assure unique-
ness of the solution are detailed in Section 3.1.2. Once u(e) and v(e) have been found,
the transfer functions of the discrete-time controllers can always be obtained by letting
w(g) be an arbitrary stable polynomial of degree [, where r < and (¢ —n) < [, and then

calculating the controller transfer functions as

HT<e)=-’;%, Qr(e) = (()) Lr(e) = (()) (3.12)

A two-block implementation is possible whenever any of the following has its conditions

satisfied:

1. If u(e) is stable, r < ! and (¢ —n) <, set

liz(e) = T2, Qr(e) = 1, Te(e) = 29, (3.13)
2. If m(e) is stable and r < (g —n) < [, set

Ir(e) = 1, Da(e) = 5, Tr(e) = . (3.1
3. If v(e) is stable and (g — n) <+ < [, set

Mir(e) = 2, Or(e) = 23, orte) =1 (3.15)

Remarks 3.1.1 (i) A polynomial in € is stable when all its roots lie in |Te + 1| < 1.
(ii) The conditions on the stability of the polynomials w(e) in (3.12), u(e) in (3.13),

38



m(e) in (3.14) and v(e) in (3.15) arise because of the requirement for internal stability
of the closed-loop implementations, as formulated in Theorem 2.3.2. (iii) To apply the
regular PIM method to a general MIMO system, the reader is referred to [27]. Still, for
the particular case of a decoupled square system, where the off-diagonal elements of the
transfer matrices are zero, the procedure detailed above and the modified PIM methods
discussed in the following sections are applicable with each transfer function entry in the

diagonal of the MIMO system considered independently.

3.1.2 Solutions to Diophantine Equation

Two means of solving the discrete-time Diophantine equation (3.9) are presented.

Eliminant Matrix Method

From the coefficients of like powers on both sides of (3.9), the following equation is

obtained:
u oy
- -
an
Qn-1 b Ut
. " d,
: a b
ay Qn—1 bm Uo .
Qg : b() b -1 Up
m d]_
ax
do
N’
- o ~— bO A ot :)2'1 =Y

For example, suppose the discrete-time PITF and plant model have been calculated as

Hr(e) =

2e(e +0.9)(e + 2)

(€ + 3)(% + 5¢ + 16)
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0.5 +9
Gr(e) = s+ 09) (3-18)

for a given sampling period. With the degrees of u(g) and v(¢) set to{ =1 and r = 1,

respectively, the discrete-time Diophantine equation is

)(0.5¢ + 9)=¢> 4+ 8% + 31e + 48 (3.19)

N

(u1€ + uo)(e® + 0.9¢) + (vie + vg

A L —

-~

=u(e) =a(e) —v(e) —b(e) —d(e)

and the linear system of equations is obtained as

1 0 0 0 uy 1

09 1 05 O Ug 8
= (3.20)

0O 09 9 05 (1 31

0 0 0 9 Vg 48

Lemma 3.1.1 and Theorem 3.1.1 give the conditions which guarantee the existence
and uniqueness of the solution, provided p > 2n — 1. This is required to assure proper
controllers as obtained with equations (3.12) to (3.15). If this degree requirement is not
satisfied with the polynomials of the original system, add to H(s) a stable, biproper,
unity DC gain transfer function, £(s), of order greater than or equal to (2n — 1 — p) with
identical sets of poles and zeros. The second step in obtaining the PIM-based control

system then consists of discretizing H(s)X(s) to Hr(e).

Lemma 3.1.1 Given an irreducible plant G(s) = b(s)/a(s), its hold-equivalent model
Gr(e) = b(e)/a(e) is composed of coprime polynomials b(e) and a(e), provided T is
non-pathological. px

Proof: A transfer function with coprime polynomials can be minimally realized. With
the main assumption on the hold at control input, where the hold is such that it does

not introduce discrete-time zeros which cancel poles of the discrete-time plant model,

controllability and observability of a continuous-time system are preserved in the trans-
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formation to the hold-equivalent model of the plant with a non-pathological T'. The case
of a ZOH, which results in the step invariant model of the plant, is proven explicitly in
(4.0

Theorem 3.1.1 [29] Consider equation (3.16), where A € R®+UxU+m+2) and the de-
grees of u(e) and v(e) are set to l = p —n and r = n — 1, respectively. There exists a

unique solution X to (3.16) if and only if b(¢) and a(e) are coprime.x

Remarks 3.1.2 (i) When p = 2n — 1 and m = n, A is the Sylvester Matrix [73]
associated with Gr(g). (ii) The solution to AX =Y is obtained via Gaussian elimination
in this thesis [74].

State-Space Factorization

In order to use the state-space factorization method, H(s) should be of order 2n. If this
condition is not satisfied, add to H(s) a stable, biproper, unity DC gain transfer function,
3(s), of order equal to (2n—p) with identical sets of poles and zeros. Then, the second step
of the PIM method can be performed on £(s)H(s), resulting in Hr(¢), and equation (3.9)
can be solved as follows. Write the denominator polynomial of Hr(g) as d(e) = A(e) N (g),
where A(g) and M (e) are stable polynomials each of degree n. Express Gr(e) as a coprime
factorization Gr(e) = B(e)A™!(g), where A(e) = a(e)/A(e) and B(e) = b(e)/A(e) are
irreducible transfer functions. From the coprimeness of a(e) and b(g), there exist transfer
functions U (e) and V' (€), where U(e) = u(e)/N(g) and V' (e) = v(e)/N (), which satisfy
A(E)U(e) + B(e)V(e) = 1 [59]. To solve for U(e) and V(e), obtain a realization of
Gr(e), Cor(el — Agy) 'Bgy + Dg,, and select fr € R'™™™ such that the eigenvalues of
Ag, + Bg,fr equal the roots of A(¢). Select also hy € R™*! such that Ag,+hrCg, has

eigenvalues corresponding to the roots of A'(¢). Then set

U(e) = [Agy +brCq,, —Bgy —hrDagy, fr, 1] (3.21)
V(E) = [AGT+hTCGT: hT, f'_r, O] (322)
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from which the polynomials u(e) and v(e), of degrees | = n and r = n — 1, respectively,

can be found.

3.2 Modified Plant Input Mapping Methods

For simple, low-order control systems, such as those found in [26] and [31], uniquely
solving the Diophantine equation is a simple task, free from numerical problems and
polynomial degree constraints. However, in several applications, such as flight control,
engine control and position control of a disk drive system, the design is generally per-
formed on high-order plant models. For such cases, solving the discrete-time Diophantine
equation with the means of Section 3.1.2 may result in discrete-time controllers whose
orders are higher than those of the continuous-time control blocks. Furthermore, using
any of (3.12) to (3.15) in the fourth step of the PIM method can yield a sampled-data
control system with a greater number of control blocks than its continuous-time coun-
terpart. In order to provide ways to overcome the problems of increased controller order
and controller number, three new digital redesign methods are proposed in this section:

truncated PIM, reduced-order PIM and reduced-order plus truncated PIM methods.

3.2.1 Truncated Plant Input Mapping Method

This method bears its name from the fact that, whenever the regular PIM method is
used to discretize a continuous-time control system and the block [Ir(g) appears in the
implementation, whereas its continuous-time counterpart II(s} is not a dynamic block,
the controller IIr(e) is truncated to a gain block to preserve a closed-loop DC or low
frequency gain specification. The proposed truncated PIM method is carried out as
follows: perform steps 1 to 4 of the regular PIM method, except that in the fourth
step, with u(e) and v(g) known, the transfer functions of the discrete-time controllers are

calculated with any applicable equations which follow:
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—_ Y

1. Let w(e) be an arbitrary stable polynomial of degree [, where r < [ and (¢—n) < {

and set
_ m(e) w(e) _ v(e)
Ir(e) = w(@) |’ Qr(e) @’ Ir(e) = w(e) (3.23)
2. If u(e) is stable, r <! and (¢ — n) <, set
_ m(e) _ _ v(e)
Hr(e) = w(e) | Qr(e) =1, I'r(e) = () (3.24)
3. If v(e) is stable and (¢ — n) < r <[, set
_ m(e) _ v(e) _
r(e) = (@) |, Qr(e) = w@)’ r(e) =1 (3.25)

In the above equations, 0 < g5 << 1.

If one calculates the discrete-time PITF associated with the implementation resulting
from any of (3.23) to (3.25), the discrete-time closed-loop poles are the same as those
of Hr(e), which means that closed-loop internal stability at the sampling instants is
guaranteed. However, the zeros of any of these implementations differ from those of
Hr(e). For the controllers obtained with (3.23), if m(¢) has stable roots, the polynomial
w(e) can be selected such that its roots are stable and are as close as desired to those of

m(e). Of course, if one can set w(e) = m(e), [r(e) is unity.

3.2.2 Reduced-Order Plant Input Mapping Method

In the fourth step of the regular PIM technique, solving the discrete-time Diophantine
equation with the eliminant matrix method and the state-space factorization results in
discrete-time controllers with orders greater than or equal to (n — 1) and n, respectively,
even if the original controllers have lower orders. To keep the orders of the discrete-time

controllers as low as in the continuous-time case, the following procedure is proposed.
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Knowing (3.2) and (3.3), calculate d(s) by

4,(5)32(5)da(s) @(s)+ da(s)E()Ba(s) Bs) = d(s), (3.26)
=a(s) =i(s)
where
d(s) = dpsP+dp 18P + ... +d1s + do (3.27)
a(s) = st +u_18t .. TS + g (3.28)
T(s) = Tps® +Tp_18"t + ... + U185 + Tp. (3.29)

It should be emphasized that the polynomial degrees f and h are fixed for a given
continuous-time control system. As is done in the fourth step of the PIM method,
where equation (3.16) is obtained from the discrete-time Diophantine equation (3.9), as-
sociate to equation (3.26) the system of equations A X =Y, where A € RE+Ix(f+h+2)
X € R+b+Ix1 and ¥V € RP+D*1 have entries being the coefficients of the appropriate

powers of s in (3.26), as shown in equation (3.30).

f+1 h+1
Qn
Gn1 ben Us .
— A . : dp
An m—1 ‘- - —_
) B - Sl =13 (3.30)
a An—1 : - bm 0
ag : bo b1 Un 3
1
a —
_ _ do
60 bO Vo ~————
~ -~ = A — -~ —— =7

The key to the achievement of the present goal is to restrict the degrees of u(g) and v(e)

of the discrete-time Diophantine equation to be [ = f (f = p —n) and r = h, respectively,
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when (f + h + 1) < p. Then, by equating coefficients of like powers of € on both sides
of (3.9), there results the overdetermined system of equations (3.16). The dimensions of
A, X and Y, in (3.16), are the same as those of A, X and Y, in (3.30), respectively,
since | = f, r = h, the discrete-time plant model has the same order as that of the
continuous-time plant, that is n, and the denominator of the discrete-time PITF has the
same degree, p, as that of the continuous-time PITF. It is important to note that the
difference between the discrete-time system of equations A X=Y" and the continuous-time
system of equations A X=Y is that, in the former, Y and A are known and the system
of equations is solved for X, whereas, in the latter, A and X are known and Y comes
from the calculation of the continuous-time PITF.

The system of equations (3.16) can be solved in a least-squares sense [75] as
X = (ATA)'ATY (3.31)

where X is the least-squares estimator of X, provided A has full column rank. The
following theorem shows that the irreducibility of the transfer function of the discrete-

time plant model warrants the least-squares solution to (3.16).

Theorem 3.2.1 Consider equation (3.16), where the degrees of u(g) and v(e) are
[ =p—nandr < n—1,respectively, and r < [. There exists a unique solution to (3.16),

obtained in a least-squares sense, when 6(e) and a(z) are coprime.>a

Proof: For the case p > n+m — 1, the coprimeness of b(¢) and a(g) assures the full rank
of a square matrix A € RP+U*®P+1) when | = p —n and r = n — 1 from Theorem 3.1.1
since the theorem holds for the degree requirement p > n +m — 1 [29]. Thus, with the
degrees of u(e) and v(e) set to ! = p — n and r < n — 1, respectively, the non-square
matrix A € RPHx(+7+2) ip (3.16) possesses [+ + 2 linearly independent columns since
it can be formed from the aforementioned square matrix by removing n — r — 1 columns.
With the null space of A € ReTUxU+m+2) where | = p —n and 7 < n — 1, composed of

only the zero vector, the solution to (3.16) can be obtained in a least-squares sense with
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equation (3.31).

For the case p < n+m —1, consider the system of equations (3.32), which is obtained
from the Diophantine equation (3.9) in the manner explained in Section 3.1, where m = n,
p=n+m—1,1=p-—nand r =n—1. The degree m could be smaller than n, however

for simplicity only the case m = n is explicitly demonstrated.

ar, b,
Qn—-1 bn_1 Upn—1
. r d2n-1 ]
a, b
. = | dan (3-32)
a, Gn-1 by bn—1 Ug
ag bo Un-—1
n d,
ax .o by
do |
ag bo Vo ——————
~— _y A — —~— - =Y
=A =X

The degree r should be smaller than n — 1, according to the statement of the theorem,
although this would only require eliminating a certain number of columns from the A
matrix in (3.32), which does not alter the fact that the remaining columns are linearly
independent if the A matrix in (3.32) has full column rank. The basic idea of the proof is
to show that one can remove certain entries in the matrix and vectors of equation (3.32)
in order to obtain a system of equations corresponding to the case p < n +m — 1 whose
matrix has full column rank. To transform the system of equations (3.32) to a system of
equations corresponding to a Diophantine equation with degree p = n+m — 1 — j, where

j > 1 and m = n, requires filling with zeros the first j entries of the vector ¥ in (3.32)
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resulting in Y as shown in (3.33).

n—j n—j
0 - 0
0 .- . . .- 0 Un—j—1 0
an b : :
n = (3.33)
Ap_1 - bp_1 - Ug 0
Gn S b, Un—j—1 don—j—1
ag an-1 bo bn—1
Vo dO
ag bo | =‘;f’ =T”
=A’

Consequently, in equation (3.33), the polynomial u(e) has degree { = n — 1 — j, from
the fact | = p — n, and since it is assumed that r < [ the polynomial v(e) has degree
r =n —1— 3. The matrix A’ is the same as matrix A except for the columns of A
multiplying the first j entries of u(g) and of v(g) which have been taken out. With the
A matrix having full column rank, the columns composing A’ are linearly independent;
that is, A’ has full column rank. It is clear that the first j rows of A’ € R(Z?)*(22—2)
in (3.33) are filled with zeros. These rows can be removed without affecting the column
rank of A’ which is equal to (2n — 2j5). Hence, a matrix A in (3.32) with column rank
2n guarantees the full column rank (2n — 25) of the matrix A’ in (3.33), and the solution
to (3.16) can be obtained in a least-squares sense when p <n +m — 1.00
Remark 3.2.1 Numerically, (3.31) is solved with an algorithm using singular value
decomposition of A [74].

The discrete-time controller transfer functions can be obtained with any applicable
equations among (3.12)-(3.15) using the entries of X. However, to guarantee that the

orders of at least Qr(e) and ['r(g) are as low as in the continuous-time case, additional
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conditions must be imposed on the controller calculations for certain types of continuous-
time control systems. First, for a continuous-time control system composed of the blocks
Q(s) and TI(s) (T(s) = 1) or of the blocks I(s) and TI(s) (§(s) = 1), steps 1 to 3 of the
PIM process can be carried out by disregarding the block II(s), although the block must
be discretized with the matched pole-zero method to yield IIr(e) and be implemented as
in Figure 1.4(b). Then, knowing the entries of X, the discrete-time controller transfer
functions can be obtained with any applicable equations among (3.12) to (3.15). Second,
when either three control blocks are present in the continuous-time control system or
only Q(s) and T(s) are part of the closed-loop system, after having obtained X, write

the solution polynomials u(e) and v(e) as
u(e) = uy(e)us(e) (3.34)

and
v(e) = vi(e)va(e) (3.35)

such that the degree of u; (¢) equals that of d; (s), the degree of us(e) equals that of ds(s),
and similarly for the degrees of v,(g) and v3(€) with respect to those of & (s) and T3(s),
respectively. It should be noted that this procedure must not be done if it results in a
polynomial in € with complex coefficients in order to avoid controller transfer functions
with complex coefficients. If v;(€) and wusz(e) are stable, the degree of v, (¢) is less than
or equal to that of u,(g), the degree of v3(e) is less than or equal to that of uz(e), and
the degree of m(e) is less than or equal to that of v;(e)uz(eg), then the controllers can be

obtained as

__mle) _ u(e) _ usle)
@) = S owmE O = ue 7O = e (3-36)

As mentioned previously, for the 3-block continuous-time control system, the block II(s)
can be taken out of the PIM process and discretized locally with the matched pole-zero
method; therefore, the IIr(g) block given in (3.36) should be cascaded to the matched
pole-zero model of II(s), when steps 1 to 3 of the PIM method are performed with II(s)
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discarded.

The controllers form a system from Rr(e) to Ur(e) denoted as ﬁT(s). The resulting
sampled-data control system has the structure shown in Figure 1.4(b). The discrete-time
system ﬁT(s) has the same set of zeros as that of Hr(g), but different pole locations.
When Hr(g) has all of its poles in the stability region [Tc + 1| < 1, a DC gain or low-

frequency requirement can be met by cascading a gain K in front of ﬁT(s) such that
Hr(e) K= Hr ()] .—, - (3.37)

The behavior, as T — 0, and stability of the discrete-time control system are estab-

lished with the following lemma and theorems.

Lemma 3.2.1 Suppose that A, for each T selected, and A have full column rank.

Then the least-squares estimator X , obtained with (3.31), approaches X as T" — 0.x<

Proof: Since Gz(g) is a discrete-time model [13] of G(s) and Hr(¢) is a matched pole-
zero model of F(s), one can write A = A + AA and Y =Y + AY, where limr_oAA =
Op+1)x(t+r+2) and limp gAY = Opy1)x1. Knowing the solution X exists, if the columns
of A are linearly independent, the solution is unique and can still be expressed as

(A"A)"'A"Y. Then, 2 bound on the vector norm of X — X is

|X -X| < fir+ fox + foz (3.38)
where
fir = :(K +AA)" (A + AA)] (@& +2A)7| - Ay (3.39)
fr = |[@+a8)" @+ a8)] 7| |7 a7 (3.40)
for = |1+ (KTK) - (KTAA+AATK + AATAA)J .,
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1

{177 - &7 - “ (a"x)" (3.41)

With the knowledge of equations (3.39) to (3.41), given any £ > 0, there exists a 7T} such
that fir < &/3 for all T < T3, a T such that for < &/3 for all T < T5, and a T3 such
that f3r < &/3 for all T < T3. Choosing T < «, where « = min {T},75, T3}, implies
“)? —~ Y“ <E/3+&/3+¢€/3=¢€0

Theorem 3.2.2 There exists a 75 > 0 such that the system ﬁT(E)K has all of its poles
inside the stability region [Te + 1| < 1if 0 < T < T§. <

Proof: First, let Y =AX. Second, bound ”? — -}7“ as
17 -7 < 1= | -] + 12an- 1Z(- (3.42)

From Lemma 3.2.1, given any € > 0, there exists a « > 0 such that whenever T" < &,
”17 — ?“ < €. This means that the coefficients of the denominator polynomial of ﬁr(s),
c?(s), approach the corresponding coefficients of the denominator of H(s), as T — 0.

Thus, one can write
d(e) = (dp + Adp)eP + - - - + (dy + Ady)e + (do + Adp) (3.43)

where limr_0Ad; = 0 for 0 < j < p. Third, apply the w-transformation [36]

w

= 1-*-—'1-’11.1/5 (3.44)

£

-

to d(e) and write the polynomial as
d(w) = (d, + Ad w__\’ dy +Ad = do + Ady). (3.45
(w) = (dp + Adp) T=Tw/2 + -+ (di + Ady) T-Tw/2 + (do + Adp). (3.45)

Use the following facts: (i) the region of stability of the e-plane corresponds to the left-half

w-plane; (ii) when T is changed by an infinitesimal amount, the change in the coefficients
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of (3.45) can be set arbitrarily small and so can that of the poles of this equation [40];
that is, there is no jumps in pole locations with relatively small changes in the sampling
period; (iii) the roots of d(w) approach the poles of H(s), as T — 0. Then, Hr(¢)K has
all of its poles within the stability region [T + 1| < 1 for a sufficiently small 7.0

Remark 3.2.2 Let AXicat = Yioca: be the system of equations associated with a 1-
controller block control system obtained with a local digital redesign method. In this
system of equations, Xjocq is obtained from X, A comes from A and there is no guarantee
that the resulting Yiocar gives stable roots when expressed as a. polynomial in €. The
coefficients of the powers of ¢ in the discrete-time controller transfer function, which
correspond to the entries of Xj,.q, can be recovered by performing the least-squares
process on A Xjocat = Yiocar- On the other hand, AX = Y is the system of equations
associated with the reduced-order PIM-based control system, which is solved for X,
given A and Y are fixed for the sampling period selected. The sampling period used is
the same for the reduced-order PIM and the local digital redesign. With the least-squares
method carried out on A Xjpcar = Yiocwr and AX =Y, the superiority of the reduced-order
PIM method over the local digital redesign technique comes from the fact that ¥ forms a
polynomial with stable roots, whereas there is no guarantee that Y., gives stable roots

when expressed as a polynomial in €.

Theorem 3.2.3 Hy(e) .r_, - K converges to H(s), pointwise in s, as T — 0.5
e=Sg—

Proof: Since (i) Y = AX approaches Y as T — 0, from Lemma 3.2.1, (ii) the zeros of

ﬁT(E) equal those of Hr(e), and (iii) K is found from (3.37), it follows that, given any

€ > 0, there exists a v > 0 such that

ﬁT(s)I ey K —H(s)| <€ (3.46)

e=

for each fixed s in the region of convergence, whenever 7' < 7.0
Remarks 3.2.3 (i) It is clear that the difference between the reduced-order and regular

PIM methods lies in the closed-loop discrete-time pole locations. The simplest way to
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compare systems obtained with these two methods is to investigate the closed-loop poles
behavior. From Theorem 3.2.2, the poles of Hr (€) approach those of H(s) as the sampling
period is reduced. (ii) If it is desired to improve the performance of the closed-loop system
when the polynomial degrees of u(e) and v(e) of the discrete-time Diophantine equation
are set to [ = f and = = h, respectively, or if one is allowed to implement higher order
controllers, although of orders smaller than those obtained with the regular PIM method,
onecan set [ = f+ k) and r = h+ ky, where 0 < ks < k1,0 < k; < (n —2—f) and
ko < (p —2—f —h). As was done in the case of the polynomial degree requirements in
the Diophantine equation associated with the regular PIM method, one should add to
H(s) a stable, unity DC gain transfer function 3(s), of order k;, with identical sets of
poles and zeros. Then H(s)Z(s) is discretized to Hr(g) in the second step of the digital

redesign process.

3.2.3 Reduced-Order, Truncated Plant Input Mapping Method

This approach permits to restrict the number of controllers and their respective order.
The price paid for such a simplification is the fact that the discrete-time closed-loop poles
and zeros of the reduced-order, truncated PIM-based control system are different from
those of the PIM-based control system. The proposed reduced-order, truncated PIM
method is carried out as follows for a continuous-time control system where II(s) is a

constant block:

Step 1: Perform the steps of the reduced-order PIM method up to the controller calcu-

lations.

Step 2: Obtain the controllers with any applicable equations among (3.23) to (3.25).
These blocks form a system from Rr(e) to Ur(e) denoted as ﬁ;-(e).



Step 3: Place a gain K’ in front of ﬁ’T(s) such that

Hr(e)| - K= Hr(e)l (3.47)

e=eo

The poles of ﬁ;(é‘) are the same as those of Hr(¢). When the controllers are obtained
with (3.23) and m(e) has stable roots, the polynomial w(e) can be selected such that its
roots are stable and are as close as desired to those of m(e). This means that all the zeros
of ﬁ;(e) can be made arbitrarily close to those of Hr(g). When the implementation is
performed with (3.24) or (3.25), the zeros of ﬁ'T(s) are the roots of a(e)u(e) and a(e)v(e),

respectively.

3.3 Alternative Digital Redesign Methods Based on
the Classical Discretization of a Closed-Loop Sys-
tem

This section proposes two digital redesign methods which are based on the same rationale
as that of PIM: the use of classical discretization on a closed-loop system. The methods
are presented mainly to show the existence of alternatives to the PIM methods which
result in sampled-data control systems with the structure of Figure 1.4(b). Their details
can be found in Appendix C.

The first technique relies on the discretization of H(s) with hold-equivalent and nu-
merical integration methods. The steps in performing such digital redesign process are
given in Appendix C.1. The resulting discrete-time closed-loop system satisfies (3.5) and,
as is the case with the regular PIM method, internal stability at the sampling instants
is guaranteed. Also, depending on the manner in which the design steps are carried out,
truncated and reduced-order versions of the method can be obtained.

The second digital redesign method arises from the following interrogation. Knowing
that the PIM techniques rely on the discretization of the system relating the, external,
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reference input to the, internal, control input, from the viewpoint of exogenous input and
output, is it possible to use the matched pole-zero method on the system relating the
reference input to the controlled output, i.e. to perform a plant output mapping process?
The answer is yes, as long as the hold at control input is an integral part of the digital
redesign process. Appendix C.2 presents the steps involved in the plant output mapping
method. The main features of the method are the following: (i) given that the continuous-
time control system is internally stable, the sampled-data control system obtained with
the plant output mapping method is internally stable at the sampling instants, for any
non-pathological sampling period selected; and (ii) it can be interpreted as a procedure to
discrete-time model following control, where the reference model is the matched pole-zero
model of the system relating the reference input to the controlled output, except that
the method is applicable to non-minimum phase plants and restrictions are placed on
the hold at control input, as detailed in Appendix C.2, in order to obtain an intersample
behavior for the control input and the controlled output signals which is exempt of large

oscillations.
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Chapter 4

Analysis of Digitally Redesigned

Control Systems

The analysis of a sampled-data control system obtained with the digital redesign of a
continuous-time control system consists in its characterization and performance evalu-
ation. First of all, the characterization provided in this chapter is mainly concerned
with (i) the time-domain behavior of the control input, controlled output, and other loop
signals, (ii) the transfer functions of the discrete-time blocks, and (iii) the robustness char-
acteristics of the sampled-data control systems, all as the sampling period approaches
zero. The motivation of such study comes from the intuitive reasoning that a digitally
redesigned control system should approach, in some sense, its continuous-time counter-
part for sufficiently fast sampling rates. This idea is made clear in the present. Second of
all, the performances obtained with the PIM-based systems, described in Chapter 3, are
compared with those attained with systems based on the local digital redesign methods
by using the modern approaches to performance quantiﬁcation, as presented in Chapter
1. The performances are evaluated for any non-pathological sampling period, and not
just for fast sampling frequencies.

The chapter is organized as follows. In Section 4.1, the sampled-data and continuous-

time control systems are formulated under the lifting framework and the important hold
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condition in the timme domain is presented. This system representation forms the basis
of the propositions and theorems given in the chapter which pertain to the time-domain
behavior of sampled-data control systems. Section 4.2 addresses the issue of internal
stability at the sampling instants and its relation with input-output stability, as intro-
duced in Chapter 2. The development provided in Section 4.2 is different from the
input-output stability analysis which can be found in [32] and [33] since it is based on
the system formulation provided in Section 4.1, applies to the general 3-block structure
with the possibility that the hold at control input is different from the ZOH, and em-
phasizes control systems obtained with the local digital redesign and the PIM methods.
The main result of the time-domain characterization of sampled-data control systems is
given in Section 4.3, where the conditions achieving uniform-in-time convergence of the
control input and controlled output of a sampled-data control system to the respective
signals of the continuous-time control system, as 7' — 0, are established. In Section
4.4, the convergence in the transfer function of the discrete-time controller blocks to
their continuous-time counterpart, as 77 — 0, is defined. The theorems of Section 4.4
present the conditions achieving convergence in the transfer function. The consequence
of such block convergence to the behavior of the loop signals other than the control in-
put and controlled output is demonstrated. The robustness characteristics of PIM-based
sampled-data control systems are investigated in the limit in Section 4.5. The L? norm,
L* norm and ITAE index on the control-input and controlled-output errors, and the
induced norms of the systems relating the reference and disturbance inputs to the con-
trol input are the means utilized to quantify the performances of digitally redesigned
control systems. Their behavior with respect to the sampling period and the method of
digital redesign is investigated in Section 4.6. The control input and controlled output
responses of digitally redesigned control systems for relatively large sampling intervals

are also investigated in Section 4.6.
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4.1 Representation of Systems

Consider the systems in Figure 1.4. The lifted equivalent of the closed-loop continuous-
time control system is G H and that of the sampled-data control system is GHHzS.
The state, control input and controlled output equations of the system G H are given by

equations (4.1) to (4.3).

