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Abstract

The thesis centers on time domain modelling of viscoelastic materials. Classi-
cal models are compared to models involving fractional derivatives, which are
derivatives of an order between 0 and 1. Parameters for classical and frac-
tional order models are found for two materials. polvmethylmethacrylate and
3M ISD 112, an acrylic based material sold as a viscoelastic layer by 3M. In
both cases, only Prony series with several parameters achieve a good repre-
sentation over a large frequency range. In the case of 3M ISD 112, a fractional
model with only two parameters gives a good representation over a frequency

range of three decades. which is often sufficient.

An algorithm based on an approximated definition of the fractional deriv-
ative and a trapezoidal rule is described to solve constitutive equations with
fractional derivatives. The algorithm is implemented in C and tested against
a numerical Laplace inverse for the case of a material submitted to sinusoidal
strains. The algorithm gives accurate results and does not require very small
steps. which is usually the case for algorithms based on finite differences or

Griinwald series.

The algorithm is adapted to the structure of a user subroutine of a com-
mercial finite element package. Samcef, for a six component isotropic tensor.
The model assumes a constant bulk modulus and has one fractional derivative
of the deviatoric strain. The Jacobian of the constitutive equation with a frac-
tional derivative is derived and implemented. The results from the subroutine
are compared satisfactorily to results from the numerical Laplace inverse for

a cubic element submitted to sinusoidal strains.
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Finally. the different models are tested to represent the experimental be-
haviour of slewing beams made either of polymethylmethacrylate or steel cov-
ered by constrained viscoelastic lavers. The classical models give generally a
poor representation of the experimental behaviour, except for the Prony se-
ries. The fractional model give a representation as satisfactory as the ones
obtained with the Prony series, but for a much higher CPU times due to the
hereditary nature of the fractional derivative. It is therefore recommended to
use Prony series models, unless the data to perform the parameter identifica-
tion is limited. In that case, the fractional order model becomes interesting

despite the higher demands on the CPU time.
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Sommaire

Le but de cette thése est d'étudier la modélisation dans le domaine tem-
porel des matériaux viscoélastiques. Les modeéles classiques sont comparés
aux modeles comprenant des dérivées fractionnaires, ces dérivées étant d'un
ordre entre 0 et 1. Les parametres des modeles classiques et fractionnaires
sont identifiés pour deux matériaux, le polyméthacryvlate de méthyle et le 3M
ISD 112. un matériau acrylique vendu par 3M comme couche viscoélastique.
Pour les deux matériaux, seules les séries de Prony ayant plusieurs parametres
donnent une bonne représentation sur une grande plage de fréquence. Dans
le cas du 3M ISD 112. un modeéle fractionnaire a seulement deux paramétres
donne une bonne représentation sur une plage de fréquence de trois décades.

ce qui est souvent suffisant.

Un algorithme basé sur une définition approximative de la dérivée frac-
tionnaire et sur la méthode trapézoidale est écrit pour résoudre des lois de
comportement avec dérivées fractionnaires. L’algorithme est écrit en C et
vérifié contre les résultats d’un inverse de Laplace numeérique pour le cas
d'un matériau soumis a des déformations sinusoidales. L’'algorithme donne
des résultats adéquats et n’exige pas de petits pas comme c’est habituelle-
ment le cas avec les algorithmes basés sur les différences finies ou les séries de

Grinwald.

L algorithme est ensuite adapté a la structure d’une sous-routine usager
d’un programme d’éléments finis commercial, Samcef, pour le cas d’un tenseur
isotropique de six composantes. Le modéle suppose un module de com-

pressibilité volumique constant et possede une dérivée fractionnaire de la



déformation déviatorique. Le jacobien de la loi de comportement a une dérivée
fractionnaire est obtenu et implanté. Les résultats de la sous-routine se com-
parent de fagon satisfajsante aux résultats de l'inverse numérique de Laplace
pour un élément cubique soumis a des déformations sinusoidales.
Finalement, les différents modéles sont utilisés pour représenter le com-
portement expérimental de poutres de polvméthacrylate de méthyle ou d’acier
recouvert de couches viscoélastiques contraintes en rotation dans le plan. Les
modeéles classiques donnent généralement une piétre représentation du com-
portement expérimental, a I'exception des séries de Prony. Le modéle fraction-
naire donne une représentation aussi satisfaisante que les séries de Prony, mais
requiert un temps CPU beaucoup plus élevé a cause de la nature héréditaire de
la dérivée fractionnaire. Il est donc recommandé d’utiliser les séries de Prony,
sauf lorsque les données nécessaires a l'identification des parameétres sont in-
suffisantes. Dans ce cas. un modéle d’ordre fractionnaire est une alternative

intéressante en dépit des grandes exigences au niveau du temps CPU.
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Claim of Originality

To the best of the author’s knowledge. the following studies presented in this

thesis are original and are not found elsewhere.

e Development of an algorithm to solve ordinary differential equation with
a fractional derivative based on an approximated definition of the frac-

tional derivative and a trapezoidal rule for the resulting integral.

e Implementation of this algorithm in a commercial finite element pack-
age, Samcef, in an implicit scheme requiring the Jacobian of the three-

dimensional fractional Voigt-Kelvin constitutive equation.

e Comparison of the performance of the fractional Voigt-Kelvin model
with other models such as the Prony series, the Voigt-Kelvin model. the
Maxwell model, and the Zener model in terms of accuracy to represent

an experimental slewing homogeneous polymethylmethacrvlate beam.

e Comparison of the performance of the fractional Voigt-Kelvin model
with other models such as the Prony series. the Voigt-Kelvin model, the
Maxwell model. and the Zener model in terms of accuracy to represent an
experimental slewing steel beam covered with a constrained viscoelastic

layer.

¢ Evaluation of the efficiency of the algorithm presented in this thesis by
comparing the required CPU time with the CPU time needed by other
models such as the Prony series. the Voigt-Kelvin model, the Maxwell

model, and the Zener model.
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A description of the notation, variables, and abbreviations used in this thesis.
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derivative with respect to time: de../dt = é,.

derivatives of higher order with respect to time: 8%e../dt" = e{™
fractional derivative of order &: Dfs
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vertical bars indicate the magnitude of a complex variable, e.g. |G*|
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ei; component ij of the deviatoric strain tensor
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exp exponential
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discrete Laplace transform

discrete Laplace transform used by Matlab
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discrete time domain function

discrete time domain function used by Matlab
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equilibrium shear modulus (Pa)
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equilibrium bulk modulus {Pa)

coefficient of the Prony series for the bulk modulus (Pa)
complex bulk modulus

constant of an exponential

constants in constitutive equations

Laplace transform operator
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number of points used for the Laplace transform
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volumetric stress tensor (Pa)
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a! damping coefficient

[(z) Gamma function applied to x

¥ damping coefficient

) logarithmic decremment

d;; Kronecker delta applied to the component ij of the tensor

€ small amount of time compared to ¢ (s)

£ij component ¢j of the strain tensor
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Ve equilibrium Poisson’s ratio

13 order of the fractional derivative
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Abbreviations
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DS evaluation of the local error
DSN evaluation of the local error at the preceding step
DTIO initial time step
FFT Fast Fourier Transform

memcom, MEMCOM number of data for which larger steps are taken
memmaz. MEMMAX maximum number of stored data

PMMA
PRCO
PRCV
SREF

polvmethylmethacrylate

local error tolerance for the constitutive equation
local error tolerance for the dynamic computation
reference stress defined by the user






Chapter 1

Introduction

1.1 Use of Viscoelastic Materials

In recent vears, some types of satellites have become more bulky as the need for
more transmission capabilities has increased. The drive to reduce the weight
is still an important fact. However, as structures become thinner, and hence
more flexible, they are also more prone to vibrations. Several means of re-
ducing these vibrations are used, but viscoelastic materials are proving useful.
These materials are thin sheets of polymers, often covered by a thin sheet of
a stiff material, and able to significantly reduce the level of vibrations with-
out adding much weight to the structure. Their use has been investigated for
satellites (Jha and Tremblay [1. 2]), space stations (Jones et al [3]), launchers
(Poizat et al [4]). as well as space manipulators (Alberts et al [5]). Modelling
of the behaviour of these materials through finite element analysis is often
required in the case of space structures, since prototypes are too costly and
the design must be perfect. In most cases, accurate modelling is needed in the
frequency domain to obtain the natural frequencies and the amplification ratio
of the structure. Several authors have investigated the precision of frequency
domain finite element analyses for structures covered with viscoelastic materi-
als and they have found satisfying agreements between experimental data and
simulation results for simple test cases (Johnson and Kienholz [6], Johnson et
al [7], Sun et al {8], Slanik et al [9]).

Time domain modelling is also needed for simulation of deployment situa-



tions and manipulator movements. The precision of the time domain analysis
depends on the accuracy of the finite element formulation and the effectiveness
of the numerical integration algorithms, but also on the constitutive equation
used to represent the stress-strain relationship of the polymer. Moreover, use
of a commercial finite element package is important for acceptance of the re-
sults by the aerospace community.

Classical viscoelasticity models allow structural analysts to describe damp-
ing phenomena in the time domain. A description of these models is found
in Axelrad [10]. Some of these models are implemented in commercial finite
element packages and simulation of complex damped structures undergoing
nonlinear motion is possible. However, classical viscoelasticity models often re-
quire several parameters to correctly represent the material behaviour. Slanik
et al [11] obtain good time domain finite element simulation results using a
five term Prony series, which involves the identification of at least ten para-
meters. The experimental set-ups needed to identify those parameters are not
always available and often only limited data is available. There is a need for
accurate models involving as few parameters as possible, and therefore, pos-
sible identification with limited data. In that respect, constitutive equations
using fractional derivatives. rather than integer derivatives, have the advan-
tage of being representative of the material behaviour with fewer parameters.
Fractional derivatives are derivatives of an order between 0 and 1 and are
represented by a hereditary convolution integral. This thesis deals specifically
with time domain finite element simulations with fractional order constitutive

equations. The next section reviews the work done on this problem.

1.2 Modelling of Dynamic Equations with Frac-
tional Derivatives

In the last few decades, several authors have started to examine the feasibility
of using fractional derivatives to describe the dynamic behaviour of systems

submitted to internal damping. Rossikhin and Shitikova [12] give a review



of the work done in solid mechanics involving fractional derivatives. Many
authors write the dynamic equations in the frequency domain and obtain the
time domain solution by using a numerical Laplace inversion or a numerical
Fourier inversion (Bagley and Torvik [13], Cooke and Keltie {14}, Padovan
and Guo [15], Makroglou et al [16], Suarez and Shokooh [17, 18], and Baker
et al [19]). Fractional derivatives have a simple corresponding expression in
the frequency domain, and therefore, their inverse can be taken. However,
this approach is not useful when nonlinear geometric terms are present in
the dynamic equations since some linearisation is needed to take the Laplace
inverse. Some authors started to attempt direct time-domain simulations, but
a fractional derivative is a hereditary convolution integral and as such, some
terms need to be stored at each step and used in future calculations. This
slows down the computation and authors have found various ways of dealing

with this.

1.2.1 Bagley et al

Bagley and Torvik were probably the first to attempt solving structural equa-
tions involving fractional derivatives. In Bagley and Torvik [13], a simply
supported beam covered with a constrained viscoelastic layer and excited at
midspan is modelled. A constrained viscoelastic layer is a thin layer of poly-
mer covered by a thin layer of a stiff material. In this case, the polymer is
modelled with a constitutive equation including a fractional derivative of the
shear strain and no derivative of the shear stress. A value of one half is used
for the order of the fractional derivative to simplify the solution of the equa-
tions. Finite element equations are written. The beam itself is modelled with
triangular elements, the viscoelastic layer with rectangular elements, and the
constraining layers with rods. A modal solution is found and the time-domain
displacement for an impulsive loading is obtai.ned from the modal solution.
The finite element equations give resuits similar to results obtained from the

sixth order theory for beams with constrained viscoelastic layers. The differ-



ences are attributed to the different assumptions made in the finite element
equations and in the sixth order beam theory [20].

In Bagley and Calico [21], the goal is to write closed loop structural equa-
tions incorporating control schemes. This time, they use a constitutive equa-
tion with fractional derivatives of the same order on both stress and strain.
Again, a modal solution is first obtained and the time-domain solution is re-
constructed from it. An important innovation is to address non zero initial
conditions. As the authors explain, the fractional derivative model assumes
the material to be in its undeformed state at time zero. To start the simula-
tion with non trivial initial conditions. they start a different clock. The first
clock has its zero when the material is in its undeformed state, the second
clock starts when the material has reached its initial conditions. As in the
previous paper, the dynamic equations are not solved numerically. but rather
using analytical approximations for simple test cases. However, this approach
can not be expanded to complex structures for arbitrary levels of damping,
since it would not be possible to use these analytical approximations in more

complex cases.

1.2.2 Koh and Kelly

One of the first papers to deal with time-domain numerical solutions of dy-
namic equations is the one by Koh and Kelly [22]. They use a constitutive
equation using a fractional derivative of the strain. The algorithm they use is
the L1 algorithm described in Oldham and Spanier [23] based on finite differ-
ences. They first test the algorithm against the numerical Laplace inverse for
a simple system consisting of a mass, a spring, and a damper. The step size
is critical and needs to be quite small for accurate results. To cut the number
of data to store and the number of computations required by the hereditary
nature of the fractional derivative. they use a time window, meaning they keep
only a few data near the actual computation time. The size of the window is

not as critical as the step size. However, this concept of time window works



well for oscillations having a zero-mean. which is the case for their specific
problem. but it might not work as well for all problems. Finally. they write
the one-dimensional dvnamic equation of a bridge deck mounted on multilay-
ered natural rubber bearings. Steady-state harmonic tests allow identification
of the parameters of the fractional derivative model representing the behaviour
of the system. The bridge deck is then submitted to displacements similar to
the El Centro 1940 earthquake. The experimental results are compared to the
simulation results and the fractional model gives very good agreement with
errors in the peak amplitudes of less than 1%. A simulation is also done with a
classical viscoelasticity model and the errors in the peak amplitudes are about

6%.

1.2.3 Makris and Constantinou

In Makris and Constantinou [24], viscous fluid used as dampers for earthquake
protection are modelled with fractional derivatives. The constitutive equation
has one integer derivative of the shear stress and one fractional derivative of
the shear strain. The dynamic equations for a building supported on viscous
dampers are written and solved using a numerical algorithm based on finite
differences. The algorithm is a modification of the G1 scheme described in
Oldham and Spanier [23]. The numerical solution is compared to experimental
data for a six storey, quarter scale. model building, and good agreement is

found.

1.2.4 Eldred, Baker, and Palazotto

Eldred, Baker, and Palazotto examine a bar fixed at one end and submitted to
a load at the other end. The model used for the material behaviour involves
one fractional derivative of the strain. The bar is represented with a one-
dimensional dynamic equation. In Eldred et al [25], the authors examine
the Voigt-Kelvin model with respect to fractional models in their ability to

reproduce the behaviour of materials. In Eldred et al {26], two schemes based



on finite differences are explored. These schemes are taken from Oldham and
Spanier [23] and are called L1 and G1. The authors find these schemes to be
very sensitive to the time step. especially in the presence of nonlinear terms
in the dynamic equations. In Eldred et al [27]. they compare the solutions
obtained with the finite difference schemes to the numerical Laplace inverse
and they find the L1 algorithm reproduces the amplitude of the deflection
within 2% of the values given by the numerical Laplace inverse. The finite
difference scheme requires very small steps to start up and a data storage
scheme is devised. The first steps are very small to enable a good start of the
solution. but as the solution progresses. only one out of two data points are

kept in memory to compute the rest of the solution.

1.2.5 Padovan

Padovan [28] outlines various algorithms to solve finite element equations with
fractional derivatives in the time domain. He looks at implicit, explicit. and
predictor-corrector schemes for cases of a single fractional derivative of the
strain. as well as cases with both a fractional derivative of the stress and the
strain. He uses the Griinwald series to define the fractional derivative. As an
example. he looks at a simple system consisting of a mass. a spring., and a

damper.

1.2.6 Chern

In Chern [29)]. an in-house finite element code is written with plane strain and
plane stress elements described by a fractional order constitutive equation.
The constitutive equation has a fractional derivative of the strain and no
derivative of the stress. A constant Poisson’s ratio is assumed and first order
finite differences are used to approximate the fractional derivative. As an
example. a beam is fixed at one end and excited at the other end. The response
obtained with the finite element formulation is not compared to a response

obtained by another method.



1.2.7 Enelund et al

Enelund and various co-authors explore the solution of dynamic equations
with fractional derivatives represented by a Grinwald series. The viscoelas-
tic model involves one fractional derivative of the stress and another one of
the strain of the same order. The representation they use enables initial con-
ditions different from zero. In Enelund and Olsson [30], they look at a one
dimensional equation solved with a Newmark algorithm using a constant step.
The equation represents a simple system consisting of a mass, a spring, and
a damper. The results are validated against the inverse Fourier transform. In
Enelund et al [31], the same system is looked at. but this time the model is
modified to work with fractional integrals rather than fractional derivatives.
This technique is advantageous to deal with the initial conditions, but it in-
volves taking the integral derivative of the load. As each fractional integral or
fractional derivative needs all values at each time step to be stored to solve
future steps. taking the integral derivative of the load increases the demands
on the computing ressources.

The step to three-dimensional equations is taken by writing finite element
equations of the system. In Enelund and Josefson [32]. the constitutive equa-
tions involve a fractional derivative of the stress and one in the strain of the
same order. Moreover, the same constitutive equation is used for both devi-
atoric and hydrostatic equations. resulting in a constant Poisson’s ratio. The
finite element equations are written by the authors to deal with their specific
problems. They study a simple mass. spring, and damper system, as well
as a bar made of five linear elements. The order of the fractional derivative
is one half, allowing to solve the equations analytically for comparison. The
finite element equations are solved with a Newmark algorithm using a con-
stant step. The step has to be less than 2/wm,, to ensure stability, where
Wmaz 1S the maximum frequency excited. In Enelund and Lesieutre [33], they
solve the same bar. but this time. the constitutive equations are dealt with

by using internal variables. In Enelund et al [34], the constitutive equations
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are implemented in Abaqus, a commercial finite element software. An implicit
scheme is used for quasi-static solutions. and an explicit one for dynamic so-
lutions. The bar treated earlier is studied again with five linear elements,
but also with five plane stress elements. They also look at the problem of a
viscoelastic material under rails, the material being modelled by plane strain
elements. Approximately 15000 steps are needed to simulate 25 oscillations, a
sampling frequency of approximately 600 data points per cycle. To reduce the
computing time, they attempt keeping only part of the history as Koh and
Kelly [22] had done. but if the order of the fractional derivative is small. than

much of the history is needed to produce accurate results.

1.2.8 Potvin et al

In a series of papers. Potvin et al simulate the dvnamic behaviour of a homoge-
neous polvmethylmethacrvlate (PMMA) beam using a constitutive equation
with a fractional derivative of the strain. In Potvin et al [35, 36]. thev compare
experimental data and simulation results for a PNMA beam fixed at one end
and oscillating under gravity after being dropped from an undeformed position.
The dynamic equations are written and solved using a Runge-Kutta scheme.
The fractional derivative is split into an integral term and an approximation
for the integral in the vicinity of t. the current time. The results are good.
but the time step is small due to the large difference in frequency between the
two first modes. This problem due to the stiffness of the dynamic equations
is solved in Potvin et al [37. 38]. The dynamic equations are solved using an
implicit numerical scheme of the Newmark family, the Hilber-Hughes-Taylor
algorithm [39]. As in the preceding papers. the fractional derivative is split
into an integral term and an approximation for the integral in the vicinity of
t. but the numerical algorithm used to solve the integral term is also based on
the Hilber-Hughes-Taylor algorithm, rather than a Runge-Kutta algorithm.
Again. the fit between experimental data and simulation results is good. To

accelerate the computation time. larger time steps than what is used for the



computation of the dynamic equations are taken for the computation of the

integral term of the fractional derivative.

1.2.9 Summary

Several authors compare simulation results with experimental data and they
obtain good agreement between the two for models with small numbers of
parameters (Koh and Kelly [22]. Makris and Constantinou [24], Potvin et al
(35. 36. 37, 38]).

Most authors have solved dynamic equations involving fractional deriva-
tives with finite differences or Griinwald series. They found the time step
needed to be small to keep a reasonable level of accuracy (Koh and Kelly [22],
Eldred et al [26. 27]. and Enelund et al [34]). The number of time steps needed
even for simple structures implies a large amount of CPU time, which render

the finite element simulations prohibitive for more complex structures.

1.3 Scope of the Investigation

As shown by the preceding literature review. although good results are ob-
tained with constitutive models of fractional orders, there are problems with
memory management and the CPU time required. The alternative is to use
classical models such as the Prony series. but at the expense of identifying
several parameters. Most commercial finite element packages offer Prony se-
ries models. but not fractional models. The goal of this thesis is to evaluate
the practicality of fractional models compared to the Prony series in terms of
precision and computation time.

A model of fractional order with one fractional derivative of the strain will
be implemented in a commercial finite element package allowing user material
behaviour subroutines. Given the small time steps required by models based
on finite differences or Griinwald series. a new algorithm built on the previous
work of Potvin et al [35, 36, 37, 38] will be elaborated. The fractional derivative

will be split into an integral term and an approximation for the integral in the



vicinity of ¢. but this time. the integral term will be simply solved with a
trapezoidal rule. The goal is to obtain good precision for large time steps.
Parameters for the viscoelasticity models available in the commercial finite
element package and the ones for the fractional model will be identified for two
materials, polymethyvlmethacrylate and 3M ISD 112. Although polymethyl-
methacrylate is not perfectly isotropic, it will be approximated as such for
this case. These two materials will then be used in beam configurations and
simulation results for all models will be compared to experimental results. No
attempt will be made to fit the model parameters to the simulation results.
The goal is to see how reliable the models can be when the parameters are

identified a priori.

1.4 Organisation of the Thesis

The next chapter of this thesis defines the viscoelasticity models available in
commercial finite element packages, as well as the fractional model. Typical
curves for the magnitude and phase of the modulus of a polymer with respect
to frequency are given and the fit to these curves obtained with each model is
shown.

Chapter 3 identifies the parameters for all models for the two chosen ma-
terials.

Chapter 4 details the numerical algorithm devised for the fractional deriv-
ative. Simple one-dimensional test cases are used to assess the accuracy of
the algorithm. The results obtained with the algorithm are compared to re-
sults obtained with the numerical inversion of the Laplace transform of the
one-dimensional equations. The effect of the different parameters of the algo-
rithm. such as the large time steps used for the integral term of the fractional
derivative. is evaluated in terms of accuracy and computation time.

Chapter 5 shows how the algorithm discussed in Chapter 4 is implemented
in a commercial finite element package. Samcef Tests similar to the one-

dimensional tests used in Chapter 4 are done, but this time with a three

10



dimensional formulation. Again. the accuracy of the results obtained for these
test cases is compared to the numerical inversion of the Laplace transform of
the equations representing the test cases.

Finally, Chapter 6 gives examples of homogeneous slewing polymethyl-
methacrylate beams and slewing steel beams covered with constrained layers
of 3M ISD 112. The simulation results obtained with the various models are
compared to the experimental data. The precision and the computatior time
are evaluated with the objective of determining the usefulness of the fractional

order model compared to classical models, such as the Prony series.
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Chapter 2

Models of Linear Viscoelasticity
Behaviour

2.1 Introduction

Hooke's law predicts a strain proportional to the stress with no energy dissi-
pation. However, if the material is viscoelastic. it dissipates energy. For cyclic
loading, the strain is delayed with respect to the stress and a phase difference
appears. Obviously, Hooke’s law is not sufficient to describe this phenomenon
and other models are needed.

This chapter describes classical models used to represent viscoelastic be-
haviour. These models are built around Hooke’s law by adding to it derivatives
of the stress and the strain. Finally. a new class of models is introduced where
fractional derivatives are used, which are derivatives of an order between 0

and 1. to represent more accurately the observed behaviour of polymers.

2.2 Classical Constitutive Equations

A constitutive equation relates the stress and strain for all tensor components.
According to Malvern [40], energy is dissipated in polymers undergoing a
periodic shearing or a periodic hydrostatic compression. The shear response
often exhibits more variation than the volumetric response. Two different

constitutive equations are written for the deviatoric part and the hydrostatic
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part to reflect this fact. The deviatoric part, S;;, of the stress tensor o;; is:
1
Sij =05 — §5ij0kk (2.1)

Similarly, the deviatoric part, e;;, of the strain tensor ¢;; is

1
€i; =E&ij — §§ij5kk (22)
The hydrostatic parts, S” and e” are defined as:
1 1
S" = o (2.3)
3
1
e" = gé'u (2.4)
The hydrostatic response is often considered elastic for polymers [40]:
S" = 3K.e" (2.5)

where K, is the equilibrium bulk modulus, which is the modulus obtained
for a static load. This simple expression is used throughout this work to
characterize the hydrostatic response. However. there are several possibilities
for the shear response.

