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Abstract

The thesis centers on time domain modelling of viscoelastic materials. Classi

cal models are compared to models involving fractional derivatives, which are

derivatives of an order between 0 and 1. Parameters for classical and frac

tionaI order models are found for two materials. polymethylmethacrylate and

3~;I ISD 112~ an acrylic based material sold as a viscoelastic layer by 311. In

both cases~ only Prony series with severa! parameters achieve a good repre

sentation over a large frequency range. In the case of 3~I ISD 112~ a fractional

illodel with only two parameters gives a good representation over a frequency

range of three decades. which is often sufficient.

An algorithm based on an approximated definition of the fractional deriv

ative and a trapezoidal rule is described to solve constitutive equations with

fractionaI derivatives. The algorithnl is implemented in C and tested against

a numerical Laplace inverse for the case of a material subn1Ïtted to sinusoidal

strains. The algorithm gives accurate results and does not require very small

steps. which is usually the case for algorithms based on finite differences or

Grünwald series.

The algorithm is adapted to the structure of a user subroutine of a com

mercial finite element package~ Samcef., for a six component isotropie tensor.

The model assumes a constant bulk modulus and has one fractional derivative

of the deviatoric strain. The Jacobian of the constitutive equation with a frac

tionaI derivative is derived and implemented. The results from the subroutine

are compared satisfactorily to results from the numerical Laplace inverse for

a cubic element submitted to sinusoidal strains.
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Finally. the different models are tested to represent the experimental be

haviour of slewing beams made either of polymethylmethacrylate or steel cov

ered by constrained viscoelastic layers. The classical models give generaily a

poor representation of the experimental behaviour ~ except for the Prony se

ries. The fractional model give a representation as satisfactory as the ones

obtained \\ith the Prony series~ but for a much higher CPU times due ta the

hereditary nature of the fractional derivative. It is therefore recommended to

use Prony series models, unless the data ta perform the parameter identifica

tion is limited. In that case~ the fractional order model becomes interesting

despite the higher demands on the CPU time.
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Sommaire

Le but de cette thèse est d~étudier la modélisation dans le domaine tem

porel des matérialLx viscoélastiques. Les modèles classiques sont comparés

aux modèles comprenant des dérivées fractionnaires, ces dérivées étant d ~un

ordre entre 0 et 1. Les paramètres des modèles classiques et fractionnaires

sont identifiés pour delLx matérialLx, le polyméthacrylate de méthyle et le 3~I

ISO 112. un nlatériau acrylique vendu par 3;\1 comme couche viscoélastique.

Pour les deu..x matérialLx, seules les séries de Prony ayant plusieurs paramètres

donnent une bonne représentation sur une grande plage de fréquence. Dans

le cas du 3~I ISD 112. un modèle fractionnaire à seulement deux paramètres

donne une bonne représentation sur une plage de fréquence de trois décades.

ce qui est souyent suffisant.

Lin algorithme basé sur une définition approximative de la dérivée frac

tionnaire et sur la méthode trapézoïdale est écrit pour résoudre des lois de

comportement avec dérivées fractionnaires. L~algorithme est écrit en C et

vérifié contre les résultats d~un inverse de Laplace numérique pour le cas

d~un matériau soumis à des déformations sinusoïdales. L~algorithme donne

des résultats adéquats et n~exige pas de petits pas comme c~est habituelle

ment le cas avec les algorithmes basés sur les différences finies ou les séries de

GrÜnwald.

L'algorithme est ensuite adapté à la structur~ d'une sous-routine usager

d~un programme d~éléments finis commercial, Samcef pour le cas d'un tenseur

isotropique de six composantes. Le modèle suppose un module de com

pressibilité volumique constant et possède une dérivée fractionnaire de la
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déformation déviatorique. Le jacobien de la loi de comportement à une dérivée

fractionnaire est obtenu et implanté. Les résultats de la sous-routine se com

parent de façon satisfaisante atLx résultats de l'inverse numérique de Laplace

pour un élément cubique soumis à des déformations sinusoïdales.

Finalement, les différents modèles sont utilisés pour représenter le com

portement expérimental de poutres de polyméthacrylate de méthyle ou d'acier

recouvert de couches \iscoélastiques contraintes en rotation dans le plan. Les

modèles classiques donnent généralement une piètre représentation du com

portement e:Xl)érimental, à l'exception des séries de Prony. Le modèle fraction

naire donne une représentation aussi satisfaisante que les séries de Prony, mais

requiert un temps CPU beaucoup plus élevé à cause de la nature héréditaire de

la dérivée fractionnaire. Il est donc recommandé d'utiliser les séries de Prony,

sauf lorsque les données nécessaires à l'identification des paramètres sont in

suffisantes. Dans ce cas. un modèle d'ordre fractionnaire est une alternative

intéressante en dépit des grandes exigences au niveau du temps CPU.
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Claim of Originality

Ta the best of the author~s knowledge. the following studies presented in tills

thesis are original and are not found elsewhere.

• Development of an algorithm ta solve ordinary differential equation with

a fractional derivative based on an approximated definition of the frac

tionai derivative and a trapezoidal rule for the resulting integral.

• Implementation of this algorithm in a commercial finite elernent pack

age~ SamceJ, in an implicit scheme requiring the Jacobian of the three

dimensional fractional Voigt-Kelvin constitutive equation.

• Comparison of the performance of the fractional Voigt-Kelvin model

with other models such as the Prony series~ the Voigt-Keivin modeL the

~\'Ia'\.'"V\-·ell modeL and the Zener model in terms of accuracy to represent

an e:...:perimental sle\\~ng homogeneous polymethylmethacrylate beam.

• Comparison of the performance of the fractional Voigt-Kelvin model

with other models such as the Prony series. the Voigt-Kelvin modeL the

)'Ia'\.\.\-ell nl0deL and the Zener model in terms of accuracy to represent an

experimental slewing steel beaul covered \\ith a constrained \,iscoelastic

layer.

• Evaluation of the efficiency of the algorithm presented in this thesis by

comparing the required CPU time with the CPU time needed by other

models such as the Prony series. the Voigt-Kelvin modeI~ the Nlaxwell

model. and the Zener mode!.
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Chapter 1

Introduction

1.1 Use of Viscoelastic Materials

In recent years~ sorne types of satellites have become more bulky as the need for

more transmission capabilities has increased. The drive ta reduce the weight

is still an important facto However, as structures become thinner, and hence

lllore flexible, they are aiso more prone to vibrations. Severai means of re

ducing these vibrations are used, but viscoelastic materials are proving useful.

These materials are thin sheets of polynlers~ often covered by a thin sheet of

a stifI material. and able to significantly reduce the level of vibrations with

out adding much weight to the structure. Their use has been investigated for

satellites (Jha and Tremblay [1. 2]), space stations (Jones et al [3J)~ launchers

(Poizat et al [4]), as weIl as space manipulators (Alberts et al [5]). ~Iodelling

of the behaviour of these materials through finite element analysis is often

required in the case of space structures, since prototypes are too costly and

the design must be perfecto In most cases~ accurate nl0delling is needed in the

frequency domain to obtain the natural frequencies and the amplification ratio

of the structure. Several authors have investigated the precision of frequency

domain finite element analyses for structures covered with viscoelastic materi

aIs and they have found satisfying agreements between experimental data and

sinlulation results for simple test cases (Johnson and Kienholz [6], Johnson et

al [7], Sun et al [8], Slanik et al [9]) .

Time domain modelling is also needed for simulation of deployment situa-
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tions and manipulator nlOvements. The precision of the time domain analysis

depends on the accuracy of the finite element formulation and the effectiveness

of the numerical integration algorithms! but also on the constitutive equation

used to represent the stress-strain relationship of the polymer. ~Ioreover, use

of a commercial finite element package is important for acceptance of the re

sults by the aerospace community.

Classical viscoelasticity models allow structural analysts to describe damp

ing phenomena in the time domaine A description of these models is found

in A-xeIrad [la]. Some of these models are implemented in commercial finite

element packages and simulation of conlplex damped structures undergoing

nonlinear motion is possible. However, classical viscoelasticity models often re

quire several paranleters to correctIy represent the material behaviour. Slanik

et al [Il] obtain good tinle domain finite element simulation results using a

five term Prony series, which involves the identification of at least ten para

meters. The experimental set-ups needed to identify those parameters are not

ahvays available and often only limited data is available. There is a need for

accurate models involving as few parameters as possible. and therefore, pos

sible identification \Vith limited data. In that respect, constitutive equations

using fractional derivatives, rather than integer derivatives, have the advan

tage of being representative of the material behaviour with fewer parameters.

Fractional derivatives are derivatives of an arder between a and 1 and are

represented by a hereditary convolution integral. This thesis deals specifical1y

\vith time dOlllain finite elenlent simulations with fractional order constitutive

equations. The next section reviews the work done on this problem.

1.2 Modelling of Dynamic Equations with Frac
tional Derivatives

In the last few decades, several authors have started to examine the feasibility

of using fractional derivatives ta describe the dynamic behaviour of systems

submitted to internaI damping. Rossikhin and Shitikova [12] give a review
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of the work done in solid mechanics involving fractional derivatives. NIany

authors ~Tite the dynamic equations in the frequency domain and obtain the

time domain solution by using a numerical Laplace inversion or a numerical

Fourier inversion (Bagley and Torvik [13], Cooke and Keltie [14], Padovan

and Guo [15], Nlakroglou et al [16}, Suarez and Shokooh [17, 18), and Baker

et al [tg}). Fractional derivatives have a simple corresponding expression in

the frequency domain, and therefore. their inverse can be taken. However,

this approach is not useful when nonlinear geometric terms are present in

the dynamic equations since sorne linearisation is needed to take the Laplace

inverse. Some authors started to attenlpt direct time-domain simulations, but

a fractional derivative is a hereditary convolution integral and as such, sorne

terms need to be stored at each step and used in future calculations. This

slo\\'s down the computation and authors have found various ways of dealing

with this.

1.2.1 Bagley et al

Bagley and Torvik were probably the first to attempt solving structural equa

tions involving fractional derivatives. In Bagley and Torvik [13], a simply

supported beam covered ",ith a constrained viscoelastic layer and excited at

nlidspan is modelled. A constrained viscoelastic layer is a thin layer of poly

mer covered by a thin layer of a stiff material. In this case, the polymer is

modelled \vith a constitutive equation induding a fractional derivative of the

shear strain and no derivative of the shear stress. A value of one half is used

for the order of the fractional derivative to simplify the solution of the equa

tians. Finite element equations are ~Titten. The beam itself is modelled with

triangular elements, the viscoelastic layer with rectangular elements, and the

constraining layers with rads. A modal solution is found and the time-domain

displacement for an impulsive loading is obtained from the modal solution.

The finite elenlent equations give results similar to results obtained from the

si:-"1:h arder theory for beams \vith constrained viscoelastic layers. The differ-
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ences are attributed to the different assumptions made in the finite element

equations and in the si.xth arder beam theory [20].

In Bagley and Calico [21], the goal is to write closed loop structural equa

tians incorporating control schemes. This time, they use a constitutive equa

tian with fractional derivatives of the sanIe arder on both stress and strain.

A.gain~ a modal solution is fust obtained and the time-domain solution is re

constructed from it. An important innovation is ta address non zero initial

conditions. As the authors eÀ-plain, the fractional derivative model assumes

the material ta be in its undeformed state at time zero. To start the simula

tion with non trivial initial conditions, they start a different dock. The fust

clock has its zero when the material is in its undeformed state, the second

clock starts when the material has reached its initial conditions. As in the

previous paper, the dynamic equations are not solved numerically, but rather

using analytical approximations for simple test cases. However~ tms approach

cau not be eÀ-panded to complex structures for arbitrary levels of damping,

since it would not be possible ta use these analytical approximations in more

complex cases.

1.2.2 Koh and Kelly

One of the fust papers to deal with time-domain numerical solutions of dy

namic equations is the one by Koh and Kelly [22]. They use a constitutive

equation using a fractional derivative of the strain. The algorithm they use is

the LI algorithm described in Oldham and Spanier [23J based on finite differ

ences. They fust test the algorithm against the numerical Laplace inverse for

a simple system consisting of a mass, a spring, and a damper. The step size

is critical and needs ta be quite small for accurate results. Ta eut the number

of data to store and the number of computations required by the hereditary

nature of the fractional derivative. they use a time window, meaning they keep

only a few data near the actual computation time. The size of the window is

not as critical as the step size. However, this concept of time window works
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well for oscillations having a zero-mean. which is the case for their specific

problem. but it might not work as well for ail problems. Finaily. they VvTite

the one-dimensional dynamic equation of a bridge deck mounted on multilay

ered natural rubber bearings. Steady-state harmonie tests allow identification

of the parameters of the fractional derivative model representing the behaviour

of the system. The bridge deck is then submitted ta displacements similar to

the El Centro 1940 earthquake. The eÀ1>erimental results are compared to the

simulation results and the fractional model gives very good agreement with

errors in the peak amplitudes of less than 1%. A simulation is also done with a

classical viscoelasticity model and the errors in the peak amplitudes are about

6%.

1.2.3 Makris and Constantinou

In ~1akris and Constantinou (24), viscous fiuid used as dampers for earthquake

protection are modelled with fractional derivatives. The constitutive equation

has one integer derivative of the shear stress and one fractional derivative of

the shear strain. The dynamic equations for a building supported on viscous

dampers are \VTitten and solved using a numerical algorithm based on finite

differences. The algorithm is a modification of the G1 scheme described in

Oldham and Spanier [23]. The numerical solution is compared ta experimental

data for a six storey, quarter scale. model building, and good agreement is

found.

1.2.4 Eldred, Baker, and Palazotto

Eldred, Baker, and Palazotto examine a bar fi'\:ed at one end and submitted ta

a load at the other end. The model used for the material behaviour involves

one fractional derivative of the strain. The bar is represented with a one

dimensional dynamic equation. In Eldred et al [25J, the authors examine

the Voigt-Kelvin model with respect to fractional models in their ability to

reproduce the behaviour of materials. In Eldred et al [26], two schemes based
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on finite differences are e:-.:plored. These schemes are taken fron1 Oldham and

Spanier [23J and are called LI and Gl. The authors find these schemes to be

very sensitive to the time step. especially in the presence of nonlinear terms

in the dynamic equations. lu Eldred et aI [2ï]. they compare the solutions

obtained Vvith the finite difference schemes to the numericaI Laplace inverse

and they find the LI algorithm reproduces the amplitude of the deflection

Vvithin 2% of the values given by the numericaI Laplace inverse. The finite

difference scheme requires very small steps to start up and a data storage

scheme is devised. The fust steps are very small to enable a good start of the

solution. but as the solution progresses. only one out of two data points are

kept in memory to compute the rest of the solution.

1.2.5 Padovan

Padovan [28] outlines various algorithms to solve finite element equations with

fractional derivatives in the time domain. He looks at implicit. explicit. and

predictor-corrector schemes for cases of a single fractional derivative of the

strain. as weIl as cases with both a fractional derivative of the stress and the

strain. He uses the Grünwald series to define the fractional derivative. As an

exaolple. he looks at a simple system consisting of a mass. a spring. and a

damper.

1.2.6 Chern

In Chern [29]. an in-house finite element code is VvTitten with plane strain and

plane stress elements described by a fractional order constitutive equation.

The constitutive equation has a fractional derivative of the strain and no

derivative of the stress. A constant Poisson's ratio is assumed and fust arder

finite differences are used to approximate the fractional derivative. As an

exan1ple. a beam is fixed at one end and excited at the other end. The response

obtained with the finite element formulation is not compared to a response

obtained by another method.
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1.2.7 Enelund et al

Enelund and various co-authors explore the solution of dynamic equations

v.;th fractional derivatives represented by a Grünwald series. The viscoelas

tic model involves one fractional derivative of the stress and another one of

the strain of the same order. The representation they use enables initial con

ditions different from zero. In Enelund and Olsson [3aL they look at a one

dimensional equation solved \\;th a :\ewmark algorithm using a constant step.

The equation represents a simple system consisting of a mass, a spring, and

a damper. The results are validated against the inverse Fourier transform. In

Enelund et al [31L the same system is looked at. but this time the model is

modified to work \\;th fractional integrals rather than fractional derivatives.

This technique is advantageous to deal v.ith the initial conditions, but it in

volves taking the integral derivative of the load. As each fractional integral or

fractional derivative needs all values at each time step to he stored to solve

future steps. taking the integral derivative of the load increases the demands

on the computing ressources.

The step to three-dimensional equations is taken by \\Titing finite element

equations of the systeln. In Enelund and Josefson [32], the constitutive equa

tions involve a fractional derivative of the stress and one in the strain of the

same order. ~foreover, the same constitutive equation is used for both de'\Ji

atoric and hydrostatic equations. resulting in a constant Poisson's ratio. The

finite element equations are written by the authors ta deal with their specifie

problems. They study a simple mass, spring, and damper system, as well

as a bar made of five linear elements. The order of the fractional derivative

is one half, allowing to solve the equations analytically for comparison. The

finite element equations are solved with a Newmark algorithm using a con

stant step. The step has to be less than 2/Wmax to ensure stability, where

W max is the maximum frequency excited. In Enelund and Lesieutre [33], they

solve the same bar. but this time, the constitutive equations are dealt with

by using internaI variables. In Enelund et al [34], the constitutive equations
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are implemented in Abaqus, a commercial finite element software. An implicit

scheme is used for quasi-static solutions. and an explicit one for dynamic so

lutions. The bar treated earlier is studied again ~ith five linear elements~

but also \\;th five plane stress elements. They also look at the problem of a

",iscoelastic material under rails, the material being modelled by plane strain

elements. Approximately 15000 steps are needed to simulate 25 oscillations, a

sarnpling frequency of approximately 600 data points per cycle. To reduce the

computing time, they attempt keeping only part of the history as Koh and

Kelly [22] had done. but if the arder of the fractional derivative is small~ than

much of the history is needed ta produce accurate results.

1.2.8 Potvin et al

In a series of papers. Potvin et al siululate the dynamic behaviour of a hornoge

neaus polymethylmethacrylate (P!vl~LJ\) beam using a constitutive equation

with a fractional derivative of the strain. In Potvin et al [35, 36], they compare

experimental data and simulation results for a P~I:\IA bearn fixed at one end

and oscillating under gra",ity after being dropped frOID an undeformed position.

The dynamic equations are \\Titten and solved using a Runge-Kutta scheme.

The fractional derivative is split iuta an integral term and an approximation

for the integral in the vicinity of t. the CUITent time. The results are good,

but the time step is small due to the large difference in frequency between the

t'Wo fus! modes. This problem due ta the stiffness of the dynamic equations

is solved in Potvin et al [37. 38]. The dynamic equations are solved using an

implicit numerical scheme of the Newmark family, the Hilber-Hughes-Taylor

algorithm [39J. As in the preceding papers, the fractional derivative is split

into an integral term and an approximation for the integral in the vicinity of

t. but the numerical algorithm used to solve the integral term is also based on

the Hilber-Hughes-Taylor algorithm, rather than a Runge-Kutta algorithm.

Again. the fit between experimental data and simulation results is good. To

accelerate the computation time. larger time steps than what is used for the

8



• computation of the dynamic equations are taken for the computation of the

integral term of the fractional derivative.

1.2.9 Summary

Several authors compare simulation results with experimental data and they

obtain good agreement between the two for models with small numbers of

parameters (Koh and Kelly [22L Nlakris and Constantinou [24], Potvin et al

[35. 36. 37~ 38]).

~Iost authors have solved dynamic equations involving fractional deriva

tives with finite differences or Grünwald series. They found the time step

needed to be small to keep a reasonable level of accuracy (Koh and Kelly [22] ~

Eldred et al [26. 27L and Enelund et al [34]). The number of time steps needed

even for simple structures implies a large amount of CPU tim~, wIDch render

the finite element simulations prohibitive for more complex structures.

• 1.3 Scope of the Investigation

•

As shown by the preceding literature review. although good results are ob

tained with constitutive models of fractional orders, there are problems with

memory management and the CPU time required. The alternative is to use

classical models such as the Prony series. but at the expense of identifying

several parameters. !viast commercial finite element packages offer Prony se

ries nlodels. but not fractional models. The goal of this thesis is to evaluate

the practicality of fractional models compared to the Prony series in terms of

precision and computation time.

A model of fractional order with one fractional derivative of the strain will

be implemented in a commercial finite element package allowing user material

behaviour subroutines. Given the small tinle steps required by models based

on finite differences or Grünwald series. a new algorithm built on the previous

work of Potvin et al [35, 36, 37, 38J will be elaborated. The fractional derivative

\\-i11 be split into an integral term and an approximation for the integral in the

9



•

•

•

"icinity of t. but this time. the integral term \\ill be simply solved with a

trapezoidal rule. The goal is to obtain good precision for large tÎlne steps.

Parameters for the "iseoelasticity models available in the comnlereial finite

element package and the ones for the fractional model will be identified for two

materials. polymethylmethacrylate and 31\1 ISD 112. Although polymethyl

methacrylate is not perfectly isotropie, it will be approximated as such for

this case. These two materials will then be used in beam configurations and

simulation results for ail models will be compared ta experimental results. No

atternpt will be made to fit the model parameters ta the simulation results.

The goal is to see how reliable the models can be when the parameters are

identified a priori.

1.4 Organisation of the Thesis

The nex1: ehapter of this thesis defines the viseoelasticity models available in

commercial finite element packages~ as well as the fractional mode!. Typical

curves for the magnitude and phase of the modulus of a polymer with respect

to frequency are given and the fit ta these curves obtained with each model is

shown.

Chapter 3 identifies the parameters for aIl nl0dels for the two chosen ma

terials.

Chapter 4 details the numerical algorithm devised for the fractional deriv

ative. Simple one-dimensional test cases are used ta assess the accuracy of

the algorithm. The results obtained \\'ith the algorithm are compared to re

sults obtained \\ith the numerical inversion of the Laplace transform of the

one-dimensional equations. The effect of the different parameters of the algo

rithm~ sueh as the large time steps used for the integral term of the fractional

derivative. is evaluated in terms of accuracy and computation time.

Chapter 5 shows how the algorithm discussed in Chapter 4 is implemented

in a commercial finite element package~ Samcef Tests similar ta the one

dimensional tests used in Chapter 4 are done, but this time with a three
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dimensional formulation. Again. the accuracy of the results obtained for these

test cases is compared to the numerical inversion of the Laplace transform of

the equations representing the test cases.

Finally~ Chapter 6 gives examples of homogeneous slewing polymethyl

methacrylate beams and slewing steel beams covered with constrained layers

of 31\1 ISO 112. The simulation results obtained v..ith the various nlodels are

compared to the e),.1>erimental data. The precision and the computation time

are evaluated with the objective of determining the usefulness of the fractional

arder lllodel compared ta classical models, such as the Prony series.
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Chapter 2

Models of Linear Viscoelasticity
Behaviour

2.1 Introduction

Hooke~s law predicts a strain proportional to the stress with no energy dissi

pation. However, if the material is viscoelastic. it dissipates energy. For cyclic

loading~ the strain is delayed with respect to the stress and a phase difference

appears. Obvionsly, Hookc~s law is not sufficient to describe this phenomenon

and other models are needed.

This chapter describes classical nlodels used to represent viscoelastic be

haviour. These models are built around Hooke~s law by adding to it derivatives

of the stress and the strain. Finally. a new class of models is introduced where

fractional derivatives are used, \vhich are derivatives of an order between 0

and L to represent more accurately the observed behaviour of polymers.

2.2 Classical Constitutive Equations

A constitutive equation relates the stress and strain for aU tensor components.

Aecording to l\tlalvern [40]~ energy is dissipated in polymers undergoing a

periodic shearing or a periodie hydrostatic conlpression. The shear response

often exhibits more variation than the volumetrie response. Two different

constitutive equations are written for the deviatoric part and the hydrostatic

13



• part to reflect this facto The deviatoric part! Sij, of the stress tensor (jij is:

(2.1)

Similarly, the deviatoric part! eij, of the strain tensor Cij is

(2.2)

The hydrostatic parts! S" and e" are defined as:

S" 1
- -(jkk

3

e"
1

= -Ckk
3

(2.3)

(2.4)

•

•

The hydrostatic response is often considered elastic for polymers [40}:

(2.5)

where }(e is the equilibrium bulk modulus, which is the modulus obtained

for a static load. This simple expression is used throughout this work to

characterize the hydrostatic response. However. there are several possibilities

for the shear response.