~ eAT _ T\ ~ j R _
6z 7(0) = Zrr(0) + = e T BT p(v)dv (4.1)
T T v=0 '
() = CeVZir(0)+C [ AT VBT r(v)dv + Drer(r) (4.2)
=0
5&,7’(7') = —66 6T%_k,r(o) + {D-é'éezT

‘{C ez(”-w)ﬁfr‘—\k,T(w)dw + —.D—%k,T(’U)}d'U (43)

w=0

In the equations, the reference input 7(t), state Z(t), control input T(t), and controlled
output F(¢) are lifted to {Fer(7)}°, {Zrr (7))}, {Ter(T)}, and {ﬁk'T(T)}?f 0<T<
T), respectively. Also, A € RP*?, B € RP*!, C € R'P, and D € R are the elements of
a realization of the continuous-time system H which corresponds to the composite state
when the states of the block realizations present in the continuous-time control system are
stacked according to Definition 2.3.1. Alternatively, one could calculate the continuous-
time PITF, obtain any realization from the PITF, and then utilize the elements [A4, B,
C, D] in the equations (4.1)-(4.3). In both cases, Z(t) is the state of H and Z; r(0) =
Z(t)|,—xr- The state-space elements of the continuous-time plant are Ag € R™*", Bz €

R™1 Cg € R, and Dg € R, the state of the plant realization is denoted as Zx(t),
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and %E,k,:r(o) = Ea(t)llzk'r“
The state, control input and controlled output equations of GHHS are given by
equations (4.4) to (4.6).

5:23/‘7,7' = A:L‘k,T-i-B%k,T(O) (4.4)
Ger(T) = H(T)Czir + H(T)D7r7(0) (4.5)

ifk,T('i‘) = Eaezarxgr,kj —+ (EgH(T)C
+ —0—5/ exﬁ("_”)ﬁ-@H(v)Cd'u) Tk T

=0

+(Cqx / eZE(T_“)EgH (v)Ddv

=0
+DgH(r)D)7e.r(0) (4.6)

As for the case of the continuous-time control system, the reference input 7(¢), con-
trol input uz(t) and controlled output yz(t) are lifted to {Ter(7)}5°, {Urr(7)}5°, and
{er(7)}8° (0 £ 7 < T), respectively. However, the closed-loop state is a discrete-time
signal and so is not lifted. In equations (4.4)-(4.6), A € RP*P, B € RP*! C € R!*P,
and D € R are the elements of a realization of the discrete-time system Hp. As in the
continuous-time control system, the realization of Hy could be that describing the com-
posite state or that obtained by first calculating the discrete-time PITF. In both cases,
zgr (k > 0) is the state of Hy. The former realization is useful to describe sampled-
data control systems obtained with a local digital redesign method, whereas the latter
realization is more suitable for the characterization of a PIM-based control system. In
equations (4.4) to (4.6), Fxr(0) = Trr(7) Ly the sequence {zg, rr}5° corresponds to

the state of the hold-equivalent model of the plant, and H(7) is the response function of
the hold.
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The hold condition in the time domain is defined as

lim sup |H(7)—-1]=0. (4.7)

T—0 g <r<T

When a hold satisfies this condition, reducing the sampling interval results in a decrease
in the supremum of the oscillations, if any, that are due to the hold at the control input.

For instance, consider the hold function given by
H(t)=1+7, 7€[0,T) (4.8)

which satisfies the hold condition (4.7). For a given 7', in each time interval [T, (k+1)T),
the supremum deviation of the control input ur(t) from the discrete-time control input
amplitude at the kth step, i.e. ugr, is equal to ugr - T. By reducing 7', the deviation in
each interval [kT, (k+ 1)T) can be made arbitrarily small. As another example, the most
common hold device is the ZOH which satisfies the equation supg<, .1 |H(7) — 1] = 0 for
each sampling period since its hold function is given by H(7) = 1. From now on in this
chapter, unless stated otherwise, the hold at control input is assumed to satisfy the hold
condition in the time domain.

It should be noted that the reference input to the continuous-time control system
can be different from that entering the sampled-data system. However, for simplicity of

notation, equations (4.1) to (4.6) use a unique description to the lifted reference inputs,

{Fer(m)}o-

4.2 Stability of Systems

The most important goal that must be achieved by a control system is closed-loop sta-
bility. In this section, internal stability at the sampling instants is connected to the
input-output stability of sampled-data control systems with Theorem 4.2.1. In the the-

orem, it is assumed that the reference input is bounded and, as stated in the main
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assumptions, that the sampling period is non-pathological with respect to the plant.

Theorem 4.2.1 If the sampled-data control system of Figure 1.4(b) is internally stable

at the sampling instants, it is also input-output stable.><

Proof: The norm equivalence between a continuous-time signal and its lifted form [56]
is used. Consider the lifted formulation of the sampled-data system given by equations
(4.4)-(4.6). Establishing input-output stability is equivalent to determining whether a
system subjected to an input in l%%[o,r) generates an output in l%%[o, T To do so, write
the composite state transition equation of the discrete-time closed-loop system, with zero

initial conditions, as

k—1
zer =Y  (TA+ 97T BF;7(0) (4.9)
j=0

where z r is as defined in (2.2}, to obtain the output equation given by

b
—

Ger(r) = C(7)- Y (TA+ )7 TBF;7(0) + D(r)Fe.1(0) (4.10)

-
1
o

where
.

C(r) = [le(p—ﬂ)! 563167-] + —D—'dH(T)O + 6@‘/ EZE(T_U)FaH('U)Cd’U (4.11)

v=0

D(r) = Cg / OeZE(T_")_B—gH(v)de-l-bEH(T)D. (4.12)

Applying the vector norm, the matrix norm, and the absolute value where it is appropriate,

the absolute value on the output sequence can be bounded as follows:

Gr)l < 1G-S [TA+ D T- B [F2(0)
=0

+1D(r)] - [Fuz(0)| (4.13)

for each £ > 0 and 7 € [0, 7). Since the reference input is bounded, there exists a 7, < co
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such that

sup ?k,T(O)[ = Tp. (4.14)
k>0

Then

sup { sup [Br()l} < swp IO 3 w4+ 17| T

k>0 lo<r<T =
IBll - 7o+ sup |D(7)| - 7s. (4.15)
o<r<T

If the system is internally stable at the sampling instants, the A matrix has a set of

eigenvalues lying in the stability region of the e-plane, [T + 1| < 1, and [76]

S TA+IY||T < oo (4.16)
=0
It only remains to show that
sup [[C(7T)]| < o0 and sup |D(71)| < co. (4.17)
o<<T o<r<T

Thus,

s ICOI < sup [01xm, Cae™] ||+ [Daf -liCl sup_1E(7)]

(4.18)

+”6§” sup / eZE(T_")EEH (v)Cdv
v=0

0<T<T

which is finite, even if the plant is unstable, since 7 < 7' < oo and each element of the

plant and PITF realizations has a finite norm. Moreover,

sup |D(1)] < ||Cgl| sup / e (") B=H(v) Ddv
0<7<T v

0ST<T =0

+|Dg| - D] sup |H(T)| (4.19)
o<r<T

which is finite for each non-pathological T" € (0, 00) for the reasons mentioned previously
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and the fact the hold function H(7) is assumed to be bounded.O

Remark 4.2.1 Theorem 4.2.1 can be modified such that it applies to MIMO systems.
To do so, the absolute values should be substituted by vector or matrix norms, depending
on the context. In particular, the absolute value of the response function of the hold in
(4.7) should be changed to a matrix norm and the unity scalar should be replaced by
the identity matrix. For MIMO systems, the hold is represented by a matrix response
function with each of its entries satisfying the main assumptions on the hold function,
as given in Chapter 2.

Theorem 4.2.1 shows that, to achieve input-output stability, the discrete-time closed-
loop system should be internally stable and 7" should be non-pathological. However,
depending on the digital redesign method and the sampling period employed, internal
stability at the sampling instants can or cannot be achieved. For local digital redesign

methods, care must be exercised in the selection of the sampling period as detailed below.

Theorem 4.2.2 For a sampled-data control system obtained with the local digital
redesign of an internally stable continuous-time control system, there exists a 7* > 0
such that, whenever 77 < 7™ and is non-pathological with respect to the plant, the

sampled-data control system is internally stable at the sampling instants.>«
The following proposition is used in the proof of Theorem 4.2.2.

Proposition 4.2.1 The discrete-time system Gp, which is composed of a hold that
satisfies the hold condition in the time domain and the main assumptions provided in
Chapter 2, the linear time-invariant continuous-time plant G = [Ag, Bg, Cg, Dgl, and
the ideal sampler, has one realization with elements [Ag., Bgy, Car, Dgy] such that

AGT — "—4-62 BGT — —B-f;-, CGT . 5@, and DGT - ﬁa, as T — O.x
Proof: Given in Appendix A.O

Proof of Theorem 4.2.2: Local digital redesign of a control block using any equi-order
discretization method results in a discrete-time control block with at least one realization

comprising matrices approaching those corresponding ones of a continuous-time realiza-

62



tion, according to [14]. The same can be said about the hold-equivalent discrete-time
model of the plant, from Proposition 4.2.1. Consequently, with the sampled-data and
continuous-time control systems having the same structure, and the states of the closed-
loop discrete-time and continuous-time systems taken as composites of the local states,
knowing there exists a realization of each discrete-time block which approaches that of
its continuous-time counterpart as T' — 0, the A matrix of the closed-loop discrete-time
system approaches its continuous-time counterpart, and so do the eigenvalues. In fact,
for a small change in T', there results a small change in the matrix A and in its eigenval-
ues. The stability region of the e-plane, |Te + 1| < 1, is a circle centered at e = —1/T
with radius 1/7. When the sampling period is sufficiently small and the eigenvalues of
the A matrix of the composite state realization of the continuous-time system are in the
left-hand side of the s-plane, then the eigenvalues of the A matrix lie within the circle
of stability in the e-plane and stay in the stable region for any further reduction of T'.
The non-pathologicity of T' is needed for closed-loop stability in the sense that if T is
pathological with respect to the plant, it is possible that unstable poles of the plant be
unaccounted for by the control system and instability would result.O

The stability of a PIM-based sampled-data control system for either short or large

sampling periods can be established as follows.

Theorem 4.2.3 A sampled-data control system obtained from an internally stable
continuous-time control system with the regular PIM method, or its truncated version,

is internally stable at the sampling instants for all non-pathological sampling periods.><

Proof: The discrete-time PITF has poles within the stability region of the e-plane. The
implementation process of equations (3.12) to (3.15) assures internal stability.O
As mentioned in Section 3.2, for the reduced-order PIM method, and its truncated

alternative, stability can be guaranteed for a sufficiently small sampling period.
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4.3 Behavior of Control Input and Controlled Out-
put as 7' — 0

Generally, it is expected that the responses of a digitally redesigned control system can be
made as close as desired to those of a continuous-time control system that has satisfactory
characteristics, when both systems are subjected to the same reference input, by selecting
relatively fast sampling frequencies. In the present section, this intuitive idea is made
clear; that is, conditions which guarantee the uniform-in-time convergence as 7' — 0 of
the control input and controlled output responses of digitally redesigned control systems
to those corresponding signals of the continuous-time control system, from which the
digital redesign originates, are provided. Furthermore, for a brief investigation of the
Laplace transform behavior of such signals, as 7" — 0, the reader is referred to Appendix

D.
The following definition presents the reference inputs which are admitted in the study.

Definition 4.3.1 The admissible class of reference inputs to the control systems are
those which satisfy either: (i) both control systems are subjected to an input which
belongs to S; or is a staircase equivalent of a signal in Sy; or (ii) as T' — 0, the reference
input to the sampled-data control system converges uniformly in time to that of the
continuous-time control system, which lies in &;. >

Knowing the reference inputs which can be applied to the control systems, the fol-
lowing theorem provides the conditions on a sampled-data control system to achieve
uniform-in-time convergences of its control input and controlled output to the corre-

sponding signals of a continuous-time control system.

Theorem 4.3.1 Consider the continuous-time and sampled-data control systems de-
scribed by equations (4.1)-(4.6). Suppose that a state-space form for the sampled-data
control system has parameters A = A+AA, B = B+AB,C = C+AC,and D = D+AD,
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where the terms A- depend on A, B, C, D, and T, and satisfy

Hm AA=Opp,  Jim AB =0pq (4.20)

lim AC = 01xp, lim AD = 0.
T—0 T—0

Then: (i) HH7S is a sampled-data model of H, and (ii) @IHES is a sampled-data model
of @/-ﬁ D

Proof: Given in Appendix A for the sake of brevity.

Remark 4.3.1 Theorem 4.3.1 can be modified to consider the MIMO case. To do so,
the condition on the reference input as given by Definition 4.3.1 should apply to each
entry of the reference input vector, the absolute values found in (4.7) and in the proof
should be replaced by vector norms, and the unity scalar in (4.7) should be substituted
by the identity matrix.

The sampled-data control systems obtained with the local digital redesign methods,
and the regular and reduced-order PIM methods satisfy Theorem 4.3.1. A system ob-
tained with the reduced-order, truncated PIM method satisfies the theorem when the
controllers are calculated with either (3.24) or (3.25). In the case the controllers are
obtained with (3.23), if the coefficients of the powers of € in w(e) can be made arbitrarily
close to those corresponding ones in m(g), as T — 0, and if m(g) is stable then the result-
ing sampled-data control system satisfies Theorem 4.3.1. For systems obtained with the
truncated PIM method, the behavior, as 7' — 0, of the Diophantine equation solution
must first be assessed in order to determine if the systems satisfy the theorem. This is
done in Section 4.4.

A corollary to Theorem 4.3.1 provides the conditions on the individual controller

blocks to obtain a sampled-data model of a continuous-time control system.

Corollary 4.3.1 Consider the systems of Fig. 1.4. If the elements of realization of each
discrete-time block approach their respective continuous-time counterparts, as 77 — 0,

that is if Anp,., By, Chiy, and Dy, of the realization of [Ir(e) approach Ag, By, Cr, and
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D, respectively, of the realization of II(s), and similarly for the other blocks, then: (i)
H‘T-I—;TS' is a sampled-data model of H and (ii) GHHrS is a sampled-data model of éﬁ.m

Add the restriction that the L? norm is finite on the admissible reference input which
is applied to the continuous-time and sampled-data control systems. Then, Theorem
4.3.2 establishes the behavior, as T" — 0, of the L? norms of the differences in control

input and controlled output between sampled-data and continuous-time control systems.

Theorem 4.3.2 Consider the systems of Fig. 1.4, where fm is a sampled-data
model of H and GHHrS is a sampled-data model of G H. Also suppose that both control
systems are subjected to an input which belongs to S, or is a staircase equivalent of a

signal in S;, and has a finite L? norm. Then

x T\ R 0 1/2
) > / ’“k,T(T) —Ek,r('r)l dr| =0 (4.21)
- k=0 =0
and
oo T 1/2
. —_ ~ 2
’11*1£% [; /1_=0 ‘y’“-T(T) - yk,T(T)' d’r} = 0.0 (4.22)

The following propositions are used in the proof of Theorem 4.3.2.

Proposition 4.3.1 Let a signal 7(t) enter the ideal sampler of period T to obtain the
sequence {ry7}. Then, for any T, {rrr}5° € (%, the space of sequences of real numbers
having finite /? norm, if 7(¢) is in, or is a staircase equivalent of a signal in, S; and has

finite L2 norm.>
Proof: Given in Appendix A.O

Proposition 4.3.2 Consider the internally stable control system of Fig. 1.4(a). When
the reference input is in L?, then %(t) and 7(t) € L?, where L? is defined as the space
of continuous-time functions with finite L? norm given by equation (4.23) for the signal

7(t). o<
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7@l 2 = \/ /: :) [7(t)|* dt (4.23)

Proof: Given in Appendix A.O

Proposition 4.3.3 Consider the system of Fig. 1.4(b), which is internally stable at
the sampling instants for the given sampling period. Suppose the reference input belongs
to S or is a staircase equivalent of a signal in S; having a finite L2 norm. Furthermore,
assume that the hold satisfies the main assumptions given in Chapter 2 and the hold

condition in the time domain. Then ur(t) and yr(t) € L?.
Proof: Given in Appendix A.O

Proof of Theorem 4.3.2: First, for the control input signal, with the linearity of the
spaces, (ur(t) — u(t)) € L?. The lifted equivalent of the control-input error therefore

belongs in the space of lifted signals which have a finite norm as given by

o , 1V
[Z [ ) =B dr] . (4.24)

k=0

Since m is a sampled-data model of ﬁ, as T — 0 the integrand in (4.24) approaches
zero for each 7. Furthermore, for a given sampling period, as £ — oo, the discrete-time
control input u 7 approaches zero [77] whereas Ty, 7-(7) — 0 for each 7. Thus, the 2-norm
of the control-input error can be made arbitrarily small with a sufficiently short sampling
period. Second, for the controlled output, the development is similar to that carried out
for the control input.0

Remark 4.3.2 A reference input which lies in Sy and has a finite L2 norm can be
admitted in Theorem 4.3.2 as long as it is passed through a strictly proper, stable,
linear, time-invariant continuous-time system before entering the sampled-data control

system. Then the output of this so called filter lies in S; and has a finite L? norm [77].

67



4.4 Convergence of the Controller Blocks and Loop
Signals as T — 0

In order to assess if the input/output behavior of each discrete-time controller block of a
digitally redesigned control system approaches that of the corresponding controller block
in the continuous-time control system, a convergence study of the individual discrete-
time controllers of PIM-based systems to their continuous-time counterparts, as " — 0,
is presented in this section. The convergence is that of the coefficients of a discrete-
time transfer function in the complex variable ¢, as defined in the following subsection.
Concerning the local digital redesign methods studied in the present, each coefficient
of a discrete-time controller transfer function is known to approach the corresponding
coefficient of the continuous-time controller transfer function counterpart [14]. As an
example, the coefficients of a discrete-time transfer function in € obtained by discretizing
a continuous-time block with the forward difference method [2] are the same as those
of the continuous-time transfer function, for any 7. In this case, the error between
coefficients of corresponding powers of s and ¢ is zero, no matter which sampling period
is selected in the design.

With the convergence of the discrete-time controller blocks known, the time-domain
behavior of the loop signals can be established in the following sense: if one connects a
discrete signal to the analog world with a digital-to-analog converter, the time trajectory
of the output of the digital-to-analog converter approaches uniformly in time that of the
corresponding signal of the continuous-time control system, as 7" is reduced. Figure 4.1

illustrates the situation, where the ZOH models the digital-to-analog converter.
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Figure 4.1: External connections for (a) the continuous-time and (b) the sampled-data

control systems

4.4.1 Preliminary Definition

The following definition clarifies the concept of convergence in the transfer function.

Definition 4.4.1 Consider the general linear, time-invariant discrete-time system

AT(E) =

Cn-€™ +---+Ci€+C ane” +an_ 1"+ +aig+ao
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where n*, n € Z*, and the linear, time-invariant continuous-time system represented as

GnS" +Tp 15" '+ -+ A5+ o

A(s) = = _ — . 4.26
(s) bps® +by_18" L+ .-+ b5+ bg ( )

Given that the a;s and &;s can be written as
a; = @; + Aaj, b; =b; + Ab;, for j=0,....,n (4.27)

then the discrete-time system Ar(g) is said to converge in the transfer function to A(s)
if
(i) 1];'3%) Aa; =0, 715% Ab; =0, forj=0,..,n
(ii) le% d; =d;, for j =0,...,n" (4.28)
(iii) %156 (¢;j—d;) =0, for j=0,...,n"
where Ej € R is fixed for j =0, ...,n* and at least one EJ- is non-zero. <

Note that the linear, time-invariant continuous-time system in Definition 4.4.1 can be

a gain.

4.4.2 Block Convergence

The convergence in the transfer function of the discrete-time controller blocks obtained
with the PIM methods is established in this subsection.

Consider the continuous-time control system of Figure 1.4(a), where there can be
up to three controller blocks having irreducible transfer functions given by (3.3). The
continuous-time PITF in (3.2) is rewritten as

H(s) = T%@. (4.29)

In (4.29) and the continuous-time Diophantine equation (3.26) associated with the control
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system, the known polynomials mi(s), %(s) and 7(s) are given by

m(s) = m(s)d2(s)da(s)
u(s) = di(s)da(s)da(s) (4-30)

o(s) = 01 (s)da(s)T3(s).

Assume that the degrees of 7i(s), u(s) and T(s) in (4.30) are, respectively, (¢ — n),
f=p—mnand h <n—1. It should be reminded that (¢ —n), f and h are fixed for a given
continuous-time control system. Let the discrete-time counterpart of Q(s) be Qr(g), that
of TI(s) be IIz(g), and that of (s) be I'z(¢). Furthermore, let a non-unity block denote a
block with a transfer function different from unity. Then, the main results of this section
can be presented.

Theorem 4.4.1 provides the conditions yielding convergence in the transfer function of
each discrete-time controller to its continuous-time counterpart when the 2-block discrete-

time implementation is selected.

Theorem 4.4.1 Consider the application of the regular PIM method to the continuous-
time control system of Figure 1.4(a), where one or two control blocks are non-unity and
the plant has irreducible transfer function. Each discrete-time controller converges in the
transfer function to its continuous-time counterpart as 7' — 0 if, in the fourth step of the
PIM method and for each non-pathological T selected, the eliminant matrix method is
used to solve the Diophantine equation and the discrete-time controllers are calculated
with any applicable equations among (3.13) to (3.15) such that each non-unity block
in the continuous-time control system has a non-unity counterpart in the discrete-time

control system.o<
The following propositions are used in the proof of Theorem 4.4.1.

Proposition 4.4.1 Consider the matrix equations A X = Y and AX = Y, where A
and A € R@P+D*@+) have full rank, and X, X, Y, and ¥ € R®+). The system of

equations A X = Y has entries being the coefficients of the appropriate powers of s
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in the continuous-time Diophantine equation (3.26) of a given continuous-time control
system, where f = p—n and h = n — 1, as shown in equation (3.30). Note that A and X
are known and are used to calculate Y. By performing the regular PIM method on the
continuous-time control system, as explained in Chapter 3, the discrete-time Diophantine
equation (3.9) is obtained, where the degrees of u(e) and v(e) are set to { = p —n and
T =n — 1, respectively. From (3.9), the system of equations AX = Y, shown in (3.16),
can be formulated. In this case, ¥ and A are known and the system of equations is

solved for X. Then, limr_q X = X.oa
Proof: Given in Appendix A.

Proposition 4.4.2 Suppose that a continuous-time control system has a Diophantine
equation (3.26) with polynomials T(s) and 7(s) of degrees f = p —n and h < n — 1,
respectively. Also, assume that the plant has irreducible transfer function and that the
denominator of the continuous-time PITF has degree p > 2n — 1. From the knowledge

of d(s), i.e. the denominator of the continuous-time PITF, the following Diophantine

equation can be formed:

(Togp 82 + ... + o) (Gns™+...4+G0)+ (T2,pps™ + ... + Tag) (bns™+---+bg) = dps?+...+do

= (s) =2 (s)

(4.31)
where the unknown polynomials U, (s) and T»(s) are set to the degrees f» = p — n and
ho = n — 1, respectively. Equation (4.31) can be solved uniquely for Ts(s) and vs(s)
with the eliminant matrix method by generating the system of equations (4.32), where
A, € RPTUX(+D) s of rank (p + 1), and X, ¥ € R®*Y. Then %(s) = %(s) and
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Ta(s) = T(s).a

En —~ _ -
— - U £, - T
Qn—1 bm dp
@ by _ Ep—l
— _ . . - U2,0 A 5
a @i ¢ e B = (4.32)
_ - - V2 hoy -
ap bo bm—-l . dl
a _ do ]
_ — V2,0 J ~——
| Qg bg ] \'—.—,_/—/ =Y
~ —— o =X2

Proof: Given in Appendix A.

Proposition 4.4.3 Let a continuous-time control system have the Diophantine equa-
tion (3.26) which is composed of the polynomials %(s) and 7(s) of degrees f = p —n and
h < n — 1, respectively. Furthermore, suppose that the plant has irreducible transfer
function and that p < 2n — 1. By multiplying the denominator of the continuous-time
PITF, i.e. d(s), by a stable factor ¢(s) of degree (2n — 1 —p) < c < (n — 1 — h), one
can form the following Diophantine equation, where Us(s) and 7s(s), of degrees set to

fs = f+ c and hy = h + ¢, respectively, are the unknowns:
Ua(s)a(s) + va(s)b(s) = H(s) - d(s)- (4.33)

The unique solution to equation (4.33) is @ (s) = @(s) - T(s) and Ta(s) = @(s) - B(s). b
Proof: Given in Appendix A.

Proof of Theorem 4.4.1: (i) Continuous-time control system. The main feature of a

continuous-time control system is that the polynomials %(s) and 7(s) given in (4.30)
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uniquely solve a Diophantine equation of the form
a(s)a(s) + v(s)b(s) = d(s) (4-34)

provided the plant transfer function G(s) = b(s)/@(s) is irreducible, as explained in the
proof of Proposition 4.4.2. Then, the controller transfer functions can be recovered by
using any equation among (4.35) to (4.37) whose unity block corresponds to that of, or

to one of the unity blocks of, the given continuous-time control system:

1. If @'(s) is stable, b’ < f’ and (¢ —n) < f’, set

Qs) =1, T(s) = ;8 (4.35)

2. If m'(s) is stable and h' < (¢’ —n) < f, set

™ (s) v'(s)

ﬁ(S) = l, ﬁ(s) = m, f(S) = m—,*(s). (4.36)
3. If 7'(s) is stable and (¢’ —n) < h’/ < f', set

= v _m(s) =, T() =,

II(s) = EIOR Qs) = ()’ [(s) =1. (4.37)

In equations (4.35) to (4.37), @ (s) either corresponds to %(s) or ¢(s) - u(s) depending
on the degree p, and similarly for 7(s) in terms of T(s) or @(s) -7(s). The multiplication
by the stable polynomial ¢(s), of degree (2n — 1 —p) < ¢ < (n — 1 — h), should take
place when p < 2n — 1. The relationship between the various solution polynomials is
given by Propositions 4.4.2 and 4.4.3. Also note that for the case p < 2n — 1, the
polynomial ¢(s) should also multiply the numerator of the continuous-time PITF to
yield 7' (s) = ¢(s)m(s). Thus, in the equations, 7'(s) either corresponds to ™i(s) or

&(s) - mi(s) depending on p. The degrees involved in equations (4.35) to (4.37) are as
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follows: h' is the degree of 7/(s), f’ is the degree of %'(s), and (¢’ — n) is the degree of
™ (s).

(ii) Discrete-time control system obtained with the regular PIM method. The degree of
d(e) in the discrete-time Diophantine equation (3.9) is assumed to be correctly set for
the use of the eliminant matrix method; that is, the continuous-time system has been
modified to meet the requirement p > 2n — 1, if necessary, in the second step of the
regular PIM method. This means that the polynomials u(e) and v(e) have the same
degrees as the polynomials %'(s) and %’(s), respectively, which are introduced in part
(i) of the proof. Then, from Proposition 4.4.1, each coefficient of u(e) approaches the
coefficient of @'(s) of corresponding power of s, and similarly for v(e) with respect to
v'(s), as T — 0. Furthermore, since the regular PIM method provides convergence of
Hz(g) to H(s), in the transfer function sense, if one writes Hr(g) = m(e)a(e)/d(e), each
coefficient of m(g) approaches that of the corresponding power of s in m(s), or 7'(s),
depending on the case, as 7" — 0.

When one or two non-unity controller blocks are present in the continuous-time control
system, any of (3.13) to (3.15) can be used to obtain the discrete-time controllers as long
as the conditions of application of the equations are met and each non-unity continuous-
time controller has a non-unity discrete-time counterpart. Since the polynomials present
in these equations have each of their coefficients approaching that of the corresponding
power of s in the corresponding polynomial of the continuous-time system, as 7' — 0,
the controller convergence in the transfer function is obtained.O

Theorem 4.4.2 provides the conditions to achieve convergence in the transfer function
of each discrete-time block to its continuous-time counterpart when the 3-block discrete-

time implementation is chosen.

Theorem 4.4.2 When the regular PIM method is applied to the continuous-time con-
trol system of Figure 1.4(a), which has one, two or three non-unity control blocks and
a plant with irreducible transfer function, each discrete-time controller converges in the

transfer function to its continuous-time counterpart, as 7' — 0, if, in the fourth step of the
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PIM method and for each non-pathological T selected, the eliminant matrix method is
used to solve the Diophantine equation and the discrete-time controllers can be calculated
with (3.12), where each coefficient of the polynomial w(e) approaches the corresponding
coefficient of a polynomial defined as w(s) = 71 (s)d3(s)ds(s), provided Q(s) is minimum-
phase and I'(s) is stable.sx

Proof: (i) Continuous-time control system. Following the rationale of the proof of The-

orem 4.4.1, by letting W(s) = &,(s)d2(s)ds(s), the controller transfer functions can be

recovered by using

7'(s)
w(s)

_T()

w(s)

(4.38)

ﬁ(S) = ; 5 F(S) =

In the equations, @ (s), 7'(s) and 7/ (s) are defined as in part (i) of the proof of Theorem
4.4.1, whereas w'(s) either corresponds to w(s) or ¢(s) - W(s) depending on the degree p.
When p < 2n — 1, d(s), W(s) and (s) should be multiplied by a stable factor ¢(s), of
degree (2n—1—p) < ¢ < (n—1—h). From Propositions 4.4.2 and 4.4.3, @ (s) = ¢(s)%(s)
and 7' (s) = ¢(s)T(s).