The next sections discuss the most common models by showing their typical
behaviour. Values of the shear modulus as it varies with frequency are shown
for the given model and the experimental data for an acrylic based polymer
manufactured by 3M, 3M ISD 112. This material will be discussed in details
in Chapter 3, but it is used in this chapter as an example to illustrate the
viscoelastic models. The parameters of the models are chosen to reasonably
cover the whole chosen frequency interval. It is done manually, without an
optimization algorithm, and their choice is discussed in Chapter 3. The goal
of this chapter is to gain an understanding of the models, by illustrating the
typical behaviour inherent to each model, without commenting on the specific

values used for different materials.
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2.2.1 The Voigt-Kelvin Model

The simplest model for the shear response is called the Voigt-Kelvin model.
The stress is simply proportional to the strain and the first derivative of the

strain:

S,'j = ‘ZG'ee,-j + 2G.Geé,'j (26}

where a is a damping coefficient and G., the equilibrium shear modulus.

Assuming zero initial conditions, the Laplace transform of Equation 2.6 is
taken to obtain the frequency-varying shear modulus:

Si;(s)

2e;;(s) =C7=CetaGes (2

[ o)
-~
~—

where s = 27 f and is the Laplace domain variable. The factor 2 in front of
e;; comes from the use of elasticity strains. The star used as a superscript
for G indicates a complex modulus, a modulus varying with frequency and
characterized by a magnitude and a phase.

Typical experimental behaviour for polymers shows the magnitude of the
shear modulus increasing with frequency up to an asymptotic value, whereas
the phase is shaped as a bell. At very low frequencies, the phase difference
is zero and the material behaves elastically. At very high frequencies. the
phase difference is again zero, and the material again behaves elastically, but
with a modulus presenting a higher magnitude than at low frequencies. A
Voigt-Kelvin model. however. is characterized by a monotonically increasing
magnitude and a phase increasing up to an asymptotic value of 90°. Figure 2.1
shows the experimental data for 3M ISD 112. A typical fit is obtained for a
Voigt-Kelvin model and is also shown in Figure 2.1. Since the phase rises very
sharply from 0° to 90°, the model cannot accomodate a broad range of data
for the phase. The model also predicts a magnitude rising at a faster rate than
is observed physically and the model either underestimates or overestimates

the data for the magnitude.
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Figure 2.1: Complex Shear Modulus for the Voigt-Kelvin Model (G, = 7.00 x
10* Pa, a = 0.005)
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2.2.2 The Maxwell Model

Another simple model for the shear response is the Maxwell model. The stress
added to the first derivative of the stress are proportional to the first derivative
of the strain. In the Voigt-Kelvin model, there was no derivative of the stress,

in Maxwell model, the strain itself is not involved:
S,‘J‘ + G.Sij = 2(1Geé,'j (28)

where a is a damping coefficient and G., the equilibrium shear modulus.
Assuming zero initial conditions, the Laplace transform of Equation 2.8 is

taken to obtain the frequency-varying shear modulus:

Sij(S) —G‘ _ aGeS

2uls) (2.9)

26,‘_,’(8) - l+as
The Maxwell model is characterized by an amplitude increasing up to an
asymptotical value. L’Hospital’s rule shows the limit when the frequency

becomes infinite to be G,:

=G, (2.10)

Physically, the material exhibits a modulus close to G. at low frequencies,
which then rises to an asymptotic value called the glassy modulus, G, [40].
The Maxwell model, however. only goes up to G, from a value of zero for the
modulus. As for the phase., the model predicts an asymptotic value of 90°
then sharply decreasing to zero. This does not approximate well the physical
behaviour showing a phase starting at zero, rising to a maximum, and then
decreasing to zero. Figure 2.2 shows the experimental data for 3M ISD 112

and an appropriate fit obtained for a Maxwell model.

2.2.3 The Standard Linear Solid Model

A better model than the preceding two would be obtained by combining prop-
erties of the two models. The magnitude should start at the equilibrium

modulus, as predicted by the Voigt-Kelvin model, but it should not increase
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infinitely. It should reach an asymptotic value at high frequencies, as it does
for the Maxwell model. but this value should be the glassy modulus, and not
the equilibrium modulus. A model combining these properties exhibits the
same number of derivatives of stress and strain. The simplest of these models
has one derivative of the stress added to the stress equal to one derivative of

the strain added to the strain:
S,‘j + b.S",»J» = QGEB,‘J' + 2aG¢é,-j (211)
Assuming zero initial conditions, the Laplace transform of Equation 2.11 is

taken to obtain the frequency-varying shear modulus:

Sy(8) _ e _ G+ aCes (2.12)

26,‘_7'(3) - B 1+bs

The limit as the frequency nears zero gives G.. which agrees with physical

observations:
. Ge+aG.s
lim ——— =G, 2.13
P R + bs ¢ ( )

L’'Hospital’s rule is used to obtain the limit when the frequency becomes

infinite:

lim Ge + aGe.s _ aG, _ aG.
=% 1+bs =% b b

(2.14)

The aymptotic value of G4 can be obtained if a and b are chosen accordingly.
For both limits, the modulus no longer depends on s at very low or very high
frequencies, and therefore, the phase is zero at these extremes, again satisfying
physical observations.

Figure 2.3 shows some experimental data and an appropriate fit obtained
for the standard linear solid model. Despite the model behaving appropriately
at very low and very high frequencies, it still does not exhibit the gentle rise
in both magnitude and phase observed experimentally. The magnitude rises
too sharply from G. to G4, and the phase goes to higher values than seen
experimentally. To obtain a better fit, more derivatives of the stress and strain

are needed. As derivatives are added, the fit gets better, but the complexity
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increases and there are more parameters to identify. A general form of classical
constitutive equations is:

4 4 .
zprﬁstj = Z q:-aFeij (210)

r=0 r=0
If m and n are set to 1, then this form reduces to the standard linear solid

model with the following parameters:

po =1
po= b
g =1 (2.16)
@t = a

2.3 Implementation of Classical Constitutive
Equations in Commercial Finite Element
Packages

Many commercial finite element packages offer some viscoelastic constitutive
equations to represent material behaviour. Very often, the constitutive equa-
tion is expressed as a Prony series. This form of modulus is in fact a relaxation
modulus written as:

N
Gretaz(t) = Ge + Y Goexp™/™ (2.17)

n=1
The relaxation modulus is defined as the modulus when the material is sub-
mitted to a step of strain of magnitude e, at ¢ = 0 [41]. The complex modulus

derived from Equation 2.17 is obtained by studying the relaxation response

when a constant strain, egy, is applied:
Szyretaz(t) = 262, Greraz (t) (2.18)

Since €, is a step function applied at t = 0, the Laplace transform of Equa-

tion 2.18 is:
S reiar
zy.rel (S) — Grelax(s) (219)

2821
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The complex shear modulus is defined as the ratio of the stress over the strain
when using the engineering strain. Rogers [42] and Tschoegl [41] used that

definition to manipulate Equation 2.19 and obtain the complex modulus:
G” = 5Grelaz($) (2.20)

Equation 2.17 can now be used with Equation 2.20 to get the complex mod-
ulus. The Laplace transform of Equation 2.17 is taken:

Ge L Guma
T=s(=+) 2.2
G =s(— + 271 Tns) (2.21)

s
By simplifying, a form for the complex shear modulus represented by the

Prony series is obtained:

GnTns
= G. +Z s (2.22)

The shear modulus is sometimes written using the glassy modulus rather than

the equilibrium modulus [41]:

Ge=G, — z\: Gg0n (2.23)
n=1
where
G, =Gy0n (2.24)
Equation 2.22 becomes:
=G, - Z Gogn + Z Cs9nTns (2.25)
1+ 7,5

This last form is the one most often encountered in commercial finite element
packages.

Figure 2.4 shows Prony series with one term. two terms, and five terms to
model the behaviour of a typical polymer. With five terms, the Prony series
is following quite closely the experimental data and more terms would give an
even smoother curve. The numerical values of the parameters for the three
curves are given in Chapter 3. The good fit obtained with five terms is related
to the specific behaviour of the material. Other materials would require less

or more terms for a suitable fit.
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2.3.1 Equivalence of the One-Term Prony Series and
the Standard Linear Solid Model

The Prony series gives identical results to a classical constitutive equation with
the same number of derivatives for the stress and strain. Therefore. a one-
term Prony series is equivalent to a standard linear solid model. The one-term

Prony series is written:

(2.26)

This is compared to the complex modulus representing a standard linear solid

model:
G + aG.s
Gr=—=—"—° 2.27
1+bs ( )
An equivalence for the parameters is found:
Gimy
= 7+
a 1 Ge
b = n (2.28)

The same can be done for higher order classical constitutive equations and

higher order Prony series.

2.3.2 The Zener Model Implemented in Samcef

Samcef. a commercial finite element package, offers a Zener model in addition
to the Prony series, the Voigt-Kelvin model. and the Maxwell model. The
Zener model is similar to a standard linear solid model, but the definition of
the parameters as implemented in Samcef gives it some peculiar properties. It
is written:

a -

¥ a
S+ ——38; =2—"—G.e; +2
1++77 "1+ 7 Tl4n

G.é;; (2.29)

where a and v are damping parameters. Assuming zero initial conditions, the
Laplace transform of Equation 2.29 is taken to obtain the frequency-varying
shear modulus:

G = YGe + aG.s

2e;;(s) T (1+7)+as (2.30)
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The limit as the frequency nears zero is taken:

7G. +aGes v

= . 2.31
sl-r-I%J(1+w,)+as 1+~,'G (2:31)

This result does not satisfy physical observations for most polymers. At very
low frequencies, the modulus should approach G., whereas this model predicts
an asymptotic value equal to a fraction of G..

L'Hospital's rule is used to obtain the limit when the frequency becomes
infinite:

=1 =G, 2.32

At very high frequencies. the model tends to G, rather than Gy. This model
does not satisfy physical observations of most solid polymers. Figure 2.5 shows
some experimental data and an appropriate fit obtained for the Zener model.

The fit for the phase is similar to the fit obtained with the standard linear
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solid model. but because the magnitude tends to G, at high frequencies, it
remains well below the experimental values. The Zener model would satisfy
physical observations if the parameter G. in Equation 2.29 was replaced by

G,.

2.4 Models Based on Fractional Derivatives

All models with few parameters reviewed in the preceding sections had se-
rious shortcomings in representing the behaviour of polymers over a broad
frequency range. The only models achieving this goal were the Prony series
with several terms, or alternately, classical constitutive equations with several
derivatives of the stress and strain. These can be used when the complex
modulus is known over a wide frequency range. Usually, it is the case for
materials sold commercially as damping layers, but it is not often the case for
polymeric materials used as components of mechanical systems. Very often,
the equipment to obtain the complex modulus is not available and limited
data is known. Faced with that prospect. many engineers choose to model the
damping behaviour using as few parameters as possible.

The main problem with classical constitutive equations with few parame-
ters is the sharp rise in the magnitude of the modulus. This is governed by the
first derivative of the strain which imposes an increase in magnitude of one
decade per decade on a log log plot of the magnitude versus the frequency. To

illustrate this for the Voigt-Kelvin model, the complex modulus is written as:
G =G.+aG.s (2.33)

where s is equal to 27 f. The magnitude of G* is:

G| = /G2 + (aG.2r f)? (2.34)

The logarithm is taken on both sides of the preceding equation:

log|G*| = log \/G';’ + (aGe2r f)?
= Zlog (G2 + (aG.2m)?) (2.35)

26



10 ' T v |} L] v o 1 vl
| x Manufacturer Data
| | — Voigt-Kelvin
10 3
a
a
3.6
210
= L
[« -] b
ﬂ 3
=
i
1 x
x
x
10 X
4
10 sl L — A 1
107 10° 10' 10° 10° 10

Frequency (Hz)

Figure 2.6: Magnitude of the Shear Modulus for The Voigt-Kelvin Model

For high frequencies, the first term can be neglected compared to the second

and the logarithm of the magnitude becomes:

log|G*| = 3 log(aG.2nf)?

= log(aG.27f) (2.36)

The magnitude of the modulus increases one decade as the frequency increases
one decade for high values of frequency. Figure 2.6 shows the magnitude of
the shear modulus shown previously as part of Figure 2.1 expressed on a log
log scale for the magnitude. The slope of most polymers is much gentler
than a one decade increase of magnitude per decade of frequency. Bagley and
Torvik [43] were among the first to suggest using fractional derivatives instead
of integer derivatives in the modelling of viscoelastic behaviour. Fractional

derivatives are derivatives of an order between 0 and 1. It is defined as [23] :

1 d [t Cij(’i') _

Dfey,(t) = FaE b T (2.37)
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The order of the fractional derivative is smaller than a first order derivative,
and therefore. the slope of the magnitude with respect to frequency should be
gentler. To carry on with this analysis, the Laplace transform of the fractional

derivative is needed.

2.4.1 The Fractional Derivative Laplace Transform

The transform of £ [Dfe,-j(t)] is sought for zero initial condition problems.
The definition of the fractional derivative used in Equation 2.37 implies the
material is in its undeformed state at ¢t = 0. To obtain the Laplace transform

of the fractional derivative. a new function h is defined:

1 t e,-j(r)
M) = ra—g ./0 G-

= Dfe;(t) = %h(t) (2.38)
Use is made of the following property of the Laplace transforms [44):
£|g1] =50 - 10 (2.39)
Substituting f by h yields:
L[Dfe,t)] = € {%h(t)]
= sH(s)— h(0)

_ ]. t eij(r)
= st [m —s)/o (t- r)f‘”]

1 tey(7)
- r(1—§)/o T-ne

Because the last term of Equation 2.40 is an integral from 0 to 0, it is always

(2.40)

t=0

equal to 0, and consequently:

L [Dfe,-j(t)] = sl [1‘(11—5) 0‘ (teii(:))edr] (2.41)

The integral on the right hand side of Equation 2.41 is a convolution product

and can be solved using the following property of Laplace transforms [44]:

C [‘/Ot flu)g(t — u)du] = F(s)G(s) where G(s)= L][g(t)]
and F(s)= LC[f(¢)] (2.42)



Some simple substitutions are needed:

T = u

flu)y = ej()
B _ 1 _ (t — 7)~¢
g(t —u) (t-T)[(1-€) T(1=¢)

Using Equation 2.43 in Equation 2.41 yields:

(2.43)

1 t e;(T)
L [Deeij(t)] = sL [1“(1 —€)Jo (t— T)Edr]

=€
se,-]-(s)[, [m] (2.44)

To proceed, the following transformation is needed [44}]:

¢! 1
= — 2
C {F(n)} pe where n >0 (2.45)

Letting n = 1 — £, Equation 2.44 becomes:

t=¢
E[D‘seij(t)] = seij(s)[. [fﬁ—_ﬂ]

1
= Se,'j(S)Sl—_E
= s‘ceij (S) (246)

This is a nice and compact result easy to use. It also illustrates the fact that
when € tends towards 1, the same result is obtained as for the first derivative
of e;; for zero initial conditions. whereas when £ tends towards 0, the same

Laplace transform as the undifferentiated function e;; is reached.

2.4.2 The Fractional Voigt-Kelvin Model

The most basic model making use of a fractional derivative is the Voigt-Kelvin

model in which the first order derivative is replaced with a fractional derivative:
Sij = 2G.eij + 2aG.Dle;; (2.47)

The Laplace transform for zero initial conditions brings out the complex mod-

ulus:
Sij(s)
26,'_-" (SJ

=G* = G, + aG.s* (2.48)



To observe the impact of the fractional order of the derivative, the magni-

tude of G* is needed. First, the Laplace variable, s, is written as 27 f:

G* = G. + aG.(i2r f)*
The identity € = cos(3) + isin(%) is used:
G =G.+ aGe(27rf)€(cos(§) + isin(zr,—)é))

The magnitude of G* is written:

<"1 = \/(Ge +aG(2nf) 005(7;_5))2 + (aGe(2n f)* sin(ﬂ%g))2

Use is made of the identity cosg(“—,f) + sinz(’%f) =1:

G| = \ﬁg +2aG2(27 f)¢ Cos(’%g) + a2G2(2n f)%
The logarithm is taken on both sides of the preceding equation:

log |G| = %log (Gz + 2aG2(27 f)* cos(%) + aQGE(Qﬂ'f)Qf)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

For high frequencies and a value of £ of approximately 0.5, the first term can

be neglected compared to the other two, and the remaining terms can then be

reorganized:
- 9 € 775 9 ~0 2
log|G*| = =log|(2aG; (27 f) cos(7)+a'Gg(27rf)‘

log (aG2(27 f)F) (-z cos(% +a(2m f)f)

B = D~ D=

(log (aG;f’(‘Zﬁf)f) + log (2 cos(%g) + a(27rf)5)) (2.54)

Again. the term 2 cos( ”—2{) can be neglected in front of the remaining term for

high frequencies for a value of £ of approximately 0.5. The terms left are split

to show the effect of &:

log |G| = (log (aGS(ZTFf)f) + log (a(27rf)£))

N — N —

= loga + log G, + Elog(2xf)

30
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At high frequencies, when the frequency increases by one decade, the magni-
tude of the modulus increases by & decade, and £ is between 0 and 1. For the
Voigt-Kelvin model, the increase was of a full decade. The fractional Voigt-
Kelvin model provides a gentler slope. This conclusion also holds for small
values of £&. However, if £ is too low, the material behaves almost elastically
and the slope approaches zero. Figure 2.7 shows experimental data for 3M ISD
112 and the fractional Voigt-Kelvin model for a value of 0.54 for {&. When the
frequency increases by one decade, the magnitude increases by approximately
half a decade. This gentler slope is much closer to the actual behaviour of
the polvmer than what is obtained with the Voigt-Kelvin model. The rise
in the phase value is also more representative of the experimental data. It
reaches an asymptotic value closer to physical observations. A perfect model,

however, would have a phase decreasing rather than reaching an aymptotic
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value once it is passed its maximum value. A model with these properties is
the standard linear solid model. The main difference between the standard
linear solid model and the Voigt-Kelvin model is the derivative of the stress.
A fractional derivative of the stress would probably allow a gentler negative
slope for the phase than obtained with a first order derivative. This idea was

also explored by Bagley and Torvik {43].

2.4.3 The Fractional Standard Linear Solid Model

Bagley [45] used a model with a fractional derivative of the stress and one of

the strain of the same order. This model is:
Sij + bD'Sy; = 2Geei; + 20G. D'e;; (2.56)

Assuming zero initial conditions, the Laplace transform of Equation 2.56 is

taken to obtain the frequency-varying shear modulus:

Si;(s) e GetaG.st .
2e;i(s) ¢ = 1+ bst (2.57)

Figure 2.8 shows an appropriate fit of the fractional standard linear solid
model for a typical polymer. This model has the best fit for all the models
presented with few parameters. This is a marked advantage when limited data
is available to identify the parameters as is often the case in the engineering

practice.

2.5 The Assumption of a Constant Poisson’s
Ratio

So far, a constant bulk modulus has always been assumed. It is an assump-
tion that is often used because it is quite close to physical observations [41],
and more often than not, the full behaviour with respect to frequency for all
elasticity constants is not known.

Another assumption very often used is to assume constant Poisson’s ratio.

It does simplify the equations in some cases, and for low frequencies, it does
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Figure 2.9: Young’s Modulus for a Constant Poisson’s Ratio or a Constant
Bulk Modulus

not diverge too much from the results obtained with a constant bulk modulus
assumption. especially in a nearly incompressible case. Figure 2.9 shows the
calculated Young's modulus when both assumptions are applied to the shear
modulus data of a typical polymer. The equilibrium Poisson’s ratio is taken
to be 0.499, representing a nearly incompressible material, which is typical of
many elastomers. If Poisson’s ratio is assumed constant, Young's modulus is
calculated as:

E* =2G*(1 + v) (2.58)

where E* is the complex Young’s modulus and v, is the equilibrium Poisson’s
ratio.
If the bulk modulus is assumed constant, then, Young’s modulus is ob-

tained with:
9K.G*

E*= 3K, +G*

(2.59)
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where the equilibrium bulk modulus. A.. is

_2G.(1 + v.)

30— (2.60)

K.

with a value of 70000 Pa for G., which is the value obtained for the real part
of the modulus at 0.1 Hz. This frequency is the lowest frequency for which
data is given by the manufacturer for 3M ISD 112. The results of Figure 2.9
show values of Young’s modulus to be nearly the same under both assump-
tions. The values shown on the graph are calculated from the shear modulus
values read from the chart provided by the manufacturer. The chart being
difficult to read. it results in a curve not being entirely smooth. Therefore,
the results are shown as discrete points representing the points read from the
chart. For a nearly incompressible case. the effect of either assumption is felt
mainly on the bulk modulus and Poisson’s ratio themselves. This conclusion
does not hold for lower values of Poisson’s ratio. Figure 2.10 shows the com-
plex Young's modulus for an equilibrium Poisson’s ratio of 0.3. For such a
value. the constant bulk modulus assumption and the constant Poisson’s ratio
assumption give different results.

For the nearly incompressible case, Figure 2.11 shows the calculated bulk
modulus if Poisson’s ratio is assumed constant, and Figure 2.12 shows the
calculated Poisson’s ratio if the bulk modulus is assumed constant. Poisson’s
ratio decreases slightly with frequency for a constant bulk modulus assump-
tion. but the bulk modulus increases significantly at high frequencies for a
constant Poisson’s ratio assumption. At low frequencies, however, both as-

sumptions should give similar results.

2.6 Models Implemented in Samcef

One of the goal of this thesis is to implement a fractional order constitutive
equation in a commercial finite element package with the objective to compare
the efficiency of this model to other available models. Ideally, a fractional

order model would be more accurate and compute faster. Even if it does
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not compute faster. it could still be of interest because of the few parameters
needed to represent the viscoelastic behaviour. In practical applications, often
only partial data is available, such as a frequency response, and it is easier to
fit a model with few parameters.

Samcef version 8.1 [46] is the finite element package used for this work.
The nonlinear dynamic module of Samcef used to model the viscoelastic be-
haviour is also the nonlinear dynamic module of Nastran. Samcef allows a
user subroutine for the constitutive equation and a fractional Voigt-Kelvin
model is implemented. A fractional standard linear solid model would be
even better. but it involves a fractional derivative of the stress and one of
the strain and therefore. it is more demanding on computer ressources. This
work concentrates on the fractional Voigt-Kelvin model as a first evaluation of
the efficiency of a fractional order model. The assumption of a constant bulk
modulus is used.

Samecef also offers the Prony series. The fractional Voigt-Kelvin model will
be compared to Prony series of various orders and for both assumptions, a
constant Poisson’s ratio. and then a constant bulk modulus. The three other
models available in Samcef all use the constant Poisson’s ratio assumption.
They are the Voigt-Kelvin model. the Maxwell model. and the Zener model.

Table 2.1 summarizes the various models compared in this study.

2.7 Conclusion

Models representing the viscoelastic behaviour are variations of Hooke's law
where derivatives of the stress and the strain are added. For a model to
represent the physical observations. the same number of derivatives for the
stress and the strain are needed. A model with only one derivative of the stress
and one derivative of the strain would have the general characteristic of the
observed behaviour of a polymer, but such a modulus implies a variation with
frequency much more acute than the physical behaviour. Several derivatives

are needed for a good fit between the model and the experimental data for the
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Model Complex Modulus Assumption

Voigt-Kelvin G* =G, +aGes Constant Poisson’s Ratio
Maxwell G* = %ﬁ Constant Poisson’s Ratio
Zener G* = % Constant Poisson’s Ratio
Prony Series G* =G.+ T, &2 | Constant Poisson’s Ratio

Prony Series G* =G, + N  Eams | Constant Bulk Modulus

n=1 [+7ns

Fractional Voigt-Kelvin | G* = G, + aG.s* Constant Bulk Modulus

Table 2.1: Models Used in this Study

complex modulus.

An alternative to these classical models is a model with fractional deriva-
tives. derivatives of an order between 0 and 1. rather than integer derivatives.
These tyvpes of models can result in representative behaviour with only one
fractional derivative of the stress and one fractional derivative of the strain.
However. they are more complex to handle mathematically.