The next sections discuss the most cornnlon models by showing their typieal

behavioUT. Values of the shear nlodulus as it varies with frequeney are shown

for the given nlodel and the experimental data for an acrylic based polyrner

rnanufaetured by 3~I, 3~I ISO 112. This rnaterial will be discussed in details

in Chapter 3, but it is used in this chapter as an example to illustrate the

viseoelastic rnodels. The parameters of the models are ehosen to reasonably

cover the whole ehosen frequency interval. It is done manual1y, without an

optimization algorithm, and their choice is discussed in Chapter 3. The goal

of this ehapter is to gain an understanding of the models, by illustrating the

typical behaviour inherent to each model, without commenting on the specifie

values used for different materials.
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• 2.2.1 The Voigt-Kelvin Model

The simplest model far the shear response is called the Voigt-Kelvin mode!.

The stress is sinlply proportional ta the strain and the fust derivative of the

strain:

(2.6)

where a is a damping caefficient and Ge~ the equilibrium shear modulus.

Assunling zero initial conditions~ the Laplace transfarm of Equation 2.6 is

taken to obtain the frequency-varying shear modulus:

(2.7)

•

•

where s = i21if and is the Laplace domain variable. The factor 2 in front of

eij cornes fron1 the use of elasticity strains. The star used as a superscript

for G indicates a conlplex modulus, a modulus varying with frequency and

cbaracterized by a magnitude and a phase.

Typical experimental behaviour far polymers sho\vs the magnitude of the

shear modulus increasing with frequency up to an asymptotic value, whereas

the phase is shaped as a bel!. At very low frequencies 1 the phase difference

is zero and the rnaterial behaves elastically. At very high frequencies 1 the

phase difference is again zero, and the material again behaves elastically, but

with a madulus presenting a higher magnitude than at low frequencies. A

Voigt-Kelvin model. however. is characterized by a monotanically increasing

nlagnitude and a phase increasing up to an asymptotic value of 90°. Figure 2.1

shows the experimental data for 3~I ISD 112. A typical fit is obtained for a

Vaigt-Kelvin model and is also shawn in Figure 2.1. Since the phase rises very

sharply from 0° to 90° l the model cannat accomodate a broad range of data

for the phase. The model aisa predicts a magnitude rising at a faster rate than

is observed physically and the model either underestimates or overestimates

the data for the magnitude.
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• 2.2.2 The Maxwell Model

Another siInple model for the shear response is the ~'Ia..'{Well mode!. The stress

added to the first derivative of the stress are proportional to the first derivative

of the strain. In the Voigt-Kelvin model, there was no derivative of the stress,

in :\1a.......\vell model, the strain itself is not involved:

(2.8)

where a is a damping coefficient and Ge, the equilibrium shear modulus.

Assuming zero initial conditions, the Laplace transform of Equation 2.8 is

taken to obtain the frequency-varying shear modulus:

The ;\Iax""ell model is characterized by an amplitude increasing up to an

asymptotical value. L'Hospital's rule shows the limit when the frequency

becomes infinite to be Ge:•

Sij(S) = G* = aGes
2eij (s ) 1+ as

1· aGes 1· aGe G
lm = lm - = e

s-oc 1 + as s-oc a

(2.9)

(2.10)

•

Physically, the material exhibits a modulus close to Ge at low frequencies,

which then rises to an asymptotic value called the glassy modulus, Gg [40].

The ;\1a.."\.~well model, however. only goes up to Ge fronl a value of zero for the

modulus. As for the phase, the model predicts an asymptotic value of 90°

then sharply decreasing to zero. This does not approximate well the physical

behaviour showing a phase starting at zero, rising to a maximum, and then

decreasing to zero. Figure 2.2 shows the experimental data for 31'1 ISD 112

and an appropriate fit obtained for a l\'Iaxwell mode!.

2.2.3 The Standard Linear Solid Model

A better model than the preceding two would be obtained by combining proJr

erties of the two models. The magnitude should start at the equilibrium

modulus, as predicted by the Voigt-Kelvin model, but it should not increase

17
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• infinitely. It should reach an asymptotic value at high frequencies~ as it does

for the ~Ia'\.\\·ell nl0deL but this value should be the glassy modulus~ and not

the equilibrium modulus. A model combining these properties exhibits the

same number of derivatives of stress and strain. The simplest of these models

has one derivative of the stress added ta the stress equal ta one derivative of

the strain added to the strain:

(2.11 )

Assuming zero initial conditions, the Laplace transform of Equation 2.11 is

taken ta obtain the frequency-varying shear modulus:

Sij(S) = C. = Ge + aGes
2eij(S) 1 + bs

(2.12)

(2.13)•
The limit as the frequency nears zero gives Ce~ which agrees with physical

observations:

1· Ge + aGes G
lm = e

5-0 1 + bs

L~Hospitars rule is used ta obtain the limit when the frequency becomes

infinite:

1· Ge + aGes 1· aGe aCe
lnl = lm -- = --

5-X) 1 + bs 5-OC b b
(2.14)

•

The aymptotic value of Cg can be obtained if a and b are chosen accordingly.

For bath linüts, the modulus no longer depends on S at very low or very high

frequencies~ and therefore, the phase is zero at these eÀ-tremes, again satisfying

physical observations.

Figure 2.3 sho\vs sorne experimental data and an appropriate fit obtained

for the standard linear solid mode!. Despite the model behaving appropriately

at very low and very high frequencies, it still does not exhibit the gentle rise

in bath magnitude and phase ohserved ex~erimentally. The magnitude rises

tao sharply from Ge to Cg, and the phase goes to higher values than seen

experimentally. To obtain a better fit, more derivatives of the stress and strain

are needed. As derivatives are added~ the fit gets better, but the complexity
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• increases and there are more parameters to identify. A. general form of classical

constitutive equations is:

(2.15)

•

If m and n are set to 1, then this form reduces to the standard linear soUd

model \vith the fol1oVving parameters:

Po - l

Pl - b

qo = l (2.16)

ql = a

2.3 Implementation of Classical Constitutive
Equations in Commercial Finite Element
Packages

)'Iany commercial finite elelllent packages offer sorne viscoelastic constitutive

equations ta represent material behaviour. Very often~ the constitutive equa

tion is e)'-l)ressed as a Prony series. This form of modulus is in fact a relaxation

lllOdulus \\Titten as:

N

Grelax(t) = Ge + L Gn exp-t/Tn

n=l

(2.17)

The relaxation modulus is defined as the modulus when the material is sub

lllitted to a step of straill of nlagnitude e~y at t = 0 [41]. The complex modulus

derived from Equation 2.17 is obtained by studying the relaxation response

when a constant strain, e~, is applied:

Since e?2 is a step function applied at t = 0, the Laplace transform of Equa

tion 2.18 is:

• Sxy.rdax(S) - G ()
2eO - relax S
~

s

21
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• The eomplex shear modulus is defined as the ratio of the stress over the strain

when using the engineering strain. Rogers [42J and Tschoegl [41] used that

definition to manipulate Equation 2.19 and obtain the complex modulus:

(2.20)

Equation 2.17 can now be used \\-ith Equation 2.20 to get the eomplex mod

ulus. The Laplace transform of Equation 2.1 ï is taken:

(2.21 )

Br simplifying, a form for the complex shear modulus represented by the

Prony series is obtained:

The shear modulus is sometimes written using the glassy modulus rather than

the equilibrium modulus [41]:

•
where

Equation 2.22 beconles:

.v
Ge = Gy - L Gygn

n=l

(2.22)

(2.23)

(2.24)

(? ?~)- ....0

•

This last form is the one most often encountered in commercial finite element

packages.

Figure 2.4 shows Prony series with one term, two terms, and five terms to

model the behaviour of a typical polymer. With five terms~ the Prony series

is fol1o\\ring quite closely the experimental data and more terms would give an

even smoother cun-e. The nurnerical values of the parameters for the three

curves are given in Chapter 3. The good fit obtained with five terms is related

ta the specifie behaviour of the material. Other materials would require less

or more terms for a suitable fit.
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(2.26)

• 2.3.1 Equivalence of the One-Term Prony Series and
the Standard Linear Solid Model

The Prony series gives identical results ta a classical constitutive equation with

the same number of derivatives for the stress and strain. Therefore. a one-

term Prony series is equiv-alent ta a standard linear solid mode!. The one-term

Prony series is \\Titten:

G* - G GITIS- e+---
1 + TIS

This is compared ta the complex modulus representing a standard linear solid

model:

The same can be done for higher arder classical constitutive equations and

higher arder Prony series.
•

G'" = Ge + aGes
1 + bs

An equivalence for the parameters is found:

b - Tl

(2.27)

(2.28)

2.3.2 The Zener Model Implemented in Samcef

Sam.ce/. a commercial finite element package, offers a Zener model in addition

ta the Prony series~ the \loigt-Kelvin mode!. and the yla"{'\\'ell mode!. The

Zener model is similar ta a standard linear soUd model, but the definition of

the parameters as implenlented in Samcef gives it sorne peculiar properties. It

is \\Titten:

where a and, are damping parameters. Assuming zero initial conditions, the

Laplace transform of Equation 2.29 is taken to obtain the frequency-varying

shear modulus:•

Q. 7 a.
S.. + --5.. - :"J--C e .. + :"J--C e ..

Il 1 Il - - 1 + e Il - 1 e Il+;' 7 +1'

5: j (s) = C* = '"'(Ge + aCeS
2eij(S) (1 + ,) + as

24
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, = 0.05. and Q = 0.001)

The limit as the frequency nears zero is taken:

1· ,'Ge + aGes ! G
lm = -- e
5-0 (1 + ,) + as 1 + 1

(2.31)

(2.32)

•

This result does not satisfy physical observations for most polynlers. At very

low frequencies~ the modulus should approach Ge~ whereas this model predicts

an asymptotic value equal ta a fraction of Ge.

L~Hospitars rule is used to obtain the limit when the frequency becomes

infinite:

1· ,Ge + aGes l' aGe Glm = lm--= e
5-00 (1 + ,) + as s-oc a

At very high frequencies~ the model tends to Ge rather than Gg • This model

does not satisfy physical observations of most solid polymers. Figure 2.5 shows

sorne experimental data and an appropriate fit obtained for the Zener mode!.

The fit for the phase is similar ta the fit obtained \vith the standard linear

25



•

•

saUd modeL but because the magnitude tends ta Ge at high frequencies~ it

remains ,vell below the experimental values. The Zener model would satisfy

physical observations if the parameter Ge in Equation 2.29 was replaced by

Cg.

2.4 Models Based on Fractional Derivatives

Ail models with fe"" parameters reviewed in the preceding sections had se

rious shortcomings in representing the behaviour of polymers over a broad

frequency range. The only models achieving this goal were the Prony series

"'ith several terms~ or alternately~ c1assical constitutive equations with severa!

derivatives of the stress and strain. These can be used when the complex

modulus is knOVvLl over a wide frequency range. Usually~ it is the case for

materials sold commercially as damping layers, but it is not often the case for

polymerie materials used as components of mechanical systems. Very often~

the equipment to obtain the complex modulus is not available and limited

data is kno"'Ll. Faced Vvith that prospect. many engineers choose ta model the

damping behaviour using as few parameters as possible.

The main problem with classical constitutive equations with few parame

ters is the sharp rise in the magnitude of the modulus. This is governed by the

fust derivative of the strain which imposes an inerease in magnitude of one

decade per decade on a log log plot of the magnitude versus the frequency. To

illustrate this for the Voigt-Kelvin model, the complex modulus is written as:

•

G* = Ge + aGes

\vhere S is equal to i2iTf. The magnitude of G* is:

IG*I = JG~ + (aGe 27if)2

The logarithm is taken on both sides of the preceding equation:

log IG*I = log JG~ + (aGe2-rrf)2

- ~ log (G; + (aGe21rJ)2)
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(2.36)

log IC·'

For high frequencies~ the first term can be neglected compared to the second

and the logarithm of the nlagnitude becomes:

1 ?
= - log(aGe 2iT f)

2

= log(aGe 2iT f)

•

The magnitude of the modulus increases one decade as the frequency increases

one decade for high values of frequency. Figure 2.6 shows the magnitude of

the shear nlodulus shawn previously as part of Figure 2.1 expressed on a log

log scale for the magnitude. The slope of 1l10st polymers is much gentler

than a one decade increase of magnitude per decade of frequency. Bagleyand

Torvik [43] were anlong the first to suggest using fractional derivatives instead

of integer derivatives in the modelling of viscoelastic behaviour. Fractional

derivatives are derivatives of an order between 0 and 1. It is defined as [23] :

ç _ 1 d t eij (T) _
D eij(t) - f(l- ç) dt Jo (t _ T)€dl (2.37)
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• The arder of the fractional deri'\a.tive is smaller than a fust arder derivative.

and therefore. the slope of the magnitude with respect to frequency should be

gentler. Ta carry on with this analysis~ the Laplace transform of the fractional

derivative is needed.

2.4.1 The Fractional Derivative Laplace Transform

The transform of [, [D~eij(t)] is sought for zero initial condition problems.

The definition of the fractional derivative used in Equation 2.37 implies the

material is in its undefornled state at t = O. To obtain the Laplace transform

of the fractional derivative. a new function h is defined:

(2.38)

(2.39)

(2.42)

•

•

Use is made of the following property of the Laplace transforms [44]:

C [~f(t)] = sF(s) - f(O)

Substituting f br h yields:

C [D{eij(t)] - C. [~ h(t)]

= sH(s) - h(O)

_ [, [ 1 (eij(T) d ]
s r(l _ ç) Jo (t _ T)~ T

1 (eij(T) d 1 (? 40)
- r(l-ç)Jo (t-T)~ Tt=O _.

Because the last ternl of Equation 2.40 is an integral from 0 to 0, it is always

equal to 0, and consequently:

[ ~ .. ] _ [ 1 t eij (T ) ]
[, D et) (t) - sI:, r(l _ ç) Jo (t _ T)~ dT (2.41)

The integral on the right hand side of Equation 2.41 is a convolution product

and can be solved using the following property of Laplace transforms [44]:

C. [fa' f(u)g(t - u)du] = F(s)G(s) where G(s) = C. [g(t)]

and F(s) = 1:, [f(t)]

28



• Sorne simple substitutions are needed:

T - U

g(t - u) -
1 (t - T)-~

-------
(t - T)~r(l - c;) r(l - c;) (2.43)

•

Using Equation 2.43 in Equation 2.41 yields:

.c [D~eij(t)] = s.c [[(1 ~ ç) fa' (;i~(~~{dT]

[
t-~ ]

- Seij(S)'c r(l - c;)

To proceed~ the fol1owing transformation is needed [441:

L [ t
n

-
1

] _ 1 where n > a
f(n) - sn

Letting n = 1 - c;~ Equation 2.44 becomes:

[
t-~ ]

Seij(s),c r(l _ ~)

1
= Seij(s) Sl-~

= S~eij (s)

(2.44)

(2.45)

(2.46)

This is a nice and compact result easy to use. It also illustrates the fact that

when ç tends towards L the same result is obtained as for the fust derivative

of eij for zero initial conditions. whereas when c; tends towards 0, the same

Laplace transform as the undifferentiated function eij is reached.

2.4.2 The Fractional Voigt-Kelvin Model

The most basic model making use of a fractional derivative is the Voigt-Kelvin

model in which the first order derivative is replaced with a fractional derivative:

S " - 'JG e·· + ?aG D~e"1) -... e 1) - e 1) (2.47)

•
The Laplace transform for zero initial conditions brings out the complex mod

ulus:

(2.48)
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• To observe the impact of the fractional arder of the derivative, the magni

tude of C" is needed. First, the Laplace variable, s, is \\Titten as i21r f:

The identity if. = cos(~) + i sine~) is used:

.. c iT~ 7i"ç
G = Ce + aGe(21rf)' (cos( 2 ) + i sine 2 ))

The magnitude of C* is \Witten:

(2.49)

(2.50)

IC"I= (2.51)

For high frequencies and a value of ç of approximately 0.5, the first term can

be neglected compared ta the other two. and the remaining terms can then be
•

Use is nlade of the identity COS2(~) + sin2(~) = 1:

The logarithm is taken on bath sides of the preceding equation:

1 (') ') c 7i~ ') ') ')c)
log IC"I = "2 log G; + 2aG;(2ii f)" cos( 2 ) + a-G;(2ïr f)-'

(2.52)

(2.53)

•

reorganized:

1 ( ') f. 7rç ')? ?f.)log IG*! - 2log 2aG;(27rf) cos( 2 ) + a-C; (2rr f)-

- ~ log (aC;(2'1l}){) (2cos( ~E) + a(271"J){)

- ~ (log (aC;(2ToJ){) + log (2COS( ~E) + a(271"J){)) (2.54)

Again. the term 2 cos(!f) can be neglected in front of the remaining term for

high frequencies for a value of ç of approximately 0.5. The terms left are split

to show the effect of ç:

log IC'I - ~ (log (aG;(271"J){) + log (a (271"J){))

1
- "2 (log a + logG; + log(2rrf)f. + log a + log(2ïrj)f.)

- log a + log Ge + ~ log(2ïr f) (2.55)
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Figure 2.7: Complex Shear :\Iodulus for The Fractional Voigt-Kelvin 1Iodel
(Ge = 7.00 X 10-1 Pa, a = 0.8. and c; = 0.54)
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At high frequencies, \vhen the frequency increases by one decade, the magni

tude of the modulus increases by c; decade, and ç is between a and 1. For the

Voigt-Kelvin model, the increase was of a full decade. The fractional Voigt

Keh-in nlodel provides a gentler slope. This conclusion also holds for small

values of ç. However, if ç is tao low, the material behaves almost elastically

and the slope approaches zero. Figure 2. ï shows experimental data for 3J\11 ISD

112 and the fractional Voigt-Kelvin model for a value of 0.54 for ç. When the

frequency increases by one decade, the magnitude increases byapproximately

half a decade. This gent1er slope is much doser to the actual behaviour of

the polymer than what is obtained with the Voigt-Kelvin mode!. The rise

in the phase value is also more representative of the experimental data. It

reaches an asymptotic value doser ta physical observations. A perfect model,

however, would have a phase decreasing rather than reaching an aymptotic
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• value once it is passed its maximum value. A model with these properties is

the standard linear solid mode!. The main difference between the standard

linear solid model and the Voigt-Kelvin model is the derivative of the stress.

A fractional derivative of the stress would probably allow a gent1er negative

slope for the phase than obtained with a first arder derivative. This idea was

also explored by Bagley and Torvik [43].

2.4.3 The Fractional Standard Linear Solid Model

Bagley [45J used a model with a fractional derivative of the stress and one of

the strain of the same order. This model is:

Assuming zero initial conditions, the Laplace transform of Equation 2.56 is

taken to obtain the frequency-varying shear modulus:

• Sij(S) = G* = Ge + aGes~
2eij (S ) 1 + bs~

(2.56)

(2.57)

•

Figure 2.8 shows an appropriate fit of the fractional standard linear solid

nlodel for a typical polymer. This model has the best fit for aIl the models

presented ,vith few pararneters. This is a marked advantage when limited data

is available to identify the parameters as is often the case in the engineering

practice.

2.5 The Assumption of a Constant Poisson's
Ratio

So far, a constant bulk rnodulus has always been assumed. It is an assump

tion that is often used because it is quite close to physical observations [41J,

and nlore often than nat, the full behaviour with respect to frequency for ail

elasticity constants is not known.

Another assunlption very often used is ta assume constant Poisson~s ratio.

It does simplify the equations in sorne cases, and for low frequencies, it does
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• Figure 2.9: Young's ~Iodulus for a Constant Poisson's Ratio or a Constant
Bulk i\Iodulus

not diverge too much from the results obtained with a constant bulk modulus

assunlption. especially in a nearly inconlpressible case. Figure 2.9 shows the

calculated Young's modulus when both assumptions are applied to the shear

modulus data of a typical polymer. The equilibrium Poisson's ratio is taken

to be 0.499, representing a nearly incOIllpressible material, which is typical of

manyelastomers. If Poisson's ratio is assumed constant, Young's modulus is

calculated as:

(2.58)

where E* is the complex Young's modulus and Ve is the equilibrium Poisson's

ratio.

If the bulk modulus is assumed constant, then, Young's modulus is ob

tained with:• E* = 9I(eC*
3Ke + C*

34

(2.59)



•

•

•

where the equilibrium bulk modulus. }(e~ is

(2.60)

with a value of 70000 Pa for Ge, which is the value obtained for the real part

of the modulus at 0.1 Hz. This frequency is the lowest frequency for wmch

data is given by the manufacturer for 3:\1 ISD 112. The results of Figure 2.9

show values of Young's modulus to be nearly the same under both assump

tians. The values shown on the graph are calculated from the shear modulus

values read from the chart provided by the manufacturer. The chart being

difficult to read. it results in a curve not being entirely smooth. Therefore,

the results are shawn as discrete points representing the points read from the

chart. For a nearly incompressible case. the effect of either assumption is felt

mainly on the bulk modulus and Poisson's ratio themselves. This conclusion

does not hoId for lower values of Poisson's ratio. Figure 2.10 shows the com

plex Young's nlodulus for an equilibrium Poisson's ratio of 0.3. For such a

value. the constant bulk modulus assumption and the constant Poisson's ratio

assumption give different results.

For the nearly incompressible case, Figure 2.11 shows the calculated bulk

n10dulus if Poisson's ratio is asswned constant, and Figure 2.12 shows the

calculated Poisson's ratio if the bulk modulus is assunled constant. Poisson's

ratio decreases slightly v...;th frequency for a constant bulk modulus assump

tian. but the bulk modulus increases significantly at high frequencies for a

constant Poisson's ratio assumption. At low frequencies, bowever, bath as

sumptions should give similar results.

2.6 Models Implemented in Samce/

One of the goal of this thesis is to implement a fractional order constitutive

equation in a commercial firrite element package with the objective ta compare

the efficiency of this model ta other available models. Ideally, a fractional

order model would be more accurate and compute faster. Even if it does
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not compute faster. it could still be of interest because of the few parameters

needed to represent the viscoelastic behaviour. In practical applications~ often

only partial data is available~ such as a frequency response~ and it is easier to

fit a model with few parameters.

Samcef version 8.1 [46] is the finite element package used for this work.

The nonlinear dynamic module of Samcef used ta model the viscoelastic be

haviour is also the nonlinear dynamic module of Nastran. Samcef allows a

user subroutine for the constitutive equation and a fractional Voigt-Kelvin

model is implemented. A fractional standard linear soUd model would be

even better. but it involves a fractional derivative of the stress and one of

the strain and therefore. it is more demancling on computer ressources. This

work concentrates on the fractional Voigt-Kehin model as a fust evaluation of

the efficiency of a fractional arder model. The assumption of a constant bulk

modulus is used.

SamceJ also offers the Prony series. The fractional Voigt-Kelvin model will

be compared to Prony series of various orders and for bath assumptions~ a

constant Poisson~s ratio. and then a constant bulk modulus. The three other

models available in Samcef al! use the constant Poisson~s ratio assumption.

They are the Voigt-Kelvin model. the :\Ia'\.~ell nlodel. and the Zener model.

Table 2.1 sumnlarizes the various models compared in this study.

2.7 Conclusion

~fodels representing the viscoelastic behaviour are variations of Hooke~s law

where derivatives of the stress and the strain are added. For a model to

represent the physical observations. the same number of derivatives for the

stress and the strain are needed. A model with only one derivative of the stress

and one derivative of the strain would have the general characteristic of the

observed behaviour of a polymer~ but such a modulus implies a variation with

frequency much more acute than the physical behaviour. Several derivatives

are needed for a good fit between the model and the experimental data for the
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:\Iodel Complex ~Iodulus Assumption
'Voigt-Kelvin G* = Ge + aGes Constant Poisson:s Ratio

;\Ia'\.\\·ell G* = aGrs Constant Poisson:s Ratio
l+as

Zener C* = ....,G..+oG.. s Constant Poisson:s Ratio
(1+1' )+os

Prony Series C* = G + LN GnT!JS Constant Poisson:s Ratioe n=1 I+T.. s

Prony Series G* - G + LN CnT!JS Constant Bulk 1Iodulus- e n=l I+Tns

Fractional Voigt-Kelvin G* = Ge + aGesf.. Constant Bulk ~Iodulus

Table 2.1: ~rodels Used in this Study

complex modulus.

An alternative to these classical models is a model with fractional deriva-

tives. derivatives of an order between 0 and 1. rather than integer derivatives.

These types of models can result in representative behaviour with only one

fractional derivative of the stress and one fractional derivative of the strain.

However. they are more complex ta handle mathematically.

In this thesis. a fractional nlodel with one derivative of the strain will be

inlplenlented in a comnlercial finite elelnent package. It will then be compared

to classical lllodeis available in the chosen package, Samcef The ne>..1; chap

ter deals with the identification of the paranleters of the various viscoelastic

models for two materials, polymethylmethacrylate and 3J\r! ISD 112: an acrylic

based polYluer.
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Chapter 3

Viscoelastic Behaviour of
Polymethylmethacrylate and an
Acrylic Based Polymer

3.1 Introduction

The models developed in the previous ehapter are applied to two polymerie

materials: palynlethylnlethacrylate (P~l~,IA) and an acrylic based polYmer ~

3~I ISD 112. The goal is to define the paranleters of the various models for

these two materials and then. conlpare simulation results with e>"1>erimental

results for structures nlade of these materials and submitted to sorne dynamie

loads.

