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ABSTRACT 

This study used hyperspectral data to deterrnine nitrogen, weed, and water 

stresses in a corn (Zea mays L.) field in southwestern Quebec, and incorporated these 

data in crop growth models for better crop growth simulation under stress fui conditions. 

In 2000, aerial hyperspectral images (72 wavebands, ranging from 407 to 949 nm) 

were acquired, and analyzed using a stepwise approach to identify wavebands use fui in 

detecting weed and nitrogen stresses. Discriminant analysis (DA) was used to classify 

different weed and nitrogen treatments and their combinations. This analysis showed 

greater classification accuracy (nearly 75%) than those obtained with artificial neural 

networks (58%) or decision tree algorithms (60%), at the initial growth stages, the time 

when remedial actions are most needed to alleviate weed and nitrogen stresses. 

To explore the possibility of improving nitrogen stress detection in corn in the 

presence of a confounding water stress, ground-based 2151 narrow-waveband reflectance 

values (350 to 2500 nm), were collected in 2002. Using DA with the chosen subset of 

narrow-wavebands, a classification accuracy of greater than 95% was obtained. 

For crop growth monitoring, the sncs model was evaluated for yield and 

biomass estimation in cornfields under different stressful growth conditions using the 

data collected from 2000 to 2002. Measured yield, biomass, and leaf area index (LAI) 

were used for both calibration and validation of the model. High correlation coefficients 

between the measured and estimated grain yield (0.96), biomass (0.98), and LAI (0.93) 

indicated that the model has good potential in the simulation of corn growth. The model 

was also linked with LAI values estimated from the hyperspectral observations using the 

Support Vector Machines technique. Coupling STICS with remote sensing resulted in an 

overall improvement in the simulation of corn yield (6.3%) and biomass (3.7%). 

A new approach was developed to apply crop growth models for yield estimation 

in weedy areas. The proposed method first corrects the measured/estimated LAI values in 

weed infested fields for weed effect, and then uses the corrected LAI values as input to 

the crop growth model. The results showed that the crop yield and biomass predictions 

were correctly simulated by this method. 



RÉSUMÉ 

Au cours de cette étude, des données en hyperspace spectral servirent à 

déterminer les stress en azote, en mauvaises herbes et en eau d'un champ de maïs (Zea 

mays L.) dans le sud-est du Québec. Ces données furent incorporées dans un modèle de 

croissance des cultures afin d'améliorer ses simulations sous conditions de stress. 

En 2000, des images aériennes en hyperspace spectral (72 gammes d'ondes, 

variant de 407 à 949 nm) furent acquises et traitées grâce à une analyse de régression par 

degrés visant à identifier les gammes d'ondes utiles à l'identification des stress en 

mauvaises herbes et en manque d'azote. Une analyse discriminante (AD) servit à 

classifier différents niveaux de mauvaises herbes et d'azote et leurs combinaisons. Elle 

démontra une exactitude de classification plus élevée (près de 75%) comparée à celle de 

réseaux de neurones formels (58%) ou d'un algorithme d'arbre de décision (60%) lors 

des stages initiaux de croissance, le moment où une intervention corrective serait la plus 

efficace à corriger un stress de mauvaises herbes où de manque d'azote. 

Afin d'étudier la possibilité d'améliorer la détection de manque d'azote dans le 

maïs, en présence d'un facteur confondant de stress hydrique, la réflectance de la culture 

dans 2151 gammes d'ondes étroites (350 à 2500 nm), fut mesurée au sol en 2002. 

Utilisant une AD avec un sous-ensemble choisi de gammes d'ondes étroites, une 

exactitude de classification de plus de 95% fut atteinte. 

Visant à permettre une suivie de la croissance du maïs, la capacité du modèle 

STICS d'estimer le rendement et la biomasse au champ sous diverses conditions de 

croissance imposant un stress, fut évalué avec des données recueillis entre 2000 et 2002. 

Des mesures au champ de rendement, biomasse et indice foliare (LAI) servirent à la fois 

à la calibration et à la validation du modèle. Des coéfficients de corrélation élevés entre 

les valeurs estimées et mesurées du rendement grain (0.96), biomasse (0.98) et LAI 

(0.93), indiquèrent que le modèle avait un potentiel élevé comme outil de simulation de la 

croissance du maïs. Le modèle fut également lié à des données de LAI provenant 

d'observations en hyperespace spectral suivant une technique « support vector 

machines.» L'accouplement de sncs avec un système de télédétection améliora la 

simulation du rendement grain du maïs de 6.3%, et celui de la biomasse de 3.7%. 
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Une nouvelle démarche fut mise en œuvre afin de pouvoir utiliser le modèle de 

croissance de cultures dans un milieu infesté par de mauvaises herbes. La méthode 

proposée commence par corriger les valeurs mesurées/estimées de LAI pour les champs 

infestés de mauvaises herbes pour l'apport en LAI de celles-ci, puis utilise des valeurs de 

LAI corrigées comme données d'entrée au modèle. Les résultats démontrèrent que par 

cette méthode le rendement et la biomasse furent simulés avec exactitude 
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CHAPTERI 

INTRODUCTION 

Production of food in a cost-effective way is the main goal of every farmer and 

agricultural manager. Crop growth is affected by different stresses (e.g., water, pest, 

weed) which can reduce the crop production. The impact of these stresses on crop yield 

has been widely documented in the literature (Wilcut et al., 1987; McLennan et al., 1991; 

Donald and Khan, 1992; Knezevic et al., 1994; Oerke et al., 1994; Mamolos and 

Kalburtji, 2001). The impact of insects, weeds and diseases, represents a potential annual 

loss of 40% of world food production (Oerke et al., 1994). Oerke et al. (1994) also 

indicated that weeds could cause a potential yield loss of 27 % per year in the corn fields 

of Canada. A recent study indicated that, compared to a weed-free control, mean yield 

los ses in tomato and cabbage crops could rise as high as 80% and 60%, respectively 

(Tolman et al., 2004). Considering that weeds often exhibit a patchy distribution 

(Marshall, 1988; Wiles et al., 1992; Vangessel et al., 1995), remote sensing techniques 

cou Id be useful in identifying weedy areas in infested fields (Deguise et al., 1999; Goel et 

al., 2003 a and c). 

Traditionally, In order to obtain greater production, larger quantities of 

agricultural inputs (e. g., pesticide, herbicides, fertilizer) have been applied, resulting in 

greater environrnental pollution. In this respect, precision farming with the site-specific 

application of agricultural inputs, leads to an overall reduction in chemical inputs without 

affecting agricultural production (Tomer et al., 1997; Christensen et al., 1998). However, 

in implementing this strategy, accessibility to reliable and relevant on time information is 

imperative. Particularly in the case of management of agricultural market and price-fixing, 

at both national and regional levels, a beforehand assessment of crop production and 

available quantities for import/export or storage is crucial. 

Currently, there are two main approaches to crop production estimation, namely 

statistical methods and crop-growth models. Statistical methods (Makowski et al., 2001) 

are based on historical crop yield data. In these methods, crop yield is related to one or 

several input parameters (e.g., applied fertilizer). The relationship obtained is used to 
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predict the yield in an upcoming year. The main advantage of this approach is its ease of 

use; however, soil-crop parameters and weather data are not directly taken into account. 

The second approach is the use of crop growth models, which simulate and monitor crop 

growth by describing relationships between crop growth characteristics (planting date and 

rate, plant density and variety), environmental factors such as weather parameters (solar 

irradiation, precipitation, and temperature), soil parameters and nutrient availability 

(Chi Ids et al., 1977; Weir et al., 1984; Maas, 1988a,b; Spitters et al., 1989; Van Diepen et 

al., 1989; Eckersten and Jansson, 1991; Hansen et al., 1991; Allen et al., 1996; Brisson et 

al., 1998; paz et al., 1998; Irmak et al., 2000; Denisov 2001). The advantage of these 

dynamic methods is the incorporation of crop-soil parameters and weather data in 

simulation processes. 

Crop growth monitoring and yield estimation with crop models requires both 

temporal and spatial information about soil and agricultural practices during the entire 

growing season. However, collection of such information with existing methods is labor­

intensive, time-consuming, and, in sorne cases, impossible. Remote sensing techniques 

have shown the potential to collect vast amounts of spatial information, frequently and 

over large areas (Erickson, 1984; Meyer-Roux, 1990; Atkinson and Tatnall, 1997). Past 

studies have shown that airborne and satellite sensors can observe crop conditions on a 

much larger scale and can measure parameters related to plant performance during the 

entire growing period. Such observations can have a significant role to play (Guérif and 

Duke, 1998; Singh et al., 2002) in precision crop management (PCM). PCM is 

information and technology- based agricultural management system, which has the 

capacity to identify, analyze and manage spatial and temporal variability within fields in 

order to optimize profitability, sustainability and protection of the environment (Robert et 

al., 1995). One of the most important components of PCM is the variable rate techno10gy, 

which allows the targeted application of different cropping inputs (e.g.. fertilizer, 

herbicide and seeds) on a specified location. Remote sensing observations can make 

variable rate technology more easily applicable. These inputs cou Id not be used with 

traditional agricultural management methods that assume fields to be homogeneous 

elements. 
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Furthermore, remote sensing observations could be useful in crop yield estimation 

using crop models. However, as reported by Moulin et al. (1998), the potential of remote 

sensing in this area is not full y explored. For more quantitative analysis, more complex 

methodologies are needed to estimate yields on a regional scale, including the coupling of 

remote sensing data and crop production models, as was suggested by Wiegand et al. 

(1986). The potential of remotely sensed data in supplying required information 

regarding agricultural fields has been evaluated (Clevers and Leeuwen, 1996; Roerink et 

al., 1997; Murai and Omatu, 1997; Michaud et al., 1998; Sakthivadivel et al., 1999; 

Clevers et al. 2000; Gillett et al., 2001; Kurosu et al., 2001; Nagendra, 2001; Sannier and 

Taylor, 2002; Singh et al., 2002). The advantages of this technology (large area coverage 

and frequency) make it possible for the agribusiness community to become one of the 

primary users of remotely sensed data. 

The collection of information alone is not enough. To fully use the collected and 

existing information, more dynamic and active crop monitoring and forecasting methods 

are needed. These methods should be able to use the remotely sensed data as weIl as the 

available ground information in order to take advantage of them both in providing 

information needed for decision-making. In this context, the main challenges for 

researchers in crop monitoring, crop yield prediction, and soil-crop parameter estimation 

are (i) to integrate remotely sensed information into crop growth modeling systems (Maas, 

1988a,b) and (ii) to develop these models as use fui and powerful tools for monitoring 

crops under different management practices and various meteorological scenarios. In the 

past, different crop growth models have been linked to remote sensing systems, e.g. 

SUCRaS (Clevers and Leeuwen, 1996; Clevers, 1997; Guérif and Duke, 1998), SWAP 

(Michaud et al., 1998), CROPGRO-Soybean (Irmak et al., 2000), ROT ASK (Clevers et 

al., 2000) and STICS (Prévot et al., 2000a,b). 

Among these models, the STICS model is considered as more generic and can be 

modified with ease for various crops. The main features associated with the STICS model, 

which differentiate it from the other crop models, are: (i) it is not fully dependent on the 

data reflecting CUITent field conditions; (ii) it can operate in various "agricultural 

conditions with readi/y avai/able spatialized inputs ", and (iii) it is an "engineering 

model", (i.e., comparatively more adaptable to the needs of farmers and policy makers) 
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(Brisson et al., 1998). Moreover, STreS can make direct use of observed data, such as 

Leaf Area Index (LAI), an important parameter reflecting ground biomass coyer. Given 

its adaptability and other characteristics enumerated above, the STreS model seems to 

have an edge over other models, particularly when attempting to link it to remote sensing 

observations. 