In this thesis. a fractional model with one derivative of the strain will be
implemented in a commercial finite element package. It will then be compared
to classical models available in the chosen package, Samcef. The next chap-
ter deals with the identification of the parameters of the various viscoelastic
models for two materials, polymethylmethacrylate and 3M ISD 112, an acrylic

based polymer.
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Chapter 3

Viscoelastic Behaviour of
Polymethylmethacrylate and an
Acrylic Based Polymer

3.1 Introduction

The models developed in the previous chapter are applied to two polymeric
materials: polvmethylmethacrylate (PMMA) and an acrylic based polymer,
3M ISD 112. The goal is to define the parameters of the various models for
these two materials and then, compare simulation results with experimental
results for structures made of these materials and submitted to some dynamic
loads.

PAMIMA is chosen because of its availability, low cost. and ease of machining
to given dimensions. The other material, 3M ISD 112, is an acrylic based poly-
mer manufactured by 3M and used as a damping layer. It will be sandwiched
between a steel beam and an aluminium constraining layer and submitted to

large displacements.

3.2 Behaviour of Polymethylmethacrylate

Testing of PMMA to determine its frequency-dependent modulus is necessary.
First, the equilibrium modulus is found. Then, the modulus under various

frequencies is found and these data points serve as the basis to identify the
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parameters of the models defined in the previous chapter.

3.2.1 Equilibrium Modulus

One parameter used to model the behaviour of the material which is easily
found experimentally is the equilibrium Young's modulus. To determine it for
PMMA. a tensile test is performed with an MTS hydraulic testing machine.
The PMMA sample is a rectangular prism with a section of 22.5 mm by
5.88 mm. The strain is measured using an extensometer. Figure 3.1 shows
the load as a function of time. The loading rate is 31.3 N/s. This value is found
with the linear interpolation done using the polyfit function of Matlab, which
is based on least squares. Figure 3.2 shows the stress-strain relationship. The

slope of the linear interpolation represents the equilibrium Young's modulus:
E.=3.43 x 10° Pa (3.1)

The equilibrium shear modulus and the equilibrium bulk modulus can be
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calculated with the value of the equilibrium Poisson’s ratio. This value is
taken from Van Krevelen [47] and is equal to 0.4 for PMMA. The equilibrium

shear modulus. G,., and the equilibrium bulk modulus. K, are:

E.
= =12 9 2
G. S0+ 20 1.23 x 10° Pa (3.2)
K. = __Ee s mx10° Pa (3.3)
3(1 — 2v,)

3.2.2 Frequency Dependent Behaviour

The frequency response of PMMA is established by imposing a cyclic sinusoidal
load on the material for various frequencies. The load is kept low enough for
the strain to remain below 0.003, which is the strain region of interest for the
type of applications studied in Chapter 6.

The magnitude of the complex Young’s modulus is obtained by dividing
the amplitude of the sinusoidal stress signal by the amplitude of the sinusoidal
strain signal. The phase of the complex Young’s modulus is positive and
represents the delay between the strain and the stress signals. The first step
is to analyse the stress and strain signals and obtain their amplitudes and

phases.

Analyses of the Stress and Strain Signals

The dynamic tests are load control experiments where the load is a sinusoidal
signal of a given frequency and amplitude. However, the control is not perfect
and the resulting signal is not a perfect sine wave. Dividing the load by
the section, the stress signal is obtained. The resulting strain signal is not
a perfect sine wave either, but rather something mirroring the stress signal.
Representive values of the amplitude and the phase of each signals are obtained
by fitting a sine wave through the experimental data. Figure 3.3 and Figure 3.4
show the experimental data at 1 Hz and the sine wave fitted to each. It can
be seen that the actual amplitude and phase would be difficult to read directly

from the experimental data, since the data points do not form a perfect sine
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wave. At low frequencies, the controller performs better. Figure 3.5 shows
the stress signal at 0.1 Hz and its sine fit. The signal is closer to a sinusoidal
curve than the stress data at 1 Hz. As the frequency increases, the load
controller has difficulty maintaining a sinusoidal signal. At 50 Hz. as shown
in Figure 3.6. the load signal is not very regular and no attempt was made to

collect data at higher frequencies.

The general form of the stress wave is:

Szz = Asin(2xft+¢)+ B

= Asin(27 ft) cos ¢ + Acos(27 ft)sing + B (3.4)

‘ The data consists of the experimental vector of time, t, and the corresponding
stress values, S,., for each frequency. Equation 3.4 is fitted to these data by
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Stress Signal Strain Signal

Frequency Amplitude Phase Amplitude Phase
(Hz) (Pa) | (degrees) (degrees)
0.1 1.3209 x 10° —65.7 1.1x 1073 —68.9
0.2 1.2675 x 10° —60.9 1.1 x 1073 —64.6
0.5 4.1058 x 10° —29.9 1.0 x 1073 —-33.9
1 3.8341 x 10° 72.6 || 9.2376 x 10~ 68.7
2 3.3068 x 10° 54.2 || 7.7334 x 10~ 90.2
S 2.0249 x 10° —50.4 || 4.5422 x 104 —54.5
10 1.1562 x 10°® —26.1 || 2.4933 x 10~ —29.9
20 6.3220 x 10° —63.3 || 1.3048 x 101 —66.5
30 3.8114 x 10° 30.1 | 8.1095 x 1073 27.7
50 2.2348 x 10° —10.9 || 4.3909 x 103 —13.6

Table 3.1: Amplitudes and Phases of the Stress and Strain Signals of PMMA

using:

(3.5)
B

Using matrix division in Matlab, the best coefficients in a least square sense,

Acoso
S:c = [ sin(27ft) cos(2wft) 1] | Asino

A, B. and o. are found. A similar fit is done using the strain signals. Ta-
ble 3.1 gives the amplitude and phase found for each signal. As the frequency
increases. the amplitude decreases, indicating the difficulty the controller has

in producing a sinusoidal load.

Young’s Modulus

By dividing the amplitude of the stress signal by the amplitude of the strain
signal, the magnitude of Young’s modulus is found. By subtracting the phase
of the strain signal from the phase of the stress signal, the phase of Young’s
modulus is obtained. Table 3.2 gives the magnitude and the phase of Young’s
modulus for each frequency tested. In the next section, the different models

developed in the preceding chapter will be fitted to these experimental data.

3.2.3 Parameters of the Models

Table 2.1 gave six models used in this study to be compared. Parameters for

each of these models are found for PMMA. The data coilected for PMMA
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Frequency || Magnitude | Phase

(Hz) (Pa) (degrees)
0.1 3.76 x 10° 3.2
0.2 3.87 x 10° 3.8
0.5 1.01 x 10° 1.0

1 4.15 x 10° 10
2 4.28 x 10° 4.0
5 4.46 x 10° 4.0
10 4.64 x 10° 3.8
20 4.85 x 10° 3.2
30 4.70 x 10° 2.4
50 5.09 x 10° 2.7

Table 3.2: Magnitude and Phase of Young’s Modulus for PMMA

yields Young’s modulus, but the models are expressed in terms of the shear
modulus. The assumption used for each model, either a constant Poisson’s
ratio or a constant bulk modulus, is specified in relating Young’s modulus to

the shear modulus.

The Voigt-Kelvin Model

The first model is a Voigt-Kelvin model with a constant Poisson’s ratio. As
stated by Equation 2.58, the complex shear modulus is obtained with:
E*
G = m (3.6)
The fit is done using the values of the complex shear modulus for a value of
Poisson's ratio of 0.4. The Voigt-Kelvin model is characterized by a magnitude
increasing rapidly. A fit where the magnitude at 50 H z, which is the last data

point, is approximatelyv the same as the experimental data is chosen. Such a

fit is obtained with:

G* = 1.23 x 10°(1 + 0.003s) Pa (3.7)

or

G. = 123x10° Pa
a = 0.003 (3.8)
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Figure 3.7: Voigt-Kelvin Model with a Constant Poisson’s Ratio for the Shear
Modulus of PMMA

If the experimental and modelled magnitude are equal for a lower frequency,
then the model is totally unrepresentative at 50 Hz. Figure 3.7 gives the
experimental data for the shear modulus calculated with a constant Poisson’s

ratio and the Voigt-Kelvin model.

The Maxwell Model

The Maxwell model also uses a constant Poisson’s ratio assumption. Equa-
tion 3.6 is used to obtain the calculated experimental shear modulus data with
a value of 0.4 for the equilibrium Poisson’s ratio. The fit is done using the
values of the complex shear modulus. The Maxwell model is characterized
by a phase decreasing rapidly. The chosen fit has a modelled phase close to
the experimental phase at a frequency of 1 Hz. This frequency is the lower

bound of the frequency range of interest for slewing beams. This choice of fit
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avoids a very high phase in the frequency range of interest which would not
be representative of observed behaviour. This fit is obtained with:

_ 2.0 x 1.23 x 10°%

- P 3.9
(1+2.0s) ¢ (3.9
or
G. = 1.23 x10° Pa
a = 2.0 (3.10)

Figure 3.8 gives the experimental data for the shear modulus calculated with

a constant Poisson’s ratio and the results using the Maxwell model.
The Zener Model

The Zener model also uses a constant Poisson’s ratio assumption, and again

Equation 3.6 is used to obtain the calculated experimental shear modulus data

52



with a value of 0.4 for the equilibrium Poisson’s ratio. The fit is done on the
values of the complex shear modulus. As in the case of the Maxwell model,
this model is characterized by a rapidly decreasing phase. A good compromise
is reached by having the modelled phase close to the experimental phase at

2 Hz, while not being too high at 1 Hz. This fit is obtained with:

_0.05x1.23x10°+1.0 x 1.23 x 10%

. P 3.11
¢ ((1+ 0.05) + 1.0s) ¢ (3-11)
or
G. = 1.23x10° Pa
v = 0.05
a = 1.0 (3.12)

Figure 3.9 gives the experimental data for the shear modulus calculated with

a constant Poisson’s ratio and the Zener model.

The Prony Series with a Constant Poisson’s Ratio Assumption

If Poisson’s ratio is not constant, the parameters of the Prony series are needed
for both the shear modulus and the bulk modulus. With a constant Poisson’s
ratio. the shear modulus and the bulk modulus exhibit the same variation
with frequency, resulting in the same 7,, and proportional G, and K,. The
experimental values for the shear modulus are obtained using Equation 3.6 and
a value of 0.4 for the equilibrium Poisson’s ratio. The best fit is found with
an algorithm devised by Rogers [42], and implemented in Matlab by Slanik
[48]. Table 3.3 gives the parameters of the Prony series up to three terms for
a constant Poisson’s ratio. The data used to build the Prony series is limited
to the interval [0.1 Hz,20 Hz|. The algorithm centers the phase bell shaped
curve in the middle of the data points. Therefore, an even number of data
points on each side of the phase peak value are kept.

The data points between 0.1 Hz and 20 Hz are neither low enough in

frequency to point towards the value of the equilibrium shear modulus, or
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Number of Terms G, Ggn Tn
(Pa) (Pa) (s)

1 1.7300 x 109 | 2.2474 x 10~ [ 9.6851 x 102

2 1.7192 x 10° | 9.2382 x 10~ | 4.0067 x 10~!

1.3236 x 107! | 2.7647 x 1072

3 1.7126 x 109 | 5.9271 x 10~ [ 6.3937 x 10!

7.0638 x 10~2 | 1.0906 x 10!

9.4834 x 1072 | 1.8398 x 102

Table 3.3: Parameters of the Prony Series with a Constant Poisson’s Ratio for
the Shear Modulus of PMMA
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high enough in frequency to point towards the value of the instantaneous or
glassv modulus. The Prony series found give the best fit for the data in the

range {0.1 H=.20 Hz| and not outside this range.

Figure 3.10 gives the three Prony series with the experimental data. With
three parameters, a reasonable agreement with the experimental magnitude is
found. The phase is also relatively smooth, but the model can not reproduce
closely the slowly varying bell shaped curve. Adding terms does not improve
the fit, since the very low and slowly varying phase exhibited by this material
is difficult to approximate with the Prony series. In Chapter 2. a good fit is
obtained with a Prony series of five terms for the material shown, but that

material has a phase rising much higher and more smoothly than PMMA.
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Number of Terms G, In Tn
(Pa) (Pa) (s)

1 1.7821 x 10° | 2.4242 x 107! | 9.5405 x 10~=

2 1.7700 x 10° | 9.8286 x 107> | 3.9863 x 10~!

1.4413 x 107! | 2.7417 x 10~2

3 1.7627 x 109 | 6.2743 x 1072 [ 6.3772 x 107!

7.5870 x 1072 | 1.0871 x 10!

1.0380 x 107! | 1.8307 x 10~2

Table 3.4: Parameters of the Prony Series with a Constant Bulk Modulus for
the Shear Modulus of PMMA

The Prony Series with a Constant Bulk Modulus Assumption

The experimental shear modulus data is calculated from the experimental
Young's modulus data using the following equation in the case of a constant
bulk modulus [41]:

G = 93[‘*3 (3.13)

with a value of K, equal to 5.72 x 10° Pa as found in Equation 3.3. Again. the
best fit is found with the algorithm devised by Rogers [42]. Table 3.4 gives the
parameters of the Prony series up to three terms for a constant bulk modulus.
The parameters in Table 3.4 are close to the ones found in Table 3.3. The two
assumptions give similar values for the shear modulus. Figure 3.11 gives the
three Prony series with the experimental data.

The corresponding bulk modulus Prony series is taken as a constant bulk

modulus simply written as:

K*=AHR,.=572x10° Pa (3.14)

The Fractional Voigt-Kelvin Model

The fractional Voigt-Kelvin model does not exhibit a bell shape for the phase,
but rather a slowly increasing phase. A fit where the modelled phase is close to
the experimental phase at 10 Hz is chosen. This frequency is the upper limit
of the first mode natural frequency for slewing motions of PMMA beams of

the dimensions used. A constant bulk modulus is assumed and Equation 3.13
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Figure 3.12: Fractional Voigt-Kelvin Model for the Shear Modulus of PMMA

is used to obtain the shear modulus data from the Young’s modulus data. An
equilibrium bulk modulus equal to 5.72 x 10° Pa is also used. The complex

shear modulus with the fractional Voigt-Kelvin model is:
G* = 1.23 x 10%(1 +0.125%??) Pa (3.15)
or

G. = 1.23x10° Pa
a = 0.12

£ = 022 (3.16)

The fit of the model to the values of the shear modulus determined experi-
mentally is shown in Figure 3.12.

Figure 3.13 gives the fractional Voigt-Kelvin model for a constant bulk
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modulus assumption compared to the Voigt-Kelvin, Maxwell. and Zener mod-
els for a constant Poisson’s ratio assumption. Despite not being as close to the
experimental data as the Prony series, the fractional Voigt-Kelvin is obviously

the second best one after the Prony series for its fit.

3.3 Behaviour of the Viscoelastic Layer 3M
ISD 112

A viscoelastic layer is a thin polymeric sheet used to damp vibrations. As any
polymer, its elastic constants vary with frequency. Users select the viscoelastic
layer according to the magnitude and phase of its shear modulus at the fre-
quency they wish to damp. Manufacturers establish charts of the modulus as

a function of frequency usually using a DMTA (Digital Mechanical-Thermal
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Frequency | Storage Modulus | Loss Factor
(Hz) (Pa)
0.1 7.00 x 10% 0.4
0.5 1.00 x 10° 0.6
1 1.40 x 10° 0.7
2 1.70 x 10° 0.8
3 2.00 x 10° 0.85
4 2.10 x 10° 0.9
5 2.40 x 10° 09
10 3.40 x 10° 1.0
20 5.00 x 10° 1.0
50 7.50 x 10° 1.0
70 9.00 x 10° 1.0
100 1.00 x 108 1.0
200 1.60 x 108 1.0
500 2.50 x 108 0.9
700 3.00 x 10° 0.9
1000 3.50 x 10° 0.85
5000 7.00 x 10° 0.6
10000 9.00 x 10° 0.5

Table 3.5: Shear Storage Modulus and Loss Factor for 3M ISD 112

Analyzer). Viscoelastic layer 3M ISD 112 is used in this study because it

is mostly efficient at room temperature and it has good potential for the

aerospace industry.

3.3.1 Frequency Dependent Behaviour

The shear modulus is given as the storage modulus, G’, being in fact the real
part of the complex modulus, and the loss factor, 7, representing the imaginary
part. The storage modulus and loss factor constitute the complex modulus

when written as:

G* = G'(1 +in) (3.17)

Table 3.5 gives the data read from the manufacturer charts at 20°C.
Figure 3.14 shows the data from the manufacturer at 20°C in the form of
the magnitude and the phase of the shear modulus. The same data is shown

in Table 3.6. The equilibrium modulus is not given by the manufacturer, but
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Frequency | Magnitude | Phase
(Hz) (Pa) (degrees)
0.1 7.54 x 104 21.8
0.5 1.17 x 10° 31.0
1 1.71 x 10° 35.0
2 2.18 x 10° 38.7
3 2.62 x 10° 40.4
4 2.83 x 10° 42.0
5 3.23 x 10° 42.0
10 4.81 x 10° 45.0
20 7.07 x 10° 45.0
50 1.06 x 108 45.0
70 1.27 x 108 45.0
100 1.41 x 108 45.0
200 2.26 x 106 45.0
500 3.36 x 10° 42.0
700 1.04 x 106 42.0
1000 4.59 x 108 40.4
5000 8.16 x 10° 31.0
10000 1.01 x 107 26.6

Table 3.6: Magnitude and Phase of Shear Modulus for 3M ISD 112




Table 3.6 gives a value of 7.54 x 10 Pa at 0.1 Hz. The equilibrium value is

arbitrarily set at 7.00 x 10* Pa, a value slightly lower than the value at 0.1 Hz.

3.3.2 Parameters of the Models

Parameters for the six studied models are also found for 3M ISD 112. In the
case of PMMA, the experimental data was obtained for Young’s modulus. The
assumption used, either a constant Poisson’s ratio or a constant bulk modulus,
was important in obtaining the corresponding shear modulus data. In the case

of 3M ISD 112, the manufacturer gives directly the shear modulus.

The Voigt-Kelvin Model

The first model is the Voigt-Kelvin model. The phase of this model increases
rapidly from 0° to 90°. Since the experimental phase of 3M ISD 112 peaks
at 45°, a fit where the transition from 0° to 90° occurs approximately in the

middle of the bell shape is chosen:

G* = 7.00 x 10*(1 + 0.005s) Pa (3.18)

or

G, = 7.00x 10* Pa
a = 0.005 (3.19)

Figure 3.15 gives the manufacturer data for the shear modulus and the Voigt-

Kelvin model.

The Maxwell Model

The Maxwell model is characterized by a phase decreasing rapidly from 90°
to 0°. A fit is chosen for which the phase is close to the experimental phase
between 3 Hz and 4 Hz, the natural frequency of the experimental structure

which will be tested. This fit is obtained with:

G+ _ 0:05 X 7.00 x 10%
T (1+0.05s)

Pa (3.20)
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or
G, = 7.00 x 10* Pa
a = 0.05 (3.21)

Figure 3.16 gives the manufacturer data and the Maxwell model.

The Zener Model

A reasonable fit for the Zener model for which the phase peaks in the area

where the manufacturer data peaks is obtained with:
_0.05x 7.00 x 10* + 0.001 x 7.00 x 10%s

¢ ((1+0.05) + 0.001s) Pa (3.22)
or
G. = 7.00x 10* Pa
¥y = 0.05
a = 0.001 (3.23)
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Figure 3.17: Zener Model for the Shear Modulus of 3M ISD 112

Figure 3.17 shows the manufacturer data and the Zener model.

The Prony Series

The Prony series for the shear modulus will be the same with both assump-
tions. a constant Poisson’s ratio and a constant bulk modulus, since the shear
data is taken directly. The chosen assumption will affect the bulk modulus,
but not the shear modulus. The best fit is also found using the algorithm
devised by Rogers [42]. Table 3.7 gives the parameters Gy, g,, and 7, of the
Prony series up to seven terms for the shear modulus. These parameters are
the ones input in the finite element package. The value of G. is equal to
6.9042 x 10* Pa for a seven term Prony series, which is in agreement with the
choice of a G, of 7.00 x 10* Pa made in Equations 3.18 to 3.22.

Figure 3.18 gives the four first Prony series with the manufacturer data.

Figure 3.19 gives the three last Prony series with the manufacturer data. With
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Table 3.7: Parameters of the Prony Series for the Shear Modulus of 3M ISD

112

Number of Terms

G,
(Pa)

gn
(Pa)

Tn

(s)

1.0056 x 10°

9.9251 x 10!

4.3342 x 10~

o

9.9433 x 10°

7.4316 x 1077
9.1819 x 107!

2.1162 x 10~*
1.0535 x 10~*

9.7334 x 10°

2.3516 x 102
1.6072 x 10!
8.0827 x 107!

9.1238 x 10~=
2.1237 x 1073
6.1213 x 10~%

9.5689 x 10°

1.1170 x 10~
5.1392 x 1072
2.1573 x 107!
7.1421 x 107!

1.9318 x 10~}
1.0731 x 1072
6.7327 x 1071
4.5697 x 10~°

9.4104 x 10°

7.0184 x 1073
2.3852 x 102
8.5601 x 102
2.5886 x 107!
6.1717 x 10~}

3.1445 x 107!
2.8951 x 102
3.0332 x 1073
3.5349 x 10~
3.8288 x 107°

9.2988 x 10°

5.0212 x 10~°
1.4201 x 1072
4.0498 x 1072
1.0242 x 107!
2.8052 x 107!
5.4985 x 107!

4.2442 x 107!
5.8737 x 1072
9.0394 x 1073
1.2610 x 10-3
2.2384 x 10~*
3.4307 x 1073

=1

9.2147 x 10°

3.9026 x 1073
9.7895 x 1073
2.0646 x 10~2
5.7318 x 102
1.3123 x 107!
2.7891 x 10~!
4.9071 x 107!

5.1558 x 107!
1.0322 x 10°!
1.7741 x 1072
3.6691 x 1073
7.2364 x 10~*
1.5945 x 10~
3.1760 x 1073

67




Magnitude (Pa)

107 10° 10’ 10° 10° 10*
100 T —— prre—— .
80} -
=
3
S s0
3]
s
g a0
[+
=
a
207
D " ‘_Lo PN 11 Lz 13 " .
10 10 10 10 10 10
Frequency (Hz)

Figure 3.18: Prony Series up to Four Terms for the Shear Modulus of 3M ISD
112

five terms in the Prony series. the fit for the magnitude is excellent, but the

phase is still not smooth. With seven terms in the series, the phase is smooth.

For a constant Poisson’s ratio assumption, the corresponding bulk modulus

Prony series are obtained using:

2G*(1 + ve)

31— 20 (3.24)

K=

The manufacturer suggests an equilibrium Poisson’s ratio in the range [0.49, 0.5].
A value of 0.499 is arbitrarily chosen.

If a constant bulk modulus is assumed, then the following equation is used:

_ 2G(1 +ve)

(¢ = 2
R 3(1 - 2v,) (3.25)

A value of 7.00 x 10* Pa is assumed for G., and a value of 0.499 for v.. In
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that case. the bulk modulus is equal to:
K* = K, =3.50x 10" Pa (3.26)

The Fractional Voigt-Kelvin Model

The fractional Voigt-Kelvin model has one derivative of the strain and no
derivative of the stress. Therefore, the phase does not form a bell, but half a
bell reaching an asymptotic value. A fit is chosen for the model to correctly

represent the first half of the bell:
G* =7.00 x 10°(1 + 0.85*%") Pa (3.27)
or

G. = 7.00x 10 Pa
a = 08
£ = 0.51 (3.28)

The fit of the model to the manufacturer values is shown in Figure 3.20.
Figure 3.21 gives the fractional Voigt-Kelvin model for a constant bulk
modulus assumption compared to the Voigt-Kelvin. Maxwell, and Zener mod-
els for a constant Poisson’s ratio assumption. As in the case of PMMA. the
fractional Voigt-Kelvin model is not as close to the experimental data as the

Prony series. but it obviously gives a better fit than the other classical models.

3.4 Conclusion

The parameters of the chosen models were found for both PMMA and 3M
ISD 112. Most models exhibit a rather poor fit. The Prony series manage to
approximate the experimental data, but several parameters are needed. The
fractional Voigt-Kelvin model does not give a perfect fit for PMMA, but the
phase remains in the same range, although it does not have a bell shape.