P~I~IA is chasen because of its availability. low cost. and ease of machining

ta given dimensions. The other material, 3NI ISD 112, is an acrylie based poly

iller manufaetured by 3),1 and used as a damping layer. It will be sandwiched

between a steel beanl and an aluminium eonstraining layer and submitted to

large displaeements.

3.2 Behaviour of Polymethylmethacrylate

Testing of P~Ij\<IA to determine its frequeney-dependent modulus is necessary.

First~ the equilibrium nlodulus is found. Then~ the modulus under various

frequencies is found and these data points serve as the basis to identify the
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3.2.1 Equilibrium Modulus

The equilibrium shear modulus and the equilibrium bulk modulus can he

One parameter used ta model the behaviour of the material which is easily

found experimentally is the equilibrium Young's modulus. To determine it for

P:\T:\IA~ a tensile test is perfornled with an ivITS hydraulic testing machine.

The Pl\I~IA sanlple is a rectangular prism with a section of 22.5 mm by

5.88 mm. The strain is meru:;ured using an extensometer. Figure 3.1 shows

the load as a function of time. The loading rate is 31.3 NIs. This value is found

with the linear interpolation done using the polyfit function of Alatlab, which

is based on least squares. Figure 3.2 shows the stress-strain relationship. The

slope of the linear interpolation represents the equilibrium Young's modulus:

• Ee = 3.43 X 109 Pa (3.1)
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• ea1culated \Vith the value of the equilibrium Poissonls ratio. This value is

taken from Van Krevelen [47] and is equal to DA for Pj\I~IA. The equilibriunl

shear modulus. Ge, and the equilibrium bulk nlodulus. Ke are:

Ee 9
Ge = ( ) = 1.23 x 10 Pa

2 1 + V e

K e = 3(1 :e
2Ve

) = 5.72 x 10
9

Pa

3.2.2 Frequency Dependent Behaviour

(3.2)

(3.3)

•

•

The frequeney response of PNI:NIA is established by imposing a eyelic sinusoidal

load on the material for various frequencies. The load is kept low enough for

the strain to remain below 0.003, whieh is the strain region of interest for the

type of applications studied in Chapter 6.

The magnitude of the complex Youngls modulus is obtained by dividing

the anlplitude of the sinusoidal stress signal by the amplitude of the sinusoidal

strain signal. The phase of the complex Young's modulus is positive and

represents the delay between the strain and the stress signaIs. The tirst step

is to analyse the stress and strain signaIs and obtain their amplitudes and

phases.

Analyses of the Stress and Strain Signals

The dynamic tests are load control experiments where the load is a sinusoidal

signal of a given frequency and amplitude. However, the control is not perfeet

and the resulting signal is not a perfeet sine wave. Dividing the load by

the section, the stress signal is obtained. The resulting strain signal is not

a perfect sine wave either, but rather something nlirroring the stress signal.

Representive values of the amplitude and the phase of each signals are obtained

by fitting a sine wave through the experimental data. Figure 3.3 and Figure 3.4

show the experimental data at 1 Hz and the sine wave fitted ta each. It can

be seen that the actual amplitude and phase would be difficult ta read directly

from the experimental data, sinee the data points do not form a perfeet sine
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•
wave. At low frequencies. the controller performs better. Figure 3.5 shows

the stress signal at 0.1 Hz and its sine fit. The signal is doser to a sinusoidal

curve than the stress data at 1 Hz. As the frequency increases, the load

controller has difficulty maintaining a sinusoidal signal. At 50 Hz. as sho·wn

in Figure 3.6. the load signal is not very regular and no attempt was made to

collect data at higher frequencies.

The general farm of the stress \\iave is:

Sxx = Asin(27ïft + 4» + B

= A sin(27T" ft) cos q; + A COS(2ii ft) sin </J + B (3.4)

• The data consists of the experimental vector of time, t, and the corresponding

stress values, Sxx, for each frequency. Equation 3.4 is fitted to these data by
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Stress Signal Strain Signal
Frequency Amplitude Phase Amplitude Phase

(Hz) (Pa) (degrees) (degrees)
0.1 4.3209 x 106 -65.7 1.1 x 10-:i -68.9
0.2 4.2675 x 106 -60.9 1.1 x 10-3 -64.6
0.5 4.1058 x 106 -29.9 1.0 x 10-3 -33.9
1 3.8341 x 106 72.6 9.2376 x 10-4 68.7
2 3.3068 x 106 54.2 7.7334 x 10-4 50.2
5 2.0249 x 106 -50.4 4.5422 x 10-4 -54.5
10 1.1562 x 106 -26.1 2.4933 x 10-4 -29.9
20 6.3220 x 105 -63.3 1.3048 x 10-4 -66.5
30 3.8114 x 105 30.1 8.1095 x 10-5 27.7
50 2.2348 x 105 -10.9 4.3909 x 10-5 -13.6

Table 3.1: Anlplitudes and Phases of the Stress and Strain SignaIs of P~INIA

using:

[

.4 cos ci> ]
Sn = [sin(27<ft ) cos(27<ft) 1] AS}:<fJ (3.5)

Using matrLx division in Jlatlab~ the best coefficients in a least square sense~

A~ B. and o. are round. A similar fit is done using the strain signaIs. Ta

ble 3.1 gives the amplitude and phase found for each signal. As the frequency

increases. the anlplitude decreases~ indicating the difficulty the controller has

in producing a sinusoidal load.

Young's Modulus

By dividing the amplitude of the stress signal by the amplitude of the strain

signaL the nlagnitude of Young~s modulus is found. By subtracting the phase

of the strain signal frOID the phase of the stress signaL the phase of Young~s

modulus is obtained. Table 3.2 gives the magnitude and the phase of Young's

modulus for each frequency tested. In the ne:\.'"t section~ the different models

developed in the preceding chapter ",ili be fitted to these experimental data.

3.2.3 Parameters of the Models

Table 2.1 gave six models used in this study to be compared. Parameters for

each of these models are found for PMMA. The data collected for PM1tIA
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Frequency ~Iagnitude Phase
(H :;) (Pa) (degrees)
0.1 3.76x10Y 3.2
0.2 3.87 x 109 3.8
0.5 ..1.01 x 109 4.0
1 4.15 X 109 4.0
2 4.28 X 109 4.0
5 4.46 X 109 4.0
10 4.64 X 109 3.8
20 4.85 x 109 3.2
30 4.70 x 109 2.4
50 5.09 x 109 2.7

Table 3.2: ~Iagnitude and Phase of Young~s ~-Iodulus for P!\,I~1A

yields Young~s nlodulus~ but the models are expressed in terms of the shear

nlodulus. The assumption used for each model~ either a constant Poisson:s

ratio or a constant bulk modulus~ is specified in relating Young:s modulus to

the shear modulus.

The Voigt-Kelvin Model

The fust model is a Voigt-Kelvin model with a constant Poisson:s ratio. As

stated by Equation 2.58~ the complex shear modulus is obtained with:

(3.6)

The fit is done using the values of the complex shear modulus for a value of

Poisson's ratio of 0.4. The Voigt-Kelvin model is characterized by a magnitude

increasing rapidly. A fit where the magnitude at 50 H:;~ which is the last data

point, is approximately the same as the e),.'"Perimental data is chosen. Such a

fit is obtained \\-ith:

•
or

G* = 1.23 x 109 (1 + 0.0038) Pa

Ge - 1.23 X 109 Pa

a - 0.003

50

(3.7)

(3.8)
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•

If the experimental and modelled magnitude are equal for a lower frequency,

then the model is totally unrepresentative at 50 Hz. Figure 3.7 gives the

e:-"1>erimental data for the shear modulus calculated witb a constant Poisson 's

ratio and the Voigt-Kelvin mode!.

The Maxwell Model

The ~Ia'\.""",·ell model also uses a constant Poisson 's ratio assumption. Equa

tion 3.6 is used ta obtain the calculated e:-"1>erimental shear modulus data with

a value of 0.4 for the equilibrium Poisson's ratio. The fit is done using the

values of the complex shear modulus. The Ivlaxwell model is characterized

by a phase decreasing rapidly. The chosen fit has a modelled phase close ta

the experimental phase at a frequency of 1 Hz. This frequency is the lower

bound of the frequency range of interest for slewing beams. This choice of fit

51



• 1.8 

~ 1.6
~

~ 1.4 )(
ë
Cl

~1~V--

x
x

x

(3.9)

•

0.8 I..-- """"--__'_ .........~......I.I____'__ _'___~"""""__""__"__'_"_.L.___ ___'_ __'_ __'_~...................

10-1 10°

Frequency (Hz)

Figure 3.8: ),Ia.'\.~ell :\Iodel with a Constant Poisson's Ratio for the Shear
:\:Iodulus of P:\I:\IA

avoids a very high phase in the frequency range of interest which would not

be representative of observed behaviour. This fit is obtained with:

C- = 2.0 x 1.23 X 10
9

8 Pa
(1 + 2.08)

or

Ce = 1.23 X 109 Pa

a = 2.0 (3.10)

•

Figure 3.8 gives the experimental data for the shear modulus calculated with

a constant Poisson 's ratio and the results using the ~f8.À\Vell model.

The Zener Model

The Zener model also uses a constant Poisson 's ratio assumption, and again

Equation 3.6 is used ta obtain the calculated experimental shear modulus data
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(3.11)

• with a value of 0.'1 for the equilibrium Poisson 's ratio. The fit is done on the

values of the complex shear modulus. As in the case of the Nlaxwell model,

this model is characterized by a rapidly decreasing phase. A good compromise

is reached by having the modelled phase close ta the experimental phase at

2 Hz, while not being too high at 1 Hz. This fit is obtained with:

G* = 0.05 x 1.23 x 109 + 1.0 x 1.23 X 1098 Pa
((1 + 0.05) + 1.08)

or

Ge - 1.23 X 109 Pa

r - 0.05

Cr - 1.0 (3.12)

•

•

Figure 3.9 gives the experimental data for the shear nlodulus calculated with

a constant Poisson's ratio and the Zener modeL

The Prony Series with a Constant Poisson's Ratio Assumption

If Poisson's ratio is not constant, the parameters of the Prony series are needed

for bath the shear modulus and the bulk modulus. With a constant Poisson's

ratio. the shear modulus and the bulk nlodulus exhibit the same variation

\Vith frequency, resulting in the same T n and proportional Cg and Kg. The

experimental values for the shear modulus are obtained using Equation 3.6 and

a value of 0.4 for the equilibrium Poisson's ratio. The best fit is found with

an algorithm devised by Rogers [42], and implemented in !vlatlab by Slanik

[48J. Table 3.3 gives the parameters of the Prony series up ta three terms for

a constant Poisson's ratio. The data used ta build the ?rony series is limited

to the interval [0.1 Hz, 20 HzJ. The algorithm centers the phase beU shaped

curve in the middle of the data points. Therefore, an even llumber of data

points on each side of the phase peak value are kept.

The data points between 0.1 Hz and 20 Hz are neither low enough in

frequency to point towards the value of the equilibrium shear modulus, or
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Xumber of Terms Cg 9n Tn

(Pa) (Pa) (s)
1 1. 7300 X 109 2.2474 X 10- 1 9.6851 x 10-~

2 1.7192 x 10Y 9.2382 x 10-~ 4.0067 X 10-1

1.3236 X 10-1 2.7647 X 10-2

3 1.7126 x 10Y 5.9271 X 10-2 6.3937 X 10- 1

7.0638 X 10-2 1.0906 X 10-1

9.4834 X 10-2 1.8398 X 10-2

•
Table 3.3: Parameters of the Prony Series with a Constant Poisson:s Ratio for
the Shear ~fodulus of P~f~IA
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high enough in frequency to point towards the value of the instantaneous or

glassy nlodulus. The Prony series faund give the best fit for the data in the

range [0.1 H =.20 H =] and not outside this range.

Figure 3.10 gives the three Prony series with the e:-..-perimental data. With

three parameters~ a reasonable agreenlent with the experimental magnitude is

found. The phase is also relatively smooth~ but the model can not reproduce

closely the slowly varying beU shaped curve. Adding terms does not improve

the fit, since the very low and slawly varying phase exhibited by this material

is difficult to appraximate with the Prony series. In Chapter 2. a good fit is

obtained with a Prony series of five terms for the material shawn, but that

material has a phase rising much higher and more smoothly than PMMA.
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~umber of Terms Cg 9n Tn

(Pa) (Pa) (8)
1 1.7821 x 10Y 2.4242 X 10-1 9.5405 X 10-:!
2 1.7700 x 10Y 9.8286 X 10-2 3.9863 X 10-1

1.4413 X 10-1 2.7417 X 10-2

3 1.7627 X 109 6.2743 x 10-2 6.3772 X 10- 1

7.5870 X 10-2 1.0871 X 10-1

1.0380 X 10-1 1.8307 X 10-2

Table 3.4: Pararneters of the Prony Series with a Constant Bulk ~Iodulus for
the Shear 1:Iodulus of P~I~IA

The Prony Series with a Constant Bulk Modulus Assumption

The experimental shear nlodulus data is calculated from the experimental

Young·s modulus data using the following equation in the case of a constant

bulk modulus [41J:

(3.13)

with a value of h~e equal ta 5.72 x 109 Pa as found in Equation 3.3. Again~ the

best fit is found \\-ith the algorithm devised by Rogers [42]. Table 3.4 gives the

parameters of the Prony series up ta three terms for a constant bulk modulus.

The pararneters in Table 3.4 are close ta the ones faund in Table 3.3. The two

assumptions give similar values for the shear modulus. Figure 3.11 gives the

three Prony series with the experimental data.

The corresponding bulk modulus Prony series is taken as a constant bulk

modulus simply \vritten as:

(3.14)

•

The Fractional Voigt-Kelvin Model

The fractional Voigt-Kelvin model does not exhibit a bell shape for the phase,

but rather a slowly increasing phase. A fit where the modelled phase is close to

the experimental phase at 10 Hz is chosen. This frequency is the upper limit

of the fust mode natural frequency for slewing motions of Pl\1~1A beams of

the dimensions used. A constant bulk modulus is assumed and Equation 3.13
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• Figure 3.12: Fractional Voigt-Kelvin ~"Iodel for the Shear ~Iadulus of P~INIA

is used ta abtain the shear modulus data fronl the Young's modulus data. An

equilibrium bulk modulus equal to 5.72 X 109 Pa is alsa used. The complex

shear modulus \Vith the fractional Voigt-Kelvin model is:

c- = 1.23 x 109 (1 + 0.12so.22
) Pa (3.15 )

or

Ge - 1.23 X 109 Pa

a - 0.12

ç - 0.22 (3.16)

•
The fit of the model to the values of the shear modulus deternüned experi

mentally is shown in Figure 3.12.

Figure 3.13 gives the fractional Voigt-Kelvin model for a constant bulk
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els for the Shear Nlodulus of P~I~IA

modulus assUIllption compared to the Voigt-Kelvin, ~IaxweiL and Zener mod

els for a constant Poisson:s ratio assumption. Despite not being as close to the

experimental data as the Prony series, the fractional Voigt-Kelvin is obviously

the second best one after the Prony series for its fit.

3.3 Behaviour of the Viscoelastic Layer 3M
ISD 112

A viscoelastic layer is a thin polymerie sheet used ta damp vibrations. As any

polymer, its elastie constants vary with frequency. Users select the viscoelastic

layer according to the magnitude and phase of its shear modulus at the fre

queney they wish to damp. Nlanufacturers establish charts of the modulus as

a function of frequency usually using a D~ITA (Digital Nlechanieal-Thermal
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Frequency Storage ~lodulus Loss Factor
(Hz) (Pa)
0.1 7.00 x 104 0.4
0.5 1.00 x 105 0.6
1 1.-10 x 105 0.7
2 1.70 x 105 0.8
3 2.00 x 105 0.85
4 2.10 x 105 0.9
5 2.40 x 105 0.9
10 3.40 x 105 1.0
20 5.00 X 105 1.0
50 7.50 X 105 1.0
70 9.00 X 105 1.0
100 1.00 X 106 1.0
200 1.60 X 106 1.0
500 2.50 X 106 0.9
700 3.00 x 106 0.9
1000 3.50 x 106 0.85
5000 7.00 x 106 0.6
10000 9.00 x 106 0.5

Table 3.5: Shear Storage ~Iodulus and Loss Factor for 3~I ISD 112

Analyzer). Viscoelastic layer 3~I ISD 112 is used in this study because it

is mostly efficient at room temperature and it has good potential for the

aerospace industry.

3.3.1 Frequency Dependent Behaviour

The shear nlodulus is given as the storage modulus, C', being in fact the real

part of the conlplex modulus, and the loss factor, Tl, representing the imaginary

part. The storage modulus and loss factor constitute the complex modulus

when written as:

C· == G'(l + ù1) (3.17)

•
Table 3.5 gives the data read from the manufacturer charts at 20°C.

Figure 3.14 shows the data from the manufacturer at 20°C in the farm of

the magnitude and the phase of the shear modulus. The same data is shown

in Table 3.6. The equilibrium modulus is nat given by the manufacturer, but
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Frequency ~Iagnitude Phase
(Hz) (Pa) (degrees)
0.1 7.54 x 104 21.8
0.5 1.17 x 105 31.0
1 1.71 x 105 35.0
2 2.18 x 105 38.7
3 2.62 x 105 40.4
4 2.83 x 105 42.0
5 3.23 x 105 42.0
10 4.81 x 105 45.0
20 7.07 x 105 45.0
50 1.06 x 106 45.0
70 1.27 x 106 45.0
100 1.41 x 106 45.0
200 2.26 x 106 45.0
500 3.36 x 106 42.0
700 4.04 x 106 42.0
1000 4.59 x 106 40.4
5000 8.16 x 106 31.0
10000 1.01 x lOT 26.6

Table 3.6: ~Iagnitude and Phase of Shear :\·Iodulus for 31,,1 ISD 112
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• Table 3.6 gives a value of 7.5-4 x 104 Pa at 0.1 Hz. The equilibrium value is

arbitrarily set at 7.00 x 104 Pa, a value slightly lower than the value at 0.1 Hz.

3.3.2 Parameters of the Models

Parameters for the sLx studied models are aIso found for 31'1 ISD 112. In the

case of P~Il\IA, the ex~erimentaldata was obtained for Young's modulus. The

assumption used, either a constant Poisson's ratio or a constant bulk modulus,

was important in obtaining the corresponding shear modulus data. In the case

of 3~I ISD 112, the manufacturer gives directly the shear modulus.

The Voigt-Kelvin Model

The first model is the Voigt-Kelvin mode!. The phase of this model increases

rapidly fronl 00 to 900. Since the experimental phase of 3rvI ISD 112 peaks

at 45°, a fit where the transition from 00 to 90° occurs approxinlately in the

middle of the beU shape is chosen:

•
or

C* = 7.00 x 104 (1 + 0.0058) Pa

Ce - 7.00 X 10-1 Pa

a = 0.005

(3.18)

(3.19)

Figure 3.15 gives the manufacturer data for the shear modulus and the Voigt

Kelvin mode!.

The Maxwell Model

The !\tla.xweU lnadel is characterized by a phase decreasing rapidly from 90°

ta 0°. A fit is chosen for which the phase is close to the experimental phase

between 3 Hz and 4 Hz, the natural frequency of the experimental structure

which will be tested. This fit is obtained with:

• C* = 0.05 x 7.00 x 10
4
8 Pa

(1 + 0.058)
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•
or

Ge - 7.00 X 104 Pa

a = 0.05 (3.21 )

Figure 3.16 gives the manufacturer data and the ~Ia.xwel1 mode!.

The Zener Model

(3.22)

A reasonable fit for the Zener model for which the phase peaks in the area

where the manufacturer data peaks is obtained \\-ith:

C
* 0.05 x 7.00 x 104 + 0.001 x 7.00 x 104 8

= Pa
((1 + 0.05) + O.OOls)

or

Ge - 7.00 X 104 Pa

• '"Y - 0.05

a - 0.001 (3.23)
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• Figure 3.1 Î: Zener ~Iodel for the Shear ~Iodulus of 3r,.,I ISD 112

Figure 3.17 shows the manufacturer data and the Zener mode!.

The Prony Series

•

The Prony series for the shear modulus will be the same with both assump

tions. a constant Poisson's ratio and a constant bulk modulus! since the shear

data is taken directly. The chosen assumption will affect the bulk modulus,

but not the shear modulus. The best fit is also found using the algorithm

devised by Rogers [42]. Table 3.7 gives the parameters Gg , gn, and Tn of the

Prony series up to seven terms for the shear modulus. These parameters are

the ones input in the finite element package. The value of Ge is equaI ta

6.9042 x 104 Pa for a seven term Prony series, which is in agreement with the

choice of a Ge of 7.00 X 104 Pa made in Equations 3.18 ta 3.22.

Figure 3.18 gives the four first Prony series with the manufacturer data.

Figure 3.19 gives the three last Prony series with the manufacturer data. With
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Xumber of Terms Cg gn Tn
(Pa) (Pa) (8)

1 1.0056 X 101 9.9251 X 10- L 4.3342 X 10-4

2 9.9433 X 106 7.4316 X 10-2 2.1162 X 10-2

9.1819 X 10- L 1.0535 x 10-4

3 9.7334 X 106 2.3516 x 10 2 9.1238 x 10 2

1.6072 X 10-L 2.1237 X 10-3

8.0827 X 10-L 6.1213 X 10-5

-1 9.5689 X 106 1.1170 X 10-2 1.9318 X 10-1

-5.1392 X 10-2 1.0731 x 10-2

2.1573 X 10- L 6.7327 x 10-4

7.1421 X 10-L 4.5697 X 10-5

5 9.4104 X 106 7.0184 X 10-3 3.1445 X 10-1

2.3852 X 10-2 2.8951 X 10-2

8.5601 X 10-2 3.0332 X 10-3

2.5886 X 10-1 3.5349 X 10-4

6.1717 x 10- 1 3.8288 X 10-5

6 9.2988 X 106 5.0212 X 10-3 4.2442 X 10-1

1.4201 X 10-2 5.8737 X 10-2

4.0498 X 10-2 9.0394 X 10-3

1.0242 X 10-1 1.2610 X 10-3

2.8052 X 10-1 2.2384 X 10-4

5.4985 X 10- 1 3.4307 X 10-5

{ 9.2147 X 106 3.9026 X 10-3 5.1558 X 10-1

9.7895 X 10-3 1.0322 X 10- 1

2.0646 X 10-2 1.7741 X 10-2

5.7318 X 10-2 3.6691 X 10-3

1.3123 X 10- 1 7.2364 X 10-4

2.7891 X 10-1 1.5945 X 10-4

4.9071 X 10-1 3.1760 X 10-5

Table 3.7: Parameters of the Prony Series for the Shear ~Iodulus of 3M ISD
112
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•
five terms in the Prony series. the fit for the magnitude is excellent, but the

phase is still not snlooth. \Vith seven terms in the series, the phase is smooth.

For a constant Poisson's ratio assumption, the corresponding bulk modulus

Prony series are obtained using:

f<. = 2C·(1 + lie)

3(1 - 2l1e )
(3.24)

A value of 7.00 x 104 Pa is assumed for Ge, and a value of 0.499 for lie' In

The manufacturer suggests an equilibrium Poisson's ratio in the range [0.49,0.5].

A value of 0.499 is arbitrarily chosen.

If a constant bulk modulus is assumed, then the following equation is used:

•
K

e
= 2Ce (l + lie)

3(1 - 2ve )
(3.25)
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• that case. the bulk modulus is equal ta:

K* = K e = 3.50 X 10ï Pa (3.26)

The Fractional Voigt-Kelvin Model

The fractional Voigt-Kelvin model has one derivative of the strain and no

derivative of the stress. Therefore~ the phase does not form a belL but half a

bell reaching an asymptotic value. A fit is chosen for the model to correctly

represent the fust half of the bell:

•

or

Ge - 7.00 X 104 Pa

a = 0.8

ç - 0.54

(3.27)

(3.28)

•

The fit of the model to the manufacturer values is shown in Figure 3.20.

Figure 3.21 gives the fractional Voigt-Kelvin model for a constant bulk

modulus assurnption compared to the Voigt-Kelvin. !\IID..··well~ and Zener mod

els for a constant Poisson~s ratio assumption. As in the case of P1-1~fA~ the

fractional Voigt-Kehin model is not as close ta the experimental data as the

Prony series~ but it obviously gives a better fit than the other classical models.