1.1. Objectives 

The main goal of this study was to investigate the possibility of usmg 

hyperspectral observations for the detection of combined effects of various types of 

stresses, namely weed and nitrogen, and nitrogen and water. The study also aimed to 

evaluate the perfonnance of the STreS crop growth simulation model for southwestern 

Quebec and to link the snes model with hyperspectral data measured on corn plots 

under different growth conditions. This investigation was carried out under controlled 

conditions, reflecting different nitrogen application rates, weed control strategies, and 

different irrigation regimes. The more specific objectives of the proposed study were: 

1- to investigate the use of airborne hyperspectral observations in the classification of 

weed and nitrogen stresses in a corn field, 

2- to examine the ability of very narrow ground-based hyperspectral observations in 

discrimination of different water and nitrogen stresses, 

3- to evaluate the perfonnance of snes, a crop growth model, in simulating corn 

growth and yield in southwestern Quebec, 

4- to link STreS with hyperspectral data in order to obtain a better estimate of crop 

biomass and yield in corn fields, and to enhance the perfonnance of the STreS model 

in estimating crop biomass and yield in corn fields, and 

5- to incorporate the effect ofweed stresses into crop growth modeling. 

To meet these objectives, extensive studies were carried out in structured corn 

field plots un der different cropping management strategies. Experiments were conducted 

at the Research Fann of Macdonald Campus of McGill University. The studies were 

carried out over a period of three years. Remote sensing observations were acquired 

from both a handheld spectroradiometer and an airborne sensor at different critical 

growth stages. Extensive ground measurements of soil parameters and crop physiological 
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parameters were also collected. The applied methodology and experimental procedures to 

meet the objectives of the study are discussed in the following chapters. 

1.2. Thesis Organization 

This thesis contains nine chapters and one appendix. Chapter 1 glves an 

introduction to the subject, followed by a listing of the objectives and the scope of this 

investigation. In Chapter 2, a review of the relevant and applicable literature is provided. 

Chapter 3 provides information on the first year of the study which focused on 

monitoring corn growth under different weed control strategies and nitrogen application 

rates. A hyperspectral airborne sensor was used to acquire spectral observations. The 

focus of the chapter is on the selection of suitable wavelength regions in order to detect 

weed and nitrogen stresses, using discriminant analysis. The results of discriminant 

analysis were further compared with the results obtained using ANN and decision tree 

methods. A paper based on this chapter has been accepted for publication in the 

Transactions of the ASAE (in press). 

Chapter 4 is based on the data collected in the third year of the study, which 

investigated the effects of irrigation and nitrogen fertilization on the spectral response of 

corn. A hyperspectral handheld spectroradiometer was used to record spectral 

observations. Using discriminant analysis, suitable wavelengths or wavelength 

combinations were selected to detect nitrogen and water stresses in the corn field. A 

paper based on this chapter has also been accepted for publication in Transactions of the 

ASAE (in press). 

Chapter 5 summarizes the results of the work completed on the use of a crop 

growth model for monitoring crop growth under different agricultural practices and, more 

precisely, linking of the crop growth model to hyperspectral aerial remote sensing 

observations. A manuscript based on this chapter is under preparation. 

Chapter 6 focuses on the development of a procedure that can incorporate the 

effect of weeds into crop growth modeling for better estimation of yields. The procedure 

is based on correcting the LAI values and using these corrected LAI values in the model. 

A paper based on this work has been submitted for publication in Agricultural Systems 

Journal. 
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FinaIly, Chapter 7 summarizes this study and lists the main conclusions derived 

from this work. Chapter 8 lists the major contributions to knowledge and suggestions for 

future research. Chapter 9 contains a complete list of references. Detailed explanation on 

the STICS model is provided in Appendix A. 

1.3. Scope 

This study was carried out from the year 2000 to 2002 in corn fields in 

southwestern Quebec. While the first two years of the study were located on clay soil 

(Bearbrook and Ste. Rosalie from the Dark Gray Gleysolic group), the observation in the 

last year was made on sandy soil (St. Amable complex). In aIl three years, the same corn 

cultivar (Hybrid DKC42-22) was used. This study takes into account three types of the 

crop stresses namely: weed, nitrogen, and water. The results obtained in this work are 

limited to these conditions only and any extrapolation of the results to other corn cultivars 

and/or soil types should be done with caution. 
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CHAPTER2 

LITERA TURE REVIEW 

In this chapter, the relevant literature on the application of remote sensing in 

agriculture is reviewed. The subjects of this review work are the application of remote 

sensing (RS) in stress detection, combining RS data and crop growth simulation models, 

and prediction of yield under weed infestation, followed by a discussion of CUITent 

methodological trends. First, the basics of remote sensing are introduced, followed by a 

definition of the common applications of remotely sensed data in agricultural fields and 

estimation of the crop growth parameters. The discussion continues with a brief 

introduction of the various crop growth simulation models, and an overview of 

relationships between crop state variables and crop growth models. Next, the related 

research on yield loss estimation resulting from weed infestation effects will be reviewed. 

Finally, various approaches to coupling crop growth with remote sensing observations are 

discussed. 

2.1 Remote sensing 

Remote sensing is the science of collecting information frorn a target, an object or 

phenomenon without touching it. This can be accompli shed by recording reflected or 

ernitted energy from the target and analyzing and applying the processed information in 

real conditions. Our eyes are a basic and simple exarnple of remote sensing sensors. 

While the eyes are reading a page or seeing an object, the arnount of reflected energy is 

being assessed. These data are processed or interpreted by our brain to enable us to 

identify different aspects. Usually, remote sensing deals with the interaction between 

incident solar radiation and targets of interest. However, in sorne cases, it involves the 

sensing of the ernitted energy by the target object. 
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2.1.1 Basics of remote sensing 

The energy source, which is the prerequisite of the remote sensmg system, 

provides electromagnetic radiation for illuminating the target. The next requirement of 

remote sensing is the interaction of radiation with the targets. Depending on the 

properties ofboth the radiation and target, a portion of the energy will be reflected. In this 

step, the system needs a sensor to record the reflectance. The recorded information needs 

to be transmitted and processed into an image. The image has to be analyzed to extract 

the required information about the target of interest. The final element of the system is 

the application of remote sensing, which is achieved by using extracted data about the 

target to achieve a better understanding, discover new information or contribute to the 

solution of specifie problems. 

The electromagnetic spectrum vanes from shorter wavelengths to longer 

wavelengths (Figure 2.1). The spectrum can be divided into several regions (inc1uding 

visible, infrared, and microwave), which are useful for remote sensing. The first region, 

which is the most widely used part of the spectrum, is the visible portion and covers the 

wavelengths of 0.4 to 0.7 Ilm. The second interesting portion for remote sensing is the 

infrared (IR), with wavelengths ranging from approximately 0.7 to 100 Ilm. Based on the 

radiation properties, this portion can be categorized into three regions: near IR (0.7 - 1.3 

Ilm), mid IR (1.3 - 3.0 Ilm), and thermal or emitted IR (3.0 - 100 Ilm). The applications 

of near and mid-IR in remote sensing are very similar to that of the visible portion. In 

thermal IR, the radiation is emitted in the form of heat from the surface of the earth. The 

third region is the microwave region (1 mm - 1 m), which lies at much longer 

wavelengths of the spectrum and are the longest wavelengths used for remote sensing. 

Remote sensing can be c1assified in different ways. A remote sensing system is 

called passive if the energy is provided naturally (e.g., the sun). On the other hand, an 

active remote sensing system provides its own energy source for illumination of the 

target. 
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Figure 2.1 The schematic of the electromagnetic spectrum. 
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The radiation will be transmitted toward the target and reflected radiation from that target 

is detected and measured by the sensor. The advantage of active remote sensing is the 

ability to acquire measurements anytime, regardless of the time of day or season (CCRS, 

2003). Remote sensing systems can also be classified as optical and radar, based on the 

region of the spectrum that is used. This will be explained further in the following 

sections. 

2.1.2 Optical remote sensing 

Remote sensing systems which use visible, near infrared and short-wave infrared 

portions of the spectrum are called optical remote sensing systems. Different materials 

reflect radiation in different ways at various wavelengths, resulting in different colors and 

brightness levels. Thus, spectral reflectance signatures can be used to differentiate targets 

within remotely sensed images. Optical imaging systems (commonly in use) can be 

categorized into three types: 

a) Panchromatic imaging system: This system has a single channel detector 

sensor with sensitivity to radiation within a broad wavelength range. When the 

wavelength ranges within the visible portion, the resulting image looks like a 

"black-and-white" photograph taken from space. The physical characteristics of 

the targets could be measured from the brightness of the image. Thus, spectral 

information or the "color" of the targets is lost. The SPOT HRV-PAN satellite is 

an example of a panchromatic imaging system (Lillesand and Kiefer, 2000). 

b) Multispectral imaging system: This system has a multi-channel detector sensor. 

Each channel can detect the reflectance of the radiation within a wide wavelength 

band, which provides a multilayer image. LANDSA T MSS, LANDSA T TM, and 

SPOT HRV-XS (Lillesand and Kiefer, 2000) are sorne examples ofmultispectral 

systems. 

c) Hyperspectral imaging system: In comparison to multi-spectral remote sensing, 

which records reflectance from a target in a few broad channels, a hyperspectral 

imaging system acquires information in more than 100 very narrow, defined 

continuous spectral bands (Lillesand and Kiefer, 2000). In this system, reflected 

radiation from any specified target has been obtained continuously, making it 
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possible to gain detailed infonnation on the materials at any target (Lillesand and 

Kiefer, 2000). Using these narrow bands, the features that have diagnostic 

absorption and reflection properties in such narrow wavelength intervals can be 

differentiated, which was not possible with the wider wavebands used in 

multispectral sensors. These narrow wavebands make hyperspectral remote 

sensing systems powerful tools that have the potential to avoid time consuming 

and labor intensive ground data collection methods. A hyperspectral sensor 

covers the visible and shortwave infrared regions of the spectrum. The Earth 

Observing-1 (EO-1) satellite, launched in November, 2000 (NASA), carries 

onboard hyperspectral sensors (Hyperion) is an example of such a system. 

2.1.3 Microwave remote sensing 

The microwave portion of the spectrum can provide use fuI infonnation about land 

as weIl as water targets. Both active and passive microwave sensors can be used (JARS, 

1999). A passive sensor records the natural microwave emission from the Earth, while an 

active microwave sensor transmits its own microwave signaIs and detects the 

backscattered signaIs from the target. In radar-based remote sensing, different properties 

of the target can be obtained from measuring the time delay between the transmitted and 

received signaIs and recording the strength of the received signal. 

