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Summary

The two-dimensional, incompressible, symmetric and asymme-
tric, self-preserving and non-self-preserving turbulent shear

flows are investigated both theoretically and experimentally.

The theoretical analysis involves an integral method and
an auxiliary equation which avoids the use of an eddy viscosity
or the mixing length concept. For a jet in uniform streaming
flow, the integrated momentum equation and the auxiliary equation
are solved. For the asymmetric jet, the additional information
required to close the system of equations, is obtained from ex-

perimental results,

Experimental results are presented for a plane jet in still
air, a plane mixing layer and the asymmetric jet. Collected re-
sults for a wall jet in uniform streaming flow and a plane jet
in uniform streaming flow are used for comparison with theoreti-

cal predictioms.

As a subsidiary experimental investigation attention is

given to the effects of free stream turbulence on free turbulent

shear flows.
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Preface

The subject matter of this thesis is a collection of re-
lated investigations carried out by the author under Dr. B. G.

Newman's direction.

The aim was to originate a simple method to predict the
development of the flow for an asymmetric jet. To do this it
was realized that there was no satisfactory method to predict
the affiliated flow (i.e. a plane jet in uniform streaming
flow) on which the analysis could be based. Therefore, the
study of a plane jet in uniform streaming flow became the centre
of attention in section 2. The prediction of this flow by the
present method being satisfactory, it was decided to try the same
approach on a well known experimentally investigated asymmetric
flow, i,e. a wall jet in uniform streaming flow. The success
of the prediction on these flows stimulated the author ta extend

the analysis to the asymmetric jet.

I am aware of the frequent repetition of certain equations
in this thesis but it simply reflects the way my thoughts evolved..
It would be helpful to the reader to note the recurrence: of the

following equations:

The mean velocity profile: U =1U, + uof(q)

The similarity form for the 5 T2
turbulence kinetic energy: 4 = qj g(n)

The turbulence structure 5
parameter (SP): q /av N =1
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The auxiliary equation for dlo u
the rate of growth: . [ ] ]
o

Full momentum edquation.
Half momentum equation.

Total kinetic energy eduation.

Also the free shear flows investigated in this thesis are:

a plane jet in uniform streaming flow.

a plane wall jet in uniform streaming flow.

a plane jet in still air.

a plane mixing layer,

an asymmetric jet which is formed when a plane jet is blown

underneath a uniform stream in zero pressure gradient.

Regarding the format of the thesis, I have presented intro-
duction and review of theoretical methods in section 1 and the
present major theoretical analysis in section 2. I have given
priority to the results (i.e. for plane jets and wall jets in
uniform streaming flow) of other investigators in comparing their
results (section 3) with the analyses of section 2. This is then
followed by my own experimental investigations (section 4) of a
plane jet in still air (section 5), a plane mixing layer (section
6) and the asymmetric jet (sections 7, 8, and 9). Section (1Q)
gives the summary and conclusions drawn from the present study.
Two Appendices are included and they give respectively details
of experimental arrangement and checks on flow, and the effects

of stream turbulence on free shear flows.

All figures are given at the end and consecutive numbers,
as they appear in the text, are assigned to them. Sketches and
figures are given for on-the-spot comparison in the main body

of this thesis.
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Notation

A constant in equation (6.2.8)

A constant

A constant in equation (6.2.10)

width of slot opening (= 0.265 in.)

A constant in a particular flow and usually

varies from flow to flow, e.g. a constant
defining the rate of growth

for a plane jet in quiescent surroundings; oOr

the rate of growth for a plane wall jet in still

air;(see equation (18))

= (1/2)c, see equation (17). Same as f in Town-=
send's (1970) paper.

Diameter of hot-wire

Rate of entrainment defined by equation (8.I),
or bridge D.C. voltage in Appendix 1

Three dimensional energy spectrum function.

Rate of entrainment'on’the streaming side of an
asymmetric jet

Rate of entrainment on the zero velocity side of
an asymmetric jet

Instantaneous bridge voltage fluctuation
Function of non-dimensional cross stream co-
ordinate for the variation of mean velocity,.

or frequency in section (7.2.7)

Function of non-dimensional cross stream co—
ordinate for the variation of turbulence energy:

(n = 1,2,3) function of 7 (see equations (6.2.1
and 5.3.5.2))

Function of n (see equations (6.2.1 and 5.3.5.2))
00
n
(n = 1,2,3) = ,J £(n) &
A non-dimensional factor (see equation (73))

wavenumber vector

The Kolmogoroff constant
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= 1ln 2, or a constant (see equation (6.2.13))

One dimensional wave number (= 2vf/U)

Average dissipation length scale of turbulent
motion

Mixing length, or length of hot-wire
(= ym/g) length scale defined as that value of
y at which U =(l/2)uO

Length scale for the streaming side of an asymme—
tric jet

Length scale for the zero velocity side of an
asymmetric jet

Excess klnematlc momentum (= Me 1(x) + Me (x)
bU(U - U))
Excess kinematic momentum (see equation (16))

Kinematic momentum defined by equation (70)

Kinematic momentum defined by equation (71)
= (42 + 2 + ,2)

Turbulence energy scale (see section (2))
Eddy viscosity Reynolds number (= uolo/vT)
Turbulence Reynolds number (=/ e . Av)

Eddy v1scos1ty Reynolds number for a jet in
still air

Eddy viscosity Reynolds number for a small
Perturbation jet or wake

Reynolds number (= U, x/v)

Turbulence structure parameter (= [qE/E;}'W=l)
Spacing between two wires in an x-wire probe

Mean velocity in the x-direction



(x)

Jet velocity at slot exit

(or U ., ) maximum mean velocity in the x-

direction (= U, for a plane mixing layer)

1

Free stream velocity in the x-direction and
independent of x

(Longitudinal) turbulent fluctuation com-
ponent of velocity in the x-direction

Velocity scale (= U for a jet and wall jet

in still air,
= Ul for a plane mixing layer,.

otherwise = (U_ - Ul))
Mean velocity in the y-direction

Mean lateral velocity at the point of maximum
velocity (see Fig.(4))

(Lateral) turbulent fluctuating component of
velocity in the y-direction

(Transverse) turbulent fluctuating component
of velocity in the x-direction

Downstream distance from slot exit, or tunnel
exit

Distance of hypothetical origin from slot exit
Edge of an asymmetric jet on the streaming side
defined by the value of y at which v¥:0.5
Lateral co-ordinate

Edge of turbulent shear flow

Value of y at which U = Um
Value of y at which U =-%-uo

A constant defined by equation (6.2.18)

Co-ordinate orthogonal to X and y, or trans-
verse co-ordinate



Greek Alphabet

(x1)

Maximum effective strain (see equation (9.2))

Intermittency

Edge of an asymmetric jet on the streaming
side defined by the value of y at which U=O.OluO

The rate of energy dissipation per unit volume

Non—-dimensional cross stream co~-ordinate
(y/lo or y/x)

A constant (see equation (6.2.14)

Non-dimensional cross stream co-ordinate
(v - v 4

1
Non dimensional cross stream co-ordinate
(=(y, - W1,)

(= 2.0) approximately the edge of non-dimen-
sional mean velocity profile (see equation 9)

Momentum thickness defined by equation (21)

The Taylor lateral microscale, or a mixing length
Kinematic viscosity

Eddy viscosity

Density

Shear stress

One dimensional energy spectrum function for u



1, INTRODUCTION

1.1 General

It is natural that the simplest flow situations should draw-
the attention of investigators first, and their investigations
fall in a sequence going from the least to the more complex
flow configurations. 1In the process, considerable knowledge in.
both theoretical methods and experimental results has been.
accumulated. For turbulent flows in general, however, the task
is formidable and many difficulties and uncertainties in
theoretical analysis and experimental techniques exist. A
brief review of theoretical approaches adopted to analyse
turbulent flows is given in section (1.2); and a modest. effort
is made in this investigation to examine some of the experi-

mental uncertainties.

It is interesting to note that useful solutions of the
boundary layer equations have been obtained by examining those
particular flows for which the Profiles of mean velocity are
similar or self-preserving as the flow proceeds downstream.,
For such flows the partial differential equation of motion is
replaced by a total differential equation which can be solved
either analytically or numerically. Such solutions have been.
obtained in the past for both laminar and turbulent flows with.
success. This type of approach is followed in this investiga-
tion and because no generalized theory is available for turbu-

lent shear flows, it is felt that experiments are very useful
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for physical understanding and may provide a direction for

analytical approach in the future,

As mentioned before most investigations connected with
free turbulent shear flows have been associated with simple.
geometries, i.e. flows with a line of symmetry or a wall..

There are many practical flow situations in which neither a
symmetry line nor a wall boundary exist. These are the flow
situations of interest for this investigation, and in parti-
cular an asymmetric free jet flow is investigated in detail
experimentally. Boundary layer control by blowing often. pro-
duces asymmetric flow configurations and when intensive blowing
is used a jet flap results. Indeed, these flows are extremely’

difficult to investigate analytically.

Incompressible asymmetric jet flows may be classified into

two groups:

(a) flows influenced by a solid boundary;‘ e.g. wall

jets, and step flows;

(b) free asymmetric jet flows; e.g. plane mixing

layers and jet flaps.

A characteristic feature of the asymmetric jets is that
the maximum shearing stress does not occur at the wall or at
the maximum velocity point whereas in ordinary boundary layer
flow with zero pressure gradient it occurs near the wall where
viscosity has the greatest influence. Figure (1) shows typical

asymmetric jet flows. Some of these flows such as wall jets
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and plane mixing layers have been investigated in the past

but for others even experimental results are lacking.

A slightly simpler case of the asymmetric turbulent jet
is the one in which the flow produced by a two-dimensional
jet is bounded on one side by a uniform streaming flow and omn-
the other by quiescent surroundings. This simple case is of
special interest because it lies in between two asymptotic self~
bPreserving cases, i.e. when jet velocity or maximum velocity in.
the shear layeriis much greater than the free stream velocity:
the flow resembles, at least geometrically, a jet in still
surroundings and when the maximum velocity decays to the free
stream velocity it becomes a plane mixing layer, From now on,.
unless specified otherwise, throughout this investigation the.

term "asymmetric turbulent jet" wili imply the flow configura-~-

U

tion shown below, Y1
U, -
- / h
-7
///

s - N
RTR =>_ J

\\\J

S~

The purpose of this investigation is to aobtain. experi--
mentally variation of width and decay of the maximum velocity:
for the asymmetric jets. Because the two halves of the asym--
metric jet are apparently quite different it is interesting to-

evaluate entrainment rates on either side.

It is well known that in self-preserving flows, such. as a-
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jet in quiescent surroundings, a plane mixing layer, and jets
and wakes in equilibrium pressure gradients, turbulence quanti-
ties scale with local mean velocity scale but for non-self-
preserving flows they may or may not correlate with the local
mean velocity scale and thus may have some upstream history
effects. It is, therefore, hoped that measurements and corre—
lations of turbulence quantities may provide an insight of the:
structure of the asymmetric turbulent jets. Finally, an addi-—
tional purpose of this investigation is to present experimental
results to permit detailed testing of prediction procedures in.

future.

The general outline of the present investigation is as

follows:

In view of the geometric similarity of the asymmetric jet
to the‘combination of a half jet in quiescent surroundings and.
a half jet in uniform streaming flow, the background of theo-
retical and exberimental work on these flows is given. in
section (2). This is then followed by an analysis of a jet in’

uniform streaming flow. Also in this section a simple analysis

is presented for the asymmetric jet.

In section (3), applicability of the analysis of section
(2) is demonstrated by comparing existing experimental results:
for the two-dimensional jet in uniform streaming flow and wall

jets in uniform streaming flow.
X

In section (4), the experimental arrangement is briefly
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described, and the details of the experimental set up together
with instrumentation and checks on the apparatus are given. in
Appendix (1). Because some of the free shear flows are associated
with a free stream, it is probable that the stream turbulence

may have some effect on the development of these flows. Hence:

the effects of free stream turbulence on free shear flows. are

given in Appendix (2).

Examination of existing literature is revealing in. that:
although many investigations have been carried out for the
asymptotic states (i.e. a jet in still air and a plane mixing
layer) of the asymmetric jet, only one or two Present turbulence
measurements. It was, therefore, decided to investigate these
flows and compare measurements with the few existing results.,.
Investigation of a two-dimensional jet in still air is described
in section (5) whereas that of a plane mixing layer is given. in'

section (6).

Section (7) deals with measurements of the asymmetric jets..
To cover the entire range, i.e. from a very strong to a very
weak jet, three values of the ratio (Uj/Ul) were selected. Note
that Uj is the mean velocity at the nozzle exit and Ui_is the:
free stream velocity which is independent of x,. For one case:
(i.e. Uj/Ul:= 5.0) measurements were made in detail and they
include mean velocities, turbulence intensities, shear'strgsses,
intermittency, triple correlations and one dimensional ;Elspectra..

For other cases measurements of mean velocity and turbulence

dquantities are presented.
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Section (8) describes methods of evaluating entrainment
rates and gives results for the two-dimensional jet in still
air, the plane mixing layer and the asymmetric turbulent jets..
Finally in section (9) it is shown that for practical purposes
the simple analysis (presented in section 2.4.2) for the
asymmetric jet is in good agreement with experimental results
for all cases as far as length scales and velocity scales are

concerned.

In section (10) general conclusions drawn from this

investigation are presented.

1.2 A Brief Review of Theoretical Methods for Turbulent
Shear Flows

Although this investigation is highly biased to experi-
mental approach it is interesting to glance at some of the
recent developments in theoretical methods for turbulent shear:
flows. These methods have centered around two approaches. In;
spite of the sophistication and analytical satisfaction of the
statistical methods it is extremely difficult to solve exactly
the equations of motion. 1In statistical analysis one studies :
the equations of motion in terms of time average quantities. It
is well known that in doing so considerable information of the
flow field is lost and resulting equations contain more unknowns
and higher order correlations than there were originally.
Analytical studies following this approach are bedevilled with.
many simplifying assumptions and experimental verification for

them is hard to obtain., However, some solutions have been



obtained which are restricted to isotropic and homogeneous
turbulent flow. Because free turbulent shear flows are neither
isotropic nor homogeneous the complications in the above method
are compounded further. In obtaining practical results another
approach has been very useful. This method is generally referred
to as phenomenological approach. In this approach, in order to
determine the velocity distribution, one establishes an expres-—
sion for shear stress in terms of some empirical exchange

coefficient.

Well known names associated with phenomenological approach.
are Taylor (1915), Prandtl (1925), von Karman (1930) and many
others who have recently reverted to this method. In view of
its simplicity, practical usefulness and the fact that the
physics of turbulent motion is built in (primarily from experi-
mental results) a short review of the evolution of the phenomeno-

logical theories is in order at this stage.

It should be recalled that the Navier-Stokes equations of
motion when time averaged according to the method of Reynolds
contain turbulent momentum transport terms which are referred
to as Reynolds (or apparent, or turbulent) shear stresses. The
existence of these terms in the momentum equation requires that
every phenomenological theory of turbulence must provide some
means of calculating them. The obvious and most tempting
approach in the old theories has been to relate the Reynolds
shear stress to the mean local velocity gradient. Thus in
terms of the eddy-viscosity concept of Boussinesq (1877), the

Reynolds shear stress uv is given by vT(BU/By) where v, is
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defined as the eddy-viscosity. In doing this, however, one
difficulty has been replaced by another and unlike laminar
kinematic viscosity thg eddy-viscosity is not the property of

a fluid, so a definite number cannot be assigned to it. In
fact Vi depends on Reynolds number, the position of the point
where it is evaluated and the boundary conditions of a problem
under investigation. The problem is, therefore, not simplified
but other means have to be found to relate Vi to the flow para-—

meters.

Prandtl (1925) proposed two mixing length hypotheses in
his paper but the one widely known and used is the one in which
Vp is given by lelaU/By, and the mixing length, 1, in turn is
assumed to be proportional to the typical width of a shear.

: - ,12]|gufzu
layer; in other words 1 = pl léy Sy

pointed out, this hypothesis is equivalent to the assumption

As Batchelor (1950) has

that transfer of momentum is carried out by fluctuating motions
that are small in length compared with representative lengths
asséciated with mean motion. This implies that small eddies

are responsible for the transfer mechanism. Furthermore, the
mixing length hypothesis of Prandtl implies a balance between
turbulent production and dissipation, e.g. see Batchelor (1950),
Townsend (1961), Bradshaw et al. (1967), Nee and Kovsznay (1969),
and Rodi and Spalding (1969). Because the convection and
diffusion of turbulence energy are ignored the mixing length.
approach is said to be too local, in other words, this model

ignores the upstream history effects. 1In spite of these objections



the mixing length approach has produced surprisingly good

results for many boundary layer type flows.

For free jet flows Prandtl (1942) suggested that the
'eddy—viscosity is proportional to the product of a typical
width, 1, and velocity scale, u, = (Umax. - Umin.)’ of a
shear layer. The suggestion is a consequence of Reynolds
number similarity when Vip is assumed constant across the flow.
This implies that big eddies are now responsible for the transfer
mechanism, but note that this is inconsistent with the concept
of Boussinesqg and his original suggestion. Also another

restriction has been imposed; this is that Vi is assumed to be

a constant across the shear layer.

To overcome some of the objections of the mixing length
model Kolmogorov (1942), Prandtl (1945) and Emmons (1954) have
proposed a model which relates the eddy-viscosity to turbulence
kinetic energy and a length scale, i.e. T = pl(;-é)l/2 ou/oy.
This suggestion has been used to predict various boundary layer
flows by Wieghardt (1942), Glushko (1965), and Beckwith and
Bushnell (1968). For separated flows the model has been used
by Spalding (1967). The applicability of this model to self-
Preserving turbulent jets and wakes is demonstrated by Newman.
(1968). For interest it is noted that Beckwith and Bushnell use
differential method whereas both Spalding and Newman use integral
method. Newman has also pointed out that any eddy-viscosity

model is incorrect in some specific instances where the Reynolds

shear stress is not zero even though the mean velocity gradient
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is zero (e.g. at the point of maximum velocity in a wall jet

in still surroundings).

Townsend (1956) has given considerable impetus to the
phenomenological approach by providing a framework for future
work., Thé essence of his approach, unlike others, is to accept
the fact that for many turbulent shear flows, mean velocity
profiles are similar and merely appropriate velocity scales and
length scales are required to specify the mean velocity profiles..
He then postulates a transfer mechanism and attempts to predict
variations of the velocity and length scales. In some of the
earlier methods Townsend (1965, 1966) assumes that the turbulence
is geometrically similar, i.e. the ratio of uv to ;§-might be a
universal constant. For free shear flows, collected experimental
results (see Fig. (96)) indicate that this is not a bad
assumption. It should be realized that to make use of these
models, the turbulence energy eéuation has to be introduced in
the analysis and in doing so additional complications are brought
in the problem. Following Townsend (1965) Bradshaw et al. (1967)
transformed the turbulent energy equation into an equation for
the Reynolds shear stress and using this equation together with.
the continuity and the moméntum equation they have successfully
predicted several incompressible turbulent boundary layer flows
both with and without pressure gradient. Using a similar approach
Nash (1969) has recently demonstrated the feasibility of predict-
ing three dimensional turbulent boundary layers. In many flow
situations, however, this method is bound to fail; for often

the Reynolds shear stress vanishes where q2 remains finite, as
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for example, near the line of symmetry in free shear flows.

Recently another approach has been suggested by Harlow and
Nakayama (1967). They have based their transport equation for
the eddy-viscosity on the turbulent energy equatioh. The
Process involves a large number of equations and a large number
of empirical constants. Following Phillips (1967) Nee and
Kovasznay (1969) have also proposed a rate equation to govern
the variation of the eddy viscosity. 1Instead of the turbulent
energy edquation they use this rate equation in conjunction. with.
the momentum and continuity equations to form a closed system
of equations for turbulent shear flows, They have obtained
satisfactory agreement with experimental results for a turbulent
boundary layer with zero pressure gradient. The degree of

empiricism is, however, rather high.

It should now be pointed out that all the pPhenomenological
models proposed so far contained a length scale which had to be
related empirically to the width of shear flow in one way or:
another. To obtain improvement and universality of a prediction.
method for various shear flows it is believed that an independent
differential equation for turbulent length scale is necessary,.
contrary to "the rules for the game" due to Bradshaw (1969).
Originally a suggestion of this kind was made by Kolmogorov
(1942) who introduced a differential equation for the "frequency"..
From Navier-Stokes equations, Rotta (1951) has derived the' .
differential equation for the turbulent length scale (which. is

a measure of energy containing eddies). Spalding (1967) and



- 12 -

his associates have produced a hybrid approach by retaining
Kolmogorov-Prandtl-Emmons model and incorporating it into the
turbulent energy edquation and Rotta's equation for (ggyx:turbu—
lent length scale). After certain assumptions they'have managed
to reduce the number of constants to seven which are then
obtained by procuring the best agreement with experimental
results for the plane mixing layer, the plane jet and the

radial jet. It is noted by them that no set of constants
produces exact agreement in respect of all the main experimental
data., The resulting differential equations are solved simulﬁan—
eously by the finite difference method of Spalding and Patankar:
(1967). oOther advanced turbulence models are given by Launder
(1970). Further comments on this field or micro integral or
differential method are presented later together with the present.
experimental results for a two-dimensional jet in still air, a

plane mixing layer and a two~dimensional jet in a uniform stream-

ing flow.

In view of the difficulties in obtaining universal constants
for all boundary layer type turbulent shear flows there is still
some value in those methods which are semi universal in nature..
Even though iﬁtegral methods are losing popularity, McDonald
(1968) has shown that predictions made from them are in no way
inferior to those made from field methods. It is important to
bear in mind that for either integral or differential method to
possess a long lasting value in real practice requires that it

should be easier, quicker and cheaper to use. 1Indeed in this
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respect Townsend's approaches for free shear flows have been

very rewarding. As an example his "large eddy equilibrium
hypothesis'", although at variance with experimental.bbserva-<
tions as noted by Bradbury (1963), Newman (1969) and many

others, has stimulated some investigators to formulate a method
of finding a relation for the eddy-viscosity in terms of mean.
flow parameters (Bradbury (1963), Gartshore (1965)). Gartshore
and Newman (1969) have demonstrated the success of this approach
for turbulent wall jet in an arbitrary pressure gradient although.
it must be recognized that the wall constraints are important

in this flow,.

For a limited class of turbulent shear flows, as for
example jets and wall jets, an admirable review of prediction.
methods is given by Newman (1969). Application of the pheno-
menological theories to other shear flows can be found in text
books by Schlichting (1968), Hinze (1959) and a review paper By
Halleen (1964). Phillips (1969), in an interesting paper,
reviews various approaches in search of establishing a. relation.

for the Reynolds shear stress in turbulent shear flaws..

For turbulent shear flows Batchelor (1950) has pointed out:
that neither the large eddies nor the small eddies alone are
responsible for the momentum transfer hence in these flows some
other kind of transfer mechanism must be present. In a recent:
paper Townsend (1970) discusses the "nature and origin. of the
"universal" structure of fully sheared turbulence" and he postu-

lates the flow development in variety of shear flows by using
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an analysis based on total strain rather than the usual rate
of strain concept. 1In this approach the eddy-viscosity is

related to the total strain and mean fiow parameters..
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2. THEORETICAL ANALYSIS

2.1 General Outline of the Analysis

The analytical investigation of an asymmetric turbulent
jet is a highly complex problem. For example, Wygnanski and
Hawaleshka (1966) attempted to analyse an asymmetric jet (see
the sketch below) created by the mixing of a wall jet with

quiescent surroundings downstream of a trailing edge.

Trailing edge N

Their approach was essentially a coordinate perturbation type
and therefore its accuracy was limited to the immediate neigh-
bourhood of the trailing'edge. It is interesting to observe
that their solution for the mean velocity distribution breaks
down within one inch downstream of the trailing edge and thus

the range of value of their analysis is very limited.

On the other hand for the present asymmetric turbulent
jet (see the sketch below) considerable simplification would
result if it were possible to divide the jet at the maximum
velocity and then analyse the two parts in a manner similar

to a half jet in uniform streaming flow or a half jet in still

surroundings.
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It should be emphasized, however, that the locus of the maxi-
mum velocity points is not a streamline and this will become

clear as the analysis evolves.