For 3M ISD 112, the fractional Voigt-Kelvin model gives a good fit of the
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magnitude and also a good fit of the phase up to 100 Hz. The Prony series
and the fractional Voigt-Kelvin model are the two most promising models for
both materials. In the case of PMMA, the Prony series with three terms
gives a superior fit than the fractional Voigt-Kelvin model. In the case of
3M ISD 112, seven terms are needed for a good fit with the Prony series.
The fractional Voigt-Kelvin gives a fit just as good up to 100 H: with fewer
parameters. In the following chapters, the various models for the two materials
studied will be used to attempt reproducing experimental behaviour of several
structures. The objective will be to obtain accurate simulations with the
material parameters identified a priori, rather than adjusting the material

parameters to obtain an accurate simulation.
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Chapter 4

Numerical Modelling of the
Fractional Constitutive
Equation

4.1 Introduction

This chapter develops an algorithm, which is an original contribution of this
thesis. based on a simple trapezoidal rule to solve an equation with a fractional
derivative. A one-dimensional constitutive equation containing a fractional
derivative is written. A strain input resulting in a linear constitutive equa-
tion is solved through the frequency domain. The results obtained from the
frequency domain are compared to the results obtained from the time domain
algorithm described in this chapter. The fractional derivative requires storing
all data from the beginning of the computation. A solution to this problem
is offered and its limits are explored. Solving such a simple one-dimensional
constitutive equation gives insight into problems that could arise when solving

the three-dimensional constitutive equation.

4.2 The Fractional Derivative

A differential equation with a fractional derivative has a term defined as [23]:

N _ 1 d ¢ €,‘J’(T)
D‘f;,'j(t) = F(l _E)a—t' 0 (t _ 7)EdT (41)
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An alternate form of Equation 4.1 is:

t_£5ij(0) + 1 t éij(T)
F(1-¢ T(@-§) Jo (t—7)

For zero initial conditions. =;;(0) is equal to 0 and Equation 4.2 reduces to:

DS‘:T,'J(t) = (4?—)

Dfs,(t) = 1 — / (;‘i(:) (4.3)
A singularity arises as the denominator of the integrand becomes 0 when £t = 7,
T being a dummy variable for time. Moreover, the integral is hereditary since
it starts at 0.
To remove the singularity, the integration is done from 0 to (¢t —¢) instead of
0 to ¢, where € is a small amount of time compared to ¢t. and an approximation
is used for the integration from (f —¢€) to t. The integral term of the fractional
derivative is divided into two parts:
Dfe,(t) = ———ml_ ) [ /O (;‘i(r))f T+ (t;”;%dr} (4.4)
For the integral between (t — €) and t, &;;(7) is approximated using the two
first terms of Taylor’'s expansion around ¢, ¢ being in this case a fixed value

and 7. the variable:
:fij(T) = E,J(t) - (t - T)E,J(t) + O(hz) (45)

The last term is the truncation error and refers to the error associated to the
approximation of £;,(7). This second order error term due to the truncation

is:
(t =)
2

£(¢1) (4.6)

with ¢; taking a value in the interval [t — €. t].

Equation 4.5 is used in the last part of Equation 4.4 to obtain:

/t £i;(7) dr = /ti £5(8) = (8 = T)éij(t)dr (4.7)

t—e (t — 7)8 (t —7)¢

The terms £;; and £;; on the right side of Equation 4.7 do not depend on 7;

they are independent of the integration variable. The integral of Equation 4.7
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is solved by applying a simple substitution:

u=t—-7=du=—dr (4.8)
The integral becomes:
€ S,J(t) - ué}j(t) :’:.',‘J'(t)EI_E c:'.:,'j(t 62_5
du = - 4.9
/o o YT T 2-¢ (4.9)
Integration of the truncation error term expressed in Equation 4.6 is also done:
. 2,(3) 8 (¢

L / — e Q) & (e (4.10)

2 Je—e (t - T)e ...(3 f)

where ¢, is in the interval [t — €. t]. Finally, Equation 4.3 is rewritten without

any singularity:

€c. (4) = 1 gi()e! ™t ()t e £y(T) )
Peilt) = vy ( 1—¢ 5_¢ +/0 el 1)
with the error term being: ©
zi; (G1)e¢
RPN 4.12
2(3—¢€) (4.12)

Here. the parameter € is chosen equal to h, the stepsize. If the next step
being calculated is at ¢,.,, then the upper limit of the integralis t,,, —h = ¢,.

Equation 4.11 at ¢,,, becomes:

c 1 Eii(tns1)RYC  Ei(tag )RS
Dreytns) & ( 3(111)5 B J(2+—I)£
tn i ( )
4 —ST dr 4.13
/ n+1 - T ) ( )
with the error term becoming:
(3) 3-¢
5 (G)h*¢

B BRI AR 4.14
20G-9) 19

with ¢, in the interval [¢.,t,.1]. Depending on the value of £, which is in the
interval |0, 1], the error due to this simplification will be of order 2 or 3.
The next step is to compute the integral of Equation 4.13:
o &5(7)
d 4.15
0 Tow =TT (419
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4.3 A Numerical Algorithm for the Integral of
the Fractional Derivative

A numerical integrator for Equation 4.15 must satisfy some constraints. Solv-
ing this integral is a sub-process in solving the complete constitutive equation
of which the fractional derivative is just one term. A numerical algorithm
takes care of the constitutive equation and sets the value of A according to the
precision of the results. Therefore, when solving Equation 4.15, the values of
the different steps have already been set by the numerical algorithm solving
the constitutive equation and cannot be modified by the algorithm solving
the integral. The integrator of Equation 4.15 is using a vector of data con-
taining values of 7 and corresponding values of ;;(7). These values of T are
not equally spaced, and for simplicity, the integrator will ideally be a one-step
method. A trapezoidal rule is the simplest integrator meeting this condition

[49):

/tt f(t)dt = g (f(to) + f(£1)) + O(R®) (4.16)

with the error term being:
h* . _
—l—gf(C) (4.17)

where ( is in the interval [to, t;]. Applying this piecewise to the integral part

of the fractional derivative gives:

tn Ei(T) _ Ttk — b Eij(tx)
/0 (t r= LT (t

n+l — T)E te =0 < n+l = tk)s

5|J(tk+l)
* (tn+1 — tk+1)€) (418

This sub-process carries the index k, whereas the integration of the whole

constitutive equation carries the index n. The error term is:

tn-1

(tm —t) & [ Ey(r)
Z dr? (tn+l - T)E ¢

t=0

(4.19)

The variable ¢ is a value in the interval [tk, {x+,] used to evaluate the error.
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The fractional derivative expressed by Equation 4.13 becomes:
1 [éij(tn-i-l)hl—f _ é:ij(tnﬂ)hg'_s
[(1-¢) 1-¢ 2-¢
In— 2 &..
+ : tk+l — U ( Eij(tk) + CtJ(tk+l) )] (420)

fm0 2 (tnsr — E)¢  (tng1 — trs1)S

Dsfij(tn-f-l)

with the error term being:

e (R R (b — 1) dﬂ( 4(7) )
(t

— 4.21
-8 T 12 4 (-7 (420

with () in the interval [t,,¢,41] and (i in the intervals [ty, tx41).
The values of £;;(¢x) and &;;(¢x+1) are stored values retrieved by the in-
tegrator, but an algorithm for Equation 4.20 still needs to calculate &;;(tn+1)

and £;;(t,+1). This is the topic of the next section.

4.4 The First and Second Derivatives

Tvpically, commercial finite element packages allowing user material subrou-
tine give the values of the strain at t,,; to the subroutine and expect values
for the stress at t,., to be calculated. The first and second derivatives of the
strain must be calculated within the subroutine.

For the first derivative, finite differences are used. A first order Taylor

polynomial is expanded about ¢,.;:

2ij(tn) = €ij{tns1) — héij(tas1) + O(RY) (4.22)
with the error term being:
h? .
'?)'Eij(CL’) (4-23)
where (5 is in the interval [t,,¢,.1]. The next step is to isolate &;;(tn41):
Eij tn — &5 tn
Eij(tns1) = i +1)h G, (4.24)

The error term is also divided by h, just as is done to the other terms of the

equation when isolating €;;(¢,+;), and becomes an error term of order one:

—géij('fz) (4.25)
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The value of &;;(tn+1) is given to the user, as well as tn4;. The value of
€i;(tn) is stored at the end of the step going from ¢,_; to t,. If it is the first
step. then z;;(¢,) is equal to 0, since zero initial conditions are assumed.

For the second derivative, an expression is derived from the two following

Taylor’s expansions:

2
Saltn) = Syltan) = hsltnr) + 5 Eyltnn) + O (1.26)
f(tact) = gijtas1) = (A + h1)Ei(En) + (h—+2h—)5 ij(tn+1)
+0O(h*) (4.27)

where h; is (t, —t,—1). The error terms associated to Equations 4.26 and 4.27

are respectively:

‘3’(<) (4.28)
- ——‘—(h +3hl) 5:'33')(@) (4.29)

where (3 is in the interval [t,.t,+1] and (; is in the interval {t,_i. tn+1]. Equa-
tion 4.27 is multiplied by a factor of A/(h + h;). and it is subtracted from
Equation 4.26 in order to eliminate the term &;;(t,.;). This yields:

(tnsr) = ‘)h(:’- (tn1) — €15(En)) + Pu(Eij(tnsr) — £45(ta))
ig\tn+l < hhl(h+hl)

(4.30)

(1,

The same manipulation is applied to the error terms given in Equations 4.28

and 4.29 to obtain:

e (G4) — —-”fj)(Ca)) (4.31)

As for the first derivative, the error is of order 1.

For the first step, the information at t,_; is not available. The only avail-
able data are the strains at ¢y and ¢;. With only two data points, only a linear
function can be assumed and it results in a null second derivative. Therefore,

£ij(tn+1) is assumed equal to 0 on the first step.
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The expressions for the first and second derivatives are now incorporated

into Equation 4.20:

<. _ 1 £ij(tasr) — €i5(tn) A'E
Dzij(tas) = T1=¢) [ 3 1=¢
_ oh(fij(tn—l) — 545(tn)) + hi(€i(tas1) — =ij(ta)) A2S

2 hhy(h + hy) 2-¢
L 5 tHlO—tk ((t Slte) tc‘v(fw) s)} (4.32)

ti=0 < n+l = tk)f ( n+l — tk+1)

The error terms specified in Equations 4.21, 4.25. and 1.31 are combined

1 h. h1-¢
[(1-¢) [( 2%t (Q) 1-¢

+ E(M (e - “’(ca)) L

together to give:

3 h —-£
tn-1 3 =
(tke1 — t)® & ( £i;(7) )
+ -— — 4.33
o 12 dr? \ (tp+y — 7)8 . ( )

The lowest order of error is (2 — &) and Equation 4.32 is written:

£ _ 1 -t)(tn+l) — &ij ( ) hl ¢
D ;lj(tn+l) = [-(1 — &-) [ h 2 1-¢
_ ,)h(fx'j(tn-l) — 2i5(tn)) + hu(ei;(tnsr) — £i5(ta)) h*¢
- hhy(h + hy) 2-¢
!t — ti £i;(th) Eij(tk+1) )
" !kz=0 2 ((tnﬂ - tk)£ * (tn+l - tk-:-l)E
+ O(h*7%) (4.34)

This expression for the fractional derivative is now ready for implementation.

4.5 Test Equations for the One-Dimensional
Case

The algorithm is implemented in language C and tested for a one-dimensional

constitutive equation:

Orr = Ee€zz + aE.D%,, (4.35)
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where E, is the equilibrium Young's modulus. A user subroutine for a finite
element package typically passes to the subroutine values for the strain and
the subroutine returns values for the stress according to the simulated consti-
tutive equation. To emulate this. values for ., are passed to the subroutine
written in C, and values for 0., are returned. Equation 4.35 is transformed
in the frequency domain, and inverted back to the time domain numerically
to obtain some results against which to test the performance of the algorithm
programmed in C. This approach is adopted since analytical results for Equa-
tion 4.35 cannot be obtained for an arbitrary value of &.

The Laplace transform of Equation 4.35 is:
O:2(8) = Eeczz(8) + aF.s%2,2(5) (1.36)

where s is the Laplace variable. Two different strain inputs are considered.

4.5.1 Sinusoidal Strain Input

The first strain input is a sine function:

soe(t) =1 x 10‘3M (4.37)

27 f
where f is the frequency of the sine wave. The factor in front of the sine

function is chosen to reflect the order of magnitude tvpical for small strain

theory. The Laplace transform of Equation 4.37 is:

1

c2z(s) =1x 1073

4.5.2 Decaying Sinusoidal Strain Input

Another strain input tested is an exponentially decreasing sine function:

sexpttsin(27 ft)
2n f (4.39)

where k is negative to ensure the decay of the sine function. The Laplace

Ez(t) =1 % 107

transform of Equation 4.39 is:

1

(s —k)2+ (2nf)? (4.40)

Ezz(s) =1x 1073
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Frequency f 1.59 H=
Equilibrium Young’s Modulus E. 3.43 x 10° Pa

Damping Coefficient a 0.12
Order of the Fractional Derivative £ 0.22
Parameter of the Exponential £ -0.5

Table 4.1: Parameters of the One-Dimensional Test Equation
4.5.3 Constitutive Equations for the Test Cases

Since no time-domain closed form solution exists for arbitrary values of &,
the constitutive equations with Equations 4.37 and 4.39 as strain inputs are
solved in the frequency domain to provide a comparative solution to the ones
obtained with the time domain algorithm written in C.

Using the first strain input. Equation 4.38. the constitutive equation be-

comes:

L + aEesﬁ,,—l———) (441)

_ -3
0zz(s) =1 x 10 (Ef s2+ (27 f)2 s*+ (27 f)?

With the second strain input. Equation 4.40. the constitutive equation be-

comes:

1 1
+aE.st

(s — k)2 + (27 f)? (s — k)2 + (2r f)2) (442)

0:2(s) =1x1073 (Ee

Equations 4.41 and 4.42 are solved in the frequency domain with a numerical
scheme described by Wilcox [50]. The algorithm is given in Appendix A. In
Potvin [51]. it is tested against another algorithm developed by Wilcox and
Gibson [52] and it gives comparable results. Solutions for Equations 4.41 and
4.42 are shown in Figure 4.1. The parameters used in both equations are given

in Table 4.1.

4.6 Accuracy of the Algorithm

The numerical Laplace inverse gives results of varying accuracy according to
the number of data points used to obtain the results. The numerical Laplace

inverse used [50] is based on a Fast Fourier Transform and needs a number of
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Figure 4.1: Two One-Dimensional Test Equations
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data points equal to 2". However. the time solution produced with the numer-
ical Laplace inverse is not accurate at the end of the time scale. Therefore.
85% of the time scale is kept and the rest of the data points are discarded.

The chosen test cases exhibit an oscillating frequency of 1.59 Hz. The
simulation is done for 2.975 s, which implies 4.73 cycles. If the number of
data points is chosen equal to 2!?, 870 data points are kept. resulting in 184
data points per cvcle. This number is high enough to ensure precision.

For the algorithm designed in this chapter, varying numbers of data points
are chosen to evaluate its sensitiveness to step size. The results from the
numerical Laplace inverse are interpolated at the same data points used for
the algorithm and the difference between the results from the algorithm and
from the interpolated numerical Laplace inverse is computed. The number of
data points for the algorithm is reduced until a difference of 1.5 x 10* Pa is
obtained for any data point between the results from the algorithm and the
results from the numerical Laplace inverse. By trial and error, this value was
found to be the one for which the error would always lead to some divergence

between the two methods for the studied cases.

4.6.1 Results for a Sinusoidal Strain Input

Table 4.2 compares the results from the algorithm based on the trapezoidal rule
and from the numerical Laplace inverse in the case of the constitutive equation
for a sinusoidal strain input. The time in the simulation for which a difference
of 1.5 x 10* Pa is reached between the two methods is indicated in the table
as being the critical time. The maximum difference between the two methods
for any data point is indicated as the maximum error. The tests are done on
a Pentium personal computer. Figures 4.2 and 4.3 show the fits between the
two curves in the best case and the worst case. The agreement between the
two curves in Figure 4.2 is excellent. In Figure 4.3, the agreement is still very
good, but only 14 data points per cycle are used for the curve obtained with

the algorithm and it is not perfectly smooth. Moreover, the level of error is
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Number of | Critical | Maximum Error CPU Time CPU Time for
Data Time for the the Algorithm
Points Laplace Inverse
(seconds) (Pa) (seconds) (seconds)
800 2.1196 x 10° 2.14 3.46
600 2.6587 x 10° 1.54 1.32
400 3.5206 x 103 1.54 0.61
200 5.7624 x 103 1.48 0.17
150 6.9912 x 103 1.48 0.11
125 8.2962 x 10° 1.48 0.06
110 9.1526 x 103 1.60 0.05
100 1.0016 x 10* 1.65 0.05
90 1.1237 x 104 1.65 0.01
80 1.2555 x 101 1.59 0.01
70 1.4174 x 10¢ 1.60 0.05
66 2.1818 1.5465 x 104 1.54 0.01

Table 4.2: Accuracy of the Algorithm for a Sinusoidal Strain Input

slowly increasing. Still, the algorithm is very stable and predicts accurate
results even for very few data points per cycle.

Table 4.2 also compares the CPU time, the time used by the processor to
do the calculations. for both the numerical Laplace inverse and the algorithm.
The numerical Laplace inverse is run for each case with 1024 data points. The
variations in the CPU time for the Laplace inverse are due to the Windows
operating syvstem since the same equation is run everytime. The CPU time
for the Laplace inverse is indicated to give a comparative value of the CPU
time for the algorithm. There are instances when the algorithm requires more
CPU time. but the Laplace inverse also does, indicating a variation due to the
operating system. rather than the algorithm itself. The CPU time required
by the algorithm based on the trapezoidal rule decreases significantly as the

number of data points is reduced.

4.6.2 Results for a Decaying Sinusoidal Strain Input

A second test is done with a decaying sinusoidal strain input represented

by Equation 4.39. Table 4.3 gives the results. The same trend as with the
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Figure 4.2: Results with 800 Points for a Sinusoidal Strain Input

Number of | Critical | Maximum Error CPU Time CPU Time for
Data Time for the the Algorithm
Points Laplace Inverse
(seconds) (Pa) (seconds) (seconds)
800 1.8160 x 10° 1.59 2.36
600 2.2723 x 103 1.48 1.32
400 3.0872 x 10° 1.48 0.60
200 5.1406 x 10° 1.54 0.17
180 5.5731 x 10° 1.48 0.11
160 5.9441 x 10° 1.48 0.11
140 6.4098 x 10° 1.60 0.11
120 6.9980 x 103 1.60 0.06
100 8.3365 x 103 1.49 0.01
80 1.0405 x 10* 1.48 0.01
60 1.3943 x 10* 1.48 0.01
54 0.2778 1.5307 x 104 1.48 0.01

Table 4.3: Accuracy of the Algorithm for a Decaying Sinusoidal Strain Input
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Figure 4.4: Results with 800 Points for a Decaying Sinusoidal Strain Input

sinusoidal strain input is seen. The CPU time required for the algorithm based
on the trapezoidal rule decreases significantly as the number of data points
decreases. Figures 4.4 and 4.5 show the fits between the two curves in the best
case and the worst case. The agreement between the two curves in Figure 4.4
is excellent. In Figure 4.5, the agreement between the two curves is still very
good. but small differences can be seen due to the low number of data points
for the algorithm based on the trapezoidal rule. Only 11 points per cycle
are used which is very low to accurately reproduce a sinusoidal wave. Again,
the algorithm does not need very small steps despite computing a differential

equation with a fractional derivative.

89



= SN
& .I \_ \ it
8 oF 4 N \ K4 ]
2 \ ~ _.7
173 A S,
7
. / - Laplace Inverse
- Trapezoidal Rule
_5 L 1 1
0 0.5 15 25 3
4
x 10
2 T T ¥
15+ 4
o
a
s ' i
w
0.5+ 1
0 L 1 1
0 0.5 1.5 25 3

Time (seconds)

Figure 4.5: Results with 54 Points for a Decaying Sinusoidal Strain Input

90




4.7 Selection of Stored Data

The integral part of the fractional derivative, as written in Equation 4.13, has
0 as an inferior limit, implying the integral has to be started from zero for each
step of the integration of the dynamic system. The integral depends explicitly
on t,.1, which is different at every step. preventing use of results obtained for
the integral on previous steps. As the integration process gets away from zero,
the number of calculations to be carried out increases significantly, slowing
down the numerical computation. To accelerate the algorithm, Koh and Kelly
[22] used a time window. Only the values for a determined amount of time
were considered. What happened previous to that was neglected. However, as
stated by Koh and Kelly themselves, this works only for functions oscillating
around a zero mean. Dynamic systems do not necessarily oscillate around zero
and a more general approach is needed. In the numerical algorithm described
here, larger steps are taken for events happening far from the current time.
Hence, the whole history is taken into account, but with less precision for

faraway events.

A maximum number of data to be stored is determined. This number
is called memmaz. A smaller number, also chosen by the user and called
memcom, is the number of data for which larger steps will be taken. At the
end of each step, the algorithm stores in a list the time at which the stress is
computed and the corresponding strain. A counter keeps track of the number
of data stored in the list. When the maximum number of data allowed is
reached, the algorithm takes the first group of data, of size memcom, and
keeps only one data out of two. The remaining data, between the memcom
and memmaz limits are displaced in lower positions in the list. A number of
places equal to half the size of memcom are now available in the list. The
computation goes on and new data fills the list until the memmaz limit is
reached. At this point, another compression and displacement of data takes

place.
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The first time such a compression of data is carried out, the steps in the
memcom group become approximately twice as large as the initial steps if it
is assumed the steps have similar lengths. When a compression is done for
the second time. the last memcom group now has steps equivalent to approxi-
mately four times the initial step size. Thus, as more compressions are carried
out, the first few steps become larger.

The last section showed that the algorithm is accurate when all data points
are stored if a sufficient number of data points is used. This section looks into
the limits of the compression scheme in terms of accuracy of the solution.

The same test cases defined in Sections 4.5 are used to study the acceptable

level of data compression.

4.7.1 Data Compression for a Sinusoidal Strain Input

Table 4.4 gives the accuracy of various solutions for the case where 800 data
points are used with the algorithm based on the trapezoidal rule. As for the
numerical Laplace inverse. it is calculated using 1024 data points. Because the
last data points generated by the numerical Laplace inverse are not accurate,
only 85% of the data points are kept and this gives a maximum of 870 data
points. With the algorithm based on the trapezoidal rule, the whole vector
of data points is compressed each time it is full, therefore memmaz is equal
to memcom. For a simulation of 800 data points, the smallest storage vector
which can be used to keep an acceptable level of precision is 264. This repre-
sents 33% of the total data points in a case where there are 169 data points
per cycle.

The computing time of the algorithm based on the trapezoidal rule is
quite high compared to the numerical Laplace inverse if all data points are
kept in memory and used in calculations of the subsequent steps. However,
if the minimum allowable storage vector is used, then the computing time
required by the algorithm based on the trapezoidal rule becomes competitive.

The algorithm based on the trapezoidal rule also has the advantage over the
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memmaz | memcom || Critical | Maximum Error | CPU Time | CPU Time
Time Laplace Algorithm
Inverse

(seconds) (Pa) (seconds) | (seconds)
800 800 2.1789 x 10° 1.92 2.80
600 600 2.2445 x 108 1.43 1.93
400 400 3.3383 x 103 1.43 1.48
300 300 6.8059 x 10° 1.54 1.15
270 270 9.3128 x 103 1.54 1.10
264 264 9.6437 x 10° 1.43 1.10
263 263 2.9587 1.5977 x 10% 1.48 1.10

Table 4.4: Accuracy of the Algorithm for a Sinusoidal Strain Input of 800
Data Points According to the Size of the Storage Vector

Number of || memmaz Ratio of Number of | CPU Time | CPU Time
Data memmaz to Data Laplace Algorithm
Points Data Points Points Inverse
per
Cycle (seconds) | (seconds)
800 264 0.33 169 1.48 1.10
400 140 0.35 85 1.48 0.33
200 100 0.50 42 1.48 0.33
100 75 0.75 21 1.43 0.01

Table 4.5: Minimum Allowable Storage Vectors According to the Number of
Data Points per Cycle for a Sinusoidal Strain Input

numerical Laplace inverse of being able to process strain inputs for which no

theoretical Laplace transform exists.

