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ABSTRACT

This study is concerned with the numerical analysis, formulation, programming and
computation of solution of steady, 3D conservation equations of reacting laminar duct flow heat
and mass transfer in ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted
coordinate transformation method is applied to the Cartesian form of overall-continuity, momenta,
energy and species-continuity equations, parabolized in the axial direction. The boundary
conditions are also transformed accordingly.

In the mathernatical modelling of the system under consideration, variable physical and
transport properties of fluid, viscous heat-dissipation and buoyancy effects are also considered.
The non-Newtonian power-law constitutive equation is employed to express the rheology of the
purely viscous fluids considered.

Applying a novel featurs of the solution procedure, the contravariant velocity components
are introduced into the transformed equations while the physical Cartesian velocity components
are retained as dependent variables of the velocity field in the equations. This approach greatly
simplifies the subsequent finite-difference fonmulation of the transformed equations. The latter
equations are discretized by the control-volume finite-difference method in which a suitably-
adopted staggered grid is employed using Patankar’s B-type arrangement in the. transformed
plane. -For discretizatidn, the transformed equations are integrated over 3D control-volumes,
foltowed by differencing the convective and diffusive terms employing upwind and central-
difference schemes respectively. A modified version of the SIMPLER algorithm is introduced
in the solution procedure and a line-by-line TDMA algorithm is employed for the solution of the
discretization equations.

A computer-programme is developed for the generation of non-orthogonal grids
corresponding to the B-type arrangement in the transformed plane. A general computer
programme in Fortran is developed in this study for the solution of flow, heat and mass transfer
problems for laminar reacting fluids in straight ducts of arbitrary cross-sections for Newtonian
and purely viscous non-Newtonian fluids. The model and computer codes are validated by
theoretical, experimental and numerical results from various sources.

The computer programmes are employed for studies in the analysis of hydrodynamics and
heat transfer in the thermal entrance regions of ducts of arbitrary cross-sections for Newtonian
and non-Newtonian fluids. Relevant results are documented for triangular, trapezoidal and
pentagonal ducts. The computer programmes are ultimately employed for simulation of the
production of polystyrene in arbitrary cross-sectional duct reactors.



RESUME

Dans cette étude, on présente une modélisation numérique des équations de conservation de
quantité de mouvement, d'énergie et de masse dans un écoulement laminaire en régime établi
d’un fluide en réaction a 1'intérieur d’une gaine tri-dimensionnelle dont la géométrie de la section
est arbitraire. Un systéme des coordonnées curvilignes non orthogonales adaptées aux parois
du domaine de solution est utilisé pour transformer les équations de base. Les conditions limites
ont également été transformées en fonction du nouveau systeme des coordonnées.

Le modele mathématique de solution tient compte de la variation des propriétés physiques de
fluide, ainsi que des autres effets tel que la dissipation visqueuse et la flottaison dans le fluide.
Des solutions sont présentées pour 1'écoulement d'un fluide Newtonien, ainsi que pour un fluide
non-Newtonien dont la viscosité varie selon la loi de puissance.

Dans la procédure de solution, une nouvelle approche a été adoptée, ol les composants
contravariant de la vélocité sont introduits dans I'équation transformée tandis que les composants
contravariants de la véolicité sont introduits dans 1'équation transformée tandis que les
composants cartésiens de vitesse sont maintenus comme variables dépendants dans les équations
de mouvement. Cette approche simplifie la formulation en différences finies des équations
transformées de profil de vitesse. Ces équations sont discrétisées dans un nombre de volumes
de contrdles et un réseau des noeuds déplacés en avant dans un arrangement de type B décrite
par Patankar. Les équations de base sont intégrées sur chaque volume de contrdle, les termes
représentants de la convection et de la diffusion sont convertis dans les équations des différences
finies en utilisant Ia méthode des valeurs en amont et des différences centrales. Une version
modifiée de 1'algorithme SIMPLER est introduite et la solution des équations des différences
finies est assurée par un balayage ligne-par-ligne et 1'algorithme de AMTD.

Un logiciel a été développé pour la génération des coordonnées non-orthogonales qui correspond
a un arrangement de type B dans le plan de transformation. Un deuxieéme programme en
Fortran a été également écrite pour solutionner les problémes de I'écoulement, transfert de
chaleur et de masse dans un écoulement laminaire d’un fluide Newtonien et non-Newtonien en
réaction 2 {'intérieur d’une gaine droite a section arbitraire. Le modele et le logiciel ont été
validés par des résultats théoriques et expérimentaux venant des sources variées.

Les logiciels ont servis pour étudier I'écoulement et le transfert de chaleur dans la section
d’entrée dans une gaine 2 section variable d’un fluide Newtonien et non-Newtonien. Des
résultats ont €té documentés pour des gaines 2 section triangulaire, trapézoidale et pentagonale.
Les logiciels peuvent servir pour simuler la production de polystyréne dans des réacteurs utilisant
des gaines 2 sections variables.
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CHAPTER 1

LITERATURE REVIEW AND BACKGROUND

1.1 NEWTONIAN FLUIDS

Bosworth! studied the distribution of reaction times in laminar flow tubular re-
actors, the reaction being either homogeneously catalyzed or uncatalysed. In laminar
flow different filaments of the stream travel at different speeds as a result of the velocity
profile so that the different sections of the fluid will have different reaction times. At
any given rate of flow and given reaction vessel there is a population of reaction times
exhibiting a certain distribution curve. He dealt first with the distribution under con-
ditions of negligible molecular diffusion and later investigated the effect of molecular
diffusion radially and longitudinally when it is taken into account. He also determined
the conditions under which axial or radial diffusion effects can be neglected in evaluat-
ing the reaction rate data for reactors with noncatalytic walls. He concluded that the
modifying effect of diffusion on the reaction time distribution curve is most pronounced
in the smallest vessels. In liquid systems, however, there is wider range of possible re-
actor sizes for which the effect of diffusion is negligible. He also noted that since in
chemical engineering circles it is regarded as a normal practice to make the length of a
reaction vessel at least ten times the diameter, his condition for negligible longitudinal
diffusion effect is usually automatically satisfied.

Denbigh? showed that for laminar flow the diffusion effect is often quite negligible

in liquids provided that the departure from the parabolic velocity distribution is not
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too large.

Cleland et al.’ studied diffusion and chemical reaction in viscous flow non-catalytic
tubular reactors. They obtained a numerical solution in which only radial diffusion of
the reactant was considered and the axial diffusion was neglected. The distribution of
contact time in laminar flow causes a radial concentration gradient to be established
which in turn tends to be diminished by melecular diffusion and under some conditions
by free convection. Considering an isothermal liquid phase first order chemical renc-
tion, steady state, axial symmetry, flow in axial direction only, no axial diffusion and
no volume change on reaction, the mass balance equation for a chemical component
was written with the velocity profile described by the Poiseuille's equation. A compar-
ison of their theoretical predictions and experimental data showed satisfactory results.
However, under certain circumstances, free-convection, which was not included in their
solution, may have had important effects in laminar flow tubular reactor performance.

Lauwerier* obtained an analytical solution for the concentration of a substance
in 2 fluid in Poiseulle flow, under the following conditions: an irreversible first order
homogeneous chemical reaction, steady state, isothermal condition, and constant phys-
ical properties. He neglected the axial diffusion. A separation of variables method was
applied to obtain the solution of the partial differential equation describing the system
while an orthogonal set of eigenfunctions were determined for the eigen-value prob-
lem. Also an asymptotic solution of the eigen-value equation was determined, valid for
higher eigen-values.

Wissler et al.® later performed a numerical solution of Lauwerier’s formulation in
which, the eigenvalues, the Fourier expansion coefficients, the norms and eigenfunctions
were computed and tabulated. These numbers coupled with the analytical results ob-
tained by Lauwerier allow one to determine the composition of the reacting specie as
a function of position. They also tabulated the average concentration values deter-

mined by Cleland et 2l.2, and the results obtained in their work which showed excellent
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agreement. They extended Lauwerier's method to deal with the case of consecutive
first-order reaction 4 — B — C etc. and obtained an analytical solution for this
rase,

Katz® studied a reaction catalysed on the wall of a cylindrical tube for a process
gas undergoing an axial flow with a pre-assigned radial pattern of axial velocity. He
neglected axial diffusion compared to the main convective effect of the gas stream.
thus the range of applications would likely be for Poiseuille flow and a correspondingly
low molecular diffusivity. Considering steady isothermal situation he introduced the
mathematical formulation of the physical system in question and then carried out a
reduction to an integral equation. Applications to kinetic analysis and to reactor design
was then discussed. A suitable eigenfunction expansion of the kernel of the integral
equation was then developed.

Walker” studied the performance of a tubular reactor including first- order homo-
geneous and heterogeneous reactions and Poiseuille flow, including both axial and radial
diffusion. He showed that exact analytical solutions to such problems are impossible
to obtain and numerical methods must be used.

Hsu® obtained analytical sclution for the problem previously solved by Cleland et
al.® numerically, using separation of variables method. He applied, however, numerical
integration to the characteristic value problem to obtain the eigenvalues, eigenfunctions
and relevant constants for a specific value of diffusion parameter. The main advantage
of this method of solution is claimed to be the explicit expression of the reactant con-
centration, while using a numerical method for solving the partial differential equation,
leads to solution through implicit difference schemes. Also, there is no need to worry
about convergence and stability as is required for the numerical methods. Obviously
these are advantages of any analytical solution to numerical solution.

Solomon et al.? studied the interaction of irreversible, first order, simultaneous het-

erogeneous and homogeneous reactions in an isothermal tubular reactor under laminar
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inar flow conditions. The irreversible reaction, 4 — products. is considered under
steady state conditions. Assuming dilute solution, constant fiuid properties, Poiseuille
velocity distribution and no axial-diffusion, an analytical solution was obtained for the
problem using the separation of variables approach for which the characteristic value
problem was solved by the Galerkin method!?, expanding the cigenfunctions in & com-
plete set of trial functions. Ultimately, the values of the cigenvalues, eigenfunctions,
coefficients and radial concentration profile were obtained for a dilute system. Further
investigations were carried out to deduce the conditions under which the homogenecous
reaction may be neglected in favor of the heterogeneous reaction and vice-versa. It was
shown that the effect of heterogeneous reaction on the radial concentration profiles is
negligible for low heterogeneous rates and for large homogeneous rates, that is, when
the homogeneous reaction rate is the controlling factor. An alternate case was also
studied viz. the heterogeneous reaction rate controlling. A limiting case of this prob-
lem is the classical Graetz problem for which accurate values of the eigenvalues and

vectors were obtained numerically by Brown!! and asymptotically by Sellars et al.'?.

1.2 NON-NEWTONIAN FLUIDS

The problem of homogeneous reaction in a purely viscous non-Newtonian fluid in
laminar flow in a tubular reactor has several industrial applications. The thermal pas-
teurization of liquid food products is a typical example, where the liquid behaviour iy
non-Newtonian and the death rate of microorganisms is proportional to the population
density of the microorganisms implying first-order kinetics!?. The tubular polymeriza-
tion reaction is another example with complex kinetics and variable physical properties.

Homsy et al.!® studied the problem of diffusion and chemical reaction in a tubular
reactor for non-Newtonian fluids in laminar flow operating under isothermal and steady
conditions using a first-order reaction. They assumed negligible axial diffusion of the

reactant. The characteristic value problem resulting from the separation of variables
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was solved by the method of Galerkin for various Ostwald de Waele (or power-law) and
Prandtl-Eyring models.

Osborne!* developed a convective model for the laminar flow performance of a
tubular reactor with a liquid reaction medium. Laminar flow severely restricts the ap-
plication of the axial dispersion model so widely used under turbulent flow conditions.
Levenspiel'® recommends a criterion for using the dispersion model in characterizing
the tracer response of laminar flow reactors so that small molecular diffusivity of lig-
uids limits the laminar flow application of the dispersion model to very long reactors.
The conservation equation for laminar flow assuming axially symmetric, steady, fully
developed incompressible flow with any order reaction was first introduced. Owing to
the negligible effects of molecular diffusion as compared with the effects of the velocity
profile, which has been shown by Bosworth! and Cleland et al.?, the diffusion terms
were neglected to yield a pure convective model for the laminar flow reactor. A so-
lution of the resulting differential equation for the displacement of non-reactive tracer
injected into the reactor inlet can be used to relate average effluent concentrations to
the inlet stimulus for step and impulse inputs. These effluent tracer concentration re-
sponses were used to evaluate the apparent velocity profile index which was related to
the non-Newtonian laminar flow reactor performance. The model was then extended
to a multiple reaction sequence, A — B — §.

Tsay et al.!® studied the unsteady and steady state Graetz problems for mass trans-
fer with first order chemical reaction in the entrance region for fully developed laminar
flow of power-law non-Newtonian fluids in a circular tube. They applied the instant-
local similarity method to the unsteady state problem and local similarity method to
the steady problem. The solutions of the first method, however, are restricted to small
times and small axial distance from the entrance and the solutions of the second method
are restricted to small axial distance from the entrance.

Venkatsubramanlan et al.!” studied convective diffusion with reaction for develop-
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ing flow of a non-Newtonian fluid in the entrance region of a round conduit. Using the
approximate solution of Langhaar'® for the entrance velocity profiles, they obtained
conversions for homogeneous bulk phase reactions and wall-catalyzed heterogeneous
reactions. For a steady, two-dimensional flow with constant physical properties and
for power-law fluids they solved the governing equations numerically. The equation for
concentration was solved using the Crank-Nicolson scheme of finite- difference scheme.,
The resulting set of tridiagonal system of equations was then solved by the Thomas
algorithm. They showed graphically the variation of bulk average concentration with
normalized-distance for different values of Schmidt numbers and reaction-parameter
for both Newtonian and non-Newtonian fluids. For a given value of reaction param-
eter, they observed that the influence of flow development is higher at lower Schmidt
numbers. Typical non- Newtonian liquids are large Schmidt number fluids as they are
rather viscous and the diffusivities are rather low. For high Schmidt number systems
the calculations approach those of a fully-developed flow. Thus the flow development
in non-Newtonian systems could be neglected and celculations could be based on those
for fully developed conditions.

Cavatorta et al.!® used the orthogonal collocation method developed by Villadsen
et al.?® to solve the problem of isothermal tubular reactor with first-order chemical
‘ reaction for laminar flow for two types of non-Newtonian fluids: A power-law or Oswa.d
de Waele model and a Prandtl-Eyring model. Comparison of the results with those

obtained by Homsy et al.!* showed good agreement.

1.3 THERMAL POLYMERIZATION OF STYRENE

The reaction chosen for simulation in this study is the thermal bulk polymerization
of styrene in a rectilinear tubular reactor. There are several articles in the literature
dealing with thermally and chemically initiated tubular polymerization of styrene of

which only a few papers of interest are selected here for discussion on thermal poly-
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merization of styrene.

Sula et al.?? analyzed styrene polymerization by solving the steady, two dimen-
sional conservation equations numerically using the upwind scheme for convective terms
and the stream-function/vorticity approach. The finite difference equations were solved
by Gauss-Seidel technique. The fluid was assumed to be Newtonian. Polystyrene, how-
ever. is a non-Newtonian fluid. Variable (temperature-dependent) physical properties
were used. The viscous heat generation was disregarded. A simple first-order kinet-
ics along with a constant molecular weight of 70,000 was employed. The influence of
inlet feed concentration, inlet temperature, and feed-rate on the temperature distribu-
tion in adiabatic and isothermal tubular reactors was analyzed. It was concluded that
adequate control of the polymerization can be achieved by maintaining the tube wall
temperature below the inlet feed temperature to inhibit thermal runaway.

Wyman et al.?2® introduced an approximate model to calculate the number and
weight-average molecular weights of the polymer being produced in a continuous steady-
state tubular reactor from the zeroth, first and second moments of radical and polymer
distributions. The partial differential equations describing temperature, velocity and
composition were written considering axial symmetry and incompressible laminar flow
in a cylindrical tube, allowing for variable viscosity and conductivity. The reaction
rate constant was of Arrhenius type in which the so-called gel effect was also taken into
account. The pressure drop in the tube was obtained from the equation of motion. Ra-
dial convection, axial conduction and viscous heating of polymer in the energy balance
equation were neglected. The radial and angular components of velocity were ignored
in the equation of motion. The partial differential equations were solved numerically
using the classical explicit finite- difference method.

Husain et al.?* made a computational study of bulk thermal polymerization of
styrene in a tubular reactor in which the fluid rheology was represented by a power-

law model. They considered the polymer to be a non-diffusing specie and neglected
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radial velocities. They also neglected the axial diffusion of mass and energy. They took
into account the gel effect following Hui et al.?!. The system of differential equations
was solved by finite differencing radially and solving the resulting equations using a
fourth-order Runge-Kutta-Gill routine.

Valsamis et al.?3% used piston flow and segregated flow models for the polymer-
ization of styrene in tubular reactors. Experiments were performed in a helically coiled
tube with a length of 14.6 m and a diameter of 0.46 cm. Running pure thermal styrene
polymerization at 160 degrees Celsius yielded a conversion of 15% in 5.15 minutes
residence time.

Chen et al.?"28 determined the residence time wash-out function theoretically by
means of flow models and experimentally by inert tracer techniques. Introducing steady
mass, momentum and energy transport equations for laminar axisymetric flow in cylin-
drical coordinates using fully-developed velocity profile in axial direction. The mass
diffusion and heat conduction in axial direction were ignored. The viscous heating cf-
fect was also ignored. The fluid was assumed Newtonian. The polymer was considered
to be non-diffusing. The kinetic rate constants were obtained from Hui et al.%!, while
the physical property data were obtained from various sources. The partial differen-
tial equations were solved by the method of lines (MOL) in which the equations were
approximated by a set of initial value problems (IVP) in ordinary differential equi-
tions which were then discretized using finite differences and solved by IVP solvers.
The model predicted axial and radial velocity profiles which were subsequently used in
a tracer model which consisted of the unsteady, two-dimensional convective diffusion
equation. The solution of this model evaluated at the tube outlet provided the resi-
dence time wash-out function. Experimental measurements were made to verify the
theoretical model for residence time distribution using toluene as a nonreactive inert

tracer. The measured wash-out function confirmed the presence of velocity profile elon-

gation. Molecular weight of polymer was also calculated using the approach based on

1-8



the zeroth, first and second moments of radical and polymer distributions.

Kleinstreuer et al.2?? solved the two-dimensional equations governing the thermal
polymerization of styrene at steady state in the laminar flow in a straight circular duct
assuming axial-symmetry and power law model for liquid behaviour. They neglected
the body force term but considered variable physical properties and a developing flow
with parabolic velocity profile at inlet. They obtained the kinetic rate constants from
Hui et al.?! and the data for physical properties from various sources. They employed
control volume approach for discretization and used a software package using the SIM-
PLE algorithm to obtain the results. They analyzed a simple tube as a representation
of the shell-and-tube type configuration. They generated stability plots by computer
experimentation varying the effective system parameters and concluded that a small
tube up to a radius of 2 cm could be effectively used to carry out styrene polymeriza-
tion. However, as the tube radius increases, the problem of thermal runaway and flow
elongation make the operation unfeasible.

Malkin and Zhirkov®!:®? discussed the effect of viscosity growth on the macro-
kinetics features of the polymerization process and the influence of velocity profile
distortion over the heat and mass transfer characteristics. Due to the velocity distri-
bution and therefore the distribution of residence times along the radius, the liquid
layers stay longer near the reactor wall than near the axis. Therefore they react more
fully, and hence, the liquid viscosity near the wall becomes much higher compared to
that near the axis. The more viscous liquid flows more slowly and remains inside the
reactor for a longer period of time as a result of which the following flow structure
forms: very viscous products near the wall and a much less viscous mixture of reac-
tants and products in the axial zone. The most typical feature of such a flow are the
highly elongated and deformed velocity profiles with a point of inflection and with the

maximum velocity much higher than the average velocity.



1.4 CLOSURE

The above survey shows that for laminar flow tubular reactors, the axial diffusion

effect is negligible for both Newtonian and non-Newtonian fluids. this conclusion is

used later in the present analysis. The problem discussed in the above survey was

solved under specific sets of assumptions, the most important of which are as follows:

only one or two-dimensional flows are considered,

generally fully-developed flow is assumed for velocity profile distribution,

usually the tubular reactor is considered to be isothermal,

mostly constant physical-properties are used,

viscous heat generation is generally disregarded,

possible free-convection effect is ignored,

mostly simple first order reactions are considered,

the problem is solved only for circular duct reactors and no attempt is made to

analyze noncircular cross-section duct reactors.

It is therefore clear that a comprehensive study, formulation and solution of a 3-D

reacting laminar flow problem in which velocity, temperature and concentration fields

develop simultaneously, deserves attention. Futhermore, it is important to consider

the effects of variable physical properties, viscous heat generation and free-convection

effects in noncircular duct reactors.
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CHAPTER 2

MATHEMATICAL MODELLING IN CARTESIAN COORDINATES
(GOVERNING-EQUATIONS AND BOUNDARY CONDITIONS) .

2.1 INTRODUCTION

The flow, heat and mass transfer phenomena of fluids are governed by the conser-
vation equations of mass, momentum, energy and species, The conservation equations
subjected to various simplifying assumptions may be solved analytically or numerically.
Other than the assumption of negligible axial diffusion for the problems examined in
this work, no other simplifying assumptions are needed. Analytical solution of the
conservation equations is impossible for the case studied.

The strongly conservative form of the conservation equations will be presented in
this chapter. The conservative form enhances subsequent treatment of the equations
for numerical solution. The rheology of many purely viscous non-Newtonian fluids is
adequately expressed by the power-law model for which the corresponding constitutive
equations (shear-stress, strain relationships) are given in this chapter. It is the goal
of this chapter to present the conservation equations in 3-D Cartesian coordinates in
which the constitutive equations to be included and the boundary conditions are to be
specified. :

The latter equations and the boundary conditions are later transformed into curvi-
linear coordinates to handle arbitrary cross-sections. The coordinate axes selected for

the Cartesian domain are shown in Figure 2.1.



Figure 2.1 Arbitrary cross-sectional duct in Cartesian coordinates

2-2



2.2 GENERAL CONSERVATION LAWS
2.2.1 The Overall Continuity Equation
9p
—_— N — 2)
EN +(V-pv)=0 (2.1)
2.2.2 The Momentum Equation
pv) _ _

e (V-pov) = VP —-(g-7)+pg (2.2)

2.2.3 The Energy Equation

8(pCpT) _ . _ dinV\ DP
5 = ~(V pCpTY) (V@) —(r.vv) + ainT ) , Dt
DCp
+pT—0; +Qr (2-3_)
2.2.4 The Reactant Continuity Equation
0
Ae2a) 1 (v puav) = (7 #Da Y wa) - R (2.4
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2.3 CONSERVATION LAWS IN CARTESIAN COORDINATES

2.3.1 The Overall Continuity Equation

dp | O(pu) | B(pv)  8pw)
o o6z oy T o:

=10 (‘

[ B3
[}
—

2.3.2 The Momentum Equation

x-component

dpu) | pu?) | O(pvu)  O(pwu) _ 9P
o "oz T oy ' 8z 8=

Orzy  Oryy Ot
(am * %t B )+pg; (2.6)

y-component

8(pv) . O(puv) _l_a(pv’) 4 Opwv) 0P

ot Oz Oy 0z Oy
Orey = OTyy Br,y)
(3:: + By + 3 +pgy  (2.7)

z-component
Hpw) | puw)  Blpvw) O(puw?) _ 9P

ot oz Oy 9z Oz
a'r,,, 37‘_;,; 31';:
(3:1: + By + E )+pg; (2.8)
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2.3.3 The Energy Equation*®

'g—t(!)CPT) + aa—I(PCPTu) + a—(PCPTU)+
Fom= 4 (45) 5 (40)
i(k?z) —('r ?—li-i-r Bv+1_ aw)
gz \ 0z or  Woy ' oz
(58 (31)-
\8y 0Oz T\ Oz

ne (g +50)| e 29)

* In the energy equation, the Fourier's Law, ¢ = —k 7 T is applied
2.3.4 The Reactant Continuity Equation

] 9 ] 9 8 '
Zpoa) + e (poan) + g (o) + ae(poau) = 3= (pDaZ2) +

Z] Ow 4 I5) Owa
3y (”D“ E® )*az (”D" oz )

— R4 (2.10)

2.4 THE STRESS TENSOR

2.4.1 The Stress Tensor

The nine components of the stress tensor are as follows®*:

Tezx Tzy Tzz
T = Tyz Tyy Ty: (2-11)

Tezr Ty Tis



Consideration of the angular momentum shows that:

Tyr = Try .« Tex S Trz | Tay = Ty (2.

[ £~
—
12
g

that is the stress tensor is symmetrical and the state of stress at a point is determined

by six, rather than nine independent stress components.

2.4.2 The Rate of Strain Tensor

The rate-of-strain or rate-of-deformation tensor is symmetrical and has Cartesian

components as follows®?:

AP A:y AP
A= Dy By Oy (2.13)
A:z A:y D

where Az, Ayy, A:: are lineal strain rates and A:y, Ay:, A;: are rates of shear

deformadtion.

D,y = 2-2—:; Dyy = 2%; A, = 2-?9—';’ L (2.14)
Doy =Dy: = g% + g—; (2.15)
Dy =D,y = g—’: + % (2.16)
Be=be=get 22 (217)

2.4.3 The Power-Law Constitutive Equations

For power-law model the stress-tensor is related to the rate-of-strain tensor by the

following relationship34—38:
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n=—1

A (2.18)

T,j = --’.L

1
\ E(A:’j  Byy)

in which
l([&-'A--)—‘? (a_u)2+(§3)2+ .3.9)2 + 3_'£+6u ?
AN A R W dy dz dy = Oz +
o0, 20 (31, 0’
dy 0Oz 9z Oz (2.19)
if one denotes $(A;j : Aj;) = I then

‘\/ %(A,-,- P i)

using the values of the rate-of-deformation-tensor, one can write the components of the

n=-1
n—1

=17 (2.20)

stress-tensor as follows:

Tre = =2 (g%) 15 = —am (%) (2.21)
oy = —2 (g_:) 1554 _ _opg (g_; (2.22)
ror = -0 (52) 17 = o (32 (223)
Try = Tys = —4 (31;- + g% %) = - (%- + g%) (2.24)
ramre=-u(Z e 3 e = (E13E) e
Tye =Ty = —pi (aa—‘;’ -g—‘z’-) I = -M (Z—‘;’ + ‘—;%) (2.26)
in which
M = pIt*sh (2.27)



where M is the apparent viscosity for a power-law fluid.

2.5 CONSIDERATIONS INTRODUCED IN THE
CONSERVATION EQUATIONS

2.5.1 The Body-Force Terms in Momentum Equations

The body-force (the gravitational fleld) is applied only in the *y" direction. for

the coordinate system selected (Figure 2.1).

2.5.2 The Buoyancy Term in the y-Momentum Equation

Whenever there is a temperature variation in transverse direction in the flow feld,
a buoyancy force is generated due to the presence of the body force field and causes a
natural convection flow to be established®®~4!, The buoyancy term is hence introduced
in the y-momentum equation while the pressure field is modified. For derivation of the

buoyancy term in the y- momentum equation refer to Appendix G.

2.5.3 Heat of Reaction in Energy Equation

This is expressed by Qr = (—AH)R4 in which AH < 0 for exothermic-reactions

and AH > 0 for endothermic reactions.

2.5.4 Steady State Condition

In practical applications, tubular reactors are operated in steady-state mode,
hence, this condition is accepted here for the chemically-reacting duct flows in arbitrary

geometries, Unsteady state situation is beyond the scope of the present study.

2-8



2.5.5 Variable Fluid Properties

The interdependence of fluid properties with temperature and other variables, if
exists, are introduced through empirical equations for any specific fluid-reaction system.
These properties are: density, viscosity, specific-heat *, thermal-conductivity, heat of
reaction and mass-diffusivity. Refer to Chapter 5 for the specific relations regarding

the fluid properties for reaction system under study.
2.5.6 The Reaction Rate Constant

The Arrhenius model or any empirically-obtained rate-law may be used for any
reaction under consideration. The relations for the reaction under study are presented

in Chapter 5.

2.6 PARABOLIC APPROXIMATION
2.6.1 Parabolic Space Coordinate

It is experimentally observed that in geometries which do not undergo radial
changes in the primary flow direction, the downstream conditions exert little or no

influence on upstream in the predominant flow direction??=47

. Therefore the ‘low tends
to be dominated by the upstream conditions and any smail disturbance at a giveu point
is not transmitted very far upstream of that point.

In this situation, the conditions in the main flow direction become a “one-way”

coordinate, that is, the upstream conditions determine the downstream flow properties

but not vice-versa.

* A constant specific heat is considered in the discretized energy equation (h =
CpT)* to employ control volume approach over the conservative form of the original
energy equation. Specific heat is nearly constant for liquids within some specified

temperature ranges.



2.6.2 General Conditions for the Parabolic Assumption

1. if there is 2 predominant direction of flow (no recirculation, no separation, no

reverse flow or negative velocity in that direction),

(R

. if the diffusion of momentum, heat and mass is negligible in that direction,
3. if the downstream pressure-field has little influence on the upstream fow con-

ditions (this condition results in a decoupling of the pressure-ficld),

2.6.3 Application of Marching Integration

A reasonable approximation to such a flow is by a stepwise integration in the

direction of flow from a given set of upstream initial conditions.

2.6.4 Decoupling of Longitudinal and Lateral Pressure Gradients

In order to be able to march in the “z” direction, one must treat the pressurc
“P? in the axial momentum equation differently than the pressure in the transverse
momentum equations??*3, The decoupling in the pressure-field is expressed by writing

the three-dimensional pressure-field as
P(z,y,2) = P(z,y;2) + P(2) (2.28)

where P(z,y;z) and P(z) are the local and the average variations of the pressure
in the cross-section respectively*348, The pressure P is a two-dimensional field, but
changes with “z” as the solution is marched in stepwise manner. The pressure P can
be thought of as a form of space-averaged pressure over a cross-section.

The pressure-gradient term in the axial flow direction, %, is therefore decoupled
from those in the other flow directions: 9;3—‘: and %%. The gradient %’3 is referred to be

a mean viscous pressure-drop which is a function of “z” only and is constant in the x-y

plane.
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2.6.5 Advantages of the Parabolic Approximation

The governing equations are elliptic in all three space-coordinates which require
a great amount of storage and computation time. Assuming that there is no strong
influence travelling from downstream to upstream of the duct, the governing equations
are parabolized in the axial direction. The resulting equations are then elliptic in the
two transverse space- coordinates and parabolic in the axial space coordinate. These
equations are solved by marching integration in axial direction in stepwise manner,
solving a two-dimensional elliptic problem at each cross- sectional plane. The dependent
variables are needed only to be stored on the calculation plane and on the upstream
plane due to which substantial economy of computer storage and computer time is

possible.

2.6.6 Modification of Governing Equations with Parabolic Assumption

In order to parabolize the fully elliptic governing equations in axial direction,
one should neglect the diffusion terms in the axial direction, therefore the terms

3—5‘:‘, %’;—‘:’-, a—(;;&, %(k%%) and aﬁ;‘:(,oDJ.qL %’;‘) are neglected. Also the pressure-gradient

in the axial-momentum' equation, %g is decoupled from the other pressure gradient

terms:; 22 and 22 usin 42 in that direction.
dz dy dz

2.7 THE PARABOLIZED GOVERNING EQUATIONS IN
CARTESIAN COORDINATES

2.7.1 The Overall Continuity Equation

d d 0
3o(Pu) + 3—y(Pv) + 5 (pw) =0 (2.29)
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2.7.2 The Momentum Equations

X-component

9y 2 9 =92 (01  Ory ;
8a:(pu )+ ay(””")+ az(pwu) T bz ( gr T Oy ) (2:30)

y-component

d 0 _9P  [(Or,  Om
5= (un) + 5 (p0?) + g (puwv) = =5 -(F2+ -87) ~(p = pa)g (231)

z-component

a d 3j 2y _ d_-p_ OT:s aTy:
o)+ 3 (pv) + (o) = - 5 - (G4 ) (232)

2.7.3 The Energy Equation ”

a 0 a (,oT a (,0T
—-(pCpTu) + (pC'pTv) a(pC’pTw) = % (La—m) + 3y (L BJ) +

M-I+ (-AH)RA (2.33)

2.7.4 The Reactant Continuity Equation

o o a : d Owa
2 (poan) + 2 (poav) + lpons) = 2 (D52 )+

6 awA
2 (pp,,a—y) “Ra  (234)

* Note that the right hand side of this equation is true only if C'p is a constant.
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The pressure, P in the above equations is dynamic-pressure due to the introduction
of buoyancy term in the “3" momentum equation. In cases of negligible buoyancy effect.
P would be the total pressure defined as hydrostatic plus dynamic pressures. Refer to
Appendix G for details. The term I in the energy equation expressed above, is the

dissipation function for the power-law non-Newtonian fluid.

2.8 THE BOUNDARY CONDITIONS

2.8.1 Inlet (@z = 0)

Axial Velocity
A uniform entrance velocity profile is specified at inlet:
W = Winlet (2.35)
Transverse Velocities
It is assumed that there is no secondary flow at inlet:
u=0 (2.36)
v=_0 (2.37)
Temperature
A uniform temperature-profile is specified at inlet:
T = Tintes (2.38)
Reactant Weight Fraction
For an unconverted reactant at inlet:

w=1 (2.39)
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2.8.2 Walls of the Duct

Axial Velocity

No slip-condition is assumed on the walls of the duct:

w=0

Transverse Velocities

Temperature
For a constant wall-temperature:

T= Twall

Reactant Weight-Fraction

The material does not move through the wall:

Ow
6_11_0

2.8.3 Outflow Condition (@z = L)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

The complete conservation equations are elliptic, hence the geometrical domain

under consideration must be closed; therefore for duct flow, the downstream boundary-

conditions have to be specified. However for the parabolized governing equations used

here no downstream boundary conditions are required.
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2.9 CLOSURE

In this chapter the 3-D conservation equations of mass, momentum, energy and

species are written in their strongly conservative form in Cartesian coordinates includ-

ing the following considerations:

constitutive equations corresponding to power-law non-Newtonian fluids,
viscous heat dissipation effect in the energy equation,

free-convection effect (the buoyancy term) in the y-momentum equation,
the heat of reaction in the energy equation,

variable fluid properties,

arbitrary rate-law model for the reaction involved.
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CHAPTER 3

COORDINATE TRANSFORMATION AND NUMERICAL
METHOD OF SOLUTION

3.1 INTRODUCTION

The subjects in transport phenomena are modelled by nonlinear coupled partinl-
differential equations. These equations can be solved by several approximate solution
methods for special cases such as asymptotic-expansion and perturbation methods,
collocation and integral methods, finite-difference, finite-volume, and finite-element
methods®®. In general, finite-difference, finite-volume and finite-element discretization
techniques have been the most successful methods the use of which, however, requires
to discretize the entire domain employing a mesh or a grid network.

The finite element method has been concerned with the treatment of irregular
boundaries since its beginning, however this method requires excessive amount of com-
putational time and storage®4.

In finite difference methods a convenient choice for a grid network is one composed
of rectangles. The application of the method is therefore suitable to domains such as
rectangular shapes whose boundaries coincide with the computational grid points. In
earlier studies whenever the finite-difference method was applied to irregular-shape
domains, special interpolation schemes were employed at the boundaries for discretiza-
tion of the boundary conditions. However, this method can lead to large errors. In
any boundary value problem, the boundary conditions exert a strong influence on the
solution of the interior of the domain, so that greater accuracy is required in the rep-
resentation of the difference equations at the boundaries than what is obtained by

interpolation.



The inadequacy of the interpolation methods and the fact that an accurate ex-
pression of the boundary conditions is best accomplished if the boundaries coincide
with some coordinate lines, brought about the development of coordinate transforma-
tion of the physical domain i.e. Cartesian coordinates to boundary-fitted curvilinear
coordinates such that all the boundaries match the coordinate lines and the need to
interpolate the boundary conditions is eliminated*8=31%6 The partial differential equa-
tions are thus transformed from the Cartesian coordinates into the new coordinate sys-
tem by appropriate transformation relations. The boundary-conditions are similarly
transformed without the need to use interpolation techniques.

The transformed plane is simply a rectangular domain. The transformed-equations
and the boundary-conditions are discretized over this plane and the discretized equa-
tions are conveniently solved by similar methods in Cartesian space.

It has been shown that the partial differential equations do not change their type

i.e. elliptic, parabolic or hyperbolic upon transformation.

3.2 THE ORTHOGONAL AND NON-ORTHOGONAL
COORDINATE SYSTEMS

The curvilinear boundary-fitted mesh generated over the physical domain, may be
either orthogonal or non-orthogonal. The generation of orthogonal meshes is generally
time-consuming?®%%:85  In addition, the concentration of the grid lines in certain regions
of the domain is not conveniently handled when using orthogonal methods. The use of
non-orthogonal systems has the disadvantage that the transformed governing equations
become somewhat more complex because of the presence of the non-orthogonal terms;
also the finite-difference equations involve 9 discrete-points versus 5 discrete points for
45,46

orthogonal systems

The boundary-fitted methods involves the following two tasks for the solution 5f

PDE’s:



(i) method for generating the coordinate systems or grid network,

(ii) method to model the governing equations in the transformed domain.
The use of non-orthogonal grid may be an optimum alternative for handling arbitrary
geometries if the performance of item (ii) above for a non-orthogonal system is compara-
ble to that of an existing orthogonal system and if it functions similarly to the methods
used for orthogonal schemes when an orthogonal grid is employed?®. A number of stud-
ies have appeared in the literature on the use of the non-orthogonal numerical solution
schemes. For example Hadjisophocleous et. al.®® applied a non-orthogonal numericat
method for prediction of transient natural convection in enclosures of arbitrary geom-
etry. Shyy, et. al.5” and Braaten, et. al.®® applied a non-orthogona! ﬁumerica.l scheme
using body-fitted coordinates for numerical solution of a recirculating flow problem.
Maliska*® developed a numerical model using non-orthogonal grids for the solution of
the three-dimensional fluid-flow problems in irregular geometries. This method uses a
novel grid layout which promotes numerical stability and convergence for the system
of equations. Maliska's method is adopted here to be applied to the present analysis

considering also any modifications required.