3.4 Conclusion

The parameters of the chosen models were found for bath PMMA and 3~1

ISD 112. Most models exhibit a rather poor fit. The Prony series manage to

approximate the experimental data, but several parameters are needed. The

fractional Voigt-Kelvin model does not give a perfect fit for PMMA, but the

phase remains in the same range, although it does not have a bell shape.

For 3M ISD 112, the fractional Voigt-Kelvin model gives a good fit of the
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magnitude and also a good fit of the phase up to 100 Hz. The Prony series

and the fractional Voigt-Kelvin nlodel are the two most pronlising models for

both materials. In the case of P~I~IA, the Prony series with three ternlS

gives a superior fit than the fractional Voigt-Kelvin mode!. In the case of

3~I ISD 112, seven ternlS are needed for a good fit v.ith the Prony series.

The fractional Voigt-Kelvin gives a fit just as good up ta 100 Hz with fewer

parameters. In the following chapters~ the various models for the two materials

studied \\i11 be used to attempt reproducing eÀ1Jerimental behaviour of several

structures. The objective will he to obtain accurate simulations \\ith the

material paranleters identified a priori, rather than adjusting the material

parameters to obtain an accurate simulation.
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Chapter 4

N umerical Modelling of the
Fractional Constitutive
Equation

4.1 Introduction

This chapter develops an algorithm, which is an original contribution of this

thesis~ based on a siulple trapezoidal rule to solve an equation with a fractional

derivative. A one-dimensional constitutive equation containing a fractional

derivative is written. A strain input resulting in a linear constitutive equa

tian is solved through the frequency domain. The results obtained fron1 the

frequency domain are compared to the results obtained from the time domain

algorithnl described in this chapter. The fractional derivative requires storing

aIl data from the beginning of the computation. A solution to this problem

is offered and its limits are explored. Solving such a simple one-dimensional

constitutive equation gives insight into problems that could arise when solving

the three-dimensional constitutive equation.

4.2 The Fractional Derivative

A differential equation with a fractional derivative has a term defined as [23}:

(4.1)
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• An alternate fornl of Equation 4.1 is:

(4.2)

For zero initial conditions~ ~ij (0) is equal to 0 and Equation 4.2 reduces to:

(4.3)

•

A singularity arises as the denominator of the integrand becomes 0 when t = T,

T being a dummy variable for time. ~Ioreover, the integral is hereditary since

it starts at O.

Ta remove the singularity, the integration is done from 0 to (t-€) instead of

oto l, where t is a small amount of time compared to t. and an approximation

is used for the integration fronl (t - E) ta t. The integral ternl of the fractional

derivative is divided into two parts:

(4.4)

For the integral between (t - E) and t, Eij(T) is approxinlated using the t'vo

first terms of Taylor's expansion arolmd t, t being in this case a fLxed value

and T. the variable:

(4.5)

The last term is the truncation error and refers to the error associated to the

approximation of Ei](T). This second order error ternl due to the truncation

is:

(4.6)

•

with (1 taking a value in the interval [t - €, tJ.
Equation 4.5 is used in the last part of Equation 4.4 to obtain:

(4.7)

The terms f:ij and fij on the right side of Equation 4.7 do not depend on T;

they are independent of the integration variable. The integral of Equation 4.7
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• is solved by applying a siInple substitution:

u = t - T => du = -dT

The integral becomes:

(4.8)

(4.9)

Integration of the truncation error term expressed in Equation 4.6 is also done:

(4.10)

where (1 is in the interval [t - €. t]. Finally, Equation 4.3 is rewritten without

any singularity:

•
\vith the error term being:

_(3) «( )3-ç
::'1] 1 €

2(3-ç)
(4.12)

Here. the parameter € is chosen equal to h, the stepsize. If the next step

being calculated is at t n + 1• then the upper limit of the integral is tn+1 - h = tn'

Equation 4.11 at tn+1 becomes:

\Vith the error term becoming:

é~:) «(dh3- ç

2(3 - ç)

(4.13)

(4.14)

•
with (1 in the interval [tn, tn+d. Depending on the value of ç, which is in the

interval ]0,1[, the error due to this simplification will be of order 2 or 3.

The next step is to conlpute the integral of Equation 4.13:

(4.15)
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• 4.3 A Numerical Aigorithm for the Integral of
the Fractional Derivative

A numerical integrator for Equation 4.15 must satisfy sorne constraints. Solv

ing this integral is a sub-process in solving the complete constitutive equation

of which the fractional derivative is just one term. A numerical algorithm

takes care of the constitutive equation and sets the value of h according to the

precision of the results. Therefore, when solving Equation 4.15, the values of

the different steps have already been set by the nunlerical algorithm solving

the constitutive equation and cannot be modified by the algorithm solving

the integral. The integrator of Equation 4.15 is using a vector of data con

taining values of T and corresponding values of €ij(T). These values of T are

not equally spaced, and for simplicity, the integrator will ideally be a one-step

method. A trapezoidal rule is the simplest integrator meeting this condition

•
[49]:

l
t1 h

to f(t)dt = 2" (f(to) + f(td) + O(h3
)

with the error term being:
h3 .•

-- f(()
12

(4.16)

(4.17)

where ( is in the interval [to, td. Applying this piecewise ta the integral part

of the fractional derivative gives:

(4.18)

•

This sub-process carries the index k, whereas the integration of the whole

constitutive equation carries the index n. The error term is:

(4.19)

The variable (k is a value in the interval [tb tk+d used to evaluate the error.
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(4.21)

•

•

The fractional derivative expressed by Equation 4.13 becomes:

1 [€ij(tn+l)h l-e _ iij(tn+dh2
- e

D€êij(tn+d =
f(1 - ç) 1 - ç 2 - ç

+ tf tk+l - tk ( €ij(tk) + iij(tk+d )] (4.20)
tk=O 2 (tn+l - tk)€ (tn+l - tk+d€

\vith the error term being:

_(3) (Î )h3-€ tn-l (t t )3 J2 ( .:; () )
Co ij .., 1 L k+ 1 - k a- Co ij T

2(3 - ç) + _ 12 dT2 (tn+l - T)€
tk-O <k

with (1 in the interval [tn: tn+d and (k in the intervals [tk, tk+d·

The values of iij(tk) and iij(tk+d are stored values retrieved by the in

tegrator 1 but an algorithm for Equation 4.20 still needs to calculate €ij(tn+1)

and Ëij(tn+d. This is the topie of the next section.

4.4 The First and Second Derivatives

Typically~ commercial finite element packages allowing user material subrou

tine give the values of the strain at tn +1 to the subroutine and expect values

for the stress at tn+1 ta be calculated. The fust and second derivatives of the

strain must be calculated within the subroutine.

Far the fust derivative, finite differences are used. A tirst arder Taylor

polynonlial is expanded about tn +l:

(4.22)

\Vith the errar term being:

(4.23)

(4.24)

•

where (2 is in the interval [tn1 tn+d. The next step is ta isolate €ij(tn+d:

. ( ) êij(tn+d - Cij(tn )
Cij t n+1 = h

The error term is alsa divided by hl just as is done ta the other terms of the

equation when isolating É"ij(tn+1Land becomes an error term of order one:

(4.25)
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• The value of êij(tn+d is given ta the user, as weIl as t n + 1• The value of

êij(tn) is stored at the end of the step going from t n- l to ln' If it is the first

step, then =ij (tn) is equaI to 0, since zero initial conditions are assumed.

For the second derivative, an expression is derived from the two following

TayIor's ex~ansions:

h2

- êij(tn+d - htij(tn+d + 2 €ij(tn+r) + O(h3
) (4.26)

- ê'j(tn+d - (h + hdEij(tn+d + (h +2hd
2

2ij(tn+l)

+O(h3
) (4.27)

where hl is (tn - tn-d. The error terms associated ta Equations 4.26 and 4.27

are respectiveIy:

•
(4.28)

(4.29)

where (3 is in the intervaI [tn. tn+d and (4 is in the interval [tn-l, tn+d. Equa

tion 4.27 is nluItiplied by a factor of hj(h + hr). and it is subtracted from

Equation 4.26 in order to eliminate the term iij(tn+r). This yieIds:

(4.30)

The saUle InanipuIation is applied ta the error terms given in Equations 4.28

and 4.29 to obtain:

(4.31)

•
As for the first derivative, the errar is of arder 1.

For the first step, the information at tn -1 is nat available. The onlyavail

able data are the strains at to and il' With only two data points, only a linear

function can be assumed and it results in a null second derivative. Therefore,

~ij (tn+d is assumed equal ta 0 on the first step.
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•

The eXllressions for the first and second derivatives are now incorporated

into Equation 4.20:

The error terms specified in Equations 4.21! 4.25! and 4.31 are combined

together ta give:

(4.33 )

The lowest order of error is (2 - ç) and Equation 4.32 is wTitten:

c 1 [:iJ(tn+d - êij(tn) hl-~
D"~ij(tn+d =

f(l - ~) h 1 - ç
_ ')h(:ij(tn-d - :ij(tn)) + hl(Eij(tn+d - Eij(tn)) h2-~

- hhl(h+hd 2-ç

+ tf tk+l - tk ( Éij(tk) + Ëij(tk+d )

tk=O 2 (tn+l - tk)~ (tn + l - tk+d~

+ CJ(h2-~)] (4.34)

This expression for the fractional derivative is now ready for implementation.

4.5 Test Equations for the One-Dimensional
Case

The algorithm is implemented in language C and tested for a one-dimensional

constitutive equatian:

(4.35)
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• where Ee is the equilibrium 'Young~s nlodulus. A user subroutine for a finite

element package typically passes to the subroutine values for the strain and

the subroutine returns values for the stress according to the simulated consti

tutive equation. To emulate this. values for ~xx are passed ta the subroutine

wTitten in C! and values for Cfxx are returned. Equation 4.35 is transformed

in the frequency domain. and inverted back to the time domain numerically

to obtain sorne results against which to test the performance of the algorithm

prograrnmed in C. This approach is adopted since analytical results for Equa

tion -t.35 cannot be obtained for an arbitraI)" value of ~.

The Laplace transform of Equation 4.35 is:

(4.36)

(4.37)
•

where s is the Laplace variable. Two clifferent strain inputs are considered.

4.5.1 Sinusoidal Strain Input

The fust strain input is a sine functian:

::- () - 1 10-3sin(21rft)
"'xx t - x

2iif

where f is the frequency of the sine wave. The factor in front of the sine

functian is chosen to reflect the arder of magnitude typical for small strain

theary. The Laplace transform of Equation 4.37 is:

1
Exx(S) = 1 X 10-

3
') ( frs- + 21r -

4.5.2 Decaying Sinusoidal Strain Input

(4.38)

(4.39)

Another strain input tested is an eÀ1Jonentially decreasing sine function:

- () _ 1 10_3 expkt sin(21rf t)
Cxx t - X

21rf

\vhere k is negative to ensure the decay of the sine function. The Laplace

transform of Equation 4.39 is:

• ( )
-3 1

ê xx S = 1 x 10 ( k )') ( f) ')
S - ~ - + 21r -
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• Frequency f
Equilibrium Young~s ~Iodulus Ee

Damping Coefficient a
arder of the Fractional Derivative ~

Parameter of the E}q)onential k

1.59 Hz
3.43 x 109 Pa

0.12
0.22
-0.5

Table 4.1: Parameters of the One-Dimensional Test Equation

4.5.3 Constitutive Equations for the Test Cases

Since no time-domain closed form solution exists for arbitraryr values of ~,

the constitutive equations with Equations 4.37 and 4.39 as strain inputs are

solved in the frequency domain ta pro'\ide a comparative solution to the ones

obtained v.ith the time domain algorithm \\JTitten in C.

Using the fust strain input~ Equation 4.38. the constitutive equation be-

"Vith the second strain input. Equation 4...l0~ the constitutive equation be-•
cornes:

_ -3 (1 {1)
uxx(s) - 1 x 10 Ee ') (?_ff + aEes ') ( frs- + _JI - s- + 27i -

(4.41 )

Cailles:

-3 ( 1 ç 1 )
O"xx(s) = 1 x 10 Ee (s _ k)2 + (2Ti f)2 + aEes (s - k)2 + (2n"fF (4.42)

•

Equations 4...l1 and 4.42 are solved in the frequency domain v.~th a numerical

scheme described by Wilcox [50]. The algorithm is given in Appendix A. In

Potvin [51]. it is tested against another algorithm developed by \Vilcox and

Gibson [52) and it gives comparable results. Solutions for Equations 4.41 and

4.42 are shown in Figure 4.1. The parameters used in both equations are given

in Table 4.1.

4.6 Accuracy of the Aigorithm

The numerical Laplace inverse gives results of varying accuracy accorcling to

the number of data points used ta obtain the results. The numerical Laplace

inverse used [50J is based on a Fast Fourier Transforrn and needs a number of
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data points equal to 2n . However. the time solution produced with the numer

ical Laplace inverse is not accurate at the end of the time scale. Therefore.

85% of the time scale is kept and the rest of the data points are discarded.

The chosen test cases exhibit an oscillating frequency of 1.59 Hz. The

simulation is done for 2.975 s~ which implies 4.73 cycles. If the number of

data points is chosen equal to 210 ~ 870 data points are kept. resulting in 184

data points per cycle. This number is high enough to ensure precision.

For the algorithm designed in this chapter~ varying numbers of data points

are chosen to evaluate its sensitiveness to step size. The results from the

numerical Laplace inverse are interpolated at the same data points used for

the algorithnl and the difference between the results frOID the algorithm and

from the interpolated numerical Laplace inverse is computed. The number of

data points for the algorithm is reduced until a difference of 1.5 x 104 Pa is

obtained for any data point betvleen the results frOID the algorithm and the

results from the nurnerical Laplace inverse. By trial and error, this value was

found to be the one for which the error would always lead ta sorne divergence

benveen the two methods for the studied cases.

4.6.1 Results for a Sinusoïdal Strain Input

Table 4.2 compares the results from the algorithm based on the trapezoidal rule

and from the numerical Laplace inverse in the case of the constitutive equation

for a sinusoidal strain input. The time in the simulation for which a difference

of 1.5 x 104 Pa is reached between the two methods is indicated in the table

as being the critical time. The maximum difference between the two methods

for any data point is indicated as the maximum error. The tests are done on

a Pentium personal computer. Figures 4.2 and 4.3 show the fits between the

two curves in the best case and the worst case. The agreement between the

two curves in Figure 4.2 is excellent. In Figure 4.3, the agreement is still very

good~ but only 14 data points per cycle are used for the curve obtained with

the algorithm and it is not perleetly smooth. Moreover, the level of error is
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Number of Critical !vlaximum Error CPU Time CPU Time for
Data Time for the the Algorithm

Points Laplace Inverse
(seconds) (Pa) (seconds) (seconds)

800 2.1196 x 103 2.14 3.46
600 2.6587 x 103 1.54 1.32
400 3.5206 x 103 1.54 0.61
200 5.7624 x 103 1.48 0.17
150 6.9912 x 103 1.48 0.11
125 8.2962 x 103 1.48 0.06
110 9.1526 x 103 1.60 0.05
100 1.0016 x 104 1.65 0.05
90 1.1237 x 104 1.65 0.01
80 1.2555 x 104 1.59 0.01
70 1.4174 x 104 1.60 0.05
66 2.1818 1.5465 x 104 1.54 0.01

Table 4.2: Accuracy of the Aigorithm for a Sinusoïdal Strain Input

slowly increasing. Still, the algorithm is very stable and predicts accurate

results e\'en for very few data points per cycle.

Table 4.2 also compares the CPU time. the time used by the processor ta

do the calculations. for bath the numerical Laplace inverse and the algorithme

The numerical Laplace inverse is run for each case with 1024 data points. The

variations in the CPU time for the Laplace inverse are due to the Windows

operating system since the saille equation is run everytime. The CPU time

for the Laplace inverse is indicated ta give a comparative value of the CPU

time for the algorithrn. There are instances when the algorithm requires more

CPU time. but the Laplace inverse aIso does, indicating a variation due ta the

operating system. rather than the algorithm itself. The CPU time required

by the algorithm based on the trapezoidal rule decreases significantly as the

number of data points is reduced.

4.6.2 Results for a Decaying Sinusoidal Strain Input

A second test is done with a decaying sinusoidal strain input represented

by Equation 4.39. Table 4.3 gives the results. The same trend as with the
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~umber of Critical ~Ia..ximum Error CPU Time CPU Time for
Data Time for the the Algorithm

Points Laplace Inverse
(seconds) (Pa) (seconds) (seconds)

800 1.8160 x 103 1.59 2.36
600 2.2723 x 103 1.48 1.32
400 3.0872 x 103 1.48 0.60
200 5.1406 x 103 1.54 0.17
180 5.5731 x 103 1.48 0.11
160 5.9441 x 103 1.48 0.11
140 6.4098 x 103 1.60 0.11
120 6.9980 x 103 1.60 0.06
100 8.3365 x 103 1.49 0.01
80 1.0405 x 104 1.48 0.01
60 1.3943 x 104 1.48 0.01
.54 0.2778 1.5307 x 104 1.48 0.01

Table -1.3: Accuracy of the Algorithm for a Decaying Sinusoidal Strain Input
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sinusoidal strain input is seen. The CPU time required for the algorithm based

on the trapezoidal rule decreases significantly as the number of data points

decreases. Figures -lA and 4.5 show the fits between the two curves in the best

case and the worst case. The agreement between the two curves in Figure 4.4

is excellent. In Figure 4.5, the agreement between the two curves is still very

good. but small differences can be seen due to the low number of data points

for the algorithm based on the trapezoidal rule. Only Il points per cycle

are used which is very low to accurately reproduce a sinusoidal wave. Again,

the algorithrn does not need very small steps despite computing a differential

equation with a fractional derivative.
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• 4.7 Selection of Stored Data

•

•

The integral part of the fractional derivative~ as written in Equation 4.13, has

oas an inferior limit~ implying the integral has to be started from zero for each

step of the integration of the dynamic system. The integral depends explicitly

on tn+l, which is different at every step~ preventing use of results obtained for

the integral on previous steps. As the integration process gets away from zero,

the number of calculations to be carried out increases significantly, slowing

down the numerical computation. To accelerate the algorithm, Koh and Kelly

[22] used a time window. Gnly the values for a determined amount of tinle

were considered. \Vhat happened previous to that was neglected. However, as

stated by Koh and Kelly themselves, this works only for functions oscillating

around a zero mean. Dynamic systems do not necessarily oscillate around zero

and a more general approach is needed. In the numerical algorithm described

here~ larger steps are taken for events happening far frOID the CUITent time.

Hence. the whole history is taken iota account, but \vith less precision for

farawayevents.

A maximunl number of data to be stored is determined. This number

is called memmax. A smaller numbeL also chosen by the user and called

memcom, is the number of data for which larger steps will be taken. At the

end of each step, the algorithm stores in a list the time at which the stress is

computed and the corresponding strain. A counter keeps track of the number

of data stored in the list. \Vhen the nlaximum number of data allowed is

reached~ the algorithnl takes the first group of data, of size memcom, and

keeps only one data out of two. The remaining data, between the memcom

and memmax limits are displaced in lower positions in the list. A number of

places equal to haU the size of memcom are now available in the list. The

computation goes on and new data fHIs the list until the memmax limit is

reached. At this point, another conlpression and displacement of data takes

place.
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The first time such a compression of data is carried out, the steps in the

memcom group become approximately t'wice as large as the initial steps if it

is assumed the steps have similar lengths. \Vhen a compression is done for

the second time. the Iast memcom group now has steps equivalent to approxi

mately four times the initial step size. Thus, as more compressions are carried

out~ the first few steps become larger.

The last section showed that the algorithm is accurate when all data points

are stored if a sufficient number of data points is used. This section looks into

the limits of the compression schenle in tenns of accuracy of the solution.

The same test cases defined in Sections 4.5 are used to study the acceptable

level of data compression.

4.7.1 Data Compression for a Sinusoidal Strain Input

Table 4.4 gives the accuracy of various solutions for the case where 800 data

points are used with the algorithnl based on the trapezoidal rule. As for the

numerical Laplace inverse. it is calculated using 1024 data points. Because the

last data points generated by the numerical Laplace inverse are not accurate~

only 85% of the data points are kept and this gives a ma.ximum of 870 data

points. \Vith the algorithm based on the trapezoidal rule, the whole vector

of data points is compressed each time it is full. therefore memmax is equal

to memcom. For a simulation of 800 data points~ the smallest storage vector

which can be used to keep an acceptable levei of precision is 264. This repre

sents 33% of the total data points in a case where there are 169 data points

per cycle.

The computing time of the algorithm based on the trapezoidal rule is

quite high compared to the numerical Laplace inverse if all data points are

kept in memory and used in caIculations of the subsequent steps. However,

if the minimum allowable storage vector is used, then the computing time

required by the algorithm based on the trapezoidai rule becomes competitive.

The algorithm based on the trapezoidal rule aiso has the advantage over the
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memmax memcom Critical ~Iaximum Error CPU Time CPU Time
Time Laplace Algorithm

Inverse
(seconds) (Pa) (seconds) (seconds)

800 800 2.1789 X 10J 1.92 2.80
600 600 2.2445 X 103 1.43 1.93
400 400 3.3383 X 103 1.43 1.48
300 300 6.8059 X 103 1.54 1.15
270 270 9.3128 x 103 1.54 1.10
264 264 9.6437 x 103 1.43 1.10
263 263 2.9587 1.5977 x 10-1 1.48 1.10

Table 4...1: Accuracy of the Algorithm for a Sinusoidal Strain Input of 800
Data Points According to the Size of the Storage Vector

Number of memmax Ratio of Number of CPU Time CPU Time
Data memmaxto Data Laplace Algorithm

Points Data Points Points Inverse
per

Cycle (seconds) (seconds)
800 264 0.33 169 1.48 1.10
400 140 0.35 85 1.48 0.33
200 100 0.50 42 1.48 0.33
100 75 0.75 21 1.43 0.01

Table 4.5: ~Iinimum Allowable Storage Vectors According to the Number of
Data Points per Cycle for a Sinusoidal Strain Input

nunlerical Laplace inverse of being able to process strain inputs for which no

theoretical Laplace transform exists.

Table 4.5 compares the smallest allowable storage vectors for different num

ber of data points per cycle. As the number of data points per cycle decreases,

the storage vector must increase in size. If the simulation is less precise. com

pression of data decreases the precision further. However, if a large number

of data points is used, then it is possible to use a quite small storage vector.
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Number of memmax Ratio of Number of CPU Time CPU Time
Data memmaxto Data Laplace Algorithm

Points Data Points Points Inverse
per

Cycle (seconds) (seconds)
800 264 0.33 169 1.43 1.10
400 140 0.35 85 1.43 0.27
200 100 0.50 42 1.37 0.11
100 57 0.57 21 1.43 0.01

Table 4.6: ~Iininlum AHowable Storage Vectors According to the Number of
Data Points per Cycle for a Decaying Sinusoïdal Strain Input

4.7.2 Data Compression for a Decaying Sinusoidal Strain
Input

The sanle tests are carried out on the decaying sinusoidal strain input de

scribed in Section 4.5. Table 4.6 gives the results. Very similar results ta the

case of a sinususoidal strain input are obtained. Improvement is seen in the

case where there are 100 data points. For the decaying sinusoidal strain in

put. the smallest storage vector is 57, whereas it is 75 for the sinusoidal strain

input.

These two exanlples show it is usefuI to compress data, rather than use aH

data in the COlllputation of the fractional derivative. Although the precision

is decreased by conlpressing the data, acceptable levels of precision can be

achieved for a fraction of the CPU time.

4.7.3 Optimal Size of the Parameter memcom

Sa far, aIl cases examined had values of memcom equal to memmax. The

case of a sinusoidal strain input for 400 data points is examined with varying

values of memmax and memcom. For a given memmax, in this case, 200, the

smaIlest allowable memcom is sought, again with 1.5 x 104 Pa as the limit

of difference between the numerical Laplace inverse and the algorithnl on any

given data point. The numerical Laplace inverse is done with 1024 data points

out of which the 870 first data points are kept. Table 4.7 shows the results.

94



•

•

•

memmax memcom Critical ~Iaximum Error CPU Time
Time Algorithm

(seconds) (Pa) (seconds)
200 200 6.1174 x 10a 0.77
200 150 6.9450 x 103 0.39
200 140 8.9762 x 103 0.38
200 130 1.0346 x 104 0.38
200 129 2.9625 1.5523 x 104 0.39

Table 4.7: Effect of memcom for a Sinusoidal Strain Input with 400 Data
Points

There is no ob\·;ous gain from using a memcom different from memmax. The

error increases when memcom decreases. As for the CPU time~ there is no

obvious advantage. No trend is seen as the value of memcom is reduced.

The simulation with a memcom of 200 takes longer, but the corresponding

numerical Laplace inverse takes also longer, 1.81 s, rather than the average

1.50 s. It can be assumed that the longer CPU time in that case is due

to the operating system. rather than the solution itself. Bath the numerical

Laplace inverse and the algorithm for the case with memcom equal ta 200 use

approximately 40 s in excess to the other cases, probably ta initialize arrays.