As described previously, the microwave region of the spectrum covers the 

wavelength range from approximately 1 mm to 1 m. Microwave wavelengths are 

considerably longer than those in the visible and infrared spectral regions. These longer 

wavelengths have special properties that are important for remote sensing. Longer 

wavelength microwave radiation has the capability of penetrating through cloud co ver, 

haze and dust (Lillesand and Kiefer, 2000). Thus radar imagery can be collected under 

most weather conditions and because radars provide their own source of energy, data 

collection can take place day or night. Consequently, radar acquisitions are more reliable 

particularly in regions where persistent cloud coyer is a problem. (Lillesand and Kiefer, 

2000). Spacebome radar remote sensing was started by SEASA T in 1978 (Lillesand and 

Kiefer, 2000). Sorne of the satellites with radar sensors include SIR, ALMAZ, ERS, 

JERS, and RADARS A T. 
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2.2 Applications of remote sensing in agriculture 

Remote sensing tools have the potential for providing information about 

vegetation in various wavebands: using visible wavelengths (Guyot 1996), active or 

passive microwaves (Prévot et al., 1993) and emitted thermal wavelengths (Seguin et al., 

1991, 1994; Moran et al., 1994). Earlier research on applications ofremote sensing in 

agriculture focused on the visible and near-infrared regions of the spectrum (Gates et al., 

1965; Woolly, 1971). These studies found an inverse relationship between spectral 

reflectances and radiances in the red region of the electromagnetic spectrum and in situ 

chlorophyll density. but a direct relationship between spectral reflectances and radiances 

in the near-infrared region and the green leaf density. Tucker et al. (1981) correlated the 

red (0.65-0.70 !lm) and infrared (0.775-0.825 !lm) spectral reflectances collected using a 

hand-held radiometer with total aboveground winter wheat (Triticum œstivum L.) 

biomass accumulation over the growing season. The authors reported a high correlation 

between the spectral data and the vigor and state of the plant canopy. 

Remote sensing techniques have been widely used in different agricultural 

domains, such as crop identification (Foody et al., 1989; Saha and Jonna, 1994; Cho et 

al., 2002), detection of different crop stresses (Cibula and Carter, 1992; Carter, 1994; 

Lelong et al., 1998; Goel et al., 2003a,b), crop diseases (Lorenzen and Jensen, 1989; 

Pefiuelas et al., 1995), weed detection (Curran, 1985; Everitt et al., 1987, 1995, 1996; 

Brown et al., 1994; Brown and Steckler, 1995; Goel et al., 2002; Vrindts et al., 2002), 

irrigation performance (Bastiaanssen and Bos, 1999; Sakthivadivel et al., 1999; 

Bastiaanssen et al. 2000), yield estimation (Maas, 1988b; Clevers, 1997; Singh et al., 

2002), and in general, crop management and precision farming (Pearson et al., 1994; 

Wallace, 1994; Moran et al., 1997a; Anderson et al., 1999). Based on these research 

findings, one can remark that remote sensing has been involved in agricultural projects aIl 

over the world. 

During the last two decades, several projects have examined the use of remotely 

sensed observations for crop monitoring and yield estimation. For example, one could 

mention the Large Area Crop Inventory Experiment (LAC lE) in the USA (Erickson, 

1984) and the Monitoring Agriculture with Remote Sensing (MARS) program of the 

European Union (Meyer-Roux, 1990) projects, which are still in progress. Remote 
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sensing data, specifically satellite data, have successfully been applied in crop acreage 

estimations (Sharman et al., 1992). Recently, for monitoring crop growth and yield 

estimation, more attention has been given to linking crop growth models to remote 

sensing observations (Oelécolle et al., 1992; Maas, 1993c; Fischer et al., 1997; Moulin et 

al., 1998; Bach et al., 2001). In the following section, a brief discussion of crop growth 

models is provided and the importance of remote sensing for crop growth modeling is 

summarized. 

2.2.1 Crop growth models 

The soil-plant-atmosphere continuum, which is the most important part of any 

agro-ecosystem, is a complicated and multidimensional system. Within this system, 

nonlinear and complex relationships exist between inputs and plant response. Empirical 

models are insufficient for the simulation of such systems. Mechanistic crop growth 

modeling has shown potential for simulating such complex systems. Currently, no model 

has been able to describe a complex system in a complete and exact manner. Models 

simulate the system in a given circumstance, and therefore fui fi Il the purpose of an 

individual inquiry or application. But a set of different modules are a prerequisite for 

multiple applications of the model. 

Crop modeling is used as a technique to simulate and monitor crop growth by 

describing relationships between crop growth and cropping factors (planting date and rate, 

plant density and variety), environmental factors such as weather parameters (solar 

irradiation, precipitation, and temperature), soil parameters and nutrient availability (Van 

Diepen et al., 1989; Williams et al., 1989; Eckersten and Jansson, 1991; Hansen et al., 

1991; Maas, 1993a; Brisson et al., 1998). The model's computation is based on the daily 

rate of crop growth and development. These models can predict dry matter production 

from emergence until maturity as weIl as the final yield at harvest time. In these models, 

biomass is simulated on the basis of the accumulation of growing degree-days (GOOs), 

which use O°C as the base temperature. These models are developed with different 

techniques such as parameterization, a technique which approximates the response of a 

physical system by using an empirical function including coefficients over a specified 

range of environmental conditions (Maas, 1993a). In this context, three variables {live 

13 



leaf index, aboveground dry biomass, and accumulated growing degree-days) specifying 

the state of the simulated crop at any specified time are used. The accuracy of the model 

depends on achieving the proper parameter values which evaluate the response of the 

model to environmental situations (Maas, 1993b). 

Previously used crop models usually simulated crop growth and yield under 

homogeneous conditions. With the beginning of precision fanning, crop models have 

been elaborated to be able to simulate plant growth in non-homogeneous areas (Innak et 

al., 2000). Crop models have been used for studying spatial problems, including: 

a) diagnosing factors that cause observed spatial variability such as variations in 

soil properties, water stress, nematodes and weeds (Allen et al., 1996; paz et 

al., 1998, 1999), 

b) evaluating different options for varymg management to maXlmlze profit 

and/or minimize losses ofnutrients to the environment (Paz, 2000), and 

c) predicting yield of a spatially-variable field as the season progresses, taking 

into account up-to-date daily weather data (Hoogenboom et al., 1993; We1ch 

et al., 1999; Seidl et al., 2000). 

The first generation of mechanistic crop growth models started with simulating 

the behavior of particular plants. The CORNGRO (Childs et al., 1977), ARCWHEAT 

(Weir et al., 1984), CERES-wheat (Ritchie and Ouer, 1985), SUCROS (Spitters et al., 

1989), and CROPGRO-soybean (Innak et al., 2000) are sorne examples of such models. 

These models were fonnulated to be able to simulate the growth of a specifie crop. Their 

application is lirnited to that particular crop, unless the model is reconstructed for a new 

crop type. 

In addition to the single crop models, there are also generic models, which were 

constructed to be able to simulate the growth of a variety of arable crops. These models 

were built in a manner such that the necessary changes in the specifie parameters were 

provided (e.g., DAISY (Hansen et al., 1991), SOILN (Eckersten and J ansson, 1991), 

EPIC (Williams et al., 1989), WOFOST (Van Diepen et al., 1989), and sncs (Brisson 

et al, 1998» 

According to Sinclair and Seligman (1996), there is no cornmon crop model 

which could be used in aIl situations. However, based on Brisson et al. (1998), the sncs 
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crop growth model was developed such that it could be applied to different crop types by 

modifying only a few parameters and sorne functions involved in calculating yield. The 

modular structure of the STICS model makes it possible for new components to be added, 

modified, and maintained with a minimal effort. Thus, STICS's structure is designed in a 

manner that makes it possible to work with the existing data as weIl as new data arising 

under different agricultural conditions. 

2.2.1.1 Model inputs 

Most of the crop growth simulation models require several input data. These 

inputs are meteorological information (daily maximum and minimum temperature, solar 

radiation and rainfaIl), management practices (cultivar, plant population, row spacing, 

fertilizer, and irrigation amount and date), and soil characteristics (soil type and texture, 

water holding capacity, bulk density), to calculate crop growth as a function of 

photosynthesis, growth stage, and water and nitrogen stresses. These data must usually be 

collected on a daily basis. Since the models require such a large number of input 

parameters, their applicability on a wider scale is limited. In addition, the crop growth 

modeling is so complex that it is difficult to obtain good reliable estimates with these 

models without considering the spatial variability of the field. 

Khakural et al. (1996) and paz et al. (1998) reported variability in soil properties 

as the main causes of spatial yield variability in soybeans [Glycine max (L.) Merr.]. Thus, 

in site-specific crop management (SSCM), the spatial variabilities of soil properties are 

defined as important parameters in crop models. These parameters need to be collected or 

estimated from existing data. A soil parameter measurement for every single grid within a 

field is time consuming, expensive and impractical. In the past one or more unidentified 

soil characteristics were derived by correlating estimated and observed yield data over 

different seasons (Paz et al., 1998, 1999). Alongside the management practices, the leaf 

area index (LAI) is a major driving variable defining the condition of the crop in many 

crop growth models for crop monitoring and yield estimation. It reflects the general state 

and health of the crop and has an important influence on simulating crop growth within 

the model. However, new and fast techniques with well defined algorithms or rules are 
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needed to speed up the calibration process involved in incorporating available 

infonnation into the estimation procedure (Innak et al., 2000). 

2.2.2 Remote sensing and crop growth modeling 

Since the very beginning, remote sensing has been used to estimate crop yield at 

different sc ales (Moulin et al. 1998). However, current research is more directed towards 

the estimation of various crop conditions, with the ultimate aim of improving yield 

estimation. Researchers have adopted various approaches for the above purpose. In the 

following section, work on the direct estimation of crop parameters based on spectral 

observations and strategies adopted to link crop growth models and remote sensing are 

discussed. 

2.2.3 Estimation of crop parameters using remote sensing 

It is possible to relate remotely sensed observations to values of various canopy 

state variables using completely empirical relationships or physical models. In general, 

three approaches have been used for estimation ofbiophysical parameters, such as LAI or 

yield production. A brief description of these approaches is given in the following 

sections. 

2.2.3.1 Empirical methods 

Empirical methods are the most commonly used approaches for estimating crop 

parameters such as LAI or biomass production. These methods are based on fitting an 

empirical function between the crop character (e.g., biomass, yield) and vegetation 

indices [such as Nonnalized Difference Vegetation Index (NOVI), Ratio Index (RI), etc.]. 

In these methods, the biological or physical parameters of the crops are not taken into 

consideration. Tucker et al. (1981) and Gilabert et al. (1996) have reported strong 

correlations between production and a cumulated amount of vegetation indices on various 

crops during the growing season. Similar results were obtained using satellite data 

(Tucker et al., 1985) based on cumulated indices and proposing an empirical model for 

biomass production. The successful application of the empirical approaches for 
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production estimation has been reported in several studies (Hatfield, 1983; Hamar et al., 

1996; Hayes and Decker, 1996; Murthy et al. 1996). 

Using empirical methods, Aase and Siddoway (1981) and Asrar et al. (1985a) 

addressed applicability of multispectral reflectance for predicting dry biomass production 

in wheat crops. The limiting factor of empirically derived relations for estimation of dry 

biomass production from spectral reflectance data was the fact that aIl empirical 

relationships between cumulated Vegetation Indices (VIs) and dry biomass are only valid 

on a local scale. Estimation of the production in any condition needs a description of how 

photosynthetically active absorbed energy is converted into dry biomass and partitioned 

to harvestable organs (Moulin et al., 1998). This could be achieved using mechanistic or 

dynamic models to incorporate remotely sensed data and estimate major crops production 

(wheat, maize, etc.) in exhaustive agricultural systems. 