3.3 CURVILINEAR TRANSFORMATION

A transformation is defined between a physical region “D” of any arbitrary shape
and a transformed-region of “D*" of rectangular-shape as shown in Figure 3.1. In the
physical-region, the Cartesian coordinates x and y are the independent variables and
the curvilinear coordinates are the dependent variables. In the transformed region,
the coordinates £ and n are the independent variables and x and y are the dependent
variables. There exists a one to one correspondence between the coordinates in the
physical-region and the transformed-region.

The general tran;forma.tion relation from the physical-plane (x,y) to the transformed-

plane (£, 7} are given by%8=51:
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= 6(39?})}
n= n(z,y)

The Jacobian matrix of this transformation is

ilz[fz Ey]

T Ty
The inverse transformation of Eqn. (3.1) (if exists) is:
z = z(¢, n)}
y= y(& n)
The Jacobian matrix of Eqn. (3.3), denoted by J, is given by
e
- Ye Yy

The Jacobian determinant or Jacobian simply, is then

7= 3 [C8] = detz) = ety - aaue #0

(&m)
where
Oz dy
Te = 5? Yp = a; etc.
The Jacobian matrices, Eqns (3.2) and (3.4) are related by
Iy =[L]™"

one can readily show that:

§z = E.i' §y = "j.'ri

ne=-—7F ny =

Refer to Appendix A for derivation.

Partial derivatives are transformed using the following relations:
1
fz= ‘J'[ynfé = yefnl
1
y = _j[—xﬂff + z¢fy)

Refer to Appendix A for derivation.

(3.1)

(3.8)

(3.9)

Higher order derivatives are obtained by repeated application of Eqns. (3.8) and

(3.9). The two tasks involved in the transformation are:
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(i) Coordinate Generation (or Grid Generation) This is necessary to deter-
mine the location of the coordinate lines in the interior of the physical domain. A
coordinate line is specified as being coincident with each boundary line segment
while the other coordinate varies monotonically along that line. The generation of
a coordinate system is thus simply a boundary-value problem.

(ii) Transformation of Governing PDE’s This is employed to transform the
partial-differential equations under consideration into the new coordinate variables
before being discretized. All computations, both to generate the coordinate system
and to solve the governing PDE’s, can be performed on a rectangular domain in

the transformed space.

3.4 NUMERICAL GRID GENERATION

A method of generating the general boundary-fitted coordinate systems is to let
the curvilinear coordinates to be the solutions of an elliptic partial differential system in
the physical plane, with Dirichlet boundary conditions on all the boundaries!?=5!/54:80

An elliptic system is used because the solution of such a system is completely
defined in the interior of the region by its values on the boundary. In other words, when
the entire closed boundary of the physical region is specified, the partial-differential
equations (employed for grid-generation) must be elliptic.

The solution of an elliptic system yields harmonic functions which have continuous
derivatives of all orders. Moreover, harmonic-functions obey a maximum principle,
which states that the maximum and the minimum values of the function must occur
at the boundaries of the region of the physical-domain. Thus, no extrema occur within
this region, so that the first derivatives of the function will not simultaneously vanish
in this region, and hence the Jacobian will not be zero due to the presence of an
extremum. The maximum principle also guarantees the uniqueness of the coordinate

functions £(z,y) and n(z,y).



The physical domain under consideration may be a simply-connected region or a
multiply-connected region. The generated coordinate system produces a rectangular
domain iu the transformed-space (Figure 3.2).

Consider a simply-connected region, the boundary of which is specified at discrete-
points (zy,ys). The simplest elliptic system to choose is to use the Laplace equation

and to find £, 1 so that a system of Laplace equations is satisfied in the physical plane.

that is:
£z + &y =0 (3.10)
Nzz +7yy =0 (3.11)
or
V=0 (3.12)
V=0 (3.13)
where
V=5t o
with the following Dirichlet boundary-conditions:
wew) oD G
¢ Gl) } on T (3.15)
Cha) e
f'? = i;l(x,y) } on Ty (3.17)

where £, £, m and 7, are different constants and n3(z,y), €i(z,y), ni(z,y) and
£4(z, y) are specified monotonic functions on Iy, I's, T3 and 4.
Since it is desired to perform all the numerical computations on the uniform rect-

angular transformed plane, the dependent and the independent variables in the above
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equations must be interchanged. This results in:

arge —28z¢) + 71yy =0
ayee ~ 28yen + Yyny = 0
Refer to Appendix A for derivation.
The coupling coefficients in the above-equations are:
a=I

B = zexy + yeyy

y =12+ 4
The boundary conditions are:
sonm) e
iupier o] BRI
aeny e
e L

(3.20)
(3.21)

(3.22)

(3.23)

(3.24)

The functions fy, g1, f2, 92, f3, 93, f4 and g4 are specified by the known shape

of the contours I'y, I'z, ['3 and [’y and the specified distribution of £ and 7 over them.

Equations 3.18 and 3.19 can be solved by A finite-difference method using second-

order central difference approximation of derivatives and applying the SOR, (successive

over-relaxation) method using linearly interpolated initial guess. The discrete values of

(x,y) at the corresponding (£,n) points are then determined. The finer the mesh, the

smaller would be the numerical error.

The grid generation method described in this section is employed to develop a

B-type grid generation computer programme required in this work.
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3.5 TRANSFORMATION OF THE GOVERNING EQUATIONS

The governing partial-differential equations and the respective boundary-conditions
must be transformed to the corresponding curvilinear coordinates using the transfor-
mation relations of Section 3.3 in order to be solved in the transformed plane. The
problem of solving the governing-equations on a complexlphysical domain is therefore
changed to the solution of the transformed-equations on a uniform grid of rectangular
shape in the transformed plane.

In general, the transformation operation generates additional terms in the govern-
ing equations so that these equations become more complicated upon transformation.

For the transformation of the governing equations, one has to first decide upon the
dependent variables in the transformed-plane for the velocity components which could
be cither the physical Cartesian velocities or the contravariant velocity components.
The concept of contravariant velocities is shown in Figure 3.3. The contravariant ve-
locities are related to the physical Cartesian components by the following relationships:

U= yyu-z,v
V= zv—yeu ' (3.27)
W= Juw

Use of contravariant velocities as the dependent variables leads to a complex trans-
formation in which the bhysical interpretation of the transformed equations is also very
difficult.

Retaining the physical Cartesian velocities as the dependent variables in the trans-
formation of the equations has the advantage that very complex transformed equations
are avoided. Also the equations preserve their conservative form after transformation,
which is a desired feature in the physical interpretation of the equations and in the
convenience of formulation of discretization equations.

The dependent variables for velocity components selected in this work in the trans-

formation task are the physical-Cartesian velocities, however, both the Cartesian and
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the contravariant velocities take part in the structure of the transformed equations and

in the solution procedure.

3.6 DISCRETIZATION OF TRANSFORMED EQUATIONS
3.6.1 Grid Configuration

By grid configuration or arrangement one implies a proper choice of storage loca-
tions for the dependent variables in the transformed plane for which there are alterna-
tive selections. A suitable grid configuration should be chosen for any specific problem,
The grid arrangement adopted is largely responsible for obtaining discretization equa-
tions which converge fast and exhibit good stability and accuracy. Grid configuration
is to be considered only for the variables in the transverse plane and how the variables

are located with respect to the axial direction is not of major importance.

3.6.2 Basic Requirements of a Proper Grid Configuration

A favorable grid configuration should be capable of providing the following goals:
(i) pressure should be located such that the pressure gradient terms in the momentum
equations can be accurately evaluated,
(ii) velocities should be located where they are required for mass conservation,
(iii) the numerical scheme for non-orthogonal grid should revert to a 5-point equation
type when thg grid employed is orthogonal?®,
Two of the most important grid arrangements (non-staggered and classical stag-
gered) and the novel grid arrangement?® adopted for the current problem are described

here.

3.6.3 The Non-Staggered Grid Configuration

In this arrangement (Figure 3.4) all the variables are located at the same grid

point location designated by P. There would be a serious drawback in discretization
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of pressure gradient terms in the momentum equations using this configuration so
that a non-realistic wavy or zigzag pressure-fleld may lead to a convergent solution.
This difficulty, referred to as the checkerboard pressure-field pattern®?, is avoided if a

staggered grid configuration is employed.

3.6.4 The Classical Staggered Grid Configuration

In this arrangement (Figure 3.5) the velocities are located at the middle of the
four faces of each cell, while pressure, axial velocity and physical properties are located
in the middle of the cell.

The advantages of this layout are as follows:

(1) the danger of generating wavy pressure-field is eliminated,

(ii) the velocities are located where they are required for mass balance.

3.6.5 The Grid Configuration Adopted

" For a non-orthogonal grid system, the best choice is a classical staggered-grid in
which both components of “4" and “v” velocities are used coincidentally at the same
location with the contravariant-velocities normal and parallel to the faces of the cell46
(Figures 3.6 and 3.8). This configuration involves one difficulty which can be solved
by an interpolation scheme®®. Due to the fact that one of the contravariant velocities
(parallel components) do not enter to satisfy the overall continuity equation, the “u"
and “v" values can depart considerably from their realistic values during the iteration
process. The values of these velocities can, however, produce normal components of the
contravarient velocities which would satisfy the mass balance equation while the parallel
components of the contravariant velocities remain free to assume unrealistic values. The
solution to this difficulty is to enforce somehow the continuity equation to also hold for
the parallel components of the contravariant velocities. Thus the parallel components of

the contravarient velocities are obtained by interpolation from the normal components
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of the contravarient velocities which do satisfy the mass conservation (refer to Appendix

G for details).

3.6.6 The Discretization Method

The transformed governing equations are discretized using the method known as
the “control-volume” finite difference approach® ™. Applying this method, the cal-
culation domain is divided into a number of control volumes such that there is one
control-volume surrounding each grid-point. The differential equations are integrated
over each control-volume. For 3D problems, triple integrals are involved. In the formu-
lation of the discretization equations, the upwind difference scheme is applied to the
convective terms and the central difference approximation to the diffusion terms. A

three-dimensional control volume is shown in Figure 3.7.

3.6.7 Location of the Control-Volume Faces

For the proper location of the control-volume faces, the B-type grid or practice-B%?
is employed here (Figure 3.8). In this arrangement, one first draws the control-volume
boundaries and then places a grid-point at the geometric center of each control-volume
through which the main grid lines are drawn. If the grid is designed this way; then the

entire calculation domain would be covered with regular control-volumes.

3.6.8 The Solution method of the Discretization Equations

The discretization equations are algebraic equations and are solved by a line-by-
line tridiagonal matrix (TDMA) algorithm. Introducing a relaxation-factor to the
discretization equations one may enchance the convergence of the iterative solution.
With the hne-by-line method use of overrelaxation is uncommon while underrelaxation

is often used to avoid divergence in the iterative solution of the equation®?.
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3.7 SOLUTION PROCEDURE

3.7.1 Use of Primitive Variables Versus Stream Function/Velocity Method

For the two-dimensional fluid-flow problems, one method is to use the stream-
funetion/vorticity formulation, by which the pressure-determination is avoided and the
number of equations are reduced from 3 to 2. In three-dimensional fluid-flow problems,
however, generalization of the two-dimensional stream-function/vorticity formulation,
increases the number of variables from 4 to 6 and hence the method loses its attractive
features and what is claimed to be a great advantage. Moreover, by retaining the

primitive variables, the equations are solved for the quantities that are of direct interest.

3.7.2 Handling of Pressure-Velocity Coupling in the Parabolic Direction

The method adopted here is that of Raithby Schneider™ . Primari'y the momentum

equation in the axial-direction is solved with the boundary-condition using a guessed

pressure-gradient (%) to obtain a tentative axial-velocity wp. The corresponding

mass flow rate is

M=) Jow (3.28)
all P

where “all P" denotes all the w-control volumes inside the duct walls. Defining two
new variables:
oP dw
= —— = — 2
Q P and  fp 30 (3.29)

The corrected pressure-gradient (%‘;) would be related to (%l:-) ) by
0P  (OP\*
AQ =- [-8—0‘ - (3_0) ] (3.30)
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And the corrected axial-velocity would be related to wp by

wp = wp + frAQ (3.31)

where fp is obtained from the following discretization-equation using appropriate boundary-

conditions:

pfp=AVfE+ AYfw + AN fv + AY fs + JpAV (3.32)

and AQ values is chosen to make the total mass flow rate constant, i.ec.

AQ = ZA’I—NI"

- 3.33
aupJofe ( )

in which “M” is the exact mass-flow rate known from the inlet conditions.

3.7.3 Pressure-Velocity Coupling in the Transverse Direction

Any assumed pressure distribution is checked by determining whether the velocities
obtained from the momentum equations using this pressure field conserves mass or
not. Thus, we find the pressure field which drives velocities such that the overall
continuity equation is satisfied. Hadjisophocleous et al.®%, Shyy et 2l.6? and Braaten et
al.®® employed the SIMPLE algorithm® in their analysis for non-orthogonal systems.
Maliska*® proposed a mixed scheme comprising of the SIMPLE and the SIMPLER
algorithms®®. In the present work the SIMPLER algorithm modified for non-orthogonal
system*® is further developed for the solution of the power-law non-Newtonian fluid
problems and is employed in the solution procedure, The algorithm is explained briefly
in the following paragraph.

The coefficients of the “u” and “v” momentum equations are computed using the

best available velocities. A Poisson-like equation for pressure using pseudovelocities is
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solved to obtain a tentative pressure-field, P", which is used to solve the "u" and “¢"
momentum equations to obtain the starred-velocities u* and v". These velocities do
not, in general, conserve mass. The corresponding values of U/* and V* are obtained

by substituting u* and v* in the following relations:

U- = ynu' - _‘B,?U. (334)

V* =zev® —yeu* . (3.33)
These velocities must be corrected by U — U* and V — V* respectively, to obtain “U™"

and “V" velocities which do conserve mass. The above changes are related to the

corresponding required changes in the “u” and “v” velocities as follows:

U-U*=yy(u—u")—z,(v—v") (3.36)

V-V =z¢(v—v") — ye(u—u*) (3.37)

Estimates of change in “u” and “v” that result from change in “P" are:

._ AV [Pp-Pp Py + Pyg — Ps — Psp

womu; ==y {2, e 5= Pe e} (339
.__AV [Py +Pyp—Ps— Psp Pg — Pp

Ve — U, = Av { ahn (z¢)e AE (zn)e (3.39)

in which P! = P — P*. Similer expressions are obtained for u, — ul, va — v}, Uy —

ul, Yy — Vg, s — Uy, and v, — v;. The value of P’ is obtained from a Poisson-like
pressure-correction equation derived in this work for the power-law non-Newtonian fluid
in which the starred-velocities are used (Appendix F). Once the P’ is known, the con-
travariant velocities which enter into the mass-balance (U,, Uy, Vi, V,) can be found

from the Eqgns. (3.36) and (3.37). The other contravariant-velocities (Ve, Uy, Vi, U,)

3-14



are obtained by interpolation (Appendix G). The physical velocities “u” and “¢" are
readily obtained from the relevant equations.

To obtain an equation for pressure correction, P’, one should substitute the velocity-
correction (3.38), (3.39) etc. in Eqns. (3.36) and (3.37) to obtain equations for ={’"
and “V” in terms of U*, V* and P’ which when substituted in the overall continuity

equation:

(pU)e = (pU)w + (pV)n = (pV)s + (pW)p = (pW)y
AE An Ao

results the following Poisson-like pressure-correction equation:

=0 (3.40)

ApPh = ApPh + ANPYy + AsPs + AwPly + Anp Py g+

AspPsg + ANwPyw + AswPsy + B (3.41)
in which
Ap=Ag+ ANy + Aw + A5 (3.42)
also
A+ Anw + Asw + Ase =0 (3.43)

Refer to Appendix F for the values of B and the coefficients. The Poisson-like pressure

equations is similar to the equation for pressure-correction equation,

ApPp = ApPp + APy + AsPs + AwPw + AvePrne+

AsgPsg + AnwPyw + AswPsw + B (3.44)

with the exception of the B term which is expressed in terms of pseudovelocities for
the pressure equation while starred-velocities are used in the relation for pressure-

correction.
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3.7.4 Outline of the Solution Procedure

In the 3D parabolic solution method, applying marching integration from plane to
plane, all the velocity components, pressure, temperature and concentration fields are
iterated to convergence over a given plane employing the stored values of these param-
eters at the upstream plane. The results obtained over the plane under computation
is then stored as upstream-plane-data to be employed in the computation at the next
downstream plane. This process is followed in the axial direction up to convergence at
successive planes.

The method for handling pressure-velocity coupling in the parabolized axial direc-
tion and the modified SIMPLER algorithm dealing with the pressure-velocity coupling
in the transverse direction are used in the solution procedure for computation over each
plane.

Due to the inter-equation coupling and the general interdependence of the physical
properties to temperature and mass-fraction, all the equations must be solved simulta-
neously for each cycle of iteration in the following order:

e axial momentum equation,

e transverse momentum equations,

e energy equation,

e reactant continuity equation,
For the power-law non-Newtonian fluids, the constitutive equation is dependent on the
velocity field as well as the temperature and mass-fraction fields for its consistency
index. The convergence is further improved by an inner iteration for the axial velocity
component in each cycle mentioned above,

The following solution procedure is developed in this study for the solution of
3D parabolized conservation equations in ducts of arbitrary cross-sections for either

Newtonian or non-Newtonian fluids:
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(i1)
(iii)

(iv)

(vi)
(vii)

(viii)

(ix)

(xi)

(xii)

(xiii)

compute the coefficients for the axial momentum equation using the best avail-
able velocities and using a guessed pressure-gradient solve the axial momentum-
equation for a tentative axial-velocity, w”,

solve for the factor *f” and calculate “AQ",

Calculate the corrected axial-velocity field, w, and the corrected pressure-gradient
in the axial direction, using the “f” and the “AQ" paramecters. Proceed to perform
an inner iteration for w.

using the best available velocities, compute the coefficients for the “u” and *o”
momentum equations,

compute the pseudovelocities, & and © and the corresponding contravariant com-
ponents U and V using the relevant relations,

solve the Poisson-like equation for pressure, P, in which I and V are used,
treating this pressure-field as P*, solve transverse momentum equations for u* and
v,

calculate the corresponding U* and V* from the relevant equations,

solve the Poisson-like equation for pressure-correction, P', in which U* and V* are
used,

correct U* and V* vélocities using P’ solution to obtain “U” and “V” components
that conserve mass and obtain the other components of “U” and “V” velocities
by interpolation,

compute the physical velocities, “u” and “v” from the latter contravariant-velocities
using the relevant equations.

solve the energy equation,

solve the reactant continuity equation.

With the new velocity field, temperature and mass-fraction values obtained above

return to Step (i) and iterate up to convergence.
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3.8 CLOSURE

The non-orthogonal boundary-fitted coordinate transformation method is intro-
duced in this chapter for grid generation of the physical domain and transformation of
the Cartesian governing equations to the curvilinear coordinate system. The discretiza-
tion procedure for the transformed equations employing the control volume approach

is then explained. A solution procedure, developed in this study, is described briefly.
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CHAPTER 4

THE TRANSFORMATION AND DISCRETIZATION OF
GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

4.1 INTRODUCTION

The final form of the transformed and discretized governing equations followed by
the boundary conditions are presented in this chapter. The details of transformation
from Cartesian coordinates to the curvilinear coordinates are presented in Appendix
B. In this transformation the physical Cartesian velocity components are retained as
the dependent variables, while transformation relations of partial derivatives are ap-
plied to the parabolized governing PDEs through which the Jacobian of transforma-
tion is brought in the manipulated equations. Furthermore, the contravariant velocity
components are introduced in the transformed equations substituting their relevant

relationships.

It is observed that the conservative form of the governing equations are preserved
upon transformation.

The transformed components of the stress tensor, expressed by the power-law
~ constitutive equation, are substituted in the transformed governing equations which
are then expanded to their ultimate form before being used for discretization.

It is to be noted that the source term in the transformed energy equation is com-
posed of the viscous dissipation and the heat of reaction terms, while the source term in
the transformed reactant continuity equation involves the rate of reactant consumption
due to chemical reaction.

A typical deriva.t:lon of the discretization equations is presented in Appendix C. For
each nodal point P, four adjacent control volumes surrounding the interfacial points (e,

n, w and s) are considered over which the transformed transverse momentum equations
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are integrated and discretized. Thus, four pairs of discretization relations for « and v
velocities, namely, (u., Ve): (#n. vn). (U, vy) and (u,, v,) are obtained. Meanwhile.
the transformed equations for axial momentum, energy and reactant continuity are
integrated over the main control volume enclosing the nodal point P from which the
discretization equations for wp, hp and mp are obtained.

The discretization of each specific transformed equation, following integration.
is accomplished by applying the upwind difference scheme to the convective terms
and the central difference scheme to the diffusion terms. Moreover, the fact that the
flow field must satisfy the mass conservation equation provides some simplification to
the discretized governing equations combined with the discretized overall continuity
equation. Finally each equation is cast into the general discretization form, that is,
an algebraic relation connecting values of the dependent variable for a group of grid
points, bearing their respective coefficients.

Specific derivation is required for the transformation and discretization of the the
wall condition for the reactant continuity equation, the details of which are presented

in Appendix E.

4,2 THE TRANSFORMED GOVERNING EQUATIONS

4.2.1 The Overall Continuity Equation

SO0+ 5 (6V) + 5 (W) =0 (41)



4.2.2 The Momentum Equations

x-Component

d . 0 . d . a . .

a_f(PuL )+ an(Puv )+ a(puﬂ/) = o€ [yr;(r::) - J’-;(Ty.r)] =

-6-1-7 ["I"E(%yz) - yE(%.L'I)] - [Uups - ng,,] (+.2)
V-Component

8_5.(va) + (P”V) + 0 (PUW) = —55 [yn(Fzy) — zp(Fyy )l —

51' [ze(Tyy) = ye(Tzy)] = [z Py — 24 Pe]—

J(p— pa)g (4.3)
z-Component
2wl + 5 (V) + 5 (puW) = ae 0 (WalFee) — Zaliye)] -
) i dP
é;!‘ [ze(Ty2) = ve(Fe2)] = Jd_ (4.4)

4,2.3 The Energy Equation

d
(pcpTU)+ 3 (pc,,TV)+ g PO TW) =
a 8
35 [ kTe — JkT,,] +
9 g 1i ;
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4.2.4 The Reactant Continuity Equation

(PwAU (PWA V) + —(PWAW)
g [pD D
g7 | Lo = £ +
9 [pDa pDa : ,
67[ g — 5 suf]—JRA (1.6)

where w = w4 for the derivatives.

4,.2.5 The Transformed Forms of Components of Stress-Tensor, “I” and “M”

. 2 - -
Trz = —-j[y,,ue - ygu,,]M (4')
) 2 y

Tyy = ——[mev,, — z,ve|M (4.8)
A (4.9)

. . 1 y

Tzy =Tyz = —3 [.1:511,, — TpUg + Yple — ycvn] M (4'10)

. N Ou

Tzz =Tz &= [5" J [y'lwf yEw’?]] ' (4.11)

) N Ov -

Tye = Tey = — a + 7 [x,gw,, - J:,;‘CUE] M (4'12)
ool f¥n, _ ¥ ze _2q \?. (Ow)
I—-2[(Ju5 Ju,,) +(Jv,, Jv,g) +(60')]+

'y Y z z 2

o=t o=

-zE mn av 2

-'-I-w,, - TUJE + 5; +

v % oul?

oy — Yo, 1 20 (4.13)
M=y K*5) (4.14)
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4.3 THE EXPANDED SET OF TRANSFORMED
GOVERNING EQUATIONS

4.3.1 The Overall Continuity Equation

a, .. a, .. g .
a—E(PU) + E}'(P" )+ 5o (pW) =0
4.3.2 The Momentum Equations

x-(_omponent

) 8 a _ 0 [pudu] 8 [oudu au

d Ov 0 uav
2% C“ae] e[c ]
o b ]

B C”a Bn["af]
] a

an 075 ]+5‘n[

where
M
Cf = Fle+ yZ]

. M
Cy = —7[5 + yqu]

M
C3y = =7 EnYn

. M
Cy = Tznyf
M
G =S+

M
Cg = ——J—[B + Yeyn)

-~

C-? = —725y€

. M
Cy = "j‘yuzf
pu_9P _0OP

4-5

PII

(4.16)

(4.17)
(4.18)
(4.19)
(4.20)
(4.21)
(4.22)
(4.23)

(4.24)

(4.25)



y-Component

9€

where

2 (o0 + 5 q(pm + (W) = 2

a Ov 3]
CU
f [ E] af
g dul o
% o) 7 |
3] v a
AR 7 |
a du | a9
an C’a Tan |
pv_3v
, M
Cl = 7[& + z?’
M
C; = —7[ﬁ+z£‘”n]
M
03 = —"T.'L'"yn
M
C4 = ngy,,
M
¢t =Yiy+al)
M
Cs = —T[ﬁ + z¢zy)
M
C7 = == 2eve
, M
CI! = Tz,,yg
Pv = a—P:r: a—PJ:
T ot oE T
S*=J(p—paly

(4.26)



Z=

9¢

omponent

0 . d . a .
52(PeU) + 5 (puV) + g (pul) =

where

[.u
5'2[5
|75

C,“’:E,J{a
V.
cy _-iiﬂ
Ca =A/Iyn
M
w——
C¥ ==
v M
C“’=-—My5
C¥ = Mz
w_ 8P
P —Jda

Ow

a.s € ae

a
ow
an

o)+

x|

d
3"5

|

7%

g

w O
€ an

w 1
3
o, O
8 9o

du v
Cs a OE [C ]

] PY (4.37)



4.3.3 The Energy Equation

g 9 a9 8 [wOh , 40k
gg (PhU) + g (PhV) + 5= (phW) = [c +C; ]

o | ' oe
J hah hah “h
pm [C gy +Cige| +5
in which
h=CpT
no ok
Cr = JCp
8 k
P .
¢ = J Cp
8 k
C‘:‘=-76';

4.3.4 The Reactant Continuity Equation

ZHomU) + 4-om¥) + - (omW) = 3 |CT 32 + CF 52| +
g? [cs % +c:=%’?] +34m
where
m =ty
cp = 224
o = -”’%
cp =204
S™ = ~JR,
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4.3.5 The “I” and “M" Terms

Yo _ Ve,  Ze, _Fa 0 Mze g o O]
[Frve = SFoa+ Fun = Fue +[J”“" J”’”’&:] *
1 ou
[yT"wg Jjew,, + &-] (+.01)
M=p j(*5) (4.62)
4,4 THE DISCRETIZATION EQUATIONS
4.4.1 Discretization Equation for *u.”
(Refer to Figure 4.1)
AP} .u, = AE} ‘ug. + AN} »uny. + AW} - uw .+
AS® . ug. + B® - L[P*AV T (4.63)
or
AP} .y, = ZAE‘ﬂb)e * U(np)e + B}-
Pg — Pp Py + Pyg — Ps —- Psg
{ P - 4B f OV (o
where
AP? = AE? + AN® + AW? + AS® + AU, (4.65)
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AP} = || = (pU)eoll&ndo + [[(pU)poll2ndo + || = (pV )ne ol AL LT+

”(/’V)u.OIIAEAa + (PW)e.UAEA?? +

Af Y
Ce, . DEA Ce, . DEA
5ncA: a + SscA: g (466)
Cigdnd
AE! = ||~ (U5l dnde + HETEES (4.67)
cr  AEA
ANS = = (pV)nepllBéAT + —*"—Ef—” (4.68)
Cipnh
AW = |(pU)polldno + SE== (4.69)
CE ALA 3
AS? = [PV )reoll 60+ i (470)
AU, = (pW),uAfAn (4.71)

B! = AU, -u. v + [CigDo + Cg Ac)uy — [CYs0 + Cg, Ac)ur—

u
(ClpAa + Cl Aolun + [Clplo + Cy Aclu, + [&E%J Voo

(CiAnAc  ClpAnho  Ch AEAs  CHAEAC

CsPﬁ;?AO'] v + [Ciglo + Cg, Aclv, — [Ciglo + Cf,. Ac] v2—

[Ciplo + C§, Ac)vn + [Cipho + CF, . Ac] v+

(Ch.AAG] Ol AEAS
&T] ] vy + [ AT] Us (4.72)
- _[Pe-Pp  Pn+Pyp—Ps—Psg
LIBAY = { e = yee} AV (4.73)

4-10



4.4.2 Discretization Equation for “v.”

(Refer to Figure 4.1)

APY v, = AEY - vg. + ANL - vye + AWY - oyye + ASY - vgo

B: - L[P}|AV (4.74)
or
4"!.Peu Ve = Z Agnb)c ' v(nb)e + B:_'
Py + Pyg — Ps ~ Psg Pg-P -
{ . Px"‘} i (+:19)
where
APY = AE? + AN? + AW? + ASY + AU. (4.76)
AP? = || = (o0)50lA180 + [(pU)poll AAG + || = (6V hnes| AE AT+
Ciolpha  Clalnis
1oV )se,ol| AEDT + (W )e,u AEAR + !EAg =+ IPAg =+
CineDéAo  CP, Al o
An + An (4.( i)
AEY = | - (A)g | Anso + SUESIET (478)
. Cr ALA
T B e (4.79)
AW? = (o0 )poll o + SLERIE (4.0
AS? = (o el 2600 + FoREE0 (481
AU, = (oW ),y DEDT (4.82)
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BY = AU, - v,y +[Ce0 + CueLroluy = [Clp0 + CE\ Ain—

(Cip B + CloDSolon + [Cipa + ClieBialv, + [M] teom

AN
C.{'EA’?AU_E_CQ"DAUAU_{_C%’MAEAU_’_C?MA'SAU s
E AE Anp An T
[ CipAnic

] wo + [Cls A0 + ClnAc] 1 — [ClpAa + CF,, Ao g

RETAYS
[CipDo 4 C3rBa|un + [CipLo + Cgy Do) us+
[CY. AEAG Ci, Ao - .
_Ar,' } usz + [__-_Aq us — L{S;|AV (4.83)
soiny _ | PN+ Pne—Ps—Psg ~ Pp—Pp
L[P: ]AV = { 4A'7 Tge Af -'L'qe} AV (484)
L[S:]AV = Je(pe — pa)g - AV (4.85)

4.4.3 Discretization Equation for “u,"

(Refer to Figure 4.2)

AP# Uy = AE:.: *UEnR +AN:: *UNn +AW: ‘Uwn + AS: *USnTt

B! - L[B*AV (4.86)
or
AP cun =) Afn - u(ane + Bi-
{P”E ki ;A?”W = Fw Ynn — En=Pe A"np" yen} AV (4.87)
where
AP! = AE! + AN® + AW! + AS" + AU, (4.88)
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"'!'Prl: = ” - (PU)nc,OHAnAU + ”(PU)nw.OHAUAGJ"

| = (pV)nollAEAT + ||(pV)pol|Aé Ao+

Cilednbo  CF L ANAe
T Ine Inw
(PW)a,uELD + e T At

CivOEDT | Cipltho

An An {(++.89)

AEY = || = (60 )neallBno + 2000 (4.90)
AN = |- (Il bgas + SAREET (4.91)
AWY = [(pU)pw,o|| Do + %ﬂj_@?ﬂ (4.92)
ASE = [(6V)pol Agb0 + ZHELEE (4.93)

AUn = (pW)a OO (4.94)

By = AU, - unu + [C3L. A0 + CinDoluy — [CyL . A0 + Ciplialu, -

U
(Chuuso + Gy ol + (Chhau &0 + Cipliolun + [FatB2]

Ag
(C2..Anlo  C¥ Ao + CipAEAc + CInAEDe -
RAYS AE An An "
| CinwnAc

Y ] V11 + [Cine Ao + CynOa) vz — [Ch. Do + CipAo|ve—

[C:“wAO' + C:NAU] vr + [C:nwaa + C;PAG] Vgt

-C’-:-‘NA£AO' C-?PA£AO' ’
{ ATI _] Unn + [_ 'An"" Us (4.95)
suiay . | ENE+Pe—Pyw—Pw Py -—Pp
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4.4.4 Discretization Equation for “v,”

(Refer to Figure 4.4)

or

where

APy vn = AE] -vgn + AN} - vnn + AW - vw, + AS) - vsa+

BY — L{P’|AV

APy -vn = ZAE’,.“,, * V(nb), + Bn—

Pv—Pp _Pne+Pe—Pvw-—-Pw | .,
Ag & 4NE "

AP? = AE® + ANY + AW? + AS? + AU,
AP] = || = (pU)nellBnlo + [[(oU )awollBndo+

F = (eVInollA6AT + [[(oV)poll AEAT + (pW)n v AEAT+
ClneOnAo + Clawnio + CinOéhe + CipAEAr

Y AL An An
ABS = || = (PW)neoll o + Slaeln o
AN = | (VoA g + SNEES
AW = (ool S 2 + Slae 120
AS3 = (V) pall 0820 + EERE0T

AUn = (pW)n,uDEAY
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(4.99)

(4.100)
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(4.102)
(4.103)

(4.104)

(4.105)



By = AU, - Un U -+ [C’.:’ncaa + Ct;}NAU]UJ - [C;MAO' + Ctli’PAU]Uc_

(Chawl0 + CinAolvr + [Chyo + CipAalu + [ o
I

I VAV AE An An
[ Cinwlnle]
REAY
[Cinwdeo + CinAalur +(Ciry Ao + Cgplajuy,+
CivAEAd) | [ClpBedo
An m oY)

] u, — L[S2)AV

Sv Py — Pp Pyg+ Pg — Pyw — Pw
L[Pn]AV = {—ATJ:E,; - 4AE Iyn AV
L[S'r'i]AV = Ju(pn — pa)g - AV

4.4.5 Discretization Equation for “u,”

(Refer to Figure 4.3)

APE uy = AE® -ugy + ANE -upny + AWE o+

ASE - ugy + BY, — LIBEAV

or
AP{; Uy = Z A?nb)w “U(nb)w + By—
Pp — Py Py + Pvw — Ps — Psw }
—_—Yw — we AV
where

APE = AE® + AN + AWY + ASY + AU,
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SR PTAUIAY:

[ CinDndo + Clnwdndo + ClyOAEAs + C;',,AE/_\U] ot

],,1_.