When memcom is smaller than memmax, less data get compressed when

the storage vector is full. Thus, less space is freed in the storage vector. It will

fi.!l up more quickly and another compression happens earlier. This reduces

the precision of the first steps and deteriorates the whole solution.

Table 4.8 shows the minimum memcom that can be used for given values of

memmax to respect the maximum level of error allowed, again for a case with

400 data points. \\tl1en memmax is low compared to the number of data points,

it is not possible to use a memcom much lower than memmax. As memmax

increases, it is possible ta decrease significantly the value of memcom, but

the computing time depends mainly on memmax and there is nothing to be

gained with a value of memcom different from memmax. The best solution

is still the one with the lowest allowable memmax and a memcom equal to

memmax, since for similar CPU time, it is more precise.
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memmax memcom cPu Time
Aigorithm
(seconds)

200 130 . 0.38
190 134 0.38
180 134 0.38
170 134 0.39
160 134 0.33
150 138 0.33

Table 4.8: Values of memmax and memcom for a Sinusoidal Strain Input

4.8 Conclusion

A one-dimensional constitutive equation with a fractional derivative was solved

numerically. The algorithm usee! an approximation for the fractional deriva

tive and solved this approximation with finite differences and the trapezoidal

rule. The algorithm generated accurate results when compared ta a nurnerical

Laplace inverse. using a competitive amount of computer time and it did not

require small tinle steps as it has been observed for methods based on finite

differences or Grün\vald series. ~Ioreover. the algorithm cau handle strain

inputs for which the Laplace inverse does not exist.

For the algorithnl to be competitive in tenns of computer time, a storage

vector must be used. Rather than storing aIl the data points and using them

all in the calculation of the fractional derivative, the data points far from the

actual data point are kept with less precision. \Vhen the storage vector is full,

one data out of two is kepL and this frees space for new data. The minimwn

efficient storage vector size depends on the complexity of the equation, but

for the cases studied, it 'was about 33%. There is no gain in compressing only

part of the storage vector and moving down the pile the remaining data. The

storage vector will fill up more quickly, imposing another compression earlier.

The CPU time is not improved and the precision is lowered.

The nex1; chapter will address the implementation of this algorithm for

three-dimensional cases in a finite element package.
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Chapter 5

Finite Element Formulation of
the Fractional Constitutive
Equation

5.1 Introduction

The algorithm presented in Chapter 4 is implemented in Samcef, a commercial

finite element package. The storage vector assumes the fi.xed format imposed

by the finite element package and the Jacobian of the fractional constitutive

equation must be derived and implemented. To test the efficiency of the sub

routine. a cubic element is submitted to a uni-directional displacement. Two

cases are explored. one \'vith a sinusoidal displacement and one 'vith a decaying

sinusoidal displacement. For both cases~ the impact of the various computing

parameters are explored. The results fron1 the subroutine are compared to

the results obtained \Vith the Laplace inverse developed in the last chapter.

Comparing the results gives a measure of the precision of the results com

puted by the subroutine. The goal of this chapter is to verify the validity of

the implementation of the fractional model in Samcef The efficiency of the

fractional model compared ta other viscoelasticity models will be studied in

the ne),.1: chapter.
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• 5.2 Numerical Implementation

In Chapter 4. an algorithm to solve the follO'wing one-dinlensional equation

was developed:

(5.1)

Three-dimensional constitutive equations are now considered. Therefore. some

adjustments to the algorithm developed in Chapter 4 are necessary. At each

step, the strain tensor at the end of the interval is given to the user, and the

corresponcling stress tensor must be returned to the main program, as weil as

the Jacobian of the stress-strain relationship. As defined in Section 2.4.2, the

fractional Vaigt-Kehin model is:

"Vhereas the algorithm developed in Chapter 4 dealt \Vith one fractional equa

tion, for Equation 5.2. si.x fractional equatians need to be calculated. This

does not introduce additional difficulties. but the storage requirements are

multiplied by SLX. Therefore. the two main differences with the algorithm for

the one-dimensional equation are the storage structure and the need for the

Jacobian of the stress-straÏn equation.

•
Sij - 2Geeij + 2aGeD~eij

S" = 3Ke e"

(5.2)

(5.3)

•

5.2.1 The Storage Structure

To solve the one-dinlensional equation, a single storage vector contaÏning the

time and the corresponding derivative of the strain was developed. Within

a finite element package. the starage structure is more rigidly defined and

varies from package ta package. In the case of Samcef, different types of

vectors can be defined. Vectors are identified as cantaining scalars, vectors,

or tensors, where a vector of scalars is a vector of one-dimensional data, a

vector of vectors is a vector of three-dimensional data, and a vector of tensors

is a vector of data comprising six or nine components. For this algorithm,
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three vectors are defined. The fust one is a vector of three tensors having SLX

components each. The fust tensor is the variable DS, a variable used in the

estimation of the so-called local error. wmch is rather the difference between

the stress computed by the constitutive equation and the stress obtained with

Hooke~s law. The second tensor is the strain tensor at the beginning of the

CUITent step and the third tensor is the strain tensor at the beginning of the

preceding step.

The second storage vector is a vector of (ME111IAX + 1) scalars. The pa

rameter NIE~n\:IAX has the same significance as the parameter memmax de

fined in Chapter 4. It is the maximum number of data stored. The fust scalar

of this storage vector is the number of steps stored so far, and the remaining

scalars are the times at each stored step, up to a maximum of lvIEl\:IlVIAX,

after which a compression of data occurs as described in Chapter 4.

The last storage vector is a vector of ~fEr\'IlvlAX tensors containing the

time derivatives of the strain corresponding to the stored times in the second

storage vector. Figure .5.1 illustrates the data stored ",ithin the subroutine.

The finite element package initializes the storage vectors by filling ail values

",ith zeroes. As the time solution proceeds, the vectors fill themselves. Once

the vectors are full! one data out of two is kept, therefore freeing half the

storage vectors for new data. For example. the data at Step 1 would be

eliminated. but the data at Step 2 would be kept. The data at Step 3 would

be eliminated. but the data at Step 4 would be kept~ and so on. Zero initial

conditions are assumed and the values at t = 0 are not kept. since they are

known and are equal to zero.

5.2.2 The Jacobian of the Fractional Constitutive Equa
tion

Samcef as most finite element packages, requires the user to give the Jaco

bian of the constitutive equation, 8Œij(tn+d/8€kl(tn+d. This Jacobian defines

the change in the stress component caused by a perturbation in the strain
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Figure 5.1: Data Storage for the Samcef Subroutine
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component at the end of that given step.

In Chapter 4. one form of the constitutive equation is derived for the firS!

step, for which the second derivative of the strain is zero, and another eÀ'"Pres

sion for the subsequent steps. Therefore. there is one Jacobian eÀl)ression for

the fust step, and another Jacobian for the subsequent steps.

The expressions for O"ij(tn+d and Ëij(tn+d are needed~ but the algorithm

calculates the dev;atoric and volumetrie stresses. Sorne conversions are neces

sary. The following steps are taken:

3. Calculate the integral part of the fractional derivative for the si..x com

ponents of the strain tensor.

.5. Calculate e"(tn+d.

8. Calculate Sij(tn+d using the fractional constitutive equation.

9. Calculate S"(tn+l) using the elastic constitutive equation.

As an example~ these steps are applied to 80"xx(tdI8éxx (td.
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• Example of Calculations for the Jacobian

In this case. the values at to are all zero: there is no stress and no strain at to.

).Ioreo\·er. to obtain the fust component of the deviatoric strain tensor. only

the three fust components of the strain tensor are needed. It is a simplified

case. but it is used to understand the process. The steps described previously

are applied sequentially.

Step 1 Calculate Èij(tn+d.

The first derivatives of the first three components of the strain tensor are

calculated using Equation 4.24:

Since aIl strains at ta are equal to O. Equations 5.4 to 5.6 reduce to:•

~XI (id - EII (ta)
h

~yy(td - ~yy(ta)

h
E==(tr) - E==(ta)

h

(5.4)

(5.5)

(5.6)

~II(tr)
~:rI(td

-
h

2yy (tr) =
~yy( t l )

h

~:=(tr)
~==(td-

h

(5.i)

(5.S)

(5.9)

Step 2 Calculate Ëij(tn+l).

As e:x.-plained in Section 4.4. the second derivatives at t l are zero. since a

linear approxiulation is made between to and tl. Therefore:

(5.10)

•
Step 3 Calculate the integral part of the fractional derivative fOT the six

components of the strain tensor.

Since only the fust partial derivative of the Jacobian is needed for this

exarnple1 only the fractional derivatives of the fust three components of the

102



•

•

strain tensor are needed to compute the corresponding deviatoric stress. The

expression for the integral part of the fractional derivative is given by Equa

tion 4.18:

f
o

tn €ij(T) d = tf tk+l - tk (tij(tk) Ëij(tk+d ) (5.11)
Jo (tn+l - T)~ T tk=O 2 (tn+l - tk)~ + (tn+1 - tk+r){

In this case. tn+l = il and tn = to. The integral becomes an integral be

tween zero and zero and is equal to zero. 1Ioreover~ this integral does not

depend on ~ij(tn+d and as such will not contribute any term to the Jacobian~

Baij (tn+l) /8é kl (tn+1 ).

Step 4 Calculate D~êi) (tn+r).

Equation -1.20 gives the expression for the fractional derivative:

1
[

..:. (t )h 1- e ;: (t )h2- e
c ( ) ::'ij n+l _ C.ij n+lD... ~ij tn + 1 =

f(1 - ç) 1 - ç 2 - ç

t~ tk+l - tk ( Ëij(tk) + Ëij(tk+d )]+ L.- (5.12)
tk=O 2 (tn +1 - tk)~ (tn +l - tk+d oE

Using the values found in Steps 1 to 3. the fractional derivatives for the fust

three conlponents of the strain tensors are:

D~=x:r(tr) = l (Exx(td) (5.13)
[(1 - ç) (1 - ç)he

D~~yy(tr) = l (Eyy(td) (5.14)
r(1 - ç) (1 - ç)hf.

Df.~==(td = l (E::(t 1)) (5.15)
f(1 - ç) (1 - ç)he

Step 5 Calculate e"(tn+d.

The yolumetric strain is taken as the sum of the fust three components of

the strain tensor divided by three:

•
Step 6 Calculate eij (tn+d·

Ta obtain e:r:r(td~ the expression given by Equation 2.2 is used:

1
e:r:r(tr) = ê:r:r(td - 3[éx:r(td + êyy(tr) + êz.:(tr)J
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• Step 7 Calculate D{ei(tn+d .

The fractional derivative of the deviatoric strain is calcuIated similarly to

Equation 5.17 since the fractional derivative is a linear operator:

(5.18)

Using the values calculated in Step 4 in Equation 5.18 gives:

Ihxx(ttl = (1 _ ';)h;q1 _ ç) (ôxAttl - ~ [ôxx(til + ôyy(til + ê:z(ttll)
(5.19)

Step 8 Calculate Sij(tn+dusing the fractional constitutive equation.

Equation 5.2 gives the fractional constitutive equation for the deviatoric

part:

Using the values found in Steps 6 and 7. Sxx(td becomes:•
(5.20)

Step 9 Calculate S" (tn+d using the elastic constitutive equation.

The elastic volumetrie constitutive equation is given by Equation 5.3:

(5.22)

Using the values calculated in Step 5. Equation 5.22 becomes:

(5.23)

•
Step 10 Calculate O"ij(tn+d.

The stress is obtained by manipulating Equation 2.1:

(5.24)
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• The results from Steps 8 and 9 are input in this equation:

ITrAtd - 2Gc(=:rr(td - ~ [E:rr(td + =:•• (td + ê~~(tdJ)

+ (1 _ ç~:{~(1 _ ç) (êrr(td - ~ [êrr(td + êyy(td +ë~~(tdl)
+ Ke [Exr(tr) + êyy(tr) + E=;:(tdJ (5.25)

Step Il Take the partial derivatives aerij(tn+dlaEkl(tn+d.

The partial derivative of Equation 5.25 is taken:

(5.26)

The Jacobian for the First Step

The preceding example is applied ta aIl the conlponents. Sorne symmetry

applies given the isotropie nature of the model. The Jacobian for the first

step~ for which the second derivative is zera~ is:

• auIX auyy au;:;:
=--= -- -

8EIX 8ëyy BE;:;:
aerrx BaIX Buyy--- --= -
8êyt./ 8E:::: 8Exx

4Ge 4aGe K
3 + 3(1 - ç)h';f(1 _ ç) + e

8uyy Bu:::: au::::
8é:::: = Béxx = aEyy =

2Ge 2aGe K
--3- - 3(1 - ç)her(1 _ ç) + e

G aGe
= e + (1 - ç)her(1 _ ç)

with aIl other partial derivatives equal ta O.

The Jacobian for the Subsequent Steps

For aIl other steps, the Jacobian is:

(5.27)

(5.28)

(5.29)

•
auIX 8Œyy au:;::

= Bêyy = Bé:::: =

4G 4aG (1 h(l-fJ)T + 3r(1_
e

ç) (1- ç)he - 2(2 - ç)(h + hl)

+Ke

aŒxx Buyy Buyy Bu:;:; au;:::
- BE:::: = BExx = 8E:::: = 8Exx = aEyy -
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• _ 2Ge _ 2aGe ( 1 _ C) h(l-{) )

3 3r(1 - cE) (1 - ~)h~ - (2 - cE)(h + hd
+I\e

8o-x= Bay:.
- --=--=

(5.31)

(5.32)

(5.33)

•

•

and again~ with aIl other partial derivatives equal to o. The variable hl is the

step taken before the current step.

5.2.3 The Local Error

Finite element packages give the user the opportunity to use automatic time

stepping. To use this option, an estimation of the local error produced by the

user constitutive equation subroutine must be given back to the software~ as

weIl as an upper bound for the acceptable local error. Ideally, the local error

of an equation is estinlated by comparing the numerical solution with the

analytical solution~ but numerical solutions are precisely used because often

the analytical solution is not available. Alternately, a higher order method

is used to compare both numerical solutions and obtain an estinlation of the

local error. However, a higher order nlethod is not available for this rnethod.

Another approach sonletimes used for viscoelastic constitutive equations is to

conlpare the stress obtained with the constitutive equation with the stress

obtained with Hooke's law. Of course, Hooke's law is not the desired solution,

but between two steps. the difference between the stress produced by the

constitutive equation and Hooke's law should not vary excessively. If it does, it

llleans the numerical solution produced by the constitutive equation is starting

to diverge and a smaller time step should be taken. Samcef defines the local

error for a user constitutive equation in the following manner:

1 1
maxelements(local stress error)

oca error = --.,....----=.;..;..=;;..;....=.:;=------------
max (SREF, maxelements(average local stress))

The local stress error is the variation in the difference between the computed

stress and the one obtained with Hooke's law and SREF is a reference stress
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defined by the user. The user also specifies a value called PRey which is the

upper limit tolerated for the local error.

To compute the local stress error, for each component of the stress tensor,

the stress obtained by Hooke's law is subtracted from the cOlnputed stress.

This variable is called OS(i), where the index represents the component of the

new vector OS. For an isotropie tensor, there are sbc components in the vector

OS. The value of OS(i) is then compared ta OSN(i), where DSN(i) is the value

of OS(i) wrnch \\ras computed at the last step. To get only one value for the

local stress error, the magnitude of the vector resulting from the subtraction

of DSN from OS is taken. The following steps sunnnarize the evaluation of

the local error for one element:

1. Add the si..x conlponents of the stress tensor and divide the SUffi by six

ta obtain the average local stress.

2. Form the vector OS by subtracting the stress obtained from Hooke's law

from the stress computed with the constitutive equation.

3. Form the local error vector by doing (OS - DSN) where OSN is the local

error vector calculated at the last step.

4. Take the nlagnitude of the vector (OS - OSN) to obtain the local stress

error.

5. Divide the local stress error by either the reference stress, SREF, or by

the average local stress depending which one is the greatest. The result

is the so-called local error.

This local error is then compared to PReY, a value specified by the user. If

the local error divided by PRey is greater than 0.5 x 10- 1, then the size of

the nex't step is decreased. If the ratio is equal ta or greater than one, the step

is rejected and a smaller time step is chosen.
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• 5.3 Tests on a Single Cubic Element

The results from the subroutine are compared to the results from the inverse

Laplace transform for the case of a cubic element submitted to a prescribed

displacement on one of its face. The element is a first degree elenlent with eight

integration points, two along each direction. In the finite element package, the

three-dimensional formulation is used:

with lo the initial length and l the length after deformation. From this. the

prescribed position becomes:

As in Chapter 4. the strain is input and the stress is calculated. From the finite

element package point of view. it is a prescribed position which is specified.

This prescribed position is applied to the whole face of the element. The strain

is defined as [53]:

•
l- lo

=xx=T

(5.34)

(5.35)

(5.36)

The two test cases are a sinusoïdal strain input and a decaying sinusoidal

strain input.

Case 1 Sinusoidal Strain

•

_ () _ _3 sin(21T"ft)
CorI t - 1 X 10 ? f

_'Tf

\vhere f is the frequency of the sine wave.

Case 2 Decaying Sinusoidal Strain

( )
_3expktsin(2'Tfft)

ê xx t = 1 x 10 2'Tff
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where k is negative to ensure the decay of the sine function.

The cube simulated is made of P~I~IA. and the material parameters are

defined in Chapter 3. The parameter f of Equations 5.37 and 5.38 is taken

equal to 1.59 Hz and the parameter k equal to -0.5.

5.3.1 One-Dimensional Frequency Domain Expression
for Test Cases

The test case defined in the preceding section is compared to a solution ob

tained with the numerical Laplace inverse used in the last chapter. The test

case of the preceding section is a three-dimensional case, but the numerical

Laplace inverse aIgorithm is written for a one-dimensional equation. An ex

pression for axx in the case of a uni-directional prescribed displacement is

sought ta compare the finite element results with the numerical Laplace in

verse results.

In the frequency domain, the one-dimensional equation is \vritten:

(5.39)

with s being the Laplace variable and E- the complex Young's modulus.

In the case of the fractional Voigt-Kelvin model, the following complex

shear nlodulus is defined in Section 2.4.2:

(5.40)

A constant bulk modulus is assunled resulting in a constant complex bulk

modulus:

•

The complex Young's modulus is defined as [41]:

9K*C*
E*=----

3K* +C*

Using Equations 5.40 and 5.41 in Equation 5.42 gives:

E* = 9Ke(Ge + aGes~)
3Ke + (Ge + aGes~)
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(5.44)
• This complex Young~s modulus is used in Equation 5.39, the one-dimensional

expression:
9I(e(Ge + aGes~)

CTxx(S) = 3Ke + (Ge + aGes{) êxx(S)

Equation 5.44 is used to evaluate the accuracy of the results generated by

the subroutine. As in Chapter 4, it is solved using the numerical Laplace

transform described in Wilcox [50]. The two test cases are the frequency

domain expressions of Equations 5.37 and 5.38.

Case 1 Sinusoidal Strain

•

_ _ -3 1
cxx(s) - 1 x 10 2 ( fr'

S + 27ï -

Case 2 Decaying Sinusoidal Strain

-3 1
êxx(S) = 1 x la (8 _ k)2 + (27ï1)2

(5.45)

(5.46)

•

5.3.2 Parameters Affecting the Performance of the Sub
routine

The performance of the subroutine is evaluated in terms of accuracy when

conlpared to the results fronl the nurnerical Laplace inverse. In any finite ele

ment package, the user can modify sorne parameters affecting the convergence

of the solution, especially if automatic time stepping is used. The initial time

step. called DTlü in SamceJ, can sometimes affect the solution. A parame

ter controls the level of convergence of the dynamic solution and modifies the

time step accordingly. This paranleter is called PRCO. The two parameters

evaluating the convergence of the constitutive equation are PRCV and SREF

and have been presented in Section 5.2.3. The last parameter affecting di

rectly the solution in this case is ~fENI~fAX. This parameter plays the same

role as the memmax parameter defined in Chapter 4. It defines the length of

the storage vector. Dynamic memory allocation is not possible yet within a
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PRCO 1.0 X 10-2

DTIO (sec) 1.0 x 10-3

PReV 5.0 x 10-2

SREF (Pa) 4.0 x 105

~IE:\I~IAX 1000

Table 5.1: Reference Values for the Subroutine Parameters

user subroutine. and therefore, the size of the vector affects the computation

efficiency of the subroutine if space is reserved uselessly. The influence of these

five paranleters. PRCO. DTIO~ PRCV, SREF~ and ~IEj\H\'IAX. is studied in

the following sections. Table 5.1 gives the reference values chosen for the pa

ranleters. These values have been chosen ta give convergent solutions for the

two test equations defined in Section 5.3. They are not necessarily optimal.

To evaluate the solution. it is compared ta the numerical Laplace inverse ob

tained with 1024 data points of which 870 are kept. An interpolation is done

on the data obtained with the numerical Laplace inverse ta get infornlation at

the same points in time as the data obtained \vith the finite element analysis.

The interpolation is done with ]v!atlab using the interpl function which does

a linear interpolation. A simple subtraction bet\veen the data obtained from

the nunlerical Laplace inverse and the data obtained from the finite element

package gives a measure of the error. The absoLute value of this difference

is taken. The nla.~mum error obtained in the studied time interval is given

and refiects the accuracy of the solution. The number of steps taken by the

finite elenlent package ta caver the time interval is also given. as weIl as the

CPU time. as a measure of the efficiency of the subroutine. In terms of CPU

time~ the nunlerical Laplace inverse takes between 0.28 sec and 0.35 sec for

both cases outlined in Section 5.3. This is much less than the CPU time re

quired for the finite element solutions~ but the finite element analysis solves

the constitutive equation for the six components of the constitutive equation,

whereas the numerical Laplace inverse is done for a one-dimensional equation.

The numerical Laplace inverse and the finite element solutions are both run

III



•

•

•

PRCO ~Iaxinlum Error Number of Steps CPU Time
(Pa) (sec)

Case! Sinusoidal Strain
1.0 x 10u 2.3247 X 10-1 148 10.25

1.0 x 10- 1 2.3247 X 104 148 9.80
1.0 x 10-2 2.3247 X 104 148 9.90
1.0 x 10-3 2.0351 X 10-J 156 10.91
1.0 x 10-4 2.1402 X 104 178 12.78
1.0 x 10-0 Stopped at 0.1523599 sec
Case 2 Decaying Sinusoidal Strain
1.0 x 10-1 1.7284 X 104 95 5.59
1.0 x 10-2 1.7284 X 10-1 95 5.43
1.0 x 10-3 1.2081 X 104 III 7.05
1.0 x 10-4 1.1334 X 104 136 8.71
1.0 x 10-0 Stopped at 0.1572033 sec

Table 5.2: Effeet of PReD

on a Enterprise 450 with two processors UltraSPARC-II. In the case of the

finite element package, automatic time stepping is used, but to limit the CPU

time~ the tinle step is not allowed to go below 1.0 x 10-4 sec. If conditions

are sueh that a step below this value is required to obtain enol1gh accuracy

as defined by the PRCD and PRCV parameters! the computation is stopped.

The computation would proeeed without hindranee using smaller time steps,

but the computation tinle would be prohibitive.

5.3.3 Effect of PRCO

Table 5.2 shows the effeet of PRCO. the parameter controlling the accuracy

of the dynamic solution. The maximum error is not following the same trend

as PReO. As a more stringent condition is put on PRCD~ by deereasing its

va1ue~ the maximum error is not neeessarily decreasing. The automatie time

stepping procedure \\-i11 reduee the step when the error grows~ correcting any

tendeney ta diverge. Figure 5.2 shows the worst case obtained for Case 1 with

an error of 2.3247 x 104 Pa and a value for PRCO of 1.0 x 10-2• The error is

smaller near the peaks of the stress funetion and greater where the function

nears zero. There is a sma11 phase shift between the solution generated by the
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finite element analysis and the solution generated by the numerical Laplace

lnVerse.

The main tendency ta notice for bath Case 1 and Case 2 is the increasing

number of steps as a more stringent condition is put on PRCD, and the cor

responding growing CPU time. As the value given to PRCO decreases~ more

steps are needed to meet the condition, and more steps mean more data stored

needing ta be retrieved for calculations, thus leading ta a higher CPU time.

There are slight variations in the CPU time for cases using the same number

of time steps. but this is due ta different number of iterations done by the

software ta converge ta these steps.

For the test cases sho\vn. if PReo is increased above 1.0 x 10-2 , results

remain almost the same. At this level. the condition on PReD is not afIecting

the time step an:ymore. and any restriction on the time step is coming frOID

PRey. The condition on PRC\T is such that the solution is still good.