Table 1.5 compares the smallest allowable storage vectors for different num-

ber of data points per cycle. As the number of data points per cycle decreases,

the storage vector must increase in size. If the simulation is less precise, com-

pression of data decreases the precision further. However, if a large number

of data points is used, then it is possible to use a quite small storage vector.
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Number of | memmaz | Ratio of Number of | CPU Time | CPU Time
Data memmaz to Data Laplace Algorithm
Points Data Points Points Inverse
per
Cycle (seconds) | (seconds)
800 264 0.33 169 1.43 1.10
400 140 0.35 85 1.43 0.27
200 100 0.50 42 1.37 0.11
100 57 0.57 21 1.43 0.01

Table 4.6: Minimum Allowable Storage Vectors According to the Number of
Data Points per Cyvcle for a Decaying Sinusoidal Strain Input

4.7.2 Data Compression for a Decaying Sinusoidal Strain
Input

The same tests are carried out on the decaying sinusoidal strain input de-
scribed in Section 4.5. Table 4.6 gives the results. Very similar results to the
case of a sinususoidal strain input are obtained. Improvement is seen in the
case where there are 100 data points. For the decaying sinusoidal strain in-
put. the smallest storage vector is 57, whereas it is 75 for the sinusoidal strain
input.

These two examples show it is useful to compress data, rather than use all
data in the computation of the fractional derivative. Although the precision
is decreased by compressing the data, acceptable levels of precision can be

achieved for a fraction of the CPU time.

4.7.3 Optimal Size of the Parameter memcom

So far, all cases examined had values of memcom equal to memmaz. The
case of a sinusoidal strain input for 400 data points is examined with varying
values of memmaz and memcom. For a given memmaz, in this case, 200, the
smallest allowable memcom is sought, again with 1.5 x 10* Pa as the limit
of difference between the numerical Laplace inverse and the algorithm on any
given data point. The numerical Laplace inverse is done with 1024 data points

out of which the 870 first data points are kept. Table 4.7 shows the results.
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memmaz | memcom || Critical { Maximum Error | CPU Time

Time Algorithm

(seconds) (Pa) (seconds)
200 200 6.1174 x 10° 0.77
200 150 6.9450 x 103 0.39
200 140 8.9762 x 103 0.38
200 130 1.0346 x 10* 0.38
200 129 2.9625 1.5523 x 104 0.39

Table 4.7: Effect of memcom for a Sinusoidal Strain Input with 400 Data
Points :

There is no obvious gain from using a memcom different from memmaz. The
error increases when memcom decreases. As for the CPU time, there is no
obvious advantage. No trend is seen as the value of memcom is reduced.
The simulation with a memcom of 200 takes longer, but the corresponding
numerical Laplace inverse takes also longer, 1.81 s, rather than the average
1.50 s. It can be assumed that the longer CPU time in that case is due
to the operating system, rather than the solution itself. Both the numerical
Laplace inverse and the algorithm for the case with memcom equal to 200 use
approximately 40 s in excess to the other cases, probably to initialize arrays.

When memcom is smaller than memmaz, less data get compressed when
the storage vector is full. Thus, less space is freed in the storage vector. It will
fill up more quickly and another compression happens earlier. This reduces
the precision of the first steps and deteriorates the whole solution.

Table 4.8 shows the minimum memcom that can be used for given values of
memmaz to respect the maximum level of error allowed, again for a case with
400 data points. When memmazis low compared to the number of data points,
it is not possible to use a memcom much lower than memmaz. As memmaz
increases, it is possible to decrease significantly the value of memcom, but
the computing time depends mainly on memmaz and there is nothing to be
gained with a value of memcom different from memmaz. The best solution
is still the one with the lowest allowable memmaz and a memcom equal to

memmagz, since for similar CPU time, it is more precise.
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memmaz | memcom || CPU Time
Algorithm
(seconds)
200 130 . 0.38
190 134 0.38
180 134 0.38
170 134 0.39
160 134 0.33
150 138 0.33

Table 4.8: Values of memmaz and memcom for a Sinusoidal Strain Input

4.8 Conclusion

A one-dimensional constitutive equation with a fractional derivative was solved
numerically. The algorithm used an approximation for the fractional deriva-
tive and solved this approximation with finite differences and the trapezoidal
rule. The algorithm generated accurate results when compared to a numerical
Laplace inverse. using a competitive amount of computer time and it did not
require small time steps as it has been observed for methods based on finite
differences or Griinwald series. Moreover. the algorithm can handle strain
inputs for which the Laplace inverse does not exist.

For the algorithm to be competitive in terms of computer time, a storage
vector must be used. Rather than storing all the data points and using them
all in the calculation of the fractional derivative, the data points far from the
actual data point are kept with less precision. When the storage vector is full,
one data out of two is kept, and this frees space for new data. The minimum
efficient storage vector size depends on the complexity of the equation, but
for the cases studied, it was about 33%. There is no gain in compressing only
part of the storage vector and moving down the pile the remaining data. The
storage vector will fill up more quickly, imposing another compression earlier.
The CPU time is not improved and the precision is lowered.

The next chapter will address the implementation of this algorithm for

three-dimensional cases in a finite element package.
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Chapter 5

Finite Element Formulation of
the Fractional Constitutive
Equation

5.1 Introduction

The algorithm presented in Chapter 4 is implemented in Samecef, a commercial
finite element package. The storage vector assumes the fixed format imposed
by the finite element package and the Jacobian of the fractional constitutive
equation must be derived and implemented. To test the efficiency of the sub-
routine. a cubic element is submitted to a uni-directional displacement. Two
cases are explored. one with a sinusoidal displacement and one with a decaying
sinusoidal displacement. For both cases, the impact of the various computing
parameters are explored. The results from the subroutine are compared to
the results obtained with the Laplace inverse developed in the last chapter.
Comparing the results gives a measure of the precision of the results com-
puted by the subroutine. The goal of this chapter is to verify the validity of
the implementation of the fractional model in Samcef. The efficiency of the
fractional model compared to other viscoelasticity models will be studied in

the next chapter.
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5.2 Numerical Implementation

In Chapter 4. an algorithm to solve the following one-dimensional equation

was developed:

Ozr = LeErzr + aEeDfsz:r (51)

Three-dimensional constitutive equations are now considered. Therefore, some
adjustments to the algorithm developed in Chapter 4 are necessarv. At each
step, the strain tensor at the end of the interval is given to the user, and the
corresponding stress tensor must be returned to the main program, as well as
the Jacobian of the stress-strain relationship. As defined in Section 2.4.2, the

fractional Voigt-Kelvin model is:

Sij = 2Ge€ij+2(J.GeD£€,‘j (52)
S" = 3K.e" (5.3)

Whereas the algorithm developed in Chapter 4 dealt with one fractional equa-
tion, for Equation 5.2. six fractional equations need to be calculated. This
does not introduce additional difficulties. but the storage requirements are
multiplied by six. Therefore. the two main differences with the algorithm for
the one-dimensional equation are the storage structure and the need for the

Jacobian of the stress-strain equation.

5.2.1 The Storage Structure

To solve the one-dimensional equation, a single storage vector containing the
time and the corresponding derivative of the strain was developed. Within
a finite element package. the storage structure is more rigidly defined and
varies from package to package. In the case of Samcef, different types of
vectors can be defined. Vectors are identified as containing scalars, vectors,
or tensors, where a vector of scalars is a vector of one-dimensional data, a
vector of vectors is a vector of three-dimensional data, and a vector of tensors

is a vector of data comprising six or nine components. For this algorithm,
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three vectors are defined. The first one is a vector of three tensors having six
components each. The first tensor is the variable DS, a variable used in the
estimation of the so-called local error. which is rather the difference between
the stress computed by the constitutive equation and the stress obtained with
Hooke’s law. The second tensor is the strain tensor at the beginning of the
current step and the third tensor is the strain tensor at the beginning of the
preceding step.

The second storage vector is a vector of ( MEMMAX + 1) scalars. The pa-
rameter MEMMAX has the same significance as the parameter memmaz de-
fined in Chapter 4. It is the maximum number of data stored. The first scalar
of this storage vector is the number of steps stored so far, and the remaining
scalars are the times at each stored step, up to a maximum of MEMMAX,
after which a compression of data occurs as described in Chapter 4.

The last storage vector is a vector of MEMMAX tensors containing the
time derivatives of the strain corresponding to the stored times in the second
storage vector. Figure 5.1 illustrates the data stored within the subroutine.
The finite element package initializes the storage vectors by filling all values
with zeroes. As the time solution proceeds, the vectors fill themselves. Once
the vectors are full, one data out of two is kept, therefore freeing half the
storage vectors for new data. For example. the data at Step 1 would be
eliminated. but the data at Step 2 would be kept. The data at Step 3 would
be eliminated. but the data at Step 4 would be kept, and so on. Zero initial
conditions are assumed and the values at ¢t = 0 are not kept, since they are

known and are equal to zero.

5.2.2 The Jacobian of the Fractional Constitutive Equa-
tion

Samcef, as most finite element packages, requires the user to give the Jaco-
bian of the constitutive equation, 80i;(¢n+1)/0€ki(ta+1). This Jacobian defines

the change in the stress component caused by a perturbation in the strain
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Figure 5.1: Data Storage for the Samcef Subroutine
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. component at the end of that given step.

In Chapter 4. one form of the constitutive equation is derived for the first
step, for which the second derivative of the strain is zero, and another expres-
sion for the subsequent steps. Therefore, there is one Jacobian expression for
the first step, and another Jacobian for the subsequent steps.

The expressions for 0;;(t,+1) and £;;(t.+1) are needed, but the algorithm
calculates the deviatoric and volumetric stresses. Some conversions are neces-

sary. The following steps are taken:

1. Calculate &;;(tn+1)-

1o

Calculate &,;(t,+1).

3. Calculate the integral part of the fractional derivative for the six com-

ponents of the strain tensor.
4. Calculate foij(tn-i-l)-
5. Calculate €"{t,+1)-

6. Calculate e,;(t;).

=~

Calculate D%e;;(tns1)-
8. Calculate S;;(t.+1) using the fractional constitutive equation.
9. Calculate S”(t,+1) using the elastic constitutive equation.

10. Calculate oy;(tn+1).

11. Take the partial derivatives 90;;(tn+1)/0€ki(tns1)-

As an example, these steps are applied to 9o, (t;)/02z-(t1).
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Example of Calculations for the Jacobian

In this case. the values at tg are all zero: there is no stress and no strain at t,.
Moreover. to obtain the first component of the deviatoric strain tensor. only
the three first components of the strain tensor are needed. It is a simplified
case. but it is used to understand the process. The steps described previously

are applied sequentially.

Step 1 Calculate £;(ta+1)-
The first derivatives of the first three components of the strain tensor are

calculated using Equation 4.24:

fa(t) = ;— (5.4)
f(t) = Zodl)Z ol (5.5)
éz:(tl) - szz(tl)gszz(tO) (56)

Since all strains at ¢y are equal to 0. Equations 5.4 to 5.6 reduce to:

falty) = =) (5.7)
fult) = ) (5:)
:::(tl) - ;-::fitl) (59)

Step 2 Calculate £,;(tn+1).
As explained in Section 4.4, the second derivatives at ¢, are zero. since a

linear approximation is made between ty and ¢;. Therefore:

Eralty) = E,y(t) = Eo2(t1) =0 (5.10)

Step 3 Calculate the integral part of the fractional derivative for the siz
components of the strain tensor.
Since only the first partial derivative of the Jacobian is needed for this

example, only the fractional derivatives of the first three components of the
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strain tensor are needed to compute the corresponding deviatoric stress. The
expression for the integral part of the fractional derivative is given by Equa-

tion 4.18:
tn-1

/Ocn ; éi;(7) Sd'r= Z bier1 — L ( £ij(t) + €ij(tes1) ) (5.11)

2 (tn+l - tk)s (tn+1 - tk«}-l)E

n+l — T) tk=0 -~
In this case. t,4+; = t; and ¢, = t5. The integral becomes an integral be-

tween zero and zero and is equal to zero. Moreover, this integral does not

depend on £;;(t,+1) and as such will not contribute any term to the Jacobian,

90:;(tn+1)/0€ki(tas1)-

Step 4 Calculate D%s;;(tn+).

Equation 4.20 gives the expression for the fractional derivative:

Df;-..(t ) = 1 ét’j(tn-é-l)hl_ﬁ _ 4:3.1‘;'(tn+1)hg"E
Sij\in+1 = F(l—f) ],—f 2—5

tn—1

trar — tk Eij(tk) £ij(tk+1)
v A ((tn+1—tk)5+ )f)] (512

tx =0 < (tn+l =ty
Using the values found in Steps 1 to 3, the fractional derivatives for the first

three components of the strain tensors are:

- _ 1 me(tl)

Dreeltl) = Fr—g) ((1~£>hf) o1
- — ! Eyy(tl)

Penlt) = F(l—&)((l—s)hf) 49
<. _ 1 é-::(tl) -

Pe=lt) = g ((l—f)hf) (1)

Step 5 Calculate €"(t,+1).
The volumetric strain is taken as the sum of the first three components of

the strain tensor divided by three:

(1) = 3 [ees(tr) + £y (1) + £25(t1)] (5.16)

Step 6 Calculate eij(tn+1 ) .

To obtain e, (%)), the expression given by Equation 2.2 is used:

ern(ts) = £0a(ty) — % [an(ts) + £gy (1) + E0s(t1)] (5.17)
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Step 7 Calculate D;(tn1).
The fractional derivative of the deviatoric strain is calculated similarly to

Equation 5.17 since the fractional derivative is a linear operator:
1
Dfez:r(tl) = DEEIx(t[) - § (Dfszz(tl) + Dssyy(tl) + DEE::(tl)) (518)

Using the values calculated in Step 4 in Equation 5.18 gives:

Dgezz(tl) = (1 — E)hﬁll"(l _ E) (Ezr(tl) - % [Ezz'(tl) +Eyy(t1) + E:z(tl)])
(5.19)

Step 8 Calculate S;j(ta+1) using the fractional constitutive equation.

Equation 5.2 gives the fractional constitutive equation for the deviatoric

part:
Szz(t)) = 2G.e..(t)) + 2aG.Dfe..(t) (5.20)

Using the values found in Steps 6 and 7. S;.(t,) becomes:

Szz‘(tl) = 2Ge (E:t:r(tl) - é' [Srz(tl) + Eyy(tl) + 5::(t1)})

2aG,
(1 - f;ZEF(I _E) (Err(tl) - % [E:r::(tl) + Eyy(tl)
+ 2=(t)) (5.21)

Step 9 Calculate S"(tn+1) using the elastic constitutive equation.

The elastic volumetric constitutive equation is given by Equation 5.3:
S"(t)) = 3K.e"(t1) (5.22)
Using the values calculated in Step 5. Equation 5.22 becomes:

S”(tl) =K, [sz(t[) + :".'yy(tl) + E;:(tl)] (523)

Step 10 Calculate 0;;(tat1).

The stress is obtained by manipulating Equation 2.1:

Urz(tl) = S:t:t(tl) + S"(tl) (524)
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The results from Steps 8 and 9 are input in this equation:

Urx(tl) N QGe (5rr(t1) B % [Ezz(tl) + Eyy(tl) + E::(tl)])
‘ZQGC _ l N i
(1 - &)RET(1—€) (“rr(tl) = 3 lE=a(ty) + 2 (1)

Ke [fx:r(tl) + syy(tl) + E::(tl)]

Step 11 Take the partial derivatives 30;;(tn+1)/0ekt(tns1)-

The partial derivative of Equation 5.25 is taken:

doz: _ 4G. 4 4aG,
e 3 3(1-EAET(1-¢)

+ K.

The Jacobian for the First Step

+ £

:z(tl )])
(5.25)

(5.26)

The preceding example is applied to all the components. Some symmetry

applies given the isotropic nature of the model. The Jacobian for the first

step. for which the second derivative is zero, is:

00z 0oy do.. 4G, 4aG., _
— — = Ke -27
9., Bz,  0c.. 3 T 31-grTa-¢) (5.27)
0.z _ 00:r doy,,  Ooy, 0Oo..  Jo..
Beyy  Og:e gz Oeee  Oznr gy
2G. 2aG,
_2be K. (5.2
3 T 3l-gmra—g | he )
doy, Jo. Joy: aG.,
= : _ E = G, 5.29
92,,  0c,. 0z, T orra—¢) (5.29)
with all other partial derivatives equal to 0.
The Jacobian for the Subsequent Steps
For all other steps, the Jacobian is:
O0o::  daoy, _ do.. _
Oezz Oy Oz
4G, + 4aG, ( 1 0 h1-8 )
3 3(I-H\1-9r "(2~&(h+hi)
+K. (5.30)
00:r _ 00z do,, doy, Jo.. _0o.:
Ocyy  Ot.. Oerr  Be.. Oerr  Ogyy



_2G.  2aG. ( 1 ,_ ROV )

3 31— \(1-0rf “(2-§(h+h)
+K, (5.31)
Q_o_rﬂ _ 0o, Doy
O€ry Qg Oy
G 1 h(l—f)
G als, — 2 532
“TT1-9 ((l—f)hf (2—5)(h+h1)) (532

and again. with all other partial derivatives equal to 0. The variable A, is the

step taken before the current step.

5.2.3 The Local Error

Finite element packages give the user the opportunity to use automatic time
stepping. To use this option, an estimation of the local error produced by the
user constitutive equation subroutine must be given back to the software, as
well as an upper bound for the acceptable local error. Ideally, the local error
of an equation is estimated by comparing the numerical solution with the
analytical solution, but numerical solutions are precisely used because often
the analytical solution is not available. Alternately, a higher order method
is used to compare both numerical solutions and obtain an estimation of the
local error. However, a higher order method is not available for this method.
Another approach sometimes used for viscoelastic constitutive equations is to
compare the stress obtained with the constitutive equation with the stress
obtained with Hooke’s law. Of course, Hooke's law is not the desired solution,
but between two steps. the difference between the stress produced by the
constitutive equation and Hooke’s law should not vary excessively. If it does, it
means the numerical solution produced by the constitutive equation is starting
to diverge and a smaller time step should be taken. Samcef defines the local
error for a user constitutive equation in the following manner:

MaX,jements(local stress error)

local error = (5.33)

max (SREF, max ,jementsiaverage local stress))

The local stress error is the variation in the difference between the computed

stress and the one obtained with Hooke’s law and SREF is a reference stress
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defined by the user. The user also specifies a value called PRCV which is the
upper limit tolerated for the local error.

To compute the local stress error, for each component of the stress tensor,
the stress obtained by Hooke's law is subtracted from the computed stress.
This variable is called DS(i), where the index represents the component of the
new vector DS. For an isotropic tensor, there are six components in the vector
DS. The value of DS(i) is then compared to DSN(i), where DSN(i) is the value
of DS(i) which was computed at the last step. To get only one value for the
local stress error, the magnitude of the vector resulting from the subtraction
of DSN from DS is taken. The following steps summarize the evaluation of

the local error for one element:

1. Add the six components of the stress tensor and divide the sum by six

to obtain the average local stress.

o

Form the vector DS by subtracting the stress obtained from Hooke’s law

from the stress computed with the constitutive equation.

3. Form the local error vector by doing (DS — DSN) where DSN is the local

error vector calculated at the last step.

4. Take the magnitude of the vector (DS — DSN) to obtain the local stress

€rror.

5. Divide the local stress error by either the reference stress, SREF, or by
the average local stress depending which one is the greatest. The result

is the so-called local error.

This local error is then compared to PRCV, a value specified by the user. If
the local error divided by PRCV is greater than 0.5 x 10~!, then the size of
the next step is decreased. If the ratio is equal to or greater than one, the step

is rejected and a smaller time step is chosen.
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5.3 Tests on a Single Cubic Element

The results from the subroutine are compared to the results from the inverse
Laplace transform for the case of a cubic element submitted to a prescribed
displacement on one of its face. The element is a first degree element with eight
integration points, two along each direction. In the finite element package, the

three-dimensional formulation is used:

Sij = 2Gee,-j+2aGeD£e,~j

S" = 3K.e" (5.34)

As in Chapter 4. the strain is input and the stress is calculated. From the finite
element package point of view, it is a prescribed position which is specified.
This prescribed position is applied to the whole face of the element. The strain

is defined as [53]:
I~

sr =
T 10

with /o the initial length and [ the length after deformation. From this. the

(5.35)

prescribed position becomes:
[ = l()(]. + E::_r) (536)

The two test cases are a sinusoidal strain input and a decaying sinusoidal

strain input.

Case 1 Sinusoidal Strain

ezx(t) =1 % 10-3§in—$¥9— (5.37)

where f is the frequency of the sine wave.

Case 2 Decaying Sinusoidal Strain

* sin(2m ft
x 1073EP ;‘:_1; mft) (5.38)

exz(t) =1
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where £ is negative to ensure the decay of the sine function.
The cube simulated is made of PMMA and the material parameters are
defined in Chapter 3. The parameter f of Equations 5.37 and 5.38 is taken

equal to 1.59 Hz and the parameter £ equal to —0.5.

5.3.1 One-Dimensional Frequency Domain Expression
for Test Cases

The test case defined in the preceding section is compared to a solution ob-
tained with the numerical Laplace inverse used in the last chapter. The test
case of the preceding section is a three-dimensional case, but the numerical
Laplace inverse algorithm is written for a one-dimensional equation. An ex-
pression for o, in the case of a uni-directional prescribed displacement is
sought to compare the finite element results with the numerical Laplace in-

verse results.

In the frequency domain, the one-dimensional equation is written:
0:2(8) = E*e22(s) (5.39)

with s being the Laplace variable and E* the complex Young’s modulus.
In the case of the fractional Voigt-Kelvin model, the following complex

shear modulus is defined in Section 2.4.2:
G* =G, + aG.st (5.40)

A constant bulk modulus is assumed resulting in a constant complex bulk

modulus:
K' =K. (5.41)

The complex Young’s modulus is defined as [41]:

. IK*G*
F=3kro (5:42)
Using Equations 5.40 and 5.41 in Equation 5.42 gives:
K oSt
. 9K (G.+aG.s*) (5.43)

" 3K. + (G. + aG.s%)
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This complex Young’s modulus is used in Equation 5.39, the one-dimensional

expression:
9K, (G, + aG.s%)
3K, + (Ge + aG,st

Equation 5.44 is used to evaluate the accuracy of the results generated by

Oz:(8) = )e,_.,(s) (5.44)

the subroutine. As in Chapter 4, it is solved using the numerical Laplace
transform described in Wilcox [50]. The two test cases are the frequency

domain expressions of Equations 5.37 and 5.38.

Case 1 Sinusoidal Strain

Ezz(s) =1 x 1073 —rces 5.
() = 1> 10 Sy (5.45)
Case 2 Decaying Sinusoidal Strain
_3 1
£z:(8) =1x10 (5.46)

(s — k)2 + (27 f)>

5.3.2 Parameters Affecting the Performance of the Sub-
routine

The performance of the subroutine is evaluated in terms of accuracy when
compared to the results from the numerical Laplace inverse. In any finite ele-
ment package, the user can modify some parameters affecting the convergence
of the solution, especially if automatic time stepping is used. The initial time
step. called DTIO in Samcef, can sometimes affect the solution. A parame-
ter controls the level of convergence of the dynamic solution and modifies the
time step accordingly. This parameter is called PRCO. The two parameters
evaluating the convergence of the constitutive equation are PRCV and SREF
and have been presented in Section 5.2.3. The last parameter affecting di-
rectly the solution in this case is MEMMAX. This parameter plays the same
role as the memmaz parameter defined in Chapter 4. It defines the length of

the storage vector. Dynamic memory allocation is not possible yet within a
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PRCO 1.0 x 1077
DTIO (sec) | 1.0 x 1073
PRCV 5.0 x 10~2
SREF (Pa) | 4.0 x 10°
MEMMAX 1000

Table 5.1: Reference Values for the Subroutine Parameters

user subroutine. and therefore, the size of the vector affects the computation
efficiency of the subroutine if space is reserved uselessly. The influence of these
five parameters. PRCO. DTIO, PRCV, SREF, and MEMMAX, is studied in
the following sections. Table 5.1 gives the reference values chosen for the pa-
rameters. These values have been chosen to give convergent solutions for the
two test equations defined in Section 5.3. They are not necessarily optimal.
To evaluate the solution, it is compared to the numerical Laplace inverse ob-
tained with 1024 data points of which 870 are kept. An interpolation is done
on the data obtained with the numerical Laplace inverse to get information at
the same points in time as the data obtained with the finite element analysis.
The interpolation is done with Matlab using the interp! function which does
a linear interpolation. A simple subtraction between the data obtained from
the numerical Laplace inverse and the data obtained from the finite element
package gives a measure of the error. The absolute value of this difference
is taken. The maximum error obtained in the studied time interval is given
and reflects the accuracy of the solution. The number of steps taken by the
finite element package to cover the time interval is also given. as well as the
CPU time. as a measure of the efficiency of the subroutine. In terms of CPU
time, the numerical Laplace inverse takes between 0.28 sec and 0.35 sec for
both cases outlined in Section 5.3. This is much less than the CPU time re-
quired for the finite element solutions, but the finite element analysis solves
the constitutive equation for the six components of the constitutive equation,
whereas the numerical Laplace inverse is done for a one-dimensional equation.