2.2.3.2 Semi-empirical models 

ln general, the semi-empirical approaches have mostly been used for yield 

estimation. A semi-empirical model was originally developed by Monteith (1977), which 

was modified by Kumar and Monteith (1981) to use radiometric observations. According 

to Monteith's (1977) model's fonnulation, there is a strong relationship between the daily 

production of dry matter and the cumulative radiation quantity absorbed by the foliage 

during the growth period. Final biomass is estimated from the daily production of dry 

matter, which is incorporated during the growing season. The yield is forecasted from the 

final biomass. 

With Monteith's model, it is possible to estimate dry matter production of crops 

using remote sensing data in different wavelengths (Asrar et al., 1985; Leblon et al., 

1991; Guerif et al., 1993; Loudjani et al., 1995; Sinclair and Muchow, 1999). The main 

advantage of the semi-empirical models is the simplicity of their application given their 

limited data requirements, while the disadvantage of the semi-empirical models lies in 

their lack of an explanation of physiological and biological behavior of the system, which 

in turn, controls the growth and development of the plant. To achieve the simulation of 

the effect ofthese mechanisms in crops, the use ofmechanistic models is necessary. 
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2.2.3.3 Mechanistic models 

Mechanistic crop growth models are built and developed to simulate the effect of 

cultural practices, climate conditions, and soil parameters at the crop-soil-atmosphere 

interfaces on crop growth and yield. As described in previous sections, there are several 

available models for the major crops. For sorne of them, mechanistic relationships 

describe yield-driving processes and their interactions (e.g., AFRCWHEAT (Weir et al., 

1984); CERES-Maize (Jones and Kiniry, 1986); SUCROS (Spitters et al., 1989); sncs 
(Brisson et al., 1998); ROTASK (Clevers et al., 2000)) with a daily running time step. 

These models simulate the amount of LAI throughout the growing season, which is of 

major importance as it drives the absorption of solar radiation and evapotranspiration, 

and thus carbon assimilation. However, canopy development and allocation of daily 

assimilates to leaves are described through empirical relationships. 

The use of imprecise coefficients within a relationship affecting canopy 

development may lead to important errors in the estimation ofbiomass production (Porter 

1984). Replacing the uncertain simulations by an estimation of crop state variables, 

derived from remote sensing throughout the growing season was recommended by sorne 

modelers (Maas et al., 1989; Moulin et al., 1998). Currently, researchers have tried to 

make a link between remote sensing observations and mechanistic crop growth models 

(Clevers and van Leeuwen, 1996; Guérif and Duke, 1998; Chauki et al., 1999; Prévot et 

al., 2000a, b; Bach et al., 2001), which will be discussed in detail in coming sections. 

Moreover, realizing the importance ofmechanistic models, sorne of the most used models 

are described below. The sncs model, which was selected for the present study, is 

described in greater detail in the Chapter 5 and Appendix A. 

CROPGRO model: CROPGRO is a mechanistic model for grain legumes, which 

was originally modified from SOYGRO (Wilkerson et al., 1983). It is a process-based 

model with a modular structure and runs in a daily time-step using weather, crop and soil 

data. The crop development, crop carbon balance, crop and soil N balance, and soil water 

balance are the main modules (subroutines) of the model (Boote and Jones, 1998). The 

crop tissue is derived from carbon balance, which is computed from photosynthesis. Plant 

tissue growth takes into account the leaf expansion; vegetative tissues; pods; seeds; and 
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rate calculations for shell growth; seed growth; nodule growth; senescence and 

carbohydrate mobilization. Crop development stages are juvenile, vegetative, 

reproductive and senescent phase. Crop simulation accuracy is dependent on how 

accurate these stages times and duration are predicted. The development stage is 

described as a function of the temperature, photoperiod, and water deficit. In crop 

nitrogen balance, a different form of nitrogen exchange takes place. The whole process of 

nitrogen exchange inc1udes nitrogen from soil uptake, nitrogen fixation, mobilization 

from vegetative tissues, nitrogen use for new organ growth, and rate of nitrogen losses. 

The elements of soil water balance are infiltration of rainfall and irrigation, soil 

evaporation, distribution of water in the soil profile, root water uptake, water drained 

from the root zone, and crop transpiration. 

The CROPGRO-soybean model was calibrated for growth and yield prediction in 

Galicia, Northwest Spain (Ruiz-Nogueira et al., 2001). The calibration of the model was 

performed for both fully water supplied and rainfed conditions. The results indicated that 

an increase in soil water holding capacity would slightly increase root elongation, which 

in tum would accelerate late phenological development under conditions of water 

shortage. This, in tum, improved CROPGRO-soybean performance under rainfed 

conditions. 

CERES model: The CERES model is a user-oriented system and initially was 

developed on the basis of the crop species e.g., CERES-maize (Ritchie et al., 1989), and 

CERES-wheat (Ritchie and Otter, 1985). It has evolved from a species basis model to a 

generic mode!. CERES is a multipurpose simulation model capable of predicting yield 

over a large area, simulating crop growth within a growing season as well as performing 

multi-year risk analyses. The CERES model is constructed to simulate the effects of 

different cropping management, soil water, weather, and nitrogen fertilization rates on 

crop growth and yield. It runs on a daily time-step using weather data, cropping 

management and soil information. Like most of the generic models, it has modular 

structure and its description is comparable with CROPGRO. In crop development 

modules the growing period is divided into nine stages. Like CROPGRO, the 

development stage in CERES is described as a function of the temperature. 
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The CERES model was evaluated for different crops by several researchers. Xie 

et al., (2001) evaluated the abilities of three crop models (ALMANAC, CERES-Maize 

and SORKAM) to simulate maize and sorghum [Sorghum bicolor (L.) Moench] grain 

yields in a dry growing season at several sites in Texas. For maize, the root mean square 

deviation values were 0.56 and 0.83 Mg ha-l, and values for coefficient of determination 

(r2
) between measured and simulated grain yields were 0.95 and 0.88 with ALMANAC 

and CERES-Maize, respectively. Comparing the simulation ofmaize with CERES-Maize 

under irrigated and dry land conditions, the mean errors were 2.0% and 2.2% 

respectively; while for ALMANAC the mean error was 6.2% under both conditions. In 

another work, Hasegawa et al. (2000) evaluated the ability of the CERES models to 

simulate N dynamics during wheat and maize growth following legume coyer crop 

incorporation. Their results showed that the values of soil inorganic nitrogen content and 

crop nitrogen uptake were generally within 20% of estimated ones. Similarly, Travasso 

and Magrin (1998) calibrated and validated CERES-barley for different genotypes sown 

on different dates under optimal growing situations in an Argentine climate. They 

reported that CERES-barley simulated grain yield reliably under normal sowing dates. 

AIso, J amieson et al. (1998) evaluated the performance of CERES-Wheat in comparison 

with AFRCWHEA T2, SIRIUS, SUCROS2, and SWHEA T for a winter sowing of wheat 

under New Zealand conditions. CERES-Wheat simulated yield with reasonable accuracy 

and performed weil compared to AFRCWHEA T2, SIRIUS, and SUCROS2; however, 

SWHEAT underestimated yield in a fully irrigated treatment and under a varying water 

supply. 

SUCROS (Simple and Universal CROp growth Simulator) is a mechanistic 

growth model, which was originally developed to simulate potential production (Spitters 

et al., 1989) and adapted to different crops. Crop yield and dry matter accumulation are 

simulated using weather information under fully supplied water and nutrient conditions 

without taking into account the effects of pests, disease and weeds. SUCROS was 

modified in order to be able to simulate crop growth under water-limited conditions 

(SUCROS2) (Jamieson et al., 1998). Dry matter accumulation was simulated based on 

the rate of CO2 produced by photosynthesis in the crop canopy. The model simulates the 
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different organs of the crop (leaf, stem, root and storage organ) by the use of radiation, 

crop characteristics and environmental conditions. During the simulation process, 

biomass is divided into different organs on the basis of the crop development stage, 

which is detennined by the use of temperature. 

The SUCROS model was calibrated and used by Guérif and Duke (1998) to 

simulate sugar beet (Beta vulgaris L.) growth using optical remote sensing data. Their 

results showed that crop yield estimation was improved. Simane et al. (1994) used 

SUCROS-87 to study the effect of water stresses during the growing season in wheat 

crops in different regions of Ethiopia. Overall, mean simulated wheat yield was higher 

than the actual national average. As mentioned earlier, J amieson et al. (1998) also used 

SUCROS2 along with four other models to study wheat crop growth under drought 

conditions. SUCROS, along with three of the models, simulated wheat yield with a 

reasonable accuracy. 

2.2.4 Vegetation indices (VIs) used for the estimation of crop parameters 

Several VIs based on the combination of two or more wavelengths in different 

ways have been developed and applied in characterizing plant growth and development 

(Jackson and Huete, 1991). A large number of studies (Boochs et al., 1990; Miller et al., 

1991; Plummer et al., 1991; Bach et al., 1995; Patel et al., 2001) have addressed the 

usefulness of the red edge of the reflectance spectrum, and especially the wavelength 

position of the red edge, for vegetation studies on different crops. In most ofthese studies, 

a shift of inflection wavelength towards longer wavelengths at different growth stages 

was reported. 

There are more than a dozen vegetation indices (Myneni et al., 1995) which have 

been correlated with different vegetation characteristics (e.g., vegetation amount, fraction 

of absorbed photosynthetically active radiation). Sorne widely used indices are Ratio 

Index (RI), Nonnalized Difference Vegetation Index (NDVI), Greenness Index (GI), Soil 

Adjusted Vegetation Index, (SA VI), Transfonned SA VI (TSA VI), and Modified SA VI 

(MSA VI). These vegetation indices have been used to make quantitative estimates of the 

LAI, biomass, and percent soil cover (Steven et al., 1983; Asrar et al., 1984; Perry and 
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Lautenschlager, 1984). Sorne of the most frequently used vegetation indices are discussed 

below. 

Normalized Difference Vegetation Index (NDVI) 

NDVI is calculated as the difference of Near Infrared (NIR) and Red reflectances 

divided by the sum of those reflectances. NDVI is a widely used index for crop growth 

monitoring (Asrar et al., 1985b; Moulin and Guérif, 1999; Seidl et al., 2000; Towner et 

al., 2000). Aase and Siddoway (1981) found a good relationship between NDVI and 

straw and total dry matter yield from late tillering until the beginning of the flowering 

stages of crop types. Towner et al. (2000) calculated both the RED [(NIR-Red) / 

(NIR+RED)] and GREEN [(NIR-GREEN) / (NIR+GREEN)] NDVI of corn and soybean 

plots by using airborne imagery (ADAR 5500) and a handheld (SE-590) hyperspectral 

scanner, respectively. Towner et al. (2000) showed that the Red NDVI saturates at low 

LAI values, while the Green NDVI saturation happens at higher (>2.5) LAI values 

(Gitelson et al., 1996). Asrar et al. (l985b) used an indirect method, described by the 

following empirical equation (Asrar et al., 1984) to correlate NDVI values for the effect 

of soil background and the scattering of the near-infrared radiation by plants in order to 

get an estimate of radiation absorbed (RA). 

RA = - 0.185 + 1.20 x ND VI 2.1 

where 

RA is the estimated fraction of photosynthetic radiation absorbed by plants. This 

RA value was used to calculate the LAI as follows: 

LAI = - ln (1 - RA) / K 2.2 

Where: 

ln (1- RA) is the arithmetic mean of estimated RA 

K is a mean leaf angular shape coefficient, which can be calculated as: 

K = 0.5 / cos 71 2.3 

Where: 

71 is the solar zenith angle. 
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In a recent study, Singh et al. (2002) used NDVI, derived from satellite data, to 

estimate crop yield in a small area. Their results showed that NDVI provided more 

efficient predictions of crop yield. 