(ii) Discrete-time control system obtained with the regular PIM method. The 3-block
discrete-time implementation should be chosen if three controllers are present in the
continuous-time control system or if none of (3.13) to (3.15) has its conditions sat-
isfied. For this, define w(e) = n;(e)da(e)ds(e) or w'(e) = ¢(e)w(e), depending on
the original continuous-time PITF, as stable polynomials of degrees equal to those of
w(s) = m;(s)da(s)da(s) or @W'(s) = ¢(s)@W(s). Let each coefficient of ¢(g), n;i(e), da(e)
and d3(e) approach that of the corresponding power of s in @(s), @i (s), da(s) and da(s),
respectively, as 7' — 0. Equation (3.12) then serves to calculate the discrete-time con-
troller blocks with the appropriate polynomial w(g) or w'(g) utilized. Since m(e) — m(s),
or m(e) — '(s) depending on p, w(e) — W(s), w'(e) — W(s), u(e) — w(s) and
v(e) — T(s), as T — 0, in terms of their polynomial coefficients, for instance each coef-

ficient of m(e) approaches the corresponding coefficient of 772(s), the convergence in the
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transfer function of each discrete-time controller block to its continuous-time counterpart
is assured.

It must be emphasized that the conditions pertaining to §(s) being minimum-phase
and I['(s) being stable concern the internal stability of the discrete-time closed-loop system
at relatively short sampling intervals since some roots of w(e) approach the zeros of Q(s)
whereas some other roots approach the poles of I'(s), as T — 0. If the aforementioned
conditions on Q(s) and T'(s) are not satisfied, the closed-loop sampled-data system is not
internally stable at the sampling instants.O

For the truncated PIM method, when the conditions of Theorems 4.4.1 and 4.4.2 are
satisfied, each discrete-time block converges in the transfer function to its continuous-time
counterpart. For the reduced-order PIM method, with the convergence of the polynomials
u(e) and v(g) to u(s) and T(s), respectively, in terms of the coefficients, and the conditions
of Theorems 4.4.1 and 4.4.2 satisfied, except for the Diophantine equation which is solved
with the least-squares method instead of the eliminant matrix method, each discrete-
time controller converges in the transfer function to its continuous-time counterpart.
Knowing the convergence of the blocks for the reduced-order and truncated PIM methods,
the convergence of the controllers obtained with the reduced-order plus truncated PIM

method is obvious.

4.4.3 Loop Signal Convergence

Knowing the convergence in the transfer function of each discrete-time controller block,
the time-domain behavior of the loop signals as 7" — 0 can be determined. The following
theorem establishes the conditions which guarantee the uniform-in-time convergence of
the loop signals of a digitally redesigned control system to the corresponding signals in

the continuous-time control system.

Theorem 4.4.3 Sufficient conditions to assure uniform-in-time convergence of the loop
signals pr(t), vr(t) and er(t) of the digitally redesigned control system of Figure 4.1(b)

to respectively 7(t), T(t) and €(t) of the linear, time-invariant continuous-time system
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of Figure 4.1(a) are that: (i) the reference input is in &7 or is a staircase equivalent of
a signal in S;, (ii) the continuous-time and sampled-data control systems are internally
stable at the sampling instants, and (iii) the discrete-time controllers converge in the

transfer function to their continuous-time counterpart.ba
The following proposition is used in the proof of Theorem 4.4.3.

Proposition 4.4.4 Consider a general discrete-time system

_ (@a+ Dag) e + (@ay + Dan1) e+ - - - + (T + ANay)

- = (4.39)
€% + (ba1 + Dba_1)e™ 1 + - - - + (b + Abg)

WT(E)

where the @;s and b;s are the coefficients of the transfer function of a continuous-time

system given as
— TpS® + Bpo15™ L + -+ T

W(s) = = _—. 4.40
(5) = (4.40)
Then
lim Aa; =0 and lim Ab; =0for 7 =0,1,...,n (4.41)
T—0 T—0

if and only if there exists at least one realization of Wr(g) with elements (A + AA),
(B+AB), (C+AC) and (D +AD), where [A, B, C, D] are the elements of a realization

of the system W(s), such that

lim AA = Onxn: lim AB = 0nxl
T—0

T—0 (4.42)
]im Acz()l)(n, ].im AD =01x]_-N
T—0 T—0

Proof: Given in Appendix A.O

Proof of Theorem 4.4.3: (i) vr(t) : Write the transfer function relating Rr(e) to Vr(g) as

Vr(e) _ I'r(e)Gr(e)Qr(e)Ir(e) (4.43)
Ry (e) 1+ T (e)Gr(e)Qr(e) ’

and proceed similarly for the continuous-time transfer function relating V'(s) to R(s).
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When each discrete-time block has the same order as that of its continuous-time coun-
terpart, as is the case when discretizing each continuous-time block to obtain equi-order
discrete-time models, the conditions of the theorem assure uniform-in-time convergence
of vr(t) to T(t) by using Proposition 4.4.4, and a variant of Theorem 4.3.1. When some,
or all, discrete-time blocks have order larger than their continuous-time counterpart, by
n*, while they converge in transfer function to these according to Definition 4.4.1, one
can multiply the continuous-time blocks concerned with such convergence by a stable

biproper transfer function with identical sets of poles and zeros, such as

-8 4 -+ dis + dg
.S 4o 4 dis 4+ dy

:&I £

in reference to Definition 4.4.1. Performing such modifications to the continuous-time
control system does not affect the input-output behavior of each continuous-time block
and is done strictly for demonstrative purposes. Then, Proposition 4.4.4 and a variant
of Theorem 4.3.1 can be applied and the uniform-in-time convergence demonstrated.

(ii) er(t) : Perform the same process as in (i) except that the transfer function relating

Rr(e) to ET(g), ( ) . ( )
Er(e _ r(e
Rr(e) 1+ TDr(e)Gr(e)r(e)’ (4.44)

is now considered.

(iii) pr(¢) : The signal can be expressed as pr = HIl7S7, where the hold H is the
ZOH, ¥ € S or is a staircase equivalent of a signal in Sy, and Il (€) has all its poles within
the stability region of the e-plane for each 7T selected. Two cases are possible, either II(s)
is a dynamic block and IIy(e) converges in transfer function to this system, or IL(s) = K
and I1r(g) converges to this non-zero gain. For the former case, one can perform a process
similar to that carried out in part (i), except that the system IIr(e) replaces the system
relating Rr(g) to Vr(e). For the latter case, the continuous-time signal can be written
as p(t) = K -7(¢). The discrete-time block can be realized as lIr(e) = [An, B, Co, Dul,
where limz_ [|Cr|| = 0 and limy_Dp = K from the convergence of II(g) to K. The
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lifted form of pr(t) is given by

k-1
Ber(t) =Y Cu(TAn + I)*~' - TBur;r(0) + D - T (0). (4.45)
j=0

Therefore, using the lifted form of the signal p(¢), one can write

k—1
ﬁle(T) - :ﬁk'T(’r)l = Z CH(TA[[ -+ I)k—j—l . TBH%J',T(O) -+ Dr[ - ’F\k'T(O) —_ ? . %k,T(T) -
7=0

(4.46)
Taking the limit on a bound on the supremum yields

limsup { sup ,ﬁk,’f("') _ﬁk,r("')!}
T—0k>0 (0<r<T

< lim ICall - |Bull Y (T A + IV ||-T -

7=0
+ limsup { sup IDH ~?k;_p(0) -K- ThT — ?wk,T(T)I} (4.47)
T=0k>0 lo<r<T
where 7 is the supremum of the reference input and ;‘:k,T(T) =rr+wer(T),for0 <7 <
T, with the meaning of the variable component of 7 7(7), i.e. wi(7), being more easily
understood by looking at Figure A.1 in Appendix A. Simplifying:

zLirc(L)sup { sup ,ﬁk,r(’f’) _ﬁk,T(T)j}
—04>0

0<<T

< Jim ICall - IBall - > [[(TAn + D - T - m

7=0
+ lim |Dg — K| -7 + |K|- limsup { sup lwk,T('r)|} . (4.48)
T—0 T—0k>0 (0<r<T
The limiting behavior of wir(7) is given as
lim sup sup [wk'T(T)[} =0 (4.49)
T—0p<k<oo | 0<T<T
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when the reference input is in S;, or as

sup { sup Iwk,T('r)l} =0, VT (4.50)

0<k<oo LO0<r<T

when the reference input is a staircase equivalent of a signal in S;— see Proposition
A.1l in Appendix A. Then, with a sufficiently small sampling period, each term on the
right-hand side of (4.48) can be made as small as desired.Cl

4.5 Robustness Characteristics of PIM-Based Sampled-
Data Control Systems as 7" — 0

The PIM methods revolve around the transfer function from the reference input to the
control input without considering other characteristics of closed-loop systems such as
disturbance rejection and sensitivity to changes in parameters of the controllers and
plant. On the other hand, sampled-data control systems obtained with the local digital
redesign methods possess robustness properties, perceived in discrete-time, which can
be shown to approach those of the continuous-time control system as 7T is reduced. In
order to guarantee known behaviors for the disturbance responses and sensitivities of
PIM-based sampled-data systems, at least as T — 0, the following developments show
that it is required that the solution to the discrete-time Diophantine equation approaches
that of the continuous-time equation, in some sense, as the sampling period is reduced.

The discrete-time sensitivity functions are first investigated. Then, the behavior in
the time-domain of the disturbance responses of a digitally redesigned control system is

assessed for the case when the sampling interval is made arbitrarily small.

4.5.1 Sensitivity to Controller and Plant Uncertainties

Consider the closed-loop transfer functions M(s), which relates R(s) to Y (s) as shown
in Figure 1.4(a), and Mz(g), which relates Rr(e) to Yr(e) in Figure 1.4(b), i.e. My £
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SGHHS, where Y7 (g) denotes the Delta transform of the sampled controlled output;
that is,

Yr(e) = D {Gr(0)} =) Gir(0)(Te + 1)7FT. (4.51)
k=0

The sensitivities to variations in the plant transfer functions G(s) and Gr(g) are given
by ?gf(s) = 1/(1 + Q(s)T(s)G(s)) for the continuous-time system and as Sg*(e) =
1/(1 + Qr(e)L'r(e)Gr(e)) for the discrete-time system. Similarly, the sensitivities of the
closed-loop systems to small changes in the controller block transfer functions are given

as:

M —M _ —Q(s)G(s)T(s)
St(s) =1, 5 (s) = SE) L+ Q(s)L(s)C(s) (452)

The next theorem gives the relationships between the discrete-time and continuous-time

sensitivities, as T — 0.

Theorem 4.5.1 Consider a general 3-block sampled-data control system shown in Fig-
ure 1.4(b) which has been obtained by performing the regular, the truncated, the reduced-
order or the reduced-order plus truncated PIM method on the system of Figure 1.4(a).
When the coefficients of the solution polynomials u{e) and v(e) of the discrete-time Dio-
phantine equation (3.9) converge to those of u(s) and T(s), respectively, of (3.26), or to
those of the modified version of the equation when p < 2n —1, each discrete-time sensitiv-
ity function, as given by (4.53 ), converges in the transfer function to the corresponding

sensitivity function of the continuous-time control system, given by (4.52), as 7 — 0.«
Proof: The proof is shown for ngrT(s) and S[IY;T(E). First, for Sg[TT (e),

1
1+ Qr(e)l'r(e)Gr(e)
_ u(e)a(e)
~ ue)ale) + v(e)b(e) (4.54)

S¥r(e) =
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whatever is the implementation chosen among equations (3.12) to (3.15) and (3.23) to

(3.25). On the other hand,

—M 1
Sa() = 1+ Q(s)T(3)C(s)

_ u(s)a(s)
a(s)a(s) + o(s)b(s) (4.55)

where %u(s) and T(s) come from (3.26), or a modified version of the equation, and have
the same degrees as those of u(e) and v(e), respectively. With each coefficient of u(e)
approaching its counterpart in %(s), and similarly for v(e), and knowing that each co-
efficient of the numerator and denominator polynomials of the transfer function of the
hold-equivalent model of the plant approaches that of the plant transfer function, as

T — 0, the convergence in the transfer function is immediate. Second, for .S'I‘\"ITT (g),

Ty _ —u(e)b(e)
5t7 (€)= a0 o @6 (4.56)
and -
55(s) = ———2o)bls) (4.57)

a(s)a(s) + v(s)b(s)
The convergence in the transfer function is shown by using the same arguments as for

the case of SS\{[;' ().

4.5.2 Responses to Disturbance Input

Assume that the reference input is zero, i.e. 7(t) = O for all ¢t € [0, 0), and the only
non-zero exogenous input to the closed-loop continuous-time and sampled-data control
systems is a disturbance d() which lies in S} or is a staircase equivalent of a signal in
S1. The disturbance enters the sampled-data control system as shown in Figure 4.2(a),
where H is the ZOH. The reformulation of the system is shown in Figure 4.2(b), where
the reference input is discarded. A similar reformulation can be carried out for the

continuous-time control system.
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R + [z
[Ir(g) 5 QT(S) G(S) =YT(S)

[7(e) e—{ S }e

> Y1(s)

G(s)

I+(g)

(b)

Figure 4.2: Disturbance input to sampled-data control system

The next theorem establishes sufficient conditions to achieve uniform-in-time conver-
gence of the plant input and output of the sampled-data control system to those signals of
the continuous-time control system, as the sampling rate is increased, when the reference

input is zero and a disturbance is applied to both control systems.

Theorem 4.5.2 Consider a sampled-data control system which is internally stable
at the sampling instants, and has been obtained with the regular, the truncated, the
reduced-order or the reduced-order plus truncated PIM method. Suppose that the ref-
erence input to this system is set to zero over all time instants and that the hold at
control input is the ZOH. If the coefficients of the solution polynomials u(e) and v(g) of
the discrete-time Diophantine equation converge to those of %(s) and T(s), respectively,
of (3.26), or to those of the modified version of the equation when p < 2n — 1, and if

the fixed disturbance input E(t) lies in S} or is a staircase equivalent of a signal in 5,
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the control input and controlled output converge uniformly in time, as " — 0, to those
corresponding signals of the internally stable continuous-time control system which is

subjected to the same disturbance.c«

Proof: The lifted form of the disturbance input is denoted as di 1 + wyir(7) for & >
0 and 7 € [0,7), where dir is the staircase equivalent of the disturbance signal and
wakr(T)|,—o = 0. Equation (4.49) applies to wyxr(r) when d(¢) lies in S;, whereas
equation (4.50) holds true for wg s 7(7) when the reference input is a staircase equivalent
of a signal in &) (see Proposition A.l for the proof). From the linearity of the systems,
the disturbance response can be expressed as the sum of the outputs due to the staircase
equivalent of the disturbance and the intersample signal wq s (7). With the assumption
on the stability of the systems and the behavior of wqr(7), the supremum norms at
control input and controlled output, which are due to wg7(7), can be made arbitrarily
close to zero with a sufficiently small sampling period. Concerning the responses due
to the staircase equivalent of the disturbance, the sampled-data control system can be

reformulated as in Figure 4.3.

D(s) Dr(e) +, Ur(e)

H G(s) > Y1(s)

|Qr(e) [ T(e) [« S |

Figure 4.3: Disturbance as a staircase equivalent

The transfer function from the sampled disturbance input to the discrete-time control

input is

UT(E)
DT(E)

Say (€)

_ u(e)a(e)
~ w(e)ale) + v(e)b(e) (4.58)
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for all the controller equations (3.12) to (3.15) and (3.23) to (3.25). It is clear that
the discrete-time transfer function converges to its continuous-time counterpart as 7 is
reduced with the conditions set forth in the theorem. If this is so, there exists a realization
for the discrete-time system whose elements approach the corresponding elements of the
continuous-time system, according to Proposition 4.4.4. Using a variant of Theorem
4.3.1, where the disturbance to control input transfer function replaces the reference to
control input transfer function and d(t) is applied to the continuous-time and sampled-
data systems, the control input and controlled output of the sampled-data control system
converge uniformly in time to their continuous-time counterpart.0

With the above theorem satisfied, the systems relating the disturbance input to the
control input and the controlled output can be considered as sampled-data models of

their continuous-time counterparts.

4.6 Performance Evaluation of Sampled-Data Con-
trol Systems

In this section, three means of evaluating the performance of digitally redesigned control
systems, for any non-pathological sampling interval, are presented from a time-domain
perspective. These are: (i) norms of control-input and controlled-output errors between
the continuous-time and sampled-data control systems; (ii) induced norms, or system
gains, of sampled-data control systems; and (iii) ITAE index on the control-input and
controlled-output error signals.

These performance measures are motivated by the practical usefulness of bounding
the energy and maximum magnitude of a signal and by the simplicity in generating
plots of performance, i.e. a scalar, versus sampling period. On the one hand, norms
and ITAE index on the control-input and controlled-output errors are especially useful
when one wants to bound the error signals, and is interested in knowing for what range

of sampling periods the response of a sampled-data system remains within a specified
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tolerance of that of the continuous-time system. On the other hand, induced norms
provide least upper bounds on the energy and maximum magnitude of a signal, given
an input with known norm, and thus their use is relevant in that sense. Generally, since
the continuous-time control system is assumed to perform in a satisfactory fashion, the
preferred sampled-data control system is the one whose performances are the closest to
those of the continuous-time control system according to the quantification means put
forward in this section.

A practical example of the use of norms in sampled-data control is when one wants
to be able to guarantee that the threshold of control input magnitudes, which can be
restrained for instance because of actuators and saturation consideration, is not violated.
In such a case, the problem becomes one of determining the range of sampling periods
such that a sampled-data control system has a control input response within the tolerance.
Additional examples of the use of norms and ITAE index are: (i) to determine the range
of sampling periods for a sampled-data control system to reject input disturbances with
values of norm and ITAE index on the controlled output response being smaller than a
prescribed magnitude; (ii) to distinguish among the digital redesign methods tested which
ones possess a tracking error within a desired tolerance for a given sampling period; and
(iii) to obtain the range of sampling periods for which each digital redesign method offers
control-input and controlled-output error norms and index smaller than or equal to fixed
values.

At the end of the section, a time-domain characterization of the control-input and
controlled-output errors between sampled-data and continuous-time control systems is
established in order to complement the performance measures aforementioned. In par-
ticular, the effect of the movement of the closed-loop discrete-time poles with increasing

T on the responses of sampled-data control systems is clarified.
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4.6.1 Norms of Control-Input and Controlled-Output Error Sig-
nals

A designer often wants to know the range of T" values which can be used in a digital
redesign process such that upper bounds on the error signal’s L? and L* norms, as
defined in Section 1.2, are satisfied with the digitally redesigned control systems. Such
preoccupation may arise for practical reasons, such as actuator saturation, and/or per-
formance requirements, such as a relative closeness among the responses. The norms are
an indication of the deterioration of performance obtained with a digitally redesigned
control system from that of a continuous-time control system. Being able to determine
the range of sampling frequencies for which this deterioration is tolerable is one goal that
can be accomplished by using the L? and L° norms. The following theorem provides a
general rule that distinguishes among the regular PIM-based and locally redesigned con-
trol systems. [t should be noted that the restrictions on the admissible reference input,

defined in Section 4.3, apply to Theorem 4.6.1.

Theorem 4.6.1 For a sampled-data model of a continuous-time control system ob-
tained with the regular PIM method, or its truncated version, associated with each
finite, non-pathological sampling period is a finite, prescribed value 8 > 0 on the L? and
L®° norms of the control-input and controlled-output error signals. On the other hand,
for sampled-data models obtained with a local digital redesign, there is an upper limit
on the value of T, T' < T3 , such that a finite bound # can be met.cq

Proof: For sampled-data models obtained with the local digital redesign, from Theorem
4.2.2, Tg = T*, where T™ is the critical sampling period below which the sampled-
data system is internally stable at the sampling instants. If 0 < 7" < 7™, any non-zero,
finite bound can be met, from the definition of a sampled-data model. For sampled-data
models obtained with the regular PIM method, or its truncated version, since the closed-
loop discrete-time poles lie in the stable region of the discrete-time plane for all finite,

non-pathological T selected, finite bounds on the norms at control input and controlled
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output can be established for each fixed T.0
Remark 4.6.1 Theorem 4.6.1 does not say that any finite bound on the norm of an
error signal can be met by a PIM-based system for sampling periods at which sampled-
data control systems obtained with the local digital redesign methods are unstable. For
a particular control system and for sampling intervals which are relatively long, it is
possible that the error signal norms calculated for the PIM-based systems, although
finite, be larger than what is acceptable.

For sampled-data systems obtained with the reduced-order, and reduced-order plus
truncated PIM methods, unless the sampling period is sufficiently small, no guarantee

exists that a finite bound § can be met.

4.6.2 Induced Norm

In general, the gains of a digitally redesigned control system should be relatively close to
those of the continuous-time control system, for a given T, since then characteristics of the
sampled-data system such as disturbance rejection, maximum magnitude at control input
and at controlled output, and energy of control input and controlled output signals can
be as close as desired to those of the continuous-time control system. Knowing that the
continuous-time control system performs in a satisfactory fashion for the aforementioned
aspects, then so is the sampled-data control system.

The induced norm computations for systems relating reference and disturbance inputs
to control input and controlled output for a given sampling period are well established.
For instance, the L*°-induced norm of an internally stable sampled-data control system,
such as GHHzS, can be obtained according to an algorithm described in [62], whereas a
method to obtain the L2-induced norm of a system such as GHHyS can be found in [20].
The novelty of this subsection is the establishment of conditions which guarantee that
the L?- and L*-induced norms of a digitally redesigned sampled-data control system
approach, as T — 0, those respective induced norms of the continuous-time control

system from which the digital redesign originates, and the explanation of the difference
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in the induced norms between the regular PIM method, and its truncated version, and
the local digital redesign methods for relatively large sampling periods.

The L*-induced norm is first considered, followed by the L2-induced norm.

L*-Induced Norm

Theorem 4.6.2 establishes the behavior, as ' — 0, of the L*°-induced norm of the
sampled-data system HHrS, as shown on Figure 1.4(b). In the theorem, the admissi-
ble inputs are those which lie in Sy or are staircase equivalents of signals in Sy. It should
be noted that the theorem applies as well to the sampled-data system which relates
the disturbance input to the control input when the disturbance input is confined to be
a staircase equivalent of a signal in &g, as shown on Figure 4.2(a). In that case, the

sampled-data control system can be reformulated as in Figure 4.3.

Theorem 4.6.2 Consider a linear, time-invariant discrete-time system Hr = [A, B, C,
D) with sampling period T" and a linear, time-invariant continuous-time system H = [A,
B, C, D], where A, A € RP*?, B, B € RP*}, C, C € R'?, and D, D € R. With both
systems being internally stable, given A = A+ AA, B=B + AB, C = C + AC, and
D =D+ AD, and if

lim AA = Opup, Lim AB=0pxi, im AC =0y, Lim AD =0 (4.59)

then
lim || HHr S| oo = [[H]| (4.60)

where H is the ZOH and S is the ideal sampler, as defined in Section 1.2, both having
period 1.0

Proof: Given in Appendix A for the sake of brevity.Ol
Remark 4.6.2 It can be deduced from the proof of Theorem 4.6.2 that the [*°-induced

norm of a linear, time-invariant discrete-time system approaches the L°°-induced norm
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of a linear, time-invariant continuous-time system, as 7' — 0, when each element of at
least one realization of the discrete-time system approaches that of a realization of the
continuous-time system.

It follows that one analysis of sampled-data control systems based on the L>-induced
norm is to determine the range of sampling periods for which the following inequality is
satisfied

I HH7 S| oo — ||H| oo | < X (4.61)

where xr € R has been specified by the control designer. At least, from Theorem 4.6.2,
by sampling sufficiently fast, the bound in (4.61) can be satisfied for any xr. As an
example of the practical use of such design specification, consider the system relating
the disturbance input to the control input. If a disturbance input of unit L*° norm is
applied to the continuous-time and sampled-data control systems, then xr could be the
worst possible difference in supremum norms of the control inputs of the sampled-data
and continuous-time control systems which is physically tolerable.

For a 7" relatively long, the guarantee of internal stability of PIM-based systems results
in finite induced norms for such systems whereas this may not be the case for systems
obtained with the local digital redesign. Furthermore, due in part to the movement of
at least one closed-loop discrete-time pole toward the stability boundary on the e-plane,
with an increase in 7", as explained in subsection 4.6.4, the sampled-data system obtained
with the local digital redesign shows an impulse response g 7, & > 0, which becomes more
oscillatory. The consequence is that the value of the L*°-induced norm increases. This
adverse phenomenon does not take place with a sampled-data system obtained with the

regular PIM method, as detailed in subsection 4.6.4.

L2-Induced Norm

Theorem 4.6.3 provides the conditions which guarantee that the induced norm of HH7 S,
which maps signals lying in, or being staircase equivalents of signals in, S$; and having a

finite L? norm to signals with a finite L? norm, approaches the induced norm of H, acting
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on the same spaces, as T — 0. Without loss of generality, such induced norm is named
L?-induced norm in this subsection with the understanding that the input to HHS and
H is so restricted in order to warrant that the output of the sampler is a sequence with
finite [? norm, as clarified in Preposition 4.3.1. Furthermore, it should be mentioned that
a variant of the theorem can be applied to the system which relates the disturbance input
to the control input when the disturbance signal is a staircase equivalent of a signal in

S; with finite 2 norm.

Theorem 4.6.3 Consider a linear, time-invariant discrete-time system Hy = [A4, B, C,
D] with sampling period 7', and a linear, time-invariant continuous-time system H = [A,
B, C, D], where A, A€ RP*?, B, B € RP*1, C, C € R™?, and D, D € R. Both systems
are internally stable in their respective domain. Given A = A + AA, B = B + AB,
C=C+AC,and D=D + AD, if

iy AA = Opxp, Lim AB =0px1, lim AC =01y, lim AD =0 (4.62)

T—0

and the input to the sampled-data system HH7S and the continuous-time system H is
confined to lie in, or to be a staircase equivalent of a signal in, S; and to have finite L2

norm, then
lim [|HHrS|| 2 = |H]| - - < (4.63)

Proof: Given in Appendix A for the sake of brevity.O

Remarks 4.6.3 (i) The /2-induced norm of Hy is the H°° norm of its transfer function
[20]. The computational algorithm used to obtain the H* norm of the discrete-time
system is a binary search process [78] which is applied to the transfer function Hy(w).
The transfer function Hr(w) is obtained by transforming Hr(e) to the w domain [36] via

the inverse bilinear transformation

(4.64)
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(ii) From the proof of Theorem 4.6.3, the [?>-induced norm of a linear, time-invariant
discrete-time system such as My, which relates the sampled reference input to the sam-
pled controlled output, approaches the L?-induced norm of the linear, time-invariant
continuous-time system M, which is the system relating the reference input to the con-
trolled output, as 77 — 0, when each element of at least one realization of Mt approaches
that of a realization of M.

One advantage of the regular and truncated PIIM methods over the local digital re-
design in the context of the [>-induced norm of the discrete-time PITF Hr(g) is that
the poles and zeros of the discrete-time PITF obtained with PIM are known for each
T. With the local digital redesign methods, the movement of the poles and zeros with
an increasing 7T can result in an amplification of the supremum of the magnitude of the

frequency response. Subsection 4.6.4 treats the pole movement in more details.

4.6.3 ITAE index

The ITAE index Ir, on the signal e(t) € %’5[0 o0) is given by

Iy = / " le(t)] dt (4.65)

=0

where 0 < 7T; < oo is fixed. The index reduces contributions of the time response
errors occurring initially while it emphasizes errors which take place at later times, and
penalizes errors sustained over relatively long time periods. In this research, the ITAE
index is calculated for the error signals at control imput and controlled output between
the continuous-time and sampled-data control systems, and for the difference between
the constant reference input and the controlled cutput response. Obviously, a small value

of the ITAE index is desired, for a given sampling period. For a signal represented with

93



the continuous-time lifting, the expression for the ITAE index is alternatively given by

Q-1 .7 T:—QT
I, =» (7 + kT) |&xr(7)| dm + (r + QT) [egr(7)| dr (4.66)
k=0 /7=0

=0

for 0 < T; < oo and T; > QT assuming the integration and summation are finite, 7" and
T; are fixed, and 0 < (T; — QT) < T, where Q € Z*. A discrete-time approximation to
(4.66) can be obtained as

~ Q-1N-1 T T M T T
=y > (+i% ) B0 5+ 3 (T +ig ) sl (oD
k=0 7=0 j=0

where e is a vector of length N comprising the values of €, r(7) at time instants

T=jT/N for j =0,1,..., N — 1, as given by
. T
Ger = | Br(0), Bur(T/N), ---, Gur((N —1T/N) | (4.68)

and M corresponds to the number of time intervals of length 7/N in the span T; —
QT; that is M =int{N(T; — QT)/T}, where int{-} represents the integer portion of its
argument.