Following the approach of Patel and Newman (1961) for jets
in streaming flow, Gartshore (1965) attempted to analyse the
asymmetric jet by using a multi-integral technique. He divided
the asymmetric jet in a manner similar to the one described
above ignoring the interactions between the two parts, and was
able to predict the width of the jet on the zero velocity side
with fair accuracy whereas on the streaming side his predictions
for the width were very poor. It is of interest to note that
in methods similar to Gartshore's one requires, a priori, at
least some or all of the variables at one station to predict
the flow development downstream of that station. Such methods
imply that each Prediction is restricted to only one case of
Uj/Ul' In addition use of the multi-integral technique requires
some information regarding the variation of the Reynolds shear
stress. For the asymmetric jets Gartshore (1965) confined his

experimental investigation to only the mean velocity measure-
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ments* and these are compared with the present results later.
Because analyses of a free jet in still air and a jet in uni-
form streaming flow are anticipated to be applicable these. are
examined before extending the analyses to the asymﬁetriC'jet,

The present analysis (section (2.4.2)) for the asymmetric jet
involves application of an integrated x-momentum equation for
each half of the flow. The analysis does not impose restrictions
on the interactions between the two halves. The interactions

are represented by the ratio of mean flow length scales ll_and

1 The variation of (12/11) is obtained from experimental

2.
results. An auxiliary equation which is the same for a jet:
in uniform streaming flow is used. With this information. it.
is possible to evaluate explicitly the variations offlly 12

and ug for the asymmetric jet.

2.2 A Plane Jet in Quiescent Surroundings

For a plane jet in quiescent surroundings, from‘dimensionél.
analysis, Newman (1961) has shown that the distributions of the
mean velocity and the mean turbulence parameters are similar. at:
all downstream stations. The similar profiles differ only in.
scales of length and velocity. The growth of the length. scale
is linear with the downstream distance, x, and the velocity scale-

varies as x-l/a. The shape of the non-dimensional mean. velocity:

It should be noted that Dr. Gartshore's measurements of this
flow were exploratory and ancillary to the main work of his

thesis, which was 'The streamwise development of two-dimen-

sional wall jets and other two-dimensional shear flows'..
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profile is predicted by Tollmien (1926), Gortler (1942) and
Townsend (1970) by using phenomenological approaches. These
observations are well substantiated by many experiments (for
mean velocity only), however, some disagreement between experi-—

mental results exist and these will be discussed in section (5)..

In many investigations (for example, see Newman (1968);
Townsend (1970))information derived from a plane jet in
quiescent surroundings is used to extend analyses to more
complex free shear flows. In particular when the turbulence
eénergy equation is incorporated in an analysis some assumption
'regarding the dissipation length scale is required and often.
the ratio of mean flow length scale to the dissipation length.
scale is assumed to be the same as that for the plane jet.

The purpose of the following analysis is to show that for a
Plane jet in still air the ratio of the mean flow length scale
to the dissipation length scale is related to the rate of
growth, a parameter representing the structure of turbulence,

and shape factors.

Consider a two-dimensional jet in quiescent surroundings
for which the time averaged equation of motion in downstream
direction x (for constant density P, and incorporating the
approximate form of the y-directional momentum equation) is

(see Fig. (2a)):

U, AU L3 (uB-vB) 1 .
Ux * vS; T 3% T p oy (1)
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where:

U and V are mean velocities in directions x and Yy
respectively; u and v are the associated turbulent

fluctuations about the mean,

and T/p = - uv + v %g

The time averaged continuity equation is:

Combining equations (1) and (2) and integrating between
limits y = 0 and y = », (i.e. the full integrated momentum

equation), |
T[U2+<§5-3§>]dy - 0 (3)

(o]

g1~

The difference between the normal Reynolds stresses is
often neglected (Townsend (1956)) and similarity profiles are

assumed as follows:

U =u_ £(n)

()

2 _ 2
a = qf g9(n)

where n =y/1

o’
u, = the mean velocity scale and is equal to U s
q2 = (u2 + VP o+ w2) ,

turbulence energy scale and is found to be

Kol
il
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proportional to ug for self-preserving flows,.

1, = length scale defined as that value of y at
- - L
which U = 5 U,

and Um is the maximum velocity at y = Q.
Combining equations (4) with equation (3) one obtains,
w1 1, = constant (5)
o "o 2 2
T £2
where I, = f £~ dny
2 5

Similarly the integrated half-momentum equation is
obtained by combining equations (1) and (2) and integrating

between limits y = 0 and y = 1,

(T) - |
. SVn=1 ) ar 1 | /
e, T2 = 5 2 £(1) oden (6)

where -pE; is the Reynolds shear stress and the viscous shear

stress is neglected.

For a plane jet in still air the non-dimensional mean
velocity distribution is represented well by an exponential
function (Hinze (1959), Newman (1967), etc.) (e.g. £ =-efkn2
where k = 1n 2 because of the definition of 1,) so equation

(6) reduces to:

(wv) _; 1 ‘
——u?"— =0.2 32 (7)

(o]
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The integrated total energy equation is:

[u(u2+q2)}dy=-of°edy ®

QTW
»

00
L]

where ¢ is the rate of energy dissipation Per unit volume..

If the momentum condition and equations (4) are used

in equation (8) then one gets,

)
o] 3 ql [e)
If dn+—§[3 jfgdn-29(0)]
o ug o
—=,3/2
(a7) 1
= Uq —§ o _1 (/9‘)'
= . e g
o0 uo LE dlo/dx
o 1, —=.3/2
where I € dy = n_ fg (qi)
o €
L€ = the average dissipation length scale of
the turbulent motion
and Ny = the non-dimensional position of the approxi-—

mate edge of the non-dimensional mean

2.0.

5i

velocity profile, i.e. My
(The traditional definition of n, is the
non-dimensional mean position of the super

layer.)

Equation (7) when substituted into equation (9) gives,.
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2
o) q dl
Jf3dn+_—_]4 02?}%[3 D]fgdn—Eg(o)]
o (uv)__
n=1
Jhe e ¥R et .
Tie [, ax L_ ( Q)

———

It should be mentioned that until now qf was not speci-
fied except that it is a characteristic scale for the turbulence

energy in the shear layer. qi is now defined as the value of

;2— at n = 1 corresponding to the position where U is equal to

a half centre line value. In the investigations of Townsend

and Newman it is assumed to be the value of q—2 at n = 0. Present
measurements (to be described later see section (5)) for a

bPlane jet in still air show that:

[ [2-‘, w
g(0) = 1.12; o = 5.9; jfg dn = 1.10

—2 = = 0.103

o0,
and for the exponential profile If3 dn = 0.62.
o

Hence with the numerical values of equations (11)_and

2
defining the turbulence structure parameter, (Sp) = [%_J
uv 1 n=1

(Townsend (1970) uses E/q2 to specify the turbulence

structure), equation (10) becomes,

1/2 3/2 1
0.62 + 0.2 ¢ (SP) = 0.715 ¢ (sp) T (12)
€



o
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Equation (12) shows that the ?atio of the mean flow length
scale, lo, to the dissipation length scale, L, depends on
the rate of growth and the structure parameter. The experi-
mental values for C and (SP) when substituted into equation

(12) give, lo/i.€ = 0.23.

It is interesting to compare the present value of lo/LE
to the one (1O/L€ = 0.254) obtained by Newman (1968) (although
he does not explicitly quote the value of 1O/L€ it was calculated
from his equation (3) using his suggested values for the para-

meters appearing in this equation). It should be emphasized

‘that the close agreement between the two values is noteworthy

since they were obtained by using different assumptions. For
instance-Newman's equation (3) is derived with the assumption

that q2 at y = 0 is a representative value within the fully
turbulent part of the flow whereas the analysis presented here
is cbmparatively more exact. An important conclusion is that
the value of lo/L€ is inseﬁsitive to plausible assumptions
regarding the distribution of the turbulent energy in the

shear 1ayef.

2.3 A Plane Jet in a Uniform Streaming Flow

2.3.1 General

Although many investigations in the past have been under-
taken for a plane jet in a uniform streaming flow none of the
methods proposed has been satisfactory in correlating the exist-

ing experimental results. Essentially most of the methods
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except the one proposed by Wygnanski (1969) are integral
methods. Wygnanski's approach is based on a coordinate-type
perturbation expansion and a series truncation together with
the assumption of constant eddy viscosity across the flow
(i.e. Vp @ function of x only). His method requires two
experimental constants which are obtained from the limiting

self-preserving cases.

All the integral methods although different in concept
assume geometrical similarity of mean velocity profiles,
Squire and Trouncer (1944) use a "double integral" technique
and introduce Prandtl's mixing length hypothesis,

(v = pl2 %g I%%'), to specify shear stress at the "half-
velocity" point in the shear layer. The mixing length, 1,

in turn is assumed to be a constant'proportion of the width
Oof the shear layer (i.e. in effect Vp © Y.l  and the eddy
viscosity Reynolds number, uolo/vT, equals a constant through-
out the flow field). Hill (1965) uses integral momentum and
moment of momentum equations. The latter has an integral,
involving shear Stress, which is evaluated from the experimental
results of jets in still surroundings. Abramovich (1963) uses
the integral momentum equation together with an auxiliary
equation (see section 2.3.2) which involves one experimental
constant. These integral methods have one serious objection
in that they do not exhibit the expected asymptotic behaviour,.
i.e. a strong jet in a uniform streaming flow degenerates ta a

small-perturbation jet and both these extreme cases are self-
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preserving with quite different values for the eddy viscosity

Reynolds number,

Integral methods known as variable eddy viscosity
Reynolds number methods have been developed to incorporate
tFé/expected asymptotic behaviour. This group of methods
ehdeavours to allow for changes in the eddy viscosity Reynolds
number by applying Townsend's (1956) large eddy equilibrium
hypothesis using local values of strain-rate ratio to. compute
local values of the eddy viscosity Reynolds number. Methods
of Bradbury (1963) and Gartshore (1965) fall into this category.
‘Indeed they must exhibit the expected asymptotic behaviour
because Townsend used his large eddy equilibrium hypothesis
originally to explain differences in the eddy viscosity

Reynolds numbers for the two extreme cases.

In Gartshore's method the eddy viscosity Reynolds number.
is related to scale of the largest eddies, and this scale is
assumed to be proportional to the standard deviation of the
position of the laminar super-layer. The standard deviation.
in turn is obtained from measured intermittency distributions..
The double integral technique similar to the one of Squire and
Trouncer is used and the resulting equations are solved
numerically by a four-point Runge Kutta technique. It should
be noted that in his method, apart from initial conditions to
start numerical calculations, two experimental constants are
required., 1In spite of the sophistication and extra assumptions

introduced by Gartshore, his predictions for turbulent jets in
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uniform streaming flow are not in good agreement with the

experimental results of Bradbury.

Bradbury and Riley (1967) have also concluded that simple
integral theories using Townsend's large eddy equilibrium
hypothesis do not predict this flow accurately. They have,
in fact, shown that the application of the large eddy equili—
brium hypothesis leads to errors in the predictions of flow
development, opposite in sense but equal in order of magnitude
to the errors obtained with the constant eddy viscosity Reynolds
number theories., Thus there is as yet no simple method for

predicting jets in uniform streaming flow.

For interest it is noted that Naudascher (1967) has pro-
posed a method which incorporates a new form of similarity for
such flows but his similarity form introduces an inconsistency

into the analysis and also has limited experimental verification..

An_attempt is therefore made to analyse the development of
mean flow characteristics for the plane jet in a uniform stream-
ing flow that is valid over the entire range of flow rather
than over asymptotic regions only. The integral momentum
equation is used together with an auxiliary equation to provide
solutions for both u, and lo. Only one well established experi-
mental constant is required. Even though the investigation is
limited to incompressible and isothermal conditions it can be
extended to studies of other main characteristics of the flow,

e.g. temperature, density and concentration profiles (see for

example Abramovich (1963)).
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2.3.2 Simple Analysis for Plane Turbulent Jet in Uniform
Streaming Flow

Although the analysis presented here specifically applies
to two-dimensional flows it can be extended to axi-symmetric.
flows (see Newman (1967) for the general equations). Since the-
approach is to use the integral momentum equation some assump-
tion must be made for the mean velocity profile. .Following

Townsend (1956) the velocity profile in both jets and wakes to

a good degree of accuracy may be written as (see Fig. (2b)):

U =10 + u,f(n) (13)

where f£(n) is a universal function of n = y/lo

U is the velocity of the external irrotational flow

1
and is independent of x,

u, 1is a mean velocity scale ( = U, ~ ;) and I is a

characteristic length scale for this layer.. Both:

u, and lo are functions of x only.

Y1 .
-
//
-7y
U -
Y
.
\\
Ts
2
U, 1

Because the shear flow under investigation is in. a constant:
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pressure field, the time-averaged boundary layer equation in
downstream direction x (for constant density p, and using the

approximate equation in the y—direction) applicable to this

flow is:
T (I
ox oy = ox T p oy

which is the same as equation (1) with the same notation but

different boundary conditions.

The time-averaged continuity equation (2) also remains
the same., Hence combining the continuity equation and the
momentum equation and integrating the resulting equation between
limits vy = 0 and y = » (note that at both limits ¢ = Q), one

gets;
= :J [(Uz - uy,y) + (u? - :2-) ] dy = 0 (14)

Once more if the difference between the normal Reynolds stresses
(which is quite small compared to the excess momentum flux,
except possibly near the edges where the intermittency fouls

up the integral analysis anyway) can be neglected then

equation (14) reduces to:

0,
J.(U2 - UUl) dy = constant (15)
o

Equation (15) simply implies that the excess momentum in the

x-direction is constant. Substituting the velocity profile
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equation (13) into the integrated momentum equation (15) one
obtains:
= constant ( = Me say) (16)

2
1, (ug I, +uU;I;)

where

I, = OT £(n) dn

T 2
and I, = I £5(n) dn
2
o
There are two unknowns in equation (16), uj and I_, and

hence another equation giving a connection between u__ and Io

a.
is necessary before any prediction regarding their individual

variations in the x-direction can be made.

Choice of an Auxiliary Equation

The choice of a second equation varies from one method to
another but whatever the choice may be, a necessary requirement
is that the method must exhibit proper variation of the eddy
viscosity Reynolds number, uolo/vT. It should be mentioned
that this requirement is not sufficient, as can be seen from
the methods based on Townsend's hypothesis of "large eddy equi—
librium" (e.g. Bradbury (1963) and Gartshore (1965)). Hence

an additional requirement is that there must.be agreement

between predictions and experimental results. The author (1969)
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has recently shown that use of a simple auxiliary equation
satisfies both the requirements mentioned above. 1In that paper
the auxiliary equation was based on Abramovich's (1958, 1963)
approach. The same equation can also be derived using a rela-
tivistic approach (Kruka and Eskinazi (1964); Newman (1969)).
It will be shown in the next section that the auxiliary equation

suggested by the author is approximately related to the structure

parameter, (Sp).

For reference, the auxiliary equations used by Abramovich

(1958) and Patel (1969) are given below.

Abramovich, following Prandtl, suggested the following

equation:

dlo uo .
ax - c1 U5 (17)
Ul+-§—

Newman (1967) has derived equation (17) from consideration
of a mixing layer in constant pressure. Equation (17) can be

derived by using Prandtl's mixing length hypothesis, (i.e,

. 1/2
T = pl(qg) %% ), and "the restricted form of the energy-

length model" of Spalding (1968). For self-preserving flows
Townsend (1970), (see his equation (7.3)), obtains equation
(17) by considering equations for the overall balance of momen-
tum and total energy. It will be shown later that Abramovich's

equation (17) is not in aéreement with experimental results

(Patel (1969)).
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The auxiliary equation proposed by the author  is:
(18)

where C is the rate of growth of a plane jet in still surround-

ings.

The constant C depends on the definition of lom Usually
1, is defined as that value of y at which (U—Ul) =-% u_ and
then the value of C can be obtained experimentally by analyz-

ing data of a jet in still surroundings. The auxiliary equa-—
dl

‘tion (18) for a jet in still surroundings becomes —33 = C..

Newman (1967) has collected values of C from various experi-

mental investigations on jet in still air and suggests an aver-
age value of C = 0.104. The author 's measured value, C = 0.103,
is in agreement with Newman's suggestion, With the same defini-

tion of lo as above the value of Cl in Abramovich's equation.

(17) is 0.052 (i.e. c, = c/2).

Moreover, comparison of Abramovich's equation (17) and the
auxiliary equation (18) indicates that there is hardly any
qualitative difference between the two equations except for

the change in constants., 1In effect, as will be shown later,.

The author proposed this auxiliary equation independently
but later discovered that it was used to transform the
longitudinal coordinate by Kruka and Eskinazi (1964) for
wall jets in uniform streaming flow.
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one is an approximately constant eddy viscosity Reynolds number
hypothesis and the other is a variable eddy viscosity Reynolds.

number hypothesis with correct asymptotic values,.

Solutions for lo and uo

The auxiliary equation (18) together with the integrated

momentum equation (16) gives:

U
3 L
u? (12 + I, )

du
o _ _ C o .
dx ~ (2Me) Ul 1 Ul (19)
(L+g) (H+30F)

Equation (19) can now be integrated after some manipulations

and the solution is:

U 2 U I, ° I./T
1,°1 1 2 2/ "1
(=) + (=) + (%) 1n
2 u_ u, I, (12/1l + U, /u )

CI.U 2

2
(r,/1,) (v -1./1,) I I
e -G a- ) = e ()

(12/11 + Ul/ho)

(20)

where Xq is introduced as the constant of integration and is

u_ > o and the hypothetical origin of

such that when x = Xos YUy

the jet is identified.

[0.¢]
Define @ = &% = j %‘ (‘%‘ - 1) ay (21)
Ul o 1 1
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Equations (20) and (16) now reduce to:

u

2 U I, 2 I,/T
1 U1 1 2 2’11
s(F) + () +(f5) In
o o) 1

(12/1l + Ul/ho)

2
(12/11) (1 - 1,/1;)

I I X-X
- <;§> (1 - ;f—) = c1; (9

+ (1,/1, + U,/4.)
(22)
lo 1 (Ul/uo)2 ,
and 3 = EI (Ig/Il T Ul/uo) (23)

These are most convenient expressions and give implicitly

the variation of 1 with (x—xo).

From equations (22) and (23) for a strong jet,

~-1/2 .
uy = (x-x) and 1 « (x—=x_)

For a small-perturbation jet equation (22) reduces to

2
U .
35 =« (x-x) (24)
O

and equation (23) then gives:

1/2
1 o (x—Xo) (25)

o
Hence it is noted that equations (22) and (23) do predict the
expected behaviour of the jet development. Furthermore, note
that there is only one experimental constant, C, in these

equations,
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The corresponding vesults are now obtained using
Abramovich's equation (17). With equations (17) and (16)

the solutions for uO and 10 are:

U, 2 U I, 2 I./1
1,9 1,1 2 271
() +5 () + (%) 1n
2 ‘ug 2 tug I, (3:2/1l + Ul/uo_j

21
(/1)) (3 - 1,/1) 1,

YL ) T G -1 - e (59
(26)
1 (U, /)2
© _ 1 1’ o o
and 3 I, | (1,/I, + U /u) (27)

Equation (27) is identical to equation (23) as would be
expected, however comparison of equations (26) and (22) indi-
cates that equation (26) for a small-perturbation jet will give
a value of (Ul/'uo)2 at a particular downstream station half
that obtained from equation (22), e.g. equaﬁion (26) for a

small-perturbation jet becomes:
u. 2 X-X
1 - o) .
G) = o1 (59 (28)

compared to the one obtained from equation (22),

Uy 2 X=X .
(37) = ecr (——) ~ (29)
(o} .

2.3.3 An Approximate Relation Between the Auxiliary
Equation (18) and the Structure Parameter (sp)

The merit of the auxiliary equation (18) for jets in uniform
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streaming flow has been demonstrated by Patel (1969), however,
to agument confidence in its use, the following analysis is
presented. The method is similar to that of Townsend (1970)
but the objective is different. It is known that. a plane jet.
in uniform streaming flow (i.e. U, = constant) is not. a self-
preserving flow (Patel and Newman (1961)) but the experimental
evidence (Bradbury (1965)) suggests otherwise,, and therefore,.
it is anticipated that an extension of Townsend's approach may-
prove useful as far as the turbulent structure of this flow is

concerned,

Townsend obtains an equation for c, (see equatiom (17)
for the definition of C; which is the entrainment constant)
and relates it to the maximum effective strain. From this
equation he then postulates whethef or not a self-preserving
development of a flow is possible. Although many assumptions.
must have been involved in deriving his equations, the specific
edquation for Cl applicable to the plane jet in uniform streaming
flow is not given. Thus the author has borrowed the spirit. of
his unifying and approximating approach for self-preserving
turbulent shear flows in the present analysis. The purpose of:
the present investigation is to show that the: auxiliary equation.
(18) for —ag is related to the structure parameter, (SP),. as
defined in section 2.2. Because many assumptions-afe involved

in the derivation, the analysis is presented in detail. and each

assumption is clearly stated.

Neglecting terms involving the viscous and normal Reynolds
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stresses, the integrated equation for the mean-flow kinetic
energy for the flow under investigation is:
R ou

2 .2 ¢ T
- dy = - L= g |
OJU (v5-u]) ay ofp y (30)

QJIQ-:
]

1
2

Equation (30) can also be written as:

OT U(U-Ul)edy = - OT

&

T a
5 Y (31)

Q/

M|
2l

Y

It should be noted that in deriving equation (31) both

the integral momentum equation (15) and the fact.that:Ui is a

constant are used.

To the same approximation as eqguation (30), the integrated

turbulence energy edquation is:

o F e J3
o]

<

1
2

2P

dy = - gm e dy (3=)
o)

o

Adding equations (31) and (32), the integrated total energy

equation becomes:
LG [+ @Y ar-- fear
o’ ol

Equation (33) is in agreement with those given. by Townsend
(1970) and Newman (1968). (Note that adding equations (30) and
(32) one obtains the integrated total energy equation. given by

Newman. )
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Now following the approach similar to the one. used for
the plane jet in section 2.2 it is necessary to evaluate the
integrated half momentum equation. For this purpose the.
velocity profile equation (13) is substituted in. the momentum
and continuity equations (1) and (2) respectively, and to the
same approximation as the integrated momentum equation. (15),

the resulting equation is then integrated between. limits v =0

and y = lo.
(uv)-q=l dlo Ul (l 1 ) I ]_S 1p- o
i.e. 2 = — (5 - 5 fdn) + 3 fan - szdn
u dx u, 2 2 ad o J.
1 du U, 1 L - (L.
- .{1.9 _d-.xg -EL Ifd’q + 2 \fzdn ~-2]= \ fdn
o Qo o} Tol
(3%)

Measurements of Bradbury (1963) show that the. non-dimen-
sional mean velocity distribution as represented by the- velocity
profile equation (13) may be given by an. exponential function,

f = e—kn where k = In2 thus defining IO, and the mean. velocity
scale, u_, is given by (Um - Ul), where U  is: the maximum
velocity at y = 0. Hence with the exponential velocity distri-

bution one gets:

) |
den =0.81 ; 1, = If dn = 1.065 Y
(o) O

1 5 :
Jf dn = 0.68 ; I (35)

N
Il
S
Hh
n
o
-
I
o
~
n
Ul
~"

o

r, = f£3an = 0.62
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In equation (35) one could use the values given by Bradbury
(1963) based on experimental results.

From the momentum condition (i.e. equation (16)) it can

be shown that:

1, dug _ d1_ I,/I; + U /u (36)
u, dx dx ~

2(12/11) + Ul/'uO

Substituting equations (35) and (36) into equation (3%4) one

obtains:

(uv) _, dl, |(0.705 + v, /u ) U\
ug =08 dx | (1.31 + U, /u) ( 1.18 + E;,)
a1 .
- 0.31 —32 (0.886 + U, /u_) (37)

As expected equation (37) reduces to equation (7) when.
Ul > 0, but because of the subsequent simplifying assumptions
in the following analysis the final equations do not display

exXxact agreement with corresponding equations of section 2.2..