J w1t +[Cine b0 + Cyn Dol ug — [CF, B0 + Cyplo]u,.~

(4.106)

(4.107)

(4.108)

(4.109)

(4.110)

(4.111)



APY = || = (pU)poll&nle +il(pUlweol|Bdnle + 1| = (pV )nwollDEAT+
Ciplnho C'l“WAnAo'+

AV Vswo|AELT + (pW )w v AEAD +

A€ AE
.';‘HIL'AEAO‘ C;JIDAEAO‘ 9
~ YT Ay (4.112)
s AnA
AEY = || = (pU)poll&nbde + -Cﬂ-’a—g—q- (4.113)
¥OAEA

ANE = = (Vo600 + ZinnTi (4.114)
C*., AnA

AW = (e wall Ao + ~HET= (4.115)
LAEA

ASy = |l(pV )suwollAEDS + &‘-“’A:—” (4.118)

AUw = (oW )y DEAT (4.117)

Bt = AUy - uypu + [Ciplio + C§,,Aclu, — [C3po + CF,, Ac]u,—
C;PAT]AO'] o

(Gl + ChruAelun + (G + Chru i + | H2R]

[cyPAnAa Ciwlnde . Ct,Als c;*,wagaa] prt
AE Y A A7
[g%_éﬁ} Vuw + [CLpAc + Cir Aol vy — [ClpAo + CF, Ao} vs—
[CiwDeo + Cgr o) v + [Ciwle + Cg,, A0 viz+
[————C?"*ﬁia"] vr + [-———C?""AAT’{A”‘] vg (4.118)
LIPYAY = {——P";EPWy,,w ik P""ZA“HPS = Ps“’yew} AV (4.119)

4-16



4.4.6 Discretization Equation for “v,,”

(Refer to Figure 4.3)

.-l.P:J Tl = .-lE:L *VEw + .‘l_N:; UNw + AI/VI:; CUWe -+ AS:L . '-’Sw+

B — L[PJAV

or

."lP; U = Z Agnb)w *U(nb), T Bz,—

(4.120)

{PNW+P’1A_WP5W _PSme - f"’—;g—‘izw}av (4.121)
where

APY = AE® + AN? + AWY + ASY + AU, (4.122)
APy = || = (pU)poliBnle + [[(oU)woll Anldo + || = (pV }nwoll A§ AT+

6V ool 687 + (o), p My + L2ZIET o S 2120

Cffmﬁfﬁ" + Cé’wﬁfa" (4.123)
AB} = || - (pD)pallanto + HEZIE (4124
ANY = || = (PV)uoll D6 + g—fn—@ (4.125)
AW = [(0)wallando + LI (4.126)
ASY = [(pV )swo|AE Lo + g% (4.127)
AU, = (pW)w,u AEATY (4.128)
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B::, = AUm * Uy U + [CZUPAU + C;uwAg]vn - [C’;PAG + C;,WAU]U,—
A
(Ciplnbo | Clwlndo | Ch, 0680 C';'-’,wAEAa] s

(Cliy Do + ClouBolun + [Clwho + CfyAalvrs + [

AN AY] Ln An

[CYywOnAc

AYS

[Ciw Do + Copwo|un + [Ciw o + Cgy Ao uga+

[CY, DD CY, ,AEAe
An ] urt [ TAY

] ug — L[SY)AV

Py + Pm::;nps - Psw Tew — PP;EPW :qu} AV
LSLJAV = Ju(pw — pa)g - BV

LIPY|AV = {

4.4.7 Discretization Equation for “u,”

(Refer to Figure 4.4)

AP} u, = AE} -ug, +AN:' cuns + AWE cuw,+
ASY - ug, + B® — L[BY|AV
or

AP} uy = Afuy, vy + By -

Pp+Psg—Pw—-Psw Pp—Pg AV
4AE Yns ATI Yes
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] Uww + [CipAT + Cinuo|up — [Ciplo + Cy, Ao us—

(4.129)

(4.130)

(4.131)

(4.132)

(4.133)



where

APY = AE" + ANY 4 AWE + ASY + AU, (4.134)
APE = || = (U )se ol AnAG + (60 hewo|A70 + || - (V) pol| AL AT+
6V )50llA600 + (o),p A0 + FeePIEE o Clan 107
Cg‘si.;;'Aa + Cg‘pAA’an (4.135)
AB} = || = (pU)ueallAndo + TulIE2 (4.136)
ANE = | - (pV)moll Ao + S2LEES (4.137)
AW = [(pU)suoll Ondr + c—“fgﬂ (4.138)
AST = [(pV)sollAga0 + ZEREE (4.139)
AU, = (sW), yAEAD (4.140)

By = AU, - U+ [C{,eéd + C;Paa]uc = [C;"AU + CESAU]US—
(Cl,uB0 + ClpAaly + [CliwAa + ClsDolus + | ﬁfgﬂﬂ] v
] .
CieOnAc  C3,,Anho + CipDéQo + S TAAY -
Y At An Ag |
CrpAE Aa] [ C¥ ,AnAo C¥OAEDG ]
[ Af) Up + —AE vz + _‘_"'"_An Vss+
{CiieDo + CipAa)v, — [Cl, Ao + Cis Ao us—

[C:awAa + CgPAa] Y + {CrawAa + CBI‘SAO'] Ug (4- 141)

Bu _[Pe+tPsg—Pw—Psw  Pp—PFs
1pnav = { o~ e = 22 B0 o (4.142)
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4.4.8 Discretization Equation for “v,”

{Refer to Figure 4.8)

APJ cvy = AEJ - vgs + AN cons + AW - vy + AS) - vsy+
B! — L{P?|AV (4.143)
or

AP? v, = E Al Ly, Uy, + BY—

{ PPA—UPSIE’ _Pp+ Psa4—A§w - Pswzm} AV (4.144)
where
AP? = AE? + AN? + AW? + AS? + AU, - (4.145)
APY = || = (i) aeoll A0 + (2 Yoo |A7AG + || ~ (V) poll AEAT+
(6 )sall 600 + (o) g + FissI o Clan 100,
C;PAagaa N c;sﬁsaa (6.146)
AEY = | - (pU),,'o||AnAa + g%_géa (4.147)
ANY = || = (oV)poldgae + BEREEE (4.148)
AW = (o0 )om[Snsc + SleeZ0E (4.149)
A4S} = I(pV)soll Ao + HTERE (4.150)
AU, = (W), AEDT (4.151)
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B! = AU, - v,y +{C3,. 00 + CipAove — [Ch, . Aa + CisAojvs—
(€L, A0 + Clplalvy + [CLou A0 + ClsAc)us + [ﬁﬁ‘ﬂ”ﬁ]
I
CrAndo  ClLuBnbo  CipAéde  ClsAéAs
[ R TT A T A T o }“"‘L
Ci,wlnhe
Ag
[Clseo + CosAa)us — [Cf,, 00 + Ciplo)uw+
C-;’PAEAO']
Af] uﬂ+

] uss — L[SY|AV (4.152)

o) —
-

] s + [C.:’MAO‘ + Cé’pAa] Ug—

(€2, D0 + Clsla]us + [

Cr DA
An

- _[Pp—Ps Pg + Psg -~ Pw — Psw
L[BYJAV = { — 1A7 Zns b AV (4.153)

L{SY AV = J,(ps — pa)g - AV (4.154)

4.4.9 Discretization Equation for “wp”

(Refer to Figure 49)

APY . wp = AES - wgp + ANE -wnp + AWE - wwp+

ASY - wgp + BY — L{PE|AV (4.155)
or
w w w AP
APE -wp = > Afyp - winnp + BE - Jp | av (4.156)
also
APY = AEf + ANp + AWp + ASp + AUp (4.157)
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APp = || = (pU)e0l|&ndo + {|(pV)wollBndo + | = (oV)n,0ilAEAT+

i(pV)s0ll AfAa + (pW)pu AEARD +

Ce AEA + SAAAY

An An
CE AnA
AEY = || = (pU)eoll Anda + *A—g"
CE AEA
R R
AWE = (o )woll Anisa + T2
CEALA
ASE = (¥ )l beas + T

AUp = (pW)pu ODEAR

C{”wAnAa+

A€
(4.158)

(4.159)
(4.160)
(4.161)

(4.162)

(4.162)

BE = AUp - wpy + [CEAG + CE Aclwn, ~ [CL AT + C2 Acw,e—

[C, 00 + CegnAclwny, + [Ch, Ac + C& Ac)w,y,+

[C3% Anu, — (G52 Anlue,v — [C3, Anluw + [C3, Anluw,y+

- [Clenlve — [ChAnjve,v + [CLL Anvw + [CouAnlvw,y+

[C';‘::Aﬂ?n — [CrnlE|un,u — [C7,A8]u, + [CF, A8]u,s,u+

[CE Abvn — [CE AL vny — [CE AL, + [CE AL v (4.164)
L(BEIAV = Jp %] AV (4.165)
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4.4.10 Discretization Equation for “hp"

(Refer to Figure 4.5)

APE

or

also

where

chp=AE} hgp + ANE -hyp + AWE - hyyp+
ASY  hgp + Bh (4.166)
APE-hp =3 Aluyp-hianp + Bb (4.167)
APE = AER + ANE + AWA + ASK 4+ AUp — SPh . AV (4.168)
R ()
SP* = JpIy * ‘ay + Jpay (4.169)
AP = || = (pU)e,oll BnAc + (U )u o[l AnAc + || = (oV )n ol AE AT+
ChAnhe  Ch AgA
16V sl A6 + (oW )py DAy + LTI 4 ZTwTI2T
Ag Ag
ChAENs  ChLAEAG
A& T A (4.170)
ChAnA
AES = || = (oU)e ol Ando + —————“az g (4.171)
h
ANE = [ = (iV)noll D6 + 9-3%&—" (4.172)
h A
AW = (pV)uallBndo + Tl (4.173)
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Ch AEAo

ASE = [[(pV )sollBELT + o (4.174)
.-1Up = (pW)p‘UAEAq (4.175)
B% = AUp - hpy + [CEDc + CH, Ac)hpe—
(Ch Ao + Cl Ak, +[CF,00 + C} Ac]hyy—
[CE A + Ck Aclha, + Sk - AV (4.176)
where
nd1
Sh=JpISE Yoy + Jpby (4.177)
Note: a;, b, az and b, are obtained from source-term linearization, such that:
up = arhp + by (4.178)
(~AH)pRap =ashp + by (4.179)
4.4.11 Discretization Equation for “mp”
(Refer to Figure 4.5)
APR mp = AET -mgp+ ANG -myp + AWE -mwp+
AST -msp + Bp (4.180)
or
APE -mp=Y Ay 5 muyp + BE (4.181)
also

APP = AEP + AND + AWE + ASE + AUp — SP™ - AV (4.182)
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where

SP™ =~Jp-c (4.183)
APE = || = (pU)epllOnAG + (2D )wo | O1AG + 4 = (pV)n || A5 A+
6V )uolO680 + (pW)pw Ay + SERIET . SO
CﬂﬁgAa + C,;’;ggaa (4.184)
AER = = (pU)eol|&nAe + E{-n‘-’-ig—ég- (+.185)
ANE = || = (pV)nol| DA + _C%:;'Aa (4.186)
AWE = {l(pU)w ol AnAc + %g_g&_a (4.187)
ASE =(pV)solléAS + %—2:’:@3 (4.188)
AUp = (pW)puODEAn (+4.189)
BE = AUp -mpy + [CR. Do + C, Ao|mp.—
([Chde + CiAalm,. + [CF, A0 + ClAc|muw—
[CTuAc + CrnAolmnw + ST - AV (4.190)
where
S¢==-Jp-d (4.101)
Note: ¢ and d are obtained from source-term linearization:
Rap=c-mp+d (4.192)
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4.4.12 Discretization Equation for “Ip" and “Jf,”

Dy = [t2pde=%u _ yeptn = u,)’
YT Te At Jp  Ag

D, = |[Fe2 vn=vs _arnpvc-vw}
= | Jp An Jp A€

r 2
twep —w
Dy = _ﬁza_f’i]

D, =2[D, + D, + Dj)

[YynP Ve —Vw  YeP Un—Us  TgP Un — U, _ TP U = Uy

Ds = Jp DE T Jp Dg Jp  Op Jp A
D= [FePWn—ws  Typwe—wy VP —vVPY :

ST 1Js On Jp  Af Ao
D, = -uP""uP.U Ynp We — Wy _Yep Wn — W, 2

§ Ao FPVN: Jp An

L[fP] =Dy + Ds + Dg + Dy

L(Mp] = up -+ [Dy + Ds + D + D;)(*3%)

4.5 THE DISCRETIZED BOUBDARY-CONDITIONS

Inlet (@ o = 0)

(i) Axial Velocity
w(€, 1) = Wintee

(i1) Transverse Velocities

u(é,n) =0.
uz(§,7) = 0.
vi(6m)=0.
ve(§,7) = 0.
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(4.193)
(4.194)

(4.195)
(4.196)

(4.197)
(4.198)

(4.199)
(4.200)

(4.201)

(4.202)

(4.203)
(4.204)
(4.205)

(4.206)



(111) Temperature

T(E? '7) = Tinl:t

{iv) Reactant Weight-Fraction

m(§,n) = 1.0

Walls of the Duct

(1) Axial Velocity

w(é,n) =0.

(i1} Transverse Velocities

ui(€,n} =0.
uz(€,m) = 0.
vi(€,7) =0.
v2(§,m) = 0.

(ii1) Temperature

T(ﬁ: 1) = Twau

1£€6< L1 forp=1,M

1<n< Ml foré=1,L1

1<¢6<Ll forp=1,M1

1<np<M1 foré=1,L1

1<E6< Ll forp=1,M1

1€<n&Ml for{=1,L1
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(4.208)
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(iv} Reactant Weight-Fraction

Wall Condition of the Reactant Continuity Equation @ I=1 Boundary

APp -mp = AER -mg + ANZ -my + ASP - ms + BE (4.213)
or
APE -mp =3 Aly, M, + BE, (4.216)
with
AWE =0.
also
APg = AED + AND + ASE + AUR — 0.558 - AV (4.217)
m 1
APE' = = (pU)e ol Bnlro + 5| = (pV )noll AELT+
1 1
Qll(PV)a.oHAEAU + 5(PW)puLEDD+
m AqAa AEAG AVYAY-,
Cle AE CSn A c:!s Aﬂ +
m DEAC Bn AEAO' B,
9
2 i Ay — + 204, XY (4.218)
m WAY, YaXo4
AER = = (pU)eollAndo + CT ; (4.219)
AEA
AN = 51l - (Vnollbeto + 507 =27
1 . AEAe O,
5 O (4.220)
AEA
ASE = _||(,,V), olaea +5Cn =T
mDEAT By
2 AT o (4.221)
1
AUp = -(pW)PluﬂEAT] (4.222)
BE =AUp -mpy + (CIPAO’EE' + C3pAc)(my — my )+
2eA0‘(mn¢ - mgg) + 0.550171 * AV (4.223)
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Wall Condition of the Reactant Continuity Equation @ I=L1 Boundary

or

with

also

APp mp = ANE -myp + AWE - myyp+

AST -mgp + BE

APE mp = Al mM(ne)e + BB,

AER = 0.

APR = AWD + ANP + AST + AUR —0.557 - AV
1
APE = [(pU)woll Andre + -n — (PV)nallAEAT+

‘||(PV)s o||AEAU+ (pW) U AEAD+

m Onlo AEA” lomBlA0
Clw'—ze_'-i- Ca" An +203’ An
o DA By, 1 DEAT B,
"TAD an 2 "0 e
w Anla
AWE =|(pU)uollAnlo + CT, Zs
o JAVIAY: 4
AN =§n (6V moll 860 + 5C1 7500+
Cm AEAG' ﬁn
in AT] Gn
AV AT
ASE _"'ll(PV)a.0|IA£AU+ 53 Zn *
L omBEAT B,
2 43 An o,

BE = AUp - mpu+(C,pAaﬂ + Ciplo)(my —m,)+

CroDo(May — Mpw) + 0.550"‘ AV
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(4.229)
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Wall Condition of the Reactant Continuity Equation @ J=1 Boundary

APE -mp=AER mp+ AWE - my+
ANP .my + B2
or
APE -mp =) ATy . mny, + BE,
with
ASE =0,

also

APP = AET + AWE + ANP + AUR - 0552 . AV

1

m 1
APE = 5| = (p0)esl| 8780 + 3 (U)o | Andro+

1
| - (PV)n.oHAfAU + —(PW)P,UAE-’—\W-{-

m Onlo AnAa
Cle AE + Clw AE
A’?Ad Be AnlAa By,
Py R
m DEAC
C3n A—;?—
Anlho
AEE = 5~ (p)eallnda + 5O =727
AUAO' 6:
C'“ AE e
1 AnlQe
AW E"(prOHAnAU"' Clw AE
1 .m &nlo By
9 2w A§ Yu
m DED
ANE = || - (Y )noll A7 + €3, =57
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(4.234)

(4.236)

(4.237)

(4.238)
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. 1
AUp = 5(pW)pu €D (4.240)
3
BR = AUp -mpy + (C;;,Aa;_f—; + ClAr)(my — me)+

CM Ac(Mne = Mnw) +0.55C™ - AV (4.241)

Wall Condition of the Reactant Continuity Equation @ J=M1 Boundary

APE -mp = AWE -mp+ ASp -mp + AER -mp + By (4.242)
or
APP -mp =Y ATy, M), + BE, (4.243)
with
ANE =0.
also
APE = AWE + AST + AET + AUR - 0.55% - AV (4.244)

1 1
APP = Zl(=pU)eallOnB0 + SI(pU)uwoliAnAa +

|| pV)...ouAeAa + 5 (6W)pubEAD+

AnAa Anlho
Cle AE Clw A E
R S
cr Afﬁ“ (4.245)
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AWE

ASE =

AUp =

BT =

1
_5”( PL)¢0“AYJA + C"c

Anlo 3,

“+
AL 7.
QY VaN-,
§Cle AE
L j 1 .» Ando 3,
= §|](pb)w.0”AUAO' + §C2w-—56-—;l:+
1, Onlo
O e
l—\\,/}a
oV el + cp 2507
1
H(oW)puAEAy
AUp-mpy + (CsPAC’BP + C{pAo)(m,

Cho(myy, —m,,)+0.55C™ - AV

4.6 CLOSURE

(4.246)

(4.247)
(4.248)

(4.249)

(4.250)

This chapter is devoted to the presentation of the transformed and discretized

governing equations as well as the boundary conditions.

The coefficients of the discretization equations are alternatively expréssed in terrs

of I and J coordinates in Appendix D to be introduced in the computer programming,
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Fig. 44 Contral volume for u, and ¢,

Fig. 4.3 Conlrol volume for wy, h, and m,

4-33



CHAPTER 5

POLYMERIZATION OF STYRENE

5.1 INTRODUCTION

The chemical reaction which is selected in the present study for simulation is
the thermally initiated polymerization of styrene. This reaction is selected because
polystyrene exhibits a power-law non-Newtonian behaviour®?%30 and the reaction is
conducted in steady laminar flow tubular reactors. The present work, however, affords
a predictive tool for simulation of the manufacturing of polystyrene in ducts of arbitrary
cross-sections. Using the model, the following characteristics can be predicted under a
specified set of operating conditions:

(i) velocity and pressure fields,

(i1) temperature field,
(iii) concentration field and molecular weight distribution.
Moreover, this reaction is used to examine the validity of the present work comparing
the new computational resuits with the already existing experimental and numerical
results in literature.

In this chapter the kinetic model for a third order initiation is presented for thermal
polymerization of styrene. Also, the correlations of fluid properties of solution mixture,
obtained from several sources, are presented. Subsequently a method for estimation
of the weight- and number-average molecular weights is outlined. Finally, the thermal

stability considerations of polystyrene reactors are discussed.
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5.2 KINETICS OF THERMAL POLYMERIZATION OF STYRENE

5.2.1 Reaction Mechanism

72,73

The reaction mechanism consists of four steps: thermal initiation, propaga-

tion. chain transfer to monomer and termination by combination as shown below:

Thermal Initiation:

M+ M& AH  (Diels-Alder adduct) (5.1)
AH+M 2 4+ M (slow) (5.2)
A+ MR (fast) (5.3)
M*+ME4 R (fast) (5.4)
AH +M 2 trimers (8.3)
M+ M e, dimers (5.6)
Propagation: |
R, +M £ Ry (5.7)

Chain Transfer to Monomer:

R +M™ po R (5.8)
R+ AR "= p L R (5.9)

Termination by Combination:

Ry +RY 2 Potm (5.10)
i

5.2.2 Rate of Reaction

A rate expression 212730 {5 obtained by applying the steady-state approximation

to the various radical species in the system.



Rate of Thermal Initiation
Ri=k [."l-][.‘l/.!r] + ky [.‘vf‘][.\ff]

Applicati .. of the steady-state assumption to [4*] and [M*"] results:

d[;if} = ka[AH[M] = ks[A"})[M] = 0
from which
4y = 22EL
and
aq—dﬁf.‘] = ko[AH)[M] = kq[M*][M] =0 .
Hence,
o) = 2AEL

Substituting for {A*] and [M*] in Eqn (5.11), one obtains:
R; = 2ky[M|[AH] .

Application of steady-state assumption to AH results in:

A2 = b (MP — k[ AH) — ko[ AHIM) - k[ AH)M) =0
_from which
(AH] = ki [M]?

k—y + (k2 + ks)[M]

Substituting for {AH] into Eqn (5.16), one obtains:
R = 2k ko [M]?

YT koy + (k2 + ks)[M]

(5.16)

(5.17)

(5.18)

(5.19)



Simplifying Assumptions
Cuse I: Second-order thermal initiation kinetics

i (ky + ks)[M] > ko
%
then R = ( L )[M]"'

k2 + ks

Case II: Third-order thermal inttiation kinetics

if koy > (kz + k5)[ﬂ/f] '

(2k1k2

then R; = P

Rate of Propagation
Rp = kp[R"|[M] .
Rate of Termination

Rg = kg[R-]2 .

) [M]® = 2ki[M]? .

At steady-state the concentration of free radicals is constant and the rate of initiation

equals the rate of termination. Then;

R; = k[R")?,

or
L

o _ [ Bi)?
Therefore, the rate equation is of the form

Rp = kp[R*|[M] ,

or
1

Rp=kp (%)’ (M] .
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Using the simplified third-order thermal initiation kinetics,
Rn = 21’»‘,‘[.‘\/{]3_

LIV 3
Rp=tkp (M) (M]

ke
or
1
‘) . . 2
Rp=kp (.‘i‘.) [M]'z.s ;
ke
or

s (::_P) (2k)H[MPS

v {

5.2.3 Kinetic Data?!27-30

ki = 2.019 x 10! g(—1381¢/T) mb
(kg)%(s)
kp = 1.009 x 10%(—3557/T) m3
(kg)(s)
Eorm = 2,218 x 101e(~8377/T) md
| 0
ke = 1.206 x 1073(-8“/7')e[‘2(41w9+A2w}+A3wg)] m?
(kg)(s)

in which
Al = 2.57-5.05 x 1073T
A2 =9.56 — 1.76 x 107*T

A3 =-3.03+7.85x1073T
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5.3 DATA FOR SYSTEM PROPERTIES

Table 5.1 lists the thermophysical fluid properties for styrene polymerization;*!+27 =30

Table 5.1 Fluid properties data

Properties Correlation Units
Density p=1174.7 — 0.918T + (75.3 + 0.313T)wp 29
Viscosity o = exp{~13.04 + 2013/T + MWO18x
(3.915wp — 5.437wh + (0.623 + 1387/T)wd)] | Pas
Thermal km = [2.72 — 2.8 x 1073(T — 150) 4- 1.6x
Conductivities 107%(T ~ 150)](104)(418.4) m
kp={2.93+5.17 x 1073(T — 80)](10~4)(418.4) I
bmiz = (1 = Xm)km + Xmkp S
Specific Heat Cp = 1880.0 E—g"—hz
Mass Diffusivity D, =20x10"* ﬂ’i
Heat of Reaction AH = —-6.7 x 10° | }JE

Power Law Index n=02

5.4 PREDICTION OF MOLECULAR WEIGHT DISTRIBUTION

The average molecular weight of polymers depend on the temperature and rate
of polymerization. In a tubular reactor, the final molecular-weight distribution is the
result of continuous blending due to reaction, diffusion and convection. Changes in
the molecular weight distribution are caused by continuous blending of increments

of new polymer which is assumed to be formed instantaneously due to reaction into
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the already existing polymer. and continuous blending of polymer by diffusion and

LT : . : : !
convection®**'=3%, The following relations are obtained for eylindrical reactors which

are appropriately expressed for non-circular ducts.

5.4.1 Instantaneous Average Molecular Weights

Mo inse = 1041552
Ho

My insr ~ 104.1552

where

in which

and

5.4.2 Streamline Average Molecular Weight (MNS, MWS)

H1

o = Re(Cm + 5)

p1 =Rp(Cn+8+1)=Rp

RP(2Cm + 3ﬂ)
B2 =

(Cm + B)?
6 — kgRP
kb (M2
ktr m
Cr = =2
kp

i

S (pisr1Wpit1 — PiWpi)

MNS = dowi _ i=1

wi/M; A
2w __le(Pi-i-le.i—}-l = piwpi)/(Mn,i + Mn i41)
!
e o (Muisr + Myi)(pisiweiv1 — piwe,;)
Mws = 22 _ =

> wi

T
2 _Z%(Pi+le.i+l - piwp,i)
1=

5~7

(5.46)

(5.47)

(5.48)

(5.49)



where w, is the weight of polvmer of molecular weight M;.

5.4.3 Mixing Cup-Average Molecular Weight (MNA, MWA)

For the polymer leaving the cylindrical reactor:

2w .];'.)R p(r)v'.-(r)ﬂ/f.‘VS(r)rdr
or [ p(ryvs(r)rdr

s = 2 do P ()M WS(r)rdr
. 27 foR p(r)v:(r)rdr

MNA=

5.4.4 Polydispersity of the Polymer

The polydispersity of the polymer is commonly expressed as by taking the ratio
of cup-averaged weight average molecular weight to the cup-averaged number average

molecular weight (polydispersity = MWA/MN A).

5.5 THERMAL INSTABILITY

Polymerizing solutions are highly viscous liquids with very low thermal conduc-
tivities and significant heat-generation due to the exothermic chemical reaction. These
properties may lead to hot spots and thermal run away in certain situations?®:3%, If the
heat generated in the reactor is not removed rapidly enough, then a hot spot may occur
in the polymerizing mixture due to which the local temperature may rise significantly
(thermal runaway). The critical temperature for polystyrene is about 245°C, therefore
the hot-spot may lead to a thermal ignition within the reactor above this tempera-
ture. For practical reasons, “thermal instability” is defined to occur if T > 200°C
anywhere in the reactor. This definition is based on the consideration that setting the
maximum operating temperature at 200°C provides a safe limit vg:all below the ignition

temperature of polystyrene to insure conservative thermal stability
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Ineffective dissipation of heat across tube radius is the main factor leading to the
thermally unstable situation in a tubular reactor. It was found that a tube of radius

below 2 or 3 cm involves no problems®®.

In general. depending upon the inlet and
the wall temperatures when the tube radius is increased a higher flow rate is required
to maintain stable operation. This is due to the fact that & low How rate and hence
a longer residence time leads to very high conversion levels in the center of the tube.
The large amount of heat thus generated under these conditions cannot be adequately
dissipated because of the poor transfer rate of heat from the center of the tube to the
wall. A tube of small radius (1 cm - 2 cm) has been found to be the most desirable in
terms of thermal stability even at very low flow rates®®.

Styrene polymerization may be practiced in a single tube reactor or in tubes of a
shell-and-tube type equipment. In the latter case, assuming that the flow is identical
in all tubes, a single tube is representative of the whole system. Husain et. al.?}
have observed that polymerization in tubes of a shell-and-tube type vessel can involve
unstable flow distribution and recommended a single tube operation in a large diameter

tube which on the other hand requires special attention from the thermal stability point

of view,

5.6 CLOSURE

This chapter considered the thermal polymerization of styrene in tubular reactors,
which is selected as a test case to validate the present work and to obtaiﬁ new sim-
ulation results. The information presented in this chapter regarding the kinetic data,
correlations for fluid properties, method of molecular weight predictions and thermal
stability aspects of tubular polymerization reactors are employed in the computations

in the present study.



CHAPTER 6
THE SELECTED GEOMETRIES AND GRID GENERATION

6.1 INTRODUCTION

The selection of duct geometries of interest and even the angles and side-lengths
of some of them is a matter with infinite choices, however, it is logical to try some
standard geometries when there is no preference to choose a specific one. It may be
imagined, however, to examine the effect of a specific parameter of a geometry such
as an angle in a triangle. The requirement to perform such an investigation is not
observed at present. The geometries selected in the present study for simulation are

listed in table 6.2.

6.2 THE COMPUTER CODES FOR GRID GENERATION

The computer programmes: AGRID. FOR and BGRID.FOR were developed in
this study for the generation of A- and B-type grids, respectively. A plotter programme,
PLOT.FOR, was developed for grid plots. These programmes were examined under
the MUSIC-A operating system on IBM3090 machine. The plots were drawn by the
Zeta Plotter available in the Computer Center of McGill University. The computed
results of the coordinates of the physical Cartesian domain (z, y), the coefficients
of coordinate transformation (a, ‘B,‘_'y), the Jacobian of transformation (J) and the
difference approximations of the first derivatives (z¢, z,, y¢, yy) are stored in files for
utilization in the main computer code fo. the solution of the conservation equations in
arbitrary cross-sectional ducts. The plotter software also utilizes the stored values of x

and y for grid plots. A user’s guide to these computer codes is included in Appendix

H.
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6.3 GRID GENERATION PLOTS

The plotted results of 21 x 21 B-type grid of the selected geometries are presented
in Figures 6.1 through 6.6. The B-type grid is the arrangement used in the solution of
conservation equations. The BGRID.FOR and PLOT.FOR programmes were utilized
for the generation of these grids. The BGRID.FOR programme contains 433 lin.cs
and requires 287, 416 bytes of memory while the execution time is about 0.6 seconds.
The optimum relaxation factor for the solution of grid generation equations and the
corresponding number of iterations required for the convergence of these equations are

listed in Table 6.1. Refer to Appendix A for the method of computation of the optimum

relaxation-factor,

Table 6.1 The Optimum Relaxation Factor and Number of Iterations

Geometries Number of Iterations Relaxation-Factor
Circular 24 1.71733093
Square 1 1.71733379
Triangular 13 1.71733284
Trapezoidal 13 1.71733284
Pentagonal 21 1.71733379
Hexagonal 20 1.71733284
Rectangular (AR = 1.5) 1 1.71733284
Rectangular (AR = 2.0) 1 1.71733284

6-2




Table 6.2 List of the Selected Geometries

Geometries
o Circular y
B . C
A gl
¢ Suqare y
Bl——c
A p °
¢ Equilateral- ' ;
triangular \
/|
y
!
A D [ *
¢ Trapezoidal '
acute angle = 60°, 8 P—'—c
one side twice
the other
¢ Pentagonal

each angle = 108°

e Hexagonal B_s ¢
each angle = 120°,
120*
Foa D
¢ Rectangular ’
aspect-ratio = 1.5
and s
b
aspect-ratio = 2.0 - L
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Figure 8.2 21 x 21 B-type grid for squars duct

Figure 6.1 21 x 21 Dutype grid for circular duct
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CHAPTER 7

THE COMPUTER CODE FOR CONSERVATION EQUATIONS

7.1 INTRODUCTION

The equations which model  the reacting flow problem examined in this study
result in a set of discretization equations, the solution of which required a new computer
code to be developed. The solution procedure employed in this code is that explained
in Chapter 3. This code has the generality and flexibility to perform computations
for combined and individual studies of laminar duct flow transport phenomena: fluid
dynamics, heat transfer and mass transfer with chemical reactions in straight ducts of
arbitrary cross-sections for Newtonian and for purely viscous non-Newtonian fluids.

Following debugging of the code, numerous computational experiments were re-
quired to determine the validity of the algorithms used in the solution procedure in
terms of accuracy, convergence and stability. Also determination of the values appro-
priate relaxation factors for the solution of discretization equations required extensive
numerical trials.

This Eomputer code (STAR30.FOR) was run on the MVS operating system of

IBM ESA9000 machine. The STAR30.FOR programme contains more than 2500 lines
of coding and is composed of a main programme and 32 sub-programmes (subroutines),
The memory requirement for this programme is 2720 K and the typical CPU time is
about 15 minutes.

The results of computations performed by BGRID.FOR which are stored in files
are read by a subroutine and fed to STAR30.FOR to perform iterations for the solution
of the discretization equations on planes in the axial parabolized direction marching

from station to station.



The major steps followed in the main programme and the functions of the sub-
routines are explained in this chapter. A brief user’s guide to this computer code is
included in Appendix H. Refer to Figures 7.1 and 7.2 for the marching sequence through

a duct and a general flow chart of the computer code.

7.2 THE MAIN PROGRAMME

INITIALIZATION
call GRID,

- call SUPPLY]1,

~ call INLET,

- call INLETW,

- call FIELDS,
- call BOUND],
- call CONTVB,
- call CONTV,
- call CONTVW,
- call PROPER,
- call APPVIS,
* CONTINUE,
- call COEFF,
** CONTINUE,
~ call FACTW.

SOLVE EQUATIONS OF AXIAL- AND TRANSVERSE-VELOCITIES
- compute B-term and coefficients of w-momentum equations,
- call SOLVE,

- correct “w" and “dp”,



INLET IPLANE=1 IPLANE=2  DUCT

"1 END
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Figure 7.1 Marching Sequence Through a Duct.
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- compute residual of axial-velocity equation: call CONVERI,
- compute contravariant velocity “WC”: call CONTVW,

- call APPVIS.

COMPUTE B-TERM AND COEFFICIENTS OF TRANSVERSE-VELOCITY
EQUATIONS

- call FACTU,

- call FACTV,

- compute BU1 and coefficients for Ul velocity equation,

- co;npute BV1 and coefficients for V1 velocity equation,

- compute BU2 and coefficients for U2 velocity equation,

- compute BV2 and coefficients for V2 velocity equation.

COMPUTE PRESSURE FIELD ON SIMPLER ALGORITHM

compute pseudo-contravariant velocities,

call PRESS,

1

compute B-term using pseudo-contravariant velocities,

call SOLVE,

I

compute residual of pressure  equation: call CONVER2,

SOLVE TRANSVERSE VELOCITY EQUATIONS FOR TENTATIVE VE-
LOCITY VALUES
- for Ul-momentum equation to obtain Ul*:

modify B-term to include pressure gradient,

call SOLVE,

for V1-momentum equation to obtain V1*:

modify B-term to include pressure gradient,
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- call SOLVE.
- for U2-momentumn equation to obtain U2":

- modify B-term to include pressure gradient,
- call SOLVE,
- for V2-momentum equation to obtain V2*:

- modify B-term to include pressure gradient,

- call SOLVE,

- compute tentative contravariant-velocities (UC1*, VC1*, UC2*, VC2*): call CONTYV.

SOLVE PRESSURE CORRECTION EQUATION
- call PRESS,

- compute B-term using starred-contravariant-velocities,

- call SOLVE.

CORRECT TENTATIVE VELOCITY VALUES

- correct contravariant velocities (satisfying mass conservation),

|
0
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24
]
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B
<
[
e,
[e]
el
=
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2
)
o]
or
tn
o
=
=8
=
o
[1 51
1+
@
«Q
Q
=]
7
[0}
=
o
=
o]
=}
:—J

P T T —

compute physical velocities: call PHYSICAL,

compute residuals of cross-stream velocity equations: call CONVERL.

SOLVE ENERGY EQUATION
~ call KINET,
- call APPVIS,
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- call FACTH,

- compute B-term and coefficients of energy equation,
- call SOLVE,

- compute residual of energy equation: call CONVERT1,
- compute “T" values,

- call PROPER,

- call APPVIS,

- compute Nusselt-number.

SOLVE REACTANT CONTINUITY EQUATION
- call KINET,
- call FACTM,

- compute B-term and coeficients of reactant-continuity equation,

~ call SOLVE.

UPDATE BOUNDARY VALUES OF REACTANT-CONTINUITY
EQUATION
- call PROPER,
call FACTM,
call KINET,

compute B-term and coefficients,

call SOLVE1] and SOLVE2,

1

compute residual of reactant continuity equations: call CONVERI.

UPDATE PHYSICAL PROPERTIES, MOLECULAR WEIGHTS AND
APPARENT-VISCOSITY

- call PROPER,
- call KINET,



- call MOLWT,
- call PROPER,
- call APPVIS.

COMPUTE RESIDUALS OF SUCCESSIVE VALUES OF DEPENDENT
VARIABLES AND MASS SOURCE — PRINT RESULTS
- call RESIDU,

- write residual values,

- write results of pressure-drop, Nusselt-number, molecular weights, ete.

CHECK NUMBER OF ITERATIONS AND NUMBER OF PLANES

go to (**) for number of iterations required,

l

if plane-number not equal to end-plane-number go to (***),

otherwise call OUTPUT to print-out other results at end-plane,

*¥* continue,

CONTINUE MARCHING SEQUENCE PLANE BY PLANE
- if plane number greater than end-plane-number go to (****) otherwise proceed

iterations on the next plane,

— e s ey e o —

call UPSTR,

call APPVIS,

call SUPPLY?2 or SUPPLY3,
- GO TO (*),

*xkx STOP,
- END.
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7.3 SUBROUTINES

SUBROUTINE GRID
Reads the values of the coefficients of transformation, the Jacobian of transfor-
mation and the difference-approximation of first-derivatives already computed by

BGRID.FOR and stored in files.

SUBROUTINE SUPPLY1

Provides information regarding the geometry, relaxation-factors for the first plane
of computation, axial step size, number of stations in the axial direction, etc. This
subroutine can be switched to Newtonian, non-Newtonian and styrene polymer-

ization cases to furnish requisite data required to start computations in each case.

SUBROUTINE SUPPLY2
Provides the downstream relaxation-factors for computation of hydrodynamics and

thermal entrance regions

SUBROUTINE SUPPLY3

Provides the downstream relaxation factors for styrene polymerization simulations.

SUBROUTINE INLET
Stores duct entrance boundary conditions (except for the axial velocity component)
as the upstream plane values for computations over the first plane in marching

sequence.

SUBROUTINE INLETW
Stores duct entrance boundary condition for the axial velocity component and its

contravariant velocity component similar to INLET.
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10-

11.

12.

13.

SUBROUTINE INLETW1
This subroutine is used to specify parabolic velocity profile at entrance for circular
ducts whenever required. Write “CALL INLETW1" after *CALL INLETW" in

the main programme for this case.

SUBROUTINE COEFF

Computes the AU coefficients in the discretization equations.

SUBROUTINE FIELD

Introduces the tentative values of velocity components, pressure, temperature,
enthalpy and mass-fraction required to start iterations for the solution of the dis-

cretization equations over each plane.

SUBROUTINE BOUND
Introduces the boundary conditions required for the iterative solutions mentioned

in FIELD.

SUBROUTINE CONTYV
Computes the contravariant velocities for the field values of the transverse velocity

components.

SUBROUTINE CONTVW
Computes the contravariant velocities for the field and boundary values of the

axial velocity components.

SUBROUTINE CONTVB
Computes the contravariant velocities for the boundary values of the transverse

velocity components.
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14.

15.

16.

17.

18.

19.

20.

21.

SUBROUTINE PROPER
Computes the physical-properties: density, viscosity, thermal conductivity, specific
heat, mass diffusivity and heat of reaction. This subroutine can be switched to

Newtoninan, non-Newtonian and styrene polymerization cases.

SUBROUTINE UPSTR

Stores the upstream quantities required in marching steps plane by plane,

SUBROUTINE PHYSICAL
Computes the transverse physical Cartesian velocities from the contravariant ve-

locity components.

SUBROUTINE OUTPUT

Writes the computed results of axial and transverse velocity components, pressure,

temperature, mass-fraction, density, viscosity, etc.

SUBROUTINE CONVER1

Computes the residuals of discretization equations (except the pressure equation)

for convergence criteria.

SUBROUTINE CONVER2

Computes the residual of the pressure discretization equation for convergence cri-

teria.

SUBROUTINE APPVIS

Computes the apparent viscosity for power-law non-Newtonian fluids.

SUBROUTINE FACTU

Computes the transformed diffusion coefficients for u-momentum equation (includ-

ing u) and u2).
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22,

23.

24‘

25.

26.

27.

28,

29.

30.

SUBROUTINE FACTV

Computes the transformed diffusion coefficients for v-momentum equation (includ-

ing vy and va).

SUBROUTINE FACTH

Computes the transformed diffusion coefficients for energy equation.

SUBROUTINE FACTM

Computes the transformed diffusion coefficients for reactant-continuity equation.

SUBROUTINE FACTW

Computes the transformed diffusion coefficients for w-momentum equation.

SUBROUTINE PRESS

Computes 9 coefficients of pressure-correction equation.

SUBROUTINE SOLVE

Empiloys a line by line TDMA algorithm for solution of the discretization equation.

SUBROUTINE SOLVE1

The same as SOLVE modified for the reactant-continuity boundary condition at

J=1and J= Ml

SUBROUTINE SOLVE2

The same as SOLVE modified for the reactant-continuity boundary condition at

I=1and I =Ll

SUBROUTINE RESIDU

Computes the maximum residual values of dependent variables in successive iter-

ations for convergence criteria.

7-11



31. SUBROUTINE KINET

Computes the kinetics of the chemical reaction.