The numerical Laplace inverse and the finite element solutions are both run
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PRCO Maximum Error | Number of Steps | CPU Time
(Pa) (sec)
Case 1 Sinusoidal Strain
1.0 x 10° 2.3247 x 107 148 10.25
1.0 x 107! 2.3247 x 104 148 9.80
1.0x 1072 || 2.3247 x 10* 148 9.90
1.0 x 1073 ||  2.0351 x 10° 156 10.91
1.0 x 107 2.1402 x 10* 178 12.78
1.0 x 10~ Stopped at 0.1523599 sec
Case 2 Decaying Sinusoidal Strain
1.0 x 107! 1.7284 x 107 95 5.59
1.0 x 1072 || 1.7284 x 107 95 543
1.0 x 1073 1.2081 x 10* 111 7.05
1.0 x 1074 1.1334 x 10° 136 8.71
1.0 x 107> Stopped at 0.1572033 sec

Table 5.2: Effect of PRCO

on a Enterprise 450 with two processors UltraSPARC-II. In the case of the
finite element package, automatic time stepping is used, but to limit the CPU
time, the time step is not allowed to go below 1.0 x 10~* sec. If conditions
are such that a step below this value is required to obtain enough accuracy
as defined by the PRCO and PRCV parameters, the computation is stopped.
The computation would proceed without hindrance using smaller time steps,

but the computation time would be prohibitive.

5.3.3 Effect of PRCO

Table 5.2 shows the effect of PRCO. the parameter controlling the accuracy
of the dvnamic solution. The maximum error is not following the same trend
as PRCO. As a more stringent condition is put on PRCO, by decreasing its
value. the maximum error is not necessarily decreasing. The automatic time
stepping procedure will reduce the step when the error grows. correcting any
tendency to diverge. Figure 5.2 shows the worst case obtained for Case 1 with
an error of 2.3247 x 10* Pa and a value for PRCO of 1.0 x 102, The error is
smaller near the peaks of the stress function and greater where the function

nears zero. There is a small phase shift between the solution generated by the
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finite element analysis and the solution generated by the numerical Laplace

inverse.

The main tendency to notice for both Case 1 and Case 2 is the increasing
number of steps as a more stringent condition is put on PRCO, and the cor-
responding growing CPU time. As the value given to PRCO decreases, more
steps are needed to meet the condition, and more steps mean more data stored
needing to be retrieved for calculations. thus leading to a higher CPU time.
There are slight variations in the CPU time for cases using the same number
of time steps. but this is due to different number of iterations done by the

software to converge to these steps.

For the test cases shown. if PRCO is increased above 1.0 x 102, results
remain almost the same. At this level. the condition on PRCO is not affecting
the time step anymore, and any restriction on the time step is coming from

PRCV. The condition on PRCV is such that the solution is still good.

For both Case 1 and Case 2, when PRCO reaches 1.0 x 1073, the step
becomes very small to obtain that level of accuracy and the CPU time increases
drastically. A requirement was put stopping the computation when the step
would reach 1.0 x 107! sec. With Case 1. it happened after 0.1523599 sec of
the solution and it took 43.12 sec of CPU time. With Case 2, it happened after
0.1572033 sec of the solution and it took 49.65 sec of CPU time. Figure 5.3

shows that solution for Case 1.

There is quite a large range of admissible values of PRCO for the two cases
presented. If the value is too stringent. the requirement will force the time
step to become too small. resulting in an excessive computing time. If the
value is not stringent enough, some inaccuracies might appear, but overall,
this parameter does not cause unwanted effect on the constitutive equation

subroutine.
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DTIO Maximum Error { Number of Steps CPU Time
(sec) (Pa) (sec)
Case 1 Sinusoidal Strain
1.0 x 10° || The step is not small enough after being decreased three times
5.0 x 107! || The step is not small enough after being decreased three times
1.0 x 107! 2.1603 x 10% 116 7.78
1.0 x 1072 1.9358 x 10* 127 8.80
1.0x 1073 || 2.3247 x 10* 148 9.90
1.0 x 10~ 2.0935 x 10* 160 12.44
1.0 x 1073 2.3180 x 104 168 13.62
Case 2 Decaying Sinusoidal Strain
1.0 x 10° 2.6043 x 10% 3 0.96
8.0 x 1071 2.0814 x 104 4 0.95
5.0 x 1071 2.1530 x 104 31 1.95
1.0 x 107! 1.2993 x 10* 67 3.90
1.0 x 1072 2.0215 x 10* 69 3.94
1.0 x 1073 | 1.7284 x 10* 95 5.43
1.0 x 10~* 1.3094 x 101 102 5.87
1.0 x 1073 1.2424 x 104 113 6.67

Table 5.3: Effect of DTIO

5.3.4 Effect of DTIO

DTIO specifies the initial time step. With the automatic time step procedure,
the finite element package should reduce the time step if it is too large to satisfy
PRCO and PRCV and it should increase the subsequent steps if the conditions
set by PRCO and PRCV are easily met. Table 5.3 gives the performance of
the subroutine as the value of DTIO changes. The parameters for the finite
element computation include a parameter limiting the number of attempts at
reducing the time step to three and this value is kept. The finite element
package fails to start the computation due to this parameter in a few cases for
which the initial step is too large. For the other cases, the time step is reduced
to an acceptable level and the computation proceeds with a satisfying level of
accuracy. When the initial time step is too small, the finite element package
adds a few time steps to the solution until the time step reaches an acceptable
size. and these added time steps translate into an increased CPU time.

An interesting phenomenon happens with Case 2 when the initial time
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Figure 5.4: Case 2 with DTIO Equal to 5.0 x 107! sec

step is very large. In Figure 5.4. the steps are marked. The initial step is
very large, but the algorithm is able to calculate a solution despite this. Of
course. the first few data points do not describe the function accurately, but
eventually. the finite element package reduces the time step drastically and
starts to follow the function correctly. The interesting phenomenon is that
few data points are stored for the computation of the fractional derivative,
and vet. the subroutine still computes correctly. In Chapter 4. there were no
automatic time stepping, and the ability to reduce the amount of stored data
was limited. but in this case, because the finite element package adapts the
time step when needed, less precision is necessary with the stored data.

The maximum error shown in Table 5.3 is not directly affected by the
initial time step. It depends on the location of the individual data point and
the step size taken in that area. For Case 2, with an initial time step of

1.0 x 10~ sec, the solution is less precise at the end of the computing time,
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Figure 5.5: Case 2 with DTIO Equal to 1.0 x 10~ sec

because too large steps are taken as shown in Figure 5.5. This does not happen
with 1.0 x 1073 sec or 1.0 x 1073 sec. The automatic time stepping procedure

can produce unexpected effects which are controlled by adjusting PRCO.

5.3.5 Effect of MEMMAX

To verify the amount of stored data which is necessary for good precision.
MEMMAX is varied. Table 5.4 shows the effect of the variation of MEM-
MAX. The minimum step size allowable is fixed at 1.0 x 10~* sec, and when
the algorithm stops. it is because the step needed to keep a sufficient level of
accuracy according to PRCO and PRCV would be smaller or equal to this
value. For both cases, the algorithm cannot work efficiently with a storage
vector equal to less than one third of the needed data to compute the whole
solution. For Case 1, the computation is done in approximately 148 steps

and it stops performing efficiently if the storage vector contains only 50 data
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MEMMAX || Maximum Error | Number of Steps | CPU Time
(Pa) (sec)

Case 1 Stnusoidal Strain
700 2.3247 x 101 148 9.90
100 2.3247 x 101 147 7.22
60 2.4829 x 10° 149 6.07
50 Stopped at 2.301079 sec

Case 2 Decaying Sinusoidal Strain
700 1.7284 x 10* 95 5.43
60 2.1925 x 104 95 3.86
50 2.3120 x 10* 95 3.55
10 2.5848 x 104 92 3.27
30 Stopped at 2.513808 sec

Table 5.4: Effect of MEMNMAX

points, which is approximately 34% of the total number of data points. For
Case 2. the computation requires approximately 95 steps, but the finite ele-
ment package is not efficient if the size of the storage vector is 30, which is
about 33% of the total number of data points. In both cases when the al-
gorithm fails to compute. it is right after a compression of data occurs. For
Case 1. the algorithm stops after computing 125 steps, which is right after
the fourth compression. The first compression occurs when 50 steps are com-
puted. One step out of two is kept and 25 new steps can be stored. The
following compressions occur at 75. 100. and 125 steps. At the 126 step.,
the level of error brought by the fractional derivative requires a smaller step
than 1.0 x 10~* sec. For Case 2, the algorithm stops computing after 90 steps,
compressions occuring at 30. 45. 60. 75, and 90 steps. However, for Case 2,
even though the algorithm computes to the end of the simulation time with
a storage vector of 40, the error is quite large. The simulation results show
some divergence from the results obtained with the numerical Laplace inverse.

Figure 5.6 shows the results for Case 2 with a storage vector of 40 data points.

As shown in Table 5.4, the computing time is shortened by using smaller

storage vectors. Manipulating a large storage vector slows down the compu-
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SREF Maximum Error | Number of Steps | CPU Time
(Pa) (Pa) (sec)
Case 1 Sinusoidal Strain
1.0 x 10° | 5.3380 x 10° 44 3.11
4.0x 107 {| 5.3380 x 10* 44 3.02
4.0 x 106 5.4132 x 10% 46 3.20
4.0 x 10° | 23247 x 10* 148 9.90
4.0 x 10% Stopped at 0.09272425 sec
Case 2 Decaying Sinusoidal Strain
4.0 x 10® || 2.7556 x 10* 43 2.87
4.0 x 107 2.7556 x 101 43 2.92
4.0 x 108 2.6519 x 10% 49 3.05
4.0 x 10° 1.7284 x 10* 95 5.43
4.0 x 107 Stopped at 0.1002489 sec

Table 5.5: Effect of SREF

tation. Even if the total number of time steps is the same, a smaller storage
vector significantly reduces the computing time. However, the error also grows
if the storage vector is smaller than the total number of time steps. Ideally, the
storage vector should not be large needlessly, but care is needed for a storage

vector smaller than the total number of time steps.

5.3.6 Effect of SREF

The error on the constitutive equation is adimensionalized by dividing it either
by the average stress. the sum of the six values of stress divided by six, or by

a reference stress, SREF. as stated in Equation 5.33:

maxX gJ,mentstlocal stress error) (5.47)

local error =
max (SREF, max gementstaverage local stress))

Table 5.5 shows the effect of SREF. For both Case 1 and Case 2, the maximum
amplitude of the stress is 4.0 x 10° Pa. This is the value chosen for SREF. If
SREF is larger, the computed value of the error becomes quite small for the
chosen PRCV and the criteria is ineffective. Figure 5.7 shows Case 1 with a
value of SREF of 4.0 x 10® Pa. The finite element solution is not accurate.
If SREF is too small, the error is larger, and the step is constantly reduced

to try to meet the criteria set by PRCV. This happens with SREF equal to
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PRCV Maximum Error | Number of Steps | CPU Time

(Pa) (sec)

Case 1 Sinusoidal Strain

5.0 x 10~} 5.4132 x 10* 46 3.08

1.0 x 107! 2.8776 x 10* 82 6.81

50x 1072 | 2.3247 x 10* 148 9.90

1.0 x 1072 Stopped at 0.1464766 sec

Case 2 Decaying Sinusoidal Strain

50 x 10" | 2.6519 x 10° 45 2.50

1.0 x 107! 2.3143 x 10* 61 4.11

50x 1072 || 1.7284 x 10* 95 5.43

1.0 x 1072 Stopped at 0.1423889 sec

Table 5.6: Effect of PRCV

4.0 x 10* Pa. Both simulations done with this value of SREF stop when the
step becomes smaller or equal to 1.0 x 10~* sec. For a given PRCO, there
are not many admissible values of SREF which render the criteria effective

without being too stringent.

5.3.7 Effect of PRCV

The parameter PRCV sets the admissible error on the computation of the
constitutive equation. Table 5.6 shows the results. The effect of PRCV is
similar to the effect of SREF. When the value is too high, the criteria is
ineffective. The number of steps needed to complete the computation gets
lower as the step is never reduced due to the error control on the computation
of the constitutive equation. If PRCV is too small, the criteria is so stringent
that the step is kept very small and the computation is not efficient anymore.
For a given SREF. there are only few values of PRCV which give an efficient
control of the error due to the constitutive equation computation. Clearly,

SREF and PRCV must be chosen together.

5.3.8 Combined Effect of PRCV and SREF

The last two sections showed that for a given PRCV, there are only a few

values of SREF producing good results, and vice versa. Starting with a value
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PRCV SREF Maximum Error | Number of Steps | CPU Time
(Pa) (Pa) (sec)
Case 1 Sinusoidal Strain
5.0x 1073 [ 4.0 x 10° || 2.3247 x 107 148 10.18
50x 1072 | 4.0 x 10° || 2.3247 x 10¢ 148 9.90
5.0 x 1071 | 4.0 x 10% 2.3733 x 10° 147 10.34
5.0 x 10° | 4.0 x 10% | 3.6936 x 10* 53 3.07
Case 2 Decaying Sinusoidal Strain
50x1073[4.0x 10° || 1.7284 x 107 95 5.27
5.0x 1072 | 4.0 x 10° 1.7284 x 10* 95 5.43
5.0 x 107! | 4.0 x 104 1.4894 x 101 91 5.29
5.0 x 10° | 4.0 x 103 1.8125 x 107 48 2.77

Table 5.7: Combined Effect of PRCV and SREF

of PRCV equal to 5.0 x 1072 and a value of SREF equal to 4.0 x 10° Pa,
these values are decreased or increased by an order magnitude simultaneously
to assess the limits of the acceptable choices for PRCV and SREF. Table 5.7
shows the results. Despite the fact that the ratio of PRCV to SREF remains
the same. as SREF decreases, the error criteria has less and less impact. The
definition of the error is stated again:

max local stress error)

elements!
max (SREF, max

local error = (5.48)

elements(average local stress))

The numerator is divided either by SREF or by the average local stress. If
SREF is too low, very often the numerator will be divided by the average
local stress which is higher. Since PRCV has been increased to compensate
the decreasing value of SREF, the local error criteria becomes ineffective. This
happens in both cases for a value of SREF equal to 4.0 x 103 Pa. For this value
of SREF. the maximum error increases significantly. At this point, only PRCO
affects the step size and there is no control on the precision of the computation
of the constitutive equation. If SREF is higher than the maximum stress, than
the numerator is always divided by SREF, and decreasing accordingly PRCV
gives the same results as lower values of SREF. This is seen for both cases
with values of SREF equal to 4.0 x 106 Pa. The results obtained are the same
as with a value of SREF of 4.0 x 10° Pa.
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The two preceding sections showed that when one of the two parameters,
PRCYV or SREF, is fixed, there are few values for the other parameters which
will enable the error criteria to be effective. However, even when the right ratio
between PRCV and SREF is kept, if SREF is below the average local stress,
the criteria is not as stringent as expected. It is better to choose SREF as the
highest possible local stress, and then find an appropriate value of PRCV to
ensure some control on the precision of the computation of the constitutive

equation.

5.4 Conclusion

The implementation of the fractional constitutive equation within a commer-
cial finite element package was described. The expression for the Jacobian of
the constitutive equation was given. Two test cases were defined. The first
one is a cubic element of PMMA submitted to a sinusoidal strain, and the
second test case is the same cubic element of PMMA submitted to a decaying
sinusoidal strain.

The influence of various computing parameters was studied, and the al-
gorithm gave reliable, precise results in most cases. The dynamic precision,
PRCO and the initial step. DTIO, affected the simulations in the same man-
ner as they affect any time domain simulations. If PRCO is too small, the
time step becomes prohibitively small. If DTIO is too large, the automatic
time stepping procedure cannot reduce the step sufficiently to ensure a good
precision. The size of the storage vector affected the simulation time and the
accuracy. If MEMMAX, the size of the storage vector is larger than the total
number of time steps in the simulation, than the CPU time increases with
no gain in precision. If MEMMAX is much smaller than the total number of
time steps, the precision decreases. When MEMMAX was chosen to be equal
to approximately one third of the total number of data points, the algorithm
had to compress the data too often and the step became very small to keep a

reasonable level of accuracy. A certain level of precision in the history of the
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time derivative of the strain is necessary for the fractional Voigt-Kelvin model
to be effective. The most difficult parameters to select were the ones pertain-
ing to the estimation of the error due to the computation of the constitutive
equation. The two parameters, SREF and PRCV, are linked and cannot be
chosen independently. Some a priori knowledge of the maximum stress seen
in the given problem proved useful.

The goal of this chapter was to establish the accuracy of the finite ele-
ment implementation of the fractional Voigt-Kelvin model. The results were
compared to results from a numerical Laplace inverse. The algorithm for the
fractional Voigt-Kelvin model did not require very small time steps. The num-
ber of time steps used was just enough to ensure a smooth representation of
a sinusoidal signal. In the next chapter, some experimental test cases will be
studied and the performance of the fractional Voigt-Kelvin model will also be

compared to the performance of other classical constitutive equations.
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Chapter 6

Examples of Experimental
Slewing Beams

6.1 Introduction

In the preceding chapters, parameters have been found for various viscoelastic
models and two materials, PMMA and 3M ISD 112. In this chapter, slewing
beams made of PMMA or steel covered by constrained viscoelastic layers of 3M
ISD 112 are studied. The experimental results are compared to the simulation
results produced by the viscoelastic models to find which ones are efficient and

which ones are accurate.

6.2 Steel Beam Covered by a Constrained Vis-
coelastic Layer

The first example is a steel beam completely covered by a constrained vis-
coelastic laver. The materials are those usually considered for use in space.
The beam is simply slewing in the horizontal plane and a correlation between
the recorded experimental data and the simulation results is attempted. The
experiments were done in collaboration with Slanik [48] and Tremblay [54] and
are both part of their respective master thesis. Slanik concentrating on the
time domain finite element simulation with Prony series (Slanik et al [9, 11]).
and Tremblay on the use of equivalent homogeneous parameters for the three

layer beam (Piedboeuf et al [55]).



Figure 6.1: Beam with a Constrained Viscoelastic Layer

Young’s Modulus | Poisson’s Ratio | Density
(GPa) (kg/m?)
Steel 210 0.3 7962.5
Aluminium 70 0.3 2710

Table 6.1: Mechanical Properties of Steel and Aluminium

6.2.1 Experimental Set-Up

The set-up is fully described in Slanik [48]. A slender steel beam is covered by
a viscoelastic layer of 3M ISD 112 constrained by a thin layer of aluminium.
The beam has a length of 600 mm, but the samples of 3M ISD 112 provided
by 3M are shorter. Three strips of 3M ISD 112 of approximately 200 mm are
used with spaces as small as is physically possible between them. Figure 6.1
illustrates the configuration of the beam. The steel beam has a width of
19.05 mm and an average thickness of 1.603 mm. This thickness shows a vari-
ation of approximately + 2.5% along the length. This variation in thickness
is not modelled and could affect the simulation results. The viscoelastic layer
has a nominal thickness of 0.127 mm and the aluminium constraining layer, a
nominal thickness of 0.254 mm. The mechanical properties of the viscoelastic
layer 3M ISD 112 were investigated in Chapter 3, and the properties of the
steel and the aluminium used are given in Table 6.1. Young's modulus and
the density of steel are measured, whereas the aluminium is simply described
as a standard soft aluminium by 3M, and usual values are taken. The density

of the viscoelastic layer is given by 3M as 970 kg/m®.

The beam is slewed in the z — y plane, which is horizontal, as shown in
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Figure 6.2. The beam is first lying along the z axis with negligible deflection.
[t is then slewed 90° counterclockwise, then 180° clockwise, and finally. 90°
counterclockwise. The resulting position of the base with respect to time is
shown in Figure 6.3. Since the beam is rotating in the £ —y plane and bending
is about the strong axis, gravity effects are neglected.

A strain gauge is used on the steel beam near the base to record the
deformation. The gauge has a resistance of 350 Q and a grid area of 8.08 mm?.
The excitation voltage is 9.0 V' and an amplification factor of 1000 is used.
The strain gauge is mounted in a quarter-bridge configuration with a gauge

factor of 2.085.

6.2.2 Finite Element Model

The beam is modelled with plane strain elements lying in the z — y plane as
illustrated in Figure 6.1. Along the length, one layer of 99 elements is used to
model the steel beam assuming an elastic behaviour. Another 99 plane strain
elements model the viscoelastic layer. A last layer of 99 elements models the
aluminium layer, also assuming an elastic behaviour. The beam length is
600 mm. therefore each element has a length of 6.061 mm. The thickness
of the viscoelastic layer, which is the thinnest element, is 0.127 mm. The

aspect ratio of the viscoelastic element is 48 and the results from the elements
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Figure 6.4: Portion of the Finite Element Model of the Beam with a Con-
strained Viscoelastic Layer

are considered accurate by Samcef up to an aspect ratio of 50. Figure 6.4
shows the finite element model. The strain of the steel beam near the base is
measured using the element D/ST. which is a distance indicator. It gives the
length of the line marked by an ellipse on Figure 6.4. The initial length of the
element is subtracted from that value. The difference is divided by the initial

length to obtain a measure of the strain.

The constrained viscoelastic layer is not continuous: three sections of 200mm
are placed end to end to cover the whole beam. These discontinuities in the
layer are simply modelled by superposing supplementary nodes where one strip
ends to create the beginning of the new strip, for a total of five nodes needed
to model one slit. No distance between the strips is modelled. Figure 6.5 il-
lustrates the model used for the slits. A certain number of parameters proper
to the finite element package were described in Chapter 5. The values chosen

for all simulations are listed in Table 6.2.
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Figure 6.5: Modelling of the Slits

PRCV | 0.1

PRCO | 0.01
SREF | 5 x 10° Pa
DTIO | 0.001 s

Table 6.2: Finite Element Simulation Parameters



6.2.3 Simulated Beam Response

The parameters found in Chapter 3 for the viscoelastic behaviour of 3M ISD
112 are used to simulate the beam response. Each model is compared to the
experimental response. The simulated and experimental responses is evaluated
for both the natural frequency exhibited and the logarithmic decrement. The
logarithmic decrement is a measure of damping and it compares the respective
amplitudes of two maxima. If A cycles separate the two maxima A; and Ay,

then the logarithmic decrement is:

1 A
§=— Iln~—
M A

(6.1)

In Figure 6.3. the angular position of the base changes rapidly three times.
After each slew. the frequency and the logarithmic decrement is measured
and compared to the experimental values. This is done rather than taking the
average of the three natural frequencies and the three logarithmic decrements,
since the amplitude values after the second slew are very small and more
difficult to measure. A model can do well in predicting what is happening
after the first and third slew, but not so well on what is happening after the
second slew. Taking the average prevents the reader from fairly assessing the

effectiveness of each model.

The Voigt-Kelvin Model

Figure 6.6 shows the experimental response compared to the simulated re-
sponse with a Voigt-Kelvin model using the parameters found in Chapter 3.
The first part of the figure is the response for the whole time interval, whereas
the three other parts zoom on the response for intervals of six seconds. Table 6.3
compares the natural frequencies and logarithmic decrements after each slew-
ing movements. The beam response obtained with a Voigt-Kelvin model shows
on average a difference of 4.3% for the natural frequency, and a difference of
88% for the logarithmic decrement. Figure 3.15 showed the magnitude and
the phase of the shear modulus of 3M ISD 112 to be underestimated by the

133



x10
5 T T T T T T T T T
£
&
st . . , \ L N S Experimen?al
Ox 104 2 4 6 8 10 12 18— Voigt-Kelvin 20
5 T T T T L

Strain

Strain

Straln

. 12 13 14 15 16 17 18
Time (s)

Figure 6.6: Beam Response Using a Voigt-Kelvin Model

Simulated | Experimental || Difference (%)
First Slew
Natural Frequency (H:z) 3.77 3.64 3.4
Logarithmic Decrement || 7.8 x 1073 | 1.1 x 107! 92
Second Slew
Natural Frequency (Hz) 3.78 3.67 3.0
Logarithmic Decrement || 9.7 x 1073 | 6.9 x 1072 86
Third Slew
Natural Frequency (Hz) 3.79 3.56 6.5
Logarithmic Decrement || 1.3 x 1072 | 9.9 x 1072 87

Table 6.3: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Voigt-Kelvin Model
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Figure 6.7: Beam Response Using a Maxwell Model

Voigt-Kelvin model. In this case. the natural frequency is driven by the prop-
erties of the steel beam, but the damping in the model is uniquely introduced
through the material properties of the viscoelastic layer. The underestimation
of the phase by the Voigt-Kelvin model around 3 H=z shows in the underes-
timated damping of the simulation. The simulation is accomplished in 4190

steps and required 0.683 h of CPU time.