Theorem 4.6.4 For fixed T and T}, limy—oo I, =I7;. i

Proof: Since T and T; are fixed, the summations from 0 to M and from 0 to N—1 in (4.67)
are performed over fixed time intervals on the continuous-time axis. Suppose that € r(7)
is continuous over 7 € [0,T) for each step k. As N — oo, it follows that M — oo and the
vector e, r(Jj) increases in dimension for each £ > 0; that is, the vector takes values of
€,r(T) at more time instants within each lifting interval. With €xr(j) = €7 (7))l 1/
for j =0,1,..., N — 1, in the kth lifting period, let each point € r(j) be held constant

over the time frame 7'/N. Within a lifting interval, sum the norm of each element of the
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vector scaled by the partition size T//N. Then, for each k£ > 0, let NV — oo to obtain [79]

N-1 T T
Nh_%oz lex7(5)] N = / . [exr(7)| dr (4.69)
=0 =
N-1 .
. T_. ... T T
Nhi%oz %'ek'TU)l N = / OTIek,T(T)ldT (4.70)
=0 T==
Mo T T—OT
Al,ifgoz levr()l 5 = / i [€k7(7)| dr (4.71)
j=0 T=l
M. T,—QT
- jr . 7T _
lim ~lEr()l - = / T |k r(7)| d7. (4.72
N—co N N =0 I T l )

‘—0

Since the above limiting behaviors are valid for each £ > 0, it follows that f; approaches
I, asT — 0.0

In terms of the variations of the index with the sampling period, as T — 0, the ITAE
index on the difference between the constant reference input and the controlled output
response of the sampled-data system approaches that of the continuous-time control
system if it is a sampled-data model of the continuous-time system. Furthermore, when
the responses of the error systems (HHrS — H) and (GHH7S — GH) approach zero,
uniformly in time, as 7' — 0, so do their ITAE indices. For relatively large, and finite,
values of T', equation (4.67) is computed for a given sampled-data system and fixed value
of N, and the graph of f; versus 7' determines the performance of the sampled-data
system. The advantage of the regular and truncated PIM-based control systems over
those obtained with the local digital redesign is that stability can be achieved for the
relatively large sampling intervals and thus the ITAE index on an error signal can meet
a finite bound.

The following subsection gives helpful insight to the understanding of the responses
of digitally redesigned control systems for any non-pathological sampling period.
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4.6.4 Error System Responses to Inputs in S

The signal norms do not give information as to the shape of a response; for example,
signals with different transient behaviors can possess the same L* and L? norms. In
addition, it would be useful to have more insight as to the performances obtained with
the various digital redesign methods; for instance, the knowledge of the closed-loop pole
locations could complement the use of error signal norms and index in the performance
evaluation. In order to achieve the aforementioned objectives, this subsection studies the
responses of the error systems (H’ﬁ?‘s — ﬁ) and (éE}?TS -~ éﬁ), which are subjected
to a known set of reference inputs, as expressed in terms of the PITF, the plant and the
hold at control input. The restriction of the analysis to inputs in Ss, defined in Chapter
2, simplifies the notation and allows one to clearly understand the phenomena involved
in the control-input and controlled-output errors associated with the digital redesign
performed at relatively large sampling periods.
Any signal in S, can be expressed in the lifted form as follows: for a given 7" and step
k,
Fer(r) =Ckr, 0<T7<T, k>0, Cir €R. (4.73)

With the knowledge of the reference input and the representation of the continuous-time
and sampled-data control systems presented in Section 4.1, the influence of the closed-
loop discrete-time poles on the responses and the differences between the responses of

PIM-based and locally redesigned control systems are explained.

The control-input error is first presented followed by the controlled-output error.

Control-Input Error

In the equations that follow, the system representation of Section 4.1, more specifically

that found in equations (4.1) to (4.6), is used. Let

Rr(e) =D {%,C,T(T) ]mo} : (4.74)
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An expression for the control input response of the continuous-time control system is

- 3 oo | Adi(el — (T —DI)/T)L [I, AT By
Hrlr) = TP { - eI — (eAT —TI)/:IQI RT(s)}

+(C [ FIBuan+ D) - D {Rr(e)} (4.75)

=0

for k =0,1,2,..., and 7 € [0,7). In (4.75), Adj(-) represents the adjoint of its matrix
argument [76]. On the other hand, the control input response of the sampled-data system

is

CAdj(el — A)B
lel — A

Br(r) = H(r) - D { RT(e)} +H(r) DDV {Re()}.  (476)

e — —

Hence, the response of the error system (HH7S — H) is

U, r(T) — %k,T(T)

_1 [Adj(el — A)B

_ . 1

= H(r)C-D { el — A] Rﬂe)}/
=f1(T,k)

|eI — (eAT — I)/T|

=fa(7,k)

A Bdy — 5) DY {Rr(e)}. (4.77)

) — T A(T—v) B
_CeAr.p-1 {Adj (el — (e = D)/T)1 [yg "V Bav RT(E)}

N s’

+ (H(r)-D~5 '

v=0

—fa(Tk)

For a regular PIM-based sampled-data control system, using the hold-equivalent structure
of the matched pole-zero discrete-time model as described in Appendix B, the expression

for the control-input error can be written as:

e, (T) — Trr(T)
Adj(el — (e*T — I)/T) 4% [, eAT~) Hyrpz(v)Bdv - K Rp(e)
|eI — (eAT — I)/T| T

= H(r)C-D7! {
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e e | Adi(el — (€T = I)/T)E [ e T Bdy
Ce/™ . D71 { T (o —TI)/',Z?'I RT(E)}
+ (H (r)-KD~C ;0 AT Bdy — E) - DY {Rr(e)} (4.78)

fork=0,1,2,...and 7 € [0,T), where Hrpz represents the hold in the matched pole-zero
discrete-time model of the continuous-time PITF, as described in Appendix B.

The following observations can be made about the responses of the error systems to
inputs in S, for any non-pathological sampling period, according to equations (4.77) and
(4.78).

Observation I With hold and plant dynamics fixed, one can only modify Hr, and conse-
quently its elements of realization A, B, C and D, to obtain a satisfactory error system’s
output. In (4.77), to have the control-input error relatively small, fi(7, k) should be
close to fo(7, k), and f3(7, k) should be small for £ =0,1,2, ..., and 7 € [0,T). For all the
digital redesign methods, reducing 7" guarantees that f1(7, k) is as close as required to
fa(m, k), and that f3(7, k) is as small as needed over all times. On the other hand, when
T is set to a relatively large value, f3(7, k) generally has a significant magnitude, H(7)C

is a function very much disparate from Ce”™, and the zeros of the transfer functions

Adj(el — A)B
leI — A|

RT(E)

Adj(el — (AT —I)/ Tt [, io eAT—)Bdy

eI — (AT — I)/T] Ar(e)

can differ significantly.

Observation 2 For the regular PIM method and its truncated version,

leI — A| = |eI — (T — I)/T). (4.79)
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This is the most salient difference between regular PIM-based sampled-data control sys-
tems and systems obtained by using local digital redesign methods; that is, with the local
methods, the closed-loop poles can go everywhere when 7' is increased, whereas it is not

the case with the regular PIM method.

Observation 8 The poles of the discrete-time PITF of an internally stable, regular or
truncated PIM-based control system approach the location —1/T in the e-plane, as T —
oco. The influence of the closed-loop discrete-time poles on the control input response
is explained as follows. For a sampled-data system obtained with the regular or the
truncated PIM method, each discrete-time closed-loop pole A is given by

_ (-1

A
© T

(4.80)

where A, is a pole of the continuous-time PITF. As T — oo, the distance between
each pole A. and the stability boundary approaches zero. Furthermore, each pole ).
approaches the point —1/7 in the e-plane, as T' — oco. A discrete-time system with
poles at the location —1/7 in the e-plane, or equivalently the location 0 in the z-plane, is
known to settle to its steady-state value in a finite number of steps [2]. For a regular or a
truncated PIM-based control system, the control input response to a constant reference
input approaches to this so called deadbeat behavior, at the sampling instants, as T" — co.

From a continuous-time point of view, the complex discrete-time pole A; maps to a

pole in the s-plane, X's, according to
-~ 1
A, = T In(TA; + 1). (4.81)

If the sampling period is such that the upper limit of the primary strip in the s-plane,
given by jn /T, is larger than the complex part of the pole As of the continuous-time
PITF, then X'S equals ), [80]. However, for a sufficiently large T, ), is absent from the

primary strip. In such a case, X, is different from X,; in fact, X, has a smaller complex
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part, in absolute terms, than that of ),, although X; and A; have the same real part. This
means that, by increasing the sampling interval, the control input response of the PIM-
based control system approaches, at the sampling instants, the control input response of

a continuous-time system with stable real poles.

Observation 4 For a sampled-data control system obtained with a local digital redesign
method, the control input response to a constant reference input can be oscillatory when
the sampling interval is relatively large. This is explained as follows. First, it is known
that, for a given sampling period, when a discrete-time pole is relatively close to the
stability boundary, an oscillatory response is obtained [2]. For sampled-data systems
based on the local digital redesign method, as the sampling period is increased to 7,
the sampling period below which a system is internally stable according to Theorem
4.2.2, at least one pole of the discrete-time closed-loop system moves toward the stability
boundary. Second, with the local digital redesign there is no control over the movement of
the closed-loop discrete-time poles with 7. The consequence may be that some discrete-
time poles continualize to poles having small damping ratio since the real part of each
continualized pole is not fixed unlike the poles of PIM-based systems. Thus, systems
obtained with the local digital redesign and subjected to a constant reference input can
exhibit the oscillatory responses associated with complex poles with low damping ratios,
when T is relatively large, or equivalently to discrete-time poles close to the stability

boundary in the e-plane, as shown graphically in [2] and [5].

Observation 5 The time-domain expression (4.77) reveals that, in order to have an error
system’s output with zero amplitude at the sampling instants, one should discretize the
continuous-time PITF with the step invariant method [2] and select a hold H(r) at
control input which satisfies H(7)|,_, = 1. However, the structure of the sampled-data
control system, as shown in Figure 1.4(b), renders impossible such a process since the
set of discrete-time zeros of the discrete-time PITF includes the poles of the discrete-

time plant model, which cannot be achieved with a step invariant discretization of the
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continuous-time PITF.

Observation 6 In the case of a sampled-data system obtained with the regular or trun-
cated PIM method which is internally stable at the sampling instants and subjected to a
constant input, the maximum magnitude of its control input generally occurs in the time
interval [0,T) and has a known behavior as T' — oo, as explained next. The control-input

error over [0,7) is given by
170"_‘['(7-) - ao’T(T) = (H(T) . K-E— - U/ GI(T—U)Ed’U _— 5) - D-l {RT(E)} (4.82)
v=0

for the regular PIM-based system. When D = 0, for any value of T, the control input
of the sampled-data control system in the interval [0,7") has zero magnitude. When
D # 0, the gain K, obtained with equation (B.10), and the hold determine the control
input response of the PIM-based sampled-data control system. It can be shown, with
the development of Appendix B, that the discrete-time PITF, which is obtained by
discretizing the continuous-time PITF H(s) with the matched pole-zero method and is

expressed as

e? + nqs"_l + ...+ n1e+ 109

H = 4.
TlE) = K- 27 dyeP~L + ...+ die+do’ (4.83)
has the following limiting behavior:
. i (e + 1/T)wrev2
lim H ={lim K)- 4.84
T—co T(E) T—oo ) (5 +1 /T)p ( )

where w; + wy equals to the degree of the numerator polynomial, ¢, minus the number
of zeros in the region of the e-plane given by |Te + 1| > 1, w; represents the number of
zeros inside the stability boundary, we denotes the number of zeros at origin, and

(eo +1/T)P

§=50 ) (EO + 1/T)w1€16U2 - (485)

Hz, K = Hes)|
In equation (4.85), s, is a real number which satisfies 0 < s, << 1, and €, = (e®T —1)/T.
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If the discrete-time PITF is biproper and all of its zeros are within the stability boundary,

then
Jm K = H(s)|,_,, - (4.86)
In the case H(s) contains ws (> 1) zeros at origin, its DC gain is zero and ﬁ(s)lszs0 is

close to zero with a small value of so. Hence, for this case the gain K approaches zero as

the sampling interval increases; i.e.

H(s)| (0 + 1/T)P
— $=so | — I d
T—o0 K £g2 (g0 +1/T)™ 0, wi<p (4.87)

As an example, consider the continuous-time PITF

H(s) = 2.993s(s + 1)(s + 2.404)
T (s +3.471)(s2 + 4.724s + 20.728)

(4.88)

where one zero is at the origin, the remaining ones are in the stability region of the s-
plane, and the three poles are stable. The continuous-time PITF is discretized with the
matched pole-zero method to yield Hr(g) [14]. Let the systems H and Hr be subjected
to a unit step input and the ZOH be placed at the output of Hy. Equations (4.89) and
(4.90) give the discrete-time transfer functions for 7" = 0.1 and T = 5, respectively, and
Figure 4.4 shows the responses of H and Hy for various sampling periods. In the figure,
the solid line corresponds to the response of the continuous-time system. The figure
clearly shows that the control input of the sampled-data system approaches zero with an

increase in sampling period.

(g2 + 3.088¢ + 2.033)
€3 4 8.321¢2 + 32.041e + 47.617
g(e? + 0.399¢ + 0.04)

€3 +0.6e2 4 0.12¢ + 0.008

Hr(e) = 2.342. (4.89)

Hr(e) = 0.02 (4.90)



]
—
-

Figure 4.4: Control input responses for the example
For a continuous-time PITEF with at least one zero at origin and discretized with the
matched pole-zero method to a discrete-time PITF, the L* norm of the control-input
error approaches the supremum magnitude of the control input of the continuous-time
control system as T' — oo, whereas the L? norm of the control-input error approaches
the L? norm of the control input of the continuous-time control system as 7' — oo. This
is clearly an advantage of the PIM method over a local digital redesign method employed

on the same continuous-time control system.

Controlled-Output Error
For a sampled-data control system, the plant output can be expressed as

gk,T(T) =566X6T CL‘GT,[C_T-F (5@/ ezﬁ(r_v)ﬁgH('U)d’U + E@H(T)) Uk, T (4‘91)
N e’ R =0 o

=g (1) ~—
=g2(7)
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whereas the plant output of the continuous-time control system is

Yer(T) = 663161’%6,&7'(0) +Cs f e Bgt r(v)dv + Delir (7). (4.92)
v=0
Denoting
T (T) = Tk, 7(0) + W o (7)), Waer(0) =0, (4.93)

e —

the output of the error system (GHH,S — ﬁ) is

Uk,r(T) — ’ﬁk,T(T)

= qi(7)- (fCGT,k.T - ‘%a,k,T(O)) + g2(T) - ukr

_ 55 / eZa(f~v)§§dv +5§) ik,T(O)

=0

-

=ga(7)

— (65 / ezﬁ(”‘")gawu,kg(v)dv +5§'wu,k,T(T)) (4.94)

A= =O —

=g:(T)

where
~ | TAdj(er — €520y L [T AC-9Bgy .
Uk, 7(T) . =D} [ L (e;;{[;o Rr(e) p + D-D ' {Rr(e)}
v el — ——]
T
(4.95)
CAdj(el — A)B
UpT = D! { I-Z,'(I — A| ) RT(E)} +D-D7! {RT(E)} . (4-96)

The following observations can be made about the controlled output responses.

Observation I The difference between the state of the discrete-time plant model and
that of the continuous-time plant at the sampling instants, i.e. (Tg,x7 — %@-'k,T(O)), and
the discrete-time control input ug 7 are what distinguishes a digital redesign method from
another one, as perceived from the controlled-output error. The intersample behavior of

the controlled output of a sampled-data control system is dominated by the functions
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g1(7) and go(7), given in equation (4.91), which are fixed for a given hold, plant, and
value of T'.

Observation 2 When the sampling period is relatively large, the control input within the
time interval [0, T") significantly influences the rise time of the controlled output response.
In particular, depending on the value of D, the rise time can be long or short; that is,
D acts as a weighting factor whose magnitude directly affects the rise time. Moreover,

when D = 0, an increase in the sampling interval results in an increased time lag.

Observation 8 For a regular PIM-based system, as T° — oo, its controlled output re-
sponse at the sampling instants approaches that of a system with poles at —1/7" in the

e-plane. This fact can be seen by rewriting equation (4.91), for the sampling instants, as
Ter(N)lrmo = 91(T)lrmg - D7 {Xer(€)} + 92(7) ;o - D {Ur(e)} - (4.97)

The Delta transform of the state of the discrete-time plant model, i.e. Xg,(&), is obtained
in the second part of the proof of Theorem 4.3.1. There it is shown that the system
relating the discrete-time reference input to the discrete-time plant state has the same
set of poles as that of the discrete-time PITF, which are known to approach —1/7" in the

e-plane, as T — oo, for a regular or truncated PIM-based system.
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Chapter 5

Applications of Digitally Redesigned

Control Systems

In the preceding chapters, several characteristics of sampled-data systems obtained with
the digital redesign of a continuous-time control system were studied. In this chapter,
the performances of the digital redesign methods are evaluated and some of their char-
acteristics are investigated through five examples.

The first case involves an optimal digital redesign of a continuous-time control system,
which provides an alternative closed-loop discretization to the use of PIM. Two types of
controller implementations are tested: (i) an ideal setup, with floating-point arithmetic
and relatively large number of bits; and (ii) a worst-case scenario, with fixed-point arith-
metic and restricted number of bits. The comparison uses the step response plots of the
various sampled-data control systems to determine which digital redesign methods offer
the fastest rise time, the smallest overshoot, the shortest settling time, and the required
DC gain, and relies on the L*° and L? norms, and the ITAE index of the error signals.
The second case concerns the digital pitch attitude control system of the T-2 aircraft.
The time-domain performances of flight control systems based on the conventional local
discretization techniques are compared with those systems obtained with the PIM meth-

ods via numerical simulations. The disturbance-rejection behavior of the sampled-data
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control systems is also investigated. Thirdly, experiments are conducted on the control
of a voice-coil-driven flexible positioner system in order to study the effectiveness of the
proposed modified PIM methods and to compare them with the conventional approaches
under a real-time setting. The fourth practical case is the digital redesign of a gas-turbine
engine speed control system. The main objective in carrying out such a design is to em-
ploy the newly developed methods to a typical industrial application and assess their
performances against conventionally designed digital control laws. The fifth example
validates the convergence theorems derived in Chapter 4 for MIMO control systems.

The last section provides a summary of the results obtained with the digitally re-
designed control systems considered in this chapter.

It should be noted that the simulations for the first, second and fifth examples are
performed on Matlab/Simulink! whereas the gas-turbine engine simulations are carried

out with the software Matrixyx/SystemBuild?.

5.1 Example Taken from the Optimal Digital Re-
design Literature

The method of optimal digital redesign can be found in [24]. It consists in the following:
Given a continuous-time plant and a well-designed continuous-time controller, design a
discrete-time control system such that its continuous-time, closed-loop step responses,
at control input and controlled output, optimally match those of the continuous-time
system in the sense that a weighted sum of the energy of the associated error signals is
minimized. In [24], the conclusion is that the performance achieved with such an optimal
approach on a given control system is superior to that found with the local digital redesign
methods. The comparison is now further extended to include the PIM methods.

Consider the linear, time-invariant continuous-time control system used in [24] as a

Matlab and Simulink are registered trademarks of The MathWorks, Inc.
2Matrixx is a registered trademark and SystemBuild is a trademark of Integrated Systems, Inc.
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benchmark with the structure of Figure 1.4(a) and blocks given by:

_ 52410425+ 20 Gls) = 20
T 824 32.445 + 20’ ~ s(1 +s/10)(1 + s/30)

(5.1)

T(s) =1, T(s) = 1, Q(s)

Digital redesign is performed using the optimal technique of [24], the regular PIM method,
the regular plus truncated PIM method, and the Tustin’s and matched pole-zero dis-
cretizations of (s), for sampling periods of T' = 0.1 (which corresponds to half the rise
time ¢,) and 0.4, as used in [24]. In this case, the orders of (s) and G(s) are such that
the reduced-order PIM method is the same as the regular PIM method. The resulting
sampled-data control systems have the structure shown in Figure 1.4(b), where some
blocks can be unity depending on the digital redesign method used, with the ZOH at
control input.

The set of discrete-time controllers calculated with the various methods is given in
the following tables, where MPZ denotes the matched pole-zero discretization of the local
control block.

Optimal Digital Redesign

Q (s) __ 0.5115421.7625 +-377.1564+3370.8¢3 +16194e2 +39000 +35800
. ) T = T e6+49.271e5+971.98c1+9678.4c3+49803c2+117290=+ 78800
(with order reduction)

_ 0.098¢2+1.379+5.643  0.462e2+43.553¢45.643
Regular PIM Qr(e) = *Fiitoerse s+ UT(€) = Gosacriiarocason

__ 0.098¢2+1.379¢+5.643 _
Regular, Truncated PIM Qr(e) = “Frirmerseass » Ur(e) = 1
. —_ 0.588:2+4.648¢-+7.485
Tustin’s Method Qr(e) = =% R sd0et 85
__ 0.478£2+3.677e+45.840
MPZ Qr(e) = > o115 840

Table 5.1: Controller parameters for 7’ = 0.1
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Optimal Digital Redesign

QT(E) _ 0.16254:31.4653+4.252+7.2785+4.041
. - T e249.77e34-35.038:24+54.731e+31.414
(with order reduction) * * < F e+
__ 0.094240.47+0.586 __ 0.154e°%4.0.612e+0.586
Regular PIM QT(E) T 7 £2+45.426e+7.32 HT(E) T "0.094e2+0.47+0.586
Regular, Truncated PIM Qr(e) = QOU+04Te10586 T, () = 1
Tt __ 0.469e2+42.222e+2.413
Tustin’s Method Qr(e) = > +4§795 W
__ 0.364e%+1.453e+1.390
MPZ Qr(e) = =2+3.056e+1.390

Table 5.2: Controller parameters for 7" = 0.4

The next figures present the step responses at control input and controlled output, where

CT denotes the continuous-time system.

(2] 1.5 — —
—-—~  Tustin A
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Figure 5.1: (a) Control inputs and (b) controlled outputs for 7= 0.1
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Figure 5.2: (a) Control inputs and (b) controlled outputs for T = 0.4

The responses are almost identical for the regular PIM and optimal digital redesign
methods for both values of 7. On the other hand, the local digital redesign methods
result in unstable closed-loop systems at the largest sampling period, and the regular,
truncated PIM method offers no overshoot in the controlled output although it presents
a slow rise time for the two sampling periods. Hence, by comparing the behavior of the
regular and the regular, truncated PIM methods, one sees that the discrete-time zeros can
affect the rise time, a well-known result for continuous-time systems [5]. The sampled-
data control system resulting from the regular PIM method has one advantage over the
optimal digital redesign method: it consists of low order controllers. Yet, the regular
PIM-based sampled-data system possesses one drawback: two discrete-time controllers
are implemented instead of only one. This problem can be solved by using the regular,
truncated PIM method if a slower rise time is tolerable.

Tables 5.3 and 5.4 provide the performance measures as applied to the control-input
and controlled-output error signals. In the tables, for 7" = 0.4 , the norms and index are

not calculated for the Tustin’s and MPZ methods since they result in unstable closed-loop
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systems. For T = 0.1, the truncated PIM method offers the worst performance of all the
digital redesign techniques, whereas for both 7" = 0.1 and T" = 0.4 the optimal digital
redesign has a slight edge over the PIM method. This is especially true at the controlled
output and for T = 0.4 where the slower settling time of the PIM-based system as
compared to that of the system based on the optimal redesign, as seen on Figure 5.2(b),
renders the L2 norm and ITAE index of the error signal larger than those calculated for

the optimal redesign.

L L? ITAE

4.12 x 10! 8.68 x 1072 1.27 x 102
Tustin

5.22 x 107! 1.01 x 10! 2.22 x 1072
MPZ

5.38 x 107! 7.84 x 1072 2.18 x 10~3
PIM

8.46 x 10! 1.51 x 10~ 1.34 x 102
Truncated 9.02 x 10! 1.58 x 101 2.48 x 102
PIM 9.06 x 10! 1.60 x 107! 2.34 x 1072

490 x 107! 7.89 x 1072 2.49 x 10~3
Optimal

8.38 x 10! 1.52 x 10! 1.73 x 10~2

Table 5.3: Quantitative measures on the control-input errors for 7 = 0.1 (top of each

entry) and T = 0.4 (bottom)
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L™ L2 ITAE

2.27 x 10! 1.17 x 10! 5.42 x 10™2
Tustin

2.94 x 10! 1.52 x 107! 7.74 x 102
MPZ

6.88 x 102 2.85 x 10~2 5.81 x 103
PIM

4.87 x 1071 2.38 x 10! 6.89 x 102
Truncated 6.85 x 10™! 4.43 x 10! 2.04 x 10!
PIM 6.73 x 107! 4.21 x 107! 1.87 x 10~!

4.53 x 10~2 1.50 x 10~2 2.94 x 1073
Optimal

4.64 x 101! 2.20 x 107! 4.71 x 102

Table 5.4: Quantitative measures on the controlled-output errors for T'= 0.1 (top of

each entry) and 7" = 0.4 (bottom)

5.1.1 Simulations with Fixed-Point Arithmetic and Finite Num-
ber of Bits

A control system is truly practical when it performs relatively well under fixed- and/or
floating-point arithmetic and finite number of bits. With the worst-case scenario being
the fixed-point arithmetic computations, it is expected that the orders of the discrete-
time controllers should influence the performance of the sampled-data control system, as
opposed to the case when simulations are performed with floating-point arithmetic and a
relatively large number of bits, e.g. > 32. The discrete-time controllers of the sampled-
data control systems obtained with the optimal digital redesign and PIM methods are
subjected to fixed-point arithmetic, and 8- and 16-bit representations and computations

with scaling used when the coefficients of a transfer function lie outside the acceptable
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range of values. The step responses for 7" = 0.1 and T = 0.4 are shown in Figures 5.3

and 5.4.
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The graphs show that the regular PIM-based sampled-data control system with con-
trollers implemented with 8-bit controllers offers a superior performance to that obtained
with the regular, truncated PIM method and the optimal digital redesign method. It
is worth noticing that the control blocks obtained with the optimal digital redesign are
implemented with 8 bits for 77 = 0.1 and 16 bits for " = 0.4, and that doubling the
number of bits for 7" = 0.4 is still not sufficient for the optimal digital redesign to match

the performance attained with the regular PIM method.

5.2 Digital Flight Control of T-2 Aircraft
Consider the pitch-angle control system of the T-2 aircraft in the short period mode [81]
shown in Figure 5.5, where

s+ 2
s+20°

1 = 22.062s + 19.079

-1 - A(s) =
i1 20 =—a 5009 r 311 X9

(5.2)

In the figure, Go(s) represents the transfer function of the aircraft from the elevator
deflection, in radians, to the pitch rate (in rad./sec.), with poles at s = —1.0495+j1.4179.
G1(s) is the transfer function of the actuator from the controller’s output to the elevator
deflection, and (s) that of the lead controller, which sets the closed-loop poles at s =
—20.923, —8.0457, —1.377 4 j2.0321, —0.3761.

+ U(s) 8a(s) &) [1] 8

o) Q(s) » Gi(s) Ga(s) 2

Figure 5.5: Continuous-time pitch control system

Digital redesign is performed by discretizing the continuous-time PITF, which relates
O,ef(s) to U(s), with the PIM methods and by discretizing 2(s) with the matched pole-
zero and Tustin’s methods. The next figure shows the general block diagram of the
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digitally redesigned pitch control systems, where one or more controller blocks can be
unity.

B (s) + urs) [ Se.r(s) [ +(s) v
(<) Or(e) Gi(s) Ga(s) — S,I ! | o

+(c) 4—@4

Figure 5.6: Digitally redesigned pitch control system

The controllers obtained with the local digital redesign methods are

(1—-e2T) e+(1-—-e2T)T
10(1 —e2T) e+ (1—e20T)/T
e(Toor) + (or)

50
&+ (357

QT(E) =

(MPZ), (5.3)

Qr(e) (Tustin) (5.4)

whereas the blocks obtained with the PIM methods are given in the following tables for
the two extreme values of sampling period; that is, 7" = 0.05 second and 7" = 4.4 seconds.

Reduced-order Qr(e) = 25558

PIM () = 388l
Regular PIM Qr(c) = YAyt
(Elim. matrix) | TIp(e) = L8638 44.87e42.55
Regular PIM Qr(e) = R s
(State-space) Cr(e) = o,5657-1(;?3;:5ﬁgiz?iﬁ%;gﬁsm

Table 5.5: Controllers obtained with PIM for 7" = 0.05 second
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Reduced-order Qr(e) = 2420910007

PIM z(e) = Forctoser
Regular PIM | Qg(e) = 2050210020000 0047 £0.0004
(Elim. matrix) | IIp(g) = 33507e,+0.0200¢ -+0.0047¢+0.0004
Regular PIM i (e) = A e e o0
(State-space) T7(€) = sommes it o Ao o-6001

Table 5.6: Controller blocks obtained with the PIM methods for T° = 4.4 seconds

Each non-unity discrete-time controller is realized in the so called direct form II
structure [40]. The operator e~ is used as the basic operation on discrete-time signals
because of its superior numerical characteristics than z~! in the presence of a finite
number of bits [29, 48]. The control systems based on the local discretization become
unstable at around T" = /2 sec. using the matched pole-zero method, and T" = ¢, /4 sec.
using Tustin’s method, where ¢, (= 4.4 seconds) is the rise time of the continuous-time
control system’s step response. On the other hand, the reduced-order PIM-based control
system is stable for all the sampling periods tested.