For bath Case 1 and Case 2, when PReD reaches 1.0 x 10-5 ~ the step

becomes very small to obtain that level of accuracy and the CPU time increases

drastically. A requirement was put stopping the computation when the step

would reach 1.0 x 10-4 sec. \Vith Case L it happened after 0.1523599 sec of

the solution and it took 43.12 sec of CPU time. With Case 2, it happened after

0.1572033 sec of the solution and it took 49.65 sec of CPU time. Figure 5.3

shows that solution for Case 1.

There is quite a large range of adnlissible values of PRCO for the two cases

presented. If the value is too stringent. the requirement will force the time

step to become tao smalL resulting in an excessive computing time. If the

value is not stringent enough, sorne inaccuracies might appear, but overall,

this parameter does not cause unwanted effect on the constitutive equation

subroutine.
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DTIO j\Ia.ximum Error l\umber of Steps CPU Time
(sec) (Pa) (sec)

Casel Sinusoidal Strain
1.0 x 100 The step is not small enough after being decreased three times

5.0 x 10-1 The step is not small enough after being decreased three times
1.0 x 10-1 2.1603 X 104 116 7.78
1.0 x 10-2 1.9358 X 104 127 8.80

3 2.3247 x 104 148 9.901.0 x lO-
LO X 10-4 2.0935 X 104 160 12.44
1.0 x 10-5 2.3180 X 104 168 13.62
Case 2 Decaying Sinusoidal Strnin
1.0 x 100 2.6043 X 104 3 0.96

8.0 x 10-1 2.0814 X 104 4 0.95
5.0 x 10- 1 2.1530 X 104 31 1.95
1.0 x 10- 1 1.2993 X 104 67 3.90
1.0 x 10-2 2.0215 X 104 69 3.94
1.0 x 10-3 1.7284 X 104 95 5.43
1.0 x 10-4 1.3094 X 104 102 5.87
1.0 x 10-5 1.2424 X 104 113 6.67

Table 5.3: Effect of DTIO

5.3.4 Effect of DTIO

DTIO specifies the initial time step. \Vith the automatic tinle step procedure~

the finite element package should reduce the time step if it is tao large to satisfy

PReO and PRey and it should increase the subsequent steps if the conditions

set by PRCO and PRCY are easily met. Table 5.3 gives the performance of

the subroutine as the value of DTIO changes. The parameters for the finite

element computation include a parameter limiting the number of attempts at

reducing the time step ta three and this value is kept. The finite element

package fails to start the computation due to this parameter in a few cases for

which the initial step is too large. For the other cases, the time step is reduced

ta an acceptable level and the computation proceeds with a satisfying level of

accuracy. \"ben the initial time step is tao small, the finite element package

adds a few time steps ta the solution until the time step reaches an acceptable

size. and these added time steps translate into an increased CPU time.

An interesting phenomenon happens with Case 2 when the initial time
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•

step is very large. In Figure 5.4. the steps are marked. The initial step is

very large~ but the algorithm is able to calculate a solution despite this. Of

course. the fust few data points do not describe the function accurately, but

eventually. the finite element package reduces the time step drastical1y and

starts to follow the function correctly. The interesting phenomenon is that

few data points are stored for the computation of the fractional derivative,

and yet. the subroutine still computes correctly. In Chapter 4. there were no

automatic time stepping, and the ability to reduce the amount of stored data

was limited~ but in this case, because the finite element package adapts the

time step when needed, less precision is necessary with the stored data.

The maximum error shawn in Table 5.3 is not directly affected by the

initial time step. It depends on the location of the individuai data point and

the step size taken in that area. For Case 2, with an initial time step of

1.0 x 10--1 sec, the solution is less precise at the end of the computing time,
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because too large steps are taken as shO\vn in Figure 5.5. This does not happen

with 1.0 x 10-3 sec or 1.0 x 10-5 sec. The automatic time stepping procedure

can produce une:\.1lected effects which are controlled by adjusting PRCO.

5.3.5 Effect of MEMMAX

To verify the amount of stored data which is necessary for good precision.

:\fE)'l\IAX is varied. Table 5.4 shows the effect of the variation of ~IE)'f

!vlAX. The minimum step size allowable is fixed at 1.0 x 10-4 sec. and when

the algorithm stops. it is because the step needed to keep a sufficient level of

accuracy according to PRCO and PRey would be smaller or equal to this

value. For both cases~ the algorithm cannot work efficiently with a storage

vector equal ta less than one third of the need.ed data to compute the whole

solution. For Case l, the computation is done in approximately 148 steps

and it stops performing efficiently if the storage vector contains only 50 data
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:\IE:\I~IAX i\Iaximum Error ~umber of Steps CPU Time
(Pa) (sec)

Casel Sinusoidal Strain
700 2.3247 x 104 1-18 9.90
100 2.3247 x 104 147 7.22
60 2.4829 x 104 149 6.07
50 Stopped at 2.301079 sec

Case 2 Decaying Sinusoidal Strain
700 1.7284 x 104 95 5.43
60 2.1925 x 104 95 3.86
50 2.3120 x 104 95 3.55
40 2.5848 x 104 92 3.27
30 Stopped at 2.513808 sec

Table 5.4: Effect of ~1E~I~IAX

points~ which is approximately 34% of the total number of data points. For

Case 2. the computation requires approximately 95 steps, but the finite ele

lllent package is not efficient if the size of the storage vector is 30, which is

about 33% of the total number of data points. In both cases when the al

gorithm fails to compute. it is right after a compression of data occurs. For

Case 1. the algorithm stops after computing 125 steps, which is right after

the fourth compression. The fust compression occurs when 50 steps are com

puted. One step out of two is kept and 25 new steps can be stored. The

following conlpressions occur at 7.5. 100. and 125 steps. At the 126th step~

the level of error brought by the fractional derivative requires a smaller step

than 1.0 x 10-4 sec. For Case 2, the algorithm stops computing after 90 steps,

conlpressions occuring at 30. 45. 60~ 75, and 90 steps. However, for Case 2,

even though the algorithm computes to the end of the simulation time with

a storage vector of 40, the error is quite large. The simulation results show

sonle divergence from the results obtained with the numerical Laplace inverse.

Figure 5.6 shows the results for Case 2 \\ith a storage vector of 40 data points.

As shoVv'l1 in Table 5.4, the computing time is shortened by using smaller

storage vectors. ~lanipulating a large storage vector slows clown the compu-

119



•

x 105

5 1 1 1

l '.
\ ......

/ .
\ \ /'. -- ..

êû '\. 1" -e:- l 1 "- '" ....
en 01- 1 \ , ,- ,,

1en 1 ~ ,- .....
~ \ \ 1 1

.,
ëii i ,

\ '\ 1
1

\

1
Laplace InverseÎ
Finite Element

-5 1 1

0 0.5 1.5 2 2.5 3

• x 10
4

3

2.5

Qi'
2

a-i1.S
W

0.5

0
0 0.5 1.5 2 2.5 3

TIme (seconds)

Figure 5.6: Case 2 with ~IE~I~IAX Equal to 40

•
120



•

•

•

SREF ~Ia"cimunl Errer Number of Steps CPU Time
(Pa) (Pa) (sec)

Casel Sinusoidal Strain
4.0 x 10M 5.3380 X 104 44 3.11
4.0 x lOi 5.3380 X 10-1 44 3.02
4.0 x 106 5.4132 X 10-1 46 3.20
4.0 x 105 2.3247 X 104 148 9.90
4.0 x 104 Stopped at 0.09272425 sec
Case 2 Decaying Sinusoidal Strain
4.0 x 108 2.7556 X 104 43 2.87
4.0 x 107 2.7556 X 104 43 2.92
4.0 x 106 2.6519 X 104 45 3.05
4.0 x 105 1.7284 X 104 95 5.43
4.0 x 104 Stopped at 0.1002489 sec

Table 5.5: Effect of SREF

tation. Even if the total number of time steps is the sanle~ a smaller storage

vector significantly reduces the computing time. However, the error alse grows

if the storage vector is snlaller than the total number of time steps. Ideally, the

storage vector should not be large needlessly, but care is needed for a storage

vector smaller than the total number of time steps.

5.3.6 Effect of SREF

The error 00 the constitutive equation is adimensionalized by dividiog it either

br the average stress. the sum of the SLX values of stress divided by sb.:. or by

a reference stress~ SREF ~ as stated in Equation 5.33:

1 1
maxelements(local stress errer)

oca error = (5.47)
max (SREF~ maxelements(average local stress))

Table 5.5 shows the effect of SREF. For both Case 1 and Case 2, the maximum

amplitude of the stress is 4.0 x 105 Pa. This is the value chosen for SREF. If

SREF is largeL the computed value of the error becomes quite small for the

chosen PRCV and the criteria is ineffective. Figure 5.7 shows Case 1 with a

value of SREF of 4.0 x 108 Pa. The finite element solution is not accurate.

If SREF is too small, the error is larger, and the step is constantly reduced

to try ta meet the criteria set by PRey. This happens with SREF equal ta
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PRCV ~Iaximum Error NUlllber of Steps CPU Time
(Pa) (sec)

Case! Sinusoidal Strain
5.0 x 10-1 5.4132 X 104 46 3.08
1.0 x 10-1 2.8776 X 104 82 6.81
5.0 x 10-2 2.3247 X 104 148 9.90
1.0 x 10-2 Stopped at 0.1464766 sec
Case 2 Decaying Sinusoidal Strain
5.0 x 10- 1 2.6519 X 104 45 2.50
1.0 x 10-1 2.3143 X 104 61 4.11
5.0 x 10-2 1.7284 X 104 95 5.43
1.0 x 10-2 Stopped at 0.1423889 sec

Table 5.6: Effect of PRCV

4.0 X 104 Pa. Both sinlulations done with this value of SREF stop when the

step becomes smaller or equal to 1.0 x 10-4 sec. For a given PRCO~ there

are not many admissible values of SREF which render the criteria effective

without being too stringent .

5.3. 7 Effect of PRey

The parameter PRey sets the admissible error on the computation of the

constitutive equation. Table 5.6 shows the results. The effect of PRey is

similar to the effect of SREF. \Vhen the value is tao high, the criteria is

ineffective. The number of steps needed to complete the computation gets

lower as the step is never reduced due to the error control on the computation

of the constitutive equation. If PRey is too sInall, the criteria is so stringent

that the step is kept very small and the computation is not efficient anymore.

For a given SREF. there are only few values of PRCV which give an efficient

control of the error due to the constitutive equation computation. Clearly,

SREF and PRCV must be chosen together.

5.3.8 Combined Effect of PRCV and SREF

The last two sections showed that for a given PRCV, there are only a few

values of SREF producing good results, and vice versa. Starting with a value
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PRCV SREF ~Iaximum Error Nurnber of Steps CPU Time
(Pa) (Pa) (sec)

Case 1 Sinusoidal Strnin
5.0 x 10-3 4.0 X lOb 2.3247 X 104 148 10.18
5.0 x 10-2 4.0 x 105 2.3247 X 104 148 9.90
5.0 x 10-1 4.0 X 104 2.3733 X 104 147 10.34
5.0 x 100 4.0 X 103 3.6936 X 104 53 3.07

Case 2 Decaying Sinusoidal Strain
5.0 x 10-3 4.0 X 106 1.7284 X 104 95 5.2ï
5.0 x 10-2 4.0 X 105 1.7284 X 104 95 5.43
5.0 x 10-1 4.0 X 104 1.4894 X 104 91 5.29
5.0 x 100 4.0 X 103 1.8125 X 104 48 2.77

Table 5.7: Combined Effect of PRCV and SREF

of PRey equal ta 5.0 x 10-2 and a value of SREF equal ta 4.0 x 105 Pa,

these values are decreased or increased by an arder magnitude simultaneously

ta assess the limits of the acceptable choices for PRCV and SREF. Table 5.7

shows the results. Despite the fact that the ratio of PRCV ta SREF remains

the same. as SREF decreases, the error criteria has less and less impact. The

definition of the error is stated again:

maxelements( local stress error)
local error = --...,....-------:=.;.;;..;;;.==---------~

max (SREF, maxelements(average local stress))

The numerator is divided either by SREF or by the average local stress. If

SREF is tao low. very often the numerator ",ill be divided by the average

local stress which is higher. Since PRey has been increased ta compensate

the decreasing value of SREF, the local error criteria becomes ineffective. This

happens in bath cases for a value of SREF equal ta 4.0 x 103 Pa. For this value

of SREF. the maximum error increases significantly. At this point, only PReO

affects the step size and there is no control on the precision of the computation

of the constitutive equation. If SREF is higher than the maximum. stress, than

the numerator is always divided by SREF, and decreasing accordingly PRCV

gives the same results as lower values of SREF. This is seen for both cases

\Vith values of SREF equal to 4.0 x 106 Pa. The results obtained are the same

as with a value of SREF of 4.0 x 105 Pa.
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The t\\·o preceding sections showed that when one of the two parameters,

PRCV or SREF, is fixed, there are few values for the other parameters which

\\ill enable the error criteria to be effective. However, even when the right ratio

hetween PRC'V and SREF is kept, if SREF is below the average local stress,

the criteria is not as stringent as eÀ"Pected. It is better ta choose SREF as the

highest possible local stress, and then find an appropriate value of PRCV ta

ensure sorne control on the precision of the computation of the constitutive

equation.

5.4 Conclusion

The implementation of the fractional constitutive equation \\ithin a commer

cial finite element package was described. The expression for the Jacobian of

the constitutive equation was given. Two test cases were defined. The first

one is a cubic element of P~fNIA subnutted to a sinusoidal strain. and the

second test case is the same cubic element of P~J~IA submitted to a decaying

sinusoidal strain.

The influence of various computing parameters was studied, and the al

gorithm gave reliable, precise results in mûst cases. The dynamic precision,

PRCO and the initial step, DTIO, affected the simulations in the same man

ner as they affect any time domain simulations. If PRCD is too small, the

time step becomes prohibitively smal!. If DTlü is too large, the automatic

time stepping procedure cannot reduce the step sufficiently to ensure a good

precision. The size of the storage vector affected the simulation time and the

accuracy. If ~IEj\I~IAX, the size of the storage vector is larger than the total

number of time steps in the simulation, than the CPU time increases with

no gain in precision. If ~IENI~IAX is much smaller than the total numher of

time steps, the precision decreases. When ~IE~IMAXwas chosen to he equal

to approximately one third of the total number of data points, the algorithm

had to compress the data too often and the step became very small ta keep a

reasonable level of accuracy. A certain level of precision in the history of the
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time derivative of the strain is necessary for the fractional Voigt-Kelvin model

ta be effective. The most difficult parameters ta select were the ones pertain

ing ta the estimation of the errar due ta the computation of the constitutive

equation. The two parameters, SREF and PReY, are linked and cannot be

chosen independently. Sorne a priori knowledge of the maximum stress seen

in the given problem proved usefuI.

The goal of this chapter was to establish the accuracy of the finite ele

ment implementation of the fractional Vaigt-Kelvin model. The results were

compared ta results from a numerical Laplace inverse. The algorithm for the

fractional Voigt-Kelvin model did not require very small time steps. The num

ber of tinle steps used was just enough ta ensure a smooth representation of

a sinusoïdal signal. In the next chapter, sorne experimental test cases will be

studied and the performance of the fractional Voigt-Kelvin model will also be

compared ta the performance of other classical constitutive equations.
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Chapter 6

Examples of Experimental
Slewing Beams

6.1 Introduction

In the preceding chapters~ parameters have been found for various viscoelastic

nlodels and two materials~ P~I~IA and 3~! ISO 112. In this chapter, slewing

beanls made of P~!~IA or steel covered by constrained viscoelastic layers of 3~I

ISD 112 are studied. The experinlental resllits are compared to the simulation

results produced by the viscoelastic lllodeis to find which ones are efficient and

which ûnes are aCCllrate.

6.2 Steel Bearn Covered by a Constrained Vis
coelastic Layer

The first exanlple is a steel beam completely covered by a constrained vis

coelastic layer. The materials are those usually considered for use in space.

The beam is simply slewing in the horizontal plane and a correlation between

the recorded experinlental data and the simulation results is attempted. The

eÀ-periments were done in collaboration with Slanik (48] and Tremblay (54] and

are both part of their respective nlaster thesis~ Slanik concentrating on the

time domain finite element simulation with Prony series (Slanik et al [9, Il]).

and Tremblay on the use of equivalent homogeneous parameters for the three

layer beam (Picdboeuf et al [55]).
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Figure 6.1: Bearn with a Constrained Viscoelastic Layer

Young's Nlodulus Poisson's Ratio Oensity
(CPa) (kg/m3

)

Steel 210 0.3 7962.5
Aluminium 70 0.3 2710

Table 6.1: ~lechanical Properties of Steel and Aluminium

6.2.1 Experimental Set-Up

The set-up is fully described in Slanik [48]. A slender steel bearn is covered by

a \iscoelastic layer of 3:\1 ISO 112 constrained by a thin layer of aluminium.

The beam has a length of 600 mm~ but the sarnples of 3~I ISO 112 provided

by 3:\1 are shorter. Three strips of 3~1 ISD 112 of approximately 200 mm are

used with spaces as small as is physically possible between them. Figure 6.1

illustrates the configuration of the beam. The steel beam has a width of

19.05 mm and an average thickness of 1.603 mm. This thickness shows a vari

ation of approxinlately ± 2.5% along the length. This variation in thickness

is not nlodelled and could affect the simulation results. The viscoelastic layer

has a nominal thickness of 0.127 mm and the aluminium constraining layer, a

nonlinal thickness of 0.254 mm. The mechanical properties of the viscoelastic

layer 3~vl ISO 112 were investigated in Chapter 3, and the properties of the

steel and the alunlinium used are given in Table 6.1. Young's modulus and

the density of steel are measured, whereas the aluminium is simply described

as a standard soft aluminium by 3M, and usual values are taken. The density

of the \'iscoelastic layer is given by 31'1 as 970 kg/m3
•

The beam is slewed in the x - y plane, which is horizontal, as sho\\'!l in
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Figure 6.2: Slewing Input

Figure 6.2. The beam is first lying along the x axis with negligible defiection.

It is then slewed 90° counterclockwise~ then 1800 clockwise, and finally~ 90°

counterc1ockwise. The resulting position of the base with respect to time is

sho\vn in Figure 6.3. Since the beanl is rotating in the x - y plane and bending

is about the strong axis, gravity effects are neglected.

A strain gauge is used on the steel beam near the base to record the

deformation. The gauge has a resistance of 350 n and a grid area of 8.0Smm2•

The excitation voltage is 9.0 V and an amplification factor of 1000 is used.

The strain gauge is lllounted in a quarter-bridge configuration with a gauge

factor of 2.085.

6.2.2 Finite Element Model

The beam is modelled with plane strain elements lying in the x - y plane as

illustrated in Figure 6.1. Along the length, one layer of 99 elements is used to

model the steel beam assuming an elastic behaviour. Another 99 plane strain

elements model the viscoelastic layer. A last layer of 99 elements models the

aluminium layer, also assuming an elastic behaviour. The beam length is

600 mm. therefore each element has a length of 6.061 mm. The thickness

of the viscoelastic layer, wruch is the thinnest element, is 0.127 mm. The

aspect ratio of the viscoelastic element is 48 and the results frOID the elements
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Figure 6.4: Portion of the Finite Element :\,1odel of the Bearn \-vith a Con
strained V"iscoelastic Layer

are considered accurate by Samcef up to an aspect ratio of 50. Figure 6.4

shows the finite element mode!. The strain of the steel beam near the base is

measured using the element DIST~ which is a distance îndicator. It gives the

length of the line marked by an ellipse on Figure 6.4. The initiallength of the

element is subtracted from that value. The difference is divided by the initial

length ta obtain a measure of the strain.

The constrained \iscoelastic layer is not continuous: three sections of 200mm

are placed end to end ta cover the whole beam. These discontinuities in the

layer are simply modelled by superposing supplementary nodes where one strip

ends to create the beginning of the new strip, for a total of five nodes needed

to model one sUt. No distance between the strips is modelled. Figure 6.5 il

lustrates the model used for the slits. A certain number of parameters proper

ta the finite element package were described in Chapter 5. The values chosen

for aIl simulations are listed in Table 6.2.
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PRey 0.1
PReo 0.01
SREF 5 x 106 Pa
DTlü 0.001 s

Table 6.2: Finite Element Simulation Parameters
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• 6.2.3 Simulated Bearn Response

The parameters found in Chapter 3 for the viscoelastic behaviour of 3~\l ISD

112 are used to simulate the beam response. Each model is compared to the

e:x.rperimental response. The simulated and experimental responses is evaluated

for both the natural frequency exhibited and the logarithmic decrement. The

logarithmic decrement is a measure of damping and it compares the respective

amplitudes oftwo maxima. If Al cycles separate the two maxima Ai and Ai+M ,

then the logarithmic decrement is:

(6.1)

•

•

In Figure 6.3. the angular position of the base changes rapiclly three times.

After each slew. the frequency and the logarithmic decrement is measured

and compared to the experimental values. This is done rather than taking the

average of the three natural frequencies and the three logarithmic decrements,

since the amplitude 'values after the second siew are very small and more

difficult to measure. A model can do well in predicting what is happening

after the first and third slew, but nat sa well on what is happening after the

second siew. Taking the average prevents the reader from fairly assessing the

effecti\yeness of each mode!.

The Voigt-Kelvin Model

Figure 6.6 sho\\:s the e:x.rperimental response compared ta the simulated re

sponse with a Voigt-Kelvin model using the parameters found in Chapter 3.

The fust part of the figure is the response for the whole time intervaI. whereas

the three other parts zoom on the response for intervals of six seconds. Table 6.3

compares the natural frequencies and logarithmic decrements after each slew

ing movements. The beam response obtained with a Voigt-Kelvin model shows

on average a difference of 4.3% for the natural frequency, and a difference of

88% for the logarithmic decrement. Figure 3.15 showed the magnitude and

the phase of the shear modulus of 3I\f ISD 112 to be underestimated by the
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Figure 6.6: Bearn Response Using a Voigt-Kelvin ~lodel

Simulated Experimental Difference (%)
First Slew
Xatural Frequency (Hz) 3.ï7 3.64 3.4
Logarithmic Decrement 7.8 x 10-3 1.1 X 10- 1 92
Second Slew
Xatural Frequency (Hz) 3.78 3.67 3.0
Logarithmic Decrement 9.7 x 10-3 6.9 X 10-2 86
Third Slew
Natural Frequency (Hz) 3.ï9 3.56 6.5
Logarithmic Decrement 1.3 x 10-2 9.9 X 10-2 87

Table 6.3: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Voigt-Kelvin lvlodel
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Voigt-Kelvin mode!. In this case~ the natural frequency is driven by the prop

erties of the steel beanl~ but the damping in the model is uniquely introduced

through the material properties of the \iscoelastic layer. The underestimation

of the phase by the Voigt-Kelvin model around 3 H::; shows in the underes

tirnated damping of the simulation. The simulation is accomplished in 4190

steps and required 0.683 h of CPU time.

The Maxwell Model

•

Figure 6. ï shows the experirnental response compared to the simulated re

sponse with a ~\''la''(well mode!. Table 6.4 compares the natural frequencies and

logarithmic decrements after each slewing movements. The beam response ob

tained with a ~vlaxwell model shows on average a difference of 4.0% for the

natural frequency, and a difference of 59% for the logarithmic decrement. Fig

ure 3.16 showed the magnitude of the shear modulus of 3M ISD 112 ta be
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Simulated E)'-1>erimental Difference (%)
First Slew
Xatural Frequency (Hz) 3.75 3.64 3.0
Logarithmic Decrement 1.8 x 10-2 1.1 X 10-1 84
Second Slew
Natural Frequency (Hz) 3.77 3.67 2.7
Logarithmic Decrement 4.2 x 10-2 6.9 X 10-2 39
Third Slew
Xatural Frequency (Hz) 3.78 3.56 6.2
Logarithmic Decrement 4.5 x 10-2 9.9 X 10-2 55

Table 6.4: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a :\Iaxwell ~lodel

underestimated by the ~Ia""\'ell mode!. However. the phase in the vicinity of

3 H:::. the natural frequency in this case, is very close to the manufacturer

data. This good prediction of the phase accounts for the improvements in the

sinlulation results over the ones obtained \Vith a Voigt-Kelvin mode!. How

ever. the results still exhibit discrepancies due to the underestimation of the

magnitude of the shear modulus. The simulation is accomplished in 5543 steps

and required 0.880 h of CPU time.