Ratio Index (RI) 

The RI is the simplest index which has appeared in the literature for estimating 

the LAI values. It is defined as the ratio of near-infrared (NIR) and red reflectance. Maas 

(1993c) used RI to ca1culate the LAI by applying the following regression based function. 

LAI=0.279 xR! -0.448 2.4 

Transformed Soil Adjusted Vegetation Index (TSA VI} 

The TSA VI is another index which was used by sorne authors (Baret and Guyot, 

1991; Moulin and Guérif, 1999). TSA VI could be ca1culated with the following function, 

which was proposed by Baret and Guyot (1991). 

Where: 

TSAVI = a(r2 - alj - fJ)/(ar2 + Ij - a fJ + X(l + a 2
)) 2.5 

r1 and r2 are the canopy reflectance observed in two different wavebands 

ct and {3 are the soil line parameters 

X is a parameter that is used to minimize the effect of soil background 

Extensive efforts are being made to derive vegetation indices to minimize the 

effects of various other parameters affecting the spectral response of vegetation, and to 

highlight specific vegetation characteristics. 

During the last two decades, as important improvements were achieved regarding 

the processing and the interpretation of remote sensing observations, the concept of 

coupling crop production models and remote sensing observations was developed, as will 

be discussed in the following section. 

2.2.5 Coupling mechanistic crop models and remote sensing 

Nowadays, for monitoring crop growth and yield prediction using remote sensing, 

more emphasis is being placed on how effectively remotely sensed data can be linked 
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with crop growth models. Different methods of combining remotely sensed data with 

crop growth models have appeared in literature and were reviewed by Maas (1988a). 

First among these is a system based on using remote sensing as a source for extracting 

quantitative information about vegetation, soil or meteorological conditions. This 

information can th en be supplied as input values for the model parameters. The basic 

weakness of this method is that the relationship between the remote sensing data and the 

parameters are valid only for the periods for which they were measured, and they cannot 

be extended for other periods or growing seasons. 

The second approach, takes advantage of the sequential coverage of the remotely 

sensed information for within-season calibration of the model (Maas, 1988a; Delécolle et 

al., 1992). In this approach, which was adopted by Maas (1993c), the values of 

parameters and initial conditions can be adjusted in a manner such that the simulated LAI 

matches the estimated LAI (calculated with observed information of crop canopy 

reflectance) using remote sensing. The result of the Maas' (1993c) study on calibrating 

the model, using within-season LAI observations obtained from either remote sensing or 

field sampling, showed that remote sensing could be a use fui source of observations for 

within-season calibration of a crop simulation mode!. 

In the final approach, remote sensing data may be used as direct input to a crop 

growth model, or it may be used for verifying the results obtained with the model (Maas, 

1988a; Delécolle et al., 1992; Maas 1993c). Reviewing the studies in this area, in general, 

Moulin et al. (1998) have identified four separate methods of integrating remote sensing 

data into crop models as follow: 

1. "The direct use of a driving variable estimated from remote sensing 

information in the model 

2. The updating of a state variable of the model derived from remote sensing 

3. The re-initialization of the model, i.e., the adjustment of an initial condition to 

obtain a simulation in agreement with the remotely-sensed derived 

observations 

4. The re-calibration of the model, i.e. the adjustment of model parameters to 

obtain a simulation in agreement with LAI derivedfrom the observations." 
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Sorne of these approaches were tirst evaluated by Maas et al. (1989) using a 

simple model (GRAMI) which simulates gramineous growth and development. For 

example, a parameterization of the course of the time evolution of LAI is used to replace 

the description of the mechanisms driving canopy development and senescence. The 

parameterization is obtained with the initial LAI value at crop emergence and three 

parameters for the shape of the LAI seasonal curve. In other works, ground radiometric 

measurements or airborne/satellite data were used with one of the stated methods. The 

general strategy in coupling models and observations is to derive variables or parameters 

from radiometric observations which can be used directly in the modeling procedure. 

Direct estimation of driving variables using remote sensing data is based on the 

assumption that remote sensing data are available at a frequent interval (from daily to 

weekly). However, considering cloud coverage and the properties of sensors and 

platforms, this is rarely the case, so sorne interpolation approaches must be used to till the 

gaps. Thus, the tirst approach i.e. the direct use of driving variables in the crop model is 

generally not practical. 

In the second approach, at least one of the model variables is updated from remote 

sensing observations. Considering the fact that remote sensing observations are not 

available on a regular basis, model parameters are interpolated for the time between the 

two observations. Estimated value of the parameters from the model is forced to a value 

obtained from remote sensing data. The concept behind this approach is presented in 

Figure 2.2. As described earlier an important link for combining remote sensing data and 

crop growth models is LAI. LAI information has been most frequently extracted from 

visible and near-infrared data for different crop types and integrated in crop growth 

models (Holben and Fan, 1980; Asrar et al., 1985b; Maas, 1993c; Wiegand and 

Richardson, 1990; Baret and Guyot, 1991; Price and Bausch, 1995). In a similar study, 

Maas (1993b) and Maas et al. (1989) used ground radiometric measurements over maize 

crops. Optical measurements were used to derive LAI and thermal measurements to 

derive stress index values. By adjusting the initial LAI value (day of emergence) and 

three shape coefficients of the LAI seasonal curve, minimization was performed. The 

correct recovery of these parameters was found to be essential to obtain a reliable 

prediction of crop production. Using LAI derived from satellite data (SPOTIHRV) over 
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wheat fields (Delécolle and Guérif, 1988) improved the capacities of ARCWHEAT (Weir 

et al. 1984) in crop monitoring. A simple model of LAI time course was used to 

interpolate and ex tend the limited derived LAI values to a daily time step. Using these 

LAI values as input variables to ARCWHEA T led to a decrease of the mean error in yield 

prediction. However, early saturation of signaIs is a limiting factor (Michaud et al., 1998) 

of LAI estimation. 

In the third approach, re-parameterization and/or re-initialization of the crop 

production model, the goal is to minimize the difference between simulated and derived 

state variables or radiometric signaIs (Maas, 1988a; Moulin et al., 1998). This approach 

is further subdivided into two groups, first using remotely-sensed derived parameters in 

the model, and the second directly using spectral information in the model. Details of the 

concepts behind these approaches are presented in Figures 2.3 and 2.4. Bournan (1992) 

used ground radiometric measurements for re-initializing/re-parameterizing of the 

SUCROS model, the measurements acquired in solar spectrum and active microwave 

ranges were simulated by linking a reflectance model and a radar reflectivity model with 

a crop model. Using satellite data (LandsatlMSS), Maas derived a green LAI time course 

for sorghum (1988b) and winter wheat crops (1991) by re-initializing/re-parameterizing 

the GRAMI model. For different fertilization and irrigation treatments, the technique was 

helpful for estimation of yields. In this context, radiometric information can be used 

directly for re-parameterizing and/or re-initializing a crop model. Coupling a radiative 

transfer model to the crop production model can produce the temporal behavior of 

canopy surface reflectance (Bournan, 1992; Major et al., 1992; Moulin et al., 1995; 

Fischer et al., 1996, 1997). 

Clevers (1988, 1989) described a simplified semi-empirical reflectance (CLAIR) 

model for LAI estimation of a green canopy. The model first calculated the weighted 

difference vegetation index (WDVI) as a weighted difference between the measured 

near-infrared and red reflectance. The calculated WDVI was corrected for the influence 

of soil background. Subsequently, LAIs were estimated from this WDVI using an inverse 

exponential function. 
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Crop production model 

Figure 2.2 Representation of the forcing strategy: the temporal behavior of one state 
variable of the model is derived from remote sensing observations and used as 
the input variable within the model (Source: Moulin et al. 1998). 
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The CLOUD model (Attema and Ulaby, 1978) is a simplified semi-empirical 

radar model that was used to estimate LAI (Clevers and Van Leeuwen, 1996). This model 

is very useful in describing the radar backscatter of the crops. The model is valid for a 

short period in the beginning of the growing season because after that the signal will be 

saturated. For the calibration of the model, it is required to collect high temporal 

resolution data, which is a limiting factor of the model. 

The CLOUD radar model was coupled to the sncs (Brisson et al. 1998) crop 

growth model by Chauki et al. (1999) using satellite data (ERS and RDARSA T) over 

wheat fields. In this approach, the amount of canopy water and soi! moisture were 

simulated within the sncs model and used as input parameters for calculating radar 

backscatter in the CLOUD model. The combined STICS+CLOUD model allowed the 

estimation of new values for sorne key parameters of the sncs model. In another study, 

Prévot et al. (2000a, b) linked the STICS model with a radiative transfer (RT) mode! in 

the solar (SAIL) and microwave (water-cloud) domains. The accuracy of sncs 
predictions was improved. 

Bach et al. (2001) coupled the PROMET-V crop model to the GeoSAIL canopy 

retlectance mode! using LANDSA T images. Their study was based on minimizing the 

differences between observed retlectance spectra derived from images and the modeled 

surface retlectance spectra. As a result, the total LAI fraction of brown leaves and surface 

soil moi sture were estimated. The regained and simulated LAI were matched by re­

initializing the PROMET -V mode!, which improved the biomass and yield estimation. 

The accuracy of predicted LAI was evaluated by comparing the predicted values 

with the ground measured LAI in different studies (Asrar et al., 1984; Hatfield et al., 

1985; Xu and Jaggard, 1996; Rastogi et al., 2000), and a significant correlation between 

measured and predicted LAI was achieved. 

In a study over sugar beet fields, usmg ground and airbome radiometric 

measurements, Clevers and van Leeuwen (1996) calibrated the SUCROS model. They 

derived LAI from measurements in optical and microwave wavebands. Sowing date, 

growth rate, light use efficiency and maximum leaf area were th en adjusted as were sorne 

initial conditions. The ability of optical data to improve yield estimation was pointed out 

by the authors. In another study, Guérifand Duke (1998) combined the SUCROS (crop) 
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Figure 2.3 Representation of the recalibration strategy: by comparing modeled LAI 
profile and 'LAI' derived from remote sensing data, sorne parameters of the 
crop model (or sorne initial conditions) are re-tuned (Source: Moulin et al. 
1998). 
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Figure 2.4 Representation of the assimilation strategy: comparing simulated reflectance 
profiles (from the coupling of a crop production model and a reflectance 
model) and remote sensing reflectance's allows sorne parameters of the crop 
model (or sorne initial conditions) to be re-tuned (Source: Moulin et al. 
1998). 

30 



and SAIL (reflectance) models. The calibration and evaluation of the resulting model was 

do ne by adjusting the emergence and early growth parameters of the SUCROS model 

under standard and test conditions, respectively. This led to the use of new parameters 

that allowed accurately prediction of crop yields. 

2.2.6 Estimation of yield under weedy conditions 

The effect of weeds on crop yield has been widely documented by vanous 

researchers (Wilcut et al., 1987; McLennan et al., 1991; Donald and Khan, 1992; 

Knezevic et al., 1994; Mamolos and Kalburtji, 2001); however, reliable methods for 

quantitative estimation ofweed effects on crop growth are stilliacking. 