The Maxwell Model

Figure 6.7 shows the experimental response compared to the simulated re-
sponse with a Maxwell model. Table 6.4 compares the natural frequencies and
logarithmic decrements after each slewing movements. The beam response ob-
tained with a Maxwell model shows on average a difference of 4.0% for the
natural frequency, and a difference of 59% for the logarithmic decrement. Fig-
ure 3.16 showed the magnitude of the shear modulus of 3M ISD 112 to be
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Simulated | Experimental || Difference (%)

First Slew

Natural Frequency (H:z) 3.75 3.64 3.0
Logarithmic Decrement || 1.8 x 1072 | 1.1 x 107! 84
Second Slew

Natural Frequency (Hz) 3.77 3.67 2.7
Logarithmic Decrement | 4.2 x 1072 | 6.9 x 1072 39
Third Slew

Natural Frequency (Hz) 3.78 3.56 6.2
Logarithmic Decrement [ 4.5 x 1072 | 9.9 x 1072 55

Table 6.4: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Maxwell Model

underestimated by the Maxwell model. However, the phase in the vicinity of
3 H:. the natural frequency in this case, is very close to the manufacturer
data. This good prediction of the phase accounts for the improvements in the
simulation results over the ones obtained with a Voigt-Kelvin model. How-
ever. the results still exhibit discrepancies due to the underestimation of the
magnitude of the shear modulus. The simulation is accomplished in 5543 steps

and required 0.880 h of CPU time.

The Zener Model

Figure 6.8 shows the experimental response compared to the simulated re-
sponse with a Zener model. Table 6.5 compares the natural frequencies and
logarithmic decrements after each slewing movements. The beam response
obtained with a Zener model shows on average, a difference of 3.8% for the
natural frequency. and a difference of 88% for the logarithmic decrement. Fig-
ure 3.17 showed both the magnitude and the phase of the shear modulus of
3M ISD 112 to be underestimated by the Zener model. This results in an
underestimation of the damping level. The simulation was accomplished in

5043 steps and required 0.867 h of CPU time.
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Figure 6.8: Beam Response Using a Zener Model

Simulated | Experimental | Difference (%)
First Slew
Natural Frequency (H:z) 3.77 3.64 3.6
Logarithmic Decrement || 8.3 x 1073 | 1.1 x 10~} 92
Second Slew
Natural Frequency (H=z) 3.74 3.67 1.9
Logarithmic Decrement |[ 6.1 x 1073 | 6.9 x 10~2 91
Third Slew
Natural Frequency (Hz) 3.77 3.56 5.9
Logarithmic Decrement | 1.9 x 10~ | 9.9 x 102 81

Table 6.5: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Zener Model



Prony Series

The first three models presented, Voigt-Kelvin, Maxwell, and Zener, are all
characterized by large differences between the model and the manufacturer
data. In contrast, the Prony series show a better fit to the manufacturer data,
even for the one-term Prony series as shown in Figure 3.18. Between 3 Hz
and 4 Hz, slight differences appear in the predicted magnitude of the shear
modulus for the four models, and somewhat larger differences in the phase of
the shear modulus. However, as shown in Tables 6.6 to 6.9, the differences in
the solutions are small. All the solutions overpredict the natural frequency,
which is due to the finite element model rather than the viscoelastic model as
discussed in Section 6.2.1.

The damping level is either overpredicted or underpredicted by the different
models, but the prediction is closer to experimental results with a Prony series
of four terms or more. Solutions for Prony series between five and seven terms
are shown in Appendix B.

An interesting fact is the lack of obvious differences between the solutions
using a constant Poisson’s ratio or a constant bulk modulus. As explained in
Section 2.5, at this low frequency and for this nearly incompressible material,
either assumptions give similar values of Young’s modulus.

Figure 6.9 shows the worst case among the first four Prony series against
the best case when a constant Poisson’s ratio is assumed. The worst case is
the two-term Prony series with an appreciable level of overestimation of the
damping, whereas the best case is the four-term Prony series with small dif-
ferences between the predicted and the experimental logarithmic decrements.
Despite this, both solutions are very close and differences are not obvious on
the graph. Clearly, for this type of problem for which the viscoelastic material
is only one component of the structure, a simple but realistic model such as a
one-term Prony series is sufficient.

The number of steps and CPU time is similar for all solutions as shown in

Table 6.10. Increasing the order of the Prony series does not increase the CPU
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Constant Constant Bulk
Experimental || Poisson’s Ratio Modulus
Simulated | Diff. || Simulated | Diff.
(%) (%)
First Slew
Natural Freq.(Hz) 3.64 3.80 4.4 3.80 4.4
Log. Decrement 1.1x107! ||80x10"2| 27 | 80x107%| 27
Second Slew
Natural Freq. (Hz) 3.67 3.83 4.4 3.76 2.5
Log. Decrement 69x 1072 ||1.0x107'| 45 || 1.1 x 107! | 59
Third Slew
Natural Freq. (Hz) 3.56 3.79 6.5 3.80 6.7
Log. Decrement 99 x 107 || 7.7x1072} 22 || 76x107*| 23

Table 6.6: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a One Term Prony Series

Constant Constant Bulk
Experimental || Poisson’s Ratio Modulus
Simulated | Diff. | Simulated | Diff.
(%) (%)
First Slew
Natural Freq.(Hz) 3.64 3.88 6.6 3.89 6.9
Log. Decrement 1.1x107! || 15x10°!'| 36 || 1.5x107!| 36
Second Slew
Natural Freq. (Hz) 3.67 3.77 2.7 3.88 5.7
Log. Decrement 69x1072 | 14x10"'{ 103 1.2x10°'| 74
Third Slew
Natural Freq. (Hz) 3.56 3.87 8.7 3.87 8.7
Log. Decrement 99x107%2 [ 15x107'| 52 | 1.5x 107! | 52

Table 6.7: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Two Term Prony Series
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Constant Constant Bulk
Experimental | Poisson’s Ratio Modulus
Simulated | Diff. || Simulated | Diff.
(%) (%)
First Slew
Natural Freq.(Hz) 3.64 3.86 6.0 3.87 6.3
Log. Decrement 1.1x 107" [[80x107%| 27 |[80x107%| 27
Second Slew
Natural Freq. (Hz) 3.67 3.84 4.6 3.82 4.1
Log. Decrement 6.9x107% | 1.1 x107'| 59 | 1.1 x10°'| 59
Third Slew
Natural Freq. (H=z) 3.56 3.86 8.4 3.87 8.7
Log. Decrement 99x 1072 ||80x107%2}| 19 |81 x1072| 18

Table 6.8: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Three Term Prony Series

Constant Constant Bulk
Experimental || Poisson’s Ratio Modulus
Simulated | Diff. || Simulated | Diff.
(%) (%)
First Slew
Natural Freq.(H =) 3.64 3.87 6.3 3.86 6.0
Log. Decrement 1.1x 107" ||96x1072| 13 (|9.5x107%| 14
Second Slew
Natural Freq. (H2z) 3.67 3.82 4.1 3.85 4.9
Log. Decrement 69x107% |[6.7x1072| 23 | 56x10"%| 19
Third Slew
Natural Freq. (Hz) 3.56 3.84 7.9 3.84 7.9
Log. Decrement 99x 1072 ||92x1072} 71 ||9.2x1072| 7.1

Table 6.9: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Four Term Prony Series
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Constant Constant Bulk
Prony Poisson’s Ratio Modulus
Series Number of | CPU Time || Number of | CPU Time
Time Steps (h) Time Steps (h)

1 Term 3074 0.5095 2989 0.5084
2 Terms 3247 0.5244 3206 0.5295
3 Terms 3046 0.5138 3176 0.5412
4 Terms 3130 0.5200 3085 0.5181
5 Terms 3023 0.5152 2954 0.5078
6 Terms 3073 0.4953 3123 0.5444
7 Terms 3074 0.5013 3155 0.5555

Table 6.10: Number of Time Steps and CPU Time for the Simulations Using
Prony Series

time. The variations from solution to solution seem due to the system rather
than the complexity of the Prony series. There is no obvious difference between
the solutions using a constant Poisson’s ratio and the ones using a constant
bulk modulus. However, on average, the CPU time for the solutions using a
constant Poisson’s ratio is 0.5113 A, whereas it is 0.5293 h for the solutions
using a constant bulk modulus. This is not necessarily significant since for the
same number of terms, the solution with a constant bulk modulus does not
always require more CPU time than the solution with a constant Poisson’s

ratio.

The Fractional Voigt-Kelvin Model

Figure 6.10 shows the experimental response compared to the simulated re-
sponse with a fractional Voigt-Kelvin model. Table 6.11 compares the natural
frequencies and logarithmic decrements after each slewing movements. The
beam response obtained with a fractional Voigt-Kelvin model overpredict the
natural frequency in a similar fashion to the Prony series. As for the Prony
series, the logarithmic decrement values are very close to the experimental
ones except for the second slew for which the damping is overestimated. The
simulation is accomplished in 3298 steps and required 45.567 h of CPU time.

In Chapter 5, the computation time was improved by reducing the value of
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Figure 6.10: Beam Response Using a Fractional Voigt-Kelvin Model

Simulated | Experimental || Difference (%)
First Slew
Natural Frequency (Hz) 3.90 3.64 7.1
Logarithmic Decrement |[ 9.5 x 1072 | 1.1 x 107! 14
Second Slew
Natural Frequency (Hz) 3.97 3.67 8.2
Logarithmic Decrement || 1.4 x 107! | 6.9 x 1072 103
Third Slew
Natural Frequency (Hz) 3.88 3.56 9.0
Logarithmic Decrement || 9.1 x 1072 | 9.9 x 1072 8.1
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MEMMAX || Number of Time Steps | CPU Time
()
5000 3298 48.477
3300 3298 45.567
1700 3236 27.996
1100 3273 19.982
660 3291 12.705

Table 6.12: Number of Time Steps and CPU Time for the Simulations Ac-
cording to the Value of MEMMAX

MEMMAX. the amount of data points being stored for use in calculations.
Table 6.12 gives the number of steps taken to simulate the time interval and
the CPU time for simulations using different values of MEMMAX. For a value
of MEMMAX of 660, the CPU time is reduced to 12.705 h without any loss
of precision. Tables B.4 to B.6 in Appendix B show the differences between
these cases and the one with a MEMMAX of 3300 to be negligible. Figure 6.11
compares the solutions for a MEMNMAX of 3300 and one of 660. The differ-
ences are very small. The value of MEMMAX can not be reduced indefinitely,
however. Figure 6.12 shows the simulation for a value of MEMMAX of 300.
The results are very noisy and do not show a proper level of damping. More-
over. the CPU time is 11.622 A, only a small improvement over the 12.705 h

obtained with a MEMMAX of 660.

6.2.4 Conclusion

As expected. the Voigt-Kelvin, Maxwell. and Zener models are not appropriate
to represent the damping level obtained with a viscoelastic layer. On the other
hand, the Prony series and the fractional Voigt-Kelvin model are accurate.
A four-term Prony series predicted the logarithmic decrements within a few
percents of the experimental values in approximately half an hour of CPU time.
This is about the CPU time required to run a simulation of this beam with
only elastic properties. At this frequency. there is no significant difference

between using a constant Poisson’s ratio or a constant bulk modulus as an
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assumption to build the Prony series.

The fractional Voigt-Kelvin model gives similar results to the four-term
Prony series, but it is much less efficient in terms of CPU time. Even by storing
as few values as possible, the simulation requires 12.705 h, which is much
more than the half hour needed for the Prony series. The fractional Voigt-
Kelvin model still retains some use for cases in which little data is available for
parameter identification. A four-term Prony series requires nine parameters
to be identified. whereas the fractional Voigt-Kelvin model needs only three.

The Prony series required on average 3097 steps and the fractional Voigt-
Kelvin model on average. for different values of MEMMAX, 3279 steps, a
5.9% increase over the Prony series. This is very reasonable and shows the
approach used in this thesis to solve numerically the fractional derivative does
not require very small time steps. The difference in CPU time between the
Prony series and the fractional Voigt-Kelvin model is due to the hereditary

nature of the fractional model. and not to the number of time steps taken.

6.3 Homogeneous PMMA Beams

In the preceding example. the viscoelastic material is just one component of
the structure. In this section, homogeneous polymer beams are examined.
The beams are made of polymethylmethacrylate (PMMA). The material is
not perfectly isotropic [56] or perfectly linear [57, 58], but it is considered as
such as an approximation. Another important difference with the preceding
example is the level of damping. The viscoelastic layer, 3M ISD 112, is a
high damping material with a modulus phase describing a bell and reaching
a maximum of 45°. In contrast, PMMA is also characterized by a modulus
phase describing a bell, but the maximum is 4°. In Chapter 3. the fractional
model with only one derivative of the strain is shown to be less representative
of the PMMA behaviour than the behaviour of 3M ISD 112. This could
affect the simulation results. Two slewing tests are done. Both are in the

horizontal plane. but one beam has a payload at the end and the other does
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not. As a result, the natural frequencies are different. giving insights into the

performance of the models in different situations.

6.3.1 Experimental Set-Up

The beams are clamped and are rotating in the horizontal plane. The motor
hub radius is 0.0375 m. The beams have a section of 26 mm by 12.3 mm. The
density of the PMMA used is 1225 kg/m3. The strain near the base is read
with two strain gauges set in a half-bridge configuration. The gauges have a
resistance of 350 €2 and a grid area of 14.5 mm?®. Given the poor heat sink

capacity of PMMA. a low excitation voltage is used.

Beam with no Payload

The beam with no payvioad has a length of 0.836 m. It is slewed in the z — y
plane from —90° to 90°. and then back. Figure 6.13 gives the position of the

base with respect to time.

Beam with a Payload

The beam with a payload has a length of 0.7852 m. The payload center of
mass is located at 0.031417 m from the link extremity. The payload mass is
0.36036 kg and the centroidal moment of inertia about the axis of rotations of
the beam is 5.238 x 107* kg -m?. The beam is slewed in the z — y plane from

—90° to 90°. Figure 6.14 gives the position of the base with respect to time.

6.3.2 Finite Element Models

Different types of elements are used for the two beams to accomodate the
payload. In both cases. an element acting as a distance indicator (DIST type
element) is placed near the base of the beam to evaluate the strain. The initial
length of the element is subtracted from the value given by the DIST element.
and this difference is divided by the initial length of the element to obtain the

strain.
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Figure 6.13: Position of the Base with Respect to Time for the PMMA Beam
with no Payload
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Figure 6.15: Length of the Element Near the Base without Numerical Damping

In both cases. some numerical damping is used. Figure 6.15 shows the
length of the element near the base of the beam without a payload when an
elastic behaviour is assumed. Soon after the beginning of the simulation, some
instabilities appear in the length of the element. Convergence is difficult to

obtain due to these instabilities.

Figure 6.16 shows again the length of the element near the base of the
beam without a payload when an elastic behaviour is assumed, but numerical
damping is added to the solution by setting the parameter a of the Hilber-
Hughes-Taylor algorithm to —0.3 [39]. The solution is more stable and can

now converge to the end of the simulation time.

The concern with numerical damping is not to distort the results. Fig-
ure 6.17 gives the strain near the base of the beam without a payload in the
case for which the behaviour is assumed elastic. After the base stops, the
beam oscillates and no substantial level of damping is seen. The numerical
damping introduced has stabilized the solution without distorting the results.

The other simulation parameters are set as in the case of the beam with a
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Figure 6.18: Finite Element Model of the PMMA Beam with no Payload

viscoelastic layer and the values of the parameters are given in Table 6.2.

Modelling of the Beam with no Payload

The beam without a payload is modelled with 80 plane strain elements lying

in the r — y plane as illustrated by Figure 6.18.

Modelling of the Beam with a Payload

The beam with a payload is also slewing in the r — y plane about the =z
axis. The plane strain elements in Samcef assume a unitary thickness and
only the density is input. The payload is represented as a point mass with
the proper centroidal moment of inertia. Using plane strain elements would
require scaling the payload mass to a unitary thickness for the beam. To avoid
this, three-dimensional brick elements are used to model the beam. Figure 6.19
represents the finite element model of the beam with a payload. Along the

length, 100 elements are used. and four are used along the thickness.
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Figure 6.19: Finite Element Model of the PMMA Beam with a Payload

6.3.3 Simulated Response of the Beam with no Payload

The parameters found for PMMA in Chapter 3 are used to simulate the be-
haviour of the beam with no payload. Again, the goal is not to adjust the
simulation parameters to reproduce the experimental results, but rather to
obtain simulation results as accurate as possible using the identified mater-
ial parameters. The experimental position of the motor with respect to time
shown in Section 6.3.1 is input in the finite element data file. As in Sec-
tion 6.2.3, the natural frequency and the logarithmic decrement are used to
compare the simulation results and the experimental data. The natural fre-
quency and the logarithmic decrement are measured on the first five cycles

occurring after the forced oscillation.

The Voigt-Kelvin Model

Figure 6.20 shows the experimental response compared to the simulated re-
sponse for a Voigt-Kelvin model. The dots appearing below the curve are noise

generated by the strain gauge and the amplification system. The Voigt-Kelvin
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Model Natural Difference Logarithmic Difference

Frequency with Decrement with
Experimental Experimental
(Hz) (%) (%)

Experimental 5.15 0.297

Voigt-Klevin 5.09 1.2 0.297 0.0

Maxwell 5.15 0.0 0.051 83

Zener 5.06 1.7 0.104 65

Prony Series for a Constant Poisson’s Ratio

1 Term 5.98 16 0.225 24

2 Terms 5.78 12 0.253 15

3 Terms 5.84 13 0.224 25

Prony Series for a Constant Bulk Modulus

1 Term 5.94 15 0.192 35

2 Terms 5.70 11 0.227 24

3 Terms 5.78 12 0.203 32

Fractional

Voigt-Kelvin 5.62 9.1 0.161 46

Table 6.13: Natural Frequency and Logarithmic Decrement for the PMMA
Beam with no Payload

model gives an almost perfect fit to the experimental data. Figure 3.7 showed
the magnitude of the shear modulus to be underestimated by the Voigt-Kelvin
model. but close to 5 H =, the phase was just slightly overestimated. This pro-
duced the right combination to obtain very good results. Table 6.13 gives
the natural frequency and the logarithmic decrement obtained with the Voigt-
Kelvin model and the differences in percentage with the experimental data are

very small. The simulation with the Voigt-Kelvin model requires 0.0285 h of

CPU time and is accomplished in 527 time steps.

The Maxwell Model

Figure 6.21 shows the simulation with a Maxwell model. The predicted natural
frequency is very good. but the damping level is underestimated. Figure 3.8
showed both the magnitude and the phase of the shear modulus to be underes-
timated by the Maxwell model, leading to the underestimation of the damping

level in simulation. The CPU time required is 0.0433 h for 812 time steps.
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Figure 6.21: Simulated Response Using a Maxwell Model for the PMMA Beam
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Figure 6.22: Simulated Response Using a Zener Model for the PMMA Beam
with no Payload

The Zener Model

Figure 6.22 shows the comparison between the experimental data and the
simulation results obtained with a Zener model. As in the case of the Maxwell
model, the predicted natural frequency is very close to the experimental one,
but the damping level is underestimated. Figure 3.9 also showed both the
magnitude and the phase of the shear modulus to be underestimated by the
Zener model in the vicinity of 5 Hz. The simulation is carried out in 729 time

steps and requires 0.0405 h of CPU time.

The Prony Series

Table 6.13 shows the natural frequency and the logarithmic decrements pre-
dicted for all Prony series models. The two term Prony series give a better

prediction of the logarithmic decrements than the one term or three term
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Constant Constant Bulk
Prony Poisson’s Ratio Modulus
Series Number of | CPU Time || Number of | CPU Time
Time Steps (h) Time Steps (h)
1 Term 644 0.0362 685 0.0391
2 Terms 592 0.0349 578 0.0332
3 Terms 624 0.0366 633 0.0369

Table 6.14: Number of Time Steps and CPU Time for the Simulations Using
Prony Series for the PMMA Beam with no Payload

Prony series. Figures 3.10 and 3.11 showed the phase of the shear modulus to
be well predicted by the one term and three term Prony series, and slightly
overpredicted by the two term Prony series. The phase was probably slightly
underestimated in the experimental tensile tests. The parameter identifica-
tion tests were carried out at an ambient temperature of 18°C, whereas the
slewing tests were carried out at an ambient temperature of 22°C. PMMA is
very sensitive to temperature changes even at room temperature [59}, and the
slightly colder temperature for the parameter identification tests could explain
why the models seems to predict a more rigid behaviour than what is seen in
the slewing tests, but the difference could also be due to other experimental

factors.

In this case, the constant Poisson’s ratio assumption gives slightly better
results than the constant bulk modulus assumption. Figure 6.23 shows the
best case, which is the two term Prony series with a constant Poisson’s ratio,
and the worst case, which is the one term Prony series with a constant bulk
modulus. The differences between the two models are quite small. The one
term Prony series underestimates the damping level more than the two term

Prony series, but both models give a satisfactory fit.

Table 6.14 gives the number of steps and the CPU time required by each
simulation. There is no tendency to be observed in the CPU time as a function
of the number of terms in the Prony series. There is no consistent difference

either between the constant Poisson’s ratio assumption or the constant bulk
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Figure 6.23: Simulated Response Using Prony Series for the PMMMA Beam
with no Payload
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Figure 6.24: Simulated Response Using a Fractional Voigt-Kelvin Model for
the PMMA Beam with no Pavload

modulus assumption. However, the most precise solution is the two terms
Prony series for a constant Poisson’s ratio assumption. and this is the solution
requiring the least time steps and the least amount of CPU time. The worst
solution is the one term Prony series for a constant bulk modulus assumption,
and it is also the solution requiring the most time steps and the most CPU

time.

The Fractional Voigt-Kelvin Model

Figure 6.24 shows the simulation obtained with a fractional Voigt-Kelvin
model against the experimental data. The simulated solution is underdamped,
although not as severely as the solutions obtained with the Maxwell or the
Zener model.

The results shown in Figure 6.24 are obtained with a MEMMAX value of

161



1 T T T T T

1
Experimental
—— Fractional Voigt-Kelvin

Strain

A L 1 ]

0 1 2 3 4 5
Time (s)

o}
~

Figure 6.25: Simulated Response Using a Fractional Voigt-Kelvin Model for
the PNAMA Beam with no Pavload and a MEMMAX of 700

1000. when the total number of time steps is 835 and the CPU time is 2.4680 A,
which means no compression of the data has been done in the computation
of the integral term of the fractional derivative. Figure 6.25 shows the results
for a value of MEMMAX of 700. Compression occurs only near the end of
the simulation time at 4.09 sec, but despite this, errors are introduced as
soon as the data compression is done. In this case, the forced simulation is a
substantial part of the total simulation time. and compressing this history of

forced motion affects the results significantly.

Conclusion

Unexpectedly. for this case. the Voigt-Kelvin model gives a very good fit to
the experimental data due to the right combination of underestimation of the

magnitude of the shear modulus and overestimation of the phase of the shear
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modulus. The Maxwell and Zener models both severely underestimate the
damping level of the slewing beam.

The Prony series all give an acceptable fit. but the predicted natural fre-
quencies are all overestimated and the predicted damping level is underesti-
mated by all series. This could be a result of the colder ambient temperature
when the parameter identification was done or of other experimental factors
in measuring the damping properties. There is no significant difference be-
tween using a constant Poisson’s ratio assumption or a constant bulk modulus
assumption.

The fractional Voigt-Kelvin model does not overestimate the natural fre-
quency as much as the Prony series, but it underestimates more severely the
damping level. In Figure 3.12, the model underestimates the magnitude and
the phase of the shear modulus. The overestimation of the natural frequency
is unexpected and could come from the colder ambient temperature when the
parameter identification tests were done or of other experimental factors in
measuring the damping properties.