The Zener Model

Figure 6.8 shows the experimental response compared to the simulated re

sponse \\;th a Zener mode!. Table 6.5 compares the natural frequencies and

logarithmic decrements after each slewing movements. The beam response

obtained with a Zener model shows on average, a difference of 3.8% for the

natural frequency, and a difference of 88% for the logarithmic decrement. Fig

ure 3.17 showed both the magnitude and the phase of the shear modulus of

3~'1 ISO 112 to be underestimated by the Zener mode!. This results in an

underestimation of the damping Leve!. The simulation was accomplished in

5043 steps and required 0.867 h of CPU tinle.
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Figure 6.8: Bearn Response Using a Zener ~Iodel

Simulated E::-..~erimental Difference (%)
First Slew
Natural Frequency (Hz) 3.77 3.64 3.6
Logarithmic Decrement 8.3 x 10-3 1.1 X 10-1 92
Second Slew
Natural Frequency (Hz) 3.74 3.67 1.9
Logarithmic Decrement 6.1 x 10-3 6.9 X 10-2 91
Third Slew
Natural Frequency (Hz) 3.77 3.56 5.9
Logarithmic Decrement 1.9 x 10-2 9.9 X 10-2 81

Table 6.5: NaturaI Frequencies and Logarithmic Decrements of the Simulation
Using a Zener 110del
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Prony Series

The first three models presented, Voigt-Kelvin, l\fa'\.'"Well, and Zener, are ail

characterized by large differences between the model and the manufacturer

data. In contrast, the Prony series show a better fit ta the manufacturer data,

even for the one-term Prony series as shown in Figure 3.18. Between 3 Hz

and 4 Hz, slight clifferences appear in the predicted magnitude of the shear

modulus for the four models, and somewhat larger differences in the phase of

the shear modulus. However, as shawn in Tables 6.6 ta 6.9, the differences in

the solutions are small. AlI the solutions overpredict the natural frequency,

which is due to the finite element model rather than the viscoelastic model as

discussed in Section 6.2.1.

The damping level is either overpredicted or underpredicted by the different

models. but the prediction is doser ta experimental results with a Prony series

of four terms or more. Solutions for Prony series between five and seven terms

are shown in AppendLx B.

An interesting fact is the lack of ob\'ious differences between the solutions

using a constant Poisson's ratio or a constant bulk modulus. As explained in

Section 2.5, at this low frequency and for this nearly incompressible material,

either assumptions give similar values of Young's modulus.

Figure 6.9 shows the worst case among the first four Prony series against

the best case when a constant Poisson's ratio is assumed. The worst case is

the two-term Prony series with an appreciable level of overestimation of the

damping, whereas the best case is the four-term Prony series with small dif

ferences between the predicted and the experimental logarithmic decrements.

Despite this, both solutions are very close and differences are not obvious on

the graph. Clearly, for this type of problem for which the viscoelastic materiai

is only one component of the structure, a simple but realistic model such as a

one-term Prony series is sufficient.

The number of steps and CPU time is similar for aH solutions as shown in

Table 6.10. Increasing the order of the Prony series does not increase the CPU
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Constant Constant BuIk
Experimental Poisson's Ratio ~Iodulus

Simulated Diff. Sinlulated Oiff.
(%) (%)

First Slew
Natural Freq.(H z) 3.64 3.80 4.4 3.80 4.4
Log. Decrenlent 1.1 x 10-1 8.0 X 10-2 ?- 8.0 X 10-2 27-,
Second Slew
Natural Freq. (Hz) 3.67 3.83 4.4 3.76 2.5
Log. Decrement 6.9 x 10-2 1.0 X 10- 1 45 1.1 x 10-1 59
Third Slew
:\atural Freq. (Hz) 3.56 3.79 6.5 3.80 6.7
Log. Decrement 9.9 x 10-2 7.7 X 10-2 22 7.6 x 10-2 23

Table 6.6: l'atural Frequencies and Logarithrnic Decrements of the Simulation
Using a One Term Prony Series

Constant Constant Bulk
Experimental Poisson~s Ratio ~lodulus

Sinlulated Oiff. Simulated Diff.
(%) (%)

First Slew
Natural Freq.(Hz) 3.64 3.88 6.6 3.89 6.9
Log. Decrenlent 1.1 x 10-1 1.5 X 10-1 36 1.5 x 10-1 36
Second Slew
Natural Freq. (Hz) 3.67 3.77 ?- 3.88 5.7_. ,
Log. Decrement 6.9 x 10-2 lA X 10-1 103 1.2 x 10- 1 74
Third Slew
Natural Freq. (Hz) 3.56 3.87 8.7 3.87 8.7
Log. Decrement 9.9 x 10-2 1.5 X 10-1 52 1.5 x 10-1 52

Table 6.7: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Two Term Prony Series
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Constant Constant Bulk
Experimental Poisson's Ratio 1'!odulus

Simulated Diff. Simulated Diff.
(%) (%)

First Slew
Natural Freq.(H z) 3.64 3.86 6.0 3.87 6.3
Log. Decrement 1.1 x 10-1 8.0 X 10-2 27 8.0 x 10-2 27
Second Slew
Natural Freq. (Hz) 3.67 3.84 4.6 3.82 4.1
Log. Decrement 6.9 x 10-2 1.1 X 10-1 59 1.1 x 10-1 59
Third Slew
Natural Freq. (Hz) 3.56 3.86 8.4 3.87 8.7
Log. Decrement 9.9 x 10-2 8.0 X 10-2 19 8.1 x 10-2 18

Table 6.8: ~atural Frequencies and Logarithmic Decrements of the Simulation
Using a Three Term Prony Series

Constant Constant Bulk
Experimental Poisson 's Ratio Nlodulus

Simulated Oiff. Simulated Diff.
(%) (%)

First Slew
Natural Freq.(H:::) 3.64 3.87 6.3 3.86 6.0
Log. Decrement 1.1 x 10-1 9.6 X 10-2 13 9.5 x 10-2 14
Second Slew
Natural Freq. (Hz) 3.67 3.82 4.1 3.85 4.9
Log. Decrement 6.9 x 10-2 6.7 X 10-2 2.3 5.6 x 10-2 19
Third Slew
Natural Freq. (Hz) 3.56 3.84 7.9 3.84 7.9
Log. Decrement 9.9 x 10-2 9.2 X 10-2 7.1 9.2 x 10-2 7.1

Table 6.9: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Four Term Prony Series
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Constant Constant Bulk
Prony Poisson's Ratio Nlodulus
Series Number of CPU Time Number of CPU Time

Time Steps (h) Time Steps (h)
1 Term 3074 0.5095 2989 0.5084
2 Terms 3247 0.5244 3206 0.5295
3 Terms 3046 0.5138 3176 0.5412
4 Terms 3130 0.5200 3085 0.5181
5 Terms 3023 0.5152 2954 0.5078
6 Terms 3073 0.4953 3123 0.5444
7 Terms 3074 0.5013 3155 0.5555

Table 6.10: Number of Time Steps and CPU Time for the Simulations Using
Prony Series

time. The variations from solution ta solution seem due to the system rather

than the cOillplexity of the Prony series. There is no obvious difference between

the solutions using a constant Poisson:s ratio and the ones using a constant

bulk modulus. However, on average: the CPU time for the solutions using a

constant Poissol1:s ratio is 0.5113 h. whereas it is 0.5293 h for the solutions

using a constant bulk modulus. This is not necessarily significant since for the

saille number of terms~ the solution with a constant bulk modulus does not

a1ways require more CPU time than the solution with a constant Poisson's

ratio.

The Fractional Voigt-Kelvin Madel

Figure 6.10 shows the e~..perimental response compared to the simulated re

sponse with a fractional Voigt-Kelvin mode!. Table 6.11 compares the natural

frequencies and logarithmic decrements after each sle,vïng movements. The

beam response obtained with a fractional Voigt-Kelvin model overpredict the

natural frequency in a similar fashion ta the Prony series. As for the Prony

series, the logarithmic decrement values are very close ta the experimental

ones except for the second slew for which the damping is overestimated. The

simulation is accomplished in 3298 steps and required 45.567 h of CPU time.

In Chapter 5, the computation time was improved by reducing the value of
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Figure 6.10: Bearn Response Using a Fractionai Voigt-Kelvin ~Iodel

Simulated Experimental Difference (%)
First Slew
Naturai Frequency (Hz) 3.90 3.64 7.1
Logarithmic Decrement 9.5 x 10-2 1.1 X 10-1 14
Second Slew
~aturai Frequency (Hz) 3.97 3.67 8.2
Logarithmic Decrement lA x 10- 1 6.9 X 10-2 103
Third Slew
Natural Frequency (Hz) 3.88 3.56 9.0
Logarithmic Decrement 9.1 x 10-2 9.9 X 10-2 8.1

•
Table 6.11: Naturai Frequencies and Logarithmic Decrements of the Simula
tion Using a Fractional Voigt-Kelvin ~Iodel
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~IE~l~IA-X Xumber of Time Steps CPU Time
(h)

5000 3298 48.477
3300 3298 45.567
1700 3236 27.996
1100 3273 19.982
660 3291 12.705

Table 6.12: ~umber of Time Steps and CPU Time for the Simulations Ac
cording to the Value of 1IE~nvIA.x

~IE~[\fAX. the amount of data points being stored for use in calculations.

Table 6.12 gives the number of steps taken to simulate the time interval and

the CPU time for simulations using clifferent values of ~IE~I1.fAX. For a value

of ~IE~I~IA.'( of 660~ the CPU tinle is reduced to 12.705 h without any loss

of precision. Tables B.4 to B.6 in Appendix B show the differences between

these cases and the one with a ~IE~E\fAX of 3300 ta be negligible. Figure 6.11

conlpares the solutions for a ;\IE~I~IAX of 3300 and one of 660. The differ

ences are very sn1a11. The value of ~vIENI~IAXcan not be reduced indefinitely~

ho\veyer. Figure 6.12 shows the simulation for a value of ~'fE~I~IAX of 300.

The results are very noisy and do not show a proper level of damping. ~Iore

over. the CPU time is 11.622 h~ only a small impravement over the 12.705 h

obtained with a ~IE1I~IAX of 660.

6 .. 2.4 Conclusion

As expected. the Voigt-Kelvin~ :\IaxwelL and Zener models are not appropriate

ta represent the damping level obtained Vvith a viscoelastic layer. On the other

hand~ the Prony series and the fractional Voigt-Kelvin model are accurate.

A four-term Prony series predicted the logarithmic decrements within a few

percents of the experimental values in approximately half an hour of CPU time.

This is about the CPU time required to fun a simulation of this beam with

only elastic properties. At this frequency. there is no significant difference

between using a constant Poisson:s ratio or a constant bulk modulus as an
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assumption to build the Prony series.

The fractional Voigt-Kelvin model gives similar results to the four-ternI

Prony series, but it is much less efficient in terms of CPU time. Even by storing

as few values as possible~ the simulation requires 12.705 h! which is much

more than the half hour needed for the Prony series. The fractional Voigt

Kelvin model still retains sorne use for cases in which little data is available for

parameter identification. A four-term Prony series requires nine paranleters

to be identified! whereas the fractional Voigt-Kelvin model needs only three.

The Prony series required on average 3097 steps and the fractional Voigt

Kelvin model on average. for different values of ~IE1I~IAX, 3279 steps, a

5.9% increase over the Prony series. This is very reasonable and shows the

approach used in this thesis to solve numerically the fractional derivative does

not require very small time steps. The difference in CPU time between the

Prony series and the fractional Voigt-Kelvin model is due to the hereditary

nature of the fractional modeL and not to the number of time steps taken.

6.3 Homogeneous PMMA Beams

In the preceding exanIple. the viscoelastic material is just one component of

the structure. In this section! homogeneous polymer beams are examined.

The beanls are nlade of polynlethylmethacrylate (P~INIA). The material is

not perfectly isotropie (56] or perfectly linear [57, 58L but it is considered as

such as an approximation. Another important difference with the preceding

example is the level of damping. The viscoelastic layer, 3N[ ISD 112, is a

high damping material \\ith a modulus phase describing a bell and reaching

a maximum of 45°. In contrast, P~I~IA is also characterized by a modulus

phase describing a beU! but the maximum is 4°. In Chapter 3. the fractional

model with only one derivative of the strain is shown to be less representative

of the p~nvIA behaviour than the behaviour of 31t! ISD 112. This could

affect the simulation results. Two slewing tests are done. Both are in the

horizontal plane. but one beam has a payload at the end and the other does
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not. As a result. the natural frequencies are different. giving insights into the

perfornlance of the models in different situations.

6.3.1 Experimental Set-Up

The beams are clamped and are rotating in the horizontal plane. The motor

hub radius is 0.0375 m. The beams have a section of 26 mm by 12.3 mm. The

density of the P~f~fA used is 1225 kg/m3 . The strain near the base is read

with two strain gauges set in a half-bridge configuration. The gauges have a

resistance of 350 n and a grid area of 14.5 mm2
. Given the poor heat sink

capacity of P~I!\1A. a low excitation voltage is used.

Bearn with no Payload

The beam with no payload has a length of 0.836 m. It is slewed in the x - y

plane from _900 ta 90°. and then baclc Figure 6.13 gives the position of the

base with respect ta time.

Bearn with a Payload

The beam with a payload has a length of 0.7852 m. The payload center of

mass is located at 0.031 ..H 7 m from the link eÀ~remity. The payload nlass is

0.36036 kg and the centroidal moment of inertia about the a.xis of rotations of

the beam is 5.238 x 10-4 kg· m 'l . The beam is slewed in the x - y plane from

_90 0 ta 90°. Figure 6.l-l gives the position of the base with respect ta time.

6.3.2 Finite Element Models

Different types of elements are used for the two beams ta accomodate the

payload. In bath cases. an element acting as a distance indicator (DIST type

element) is placed near the base of the beam ta evaluate the strain. The initial

length of the element is subtracted from the value gjven by the DIST element~

and this difference is di\ided by the initiallength of the element ta obtain the

strain.
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Figure 6.15: Length of the Element Near the Base without ~umericalDamping

In both cases~ sorne numerical damping is used. Figure 6.15 shows the

length of the element near the base of the bearn without a payload when an

elastic beha\iour is assurned. Soon after the beginning of the simulation~ sorne

instabilities appear in the length of the element. Convergence is difficult to

obtain due to these instabilities.

Figure 6.16 shows again the length of the elenlent near the base of the

beam without a payload when an elastic behaviour is assumed, but numerical

darnping is added to the solution by setting the parameter 0:' of the Hilber

Hughes-Taylor algorithnl ta -0.3 [39]. The solution is more stable and can

now converge to the end of the simulation time.

•

The concern with numerical damping is not to distort the results. Fig

ure 6.1 ï gives the strain near the base of the beam without a payload in the

case for which the behaviaur is assumed elastic. After the base stops, the

beam oscillates and no substantial level of damping is seen. The numerical

damping introduced has stabilized the solution without distorting the results.

The other simulation parameters are set as in the case of the beam with a
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Figure 6.18: Finite Element 1tlodel of the P1tL\IA Bearn "ith no Payload

viscoelastic layer and the values of the parameters are given in Table 6.2.

Modelling of the Bearn with no Payload

The beam without a payload is modelled with 80 plane strain elements lying

in the x - y plane as illustrated by Figure 6.18.

Modelling of the Bearn with a Payload

The beam with a payload is also slewing in the x - y plane about the z

axis. The plane strain elernents in Samcef assume a unitary thickness and

only the density is input. The payload is represented as a point mass with

the proper centroidal moment of inertia. Using plane strain elements would

require scaling the payload mass to a unitary thickness for the beam. Ta avoid

this~ three-dimensional brick elements are used ta model the beam. Figure 6.19

represents the finite element model of the beam with a payload. Along the

length, 100 elements are used. and four are used along the thickness.
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Figure 6.19: Finite Element NIodel of the P~INIA Bearn with a Payload

6.3.3 Simulated Response of the Bearn with no Payload

The paralneters found for P~I1:IA in Chapter 3 are used to simulate the be

haviour of the beam with no payload. Again, the goal is not to adjust the

sinlulation parameters to reproduce the experimental results~ but rather to

obtain simulation results as accurate as possible using the identified lllater

ial paranleters. The experimental position of the motor with respect to time

shown in Section 6.3.1 is input in the finite element data file. As in Sec

tion 6.2.3, the natural frequency and the logarithmic decrenlent are used to

compare the simulation results and the experimental data. The natural fre

quency and the logarithmic decrement are measured on the first five cycles

occurring after the forced oscillation.

The Voigt-Kelvin Model

Figure 6.20 shows the experimental response compared to the simulated re

sponse for a Voigt-Kelvin mode!. The dots appearing below the curve are noise

generated by the strain gauge and the amplification system. The Voigt-Kelvin
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Figure 6.20: Sinlulated Response Using a Voigt-Kelvin ~Iodel for the PNIl\IA
Bearn with no Payload
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~rodel ~atural Difference Logarithmic Difference
Frequeney with Decrement with

Experimental Experimental
(Hz) (%) (%)

Experimental 5.15 0.297
Voigt-Klevin 5.09 1.2 0.297 0.0
~Ia"(well 5.15 0.0 0.051 83
Zener 5.06 1.7 0.104 65
Prony Series for a Constant Poisson's Ratio
1 Term 5.98 16 0.225 24
2 Terrns 5.78 12 0.253 15
3 Terms 5.84 13 0.224 25
Prony Series for a Constant Bulk Modulus
1 TernI 5.94 15 0.192 35
2 Terms 5.70 Il 0.227 24
3 TernIs 5.78 12 0.203 32
Fractional
Voigt-Kelvin 5.62 9.1 0.161 46

Table 6.13: Xatural Frequency and Logarithmie Decrement for the P~IJ\IA

Bearn with no Payload

model gives an almost perfeet fit to the experimental data. Figure 3.7 showed

the magnitude of the shear modulus to be underestimated by the Voigt-Kelvin

model. but close ta 5 H z~ the phase was just slightly overestimated. This pro

duced the right combination to obtain very gaod results. Table 6.13 gives

the natural frequency and the logarithmic decrement obtained with the Voigt

Kelvin nlodei and the differences in percentage with the experimental data are

very smail. The simulation with the Voigt-Kelvin model requires 0.0285 h of

CPU tinle and is aecomplished in 527 time steps.

The Maxwell Model

Figure 6.21 shows the simulation with a ~Ia.xwen mode!. The predicted natural

frequency is very good. but the damping level is underestimated. Figure 3.8

showed both the magnitude and the phase of the shear modulus ta be underes

timated by the ~'Ia"(Wel1 model, leading ta the underestimation of the damping

level in simulation. The CPU time required is 0.0433 h for 812 time steps.
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Figure 6.22: SiInulated Response Using a Zener :NIodel for the PNIl\IA Bearn
with no Payload
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The Zener Model

Figure 6.22 shows the comparison between the experimental data and the

simulation results obtained with a Zener mode!. As in the case of the NlaxweU

model, the predicted natural frequency is very close to the experimental one,

but the damping level is underestimated. Figure 3.9 also showed both the

magnitude and the phase of the shear modulus to be underestimated by the

Zener nl0del in the vicinity of 5 Hz. The simulation is carried out in 729 time

steps and requires 0.0405 h of CPU time.

The Prony Series

Table 6.13 shows the natural frequency and the logarithmic decrements pre

dicted for aU Prony series models. The two term Prony series give a better

prediction of the logarithmic decrements than the one term or three tcrm
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Constant Constant Bulk
Prony Poisson's Ratio Nlodulus
Series Number of CPU Time Number of CPU Time

Time Steps (h) Time Steps (h)
1 Term 644 0.0362 685 0.0391
2 Terms 592 0.0349 578 0.0332
3 Terms 624 0.0366 633 0.0369

Table 6.14: Number of Time Steps and CPU Time for the Simulations Using
Prony Series for the PrvI1IA Beanl with no Payload

Prony series. Figures 3.10 and 3.11 showed the phase of the shear modulus to

be weIl predicted by the one term and three term Prony series, and slightly

overpredicted by the two term Prony series. The phase was probably slightly

underestimated in the experimentai tensile tests. The parameter identifica

tion tests were carried out at an ambient temperature of 18°e, whereas the

slewing tests were carried out at an ambient temperature of 22°C. PNINIA is

very sensitive ta temperature changes even at room temperature [59], and the

slightly calder temperature for the paranleter identification tests could explain

why the models seems ta predict a more rigid behaviour than what is seen in

the slewing tests, but the difference could aiso be due ta other experimental

factors.

In this case, the constant Poissonls ratio assumption gives slightly better

results than the constant bulk modulus assunlption. Figure 6.23 shows the

best case, which is the two term Prony series with a constant Poisson's ratio,

and the worst case, which is the one term Prony series with a constant bulk

Inodulus. The differences between the two models are quite small. The one

terrn Prony series underestimates the damping level more than the two term

Prony series, but bath models give a satisfactory fit.

Table 6.14 gives the number of steps and the CPU time required byeach

simulation. There is no tendency ta be observed in the CPU time as a function

of the number of terms in the Prony series. There is no consistent difference

either between the constant Poisson's ratio assumption or the constant bulk
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Figure 6.24: Simulated Response Using a FractionaI Voigt-Kelvin ~Iodel for
the P:\I:\IA Beanl with no Payload•
modulus assumption. However. the most precise solution is the two terms

Prony series for a constant Poisson ~s ratio assumption. and this is the solution

requiring the least time steps and the least amount of CPU time. The worst

solution is the one term Prony series for a constant bulk modulus assumption,

and it is aIso the solution requiring the most time steps and the most CPU

time.

The Fractional Voigt-Kelvin Model

•
Figure 6.24 shows the simulation obtained with a fractional Voigt-Kelvin

model against the eX1>erimental data. The simulated solution is underdamped,

although not as severely as the solutions obtained with the rvla.>..~ell or the

Zener mode!.

The results ShO\\l1 in Figure 6.24 are obtained with a MEMMAX value of
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Figure 6.25: Simulated Response Using a Fractional Voigt-Kelvin ~Iodel for
the P~I~IA Bearn with no Payload and a j\IE~L\IAX of iOO•
1000. when the total number of time steps is 835 and the CPU time is 2.4680 h~

which means no compression of the data has been done in the computation

of the integral term of the fractional derivative. Figure 6.25 shows the results

for a value of ~IE1II\lAX of 700. Compression occurs only near the end of

the simulation time at 4.09 sec, but despite this~ errors are introduced as

soon as the data compression is done. In this case! the forced simulation is a

substantial part of the total sinlulation time. and compressing this history of

forced motion affects the results significantly.

Conclusion

•
Unexpectedly. for this case~ the Voigt-Kelvin model gives a very good fit to

the experimental data due to the right combination of underestimation of the

magnitude of the shear modulus and overestimation of the phase of the shear
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nlodulus. The }Ia,,"",,'ell and Zener models both severely underestimate the

damping level of the slewing beam.

The Prony series ail give an acceptable fit. but the predicted natural fre

quencies are ail overestimated and the predicted damping level is underesti

mated by all series. This could be a result of the colder ambient temperature

\vhen the parameter identification was done or of other experimental factors

in measuring the damping properties. There is no significant difference be

tween using a constant Poisson!s ratio assumption or a constant bulk modulus

assumption.

The fractional Voigt-Kelvin model does not overestimate the natural fre

quency as much as the Prony series! but it underestimates more severely the

damping level. In Figure 3.12. the model underestimates the magnitude and

the phase of the shear IDodulus. The overestimation of the natural frequency

is unexpected and could come from the calder ambient temperature when the

parameter identification tests were done or of other experimental factors in

nleasuring the darnping properties.

The Prony series required on average 626 steps and the fractional Voigt

Kelvin mode!. 835 steps. a significant 33% increase over the Prony series.

However. this represents a sampling frequency of approximately 25 data point

per cycle. which is not excessive. The ~Ia..xwell model also required 812 tirne

steps! a number close ta what is obtained v-ith the fractional Voigt-Kelvin

mode!. The Prony series required on average 0.0362 h conlpared to 2.4680 h

for the fractional Voigt-Kelvin model! a large difference.

6.3.4 Simulated Response of the Bearn with a Payload

This example takes the same beam used in the preceding section, but the beam

is shorter and there is a payload at the eA1:remity. The payload decreases the

natural frequency and it is an interesting way of evaluating the performance

of the models for the sanle material, but at a different frequency. Again,

the goal is to predict the experimental behaviour from the material data,
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Figure 6.26: Simulated Response Using a Voigt-Kelvin ~lodel for the P~I~IA

Bearn \\ith a Payload•
without adjusting the simulation parameters to obtain a better fit between

the simulation results and the experimental data.

The experimental position of the motor with respect to time shown in

Section 6.3.1 is input in the finite element data file. The natural frequency

and the logarithmic decrenlent are used to compare the simulation results and

the experimental data. The natura! frequency and the logarithmic decrement

are measured over the fust five cycles occurring after the forced oscillation.