Based on the literature; many researchers have established empirical regression 

models to estimate the crop yield loss by relating crop yield to one or more weed 

characteristics (Dew, 1972; Cousens, 1985a,b; Cousens et al., 1987; Kropff and Lotz, 

1992; Knezevic et al., 1997; Ngouajio et al., 1999a; Canner et al., 2002, Lemieux et al., 

2003). The potential extrapolations ofthese models results are limited due to the variation 

among the parameters values obtained between sites and years. To achieve general values 

for the models' parameters, numerous experiments are needed with different crop and 

weed combinations worldwide. 

Cousens (1985a) developed a simple two-parameter hyperbola model by 

describing yield loss as a function of weed density. In a similar study considering the 

crop density, Cou sens (1985b) explained a three-parameter model to relate crop yield loss 

with weed stresses. In comparison to previously published models, he reported that both 

methods were able to provide better yield loss estimates. Ngouajio et al., (1999b) and 

Lemieux et al., (2003) used relative leaf area based models to develop a decision support 

procedure for post-emergence herbicide applications. Accurate estimation of crop losses 

resulting from weed infestations is the most complicated component of a decision 

procedure because of the complex relationship between weeds and crop. Using path 

analysis, Mamolos and Kaburtji (2001) studied the effect of Canada thistle (Cirsium 

arvensis) density on wheat yield, relating the wheat grain to density and nitrogen 
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concentration of Canada thistle. They found that both Canada thistle density and 

aboveground biomass had an effect on wheat yield. 

These models were generally developed for a single crop and a single weed 

species in a specified location, which becomes the major limiting factor for the 

application of such models. Furthermore, collecting input data (e.g. weed density, relative 

leaf coyer) for such models is time consuming and labor intensive. Further, a primarily 

knowledge of crop and weed conditions are necessary to the implementation of these 

models. 

Recent research in precision agriculture has demonstrated the ability of optical 

remote sensing in determining the crop growth conditions (Foody et al., 1989; Cibula and 

Carter, 1992; Pearson et al., 1994; Saba and Jonna, 1994; Clevers, 1997; Moran et al., 

1997; Le10ng-Camille et al., 1998; Anderson et al., 1999; Singh et al., 2002). It is 

possible to not only identify areas in the field that are under water or nitrogen stress but 

also those under weeds (Borregaard et al. 2000, Cho et al., 2002; Geol et al. 2002, 

Karimi et al., 2004). Moreover, studies have also shown the value of optical remote 

sensing in the estimation of various crop biophysical parameters, such as LAI, leaf 

nitrogen content, plant height, etc. (Gamon et al., 1992; Peiiue1as and Fi1ella, 1998; 

McNaim et al., 2001; Pacheco et al., 2001; Haboudane et al., 2002; Strachan et al., 2002). 

2.3 Concluding remarks on current status and future prospects 

From the above review it may be concluded that multispectral and hyperspectral 

imagery can be used to determine crop growth, crop vigor conditions and crop production. 

However, remote sensing applications in the field of agriculture were 1imited due to the 

lack of effective and efficient methodology in processing, delivery and application of 

data (Moran et al., 1997a, b). The main difficulty in utilizing the full capabilities of 

remote sensing lies in the conversion of the data into meaningful information, such as 

crop growth or crop vigor parameters. 

High temporal reliability in delivered data is the most important requirement for 

remote sensing to be more marketable in the field of agriculture (Moulin et al., 1995; 

Guérif and Duke, 1998; Anderson et al., 1999). Anderson et al. (1999) mentioned that in 

most conditions, the time lag between acquisition ofraw (digital) data and delivery of the 
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final product to the user should not be more than 24 hours, and a greater spatial resolution 

(about 5 m) is required. Until recently, it was difficult to ob tain this resolution from 

satellite platforms. However, with the launch of new high-resolution satellites and the 

use of airbome sensors, such resolutions could be obtained. CUITent research is directed 

towards evaluating these systems for various purposes. Higher spectral resolution was 

addressed as a third requirement. Proposed hyperspectral satellite sensors should meet 

this spectral requirement. 

Combining crop growth models with remote sensing techniques shows promise in 

monitoring crop growth and yield prediction. Most of these studies were based on 

satellite images, which have a low resolution and less frequency in data acquisition. In 

this context, extending the available methodology using hyperspectral data was suggested 

(Bach et al., 2001). It is expected that with the use of hyperspectral data, much more 

accurate information could be obtained for various crop growth parameters. Moreover, 

recent advances in crop growth modeling should translate into better prediction results 

with more accurate crop parameters inputs. Thus, by coupling an advance crop growth 

model with hyperspectral remote sensing systems, better predictions could be made with 

respect to crop growth. 
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PREFACE TO CHAPTER 3 

According to the literature on the application of remote sensing, further research 

IS needed to highlight the capability of airborne hyperspectral sensors in weed and 

nitrogen stress detection. A pilot field experiment was initiated in the summer of 2000 to 

study the spectral response of corn, under different weedy conditions and nitrogen 

application rates. Spectral observations were acquired from a Compact Airborne 

Spectrographie Imager (CASI) in 72-wavebands (from 407 nm to 949 nm). The aim of 

the study was to investigate the usefulness of hyperspectral observations from airborne 

platforms in monitoring corn growth under specifie weed conditions and different 

nitrogen application rates. More specificaIly, the usefulness of hyperspectral airborne 

observations to discriminate weed and nitrogen stresses was investigated using 

discriminant analysis and stepwise approaches. 

Research papers based on the chapter: 

Karimi, Y., S. O. Prasher, H. McNairn, R. B. BonneIl, P. Dutilleul, and P. K. Goel. 

2004. Classification accuracy of discriminant analysis, artificial neural networks and 

decision trees for weed and nitrogen stress detection in corn. Transactions of the 

ASAE (in press). 
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CHAPTER3 

WEED AND NITROGEN STRESS DETECTION IN CORN USING 

DISCRIMINANT ANAL YSIS 

3.1 Abstract 

Hyperspectral images of experimental plots, cropped with corn and to which the 

twelve combinations of three nitrogen application rates and four weed management 

strategies were applied, were obtained with a 72-waveband Compact Airborne 

Spectrographic Imager. The images were taken at three times during the year 2000 

growing season: early growth, tasseling, and full maturity. Nitrogen application rates 

were 60, 120, and 250 kg Nlha. Weed controls were: none, control of grasses, control of 

broadleaf weeds, and full weed control. The objective of this study was to evaluate 

discriminant analysis as a tool for classifying images with respect to the nitrogen and 

weed management practices applied to the experimental plots, and to compare the 

classification accuracy of this technique with those obtained by artificial neural network 

(ANN) and decision tree (DT) algorithms on the same data. Significant wavebands were 

selected, among the 72 available, using the stepwise option and DISCRIM procedure 

(SAS software). Classification accuracy was detennined for the full set of selected 

wavebands and for subsets thereof, for three problems: distinguishing between the 12 

combinations of factor levels, differentiating between nitrogen levels only, and separating 

weed controls only. Misclassification rates of images, taken at the initial growth stage, 

were substantially lower for each of these tasks (25, 17 and 13%, respectively) wh en 

discriminant analysis was used. The ANN approach was best for images taken at the 

tasseling and full maturity stages. However, from the precision-fanning point of view, it 

is easier to apply site-specific remedies to weed and nitrogen stresses early in the season 

than when the corn crop has reached the tasseling stage so the results obtained with the 

discriminant analysis are noteworthy. 
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3.2 Introduction 

One aspect of overcoming the problem of minimizing the impact of agriculture on 

environmental quality, in the face of the higher demand for food by the world's human 

population, is the development of more efficient approaches to crop production. 

Precision-farming, which is based on site-specific application of agricultural inputs (e.g., 

fertilizer, herbicide, pesticide) is very promising in this respect since it has been shown to 

lead to a reduction of the overall quantities applied (Tomer et al., 1997; Christensen et al., 

1998). 

The success of precision farming depends on accurate and fast collection and 

analysis of field data and development of variable rate application techniques. The new 

generation of multispectral and hyperspectral sensors can provide digital images at much 

finer spatial and spectral resolutions at a reasonable cost (Lamb, 1998). The large amount 

of information contained in these images cou Id ease the automation processes; however 

better methods of data transfer, storage, and analysis must be developed (Thenkabail et 

al., 2003). Moreover, automated methods of data analysis, requiring a minimum of 

manual activities for testing, are essential if optimal use of the data is to be achieved (Soh, 

1999). The fundamental problem of analysis ofhyperspectral images is to determine how 

variations in the wavebands are related to differences in the features of images to be 

classified, according to one or more target parameters. 

Various artificial intelligence and statistical approaches have been used for this 

purpose. Yang et al. (1999) used Artificial Neural Networks (ANNs) to recognize weeds 

in a corn crop based on color photographs. Best suc cess was obtained in differentiating 

between corn and any weed but results could not be considered of practical significance 

for finer differentiation of species of weed. In hyperspectral remote sensing studies, 

where observations are collected in a large number of wavebands, it is computationally 

not efficient to processes aIl the data. The main purpose behind these methods is to 

determine the possibility of using fewer data (subset or transformed data) without losing 

major information (Rao, 1964; Kenkel et al., 2002). Approaches based on ANNs have 

successfully been used in agricultural remote sensing (Deck et al., 1995; Ghazanfari et al., 

1996; Nakano, 1997; Wilkinson, 1997; Yang et al., 1999; Goel et al., 2003a). More 
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recently, analyses based on decision trees technology have also been used (Goel et al., 

2003a; Friedl et al., 1999; Soh, 1999; Friedl and Brodley, 1997; Hansen et al., 1996). 

Furthermore, Cho et al. (2002) used both ANN and discriminant analysis to 

distinguish between radish and weeds. Goel et al. (2003c) used decision trees (DTs), and 

ANNs to differentiate between plots cropped with corn, according to the nitrogen 

application rate and weed control they had been subjected to, based on hyperspectral 

images in 72 wavebands from the visible to the near-infrared, at three stages of growth of 

corn. The misclassification rates obtained by Goel et al. (2003c) were dependent on 

growth stage, the complexity of the classification problem, and the number of pixels used 

from each image. Reasonable accuracy was obtained wh en the problem involved 

distinguishing between nitrogen levels or between weed controls at a given growth stage 

and the authors noted that ANNs performed somewhat better than DTs. Goel et al. 

(2003a) also compared these and five other classifiers on this data set, but found that 

there was no consistently better classifier for aH problems presented. Although ANN 

models can do an acceptable job, they cannot identify important wavebands in a data set 

(Deck et al., 1995; Ghazanfari et al., 1996; Nakano, 1997; Wilkinson, 1997; Yang et al., 

1999). On the other hand, both decision tree and multivariate data analysis methods can 

discover important hidden relationships in data. Like the stepwise method in multivariate 

data analysis, a decision tree approach can also identify important wavebands. However, 

while constmcting mIes in a decision tree, once an input data is selected to become part 

of a tree, it cannot be removed. On the other hand, the significance of the selected 

variables is tested continuously in a stepwise method, and a previously selected input 

may be removed, ifwarranted by later analyses. 