32. SUBROUTINE MOLWT

Computes the weight and number average molecular weights, polydispersity and

cup-averaged conversion for styrene polymerization,
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CHAPTER 8

RESULTS AND DISCUSSIONS

8.1 INTRODUCTION

The present work concerns with the study of simultaneous aspects of duct trans-
port phenomena. Primarily, however, these different aspects: fluid flow, heat transfer
and mass transfer with chemical reaction are studied individually for the purpose of
validation of system model and computer codes. Some original results are also obtained
in these areas. Ultimately the main problem of flow, heat and mass-transfer with chem-
ical reaction is solved in overall and the results are presented and documented. The
main purpose of the study was for the non-Newtonian fluids, however, some results

were also obtained for Newtonian fluids for validation, wherever required.

8.2 FLUID FLOW

Numerical results are presented in Figs. 8.1-8.19. The specific geometries selected

for this analysis are as flows:

e square duct,

e equilateral triangular duct,

e trapezoidal duct (acute-angle = 60°, one side twice the other),

¢ pentagonal duct (each angle = 108°).
All the above ducts were selected on the basis the same equivalent diameters. Con-
sequently, the same value of the relaxation factor was applied to all the geometries
corresponding to each discretization equation. It is believed that this scheme is valid if
the geometries selected do not involve oddity. For a pictorial representation of this con-

cept, one may refer to Bejan®? for a scale drawing of the duct sizes for some geometries
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having the same equivalent diameter. The inlet Reynolds number values applied for
the Newtonian fluid was 900 and that for the non-Newtonian case was 128 respectively.
The problem is solved for constant-property fluid and the fluid is considered isothermal
in the transversed direction due to which the buoyancy effect is ignored. For the sake
of numerical accuracy and computational economy the mesh size selected was 21 x 21
over the transversed plane, The typical CPU time was about 3 minutes for one run.
The Newtonian case was solved with an axial step size of 0.160 m for which 26
marching stations were required in the axial direction to converge to the fully-developed
flow condition. The predicted results for the centerline velocity development, axial pres-
sure gradient and axial velocity profiles on the central plane are presented in Figs. 8.1-
8.3. The axial velocity results show an excellent gradual development as expected.
Within the numerical accuracy, there is close agreement between the ultimate center-
line velocity results and their corresponding theoretical values examined for the square
and circular ducts. The computed result for the square duct centerline velocity (%)
is 2.110 versus the theoretical value of 2.096 at the fully-developed condition where the
relative deviation between two successive values of “£ is only 0.24%. The computed
result for the circular duct centerline velocity (S5L) is 1.99 versus the theoretical value
of 2.00. Also the results obtained in the present analysis for Newtonian fluids in square
ducts exhibit excellent agreement with the experimental measurements of Goldstein et
al.87 for velocity development and those of Beavers et al.?® for pressure-drop values (see
Figs. 8.1a and 8.2a). Comparing the fully-developed profile in Fig. 8.3 with Goldstein
and Kreid’s experimentally measured result, it is observed that the present numerical
result over-predicts the Goldstein’s profile by only a few percent which seems satis-
factory for the fully developed condition obtained at convergence in this work. The
Newtonian normalized centerline velocity and dimensionless axial pressure gradient
results for different geometries are compared in table 8.1. There exists only slight dif-

ferences between the results for the selected noncircular ducts. The results obtained by
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others in a previous analysis for the normalized axial velocity (#2t) for the triangular
and trapezoidal ducts are somewhat different from the results obtained in this analysis.
Refer to table 8.2 in this respect.

Table 8. 1 Results for centerline velocity and pressure gradient

Newtonian
Geometries we/® (Po— P)/(Lpw})
Square 211 9.49
Triangular 2.04 9.63
Trapezoidal 2.06 9.79
Pentagonal 2.03 9.68
Circular (for comparison) 1.99 10.13

Table 8. 2 Results for centerline velocity

Newtonian (%z) at F.D.

Geometries Previous analysis!0! Present analysis
Triangular 2,222 2.04
Trapezoidal 2.093 2.06

About 5 iterations were required to obtain converged solution over each transversed
plane. The convergence criteria was set on the basis of the residual values defined as
follows:

(i) the residual of the momentum equations, that is, the remainder of these equa-
tions when the results are substituted for the velocities into these equations.
In general R = 3 anppns+b—appp and R will be zero when the discretization
equation is satisfied®?.

(ii) the residual of velocities, that is, the difference in velocity values between two

successive iterations,



Table 8. 3 shows the residual values of momentum equations and velocities at the

fully developed condition.

Table 8 3 Residual values (fluid-flow)

Momentum-equation Residual Velocity Residual
Geometries Transverse Axial Transverse Axial
Square 0.12 x 10-¢ 0.21 x 10-1° 0.34 x 10~¢ —0.35 x 10~°
Triangular 0.26 x 10™© 0.98 x 10~10 0.60 x 10~¢ —0.44 x 1078
Trapezoidal 0.20 x 10~ 0.36 x 10~1° 0.40 x 10™° -0.32 x 105
Pentagonal 0.18 x 108 0.52 x 1010 0.44 x 10~ —0.35 x 103

It should be noted that. the numerical solution procedure which was developed and
implemented in this study, did not show any instability or convergence problems.

The development length computed for square duct in this work is z* = 0.127,
whereas, the result obtained by Neti et al.?® is z* = 0.11 (at F.D. condition). In the
analysis of Neti et al.®®, however, the use of either inlet (or mean) axial velocity in
the evaluation of normalized centerline velocity, dimensionless axial pressure gradient
and Reynolds number is ambiguous. The Reynolds number in the present analysis is,
however, evaluated locally at each of the fixed transversed planes, using the mean axial
velocity. The value of development length computed in this analysis for a circular duct is
z* = 0,136, whereas the value indicated by Maliska*® is 2* = 0.162 (at F.D. condition).
Note that the development length which is expressed by Langhaar!® is obtained from
the equation !‘b“- = 0.0575(Ng.), that is D—(‘—I{,ﬁ = z" = 0.0575 at fully developed
condition. This value is far from the computed results presented above. There are
also other literature values corresponding to triangular and trapezoidal ducts which
are far from the results obtained in the present analysis. Table 8. 4 shows the results of
development length values obtained in this analysis and some results from literature.

. The development lengths computed in this work are based on the usual definition of
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Table 8. 4 Development length results (n=1)

Newtonian Development Length (=*)
Geometries Present analysis Literature Values
Square 0.127 0.09 (ref. 87), 0.110 (ref. 96)
Triangular 0.126 0.0398 (ref. 101)
Trapezoidal 0.124 0.0314 (ref. 101)
Pentagonal 0.129 -
Circular 0.136 0.0575 (ref. 18),0.162 (ref. 43)
(for comparison)

entrance length, which is, the dimensionless length, z*, corresponding to the centerline
velocity to reach 99% of the fully developed condition.

The non-Newtonian analysis is for a polystyrene solution with a power-law index
of n = 0.5 and Reynolds number value of 128 at inlet. The axial-step size selected
was 0.05 m. The axial velocity development shows a plug-flow behavior at all four
cross-sectional ducts chosen, although the triangular duct shows a slight delay in the
development to a plug flow velocity profile. The results for centerline velocity devel-
opment, axial pressure gradient and axial velocity profiles on the central plane are
presented in Figs. 8.4-8.6. The plug flow behavior observed for the non-Newtonian
case was previously predicted by Husain and Hamielec?®® in their analytical studies of
tubular styrene polymerization. The non-Newtonian case applied to circular ducts in
this analysis (not included in the thesis) also showed a plug flow behavior. It is, how-
ever, worthwhile to mention that specific non-Newtonian cases should be investigated
separately due to the wide range of viscosities involved and the power-law indices,

The solution procedure showed a lower critical limit of axial step size, Ac¢ = 0.01
m, at which 4 and v components of velocity field (secondary flow) could not be obtained
in conjunction with the w component (primary flow). An upper limit was also observed

for the values of A¢ selected beyond the value mentioned above for both Newtonian
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and non-Newtonian cases.

The transverse velocity components, v and v components, supply the fluid that
permit axial flow development the highest value of which occur near the entrance where
the most rapid arrangement of the axial velocity takes place®.In laminar flow. due
to the very small components of transverse velocities, the secondary flow has a small
effect on the primary flow and the axial pressure-gradient*3:*%, The results of secondary
flow analysis, obtained in this work, for Newtonian and non-Newtonian cases at one
axial location, are presented through Figs. 8.8 to 8.15. Comparing the corresponding
z/Dy values, it is observed that the axial location for non-Newtonian case is closer
to the entrance than for the Newtonian case. The secondary flow is away from the
walls towards the intermediate sections at which it is reversed in direction, for all the
geometries. The order of magnitude of the secondary flow velocities for square ducts
obtained in this work, conforms with the results illustrated by Briley*®. Comparing
Newtonian and non-Newtonian secondary-flow results, it is observed that the results
of Newtonian case are relatively higher than the results of non-Newtonian case. The
reason for this difference is attributed to the primary velocity profile patterns of the
two cases, that is, tending to parabolic for Newtonian and plug-flow for non-Newtonian
cases. The results of axial-velocity contour plots at F.D. condition, are presented
through Figs. 8.16 to 8.19 for Newtonian fluids.

The conventional hydraulic (or equivalent) diameter concept is used in this work
for noncircular duct calculations. It is determined such that the ratio of pressure forces
acting over the cross-sectional area (A) to frictional forces acting along the wetted
perimeter (P) is the same as in a circular pipe, and also such that for the circular
pipe Dy = D. Therefore, D; = 41'%;-3&- =D-= 4% for any noncircular ducts. The
concept of hydraulic-diameter, when applied to Moody diagram (for circular pipe flow)
does not yield favorable results, especially for the laminar region, so that using D

in laminar flow, the friction factor f = m“—“m would be within +40% accuracy for
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different geometries while in turbulent flow, the friction factor f =~ fatoody 1s within
+15% accuracy®’. These discrepancies are due to the fact that such an analogy of a
noncircular duct with a circular duct does not take into account the effect of nonuni-
formities or shape factors, such as sides and corners of the noncircular geometry into
the correlations already developed for circular tubes. As an example of the effect of
the geometric properties in laminar flow is that, in rectangular and triangular ducts,
the wall friction varies greatly, being largest near the midpoint of the sides and zero at

the corners?!+92

. In turbulent flow, however, due to the effect of secondary flows, the
shear is nearly uniform along the sides, dropping off sharply to zero in the corners?!#2,
Mathematically the friction factor for circular ducts is usually expressed by a function
of the form f = F (“’—f—, %), obtained by dimensional analysis. The use of D, for
noncircular ducts in this form of dependency yields f = F(‘"—?—L, Bo)- This intro-
duces error due to the lack of shape-factor effect in this relationship. These effects will,
however, be taken into account if one modifies the above functional relationship by
f= F("’—f—"-, TS 3. ®) in which ® stands for any effects due to the geometric nonuni-
formities. Practically, however, many investigators applied the concept of hydraulic
diameter to obtain correlations for laminar friction factor or pressure drop for different
geometries, such as isosceles triangular, square and rectangular ducts®!. In this work,
the effect of each geometry is introduced through the grid generation parameters into
the computations. These parameters are the transformation-coefficients («, 3, 7), the
Jacobian of transformation (J) and the difference approximation of the first derivatives
(TeyYgr ZnyYy)- The effect of secondary flow, although not significant in laminar flow?3,
is considered in this work. The predicted results are supported by good agreement
with the experimental results of square duct and the analytical result of circular duct
as shown in Figs. 8.3a and 8.7 respectively. The effect of zero shear rate a.t.‘the corners

of geometries is plainly observed for both Newtonian and non-Newtonian cases, This

is shown by centerline axial velocity profiles for triangular and pentagonal ducts (Figs.
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8.3b, 8.3d, 8.6b and 8.6d) in which the axial velocity tend towards its peak value at a
location closer to the corners of these ducts rather than the centerline of the ducts.

This work demonstrates the suitability of the numerical model and the solution
procedure applied to the 3D parabolized Navier-Stokes equations in straight ducts of
arbitrary but constant cross-sections. The favorable agreement obtained between the
present numerical solution with the experimental results of Newtonian fluids and the
absence of instabilities in the numerical solution procedure, establishes the validity of
the numerical modelling and solution procedure employed in the present investigation
for fluid flow.

A review of some of the related developments in the numerical methods for the so-
lution of momentum equations reveals the elegant features of the numerical procedure
applied to this work. In general, coupling between the momentum and mass conserva-
tion equations is often the major cause of the slow convergence of the iterative solution
methods. Caretto et al.%% applied a numerical method to the solution of the momen-
tum equations which involved an implicit simultaneous solution of coupled nonlinear
difference equations without linearization or decoupling. The solution procedure was,
however, a point by point iterative method due to which slow convergence is inevitable.
The method of Patanker and Spalding??, involved linearization and decoupling of the
equations. In their method, the non-linear terms (the product terms) of the momen-
tum equations are handled by setting the value of velocities in these terms the same
as their values at the previous axial step. The axial momentum equation is treated
separately from the transverse momentum equations which are decoupled by assuming
a pressure-field in the transverse direction. In the computations of transverse velocities,
corrections are mede for tentative transverse velocities and pressure field by iteratively
solving a Poisson like equation for the pressure-correction. The method proposed by
Briley?® requires two Poisson like equations to solve, one for a velocity potential for

velocity corrections and the other for the pressure field. The method of Patankar and
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Spalding*? developed later brought about the SIMPLE and SIMPLER algorithms®?, in
which two Poisson like equations are solved for pressure and pressure corrections. The
SIMPLE and SIMPLER algorithms have been already applied to solve problems using
the non-orthogonal boundary fitted coordinate transformation system. Some of these
works are worthy to mention here. Hadjisophocleous et al.®¢, Shyy et al.67 and Braaten
et al.5% employed the SIMPLE algorithm in their analysis for non-orthogonal systems.
Maliska*5+1® applied a mixed scheme comprising of the SIMPLE and the SIMPLER
algorithms. In the present work, the SIMPLER algorithm is further developed for the
solution of the power-law non-Newtonian fluid problems. The use of nonorthogonal co-
ordinates versus orthogonal system, has the advantage of getting rid of the generation
of orthogonal grids at certain locations which are difficult or impossible to make. The
staggered grid employed in this work uses both of the z and v velocity components at
each velocity locations. This grid arrangement together with the numerical scheme in
which both of the physical Cartesian and contravariant velocities are involved, have
led the finite difference equations to converge faster without numerical instabilities.
Besides, 2 combination of upwind difference scheme for the convective terms and cen-
tral difference scheme for the diffusive terms which is employed in this work, provided

satisfactory results.
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Fig. 8.18 Axial-velocity Contours, Newtonian Fluids, Trapezoidal Ducts, Re = 900
(@ FD.)
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8.3 HEAT TRANSFER

The results for heat transfer analysis for constant wall temperature case and for
typical P, = 6.78 are shown in Figs. 8.20-8.22. tables 8.6-8.7 and 8.12-8.15. The same
geometries are selected in this study as were selected for the fluid-flow study, presented
in the previous part of this chapter. Also, circular and rectangular ducts of two different
aspect ratio (1/2 and 2/3) were examined for validation of the model and computer
code for heat transfer.

Computations were performed on the basis of the same equivalent diameters, so
that the same value of the relaxation factors was applied to different geometries corre-
sponding to each discretization equation. As mentioned before, this scheme is valid if
the geometries selected do not involve oddity. The Newtonian case was solved for an
axial step size of 0.276 m for which 250 marching stations were required in the axial
direction to reach to the converged solution. Separate runs were conducted with an
axial step size of 0.552 m to confirm the limiting values of Nusselt numbers. The mesh
size selected was 21 x 21 over the transversed-plane as specified before. The memory
requirement for computations was 2720 K and the typical CPU time was about 26
minutes for one run. The computations were performed for fully-developed velocity
and developing temperature profiles. Referring to Kays et al.?! the results obtained
in this analysis are well suited for the simultaneously developing velocity and temper-
ature profiles for the respective Prandtl number. Viscous dissipation effect was also
considered in the present study. The buoyancy effect in this study is negligible due to
the close temperatures selected for the fluid at inlet and at wall. Future work, however,
is required for mixed-convection studies. About 5 iterations were required to obtain
converged solution over each transversed plane. The convergence criteria was set on the
residual values similarly defined for the fluid-flow study mentioned before, such that
the residuals for this study are as follows:

(1) the residual of energy equation,
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(i1) the residual of enthalpy values between two successive iterations.
Table 3.5 shows the residual values of energy equation and enthalpy values at the

converged solution.

Table 8. 5 Residual values (heat-transfer)

Geometry Energy-equation Residual Enthalpy Residual
Square 0.303 x 10~7 -0.275 x 10!
Triangular 0.160 x 106 -0.270 x 10~
Trapezoidal 0.533 x 10~7 -0.270 x 10™*
Pentagonal 0.694 x 10~7 -0.385 x 10~*
Rectangular (1/2) 0.224 x 10~7 -0.357 x 104
Rectangular (2/3) 0.262 x 10~7 -0.315 x 10~*
Circular 0.105 x 10~8 -0.501 x 104

The results of local and mean Nusselt numbers obtained for ducts of different
. cross-sectional geometries are presented in tables 8.6 and 8.7.

The local Nusselt number for constant temperature wall boundary conditions,
Nuye = Nu. T, is expressed in terms of the fluid bulk-temperature-gradient along the

flow path length by

(8.1)

Refer to Appendix G for derivation. The logarithmic mean Nusselt number for constant

wall temperature boundary condition is expressed by:

1 1
Nupmr= I In (a;) (8.2}

which is obtained from Eqn. (8.1) by integration (Appendix G).
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Table 8. 6 Nu, r variations for different geometries Newtonian Fluids, Pr = 6.78

G: Square Triangular Trapezoidal Pentagonal
100 4.635 4.373 4.564 4.689
73 4.104 3.871 4.025 4,157
60 3.767 3.576 3.701 3.844
50 3.527 3.377 3.479 3.633
43 3.345 3.234 3.314 3.481
37 3.204 3.126 3.186 3.366
0 2.980 2.598 2.972 3.098

Table 8. 7T Nug,, 7 variations for different geometries Newtonian Fluids, Pr = 6.78

G: Square Triangular Trapezoidal Pentagonal
100 7.186 6.841 7.005 7.009
75 6.386 6.072 6.232 6.266
60 5.842 5.555 5.706 5.761
50 5.441 5.178 5.320 5.391
43 5.129 4.889 5.022 5.105
37 4.878 4.659 4.783 4.877
0 2.980 . 2.598 2.972 3.098

The results for the limiting Nusselt-numbers are indicated in table 8.8 for all
geometries under consideration. These values correspond to the dimensionless bulk and
centerline temperature values of 0.993 and 0.986 respectively, in which the temperatures
are nondimensionalized with the difference between the fluid wall temperature and the
fluid temperature at the duct entrance.

The limiting Nusselt numbers (Nup) for square, rectangular, triangular and cir-
cular ducts obtained in this study are compared with analytical and numerical results
of other investigators in table 8.9. These results confirm the validity of the model and

computer code for heat transfer in this study.
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Table 8. 8 Thermal entry length and limiting Nur results

Geometry G. Z* = Limiting RT1 = RT2 =
thermal Nur Tauu=T, TCL=Tiarey
watt=Trnter Twan=Tiuter
entry length
Square 2.6248 0.381 2.980 0.993 0.9586
Triangular 2.5175 0.397 3,598 0.993 0.986
Trapezoidal 2.6200 0.382 2,972 0.993 0.986
Pentagonal 2.9522 0.339 3.098 0.993 0.986
for comparison:
Rectangular (1/2) | 2.9287 0.341 3.363 0.993 0.986
Rectangular (2/3) 2.7346 0.366 3.118 0.993 0.986
Circular 3.1582 0.317 3.603 0.993 0.986
Table 8. 3 Comparison of limiting Nusselt numbers
Square Rectangular Rectangular Equilateral Circular
(1/2) (2/3) Triangular
Clark and Kays®® 2.890 3.390 — —_ —
Dennis et al.®” 2.980 3.390 3.120 - -
Shah and London® 2.976 3.391 3.117 —_ —
Schmidt98 2.970 3.383 3.121 — -
Javeri®® 2.981 3.393 — — —
Lyczkowski et al.®® 2.975 3.395 3.117 — -
Kays and Crawford®! 2.980 3.390 — 2,350 3.658
Wibulswas?00 — — — 2.570 —
This Study 2.980 3.363 3.118 2.598 3.603

A comparison of variation of Nusselt number for square duct with some literature

data, is presented in Fig. 8.20 which shows a close agreement. The analytical results

of Dennis et al.%” and numerical results of Lyczkowski et al.?® shown in this figure are

however, calculated by alternate approaches defined for local Nusselt number. The

results obtained in this analysis for Nu,; 7 and Nun, 1 for square ducts for Newtonian
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fluids are compared with the numerical solutions of Chandrupatla et al.?? in tables
8.10 and 8.11. There is a close agreement between their solutions and the present
results for Nu. 7 but there are some differences between Nuq, r values. The results
obtained by Chandrupatla et al.? are for fully developed velocity profile, with no
secondary flow and no viscous dissipation effect. Also, the effect of variation of Prandtl
number is ignored in their analysis and no value is mentioned for the Prandt] number
corresponding to their results. It is believed that, the differences existing in the results
of Nu,, 7 as observed in table 8.11, are mainly due to the difference in the values
of Prandtl numbers. Chandrupatla et al.%? ignores the effect of Prandtl number on

99

Nu,, 1 by the reasoning that it is included in the relevant q x /4) term®. However,

Nu,, is affected by Pr through the effect 8; according to the following relations:

Nupr= %tln -1; i(;:;;)ln (i) (ref. 99) (8.3)
or

Nugpr= %G,ln (%) (8.4)
but

= f(Pr)  (from energy equation!*) (8.5)

therefore

Nz = 3Gag(Pr) (8.6)
or

Nup, 7= k(G,, Pr) (8.7)

The thermal entry length is analyzed in terms of the dimensionless bulk and cen-

terline temperatures in Fig, 8.21 for the selected geometries. The thermal entry length

U8 = k(244 28] (ref. 99) in which = =t
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Table 8. 10 Comparison of Nusselt number. .Vu., r. variations (n=1)

Chandrupatla et al%® Present  Analysis
G.' -\rur.T G: -VU:.‘I‘
0 2.975 0 2.980
40 3.432 37 3.204
o0 3.611 30 3.527
80 4.084 75 4.104
100 4.357 100 4.635
133.3 4.755 127 4.845
200 2.412 190 5.808

Table 8. 11 Comparison of Nusselt number, Vu, 1, variations (n=1)

Chandrupatla et al% Present  Analysis
G. ivum,']" G: Nug T
0 2.975 0 2.980
40 4.841 37 4878
50 2.173 50 5.441
80 5.989 75 ' 6.386
100 6.435 100 7.186
133.3 7.068 127 8.084
200 8.084 190 9.612
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obtained in this study for square ducts is Z** = 0.381 which is close to the value
obtained by Neti et al.?¢, Z** = 0.352. The value obtained in this study is. however,
corresponding to the dimensionless bulk and centerline temperatures of 0.993 and 0.956
respectively while the values obtained by Neti et al.%¢ are that of 0.988 and 0.979 re-
spectively. The results of central plane thermal development are shown in Fig. 8.22
in terms of the dimensionless temperature profiles which are defined differently from
that used in table 8.8 and Fig. 8.21. The temperature is nondimensionalized here with
the difference between the uniform wall temperature and the bulk fluid temperature.

Temperature profiles are shown at three different axial positions.

Table 8. 12 Nu, 1 variations for square ducts (for Re =900 & Pr =6.788n =1)

G: n =125 n=1.0 n=10.75 n = 0.50

100 4.270 4.635 5.855 7.156
75 3.713 4.104 5.410 6.638
60 3.365 3.767 5.076 6.197
30 3.122 3.527 4.786 5.764
43 2.944 3.345 4,527 5.334
37 2.811 3.204 4.294 4.918

0 2.800 2.980 3.169 3.332

Table 8. 13 Nu, 1 variations for triangular ducts(for Re = 900 & Pr = 6.78@n = 1)

G; n=125 n=1.0 n = 0.75 n = (.50

100 4.201 4.373 4.860 5.948
75 3.685 3.871 4.383 5.579
60 3.383 3.576 4.092 5.321
50 3.182 3.377 3.883 5.092
43 | 3.093 3.234 3.722 4.877
37 2.934 3.126 3.593 4.671

0 2.510 2.598 2.738 2.879
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Table 8. 14  Nu..r variations for trapezoidal ducts(for Re = 900 & Pr = 6.78@n = 1)

G: n=125 n=1.0 n=0.73 n = 0.50
100 4,342 4.564 3.935 7.986
73 3.790 4.025 5.068 7.363
60 3.462 3.701 4,704 T.104
30 3.238 3.479 4.503 6.904
43 3.075 J3.314 4,291 6.614
37 2,952 3.186 4.105 6.297
0 2.839 2.972 3.141 3.317

Table 8. 15 Nu.r variations for pentagonal ducts (for Re = 900 & Pr = 6.78@n = 1)

G: n =125 n=1.0 n=0.75 n = 0.50

100 4.500 4.689 5.258 6.502
70 3.956 4.157 4,764 6.163
60 3.641 3.844 4.450 5.886
50 3.436 3.633 4.215 5.610
43 3.292 3.481 4,028 5.331
37 3.189 3.366 3.871 5.058

0 2.962 3.098 3.225 3.388

The results of local Nusselt-number (Nu, 1) distribution for power-iaw non-Newtonian
fluids for different geometries are tabulated in tables 8.12 to 8.15 for “n" values of 0.50,
0.75 and 1.25. These results correspond to the Newtonian case of Re = 900 and
Pr = 6.78. The results of Newtonian fluids (n=1) are also included in these tables
for comparison. These results show that the value of Nusselt number increases by

decreasing the power-law exponent (n) at any specific G,.
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d.l.temperature vs. d.l. axial — dist.(newtonian/square)
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d.lL.temperature vs. d.l. axial — dist. (newtonian/trapezoid)
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development of temperature profile
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8.4 MASS TRANSFER WITH CHEMICAL REACTION

In this study the thermal polymerization of styrene is selected for analysis in non-
circular cross-sectional duct reactors. The only experimental data available in open
literature is that of Valsamis et al.?® for a reaction conversion of 15 wt %. This result
is not verified by Chi-Chi Chen?®’ in his numerical investigation who obtained a value
of about 10.0 wt % of conversion for the same set of operating conditions. The result
obtained by the present work is close to the value obtained by Chi-Chi Chen®. Refer to
tables 8.16a and 8.16b of the following section (i) for details. The validation of system
modelling and computer codes for mass-transfer is accomplished through comparison
of the numerical results of other investigators with the predicted results ohtained by
the present computer codes. One may refer to the followihg sections (ii), (iii) and (iv)
for details. The effect of free-convection in this study is ignored for the results to be
comparable with literature data in which this effect is not considered. Further investi-
gations which are presented in the following pages show that reaction conversion results
are only negligibly affected if free-convection is considered. The effect of variation of
number of stations in the axial direction is also observed in tables 8.16b, 8.17h and
8.17c, which indicates a satisfactorily close agreement in the results of conversion for
different numbers of stations in the axial direction. The reactor exit results of molecular
~ weights (117!,,, and Mn) and total reactor pressure-drop values are also indicated.

Section (i) Valsamis and Biesenberger?, 1976 experimental run:

reactor length 14.6 m

tube diameter 0.0046 m
residence time 5.15 min
inlet/wall temperature 160°C/160°C
conversion 15%
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Table 8. 16a Chi-Chi Chen®". 1986, simulation results

Velocity-Profile Conversion, Molecular-weights Polydispersity
wt % M, x 1073 My x 1073 ;;n
piston-flow 10.53 1.13 1.99 1.76
parabolic 10.12 1.14 2.00 1.75
Vir,z) & Ve =0 9.69 1.14 2.00 1.75
Vilr,z) & Vi(r,z2) 9.98 1.14 2.00 1.75
Table 8. 16b Present work simulation results
Number of stations | Conversion Molecular-weights Polydispersity Total
selected in wt % M, x 1075 M, x 1073 w AP (Pa)
axial-direction
15 10.13 1.30 2.25 1.73 51.0
30 10.34 1.28 2.22 1.73 38.0

Section (ii) Husain and Hamielec?*, 1976:

length of tube

tube radius

inlet velocity

500 em
20 cm

0.0695 cm/sec

inlet feed temperature 100°C

wall temperature

100°C
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Table 8.

17a Husain and Hamielec*?, 1976, simulation results

Length Z (cm) Conversion, Molecular-weights Polydispersity
Xm (%) My x 1075 M, x 10~ M
100 1.26 4.16 7.34 1.76
300 3.95 4.04 7.16 LT7
300 6.62 3.96 7.08 1.78
Table 8. 17b Present work simulation results
Number of stations selected in axial direction : 5
Length Conversion Molecular-weights Polydispersity Total
Z (em) wt % M, x 107° My x 1073 . AP (Pa)
100 1.38 4,22 7.43 1.76 0.037
300 414 4,75 8.68 1.83 0.40
500 6.74 4.52 8.20 1.81 1.46
Table 8. 17c Present work simulation results
Number of stations selected in axial direction : 10
Length Conversion Molecular-weights Polydispersity Total
Z (cm) wt % M,x10™% M, x10"% M AP (Pa)
100 1.37 5.09 9.33 1.83 0.06
300 3.95 4,48 8.08 1.80 0.48
500 6.43 4.40 7.87 1.79 1.74
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Section (iii) Chi-Chi Chen®7, 1986:

length of tube 6.4 m

tube radius 0.35 cm

mass flow 1.345 x 101 kg/sec
inlet feed temperature 140°C

wall temperature 135°C

Table 8. 18a Chi-Chi Chen??, 1986, simulation results

Conversion, Molecular-weights Polydispersity Total
wt % M, x 1075 M, x10~° o AP (Pa)
26.49 1.55 2.87 1.85 758.3

Table 8, 18b Present work simulation results

Number of Stations selected in axial-direction : 10

Conversion, Molecular-weights Polydispersity Total
wt % M, x 1075 M, x 10~5 o AP (Pa)
26.60 2.21 3.93 1.78 243.0

Section (iv) C. Kleinstreuer and S. Agarwal??, 1986:

length of tube 5.0m

tube radius 2 cm

mass flow 0.00002 kg/sec
inlet feed temperature 130°C

wall temperature - 100°C
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Table 8. 19a C. Kleinstreuer and S. Agarwal®®, 1986, simulation result:

Boundary-condition for Conversion
velocity at entrance wt %
Parabolic 54.8

Table 8. 19b Present work simulation results

Number of stations selected in axial direction : 100

Boundary condition | Conversion Molecular-weights Polydispersity Total
for velocity wt % Mpx10~° M, x 1075 yim AP (Pa)

at entrance

Parabolic 55.35 4.82 9.68 2.01 2792
Uniform 55.22 481 9.67 2.01 2617
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. 8.5 SIMULTANEOUS REACTING FLOW, HEAT AND MASS-TRANSFER

Employing the sets of operating data of the previous section, this work is conducted
for the analysis of five different cases of thermal polymerization of styrene in arbitrary
cross-scctional duet reactors for eight different geometries. The operating conditions
for these five cases are reported in table 8.20. Typical CPU time was about 10 minutes
for the longest run. About 5 iterations were required on each transversed-plane for con-
vergence. The same convergence indicators were selected here as mentioned previously
in Fluid-Flow and Heat-Transfer sections. Refer to Table'8.21 in this respect.

Table 8. 20 Operating conditions

Case Wintet Tintet Twall Mass-flow Reactor
m/s °C °C kg/s length (m)

#1 0.000695 100 100 0.7267 x 102 5.0

# 2 0.000695 130 100 0.7027 x 103 5.0

# 3 0.001780 140 135 0.1345 x 108 6.4

# 4 0.000020 130 100 0.2000 x 101 5.0

#5 0.047250 160 160 0.6095 x 102 14.6

Table 8. 21 Residual values (mass transfer)

Species-continuity Mass-fraction
equation residual residual
0.2 x 1077 0.2 x 10-2

The basis for computations in all the reactors bearing different geometries in their
cross-sections and the same length, is the same residence-time in the reactors or the
same cross-sectional area, while the same uniform velocity is maintained at inlet of

. each reactor. The diameter of circular duct corresponding to the cases under study are

3-44



Table 8. 22 Diameter of circular-ducts corresponding to non-circular geometries

Cases

#1

# 2

#3

#4

# 5

diameter (m)

0.0400

0.0400

0.01100

0.0400

0.00460

tabulated above. The results obtained in this analysis are indicated in tables 8.23 to
8.27 for the five cases under consideration. In these tables the results of polymer weight
fraction (WPA) in wt %, molecular weights (M, and M,,), polydispersity ( M/ M)
and bulk-temperature ( °C) are indicated which are corresponding to the conditions
at the exit of the reactors. The total pressure-drop results of the reactors are also
indicated. Referring to these tables, it is observed that there are only slight differences
in the results obtained for different geometries corresponding to each case. Also not
a specific geometry is recognized to be generally superior than circular duct reactors
from the conversion point of view of the chemical reaction under study, considering the
least pressure-drop results also.

The simulation results for molecular-weights distribution, velocity, temperature,
concentration, density and viscosity profiles are presented in the attached figures in
this section. The plotter subroutine GRAPH1.SAS is utilized to generate these plots.

Referring to tables 8.23-8.27, the following classification is possible from the con-
version point of view based on the circular duct (wt%) results:

Case # 1: 6.74 wt%, low conversion,

Case # 2: 14.20 wt%, low conversion,

Case # 3: 26.60 wt%, intermediate conversion,

Case # 4: 55.20 wt%, high conversion,

Case # 5: 10.10 wt%, low conversion.

The reason for the low DP results of cases # 1 and # 2 is due to the low level of

conversion involved. The relatively higher values of DP of case # 5, which is even at
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Table 8. 23 Simulation Results of Styrene Polymerization at Reactor Exit

Case # 1
No. | Geometry WPA M, M, Polydispersity bulk-temp Total DP
(vt %) (ma) (m) () (°C)  (Pa)

1 Circular 6.74 452460 819590 1.81 102.3 1.46
2 Square 6.74 452010 820240 1.81 102.2 1.88
3 Triangular 6.38 453450 820660 1.81 101.9 2,70
4 Trapezoidal 6.33 454100 822100 1.81 101.9 2.57
5 Pentagonal  6.63 453810 822110 1.81 102.1 2.28
6 Hexagonal 6.74 452940 820450 1.81 102.3 1.69
7 Rectangular

(AR=1.5) 6.70 453784 821697 1.81 102.0 1.91
8 Rectangular '

(AR=2.0) 6.63 455120 823870 1.81 101.8 1.97

low conversion level, is due to the smaller tube 1.D. (0.0046 m) practiced in this case.

(i)

An analysis of the attached figures reveals the following major points:

Mol. wt. distribution; All cases except case # 4 (high conversion case)
exhibit a peak at a point closer to the reactor inlet. In case # 4, there is a gradual
increase in mol. wt. distribution from inlet to the end of the reactor. The results
are not conclusive to a generalization.

Axial velocity profile: All cases exhibit plug flow behavior which is in close
agreement with prediction the of Husain and Hamielec?t. Some velocity distortion
is observed due to the effect of angles as revealed inh triangular and pentagonal
ducts. This effect is to induce higher rates of generation of polymers at corners
rather than at sides due to which viscosity increases around locations closer to
angles. The effect on velocity is a retardation of the velocity profile in the vicinity

of the angles.
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Table 8. 24  Simulation Results of Styrene Polymerization at Reactor Exit

Case # 2
No. Geometry WPA My M,  Polydispersity bulk-temp Total DP
k k M. e
(Wt B) (5 mat) (Ggmai (%’:) (°C) (Pa)
1 Circular 14.2 338740 610770 1.8 106.0 1.0
2 Square 12.7 348550 628480 1.8 104.7 2.52
3 Triangular 11.0 351450 634420 1.8 103.7 6.11
4 Trapezoidal  11.3 352080 635670 1.8 103.7 6.36
5 Pentagonal 12.8 347180 625660 1.8 105.0 2.87
6 Hexagonal 13.6 343910 620230 1.8 105.4 2.76
7 Rectangular
(AR=1.5) 12.2 351620 634550 1.8 104.1 2.80
8 Rectangular
"(AR=2.0) 11.5 356170 643600 1.8 103.3 3.26
Table 8. 25 Simulation Results of Styrene Polymerization at Reactor Exit
Case # 3
No, Geometry WPA M, M, Polydispersity bulk-temp Total DP
(Wt %) ( kgkfn.ol ( k;:—f:a[) (%:L) ( ='C) (Pﬂ-)
1 ~Circular 26.6 220716 392673 1.78 136.3 243
2 Square 26.2 221160 393250 1.78 136.1 244
3 Triangular 24.8 220210 391120 1.78 136.0 347
4 Trapezoidal  25.4 220880 392530 1.78 136.0 347
5 Pentagonal 25.8 220420 391860 1.78 136.2 286
6 Hexagonal 26.5 220910 392960 1.78 136.2 254
7 Rectangular
(AR=1.5) 25.9 221278 393410 1.78 136.0 242
8 Rectangular
(AR=2.0) 25.8 221610 393980 1.78 135.9 261
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Table 8. 26 Simulation Results of Styrene Polymerization at Reactor Exit

Case # 4
No. Geometry WPA My M, Polydispersity bulk-temp Total DP
(wt %) (kyk;"ml (k;';ﬂo, (‘—%:L) (°C) (Pa)

1 Circular 55.2 481130 966680 2.00 101.4 2617
2 Square 57.2 499470 998160 2.00 101.2 9078
3 Triangular 47.4 486550 940300 1.93 101.1 11540
4 Trapezoidal  50.0 489210 953850 1.95 101.2 3625
5 Pentagonal 54.8 492120 979150 1.99 101.2 41568
G Hexagonal 55.7 487320 976770 2.00 1014 757
7 Rectangular

(AR=1.5) 54.1 495730 979780 1.98 101.2 4937
8 Rectangular

(AR=2.0) 48.9 488230 947800 1.94 101.1 1910

Table 8. 27  Simulation Results of Styrene Polymerization at Reactor Exit

Case # 5

No. Geometry WPA

M,

Polydispersity bulk-temp Total DP

(wt %) (kgk:rml) (kgﬁ:al) (_Mdff‘:) (°C) (Pa)
1 Circular 10.10 129960 225290 1.73 161.0 50.8
2 Square 9.97 130040 225440 1.73 160.9 67.2
3 Triangular 10.56 130330 225810 1.73 160.8 106.1
4 Trapezoidal 10,30 130380 226000 1.73 160.8 117.0
5 Pentagonal  10.20 130132 225600 1.73 160.9 67.8
6 Hexagonal 10.40 130100 225570 1.73 161.0 84.1
7 Rectangular
(AR=1.5) 10.20 130250 225810 1.73 160.8 73.9
8 Rectangular
(AR=2.0) 10.70 130430 226000 1.73 160.7 106.6
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(i)

Temperature profiles
Case # 1: Isothermal reactor, exothermic reaction proceeds and the temperature
profile is developing to higher values.
Case # 2: Cooled-wall reactor, heat removal is observed from the temperature
profile which is developing to lower values.
Case # 3: Mildly cooled-wall reactor, temperature profile is mildly developing to
lower values.
Case # 4: cooled-wall reactor, temperature profile is developing to lower values.
Case # 5: Isothermal reactor, temperature profile is developing to higher values.
Concentration profile: The profile is developing. In case of angle effect, such
as for triangular and pentagonal ducts, an increase in concentration is observed at
these locations.
Density and viscosity profiles:  The effect of angle, is plainly observed in
viscosity profiles such that there is a drastic increase in viscosity close to the
angles. This is observed in viscosity profiles for the triangular and pentagonal
ducts of all cases. The density profiles are also affected to some extent close to
these points.
Effect of Free-Convection Due to the narrow temperature range involved in
the transversed direction, the effect of free-convection (buoyancy effect) in this
study is found to be negligible. This is observed from the following results which
were obtained considering free-convection effect for circular ducts corresponding
to the results in tables 8-12.