The poles of the continuous-time PITF are calculated and mapped to the e-plane. The
poles of the discrete-time PITF of each sampled-data control system are also obtained.
Then, the relative error between each pole of each digitally redesigned sampled-data
control system and the closest pole of the continuous-time PITF', seen in the e-plane,
is calculated and the maximum pole relative error is determined for each sampled-data
system. Figure 5.7 shows the graph of the maximum closed-loop pole relative errors versus
T. The relative errors between the e-plane poles of the regular PIM-based system and
the continuous-time control system are zero. From the figure, one expects a deterioration
of the performances of the sampled-data control systems obtained with the local digital
redesign methods, with respect to that obtained with the continuous-time and PIM-based
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control systems, for 7" > 0.55 second.

12 o—0 MPZ
0——0 Reduced-order PIM

Maximum pole relative error

) " b " . ——

o 0.5 1 LS 2 25 3 35 4 45
Sampling period

Figure 5.7: Maximum closed-loop pole relative errors with T

Figure 5.8 shows the maximum relative differences between continuous-time and
discrete-time coefficients corresponding to the same powers of s in (s) and € in Qr(e),
respectively, for different sampling periods and for the matched pole-zero, Tustin’s and
PIM methods. Note that for the regular PIM method, Qr(e) approaches the following

as T — 0:
=,y _ (s+1)(s+2) (s+2)

2s) = (s +1)(s+2) (s+20) (5:5)

and so the comparison takes this fact into account. It is seen in the figure that as the
sampling period is reduced the differences in coefficients diminish, as expected from the
convergence in the transfer function of the blocks. Referring to the stability property of
the various sampled-data control systems, it can be appreciated from the figure that a

closed-loop system with coefficients of Qr(g) relatively close to those of £2(s) does not
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imply superior closed-loop performance for a given sampling period.
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0.3

Figure 5.8: Maximum relative differences between corresponding coefficients of Qr(¢)

and Q(s)

For the II7(e) block obtained with the PIM methods, it was found that each coefficient

in the numerator approaches that in the denominator.

5.2.1 Responses to Reference Input

Figure 5.9 provides graphs of pitch angle (t), pitch rate w(t) and elevator deflection &,(t)
of the continuous-time flight control system subjected to a signal 7(t) € S; described as
t/a, tel0,a
7(t) = / 0, 2) (5.6)
1, té€fa, o)
where o = ¢,./900. The control systems are not subjected to the unit step defined by
7(t) = 1 for t > 0 since it violates the restrictions imposed on the admissible reference

inputs as explained in Definition 4.3.1 and the analytical methods developed in Chapter
4 cannot be used. The control input and controlled output responses of the digital flight
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control systems are shown on Figure 5.10, for T = 0.3 second, and on Figure 5.11, for
T = 1 second. It should be noted that for the smallest sampling period tested, 7" = 0.05
second, all the digitally redesigned control systems have responses relatively close to
those of the continuous-time flight control system. Figures 5.10 and 5.11 clearly show a
deterioration in the responses with an increase in 7. The deterioration occurring with
the systems based on the local methods is mainly characterized by increased oscillations
whereas that associated with the PIM-based systems is one of increased rise time and
settling time. Moreover, in Figure 5.11, it is seen that the control input behaves according
to the observations made in subsection 4.6.4; that is, with an increase in 7", the magnitude

of the control input approaches its steady-state value over all time instants.

ox

06

04

Pitch angle (rad.)
Pitch rate (rad./sec.)

a2

4 6 L3
Time (sec.) Time (sec.)

(a) (b)

Elevator deflection (rad.)
&

] 1 2 3 4 $ 6 7

Time (sec.)

©

Figure 5.9: (a) Pitch angle (¢), (b) pitch rate @(t), and (c) elevator deflection &(t)
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Figure 5.10: Control input and controlled output responses for 7" = 0.3 second
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Figure 5.11: Control input and controlled output responses for " = 1 second

With the digital flight control systems subjected to the input of (5.6), the angular
position error (controlled-output error) is defined as Afr(t) = 6r(t)—8(t), the angular ve-

12
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locity error as Awr(t) = wr(t) —@(t) and the control-input error as Aur(t) = ur(t) —u(t).
Furthermore, over the range of sampling frequencies for which internal stability of the
discrete-time control systems takes place, the L? and L™ norms of Afr(t), Awr(t) and
Aur(t) are finite. However, because quantization effects can alter the steady-state gains
for simulations performed with a limited number of bits, the L? norm is evaluated over
a finite and fixed time interval. Figures 5.12, 5.13 and 5.14 show the L* and L? norms
of Afr(t), Awr(t) and Aur(t) for T € [t./88,t,], when the computations and imple-
mentations are carried out using 32 bits with floating-point arithmetic. The norms of
A0 (t), Awr(t) and Aur(t) approach zero for all the discrete-time flight control systems,
as T — 0. For most sampling periods, the PIM-based systems have smaller controlled-
output error norms than the systems based on the local digital redesign methods. The
L norm on the control-input errors can be smaller for the systems based on the local
digital redesign methods than for the PIM-based systems. The response plots generated
for each sampling period tested, although shown only for 7" = 0.3 second and T = 1 sec-
ond in this thesis for brevity, reveal that this is caused by a low-magnitude control input
for the PIM-based systems, at the & = 0 sampling instant, whereas the continuous-time
and sampled-data systems based on the local digital redesign methods have relatively
large magnitude. It can be seen also that the regular PIM-based systems, whose Dio-
phantine equations are solved with the eliminant matrix and state-space methods, have
indistinguishable values of norm. Furthermore, the reduced-order PIM-based control
system has an inferior performance at relatively fast sampling rates than the regular
PIM-based systems, while, for slower sampling frequencies, the performances are alike.
In other words, as the sampling rates are reduced (I — o), the responses obtained with
all three PIM methods become relatively close to one another. Although not shown here,
simulations of 16-bit, fixed-point arithmetic flight control systems have patterns of error

norms essentially the same as those in the 32-bit, floating-point arithmetic case.
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The ITAE index on the control-input and controlled-output errors as a function of
the sampling period is plotted on Figure 5.15. In the figure, it is seen that the values
of the index diminish with a reduction of the sampling period for all the digital redesign
methods tested. Moreover, the regular PIM method has a smaller value of the index than
that calculated with the local digital redesign methods for each sampling period, whereas
the reduced-order PIM method offers a superior performance to the local methods for
T > 1.4 seconds. It can be seen also that the largest ITAE index, over T, attained by the

regular PIM method is the smallest among the maximum ITAE indices obtained with all
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the methods studied.
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Figure 5.15: ITAE index on (a) the control-input and (b) the controlled-output errors

The elevator deflections and pitch angles of the low-order digital control systems
subjected to the reference input described in (5.6) and implemented with 8-bit, fixed-
point arithmetic are shown in Figures 5.16 and 5.17. At T = ¢./40, the performance
of the reduced-order PIM-based control system is comparable to that of the Tustin-
and matched pole-zero-based digital control systems. At the relatively long sampling
period of T = ¢, /2, only the reduced-order PIM-based control system offers a satisfactory
performance. On the other hand, the response obtained with the regular PIM-based
control system settles with an 11% error at steady-state for T" = t,./40, and is oscillatory
for T = t./2, as shown in Figure 5.18. This shows that the orders of the controllers
should be kept as low as possible in a practical implementation, even when using the

Euler operator, especially at relatively slow sampling rates.
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5.2.2 Response to Disturbance Input

Suppose that a wind gust enters the pitch control system as a disturbance d(t) to the
plant input. Although stochastic disturbance signals are better suited than deterministic
ones for a general evaluation of the disturbance response, this thesis is concerned with

deterministic signals only. Therefore, consider the simple test signal d(¢) € S| shown in

Figure 5.19, where o = ¢,./900.
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Figure 5.19: Disturbance to the plant input
It is desired to study the controlled output responses of the sampled-data control
systems over a range of sampling periods when the only exogenous input to the pitch

control system is d(t). The norms are calculated for each fixed T and the plots are shown

in Figure 5.20.
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Figure 5.20: (a) L* and (b) L? norms on the controlled-output errors
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. The L*® and L? norms shown in Figure 5.20 behave according to Theorem 4.5.2 for a
diminishing sampling interval. Also, it can be seen that the PIM methods result in
smaller error norms than those calculated for the local digital redesign methods when
T > 1.8 seconds and that the error norms associated with the PIM methods become
indistinguishable from the graph for increasing sampling period. For the sampling periods
below 1.8 seconds, the PIM methods do not always possess the smallest error norms. For
instance, consider the systems obtained with a sampling period of 0.55 second. The
controlled output responses are plotted in Figure 5.21. Despite the fact the regular
PIM method exhibits a less oscillatory response than the responses obtained with the
reduced-order PIM, MPZ and Tustin’s methods, the disturbance response of the PIM-
based system has an undershoot which is the largest in amplitude (L* norm) and the
discrepancy with the response of the continuous-time system is the greatest among the

four digital redesign techniques (L? norm).
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Figure 5.21: Controlled output responses to disturbance input (7" = 0.55 second)

The [*°- and [2-induced norms of the system relating the sampled disturbance input

to the discrete-time control input versus T are plotted on Figure 5.22. The L*°-induced
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norm of the continuous-time control system relating the disturbance input to the control

input is approximately 2 and its L?-induced norm, 1.18.
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Figure 5.22: (a) [*°- and (b) /2-induced norms with T

In Figure 5.22, it is seen that the induced norms of the discrete-time systems ap-

Ly

proach the induced norms of the continuous-time system, as 7" — 0. The induced norms

associated with the reduced-order PIM fluctuate over the lower range of sampling periods

compared with those of the other methods, although the reduced-order PIM still yields

a superior performance than that obtained with the local methods for 7" > 0.55 second.

At relatively large sampling periods, the PIM-based control systems have finite induced

norms which are almost identical for all three of them; in fact, as T — oo, the [*°- and

[%-induced norms approach a value of 2.

5.3 Control of Voice-Coil-Driven Flexible Positioner

Simulations and experiments are performed on the feedback control of a voice-coil-driven

flexible positioner (VCFP) plant, which is a typical fast positioning mechanism, having
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the following mathematical model in state-space form [82]:

dz(t)
dt

g(t) =

i (=d1—d12)
Ji

=<2 di2 c12 0
Jr Ji J1
1 0 0 0 0
d12 c12 (—dia—da3z—dz) (—c12—c23) dag
Jo J2 J2 J2 J2
0 0 1 0 0
d; (—daz—d3)
N
0 0 0 0 1
=te 0 0 0 0

+[o 00000 1/L]Tﬂ(t)

[o 000 0 k-ke O]E(t)

where the constants are given in the following table.

z(t)

(5.7)

R=1%

L=1x10*H

kg =1 V/(rad/s)

kh[ =0.1 Nm/A

ez = 1 x 10° V/m

Ji=1.1x10"* kg -m?

Jo = 2.6 x 10~ kg - m?

Js =1.1 x 10~* kg - m?

d; = 0.08 Nm/(rad/s)

d> = 0.08 Nm/(rad/s)

dsz = 0.03 Nm/(rad/s)

c12 =1 x 10* Nm/rad

Ca3 = 1 x 10* Nm/rad

d12 = 0.08 Nm/(rad/s)

do3 = 0.08 Nm/(rad/s)

kr =0.1 m/rad

Table 5.7: Plant parameters

The control system consists of the VCEFP in closed-loop with a lead controller given

by

Q(s) = 5000 -

0.00112s + 0.7

s 4+ 5000

(58)

and with structure as in Figure 1.4(a), where II(s) = I'(s) = 1. The controlled output
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voltage represents the position of the end of a mechanical arm and the reference input
voltage stands for the commanded position. The analog control system’s performance,

in terms of a unit step reference input, is provided in Table 5.8.

Rise time t. = 3 x 10~* second

Settling time t; = 3 x 1072 second

Maximum overshoot [ M, = 0.18

DC gain Kpc =1

Table 5.8: Performance parameters of continuous-time control system

Digital redesign is performed on this system with the most common local methods,
Tustin’s mapping and matched pole-zero, and the regular PIM, reduced-order PIM, and
reduced-order, truncated PIM methods. For the regular PIM method, the Diophantine
equation is solved with the state-space factorization. The discrete-time controllers are
calculated for T € [¢./2, 1.7t,], and shown for T = 1.5t in Table 5.9. For ease of reading
the table, the coefficients are shown with limited precision. The resulting sampled-

data control systems have the structure of Fig. 1.4(b), where some blocks can be unity
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‘ depending on the digital redesign method used, and the ZOH is placed at control input.

Tustin Q7 (c) = 2eesioiross
MPZ () = g
([ 2.02167 + 2.059 - 10%5 + 8.786 - 107&
+2.026 - 10*e* +2.714 - 1013 + 2.099 - 10'7&2
Qr(e) = +8.631 - 10"% + 1.444 - 10%
( €7+ 1.423 - 105 + 8.588 - 1073
+2.855 - 1011¢* + 5.417 - 10143 + 5.082 - 10'7&2
Regular PIM \ +3.197 - 10"% —~ 2.488 - 10%
483.903¢5 +1.852 - 107€% + 1.182 - 10114
+3.316 - 1043 + 4.191 - 1072 + 1.735 - 10%%
Lo(e) = +1.444 - 10%2
2.021¢7 + 2.059 - 108 + 8.786 - 107&°
. +2.026 - 10Me* + 2.714 - 1043 + 2.099 - 1072
+8.631 - 10'% + 1.444 - 10?2
Reduced-order Qr(e) = %%T%‘g%
PIM Iir(c) = SRR T:
Reduced-order _
nented PV | () = TI0sciatoraes

Table 5.9: Controller transfer functions for T = 1.5¢,

5.3.1 Experimental Results

Both the fixed- and floating-point sampled-data control systems have the configuration
illustrated in Figure 5.23, where the arrows indicate the direction of the flow of infor-
mation, and A/D and D/A respectively denote analog-to-digital and digital-to-analog

converters. The discrete-time part of the control system uses the Texas Instruments’
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TMS320C31 digital signal processor (DSP), which performs floating-point computations
on 32-bit data words. The digital-to-analog converter has a 12-bit resolution and the
two analog-to-digital converters are 16-bit successive approximation converters [83]. The
connections between the VCFP plant and the converters are made through standard

BNC cables, whereas the converters are connected to the DSP via 32-bit buses [84].

Reference input

Digital
Signal
Processor

VCFP

Figure 5.23: Sampled-data control system configuration

The reference input applied to the control systems is a constant signal with amplitude

of 50 mV for ¢t > 0 which is part of the space S;.

Floating-Point Controllers

The control input and controlled output responses of the sampled-data control systems,
for the two extreme values of sampling, are shown in Figures 5.24 and 5.25, where ROPIM
and ROTPIM are the acronyms for reduced-order PIM and reduced-order, truncated
PIM, respectively. A qualitative comparison with the responses of the continuous-time
control system reveals the superiority of the PIM techniques to the Tustin’s and matched

pole-zero methods, especially when the sampling period is relatively long.
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The norms of control-input and controlled-output error responses are calculated over

a finite time interval and their values against 7" are shown in Figures 5.26 and 5.27. The
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ITAE indices are also evaluated for the error signals (ur(t) — @(¢)) and (yr(¢t) — y(¢))
over a fixed, finite time interval and the graphs are given in Figure 5.28. The controlled-
output error is smaller in the norms and in the ITAE performance index for the PIM
methods than for the local redesign methods for all the sampling frequencies considered
in the experiments. On the other hand, the supremum norm of the control-input error

can be smaller for the local methods over a limited range of sampling periods.
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Figure 5.26: L? error norms at (a) control input and (b) controlled output vs. 7'
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The plots for the regular PIM method are not shown since the implementation and
processing of the seventh order controllers II(g) and €2(e), which require considerably
more instructions than the low-order controllers obtained with the other digital redesign

methods, cannot be carried out with the DSP for the sampling rates selected; that is,
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the computational time necessary to process the controllers with the DSP is longer than
the sampling intervals selected.

When the amplitude of the reference input is too large, the operational amplifiers of
the VCFP can saturate. One consequence may be that the controlled output response
looks satisfactory, yet its shape is mainly due to the rate limiters present in the plant.
A linear system analysis is then contaminated by the nonlinearities and the theoretical
concepts conveyed in Chapters 3 and 4 become irrelevant. For example, by carrying out
an experiment with a constant reference input of 1 V amplitude and for a sampling period
of 5 x 10™* second, it is found that the control inputs and controlled outputs behave in
a satisfactory manner, as shown in Figure 5.29, even for the case of the matched pole-
zero and Tustin’s methods, which result in an oscillatory response in the linear range of
operation of the control system, as shown in Figure 5.25. However, the actual control
input to the plant is different from the plant input calculated with the controllers. It
should be noted that, although stable in this particular case, once saturation takes place,

the control system becomes nonlinear and instability can result in general.
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Figure 5.29: Responses of sampled-data control systems
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Fixed-Point Controllers

Experiments with 32-bit fixed-point representations and computations are carried out
with the same physical setup as that used in the floating-point experiments. The re-
sponses are shown for two sampling periods in Figures 5.30 and 5.31. For the shortest
sampling period, the respénses of the sampled-data systems obtained with the ROPIM
and ROTPIM methods are almost identical. Their control input behavior is less oscilla-
tory than that obtained with the Tustin’s mapping and matched pole-zero methods and
their controlled output offers less overshoot. For the longer sampling interval, the control
inputs of the PIM-based control systems are closer to that of the continuous-time system
than those obtained with the local methods of digital redesign, and the controlled output
responses of the PIM-based systems settle down, whereas the responses of the systems

obtained with the local methods remain oscillatory.
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Figure 5.30: Control inputs and controlled outputs (T = 2¢,/3)
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Figure 5.31: Control inputs and controlled outputs (7" = 1.7¢,)

It should be pointed out that control laws implemented with as low as 16 bits provide
unacceptable responses for all the methods tested and for the entire range of sampling

periods considered.

5.4 Gas-Turbine Engine Speed Control?

Consider a turboshaft engine [85, 86] which can drive a helicopter’s main and tail rotors.
The operation of the engine can be briefly described as follows with reference to the
schematics of Figure 5.32(a): air enters the engine inlet where it is compressed and
mixed with fuel and the mixture is then ignited in the combustion chamber. The hot
gas coming out of the combustion chamber is expanded through gas generator and power
turbines. The power turbine drives the engine output shaft, whereas the gas generator,

or compressor, turbine provides the energy to drive the compressor.

3The material is based on a collaborative research work with Pratt & Whitney Canada, Inc., which
has authorized the release of information contained in this section.
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Figure 5.32: Schematics of (a) turboshaft engine and (b) gas generator

In this section, the compressor-combustor-turbine part of the engine, also known as
the gas generator and shown schematically in Figure 5.32(b), is considered. In the figure,
the shaft speed of the gas generator turbine, referred to as gas generator speed N, with
units of rpm, can be increased or decreased by appropriately varying the flow of fuel,
Wy, in the combustor, or combustion chamber. The fuel flow is modulated by varying
the current, denoted as I, with units of Amperes (A), to a torque motor interface from
an electronic controller [87]. From a control perspective, the task consists of sending a
torque motor current to the system having input I, and output NV, which follows the
commanded gas generator speed within an acceptable level of error. The block diagram
of the simplified feedback control system taken as an independent system in this thesis
is shown in Figure 5.33. Several variables such as pressure and temperature of the fluids
at different stages of the engine are omitted in the figure to simplify the notation. In
Figure 5.33, the plant is composed of the fuel metering unit in cascade with the engine.
The fuel metering unit is the electro-hydromechanical system relating the control signal

Iim to the fuel flow entering the combustor, Wy. The engine relates Wy to NN,, assuming
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constant ambient pressure and temperature. The plant is nonlinear due to the presence
of rate limiters in the fuel metering unit to the values of Itm (0 A < I, < 150 A) and
W (17 kg/h < Wy < f(P:) kg/h, where f(P.) is some function of P,, the compressor
discharge pressure, and kg/h represents kilograms per hour), and the nonlinear dynamics

of the compressor, combustor and gas generator turbine [87].

Plant
Commanded —————————————— |
Ne + Electronic Itm : Fuel Wr : Ng
— Y Engine ™ Metering * Engine [—
- Controller : Unit [
|
e e I

Figure 5.33: Block diagram of feedback control system

The continuous-time control system design starts with the linearization of the plant
at the operating points. Although the linearized models are only approximating the
nonlinear plant, they are convenient for performing analysis and give much insight as to
the behavior of the nonlinear sampled-data control system near the equilibrium points,
as remarked in {88]. At each of these points, a proportional plus integral block cascaded
with a lead controller is designed for the linear, incremental plant model. The controller
transfer function has the form

= Kr\ s/wi+1
Qs) = (Kp =+ T) m (5.9)

where the parameters K, K, w; and w, depend on the time-domain requirements asso-
ciated with the unit step response and the linear plant model for each operating point.
Once the linear designs have been completed, the feedback control system comprising
the nonlinear plant is simulated with a gain scheduling routine which reads the controller

parameters K,, K, w; and w, from an interpolation table. Since the controllers are real-
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ized on a digital device, a digital redesign method is used to convert the continuous-time
control system to a sampled-data system. After the simulation runs, if the performance of
the nonlinear control system is satisfactory, the control law is implemented on processors
for extensive real-time tests. However, in this thesis, the real-time tests are not carried

out.

5.4.1 Control of Linearized System

The operating point studied is the one for which the linear, time-invariant continuous-
time control system has the shortest rise time when subjected to a unit step input; that
is, at 84% of the full engine power, denoted as %Ng = 84. It should be mentioned,
however, that results similar to those detailed in the present subsection were obtained
with the other 18 operating points.

The linear, time-invariant plant model relates deviations of the control input to de-
viations of the controlled output from the operating point and has irreducible transfer

function given as

1.510145501047373 - 102 - s° + 1.870741957332588 - 10° - s*
+7.057640312298997 - 107 - s® + 7.836469084174614 - 109 - s>
_ +2.378787016907578 - 101! - s + 2.871475439369421 - 10°
G(s) = . (5.10)
s8 +1.187017375630150 - 10° - s7 + 4.351278988897174 - 10° - s
+5.189920309018213 - 107 - s5 + 2.729795397644238 - 109 - s*
+6.453392192641624 - 1019 - $* + 5.582734248200342 - 101! - 52

+2.568942104303842 - 10! - 5 4 2.917766247100640 - 10°

The controller block is given by

—~ 8.62\ 0.0956s + 1
Qs) = (17.75+ : ) oL (5.11)




The continuous-time control system is digitally redesigned with the local approaches
by discretizing Q(s) with the Tustin’s, matched pole-zero, backward difference (BDM),
step invariance (SIM), and forward difference (FDM) methods [2], as well as with the
global approaches of the PIM methods. The controllers are calculated for T" € [¢t./7,2t,],
where ¢, = 0.15 second, and their transfer functions are shown in Tables 5.10 and 5.11
for T' = t./7, where the coefficients are truncated to facilitate the reading of the table.
The sampled-data control systems have the structure of Fig. 1.4(b), where some blocks
can be unity depending on the digital redesign method used and the ZOH is placed at
the control input. Only the PIM methods result in internally stable closed-loop systems

for the entire set of operating points and sampling periods tested.

BDM Qr(e) = 45-55762:243-3’;%151:188.2096
FDM QT(é‘) — 67.87652+E7;4_*2_;1906€295+344.8

SIM QT(e) — 67.87652:52;.;155?1%:234.0752
Tustin | Or(e) = sz socans
MPZ QT(E) — 51.53352:252%%:;1?3%:234.0752

Table 5.10: Controller transfer functions obtained with the local digital redesign
methods for T =¢,./7
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Regular PIM

7.91-10787 +9.16- 1075 + 4.26 - 1045
+1.02-1072c%4+1.31-10"'e® + 8.72 - 10~ 1&2
+2.46e + 1

QT(E) =

(

1.23-107%7 +1.74-1076¢5 + 1.26 - 107%&°
+7.32 - 1073* +3.23 - 10713 + 8.18¢2
+8.38-10'e + 1
—1.06-107%7 —1.73-107%® — 1.09 - 10~2¢°
—3.29 - 107 1e* — 4.82¢% — 2.78 - 10%e?
—-10e +1

\

7.91-10787 +9.16 - 10765 + 4.26 - 10~4&5
+1.02-10724+1.31-10"1e3 +8.72 - 1012
+2.46e +1

Reduced-order
PIM

__ 10252+10586.67+4+4875.21
Qr(e) =

19.58¢2+639.17e+1

_ 0.226242.18¢+1
Ir(e) = 0.21e242.17e+1

Reduced-order,

truncated PIM

3 2
QT(E) — 1025£2+10586.67¢+-4875.21

19.58¢2+639.17e+1

[T (¢) = 1.000229

Table 5.11: Controller transfer functions obtained with the PIM methods for T = ¢./7

The linearized control systems are subjected to an incremental reference input of
1% of the full engine power for ¢ > 0. The L? and L* norms of the control-input and
controlled-output errors are shown in Figures 5.34 and 5.35. Note that the FDM, SIM and
Tustin’s methods yield stable systems for the shorter sampling periods tested and, thus,
the norms are evaluated for these sampling periods only. It is clear from the figures that,
for the sampling periods used, the three PIM methods provide superior performances
to the local methods at the controlled output. However, at the control input, the L™

norm of the error can be smaller for the local methods. This is due to the fact that, at
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the initial sampling interval, the control input magnitude may be closer to zero for the
PIM-based systems than for the systems based on the local digital redesign methods,
depending on the matched pole-zero model of the PITF, whereas the continuous-time
control system’s response is large initially. This can be considered as an advantage of
PIM since it avoids large initial jumps, although it has for effect to prolong the rise time

at controlled output.
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(a) (b)

Figure 5.34: (a) L? and (b) L° norms of the control-input errors
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Figure 5.35: (a) L? and (b) L* norms of the controlled-output errors

The ITAE index on the control-input and controlled-output errors is plotted against
the sampling period in Figure 5.36. The PIM methods result in finite values of the index
for all the sampling periods used in the simulations. Moreover, these ITAE index values
are the smallest among those obtained with all the digital redesign methods employed

for each sampling period.
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Figure 5.36: ITAE index on (a) the control-input and (b) the controlled-output errors

At the largest sampling period tested (7" = 0.3 second), the local BDM and MPZ,
and the global PIM methods result in responses shown in Figure 5.37. In the figure,
the regular and reduced-order PIM methods are assigned the same line type since their
responses cannot be distinguished on the graph. The classical digital redesign techniques
result in responses with large oscillations, which are due to the closeness of a complex
pair of poles to the stability boundary in the complex discrete-time plane, as discussed
in Section 4.6. On the other hand, the controlled output response of the PIM-based
closed-loop system has a long rise time and is non-oscillatory. The slow rise time of the
systems obtained with the PIM methods is expected since the control inputs within the

time interval [0,T") are of low magnitude as compared with the other control systems.
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Figure 5.37: (a) Control input and (b) controlled output responses for 7" = 0.3 second

The simulation results obtained with 16-bit, fixed-point arithmetic, low-order con-

troller implementations are shown in Figure 5.38 for 7' = 0.0208 second and 7" = 0.5

second. The figure shows that all the methods perform relatively well for the shortest

sampling interval. However, the backward difference and step invariance methods offer

responses which are more oscillatory than the others. For 7" = 0.5 second, the local dig-

ital redesign methods result in unstable closed-loop systems, and hence their responses

are not provided. On the other hand, for the half-second sampling interval, the PIM-

based systems are stable and present almost identical non-oscillatory responses, relatively

small steady-state errors, and rise times approximately three times slower than that of
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The responses to a constant 1% disturbance input to the plant, for £ > 0, are shown
in Figure 5.39 for T" = 0.0208 second and 7" = 0.3 second. In the figure, the reduced-
order and reduced-order plus truncated PIM methods are assigned the same line type
since their responses are not distinguishable from the graphs. For the smallest sampling
period, the responses of all the sampled-data control systems are relatively close to that
of the continuous-time control system although the PIM-based systems offer the largest

overshoot in their controlled output responses among the sampled-data systems and are

the continuous-time control system.
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Figure 5.38: Fixed-point simulation responses

the only ones having a non-zero steady-state error of magnitude 2.0935 x 1074

the largest sampling period, only the responses of the stable systems are presented.
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‘ The BDM- and MPZ-based systems have oscillatory control input and controlled output
responses, and zero steady-state error since Qr(e) has a pole at € = 0. On the other
hand, the PIM-based systems have a non-oscillatory controlled output response with
steady-state error of 3.4782 x 1073. It should be noted that, with the block convergence
of the PIM-based systems, one pole of €2r(g) approaches 0 as 7' — 0 and consequently
the steady-state error of the disturbance response of the PIM-based systems can be made

arbitrarily small with a sufficiently short sampling interval.
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Figure 5.39: Disturbance responses for (a) 7' = 0.0208 sec. and (b) 7" = 0.3 sec.