To simplify the algebra later, and following Townsendian

Spirit, equation (37) may be approximated to (see figure below)::

(uv) dl U
=1 _ -9 -1
= 0.5 —32 (l+u)

u
o

o

(38)
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' (av) _
yl  —In=1 -
dl 2
—2u
3 - dx °©
Equation (37 -]
2 -
1 -
| 1 ! i
0 1 4 5

% (0,0

Comparison of the exact (equation (37))
and the approximated (equation (38)) half
momentum edgquations

‘Reverting to the integrated total enerqgy equation ('33_) which.

on substitution of the velocity profile equation (13) becomes::

1 7 2 2 ' I 03 [, 27 .
Eof&[uof (Ul+uof)]dy+2of&'[(ul.+uof)q dy

= - ‘ € dy (‘/3-9.)
(o)

Equation (39) with q° = qf g(n) becomes:

1, .2 [ a1 , 2o duo] o],den .13 [dlo . 31 du fof'dn
2 "1 "o ax ug dx o 2 o dx u, dx.o‘.
+Lly 2 [dlo + - T T gdn + L u gt [dIo + |
2 "1 21 dx ug dx_l o 2 "o dax. u, dx_]
(0.0 €0
' I fg dn = - I e dy (40)
o o

In deriving equation (40) it is assumed that




2

q = qi g(n) and = constant.

ool

Combining equations (36) and (40) one gets:

(Ul 2
u_ o0 (1+2U/u) 00
5 [j2+ 5. 75 ] ( £2 an + %'[2 T U ﬁh . ]  £2an
1”70 do0 1’7o o)
= &' =
_,_Lil_n [ u ]+lﬂ[(l+2ul/uo)} oofgdq
2 2T [ 2+ U/ /u 2 212+ U/u OI :
o o
o3
1,49
o 1 1
=q =2 = (41)
00 L€ ug dlo ax

where equation (36) is approximated to:

EQ du . a1 [ 1+ Ul/uo]
u dx dx
o 2 + Uy /ug
o - 1
- 3 ©
and of € dy = Mo 93 L.

u is taken, generally, as mean

~e

Jgan=n,

position of the super layer, i.e. a value of 7 at which inter-
mittency is %. (See equation (9) for the present definition.)
To reduce equation (41) further, the following assumptions are

made:

0 o]
! fg = 1.0 ; n_ = 2.0 and because I £2 dn = 0.7555
o o
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o .
and f f3 dn = 0.62, these two integrals are assumed to be
o

the same. With these values equation (41) becomes:

2 -= 2
) _ _
1 [(l + Uy /u) ] T £2an + = 91 ['2 (0 /u,) +2 (O /u,) + 1
212+ Ul7uo o 2 ug 2 + Ul/uo
3
1 g
[o] 1 / '
- 2 L 1 (42)
Lg u% dlo/dx

The half momentum equation (38) and the total energy edquation
(42) give:
2

(l'l' U /u ) 00
1 1" "o 2 1
2 [2 + 0,/ ]oj TenTe (av), -

2ol

dl
1 o oy
{2 dx (1 +'Ul/uo)
1

)2

[ 2 (U /w))° + 2 (U /uy) +1 ]}
2 + Ul/'uo

2
U 0 q dl U, 2
1 1 2 1 9 o 1 ]
N £2dn + = 1+ ==
2 [ o ]of T (Ev)n=l dx [( Yo'
B 1 ig qi 3/2 lo 1/2 Ul 3/2
KR [(a'a) ] (3 [l+—;]

].
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which becomes:
< ' -} 3/2
0 q dl U 1 q -
fefan + = Zo 1,y o5 o {[_ﬁ ]
S (u )ﬂ=1 o € (uv) -1
1/2
dl 4]
[Ra+d] } (15)

As mentioned in section (2.2) qi is defined as the value:
of ;5 at 1 = 1 and with this definition it is clear from equa-
tion (45) that equation (18) (i.e. the auxiliary equation.
Asuggested by the author) is at least related to the structure:

parameter (SP). This relation is now established.

Rewriting equation (45) together with the auxiliary equa=—

tion (18),
o 5 1 1/a f 2.3/2
f £2dn + C [9— ] =v2 2 ¢ [9-—;] (46)
o uv € uvd
n=1 , n=l

It is interesting to note that in equation (46) the
velocity ratio, ;l, does not appear explicitly and thus it
appears that at lgast within the range of the approximations.
the turbulence structure parameter is not directly dependent.
on the velocity ratio (C = ¢ (velocity ratio)). It is inter-—
esting to note that for self-preserving flows Newmanv(l968)
has predicted (Gsyug)n=l to be more or less constant (see his:

figure 2.2). In making this statement it is implied that. the
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ratio (lO/Le) is also independent of Ul/ho. It will be shown
later that Bradbury's (1963) measurements are in agreement with

this general conclusion (see Fig. (7)).

It has been noted that as a consequence of the numerous
simplifying assumptions edquation (46) does not reduce to the
edquivalent equation for the Plane jet in still air (iuem compare
equation (12)). However, some estimate of the error can be
obtained by comparing measured values of the structure parametexr
to the one obtained from equation (46). To obtain the structure
parameter from equation (46) it is required that some assumption
regarding (lo/Le) be made and following Townsend (1970) and
Newman (1968) it is assumed that the ratio lo/L€ has the same
value as that in the plane jet in still air i.e. lo/L€ = (0.230.
Note that C = 0.103. Hence,with these values equation (46)
predicts the structure parameter to be about 5.5. The measured
value of this parameter deduced from Bradbury's (he quotes a
value of GV/;E = 0.2) measurements is about 5.9 (see Fig. (7)).
Considering the nature of the assumptions and the uncertainties
in the measurements, the predicted value for the structure para-—
meter is not unreasonable. Furthermore, it is noted that the
nature of the total energy equation (46) is such that the struc-
ture parameter is weakly dependent on the value of C normally
encountered in plane free shear flows. In other words it is
anticipated that the structure parameter does not vary a great
deal from one flow to another, e.g. in jets and wall Jets in.

uniform streaming flow, jets and wall jets in still air, etc.

Collected experimental results for these flows to be described
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later confirm this conclusion (see Fig. (96)).

2.3.4 variation of the Eddy Viscosity Reynolds Number*

Patel (1969) has shown that the auxiliary equation (18)

gives the correct asymptotic value of the eddy viscosity

.Reynolds number, RT = uolo/vT, for a small perturbation jet

w
or wake. In this section the details of RT variation from one

asymptotic value (i.e. corresponding to a jet in still air) to
another (i.e. corresponding to a small increment jet or to a

small deficit wake) are given. For this purpose it should be

noted that either the half momentum integral equation or the

mean energy equation may be used. The former will provide RT
values at y = 1 (see at the end of this section) whereas the
latter provides an average value of RT at a particular downstream

station. The mean energy integral equation is (see equation

(30)):

(oo} (o]

1d 2_4 2 - - T
2dxo{U(U Ul)dy_ ofp

OJlO/
(o

dy

The turbulent shear stress may be represented by

T o -9V = U -
o= T uvo=vp 50 | (47)
where Vip is eddy viscosity.

It is assumed that Vo is a function of x only (Townsend

(1956)). It is'noted that this assumption is not necessary if

*Note that RT is directly related to (SP) by definition,,
i.e. R, d:(u /ql)(SP) and is a constant for a particular self-

preserving flow,
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the half momentum integral equation is used. SubStituting
the velocity profile equation (13) and (47) into the mean

energy edquation gives:

8) dl U 1 du .
1y o 1y oo _ _ 21"
(I3 + I, u /  dx + (313 + 212 uo) u, dx Rn (48)

= ( £3
where I3 = of £2(n)dn

2
(5

and I' = T an dn

o
Now with equations (16), (18) and (19) equation (48) can be
reduced to:

Uy Uy
(:t2 + I, E;)(3I3 + 2I, )

u.. .
C o : S
- (1, + 1, —7)
U (‘3: Zéu',]
(L +u,/u) [ 1 b} o 1
1’ "o 2(I, + 5 I; 79
21! ,
= &= (%9)
RT ,
For a jet in still air equation (49) becomes:
41 oy
R = &1~ (50)
Tj CI3

For a small perturbation jet equation (49) reduces to::

Ry - 2L (51)
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It can be seen from equations (50) and (51) that both

RT and RT are absolute constants throughout the respective
3 w
flow fields and that their values are indeed different. WwWith

C = 0.104 and using Bradbury's (1963) integral values (i.e.
I'/I3 = 0.9125 and I'/I2 = 0.745) Rp = 35.1 coﬁpared to

J
Bradbury's value of R = 36.5, the difference being entirely

T.
J
due to the value of C used to calculate RT . Bradbury used
j
C = 0.10. Similarly R, = 14 .35 compared to 14.7 which Townsend

\
obtained from measurements of the rate of spread of the wake.

Note that R, = 32.6 and R, = 13.3 if the velocity profile is

assumed to be Gaussian. Newman (1967) has cbtained R;, = 13.3
W

for both round and two-dimensional wakes from the measurements

of Townsend,

It is easy to show that the cdrresponding results using

Abramovich's equation (17) are:

\ Y Uy
G (I2 + I u—)(3I3 + 21, H‘) -
1 (©) o] 1
- (1, + 1, =)
(L Uy o(1, + L Ul) 3 T2,
=+ == + =1, ==
2 u, 2 2 71 u,
21' (
= &= . 52)
RT :
For a jet in still air equation (52) reduces to:
21" hrt
Ry = P - A (53)
Tj ClI3 CI3
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For a small perturbation jet equation (52) reduces to:

o1 a1t ,
Rp, T¢I, T c1, (5%)

It is now obvious that as a consequence of the assumption
(i.e. the characteristic velocity is replaced by the mean,
% (u; + U )) which Abramovich made, his method fails to give

the correct value of RT .
w

It was mentioned at the beginning of this section that

the variation of R, can be obtained without imposing the res-

T

triction on Vo (i.e. vT(x) is taken as an average value at a

cross section ) if the half-momentum equation were used. In
fact it can be seen from equation (37) which is the integrated
half-momentum equation and substituting equation (47) into

equation (37) and taking the limit as U; - O one gets:
£ _ .

where (f')n=l = ==

For the exponential profile and C = 0.103, equation (55)

gives RT = 32.6 which is the same as derived from equation

(49).

Similarly equation (37), for a small perturbation jet

(i.e. u » 0), gives:
_ = (£ =1 ey
Ry = ZEn - (56)
v 0.5 L _©
u dx
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From equation (18) it can be shown that for a small

perturbation jet:

Ul dlo
== —= = C (57)

ax
Yy

Hence equation (56) with equation (57) and the exponential
velocity distribution gives RT = 13.3 which is, once more, in
T, .
agreement with the value derived from equation (49). Note that
Abramovich's equation (17) together with equation (56) will

give R = 26.6 which is not in agreement with the measured

Tw

value,

Finally, as mentioned before, the validity of equation
(18) may be confirmed by comparing experimental results with

predictions from equations (22) and (23).

2.4 Extended Analysis for Wall Jets and the Asymmetric Jet

2.4.1 Wall Jets in Uniform Streaming Flow

As stated in the introduction, plane'wall jets in streaming
flow form a special group of flow configurations in. the general
class of asymmetric flows. Therefore, before extending the
analysis of section (2.3) to the turbulent asymmetric jet it is
of interest to see whether or not the analysis is capable of
predicting the flow development for.a plane wall jet in uniform

streaming flow (see the sketch below).
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It should be noted that the wall jets in uniform stream--

ing flow offer an excellent opportunity to evaluate the merit

of the analysis and possibly some direction for its extension.

because in many investigations of wall jets (e.g. Patel (1962);
Kruka and Eskinazi (1964); Gartshore (1965), etc.) it is found
experimentally that the mean velocity profiles are approximately
similar to half the profile for a jet in uniform streaming flow,
If the analysis of section (2.3) is applied to the outer part
of the wall jets additional assumptions have to be made. The

assumptions are:

(a) Reynolds shear stress at y = Yo is zera, where Yo

is the value of y at which U = U.» and

(r) changes in Y, With respect to x are small.

Strictly speaking both assumptions are invalid, nevertheless,.
it is observed that the measured shear stress at the point of:

maximum velocity is small compared to some characteristic shear

stress, say at y = 1  (for example see the results of Bradshaw
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and Gee (1960):; Kruka and Eskinazi (1964)), and the variation
of Yo, with respect to x is of second order. As a matter of
interest it is noted that changes in Yo with respect to x have
compensating effects (Patel (1969)). Hence one may expect the
previous analysis (section 2.3) to apply, at least approximately,
to the outer part of the wall jets in uniform streaming flow.
Figure (3) defines the notation and with these definitions
variations in u_ and 1 are given by equations (22) and (23).
The values of I (n =1, 2, 3, etc.) are kept the same as before
because the non-dimensional mean velocity profiles are practi-
cally the same. It is reasonable to assume that the wall on one
side affects the growth of the outer part, presumably by
suppressing transverse fluctuations, and hence the constant C
would be different. On the basis of linear growth Bradshaw and
Gee (1960) have concluded that the influence of a wall is fairly
small. This is contrary to experimental results because the
experimental rate of growth for a wall jet in still ai; is aboﬁt
half that for a free jet in still air. Indeed this suggests
that the distribution of (;§/u§) across a free jet would be
about twice that for the wall jet provided the above assumption
is valid. Guitton (1970) has compared his measurements of
(;E/ug) for a plane wall jet in still air with the author's

free jet results and his comparison confirms the above conclu-—-
sion. Furthermore, for free shear flows (outer part of wall
jets included) it is observed that mean flow energy is trans-

ferred first to u-component of turbulence, then to v-component

and finally to w-component, therefore, any reduction in v2
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—

would reflect as an increase in w2 provided the transfer
mechanism follows the above sequence. Guitton's turbulence
measurements for the plane wall jet show that the reduction

in (;E/ﬁg)’is reflected as an increase in (;Eyug). His
measurements also show that both (;Eyug) and (;§7ug) are of

the same order of magnitude whereas (;§7u§) is about half of
(;E)hg) or (;E/ug). On the other hand, for a free jet in still
air the measurements (to be described later) ShOW'that.(;E)hg)

——

and (w2/u§) are of the same order of magnitude and slightly

smaller than (u2/u§). For a free jet in still air and a wall

—

jet in still air the distributions of (u2/u§) are approximately

the same. Thus, even though loss of momentum to a wall is
small, the streamwise variation of the outer part of a wall jet

is strongly influenced by the wall.

For wall jets in still air the values of C collected from:

various investigations are given below:

INVESTIGATORS VALUE OF C
Sigalla (1958) - 0.0664
Bradshaw and Gee (1960) . 0.0695
Schwarz and Cosart (1961) 0.0678
Patel (1962) 0.0650
Kruka and Eskinazi (1961) 0.0737
Gartshore and Hawaleshka (1964) 0.0650
Guitton (1968) 0.0710
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Finally, edquations (22) and (23) together with the
appropriate value for C will be used to predict the develop-

ment of wall jets in uniform streaming flow.

2.4.2 The Asvyvmmetric Turbulent Jet

It should be recalled that the ultimate aim of the analysis
presented in sections (2.2) and (2.3) was to describe the
asymmetric jet. As mentioned before the geometric division. of
the asymmetric jet is assumed. Application of the analysis of
pPrevious sections to the asymmetric jet implies that any inter-
action from one part to other is ignored. This is not a serious
restriction for wall jets because of the presence of the wall..
However, for the asymmetric jet there is no apparent restriction
on,fluid parcels making excursions from one side ta the other.
Thus there is some degree of interaction which may depend on. the
shear stress at the point of maximum velocity and on the history
of fluid crossing the maximum velocity layer with veIocity'Vﬁ
where Vﬁ is the transverse velocity at the point of maximum
velocity. The analyses of previocus sections, therefore, cannot.
be applied directly to the asymmetric jet. It is of interest to
note that the shear stress at the point of maximum velocity is
expected to be small compared to some characteristic shear stress
in the layers, say at inflection points. The influence of a
finite Vi is difficult to estimate and, therefore, twa approaches
are presented, The first one is slightly more exact than the
second but the second one is more useful from a practical point

of view,
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(a) The First Approach

Figure (%) shows a sketch of the asymmetric jet which is

divided into a half jet in uniform streaming flow (sometimes

referred to as the streaming side) and a half jet in still air

(sometimes referred to as the zero velocity side).

Uy

Streaming side

|

11 |

ll

Zero velocity side.

The velocity profiles on the two sides of the asymmetric jet

are assumed to be,
Streaming Side:

U=10; +u f(nl)
where Ny, =TT

Zexro velocity side:

U =u f(ng)

(58)

(59)
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where Mo = 77 and U, = U, + ug

Note that because of asymmetry two length scales (ll and 12)

are now required to specify the velocity distributions. More—
over, the locus of the maximum velocity points is also unspeci-
fied although experiments indicate linear variation of Y with.
the downstream distance, x. Furthermore, it is reasonable to
assume the transverse velocity V, = 0, in the uniform stream

far away from the vortical zone. In actual experimental investi-

gation this condition was satisfied by providing a top wall in.

a working section. With these preliminaries the equations of"

motion can be formulated as follows.

For the streaming side, the continuity equation when.
combined with the velocity profile equation (58) and integrated

between limits Uty and My = 0, gives:

dl 1. du 1 .
v dy 1 1 o
v =f(n>__m+(-—+—-——>[z - f(n)dnl
uo 1 ax dx o dx 1 OJ 1 1]
dll » ) €5
+ 0, £(ny )35 (€0)

00

where I, = of £(n)dn

Similarly, substituting equations (58) and (60) into the
momentum equation (1) and integrating between limits nl>and‘nl =0

(the normal Reynolds stress terms are neglected) one gets::



— —y U, 1, du M
uv uv 1 71
(8] -2 25e [ stan - 2 (enpn T
u u o (@]
(o) _ O (o]
Ny=
U, di M1 I, da_ HI
1% 1 M 2
- —(: ax [Tllf(ﬂl) I f(ﬂl)dﬂl] + ;0' ax & £ (Tll)dﬂl
o ’ a.
dl, 1, dug My |
P e P R [ 1 (£ny)-1) - £(ny) | £(ny)an,
© o
R
[ Plpan, | (61)
(@)

From equation (61) it is clear that (i.e. when Ny > @,
(uv) > 0 and £(=) > 0),

(uv) dl, 21, du dl 1; du, UL

n.=0 _ o 1 I oy 1 o_ . )
1Y = (g + u o) Tt (K u_ dx)(ua r

u
o

U, dy :
s (62)

odx

where I2 = o‘( £=dn

For the zero velocity side the continuity equation. when
combined with the velocity profile equation (59) and integrated

between limits Mo and Ny = 0 gives:
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~- | d1. 1.du_ Mo dl. 1. du
(i) v._ (S 2% 1,1 %M %
v~ (@&t &) J Elngldny + (3 + & &) v 'L
m m o Q.
u dy dl
o 2 _
+ (7= + £(n,) - 1) == - —= 1, £(7,) (63)
Um 2 dx dx 2 2

where U = (Ul + u_)

The integrated momentum equation for the zero velocity

side is:
(uv) 1 du Mo
Ny= LuV) 2 o : -
=2 . - & 3= + g @) () [ £ny)an,
m m (o)

d12 212 du
- = ( ax + Um ) I f (112)‘1112
(o]

u u u dy_ 1
(e -1 [ g2 e ) ¢ (g2 -0 2]
(61)

The boundary condition on the zero velocity side (i.e. at y=—cw

My = i uv = 0 and f( w) = 0) reduces equation (64) ta::
_ EE _ (d12 N 212 duo) .1 EQ (dll .\ El duo)
U2 2 dx 8] dx lvu dx u ax
= m m Q .
m n2—0
u dy
o) m
D + (5 - 1) &% (65)
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It should be pointed out that because of the different
length scales on either side of the maximum velocity point,
(i.e. at M = My = 0), the gradient of the non-dimensional
Reynolds stress distribution will not be continuous but the
magnitude of the Reynolds stress at the maximum velocity point
must be the same. Hence it can be shown from the momentum
equations (62) and (65) that the locus of maximum velocity

points must satisfy the following equation:

2 o o
de - uo, (dll . 21l duo) 1 EE (dlg . 212 duo)
dx 2 y.2 dx u ax 2 2 dx U dx
1 o U1 m
uo dll 1l duO _
o g Cax e Tax (66).

In equation (66) the second term on the right hand side is
positive and usually much greater than the other combined

terms, therefore (dym/dx) is generally positive, i.e. the.

locus of the points of maximum velocity moves towards the stream-
ing side as the flow develops downstream. This is in. agreement:

with measurements and would be expected physically..

In the set of equations (62), (65) and (66) there are five
unknowns, namely, ll, 12, us Y and (uv)m. In order to solve
these unknowns, of course, five equations are required. It
should be realized that there is no additional independent equa--
tion which can be formulated for the problem without introducing

further unknowns. Hence at this stage some assumptions are
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required. Because of the assumed similarity between a half

jet in uniform streaming flow and the streaming side of the
asymmetric jet, it may be possible to use the auxiliary equation
(18) and assume (GV)m to be negligible. Now the number of
equations ig equal to the number of unknowns with only one
constant (i.e. C) which can be established from experimental
results for a jet in still air. In principle, therefore, these
equations can be solved by using starting conditions (.e.

s olutions are now restricted to only a particular case of the
asymmetric jet unless some technique has beer developed to cal—
culate the initial conditions) and the Runge Kutta technique.
However, to obtain equations (i.e. for 1;, 1, and u ) of wider
practical use and since some assumptions are, in any case,

necessary the above analysis is reformulated below.

(b) simple Analysis for the Asymmetric Jet

The following analysis, although simple, seems to work.
very well, It uses the same momentum equations derived above
but they are remodelled for the present purpose.. For the rate
of growth on the streaming side the auxiliary equation (18) is
used. The only additional information required is obtained
from experimental variation of the ratio (12/11). with this
information it is possible to calculate explicitly tﬁe varia~

tions of ll’ l2 and u, for the asymmetric jet.
For the streaming side equation (62) can be rewritten as:
a_ 2 - (av a_ -
ax [11(11Uluo + Ieuo) ] = (uv)Tlfo + U Fa [Iluoll Ulym]

(67)
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Similarly for the zero veloc1ty side equation (65) can be re-

wrltten as:

d_ 2 d_
dx [IQ 12 U J (uv) m ax [Il uo ll Ul.yﬁll

(68)

Adding equations (67) and (68) one obtains:

I. I, U,u
4a_ d 2 I 71 10
vy [1 (IUu +Iu)] = [IeleUm (1+——I T —5

2 72 Um

2
1 Y, U .
- = m _i) =0 . (69)
I, L, gy
m
Let
2 .
1, (zru5u ) + I,ug) = Me, (x) (70)
and o
I. 1, U,u Y. U
2 1 110 _ 1 ¥uY, \ ,
IoloUp (L + 7= 7= 2 I 1. o2) = Mey(x) (71)
2 U 2 2 u

Hence from equation (69) it is clear that:
Me, (x) + Me,(x) = constant, say M (72)

From equations (67) and'(68) it can be seen that if the
inﬁeraction between the two bParts were absent then Mel and Me.2
would be constants and analysis of sections (2.2) and (2.3)
would apply, However, because Mel and Me2 are functions of x.
this implies some interaction between the two parts. The degree
of interaction depends on asymmetry which in turn may be

expressed by the ratio (12/11). It is difficult to estimate
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explicitly the exact division of momentum M between the
streaming side and the zero velocity side, but for simplicity
the x-wise dependence of both Me, and Me2 is isolated by

introducing a non-dimensional factor K such that

Mel(x) = KM

(73)
and Mez(x) = (1-K)M
where K is a function of x only and M is
defined as follows:
M=bu, (U, - %0,) (74)
iYi 271

: Ul)2
14+ -2 o
1-x=ie_[ ug ]{Hiﬁt_’ﬁe_;_}’.m‘i;}
K 1 L+ 51y Iy 1 Uﬁ Izlzux%l
2 "o
(72)

Examination of equation (75) indicates that over the whole
range of the asymmetric jet (i.e. from U_ >> U; to u, ~ 0) the
last two terms in the curly bracket are much smaller than one
and hence they may be neglected. Experimental results to be.
described later substantiate this assumption. Therefore equa—

tions (75) and (71) can be approximated to

I. U
1l "1
1+ == —=
! K (1 + %1)8 o
u
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. | 2 ' -
o and I, 1, Uy = Mee(X) = (1 - K)M . | (77)

Tt is clear from equation (76) that when U, tends to zero
(i.e. for a jet in still air) K must tend to %. On. the other
hand the limiting value of K for a small increment jet-(i.em
u, > 0) cannot be estimated from equation (76) because K may
depend on the ratio (Ul/to) in some unknown fashion. Note that.

equation (76) is not an independent equation but it does provide

a guide to the estimation of K.

The two independent equations (70) and (77) contain. four
unknowns (i.e. 1;, 1,, u, and K) and equation (76) suggests
how the variation in K can be obtained from experimental
results, but this is not sufficient to calculate the four
unknowns. It should be recalled that in the previous analysis:
three more independent equations are required. Hence to close:
the system of equations for the simple analysis it is proposed
to use the auxiliary equation (18) for the rate of growth on.
the streaming side and an equation for K obtained from experi-—

mental results.