Case # 1: 6.75 wt% conversion,

Case # 2: 14.50 wt% conversion,

Case # 3: 26.70 wt% conversion,

Case # 4: 55.24 wt% conversion,

Case # 5: 10.30 wt% conversion.
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CHAPTER 9

CONCLUSIONS AND CONTRIBUTIONS TO KNOWLEDGE
9.1 INTRODUCTION

The fundamental research carried-out in this study to provide a comprehensive solution
procedure for steady 3D reacting laminar duct flow, heat and mass transfer in arbitrary cross-
sectional ducts, suitable for both Newtonian and non-Newtonian fluids, was consequently
accomplished by the development of a computer software for computational studies and
simulation purposes. This software was later shown to be a powerful tool for utilization in
applied research in the termitories of reacting laminar duct flow transport phenomena. An
extensive pile of results obtained in this area are presented in the previous chapter, The present
chapter summarizes the most outstanding conclusions of this work and the elegant contributions

furnished to knowledge in engineering science.

9.2 SUMMARY AND CONCLUSIONS

i) The non-orthogonal boundary-fitted coordinate transformation method applied and the
numerical solution procedure extended in this work to employ the SIMPLER algorithm
for non-Newtonian fluids, is examined successfully without any convergence difficulties
and instabilities in computations, for the solution of 3D parabolized conservation
equations in straight ducts of arbitrary, but uniform cross-sections.

(ii)  The results obtained for validation of system modelling and computer codes are shown
to be in good agreement with the previously obtained results by other investigators for
all aspects of the job, viz: fluid-flow, heat-transfer and mass-transfer with chemical

reaction considered in this study.



(iif)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

The application of non-orthogonal coordinates versus orthogonal systems reveals the
advantage of getting rid of the generation of orthogonal grids at certain locations of
difficult or impossible to make.

The variations in the number of stations in the axial-direction for marching integration,
in the parabolized 3D solution procedure, as examined in polystyrene simulation studies,
provides satisfactorily close values of results.

The hydrodynamic center-plane axial-velocity development for the Newtonian fluids (Re
= 900) shows an excellent gradual development towards parabolic pattern.

The .hydrodynamic centerline velocity values for noncircular ducts are shown to be not
necessarily coincident with the peak value of the axial velocity profile due to the effect
of zero shear rate at the corners of the geometries.

The hydrodynamic center-plane axial-velocity development for the non-Newtonian case
(Re = 128), shows a plug-flow behavior for all geometries under consideration. However,
some geometries show a slight delay in the development to plug-flow velocity behavior.
The hydrodynamic development length values obtained in this work are documented for
future references. Some of these results are somewhat far from those declared previously
by others.

The secondary flow is away from the walls towards the intermediate sections at which
it is reversed in direction, for all the geometries. The results of Newtonian case are
higher than the results of non-Newtonian case due to the difference in the primary flow
velocity profile pattern.

In the thermal studies of this work, the limiting-value of Nusselt-numbers for several

specific geometries conform well with the values previously obtained by other

9 -2



(xi)

(xii)

(xiif)

(xiv)

(xv)

investigators. The Nu,,; results are different to some extent from the values obtained by
Chandrupatla et al®®. The reason is believed to be due to the difference in the values of
Prandt! numbers employed.

The thermal entry region development profile (Pr = 6.78) shows an excellent gradual
development in the axial direction for several geometries.

The results for the thermal entry length value of square ducts are close to the result
obtained previously by others.

In the simulation of styrene polymerization, only slight differences are observed in the
results obtained for different geometries corresponding to each case under consideration.
From the conversion point of the chemical reaction under study, not a specific geometry
is recognized to be in general superior than circular duct reactors.

The free-convection effect (buoyancy effect) is negligible on the conversion of reaction

in the present study.

9.3 CONTRIBUTION TO KNOWLEDGE

The developments listed under items (i)-(v) below are the consequences of the fundamental

research carried-out in this work for the numerical solution of reacting laminar duct flow heat

and mass transfer in ducts of arbitrary cross-sections for power-law fluids. This job was later

followed by an applied research employing the developed computer codes in the potential arcas

of interest. The originalities obtained in the latter part are listed in items (vi), (vii) and (viii)

below.

)

Development of the general non-orthogonal boundary-fitted solution procedure to handle

non-Newtonian fluids for 3D parabolized conservation equations. This includes the



(ii)

(iif)

(iv)

v)

(vi)

(vii)

derivation of the coefficients of the pressure-correction equation to handle power-law
fluids to be employed in the SIMPLER algorithm.

Contribution to existing knowledge in the area of numerical fluid-flow and heat-transfer
by detailed hand-calculations from which appropriate relations are evolved for machine-
computations, employing the philosophy of non-orthogonal boundary-fitted coordinate
transformation and the control-volume discretization approach.

Development of a non-orthogonal grid generation programme in Fortran coding,
corresponding to B-type arangement in the transformed-plane for arbitrary geometries.
Development of a general computer programme in Fortran coding for the solution of any
3D laminar duct flow heat and mass transfer problem with chemical reaction in straight
ducts of arbitrary cross-sections for Newtonian and non-Newtonian fluids.

Full testing and validation of system modelling and computer-codes by comparison of the
predicted results obtained in this work with the theoretical, experimental and numerical
results of other investigators in open literature for the fluid flow, heat transfer and mass
transfer aspects of the job.

Contribution to exisﬁng knowledge in the area of fluid flow by the original results
obtained for velocity profile development and pressure-drop analysis of the hydrodynamic
entrance region of triangular, trapezoidal and pentagonal ducts for Newtonian and non-
Newtonian fluids. Laminar secondary flow analysis is also presented for all geometries
mentioned above for both Newtonian and non-Newtonian cases.

Contribution to existing knowledge in the area of heat-transfer by the original results

obtained for temperature profile development and Nusselt number variations of the



thermal entrance region of the geometries mentioned in item (vi) for Newtonian and non-
Newtonian fluids.

(viii)) Contribution to existing knowledge in the area of thermal polymerization of styrene by
the original results obtained from simulation of manufacturing of polystyrene in avbitrary
cross-sectional duct reactors. In this respect, extensive group of results are documented

for five different sets of operating conditions in eight different geometries.

The results in the latter area inciude molecular weights distribution, pressure-drop
analysis, velocity, temperature, concentration, density and viscosity profiles. It is to be mentioned
that even for circular duct reactors, there exists only a few results for some of these items in

open literature.
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NOMENCLATURE

a coefficient in the discretization equation
A cross sectional area

AH Diels-Alder dimer

AR, ar aspect ratio

a, dz constants

B,b constant term in discretization equation
b constant

b constant term in discretization equation
by, be constants

c a constant

Cm chain transfer constant for monomer
Cp specific heat

Cf’ y C.jf , etc. transformed diffusion coefficient for dependent variable ¢

D pipe diameter
D domain in Cartesean coordinates
D coeflicients in transformed equations

D, D, mass diffusivity
DP pressure drop
DE, D; equivalent or hydraulic diameter

Da mass diffusivity of A

D* domain in transformed coordinates
d.l dimensionless

f friction factor

f a function

f defined by Eqn. (3.29)



F.D.

g

= =

(M]

NOMENCLATURE (Continue)

fully-developed

a function

acceleration due to gravity

Graetz number (G: = =)

a function

enthalpy (h = CpT)

viscous dissipation function

index of “£"” axis in transformed plane
index of “p” axis in transformed plane
Jacobian of transformation

a constant

thermal conductivity

rate constant for thermal initiation
rate constant for propagation

rate constant for termination

rate constant for chain transfer to monomer
duct length

entrance length

maximum value of “I” index
maximum value of “J” index

mass fraction

monomer

apparent viscosity for a power-law fluid
mass flow rate

monomer concentration

N-2



M inst
Moy inst
My,
MWS
MNS

MWA, My

MNA, M,

Pr
Pl

i~ I v

oU

Pn+m

NOMENCLATURE (Continue)

instantaneous number average molecular weight

instantaneous weight average molecular weight

weight average molecular weight at axial position i at any streamline
number average molecular weight at axial position i at any streamline n
weight average molecular weight for a streamline at the reactant exit
number average molecular weight for a streamline at the reactant exit
cup-averaged weight average molecular-weight

cup-averaged number average molecular-weight

power-law index

unit normal vector

Nusselt number

limiting Nusselt number

local Nusselt number

mean Nusselt number

wetted perimeter

nodal point

total pressure (dynamic + hydrostatic), (refer to page 2-13)
dynamic-pressure (refer to page 2-13)

Prandtl number (Pr = gﬁ-‘)‘:i:;-‘-)

pressure correction

static pressure at inlet

mean viscous pressure

Peclet number (P, = Re - Pr = (22 "D:)(C:;f_'_‘l") = eCeDyu
L)

dead polymers of chain length (n + m)
heat flux

N-3



Q
Q m

Qr
RDPT

RA

Rm Nﬂc

Rp

R!

., Ry
RW
RWCL

SC
SP

Wel

Wo

WPA

wg

NOMENCLATURE (Continue)

heat flow

defined by Eqn. (3.29)

mass flow rate

heat of reaction

(Py - BY/(Lpud)

residual of discretization equation

mass rate of consumption of reactant “*A” due to chemical reaction
Reynolds number (Re = E-QEF), general,

for power-law fluids and Newtonian fluid at n=1.0

Reynolds number (R, = E-(%'-)—'I’), for Newtonian fluids
rate of thermal initiation

rate of polymerization

rate of termination

radical chains of length n and m

axial velocity ratio ()

centerline velocity ratio (%2t)

source-term

constant part of linearized source term'

coefficient of the dependent variable in the linearized source term
mean axial velocity

centerline velocity

inlet velocity

polymer average weight fraction

polymer weight fraction

inlet velocity

N4



NOMENCLATURE (Continue)

t time coordinate

t inlet temperature
temperature

Tw wall temperature

Ty bulk temperature

Ter centerline temperature

T; inlet temperature

Vv volume

v velocity vector

v] average velocity

U4, U, W velocity components in the Cartesian system

i, 0, W pseudovelocity components

U, V, W pseudovelocity components
u*, v*, w* tentative velocity field

U*, V=, Wtentative contravariant velocity field

X, ¥, 2 Cartesian coordinate system
X dimensionless axial distance, defined in ref. 99
Xm monomer conversion

E,W,N,S nodes neighbouring to P
NE,NW, nodes neighbouring to P
SE,SW nodes neighbouring to P

z duct length
zZ* dimensionless axial-distance, Z2* = m, for Newtonian fluids
z* dimensionless axial distance, Z2** = (2/D),)/P.

N-5



o, ﬁ, b

& o

wa
Ho
H1

H2

&y

Greek Letters

relaxation factor

defined parameter

coordinate transformation coefficients

axes of curvilinear coordinate

consistency index (for power-law fluids) and viscosity (for Newtonian fluids)
density

arithmetic mean density for duct cross-section
viscosity

bounding surface

stress-tensor

heat of reaction

rate of deformation tensor

pressure-drop in the duct

roughness

kinematic viscosity

general dependent variable

dimensionless variable standing for geometric nonuniformity effect
mass-fraction

mass-fraction of “A”

zeroth moment of polymer chain distribution
1** moment of polymer chain distribution

274 moment of polymer chain distribution

a general dependent variable

dimensionless bulk temperature, 8y = (tp — ty)/(t1 — ty)

N-6



Superbscripts

refers to transformed quantities, except for velocities
a tentative value

transformed plane

Subscripts
m monomer
nb general neighbour grid point
P polymer
P central grid point under consideration
U upstream plane
D downstream plane

Special Symbols

L[] finite-difference approximation of the quantity in brackets

|4, B,...| largest of A, B, ...



APPENDIX A
DERIVATION OF TRANSFORMATION RELATIONS



A.1 BASIC RELATIONS

J = Zeyn — Toye

a 2
a=:r:,7+y,,

3 =TTy + YeYy

¥ =T+ u;

A.2 DERIVATION OF DERIVATIVE-TRANSFORMATIONS

f:: = qu
Nz = "yje
z
'Sy = -_Jl
T
My = 7{
let
z = z(£,n)
Oz Oz
dr = -a—EdE + -a—ndn
(1)

e _tede, ondn
dz = 8fdr  Ondz

Teglz +Tgn: =1

y=y(&n)
_ % . %
dy = a£d£+ andq

dy 9ydf  Oydn
dx ~ 8€dz  Indz

Yebz +Ynnz =0

(4.9)

(A.10)

(A.11)

(A.12)



(I-a)

(I-b)

(11)

(II-a)

(II-b)

::'h
|

Nl =

Ny =

1z,
' 0 yy
Tg Ty
Ye Yp

Yy Yn

J
TelYny — Tnle

Zg 1 ‘
ye 0

-JIE I?,,

Ye Y

—VYe
TeYn — TnlYe

dz Jz df

dy — 8¢ dy

33@

dy _Oydf  Oydn
& A
n dy

dy 0Edy Ondy

=1
& Ye€y + ynmy
=0

zeby + Tyty

0 z,
‘ 1 ¥y
:r€ Ty
Ye Un

Zeln — Tnle

.'1:5 0‘
ve 1]
Tg Tq
Ye UYn

ol
TgYn — Tole

z¢
=T

(4.13)

(4.14)

(A.17)

(A.18)



A.3 DERIVATION OF RELATIONS ‘;_f . U

0 _1wd _yed 9 _ =m0 zd
or T J O Ty =TT Ty WY
let f=f(z,y)
of of .
=y 2L 4.20
df amalr::+ ayaly (1.20)

= f(&:n) (4.21)

or alternatively:

Y@ (o v E- (@) e B o

%[ Ye |
of _ %,j} Ynl| _ (%‘et)yn-(gﬁ)ye_(%f)yn—(%ﬁ)ye (4.24)
Oz~ |ze ve| = TeUn - To¥e J -
Ty Yy
of lza | (%ﬁ) If_(g"f[)m" _ (%) ”5“(85)“"7 (A4.25)
By~ a Y|~ Teyn—Tave J
In Uy




Summary

of _ (5) v - (88) we . O (34) = = (8) 2

e 7 By 7 (4.26)
f:: = (ffyﬂ;fﬂyE) & fy — (fn:cE ;féxn) (._1.2-‘-)
O O OL
dr J oy J T
or altrernatively
O _md wd 9 _ 0 zd
Z- I T % wmeTTEETTa (-4.29)
A.4 TRANSFORMATION OF POISSON EQUATIONS
f=f&n §=&zy), 1=1(zy)
df = de + 3, f (A.30)
(i) Evaluate the First Derivative
of ofof  ofdn & of _8f8  8fon (A.31)

oz 6E oz 61) oz 8y OEdy  ndy



or alternatively:

f.r =f££.c+fu'h' & fy =f££y+fu’fy

(ii) Evaluate the Second Derivatives:

201 T, 2 (9N ATy, 2 (9100
9z 0z Ot dz ' Oz \OE) Oz ' Onoz? ' Ox 617) Oz
201 9%, 0 ()% 010, 0 (01) 0

Oy Oy OEOy? Oy \OE) By " Bndy* ' dy \n

dy

or alternatively

frz = fE&:z + (fE):E: + frﬂh::: + (fr;).t??.r &

Foy = feyy + (fe)y€y + fatyy + (fo)ymy

Now evaluate (f¢)z, (fo)zy (fe)y & (fo)y:

g (of o (of
an) ~ B€ %)&+5(%>®
Therefore:

@ (Of\ 0 (af\NoE @ (Of\ On
% (5r) 3 (3) 2+ 5 (at)
0 (Of\ _0 (Of\0E 9 (Of\On
% (o) =% () 55+ o (5r)
o (8f 8 (Of\NOE 8 (8f\ On
6_y(6_£)=55(6_£)5§+%(6_6)%
2 (o) 2 (%)%, 2 (o)
dy \ In 0 \dn/ Oy On\0n/ Oy

>
[]
(=]

(-4.32)

(4.33)

(4.34)

(4.36)

(4.37)
(A.38)
(A.39)

(A.40)



or alternatively:

(fe)z = feebs + fennz (4.41)
(fa)e = fenbz + funi= (4.42)
(fe)y = fegby + fenny (4.43)
(fa)y = fenby + frnny (A.44)

Now substitute in fr; & fyy:

f-" = fEE:: + fEEEE + fénngfx + fr)’?z: + f&r)E:nz + quﬂi (.4.45)

Foy = Febuy + Feebs + feabymy + Fattyy + Feabuny + Fan7i (A.46)

or

fl'-‘I = fEEII + ffffg + 2f£r:€:n: + fnﬂ:z + fm;'ﬂg (.'14?)

foy = febyy + fEEﬁ + 2fenbyny + fantyy + fnr:ﬂg (A.48)

let f==zin f.;:

€2:T¢ + E2T¢e + 26:MuTen + NeaZy + NoTay =0 (A.49)

and f=yin fi;:

§xz¥e + E:yse +28:0:Yen + Nazyn + r)iy,,,, =0 (A.50)



or alternatively:

let

and

Then

§r:2g + Nooly = "(EEI& + 260 2en + ’?.il"m)

E::y(-' + NezlYp = _({ﬁy& + gsxn:yfq + friym,)

E2zge + 26:0:Tey + MaZgn = E)

{33{55 + 26202 Yen + ﬂi!’rm = F

'E::me + Ny = -E,

Euye + Nzzln = -F

E:z= _FI yn' =

Tg ZIn
Ye Yp

"Elyn + Flfﬂn
J

Tg —El
ve —F
Tg Iy
Ye Yn

_ —Fize + Eyye
J

zz ™

¢ _ —Ei(J&) + Fi(=J¢,)
Tz = 7

_ =FR(Jny) + Ev(=Jn:)
Nzz = 7
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(4.51)

(A.52)

(A.53)

(A.54)

(A.57)

(A.58)

(A.59)

(A4.60)



fzz - —(EIEz + Flfy)

MMz = "(EIU: + Fl’?y)

let f=zin fy,:

EyyTe + ExTge + 264MyTen + MyyTn + MyTpg =0

and f =y in fy,:

§yy¥e + 53966 + 2§ynyYen + Myy¥n + ’?39"1'1 =0

or alternatively:
EyyTe + NyyTy = ~(E37ee + 26yMyTen + MyZnn)

EypYe + Myyyn = —(€§yee +2€ynyYen + ﬂ:ynn)

or
§yyTe + MyyTq = —E2
wy¥e +Nyytn = —F2
in which
Ey = §jaee + 26yTyTen + My Tan
Fy = Eyee + 265nyYen + n3ynn
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(4.61)

(4.62)

(A4.63)

(A.64)

(4.65)

(A.66)

(A.67)

(A.68)

(4.69)

(A.70)



or

Using

and

’_E'z JT,,
_ -F Ya

_ ""Ei.’yu + E_'Ir;

Sy =

J:E Iy
Ye Yn

Ig —Eg
ye —F2

ZgYn — Tnle

_—Faze + Enye

yy = Te

Ye Uy

—Ey(JE€:) + Fa(—J¢,)
J
= Fy(JIny) + Eo(—Jne)

fyy =

ﬂyy - J

Eyy = -(E2€: + F?Ey)

Nyy = —(E2nz + Fﬂy)

§zz = "(El €+ Fley)

Nzz = _(Elnz + Fl’?y)

Eyy = —(E2€: + F2€y)

Nyy = —(Eanz + Fany)

Sunstitute into Poisson equations:

§ez +Eyy = P(¢,71)
Nzz +nyy = Q(€,7)

A - 10

B Telin — TnlYe

(4.71)

(A.73)

(A.74)

(A.77)

(4.78)

(A.79)

(A.80)

(A.81)

(A.82)



~(E\E: + F1y) — (Ené: + F2&y) = P
—(Evnz + Finy) — (E2n: + Famy) = Q
—(E\+ Ex)é: —(FL+ F)§y =P
—(Ey+ En: — (P + Fa)ny = Q
let
Eyz+E=F & N+ 5

then

yeE -z F=JQ

JP 1z,
JQ =T¢

= F

—JPz¢ — JQz,,

’ —Yn Iy
Ve —Z¢

A-11

YnTe — YTy

(A4.83)
(4.84)
(4.85)

(A4.86)

(A.87)

(4.88)

(4.89)

(A4.90)

(4.91)

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)



“yn JP
F=-

ve JQ| _ —JQus — Jpye (4.97)
, - Ty YnTg = YeTq
Ye ¢
E= "J(PI‘J+ Qzy) (4.08)
Fo —J(Qy}'*' Pye) (4.99)
E = —(Pz¢ 4+ Qz,) (A.100)
—~(Pye + Quy) (4.101)
"Now let
E\+E=E (A.102)
§:%¢g + 2UaNaTen + NiTuy + EfTee + 26Ny Tent
N2Tqy = —(Pz¢ + Qzy) (A.103)
and
R+FB=F (4.104)
nyEE + 28zn:ygq + ’?iyw + 5:y€€ + 26ymyyent
yymn = —(Pyg + Quy) (A.105)
from Eqn. (A.103)
e (%) #2760 () (-5F) om0 () #oe (-3)+
2z¢q (_37',) (%E) + Zan (76)2 = —(Pz¢ + Qzy) (A.106)

A - 12



0} ¢

from Eqn.

Summary

or

2, .2 24 2 .
(z3 +93) - (Is'*'ye)_.,z (zg2n + yeyn)

Teg J? m J2 L En J?
= —(Pz¢ + Qz,)
26z
Fitee + Jrom= gt = ~(Peg +Quy)

aZTeg | YTan _ 2BTey
J? J? J?

= —(Pz¢ + Qz,)

(A.105)

Vee(€2 +€3) + yqo(n2 + 73) + 2wen(E2n: + Eymy) = —(Pye + Quy)

(92 3) (!I"'z) (zexTn + Yeyy)
Yee— - +ynn47'i QUEU_EUTLE_
= _(Py£ + qu)
aYee , 1Y 28y '

J§E + Jgﬂ - ﬂfn = —(Pye + Qy»)

aleg +YZgn — 202ep = —Jz(Pzg + Qzy)

ayee + Vyng — 2Byen = —J*(Pye + Qyy)

aTee + YTy — 2Bzen + J2(Pze + Qz,) =0

aYee + Yyny — Qﬁysq + JQ(Pye + qu) =0

A - 13

(4.107)

(4.108)

(4.109)

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

(A.115)

(A.116)

(A.117)



Note: An alternate method of derivation of the above equations is to apply the coneepts

of differential-geometryS!.

A. 5 DERIVATION OF DISCRETIZATION-EQUATION FOR

GRID-GENERATION EQUATIONS

A. 5,1 Second-Order Central-Differential
Approximation of Derivatives

_ (migry — Tic)

= o

_ (Tij41 = Tiyj-1)
Iy = T

(i1, = 2245 + Tit1,5)
Teg = )

_ (Zij—1 = 22ij + Tij1)
Inp = h?

_ (Tit1,j41 = Timn,41 F Timr =1 = Tit1,-1)
Ten = 4h?

A. 5. 2 Discretization of Grid-Generation Equations

Consider the transformed Laplase Equation:

aZge = 20T¢y + YTyy =0

Using the above relationships for the approximation of derivatives:

@i, (Zi1,j = 2255 + Tivr,5) + Vii(Tij-1 — 220 + Tije)=
28; j(Tig1,j41 — Tim1,j41 F Tic1,j-1 = Tit1,j-1)/4 =0
in which
h=Af=An=1
and
aij = (25 + yh)ij
Bij = (2eTq + YeYn)iij

A - 14

(4.118)
(4.119)
(4.120)
(A.121)

(A4.122)

(4.123)

(A.124)
(4.125)

(A.126)
(A.127)



1ij = (T3 + Y§)ij (4.128)

J:'.j = (rqu - quﬁ)i.j (.—1.129)
taking
T1= —bl (4.130)
Aaij + i) -
Yi.j
T2 = ———— 4.131
Aaij +7i4) ( )
T3 = — Pui (4.132)

4oy +7ig)

ij = (Tio1,j + Tig1,3)TL = (Zij-1 + 24,j41) T2+
(Tivt,j41 = Tiep,j41 + Timpjm1 = Tir,j-1)T3 =0 (4.133)

or alternatively
z(I,J) = [z(I1,J} + 2(12, N]T1 + [=(I,J1) + =(I, J2)]T2—
[z(12,72) — z(I1,J2) + z(11, J1) — 2(I2, J1)|T3 (4.134)

inwhich 1 =1-1 I2=7I+4+1, Jl=J-=1and J2 =J+ 1. Introducing the

relaxation-factor “w"” one can write:

z(I,J) = w{[z(I1,7) + 2(I2, N)]T1 + [z(I, J1) + z=(J, J2)]T2-
[=(12,J02) — 2(I1,J2) + z(]1,J1) — z(12,J1))T3}~
(w—-1)z(I,J]) (A4.135)

or alternatively
(I, J) = (1 =w)z(I,J) +w{[z(I1,]) + (12, J)]T1+
[z(I,J1) + =(I, J2)]T2 — [2(12,J2) — =(I1,J2)+
z(I1,J1) — z(I2,J1)]T3} (A.136)

Similarly
y(I,J) = (1 —wy(I,J} +wi{ly(11,J) + y(12,/)]T1+
(y(I,J1) + (I, J2)]T2 — [y(12,72) — y(I1,J2)+
y(I1,J1) - y(12,J1)]T3} (A.137)

A - 15



Optimum Relaxation Factors

r-

wijj = ————=+ (underrelaxation) O<w<l
L4+ /1 +0%;

— (overrelaxation) l1Sw<g?

in which p;; is expressed®! as

Ji.p2
pij = |1/ la; = | cos (‘—"W ) +
@i + Yij 4 IMAX -1

Note: Overrelaxation is often used in conjunction with the Gauss-Seidel method®?, the

resulting scheme being known as Successive Overrelaxation (SOR) method.

Linearly-Interpolated Initial Guess for the Iterative Solution of
the Equations®!

The values of “z" and “y" at each point in the field are set equal to the average
of the four boundary-points having either the same £ index or the same 75 index, the
g n

average being weighted by the distance to the boundary in the transformed plane.

Thus:

L (IMAX =i\ i=1 \_
2zij = (JMAX - 1) Zi (JMAX z 1) Tiamax+

IMAX - i1
IMAX —1) *Mi ¥\ TpfAx —1 ) iMAx.

for

An analogous equation is used for y.

A~ 16



APPENDIX B

DERIVATION OF TRANSFORMED GOVERNING EQUATIONS



B.1 The Overall Continuity Equation

J 3 3
— +— —_ =0 B.1
axw By(ow+az£°w (5
L1y, (pule-3 (pu), 1+ 2 [ (p v, - %, (p ¥ I (pw)=0 (B.2)
J n £ /% n J n 4 do
54 PU)=¥ (P, +3% (V) =%, (V) + T (piw)=0 (B.3)
S, tpul-x, (pVik—- I (pVi-y; PUI+I-Z (pw)=0 (B4)
3 an ¢ 3o
—a-[p(yu-;q.'v)b—@— [p(x(v—yu)hi(pW)-o (B.5)
o€ " on 7 3o

but
Yau-X,v= u
X V-Yu=v (B.6)
Jw=§

therefore
o+ o)+ (o )-0 (B.7)

at on do



B.2 The Momentum Equation

B.2.1 x-component

\
8 (o1 (oo (pwya - 2B | T, T (B.8)
E{(pu )+ay(pvu)+az(pwu) I 6x+ ayJ
let
9-2 putr+ L v (B.9)
ox dy
-2 PE R 0w, | % (pwly - X lpwi (B.10)
J J |
(J)-T‘;[y,,(puz)g-yt(puz)ﬂ]+§b@(pvu)“-:;|(pvu)£] (B.11)
.19 2y 10 v (o (B.12)
@ ok b, (puf)-x, (pvull+ Fom bg (pvul-3% (pu®)]
19 190
-~ low G- ile == [tpu) G v- yu)) (B.13)
but
Hu-xwu (B.14)
x(v-ygu-v
therefore
10 134
29 puuye 18 (B.15)
) RET fpuul+ Jom uvl



14 19 0

LFS-—EE-(PLIUH-}a—(puVHa—(puw) (B.16)
RH. --a—p-(i‘_’eua_‘&*] (B.17)
ox \ éx oy

RHS - 'le-&’npﬁ ~Y%bn ]"1&[% Gm)t—}’% & sodn]

- (B.18)
_T‘E’D{“ (r.w)n —% y:)-!]

1 I .
RHS = == [ - Py 1= U, 6 -, (5 0 )

(B.19)
1 - Fal
"_JBQ (T ydn = ¥ (T g ]

RHS = -2-Z [y € o)~ X, (r,,,)]-—— b (5,0 - % ()

";} W~ Vi, ]

(B.20)

Theretore, x-component:

_E (puU)+—&g (puV)+5— (puw)--—— VA (txx) X, (ty)]

'j_;.a b 1.0 - % f‘x)l'; hPg = YePy ]

(B.21)

or
- _— W .__ ( { ]
—aE (puU}+ : (puV)+ (pu ) [V 7,5) ’G, Tyx)

(B.22)
--;a; % @0~ % € o) B’npz-sfapn



2.2.2 y-component

at

-

dx Oy

d d
— (puvi+—
axp oy

(pv)+ 2 (puv) - - -
dz

ay

-2 b, (puvy -3 (puv, 1+ bg G, -5, (0)]
0-22 b pun-x (v 0+ 22 b (0v?)- 3 Gum)
Jog " J on ¢

13 18
w-;a—e [pV(x,u-:g,v)h}E;]— lovigv-3ull

but
ynu-)g'v-U
X v-yu=V
14 134
- Ule =2
@ T3t pvUl+ Tom ovV]
14 10 0
LHS==Z pur)+ 22 9
BT (pw)+ 7 (pvi+ P {(pwv)
ap (01, arw]
RHS- -2 | 2, "l (p-p )
dy ax+ ay (P-p.lg

d
+-i’]- (p_pa)g

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)



oo 2 1o & &
RHS = -—‘}()Qp“-);lg)-}[yn ot =% € )y (B.30
Hf'[& “‘\.\'y\n_“;l GYJ)E]_ (P-p,lg

l ‘l. L y
RHS = -= - - -
PR Tl (ALY RERCVY (B.31)
'%r[”f T -3 Fdl- P-pag

RHS-_——[V €- :;,(ry,)]-———br;(rm) %k )] (B.32)
_...;@%pn )g,pe)-(P pa)g

therefore y-component:

19 19 iC
}'a—s' (PVU) }&n (PVV)+'a_' (pWV) [V (rX)) )‘l(tﬂ)] (B.33)
___p%(ry,) 5@(1,,31——(:@,, -‘ﬁpg) (p- p,)g
= —_ +— W)= —-— ( - (A ]
E (PVU) a'f] (pvVv) (pw) E[y tl‘.\) ! t.VJ) (B.34)

-E U %)= 12 @ 1 04, - %)~ 700 )9



23 z-component

S lpuw)e = P+ — (pw?)--Z-
puw) == lpvwie = (p

3 3 3, 2 b [6=r+ftzﬂ
ox

(J)-a—i(puwh-%(pvw)
(J)-ler[y,l (puw)e - 3 (pz.zw),,]4-7'.;[41.-E (pvw), - X, (pvw)]

w'_EE[V (puw)-x (pvw)]+——--bg (pw)-y (puw)]

19
(J)"—EE [pw) by u-x,v}l*f}g (pw) bgv-yzu)l

but’

ynu-:;.wU
qu-ytu-v

therefore

(ﬂ-—a—ft(pw)uh—?n-[(pw)vl

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)

(B.40)

(B.41)



149 14
Be=—(pwU}l+=— (pwV)
pw +Jan p

Jok

Lh:’:‘:‘--l--i (pthi-i (pwV)+—a% (pw®)

Jog Jan

C@ 1 ~ ~
RHS";-"—T[}/“ (rxz)E-JS(tyz)E

1 ~ ”~
"T'J.[XE (ryz)n'xt hxz)n]

1 a ~ ~
RHS--TIBEM'“”)-&'(T")]

19 ~ ~ >
“gg[’i“y)“i’:“x)l-%

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)

(B.47)



Therefore z-component:

;l.i (pwU)q—i_a-

Jdg Jan

14 ~
22 4@ 056, (.49

_i% D& (tyz)'yi zej]_%

(pwV)+—-a—- (pw?)=-
do

ar

ek (pWU)+—a— (pWV)+—a— (pwW )=
do

98 o
_EaE_ b, - X, (?yz)] ) (B.49)

Pe ) ~ ~
_E be(t,)-%( xz)]-J%



B.3 The Energy Equation

s (pC, Tu)+— (pC TV)+ (pC' Tw) =
ax (B.50)
ax[ ] }{ ) +MI+ (-AH)R,
0

LHS-a— (pC Tu)+— (pC, TV)+ (pC‘ Tw)

dy

LHS-TIT br (pCpTu), -3 (pC Tuln)

+-:1T b (pC TV, - X, (pC,TV);] (B.51)
d
"‘E (PCPTW)
LHS-—— by (pC Tu)~ X (pCTV)]
+-§i I (pC,TV)- % (pC, Tu)] : (B.52)
+g (PC'pTW)

LHS-%T—a— fpC, T Gpu-xv]
14
+—E§H pC,T gv-yull (B.53)

— (pC.TW
+'aa(pp )

B -10



but

ynu-)g‘V-U

}%V"‘]/EU'V
19 19 3

LHS === (pC TU)+=— (pC TV)+— (pC_IW
TaE (PCTU) g PCaTV)* 55 (0 CTW)

af.aTy d9(,oT
- O k2| L 2T
23 ax)+ ai ay)

9-12 k}_’nfe_éﬁ] kﬁji]
JENT o J
18] HHRT) [ ATRT
*Ton (x‘ 7 ]yk 7

B -1

(B.54)

(B.55)

(B.S6a)

(B.56b)

(B.5T)

(B.58)

(B.59)



kT
X (y.?ﬂs?)-—;(mwﬂ]

kT,
a5 TE ) e e ven)

B - 12

(B.60)

(B.61)

(B.62)

(B.63)

(B.64)

(B.65)



Therefore the energy equation:

14

22 (pCTU) + === (pC,TV) + = (pC,Tw) =

JaE( )+Jan {p )+ (p

19(a B 19 B (B.66)
2 - B |+ 2L Xpr - B,

JaE‘(J g “)+ Jan( J J

+8 I+ (-AH)R,

d

< (pC,TU C.TV -

3% (p )+6r|(p )+a (pC,TW)

dfa,. P afy B (B.67)
i -Err |+ | Lir - B

BE(J I "]+6n(J n Jm)

+Ji B J(-AH)R,

B - 13



B.4 The Reactant Continuity Equation

aimm U>+a—y(pu V)+-a—(p¢-> W)=
i:A

(B.68)
o5 o5y 2
ER Lat e rw Lt ey
LHS-a—(pmAuHay(pwlvHa—(po AW) (B.69)

¥ R X
fd. § -2 =3
LHS (P"’A”’g (pmau)n +—= (pw,v)

(B.70)
d
- 0,V 5 (0w

LHS-——E[y pw, u)- Jg@)w,lvm——rx:(pw‘v) yt(po),.u)]+a—(pu w) (B.71)
1a5-22 o, wy - )1+ 2L fow, (vg-uy)l+Z o, W) (B.72)
FoE © OARTIRI e PV Calir e

but

uy, -vx =U (B.73)
Vi -%u-Vv
therefore

LHS-—a—E(prUh}g (pwav)+—(pm W) (B.74)

B~ 14



10 55 X
"o P a[J'*’!'—"’f-}"%""a['&“n‘%"’!]