5.4.2 Gain-Scheduled Control of the Engine

Simulations are performed on the nonlinear plant model in closed-loop with the controller

blocks, whose parameters are obtained from a gain scheduling routine. The scheduling
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is based on the controlled output, which is the so called scheduling variable [89]. A
1-block scheduled sampled-data control system is shown in Figure 5.40. The ad hoc
scheduling methodology is explained as follows. The controller coefficients for each of
the 19 operating points, which range from %Ng = 60 to %Ng = 102, are entered in a
table. For instance, in the case of the continuous-time controller given by equation (5.9),
the table entries are obtained from the kmowledge of K, K, w; and ws, as provided
in Appendix E. The discrete-time and continuous-time controllers are either assigned
linearly interpolated values of coefficients, when %Ng has a value lying between two
operating points, or the coefficients of the table when %V g equals to one of the operating
points. Figure 5.41 presents the test input applied to the gain-scheduled control systems,
and the resulting control input and controlled output responses of the continuous-time
control system. Some of the responses obtained with the sampled-data control systems
can be found in Appendix E. In Figure 5.41(b), it can be seen that the gain-scheduled
continuous-time control system suffers from a large amplitude of control input over a
short time interval at around ¢ = 76 seconds. During that time interval, the controlled
output spans the operating points % Ng = 86, %Ng = 88 and %Ng = 92. Table E.1 in
Appendix E reveals that at the operating point % Ng = 86, K; = 11.9, at %Ng = 88,
K; =35.71, and at %Ng = 92, K; = 12.31. The changes in K; from 11.9 to 35.71 and
from 35.71 to 12.31 were found to result in relatively large changes in the coefficient in
front of s° in the numerator polynomial of Q(s). Such abrupt modifications to one of
the controller coefficients could be the cause of the undesired behavior. To verify this
statement, one should redo the continuous-time controller design at the operating point
%Ng = 88 with a lower value of K; and perform extensive simulations. Still, for the

purpose of comparing the digital redesign techniques, the current continuous-time control
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‘ system is assumed to behave in a satisfactory manner.
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Figure 5.40: Block diagram of a gain-scheduled sampled-data control system
=I)ll)':.' -—/
Z
K o)

/A/1

Time (sec.) “Time (sec".n)

(@) (b)

Itm (A)

Y & 1 ]

Time (sec.)
©

Figure 5.41: (a) Reference input, (b) control input and (c) controlled output

The discrete-time controllers are obtained with the local BDM, FDM, MPZ and
Tustin’s methods, and with the reduced-order and reduced-order plus truncated PIM
methods for each operating point. Since the regular PIM method results in seventh

order controllers whose coefficients have values ranging from 10! to 108, this approach
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is discarded from the tests. The norms of the control-input errors between the sampled-
data and continuous-time control systems are calculated for T € {0.0208, 0.1, 0.208, 0.35,
0.5} (units in seconds) and the graphs are shown in Figure 5.42. It can be seen from the
figure that the reduced-order, truncated PIM method offers an improvement in control
input response over the conventional methods for T" = 0.35 second and T" = 0.5 second,
based on the L? norm quantification. At the smallest sampling interval, the responses
of all the methods tested behave in a similar fashion except for the reduced-order PIM
method. In fact, for most sampling periods, the reduced-order PIM method offers the
worst performance among the methods studied according to the L? and L® norms. This
behavior is different from that obtained with the linear simulations. What differentiates
systems obtained with the reduced-order PIM method from systems obtained with the
reduced-order, truncated PIM method is that the former possesses two dynamic control
blocks instead of one. The performance of systems obtained with the reduced-order PIM
method suggests that an increase in the number of controller blocks is detrimental to the
gain-scheduled, PIM-based sampled-data control system.

One point to mention is that the behavior of the control input is not reflected at the
controlled output. This is in the sense that the L? norm of the controlled-output errors,
not shown for the sake of brevity, are relatively close for all the methods tested even
if it is not the case at control input. One possible explanation to this behavior is the
presence of rate limiters in the plant model. As was shown for the VCFP experiments,
it is possible that the local digital redesign approaches result in satisfactory responses
when saturation takes place. Still, the nonlinear nature of the problem goes beyond the
intent of this thesis and the qualitative hypothesis put forward about the behavior of the

controlled-output error needs to be validated in a future expansion of this research work.
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Figure 5.42: (a) L? and (b) L* norms of control-input errors with T’
5.5 Example of a MIMO Control System

The following example, first studied in [27] in a qualitative manner, is shown here to
demonstrate that the theoretical analysis on the convergence of control inputs and con-
trolled outputs of SISO sampled-data control systems in the time domain, as T'— 0, can
readily be extended to the MIMO case.

Consider a continuous-time control system having the structure of Figure 1.4(a) and

composed of TI(s) = I'(s) = Iyx2 and

s+1 s (s+2)(s+1)} —(s+1)2
_ s s+1 o —(s+1)? (s +2)(s+1)3 i
G(s) s(s+1) (s) = st + 653+ 1352+ 125+ 3 ) (5-12)

The controller block Q(s) is discretized with the matched pole-zero, Tustin’s, and
step invariance methods, whereas the closed-loop system is discretized with the regular

MIMO PIM method as described in {27]. All four sampled-data control systerns have
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the structure of Figure 1.4(b), where the blocks IIr(e) and I'r(¢) are non-unity only
for the PIM-based system, and H is the ZOH. The range of sampling periods tested
is [0.1,0.85]. A reference input 7(¢) = 1, t > 0, is applied to the first channels of
the continuous-time and sampled-data control systems. The control input responses of
the continuous-time control system and sampled-data systems, for the relatively large
sampling interval 7" = 0.7, are shown for the two channels in Figures 5.43 and 5.44 so
that one has a better idea of the time trajectories involved. It is seen that the time
trajectories of the control inputs of the sampled-data control systems are the closest to

those of the continuous-time control system with the PIM method.

(a) MPZ, channel 1, T=0.7 (b) SIM, channel 1, T=0.7
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Figure 5.43: Control inputs (channel 1) for (a) MPZ method, (b) SIM, (c) Tustin, and
(d) PIM
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Figure 5.44: Control inputs (channel 2) for (a) MPZ method, (b) SIM, (c) Tustin, and
(d) PIM

Figure 5.45 provides graphs of the L® norms on the control-input errors against T
and Figure 5.46, graphs of the L norms of the errors at controlled output. Since the
four discretization methods result in sampled-data models of the continuous-time control

system, the norms of the errors at control input and controlled output approach zero as

T — 0.
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5.6 Summary of the Performances Achieved with the
Examples

Table 5.12 provides a summary of the performances achieved with the linear control sys-
tems. In the table, TPIM denotes the truncated PIM method, LOCAL, the local digital
redesign methods, and Y (N) signifies that a performance criterion is (not) achieved.

PIM | TPIM | ROPIM | ROTPIM | LOCAL
Controller block convergence with T' | Y Y Y Y Y
Induced norm convergence with T° Y Y Y Y Y
Stability for all T" values selected Y Y Y Y N
Finite norms/ITAE index of control-
input and controlled-output errors Y Y Y Y N
for large T
Diminishing error norms and values v ¥ v v v
of ITAE index as 7' is reduced
Finite induced norms for large T' Y Y Y Y N
Smallest L2 error norms, when
subjected to a constant reference Y N N N N
input, for all T values selected
Closest responses to continuous-time
control system’s when realized with N N v N N
fixed-point arithmetic and restricted
number of bits for large 7" values

Table 5.12: Observed performances of the digitally redesigned control systems

4In the example of Section 5.1, the PIM method is the same as the reduced-order PIM method.
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Chapter 6

Conclusions

6.1 Contributions of the Research Work

This thesis has proposed solutions to some of the unresolved issues associated with the
regular PIM method, presented a characterization of digitally redesigned control systems,
applied quantitative measures to assess the performance of sampled-data control systems,

and validated the theoretical concepts via numerical simulations and experiments.

6.1.1 Solutions to Unresolved Issues of the Regular PIM Method

The truncated, reduced-order and reduced-order plus truncated PIM methods were pro-
posed in Chapter 3. These new methods constitute the first global digital redesign
techniques which generally result in low-order controllers while providing satisfactory
closed-loop performances for sampling frequencies at which the local digital redesign
techniques fail to do so. In Section 3.3 and Appendix C, global digital redesign methods
were proposed which rely on discretization techniques other than the matched pole-zero
method to discretize the continuous-time PITF and on the discretization of the closed-
loop system relating the reference input to the controlled output. Finally, the first set
of guidelines in solving the Diophantine equations associated with the PIM methods was

presented in Chapter 3, rendering the PIM approaches more systematic and suitable to
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numerical methods.

6.1.2 Characterization and Performance Evaluation of Digitally

Redesigned Control Systems

The sampled-data control systems were investigated for a decreasing sampling interval.
The conditions on the discrete-time controller blocks, the hold at control input, and the
exogenous inputs were established in Sections 4.3 and 4.5 such that the systems relating
the exogenous input to the control input and the controlled output are sampled-data
models of the corresponding continuous-time systems. Since the output of a sampled-
data model of a continuous-time system, as defined in Chapter 2, approaches that of
the continuous-time system uniformly in time, when the sampling period is reduced, the
sampled-data model concept bridges the gap between sampled-data and continuous-time
control systems in the context of time-domain responses. This was made possible by using
the lifting reformulation of systems as presented in Section 4.1. The PIM and the local
digital redesign techniques result in sampled-data models of continuous-time systems,
provided the hold at control input, as seen on Figure 1.4(b), satisfies the hold condition in
the time domain given in Section 4.1. Furthermore, conditions ensuring that the discrete-
time controller transfer functions of PIM-based sampled-data control systems approach,
in the sense defined in Section 4.4, their continuous-time counterpart for sufficiently fast
sampling frequencies were given. This results in the input and output signals of each
block to approach their counterparts in the continuous-time control system.

The PIM-based sampled-data control systems were studied for relatively large sam-
pling periods in Section 4.6. On the one hand, it was found that systems based on
the regular and truncated PIM methods and subjected to a constant reference input
present control input and controlled output responses exempt from oscillations, at the
sampling instants, when relatively large sampling periods are used. This characteristic
has a practical implication since physical devices, such as the actuator, could experience

early wear, produce noises, and waste power due to repeated oscillations. On the other
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hand, the main disadvantage of increasing the sampling period with PIM-based systems
is the increase in rise time.

Concerning the performance evaluation of digitally redesigned control systems, it was
shown that there is an upper limit on the sampling period such that a sampled-data
control system obtained with a local digital redesign method satisfies a prescribed bound
on the L* and L? norms at the control-input and controlled-output errors, whereas with
the regular and truncated PIM methods, a finite bound on the error norms can be met
for all non-pathological sampling periods. More generally, the advantages of the PIM-
based systems over the other methods for relatively large sampling periods, in terms of
the performance measures and the shapes of the responses, were clarified in Section 4.6.
For a diminishing sampling period, it was found that the value of the ITAE index on the
error signals approaches zero in the presence of sampled-data models of continuous-time
systems. Furthermore, the L>®- and L2-induced norms of sampled-data systems relating
the reference and disturbance inputs to the control input were shown to become close to
their continuous-time counterparts, provided certain conditions are satisfied according to

Theorems 4.6.2 and 4.6.3.

6.1.3 Summary of Numerical Simulation and Experimental Re-
sults

In Chapter 5, the four PIM methods were compared with the most common local digital
redesign approaches and the modern optimal digital redesign method of [24]. Table 5.12
gives a summary of the performances achieved with the various digital redesign methods.
In addition to the observations of Table 5.12, the following results were obtained with the
simulations and experiments. First, the L° norms of the error signals can be smaller for
the local methods than for the PIM methods for certain sampling periods. This is due to
the fact that, at the initial sampling interval (k = 0), the control inputs of the PIM-based
systems can have a magnitude closer to zero than that of a system obtained with the

local digital redesign, whereas the control input of the continuous-time control system
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is large initially. This result confirms the investigation of the control input provided in
Section 4.6. Second, two limitations associated with the implementation of discrete-time
controllers obtained with the regular PIM method were exposed during the experiment:
(i) for a plant model transfer function with relatively large coefficients, the transfer
functions of the discrete-time control blocks can also contain high-magnitude coefficients,
thus making them impractical for fixed-point implementations using a relatively small
number of bits; and (ii) knowing that the implementation hardware can perform a finite
number of computations per sampling period and that high-order controllers require
considerably more instructions than low-order ones, a lower bound on the usable sampling
periods is then imposed for the controllers obtained with the regular PIM method whereas
controllers of lower orders, such as those obtained with the reduced-order PIM method,
could be performing in a satisfactory manner for sampling intervals much shorter than this
lower bound. Third, all four PIM-based control systems have similar output responses,
as T becomes large, when subjected to the same exogenous input. Finally, although the
poor performance of the gain-scheduled gas-turbine engine control system obtained with
the reduced-order PIM method could not be explained, this thesis laid the groundwork

for a linear analysis of the nonlinear control system at the operating points.

6.2 Future Research Work

The following are suggested areas for future research:

1. For the non-decoupled MIMO control systems, especially of interest in the aircraft
industry [90], order-reduced and modified PIM methods could be developed.

o

A more thorough study of the stability of the reduced-order PIM-based control
systems, for relatively large sampling periods, could be initiated. This would answer
the question regarding the possibility of having a wider range of sampling periods
for which the stability of the reduced-order PIM-based system is preserved over that
associated with a sampled-data control system obtained with any of the local digital

162



redesign methods. In parallel with the stability analysis, the generalized least-
squares method [75] should be investigated as a means to improve the performance

of a reduced-order PIM-based system.

. An expansion to the gas-turbine engine control system analysis, which includes
the nonlinearities, should be undertaken in order to understand the behavior of a

digitally redesigned control system using gain scheduling.

. For the plant output mapping method to be of any practical interest when the plant
model is of order greater than or equal to two, hold functions which can provide a
satisfactory intersample performance at control input, as discussed in Appendix C,

should be determined.

. The case of multiple-interval holds [53], such as the first-order hold, could be in-
cluded in the characterization of digitally redesigned control systems. There would

result a higher-order sampled-data model study.

. In order to predetermine the performance of digitally redesigned control systems
with respect to that obtained with the continuous-time control system by using
the PITF parameters, upper bounds on L* and L? norms can be calculated. For
instance, equation (A.11) in the proof of Theorem 4.3.1 can serve as an upper bound
to the L*° norm of the control-input error. However, such a bound is conservative.
The possibility of establishing simple, yet useful and tight, bounds on the L? and

L norms of the control-input and controlled-output errors should be investigated.
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Appendix A

Mathematical Details

This appendix provides proofs of some propositions and theorems presented in Chapter

4.

A.1 Proof of Proposition 4.2.1

The discrete-time system can be represented as follows

eAsT _ T 1 T y
0z = | —— | Zor T+ = / eV BgH(v)dv | Uk, G101 = Onxi,
v T T T U=0 y
N e’ Pyl ~
=AGT =BGT
wr = Cg zerrr+Dg- f‘{r(T)ITio U, T (A.1)

From the hold condition in the time domain,

lim Do, = Dg lim H(r)|.-

= Dg. (A2)
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Also,

T N ———
Bg, — % e eI B=H (v)dv
v=0
1 [T - _ 1 T - —
< || Ber— 7 e*sT ) Bgdu|l + = / eI Bg(H(v) — 1)dv|| . (A.3)
v=0 v=0

Given any € > 0, there exists a v > 0 such that whenever T' < 7 the two terms on the

right-hand side of (A.3) add up to a value less than e. Furthermore, limy_gAg, = Ag

and C(;T =g

A.2 Proof of Theorem 4.3.1

In order to prove Theorem 4.3.1, the following proposition is used.

Proposition A.1 For a signal in &7 or a staircase equivalent of a signal in &3, denoted
as 7(t) and with lifted representation {7r1(7)}& = {rer +wir(7)}$°, 0 < 7 < T, where
wer(T)|—o = 0, as shown on Figure A.1,

lim sup { sup Iwk,T(T)[} =0. (A.4)

T-0 k>0 Lo<r<T

F2r(1) Far(t)

ﬂl‘?ﬂ l Frr(c)
1 o | T 0

(] T T (4] T
» k
0 1 2 3
far(z) ror wer(z)
ﬁl: p—s
= +
0 T 0 T 0 T

Figure A.1: Lifted representation of a signal in &)
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Proof: (i) 7(¢) € S;. The proof is given by contradiction. The signal 7(¢) is bounded,
uniformly continuous and independent of 7. Assume the contrary to what has to be
shown; that is, supy>o SUP¢<r<7 |Wk,7(T)| cannot be made as small as desired by choosing
a T sufficiently small. This means that there exists at least one time instant for which
the supremum norm cannot be arbitrarily reduced. If this is so, since the lifted signal
{wk,r(7)} oo, represents the difference between lifted forms of a signal in S; and its stair-
case equivalent, as can be appreciated from Figure A.1, the initial assumption of uniform
continuity of 7(¢) is violated.
(ii) 7(t) is a staircase equivalent of a signal in ;. For this T-dependent signal, wi +(7) =0,
0 <7 <T,for all £ and each 7 selected. The limiting behavior is immediate.O]

The proof of Theorem 4.3.1 is divided into two parts: one treats the control input,
the other investigates the controlled output. For both cases, to satisfy the definition of a
sampled-data model, Definition 2.2.7, knowing the condition on the reference inputs as

established by Definition 4.3.1, equations (A.5) and (A.6) must be satisfied.

lim | sup sup 'ﬁk,T(T) — %k,T(’r)’ 51 =0 (A.5)
T—0 _kG[O,oo) T€[0,T)

[ _ ~
lim | sup sup )yl:,T(T) - ylc,T(T)’ =0 (A.6)
T—0 | k€[0,00) | T€l0,T)

(i) Control input. Let & 7(7) = Urr(7) — Ter(T), for any k > 0. Write the lifted
equivalent of the reference input to the continuous-time control system as For 47 (7) and

that to the sampled-data control system, as ’F\SD,/C.T(T). Then

[€kr(7)]
k-1
= Z {H(T)(C+ AC)(T(A+ AA) + k=91

=0

_ - S — N k—j—1
T(B + AB) -Fsp j7(0) — Ce™r (eAT) ’
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T Y — A~
. / GA(T—v)B . FCTJ,T(’U)d’U}
=0

—6 GZ(T_v) —E - %CT,;C,T (’U)d’U

v=0

+ H(T)(D+ AD) -Fspx1(0) — D - Forer(T) (A7)

where the sum Z;:é is zero for £ = 0. Let

sup{ sup I%CT,k.T(T) } =TyCT (AS)
k>0 \0<r<T
and
sup{ sup $5D’k’T(T)i} =TySD- (Ag)
k>0 \0Z7<T

Use the triangle inequality, for fixed A4, B, C, D, and T, to bound |e. r(7)]| as

sup {sup IEk,T(T)I}

0<k<oo (0LST<T
k-1

< sup { sup Z{(é—{—AC)

O0<k<oo 0Z7<T =0

(T(A + AA) + I)F-1T(B + AB)7sp_;7(0)

— =/ =\ k=i-1 T _
- CCAT <€AT) / GA(T_v)BFCT’j,T(’U)d’U}
v=0

}

—C QZ(T—U)E'%CT'k:’T (’U)d’l}
v=0

+ sup { sup
0<k<oo 0OLZT<T

+ (D + AD)7spxr(0) — Drorer(T )l}

k—1

Y {(C+ac)

7=0

(T(Z -+ AA) + I)k_j_lT(F + AB)TF—\SDJ’T(O)}

+ (—5 + AD)%SD,A,,T(O), . (A.IO)

+ sup |H(7)—1}- sup
o<L<r<T 0<k<oco

From the assumption on the reference inputs, one can write :7"\53‘;61(0) = Ferkr(0) +

Aryr, where Arpr — O for each k, as T — 0. Therefore, equation (A.10) can be
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rewritten as follows:

sup {sup lekT(‘r)l}

0<k<oo \OST<T

k—1
< s S C+ AC
- O<ILcl£oo {0<1r15T Z {( )

(T(A+ AA) + .r)’f-ﬂ 'T(B + AB) - (Fer;r(0) + Ary7)

- o Nk—j—1 T _ —_
. CeAr (eAT) / eA(T_v)BFCT,j,T('U)d'U} }
v=0
=FL(T)
— T A r—and
+ sup {sup |-C eA" ) BTerkr(v)dv
0<k<oo 0Z7<T v=0
+ (D + AD) - (%CT’k,T(O) + Arg ) — 5?:‘c::r,lc,T(T )'}
=Fa(T)
k—1
+ sup [H(r)—1]- sup |> {(C+AC)
0<r<T O<k<oo |50

(T(A+ AA) + D)*'T(B + AB)(Fer,;7(0) + Aryr)}
+ (5 + AD) (%CT,k,T(O) + ATL-’T) { .

—

=F3(T)

A bound on the first term on the right-hand side of (A.11), F(T), is thus

Fi(T)
IC|l- |(B + AB)|| Au(T)rscr
+ |[CI} £2(T) f3(T)rocr + ||C|| f5(T)ws,r f3(T)
+[[C]| sup_[|e*" = 1| (7Y £5(TIrs
o<T<T
+IAC| f4(T) ||(B + AB)|| ro.cr
+£(T) [|C + AC|| - [B+AB|| - Aryr
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where

f(T) = ZT“(T(Z+AA)+I)J‘~JTJ‘ (A.13)
7=0
_ 1 T - —

T) = AB) — = eAT—v)

£2(T) (B+AB) - /v=0 Bdv (A.14)

£(T) = ZT”JTJ'” (A.15)
7=0

fW(T) = D T|(TE+AA) + 1) (A.16)
7=0

£(T) = = i ”eH(T'”)FH dv (A.17)
T v=0

Wor = SUp <0211'1£T I‘-’Jk.T('r)I) (A.18)

Aryr = o Sup |ATer| - (A.19)

The first term on the right-hand side of (A.12) comprises f;(7") which can be bounded

as

A < TI@@E+ 24 + 17+ 3 7|7 (4.20)

3=0 Jj=0

The right-hand side of the last inequality is finite since the two series converge for each
fixed T' which yields internal stability of the discrete-time system. In fact, there exist
finite positive T-dependent parameters v; 7, Y27, 0 < mr < 1, and 0 < 7o < 1 such
that [76]

[(T(A+A4) +D¥| <mr-nfr (A.21)

and
HCZT’C“ < Y- 775,7' (A.22)

for all £ > 0. f,(T) approaches zero when the sampling interval is reduced since the
terms of the series in (A.13) (i) approach zero in an exponentially decaying fashion when

k — oo, and (ii) approach zero for each step k.
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Alternatively, f;(T") can be related to the difference in zero-input state responses, at
the sampling instants, between the continuous- and discrete-time systems subjected to

the same finite initial state zgq :
Zox — Fur(0) = { (T(A + AA) + I)F ~ em} Zo. (A.23)

As k — oo, (zp1 — %k,T(O)) — Opx1 since the systems are internally stable. It can be

shown that [91]
lim (T(A + AA) + I)7 =lim 77 (A.24)
T—0 T—0

for each 7 > 0. Also, as j — oo, (T(A + AA) + I)7 — Opxp, and e“T7 — Opx,. The
weighting factor 7" in the series makes f;(7) become close to an integral over [0, oc)
[92] with integrand approaching zero over all time instants, as T — 0, and decaying
exponentially as time becomes large. Therefore, the series approaches zero by reducing
T.

The consequence of the behavior of fi(T"), as T — 0, is that the first term in (A.12)
becomes infinitesimally small. The second term in (A.12) approaches zero as T' — 0 since
limz_.f2(T) = 0 and the series f3(7T) is finite (A is Hurwitz). The third term of (A.12)
vanishes as 7' — 0 since wp 7 — 0 (from Proposition A.1). For the fourth term, integral
and summation are finite and supy<,.r ”ez’" -1 ” — 0 as T — 0. The fifth term can
be made arbitrarily small since ||AC|| — 0 (T — 0). Finally, the sixth term approaches
zero as the sampling period is reduced from the conditions on the reference inputs.

The second term on the right-hand side of (A.11), F5(T), can be bounded as follows:

R(T) < |[C| - TH(T)rser
+ [ADI To,cT + IEI cwWpT + I[—j + ADI . Arb,T (A25)

where limr_0T f5(7") = 0. The third term on the right-hand side of (A.11), F3(T'), can

be made arbitrarily small from the hold condition in the time domain. Thus, given
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any £ > 0, one can select a T' < x;(£) such that Fi(T) < &/3, a T' < ky(€) such that
F5(T) <&/3 and a T < w3(&) such that F3(T") < £/3. Let k = min {k;, k2, k3}, and take

T < k(&)- Then supg>o SUPp<r<T |€k,T(7')| <¢.

(ii) Controlled output. The norm on the error at controlled output can be written as

follows:

sup { sup_[fir(r) ~Fxtr)] }

0<k<oo (0<r<T

k-1 .
— = f— k—j—1
= sup ¢ sup |Cgee™ )~ [(eAET) /
0<k<oo | 0L<T =0 v=0
T < — —~~
/ CAE(T—'")BE;‘ (ﬂk,T(v) - Ek'T(’U)) d’U
v=0

- (@k,T(r) - %,,.,T(r)) |} (A.26)

T by — -
eAE(T"")Bg (ﬂk,T(v) — ﬁk,T(’U)) d’l)}

+

| 0||

)

+

for all £ > 0, where %6,0,2*(0) = Opx1, G has realization elements given by [Ag, Bg, Cg;
_D_—@] , and T is selected such that the sampled-data control system is internally stable at the
sampling instants. The following fact is the basis for the rest of the proof: the nature of
feedback is such that control inputs {@ () }52, and {Te ()}, stabilize the plant for
each fixed T in the allowable range of values; for instance, all non-pathological sampling
periods for a digital redesign carried out with PIM. Stabilizing the plant for the sampled-
data system means that, for each T and at the sampling instants, the discrete-time
control input provides stability for the closed-loop discrete-time system, i.e. the unstable
factors of the discrete-time plant model are exactly cancelled out by the control input
and the overall output response is composed of decaying factors, those of the discrete-
time PITF, and factors of the discrete reference input. In between the sampling instants,
the hold is such that the plant output is bounded. For the continuous-time control
system, its stabilization over all time instants implies that at the sampling instants.

The state of the plant at the sampling instants then takes on finite values. Define
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Ek,T(T) = ﬂk,T(T) - %k,T(T) and

€T = Sup { sup lekT(T)I} (A.27)

O<k<oo lO<r<T

Then, using the aforementioned facts and the lifting formalism, the norm of the output

response error is finite and can be written as follows:

sup sup ‘gk.T(T)_gk,T(T)‘
0<k<oa0<T<T

k—j-1 [T _ —
C_eA—r Z [( A—C;T) J / eAE(T—v)Ba‘é},T(U)dU:l

-
+C§'/ EAE(Tnv)—Eﬁak,T(U)dU -+ _D—Egk,T (T) .
v=0

= sup sup
0<k<o00<T<T

(A.28)

Moreover, if one separates the state of the plant, in terms of its discrete-time part, and
the intersample information at the kth lifting interval, it follows that each element of
(A.28) is bounded. Then

sup sup ]’y\k,T(T)—’y\k,T(T)’Sfl,T+f2,T+f3,T (A.29)
0<k<oc0<T<T
where
R ’“—1[ - k—j—1 T = _
i = gup, e sup |5 (7o) [ A Bgama | a0
0<T<T osk<oo |45 L v=0 ’
— T A a———
for = sup sup |Cg / A BB, 7 (v)dv (A.31)
0<k<ca0L<T<T v=0
fsr = sup sup |Dgér(7)| (A.32)

0<k<o00<T<T
Note: From part (i), €. 7(7) approaches zero for each 7 € [0,7) and for each step k, as
T — 0, while it preserves stability.