Kenkel et al. (2002) reported that multivariate statistical approaches were being 

used in agricultural domains only recently. In their paper, they iHustrated the usefulness 

of different multivariate methods, for both descriptive and predictive modeling, in weed 

research. Meyer et al. (1998) applied discriminant analysis methods to recognize 

different weed types from soil based on texturaI image processing. Using a color 

machine-vision system, Vrindts et al. (2002) used ANN and discriminant functions to 

detect weeds, based on three-band ratios of canopy reflectance. They reported a better 

accuracy for discriminant analysis over ANN. Misclassification for differentiating corn 
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from weeds was less than 1 % in the laboratory but it was 85% for corn and 3% for weeds 

when tested on field data. The application of discriminant analysis in agricultural remote 

sensing has been reported in many recent studies (Slaughter et al., 2003; Burks et al., 

2002; Cho et al., 2002; Terawaki et al., 2002). 

The overall objective of the study was to analyze the data of Goel et al. (2003c) 

using discriminant analysis and a stepwise approach. A more specifie goal was to identify 

the most significant wavebands that can be used in classification of different treatments. 

The results of discriminate analysis will be compared to results obtained with ANN and 

DT techniques. 

3.3 Materials and Methods 

3.3.1 Experimental detail 

A field experimentation was laid out in the growing season of the year 2000 at the 

Lods Agronomy Research Center of Macdonald Campus, McGill University, Ste-Anne­

de-Bellevue, Québec, Canada (45°25 '45"N lat., 73°56'00"W Ion.). Figure 3.1 shows a 

schematie diagram of the experimental layout. The soils at the study site are classified as 

Bearbrook clay and Ste. Rosalie clay. Both soils belong to the Dark Gray Gleysolic group. 

Corn was planted and subjected to four weed controls and three nitrogen application rates 

levels in a four-replicate split plot design with weed controls assigned as the main 

treatment units. The plot size was 20 m x 20 m with a 3 m buffer strip between plots. The 

weed treatments consisted of no weed control (Wl), control of grass species (W2), 

control of broadleaf species (W3), and full weed control (W4). The three nitrogen 

application rates were: low nitrogen (60 kg N ha-l, N60), normal nitrogen (120 kg N ha-l, 

N 120), and high nitrogen (250 kg N ha-l, N250). 

3.3.2 Spectral data collection 

Hyperspectral aerial images were obtained from a Compact Airborne 

Spectrographie Imager (CASI). The CASI sensor collects information in 72 narrow 
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bands from 407 to 949 nm (visible to near-infrared). The bandwidths varied from 4.27 

to 4.41 nm, and the distance between two band centers ranged from 7.4 to 7.74 nm. 

More details on the wavebands properties can be found in Goel et al. (2003a). Spatial 

resolution was 2 m at the flight altitude. Three images, representing the major growth 

stages of corn were acquired during the growing season: early growth (June 30, 2000), 

tasseling (August 05, 2000), and fully mature (August 25, 2000). 

Pre-processing of the images was completed by the data supplier. Pre­

processing included application of radiometric and atmospheric corrections, using 

calibration coefficients established by CRESTech (Center for Research in Earth and 

Space Technology). The CASI hyperspectral data were processed to at-sensor radiance. 

Transformation of at-sensor radiance to ground-reflectance data was accompli shed by 

using the CAM5S atmospheric correction model (O'Neill et al., 1997). Further, to 

improve reflectance image data cubes, spectrally-flat uniform areas in each image 

(asphalt, bare soil and concrete surfaces) were used to apply flat field adjustments. 

Using GPS data onboard the aircraft, geometric corrections and geo-referencing of the 

images were performed for the aircraft movements (yaw, pitch, and roll). The corrected 

images were geocoded to UTM geographic coordinates. White boards at the corners of 

the field assisted in the geometric and error assessment. These processes resulted in an 

estimated RMSE (root mean square error) of about 0.5 of a pixel. 

Reflectance values from the corrected images were extracted usmg ENVI 

software (ENVI 3.1, Research System, Inc., Boulder, Colorado, USA). A total of 20 

random points per plot were selected arbitrarily to get representative reflectance values 

for the plot for each flight. This resulted in a total of 720 values per flight. The average 

spectral response of corn under different nitrogen levels and weed control treatments is 

illustrated in Figures 3.2a to 3.2c for the three flight data sets. The figures clearly 

demonstrate the difference in reflectance values for various treatments, with 

comparatively greater differences among treatments in the visible region in early 

growth stages where the field had less crop coverage than at the other stages. They also 

show that certain wavebands in the visible region and many more in the near infrared 

region can be used to classify the treatments. 
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Figure 3.2 Measured spectral response curves of corn at three different growth stages 
under different nitrogen application rates and weed control conditions. (N60, N120, and 
N250 are nitrogen treatrnents of60, 120, and 250 kg N ha>' and WI, W3, and W4 are weed treatrnents with 

no weed control, broadleaf control, and full weed control, respectively). 
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Figure 3.2 (cont.) Measured spectral response curves of corn at three different growth 

stages under different nitrogen application rates and weed control conditions. (N60, N120, 

and N250 are nitrogen treatrnents of 60, 120, and 250 kg N ha- 1 and WI, W3, and W4 are weed treatrnents 

with no weed control, broadleaf control, and full weed control, respectively). 
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3.3.3 Weed survey 

Infonnation on weeds in each plot was collected on July 14 and August 15,2000 

using three and four randomly chosen 50 x 50 cm quadrates on the two dates, 

respectively. Observations included weed types, density, and percent ground coverage. 

The weed coyer was detennined visually in each quadrate. The most dominant grassy 

weeds were Yellow Nutsedge (Cyperus esculenthus), Bamyard grass (Echinochloa 

crusgalli), and Crab grass (Digitaria ischaemum), whereas the dominant broad-Ieaves 

were Canada thistle (Cirsium arvensis), Sow thistle (Sonchus oleraceus), Redroot 

pigweed (Amaranthus retroflexus), and lamb's quarter (Chenopodium album). More 

details are given in Goel et al. (2003c). 

3.3.4 Data analysis 

Analyses of the spectral reflectance were perfonned for the three images 

individually. As stated earlier, the objectives of the research were to find the most 

significant wavebands for categorizing data into different classes. The stepwise option of 

SAS procedure STEPDISC was used to select the wavebands most likely to be associated 

with differences in the pixels associated with the different plots. The criterion used for 

selection was the significance of the F value calculated from an analysis of covariance. 

Although it is assumed that for discrimination of the treatments, the most suitable 

wavebands will be selected using stepwise procedure, there are no guarantees that the 

selected variables are the best set of variables, particularly wh en there is high collinearity 

(Murray, 1977; Vrindts et al., 2002; Johnson, 1998), which is often the case with very­

narrow waveband hyperspectral data sets. "Contrary to what might be expected, a subset 

of well-chosen variables will often do a better job of discriminating between groups than 

you can do using aIl possible variables" (Johnson, 1998). 

Next, the discrimination capability of the selected wavebands was evaluated 

using the nISCRIM procedure of SAS (Version 8.20, North Carolina, USA). Based on 

the quantitative variables, the DISCRIM procedure calculates different discriminant 

functions for categorizing observations into groups. In this procedure, the discriminant 
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functions can be developed usmg a classification variable, describing groups of 

observations and quantitative variables. Discriminant criteria include the individual 

within-group covariance matrices, the pooled covariance matrix, and the prior 

probabilities of the groups. The suitability of the discriminant functions for a given 

classification problem can be compared using a cross-validation method, available in 

the DISCRIM procedure, which involves calculation ofmisclassification matrices. 

3.4 ResuUs and discussion 

Verification of the weed populations in different treatments indicated that there 

were no broadleaf weeds in the second treatment (W2, grass control). As a result the 

plots with weed-nitrogen combinations involving W2 were not included in the analysis. 

Inspection of the data from the 72nd waveband showed that the signal was too noisy to 

be used. Thus, only 9 weed-nitrogen groups were to be differentiated on the basis of 

data from 71 wavebands. 

3.4.1 Selection of Wavebands 

Johnson (1998) recommended that the significance level for the inclusion of the 

variables in the stepwise approach be set somewhere between 0.25 and 0.5 for entering 

a variable, and 0.15 for removing a variable. In this study, the significance levels for 

the stepwise STEPDISC procedure were set at 0.10 and 0.15 for inclusion and removal, 

respectively. Although it was noted in the literature that better results are often 

obtained by using a well-chosen subset of the available variables, there is not as yet, a 

method, other than an iterative one, to determine the best subset. The STEPDISC 

approach was applied for three classification problems: a) the 9 combinations of weed 

and nitrogen treatments, b) the 3 weed treatments al one, and c) the three nitrogen 

application rates alone. 

For the first classification problem (a), a total of 34, 42, and 42 wavebands 

were respectively found to be significant in explaining the variability for the three 

growth stages. For the second problem (b), a total of 26, 32, and 31 wavebands were 

significant, while for the classification according to nitrogen, a total of 28, 19 and 19 

wavebands were considered to be explanatory. The selection of a greater number of 
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significant wavebands for the first classification problem, i.e. both weeds and nitrogen 

together, underscores the complexity of classification in such problems. 

3.4.2 Discriminant analysis 

Different DISCRIM models were trained and used to test the perfonnance of the selected 

wavebands and/or subsets from selected wavebands for their ability to discriminate 

between various groups. DISCRIM detennines the classification accuracy using a one 

data-out approach for cross-validation. The risk estimate, for resubstitution and cross­

validation, represents the percentage of the wrongly classified in the training and 

validation data sets, respectively, although there is no guarantee that the selected 

wavebands are the best possible subset. In this study, different DISCRIM models were 

applied using different wavebands chosen on the basis of their order of entry in the 

stepwise approach (Table 3.1). The wavelengths of the selected subset for ail three 

classification problems are summarized in Table 3.1. For the first problem, although, the 

selected wavebands for the first flight are generally different from those for the other two 

flights, over 75% of the selected wavebands for the second and third flights were the 

same. For the second classification problem, while 40% of the selected wavebands for the 

first flight were also selected for the other two flights data sets, the wavebands selected 

for the second and third flights were identical. For the third problem, the selected 

wavebands for the first flight are generally different from the other two flights. The 

wavebands for the third flight are included in the wavebands selected for the second 

flight. The wavebands selected by the discriminant analysis are compared to those 

identified by the DT approach in Table 3.1. Generally speaking, a lower number of 

wavebands were selected by the DT method for ail three classification problems. 

A summary of calibration and cross-validation misclassifications for ail three data 

sets and different subsets of wavebands is presented in Table 3.2 In the case of 

discriminating combined weed and nitrogen treatments, the best results were obtained 

using subsets of 19,20, and 19 wavebands with an accuracy of 75,69, and 71 % for early 

growth, tasseling and full growth stages, respectively. Generally speaking, using ail the 

selected wavebands resulted in far greater accuracy in the calibration data sets than in the 
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Table 3.1 Wavelengths selected by different methods in developing classification model. 