18 % ¥ %

0 LA T T Y GO
10 v WY

"% *('%"’e‘—"” )00 2k, B0,
1af [#, % Wy, A

Tom P"*?“n'—""‘%]"”’*( e

(B.75)

(B.76)

(B.77)

(B.78)

(B.79)

(B.80)



_13d

4 JIE

A

2 2
+51[9D KD - p0, 0N LM)@:

gl r g

but
2 2
FatHK-e
R+ K%~ P
A+5-v
19 a $ 14 Y
a=—|pDy—w-pD, =0 |+=—|pD
9 JaE | PO P, "]+J6n Ly
19|PD, PD, 10|PD,
RHS = —=— QW - W, [+—— -
JoE| o ¢ Jp“JanJ n
Therefore, the reactant continuity equation:
10 10 9 13|°
———— U+ —— —_ -
T (pa,U) on (po,imaa (pw,w) JaE

L1 (PDa, . _PPa
gon|l v " o

N
Pag|-R,

The reactant continuity equation:

D (‘V:'PX:)Q -p]_‘) Mu
g £ TTr n

@, - pDA%wt]

0 d 9 3| PD, pD,

=~ )+ — = W)= — -

3% (pw,U)+ (puAV)+ac (pw, W) 35[ " LTAN Bw
aleD pD, o

- — J“y@n__}_p@‘ -JR,

Wy |-R
J P £ A
D D

Ag !_P A
J

J pm,.]

(B.81)

(B.82)

(B.83)

(B.84)

(B.85)

(B.86)



BS. The Transformed Form of the Components of Stress-Tensor

e du)rz ||y ._2 o B.87
T..Q‘-L—Zp( a;:}-rz '-L[Z(i] M--;%%"YE%]M ( )
-~ [ a E."...?-. av -~ 2 ~ (B 88
‘FW-L.-ZI-I('E‘:)I 1. -1{2(5”:\{ - -"—IbQV," ')ﬁ“é]M -88)
-1
r L -zp(.‘?."_') fral i p{éﬂ) o (B.89)
oz do

~ o au aV ou av (B.90)
Tt aY ax ] L{ ay' ax

% o S It R e Yy - 1 (B:91)
RSN ML T2 Py du_ow (B.92)
Fet Tl d (32+ ax]I [(az Bx)]M

/‘; [——+ J(y;‘ W= W )] (B.93)

B - 17



. aw _ov) 5 aw  dv (B.94)
ym Yoy T LB [a_y+_¢9—.z]r ] I{(afaz]”
1: ‘t --[ (}Q Jq‘we)-o-?o-]ﬁ (8.95)
B.6 The Transformed Form of I and M
26 s
ox dy, oz ox dy, (B.Ys)
aw av)" (au Aw 2
4| — =] | —+—
dy 0z dz ox
2
Y | ECHE Ky Byl [V [ R, A5
IZ(JU‘ J%]+(J‘7‘ J"E] +(aa] (.Jrvi A Ju"] (B.Y7)
2
d du X% Ye
+ %w -%wt-c--a—;—’] +[E+—‘1Jwt--jwn
= (B.98)
M=uI?

B - 18



APPENDIX C
DERIVATION OF DISCRETIZATION EQUATIONS



‘Typical derivation for «, (refer to Fig. C.1)

/ /m fE —Q(puU)dﬁdnda+/DfE/"°aﬂ puV)dndedo+
fu / f a_(p"w)d"dfd’?‘ f f e / ag‘c' ae 2 )dgdndar+
fUD/ /::E 026 )dfdnda+f /:M/ GE(C“ )dgd;,dg.;.
/UD/S /F’E_(%C4a)d€dda+f / /’ (CSB Ydndedo +

D ne g
/U ./P ./¢ an(cs 6§)dnd6da+/‘ / . an(a dndfda-}-

'[//" aan(csaﬁ)dﬂdfdd—f '/" AP“dﬁdnda (C.1)

(pul)elnAo — (pul)pAnla + (puV)n DEAT — (puV ), DéAc+

(puW), pAEAR — (puW) v AEAD = (C{‘QE) Anleo - (C“a ) Anha+
%/ 9
« Ou «Ou . OV wOv
(Cz 3 )EAr,'Acr— (6'2 Bn) AnAo + (C BE)EAT’AG (Cs B¢ P/_\r]Acr+
av) ( 60) ( au) ( au)
Cim ) Anho~|Ci— ) Lnho+|Ci— ] OEDo—-|Cor— ) Alho+
(4'?1977 Yon/p 80/, 80/,
uOu o0 uOv {8 l
(C’s af),u JAVFAY- 0 (C6 65)“ AbDo + (C-, a”l)nc JAYFAY 4 (C-, n)“ JAYFAY-2
(c;a—” AEA - (cg@) AEAo — PEAV (C.2)
aE ne E L.14
LHS = (PU)EAT]AUU'E - (PU)PAHAO'“P + (PV)MAfAO'HM—

(Pv)aeA£A0’uae <+ (pW).,,DAEAnu, — (pW)c,UAEATIUe'U (C.3)



LAS =(pU)eollAnbou. — || = (pU)e ol Dnd o~
{I(eU)pollAnAcuy — || = (pU)pollAnAou.} +
[(6V)neollA§ Ao, — || = (pV )neol| DEDTUs~
{l(pV)senll DEAous = || = (4V )seol|DEAouc} +
(pW)e, 0D AYu, — (pW ) uDEANU v
LHS = ||(pU)g0ll Anlou, — || - (oU) o]l Andoue.—
1(eV)pollAnBouy + || ~ (V) poll Andeu.+
[(pV IneollD6DTu, = || = (pV )neol| AE DT Uz~
eV )seoll DEATuUs + || -~ (pV)se 0| AEAou.+
(PW)e,p B8O, — (pW)e,u DEATU y
‘write the continuity equation:

g ] a
a—s(PU) + a—n(PV) + EE(PW) =0

[ [ [ [ [ umoses
[ [ S

(PU)eAnAc — (pU)pAnAs + (pV )ne A Aa—
(pV)se BEAT + (pW)e, 0 OEAN = (oW ) v A{AT =0
multiply by —u.
—(pU)eAnlou, + (pU)pAnAau, — (pVIne LNEATU+

(pV )se DEDTU, — (pW )e, p AEATIU, + (pW ) v DEATU, =0

(C4)

(C.5)

(C.6)

(€.7)

(C.8)

(C.9)



add Eqn. (C.5) to Eqn. (C.9)
LHS = ||(pU)eoll Andou, — || = (pU) ol Anldouc.—
1(pU)poll Andouy + || = (pU) pol| Andou.+
I(pV )neollAEATUe = || = (pV )ne,o| A Do us—
|(pV )se,0llDEATUs + || = (pV )se 0| Al Douc+
(pW)e,nDEATU. — (pW)e u DEATU U~
(pNgAndou, + (pU)pAnlou, — (pV)ne AEAcu +
(PV )seDEDTu, — (pW)e,p A6 AU, + (oW )e y DEATU,  (C.10)

LHS = || - (pU)Ep|Andou. — || = (pU)g,0l| AnDottee—
I(oU)pollDndouw + ||(pU)pol|Andou.+
” - (Pv)ne,0"A£Aauc - " - (Pv)ne.o ”AEAUU.;;—

[(pV)seoll D6Aous + [ (pV)se 0l DELTU+

(pW)e,uDELNue — (pW)e u DEOTUe,y (C.11)
=Cv Ou u Ou u Ou
RHS = CIEAQAO' (a&)s - CIPAnAa (ae)P + CQEAT?AG (aq) E-—-
U au u au u @
Ciplnheo (5';) . + Cigbnie (55-) . - Ciplnhe (3 ) . +
Cielnleo (a_v) - Ciplnle (@) L O AAYIAY (B_u) -
N/ E 611 P N/ ne
Ci, AéAo (?3- + Cgnc DEAC (?}f_ - Ci,AbAc (% +
se an v 6ne aE e Gae aE v
. G, “ dv “ i)
Ch . LEDG (-a—") - Ci.Oebo (%) +Cincebo (_z) -
C¥, DD (g'é) - BEAV (C.12)



Un

— Y 4 CrAnne it

RHS = ClgAnAe22t—"8 _ Cl Anlo s

Ag JAYS An
Cé‘pAnAau"A;]u’+C§‘EAqAav“A£ — ClalpAa N"u
ClgAnAe " An - Clplpha ~ LN NI &n‘%_

C AEhg 1S An S 4 CE AfAg 20 AE —Ct AEAG A£u, N
CE, DEAGZ A‘n“-c;*,cama Aq-" C AEAs AE”"_
CL NED 222 M * _L[P*)AV (C.13)

CigQAnlc Ciplnio CipAnle
AE Uee — AE U — AE ue+
C'lP_ﬁgA_E_uw + C{'EAaul - C;EAO’uz - C;pAoun-i-

. Ctzlnda Cighnbo
Ciplou, + ———_Aﬁ Vee — ———-—A£ v,
cu u
iplnla, | Cipbnlo, | ¢ 4o Aavy — ClpDovg—

nE e A€
Cip Do + Clplau,  SneDbB0, _ CineDlAa,

An An ¢
Cee DEAC U DEAG “ u
5”&7’ ue 4 = Ay ¥ + CreDauy — Cfp Doun—

Cine ODEAT CYDéAo

RHS =

CgiDoug + Cg, Aou, + o vy — An Ve —
Ct,.LDéAo CFAEAe " “
d Arf Ve + — A: vs + Cyn.Oovy — Cg Dovy—
CE.Aovs + CL . Aoy, — LIPEAV (C.14)



{Il = (pU)eosll&ndra + [|(pU)pol|Bnlo + || = (pV)ne o | AEAT + [{(pV)se ol| DELT+
Ciglnlo + Ciolnlao + Ciae AEAC + Ce, DA

(PI“:)C.U&EA" + Ae Af AT] An ue =
. Cielinh CipnA
(I~ (ool SnAa + ZEL= buee + {00 pol|Ande + 2= Fuut
Ce . ALA CL, AEA
(1= PV dneoll06 A0 + ZSEEZE Jus 4 {6V )sepl| AT + Z258 = g

(pW)ew DéAYu, u + [CopDo + Con A0uy + [-Cipho — CF, Acjus+

YAy TAY
[—Cgupaa — Cﬁ“ncaa]u“ -+ [C;‘p[.\a' + Cg,eAG']us + [.Cﬁ.ggu] Uee

Ciplnlho  CipAnhe C} L AEHDo CF,.AfAc CiplAnic
TTae T AaE T T A& T T & ]”‘*[T]”‘”

[C:EAU + C;,MAG]‘U; + [_C:EAO - C:seAG]UZ + [_C-;‘PAU - C;ncéalvﬂ'i'

%AV TAYY G AANYAY
An ] Bt [ An

[CYpl0 + C, Ao, + [ ] vs— L[BYAV  (C.15)

LY =L [%—?vn - %—iye] c (C.16)
LY=L [(g—?)eyqe - (%g)e y&] (C.17)
L[PY) = (PE ;f” ) Yne — (Pignﬁ) Yee (C.18)
L[P}] = [PE—A—EEE Yne — [PN i z;ﬂp Cha # SE] e (C.19)
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APPENDIX D
MODELLING OF COEFFICIENTS OF DISCRETIZATION
EQUATIONS IN I-J COORDINATES



D.1 COEFFICIENTS FOR THE “['1

MOMENTUM EQUATION
(Refer to Figs. D.1 and D.2)

“AE"” and “AW?"” Inter-Relationship

AER = || = (pU)p.0AnAc + Segpbe 1)
AWE = (oL Ol Ansg + Siubaie -
Intermsof I & J
AEI, ) = | =(eU)I,J),0|AnAg + SAULASAe .
AW, J) = IeUXI = 1, 1),0]|Ando + CU!(I—;.;}AnAu {D.2)
from Eqn. (D.2) changing I,J — [ +1,J
AW +1,7) = |(pU)(L, ), 0| Anae + S22 - E)A”A" (D.3)
Subtract (pU)(I,J) from Eqn. (D.3)
AW (I +1,7) = (pUNI, J) = [|(pU)(Z, J), 0| An Ao~
CU(I, J)AnA
(o)1, 7) + SIS (D.4)
or

AW(I +1,7) = (UXL, J) = | - (2U)L, 1), 0] Anc+
CUL(I, J)Anho
AL

(D.5)

The terms on the right hand side of Eqn. (D.3) is equal to AE(I,J) according to
Eqn. (D.2). Therefore

AW +1,J)—(pU)I,J) = AE(1,J) (D.6)
or alternatively
AE(I,J)=AW({I +1,J)- FLOW (D.7)
AW(I+1,J) = AMAX1(0.,FLOW)AnQAc + DIFF (D.8)
in which |
FLOW = (pU)(1,J) (D.9)
DIFF = CUI(I,A.IgAnAa (D.10)

D-2



from Figure D.3:

FLOW =

RHOL-UCi(I.J)+ RHO2 - UCHI+1.J)

‘)

in which

RHOL = 0.5(RHO(I,J) +RHO(I —1,7))
RHO?2 = 0.5(RHO(I,J) +RHO(I +1,J))

DIFF =

CULNI,J)AnAo

A
“4N" and “AS” Inter-Relationship
Ce AEA
ANE = | = (pV)nu Ol A DG + 5200522

ASE = |(pV)sw, 0| AEDG 4 EaruBEAo

An
Intermsof I & J

}

AN(I,T) = || - (pV)A, 0| AAc +E223050e

AS(1,J) = l(pV)B, 0| AL Lo

from Eqn. (D.13) changing I,J — I, J +1
AS(I,J +1) = ||(pV)A, 0| ALAe + A
Using B —+ A due to the transformation I,J — I,J + 1:

Proof:

designate “B":

I-1,7J
uBN —_—
I-1,J7-1
change “B":
[ I-1,J
LI—IJ+1=
[ I-1,7-1

(I-1,J+1

I-1,J
L )
the latter shows the location of *A” in the middle, that is

D-3

CUSANENG

CUSBASAo
+ oY)

B

B

}

LJ
LJ-1

LJ

IJ-1]
I,J+1

IJ

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)



I-1.J+1 [LJ+1

4
I-17J LJ

Subtract (pV)A from Eqn. {D.16)
. . CUBAAL Ao -
AS(LT+ 1) = (pV)A = [(pV)A 0| Al Do = (pV)A + B (D.17)

or
"5 AAEL

AS(I. T+ 1) = (pV)A = || = (pV)A 0| Al Ao + E_L__P_'}A_,_Z?\ﬂ (D.18)

The terms on the right hand side of Eqn. (D.18) is equal to AN(I,J) nccording to
Eqn. (D.15). Therefore

AS(I,J +1)— (pV)A = AN(I, J) (D.19)

or alternatively

AN(I,J) = AS(I,J + 1) - FLOW (D.20)
AS(I,J +1) = AMAX1(0., FLOW)AEAo + DIFF (D.21)
in which
FLOW = (pV)A (D.22)
pIFF = CUSALLAe (D.23)
An
from Figure D.4:
FLOW = RHOL-VCAI -1,J + 1;+ RHO2. . VC2(I,J + 1) . (D.24)
in which
RHO1 = 0.5(RHO(I -1,J)+ RHO(I -1,J +1)) (D.25)
RHO2= O5(RHO(I,J)+ RHO(I,J +1)) '

[CUS(I,J)+CUS(I,J + 1)+ CUS(I —1,J+ 1)+ CUS(I - 1,J)|AéAa
4An

DIFF =
(D.26)
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* Proof:

M
Py
V: {i
S M\ [L\ _(M\[(L\_ M _
FLOW =p-V (V)(t)“(ﬂ) (?)Hfﬁ (mass flux)
\" M
FLOW AREA : (E-i)(ﬁ): = (mass flow rate)

To evaluate “FLOW" at point “A":

from Figure D.5:
(FLOW)A(AEYAo)=RHO1-VC2(I -1, +1)- (%—6-) (Ao)+

RHO2.VC2I,J +1)- (%5) (Do) (D.27)
R —_ 9.
(FLOW), = RHOL-VCAI-1.] + 13 +RHO2-VCALI+1) o0
NOTE !

Consider the following relationships:

AE(I,J)= AW(I +1,J) - FLOW

AW(I +1,J) = AMAX1(0., FLOW)AnAc + DIFF

(i) as “AW" is calculated for the c.v.’s designated by (I +1, J), therefore in the process
of changing I from 3 to L2, “AW™ would not be calculated for the c.v.’s designated
by (3,J), that is, the far-west c.v.’s. AW(3,J) is to be calculated in a separate
process.

(ii) as “AE” is obtained from AW (I+1, J), therefore to calculate “AE" for the far-east
c.v.’s, AE(L2,J), it is necessary to calculate AW(L1,J) which needs a separate

treatment,



NOTE 2

Consider the following relationships:

AN(I.J)= AS(I.J +1) - FLOW

AS(I.J +1) = AMAX1(0.. FLOW)AE Ao + DIFF

(i) as “A§" is calculated for the c.v.’s designated by (I, J + 1), therefore in the process

of changing J from 2 to M2, “A5” would not be calculated for the c.v.’s designated

by (I,2), that is, the far-south c.v.’s. 45(,2) is to be calculated in a scparate

process.

(il) as “AN" is obtained from AS(I,J + 1), therefore to calculate “AN" for the far-

north c.v.’s, AN(I,M2), it is necessary to calculate AS(I, M1) which needs a

separate treatment.

To Obtain AW(3,J)

Using
AW(I+1,J) = AMAX1(0.,, FLOW)An&Ac + DIFF
let I =2
AW(3,J) = AMAX1(0.,FLOW)AnAo + DIFF
in which

FLOW = (sU)(I,J) = (pU)2, )
CUL(I,J)Anle _ CU1(2,J)AnAeo

DIFF = At = At

from Figure D.6:

FLow < BHO(.J) - UCK2,J) + RHOL - UC1(3,J)

2
in which

D-6

(D.29)

(D.30)

(D.31)

(D.32)

(D.33)



RHO(2,J)+ RHO(3.J)

RHO1 = 5 (D.34)
— CU1(:1,AJE)A}AJ (D.35)
To Obtain AE(L2,J)
Using
AE(I,J) = AW(I +1,J) - FLOW (D.36)
AW +1,J) = AMAX1(0., FLOW)}AnQAe + DIFF (D.37)
let [ =L2
AE(I,L2) = AW(L1,J) - FLOW (D.38)
AW(L1,J) = AMAX1(0., FLOW)AnAc + DIFF (D.39)
in which
FLOW = (pU)I,J) = (pU) L2, J) (D.40)
DIFF = CUl(IZg)AqAa _ CUl(L?AJ;)AqAa (D.41)
from Figure D.7:
FLOW = RHO(LL,J)- UCl(Ll,.;) +RHO1-UC1(L2,J) (D.42)
in which
RHO1 = RHO(L2,J)-;RHO(L3,J) (D.42)
DIFF — CU1(L2,J)Anhg (D.43)
Af
To Obtain AS(I,2)
Using
AS(I,J +1)= AMAX1(0., FLOW)Aé Ao + DIFF (D.45)
let J=1
AS(I1,2) = AMAX1(0.,, FLOW)A¢ Ao + DIFF (D.46)
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in which

FLOW = (p¥)4 (D.AT)
CUBAAEA
D el Tt A
IFF A (D.48)

from Figure D.8:
RHO(L.1)-VC2L.2)+ REO(I-1.1)- VC2(I - 1.2)

FLOW = : (D.19)
in which
CUSI.1Y+CUS(I - 1,1
prrr = COLU+ CUN - 1, IASA0 (D.30)
n
To Obtain AN(I, M2)
Using
AN(I,Jy=AS(I,J +1) - FLOW (D.51)
AS(I,J +1) = AMAX1YO., FLOW)AEAo + DIFF (D.52)
let J = M2
AN(I,M2) = AS(I,M1) - FLOW (D.53)
AS(I,M1)= AMAXY(0.,FLOW)AfAe + DIFF (D.54)
in which
FLOW = (pV)A (D.55)
A
DIFF = C—U%—ME (D.56)
n
from Figure D.9:
R . - . 9, -
FLOW = HO(I,M1).-VC2(I,M1) + R.;IO(I 1,M1). VC2(I - 1,M1) (D.57)
DIFF = [CUS(I - 1,M1) 4+ CUS(I,M1)|AéAc (D.58)

An
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D. 2 COEFFICIENTS FOR THE “U'2” MOMENTUM EQUATION
. (Refer to Figs. D.10 and D.11)

“AW" and “AE” Inter-Relationship

AEY = || = (pU)se. 0| Anlro + Siecfnle (D50
- R u P )
AWS = | )sw- 0| AnAc + Shisree
Intermsof 1 & J
AE(LJ) = I = (U, 0l Anlre + c—”‘—%’*‘é—"} (D.60)
AW(L,J) = |[(pU)5,0|AnAg + E¥1EL18e '
from Eqn. (D.60) changing I, J — I +1,J

AW(I +1,J) = [(pU)C, 0] An s + EL2E2129

At (D.61)
Using B — C due to the transformation I,J — I'+ 1, J:

Proof:

designate “B":

[ I-1,J IJ
“B" — B
I-1,7J-1 I,J—-1]
change “B™:
[ I-1,J IJ
LI—I+4+1,J= B
I-1,7-1 LJ-1]
[ I,J I+1,J
—_
I,/ -1 I-!-I,J—1:|
the latter shows the location of “C” in the middle, that is

LJ

I+1,J
C
I,J-1

I+1,J-1

D-9



Subtract (pL')C from both sides of Eqn. (D.61)

AW(I +1.0) = (pU)C = [(60)C. 0 Anca = (2U)C + Z—SEIET (pga)
Qor
AW +1,7) - (pU)C = | = (pU)C, 0| ApAa+
CU1CAnAc
—_A_'f_ (D.63)

The terms on the right hand side of Eqn. (D.63) is equal to AE([,J) according to
Eqn. (D.60). Therefore

AW +1,7) = (pU)C = AE(I,J) (D.64)

or alternatively

AE(I,J)=AW(I+1,J)~ FLOW (D.63)
AW +1,J) = AMAX1(0.,, FLOW)AnQAe + DIFF (D.66)
in which
FLOW = (pU)C (D.67)
DIFF = _C_Z%?_ﬂﬁ (D.68)

from Figure D.12:
RHO1-UCI(I+1,J-1)+ RHO2.UCWI +1,J)

FLOW = 5 * (D.69)
in which
RHO1 = 0.5(RHO(I,J -1)+ RHO(I+1,J -1)) (D.70)
RHO?2 =, 0.5(RHO(I,J)+ RHO(I + 1,J)) '
DIFF = [CUNI+1,)+CUNI+1,J~-1)+CUYI,J-1)+CUL(I,N)|AnAc

AAE
(D.71)
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¢ Proof:

3 M
FLOW = plL : 1% (mass flux)

(FLOW)AREA) : ltj- (mass flow-rate)

To evaluate "FLOW" at point “C”
from Figure D.13:
(FLOW)c(On)(Ao) = RHOL-UCYI + 1,7 - 1) (%—q) (Ao)+

RHO2-UCI(I +1, J)(A )(A )

(FLOW)p = RHOL-UCUI+1.7-1) + RHO2- UCUI +1,)

2

“AN” and “AS” Inter-Relationship

CinAfAT
ANE = || = (pV)p, 0| AEAG +Z25352
ASy = [|(pV)s, 01| A6As | Cisdiae

Intermsof I & J

AN(ILT) = || = (pV)I, J), 0| AgAg  +ERU088e
AS(I,7) = [(pV NI, T ~ 1),0(|A6A0 4 CUSULI- .r-naw

from Eqn. (D.75) changing I,J — I,J + 1:

CUS(I, NAtAc
An

AS(1,J +1) = (VI 1), 0l 06 AT +

Subtract (pV)(I,J) from Eqgn. (D.76)

(D.72)

(D.73)

(D.76)

AS(I,J +1) = (pVXI,J) = |(oV)T, J), 0| Al Lo — (pV )L, )+

CUS(I, NAE Ao
An

or

AS(LJ +1) = (pV ), J) = || = (pVXI, 1), 0l A Lo+
CUS(I, NAEAT
An

D-11
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The terms on the right hand side of Eqn. (D.78) is equal to AN({.J) according to

Eqn. (D.73). Therefore

AS(ILT+ 1) = (pVYI.J) = AN, J)
or alternatively
AN, J)=AS(I.J +1)- FLOW
AS(I,J +1) = AMAX1(0., FLOW)AfAo 4+ DIFF
in which

FLOW = (pVY(I,J)
CUS(I,J)AE Ao

DIFF =
An

from Figure D.14:

FLOW = RHO2.-VC2(I,Jy+ RHO1-VC2(I,J +1)

2

in which
RHO1= 0.5(RHO(I,J)+ RHO(I,J + 1))
RHO2= 0.5(RHO(I,J -1)+ RHO(I,J))
CUS(I, YAt Ao

DIFF =
An

To Obtain AW (2, J)
Using

AW(I+1,J)= AMAX1(0., FLOW)AnQAo + DIFF
let I=1

AW(2,J)= AMAX1(0.,, FLOW)AnAc + DIFF

in which
FLOW = (pU)C
_ CU1CAnAg
DIFF = —f

from Figure D.15:
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(D.79)

(D.80)

(D.81)

(D.82)

(D.83)

(D.74)

(D.85)

(D.86)

(D.87)

(D.88)

(D.89)
(D.89)



RHO(1,J) - UCl1(2.J)+ RHO(1,J -1)- UC1{2.J - 1)

FLOW = 5 (D.91)
DIFF = CUI(I,J—I);—AC;D 11.7)Anhe (D.92)
To Obtain AE(L2,J}
Using
AE(L.J)= AW +1,J) - FLOW (D.93)
AW +1,J) = AMAX (0., FLOW)AnQo + DIFF (D.94)
let [ = L2
AE(L2,J) = AW(L1,J) - FLOW (D.95)
AW(L1,J) = AMAX1(0., FLOW)AnAe + DIFF (D.96)
in which
FLOW = (pU)C (D.97)
DIFF = CUlCanto (D.98)

TAY
from Figure D.16:
RHO(L1,J)-UCY(L1,J)+ RHO(L1,J -1) - UCL(L1,J - 1)

FLOW = >
(D.99)
DIFF = [CUL(L1,J) + CUL(L1,J — 1)]AnAc (D.100)
2A¢
To Obtain AS(I,3)
Using
AS(I, 7 +1)= AMAX1(0., FLOW)A{Ao + DIFF (D.101)
let J=2
AS(1,3) = AMAX1(0.,, FLOW)AEAo + DIFF (D.102)
in which
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FLOW = (pV)(I.J) = (pV)(I.2)

DIFF = GV NAEAs _ CUS(L 2)AlAs
AY An

from Figure D.17:

RHO1-VC2I,3) + RHO(I.1)- VC(I.2)

FLOW = >
in which
9
RHO1 = RHO(I,..)-:RHO(I._S)
5(1.9
DIFF = CUSNI,2)AEDa
An

To Obtain AN(I, M2)
Using
AN(I,J) = AS(I,J +1) - FLOW
AS(I.J+1)= AMAX1(0.,, FLOW)A(Ac + DIFF

let J = M2

AN(I,M2) = AS(I,M1) - FLOW

AS(I,M1)= AMAX1(0., FLOW)A(Ao + DIFF
in which

FLOW = (pV)(1,J) = (pV)(I,M2)

prrF = CUSULNAEAs _ CUS(L M2)AEAT

An An
from Figure D.18:

RHO1.VC2(I,M2) + RHO(I, M1) - VC(I, M1)

FLOW = :
in which
REO1 = RHOU, M3) 42- RHO(I, M2)
pIFF = CUSUI, M2)ALDo

JAY
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(D.103)

(D.104)

(D.103)

(D.IOG)

(D.107)

(D.108)

(D.109)

(D.110)

(D.111)

(D.112)

(D.113)

(D.114)

(D.115)

(D.116)



D.3 COEFFICIENTS FOR THE “W¥”

MOMENTUM EQUATION
(Refer to Figs. D.19 and D.20)

“AE"” and “AW" Inter-Relationship

ABg = ||~ (pV)e, 0B a + SleFgle D1n
AWE = (pU)w, 0]l AnAc + Sulnle (D10
In termsof I & J .
AE(L ) = = (pU)T+1),7),0&nl0 + SN ENSe
AW, J) =

cewi(T.J AAEA (D.118)
"(PU)(I, J),0||&nlo + __(.-_A'E)_'.T_".
from Eqn. (D.118) changing I,J — I +1,J

AW(I +1,7) = |(eU)TFT, ), 0] Andre + L L T)And0

At (D.119)
Subtract (pU)(I + 1, J) from both sides of Eqn. (D.119)
AW(I +1,7) — (pUYI+1,7) = [[(pUXT +1,7), 0| AnLo—
(pU)(_I 1)+ CWIUT+1 +A1éJ)AnAcr (D.120)
or
AW+ 1,0 - (pU)T+ 1,7} = | - (pUXNI +1,J),0|Anlo+
CWII+1,J)An A
Ag

(D.121)

The terms on the right hand side of Eqn. (D.121) is equal to AE(I,J) according to
Eqn. (D.118). Therefore

AW +1,0) - (pUYT +1,J) = AE(I,J)

(D.122)
or alternatively
AE(I,J)=AW(I +1,J)- FLOW (D.123)
AW(I+1,J) = AMAX1(0., FLOW)AnAo + DIFF (D.124)
in which



FLOW —(pL W +1.J) (D.125)
l(I FATAY, VAN, .
DIFF— A-f (D.126)
from Figure D.21:
FLOW =RHO1-UCI(I+1.J) (D.127)
in which
RHOI:RHO(I’J)+5HO(I+1'J) (D.128)
DIFF = (CWII, N+ CW1II +1,I)AnAc (D.129)
2AE
“ANE” and “ASE” Inter-Relationship
w Cy AfAr
ANE = = (pV)n, 0060 +EREAe (D130)
ASE = [(pV) 0| AEAg 4 CEAEAS '
Intermsof 1 & J

—_— CWs(I.J¥1)AfAe

AN(L,J) = || = (pV)L, TF 1), 00680 +Emgnes (D.131)
AS(L,0) = (oY XL, 7), 010680 4 ewstiacas -
n
‘from Eqn. (D.131) changing I,J — I, J + 1:
—_— Wa

AS(LT +1) = (V)L TFI), 0 e e + CVILI+ VAR 1q9)

An
Subtract {pV)(I,J + 1) from both sides of Eqn. (D.132)

AS(L T +1) = (V)L T+ 1) = (oV NI, T + 1), 00 At Ae ~ (VI T + 1)+
CW5(I, T+ 1)AbDa

A (D.133)
or
AS(L, T +1) = (pVYI, T +1) = || = (pV)(I, T +1),0| A6 Ao+
CWS5(I, JA : 1)AEAG (D.134)

The terms on the right hand side of Eqn. (D.134) is equal to AN(I,J) according to
Eqn. (D.131). Therefore

AS(I,J +1)— (pV)I, T+ 1) = AN(I,J) (D.135)
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or alternatively
AN, J) = AS(I,J 4+ 1)~ FLOW
AS(L, J+1) = AMAX1(0.,, FLOW)AéDo + DIFF
in which

FLOW = (pV)I,T+1)

CWs(I.J +1)A{Ae

DIFF =
An

from Figure D.22:

FLOW = RHO1-VC(I,J +1)

in which
rHOL = BHOU T} + é?HO(I.J +1)
pIFF = W5 J) + cm(r, J + 1))AtAs

To Obtain AW(2,J)

Using
AW +1,J) = AMAX1(0., FLOW)AnAo + DIFF
let I=1
AW (2,J) = AMAX1(0.,, FLOW)AnAg 4+ DIFF
in which

FLOW = (pU)T +1,7) = (pU)(2,J) = (oU)(1,J)
CWIT+1,7)AnAc _ CW1(Z,1)AnAo

DIFF = Y Y

_CWL1,7)AnAc
= AE

from Figure D.23:
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FLOW = RHOO..JY-UC12.J)

CWUl.NARAe

DIFF = Y;

To Obtaii AE(L2,J)}

Using
AE(I.NY= AW({I +1.J) - FLOW
AW +1.J) = AMAX1(0., FLOW)AnAe + DIFF
let I =L2
AE(L2, J) = AW(L1,J) - FLOW
AW(L1,J) = AMAX1(0., FLOW)AnQo + DIFF
in which

FLOW = (pU)XT +1,J) = (pU)(LT1,J) = (pU)(L1,J)
CW1{I +1,)AnAe _ CWYIT, J)AnAs

DIFF = Y ;

_ CWI(L1,J)AnAg
= Y,

from Figure D.24:

FLOW = RHO(L1,J) - UCI(L1,J)

CW1(L1, J)AnLo

DIFF = AE

To Obtain AS(I,2)

Using
AS(I,J +1)= AMAX1(0.,, FLOW)AtAo + DIFF
let J =1
AS(1,2) = AMAX1(0.JFLOW)A(Ae + DIFF
in which

L-18

(D147

(D.148)

(D.149)

(D.150)

(D.151)

(D.152)

(D.153)

(D.154)

(D.155)

(D.156)

(D.157)

(D.158)



FLOW = (pV)I.TF1) = (pV)(1,3) = (pV)(I.1)
DIFF = CW5(I.J+ 1)AéAe _ CWS(I,Q)AEAJ
Ay An
_ CWH(L.1)AEAS
- A

from Figure D.25:

-FLOW = RHO(I,1)-VC2(I,2)
CWi(I, 1)AED

DIFF = A

To Obtain AN(J, M2)

Using
AN(I,J)=AS(I,J +1)~ FLOW
AS(I,J +1) = AMAX1(0., FLOW)AfAo + DIFF
let J=M2
AN(I,M2) = AS(I,M1) - FLOW
AS(I,M1) = AMAX1(0.,, FLOW)AEf Ao + DIFF
in which

FLOW = (pV)(I,T+1) = (pV)(I, M1) = (pV (I, M1)

DIFF = WS+ VAfAe  CWS(I, M1)AEAT
An An

_ CWS5(I, M1)AtAs
_ A

from Figure D.26:

FLOW = RHO(I,M1). VC2(I, M1)
CW5(I, M)At Ao

DIFF = A
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D. 4 COEFFICIENTS FOR THE ENERGY EQUATION
(Refer to Figs. D.27 and D.28)

“4E” and “AW™ Inter-Relationship

AES = || = (p0)e, Ol AnAg + Ellne | o)
AWp = l(pl7) w’OHAnAa.i_ELW_A"_Ao (2.1
Intermsof [ & J .
AB(L D)= | = (eUYT+1).J),0[AnAe 4 SHUTHL N ande } (D.172)
- P Y
AWLI) = (oU)T, J),0) Antso + SHULA LA
from Eqn. (D.172) changing I, J — [ + 1, J, one can write
CHI(I+1,1)A
AW +1,7) = |(pU)TF L, J), 0]l Agae + HK +A£J) 189 (p.173)
Subtract (pU)(I + 1, J) from both sides of Eqn. (D.173)
AWI +1,0) - (pUYI +1,J) = ||(pU)(I+ J), 0| Ando—
(pPUNI+1,J)+ CHYI+1 E J)Anla (D.174)
or

AW+ L,T) = (pUYT+1,0) = || - (pU)T + 1, J), 0| AnAo+
CHYT+1,N)AnAe
7AY4

(D.175)

The terms on the right hand side of Eqn. (D.175) is equal to AE(I,J) according to
Eqn. (D.172). Therefore

AW +1,7) = (pU)T +1

J) = AE(L, J) (D.176)
or
AE(ILJY= AW +1,J) = (pUYT+1,7) (D.177)
or alternatively
AE(I,J) = AW(I +1,J]) — FLOW (D.178)
AW(I +1,J) = AMAX1(0., FLOW)AnAc + DIFF (D.179)
in which

D-20



FLOW = (pU)I+1.J) (D.180)
CHUI +1.J)Anke

DIFF = Y; (D.181)
from Figure D.20:
FLOW =RHQ1-UC1(I+1,J) (D.182)
in which
y I+1,
RHOL = RHO(I J)+fHO( +1,J) (D.183)
DIFF = (CHl(I,J)+Cf1(I+1,J))An&.o (D.184)
2AE
“AN” and “45" Inter-Relationship
A +cg,, AtAa
AJVP = " - (pv)m OHAfAG an (D.185)
ASE = l(pV)n 0l B8De | Chiotae -
n
Intermsof I & J
_— CH3(LJ+1) Ao
AN(LJ) = || = (pV)I,TF1), 0| Mg +SEERFHES (D.156)
AS(LI) = (VL) 01060 cHauDasse :
n
from Eqn. (D.186) changing I,J — I, J + 1:
AS(I,J +1) = |(pV){, J +1),0||AbAc+
CH3(I,J +1)AéAc (D.187)

An
Subtract (pV)(I,J + 1) from both sides of Eqn. (D.187)

AS(I,J +1) = (oYY, T+1) = [I(oV )L, T + 1), 0 AtAc — (pV (I, T + 1)+
CH3(I,7T + 1)At Ao

A (D.188)
or
AS(LT+ 1)~ (oW, T+1) = || = (pV)(I, T +1),0[lAL Ao+
CH3(I, J;; 1)AEA (D.189)

The terms on the right hand side of Eqn. (D.189) is equal to AN(I,J) according to
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Eqn. (D.186). Therefore

ASUI. T+ 1) = (pVNLT +1) = AN(I.J)
or alternatively
ANI.J)=4AS5(.J+1) - FLOW
AS(I.J+ 1) = AMAXY(0..FLOW)ALAo + DIFF
in which

FLOW = (pV)I,T+1)

CH3(I,J +1)AtAe
AN

DIFF =
from Figure D.30:

FLOW = RHO1-VC2(I,J +1)

in which
REOL = RHO(I,J}+ r)RHO(I,J +1)
DIFF = ([CH3(I,J)+ CH3(I,J + 1)]AlAc
24n
To Obtain AW(2,J)
Using
AW +1,J)= AMAX1(0.,, FLOW)AnAc + DIFF
let =1
AW(2,]) = AMAX1(0.,FLOW)}AnAo + DIFF
in which
FLOW = (pU)TF1.J) = (pU)(2,J) = (pU)(1,J)
_CHYI+1,J)AnAe _ CHI(2,J)Anla
DIFF = A = ;
_ CHI(1,J)AnAg
= Y
from Figure D.31:
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FLOW = RHO(1.J) - UC1(2. J)

CHI(1, HAnAco
Ag

DIFF =

To Obtain AE(L2,J)