The following equation fits the present experimental '
. .  (Ihry/Tup/ug)
results fairly well when (12/11) is plotted against TE;EZ7E;)2’

(see figure (91)):

(14, /1) Uy /u)) ]

. Ul/uo)2 (78)

-i-—=l—2loglo[

Hence from equations (76) and (78) one gets,
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1
K =
(1 + U, /u )2 ( 14, /1) (U, /u)
1+ L. o {1—gloglo[ 13;°]
141, /1) (uy /) (1+U,/a,)
(79)
From equations (70) and (79) it can be shown that
2 [ w2/ (1,1, + 0 /a) |
ll Il 1’7o 2’71 1" "o
U, U. - U I, U
hal(_l -4 (1 + =) 1 4+ =X L
19 2 1+ Yo 1 - 2log 2 Yo
10
Il Ul ; Ul 2
. 1+ 5 5 L+ E—)
2 o o]
(80)
and from equations (77) and (79),
I. U,
Uy, 2 I+ ==t
(T : I Yo
1 [ Q ] 1 -2 log | ‘2]
1, _ I, 1:2/1l + U, /ug ot +uy/u )4
U. U, U I. U.
b_.l(_l - l—-) (1 + _.]_-.)2 I+_].-..._l
Uy Ul 2 1 + u : I, u
9 1 - 2log 2 9
— 1, U, 0|7 U2
1+ - (I1+ =, '
u
2 o a
(8x)

Equations (80) and (81) give the variations of 1, and’l'2

in terms of the ratio (U /uj). Then the variation of the ratio

(Ul/uo) with downstream distance, x, is obtained as follows:.
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Combining equation (70) and the auxiliary equation (18)

one gets:

(1+ 7T, 5) 3re )
u 1 + I, u u I + — —
duo _ (o) 2 o 1 dg _ CI2 o 12 u,
2 o Q T2 o
(82)

It can be seen that to solve equation (82) explicitly with

the variation of K given by equation (79) is quite. a complex-

problem. The complexity may be reduced by approximating the

variation of K by the simple expression given.beIOW'(see.figure

(93) for variation of K versus U;/u):

= =
N
Clhg

2 (1 +

o}

(83)

Substituting equation (83) into equation (82) gives,

I U I.U I.U, 2
1 1 1 -1 . 1 -1
T @) 3 (1+ )
duo [l ) I u 12 u, ] _ CIeuO 12.uo
ax I, U 2 M. - .
(2 + I_l_ E_];) (l +- U.L/'llo)
2 o0
(84)

The solution of equation (8%) is:
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L0
3 2+2 ENET
(1,/14) I 2 "o (1,/1, 1)
3 1n (1 + = ) - 4 1n
cI I Y L Uy N !
2 2 Sllran (l+ EETH
2 o) 2- o
(8 -4 I1) |
I, I, (x - x)
+ I, U (3 - )| T U
(2+1 7)) bellGT - 3)
2 o I-I
(83)
where X is introduced as the constant of integration and is such

that when X = X

o Yo T @ and the hypothetical origin of the jet

is identified.

In summary, the assumptions involved in the simple analysis:

are enumerated below:

(1)

(2)

(3)

The usual boundary layer approximations are assumed

to be applicable.

The mean velocity profiles on the two sides of” the.
asymmetric jet are assumed to be geometrically
similar with the length scales 1l and 12 and the
velocity scales u, and U (see equations (58) and

(59)).

The gradient of the difference of normal Reynolds

stresses (i.e. w? - v2) in the momentum equation

for the downstream direction is neglected.
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' (%) The excess momentum on the streaming side is assumed
to be a fraction, (K), of the total excess momentum,
M, at a slot exit where M is given by equation. (T4)

(see sketch below).

Uy
1
EbUJ.(UJ.-—Ul)
b/2 ,‘I _“f{& '> \ s.--'*'—"—.
b2 ¢ MY (L ny
m
1
= bu (U,
5 bu,(uy)
1 1
M==5bUu,(U,- = bu, (U,
> J(UJ u,) + 5 bUJ(UJ)

(5) The empirical expression (equation (79)) describing
the variation of K obtained from the experimental
results (Fig. (91)) is simplified (see equation
(83) and Fig. (93)) so that the variation of the

velocity scale u, can be given explicitly..

(6) The auxiliary equation (18) is assumed to be
applicable to the streaming side of the asymmetric

jet.

The experimental investigation of the asymmetric jets
(to be described later in sections (7 and 9)) justifies the

above set of assumptions.
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3. DEMONSTRATIONS OF APPLICABILITY OF THE

SIMPLE ANALYSIS (SECTION 2.3)

3.1 Plane Turbulent Jets in Uniform Streaming Flow

To check equations (22) and (23) the experimental results
of Bradbury and Riley (1967) for plane, symmetrical turbulent
jets in uniform streaming flow are selected. Furthermore, for
the purpose of demonstrating the conclusion regarding the struc-
ture parameter being independent of the velocity ratio, Ul/ho,

the results of Bradbury (1963) will be used.

The reason for using the results of Bradbury and Riley is
that they have given their results in tabulated form and,
moreover, their results are considered to be of fairly good
quality. One of the serious objections to their tabulated
results is that they have beeh obtained by arbitrarily shift-
ing the curves to correlate the results for all the (Ul/Uj)
ratios they investigated. The details are not given except
that the shifts are attributed to changes in the hypothetical
drigin, X5 but these are not listed, Fortunately, they have
Presented some of their raw data in graphical form and these

are used for the comparisons in Fig. (6).

Fig. (5) gives the variation in growth of the jet, 1,
in accordance with equation (23). The tabulated results of
Bradbury and Riley are compared with the prediction from
equation (23) which is represented by a solid line., Use of

their tabulated results is possible here because this presen-
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tation does not involve Xo The agreement between experi-
mental results and equation (23) is excellent as would be
expected because equation (23) is simply a statement of con-—

servation of excess momentum.

Fig. (6) shows the variation of velocity scale u_ with
X. In this figure both tabulated and raw data (obtained from
their ((EL)Q vs x/6 curves) are given, the former being repre—
sented byoa broken line. Also included in the fiqure is a
curve representing equation (22) with 2cI; = 0.2025.. In.re-
Plotting the data of Bradbury and Riley for all the cases of
(Ul/Uj) shown in Fig. (6) it was noted that (x,/26) was. small
and hence it was neglected. The effect of arbitrary adjust-
ments of the curves by them clearly shows in the disagreement.
between the predicted curve (equation (22)) and the dotted line
and it also shows that such adjustments are indeed not justified

because the raw data and prediction from equation (22) are in-

agreement,

since the publication (Patel (1969)) of the present results
other investigators have attempted to predict'the development
of this flow. For instance, Newman (1969) selected Bradbury's
results for Ul/Uj = 0.162 as a test case to compare the predic-—
tions using Abramovich's (equation (17)) and the author's
(equation (18)) auxiliary equations. He obtained the variations
in lo and u, using the Runge Kutta technique to solve the equa-
tions. To show the range over which this comparison was made,

the results of Bradbury for Ul/Uj = 0.162 are included in Figs.
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(5) and (6), and also the curve representing equation (26)

(this equation is obtained by using Abramovich's auxiliary
equation (17)) is given in Fig. (6). Note that over this narrow
range all methods shown in Fig. (6) may be considered equally

good,

Another example is the recent investigation of Rodi (1970)
who adopted the field method (or differential method) of
Spalding (1968) and his associates to predict the development
of jets in uniform streaming flow. (For details of this method
the reader is requested to refer to many reports by Professor
Spalding and his associates at Imperial College, London,) His
predictions are also included for comparison in Fig. (6). He
employed two methods to evaluate the variations in Ul/hbr the
first is described by Rodi and Spalding (1969) (the results are
shown as line CR = »), and the second one employs an empirical
relation for the broportionality cénstant in the Prandtl—Kolmogorov¥

Emmons model for turbulence (i.e. - uv = Ay 1‘/q2 %g, and A, is

C
R where P is the production of kinetic energy

P
Cp + (€ 1)
whereas ¢ is the dissipation of kinetic energy). For the latter

given by

case the predictions are indicated by a line representing

CR = 2.5,

From Figs. (5) and (6) it is clear that the method proposed
in section (2.3) does predict satisfactorily the variations in.
lo and ug for jets in uniform streaming flow. It should be noted

that the present method is simple, and unlike Newman's or Rodi's

methods it is quite cheap because it does not require computer:
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calculations.

Finally, in Fig. (7) the turbulence results ofTBradbury
(1963) are replotted to show that the structure parameter,
(sp) = [ ;5)37} n=1 is independent of the velocity ratio Ui/uof
This was the conclusion reachegd from the analysis of section.
(2.3.3). Note that the value of the structure parameter is
about 5.9 for the range 0.5 < Ul/uo £ 5.0. Here it is
reemphasized that one may use the analysis of section (2.3.3)
either to predict the structure Parameter having obtained C
or to predict C having measured the structure parameter. In any-
case it is worth noting fhat in the present method only one
constant is required to be evaluated from experimental results
for a jet in still air,. Furthermore, an important remark may
be made for the present method, that is, it avoids the main
shortcomings of the eddy viscosity and mixing length theories,
(see Batchelor (1950)), and at the same time it is not contrary
to them for it is capable of Predicting the correct asymptotic.

values of the eddy viscosity Reynolds numbers (See section

2.3.4).

3.2 Plane Turbulent Wall Jets in Uniform Streaming Flow

As mentioned in section (2.4.1), wall jets in uniform
streaming flow offer an excellent opportunity to evaluate the
merit of the present method. The analysis of section.(2.3)
is assumed to be applicable to wall jets in uniform streaming

flow. For comparison measurements of Patel (1962); Kruka and



Eskinazi (1964) and Gartshore (1965) are selected. These
investigations incorporate sufficient experimental variations

between them for the present purpose, for example the measure-

ments of Gartshore and the author were made in the same apparatus

but Gartshore used a modified slot construction (see Gartshore

and Hawaleshka (196%)).

Fig. (8) shows experimental results of Kruka and
Eskinazi, Gartshore, and Patel plotted in accordance with.
equation (23). A line representing equation (23) with.II =
1.0125 (note that this is the same value of I, as used in Figs.
(5) and (6)) is drawn. It can be seen from this figure that
the collected experimental results for various ratios of

(Ul/Uj) are in agreement with equation (23).

Fig. (9) shows the variation of velocity scale u, with
x. Tt should be noted that for all the wall jet cases con-
sidered here the hypothetical origin Xq is found to be 20
slot widths upstream of the slot (see Fig. (10)). Equation
(22) can now be fitted to the experimental results in Fig.. (9)
by selecting various values of C. TWo‘suéh curves with values

of CI. = 0.062 and 0.0653 are represented by solid lines. From

1
this figure it may be concluded that the constant C for wall
jets is about 0.065. It is interesting to compare this value
of C with that obtained from growth of wall jets in still air,
e.g. Schwarz and Cosart (1961) give C = 0.0678; sigalla (1958)
gives C = 0.0664; Patel (1962) gives C = 0.065; Kruka and

Eskinazi (1964) give ¢ = 0.0737 and Gartshore and Hawaleshka
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(1964) give Cc = 0.065. Note that the value of C obtained

from Fig. (9) is not incénsistént with the values of C obtained
from wall jets in still air. It is therefore concluded that the
simple method presented in section (2.4.1) is capable of pre-
dicting reasonably well the development of main characteristics

of wall jets in uniform streaming flow.
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4., GENERAL DETAILS OF THE EXPERIMENTAL

INVESTIGATION

A detailed description of the experimental apparatus is
given in Appendix 1. The aim was to Produce a plane two-dimen-—
sional jet, a plane mixing layer and the asymmetric jet. without.
unnecessary modifications and/or complications in the experi-
mental apparatus. This was achieved by using the McGill 17 in.
x 30 in. blower cascade wind tunnel and a two-dimensional slot
0.265 in. x 30 in. Although the slot arrangement appears to be
similar to that of patel (1962), and Gartshore and Hawaleshka
(1964) it differs in detail . These details are given in.

Appendix 1.

To producettetwo-dimensional jet alowe the slaot was supplied
with air from an auxiliary centrifugal compressor, driven. by a
10 H.P. constant speed three phase motor, situated in a compres-—-
sor room underneath the Aerodynamics Laboratory. The supply
pPipe from the compressor room to a service point in. the. labora-
tory is permanently installed. Other details and connections
to the slot are given in Appendix 1. For the investigation of
a two-dimensional jet in still air the top wall from the: working:
section (see Fig. (28)) was removed. For a plane mixing layer
the blower tunnel was operated and the slot was carefully taped
Off. For the asymmetric jets both the tunnel and the jet were

used.

The air supplied by the auxiliary centrifugal compressor

was maintained at the same temperature as the tunnel air by
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incorporating a watercooled heat exchanger in the supply line
and care was taken to‘stébilizé the air temperature in the
laboratory before any measurements were taken. The maximum
variation in air temperature was thus maintained within 1°F

and it is ﬁné@n (see patel (1968)) that this change in tempera-

ture has very small influence on hot-wire output.

To avoid the contamination of hot-wires by dust particles
both the tunnel and the centrifugal compressor inlets were
provided with air filters (DRI-Pak No. 2100 with prefilters,
manufactured by American Air Filter Company, which is claimed
to filter dust down to about 0.5 microns diameter). This was
found to be extremely effective and Practically no accumulated

dust was observed on the wires even after considerable running

time.

The blower tunnel is driven by a single stage centrifugal
fan with backward curved blades (Buffalo 980 B.L.), and powered
by a three phase, 550 volts, constant speed, 25 H.,P. electric
motor. An alternative 5 H.P., variable speed D.C. motor was
used to run the tunnel at low speeds (i.e. less than 60 ft/s.);

Appendix 2 gives the reasons for Providing this alternative.

The working section for the Plane jet and the mixing layer
investigations was the same as that of Fekete (1970) excebt
that a screen and louvres (at top and bottom) used in his inves-—
tigation were removed. For the asymmetric jets this working

section was replaced by a similar one with a top wall. (This
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was done so as not to disturb the louvre settings in Fekete's
experiment.) Both working sections were mounted on roller
castors to facilitate easy removal and attachment of the work-

ing section to the tunnel exit.

A special traversing gear, (similar to that used by Fekete
(1970) except that the one used in the present investigation
had an approximately 42 in. long lead screw) was used for all
traverses., The details of the traversing gear together with

its drive mechanism are given by Fekete (1970).

The hot-wire anemometer used in this investigation was
a commercial unit manufactured by DISA, (55A01 anemometer modi-
fied to accept a 55D10 linearizer); it is a constant tempera-
ture anemometer., The hot-wire probes were also manufactured
by DISA. (The author welded hot-wires whenever the probes
were found unsatisfactory.) Other details of the hot-wire
probes used in this investigation are given in Appendix 1.
All the hot-wire calibrations were obtained by using a pitot
tube made from 0.030 in. O0.D. hypodermic stainless steel tubihg
with internally sharpened lips. The'calibration procedure is |
described in detail by Patel (1968) and for the present investi-
gation this was accomplished in the free stream produced by the
tunnel. The linearized hot-wire output was measured by two
RMS-meters (DISA 55D35 and Hewlett-Packard 3400A), a Hewlett-
Packard (2212a) voltage to frequency converter, a Hewlett-
Packard (5216A) digital counter, a Heathkit Audio Generator

(Model AG~8) for external time control to vary the time for
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averaging the signal and a Hewlett-Packard (562a) printer.

For the measurements of energy spectra a Bruiel and Kjoer-
audio frequency spectrometer type 2112 was used and frequency-

analysis was made by using % octave filters. For tripleand.

Wk

quadruple correlations DISA random signal indicators, (Corree—

lator Type 55AO6), together with a Precision full wave recti-—

fier circuit (see Guitton (1968) for details) were used. The

intermittency measurements were made by using a differentiating
circuit and 'Ultra Violet' Recorder Type 1050 (New Electronic
Products Ltd.) incorporating a galvanometer type BB 3000. The

galvanometer response was limited to fluctuations below 3000

c/s.

The conventional two-dimensionality checks for a. plane. jet.
in still air and the asymmetric jet were made at x/b =534
and 217.0 downstream of the slot exit by pitot and hot-wire.
traverses, Ali Pressure readings were taken with a single. tube
pPrecision manometer (Lambrecht) which was calibrated against
the Askanian Werke filled with distilled water. The results

of these checks are reported in Appendix im

Although the experimental results reported here do not.
include two complementary investigations on the technique. of

hot-wire anemometry it is important to mention them briefly,

(a) The analysis of slanting wire readings involves
knowledge of the longitudinal cooling of a hot-wire. Investi-

gations of Champagne and others (1965, 1967) have confirmed
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the directional sensitivity of an inclined hot-wire but in
their investigations the conclusion regarding the effect of
longitudinal cooling was reached through measurements obtained

statically. A dynamic test of their conclusion is given by

Patel (1968).

(b) The measurement of triple and/or quadruple correla-
‘tions and cross-component spectra involves the use of’matched
X-wires rather than single slanting wiré. An investigation of
X-wire probes was therefore undertaken. The detailed results
of this investigation are reported by Guitton and Patel (1969)
(see also Jerome, Guitton and Patel (1970); DISA special
information C.T.A. Note No. 14). The summary of this investi-

gation is:

"In constructing an X-type hot-wire probe it haé heen
the policy of a number of experimenters and manufacturers to
place the two wires forming the X close to each other to assure.
that they are both measuring in effectively the same plane. A
number of important experiments have been made using such a

probe design.

Recent experiments at the University of British Columbia
and McGill University have shown that a X-wire prcbe which has
two wires almost in the same plane is quite sensitive to move-
ments of the velocity vector out of that plane (defined as
pitching motion). This has been attributed to the influence

on one wire of the hot wake produced by the .other. 1In this
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note a DISA X-type probe (type 55A32), with the wires 0.006"
apart, is tested and fouﬁd to have a static sensitivity to
small angles of pitch, which is very significant for low wire
Reynolds numbers (< 5) but becomes small for Reynolds numbers
greater than 10. A modified probe, having the wires one wire

length apart, is suggested and when tested found to have no

pitch sensitivity."

Since the above investigation the author has collected
typical investigations as examples in which X-wire probes are
either built by the investigator, or use DISA probes, or com-
pletely ignore the details of their X-wire probes. Because
the effect due to thermal wake interference is a function of
both the wire separation to diameter ratio (s/d) and the wire
separation to wire length ratio (s/l), these values are also
reported in the following table. Note that the smaller these

parameters are-the more severe will be the interference.

Recommended values of these ratios are: s/d = 200 and s/l = 1.0..



Built Used DISA Ignored
X~-wire X~wire details
Investigators |probes probes of s/d | sh
X-wire
probes
Grant, H.L. 0.075-

(1958) * 30.0| 0.15
Kruka, V. and
Eskinazi, S.

(1964) * 53.3| 0.20
Guitton, D.E. All DISA" X- 32 0.16
and Patel, R.P. wire probes

(1969) built before

this investi-

gation had

separation of

approx. 0.2 mm

(DISA factory

specification)
Mobbs, F.R.

(1968) * 2 2
Wygnanski, I..
and Fiedler,

H.E. (1969,

1970) * ? yd
Champagne, F.H.

Harris, V.G. and

Corrsin, S.

(1970) * z %

Chao, J.L., and
Sandborn, V.A.
(1966)

Rose, W.G.
(1966)

Bradshaw, P.
(1967)

(V)

N

~

[3V]
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5. TWO-DIMENSIONAL JET IN STILL AIR

5.1 General

Although the number of experiments on jets in quiescent
surroundings has been considerable, the detailed information on

a plane jet as opposed to an axisymmetric jet is very Iimited.

For instance, Miller and Comings (1957), van der Hegge Zijnen

(1958) and Heskestad (1963) have reported the measurements of
Reynolds stresses in a plane jet. van der Hegge Zijnen and
Miller and Comings made their measurements within the range

0 < x/b < 40 and there is some doubt that the flow within this
range may not be strictly self-preserving (Heskestad (1963):

for axisymmetric jet in still air, Wygnanski and FiedIer (1969)
suggest x/d > 70 for self—preservation). It is also of interest
to recall that their turbulence measurements are in disagreement
which may be due in part to different techniques used. van der
Hegge Zijnen used a non-linearized constant current hot-wire

anemometer and diffusion technique whereas Miller and Comings

—

deduced v2 from static pressure measurements.

On the other hand Heskestad made his measurements far
downstream from the nozzle where the flow is expected to be
self-preserving but restricted his measurements of Reynolds
stresses to only one station (x/b= 102). He used a linearized
constant temperature hot-wire anemometer to measure Reynolds
stresses, and hot-wires of aspect ratio (i.e. length to diameter

ratio) of about 400. He found disagreement between the measured
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and the calculated shear stress distribution and attributed
the discrepancy to shortcomings of hot-wires in high intensity

flows.

It appears from the existing measurements of a plane
turbulent jet in still air that experimental confirmation. of
self-preserving nature of the jet is not yet demonstrated.
Furthermore, it is shown by Bradbury (1963) and Newman (1967)
that the flows in the previous investigations may not: be two-
dimensional. In addition there is no mention regarding varia-
tion in temperature between jet air and the still surroundings
and, therefore, one presumes that in these investigations
(except Heskestad's) there may be some effect on hot-wire

measurements due to the possible temperature gradient across

the flow.

The present investigation was, therefore, undertaken to
reinvestigate a plane turbulent jet in still air experimentally"
and at the same time check the usefulness of hot-wire technique
and confirm the two-dimensionality of the jet flow before |

embarking on the asymmetric jet investigation..

The measurements_reported here are for a jet Reynolds
number, Ujb/v, of 3.51 x lO)+ and include mean velocities and
the Reynolds stresses. All measurements were made with a
linearized constant temperature (DISA) hot-wire anemometer
and only single wires were used. Apart from the-longitudina;_

@ cooling corrections (Champagne (1965), Patel (1968)) to the
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results of inclined wires no other corrections have been applied
unless specified. It should be mentioned that the temperature
of the jet air was maintained at room temperature by a heat
exchanger to within 1°F. For other details on the experimental
technique, care and precautions taken during this investigation

the reader is referred to Patel (1968) and Appendix 1.

5.2 Experimental Arrangement

Two-dimensional turbulent jet was produced by a slot the
details of which are given in Appendix 1. The design of the
slot is essentially the same as suggested by Gartshore and
Hawaleshka (1964), however, the slot opening is now of fixed
width and some modifications have been made between the 6°
diffuser and the slot. The slot was 30 in. x 0.265 in. thus
having an aspect ratio of approximately 113. The slot was

mounted in the tunnel floor as shown in Fig. (A.2).

The filtered air was supplied to the slot from a 10 H.P.
centrifugal compressor (see section 4). The air supply was
controlled by a butterfly valve in the supply line upstream of

a heat exchanger which controlled the air temperature.

The two-dimensionality checks on the flow emerging from

the slot are given in Appendix 1.

5.3 Results and Discussions

5.3.1 Mean Velocity

The mean velocity measurements were made with a linearized
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hot-wire anemometer at five stations within the range 12,275

£ x/b £ 152.0. Fig. (11)-shows the mean velocity distribution
across the jet at various stations. The results shown. in. this.
figure are non-dimensionalized by the velocity scale Uﬁ and
the length scale x, the distance from the slot exit. The use
of x as the length scale enables one to detect deviations from
similarity quite easily and also shows changes in the location
of hypothetical origin of the flow. From Fig. (II) it can be
seen that the mean velocity profiles are similar beyond x/b =
27.35 and the hypothetical origin does not change with the

downstream distance.

For éompariSon results of Heskestad (1963) are shown by
a solid line (mean line drawn through his data) in Fig. (11).
Also included in the figure is an exponential profile given by
u/u = e~ (8.03 Y/k)z. The exponential profile fits the experi-—
mental results fairly well and it will be used later (see
Figure (18)) to calculate shear stress distribution across the
jet. The slight disagreement between the present results and
those of Heskestad may be due to the difference in.geometry‘oﬁ
the experimental apparatus. Heskestad used solid boundaries
in (y-z) plane at x = 0 and the existence of these boundaries
is likely to impose adverse pressure gradient on the jet flow
thus giving slightly broader velocity distribution.. Associated

with this is the higher rate of growth for a jet in. still air..

%9 5.3.2 Growth of the Plane Jet

It is well known that the growth of a plane jet in still
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air is linear but there exists some doubt regarding the value

of the rate of growth. ﬁewman (1967) has collected values of
rates of growth from various investigations and concludes that
the variations in this rate are mainly due to end effects

(i.e. earlier investigations were made with slots having aspect
ratio, (slot length/b), less than 100). Newman gives an average

value for the rate of growth as 0.104 + 2%. Fig. (12) shows the

‘variation of (ym/2 = lo/b) versus (x/b) for the present investi-

gation. The results of Heskestad are also included in this
figure for comparison. From the figure it can be seen that the-

rate of growth for the present investigation is 0.103 and it is

thus in agreement with the value suggested by Newman. Heskestad's

measurements show rate of growth of 0.11 (Heskestad (1965)).