In (A.30), the first term is finite. The right-most term of (A.30) represents the
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supremum over all time steps of the norm of the difference in the zero-state responses
of the plant, at the sampling instants, as governed by the sampled-data and continuous-
time control inputs. In both cases, the plant is stabilized and so, at each sampling
instant, the two states take on finite values. Invoke Proposition 4.2.1. The key to the
demonstration is to investigate the zero-state responses of the plant under sampled-data
and continuous-time control, at the sampling instants. For the continuous-time control

system, the zero-state in the transform domain is given by

Adj(sI — Ag)Bem(s)—

Xg(s) = %) Rer(s) (A.33)

where Recr(s) is the transform of the reference input applied to the continuous-time
control system, and 7(s) and d(s) come from H(s) = mi(s)a(s)/d(s). Note that @(s) =
|sI — Ag]| if the plant transfer function is irreducible, Xg(s) = (sI — Ag) 'BgU(s),
and the rational transfer function vector relating Xz(s) to Rer(s) in (A.33) has strictly
proper entries. One can associate a realization to (A.33) with elements [A,, By, Cs], where
A, is Hurwitz, and the lifting on this realization yields the following plant state evolution

at the sampling instants:

k—

Toer(0)=C2 > [(ezg;r) k—j—1 /v

—

T 'y —
8A2(T_U)B2’-FCTJ,T('U)dU} . (A34)
=0

S,

For the sampled-data control system, the zero-state of the hold-equivalent model of the

plant in the transform domain is given by

Adj (eI — (5T - I) /T) (% T, Ja‘ﬂ?aﬂ(v)dv) m(e)

d(e) Rspr(e) (A.35)

Xor(e) =

where Rgp r(€) is the transform of the sampled reference input applied to the sampled-
data control system, and m(e) and d(e) come from Hy(e) = m(e)a(e)/d(c). Note that
a(e) = |eI — (esT — I)/T| if the hold-equivalent model of the plant transfer function is
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irreducible, and

Xe,(e) = (eI (eA—T—I)/T ( / . (v)dv) Ur(e). (A.36)

The transfer function vector (A.35) has the same dimension as that of the continuous-time
system and d(g) has the same degree as d(s). One can associate a realization to (A.35)
with elements [As, By, Cy], where A, has all its eigenvalues in the region |[Te + 1| < 1,
which yields the following state evolution for the hold-equivalent model of the plant:

k—1

Tarer=C2 [(TAQ L TBQ%SDJ-,T(O)] . (A.37)
=0
With the assumption on the reference inputs, the difference in zero-state responses of the
plant, at the sampling instants, can then be written as:
k-1

TGy ,k, T — %E,Ic,T(O) = Z [Cg (TAz -+ I)k_j_l TBQ(”I'_\CTJ,T(O) + AT‘]-,T)
=0

— =Nkl T —_ -
—Cg (eAQT) ’ f eAZ(T_u)B?_FCT,j,T('U)d’U] . (A.38)
v=0

From the structure of the problem, the fact the hold satisfies the hold condition in the
time domain, and Proposition 4.4.4, proved in this Appendix, there exists one discrete-
time realization such that its elements satisfy: limp_gAs = As, limr_g By = B, and
limr_qCs = C,. The supremum over all time steps of the norm of the difference in
the zero-state responses of the plant, at the sampling instants, can then be bounded as

follows for any finite 7"

sup ”xGT,k,T - %6,k,T(0)“
0<k<o0

1G]]

- Te,CT

k—7—1
[(TA2+I ye=i=1 (eAzT) ” ]TBz

0<k<
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k-1
+”52“- sup Z

N T _ _
(eAzT)k = l:—— /-0 eAz(T—v)Bgd’U -+ TB2] - Tb,CT
— k—j—-1 rT _ _
+[C2| - ™) / A2 T=IVBy. 1 (v)dv
0<k< v=0
HIAG - ll(TAz + 17| 1Bell - T - ro.er
=0
— k—l .
+[[Ca+ ACy|| - 1Bl - Arer- sup 3 “ (TAs + I)F—71 “ T. (A.39)
< <ooj=0
The bound can be further simplified as:
22 [zerer ~ 2oz )
— k-1 kil AT k—-j—1
Tl ossklfoo; [(TA2 +1)F77 — (BT ]“T”BQII Thcr
— | | =
AT OSESOO,Z ()7 |7 [ Btk B e
_ -1 k—j—-1
A AT e A2(T-0) G,
+ ”C’_” szlpmjzo (e 2 ) T T /_0 2 Bowjr(v)dv
+ 3 |@as+ 17| T B2l - ([ + ACH| - Ariiz + ACs] - o) - (A40)

7=0

It is clear that the bound can be made to go to zero as T — 0 since

. — o\ k—j—1
k—j—-1 AT —
T_O(Kk(m [(TA2+I) (e ) ] T =0 (A.41)
L (7 ar-us
—_ 2(L{ —v o = 42
him |~ | e Badv + Bo 0 (A.42)
1 T

e T=9)Bow,r(v)dv

v=0
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. 1 T ZQ(T—U)'_ .
TI;E% T /1;=0 , e 32“ dv - we, V7 (A.43)
hm [[AG| = 0 (A.44)
'ZIJ.E) AT‘b,T = { (A.45)

where wp7 — 0 (T' — 0) because of the assumption on the reference input to the
continuous-time system. Then, given any £ > 0, one can select a 7' < x;(£) such that
fir < £/3 in (A.30).

For (A.31) and (A.32), part (i) of the proof implies that they can be made arbitrarily
small. In (A.31), one can choose a T" < k2(£) such that for < &£/3. For (A.32), select
a T < r3(€) such that f3r < £/3. Let kK = min {k1, k2, &3}, and take T" < x(£). Then

SUPg<k<co SUPo<r<T lfk,T(T) —Yrr(T)| <&

A.3 Proofs of Propositions 4.3.1, 4.3.2 and 4.3.3

Proposition 4.3.1

First, for the case when 7(¢) is independent of 7', is uniformly continuous, and has
finite L2 norm, as ¢t — oo, |7(t)| approaches zero [77]. Furthermore, the derivative of 7(t)
with respect to time is limited and hence the ideal sampler is bounded in the sense that
its output has finite [ norm [4]. Second, with the staircase equivalent of 7(¢) entering the
ideal sampler, the output of the sampler can be written in operator form as S H ST, where
H is the ZOH, 7(¢) is in S; and has finite L? norm, and H ST is the staircase equivalent
of 7. With the convention adopted in this research about the ideal sampler and ZOH, as
described in Section 1.2, the operator SH is the identity discrete-time operator; that is,
the discrete-time output of SH equals to the discrete-time input. Therefore, SHST = ST

and the finiteness of the [2 norm of the sampler’s output is guaranteed.
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Proposition 4.3.2
From Theorem 2.3.1, sup,, |H(jw)| < oo and sup., |G H(jw)| < oo, where j = /—1.
. _ —. 2 _ —_—
With bounds {[@(t)[l7. < (sup. [H(jw)|)® - [IF(£)[12 and [T} < (sup. [GH(w)|)" -
I7(t)li72 [59], @(t) and F(¢) are in L2,

Proposition 4.3.3

The proof is divided into two parts: the control input and the controlled output.
(i) Control input. uyr has finite /2 norm since the sampled reference input has finite /2
norm, with the restriction on the type of input admitted, and the discrete-time PITF is
stable, from Proposition 4.3.1 and [77]. The L? norm of the output of the hold, ur(t),

can then be bounded as:

. 1/2
Nlur (). < [Z |uk,Tl2T} - sup [H(7)|. (A.46)
— 0<r<T
From the condition on the magnitude of the hold function, the control input is in L2.

(ii) Controlled output. The following facts imply that the state of the discrete-time PITF
is in [2: closed-loop system stability and reference input in, or a staircase equivalent of a
signal in, S; with finite L? norm, and the control input in L2. Using the representation
in equations (4.4) to (4.6), where the state of the PITF is taken as the composite state,
the finiteness of the terms multiplying the closed-loop discrete-time state and the sam-
pled reference input, and the finite /2 norms of the discrete-time state and the sampled

reference input make the L? norm of the controlled output finite.

A.4 Proof of Proposition 4.4.1

Proposition 4.4.1 provides the relationship between the solutions to the discrete-time
and continuous-time Diophantine equations, obtained with the eliminant matrix method,

when the sampling interval is reduced.
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. The difference between X and X can be expressed as:
X-X=AY-A'Y (A.47)

where the two inverses exist since A and A have full rank. Since Gr(e) and Hr(g) are
discrete-time models of G(s) and H(s) [13], respectively, and %(s) and 9(s) have the same

degrees as u(e) and v(e), respectively, one can write

Y = Y+AY (A.48)
A = A+AA (A.49)

where ljmT_.oAY = O(p+1)x1 and limT_.oAA. = 0(p+l)x(p+l)' Then
lim [|X - X <tim ||z +Z2n) 1] - [&7] + a7 - 1av])  (As0)

. and X approaches X as 7" — 0.

A.5 Proof of Proposition 4.4.2

For a given continuous-time control system, Proposition 4.4.2 relates the solution ob-
tained with the eliminant matrix method to that obtained with the least-squares method.
To start the proof, let the continuous-time Diophantine equation of the given continuous-

time control system be

(Test 4 ... +T) (@™ + ... +To) + (Tns® + ... +T0) (™ +- - - +bp) = dps? +...+dy (A.51)
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with the corresponding system of equations

@n -
— Ug B 7
E'n.—l bm . dp
an Em—l _ zp—l
. - Uo .
@ r- SN Tl=l s (A.52)
- — Uh —
Qg bo bem—1 . d;
a; _ do
— Uo | ——
L ag bo i — __,/ =V

=A

Before proceeding any further, it should be noted that (i) Ay X, = A X; (ii) @(s) and
Us(s) have the common degree p—n; (iii) the system of equations A X =Y is consistent,
i.e. Y is in the range space of A; and (iv) by the assumption on the plant irreducibility
and a theorem on unicity of solutions in [93], X is unique.

Partition the matrices as follows:
A= (A& B R = (BB 1 AT (A.53)

where &7 € R®+DX1 for j =1,2,--- f+h + 2, and X?,: € RP+UXL for j=1,2,---,p+
1, are the column vectors constituting the matrices A and As, respectively, and the

superscript denotes the position of the vector in the matrix. Write the vectors X and X

as follows:
X=[U|V", X2 =[0:| Vo" (A.54)

where U and V are vectors of coefficients of the polynomials %(s) and 7(s), respectively,
and U, V;, are vectors comprising the coefficients of %»(s) and v»(s), respectively. Further

expand the vectors as
T = [01),00@2), -, 0p-n+1)]" (A.55)
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U: = [02(1),T2(2),- . Talp —n+1)]" (A.56)
V = [V,V@), -, Va+1)]" (A.57)
Vo = [Va(1),V2(2),---,Va(n)]” (A.58)

where U(j) corresponds to the jth entry of the vector U, and similarly for the other
vectors. Use the fact that A X = A, X, to write

[AE | BT R = R A 1A R (A.59)

or, in more details,

A'T() +A2T(2) + --- + A7

= A U(1) + Kﬁﬁg(g) + -+ AT V,(n). (A.60)

Vih+1)

The number of columns of A, is greater than that in Asinceh <n-—1.In fact,
the number of extra columns of A, with respect to A equals n — h — 1 (Note that if
h=n—1,A, =A and X, = X.). Then, knowing A} = A’ for j = 1,2,---,p—n+1

and A% " = AP for j=12,3,---,h + 2, equation (A.60) can be rewritten as:

(T(1) — Ta(1) )A§+-~-+(U(p—n+1)—m(p—nﬂ))ﬂ_i'"“

HVo(1)AS "+ Va(n—h — )AL " + (V(1) — Va(n — b)) A5 ™
too+ (Vb +1) = Vo(n)) A
= 0. (A.61)

Since A, is a square matrix of rank (p + 1), the Kg are linearly independent vectors and

the coefficients in front of them, in (A.61), are bound to be zero [94]. Therefore,

Ux(1) = T()
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Us(p—n+1) Up—n+1)
Vo(l) = 0

Valn—h—-1) = 0
Va(n—h) = V(1)

Va(n) Vih+1).

i

It follows readily that %2(s) = T(s) and Ta(s) = 7(s).

A.6 Proof of Proposition 4.4.3

Rewrite the Diophantine equation (4.33) as

(T2 f23r2 + ...+ _2,02 a(s)+ \(ﬁg,hzshz +...+ "172,0)4 E(s) =§2,p+c3p+c + ...+ dsg,

—

v T

=T2(s) =T2(s) =da(s)

(A.62)

(A.63)

where T»(s) and 7»(s) have degrees set to fs = f + ¢ and hy = h + ¢, respectively, and

da(s) = ¢(s) - d(s). In the usual way, generate the linear system of equations (A.64).

- .
Qn o n
— . - U2 £, - 1
aTL—l . bm - d21p+c
Gy, bp1 - _ d2,p+c—1
_ _ - U2.0
a Gn—1 bm _ =
_ . - — V2,hg —
ag bo bem—1 da
El . _ dg’o J
_ _ V2,0 J L*J
Qo bo —— ~— =Y,
~— - =X2
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The polynomials %(s) = ¢(s) - %(s) and Ta(s) = ¢(s) - T(s) form a solution to (4.33)
since substituting them in (4.33) satisfies the equality. Equivalently, the coefficients in
front of the powers of s of the polynomials us(s) and T»(s) which form the entries of
the vector X, in (A.64) provide a solution to A, Xs = Y. In order to show that this
solution to (A.64) is unique, it must be proved that, when @(s) and b(s) are coprime,
A, in (A.64) has full column rank. To do so, one should first note that the value of ¢
should lie within the range [2n — 1 — p, n — 1 — h] for reasons of unicity of solution (the
upper limit n — 1 — h avoids obtaining an underdetermined system of equations) and
properness of the controllers calculated with equations (3.12)-(3.15) from the solution
vector X3 (the lower limit 2n — 1 — p in conjunction with the condition on h prevents
improper controller transfer functions and assures p +c¢ = 2n — 1). In fact, multiplying
d(s) by &(s) results in a vector Y, in (A.64) having a dimension greater than or equal
to 2n. From a continuous-time variant of the first part of the proof of Theorem 3.2.1,
it results that, provided @(s) and b(s) are coprime, A, in (A.64) has full column rank.
In more details, when p + ¢ > 2n — 1, the coprimeness of @(s) and b(s) assures the full
rank of a square matrix A, € RPte+)xP+etl) i (A 64) provided f, = p + ¢ — n and
h, = n — 1 from a continuous-time version of Theorem 3.1.1. Thus, with the degrees
fp =p+c—nand hy < n— 1, as is the case here, the matrix A,eR®+ct1)x(f2+h2+2)
possesses fs +hy + 2 linearly independent columns. For the non-square case (h; < n—1),
the matrix A, R(Pret1)x(f2+h2+2) oo he formed from the aforementioned square matrix
by removing n — hs — 1 columns.

Hence, the uniqueness of the solution polynomials Uy (s) and Ta(s) is achieved.
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A.7 Proof of Proposition 4.4.4

Sufficiency: Suppose one realization of Wr(e) is [A + AA, B+ AB,C+AC, D + AD],
where the A- terms satisfy (4.42). Then

(C+ AC)Adj(el — (A+ AA))(B+ AB) + |el — (A+ AA)| (D + AD)
leI — (A + AA)|

Wr(e) =
(A.65)

whereas

w5, \  CAdj(sI —A)B+|sI — A|D

W (s) 5T — 7] (A.66)

It is clear that the coefficients of the powers of ¢ in the numerator and denominator parts
of Wr(g) approach those of the corresponding powers of s in W(s) as T — 0 when the
terms A- approach zero.

Necessity: From the knowledge of the transfer function coefficients, one can obtain a
realization. If both realizations are for instance in the observable canonical form, then
each element of the discrete-time realization will approach its corresponding continuous-
time element, as T' — 0, provided the coefficients of the discrete-time transfer function

given by (4.39) satisfy equation (4.41). In more details, let a realization of the discrete-
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time system be given by

00 - 0 —(Bo+Ab) |
10 0 —(b+ Aby)
Sz =| 0 1 0 —(by + ABy) Tk,T
00 - 1 —(Bact + Abay) |
—A+aA

(@o + Dag) — (bo + Dbo) (@n + ANa)
(51 -+ Aal) _— (51 -+ Ab]_) (En + Aan)
+ (52 -+ AGQ) — (52 + Abg) (En + Aan) TkT

(A.67)

B (Ein—l + Aan—l) - (En—l + Al:'n—l) (an + Aan) J

=B+AB
Yk, T =[ 0O --- 01 J e+ (@n + Day) TT
———

- e

=C+AC =D+AD

where 7 7 is the input and y, r, the output of the system. The continuous-time system

realization is

FO 0 - 0 —=bg 50—506,1
10 ---0 —=b @, — b1Gn
EO 101 .- 0 -5 |Z®)+| @—ba. |7
. _ (A.68)
0 O --- 1 _bn-l J an—l_bn—-lan
A =B
7(t) = Z(t)+ @, T(t
y(2) \[O Ol]/z()%—\f:/r()
~~ =D
=C

where 7(¢) is the input and %(t), the output of the system.
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A.8 Proof of Theorem 4.6.2

The following proposition is used in the proof of Theorem 4.6.2.

Proposition A.2 For a linear, time-invariant discrete-time system Hy, the ideal sam-

pler S and the ZOH H,
[HHT S| feo = [1H7 ||} - D (A.69)

Proof: First, the induced norm of HHrS can be bounded as follows

IHHT S| fo < [ Hllompoo - 1Hr oo - IS foo oo
< [Hrlle (A.70)

since ||S||foo e =1 and [|H||;ee ;0 = 1 [66], and the induced norms are submultiplica-
tive for bounded, linear transformations [77].

Second,

|Hrlle = [[SHHTSH|| ;e
< “S”Loo-_.[oo i ”HHTS”LOO - “H“[N—.Lw
< [|HHS|| (A.71)

since SH = I, where [ is the identity discrete-time system, with the conventions on the
hold and ideal sampler adopted in this research. Then (A.69) follows.O

With the continuous-time lifting formalism, the induced norm of the continuous-time

system can be rewritten as

”ﬁ”Lw :g /T; IEA:,T(T)I ar (A.72)
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where {/g\k’T(T) }5° is the lifted impulse response of H. It is desired to show that
lim || HH S| oo = || (A.73)
or, equivalently, that given any € > 0, there exists a v > 0 such that

<e (A.74)

oo o0 T
> lowal T~ Y- [ [fur()] r
k=0 k=0 Y7=0

whenever T' < . With realizations given as [A, B, C, D] for Hr and as [4, B, C, D] for

H, a bound can be obtained as follows:

oo oo T
S lowrl-T= Y- [ [Ger(r)]ar
k=0 k=0 Y 7=0

T TR —
< |(D+aD|-[D)|+ [ [Cc*B]ar
—OO?'E'_—*O) > r_o_,o (‘1:_‘0) ~
+D|C+ACHT(A+AA) + DY (B+AB)|-T
k=1

(A.75)

— g /r:o I?(eXkTez"F)l dr

The first two terms on the right-hand side approach zero as T is reduced. The third term

yields

S |(C + AC)T(A +A4) + (B +AB)|-T

k=1
- Z [TO Ié(eIkTer“E)l dr
k=1 "Y"=

i [C(T(A+ AA) + 1) 'B| - T— i / ' ‘6(9”3"?)] dr
k=1 k=1 v 7=0

<
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£ |ACT(@E + A4) + 1)< (B + AB)| - T

k=1 _
—0 (T—0)
+ > |[C(T(A+AA)+1)*AB|-T. (A.76)
k=1
—0 ?7:—00)

The internal stability at the sampling instants of the control systems renders the series
in the first term of (A.76) finite [76] whereas the behavior of AC and AB make the last
two terms on the right-hand side of (A.76) approach zero, as T — 0. The first term of
(A.76) can be bounded as:
o ]

— — e o T — A L. _7'—
S C(T@A+A4) + DFVB| - T— ;/T=OIC(6"’“"e" B)[dr

k=1

< DO ICTEA+AA)+D¥B|-T-> faem"ﬁl . T, +|CB|-T
\k=0 k=0 | —0 (T" _.0)

N

=fi.T

[T IBY- 3 || - sup [l 1] (a7
. k=1 )

o<T<T

—0 (T—0)

The first term on the right-hand side of the last inequality can be bounded as

hr < [01- |3 I+ an) + 17 35 [ 7] B e
k=0 k=0 l

where the series are finite when T is sufficiently small and both are composed of terms
which exhibit an exponentially decaying magnitude as £ — oo [76]. As T" — 0, each

series approaches the following integral

/t:: ”em“ dt (A.79)

which has finite value from the internal stability of the continuous-time system [76]. The

197



‘ bound on f; r can then be made arbitrarily close to zero with a sufficiently small sampling

interval. Consequently, equation (4.60) follows.

A.9 Proof of Theorem 4.6.3

The following propositions are used in the proof of Theorem 4.6.3.
Proposition A.3 The induced norm of the ZOH H : {2 — L? is unity.sq

Proof: Suppose that the ZOH has period 7', the input to the ZOH is uxr, £ > 0, and
the output is uz(t). The L? norm of ur(t) is therefore given by

lur(@®ll. = fco IUT(t)I2dt] -

L/ ¢=0

— < [T 2 2
= Zf,—:o | H (T)ug,1| d'r:I

| k=0
feo o -
® = |3 Jualor
Lie=0 /7=0 ]
- r
= Z [uk'le / dr
Lk=0 =0 J

- o 1/2
= Z lukr|? TJ = |lugrll2 -O (A.80)
| k=0

1/2

1/2

Proposition A.4 For a linear, time-invariant discrete-time system Hr, ideal sampler
S, ZOH H, and reference input to the sampled-data system HH7 S lying in &, or being

a staircase equivalent of a signal in, S; and having a finite L? norm,

lim || HH7S|| 2 =Jim |[Hrlls - o9 (a.81)
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Proof: On the one hand, the induced norm of HH+S can be bounded as follows

lim |HErSll < Jim [l go - [zl - 1511 o
< Jim [l (4.82)

since [|H||2_ ;> = 1, from Proposition A.3, and limr_q ||S||;2_2 = 1. The norm of the
ideal sampler necessitates some explanation. First of all, the finiteness of the sampler’s
induced norm comes from the fact the input is restricted to lie in S; and to have a finite
L? norm, or to be a staircase equivalent of a signal in &; with finite L? norm. With
such restriction, the ideal sampler is a bounded operator [4], and its output has a finite
[2 norm. Second of all, concerning the fact limgy_g |[S]|;2_,2 = 1, the {* norm of the
sampler’s output is given by
o 1/2
luk,rlle = [Z g 7] T} (A.83)

k=0

whereas the L? norm of the input to the sampler is

12(6)ll 2 = [ [ mer dt] " (A.84)

t=0

where ugr = T(t)|,_.r for & > 0. Choose a fixed ¢* >> 0. Then, evaluate (A.84) over
[0, t*], calculate the sum in (A.83) over the range [0,int{¢*/T"}], and let T — 0, to obtain

1/2

int(t=/T} t* 1/2
. 2 _ (2
| X erlT| [ [ m@ra] (A85)

Since ||@(t)||,2 < oo, one can let t* be arbitrarily large and equation (A.85) still holds

[92]. In fact, as t* — oo,

Jim [ /; 0 [z(t)|? dt} 1/2: [ /t:: |a(t)|2dt] 1/2. (A.86)
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On the other hand,

lim [rll, = Jim | SHErSH],
TI"i_IPd ”S”L2_.[2 : ”HHTS”LZ : ”H”z‘2_+L2

lim || HH7S]| 2 (A.87)

IA

I

where SH = I, the identity discrete-time system. Then (A.81) follows.O
With the preceding propositions, the aim of the proof is to show that, given any € > 0,

there exists a v > 0 such that
Hzlle — [H]l.| <e (A.88)

whenever T' < . With Hr = [A4, B, C, D] and H = [4, B, C, D], write

“IHT”ﬂ - ”ﬁ“zle
jwT __ -1
= sup o ((ej—l-)l — A) B+ DJ
-7 /T<w<r/T T
- swp [C(Gur-A)"B+D| I (A.89)
—o<w <0

It should be noted that the systems are internally stable and that their frequency
responses obey |H(jw)| = |H(—jw)| and |Hy((e*% — 1)/T)| = |Hr((e7 T — 1)/T)| [40].
Hence, considering the positive frequency range is sufficient t© obtain the supremum norm
over the entire range of frequencies. As w — oo, [H(jw)| approaches a finite value: for a
biproper system H with realization elements [A, B, C, D], it is D, whereas for a strictly
proper system, it is zero [5). The frequency response magnitude |Hz((e™T —1)/T)]| is
periodic with period 27; that is, the frequency response magnitude for w € [—# /T, 7 /T
is periodically repeated for the frequencies w > n/T and w < —n/T [40] (For frequencies
w approaching to /T, in the range [0, w/T], the frequency response magnitude of Hr can
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be made arbitrarily small by reducing the sampling period, when the transfer function is
strictly proper.). Consequently, the supremum over all frequencies can be assessed over
the interval [0,7/T]. In light of the aforementioned frequency response characteristics,
it has to be shown that the supremum of the magnitude of the frequency response of
the discrete-time system over the range of frequencies [0, 7/T] can be as close as desired
to that of the continuous-time system over frequencies in [0, 00), by employing sampling
periods which are sufficiently small. A sufficient condition to the achievement of this
behavior is to have the supremum of the magnitude of the difference in the frequency
responses over [0, 7/T] to be as small as desired. From the knowledge that A = A+ AA,
B=B+AB,C=C+AC,and D =D + AD, and Proposition 4.4.4, the supremum of

the magnitude of the difference in frequency responses over [0, 7/T] can be written as

sup |Hr((e"" —1)/T) — H(jw)|

o<w<w/T

 c— .“T— —
(B + An ) L L+ (T + Ano)

= sup

O<w<w/T '(‘GJ—.W;‘;—D—’; —+ (3,,_1 =+ Adp_l)&;p—:li):: + ...+ (E() -+ Ado)
= (: \q —
) s b Y (A.90)
(@) + dpr () + . + do
where g < p,
i, + A, )& (T + A T — 1 -
(nq (dw;)—l)p T _ (no 0) — C (( T )I _ A) B (A-gl)
gt ...t (do + Ado)
= (i \q _ . o
D)+ W _ (5,7 _A)'B (A.92)
(jw)? + ... + do
and
i .= ) =0,... i .= 1 =0,...,q. A9
TL}% Ad_7 0: J 07 1 Py 11}% AnJ O: J 0) 1 q ( 3)
With
jwT'
sz £ u: (A'94)
’ jwT
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whose magnitude versus w7 within [0, 7] is shown in Figure A.2, one can write

T 1

T = jw ° EW,T (A-95)

and bound (A.90) as

sup [Hr((e*" —1)/T) — H(jw)

0<w<r/T
< sup _ﬁq . (jw)q - (ZZI,T - 1) + ...+ ﬁ]_ - (Jw) - (Ew,T — 1)
T 0<w<n/T (jw)P - BF 1 + dpoa (jw)?~1 - Z2 2 + ..+ do
L sup Ap, - (jw)?- ZE,.T + .+ Ay - (W) T+ Ar
O<w<n/T (w)? - ZF r + dp1 (jw)Pt - Ef:; + ...+ do
+ s ﬁq'(jw)" + 18, '(jw)q’"l +... + 1
o<w<r/T | (Jw)P + dp—1 ()P~ + ... +dp

(w)P-(1=%L7) +..+di- () - (1= Fur)
(jw)? - EL 7 + dpa (jw)P~L - TEZ + . + do

+ sup B, (jw)* '{‘_ﬁq—l(jw)q_l + ... +_ﬁo
o0gwsm/T | (jw)P + dp—1 (jw)P~' + ... + do

By ()P4 Ay, (WP D

(jw)P - EP 1+ dp_1 (jw)P~1 - EP 4 + ...+ dg

+|AD). (A.96)




Magnitude

o
o
T

0.75 i

0.7

0.65 |

Figure A.2: |Z,, 7| versus wT
Each term of the bound in (A.96) can be made arbitrarily small by reducing 7T". This

is seen as follows. Rewrite the first term as

- (j)? - (S = 1) 4 o+ B - () - (S — 1)

sup : > - —
0<w<n/T (jw)? - B, ¢+ dp1 (jw)P~ - 070 + .+ do
. - (iw)d
< sup . . O, : (jw) = ) (ZZ,T —1)
0<wsn/T | (JW)? - 5, p + dp1 (jw)P~1 - E5 1~ + ...+ do '
Og—1 - (jw)*! q-1
+ sup . T — (B2 1)
o<wm/T | (jw)P - 3 7+ dp1 (jw)P~t - ZZ:} +...+dy wT
+...
o - (jw)
+ sup - - — -(ZBur —1)|. (A97)
ogw<a/T | (jw)P - P p 4 dp_1 (jw)P L - EZ,,_,} + ...+ dg (

Each term on the right-hand side of (A.97) has close-to-zero magnitude in the low- and
high-frequency (close to 7/7") ranges. For the low frequencies, (Zf;_T -1),7=1,..q,
approaches zero for each fixed T'. It should be noted that, as w — =/T, |EZ,'T — 1[ <1,
j =1,..., q. Furthermore, decreasing T results in (ZZ',’T —1) becoming as small as required

for a larger span of frequencies. For the high frequencies, these are filtered out by the
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component

g, - (jw)? -
(0 Sog + (Pt T 4 tdo 0
present in each term on the right-hand side of (A.97). Thus, one can always choose a T’
small enough such that the bound in (A.97) is as small as required. A similar development
can be carried out for the third term of the bound in (A.96). Concerning the second term

on the right-hand side of (A.96), 2 bound on this term is given by

su Anq i (jw)q ) ZZz,T + ...+ A!:u - (.]w) - Zw,T + Ano
Ost?r/T (j(d)p . Zg,T +d -1 (j(.d)p_l - 25—._7} + ...+ do

(jw)?-Z r
S sup . D . : —1 ) |An‘1|
ogwem/T |(Jw)P - EF, 7 + dp1 (jw)P~t - 50 + ... + do
i)t . el
+ Sup : p (.] ) _ w, T s . |Anq_1|
o0gwsn/T | (Jw)P - ZF, ¢ + dp1(jw)P~1 - B 7 + ... + do
+...
+ su ! A (A98)
oswen/T | ()P - 5+ dp1(jw)pL- S5 4. 4+ do " '

In the low-frequencies, each term on the right-hand side of (A.98) can be made arbitrarily
close to zero by reducing 7', whereas the higher frequencies are filtered out by the first
component of each term. Therefore, there exists a 7" small enough such that the bound
in (A.98) can be made as small as needed. A variant of the above development can be
applied to the fourth term of the bound in (A.96). Finally, the last term of the upper
bound in (A.96), |AD|, can be made arbitrarily small by letting T — O.