The Prony series required on average 626 steps and the fractional Voigt-
Kelvin model. 835 steps. a significant 33% increase over the Prony series.
However. this represents a sampling frequency of approximately 25 data point
per cycle, which is not excessive. The Maxwell model also required 812 time
steps, a number close to what is obtained with the fractional Voigt-Kelvin
model. The Prony series required on average 0.0362 A compared to 2.4680 h

for the fractional Voigt-Kelvin model, a large difference.

6.3.4 Simulated Response of the Bearn with a Payload

This example takes the same beam used in the preceding section, but the beam
is shorter and there is a payload at the extremity. The payload decreases the
natural frequency and it is an interesting way of evaluating the performance
of the models for the same material, but at a different frequency. Again,

the goal is to predict the experimental behaviour from the material data,
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Figure 6.26: Simulated Response Using a Voigt-Kelvin Model for the PMMA
Beam with a Payload

without adjusting the simulation parameters to obtain a better fit between
the simulation results and the experimental data.

The experimental position of the motor with respect to time shown in
Section 6.3.1 is input in the finite element data file. The natural frequency
and the logarithmic decrement are used to compare the simulation results and
the experimental data. The natural frequency and the logarithmic decrement

are measured over the first five cycles occurring after the forced oscillation.

The Voigt-Kelvin Model

Figure 6.26 shows the experimental response compared to the simulated re-
sponse for a Voigt-Kelvin model. The Voigt-Kelvin model predicts a natural
frequency very close to the experimental data. but the model underestimates

the damping level. Figure 3.7 showed the magnitude and the phase of the
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Model Natural Difference Logarithmic | Difference

Frequency with Decrement with
Experimental Experimental
(H:z) (%) (%)

Experimental 2.33 0.231

Voigt-Klevin 2.31 0.9 0.136 41

Maxwell 2.32 0.4 0.109 53

Zener 2.31 0.9 0.212 8

Prony Series for a Constant Poisson’s Ratio

1 Term [ 268 15 0.241 4

2 Terms 2.58 11 0.202 13

3 Terms 2.60 12 0.193 16

Prony Series for a Constant Bulk Modulus

1 Term 2.63 13 0.241 4

2 Terms 2.57 10 0.187 19

3 Terms 2.57 10 0.179 23

Fractional

Voigt-Kelvin 2.49 7 0.121 48

Table 6.15: Natural Frequency and Logarithmic Decrement for the PMMA
Beam with a Payload

shear modulus to be underestimated by the Voigt-Kelvin model close to 2 H=.
This explains the underestimation of the damping observed in Figure 6.26. Ta-
ble 6.15 gives the natural frequency and the logarithmic decrement obtained
with the Voigt-Kelvin model. There is a difference of 41% between the exper-
imental data and the simulation results for the logarithmic decrement. The

simulation is carried out in 0.1277 h for 769 steps.

The Maxwell Model

Figure 6.27 shows the simulation with a Maxwell model. As for the beam with
no payload, the predicted natural frequency is very good, but the damping
level is underestimated. Figure 3.8 showed both the magnitude and the phase
of the shear modulus to be underestimated by the Maxwell model, leading
to the underestimation of the damping level in simulation. The simulation

requires 819 steps and 0.1412 ~ of CPU time.
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Figure 6.27: Simulated Response Using a Maxwell Model for the PMMA Beam
with a Payload
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Figure 6.28: Simulated Response Using a Zener Model for the PAIMA Beam
with a Payload

The Zener Model

Figure 6.28 shows the comparison between the experimental data and the sim-
ulation results obtained with a Zener model. The predicted natural frequency
and damping level are very good. Figure 3.9 showed both the magnitude to
be underestimated by the Zener model, but the phase of the phase modulus
is slightly overestimated in the vicinity of 2 Hz. As it is the case for the
Voigt-Kelvin model for the beam with no payload, this combination of un-
derestimation of the magnitude of the shear modulus and overestimation of
the phase of the shear modulus produced the right parameters to obtain good
simulation results. The simulation is done in 674 steps for 0.1273 h of CPU

time.
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The Prony Series

Table 6.15 shows the natural frequency and the logarithmic decrements pre-
dicted for all Prony series models. For the beam with no payload, the two term
Prony series gives the best prediction for the logarithmic decrement. However,
in the case of the beam with no payload, all models overpredicted the natural
frequency and underpredicted the damping level. For the beam with a pay-
load, Table 6.15 shows all models based on Prony series to overestimate the
natural frequency, but the one term Prony series overestimate the dainping
level, whereas the other Prony series underestimate the damping level. Al-
though the one term Prony series predicts an accurate value for the damping
level, it is slighlty overestimated. This overestimation added to the overesti-
matton of the natural frequency leads to a much stiffer solution than observed
experimentally. Figure 6.29 shows the one term Prony series for a constant
Poisson’s ratio and the stiffness of the solution is obvious. Figures 3.10 and
3.11 showed the phase of the shear modulus to be well predicted by the two
term and three term Prony series in the vicinity of 2 Hz, and overpredicted
by the one term Prony series. The one term Prony series also overestimate the
magnitude of the shear modulus close to 2 H z, resulting in larger discrepancies
between the predicted and experimental natural frequencies.

In Figure 6.29, against the one term Prony series, the three term Prony
series is also shown for a constant bulk modulus. This model is the one which
underestimates most severely the damping level. However, since the natural
frequency is overestimated, the underestimation of the damping level leads to
the best match between the simulation and the experimental results.

Table 6.16 gives the number of steps and the CPU time required by each
simulation. The Prony series using a constant Poisson’s ratio assumption run
faster needing less time steps than the ones with a constant bulk modulus for
this example of a PMMA beam with a payload.

For this example, it is difficult to say which solution is the best. The

natural frequency is certainly a dominating criteria. The two terms and three
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Figure 6.29: Simulated Response Using Prony Series for the PMMA Beam
with a Payload

Constant Constant Bulk
Prony Poisson’s Ratio Modulus
Series Number of | CPU Time || Number of | CPU Time
Time Steps (h) Time Steps (h)
1 Term 389 0.0675 429 0.0764
2 Terms 556 0.0946 602 0.1062
3 Terms 556 0.0961 610 0.1020

Table 6.16: Number of Time Steps and CPU Time for the Simulations Using
Prony Series for the PMMA Beam with a Payload
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Figure 6.30: Simulated Response Using a Fractional Voigt-Kelvin Model for
the PMMA Beam with a Payload

terms Prony series for a constant bulk modulus generate results with a more

precise natural frequency.

The Fractional Voigt-Kelvin Model

Figure 6.30 shows the simulation results obtained with a fractional Voigt-
Kelvin model against the experimental data. The damping of the solution is
underestimated. but since the natural frequency is overestimated, the solution
and the simulated results remain close to the experimental results.

The results shown in Figure 6.24 are obtained with a MEMMAX value of
1500, when the total number of time steps is 767 and the CPU time is 6.3671 h,
which means no compression of the data has been done in the computation
of the integral term of the fractional derivative. A simulation resulting in

almost the same natural frequency, 2.51 H =z rather than 2.49 Hz, and almost

170



the same logarithmic decrement, 0.116 rather than 0.121, are obtained with
a value of MEMMAX of 400. When MEMMAX is set at 400. the simulation
is accomplished in 755 steps and 3.3476 h. a net improvement in terms of
CPU time over the case for which MEMMAX is set at 1500. Reducing further
the value of MEMMAX to 200 prevents the solution from converging. If
compression is possible in this case, when it was not possible for the beam
with no payload. it is because the time for which the forced oscillation occurs
is small. Data compression is possible when the system is in free oscillation,
but accurate simulation of the forced oscillation is essential. The finite element
package reacts similarly by taking small steps during a forced oscillation and
larger steps during a free oscillation. A scheme which would compress only

the data during the free oscillations could be advantageous.

Conclusion

As in the case of a beam with no payload. the right combination of underesti-
mation of the magnitude of the shear modulus and overestimation of the phase
of the shear modulus gives a very good fit to the experimental data. In this
case. it happens for the Zener model. whereas it was the Voigt-Kelvin model
which gave a very good fit for the beam with no payload. For this beam. the
Voigt-Kelvin and Maxwell models both severely underestimate the damping
level.

The Prony series all overestimate the natural frequency, leading to a stiffer
model. Models which underestimate the damping level correct in part the
overestimated natural frequency and produce a better fit. Again, this stiffness
of the model compared to the experimental data could be a result of the colder
ambient temperature when the parameter identification was done or of other
experimental factors in the acquisition of the material parameters.

The fractional Voigt-Kelvin model does not overestimate the natural fre-
quency as much as the Prony series, but it underestimates more severely the

damping level. [n Figure 3.12, the model underestimates the magnitude and
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the phase of the shear modulus. The overestimation of the natural frequency is
unexpected and could show the material data to represent a stiffer behaviour
than what is observed with the slewing beams.

The Prony series require on average 524 steps and the fractional Voigt-
Kelvin model on average for the different values of MEMMAX, 761 steps,
a significant 45% increase over the Prony series. However, this represents a
sampling frequency of approximately 30 data points per cycle. which is not
excessive. The Maxwell model also require 819 time steps, a number close to
what is obtained with the fractional Voigt-Kelvin model. The Prony series
require on average 0.0905 h compared to 3.3476 h for the fractional Voigt-
Kelvin model with a MEMMAX of 400, a large difference.

6.4 Conclusion

Although the numerical algorithm used for the fractional derivative is efficient
in terms of number of time steps needed to complete the simulations, the re-
quired CPU time is still very high compared to classical models. In the case of
the steel beam covered by a constrained viscoelastic layer, the Prony series are
as accurate as the fractional Voigt-Kelvin model. In the case of the PMMA
beams, simulations are not as close to the experimental results. The natural
frequency tends to be significantly overestimated and this is probably due to
colder ambient temperatures when the parameter identification was done or to
other experimental factors. Despite this, the Prony series and the fractional
Voigt-Kelvin model are reliable. They give a certain level of error which re-
mains similar from case to case. The Voigt-Kelvin, Maxwell, and Zener models
can give arbitrarily good or poor fits to experimental data depending if the
models have the right combination of underestimation of the natural frequency
and overestimation of the damping level. The three examples are all oscillat-
ing at low frequencies and there is no significant difference between using a

constant Poisson’s ratio assumption or a constant bulk modulus assumption.



Chapter 7

Conclusions and
Recommendations

7.1 Conclusions

Viscoelastic models based on fractional derivatives are recongnized in the lit-
erature for accurately modelling the experimental behaviour with few parame-
ters. In this thesis. classical viscoelastic models and models based on fractional
derivatives are fitted to the experimental behaviour of polymethylmethacrv-
late and an acryvlic based viscoelastic layer. 3M ISD 112. The shear modulus
with respect to frequency is the experimental behaviour studied for both ma-
terials. In both cases. the best fit is obtained with the Prony series, but this
classical model requires several parameters. The fractional Voigt-Kelvin model
does not approximate perfectly the behaviour of PMMA, but it does give a
good fit for 3M ISD 112 for the first half of the frequency range. Although
the fractional Voigt-Kelvin model does not fit the experimental behaviour as
well as the Prony series. it has the advantage of requiring few parameters. In
certain situations in which little experimental data is available, a model with

a low number of parameters to identify is essential.

Fractional derivatives are hereditary integrals, and as such, their compu-
tation is tedious. Authors have developed algorithms to solve equations with
fractional derivatives in the time domain. Most of these algorithms are based

on finite differences or the Griilnwald series and they require small time steps
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for a good accuracy. With the finite element method. three-dimensional equa-
tions are used and this adds to the computation burden. As an alternative,
in this thesis, an algorithm based on an approximation of the fractional deriv-
ative is developed. The integral resulting from this approximation is solved
with a trapezoidal rule. The algorithm is tested on a one-dimensional consti-
tutive equation with one fractional derivative. The results are compared to the
results obtained with a numerical inverse Laplace transform for a sinusoidal
strain input and a decaying sinusoidal strain input. The algorithm based on
the trapezoidal rule does not require small time steps and gives accurate re-
sults. Rather than storing all the data points to be used for the hereditary
integral. only one data out of two is kept for data points far from the actual

computing point. This approach reduces significantly the computing time.

The algorithm based on the trapezoidal rule is implemented in a commer-
cial finite element package, Samcef. Again, the results for a cube submitted
to a sinusoidal strain and a decaying sinusoidal strain are compared to the re-
sults from the numerical inverse Laplace transform. In this case, however, the
finite element package computes three-dimensional equations even though the
prescribed displacement is one-dimensional. For this case too, the algorithm
does not require small time steps to produce accurate results. Again, storing
only one data point out of two for data points far away from the actual data
point reduces the computation time. The effect of the various convergence pa-
rameters inherent to the finite element package is studied and no unexpected

effect is observed.

Finally, simulations are done for experimental cases. Two PMMA slewing
beams are studied, one having a mass at the extremity. A slewing steel beam
covered by a constrained viscoelastic layer is also studied. The viscoelastic
material is 3M ISD 112. The simulations are compared to the experimental
results for the fractional Voigt-Kelvin model and for classical models: Prony
series, Voigt-Kelvin model, Maxwell model, and Zener model. The goal is not

to fit the model to the experimental results, but rather to use the parame-
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ters determined from the fit to the experimental shear modulus. and see the
consistency with the simulation results for slewing beams. The Voigt-Kelvin,
Maxwell. and Zener models give accurate or imprecise results depending on
the natural frequency being excited, but they are not reliable to represent
the experimental behaviour over a large range of situations. The Prony series
are accurate and efficient in terms of CPU time. The fractional Voigt-Kelvin
model is also accurate, but it requires a significant amount of CPU time. Stor-
ing one data out of two for data points far away from the actual data point
helps. but it still is not competitive with the CPU time required by the Prony
series. The long CPU time for the fractional Voigt-Kelvin model is due to the
hereditary integral. since with the algorithm based on the trapezoidal rule, the
time step is not smaller than the time step required by the classical models.
In the case of the PMMA beam with no mass at the extremity. the forced
oscillation time is quite long compared to the overall simulation time, and in
this case, it is not possible to reduce significantly the storage vector. The main
advantage of the fractional Voigt-Kelvin model remains the low number of pa-
rameters to identify and this model should be used whenever it is impossible to
identify correctly the parameters of the Prony series. The experimental cases
are all low frequency examples, and for these cases, no significant difference
is observed between assuming a constant Poisson’s ratio or a constant bulk

modulus.

7.2 Recommendations

Different aspects of the algorithm based on the trapezoidal rule could be im-

proved:

e The examples of the PMMA beams have shown the difficulty of storing
less data during the forced oscillations. A more flexible algorithm could
be devised to store all data during forced oscillations and less data during

natural oscillations.
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e The accuracy of the model would be improved by adding a fractional

derivative of the stress. This would, however, add significant CPU time.
e The temperature dependency could be modelled.

e Further approximations of the hereditary integral could be sought with

the aim of reducing the CPU time without sacrificing accuracy.
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Appendix A

The Numerical Laplace
Transform

The chosen method to invert the Laplace transform is based on the use of the
Fast Fourier Transform (FFT). The FFT is a method to calculate the Fourier
transform which drastically reduces the number of operations required and
speeds up the inversion considerably [60]. Thus, the first step to inverse the
Laplace transform is to express it in terms of a transform pair of a discrete
Fourier transform.

Wilcox [50] gives the following discrete transform pair for the Laplace trans-

form:
¢ 2n
F(sg) = O_f Z f(tM)e_sKt“
2N A=t
1 n
f(tar) = — F(sg)erta (A.1)
tr K=-n,K#0

where F is the Laplace transform and f the corresponding time domain solu-
tion. The constant ¢, is the maximum time of integration, the final time, and
it is normally taken to be 1.1 times larger than the time duration of interest
because of inaccuracies as t tends toward t;. The factor 2n is the number
of points in the time domain. The sampling frequency in hertz is 2n/t; and
must respect Shannon’s theorem: it must be at least twice as large as the

bandwidth. The sampling points in the frequency domain are:

_Ja+i2K-1)n/t; for K=1,....n o
sK_{a+z'(2K+1)7r/tf for K=-n,...,-1 (A2)

185



where i = /-1 and a = 27/t;. The sampling points in the time domain are:
ta = (2M — l)tf/cln with M=1,...,2n (A.3)

The sums are performed using the FFT algorithm of Matlab which is based

on the following transform pair [61]:

N-1
Fipr = Z mee—:zwkm/N
m=0
1 N-1 arkm/N
i1 = N > Frre®™ ™ (A.4)
<7 k=0

where V is the number of samples in the time domain.
The Wilcox pair must be tansformed to suit the Matlab pair. The first
step is to recognize that 2n = N. Thus the Wilcox pair becomes:
tf Y —SKrtar
F(sg) = v Y fltar)e sk
< M=l
1 N/2

fltsr) = — Y F(sg)e’st™ (A.5)
t K=—-N/2,K#0

with:
tay = (2M ~ 1)t;/2N  with M=1,....N (A.6)

The sums in the Matlab pair are not preceded by a factor t;. The time domain

function f in the Wilcox pair is redefined as t; f(¢ar):

N
F(sg) = %Z(fjf(tﬁl))e_sm“
4V oar=1

N/2
(trf(tar)) = Y F(sk)ex™ (A7)
K==N/2,K#0
The index m of the Matlab pair goes from 0 to (N ~ 1), whereas in the Wilcox

pair M goes from 1 to N. Hence, M = m + 1 and ¢,; becomes:
tm = (2m + 1)t;/2N with m=0,...,N -1 (A.8)

In the Matlab pair, the index k runs from 0 to (N — 1). For the values of sk

to remain the same, s; must be written:

sc=a+i(2k—(N-1)x/T with k=0,...(N—1) (A.9)
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This is found by inspection. The values in the vectors I’ and s are the same

as originally, even though & runs from 0 to (V —1). The Wilcox pair becomes:

1 N-l
F(sk) = ,\,Z(tff ))e
=7 m=0
N-1
(trf(tm)) = D F(si)e (A.10)
k=0

with s defined by Equation A.9 and ¢t by Equation A.8. Multiplying s and ¢

in the exponential results in:
esktm — e(2m+l)(aT—i1r(N—1))/(2N) eikvr/Neikaw/N (All)
The exponential term that depends only on m will be attached to f(¢,,) since f

varies with m through the variation of £, and the exponential term depending

uniquely on £ will be attached to F'(sx) for similar reasons. The Wilcox pair

is now:
( m'k/!\«F(S ) Z(t —(2m+1)(aty —tm(N-1))/( ”N)f(t )) —i2nkm /N
N m=0
N-1
(tfe—l’.’m-i-l)(at[—m(.-\—l))/(.‘?N}f(tm)) — Z (eivrk/NF(Sk))ex'Zﬂkm/l\f (Al?)
k=0

The Matlab pair has a factor V attached to the second equation rather than
the first as in the Wilcox pair. To correct this, N is attached to F(si) and

the pair becomes:

N-1
(Ne""'“/NF(sk)) — Z (tfe—(2m+l)(at,—ivr(.‘V—1))/(2;\')f(tm))e—i'..’?rkm/N
m=0
N-
(tem e mr e 1 Z N F(5,))e AL 13)

The only difference with the Matlab pair described by Equation A.4 lies in the
indices of f and F. Matlab indexes its vectors from 1. It can not take O as
an index for a vector. The values of the indices are simply augmented of 1

without changing the values of the variables. Thus:

tm+1 = (2771 + l)tf/QN with m= 0, 1, cevy (N - 1)
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ka1 =a+i(2k — (N —1))/t; with k=0.1....(N—1)

N-=1
(.N'ei”k/NFkH) — Z (tfe-(?.m-i-l)(at,—nr(.N-1))/(2;‘\)fm+l)e—121rkm/N
m=0
. 1 N , .
(tfe—(’lm-é-l)(atf—nr(;\—U)/('—’N)fm+1) — F (.NEmk/‘VFk.f.l)elQ"km/(A-l‘l)
< k=0
with F and f of the Matlab pair defined as:
Fer1 = (Ne™NFepy)
oot = (g Dat VNN (A.15)

The function F is the Laplace transfer function written in the s space. but F
is the function that must be invoked with Matlab inverse FF'T. This function

called fft returns f whereas the required time response is f.
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Appendix B

Simulation Data

B.1 Simulation Results with the Prony Series

Tables B.1. B.2. and B.3 show results from the Prony series simulations for a

slewing beam covered by constrained viscoelastic layers.

B.2 Simulation Results with the Fractional Model

Tables B.4. B.5. and B.6 show results obtained with the fractional Voigt-Kelvin

model for a slewing beam covered by constrained viscoelastic lavers.

189



Constant Constant Bulk
Experimental || Poisson’s Ratio Modulus
Simulated | Diff. | Simulated | Diff.
(%) (%)
First Slew
Natural Freq.(Hz) 3.64 3.87 6.3 3.85 5.8
Log. Decrement 1.1x 107! [19.8x1072| 11 [|9.7x10"2] 12
Second Slew
Natural Freq. (H=z) 3.67 3.78 3.0 3.80 3.5
Log. Decrement 6.9x1072 || 74x107%} 7.2 164x1072| 7.2
Third Slew
Natural Freq. (Hz) 3.56 3.85 8.1 3.85 8.1
Log. Decrement 99 x 1072 |1.0x107*| 1.0 1.0x10°'| 1.0

Table B.1: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Five Term Prony Series

Constant Constant Bulk
Experimental || Poisson’s Ratio Modulus
Simulated | Diff. || Simulated | Diff.
(%) (%)
First Slew
Natural Freq.(Hz) 3.64 3.87 6.3 3.86 6.0
Log. Decrement 1.1 x107' [|95x1072| 14 (| 95x10"2| 14
Second Slew
Natural Freq. (Hz) 3.67 3.78 3.0 3.81 3.8
Log. Decrement 69x10"> (|43x1072| 38 || 7.1x10°2| 29
Third Slew
Natural Freq. (Hz) 3.56 3.84 7.9 3.85 8.1
Log. Decrement 9.9x 1072 ||9.5x1072| 4.0 |9.5x10"?]| 4.0

Table B.2: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Six Term Prony Series
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Constant Constant Bulk
Experimental || Poisson’s Ratio Modulus
Simulated | Diff. || Simulated | Diff.
(%) (%)

First Slew
Natural Freq.(Hz) 3.64 3.86 6.0 3.86 6.0
Log. Decrement 1.1 x 107! {{9.1x10°2| 17 |[9.2x1072| 16
Second Slew
Natural Freq. (Hz) 3.67 3.83 4.4 3.83 44
Log. Decrement 6.9 x 10~ 6.5x 1072 | 58 || 7.5x 1072 | 8.7
Third Slew
Natural Freq. (H:z) 3.56 3.84 79 3.85 8.1
Log. Decrement | 99x107% ||93x1072| 6.1 ||9.2x1072| 7.1

Table B.3: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Seven Term Prony Series

Simulated | Experimental || Difference (%)
First Slew
Natural Frequency (H:) 3.90 3.64 7.1
Logarithmic Decrement || 9.5 x 1072 | 1.1 x 107! 14
Second Slew
Natural Frequency (H:z) 3.87 3.67 5.4
Logarithmic Decrement || 1.4 x 107! | 6.9 x 1072 103
Third Slew
Natural Frequency (Hz) 3.87 3.56 8.7
Logarithmic Decrement | 9.0 x 1072 | 9.9 x 1072 9.1

Table B.4: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Fractional Voigt-Kelvin Model and a memmaz of 1700
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Simulated | Experimental || Difference (%)

First Slew

Natural Frequency (H:z) 3.90 3.64 7.1
Logarithmic Decrement [l 9.5 x 10~2 | 1.1 x 107! 14
Second Slew

Natural Frequency (Hz) 3.88 3.67 5.7
Logarithmic Decrement [ 1.3 x 10~! | 6.9 x 1072 88
Third Slew

Natural Frequency (H=z) 3.87 3.56 8.7
Logarithmic Decrement || 9.2 x 1072 | 9.9 x 1072 7.1

Table B.5: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Fractional Voigt-Kelvin Model and a memmaz of 1100

Simulated | Experimenta! || Difference (%)

First Slew

Natural Frequency (H:z) 3.91 3.64 7.4
Logarithmic Decrement || 9.6 x 102 | 1.1 x 107! 13
Second Slew

Natural Frequency (Hz) 3.91 3.67 6.5
Logarithmic Decrement | 1.5 x 10! | 6.9 x 1072 117
Third Slew

Natural Frequency (Hz) 3.89 3.56 9.3
Logarithmic Decrement |[ 9.0 x 1072 | 9.9 x 1072 9.1

Table B.6: Natural Frequencies and Logarithmic Decrements of the Simulation
Using a Fractional Voigt-Kelvin Model and a memmaz of 660