As mentioned in section 1.2, considerable progress has
been made in finite difference (differential) methods since the
investigation of Spalding* and Patankar (1967). They have
developed a simple and fast computational method for solving
partial differential equations. It is beyond the scope of this
investigation to give here all the details involved in their
method but as a test their Programme (GENMIX ~ see Spalding
(1968)) was used to predict the growth and decay of the centre
line velocity, Um’ for the simple case of a jet in still air.
Fig. (12) also shows the variation of (ym/é/b) obtained from

their method. Note that the differential method requires same

The author wishes to take this opportunity to sincerely thank
Professor D.B. Spalding for providing him with his papers,
GENMIX programme and valuable suggestions on the use of his
computer programme. .
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starting conditions and in this case the starting condition

was provided by the veloéity pfofile at x/b = 12.275. The
velocity profile was represented by 16 points and it was neces-
sary to use finite values of the velocity at the edge (about
10% of the centre line value). Any attempt to specify the edge
velocity near zero involved either exXcessive computer time or

erroneous results. It can be seen from figure (12) that the

predicted rate of growth is not in agreement with experimental

results. However, the discrepancy can be removed by varying

the mixing length constant, A\, in their method (spalding (1969)).

5.3.3 Decay of Centre-line Velocity

It is easy to show that the centre line velocity for a jet
in still air varies as x 1/2 provided the jet momentum is con-
served. Fig. (13) shows (UJ./Um)2 versus (x/b) where U; is the
slot exit velocity. From the figure it can be concluded that
the centre liné velocity, U, varies as x—l/é. Fig. (14)
shows a comparison between the bPresent results and those obtained
using Spalding's (1968) method. Once more it is possible to
reduce the discrepancy by varying the mixing length as noted
above. It was observed that the same value of A does not remove
discrepancy for both Um and ym/2' It should be noted that the

hypothetical origin of the jet is at x = 0 (see Figs. (12) and

(13)).

5.3.4 Dpistributions of the Normal Reynolds Stresses

The normal Reynolds stresses were measured with single
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normal and slanted linearized hot-wires and the direction of
the mean flow was assumed to bé parallel to the axis of the
jet. The non-dimensional distributions of the normal Reynolds
stresses are shown in Figs. (15, 16 and 17). Fig. (15) shows
(j:kum) versus (y/x) distributions for various downstream
stations. It can be seen from this figure that all measure-—

ments except at x/b = 12.275 collapse on a single curve. It

is interesting to note that for the plane jet the longitudinal

fluctuations become self similar beyond about 30 slot widths
downstream of the slot. As Wygnanski and Fiedler (1968) have
noted it appears that mean velocity distributions become self
similar first and then (I:E/Um) distributions attain self

similar state. This is to be expected because for plane turbu-

lent flows the transport equation for u2 contains a production term

whereas the transport equations for v2 and w2:do not contain: the

production term thus the energy is transferred from the mean

motion directly to u2 and only pressure-velocity-gradient

2 2

correlations transfer the energy to v~ and w For this reason.

measurements of v2, w? and uv were made beyond x/b = T0..

In Fig. (15) measurements of Heskestad are represented by
a dashed line which is a mean line through his data. It can. be
observed that Heskestad's measurements are generally higher by
about 10% than the present measurements but the shapes of
(j__>U ) distributions are very similar. On an average there
is + 5% scatter in his measurements of-j—_)U and since his

experimental investigation he has reported an error in his cal-
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brations of the vacuum thermocouple circuit (see footnote on
page 733, Heskestad (1965)). in the same figure measurements
of Bradbury (1963) are shown by a solid line. His measurements
are for a jet in a small axial flow (Ul/'Uj = 0.07; and far
downstream where the data was obtained the streaming velocity,
U;s is about 20% of the centre line velocity). It can be seen.

that his measurements are lower than those of Heskestad and in

reasonable agreement with the present results.

Fig. (16) shows distributions of (J:§>Um) at x/b = 74.0
and 152.0. For comparison measurements of Heskestad are also
included in this figure. It should be mentioned that although
Heskestad's result is represented by a mean line through his
data there is much bigger scatter in his data than the present
results, It is surprising, in spite of care and precautions
taken in the present investigation, that scatter of such a
magnitude exists in these results. Furthermore, it cannot be
blamed on lack of sufficient averaging time (e.g. Heskestad
used two minutes as typical integration time and the present
measurements were made with one minute integration time).

Further investigation is indeed required to explain the laxge

2 2 measurements. For the present

purpose it can be concluded that the measurements of v2 in

scatter observed in v~ and w

this investigation are in agreement with those of Heskestad

and that Q}ve/Um) distributions attain similarity beyond

x/b = 70.

Fig. (17) shows the comparison of (Jwe/Um) between the
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present results and those of Heskestad. As mentioned above

these results are also in agreement with each other.

Comparison of Figs. (15, 16 and 17) shows that at the
centre line of the jet all components of turbulent intensities
are nearly equal thus it appears that the flow is nearly iso-

tropic on the centre line of the jet. Everywhere else C} /U

is bigger than both ([ /u ) and ({ w2/U n)s the latter two com-

ponents of turbulent intensities are of the same order of magni-
tude across the jet. Although large scatter appears in experi-
mental results it may be concluded that the plane jet flow

attains similarity beyond x/b =

5.3.5 Distributions of the Reynolds Shear Stress

As mentioned in section (5.1), Heskestad found considerable
disagfeement between his measured and calculated Reynolds shear
stress and indicated that the hot-wire technique of measuring
various Reynolds stresses in high intensity flow may be suspect.
In this connection it is worthwhile to note that one may doubt
his calculated shear stresses because details of his calculation
method are not reported (i.e. whether he used a graphical inte-
gration technique or represented the non-dimensional mean.
velocity profile by an empirical function). In the following
investigation details of the Reynolds shear stress calculations
are given and it is shown that the measured values are in agree-—

ment with the calculated shear distribution.

The equations of motion for a plane, incompressible, turbu-
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lent jet are:

Yy
-1__\\ . .
zzmﬂ] ——
= X
Continuity: %% + %% = 0
' - = (5.3.5.1)
‘ . Uy U, o(u® - vE) _et/p
Momentum: Uax'+ Vay + Sx =3y
The well known similarity forms for this flow are:
U = U £(y/x)
2 _ .2
u® = U gy (y/x)
v? = uf g, (v/x) | (5.3.5.2)
2 _ .2
wo = U 93 (v/x)
- 2
and uv = U g, (vy/x)

vhere U is the maximum velocity at the centre line and x is
taken as a length scale. (Note that the hypothetical origin

of the jet was found to be at the slot exit.)

Substituting the similarity forms in the momentum and

continuity equations and combining the two, one obtains:
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q
él—fz + —é—f' I,fdn + _(91'92) + n(9;-95) =9j, (5.3.5.3)
S )

where a dash refers to differentiation with respect: to n.

It is a common practice to ignore the normal Reynolds
stress terms in the momentum equation, but for the present

investigation these terms are retained in the above equation.

The above equation on integration givess::

VI

N
£ ( £an + (9179, (5.3.5.4)
(o]

5ol |

This equation will be used to evaluate the shear stress distri--
bution across thé jet. It should be noted that to. calculate
(GGVuﬁ) one needs to know the forms of the functions £, gj-and
95 It is possible to obtain (of course with the. approximation
that the term n(gl-ge) may be neglectéd) the functional form

for £ adopting the eddy viscosity conceptA(see Heskestad. (1963)),
but 9, and 95 have to be obtained from measurements.‘ To. be.
consistent it is proposed to use experimental results for f' g1
and g,. Furthermore, the equation for (uV/U2) contains a term
involving J fdn which can be evaluated best by fitting an empiri-
cal expression to the experimental data.. As mentioned in section

(5.3.1) the following expression fits the experlmental results

fairly well (see Fig. (11)).

_ 2
£ = o (8.03 v/x) (5.35.5)

Tt is mentioned in passing that this expression is consis-—
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tent with the rate of growth found in the present investigation.

In Fig. (18) a comparison is made between the measured and
calculated shear stress distributions. The shear stress measure—
ments were made at x/b = 74,0 and 152.0. The measured §alueS’
are corrected for both the longitudinal cooling (Patel (1968))
and the high intensity effects. For the latter Guitton's (1970)
correction factor was used. From the figure it can be seen that
the measured shear stress distribution is in reasonable agreement:
(e.g. the agreement is no worse than that reported by Wygnanski
and Fiedler for axi-symmetric jet) with that calculated from
the momentum equation. Moreover, the results show that simi--
larity of shear stress distribution is attained beyond x/b =
70. The comparison of calculated and measured shear stress
also serves as a test for the two-dimensionality of the jet
flow. Other two-dimensionality checks are given in. Appendix 1
and considering overall results (see Figs. 12, I3 and 18) it
can be concluded that the flow emerging from the slot was

satisfactorily two-dimensional.

It should be mentioned that measurements show E§T=-O

across the jet,

5.3.6 Turbulent Enerqgy Distribution Across the Jet

In section (2.2), (see equations (11)), it was reported
that to obtain the dissipation length scale, Le’ of the turbu-
lent motion it is required that the distribution of the turbu-
lent energy across the jet be known. Fig. (19) shows the distri-

butions of the turbulent energy and other functional relations
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required for this purpose. Note that in this figure the length
B . | . _1
scale, 1 (= ym/2), is the value of y at which U = 5 Up and the.

function g is defined as follows:

+ VP + w2)

g(n) = ¢° (=

22
2
(af) =1

The values of g° were obtained from Figs. (15, 16 and 17).

From Fig. (19) it can be found that:

0

g(0) = 1.2 and I fgdn w 1.10
o

The above values are used for the calculation of Le in. section

(2.2).

5.3.7 General Conclusions

(1) The measurements reported in this section confirm
the self-preserving nature of the two-dimensional jet in still
air. It was noted that similarity of various distributions is

attained in steps i.e. first the mean velocity distributions

2 distributions become

similar beyond x/b = 30.0 and finally v2, w° and uv distributions

become similar at x/b > 28.0, then

become similar beyond x/b = 70.0.

(ii) on the whole the present measurements are generally
in agreement with those of Heskestad (1963). The experimental
scatter in the present results is much smaller compared to

%9 Heskestad's results. Although constant temperature, linearized,
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hot-wire anemometers (of different design) were used in both
investigations the techniques of extracting turbulence com-
ponents from hot-wire results were different and thus the

general agreement between Heskestad's and the present results

is encouraging.

(iii) Comparison of mean velocity profiles at various

z-positions (Appendix 1), the expected variations of 1C(= Ym/g)

and U_ (Figs. (12) and (13)) and comparison of the measured
and calculated distributions of the Reynolds shear stresses
(Fig. (18)) enhance the conclusion that the flow emerging from

the slot was two-dimensional.
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6. A PLANE MIXING LAYER

6.1 General

Recently considerable effort has been directed towards
the study of free shear flows. In this group of shear flows

a plane, turbulent, incompressible mixing layer between a

uniform stream and quiescent surroundings is a comparatively

simple flow to investigate because of its complete self-preserv-
ing nature. However, except for a few investigations (Gartshore
(1965): Hackett and Cox (1967))dealing with mean velocity
measurements not much renewed attention appears to have been
given to the plane turbulent mixing layer since the. appearance

of the work of Liepmann and Laufer (1947). It should be

recalled that Liepmann and Laufer did not measure w2

presumably because w2 is expected to be of the same order as

v2 and uw is expected to be zero. Furthermore, techniques of

and uw

hot-wire anemometry have developed considerably since their:

investigation therefore it is of interest to reinvestigate the

Plane mixing layer.

This investigation, although far from being complete,
waé undertaken with a hope that a certain duplication of the
measurements would be desirable. Since the completion. of the
present investigation Wygnanski and Fiedler (1970) have reported
extensive and sophisticated turbulence measurements in this

type of flow. Unfortunately, they overlooked (see footnote

on page 333 of their paper) the importance of the geometry of
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their experimental apparatus (i.e. they used a trip wire and

a solid surface in the plane x = O) and the parasitic effects
on their hot-wire probes (i.e. they used conventional DISA
X-wire probes); also the range, (15 < x < 23), over which.
their measurements were taken is quite small, Thus their:
measurements are suspect. Nevertheless, their measurements

are compared with the present results later..

It is worthwhile to note that Hackett and Cox: (1967) have-
indicated that there is need for a unified approach to calculate
shear stress distribution from mean velocity profiles in this
flow. The difficulty arises from the non-existence of well
defined boundaries. An approach to the calculation. of uv is

presented which agrees with shear stress measurements..

Experimental resuits presented here are,fOr'Ui/v =54.8 x
lO4 per foot which is higher than most other investigations and
the free stream turbulent intensity of 0.5% (see Appendix 2)..
The results include mean velocities and the Reynolds stresses
at three stations. These were obtained by using linearized
constant temperature hot-wire anemometer (only'single.wires.
were used) and include the longitudinal cooling corrections
where appropriate (Patel (1968)). The mixing layer was formed
at the exit of the McGill 17 in. x 30 in. blower cascade wind
tunnel. An investigation regarding the two-dimensionality of
the flow emerging from this tunnel is given by Patel (1964)..

'%’ Other details of instruments, experimental techniques, etc.

are given in section (4) and Appendix 1.
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6.2 .A Method for Calculating the Reynolds Shear Stress

It is well known that the plane turbulent mixing layer
is completely self-preserving and the lateral width of the

flow is proportional to the distance from a suitably chosen

origin.
U
1
U -
1 .
-
y // .
p—
—_
—
//
/’ X
S~
\\
S~
\\
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\\\
\\

The self-preservation is represented by

U = ﬁl £(n)
w? = v? g;(n)
V2 = v? g (n) - | (6.2.1)
W2 = 02 g (n)
and W = U8 945(n)

where m = y/x and f and gs' are universal functions of M.

The equation of mean motion in the x-direction with.

boundary layer approximations is given by

U au y(uBvP) | 3(wv) _ . d%u
Usx + Voy + % +a—§ R (6.2.2)
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and the continuity equation is

%‘}% + %‘3—5 = 0 (6.2.3)

Substituting the similarity forms from equation (6.2.1) into
equations (6.2.2) and (6.2.3), and then combining the momentum
equation (6.2.2) and the continuity equation (6.2.3) one gets:
-nff' + £ {ndf - n(gl' - 92') + gi, = ﬁf £ (6.2.4)
where dashes denote differentiation with respect to 7, and it
is assumed that V = 0 at 1 = 0 or where £(0) = 1. For high
Reynolds numbers the right hand side of equation (6.2.4) can
be neglected, and also neglecting the difference between. the
normal Reynolds stresses, equation (6.2.4) after integration

reduces to:
_ I 2 f =
9., = ) ndfS - £ ) ndf (6.2.5)
12 l 1 s

This equation is identical to the one given by'Townsend'(1956r
see equation 8.3.5) except for the term involving normal
Reynolds stresses., For the condition that shear stress is zero

at y = + », Townsend gives

Jnae? +  [n(eq - ag)an = o (6.2.6)
(o] =00

Equation (6.2.5) can also be written as
— 2 .
9y = £ ffdn - ff dn (6.2.7)
o o

Equation (6.2.7) has been used by Hackett and Cox (1967) to
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evaluate the shear stress distribution from a measured mean
velocity profiie. They ﬁad to determine the constant of inte-
gration by trial and error such that at the edges of the mixing
Iayer the shear stresses were zero. In this connection it is
of interest to note that Liepmann and Laufer (1947) have also
assumed that Vv = 0 at 1 = 0 and must have determined the constant
af integration on this basis. Although Wygnanski and Fiedler
(1970) do not give details of their calculation for the shear
stress distribution they too have made the same assumption as
Liepmann and Laufer (see their figure (41)). Furthermore, they
had to impose a condition that the calculations for the shear
stress distribution proceed from high velocity side and far
away from the mixing zone. The logical question here seems

ta be: what happens if one starts the calculations from the

zero velocity side?

In practice it is difficult to locate exactly where the
edge mn = 0 should be and, moreover, the assumption V = 0 at
this point can be questioned because there is no reason to
believe that it is so, for instance, 1m = Q0 is not a symmetry
Iine or a solid boundary. Therefore it appears that the diffi-
culty in calculating the shear stress distribution from a mean
velocity profile using equations (6.2.5) or (6.2.7) arises from
both the difficulty in locating 11 = 0 and the assumption that
V=0 at n = 0. Since it is not necessary to impose this
restrictive assumption following analysis is presented and used

to calculate the shear stress distribution for a plane mixing
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layer,

The continuity equation (6.2.3) after substitution from

equation (6.2.1) and integration reduces tos:
vV =u, [nf - ffdn + A ] (6.2.8)

where A is a constant of integration which gives the inflow
velocity from the high velocity side. Substituting equations
(6.2.1) and (6.2.8) into equation (6.2.2), and as before
neglecting terms containing the normal Reynolds stresses and

viscosity, gives
gy, = £ ffdn - Af' (6.2.9)
Equation (6.2.9) on integration gives
915 = £ ffdn - ffedn - fA + B (6.2.10)
where B is another constant of integration.

Now examination of equation (6.2.10) indicates that two
boundary conditions are required to evaluate the constants A

and B. These boundary conditions are:

atn=0; uv =0
—_ (6.2.11)
and at = ; uv =0

Equation (6.2.10) with these boundary conditions becomes

Yl N o o o
g12=foffdn-off dn + (1-£) off dn  (6.2.12)
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Note that in equation (6.2.12), as a consequence of V being

not zero at 1 = 0, an extra term, which is not a constant,

appears compared to equation (6.2.7). Equation (6.2.12) can
be used to calculate the shear stress distribution from a

mean velocity profile, but the second boundary condition (i.e.
at n = o, uv = 0) is not satisfactory. The reason for this

is that the equation of motion without the terms containing
‘the normal Reynolds stresseé is not applicable in the outer
region (i.e. edge towards which U - 0). 1In any case, even
measurements in this region would be contaminated. Hence to
establish the boundary conditions with some confidence and to
avoid using graphical integration techniques the following

approach is preferred.

The non-dimensional mean velocity distribution to a good

degree of accuracy may be expressed analytically by (see Fig.

(21))

g—— = £(n) = e‘(k“)2 (6.2.13)
1 :
where n = n - (Zﬂé%.!)

k is a constant, ym/2 is the value of y at which U = %Ui
2
)

and e~ (%15)% = 0.50 (6.2.14)

Note that the edge of the mixing layer on the high velocity
side is now established by the value of m, and once this value
has been assigned the constant k can be obtained from equation

@ (6.2.14). The analytical expression for the non-dimensional
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mean velocity profile (i.e. equation (6.2.13)) can then be
compared with a measured.profile and adjustment in no,may‘be
made if necessary. Thus the first boundary condition in
equation (6.2.11) can be assigned with some confidence and’
justification. The second boundary condition is specified
from the measured (EV)U%) distribution. It should be recalled
that Liepmann and Laufer have also discarded the second hound-
ary condition of equation (6.2.11) and replaced it by the
condition that the distribution of (uv) has a maximum where
BEU/By2 = 0. It will be shown later that the present approach

is not inconsistent with the condition of Liepmann. and Laufer.;.
The revised boundary conditions, therefore, are::

Y TY
. /2
0 (i.e. =2 X = M)

EV/U? = 0 and £(0) =1

-~

at 7

Y Y R
at n = ng (i.e. m/2 7 0) : GV7U§ = 0.0096 (measured data)
and f(no) = 0.50
(6..2.15)

With these boundary conditions the integrated momentum equatibn

(6.2.10) reduces to

— M M Mo
9yp = P—; = f f fdn - f fgdn + (1-£) [o'..0'192..+ 2 I f..adn
Ul o o O

nO
- [ fdn] (6.2.16)
(o]

Substituting the velocity profile equation (6.2.13) into equation



- 101 -~
(6.2.16) gives

2 2
= Jg:[.% e~ (k1) erf(kn) - ;ig_erf(d@kn) + Z (l—e_(kn))]

= holE]

(6.2.17)
where Z is a constant and depends on No s follows:

Z = 0.0216 + J% erf (JEkqo) - % erf (kno) (6.2.18)

In this investigation equationé (6.2.17) and (6.2.18) are
used to calculate the shear stress distribution. It is pointed
out that the non-dimensional mean velocity profiles given by
equation (6.2.13) where Mo = 0.125 and 0.118 equally fit the
collected experimental results (see Fig. (21)), so the following
constants corresponding to these values of Mg Will be used to

calculate (EV)U?) from equation (6.2.17)

qo k z
0.125 6.67 | 0.0994
0.118 7.07 0.0948

6.3 Results and Discussion

6.3.1 Mean Velocity

Initially a test was performed to evaluate the effect of

a top wall in the working section on velocity distribution in
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the mixing layer (also see Fig. (B.12) for~Ju2/'Ul distributions),

This was undertaken becaﬁse Liepmann and Laufer (1947)
recommended that it is especially important, for the. two-dimen-
sional character of a mixingllayer and for reducing effects of
any draft in a room, to close the boundary opposite to the mixing
zone. Fig. (20) shows mean velocity distribution at x = 27.75. in.
both with and without the top wall in the working section. for a
test condition Ul/v = 16.1 x lo4 per foot and(Jﬁ?i&H): 0.56%.
From this figure it can be seen that there is hardly gﬁg influence
on the mixing layer by the absence of the top wall. This may

be due to a bigger depth of free stream (i,e, §-<_lm63 where H.

is the depth of free stream at x = O) in the present investiga-
tion compared to that (i.e. §'< 4.7) for the experiments of
Liepmann and Laufer. A more appropriate parameter in this
connection would be the ratio of the width of a mixing layer:

to the width of a free stream, and the smaller this ratio the

better chance there is for a mixing layer to be not affected by

the other boundary (Townsend (1956)).

The subsequent experimental results reported here are for

)}

Ul/v = 54.8 x 10" per foot and without the top wall in the

working section,

Fig. (21) shows the non-dimensional mean velocity distri-—
butions measured at three downstream stations (i.e. x = 11.0 in.
25.75 in. and 40.25 in.). In this and subsequent figures y is

measured from the centre line of the tunnel and ym/2 is the

i

value of y at which U = U, . Included in this figure are the

N
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measurements of Liepmann and Laufer (1947), Gartshore (1965)

and Wygnanski and Fiedlef (1970). Except near the zero velocity
region the present measurements are in good agreement with. those
of Liepmann and Laufer, and Gartshore. Also from this figure it
can be concluded that the mean. velocity profiles are self-
preserving as anticipated. The measurements of Wygnanski and
Fiedler are not in agreement with other results reported in

‘this figure. It is interesting to note that. recently Rodi and
spalding (1969) used a field (or differential) method to: predict
the velocity distribution in a plane mixing layer. They used
the results of Wygnanski and Fiedler together with other: free.
shear flows (i.e. a plane jet and a radial jet) to obtain
constants (seven in all) in their calculation method. With

this set of constants they predicted velocity distribution in.
the plane mixing layer and showed good agreement between their-
prediction and the results of Wygnanski and Fiedler.. Their
conclusion is acceptable if the non-dimensional mean velocity-
profiles are plotted as U/U, Yo 0¥ 1
is the distance between the points at which. the velocity is,O.9Ui~

and 0.1U However, when their predictions are replotted in

l.
Fig. (21) they are in agreement with other results but not:

Wygnanski and Fiedler's. It should be mentioned that the present
way of plotting the results is preferred because deviations from

similarity are easy to discern in such a plot..

6.3.2 Growth of the Mixing Laver

Fig. (22) shows the growth of the characteristic layers in.
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the plane mixing layer wﬁere, for example, y0m95 refers to the
locus of points at which U = 0'95U1' For'comparison,.measure-.
ments of Gartshore, Liepmann and Laufer, and Wygnanski and
Fiedler are included. From this figure it can be. seen. that.

the characteristic layers in the mixing layer grow linearly
with the downstream distance x as expected and the hypothetical.
origin of the mixing layer is at approximately x.=>§ in. Note-
that for YO.95’ yo‘50 and yO.lO the present measurements are.

in agreement with the measurements of Liepmann and Laufer.
However, considerable disagreement is apparent between the
present results and those of Gartshore for Yq.10" It is worth.
noting that in this region measurements with both a pitot tube.
and a hot-wire become unreliable and therefore comparisons of’

results are not meaningful.

6.3.3 Distributions of the Normal Reynolds Stresses

Measurements of the normal Reynolds stresses in. the plane
mixing layer are presented in Figs. (23), (24%) and (25). For
comparison measurements of Liepmann and Laufer, and'Wygnanski:
and Fiedler are also included. From thesé figures it can be
concluded that the present measurements confirm the self-
preserving nature of the turbulence quantities as-postulated
by equation (6.2.1). It should be mentioned that the range
(11.0 in. ¢ x € %0.25 in.) over which these measurements were
taken is bigger than that of Liepmann and Laufer (11.8 in.  x <
29.5 in.) or that of Wygnanski and Fiedler (15.275 in. { x

23.1 in.). Considering the measurements of Wygnanski and Fiedler
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note that their results for (‘l;-——é/ul) are in agreement with
the present results on tﬁe high velocity side. However, their
results for (ij)Ul) and (j;S/Ul) are considerably higher than
the author's. As noted in section (6.1) this was anticipated
because of the geometry of their experimental arrangement and
the contamination of their X-wire by thermal wake interference

(Guitton and Patel (1969)).