Using
AE(L.J)=AW({I +1,J) - FLOW
AW +1,J) = AMAXY0., FLOW)AnAc + DIFF
let I =1L2
AE(L2,J) = AW(L1,J) - FLOW
AW(LL,J) = AMAX1(0., FLOW)An&he + DIFF
in which

FLOW = (pUNT +1,J) = (pU)(L1,J) = (pU)(L1, )
CHYT+T,1AnAo _ CHYIL, J)AnAc

DIFF = Y; IY;

_ CHYLL,J)AnAc
= e

from Figure D.32:

FLOW = RHO(L1,J)-UC1(L1,J)

CHI(L1,J)AnAc

DIFF = At

To Obtain AS5(I,2)

Using
AS(I,J +1)y= AMAXY0.,FLOW)AfAo + DIFF
let J=1
AS(1,2) = AMAX1(0., FLOW)AEAe + DIFF
in which
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FLOW = (pV)1.J +1) = (pV') 1.2) = (pV)I.1)

CH3(I.J+1)Alhe  CH3(1.3)AEAq
An B An

_ CH3(1.1)AtAc

= 2

DIFF =

from Figure D.33:

FLOW = RHO(I,1)- VC(I,2)
CH3(I.1)AEOa

DIFF = A
To Obtain AN(I. M2)
Using
AN(I,J)=ASI,J+1)- FLOW
let J = M2
AN(I,M2)= AS(I,M1)- FLOW
in which

FLOW = (pV)(I,J + 1) = (pV)(I, M1) = (pV)(I, M1)
CH3(I,J + 1)AtAos _ CH3(I,M1)AfAc
An B An
_ CH3(I,M1)AtAa

= A

DIFF =

from Figure D.34:

FLOW = RHO(I,M1)- VC2(I, M1)
CH3(I, M1)AEAa

DIFF = A
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APPENDIX E
DERIVATION OF DISCRETIZED
BOUNDARY CONDITIONS FOR

REACTANT CONTINUITY EQUATION



or

but

therefore

or

from which

and

TRANSFORMATION RELATIONS FOR
" DIRECTIONAL DERIVATIVES

_a_.i ('qu Bfe)

an|, - IA
a_f (afé = Bfa)
on e  JJa

onl, = T

onle Jva

TRANSFORMATION OF BOUNDARY-CONDITIONS

E-2

af| _ 1 g_ﬁ ]
73

of| 1 [af ﬂaf

on ﬂ=wa"_ anu\/'YwaM Ywall 617 wall wall = ET:
om
- =0
on n=wall
1 " om _3 am ] iy
Jwa" Tuall uet &r) wall wall a& wall
om om
=0
617 vall ﬁwau a£ -
om ﬂwau om
n wall 7wuu af wall
om [ iy om
on G—wall Jualtv/@wall Fuall Hg af wall wall an

wall]

(E1)

(E.2)

(E.5)

(E.6)

(E.7)

(E.8)

(E.9)

wall] (E_.‘10)



but

om

3

E=wall

therefore

1 [a om
anﬂ\/awall wall aE

or

Quall 2| = Buall 3=
wa af wall ﬂwa

from which

QE‘_ ﬂwnll
o€ -

(Refer to Figs. E.1 and E.2)

DERIVATION OF DISCRETIZATION EQUATION

wall Cwall Br,

am
- ﬂwau )

o
7 lwall

wall

om
=0
aT] lwall

om

wall

FOR mp
@ J = M1 BOUNDARY

(Typical Derivation)

(Refer to Fig. E.3)
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%(pUm)cAnAa _ %(,oUm)wAnAcr +(pVm)pALAa—

1 1
(pVm)s8§A0 + 5(pWm)p.p OO ~ S(pWm)pu ALy =

; (c;"a’") Anto - (c;"a"‘) Anbo + 3 (cz %’") Anlo—

EPR %),
% (c;" %) Anbo + (c;‘ %) LU ( —) AtDo+
) om 1
(c:* a—’;)PAgAa - (C‘I"'a?),am" 5SE LA A (E.16)

LHS = %(pUm),AnAa - %(pUm)wAnAa +(pVm)pAbLo—

(pVm),AéDo + %(Pwm)P.DAEA’? - %(Pwm)nuﬁf&ﬂ (E.17)

LHS = %(pU)eAnAam, - %(pU)wAnAamw +(pV)pAEATmp—

1 1
(pV),OAEATm, + E(pW)p,pA{Aqmp - E(PW)P,UAEAU"‘P,U (E.18)

LES = 2 {|(p0)eollAnBomp = || = (p0)eollanome} -
2 {l(eWwollAntommw ~ || - (AV)wollanAomp} +
(pV)pAEAomp — {|(pV)s0]| Al Doms —
| = (0V)uall A6omP) + 2(oW)p,0 AL AT~

1
5(PW)pyLiAnmpy (E.19)



LHS = (s0)eollAntomp = £ = (o) ollAn Aoz
N6V Ywgll AnAomw + 21| = (6w ol Andom
(pV)pLEDomp = |[(pV)s0|| AELOM s+
| = (pV)sollDéAomp + %(pW) p.oAEARMp—

1
E(PW)P.UAEA?]T"P,U

Write the continuity equation:

0 a a
aePU)+ 5;;(PV) + 55 (PW) =0

-/UD ,/,P ./.: BEE(PU)dEdnda+LD ]: ]f %(Pv)dndfda_*.
/. P /,,, /UD ;;?;(pw)dadgd,, =0

> [(U)e = (pV)a] D10 + [(6V)p = (4V)u] AEDT+

S (W)ro = (oW)r0] A6 AR =0

1 1
3(P)elnlo — S(pU)u Bnla + (pV) P AL AT

(PV)sBEAT + 3 (oW)p0 ALY = 2(oW )y ALY = 0

Multiply by —~mp
1
2 i
(BV)s e Bomp — 2(pW)r,0ODImP + 5(4W)py Abmp = 0

—-%(pU),Ar;Aa'mp + =(pU)wAnlAamp — (pV)pALAomp+

E-5

(E.20)

(E.21)

(E.22)

(E.23)

(E.24)

(E.25)



LHS = S |(oV)esllAntomp - 2| = (o0 )eol AnAomp—
2eD)uollAnaomu + 31~ (pU)usl Andamp+
(pV)pDéDamp — [[(pV)s0|| AL Aoms+
| = (eV)soll A ATmp + 5(6W)p, DA Ammp—
%(PW)P.UAfA’?mP,U - %(PU)eAﬂAfme + %(PU)wATIAGmP—
(oV)PAEATmp + (pV)sBEDTmP ~ (oW )p,0 AEAqmp-+

%(pW)p,UAfAnmp (E.26)

1 1
LHS = 7| - (oU)e ol Snomp = 2 = (o0 )eoll Andromz—
1 1
SV )ualAnAamw + 51(PV)u ol Andomp—
IV )eallAEAoms + (oY )soll A Aomp+

1 1
5(PW)puiilnme — S(pW)pulbiinmpy (E.27)

om 8
CrAEAo ('a?) |~ CRatte (a"‘) E
m om m Qr_rf_
ChAtAs (a_f)p — Ol AtAs ( % ) +
% S AL AnAa (E.28)



)P =1 (%_’;‘) P (£:29)

%62), (E.30)

(&).= %= (%). (Ba)

RHS = %c;‘;aq/_\.a (

%C;:A:;Aa&

P
AV (E.32)

Me — My,
Cﬂ:AfAO’T -—

%L[S’?]AV (E.33)

E-7



Anle

_ Ar,:Aa 1 nBnde 1 .,
RHS 2 Ie AE - CIG_Af mp Cl"’_—-—AE mp+
AnAa AnAa ﬂ, AnAa ﬁ,
-C w +3 C e - _C e -
WTRE VT IRTAL 4P 2 TAE AT

LnAc By 1 ..m Onlc ﬂw ﬁp

Re yeme + GORhg somw + CfplsoEm
ANTAY AfAo

Cﬁ:Aa’%mw—Ca‘ 21" mP+03. gq ms+

C2w

CipAom, — CipAom, — C[,Aom,+

ClAom,, + %L[S‘?]AV (E.34)

1 1
{-II = (PU)eol|Bndo + S [(pU)woliAndo + [[(pV)s 0| AE AT+
1 m Onho l m Anfa
(PW)PUAfAU'i' Cle AE Clw AE +
1 . ,8nlAc B Anla By m DD _
OB R e TR R e+ ORI fmy =
1 1 mwBnhap. 1..40700
{31 G0l anso + Jop =222 le ) 2on 2022 L sy

l l Anleo By AnAo
(GIo0wallanto + 2op, 2282 5 | 2op 2020 }mw+

A
C: = U} ms + (PW)PUAﬁﬁnmPu+

{ I(eV)upllOEAG + C.
(CSPAo'ﬁP + CpAc)m, - my) + CHA0(Mw — mse) + EL[SP AV (E.35)

E-8



om —0

on n=wall
on am
on =wall -—\ =0
—e on f=wall
z
Fig. E.1 Boundary condition on the physical plane
7 . _aﬂ _ ﬂwa!l a_rn'_
+ M lwart  Twett 0§ | yan
=M1
ﬂwau a_m 2111_ = ﬁwa" _aln_
Quwall O |yan O (ot Qwan On
am — Buat Im
1=1 31] wall Ywall aE wall *5

Fig. E.2 Boundary condition on the computational plane
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Figure E.3
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APPENDIX F
DERIVATION OF RELATIONS OF PRESSURE-VELOCITY
COUPLING IN TRANSVERSE DIRECTION



F.

1

DERIVATION OF PRESSURE-CORRECTION EQUATIONS
’

Consider the continuity equation in transformed plane:

a(pU) |, 8(pV) | 8(sW)
o€ + dn + 0o

integrate this equation over an interior control-volume:

[ [ [ awr [ [ [P

f / / a(pW)d odedn = 0 (F.

which is thereby discretized:

{(eU)e = (pU)w]Bnlro + [(pV)n = (pV)s] AL AT+

2

=0 (F.1)

)

[(pW)D — (pW)y]|DELR =0 (F.3)



dividing by AV = A§AnQAo one obtains:

(pU)e = (PU)w |, (pV)n = (pV)s | (oWl = (pW)u _
AE + A + ~ =0 (F.4)

or alternatively:

peUe — pulUy + PaVn — psVs + ppWp — puWy _

AE An Ao =0 (£.5)
Now consider the contravariant velocities relations
U = uy, —vz,
V = vz¢—uye } (F.6)
for which the starred-velocities:
U* = u'y,—v'z, -
V* = vz —u'ye } (F.7)
or by difference
U-U* =(@-u"y,— (v-1")z,
V-V" =@—=v")ze— (u—u")ye (£8)
or
U =U*+(u—-u"yy— (v—2v*)zy, (F9)
V =V*+(v—v")ze— (u—u")ye '
but
u—u® =u
syl (F.10)
Eqn. (F.10) is for the velocity corrections of u and v. Then
U=U*+ulyy, —v'zy
V=V*+v'ze —u'ye (F.11)

Eqn. (F.11) is the contravariant-velocities in termns of starred-quantities and velocity-

corrections, from which

(F.12)

Ue = U]  +uUYne — Ve
Up = UJ +uy¥nw — VuTow



and

Vn = Vn. +v:1$£n et u:‘yen }
Vi=V) 4T — uiyes

Substituting the latter discrete values of contravariant-velocities in Eqn. (F.5):

1
(peUs + Pcu’que - p,v:.r,,e - Uy Pwu:yqu + Pw'”:quw)&."f'

. 1
(PnVis + PrtnZen — Prtinlen = A5V — povyes + Pauiyea)A—n+

1
(poWp - PUWU)E =0

or alternatively

Pelielne _ PeVeTre _ Pty Ynw + Pwviuxnw_t_
TAYS o8 Ag AN
PnUnTen _ Polinlen _ PaVaTes | PatisVes
An An An An
pU; — puls; + onVa — 0,V + poWp — puWy =0
AE An Ao
let
pUe = puUy, A psVs + poWp - pyWy _ o
Aé An Do
then
Pelie¥ne _ PeVeTne _ PuliyYnuw + Pw”:uznw+
JaVS Ag AV AE

PrVpZen _ PnUnlen _ PsVpTés + Psis¥es L o _ g

An An An An

(F.13)

(F.14)

(F.15)

(F.16)

(F.17)

One should obtain the relations for the velocity-corrections (i. e., ul, vl, ul,, vl,, uf,

[

Uns

uf, v}) to substitute in Eqn. (F.17).



F. 1.1 List of Discretization Equations for Transverse Velocity

Components (ue’ Uey, Up, Un, Uy, Uy, Uy, v-!)

APMue =) Al iy, + Be-

‘Pg - P Pn + Pne — Ps — Psg
{ = - 441 ”“}AV

APlv, =Y Al vinsy, + BE—

Pn+Png—Ps—Psg_ Pg—Pp

AP,‘,‘un = ZAE‘nb)nu(nb).. + B:_
{PNE-!'PE“PW—PNWyM PN PP }AV

aNE
APJvn =3 Al vnpy, + Bo-
Py —Pp Png + Pp — Pw — Pyw }AV
Ign —
An :¥AVS
.4.P$uw = ZA(nb)wu("b)w + Bu—
Pp — Py Py + Pyw — Pg — Pswy
i L L4 v
{ ag ™o 44n Ve f £
APluy, = ZAFM)WU(M)W + B, -
P, P — Pg - P. Pp - Pw
{ N + NV:;A,-, s = PsW 4, - P «":qw}/—\V

APPu, =) Ay u(nyy, + Bi-

Pp+ Psg—Pw—Psw  Pp—Ps } v
{ T Vo m TRy Ve[ 8

AP:”. = ZAE’ub) U(nb), + B:_

Pp Ps PE+PSE_PW_P3W }AV
{ Ay e 40¢ i

(F.19)

(F.20)

(F.24)

(F.25)



F. 1. 2 Derivation of Relations for Velocity-Corrections

Velocity-Correction u,

AP,"'ue = EAE‘“)GU("(,). + B:—-

Pg — Pp Py + Pne — Ps— Psg 5
{ AE y’lc 4AT’ yfe } AV (F"'G)

APe“u: = Z Azl“b)cu(-"b)c + B:—

Pg - Pp Py + Pyg — Ps — Psp -
{ A€ ng 4Af’ yfc AV (F...f)
Subtract: Egn. (F.26) — Egn (F.27)

AP} lu, — u;] = ZAE'nb).“(nb). - Z: Alnb) Yinby, —
{(PE —Pp)—(Pp—Pp)
Yne —

JAYS
Py -PW Y+ (Pyg~Pup)—(Ps— PS)—(Psg — Pa
(Py — Py) + (PnE Ni)A (Ps — P3) - (Psg SE)y&}/_\.V (F.28)
7
let
D Ay inbre = 2 Abnt), Uins), X 0 (F.29)
then
. P. - p! P, 4+ P, —P.— P!
AV [ PL - P} Pl + Py — PL — Pt
ul = - 55 { EA!E Pye =N N%Aq 5 ssyee} (F.31)



Velocity-Correction v}

.4P:'U¢ = z Agnb).v(nb)e <+ B:_

Py + Pyg — Ps— Psg Pg — Pp o
{ e 2 ~—pp x,,,} AV (F.32)
APV, =) Afupy, Uan, + Bi-
Py+Pyg—Ps—Psg ~ Pp—Pp }
{ vy Tge IY; Tpe ¢ AV (F.33)
Subtract: Egn. (F.32) — Eqn (F.33)
AP: [Ue - U:.] = Z A?nb). Vinb), — Z A?nb).v(.nb). -
(Pny = Py} + (Pne — Pyg) — (Ps — Pg) - (Pse — P§g)
$€¢—
4An
(PE“PE)—(PP-PP)JT”C AV (F34)
AL
let
2 Al ) = D Ay, Vany, ¥ 0 (F.35)
then
v P+ Pyp—P.— P! PL — P!
A‘Pe ”’e = —AV{ N NiAn S SE:[:ec —- _.EFP&“} (F36)
AV (P} + Pyg — Pt - P P, —~ P}
' Nt ing=Ps=Psp  Fp—Fp .



Velocity-Correction u),

APju, = Z .4?,‘6)“,11(“5}“ + B, —

Pp — Py Py + Pyw — Ps — Psw
{ i L Ve LAV (F33)
APGuy = ) | Al Uine + Bam
Pp - Py Py + Pyw — Ps — Psy,

Subtract: Eqn. (F.38) — Egn (F.39)

APSluw —ul] = D Ay Uinby — O Alnb)u Bintye —
{(PP — Pp)—(Pw - Pyy)

Af yﬂw -
(Pn = PR) + (Pvw — PNW4)/_\_17(PS = P§) — (Psw — Psw) }AV (F.40)
let
D Alabybnte = D Alnty, Uint), =0 (F.41)
then
. P, - P, P}, + Pl — P — P!
APy = —/_\.V{ ey, s S“’yew} (F.42)
AV (PL- P} Pl + P, ~ PL — P!
.ulw =_AP':{ PA£ Wynw I N NﬁAn s SWyéw} (F.43)



Velocity-Correction v!,

APLu, = Z Afnp), Vind), + Bu-
Py + Pyw — Ps— Pswy Pp — Py
{ 4An TewT g T BV
APJvy, =) Aty Van, + Bi—
Py + Pyw — P§ — Psw Pp - Py
{ 447 Tewm TRg omep oY

Subtract: Egn. (F.44) — Eqn {F.45)

APjlve =) = > Alnsy Unbe = D Abns) Unty,, =
{(PN - Py)+ (Pvw — PRw) — (Ps — P§) — (Psw ~ P§w)m6w_
4y

(Pp — P3) = (Pw — Pjy)
; :c,,w} AV

let
Y Alnya Untr = 2 Alaby,Vnt), ~ 0
then
P}y + Pyw — P — P! Pp—P|
vl o NTENw — Fs — Fow _fp—Fy
APlv, = -AV { 4h7 Tew Y
o =BV [Py+Pyw—Ps—Pew _ FPp—Py
w = T 4py 4An f A€

(F.44)

(F.45)

(F.46)

(F.46a)

a,-,,.,,} (F.47)

z,,,,,} (F.48)



Velocity-Correction ul,

APjup = Z -4?nb)..u(nb)n + Bp—

Pg + Pyg — Pw — Pyw Py — Pp
_w—Tp v
{ VY, Yan A7 Yen A
APju; = z :A?nb),,“fnb),. + Bp—
Pe+Pypg—Py—Phw _Pv—Pp
{ 4AE Ynn AT] Yen AV

Subtract: Eqn. (F.49) — Egn (F.50)

APRlup —up] = ZA?nb),."(nb)n - z Al Unb)e —
(Pe — P;) + (Pne — Php) — (Pw = Pyy) — (Pvw — PRw)
Ygn—
VY
(Pn — Py) —(Pp— Pp)

let
Y Aty binbin = D Afnb), Uinty, 0
then
PL + Py — Pl — P P, — P!
u b o_ E NE w NW N _-P
AP, = AV{ vy Y = A
o =BV [Pet+Pip—Py—Phw, = _Ph—Pp
T APy 40 " An

F-10

(F.19)

(F.50)

(F.51)

(F.52)

ygn} (F.53)

Yen } (F.54)



Velocity-Correction v/,

.ﬂlP:v,._ = z A‘E’nb)n V(nb)n + Br‘:_
{PN —Pp__Pe+Pyg—Pw-Pyw I”"} AV

An tn YAV
AP¥un =" Al Uiay., + Bi~

PR—-Pp _Pe+Pip—Py-Phy
Ag & 4AE

J:,,,,} AV

Subtract: Eqn. (F.55) — Eqn (F.56)

AP:[U,, - U;] = ZAE’nb)..”(nb)n - ZAFnb),.v(.nb),. -
((BucBi)o(eopi),
| An &
" (Pe—P§)+(Pne — Pyg) — (Pw — Py) — (Pnw — Phw)
4AE

:r:,.m} AV

let

> Alusy, Unbya — > Ababya Vinty, %0

then

v Py~Pp  Pp+Pyp—Py—-Piy
, __AV (Py—Ph _Pi+Phg—Ply—Piy }
n=— Zen — Inn
AP | Aq 4AE

v

F-11

(F.56)

(F.57)

(F.58)

(F.59)

(#.60)



Velocity-Correction u|,

APlu, = Z Alnsy, Uinb), + By —
Pg 4 Psp — Py — Psw Pp — Pg
{ vY: e =Ry vep Y
APruy =) Al ulny, + Bi—
{P;:;+P@—P;V—P§w Py~ P3

Subtract: Egn. (F.61) — Egn (F.62)

AP}y — w3l = 3 Al Utnt), = D Absy, Uins), —
(Pg = Pg) +(Psg — Psg) = (Pw — Py ) = (Psw — Psw)
VY Un

Pp — P3) — (Ps — P}
(Pp P)An( s S)ye,}AV

3

let

Z Alns), Y(nd), — z A(nb), Y(ns), =0

then
. ' + P..— P!, — P! p. — p!
AP = —AV{ E SE4A£W LA PAn S
u'=—AV P}_;+P§E—P£V—P§Wy _1_3'2_-_5_5_
d APy 4AE e An

F-12

)
)

(F.61)

(F.62)

(F63)

(F.64)

(F.65)

(F.66)



Velocity-Correction v}

APjv, = Z Afnpy, v(ny, + By —
Pp — Pg Pg + Psg — Py — Psw
{ Ay & Y fue g BV
APPU; =) Ay, Vine), + BY -
Pp — Pg Pg + Psp — Py — Psw
{ By ¢ Y; it

Subtract: Egn. (F.67) — Eqn (F.68)

AP:[UJ - v:] = z A?ﬂb).v(“b)l - Z A?nb),vfnb), -
(Pp—Pp)—(Ps—Pg)
An Tes

(P — Pg) + (Psg — Pgg) — (Pw — Py) — (Psw — Pgw)
vy, :c,,,} AV

let
Y Abus) Vinb), = D Aluby, Uinty, =0
then
P, — P! PL 4 PL. — P, — P!
APJv, = -AV {—Ezn—if-ea -=£ SE4AEW Swzn.}
ot = BV [Pp—Ps ~ Pp+Psp—Py—Poy
T AR o ¢ 4A¢ "

F-13

(F.67)

(F.08)

(F.69)

(F.70)

(F.71)

(F.72)



F. 1.3 Summary of Relations for Velocity Corrections

G AV (PeoPh, PitPig-Pic P
; -lP“ e 4An te
o= — PN+PNE-PS P.'ssa_. __P.'E_Pi'-"m
Ve 4P" 4Ar; fe AL T
= — Pp _Py+Pyw—Ps— Péwy
tw AP“ Ag 4Aq v
o = — Py + Pyw — Pg — Péwx _PL—Pv:vI
Y 4Pv 4An fw A{ nw
Un AP" An 4NE on
o = — PE+PNE_PW—PNWy _Py- J'Dy
n AP“ m Ang %M
o = — {P Pg PE+PSE—PW_PSW
Y 4P" iy 4NE ne
o = — Pg+ Psp — PW""PSWy _P?—P'sy
s AP;* 4AE ne An Ot

F. 1.4 Substitution of Velocity-Corrections in Eqn. (F.17)

_ P DEAN ATy, ;': PN + Pyg— Ps - PSE +
APuAE AE 4A7]
pe DDAy, [ Py + Php— Pt — P_’ggz } +
APYAE 4/\n fe ™
puDEANDoypw [Pp— Py Py + Pyw — Ps PSW _
AP3AE A 44n Yo
puléAnAozyy, | Py + Phw — P& — Péwz _Pp—-Py _
AP3 A 4An T TTag T
PnAEAnAamEn P PE + PNE - PW - PNW +
APYAq An 4Ag e
pndéAnAcyen [ Pp + PNE - Pw —Pyw, _Pn—Pp +
4P“A1? y"lﬂ An yEﬂ
psDEANAozey [ Ph P’ PE + Psg - Ply — Psw ~
APYAn Aq VY Fna
P,AEAT]AUQ’E, PE+PSE—PW—PSWy -.P;:—'P_,g
APPAn " An

F-14

ye,} + 8 =0(F81)



which can be simplified:

e Py — Pyl + 5T 4 Pl L Pl
PeEOSITC [Py + Plyg - Py~ Phsl - LG0T (P~ Pl
B Vi 7y — iy — oS 4 Pl P~ Py~
uD R (5 4 Pl — Py~ Phy] + 2200202 P - Pl -
B TPl — Ph + 225250 Py 4 P — Pl Pl
e en Py + Plyp = Ply = Phow] - -—-——-”“j;jgg?" [Pk - PhJ+
b (Pl — Py - BETS e oy 4 L B, ~ Pl -
ELTUes Py 4 Pl = Pl Pyl + RS e P, — P+ 5 = 0(Fis2)

F-15



and more simplification:

pr | P Onboyl,  plnbozd,  pulnloyl,  pulnbozi,
Pl APsAE APYNE APsOE AP3AE
pnldEDTE,  palEATYE,  psAEDazE,  pAEAoYE |
AP Ap APtAn APrAn AP*An | T
' PEA’?Aayge PeA’TAaJ"?je _ PrlATTynTen _ PrldoYgalen
Bl APsAt AP A 4 APy 4AP3
PsAO'xr,!aIEa p,Aaymyea +P! _PeAayncy& _ Pe Aaxqexcc
4APY 4AP} N 4APY 4APY
Pwaaynwaw Pon'xanEw Pn AEA"-"’%:; pﬂA&Aaygn
4APY 4APY APy Ay APsAnp
P! PeDNOYnelce . PeDTTh.Tee _ PulTYnuwiew _ Puw ACT Ty
S| 44P: 4APY 4APY 4APY
psDEDoa,  p.AEATYE, P pwlinboyl, pulnlozi,
AP?An AP®An W1 AP:AE APZAE
pnAUmErlznn PnAayfnynn paAqusméa paAayqayEa
2APY 2APs  4Ap*  4Ap» | T
P! _PeAU.'s'Eeyne _ PeloTeeThe _ PrnldOTynTen _ PrnATYpnYen
NE [T py 14P? 4APY zaps | T
P! PeAG'UEeyne PeA‘”"Eexne p,Acra:,,,a:g, PaAGynayés
SE |~ 4AP» 4APY APy 4Ap: | T
p! PuwlAoYewYnw , PuldOTeuwTaw | PrlOTynTen | PrlTYgnYen
NW | T 4AP: 4AP? 1AP? sapy | T
P! _Pwaayswyuw _ PwAamé'wznw _ p,Aa:n,,,zE, _ plAaymyEa +
sw 4AP 4AP? 4APy 4APy
puly — peU, + psVs —pnVy + puWu — ppWp
Af An Ao

F-16

(F.83)



F. 1.5 Final Results

A= pelAnhoyl,  plnbozd,  puAnloyl,  pulnboz?,
P="APsAe APYAE APSAE APYAE
[ w w
pnlEAayE,  palElozl,  pLEDgzE,  p,AbAayl, Fsa)
APS Ay APsAq API A7 APrng S
Ap = PcAnaay%e PGAT]A"I%c _ PnAOTEann _ PnAUyEnynn+
CET T 4Pune APYAE 4APY 4APy
[ n
PalAOTesZns | PalOYeslns _
4AP? 4APs (F.89)
AN = _PeNTYeeYne  PeDITeeTne |, PulIYeuwlYnw | PuldITeuTqw
4APY 4APY 3AP: 1APY
ANEAgz? AtAoy?
pﬂ € eﬂ Pn E ayfﬂ (F.SG)
AP!An APuAn
Ac = Per'yEeyne Peaazsexne _ Pwaayswynw _ Pwaazswmnw
s 4APs 4AP? 4APy 4APY
psbEDezl,  pAEATYE, (F87)
APrAnp AP¥An
duw = PwATIAO’y?,w PwATIAU-"-‘%w Pnaaxfnzqn Pnaayfnynn _
W T TTAPsAL APy A€ 4APY 4APy
PaAUmEJIqJ _ Psaayiayqa
4APY 4AP} (F-58)
_ _Peaazéezne _ PeAay&yne _ PnAazenInn _ PnAUyEnynn
Ane = 4APY 4APs 4APY 4APy (£:89)
pgAaxfczﬂe peAayEque p.AO‘:CE..Tn. p.AO‘ys,yn,
Ase = 4APY 4APH 4APY 4APs (F.90)
- PulITeuZyu | PudIYeuYrw | PrAITenZun | PuBoYentun (g,
Anw == 1py 4APy 4APY aps (9L
_ _Pon'meznw - PwAayswynw _ PlAazéazm _ Plaay&ym F.92
Asw = 4APy 1APY 4APY 4APS (F92)
Aij; = AEPE; + ANP;V + AwP{JV + ASP.’S + ANBPf'VE + Asgpgg'i'
AnwPhw + AswPsw + B (F.93)
in which

AL

An
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also

Ap=Ap+ AN +Aw + As

and

ANE+ Ase+ Anw + Asw =0

Notes

1. Taking “p” = constant in the above formulations (which can be consequently

dropped from the coefficients and the “B” term) showed to be effective in the

convergence of the problem.

o

The values of A = Ay =1 for simplicity.

Ao Aoyl, Dozl Aoyl Aaz?,w_l_
P="4ps T APy T AP APy
Aoyd, Doz}, Aozl Acyl,
APy APy APy APy
Ap = Aayfzje AU-”-‘%.-. _ Aazfn&'nn _ Adyfnyﬂn_i_
E="4Ps T APy 4APY 4APY
Aa-"fa Tna Aay&a Yna
4APY 4AP
Ay = _ Acyeeyne _ DoTeege | DOYewlnw + AOTeywZaw
4AP» 4APY 4AP: 4APY
Aoz}, Doy,
APr T APy
ST T4APs 4APY 4AP3 4APY
Aozl Aoyl
APy AP}

Aw = AO‘y_:E A"-“?;w + Ao'zt':mﬂ:r;ﬂ + Aayﬁﬂyrm _
W= 4Py T APy 4APY 4APy
Aczeszy, _ AoYeatyns
4APY 4APY

F - 18
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in which

also

and

Avp = _Aaxfczﬂe _ Aay&yne Aazfnl'nn Aayfnynn
- ‘ — -— —

4AFY 44pPy 4APy 44Py
Asg = DoZgeTne | DOYeeYne | DITesTys | DTYealns
$APy T TaAPy T T4APy | 4APy
Anw = DoTeywZaw , DoYewlnw . DOZegnTon | AOYenlnn
44APY 4APY 4APY 4APy
Asw = _DozewTrw _ Aoyewynw  A0ZesTys  ATYeslna
4APY 4APY 4APY 4APY

ApPp = AgPr + AnPy + AwPy + AgPs+ AnyePhg+

AsgPsg + ANwPyw + AswPsw + B

(Wy - Wp)

B = (U3 - U+ (V= Vi) + e

Ap=Ap+ AN+ Aw + As

Ang+ Ase + Anw + Asw =0

F. 1.6 Special case: Maliska et, al.4¢

This case is valid for Newtonian fluids.

Assumptions:

1) Constant “p”

2)

Al =0n=1

F-19
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(F.103)
(F.104)

(F.105)

(F.106)

(F.107)

(F.108)

(F.109)

(F.110)



AP* = APY =4,
APE = AP! =
APY = APY = 4, (F.111)
n n n
AP* = APY = A,
p Doyl, . Aoz?, N Doy?,  Dozd, Aozl
Pl A, A, Ay Ay A,
Aoyz, A_cr:ri, N Layl, _ pt Doy, Dozl _
An A, 14, A,
AoZynZen  A0Ynnyen  DoTgsTes Aa’y,,,yg,] + P! _Doypeyee
44, a4, 44, 44, a4,
AO‘:L',,,:B& Aaynwyéw + AoZowZew + Aam%n + Adygn +
44, 44, 4A, An An
p! Acypeyee | Dozp.ze, _ AcYpulew  DOTrulew /_\az"e’, N
S 44, 44, 44, 44, A,
Aaygs + P! Aazfﬂzﬂn Aay&ynn - Aayn.lyfs _ Aazqszfs_l_
A, w1 44, 44, 44, 44,
Doyt + Dozl + P [_ AoYeeyne DoTeeTye 5 AU:B',“:BE“_
Aw Ay NE 44, 44, 44,
AcYyalen Acye.y Aoze.z Dozpszeys  DoYnaYes
P! eYne eTne nsT¢ 20
4, | T5E|Taa, 2A, T 44, T 4, |7
P' Adyequw Aamewznw Ao‘znann AaynnyEn] +
NW 1 a4, 44, 44, 44,
p! _Aayfwynw _ AozewThw _ AoTpzes  Doynsyes +
SE 44, 44, 44, 44,
Wy -W
(U =U) +(Vr=VI) + Wy — Wp) (F.112)
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Using

Bo(ype +20) | Aolype + ) | Dolede +if) | Aolz, +E,)
A, Au 4n 4,

P Aa(yge + I%!) Ao(zynTen + ynnysn) AO‘(:L’,,,:EE, + Ynsles)
E - + +
Ae 44, 44,

Pp

P _Aa(yﬂcyfe + mncmfe) + Aa(ynwyﬁw + 3qw3£w) + AO’(Ign + ygn) +
N 4Ae 4Aw An

P! &c(yney& + xﬂemse) _ Aa(ynwaw + 37nw$Ew) + Acr(:r:%, + yg,) +
S 4A¢ 4Aw AO

' AU(I?W, + y%w) AU(IEnznn + yEnynn) AU(:B,,,IQ, + YnsVes)
Py, + - +

Ay 4A, 44,
p! _Ao(TeeTne + YeeYne)  AT(TynTgn + YnnYen) +
NE 44, 44,
P! Do (TeeTne + Yeelne) | Do(TysTes + Ynales)
SE a4, * 44, *
P! Ao (TewTow + Yewlnw) | Do(ZymTen + YonYen)
NW v + 1A, +
Pl |- Ao(TewTow + YewlYnw) _ DI(ZnsTes + Ynales) +
SE 44, 44,
Wy - W,
(UL =U) + (Ve -V + (”A—a"l (F.113)
Using
+yl=a (F.114)
TeTn+ Yeyy = B (F.115)
TE+yi=1 (F.116)
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[ﬁaa, + iw + %‘ru + ia'y,] Pb =
[ﬁ—:’a. - ﬁﬁﬂn + 20| Pyt :- Bt b+ ﬁ—:%] -
ﬁ:: ﬂw 7 7.] P+ :‘j—:aw + ff—ﬂn - —éiﬂ..] Ply+
[—fTiﬂe - mﬁn] Pyp+ :%&ﬁ 4A, =B, | Psp+
fTiﬁ“’ + f—;r:ﬁn] Pyw + :—ﬁ—zﬁw 1A, ﬂ,] Psw+
(U =UD)+ (V7 -V + (Wy A_GWD) (F.117)
F. 1. 7 Final Results of Special Case
Ap = ﬁ—‘:a, + %‘u’-aw + i—:'rn + i—j% (F1118)
Ag = %‘:—ae - bt ofs (F.119)
An == £Zhe+ S o+ T (F.120)
As= ﬁfﬁ - ﬁ;ﬁw + (F.121)
Aw = i‘" w + ﬁ:ﬁ f_;,ﬁ' (F.122)
Ayg = —ﬁ: Be ~ ‘%E'ﬂn (F.123)
Asp = f—iﬁ, + %Eﬁ, (F.124)
Anw = ﬁiﬁw + ‘ﬁ:‘ B (£.125)
Asw = —ﬁ—iﬁw - ﬁ%ﬂs (F.126)
ApPp = AgPp + ANPj + AwPly + AsPs + ANePyg+
AsePtg + AnwPhw + AswPiy + B (F.127)
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in which

B=(Us-U+ (V7 = V) + LR (F135)
and
Ap=Ap+ AN+ Aw + As (F.129)
aalso
ANg+ Ase+ Avw + Asw =0 (F.130)

F.2 DERIVATION OF THE PRESSURE-EQUATION FOR
SIMPLER ALGORITHM

Momentum Equation:

Apu, = Z:A?nb).u(nb). + B} —

Pg - Pp Py + Pyg — Ps — Psg
{ b o~ y&} AV (F.131)
is written as:
o = Al e,
‘T APy
AV [Pg—Pp Py + Png — Ps— Psg
1, - & F. 2
7 | e G
Let us define pseudovelocity i, as
. LALLM, + B
&, = e (F.133)
The momentum equation is then written:
. AV (Pg-Pp Py + Pyg = Ps - Psg }
i - F.134
ue = U, AP‘,,{ AF U A7 yeep ( )
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F. 2.1 Summary of Relations for Velocity Components

Pg — PP _Pn+ Png—Ps— Pse -
=U, — AP“ { AE 4y 5¢} (F.133)
Py + Png — Ps — Psg PE PP
=5, - A Pv { i Zee — } (F.136)
P P P P -P
= i — Pg + NE w—Prw, N Pv—Pp (F.137)
AP“
Py - Pp PE + Pyg — Pw — PNW
Un = n AP“ { An 4A } (FISS)
Pp — Pw _ Pv+ Pnw — Ps — Psw
Uy = Uy — AP“ { Y A7 y&w} (F.139)
Py + Pyw — Pg — Psw PP Pw
Uy = Dy — AP" { v gy — ————ZLqu (F.140)
Pg + Psz Pw Psw Pp — Ps
—g, - APu { e — i ye,} (F.141)
Pp — Ps PE + Psg — Pw — Psw
= 9
'U, ‘U, AP’U { An Is, 4AE n, (F.14-)
Comparing these results with the Eqns (F.73) to (F.80):
{ t:‘ } stand in place of {u: }
B v
and “P” stands in place of “P'". Then
ApPp = AgPc + AnPy + AwPw + AsPs + AngPne+
AsePse+ AnwPnw + AswPsw + B (F.143)
where
- owjw - Pefre Pavl = Pn.f,n puWy — ppWp
=l Bty ~ (F.144)

Note that a constant “p” in the above formulation showed an effective convergence in

practice.
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F. 2.2 Relations for Pseudovelocities in I and J Coordinates

| | I
{ I i L
i i I l
N N N A ER IO
[ | | ul(l,i+1)
J+1 + ! AZ |
I I I ,\%ﬁ 11—
| al{l - 1,3) Nu1(L,J) | ul(+1.3)
J i H— o —
S I NI \V\\\: A T
P ] |, ui(r3-1)
I-1 5l T
| |
! I-1 I I+1
Fig. F2