The Voigt-Kelvin Model

•
Figure 6.26 shows the eÀ1Jerimental response compared to the simulated re

sponse for a Voigt-Kelvin mode!. The Voigt-Kelvin model predicts a natural

frequency very close to the experimental data~ but the model underestimates

the damping level. Figure 3.7 showed the magnitude and the phase of the
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~dodel ?\atural Difference Logarithmic Difference
Frequency v.~th Decrement v.ith

E>"'l'erimental Experimental
(Hz) (%) (%)

Experimental 2.33 0.231
Voigt-Klevin 2.31 0.9 0.136 41
:\1a..,"~ell 2.32 0.4 0.109 53
Zener 2.31 0.9 0.212 8
Prony Series for a Constant Poisson's Ratio
1 Term 2.68 15 0.241 4
2 Terms 2.58 Il 0.202 13
3 Terms 2.60 12 0.193 16
Prony Series for a Constant Bulk Modulus
1 Ternl 2.63 13 0.241 4
2 Terms ? -- ID 0.187 19_.tJ ,

3 Terms 2.57 10 0.179 23
Fractional
Voigt-Kelvin 2.49 7 0.121 48

Table 6.15: Natural Frequency and Logarithmic Decrement for the PMMA
Beaul "'~th a Payload

shear modulus to be underestimated by the Voigt-Kelvin model close to 2 Hz.

This explains the underestimation of the damping observed in Figure 6.26. Ta

ble 6.15 gives the natural frequency and the logarithmic decrement obtained

with the Voigt-Kelvin mode!. There is a difference of 41% between the e>"1>er

imental data and the simulation results for the logarithmic decrement. The

simulation is carried out in 0.1277 h for 769 steps.

The Maxwell Model

Figure 6.27 shows the simulation with a ~1axwell mode!. As for the beam with

no payload~ the predicted natura! frequency is very good, but the damping

level is underestimated. Figure 3.8 showed bath the magnitude and the phase

of the shear modulus ta be underestimated by the Maxwell model, leading

ta the underestimatian of the damping level in simulation. The simulation

requires 819 steps and 0.1412 h of CPU time.
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Figure 6.2ï: Sîmulated Response Using a ~lax-wel1 ~Iodel for the p~,evL-\ Bearn
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Figure 6.28: Sinlulated Response Using a Zener ~Iodel fer the P:\I~IA Bearn
with a Payload•
The Zener Model

•

Figure 6.28 shows the comparison between the experimental data and the sim

ulation results obtained with a Zener mode!. The predicted natural frequency

and danlping level are very good. Figure 3.9 showed both the magnitude to

be underestimated by the Zener model, but the phase of the phase modulus

is slightly overestimated in the vicinity of 2 Hz. As it is the case for the

Voigt-Kelvin model for the beam with no payload, this combination of un

derestimation of the magnitude of the shear modulus and overestimation of

the phase of the shear modulus produced the right parameters to obtain good

simulation results. The simulation is done in 674 steps for 0.1273 h of CPU

time.
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The Prony Series

Table 6.15 shows the natural frequency and the logarithmic decrements pre

dicted for aIl Prony series models. For the beam with no payload, the two term

Prony series gives the best prediction for the logarithmic decrement. However,

in the case of the beam with no payload, aIl models overpredicted the natura!

frequency and underpredicted the damping level. For the beam with a pay

load, Table 6.15 shows all models based on Prony series to overestimate the

natura! frequency, but the one term Prony series overestimate the damping

level, whereas the other Prony series underestimate the damping level. Al

though the one ternI Prony series predicts an accurate value for the damping

level, it is sligWty overestimated. This overestimation added to the overesti

mation of the natural frequency leads to a much stiffer solution than observed

experimentally. Figure 6.29 shows the one term Prony series for a constant

Poisson 's ratio and the stiffness of the solution is obvious. Figures 3.10 and

3.11 showed the phase of the shear modulus to be well predicted by the two

term and three ternI Prony series in the vicinity of 2 Hz, and overpredicted

by the one term Prony series. The one term Prony series also overestimate the

magnitude of the shear modulus close to 2 Hz, resulting in larger discrepancies

between the predicted and experimental natural frequencies.

In Figure 6.29, against the one term Prony series, the three term Prony

series is also shown for a constant bulk modulus. This model is the one which

underestimates most severely the damping level. However, since the natural

frequency is overestimated, the underestimation of the damping level leads ta

the best match between the simulation and the experimental results.

Table 6.16 gives the number of steps and the CPU time required by each

simulation. The Prony series using a constant Poisson's ratio assumption run

faster needing less time steps than the ones with a constant bulk modulus for

this example of a P~I~'!A beam with a payload.

For this example, it is difficult to say which solution is the best. The

natural frequency is certainly a dominating criteria. The two terms and three
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Figure 6.29: Simulated Response Using Prony Series for the P~INIA Bearn
\Vith a Payload

Constant Constant Bulk
Prony Poisson's Ratio :\Iodulus
Series Number of CPU Time Number of CPU Time

Time Steps (h) Time Steps (h)
1 Term 389 0.0675 429 0.0764
2 Terms 556 0.0946 602 0.1062
3 Terms 556 0.0961 610 0.1020

•
Table 6.16: Number of Time Steps and CPU Time for the Simulations Using
Prony Series for the P~/INIA Bearn \Vith a Payload
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Figure 6.30: Simulated Response Using a Fractional Voigt-Kelvin ~Iodel for
the P~l~IA Bearn vâth a Payload•
terms Prony series for a constant bulk modulus generate results \\iith a more

precise natural frequency.

The Fractional Voigt-Kelvin Model

•

Figure 6.30 shows the simulation results obtained with a fractional Voigt

Kelvin nlodel against the experimental data. The damping of the solution is

underestimated, but since the natural frequency is overestimated, the solution

and the simulated results remain close ta the experimental results.

The results shown in Figure 6.24 are obtained with a ~fEM~IAX value of

1500, when the total number of time steps is 767 and the CPU time is 6.3671 h,

which means no compression of the data has been done in the computation

of the integral term of the fractional derivative. A simulation resulting in

almost the sarne natural frequency, 2.51 Hz rather than 2.49 Hz, and almost
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the same logarithmic decrenlent, 0.116 rather than 0.121~ are obtained with

a value of ~IE~f~IAX of 400. \vben :YIE~r~lAX is set at 400. the simulation

is acconlplished in 755 steps and 3.3476 h. a net improvement in ternIS of

CPU time over the case for which ~rE~l~lAX is set at 1500. Reducing further

the value of :\IE~I~lAX to 200 prevents the solution from converging. If

conlpression is possible in this case, when it was not possible for the beam

\vith no payload. it is because the time for which the forced oscillation occurs

is snIall. Data compression is possible when the system is in free oscillation,

but accurate sinlulation of the forced oscillation is essential. The finite element

package reacts similarly by taking small steps during a forced oscillation and

larger steps during a free oscillation. A scheme which would compress only

the data during the free oscillations could be advantageous.

Conclusion

As in the case of a beanl with no payload. the l'ight combination of underesti

mation of the nlagnitude of the shear modulus and overestimation of the phase

of the shear nlodulus gives a very good fit to the e:...-perinlentai data. In this

case. it happens for the Zener mode!. whereas it was the Voigt-Kelvin model

which gave a very good fit for the beam with no payload. For this beanL the

Voigt-Kelvin and ~Ia\.~ell nlodels bath severely underestimate the damping

level.

The Prony series aU overestimate the natural frequency, leading ta a stiffer

lllodel. ~Iodels \vhich underestimate the darnping level correct in part the

overestimated natural frequency and produce a better fit. Again, this stiffness

of the model compared ta the ex-perimental data could be a reslÙt of the calder

ambient temperature when the parameter identification was done or of other

e:...-perimental factors in the acquisition of the material parameters.

The fractional Voigt-Kelvin model does not overestimate the natural fre

quency as much as the Prony series. but it underestimates more severely the

damping level. In Figure 3.12, the model underestimates the magnitude and
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the phase of the shear modulus. The overestimation of the natural frequency is

ulleÀ"Pected and could show the material data to represent a stiffer behaviour

than what is observed with the slewing beams.

The Prony series require on average 524 steps and the fractional Voigt

Kelvin nI0del on average for the different values of wIErvlwIAX, 761 steps,

a significant 45% increase over the Prony series. However, this represents a

sampling frequency of approximately 30 data points per cycle. which is not

excessive. The ~Ia..'\."Well model aiso require 819 tinIe steps, a number close to

what is obtained with the fractional Voigt-Kelvin model. The Prony series

require on average 0.0905 h compared to 3.3476 h for the fractional Voigt

Kelvin model \Vith a ~IE~I~IAX of 400, a large difference.

6.4 Conclusion

Although the numerical algorithm used for the fractional derivative is efficient

in terms of number of time steps needed to complete the simulations, the re

quired CPU time is still very high compared ta classical models. In the case of

the steel beanI covered by a constrained viscoelastic layer, the Prony series are

as accurate as the fractional Voigt-Kelvin mode!. In the case of the P~f1VIA

beams, sinul1ations are not as close to the experimental results. The natural

frequency tends to be significantly overestimated and this is probably due to

colder anIbient tenlperatures when the parameter identification was done or to

other experinIental factors. Despite this, the Prony series and the fractional

Voigt-Kelvin DI0del are reHable. They give a certain level of error which re

mains similar from case to case. The Voigt-Kelvin, NIaxweIl, and Zener models

can give arbitrarily good or poor fits to experimental data depending if the

models have the right combination of underestimatian of the natural frequency

and overestimation of the damping level. The three examples are aIl oscillat

ing at Law frequencies and there is no significant difference between using a

constant Poisson 's ratio assumption or a constant bulk modulus assumption.
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Chapter 7

Conclusions and
Recommendations

7.1 Conclusions

Viscoelastic models based on fractional derivatives are recongnized in the lit

erature for accurately modelling the experimental behaviour with few parame

ters. In this thesis. classical viscoelastic models and lllodels based on fractional

derivatives are fitted ta the e::-"1>erimental behaviour of polymethylmethacry

late and an acrylic based viscoelastic layer. 31\'1 ISn 112. The shear modulus

",-ith respect to frequency is the experimental behaviour stumed for both ma

terials. In both cases. the best fit is obtained with the Prony series, but this

classical model requires several parameters. The fractional Voigt-Kelvin model

does not approxïnlate perfectly the behaviour of P~I~IA, but it does give a

good fit for 3~1 ISD 112 for the first half of the frequency range. Although

the fractional Voigt-Kelvin model does not fit the experimental behaviour as

weIl as the Prony series. it has the advantage of requiring few parameters. In

certain situations in which little experimental data is available, a model with

a 10w number of parameters to identify is essential.

Ftactional derivatives are hereditary integrals, and as such, their compu

tation is temous. Authors have developed algorithms to solve equations with

fractional derivatives in the time domain. Most of these algorithms are based

on finite differences or the Grünwald series and they require small time steps
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for a good accuracy. \Vith the finite element method. three-dimensional equa

tions are used and this adds to the computation burden. As an alternative,

in this thesis. an algorithm based on an approximation of the fractional deriv

ative is developed. The integral resulting from this approximation is solved

\\I;th a trapezoidal rule. The algorithm is tested on a one-dimensional consti

tutive equation with one fractional derivative. The results are compared to the

results obtained "'ith a numerical inverse Laplace transform for a sinusoidal

strain input and a decaying sinusoidal strain input. The algorithrn based on

the trapezoidal rule does not require small time steps and gives accurate re

sults. Rather than storing all the data points to be used for the hereditary

integral. only one data out of two is kept for data points far from the actual

computing point. This approach reduces significantly the computing time.

The algorithm based on the trapezoidal rule is implemented in a commer

cial finite element package, Samcef Again, the results for a cube submitted

to a sinusoïdal strain and a decaying sinusoidal strain are compared to the re

sults from the numerical inverse Laplace transfornl. In this case, however, the

finite element package computes three-dimensional equations even though the

prescribed displacement is one-dimensional. For this case too, the algorithm

does not require small time steps to produce accurate results. Again, storing

only one data point out of two for data points far away from the actual data

point reduces the computation time. The effect of the various convergence pa

rameters inherent ta the finite element package is studied and no unexpected

effect is abserved.

Finally, simulations are done for experimental cases. Two PM11A slewing

beams are studied, one having a mass at the extremity. A slewing steel beam

covered by a constrained viscoelastic layer is als-o studied. The viscoelastic

material is 31-1 ISD 112. The simulations are compared ta the experimental

results for the fractional Voigt-Kelvin model and for classical models: Prony

series. Voigt-Kelvin model, ~1a.xwell model, and Zener mode!. The goal is not

ta fit the model ta the experimental results, but rather to use the parame-
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ters determined from the fit to the experimental shear modulus. and see the

consistency with the simulation results for slewing beams. The Voigt-Kelvin~

~Ia'\.\\·eIL and Zener models give accurate or imprecise results depending on

the natural frequency being ~xcited, but they are not reliable to represent

the experimental behaviour over a large range of situations. The Prony series

are accurate and efficient in terms of CPU time. The fractional Voigt-Kelvin

model is also accurate~ but it requires a significant amount of CPU time. Stor

ing one data out of two for data points far away fronI the actual data point

helps. but it still is not competitive with the CPU time required by the Prony

series. The long CPU time for the fractional Voigt-Kelvin model is due to the

hereditary integral. since with the algorithm based on the trapezoidal rule~ the

time step is not smaller than the time step required by the classical models.

In the case of the P~I~IA beam with no mass at the e:>..1;remity~ the forced

oscillation time is quite long compared to the overall simulation time, and in

this case~ it is not possible ta reduce significantIy the storage vector. The main

advantage of the fractionai Voigt-Kelvin modei remains the low number of pa

rameters ta identify and this model shouid be used whenever it is impossible to

identify correctly the parameters of the Prony series. The experimental cases

are aIl low frequency examples. and for these cases, no significant difference

is obsen'ed between assunlÏng a constant Poisson 's ratio or a constant bulk

modulus.

7.2 Recommendations

Different aspects of the algorithm based on the trapezoidal rule could be im

proved:

• The examples of the PMrvIA beams have shawn the difficulty of storing

less data during the forced oscillations. A more flexible algorithm could

be devised to store aIl data during forced oscillations and less data during

natural oscillations.
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• The accuracy of the model would be improved by adding a fractional

derivative of the stress. This would~ however. add significant CPU time.

• The temperature dependency could be modelled.

• Further approximations of the hereditary integral could be sought with

the aim of reducing the CPU time without sacrificing accuracy.
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Appendix A

The N umerical Laplace
Transform

The chosen method to invert the Laplace transform is based on the use of the

Fast Fourier Transform (FFT). The FFT is a method to calculate the Fourier

transfornl which drastically reduces the number of operations required and

speeds up the inversion considerably [60]. Thus, the fust step to inverse the

Laplace transfornl is to express it in terms of a transform pair of a discrete

Fourier transform.

vVilcox [50] gives the following discrete transform pair far the Laplace trans

fornl:

t 2n
F(SK) - ?f L f(tA,)e-Sl(t.\(

_n AI==l

1 n

f(tM) = - L F(sK)eSl(t...,
tf K=-n,K::pO

where F is the Laplace transfarm and f the corresponding time domain solu-

tion. The constant tf is the maximum time of integratian, the final time, and

it is nornlally taken to he 1.1 times larger than the time duration of interest

because of inaccuracies as t tends toward tf. The factor 2n is the number

of paints in the time domain. The sampling frequency in hertz is 2n/tf and

must respect Shannon's theorem: it must be at least twice as large as the

bandwidth. The sampling points in the frequency domain are:

• S = { a + i(2/( - 1)7r/tf
K a + i(2K + l)7r/tf

185

for K = l, ! n
for K = -n, !-l

(A.2)



where i = A and a = 27r/t J. The sampling points in the time domain are:• t.\1 = (2AI - 1)tJ/4n with Al = 1, ... , 2n (A.3)

The sums are performed using the FFT algorithm of Matlab whieh is based

on the following transform pair (61]:

N-L
T "" f e-i2rrkm/N
J""k+L - L m+l

m=O

fm+l =
1 N-I
~:fi i2rrkm/N

1V L k+le
• k=O

where lV is the number of samples in the time domaine

(A.4)

(A.5)f(tu)

with:

The \Vilcox pair must be tansformed to suit the Jv[atlab pair. The fust

step is to recognize that 2n = 1V. Thus the Wilcox pair becomes:

t N
- J... t f(t.u )e-sKtM

lV M=l

1 N/2- - L F(SK )esKt.\f

t J K=-N/2,K;éO• (\1 = (2AI - 1)tJ/21V with Al = l, ... , lV (A.6)

The SUffiS in the AJatlab pair are not preceded by a factor tJ. The time domain

funetion f in the \Vileox pair is redefined as tJf (t.\f ):

1 N
= lV L (tJf(tfl,r))e-SKt.\f

AI=L

(A.7)
N/2

(t J f(t.\r)) = L F(SK )esKt.\f

K=-N/2,1\';éO

The index m of the lvfatlab pair goes from 0 to (N - 1), whereas in the \Vilcox

pair 1\1 goes from 1 to iV. Renee, l'v[ = m + 1 and tM beeomes:

tm = (2m + 1)tJ/2N with m = 0, ... , N - 1 (A.8)

In the !vIatlab pair, the index k runs from 0 to (N - 1). For the values of S K

•
ta remain the same, Sk must be ,vritten:

Sk = a + i(2k - (lV - l))7r/T with k = 0, "'l (N - 1) (A.9)
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• This is found by inspection. The values in the vectors F and s are the same

as originally~ even though k runs from 0 to (1\1 - 1). The \Vilcox pair becomes:

1 .'\"-1

F(Sk) - IV ~ (tff(tm))e-sktm
• m=O

.".-1

(tff(tm)) = L F(sdesktm

k=O

(A.IO)

with s defined by Equation A.9 and t by Equation A.S. ~1ultiplying s and t

in the exponential results in:

eSktm = e(2m+l)(aT-i'fr(N-1»/(2N) eik1rlNei2mk'fr/N (A.11)

•

•

The exponential term that depends only on m will be attached to f(t m ) since f

varies with m through the variation of t~ and the exponential term depending

uniquely on k will be attached ta F(Sk) for sinlilar reasons. The Wilcox pair

is now:

...... -1

(ei"k/N F(Sk)) = ~ 2: (t/e-(2m+l)(a,,-i,,(N- 1l)/(2N) f(tm))e- i2"km/N

• m=O

N-l
(tfe-l2m+l)(atf-m(N-I))/(2N) f(tm)) = L (ei7fk /NF(SI.J)ei21fkm/N (A.12)

k=O

The Matlab pair has a factor .V attached to the second equation rather than

the fust as in the \Vilcox pair. Ta correct this~ ~V is attached to F(Sk) and

the pair becomes:

.V-I
(J.Veir.k/N F(Sk)) = L (tfe-(2m+l)(atf-i1f(.V-l»/(2N) f(tm))e-i21fkm/N

m=O

(t/e-(2m+l)(att -i7r(N-l»/(2N) f(tm)) = :r .I:l (lVeirrklN F(sk))ei21fk1~.13)
J.V k=O

The only difference with the Matlab pair described by Equation A.4 lies in the

indices of f and F. Matlab indexes its vectors from 1. It can not take 0 as

an index for a vector. The values of the indices are simply augmented of 1

without changing the values of the variables. Thus:

tm +l = (2m + l)tf/21\'[ with m = 0, 1~ ... , (N - 1)
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• 8k+l = a + i(2k - (.lV - l))7r/tf with k = 0.1. .... (lv - 1)
N-l

(.JVe itrk/ N Fk+d = L (t/e-(2m+l)(at f -itr(N-l»!(2N) fm+de- i2-:rkTnI N

m=O

1 ."1-1
(t fe-(2m+l)(atr-itr(N-l»/(2N) fm+d = lI.r L (JVeitrklN Fk+dei2trkm/(A.14)

:. .. k=O

\Vith F and f of the AIatlab pair defined as:

Fk+ 1 - (lVeitrklN Fk+d

f (t -(2m+1)(at f -itr(N-1)}/(2N) f )
m+1 - fe m+1 (A.15)

•

•

The function F is the Laplace transfer function written in the s space. but F

is the function that must be invoked with Matlab inverse FFT. This function

called ifft returns f whereas the required time response is f .
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Appendix B

Simulation Data

B.I Simulation Results with the Prony Series

Tables B.l. B.2. and B.3 show results from the Prony series simulations for a

slewing beam covered by constrained "iscoelastic layers.

B.2 Simulation Results with the Fractional Model

Tables BA. B.5. and B.6 show results obtained ~ith the fractional Voigt-Kelvin

model for a sleVwing beam covered by constrained viscoelastic layers.
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Constant Constant Bulk
Experimental Poisson~s Ratio ;\Iodulus

Simulated Diff. Simulated Diff.
(%) (%)

First Slew
Natural Freq.(H:;) 3.64 3.87 6.3 3.85 5.8
Log. Decrement 1.1 x 10-1 9.8 X 10-2 Il 9.7 x 10-2 12
Second Slew
Natural Freq. (Hz) 3.67 3.78 3.0 3.80 3.5
Log. Decrement 6.9 x 10-2 7.4 X 10-2 7.2 6.4 x 10-2 -?

( .-
Third Slew
Natural Freq. (H:;) 3.56 3.85 8.1 3.85 8.1
Log. Decrenlent 9.9 x 10-2 1.0 X 10-1 1.0 1.0 X 10-1 1.0

Table B.1: :\atural Frequencies and Logarithmic Decrements of the Simulation
Using a Five Term Prony Series

Constant Constant Bulk
Experimental Poisson:s Ratio ~Iodulus

Simulated Dili. Simulated Diff.
(%) (%)

First Slew
Natural Freq.(H:;) 3.64 3.87 6.3 3.86 6.0
Log. Decreluent 1.1 x 10- 1 9.5 X 10-2 14 9.5 x 10-2 14
Second Slew
Xatural Freq. (Hz) 3.67 3.78 3.0 3.81 3.8
Log. Decrement 6.9 x 10-2 4.3 X 10-2 38 7.1 x 10-2 2.9
Third Slew
~atural Freq. (Hz) 3.56 3.84 Tg 3.85 8.1
Log. Decrement 9.9 x 10-2 9.5 X 10-2 4.0 9.5 X 10-2 4.0

Table B.2: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a SLx Term Prony Series

190



•

•

•

Constant Constant Bulk
E:x.~erimental Poisson's Ratio ~'Iodulus

Simulated Diff. Simulated Diff.
(%) (%)

First Slew
Natural Freq.(Hz) 3.64 3.86 6.0 3.86 6.0
Log. Decrement 1.1 x 10- 1 9.1 X 10-2 17 9.2 x 10-2 16
Second Slew
Natural Freq. (Hz) 3.67 3.83 4.4 3.83 4.4
Log. Decrement 6.9 x 10-2 6.5 X 10-2 5.8 7.5 x 10-2 8.7
Third Slew
Natural Freq. (Hz) 3.56 3.84 7.9 3.85 8.1
Log. Decrement 9.9 x 10-2 9.3 X 10-2 6.1 9.2 x 10-2 7.1

Table B.3: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Seven Terro Prony Series

Sinlulated EÀ~erimentai Difference (%)
First Slew
:iatural Frequency (H =) 3.90 3.64 7.1
Logarithmic Decrement 9.5 x 10-2 1.1 X 10-1 14
Second Slew
~atural Frequency (Hz) 3.87 3.67 5.4
Logarithmic Decrement lA x 10- 1 6.9 X 10-2 103
Third Slew
Natural Frequency (Hz) 3.87 3.56 8.7
Logarithmic Decrement 9.0 x 10-2 9.9 X 10-2 9.1

Table B.4: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Fractionai Voigt-Kelvin Model and a memmax of 1700
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Simulated Experimental Difference (%)
First Slew
Natural Frequency (Hz) 3.90 3.64 7.1
Logarithmic Decrement 9.5 x 10-2 1.1 X 10-1 14
Second Slew
~atural Frequency (Hz) 3.88 3.67 5.7
Logarithmic Decrement 1.3 x 10-1 6.9 X 10-2 88
Third Slew
Natural Frequency (Hz) 3.87 3.56 8.7
Logarithmic Decrement 9.2 x 10-2 9.9 X 10-2 7.1

Table B.5: Natural Frequencies and Logarithnuc Decrements of the Simulation
Using a Fractional Voigt-Kelvin ).rIodel and a memmax of 1100

Sinlulated Experimental Difference (%)
First Slew
~atural Frequency (Hz) 3.91 3.64 7.4
Logarithmic Decrement 9.6 x 10-2 1.1 X 10-1 13
Second Slew
:\Jatural Frequency (H:;) 3.91 3.67 6.5
Logarithmic Decrement 1.5 x 10-1 6.9 X 10-2 117
Third Slew
Xatural Frequency (Hz) 3.89 3.56 9.3
Logarithmic Decrement 9.0 x 10-2 9.9 X 10-2 9.1

Table B.6: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Fractional Voigt-Kelvin ~Iodel and a memmax of 660
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