On the other hand the results of Liepmann and Laufer are
slightly lower than the present measurements. The difference
may be attributed to the old electronic networks, non-linear
hot—wire anemometer and the omission of the longitudinal cool-

ing effects on slanted hot-wires in their investigation.

On the whole the general shapes for the distributions of
the normal Reynolds stresses are very similar for all the
investigations reported in these figures. It is noted that
contrary to the conclusion of Wygnanski and Fiedler the points
of maxima in these distributions occur approximately where the
Reynolds shear stress distribution attains a maximum. This is
not unreasonable because one would ekpect'maximum turbulence
intensities where turbulence production is maximum. Also con-
trary to their conclusion is the observation that both (JjE)Ul)

and‘c’w2/Ul) are of the same order of magnitude over the range

-0.06 ( (ym/e—y)/x £ 0.06.

6.3.4 Distributions of the Reynolds Shear Stresses

Fig. (26) shows the measured Reynolds shear stresses at
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three downstream stations, i.e. x = 11.0 in., 25.75 in. and
40.25 in. For comparison the calculated sheai stress distri-
butions (using equation (6.2.17)) are also given in this

figure. The two calculated curves refer to two values of Mo
selected to represent the measured non-dimensional mean. velocity
distribution (see section (6.2)). The results of Wygnanski and

Fiedler are compared in Fig. (26).

From Fig. (26) it can be seen that contrary to the conclu~
sion of Hackett and Cox (1967), and in spite of a large change
in n, compared to that given by them (i.e. 0.003), both calcul-
ated curves are in satisfactory agreement with the measurements.
Thus it may be concluded that the method Presented in section
(6.2) (i.e. eguations (6.2.17) and (6.2.18)) provides a satis-
factory approach for calculating the Reynolds shear stress dis-
tribution from a measured non-dimensional mean velocity profile.
Note that the shear stress measurements are in accord with the

self-preserving nature of a plane mixing layer.

Comparison between the present results and those of
Wygnanski and Fiedler indicate that the aéreement between the
two is not satisfactory. As mentioned before their measurements
are suspect, It should be noted that their measured and
calculated (see the author's comments in section (6.2)) shear
stress distributions "agree quite well" and this was attributed
to the small scatter in their non-dimensional mean velocity
profile. It is recalled here that Liepmann and Laufer have

also obtained close agreement between their measured and
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calculated results. 1In view of the methods used by these

investigators to calculate the shear stress distributions
such claims for close agreement between measured and calculated

results are rather premature as will be shown below.

Fig. (27) is presented for interest because it clearly
shows that a variety of shear stress distributions have been
calculated from practically the same non-dimensional mean
velocity profile. Because of a lack of definite boundary
conditions various investigators have used different. methods.
Common among their methods is the assumption or implication
that at the high velocity edge V = Q. Presumably V could Lz
worked out by a suitable sink distribution placed along the
edge of the streaming side to represent constant. entrainment.

As mentioned before Hackett and Cox used trial and error methods
to establish a constant such that the shear stresses at. both
edges of the mixing layer become zera. They used both theirs
and Liepmann and Laufer's non-dimensional mean velocity profiles
(these velocity profiles are in good agreement with each other).
Rodi and Spalding (1969) used their differential method to
calculate the shear stress distribution. They cbserved dis-
crepancy between their shear stress profile and the profile.
given by Wygnanski and Fiedler. They were unable to explain
this discrepancy and concluded that some clarification.was

needed.

@ For the present investigation two profiles are given in

Fig. (27), they refer to the sets of boundary conditions of



- 108 -

equations (6.2.11) and (6.2.15). The set of boundary conditions

in equation (6.2.11) does not procure agreement between the
measured and the calculated profiles. It should be noted also
that the calculated as well as the measured shear stress Profiles
attain maxima at n = 0.10 (i.e. at (ym/e—y)/kzz 0.025) and this
is in agreement with the second boundary condition suggested

by Liepmann and Laufer (i.e. the shear stress is maximum where
BEU/BYE = 0. It is easy to show that for the present velocity

pProfiles 82U/By2 = 0 at = 0.10.)

From Fig. (27) it can be seen that the discrepancy between
various methods is enormous and unbelievable., This stems
Primarily from the difficulty in assigning proper boundary
conditions in the plane mixing layer. The Present method
therefore seems at least consistent'and removes arbitrariness

from the investigation.

It should be mentioned that (uw) was found to be zero

across the mixing layer in this investigation.

€.3.5 General Conclusions

Following conclusions are drawn from this investigation:

(i) the measurements of mean velocity and the Reynolds
stresses confirm the self-preserving nature of the Plane turbu-

lent mixing layer. The range of Reynolds numbers, 5,02 x'105.<
U.x

(Re, ='—%— < 1.84 x lO6 » for this investigation is quite
é} large compared to other similar investigations reported in the

literature.
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(ii) the assumption V = 0 at.q = O commonly adopted in
previous investigations on a plane mixing layer is not made
in the present investigation. Its use in in analysis leads
to erroneous distributions of shear stress calculated from
the non-dimensional mean velocity measurements., A method which
does not impose restriction on V but involves a further
empirical input as a boundary condition is presented and it
gives satisfactory agreement between the.measured and the

calculated shear stress profiles.

(iii) the discrepancy between the present turbulence
measurements and those of other investigators (i.e. Liepmann
and Laufer (1947); Wygnanski and Fiedler (1970)) are
attributed to either the differences in the experimental
arrangements, or omission of the longitudinal cooling correc-
tions to inclined hot-wires results, or the thermal wake inter-

ference between the closely spaced wires of an X-wire pProbe.
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T. THE ASYMMETRIC JET

7.1 General

In applications of technological interest jet and wake
flows are frequently asymmetric; examples are the flows in

the wakes of slotted aerofoils or behind jet-flapped aero-

foils. A simple case of an asymmetric jet is being investi-~

gated here and consists of a two-dimensional turbulent jet in
zero pressure gradient with uniform streaming flow on one side
and quiescent conditions on the other. Fig. (28) shows a

sketch of the experimental set up to produce this simple case.

The streaming flow is provided by the 17 in. x 30 in
McGill blower wind tunnel. The various ratios of jet-to~-free
stream velocity, (Uj/Ul), are obtained by varying either the
tunnel speed or the jet velocity. To obtain high values of
(Uj/Ul), however, it was necessary to reduce the tunnel speed
by a large factor. This introduced a complication because the
turbulence intensity in the uniform stream was not constant
(see Fig. (B.l))over the whole operating iange of the wind
tunnel (the tunnel was driven by a 25 H.P., constant r.p.m.
(720), A.C. motor and the free stream velocity was changed by
adjusting the inlet guide vanes). For example, at 115 ft/s.

the turbulence intensity in the free stream (on centre line)

~was about 0.4% whereas at 25 ft/s. it was about 1.34. 1It was

thought that such a variation of turbulence level might sig-
nificantly affect the growth of the jet. To the knowledge of

the author the effects of free stream turbulence on free shear
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flows have not been investigated.

To determine the sensitivify of jet flows to free stream
turbulence a subsidiary investigation was therefore undertaken,
Measurements were made in both Plane mixing layers and the asym-
metric jets with free stream turbulence ranging from 0.5% to
1.1% (see Appendix (2)). 1t was concluded that the turbulence
intensity must be reduced below 0;7% of the free stream for the
effect to be negligible., To achieve this level at low tunnel
Speeds, an additional 5 H.p, D.C, motor.drive was therefore
installed. fhis was found satisfactory for sSpeeds less than

60 ft/s. and the turbulence level remained constant at abcut

0.5%.

The results of experiments on the asymmetric jets for
values of UJ./Ul = 2.275, 5.08 and 9.0 are given in this
section. The above ratios of (Uj/Ul) were selected to cover
the entire range (i.e. from a strong jet case to a weak jet case)
Oof the asymmetric jet flow. The measurements include pitot
and hot-wire traverses for mean velocity, Reynolds Stresses,
intermittency and spectra of the longitudinal fluctuations,
Certain local double and triple correlations have also been
obtained. The éonventional (i.e. by velocity profiles) two- >
dimensionality checks on the flow are given in Appendix 1. In
section (8) evaluation of entrainment velocities for the various
free shear flows investigated here is given. This ig then
followed in section(@?by comparison of experimental results of

the asymmetric Jjets with the Simple analysis presented in section
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(2.4.2).

It should be noted that unless specified otherwise all
hot-wire measurements for the asymmetric jets are not corrected
for the longitudinal cooling and the high intensity effects.

The longitudinal cooling correction factor for uv is 1.08 and

2 2

for both v© and w© it is 1.16.

For convenience the three cases of the asymmetric jet are

identified as follows:

UJ./Ul = 2.275 (a weak asymmetric jet)
Uj/U1 = 5,08 (a mild asymmetric jet)
Uj/'Ul = 9.0 (a strong asymmetric jet)

T.2 Results and Dlscuss1ons for the Asymmetric Jet with

U/U_.L 5.0

T7T.2.1 Mean Velocity Profiles

The mean velocity profiles at various downstream positions
were measured by both a pitot tube and linearized hot-wires.
For the pitot traverses the static pressure across the asymmetric
jet was assumed to be a constant and equal to the atmospheric
pressure. For comparison Figs. (29) and (30) show typical results
for the case Uj/Ul = 5.08 at two downstream stations, x = 26.75 in.
and 33.75 in. It can be seen from these figures that apart from
the edge of the zero velocity side the results from the pitot
tube and the hot-wires are in good agreement with each other.

Towards the edge of the zero velocity side measurements made
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by the pitot tube probably give velocities lower than the

actual whereas the hot—wire results probably over-estimate

the velocities in this region. On these figures positions

of the half velocity scales (see Fig. (4)) are also indicated
to show that within this range (ll <y < 12) the agreement
between the pitot tube and hot-wire results is very good.

The réason for this is that the turbulence intensity within
‘this range is less than 15%, and therefore one would expect
the agreement to be fairly good. Moreover, these hot-wire

and pitot tube results give independent checks on the velocity

neasurements,

Figs. (31) and (32) show non-dimensional mean velocity
profiles on the two sides of the asymmetric jet. The measure-
ments were made with a linearized hot-wire at seven downstream
stations within the range 3.125 in. < x < 40.75 in. For the
streaming side the velocity scale ug and the length scale l1
(see figure (4)) are used whereas for the zero velocity side
the scales are Um and l2 respectively. A comparison is made
by including in these figures the tabulated profile of Bradbury
(1963) which is shown by a solid line. Also an exponential
profile is shown in Fig. (32). The discrepancy between the
experimental results and the exponential profile is not large
and thus an approximate method, incorporating a similarity
hypothesis, for predicting the growth of the asymmetric jet
is not likely to be seriously in error. The figures (31) and

@3 (32) substantiate the assumptions of section (2.4.2) (see



- 114 -

equations (58) and (59)) in that the velocity distribution in
the asymmetric jet can be divided into two parts: (a) the
streaming side resembling a half jet in uniform stream and

(b) the zero velocity side resembling a half jet in still

air., It is also observed that the bPresent velocity measure-—
ments are in general agreement with Bradbury's results on the
streaming side although some disagreement exists in the region
of very low velocities. As mentioned before in this region
the hot-wire overestimates the velocities,

7.2.2 Variations of Main Characteristics of the Asymmetric
Jet; szgl = 5.08

The variations of main characteristics such as the lengths
and velocity scales and the locus of the points of maximum
velocity for the asymmetric jet (Uj/Ul = 5.08) are given in
Fig. (33). These measurements are reported because they display
some characteristics of the asymmetric jet and furthermore the
knowledge of their distributions is required to evaluate distri-
butions of uv from mean velocity measurements (see equations (61)

and (64) in section (2.4.2)).

Considering the growth of the asymmetric jet it can be
seen from Fig. (33) that the zero velocity side (i.e. 1,) grows
linearly with downstream distance and the streaming side growth
(i.e. ll) exhibits non-linearity very Cclearly. Note that the
shear layer on the streaming side grows less rapidly than the
one on the zero velocity side, as expected. Another feature
worth noting is that the locus of (ym) is a straight line over

the range 10 in. £ ¥ 40 in. but with a different origin,
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This is in agreement with the observation of Gartshore (1965).
In section (2.4.2) it was noted (equation (66)) that the Iocus
of the points of maximum velocity moves towards the streaming
side as the flow develops downstream. The variation of (ym)
in Fig. (33) clearly substantiates this observation. Similar
conclusions may be drawn from the results of other cases of

the asymmetric jet reported later.

The variation of velocity scales (i.e. u_ and Um) is

o
represented by the distribution of (uo/Ul) because (Um =U; + u)
and Ul is a constant. It is interesting to note that most of
the variation (or decay) in (uo/Ul) for this case takes place
within a short distance from the slot exit, and beyond about
X = 20 in, (i.e. x/b = 75.5) (uo/Ul) decays very nearly linearly

with downstream distance x.

T7T.2.3 Distributions of Reyvnolds Stresses

The Reynolds stresses in.the asymmetric jet.(case Uj/Ui_=
5.08) were measured at six downstream stations. It is instruc-
tive to note that for non-self-preserving flows (e,gh Bradbury's
jet in a uniform streaming flow) one is tempted to use a velocity
scale which is the same for both mean velocity distributions
and Reynolds stresses. On the other hand Kruka and Eskinazi
(1964) following Férthmann's suggestion recommend the maximum
shear as the characteristic quantity for expressing Reynolds
stresses in similarity forms. It transpires that for non-self—
preserving flows the mean velocity and Reynolds stresses are not

both reduced to similarity forms by the same velocity scale.
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Therefore in the present investigation it is proposed to use
the local maximum velocify as the scaling velocity for turbu-
lence quantities on the streaming side of the asymmetric jet.
For comparison Reynolds stresses are also non-dimensionalized
by the velocity scale u,.
Figs. (34) to (37) show the distributions of Reynolds
_stresses on the streaming side of the asymmetric jet. The
distributions of the turbulence energy, (;5), is shown in
Fig. (38). Note again, that these results are not corrected

for the longitudinal cooling effects but if the reader wishes

to correct them, the correction factors are as follows:

no correction for u2,

—

correction factor for v2 2

and w° is 1.16,

and correction factor for uv is 1.08.

In these figures the turbulence quantites are non-dimensionalized
with the velocity scale U, - The measurements were made over a
wide range of values of x (i.e. from very close to the slot to
far away from it) and they clearly show that as the flow develops
downstream the values of (;§/h§), (;§/u§), (;§/u§),(337u§) and
(;E/ug) increase, and it can be concluded that the use of u, as
the velocity scale does not reduce the experimental results to
the usual similarity forms. For interest it should be mentioned
that although Bradbury's (1963) tabulated results for a jet in
uniform streaming flow are not compared in these figures they

lie very close to the results of station x = 3.125 in. The
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variations in these figures are mainly due to the decay of ug,
because the turbulence is expected to be maintained by some

transfer from the zero velocity side.

It was proposed at the beginning of this section that the
local maximum velocity will be used to non-dimensionalize the
turbulence quantities. Figs. (39) to (43) show the distributions
of turbulence parameters across the asymmetric jet. The results
on the streaming side (i.e. Figs. (34) to (38)) are replotted
with Um as the velocity scale. BAlso note that the length scales
on the streaming side and the zero velocity side are not the
same thus the gradients of these distributions at My = My = 0
will be discontinuous. For comparison uncorrected results of
the plane jet in still air (see section (5)) are shown by solid

lines on the zero velocity side.

From Figs. (39) to (43) it can be seen that for the stream-
ing side the results collapse better when U_ (instead of u ) is
used for the velocity scale. This is particularly true for
measurements beyond x = 20.50 in. On the zero velocity side
the measurements show similar trends as do the results of the
plane jet in still air, but the asymmetric jet turbulence
intensities are slightly lower than those of the plane jet.
However, within the experimental scatter and beyond x = 20.50 in.
the present results show that the zero velocity side of the
asymmetric jet behaves very much like a plane jet in still air.
It is of interest to note that the shear stress at the maximum

velocity points (see Figs. (37) and (42)) is nearly zero. This
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is not inconsistent if one observes the results of other

asymmetric flows associated with a uniform stream, for instance,
a wall jet in uniform streaming flow (see measurements of

Bradshaw and Gee (1962), and Kruka and Eskinazi (1964)) .

Fig. (44) shows the distributions of (EV/;E) across the
asymmetric jet. From the figure it can be seen that although
(33755)—distributions on the streaming and zero velocity sides
do not display exact similarity of shapes, their magnitudes

at g = My = 1.0 are about the same.

Figs. (45) and (46) show the shear stress correlation
coefficients, R - = (EV/J??]:E), in the asymmetric jet and
these are compared on the streaming side with the measurements
for a plane jet in uniform stream made by Bradbury (1963). It
should be mentioned that Bradbury has compared his measurements
of Rg- with those of Eskinazi and Kruka (1962) for a plane
turbulent wall jet in a uniform stream and also with the measure-—
ments of Gibson (1963) for a turbulent axisymmetric jet in
quiescent surroundings. His measurements were in good agreement
with those of Eskinazi and Kruka, and Gibson. From Fig. (45)
it can be seen that the present mgasurements of RG; on the

streaming side are in agreement with Bradbury's results.

For the zero velocity side the distribution of the shear
stress correlation coefficient, Rgg, is compared in Fig. (46)
with the author's results for the plane jet in still air
‘%D (section (5)). The agreement is again quite good. It should

be mentioned that the measurements of Rﬁ? are effectively inde-

i
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pendent of both intermittency factor and the longitudinal
cooling effects. A compérisoﬁ between Figs. (45) and (46)
(i.e. the streaming side and zero velocity side) shows that
apart from the position of maximum RE; the results are in
general agreement with each other. Thus it appears that
there is a tendency to a universally similar structure for

all turbulent shear flows.

7.2.4 Measurements of Triple Correlations

It was mentioned in section (4) that the analysis of
slanting hot-wire readings involves knowledge of both. the
longitudinal cooling effects and high intensity effects. The
dynamic test for the former effect is given by Patel (1968)
and the latter is investigated by Guitton (1970). It should
be noted that all shear flows associated with quiescent
surroundings encounter high turbulence intensities in regions
close to the dill surroundings., Hot-wire measurements in. this
region, therefore, have to be corrected for high intensity
effects. The correction factors for various turbulence compo-
nents, however, involve triple and qdadruple correlations (see
Heskestad (1963) and Guitton (1968)) and these have to be
measured by a matched X-wire probe., In this investigation DISA
equipment was used in conjunction with a precision full wave
rectifier (details of this and a full description of how the

correlation coefficients were obtained, are given by Guitton

(1968)).
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In section (4) it was stated that the standard DISA X-
wire probes were prone to thermal cross talk because of the
close‘proximity of the two slanted wires (Guitton and Patel
(1969)). For the present purpose a modified X-wire probe was
used (the modification is given by Guitton and Patel). To
verify the dynamic response of the modified X-wire probe and
to check the repeatability of the turbulence measurement, the
shear stress correlation coefficients across the asymmetric
jet were measured at x = 26.75 in. A comparison between. the
results obtained by a single slanted hot-wire and the modified
X-wire probe is shown in Fig. (47). 1In this figure the full
line represents the results obtained by the single slanted wire
and the points are for the modified X-wire probe results. The
agreement between the two sets of results is very good and
enhances confidence in both the modified X-wire probe and the
electronic equipment. Note also that RE; is nearly zero across

the flow.

The triple and quadruple correlations for the asymmetric
jet were measured at x = 26.75 in. only. However, because
Guitton's (1968) correction factors for Reynolds stresses
involve only triple correlations these are presented in Fig,.

(48). The triple correlations shown in the figure are as

follows:
R—_é = ___\1_\11_2____
uw == —
/u2_ w2
2
RT2 = Y



3
RZ3 = —=
V2. ]2

: _ '—§
and R-3 L
W2 J2

Fig. (48) shows that across the asymmetric jet R—?2 and R—-2
are of the same order and the shapes of their distributions are
very similar. On the other hand note that R;3 is much. bigger
than R§3, the latter being approximately zero acrcoss the flow..
It is also noted that on the streaming side R;B is practically
of the same order of magnitude as RGV' For interest it is
mentioned here that Rﬁﬁ was approximately zero (negligibly
small compared to RGV) across the asymmetric jet. Not only

at this station (i.e. x = 26.75 in.) but at various streamwise
stations single slanted wire results also indicated that (G;a

was approximately =zero,

The results shown in Fig. (48) were used to work out
Guitton's (1968) high intensity correction factor for the
Reynolds shear stress. Fig. (49) shows the combined correction
due to the longitudinal cooling effects and the high intensity
at x = 26.75 in. Note that between the half velocity points
on either side of the maximum velocity point, the correction
due to the high intensity, on the average, is small and this
is attributed to low turbulence intensity (< 20%) encountered
within this region. In the following section the measured

Reynolds shear stress distribution is corrected by using the
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correction factor shown in Fig. (49).

7.2.5 cCheck on the Momentum Balance

Coles (1968) has pointed out that a severe test for the
two-dinensionality of a plane turbulent shear flow is to
demonstrate the momentum balance by measuring various terms
in the momentum equation. For the asymmetric jet under investi—
gation the momentum equationson the streaming and zero velocity
sides are given by equations (61) and (64) respectively (see
section (2.4.2)). It is mentioned that in these equations

the term containing the difference between normal Reynolds

3_(uf-v?)

Sx ) is neglected because it was found

stresses (i.e.
that its contribution is quite small. Various terms appear-
ing in equations (61) and (64) were measured (see Fig. (33))
and the Reynolds shear stress distribution at x = 26.75 in..

for the asymmetric jet was computed. The result is shown. in.
Fig. (50). At this station the Reynolds shear stress distribu-—
tion was measured by using a single slanted, linearized hot-—
wire. As mentioned above the hot-wire results are corrected
for the longitudinal cooling effects and high intensity effects.
(for correction factor see Fig. (49)). From Fig. (50) it can
be seen that although a perfect agreement between the results
shown therein is not achieved, the agreement is indeed satis-
factory. The disagreement at the point of maximum shear on. the
zero velocity side is about 8%. A general observation can be

made from many published measurements of Reynolds shear stress

distributions in various turbulent shear flows and that is that
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the measured shear sfresses in the regions of maximum velocity
gradient are usually smailer than those calculated using the
momentum equation. This indicates that some complicated inter-
ference mechanism may be in operation for a hot-wire in these
regions. No attempt is made here to investigate effects of
velocity gradients on hot-wire measurements. Therefore, it

may be concluded that for the asymmetric jet the momentum

‘balance is satisfactory and the flow is effectively two-dimensional.

7.2.6 Intermittency

The intermittency was measured using a differential signal
from a linearized normal wire and recording the signal on an
'Ultra-violet' recorder. The technique of analyzing the recorded
signal was similar to the one used by Gartshore (1965) and

Guitton (1970).

The intermittency measurements were made at five downstream
étations. The results are shown in Fig. (51). For comparison
measurements of Bradbury (1963) (for a jet in uniform streaming
flow) are shown by a dotted line on the streaming side and those
of Gartshore (1965), and Heskestad (1963), (for a jet in still
air), are shown on the zero velocity side. From the figure it
can be seen that for the zero velocity side, apart from the
results at x = 6.125 in., the present results fall on a single
curve and, furthermore, they are in agreement with the results
of both Heskestad and Gartshore. For the streaming side, however,

the results show systematic change in the intermittency distri-

butions. The intermittent zone becomes bigger and bigger as the
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flow develops downstream and at x = 40.75 in. there is hardly
any fully turbulent zone.on the streaming side. This is not
surprising because as the asymmetric jet tends to its asymptdtic
state (i.e. a plane mixing layer) the whole flow becomes inter-
mittent (Wygnanski and Fiedler (1970) have shown that there is
no fully turbulent zone in a blane mixing layer). It is inter-

esting to note that over the streamwise range of the inter-

mittency measurements the half intermittency point on the zero

velocity side is at Ny = 1.65 whereas on the streaming side

it lies between 1.42 and 1.88. Finally, from Fig. (51) it may
be concluded that the zero velocity side of the asymmetric jet
behaves very much like a jet in still air as far as the inter-

mittency distribution is concerned.