ULP(I,J) = (AE(I,J) x UI(I +1,J) + AN(I, J) x UL(I,J + 1)+
AW(I,J) x UL(I - 1,J) + AS(I, J) x UN(I,J - 1)+
CON(I,J))/AP(I,J) (F.145)

V1P(I,J) = (AE(I,J) x VY(I +1,J) + AN(I,J) x VI(I,J + 1)+
AW(I,J) x V(I = 1,J) + AS(I, J) x VI{I,J = 1)+

CON(I,J))/AP(I,J) (F.146)

£ - 25



' l | l
I+l ; ~+ i :
S U A A ,k '
' | |
[} 1
J ' l u2(1i=]?’\ NNy
—--“J,-—--:—vv—'
\
J-1 i_ + AN
| | »

— —  —

I-1
Fig. F3
VoP(I,J) = (AE(I,J) x VoI +1,J) + AN(I,J) x V2(I,J + 1)+
AW(I,J) x VoI —1,7) + AS(I, Ty x V2(I,J - 1)+
CON(I, J))/AP(I,J)
U2P(I,J) = (AE(I,J) x U2(I +1,J) + AN(I,J) x U2(I,J + 1)+
AW(I,7) x U2(I - 1,J) + AS(I,J) x U2(I,J — 1)+
CON(I, J))/AP(I,J)
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APPENDIX G
DERIVATION OF MISCELLANEOUS RELATIONS



G.1 CONTRAVARIANT VELOCITIES

UC1 and VC1 (Figure G.1)
Ul =ujyy —n1zp
V1=unza —miya
UCUILJ)=UlI,N)yn — VI(I, J)zpy
VCI(I,J)=VII,J)zes — UYI, Nya
I=3to L2 and J=2to M2
UC2 and VC2 (Figure G.2)
U2 = usynz — v2Zy2
V2 =vyze2 — ugye2
UC2AIL,J)=U2(I,J)ypz = V2(I,J)zp
VC2(I,J)=V2(I,J)ze2 — U2(I, J)yez
I=2to L2 and J=23to M2
WC (Figure G.3)
WcC(I,J)=JAC(1,J)-W({,J)
I=2to L2 and J=2to M2
UC1 and VC1 at the Boundaries
=2 to M2
UC1(2,J) = UL(2, Ny, (1,J) = V1{2, N)z, (1, J)
VC1(2,J) = V1(2, Nze(1, J) — UL(2, T)ye(1, J)

(G.5)
(G.6)
(G.7)
(G.8)

(G.10)
(G.11)



Ty
il

2 to M2
UCULL JY=UNLL, Jyy(L1. Y = VI{L1. J)ay (L1, J)
VCOUL1.J)=VILL,J)ze(L1, ) = UL(L1, J)ye( L1, J)
UC2 and VC2 at the Boundaries
=2 to L2
UC2(I1,2) = UL, 2)y,(I,1) — V2(I,2)a,(1,1)

VCAI,2) = VI, 2)ze(1,1) = U2(I, 2)ye(1,1)

UCAI, M1) = U2(I, M1)yy(L, M1) — VI, M1)z,(I, M1)
VCAI, M1) = VI, M)ae(I, M1) = U2(L, M1)ye(I, M1)

WC at the Boundaries

=2to L2
WC(I,1) = JAC(I,1)-W(I,1)
[=2to L2
WC(I,M1)=JAC(I,M1) W(I, M1)
[ =2to M2
WC(1,J)=JAC(1,J) - W(1,J)
J =2 to M2

WC(L1,J) = JAC(L1,7)- W(L1, J)

(G.12)

(G.13)

(G.14)

(G.15)

(G.16)

(G.17)

(G.18)

(G.19)

(G.20)

(G.21)



G.2 CONTRAVARIANT VELOCITIES
SATISFYING MASS-CONSERVATION

( Figure (74)

U1
Vo

U1

yor
(U1-U1")
(V2 - V2%

let

uy
H|

and

Uz
Ua

U1l
V2

in alternate form let
t
i,
n
]
i
Uy

then

= U Yy — N Ty
= VaT¢ — UnYe
= ujyn — V| Ty
= vgTe — Uale
= (u1 = uy)yn — (V1 — v1)zq

= (v2 — v3)z¢ — (U2 — U3 )ye

=R

—— e

I
[~
e

[ Y
—Uq -—U?}
.-
—U; =V,
! !
=U1‘+u1yq—v!.r,,

= V2" + vhze — ubYe

= DU1
= DV1
= DU2
= DV2

Ul =U1"+ DUly, — DV1z,

V2=V2" 4 DV2z¢ — DU 2y,

@ points “w" and “s":

V2, =V2; + DV2, - z¢, — DU2, - yg,

G4

(G.22

(G.23)
(G.24)
(G.25)
(G.26)

(G.27)

(G.29)
(G.30)

(G.31)

(G.32)

(G.33)

(G.34)
(6.35)

(G.36)
(G.37)



or in terms of “I" and “J":

UCL(I.J)=UC1*(I,J) + DULL - yp — DV11- 2y

(G.38)
VC2Il,J)= VCQ-(I, JY+ DV22. Ign — Dy22. Yea (G.39)
o AV (PC(I,J) - PC(I -1,J))
DUl = —.-lPUl(I,J) Y; Un —
(PC(I-1,J+1)+ PC(I,J +1)= PC(I =1,J = 1) = PC(I.J — 1))
4An Yel
(G.40)
AV
DV1l = —m
(PC(I=1,7 4+ 1)+ PCUI,J +1)— PC(I —1,J ~ 1) = PC(I,J - 1))
4An e~
PC(I,J)-PC(I-1,J
(POLD=pOU=LI), | G
AV (PC(I,J) - PC(I,J - 1))
29 — _ y —
bV =—amvat, [ An e
(PC(I+1,7 —1)+ PC(I+1,J) = PC(I-1,7) = PC(I =1, — 1))
IYY: Tnz
(G.42)
AV
P09 = e =
DU22 = - puai, 7
(PCUI+1,J=1)+PC(I+1,J)— PC(I-1,J) = PC(I-1,J — 1))
aAE Y2 =
PC(I,]) - PC{,J -1
(POLD-PELI=0), G4



G.3 CONTRAVARIANT VELOCITIES
NOT SATISFYING MASS-CONSERVATION
(Figure G.5)

Contravariant Velocities Satisfying Mass-Conservation:
(denoted by *)
UCl(I,J)
UCYHI+1,J)
VeI, J)
VCAI,J +1)
Contravariant Velocities Not Satisfying Mass-Conservation:
VC1(1,J)
veel,J)
VeI +1,J)
Uca(I,J+1)
Relation for UC2(1,J) (Figure G.6)

UCUI,J) +UCLI +1,J) +UCYI +1,J — 1)+ UCL(I, J — 1)

veer,J) = ;

for [=2to L2 and J =3 to M2
Relation for VC1(1,J) (Figure G.7)

VORI, )+ VCAL T+ 1)+ VCAI —1,] + 1) + VCAI - 1,J)

VeI, J) = ;

for [=3to L2 and J=2to M2
G.4 PHYSICAL VELOCITIES

U = uy, — vz,
= —Uye + VI¢



n = [—yner (G.‘lS)
—Ye  Ig
and
5 9
~ye V
p= e Tl (G.49)
3 3]
—Y¢ T
Uze +V
A (G.50)
YnTe — YeTn
1’4 U
— YUn+Uye (G.51)
YnZe — YeZy
but
YnZe — Yely = J (652)
Therefore :
' = 1-[U:z:,5+l”:r:,,]}
= LUy + vy (G.59)
ul and v1 (Figure G.S)
ul(l,J) = JACI(UC'I(I J) -z + VCI(I,J) - z1) (G.54)
V(L) = <= (UCUL,T) -y + VEULT) ) (G.55)
u2 and v2 (Figure G.9)
u2(1, J) JACz(UCZ(I J) zea + VC2ALJ)  z22) (G.56)
v2ALJ) = 3 AC?(Ucztr 7) ver + VCALT)  ypa) (G.57)

G.5 APPLICATION OF RELAXATION FACTOR

Consider the general discretization equation (for momenta, pressure, energy and species):
APpép =Y Amsypbinnyp + Bp — L[Pp]AV (G.58)

in which the term L[pp]AV appears only in momentum equations. Now write:



. X AtneypOmye + Bp  L[PplAV i}
or= APp APp (G59)

or alternatively:

e DAmmeomne+Be . L[PplAV
op=0p + APP - ¢P - -'1PP (G'GO)
Applying relaxation factor, a:
. . S Amnpdmep +Be .. L[PplAV
OP—¢p+a( APp - op— APp (G.61)
, . aBp aL[Pp|AV
¢p=dp+ Tp= Z A(nbt)p $(atyp + ;ﬁ— —adp —%- (G.62)
AP AP,
--a—'pép = —£¢p + Y Antypdint)p + Bp — APpép — LIPp]AV (G.63)
AP AP
-—a—”ép =" Amnpdnnr + Be + (—“‘-l—” - LIBp|AV  (G.64)
let 45 P _ AP(1,J) (G.65)
( - %) 4Pp = (1 a)4P(I,J) (G.66)
Bp = B(I,J) (G.67)
AP(L DI, 1) = Y AL, Néeany(L. I) + BULT) + (1 — ) AP(I, 1)S(I, J)--
L[Pp|AV (G.68)

Relations for AP(I,J):

Ul:
AP(1, 7y = ABE) + AW, D) + Ag_éf{f) + ASILT) + AUAL D) 6y
Vi:
AP(L J) (AEUL,J) + AW(L, J) + AN, ) + ASULT) + AUWLT)) (s
. REL?
AP = (AE(I,J) + AW(I,J) + AN(I,J) + AS(I,J) + AU(I,J)) (G.71)
REL3
Va: |
AP(,J) = VAEWQD) + AW J) + ANULJ) + AS(L )+ AUALT)) g 00

REL4



Wt
(AE(I,J)+ AW J) + AN J) + AS(I.J) + AU (L. J))

AP(I.J) = RELLD (G.73)
H:
(AE(I, )+ AW, D)+ AN, J)+ AS(L,J) + AU(L,J) - SP(1.J)- DV)
AP(I.J)= REILS
(G.74)
M:
(AE(L,JY+ AW(I,J) + AN(I,J) + AS(I,J) + AU(I,J) - SP(I,J)- DV)
AP(I1,J) =
REL9
(G.75)
P:
w AN , ,
AP(I,J) = (AE(L, )+ AW(I,J) + -iIJEE('i,GJ)+AS(I J)+ AU(I, ) (G.76)
PC:

(AE(I,J)+ AW(I,JY+ AN(I,J) + AS(I,J) + AU(1,7))

AP(I,]) = FELS

(G.77)

Relations for CON(I,J) = B(I,J)} + (1 — a}AP(I, J)qb(I,‘J)

Ul: CON(I,J)=B(I,J)+(1 - RELI)AP(I, NUI(I,J)  (G.78)
Vi:  CON(I,J)=B(I,J)+ (1 — REL2)API,\V1([,J)  (G.79)
U2:  CON(I,J)=B(I,J)+(1 - REL3)AP(I,U2(I,])  (G.80)
CON(I,J) = B(I,J) + (1 — REL&)AP(I,1\VXI,J)  (G.81)
CON(I;J) = B(I,J) + (1 — REL10)AP(I,\W(I,J)  (G.82)
CON(I,J) = B(I,J) + (1 — REL8)AP(I,J)H(I,J)  (G.83)
CON(I,J) = B(I,J) + (1 - RELO)AP(I, \M(I,J)  (G.84)
CON(I,J) = B(I,J) + (1 - REL6)AP(I,J)P(I,J)  (G.85)
PC: CON(I,J)=B(I,J)+(1 — REL5)AP(I,J)PC(I,J)  (G.86)

w R E S



(.6 PRESSURE-GRADIENT TERMS IN I AND J COORDINATES

Ul Momentum Equation

- _[Pp-Py  Py+Pyw—Ps—Psw -
L[PILIAV - { AE YUnw 4A77 ysw} AV (GS[)
. P(I,J) - P(I-1,J)
LIP)AV = {[ ( /-\f( Ym—
P(I,J+1)+PI-1,J+1)-P(I,J-1)-P(I-1,J-1
(BT 212 P )= PILT = 1) = M o} atass
n
V1 Momentum Equation
. _[Pv+Pvw-—-Ps—Psw  Py—Pw
LIPJIAV = { vy Tew —ar m,,w} AV (G.89)
LIPElAV =
{[P(I,J+1)+P(I—1,J+1)—P(I,J—l)—P(I—-l,J—l)]
:L‘gl -
4An
P(I,JY-P(I-1,J
[ (4,J) - E( )] x,,l} av (G.90)
U2 Momentum Equation
Au _ [ Pg+ Psg — Pw — Psw Pp—Ps
nppjay = {BetBee s B = Pow, | Pebey Loy (@)
LIPMAV =
PU+1,N)+PI+1,J-1)-P(I-1,J)-P(I-1,J—1)
4AE Yn2 =
P(I,J)-P(I,J -1
[ Aﬂ( )] ygg} AV (G92)
V2 Momentum Equation
: Pp — Ps Pg + Psg — Pw — Fsw
d = —
L[PJ1AV = { A Tes VY :r:,,,} AV (G.93)
. P(I,JY-P(I,J-1
LIBYAV = {[ (7, J) 2 )] zea—
PU+1,)+P(I+1,J-1)~P(I-1,7)=P(I-1,J 1)
4A6 xnz AV

(G.94)
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-7 DERIVATION OF PRESSURE-GRADIENT TERM
FOR BOUNDARY CONTROL-VOLUMES (J =2 AND J = \{2)

Range of Variations of I for Boundary Control-Volumes at J = 2 and J = M2, [=3,L2
U1l Velocity (Figure G.10)
@ J = 2 Control-volumes

CON(I,2) = CON(I,2) - L[P|AV (G.95)
CO.N(I,‘.Z) = CO.N(I,?.) - L[y,,l . P£1 - Yer* P,”]AV (GQG)
8P| P(I,2)-P(I-1,2)
Poy= —| =
€1 3¢ |, At (G.97)
oP 1[oP oP
R EHE R
h aT] ll 2 an 2 an wall
_l Py — Py 21_3_ __].Pz!—.P; 1
Py =3 [—An * o .,mu] =3 T 5GG1 (G.98)
PUN+PU-13) _ PUDFPU-12)
—_ 2 2
Py = e +5GG1
P(I,3)+ P(I -1,3)=P(I,2) = P(I-1,2
p, = 23+ P lan( )= PUI-1 )+%GGI (.99)

CON(I,2) = CON(I,2) - KP (£,2) *AP;I - L2 ) g1 ~

(P(I,3) +P(I-1,3)- P(I,2) - P(I —1,2

)4 %GGI) y,g,] N%

4An
(G.100)
GGl — PI —prﬂ.”
(%)
_ HPU-1,2)+ PUY) - H(PU - 1,1) + PUL, 1) G101
(%) |
2
V1 Velocity (Figure G.10)
@ J = 2 Control-volumes
CON(I,2) = CON(I,2) - L|Pr|AV (G.102)
CON(I,2)=CON(I,2)—~ Lizer - Pyt ~ 21 - Pa]AV (G.103)
CON(I,2) = CON(I,2)-
P(I,3)+P(I-1,3)- P(I,2)-P(I-1,2) 1
[( 4A77 + EGGI Te —
- -1
(P (Z,2) APE(I "2)) :z:,,l] AV (G.104)
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U1 Velocity (Figure G.10)
4 .J = M2 Control-volumes

CON(I,M2) = CON(I,M2) = L|P!|AV (G.105)
C'O.'V(.[. .1'12) = COIV(I, .‘Mf?) - L[yn; . PEI — Yeé1 - P,ﬂ]AV (G.IUG)
aP P(I,M2)- P(I-1,M2)
Py = —| = G.107
§! af | Af ( )
P -—a_}:‘—l[a_P +a_}3 ]—E[PI—P2'+.3_P ]
" an A L/ PR ) P 2 Ay M | watt
Py = %5;—:1 + 2HH1 (G.108)
PU.M2)+P(I=1.M2) _ P(LM3)+P(I_1LM3) 4
- 2 2 -
M2 -1, M2)=P(I,M3)-P(I-1,!
Py = P(I,M2)+ P(I-1,i 3;&,7 (I,M3) - P( M3)+%HH1

(G.109)

CON(I, M2) = CON(I, M2) - KP(I, M2)-P(I-1, M2)) Yot —

TAY

P(I,M2)+P(I-1,M2)-P(I,M3)-P(I-1,M3) 1
(G.110)
HH1 = Pwa!l—Pl
(%)
2
_ $(P(I—-1,M1)+ P(I,M1)) - %(P(I -1, M2) + P(I,M2))
(%)
2
(G.111)
V1 Velocity (Figure G.10)
@ J = M2 Control-volumes
CON(I,M2) = CON(I,M2) - L[B}|AV (G.112)
CON(I,M2) = CON(I,M2)— (z¢1 - Pyt — Tq1 * Pa1)AV (G.113)
CON(I,M2)=CON(I,M2)-
P(I,M2)+ P(I ~1,M2)- P(I,M3)-P(I-1,M3) 1
[( Y +2HH1 Tel —
(P(I,M2) —-AP;(I—I,M2)) 31;1] AV (G.114)
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(.3 DERIVATION OF PRESSURE-GRADIENT TERM
FOR BOUNDARY CONTROL-VOLUMES (I =2 AND [ = L[2)

Range of Variations of J for Boundary Control-Volumes at I = 2 and I = L2. J=3 M2
U2 Velocity (Figure G.11)
@ I = 2 Control-volumes

CON(2,J) = CON(2,J) - L[PE|AV (G.115)
CON(2,J) = CON(2,J) — Llynz - Pea — yea - Pp] AV (G.116)
p. .92 _1[3_1’ ;9P ]_l[f’s'—Pe+3_P ]
°- aE 2 2 86 3 a‘f wall 2 AE aE wall
1Py —P, 1 .
Pg =3 Y + 5EEl (G.117)
P(3.N)+P(3.J-1) _ P(2.J)+2P(2.J—1) 1
Py = 2 T + ;EE1
_P(3,J)+P(3,J-1)~P2J)-P2,J-1) 1
Pe = TA¢ + 3 EE1
(G.118)
_ 0P| _P(2,J)-P(2,J-1)
Py = 3|, = A (G.119)

CON(2,7J) = CON(2,J)-
[(P(3,J) +P(3,J-1)-P(2,]) - P(2,] —1)

1
+ §EE1) Yn2 —

4NE
(P(?., 7) -Ap(z, J- 1)) yez] Ay (G.120)
1]
P2 "" Pwa“

EFl = (%{)

L(P(2,J ~ 1)+ P(2,7)) — L(P(1,] - 1)+ P(1,J))

= G.121
V2 Velocity (Figure G.11)
@ I = 2 Control-volumes
CON(2,J) = CON(2,J) - L|Bf)AV (G.122)
CON(2,7)=CON(2,7) — (z¢2 * Pp2 — zg2 * P2 )AV (G.123)
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CON(2,J}=CON(2,J) - [(P(Q,J) - P(2,J - 1)) e

A/

P(3.JY+ P33, J-1)-P(2,J)-P(2,J-1) 1
( 4AE + é‘EEl) 1',,2 AV
(G.124)
U2 Velocity (Figure G.11)
@ I = L2 Control-volumes
CON(L2,J) = CON(L2,J) - L{P}|AV (G.125)
CON(L2,7) = CON(L2,J) — Llyy2 - P2 — ygz - Pz AV (G.126)
opP 1[oP aP ] 1 [Pg - Py 8P ]
Pon= —| =< | =] 4+ — = | ——
62 BE 2 2 af 3 af wall 2 AE af wall
1P, — Py 1
Py = 5 A L EFFI (G.127)
P{L2,J)+P(L2,J-1) _ P(L3,J)-P(L3,J-1)
_ 2 2 ip
Fe = SAE + 5 FF1
_ P(L2,J)+ P(L2,J —1)=P(L3,J) - P(L3,7-1) 1
(G.128)
_ 6P| _ P(L2,J)-P(L2,J-1)
Py = ol Ar (G.129)

CON(L2,7) = CON(L2,J)-
[ (P(L2, J)+ P(L2,J 1) — P(L3,J) — P(L3,J — 1)

1
+§FF1) Y2 —

aNE
P(L - -
( (£2,J) : (£2,J 1)) yez] AV (G.130)
7
FF] = Pwall-P2
(%)
2
_ -;-(P(LI,J) + P(L1,J-1)) - %(P(L2, J)+ P(L2,J -1)) (G.131)
9_{) |
2
V2 Velocity (Figure G.11)
@ I = L2 Control-volumes
CON(L2,J) = CON(L2,J) — L[P}|AV (G.132)
CON(L2,J)=CON(L2,J) — (zg2- P2 — zq2 - Paa)AV (G.133)

G-14



CON(L2,J) = CON(L2,J) - [(P (£2,7) - A}; (£2.7 - ”) zez ~

P(L2.J) + P(L2,] = 1) - P(L3,J) — P(L3,J —
(( )+ A lae( )= 1)+éFF1);r,,g]AI"

(G.134)

G.2 BUOYANCY-TERM IN y-MOMENTUM EQUATION

Using gy, = —¢, the y-momentum Eqn. (2.7) becomes:

8 ) 8, , @
5(P)+ B3 (pun) + 5 (00%) + 5-(puv)

_ 9P (81  Ony, 37'”,)
=% (6:: + By + 5. ) P9 (G.135)
or
aP
LHS = —-a—y -pg-Q (G.131)

for simplicity here. In order to introduce the buoyancy term into the y-momentum
. “Eqn. (G.135), one may write:

P=Ps+Pp (G.137)
where:
Ps = hydrostatic pressure
Pp = dynamic pressure
Therefore
LHS=—%-?6L;—,OQ—Q (G.138)

Now consider the special case that the fluid suddenly ceases to flow. The y-momentum
Eqn. (G.136) for the no-flow condition becomes:

0= ——gj; - pg @ no-flow or hydrostatic condition (G.139)
or
O0Pg
— — — —_— -140
5 pag = 0 (6.140)

in which p, is the arithmetic mean density for a cross-section. From Eqn. (G.140)
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dPs

~%5 = ped (G.141)
Now substitute for —%5- in Egn. (G.138)
P
LHS = pag - a_yD ~pg-Q (G.142)
or
opP
LHS = —a—y” —(p=pa)y - @ (G.143)

in which (p — pa)g is the buoyancy term. The y-momentum equation is therefore written
- 0 il

a 8 2

i (Pv) + 5 (puv) + E (pv") + - (pwv)

_ 8Pp Orzy  OTyy 3r;y)
~ —( 2t 5y T s (P — pa)g (G.144)

The pressure is to be modified in other components of the momentum equation:

X-component:

opP

LHS = -7~ Q (G.145)
z-component:
oP »
LHS ==->--Q (G.146)
Using
P =Ps+ Pp (G.147)
One can write:
0Ps
Bz - 0 (G.148)
0Ps :
5. = 0 (G.149)
Therefore
oP 0OPFPp
oz Oz (G.150)
and
OP 0Pp
—_— == 151
9z - oz (G.281)
that is:
x-component
LHS =-2P2 _ o (G.152)
Or
Z-component:
aF’D »
LHS = ~5; " (G.153)
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Using the buoyancy term in the y-momentum Eqn. (2.31), the pressure is modified to
dynamic-pressure,

G.10 NUSSELT-NUMBER
From Bird® (page 423)

dQ = hloc(ﬂDd:)(Ta - Tb) — dQ = h;ocPd:(Tw - Tb) G.154
in which P: perimeter, T, = T,, = Tyuant
dQ-—igi CplvldT, dQ = A.pCpWdT,
- 4 va! bMQ“'-cPP b G155
in which A, = cross-sectional area
A pW dT
h. = __C ] -
loc P (CP,U.) ( ) (Tw — Tb)dz G-IDG
hiool DE) A (CPP-) (PW(DE) dT,
Nupe = e ==/ _ Zc -
tioe k P\ % p )(Tw-n)dz G.157
_ A d;
Nujoe = P (.Pr)(Re) (Tw — T;,)dz G.158
Nu Ac (_-JT:ET,') 1
loc = . _ = z G.
DE-P(Zu=h)  (ppferr) 159
L&h  _ _Slwmlh)  gfiemB)
Tw-T Ty - Ti To~T dfy G.16v
in which
_ Ty~ Tb
6y = T. -1, G.161
also
4 _g (—"‘-—-—) = dz** G.162
DE.Re-Pr DE.Re.Pr
and from the definition DE = 44, one can write 5375 = ¢
therefore
1 db,
Nuloc - _43b 22“ G-163
= . 1 % doy
'/; N‘Ulnc : q’z = ""4 A 95 G.164
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NuprZ™ = —%ln 8
1, 1
NuptZ' = =-ln —
u ,TZ 411‘1 Gb
1 1
\'um.T = :12_"-! g—b'

G-18
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Range of variations of "I*

2 and J = M2 :

for boundary control-volumes (@ J

I =3, L2

J = M2

I=L2 I=L1

[=3 I-1

[=2

I=1

- Fig. G.10
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Range of variations of "J"
. for boundary control-volumes @I =2 and I = L2

—
n
N
| =
1

_3’ MZ

I =12 J =3, M2

£

I=3 I=L2 I=L1
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APPENDIX H
COMPUTER SOFTWARE



. H.1 INPUT DATA AND FILE ALLOCATIONS FOR GRID PROGRAMMES

H.1.1 CIRCULAR-DUCT

R(1 — cos 4001

Ady= R(l — cos 40)

B .
7 B{ y=R(1+cos 4a°)

R(1 + cos 45)
y= R(l + cos 457

C

C {z-R(l—co.s%)

z z = R(1+ cos 45)
D { y = R(1 - cos 45}

EDIT AGRID.FOR OR BGRID.FOR PROGRAMMES:

FILES AGRID.FOR: BGRID.FOR:
STAR 01 STAR 25
STAR 02 STAR 26
STAR 03 STAR 27
STAR 04 STAR 28

/data

L1* M1 Tolerance

0.2928932R 0.2928932R 0.2928932R 1.7071068R
1.7071068R. 1.7071068R 1.7071068R 0.2928932R
1

R

/endrun

. * This is for AGRID.FOR, for BGRID.FOR use (L1-1) & (M1-1)
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EDIT PLOT.FOR PRIGRAMME:

FOR L1 x M1 =21 x21

.Y = 6"
2R LR . 11
Y = (ﬁ) (6") =6
6“
AX = T 0.3
6”
AY = T 0.3
FILES FOR AGRID.FOR:

N(STAR 01) OLD
N(STAR 02) OLD

PROGRAMME
CALL PLOT(0.3, 0.3, -3)
CALL SCALE(X,6.0,441,1)
CALL SCALE(Y,6.0,441,1)

Y - —

FOR BGRID.FOR:
N(STAR 25) OLD
N(STAR 26) OLD

Note 1: numbers assigned to files are arbitrary.
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H.1.2 SQUARE-DUCT

EDIT AGRID.FOR OR BGRID.FOR PROGRAMMES:

FILES

/data

L1* M1*
0.

a

2

/endrun

AGRID.FOR:

STAR 05
STAR 06
STAR 07
STAR 08

Tolerance

r=0.
A y=0.
z=0.
B { y=a
T=a
C y=a
IT=a
D y=0.
BGRID.FOR:
STAR 29
STAR 30
STAR 31
STAR 32
0. a
a 0

* This is for AGRID.FOR, for BGRID.FOR use (L1-1) & (M1-1)
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EDIT PLOT.FOR PRIGRAMME:

FOR L1 x M1=21x21
X=¢"
a Ny _ an
v=(3)@E)=s

AX = 2

AY =

FILES FOR AGRID.FOR:
N(STAR 05) OLD
N(STAR 06) OLD

PROGRAMME

CALL PLOT(0.3, 0.3, -3)
CALL SCALE(X,6.0,441,1)
CALL SCALE(Y,6.0,441,1)
Refer to note 1 on page H.3.

FOR BGRID.FOR:
N(STAR 29) OLD
N(STAR 30) OLD



H.1.3 TRIANGULAR-DUCT

9"}

60°

U b e e, . e — —

1?

EDIT AGRID.FOR OR BGRID.FOR PROGRAMMES:
AGRID.FOR

FILES

/data

L1 M1*
0.

a

3

a

/endrun

STAR 09
STAR 10
STAR 11
STAR 12

Tolerance

BGRID.FOR
STAR 33
STAR 34
STAR 35
STAR 36

a2 0.8660254a
a/2 0

* This is for AGRID.FOR, for BGRID.FOR use (L1-1) & (M1-1)



EDIT PLOT.FOR PRIGRAMME:

FOR L1 x M1=21x2l

6"
( 8660254a) )

6”

AX =

o
UI —

-1
2’

AY = 1

= (.26

I
e

FILES FOR AGRID.FOR:
N(STAR 09) OLD
N(STAR 10) OLD

PROGRAMME
CALL PLOT(0.3, 0.26, -3)
CALL SCALE(X,6.0,441,1)
CALL SCALE(Y,5.2,441,1)

Refer to note 1 on page H.3.

Y

= 5.1961524" say 5.2"

FOR BGRID.FOR:
N(STAR 33) OLD
N(STAR 34) OLD




H.1.4 TRAPEZOIDAL-DUCT

¥

B "¢

60°

r=2a
D y:O,

EDIT AGRID.FOR OR BGRID.FOR PROGRAMMES:

FILES

/data

L1* M1*
0.

3a/2

4

tan 60°

/endrun

AGRID.FOR
STAR 13
STAR 14
STAR 15
STAR 16

Tolerance
0.
0.8660254a

BGRID.FOR
STAR 37
STAR 38
STAR 39
STAR 40

a2 0.8660254a
2a 0.

* This is for AGRID.FOR, for BGRID.FOR use (L1-1) & (M1-1)
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EDIT PLOT.FOR PRIGRAMME:

FOR L1 x M1 =21x21

X =12
Y = (9—83“’;?—3“) (12") = 5.1961524 say 5.2"
12”
5.2”
= =0.2
AY = N1 0.26
FILES FOR AGRID.FOR FOR BGRID.FOR
N(STAR 13) OLD N(STAR 37) OLD
N(STAR 14) OLD N(STAR 38) OLD
PROGRAMME

CALL PLOT(0.6, 0.26, -3)
CALL SCALE(X,12.0,441,1)
CALL SCALE(Y,5.2,441,1)

Refer to note 1 on page H.3.
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H.1.5 PENTAGONAL-DUCT

108°

I =
y=a-cos 18°

y=a-cos 18°

z = a(l. 4+ cos 72°)
y=20

{.r =a(l. +2: cos .72“)

EDIT AGRID.FOR OR BGRID.FOR PROGRAMMES:

FILES

/data

L1~ M1
0.3090169a
1.6180338a
5

tan 72°
tan 36°

a

/endrun

AGRID.FOR

STAR 17
STAR 18
STAR 19
STAR 20

Tolerance

0.
0.9510565a

BGRID.FOR

STAR 41
STAR 42
STAR 43
STAR 44

0.
1.3090169a

0.9510565a
0.

* This is for AGRID.FOR, for BGRID.FOR use (L1-1) & (M1-1)
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EDIT PLOT.FOR PRIGRAMME:
FOR L1 x M1 =21 x21

X=6"

v - 1.5388417a
~ \1.6180340a
6"

) (6") = 5.7063388" say 3.71”

1

AX = =0.3

21-1
5.71"

AY = 511 = 0.2855
FILES FOR AGRID.FOR FOR BGRID.FOR.
N(STAR 17) OLD N(STAR 41) OLD

N(STAR 18) OLD N(STAR 42) OLD

‘'PROGRAMME

CALL PLOT(0.3, 0.2855, -3)
CALL SCALE(X,6.00,441,1)

CALL SCALE(Y,5.71,441,1)

Refer to note 1 on page H.3.
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H.1.6 HEXAGONAL-DUCT

120°

A

b

EDIT AGRID.FOR OR BGRID.FOR PROGRAMMES:

FILES

/data

L1* M1*
af2

3a/2

tan 60°
a

/endrun

AGRID.FOR
STAR 21
STAR 22
STAR 23
STAR 24

Tolerance

0.
1.7320508a

BGRID.FCR

STAR 45
STAR 46
STAR 47
STAR 48

a2
3a/2

1.7320508a
0.

* This is for AGRID.FOR, for BGRID.FOR use (L1-1) & (M1-1)
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EDIT PLOT.FOR PRIGRAMME:

FOR L1 x M1 =21 x 21

X=6"

Y = (1.(3%0508

6”
AX = ST 0.3
5'2”
AY—21_1 = 0.26
FILES FOR AGRID.FOR

N(STAR 21) OLD
N(STAR 22) OLD

" PROGRAMME

CALL PLOT(0.3, 0.26, -3)
CALL SCALE(X,6.00,441,1)
CALL SCALE(Y,5.2,441,1)

Refer to note 1 on page H.3.

) (6") = 5.1961481" say 5.2"

FOR BGRID.FOR
N(STAR 45) OLD
N(STAR 46) OLD
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H.1.7 RECTANGULAR-DUCTS

U

EDIT AGRID.FOR OR BGRID.FOR PROGRAMMES:

FILES

/data

L1* M1*
0.

a

/endrun

* This is for AGRID.FOR, for BGRID.FOR use (L1-1) & (M1-1)

AGRID.FOR:

STAR 100
STAR 101
STAR 102
STAR 103

Tolerance

EGRID.FOR:

STAR 200
STAR 201
STAR 202
STAR 203
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AR =15
EDIT PLOT.FOR PROGRAMME:
FOR L1 x M1 =21 x21

X =6H

- (o (e

6” N
AX = o1 0.3

4!1 "
FILES FOR AGRID.FOR:
N(STAR 100) OLD

N(STAR 101) OLD

PROGRAMME

CALL PLOT(0.3, 0.2, -3)
CALL SCALE(X,6,441,1)
CALL SCALE(Y,4,441,1)
Refer to note 1 on page H.3.

- 4!1

FOR BGRID.FOR:
N(STAR 200) OLD
N(STAR 201) OLD
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AR =20
EDIT PLOT.FOR PRIGRAMME:
FOR L1 x M1 =21x21

JY - 6"

- Q- @o-

6” "
AX = -2'1—:—]-.- =0.3

3 .

FILES FOR AGRID.FOR: FOR BGRID.FOR:
N(STAR 104) OLD N(STAR 204) OLD
N(STAR 105) OLD N(STAR 205) OLD

PROGRAMME

CALL PLOT(0.3, 0.15, -3)
CALL SCALE(X,6,441,1)
CALL SCALE(Y,3,441,1)
Refer to note 1 on page H.3.

Note: The sequence of steps followed on MUSIC-A operating system are as follows:
(i) ZETAPURE
(ii) EDIT AGRID.FOR OR BGRID.FOR
(iii) EXECUTE AGRID.FOR OR BGRID.FOR
(iv) EDIT PLOT.FOR
(v) EXECUTE PLOT.FOR
(vi) ZETASUBMIT
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H.2 SEQUENCE OF STEPS ON MUSIC-A OPERATING SYSTEM
FOR GRID GENERATION

(i) ZETAPURGE
(ii) EDIT AGRID.FOR OR BGRID.FOR
(iii) EXECUTE AGRID.FOR OR BGRID.FOR
(iv) EDIT PLOT.FOR
(v) EXECUTE PLOT.FOR
(vi) ZETASUBMIT

H.3 SEQUENCE OF STEPS ON MUSIC-A AND “0S” OPERATING
SYSTEMS FOR SOLUTION OF DISCRETIZATION EQUATIONS

(i) EDIT STAR30.JCL
(i) EDIT STAR30.FOR
(iii) SUBMIT STAR30.JCL (ENTER “OS” PASSWORD)
(iv) DISPLAY “OS” OUTPUT (ON MUSIC-“A") (Select View and/or Print)

H.4 A BRIEF USER'S GUIDE (INPUT INSTRUCTION)
FOR STAR30.FOR PROGRAMME '

(a) Refer to SUPPLY1 subroutine:

(i) KK: choose desired geometry by its appropriate number specified in the programme
(ii) DSI: select axial-step size
(iii) IIM: number of planes in axial-direction

(iv) IIM1, IIM2, IIM3,IIM4 & [IMS: plane numbers for which printing of results re
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. desired

(v) REL1 to REL10: relaxation-factors appropriately selected for the solution of their
corresponding discretization equations
(vi) DP: an initial guess for the pressure-gradient in the axial-direction
(vii) IE: (1) for fluid-dynamics & heat-transfer (Newtoninan)
(2) for fluid-dynamics & heat-transfer (non-Newtoninan)
(3) for polymerization
(viii) WINLET: specify duct inlet uniform velocity
TINLET: specify duct inlet uniform temperature
TWALL: specify duct wall temperature
NX: specify flow behaviour index (power-law exponent)
RHOINLET: specify fluid density at duct inlet
SPHTIN: specify fluid specific-heat at duct inlet
SPHTW: specify fluid specific-heat at duct wall
VISCIN: specify fluid viscosity at duct inlet
CONDIN: specify fluid thermal conductmty at duct inlet

(b) Refer to PROPER subroutlne

Make appropnate cha.nges as reqLured
(c) Select either SUPPLY2 or SUPPLYS3 in the main ‘programme

Make appropriate changes for the values of relaxation-factors inside SUPPLY?2 or
SUPPLY3 subroutines as required. o

(d) EDIT STAR30.JCL for file numbers as related to BGRID.FOR programme.

H.5 LIST OF COMPUTER—PROGRAMVIES

(i) BGRID.FOR (i) STAR30.FOR
o (i) PLOT.FOR  (iv) GRAPH1.SAS
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Note:

The computer programmes are available on a diskette and can be

obtained from the following address on request:

Proféﬁsor Arun S. Mujumdar,
Department of Chemical Engineering,
McGill University,

3480 University Street,

Montreal, Quebec,

Canada H3A 2A7
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