It is clear that a sampling period can be selected such that the magnitude of the
discrete-time frequency response of the discrete-time system can be made arbitrarily
close to the magnitude of the continuous-time frequency response of the continuous-time

system for frequencies in [0, 7/T]. Then the theorem is proved.
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Appendix B

Matched Pole-Zero Discrete-Time
Model as a Hold-Equivalent

Structure

This appendix proposes a state-space formulation for the matched pole-zero discrete-time
model of a continuous-time system. The concepts of generalized hold functions [53, 95]
and continuous-time lifting are used in order to express the discrete-time system as a
hold-equivalent model of the continuous-time system, as shown in Figure B.1. The main
advantage of using this structure is that it directly relates the state-space parameters
of a matched pole-zero discrete-time model, such as the discrete-time PITF of a PIM-
based sampled-data control system or the discrete-time plant model, with those of the

continuous-time system.

Discrete-time — Discrete-time
input output
Continuous-time

' Hold I idesl
—F&J—’ function system —>  samplee |

.
t Matched pole-zero
[ discrete-time model

Figure B.1: Matched pole-zero model as a hold-equivalent discrete-time system

y

X
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Consider a general causal continuous-time linear, time-invariant system G. Its real-
ization is given by the set [A,B,C, D], where A € R***, B € R**!, C € R™" and
D € R. Suppose that this system is preceded by a gain K, in cascade with a generalized
hold, and followed by an ideal sampler, as shown in Figure B.2. In the type I structure
of Fig. B.2(a), the discrete-time system, denoted as Gr, has the following state and

output equations:

eAT — ] 1 T < =
Sy =| —— | ThT+ T (/ eA(T_”)BH[(v)dU) - K rer, Tor = Onxi,
v=0
— =B, (B.1)

e =_C zrr+ D - K Ter,
=C =D
where 11 = T(t)|,_rr - The type II structure of Fig. B.2(b) comprises a generalized hold
which is assumed to satisfy H/(7)|,.o = 1. The resulting discrete-time system, Gr s,

has a state equation as given in (B.2) and an output equation identical to that provided

in (B.1).

eAT — [ 1 T 2r-wo
5$k,T =\ ——=— | Tert+ (/ eA(T_v)BH[[(’U)d'U) - K Te, T, ToT = Onx1 (BQ)

T T \Uuo
S——— g g
=A =By

In the above two equations, zx r = Z(kT') for each k, K # 0 is a function of 7', and H; and
H; correspond to the generalized holds of types I and II, respectively. Two structures
are considered in order to allow more freedom to the engineer in the choice of a hold
function. For the realizations in (B.1) and (B.2) to correspond to a matched pole-zero
discrete-time model of the system G, the zeros must be adjusted through the generalized
hold, and the DC, or low-frequency, gain must match that of its continuous-time system

counterpart, for each fixed T, by properly selecting the gain K.
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M1 ,”IZOH |l » D
K

_ — - * ¢x.7
Hi G(s)=C(sl-A) B > » S —>
(a)
MeT — rr
— K > Hu > G(S) » S >

(b)

Figure B.2: Hold-equivalent structures

B.1 Determination of Hold Functions

A generalized hold cascaded in front of a controllable and observable continuous-time
system realization can be designed for arbitrary placement of the zeros of the discrete-
time system [95]. However, if the continuous-time system realization is non-minimal, the
system should be decomposed into minimal and non-minimal subsystems and the hold
function calculated only for the minimal part. The following theorem establishes this

fact.

Theorem B.1 A pole-zero cancellation associated with the transfer function of a non-
minimal continuous-time system realization is preserved in the conversion to a discrete-

time system, having the structures of Figure B.2, provided T is selected as non-pathological.p«

Proof: Consider the conversion to discrete-time according to the structures of Figure B.2
and assume 7T is non-pathological in order to prevent the occurrence of extra discrete-
time pole-zero cancellations which are not present in the continuous-time system. A

continuous-time realization [A, B, C, D] can be decomposed into minimal and non-
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—~ —~~

. minimal subsystems via a Lyapunov transformation [96] to yield [A, %, 5, D]. Then,

the discrete-time system can be written as

y

-~ et T
A = T ]
([4., 0 A o
1 Aoy A,z Aoz A
- = exp 4 2,1 ~2,3 2.4 \_r
0 0 Az
L \ L 0 0 L,S 71—?:,3 . / .
eAc,eT _ T
T { 0 A
eteal g 2
A T
= FeoT_, . (B.3)
e -T — 0
0 _
I As eAE;T_I ]
6A°°(T_U)B
~ 1 rT 7
. B = T AB, H(v)dv - K, (B.4)
v=0
0
C=C=[T.p 0 Ts, 0], D=D -k (B.5)

where the subscripts ¢ and o correspond to controllable and observable portions, respec-

tively, and H represents either H; or H;;. The minimal realization is given by

v

0Tmin kT = (EAC';T"I) TminkT + (f ’io efeoT~IE, H (’U)d'U) - Krer, (B.6)

¢k,T = —C—c,oxmin,k,T + :5 N I{'rk,Tr

and the transfer function, by

_ eZc_oT I -t 1 T _ _
Coo | el — | —— (T / eA""’(T‘")BC,oH(v)dv) K+D-K. (B.7)
‘D=0

Since the transfer function can be written in terms of the elements of the discrete-time
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minimal realization, the zeros in extra to those associated with the transfer function of
the minimal realization are mapped in the same manner as the poles, and this ensures

that the pole-zero cancellations take place in discrete-time. O

B.1.1 Discrete-time Vectors Br., and Brrc,

The entries of the vectors By, and By, ., are calculated. Since By ., = By o, for fixed
zero locations, from now on B, will denote either vector. The procedure to calculate

B., is as follows:

Step 1: Obtain each finite zero location as z = (€7 — 1)/T, where Z; is the ith zero
associated with the minimal realization of G(s), and T is chosen to be non-pathological

with respect to G. When there are m* > 1 zeros, write the polynomial p*(¢) as

p*(e) = (e — 1) (e — z2)...(€ — zm)

=™ +pr._1 €™ L4 . +ple+ D

(B.8)

for m* < n.,, where 1 < nc, < nis the order of the minimal realization of the continuous-

time system. When m* = 0, set p*(e) = 1.

Step 2. When n., > 2, define the polynomial v*(g) as

v*(€) = CooAdj (g[ - EK“';,T-‘) B!, + Ddet (e.r - %)

= h. €™ F+ k. g™ T+ L+ ufe + v

(B.9)

where B., = Bco/K, otherwise v(e) = CcoB., + D(e — (e#eeT — 1)/T). Set () =

v*(g) /v},. when m* = ng,, and l(e) = v*(e) when 0 < m* < ng,.

Step 3: Equate like powers of € in p*(¢) and [(g), and solve for the entries of B,.
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Step 4: The gain K is established from the minimal part of the systems and is given by:

-C'-c,o (soI - Zc,o) - -Ec,o + E

K=— - = —
Ceo (el —<=5=L) "B, +D

(B.10)

where s, is real and 0 < s, << 1, and g, = (e*T —1)/T.
With B_ , known, one can solve for the response functions of the generalized holds of
types I and II.

B.1.2 Response Function of Generalized Hold of Type 1
One candidate for generalized hold of type I is the minimum-energy hold [97], with
response function defined as

. -1
Hoin() = Bipelee@™ (%) B, Te[0,T), (B.11)

where W is the controllability Gramian given by

T _ R
W = elecT-1B B, ey, (B.12)
=0 '
Another hold of type I can be defined as having n., uniform, piecewise-constant functions
of time within each period 7T'; that is,

r aO: fOI‘ T E [O,T/nc'o)

Hy(r) = ) 511, for 7 € [T/, 2T /Nc,0) (B.13)

L anc.o—]-) for T E [(ncvo - 1)T/nc.01 T)
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where the o;s are finite, real numbers. Therefore, an expression equivalent to B., is

given by

Ne,o—1 A, Tc,0

> T | L[ Aesr By K B.14

e » T . e c,odV - L. ( . )
—0 v=

To solve for the ays, the following lemma and theorem are invoked.
Lemma B.1 If T is non-pathological, so is T/N, where IV is any positive integer.>

Theorem B.2 For the pair (A¢o, Beo), if T € (0, 00) is non-pathological, the n., X 7co

matrix ¥ given by (B.15), where I' = [ F‘Z; = gAeoT—)B_ dv, is non-singular.>q

\P — [F’ E_XC'OT/nC'aF, cee e-zc,oT(nc,o—l)/nc,oF] (B.ls)

Proof: Let Y = T/n., and T' = AZ52™Y By, where
- T _ .
Asrar = €T, B = eeeT=1B_ ,dv (B.16)

v=0

are state-space elements associated with a step invariant model (SIM) of the continuous-

time system, in the shift form, for a sampling period of T, as given by
Tr+1,t = AsrmTex + BsimTe,x- (B.17)
Then ¥ can be expressed as
¥ = [A'S‘?;[_ 'Bsras, AeeeT*Bsiag, - - -, Asrar Bsit, BSIM] . (B.18)
The controllability matrix for the SIM in (B.17) is known to be [36]
C= [BSIM, AsrmBsiar, -+, Asgar Bsiar, A;}'RI-IBSIM] : (B.19)
The full rank of C, which is guaranteed by the facts (Zc,o, -Ec,a) is controllable and T is
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non-pathological [4], implies invertibility of ¥.O

Then
[8.4]

=¥"'TB,,. (B.20)

anc,o—l

B.1.3 Response Function of Generalized Hold of Type 11

One possible hold of this type is defined as having n., + 1 uniform, piecewise-constant
functions of time within each period 7’; that is,

( 1, for 7 € [0, T/(nco + 1))

B, for 7 € [T/(neo +1),2T/(Neo + 1)

H[[(T) = (B21)

\ Breo, for T € [neol/(Neo +1),T)

where the ;s are finite, real numbers. An expression for the vector B, is then given by

Ne,0 ~Ac.oT - 1 T/(ﬂ-c,o"‘l) v T _
I+ Z .Bje neot+l’ '2: / eAeol _v)Bc,odU -K. (B.22)
j=1 N\ v=0 -~ -
=0

The coefficients of the hold can be solved as

B
;| =918, 0] (B-23)
1371::,0
where
b= [ el—:f‘i%g, ,e%’zcﬂg } (B.24)

since T'/(n.,,+1) is non-pathological, from Lemma B.1, and & is invertible, from a variant

of Theorem B.2.
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B.2 Properties of the Matched Pole-Zero Discrete-
Time Model

Controllability and observability of the matched pole-zero discrete-time model, and stabil-
ity of the newly established structures are addressed. The limiting form of the state-space
elements, as T — 0, is provided and connections with classical invariant discrete-time

models are established.

B.2.1 Stability, Controllability and Observability

Theorem B.3 A necessary and sufficient condition for the discrete-time systems Gr s
and Gr s, given by equations (B.1) and (B.2), to be exponentially stable, i.e. the eigen-
values )\; of A lie in the region [TA; + 1| < 1 forz = 1,2,...,n, is that the continuous-time
system G be exponentially stable, i.e. all eigenvalues \; of A have strictly negative real

parts.0«

Proof: (i) Sufficiency. Let \; =&; & j-@; for i = 1,...,n. Suppose the continuous-time

system G is exponentially stable: 7; < 0. The eigenvalues ); of A are given by

AT 1
A= —T— for i = 1,2, I (2 (B.25)

where T" > 0. Then [TA; + 1| = %7 < 1.

(ii) Necessity. The discrete-time systems Gr; and Gr s are assumed exponentially
stable:|T'A; + 1] < 1. Suppose that one eigenvalue of G, };, has non-negative real part:
;> 0, j € [0,n]. Then %7 > 1, which violates the initial assumption for the discrete-

time systems.O

Theorem B.4 If the pair (C, A) is observable and T is non-pathological, then the pair

— eAT_[\ . . : .
(C, £571) is observable in a discrete-time sense.bq

Proof: To demonstrate observability of the discrete-time realization, it must be shown
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that [4]

eIT—I A T_]_
rank T T I}:nfori:lQ...n (B.26)
C

knowing that, in the continuous-time domain,

A—NI
rank . =nfori=12,..,n. (B.27)
C

In a procedure reminiscent of the proof of Theorem 3.2.1 in [4], assume (C, A) is observ-
able and T is non-pathological. Define
(er"—-l ) _ (eTXi =1 )
T T

g(s) = = fori=1,2,..,n (B.28)
S — )\i

which is analytic for all s and which satisfies limy_,0g(s) = 1, for all s. The zeros of g(s)
are given by the set {s:s=X\;+j-2mj/T, j =1,2,... and i =1,2,...,n}. The fact that
T is non-pathological assures that no zero of g(s) equals to an eigenvalue ;. From the
spectral mapping theorem, the eigenvalues of g(A) correspond to the values of g at the
eigenvalues of A. Since 0 is not an eigenvalue of g(A), even if it belongs to the set of

eigenvalues of A, g(A) is non-singular. Therefore, one can write

eA;—.[ _ exi;:—l-[ g(Z) 0 { Z—X-LI }

(B.29)

C 0 1 C

The right-most term on the right-hand side of (B.29) is invertible from the observability

of the continuous-time realization, whereas the matrix

g(4) 0
0 1

(B.30)

is non-singular since g(A) is so.O
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Theorem B.5 If the pair (4, B) is controllable and T is non-pathological, then the

pair (ez;"' . u:;o eAT-BH (v)dv-K), where H(v) is either H;(v) or Hyr(v), depending

on the case, is controllable in a discrete-time sense.rx

Proof: The continuous-time realization is either (i) minimal, or (ii) controllable and un-
observable. The first case is proven in Theorem B.6. For the second case, the transfer
function associated with [A, B, C, D] has pole/zero cancellations corresponding to the
unobservable modes. Knowing how the poles and zeros are mapped with the matched
pole-zero model and using a T which is non-pathological in the transformation, the
discrete-time poles which cancel zeros correspond to unobservable, and not to uncontrol-
lable, discrete-time modes. Therefore, the realization [J;‘[ . fuio eAT-BH (v)dv- K,

C, D - K] is controllable.O

Theorem B.6 If the realization of the continuous-time system G, with elements [4,
B, C, D}, is minimal and T is non-pathological, then so are the discrete-time realizations

with elements [A, B, C, D], as given by equations (B.1) and (B.2).c«

Proof: The minimality of the realization of the continuous-time system corresponds to
an irreducible transfer function G(s). The state-space element B is selected in such a way
that the zeros of Gr; and Gr,rr are z; = (e%T — 1) /T, where the Z;s are the finite zeros of
the continuous-time system. The poles of G ; and Gr /s are given by A; = (eX“T -1)/T.
The non-pathologicity of T" assures that the poles of Gty and Gz are disjoint from their
zeros. Hence, minimality of the realization of G implies that of Gr,r and Gr,/1 given by

(B.1) and (B.2).0

B.2.2 Behavior as the Sampling Period Approaches Zero

The behavior of the matched pole-zero model, in the transfer function format, is well
known [9]: the coefficients in front of the powers of £ at numerator and denominator of
the discrete-time transfer function approach the corresponding coefficients of G(s), as

T — 0. With the structures introduced in this appendix, the elements of the realizations
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have limits, as T — 0, given by
lim A=A, lim B=B, limK=1, limC=C, lim D=D. (B.31)

In turn, the limiting behavior of B results in the elements of the hold functions satisfying
(B.32),as T — O: .

Lim (,; a,-) =n, lim (; @-) =n. (B.32)
Remark B.1 The method presented in this appendix to solve for the hold coefficients
requires inversion of the matrices ¥ and ®. One should be aware that, when the values of
T are approaching zero, although the linear independence of the column vectors making
up ¥ and @ is preserved, numerical problems may arise since the matrix entries become

close to zero.

B.2.3 Similarities and Differences with the Invariant Models

Relations between matched pole-zero and invariant models can be simply established
from the knowledge of the hold device and gain K. For instance, the first order, strictly
proper matched pole-zero model is known to correspond to the step invariant model for
the same continuous-time system. With the structural interpretation of the matched
pole-zero model introduced in this appendix, this correspondence is explained by the use
of a ZOH and unit gain K. More generally, if a continuous-time realization is converted to
step invariant and matched pole-zero discrete-time models, the discrete-time realizations
will possess the same A and C elements, yet different B and D matrices for each fixed
sampling period. Thus, one could state that the observability of one discrete-time model
implies that of the other. Contrary to a SIM which has its output agreeing with that of
the continuous-time system, at the sampling instants, given a step or piecewise-constant
signal is applied, the matched pole-zero model never match the output of its continuous-

time counterpart at the sampling instants, for finite 7. The outputs would agree at
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the sampling instants if K could be set to unity and the input to the continuous-time
system would be a periodic extension of H(7), for 0 < 7 < T, i.e. 7(¢) =§ H(t — kT)
for t > 0, where H(7) denotes H,(t) or H;(7), depending on the strulgflre. Whilst
the hold-equivalent structures associated with the matched pole-zero model and that of
the invariant models are similar, the philosophies behind their developments are quite
disparate. For the step, ramp and impulse invariant models, the hold functions are inde-
pendent of the system parameters whereas for the matched pole-zero model the discrete
zero assignment requires a hold which depends on the knowledge of the continuous-time

system.
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Appendix C

Alternative Digital Redesign
Methods Based on the Classical
Discretization of a Closed-Loop

System

The two techniques presented in Section 3.3 are explained in more details.

C.1 Digital Redesign Based on Discretization of Sys-
tem Relating Reference Input to Control Input
Using Numerical Integration and Hold-Equivalent
Techniques

In addition to the matched pole-zero method, the numerical integration and hold-equivalent
techniques can be used to discretize the system relating the reference input to the control

input. However, a modification to the calculated discrete-time PITF must be brought in
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order to implement the discrete-time controllers under the structure of Figure 1.4(b).

The steps in obtaining the sampled-data control system are the following:

Step 1: Having the knowledge of an internally stable continuous-time control system, as

shown in Figure 1.4(a), calculate H(s).

Step 2: Discretize H(s) to Hj(e) with any numerical integration or hold-equivalent tech-
nique for a sampling period yielding a discrete-time PITF having all its poles inside the
stability boundary of the e-plane. Write H.(e) = n*(g)/d*(e).

Step 3: Discretize G(s) as a hold-equivalent discrete-time model, which depends on the

hold placed at the control input of the sampled-data control system, to obtain Gr(e) =

b(e)/a(e).

Step 4: (a) For step 2 performed with a numerical integration technique: Multiply HY-(¢)
by the correcting factor Ka(e)/a*(g), which yields Hr(g) = Km(e)a(e)/d*(e), where K
is the gain adjusted to match that of H(s) at a desired frequency, a*(¢) is the monic
polynomial obtained by mapping the poles of G(s) with the discretization method used
in step 2, and m(g) comes from the numerator of H}.(¢) which can be written as n*(e) =
m(e)a*(g).

(b) For step 2 carried out with a hold-equivalent technique: Multiply Hf(e) by the
correcting factor Ba(e)/a*(e) to obtain Hy(e) = fBm(e)a(e)/d*(e), where 3 serves the
same purpose as K in part (a), a*(¢) is the monic denominator polynomial of the hold-
equivalent discretization of G(s) as carried out with the discretization method used in

step 2, and m(g) is as defined in part (a).
Step 5: Solve the Diophantine equation

u(e)a(e) + v(e)b(e) = d*(g) (C.1)
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for u(e) and v(e).

Step 6: To realize the discrete-time controllers under a structure as shown in Figure

1.4(b), utilize any applicable equation among (3.12) to (3.15).

C.2 Digital Redesign Based on Discretization of Sys-
tem Relating Reference Input to Controlled Out-
put

This section shows that a plant output mapping digital redesign can be carried out
provided that the hold at control input is an integral part of the process. However, such
an approach has limitations in the sense that a possible detrimental intersample behavior
can take place depending on the hold at control input.

The continuous-time control system of Figure 1.4(a) is digitally redesigned with the
plant output mapping method and results in the sampled-data control system of Figure

1.4(b) once the following steps are carried out:

Step 1: Calculate the transfer function of the continuous-time closed-loop system from

reference input to controlled output. Denote it as M(s).

Step 2: Discretize M(s) with the matched pole-zero discretization method to obtain

Mz(e) = n(e)/d(e), where n(e) and d(¢) have degrees w and p, respectively.

Step 3: Obtain the matched pole-zero model of the plant G(s), Gr(e) = b(g)/a(e), where

b(e) and a(e) have degrees m and n, respectively.

Step 4: In order to implement Mr(e) with a structure as on Figure 1.4(b), solve the

following discrete-time Diophantine equation:

v{e)b(e) + u(e)a(e) = d(e) (C.2)
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for the polynomials v(g) of degree r and w(e) of degree . Also, from the structure of
the systems in Figure 1.4 and the fact Mr(¢) and Gr(e) are matched pole-zero models
of M(s) and G(s), respectively, one can write Mz(e) = m(e)b(e)/d(e), where m(e) is
of degree (w—m). Once u(g) and v(e) have been found, the transfer functions of the

discrete-time controllers can be obtained with one of the following:

1. Let w(e) be an arbitrary stable polynomial of degree [. If r < [ and (w—m) < [, set

_ mle) _wle) oy e
HT(‘S) - 'LU(E), QT(E) - 'U-(E) ’ FT(C) - w(E). (C'?’)
2. If u(e) is stable, r <[ and (w—m) <[, set
fr(e) = ™) 0p(e) =1, Tr(e) = 2. (C.4)
u(e)’ ’ u(e)
3. If m(e) is stable and 7 < (w—m) <[, set
liz(e) = 1, fr(e) = 5, Trle) = 2. (C5)
4. If v(e) is stable and (w—m) < r <, set
_ m(e) _v(e) _
HT(E) - ma QT(S) - ‘LL(E) ’ l-IT(E:) = 1. (CG)

The plant output mapping method is made possible from the introduction of a hold-
equivalent structure for the matched pole-zero discrete-time model, as first presented in
[11] and thoroughly discussed in Appendix B. Any hold which results in the matched
pole-zero model of the plant can be placed at control input. However, for a satisfac-
tory intersample behavior at control input and controlled output, i.e. exempt from

large ripples, when the plant model is a first order transfer function, one should place a
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minimum-energy hold given by

-1
Hoin (1) = 5eXT-7) (%) b, 7€ [0,T), (C.7)

where G = [@, b, ¢, d], b is the vector coupling the input with the state in the state equation
of the discrete-time plant model, and W is the controllability Gramian of G [76] given
by W = (%7 — 1)52/26 when @ # 0. In the case@ =0, W = T . The controllability
Gramian is calculated with equation (B.12). For higher-order plant models, no hold
function was found to guarantee a tolerable intersample behavior by making 7" sufficiently
small. The intersample problems associated with generalized holds have been reported in
[98] and [99], although not with a digital redesign strategy in mind. A possible solution
to the intersample problem would be to design a hold with a quadratic performance
criterion set for a desired intersample behavior, as discussed in [100], with a T-dependent
index.

Given that the continuous-time control system is internally stable, the sampled-data
control system obtained with the plant output mapping method is internally stable at
the sampling instants for any non-pathological 7. However, the hold at control input, in
addition to being the cause of possible intersample oscillations, is physically impractical.
Indeed, it is, if not impossible, very costly to generate a hold function which depends on
the value of T and the plant dynamics and can take on arbitrary waveform.

Connections with PIM-based systems can be established. First, suppose that a
continuous-time control system has been digitally redesigned with the PIM and the plant
output mapping methods for a given 7. The two control systems have the same set of
discrete-time controllers when (i) their holds at control input are identical, (ii) the Dio-
phantine equations have been solved with the same method, and (iii) the controllers
have been calculated with the same equations. Second, the same methodology as that
used in obtaining modified PIM methods can be applied to obtain modified plant output

mapping methods.
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Appendix D

Laplace Transforms of Control Input

and Controlled Output

The Laplace transforms of the control input and controlled output of digitally redesigned
control systems are investigated. For the control input ur(¢) of the sampled-data control

system of Figure 1.4(b), the Laplace transform is
Ur(s) = Br(s) - D {uk,T}E__.c’Iz"—l (D.1)

where ug r is the discrete-time control input, and the transfer function of the hold with

response function H(7) is defined as

L /T
Br(s) = T /.y H(r)e *"dr. (D.2)

For instance, the transfer function of the ZOH is Br(s) = (1 — e~T)/(sT). For a hold

with transfer function Br(s), the hold condition in the complexr domain is defined as

le.nill),@T(S) = 1, pointwise in s. (D.3)
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To satisfy this condition, it is sufficient that the hold function satisfies the hold condi-
tion in the time domain, as given in Section 4.1. The following theorem establishes the

convergence Ur(s) — U(s) as T — 0, where U(s) is the Laplace transform of u(t).

Theorem D.1 Consider the systems in Fig. 1.4, where the hold H has a transfer
function which satisfies the hold condition in the complex domain. If the limit on the
discrete-time PITF satisfies limr_.o HT(s)|€=(e,T_l) = H(s), pointwise in s, then Ur(s)

converges to U(s), pointwise in 5.5

Proof: For each fixed s in the region of convergence of the Laplace transforms,

|Ur(s) = T(s)] < |Br(s)(Hz(e) Br(e)],_eers — H(9)E(s)
+](6r(s) — )E(s)R(s)] (D-4)

where Rr(g) is the Delta transform of the sampled reference input ¢ 7; i.e.

RT(E)I _esT_) = Z T;cyT(TE + 1)_k .T
&= k=0 e=etTot (D.5)

= R(s) + or(s).

In equation (D.5), |¢r(s)] — 0, as T — 0, for any s in the region of convergence.

Therefore,

|Uz(s) = T(s)|
< |Hr@)l ez ~Hs)| - [R(s)] - 182(s)]
h =Fy(s,T) ~
+ |Br(e)l,_azes | - lor(s)] - 182(s)]
) =F(s,T) -
+ [Hs)R(s)| - 1Br(s) = 1] - (D)

=?3&7T)
Given any £ > 0, select T} such that Fi(s,T) < &/3, T» such that F5(s,T) < £/3
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and T3 such that F3(s,T) < &/3 for any s in the region of convergence. Let k =
min {7}, T2, T3}, then T < « implies |Ur(s) — U(s)| < £/3+&/3+&/3=¢€0

The theorem emphasizes the fact that no matter which digital redesign method is
used, the transfer function of the hold and the discrete-time PITF determine the conver-
gence of the transform of the control input, when the sampled-data and continuous-time
control systems are subjected to the same reference input. The theorem also applies to
the case when the Delta transform of the sampled reference input to the sampled-data
control system, with the substitution € = (e*¥ — 1)/T, approaches pointwise in s the
Laplace transform of the reference input to the continuous-time control system. Further-
more, the theorem can be expanded to include MIMO systems in the following manner:
replace the absolute values in the proof and in the hold condition in the complex domain
by vector or matrix norms, depending on the case, and substitute the identity matrix
in place of the unity scalar. For the sake of completeness, it should be mentioned that
when convergence in transfer function, as defined in Definition 4.4.1, is achieved with a
discrete-time system, so is pointwise convergence in s.

Given the knowledge of the transform of the control input as 7' — 0, the convergence

of the transform of the controlled output can be deduced as follows.
Corollary D.1  Yr(s) = G(s)Ur(s) converges, pointwise in s, to Y (s) = G(s)U(s).

In terms of the controllers in Fig. 1.4, if limr_q ®7(€)|.o(esr_1y,7 = P(s), pointwise
in s, where ®r(¢) denotes II7(e), I'r(e) and Qr(e), and ®(s) denotes TI(s), [(s), and
Q(s), respectively, then Yr(s) converges, pointwise in s, to Y (s). This is so since the
convergence of each discrete-time block to its continuous-time counterpart, when it exists,

warrants that of the PITF [71].
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Appendix E

Gas-Turbine Engine Speed Control

Figures E.1, E.2 and E.3 present the responses obtained with several gain-scheduled

sampled-data control systems subjected to the test input shown in Figure 5.41(a).
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Figure E.1: Control inputs for T' = 0.0208 second
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Figure E.3: Controlled outputs for 7" = 0.35 second

Table E.1 presents the continuous-time controller parameters associated with each

operating point. The continuous-time gain-scheduled control system relies on these val-

ues.
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%Ny | K, Kr 1/wy 1/ws %N, | Kp K; 1/wy 1/ws
60 25.82 | 16.13 { 0.1147 | 0.0250 || 86 14.08 | 11.90 | 0.0962 | 0.0250
62 43.13 | 29.93 | 0.1280 | 0.0250 | 88 13.32 { 35.71 | 0.1105 | 0.0250
64 39.56 | 28.27 | 0.1187 | 0.0250 || 92 13.13 | 12.31 | 0.0969 | 0.0250
69 2241 { 2.95 | 0.1046 | 0.0250 || 93 15.79 | 14.78 | 0.0959 | 0.0250
72 18.19 | 2.24 | 0.1040 | 0.0250 || 94 11.17 | 15.29 | 0.0998 | 0.0250
77 16.69 | 7.10 | 0.0978 } 0.0250 || 96 10.97 | 14.39 | 0.1059 | 0.0250
78 14.46 | 6.87 | 0.0973 | 0.0250 || 98 10.81 | 18.95 | 0.1183 | 0.0250
80 15.00 | 8.43 | 0.0984 | 0.0250 |} 100 | 8.66 | 17.04 | 0.1249 | 0.0250
82 13.75 | 8.59 | 0.0983 | 0.0250 || 102 | 9.92 | 18.81 | 0.1251 | 0.0250
84 17.75 | 8.62 | 0.0956 | 0.0250

Table E.1: Continuous-time controller parameters
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