7.2.7T One-Dimensional u2—spectra

In theoretical discussions of isotropic turbulence, it
is a general pfactice to define a mathematical quantity which
has the closest analogy to the physical notion of the energy
associated with a particular scale of motion. This quantity'
is the three dimensional spectral density function E(K) .
However, the way in which E(K) can be measured directly is
unknown and therefore measurements are usually made of the

one dimensional spectrum function ¢(k,) where ¢(kl) is defined

by

C 2
#(k,)dk, = u
Jote)ax,

The one dimensional spectrum function is related to the
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three dimensional spectrum function by (Batchelor (1953), Hinze

(1959)):

2 9¢(k, )
2E(K) = k? olky) Xy L for isotropic
3k. 2 Bkl turbulence
1
where J E(K) dk; = % q° = % (u2 + v2 4 w2)

(o}

It is well known that in small scales of motion the important.
bParameter of turbulence is the energy dissipation, €, (Hinze

(1959)) which is defined as follows:
f .2
€ = 2v.‘f k] E(K) dk,
o
where v is the kinematic viscosity

It can be shown that the energy dissipation density, e, is

related to the one dimensional spectrum function, e.g.

o0 2
_ 2 2 3%¢ BQ]
€ = vy k k -k dk
o[ 1 [ 1 8k§ 1 akl 1
_ ¢ .3 ¢
= =Hy k dk
J' 1 akl 1

or e 15v f k? ) (kl) dk,
o) : :

The integrand, k§¢(kl), is known as the dissipation spectrum
and describes the distribution in wave number of the rate of

decay of turbulent energy to heat.

In the inertial subrange viscosity has little direct effect
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and hence from dimensional arguments it can be shown that

The constant of proportionality in the above equation is an
absolute constant and is often referred to as Kolmogoroff's
constant. The existence of an inertial subrange depends on
the magnitude of turbulence Reynolds number, R, = (x ;5)/v,
‘where A is Taylor lateral microscale (Gibson (1963)). X is
also referred to as the dissipation length (Naudascher (1965)).
Gibson, following Corrsin, suggests Ry > 500 for the existence
of the inertial subrange. The microscale A is evaluated from

the following relation:

|

1 )

2 4

3;5— = S ki ® (kl) dk, = 2. (for isotropic turbulence)
o

n

22

Following Gibson (1963) and Grant et al. (1962) values of
A at various lateral and streamwise positions were obtained.
The technique involves a plot of ki ¢ (k,) versus k, and the
area under the curve then provides € and A. It should be
mentioned that A can be considered réughly a measure of the
eddies responsible for the energy dissipation in the final
stages only thus it differs from the dissipation length L€
used by Townsend (1956) and Newman (1968). Townsend (see
equation (5.6.4) on page 95 of his book) defines the dissipa-

tion length in isotropic turbulence as follows:

3 :2?3/2

€ =
2 L.
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where ¢ is not the rate of turbulent energy dissipation by
viscosity as above but it is the rate of turbulent energy
dissipation which is determined by the rate of energy transfer

from the large scale motions.

The purpose of the present measurements was to check
whether or not the inertial subrange with -5/3 power exists,
to obtain variations of A and to obtain the Kolmogoroff con-—

stant.

Figs. (52) and (53) show typical results of one dimensional

u2 -spectra measured by a B and K audio frequency spectrometer

using 1/3 octave filters. The wave number k. was assumed to be

0
equal to (2rf£/U) and by definition -f¢(kl) dk, = u®. These
o

measurements were made at typical lateral positions which are
indicated on a sketch included in the figures. Also included

in these figures is a line with -5/3 slope. From both figures
(52) and (53) it can be concluded that the spectra exhibit a
range with -5/3 power. The range of turbulence Reynolds numbers

for measurements shown in these figures was 326 Q.R).g 715,

In Figs. (54) and (55) (k2 o (k /;E is plotted against
1 1

kl. The shapes of these curves are very similar to those given:
by Grant et al. (1962). All the curves exhibit a peak around
kl = 300 ft—l. As mentioned before from plots similar to Figs.

(52) and (54) the energy dissipation, €, and X\ were calculated.

It was found that values of A were approximately independent

of the lateral position. 1In Figs. (56) to (58) the value of A
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is the mean value .at a particular streamwise station. Fig.
(56) shows variation of X with downstream distance x. From
the figure it can be seen that beyond x = 20 in. (i,e, in the
region where the flow is not affected by conditions at the
slot) X does not vary a great deal. For interest variation

of A with the mean flow length scales ll and l2 is shown in
Fig. (57), and Fig. (58) shows variations of (I;/A) and (12/x)
with downstream distance x. It may be concluded from these
figures that A is not directly proportional to thé_mean flow

length scales ll and 12.

Fig. (59) shows values of the Kolmogoroff constant, K',
obtained in the present investigation plotted against dissipa-—
tion €. For comparison values of K' obtained by Grant et al..
(1962) in a tidal channel and by Gibson (1963) in an axisymmetric
jet in still air are included. The value of K' for grid turbu-
lence is the one quoted by Gibson from measurements of Kistler
and Vrebalovich in California Institute of Technology Co-op
Tunnel. It should be recalled that K' is expected to be an
absolute constant, however the present measurements show a
definite trend i.e. it increases as € increases. Similar beha-
viour can be seen in the results of Grant et al as well. It
is possible that the measurements near the slot are contaminated
by the conditions at the slot and values of K' are much larger
than those of other investigators. Far away from the slot,
however, values of K' are in agreement with those reported by
Gibson and Grant et al. An interesting observation from other

measurements not reported here is that the extent of the inertial
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subrange for measurements near the slot was quite small even
though the turbulence Re&nolds numbers were quite large (i.e.
Ry, > 750). On the other hand far from the slot the turbulence
Reynolds numbers were small (326 Ry < 715) but the inertial
subrange extended over much wider wave number space (see Figs.
(52) and (53)). The turbulence Reynolds number for the experi-
ment of Grant et al. was 3600 and for the experiment of Gibson

it was about T80. It is difficult to draw any definite conclu-

sion without further measurements of the v2, w2 and uv spectra.

7.3 Results and Discussion for the Asymmetric Jet with szgl=9.o

It was noted before that as the ratio of jet to free stream
velocity increases the asymmetric jet approaches the jet in
still air. Measurements were, therefore, made with (Uj/ﬁl) =
9.0. These measurements include mean velocity traverses and

Reynolds stresses at a number of streamwise stations.

7.3.1 Mean Velocity Profiles

As shown in Figs. (60) and (61), the non-dimensional mean
velocity profiles are again geometrically.similar and in agree-
ment with those obtained with (Uj/Ul) = 5,08. For comparison
the tabulated results of Bradbury (1963) are shown by a solid
line. Once more the agreement is satisfactory.

7.3.2 Variations of Main Characteristics of the Asymmetric
Jet Uj[gl = 9.0

Fig. (62) shows the variations of the main characteristics
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of the asymmetric jet with (Uj/Ul) = 9.0. Compared to the
results for the case (Uj/Ul) = 5.08 (rig. (33)), both 1, and
l2 grow approximately in a linear fashion with downstream
distance and they are roughly equal in magnitude. However,
deviations from linearity are apparent as the ratio (uo/Ul)
decreases. It is also worth noting that the locus of (ym)
beyond x = 13,5 in. is again a straight line and moves towards

the streaming side as postulated by equation (66) in section

(2.4.2).

7.3.3 Distributions of Revnolds Stresses

It was mentioned in section (7.2.3) that for the streaming
side of the asymmetric jet a better collapse of Reynolds stresses
is obtained when they are non-dimensionalized with the local
maximum velocity Um instead of the excess velocity u,- Hence
the Reynolds stresses for the present case are first scaled
with the excess velocity uj (Figs. (63) to (67)) and then in
Figs. (70) to (74) they are non-dimensionalized with U, A
comparison is made with Bradbury's (1963) tabulated results
in Figs. (63), (64), (65) and (67). From these figures it
can be seen that the results do not collapse on a single curve
and that the disagreement between Bradbury's and the present
results is quite pronounced. However, if one ignores the
measurements below x = 26.75 in. on the ground that the flow may
not be fully developed then the results in Figs. (63) to (67)

may be considered to lie close to a single curve.
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Fig. (68) shows the distributions of (GV/;E) across the
streaming side of the as?mmetric jet. Over the streamwise
range (i.e. 6.125 in. < x < 40.75 in.) these measurements
display a similarity form as before (compare Fig. (44)) but
there is some difference in the shapes of these profiles. 1In
particular, for the strong asymmetric jet, (i,em with.Uj/Ul =
9.0}, the shape of (Eque) distribution on the streaming side
is approximately symmetrical about Ty = 1, and similar to that
for a jet in still air. Note that for the asymmetric jet with.
(Uj/Ul) = 5.08 (see Fig. (44)) the maximﬁﬁ;valzi of (557;5)
occurs at about ny = 1.6 and the shape ofA(GVVqQ) distribution.
is no longer symmetrical. It appears that this is a

characteristic feature of small perturbation (uO/Ui < 0.5) jets

(in uniform streaming flow) or wake flows.

The distribution of shear stress correlation coefficient,
(EV/I:EJ:E) for the streaming side of the asymmetric jet with
UJ./'Ul = 9.0 is shown in Fig. (69). 1In this figure results of
Bradbury are given for comparison. As noted above Bradbury's
results show a maximum around Ny = 1.6 and his R distribution
is not symmetrical whereas the mean line drawn through. the
pPresent results indicate a maximum value around Ny = 1.0 and
the Rav—distribution is approximately symmetrical. It is also

noted that uv at the Point of maximum velocity is quite small.

The Reynolds stresses on the Streaming side of the jet
were non-dimensionalized with the local maximum velocity U,

in a manner similar to that for the case of UJ./‘Ul = 5.08..
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These results are shown in Figs. (70) to (74). cComparison of
these figures with correépondiﬁg results in Figs, (63) to

(67) indicates that over the whole range of measurements the
velocity scale U, produces better collapse of results on single
curves. 1In Fig. (70) (:E/Ui) distribution for a jet in still
air is shown by a solid line. Figs. (70), (74) and (75) also

contain results for the zero velocity side. From these figures

it may be concluded that the zero velocity side of the asymmetric

jet behaves in a manner similar to a plane jet in still air.
However, it would be amiss not to point out that apart from
(;é/Ui)—distributions the other distributions of Reynolds stresses
are lower than the corresponding ones for a jet in still air.

On the other hand the two sides of the strong asymmetric jet

display similar profiles for Reynolds stresses (e.gm see Figs.

(70), (73), (74) @_(75))-

Fig. (76) gives distributions of (G;/qg) across the zero
velocity side of the strong asymmetric jet. From the figure
similar conclusion as that for the streaming side

may be drawn ownce wmoue.

The distributions of shear stress correlation coefficient,
R, for the zero velocity side is shown in Fig. (77). In this
figure a mean line representing Rﬁv—distribution on the stream-
ing side is shown by a solid line and Rﬁv—distribution for a
jet in still air is shown by a dotted line. From the figure
it can be observed that Rﬁv-distributions on both sides of the

strong asymmetric jet are of the same order of magnitude. It
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should be pointed out that measurements reported in this
thesis indicate that the shear stress correlation coefficient,
Rﬁ?’ is not a constant over the major portion of shear flows

investigated here.

7.4 Results and Discussion for the Asymmetric Jet with UjZHl=2.225

In sections (7.2) and (7.3) results were presented for a

mild and a strong asymmetric jet respectively. This section

deals with a weak asymmetric jet in which the ratio of jet to
free stream velocity is small. As this ratio decreases the
asymmetric jet tends to its other asymptotic state, i.e. a plane
mixing layer. For the weak asymmetric jet measurements of mean.
velocity and Reynolds stresses are presented. Because the
asymmetric jet with (Uj/Ul)= 2.275 very quickiy (within
approximately 70 slot widths downstream) becomes a plane

mixing layer, as far as the mean velocity distribution is
concerned, it was found difficult to identify accurately the
length scale, 11, and velocity scale, u,, on the streaming

side and therefore turbulence measurements on the zero velocify’

side only are presented.

7.4.1 Mean Velocity Profiles

The non-dimensional mean velocity profiles are shown in
Fig. (78). 1In the figure, for the streaming side a tabulated
profile of Bradbury (1963) is éhown for comparison, and on the
zero velocity side the exponential profile is shown by a solid

line. Also for comparison, on the zero velocity side measure-
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ments of a plane mixing layer are included. The plane mixing
layer results were obtaiﬂed fof Ul/v = 3.58 x 105 el ak x =
27.75 in. and they are in agreement with other mixing layer
results reported in Fig. (21). From Fig. (78) it can be con-
cluded as before that even for the weak asymmetric jet the mean

velocity profiles are similar. Also note that the results. on

the zero velocity side are in very good agreement with the

results for the plane mixing layer.

7.4.2 Distributions of Reynolds Stresses

As mentioned above distributions of Reynolds stresses are
presented for the zero velocity side only. The distributions
of (;E/Ui) are shown in Fig. (79). 1In this figure the author's
measurements for a plane mixing layer (see section (6)) and a
pPlane jet in still air (see section (5)) are given for compari-
son. It can be observed from the figure that the measurements
for the zero velocity side of the weak asymmetric jet display
a trend similar to the plane mixing layer results. There are
indications that if the measurements were extended further
downstream, where the zero velocity side 6f the weak. asymmetric
jet truly becomes a plane mixing layer, they would be in agree-

ment with the results for a plane mixing layer.

Figs. (80) and (81) show the distributions of (VE/Ui) and
(w2/U$) respectively. 1In these figures the plane mixing layer

results are also included. It can be seen from Figs. (80) and

(81) that the results for the weak asymmetric jet are considerably
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higher than those for the plane mixing layer. On. the other
hand the results for the Qeak asymmetric jet lie below those
for the plane jet in still air. It is also noticeable that.
although the measurements of (;Eyﬁi) collapse on a single

curve (it is emphasized here that these measurements were

made over.a narrow range of downstream distance, e.g. 12.625 im. (
x £ 21.625 in., and therefore it is possible that variations imn
(;§)U§) are not distinguishable.) the distributions of’(;E)Ui)
and (;Eyui) do not collapse on single curves. This indicates
that the structure of the flow represented by turbulence compo-
nents is continuously changing. On the other hand, as shown in
Fig. (82), it appears that turbulence energy distributions (i.e.
k;E)Ui)) exhibit a self similar structure (note that. these.

results are also for a narrow range of x) but it is difficult.

to draw a definite conclusion from Fig. (82).

Fig. (83) shows the distributions of (E;/Ui) on. the zero
velocity side of the weak asymmetric jet. In the figure these
are compared with the results for the plane mixing layer. The
shapes of the shear distributions in both cases are very
similar and the results for the weak asymmetric jet seem €o

collapse on a single curve,

Finally, a comparison is made, in Fig. (84), of the shear
stress correlation coefficients for the weak asymmetric jet,
the plane mixing layer and the plane jet in still air. It is
encouraging to note from Fig. (84) that for all these flows

the distributions of REV are roughly the same. Following table
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gives the maximum values of R in other turbulent shear flows

for comparison

Investigator Flow (R
max.
Gibson (1963) Axisymmetric jet in
still air 0.53
Kruka and Wall jet in uniform
Eskinazi (1964)| streaming flow 0.50
Bradbury (1963) | Plane jet in uniform
streaming flow 0.575
Klebanoff (1954) | Boundary layer in zero
pressure gradient 0.5
Present Plane mixing layer 0.55
investigation
Plane jet in still air 0.475
The asymmetric jet:
Strong jet case Uj/Ul=9‘o 0.65
Mild jet case UJ./Ul=5.O8 0.40-0.50
Weak jet case Uj/Ul=2'275 0.42-0.47
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8. EVALUATION OF ENTRAINMENT

The basic process in the spread of turbulent flows such
as jets, wakes and boundary layers is the entrainment of non-
turbulent fluid by the turbulent fluid within the shear flow.
The process takes place at the free edges which are neither
bPlane nor well defined. Although the vorticity transfer at
‘the edges is controlled by the action of viscous forces, the
entrainment is essentially independent of viscosity and is
probably controlled by the large scale turbulent motion.
Townsend (1970) suggests that the structure of the whole flow
establishes both the level of turbulent motion and the entrain-
ment rate. Using the information of the structure parameter
(Townsend uses the ratio of mean turbulence enerqgy, ;g, to the
maximum shear stress to represent the structure of a particular

flow). Townsend then predicts the entrainment rates in wakes,

jets, mixing layers and boundary layers.

The purpose of this section is to present methods to
evaluate the entrainment from experimental results of the

various shear flows reported here.

The rate of entrainment by definition is given by:

Ye
d
E = 3= I‘ U dy . ‘ (8.1)
¥ ow

where E is the rate of entrainment and Y, represents the free

@

edge of the turbulent shear flow and Y1 ow is zero for flows

with a solid boundary or a symmetry line.



_138_

Following Spalding it can be shown that the rate of

entrainment is given by

ot/p
E = - | ou y 2t a constant x (8.2)
e

The above equation was derived using von Mises' form of the
equation of motion, however it can also be derived by apply-
ing the momentum equation at the edge, for example, see Michel
et al. (1968) and Newman (1966). It is noted that.although
the edge of a plane turbulent shear flow is not very well
defined in t-y plane, it is sharply defined in 1-U plane
(Escudier (1968)). Thus a plot of T versus U not only gives

the entrainment rate but also provides the dissipation integral:
b4 d
e U
T/p dy.
OS oy

Another method for evaluating the rate of entrainment is

to integrate mean velocity profiles and use equation (8.1).

For the asymmetric jets the entrainment takes place on
both sides. The entrainment on the zero velocity side, E,,
is obtained by integrating complete velocity profiles and on.v
the streaming side it is obtained by evalﬁating the rate of.
decrease of volume flow in the uniform stream. However,. to
evaluate the entrainment rate on the streaming side, Es’ one
has to identify the edge of the uniform stream at each station.
In the present investigation fwo criteria were used to identify
this edge; (a) it was assumed that the edge on the streaming
side is located at a value of y where U = 0.0l u_; and, (D)
it was located at a value of y where the intermittency v = 0.5.

It should be noted that these criteria allow sufficient flexi-
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bility in the definition of the edge on the streaming side.

The rate of entrainment, Eg, is then given by

_y 98 -
Es =U; 3x where § is the value of y

at which U = 0.01 u,

_ dY _ (8 ‘3)
E = Ul _agzo.B where Y -0.5 is the value

of y at which v = 0.5.

To establish confidence in the evaluation of the rate of
entrainment by equation (8.2) it was proposed to test the
method in a flow field where the rate of entrainment can be
obtained by some other means. Such a flow field is a plane
jet in still air'for which it is easy to show that the rate
of entrainment is given by

dl

dx

j=
o)

I (8.4)

c

1

|
nj-

dl
where _53 is the rate of growth for the plane jet in still
o0

air and I; = d{ £(y/1,)a(y/1,) = 1.065 (with the exponential .
profile). Measurements for the plane jet in still air reported
in Fig. (12) give dl_/dx = 0.103, hence the non-dimensional

entrainment rate from equation (8.4) is E/Um = 0.055.

In Fig. (85) the measured values of the Reynolds shear
stress are plotted against the mean velocity for the jet in

still air. The measurements for two downstream stations,

x/b = 129 and 152, are included. In the figure lines
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are drawn to indicate the slope at the edge and according
to equation (8.2) the slope of these lines gives the rate of
entrainment. The lines shown in the figure have a slope of

2
0.05, i.e. E/Um = B(uv/Um) = 0.05 compared to 0.055 obtained
u/u

from equation (8.4).. 1tMis, therefore, concluded that equation

(8.2) provides a fairly satisfactory (within 10%) means of
evaluating the rate of entrainment in Plane turbulent shear
flows. 1In Passing it should be mentioned that the edges of

the plane jet are clearly defined but they do not coincide with
U = 0. The edges seem to be located where U/Umtz 0.15 or very
nearly where the intermittency Y = 0.5. Furthermore, the
results shown in Fig. (85) are corrected for the effects of

the longitudinal cooling only. With the uncertainty in the
high intensity corrections at the edges (Heskestad (1963) extra-
polates his correction factors beyond n = 1,0 (approximately

1 or 2% correction), whereas Guitton (1968) gives roughly 5%
correction due.to the high intensity within the range 0.8 <

N 1.6.) the rate of entrainment obtained from Fig. (85) is

thus indeed satisfactory.

Fig. (86) shows the results for the plane mixing layer
(section (6)) replotted to obtain entrainment rates according
to equation (8.2). The results are for three downstream stations
and they collapse on a single curve as would be expected, In.
the case of a plane mixing layer the irrotational fluid is
entrained on both the streaming and zero velocity sides. The

slopes at the edges of the Plane mixing layer are indicated in
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Fig. (86) and they give the rates of entrainment as follows:

zero velocity side: Ez/'Ul = 0.035

Streaming side: ES/Ul = 0.06

It is interesting to compare the value of Ez/'U1 with the
results of Begg etal. (1967) who measured the rate of entrain-
ment directly using a technique developed by Spalding and
Ricou (1961). They measured the rate of entrainment, (EZ/U1=
0.037), in the core region of a symmetrical two-dimensional
jet which is a mixing layer. The agreement between the results
of Begg et al. and the present is very good and once again
augments confidence in the use of equation (8.2). Note that
the rate of entrainment on the streaming side of the plane
mixing layer is nearly twice that on the zero velocity side. This
may be due to the higher intermittency on the streaming side
compared to that on the still air side (see intermittency

results of Wygnanski and Fiedler (1970)).

Fig. (87) shows a typical plot of (GGVU%) versus (U/U,)
for the asymmetric jet. The shear and meén velocity measurements,
for all the asymmetric jets investigated here, were replotted
in this manner to obtain the rates of entrainment on both sides.
Figs. (88) and (89) show (E_/U;) and (E_/U;) plotted against
(uo/Um). Also included in these figures are the values of the
rate of entrainment obtained using equations (8.3). From these
figures it may be concluded that both methods (equations (8.2)
and (8.3)) give satisfactory results and they do not depend

critically on the criteria specifying the free edges. It should
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be mentioned that since the ' rate of entrainment depends on the
structure of the whole fiow thé appropriate scaling velocity
for it would be U_ (see sections (7.2), (7.3) and (7.%)) bﬁt,
to show the variations of Eg and Ez with downstream distance
they are scaled with U; in Figs. (88) and (89). These figures
also show that the results for the asymmetric jets follow a.
particular trend, however, because of large scatter in Fig.
(89) it would be difficult to extract a particular distribution
curve. In Fig. (90) the ratio (E,/E,) is plotted against

(u /U ) and for this figure the entrainment rates obtained by
equation (8.2) are used. From the figure it can. be seen that
the ratio (ES/EZ) remains very roughly constant (about 1.7)
over the range 0  u_/U_« 0.6. For large values of (u_/U )

it appears that (ES/EZ) tends to one as would be expected for.
an ideal jet in still air. It is interesting to note here

that although the rate of growth on the streaming side decreases:
with increasing (Ul/ho) the rate of entrainment on that side

is always greater than that on the zero velocity side.
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9. COMPARISON BETWEEN EXPERIMENTAIL RESULTS AND THEORETICAL

PREDICTION FOR THE ASYMMETRIC JETS

It was mentioned in the Introduction that the primary
purpose of the present investigation was to predict the develop-
ment of the asymmetric jet. To this end a simple analysis was

presented in section (2.4.2). In this section a comparison is

‘made between the experimental results of section (7) and the

theoretical predictions for the variations of 11, l2 and u,

(see equations (80), (81) and (85) in section (2.4.2)). The
only other experimental results (i.e. of mean velocity profiles)
for the asymmetric jets are those due to Gartshore (1965) and

these are included also for comparison.

In deriving equations (80) and (81) it is noted that some
experimental information was needed in order to predict varia-
tions of both 1, and 1, (see figure (4) for the definitions of
1,5 l2 and uo). Equation (76) o provides this
information. Hence in Fig. (91) the ratio of (12/11) is plotted
against (1 +[Ul/ug Il/I2)/(l+ Ul/uo)2 .« It should be noted
that in Fig. (91) all experimental results seem to correlate

very well according to equation (76). A curve which fits the

present results is included in the figure (see equation (78)).

Fig. (92) shows a comparison between measured and predicted

(equations (80) and (81)) variations of 1, and 1,. From this

figure it can be concluded that equations (80) and (8l) adequately

describe the variations in ll and 12 respectively.
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It should be recalled that to reduce the complexity of
the analysis presented iﬁ secﬁion (2.4.2) the variation of K
(see equation (79)) was proposed to be represented by a simple
expression given in equation (83). Fig. (93) is presented to
show the comparison between edquation (79) and the simple
expression given in equation (83). For all practical purposes,
as can be seen from the figure, the disagreement between the
two is small. Indeed the discrepancy for the range of (Ul/ho)

shown in Fig. (93) increases as (U;/u ) increases.

Fig. (94) shows the variation of u_ with the downstream
distance x. It should be noted that for all the cases of
asymmetric jets investigated so far the hypothetical origin Xs
is found to be 20 slot widths upstream of the slot (see Fig.
(95)). 1In the figure equation (85) is represented by a solid
line. 1In equation (85) the values of Il/I2 = 1.411 and C=0.103
were used. From Fig. (94) it can be concluded that the agreement
between the measured and predicted variation of.uo is very good.
Thus the simple analysis presented in section (2.4.2) not only
provides means of correlating experimental results for the main
characﬁeristics of the asymmetric jets but also predicts them
satisfactorily. Also it is restated here that the method of

analysis in section (2.4.2) avoids the usual objections associated

with the eddy viscosity and mixing length theories (Batchelor

(1950)).

It was noted in section (2.3.3.) that the structure parameter

(sp):;[q2/531n=l, does not vary a great deal in many plane, free
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turbulent shear flows, Collected results of both self-preserv-~
ing and non—self—preserviﬁg shear flows are, therefore, shown
in Fig. (96). Note that apart from the results on the stream-
ing side for the asymmetric jet, UJ./Ul = 9.0, all other results
collapse reasonably on a single curve. Thig substantiates the
Observation of Townsend (1970) that in al1l free shear flows

the ratio of mean turbulence energy to the maximum shear stress,
(;g}ﬁ?ﬁ), is roughly a constant. However, it should be Pointed
out that no systematic change in this ratio from one flow to

another is observable in Fig. (96).

It can be observed from Fig. (96) that there is no sub-
stantial region across the flow over which the ratio (GGV&?}
remains constant. However, note that in most of the free shear
flows the non-dimensional mean velocity profiles are Similar
(usually the exponential profile fits experimental results
reasonably well), and Fig. (96) indicates that (E;V;E) distri-
butions are also similar, therefore, one would expect (see
figures below) the ratio f'/(-537;§3 to remain constant

a

over the major portion of a turbulent shear flow.
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It can be shown that the above ratio can be rewritten

as:

' 2 ul
il e o (0u1)
o

where u, is an appropriate velocity scale (i.e. for jets and
wall jets in still air it is equal to Um and for jets in
'streaming flow it is (U -U;)) and 1  is the length scale

defined as the value of y where U ='% u,.

uOlO
Ve

2
It is interesting to note that (25) ( ) is proportional
u
to the effective strain in a turbulent®shear flow. It is shown
by Townsend (1970) that the maximum effective strain is roughly

the same in all flows and it is given by

2
qd
maximum effective strain, q  « ;9 (9.2)
m
)
. ' o o o :
i.e. o = constant x (;5) (<) (9.3)
o m

In equation (9.3) qg is the average value across a turbulent

shear layer. In this respect equation (9.1) is more general

because, there, both q2 and Vg are local values.

ul
o o

Vp

To test the hypothesis that (92) ( ) may be an absolute
constant (over the major portion o?othe flow) in most free
turbulent shear flows, Fig. (97) is presented. In this figure
results for both self-preserving and non-self-preserving flows

are included. It can be seen from the figure that[(qg/ug)

(uolo/VT)]is roughly a constant and has a value of about 4.0
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over the range 0.2 { 11 1.2 for the fully developed part

the flow and the the foliowing flows:

(2)

()

(c)
(a)
(e)
(£)
(g)

Plane jet in still air,

Plane jet in uniform streaming flow,

Plane wall jet in still air,

Plane wall jet in uniform streaming flow,

Plane mixing layer,

Plane jet in equilibrium pressure gradient, and
The asymmetric jet; the streaming side and the

zero velocity side.

of
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10. SUMMARY AND CONCLUSZIONS

The primary object of the investigations presented in
this thesis was to originate a method capable of predicting
the development of the flow in the simple case of the asymmetric
jets. In the Introduction some of the commonly encountered
asymmetric jets are named and the simple asymmetric jet is
.defined. The general outline of the present investigation is
given there, The same section also gives a brief review of

theoretical methods to analyse turbulent shear flows.

The theoretical method for predicting the flow development
in the asymmetrié jet is based on the observation that it may
be possible to divide the asymmetric jet into two parts: (a)
the part on the streaming side resembling a half jet in uniform
streaming flow, and (b) the part on the zero velocity side
resembling a half jet in still air. The locus of points of
maximum velocity divides the asymmetric jet. Attention is
therefore focussed first on analysing these basic flows. By
introducing an auxiliary equation (18) (which avoids the use
of an eddy viscosity or the mixing length concept) it is possible
to predict the development of a plane jet in uniform streaming
flow (section (2.3)). In this section, following Townsend (1970),
an approximate analysis which uses the integrated total energy
equation is given and it is shown that the auxiliary equation

(i.e. eguation (18)) depends on the turbulence structure para-

meter, (SP) = [;E)Ggﬂn=l.

The analysis for a jet in still air is well known. In
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section (2.2) it is shown that the ratio of length scale fo
average dissipation lengﬁh, (lé/Le), is insensitive to plausible
assumptions regarding the distribution of the turbulent energy
in the shear layer. Moreover, the rate of growth (d1_/ax) is
related to the turbulence structure parameter, (SP), and the

ratio (1_/L_) (see equation (12)).

The analysis for the asymmetric jet is given in section
(2.4.2). It uses an integral method and solutions are obtained
for the variations of 11’ l2 and-uo, where ll and 12 are. length
scales on the streaming side and zero velocity side respectively.
For this purpose the same auxiliary equation (i.e. the one used
in the analysis for a jet in uniform streaming flow, equation
(18)) is retained and the additional information required is

obtained from the experimental variation of the ratio (ll/lg)'

To demonstrate the applicability of the analyses presented
in section (2) some experimental results of other investigators

were used.

For plane jets in uniform streaming flow the results of
Bradbury and Riley (1967) are used. It is shown in section
(3.1) that the present method predicts their results satis-
factorily. For comparison predictions obtained by Rodi (1970)
using a differential method (Spalding (1968)) are also included.
It is concluded that the predictions by the present method are
valid over the entire range of the flow rather than for asymptotic

regions only and also for various free stream to jet exit velocity

ratios. The turbulence results of Bradbury (1963) confirm that
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the structure parameter (SP) is independent of the velocity

ratio as indicated by eqﬁatioﬁ (46). It is worth noting that
in the present method only two parameters, (i.e. C and lo/Le)
are required to be evaluated from experimental results for a

plane jet in still air.

For plane wall jets in uniform streaming flow measurements

of Patel (1962), Kruka and Eskinazi (1964) and cartshore (1965)

are selected. These investigations incorporated sufficient
experimental variations between them to assess the present
method. The comparisons of experimental results and predictions
(i.e. for 1 and u_) using the present method show that the
analysis of section (2.3) is applicable to wall jets in uniform

streaming flow.

A survey of literature indicates that not many investiga-
tions have been made for both a plahe turbulent jet in still
air and a plané mixing layer. In particular the experimental
confirmation of the self-preserving nature of a plane jet in
still air was not demonstrated heretofore. Also it has been
found (Bradbury (1963)), Newman (1967)) that previous investi-
gatibns suffered from problems of two-dimensionality. Therefore
experimental investigation was undertaken to obtain results
for a plane jet in still air. The results are presented in
section (5). From the experimental results it was concluded
that similarity of various distributions (e.g. mean velocity
and turbulence components) is attained in steps. First the

mean velocity distributions become similar at x/b > 28.0, then
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u2—distributions become similar beyond x/b = 30 and finally
v, w2 and uv distributions become similar beyond x/b = T70.0.
On the whole the present measurements are generally in agree-—

ment with those of Heskestad (1963).

A plane mixing layer was also investigated experimentally
(see section (6)). It is shown that one of the commonly
‘adopted assumptions (i.e. V = O at the edge of a plane mixing
layer) leads to erroneous distribution of shear stress calculated
from the non-dimensional mean velocity measurements. A method
which does not impose restriction on V is presented and its use
gives satisfactory agreement between the measured and the
calculated shear stress profiles. The discrepancy between the
Present turbulence measurements and those of other investigators
(i.e. Liepmann and Laufer (1947); Wygnanski and Fiedler (1970))
are attributed to either the differences in the experimental
arrangements, or omission of the longitudinal cooling correc-
tions to inclined hot-wires results, or the thermal wake inter-
ference between the closely spaced wires of a X-wire probe

(Guitton and Patel (1969)).

Having obtained the measurements for the two asymptotic
states of the asymmetric jet, experimental investigation for
three asymmetric jets was commenced. The results are Presented
in sections (7, 8 and 9). The experimental results show that
it is possible to divide the asymmetric jet into two parts.

The locus of maximum velocity points divides the asymmetric
jet. The shapes of the non-dimensional mean velocity profiles

on the streaming side are in agreement with Bradbury's (1963)
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results for a plane jet in uniform streaming flow, On the zero
velocity side they are iﬁ agreément with the author's results
for a plane jet in still air. It is noted that for non-self-
preserving flows the mean velocity and Reynolds stresses are
not both reduced to similarity forms by the same velocity scale.
The main characteristics (i.e. 1y, l2 and uo) of the asymmetric
jet can be predicted satisfactorily by the simple analysis of

section (2.4.2) (see section (9)).

Collected experimental results of both self-preserving
and non-self-preserving shear flows indicate that the structure
parameter, (SP), does not vary a great deal from one flow to
another. Therefore an analysis based on its invariance would
appear to be attractive and would be even simpler than. the
analysis presented here. Finally, experimental confirmation
of Townsend's (1970) suggestion, that maximum effective strain
in most of the turbulent shear flows remains roughly constant,

is obtained,

It is required by the regulations of the Faculty of Graduate
Studies and Research that a clear statement of the claim of
original work be made in the thesis, therefore, following is

claimed by the author as contribution to knowledge:

(a) Measurements presented in this thesis are claimed
to be more accurate than those previously made for
a plane jet in still air and a plane mixing layer.
Detailed mean velocity and turbulence measurements

for the asymmetric jet are original.
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(b) On the theoretical side an auxiliary equation

is suggested as a replacement for Abramovich's
equation (17). The justification of the author's
auxiliary equation (18) by various means is also

original.
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APPENDIX T

Apparatus

A schematic diagram of the experimental apparatus is
shown in Fig. (A.1). The McGill blower tunnel which was used

for the experiments has an exit section 30 in. wide and 17 in.

high. It is driven by either a 25 H.P., fixed r.p.m., A.C.

motor or a 5 H.P., variable speed, D.C. motor (see Appendix 2)..
Downstream of the fan is a 5° diffuser, a settling chamber with
deep cell honey-comb and three removable screens, followed by

a 6:1 two-dimensional contraction. Since the investigation of
Patel (1964) the screens in the settling chamber have been
replaced to produce effectively two-dimensional flow in the
working section. The test section (or working section) (see
Fig. (28)) for the present investigation is attached to the
tunnel exit. The general Qescription and calibration of the
tunnel is given by Wygnanski and Gartshore (1963). For the
bPresent investigation the inlet of the tunnel was provided with
a DRI-PAK filter box to remove dust. The top wall of the work-
ing section was removed for the investigation of the plane jet
in still air. A jet slot, 30 in. wide and 0.265 in. high, was
incorporated at the bottom of the tunnel exit as shown in Fig.
(A.2). The jet was emitted parallel to and below the uniform
flow from the tunnel. The jet air supply was provided by an
auxiliary 10 H.P. centrifugal compressor. A DRI-PAK filter box

was used also at the inlet of the compressor, An 8 in., diameter



_155_

flexible pipe followed by a 6° diffuser (Fig. (A.2)) connected
the compressor supply to.the slot, The mass flow to the jet
was controlled by a bleed valve far upstream of the slot. 1In
between the bleed valve and the diffuser was provided a water:
cooled heat exchanger to control the air temperature. The
contraction fgiio for the slot was approximately 16. Other

details of the slot design are given in Fig. (A.2). The slot

arrangement is very similar to that used by Patel (1962),

Gartshore and Hawaleshka (196L4), and Gartshore (1965).

The hot-wire anemometer used in this investigation was
a commercial unit manufactured by DISA (see section (4)). It
was mentioned in section (4) that DISA probes were used for
all the hot-wire results reported here. For mean velocity
and longitudinal turbulence intensity measurements DISA minia-
ture hot-wire probes (55A25) were used. The active section. of
the hot-wire on these probes is 1 mm. long and 0.005 mm. in
diameter. The hot-wire is made of platinum plated tungsten,
and has resistance at 20°C of 3.5 i-g:g ohm. The temperature

coefficient of resistance is about 4 x 10f3/°c. All hot-wires

were operated at approximately 1.8 times their cold resistance.

For Reynolds stresses v2, w2 and E;, only single slanted
wires (DISA probes 55A29) were used. These wires have length

to diameter ratio of approximately 200.

The angle of yaw was measured with an optical comparator

(for other details of care and calibrations see Patel (1968)).
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For measurements of triple correlations a DISA (55A32)

X-wire probe was modifiea as suggested by Guitton and Patel
(1969). The modification requires that the separation dis-
tance between the two wires be appfoximately one wire length,
For this probe the wire separation to diameter ratio was
nearly 200 and the wire separation to wire length ratio was

almost 1.

Checks on Two-Dimensionality

It was noted in section (5) that the flow issuing from
the slot (Fig. (A.2)) was effectively two-dimensional. This
conclusion was reached through observing the expected behaviour
of lo’ Um and uv for a Plane jet in still air. The conventional
check on the two-dimensionality by measuring the mean velocity

profiles is given in Figs. (A.3 to A.7).

Fig. (A.3) shows the linearized normal hot-wire D.C. and
r.m.s. voltage output for a plane jet in still air. These
measurements were obtained at x/b = 53.4 and they are propor-
tional to the mean velocity and~/z§.respectively. The measure-
ments were made at 3 in. and 9 in., on either side of the centre
line. From the figure it can be seen that the flow issuing
from the slot is effectively two-dimensional. For the range
Oy« lo measurements indicate nearly perfect agreement,
however, beyond y > lo’ i.e. in the region of low velocities,

there seems to be some scatter in\/eg—measurements. Note also

g% the tail appearing in the distribution of D.C. voltage, E,

which is an inherent characteristic of a hot-wire because the
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wire cannot distinguish between positive and negative flow
directions and it simply'transfers the heat loss into a
positive voltage E. In other words, at the zero velocity edge
of the flow where the fluctuations are large and the flow

direction is uncertain, the wire acts merely as a rectifier.

‘Thus the average voltage differs from the voltage which would

have been generated by the true mean velocity.

The two-dimensionality checks for the asymmetric. jet.
were made by pitot tube and linearized hot-wire traverses.
The measurements were made at two downstream stations, namely
x/b = 53.4 and 217. These results are shown in Figs.. (a.4
to A.7). From these figures it can be concluded that within.
6 in. on either side of the centre line the flow is effectively

two-dimensional.



- 158 -

APPENDIX 2

EFFECTS OF STREAM TURBULENCE ON FREE SHEAR FLOWS

Introduction

Considerable work has been done on the effects of free
stream turbulence on boundary layer transition, separation
and on drag of models and plates (Schubauer and Dryden (1935),
Dryden et al. (1937), Liepmann and Fila (1947) and Dryden
and Keuthe (1929)). The effect of free stream turbulence on
the characteristics of the turbulent boundary layer on a flat
plate has been experimentally investigated by Kline et al..
(1960). Recently, Junkhan and Serovy (1967) have reported
an experimental investigation dealing with effects of free
stream turbulence on heat transfer from various boundary
layers. It should be noted that all of the above investigations
were concerned primarily with gross effects on flows associated
with solid boundaries. It was observed by Kline et al. that .
the boundary layer thickness increases with increase in free
stream turbulence. A similar conclusion was obtained also by

Junkhan and Serovy.

No experimental investigation on free shear flows speci-
fically aimed at the study of effects of stream turbulence has
been reported before. It is, therefore, the purpose of this
investigation to appraise whether or not free shear flows are

sensitive to the effects of stream turbulence. The types of
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free shear flows referred to in this context are necessarily
coupled with free streams, e.g. plane mixing layers, turbulent

jets in streaming flows, asymmetric jets, etc.

Attention is focussed on the asymmetric jet and a plane
mixing layer in this investigation. For the asymmetric jet

the results reported here are for two values of free stream

turbulence intensity and for two downstream stations, one near

the slot and another away from it. The reason for this choice
is that in one case the effects of both the slot and free
stream turbulence are present whereas in the other only free
stream turbulence effects predominate., The results include
measurements of mean velocity and distributions of turbulent

intensities.

Experimental Arrangements

The experimental apparatus used in this investigation is
already described in Appendix 1 and section (4). The McGill
blower tunnel had been used for investigations of jets and
wall jets in the past (Patel and Newman (1961), Patel (1962),
Gartshore and Hawaleshka (1964) and Gartshore (1965)). The
tunnel was driven by an A.C. constant speed motor and the air

speed was controlled previously by variable inlet vanes.

Variation of the Tunnel Turbulence Intensity

The longitudinal turbulence intensity measurements in the
McGill blower tunnel were originally carried out by Patel (1962)

using turbulence spheres and it was found that at high tunnel
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@g@ velocity the turbulence intensity at the centre of the exit
plane was less than 0.5%; Later, Wygnanski and Gartshore (1963)
confirmed this by using a non-linearized hot-wire anemometer.
They found that the turbulence intensity in this tunnel increases
as the velocity decreases. They attributed this behaviour to
flow separation from the variable inlet vanes which are upstream

of the centrifugal fan.

In view of the various modifications, reported earlier, to
the tunnel it was decided to measure turbulence intensity at
the centre of the tunnel exit. At the same time a test was
performed to show whether or not the inlet vanes are the sole.
cause of increase in turbulence intensity. This test consisted
of simply throttling the flow by a perforated plate at the fan.
exit to get the low velocity range, leaving the inlet vanes

open,

Fig. (B.l) shows the variation of turbulence intensity at.
the centre of the tunnel exit. 1In this figure results of tests
with and without the perforated plate, and those of'Wygnanski'
and Gartshore (1963) are included for coméarison. Note that
with the perforated plate the turbulence intensity reduces a
little but not a great deal. This suggests, contrary to the
proposition of Wygnanski and Gartshore, that the constant speed
fan may be the cause of the increase in turbulence iﬁtensity at
low tunnel speeds, Indeed, a detailed investigation would be

@%@ - - required to establish whether or not any specific relation
between the fan speed and turbulence intensity exists, For the

purpose of the present investigation, the main objective was to
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establish a limit of free stream turbulence intensity below
which the effects are negligible. It was also desirable to
maintain the free stream turbulence at a constant value over
the whole operating range of the tunnel. From Fig. (B.l) it
can be seen that the present results are in agreement with
those of Wygnanski and Gartshore thus indicating that the modi-
fications to the tunnel have not affected the turbulent intensity
.distribution. The figure also indicates that the existing test
facility, fortunately, provides an excellent opportunity
(without introducing external turbulence generating bodies in
the working section) for investigating effects of stream turbu-
lence on free shear flows. The perforated plate was removed

from the tunnel in subsequent investigations.

To maintain the turbulence intensity at a constant value
a variable speed D.C. motor drive was installed., Only a 5 H.P.
D.C. motor was available at the time and this restricted the
range of the tunnel speed between zero and about 60 ft/s. maxi-
mum. Fig. (B.2) shows a comparison of turbulence intensity
distributions obtained with the constant speed A.C. motor drive
and the variable speed D.C. motor drive. With D.C. motor drive
two tests were performed; one with the inlet vanes completely’
open and another one with the inlet vanes about half open.
From the figure it can be seen that the turbulence intensity
level has considerably reduced in the range 1.0 X lO5 ft—l < Ul/v
4.0 x lO5 ft_l and it remains roughly at a constant value of
0.55% with the D.C. motor drive. Also the positions of inlet

vanes do not have any significant effect on the level of turbu-
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lence intensity. For Ul/v > 4 x 10+5 ft™~ the A.C. motor drive

gives a level of turbulence 1nten51ty of about 0.5% and, there-
fore, it was decided to retain the A.C. motor drive for high

speeds only.

Effects of Stream Turbulence on the Asyvmmetric Jet

The effects of stream turbulence were investigated for
the asymmetric jet with (U, /Ul) = 2.275. Because the speed
in the tunnel can be varied from about 30 ft/s. to 120 ft/s/
with A.C. motor drive and the maximum jet velocity obtainable
was about 265 ft/s., the ratio (Uj/Ul) = 2.275 was selected.
For this purpose the free stream velocities were 34 ft/s. and
112.2 ft/s/ with corresponding turbulence intensities of 1.1%

and 0.4% respectively.

-

Figs. (B.3) and (B.4) show mean velocity distributions
at two downstream stations, namely x/b = 16.5 and 81.7. From
these figures it can be seen that the asymmetric jet with high
stream turbulence grows or spreads faster than the one with low

stream turbulence, as would be expected.

Figs. (B.5) and (B.6) show distributions of longitudinal
turbulence intensity across the asymmetric jet at x/b = 16.5
and 81.7 respectively. It is interesting to observe from
Fig. (B.5) that the distribution of e/zg)vl) for the asymmetric
jet with 1.1% turbulence intensity is greater at all values of

y than the one with 0.4% turbulence intensity. This is rather

[

unexpected and this behaviour may be due to the combined influences
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of the slot and the stream turbulence., It would be difficult
to uncouple the individuél infiuences of the slot and the
stream turbulence at this station. However, far from the slot
the flow is expected to be independent of the slot effects and

there it is possible to assess effects of the stream turbulence

alone.

Fig. (B.6) shows (Jue/Ul) distributions at x/b = 81.7
and it can be seen that the stream turbulence has significant
effect on the streaming side only of the asymmetric jets.

Repeated measurements are also in agreement with this conclusion.

Figs. (B.7), (B.8) and (B.9) represent distributions of
(Jve/Ul), (sz/Ul) and (GV/U%) respectively at x/b = 81.7.
These measurements also suggest that the distributions of

turbulence components are dependent on the stream turbulence..

To decide the level of free stream turbulence intensity
below which free shear flows may not be affected seriously,

the following measurements on a plane mixing layer were made.

Effects of Stream Turbulence on Plane Mixing Lavers

For plane mixing layers mean velocities were measured at
various downstream stations with different free stream turbu-
lence intensities. From the measurements of veloéities the
rate of growth of a mixing layer with a particular free stream
turbulence intensity was evaluated. The rate of growth is
defined as g;-[yo.gs - YO.S] where YO.95 and yo.5 represent

y-co-ordinates at which U/Ul = 0.95 and 0.50 respectively.
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Fig. (B.10) shows the rate of growth plotted against the free
stream turbulence intensity at»x = 0. For comparison, results
of Gartshore (1965) and Liepmann and Laufer (1947) are included
also. Because Liepmann and Laufer do not specify the free
stream turbulence intensity in their investigation, their
results are indicated by a dotted line, Similarly, for the

results of Gartshore, the level of free stream turbulence was

‘estimated from Fig. (B.l) because he investigated his mixing

layer in the same tunnel. Since the flow characteristics of
a fully developed turbulent mixing layer are expected to be
independent of Reynolds number, the variation in growth rate
in Fig. (B.10) is due to the variation of stream turbulence.
It is interesting to note that the rate of growth is not
affected significantly for values of free stream turbulence

intensity below 0.6%.

Fig. (B.11) shows distributions of longitudinal turbulent
intensity across plane mixing layers at x = 27.75 in. for various
values of free stream turbulence. For this test the intensity
was varied from 0.76% to 1.4%. It is interesting to see from
the figure that the distributions of (/zz)ul) depend consider-

ably on the free stream turbulence intensity.

Fig. (B.12) shows distributions of (sz)Ul) for the same
Reynolds number, (U,/v) = 1.61 x 10° ft_l, and various values
of stream turbulence. For comparison, in the figure, results
of tests with U,/v = 3.58 x 10° ft—l, and with U, /v = 1.61 x 10°

ft_l and the top wall in the working section, are included.
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From the figure it can be seen that both Reynolds number and
the top wall do not have an apprec1able effect on the (j——>h
distribution but the free stream turbulence intensity of 1.4%
significantly changes the distribution of ( ;E/Ul). It is,
therefore, concluded that the flow characteristics of a plane
mixing layer are independent of Reynolds number and free stream
turbulence provided the value of the stream turbulence is less

than about 0.7%.

Cconclusions

The results of tests carried out in this investigation
show that even though the stream turbulence was much smaller
than the self generated turbulence in the shear layers, its
effects on the main characteristics of the flows associated
with free streams cannot be neglected. 1In the case of plane
mixing layers it was found that the rate of growth was altered
by about 30% when the turbulence intensity in the free stream
was changed from 0.5% to 1.4%. On the whole, judging from the
results of plane mixing layers, it may be concluded that for
free stream turbulence intensities of less than 0.6% the
characteristics of free shear flows will be independent of the
effects of stream turbulence. Measurements reported in the
main text of this thesis were, therefore, made with free stream

turbulence intensities less than 0.6%.
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Fig. (A.6)
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Fig. (A.7)
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Fig. (B.4)
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Fig. (B.6)
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Fig. (B.7)
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Fig. (B.8)
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Fig. (B.9)
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Fig. (B.11)
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