First Flight 
Classification Treatments Selected wavebands 

method 

Combined 
893,732,641,717,535,588, 

effect of weed 
679,446,701,476,801,747, 

-te 461,816,610,565,724,663, ~ and Nitrogen .. 453 = '0 739,663,409,505,932,701, ~ 
Cj 

0 535,893,717,610,528,453, .. 
c. Weeds only 438,939,755 ~ 
lI.l 

'~ 
c. 
~ - 588,724,490,847,701,679, 00 

Nitrogen only 641,461,565,739,755,831, 
610,424,686,656,633,839 

Combined 409,446,588,641,717, 
~ 

effect of weed 878,932,939 ~ .. - and Nitrogen = 0 Weeds only 409,513,701,724,732,939 ';;j 
'y 409,476,550,641,724,732, ~ -te Nitrogen only Q-te 939 

Combined 
effect of weed 
and Nitrogen AIl 71 wavebands 

Z 
Z-te Weeds only 
<-te Nitrogen only 

* Wavelengths are given in the order they entered into the model 
** These data are taken from Geol et al. (2003c) 

Second Flight 

Selected wavebands 

717,885,732,663,755,778, 
558, 739, 901, 939, 520, 461, 
490,505,762,709,694,610, 
453,446 
901,490,543,679,755,461, 
801,762,505,453,550,732, 
739,409,770,785,939,446, 
513,431,916,908,528,595, 
633,694 
717,893,732,770,739,939, 
520,535,694,679,641,558, 
528,816 
483,490,513,535,550,558, 
724, 755, 770 

424,446,732,739 
490,535,747,770 

AIl 71 wavebands 
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Third flight 

Selected wavebands 

717,641,885,739,770,558, 
755,732,901,762,939,461, 
490,679,505,520,847,453, 
446 
901,490,543,679,755,461, 
801,762,505,453,550,732, 
739,409,939,446,770,785, 
513,431,916,908,528,595, 
633,694 
717,732,770,739,939,816, 
520,558,595,679,641,528 

409,416,431,461,543,565, 
701, 739 

416,453,490,762 
409,424,558,701 

AIl 71 wavebands 



cross-validations. Using subsets, fewer wavebands decreased classification accuracy of 

the calibration data sets. For the cross-validations, accuracy usually increased up to a 

certain numbers of wavebands and decreased thereafter. Moreover, reflectances from the 

early growth stage for different subsets resulted in better accuracy (69 to 75 %). With 

respect to weed control, this cou Id help identify the weediest patches as early as possible. 

However, more accurate results were obtained by considering one factor at a time (weed 

or nitrogen). For cross-validation, the DISCRIM procedure could differentiate between 

weed treatments with 87 % accuracy in early growth and 78 % accuracy in tasseling and 

full growth stages in the optimal conditions. For nitrogen, classification accuracies of 83, 

81, and 82 % were obtained for the three stages, respectively. The best misclassification 

matrices for cross-validation are presented in Table 3.3 (weed-nitrogen combinations) 

and Table 3.4 (weeds only and nitrogen only). The values in the tables provide both the 

number of correctly classified and misclassified cases for each flight. Close inspection of 

the misclassification matrices shows that in aIl cases, most misclassified cases were 

classified into the next nearest category. In other words, it was very rare for NO (low 

nitrogen application rate) to be misclassified as N2 (high nitrogen application rate). 

The best classification results obtained with the discriminant analysis are given in 

Table 3.5 along with the best results, obtained for the same data set, with the DT and 

ANN approaches by Goel et al. (2003c). The risk estimate values were calculated by 

dividing the number of incorrectly classified cases by the total number of cases used in 

the classification. Thus, a lower risk estimate would indicate better classification 

accuracy. For the early growth stage, higher classification accuracies were obtained with 

the discriminant analysis for aIl three classification problems (Table 3.5). For the 

concurrent weed and nitrogen classification problem, a classification accuracy of 75 % 

was achieved using the discriminant analysis, while the DT and ANN methods were 60% 

and 58% accurate, respectively. The combined weed and nitrogen problem also happens 

to be the most complex classification problem in our study, and it appears that the 

discriminant analysis has performed weIl. When only one factor was considered (weed 

or nitrogen), the accuracy of the discriminant analysis was 87% for weeds and 83% for 

nitrogen. The DT and ANN accuracies for these cases were 76% and 81 %, respectively, 

for weeds and 68% and 69%, respectively, for nitrogen. At the tasseling stage, the DT 
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Table 3.2 Summary ofmisc1assification matrices ofDISCRIM procedure (%) 

a )W d d . ee an mtrogen treatrnents 

F irst flight Second flight Third flight 
#of Calibration Cross # of Calibration Cross # of Calibration Cross 

wavebands validation wavebands validation wavebands validation 

34 0.1 30.8 42 0.0 40.6 42 0.0 39.2 
30 l.l 31.8 38 0.3 39.2 38 0.3 38.3 
25 3.8 29.2 34 0.7 36.5 35 0.8 37.4 
22 5.6 28.2 30 2.2 35.0 30 2.1 34.6 
19 6.7 25.1 25 4.2 33.2 25 4.2 34.0 
17 7.9 25.8 20 10.1 31.2 20 9.0 30.4 
15 8.9 27.4 18 11.5 32.5 19 9.6 28.9 
14 9.7 26.7 16 13.1 32.5 15 15.2 30.3 

b) Weed treatrnents 

First flight Second flight Third flight 
#of Calibration Cross #of Calibration Cross # of Calibration Cross 

wavebands validation wavebands validation wavebands validation 

26 5.7 13.6 32 6.4 21.9 31 8.1 22.6 
23 5.7 13.2 31 6.5 21.5 28 9.2 23.1 
20 7.9 13.6 29 8.3 22.4 26 10.7 22.1 
18 7.9 13.6 26 10.4 21.7 22 12.8 23.2 
16 8.9 14.1 24 12.4 22.5 18 15.8 25.1 
15 9.7 13.1 20 14.3 22.4 15 19.9 26.9 
12 11.2 14.4 15 19.0 27.1 10 25.1 28.5 
8 15.6 16.8 10 25.4 28.5 5 34.4 35.6 
4 22.1 23.5 5 34.3 35.8 3 40.4 41.2 

C ) N'tr tr trn t 1 ogen ea en s 

First flight Second flight Third flight 
# of Calibration Cross #of Calibration Cross # of Calibration Cross 

wavebands validation wavebands validation wavebands validation 

28 9.2 20.3 19 14.3 19.7 19 14.3 19.9 
25 9.4 20.0 16 15.3 20.3 17 16.2 20.1 
20 11.0 19.6 14 15.3 19.0 15 17.1 20.4 
18 13.2 17.2 12 17.1 19.3 12 16.5 18.5 
15 14.2 18.3 10 19.0 20.1 10 18.2 19.7 
10 17.1 20.1 7 17.8 19.4 7 18.3 19.0 
7 20.7 22.2 5 20.8 21.5 5 20.8 21.5 
4 23.8 24.2 3 22.4 22.8 2 22.8 22.9 
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Table 3.3 Classification matrices for the cross-validation data for the nine weed­
nitrogen combinations at the three growth stages. 

a )EI wtht any gro sage 
Predicted 

N60 N60 N60 N 120 N 120 N 120 N250 N250 N250 

Wl W3 W4 Wl W3 W4 Wl W3 W4 Total 

N60Wl 65 1 1 12 0 0 1 0 0 80 

N60W3 4 65 6 1 4 0 0 0 0 80 

N60W4 0 8 63 0 1 7 0 0 1 80 

N I20Wl Il 1 0 51 5 0 12 0 0 80 
;; N I20W3 0 1 0 5 60 6 3 5 0 80 
.3 
u 

N 12oW4 0 2 14 0 9 49 0 0 6 80 < 
N250Wl 0 0 0 13 2 0 62 3 0 80 

N250W3 0 0 0 1 3 0 8 64 4 80 

N250W4 0 0 1 0 4 Il 0 4 60 80 

Total 80 78 85 83 88 73 86 76 71 720 ----b) Tasseling sta e 

Predicted 

N60 N60 N60 N 120 N\20 N I20 N250 N250 N250 

Wl W3 W4 Wl W3 W4 Wl W3 W4 Total 

N60Wl 62 8 0 9 1 0 0 0 0 80 

N60W3 7 60 3 4 3 3 0 0 0 80 

N60W4 1 8 55 8 0 7 1 0 0 80 

N 120WI II 9 1 35 12 0 8 4 0 80 
;; N I20W3 0 1 1 10 56 6 3 2 1 80 
.3 
u 

N 12oW4 1 2 8 3 1 54 4 3 4 80 < 
N250Wl 0 0 0 8 7 2 54 7 2 80 

N250W3 0 0 0 1 2 1 10 58 8 80 

N250W4 0 0 0 0 1 6 6 6 61 80 

Total 82 88 68 78 83 79 86 80 76 720 ----
c )Fll wth u ~o stage 

Predicted 

N60 N60 N60 N 120 N 120 N I20 N250 N250 N250 

Wl W3 W4 Wl W3 W4 Wl W3 W4 Total 

N60Wl 67 5 0 8 0 0 0 0 0 80 

N60W3 6 60 7 3 2 1 1 0 0 80 

N60W4 3 4 61 4 0 8 0 0 0 80 

;; N 120WI 9 6 1 47 6 0 7 4 0 80 

.3 N 12oW3 0 1 0 9 53 Il 4 1 1 80 u 
< N 12oW4 0 1 10 2 2 55 5 4 1 80 

N250Wl 0 0 0 10 4 2 55 6 3 80 

N250W3 0 0 0 2 4 2 16 50 6 80 

N250W4 0 0 0 0 0 6 5 5 64 80 

Total 85 77 79 85 71 85 93 70 75 720 

N60, Low N; N 120, Nonnal N; N250, High N; Wl, No weed control; W3, Broadleafcontrol; W4, Full weed 
control. 

49 



Table 3.4 Classification matrices for the cross-validation data for weed controls and for 
nitrogen application rates, each at three growth stages. 

a )EI wtht ar y gro sage 

Weed Predicted Nitrogen Predicted 
treatments Wl W3 W4 Total treatments N6Q N 120 N250 Total 

Wl 220 19 1 240 N6Q 203 37 0 240 

~ 
W3 27 192 21 240 N 120 29 169 42 240 

2 W4 0 27 213 
u 

240 NZ50 3 35 202 240 
<: Total 247 238 235 720 Total 235 241 244 720 - -

b)T r asse mg sta e 

Weed Predicted Nitrogen Predicted 
treatments WI W3 W4 Total treatments N6Q N120 N250 Total 

WI 196 33 II 240 N6Q 196 43 1 240 

~ 
W3 45 163 32 240 N120 26 172 42 240 

2 W4 17 20 203 
u 

240 N250 1 24 215 240 
<: Total 258 216 246 720 Total 223 239 258 720 - -

c ) F Il h u growt stage 

Weed Predicted Nitrogen Predicted 
treatments Wl W3 W4 Total treatments N6Q N I20 N250 Total 

WI 188 42 10 240 N6Q 196 43 1 240 

~ 
W3 38 167 35 240 N120 23 173 44 240 

2 W4 10 24 206 240 
u 

N250 1 21 218 240 
<: Total 236 233 251 720 Total 220 237 263 720 - -N6Q, LowN; N12o, Normal N; N250, Hlgh N; WI, No weed control; W3, Broadleafcontrol; W4, Full weed 

control. 

Table 3.5 Comparison of the risk estimate result obtained from different methods of 
classification. 

Method used Early growth stage Tasseling stage Full growth stage 

DISCRlM 25.1 31.2 28.9 
Combined effect of 

Decision Tree 40.4 28.5 40.8 
weed and nitrogen 

ANN 41.7 29.9 36.8 

DISCRlM 13.1 21.5 22.1 

Effect of weed alone Decision Tree 23.5 16.2 30.8 

ANN 18.8 11.8 14.6 

DISCRlM 17.2 19.0 18.5 
Effect of nitrogen 

Decision Tree 32.1 18.9 22.8 alone 
ANN 30.6 11.8 11.8 
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approach gave the highest classification accuracy for the combined weed and nitrogen 

case (71 %). For the other two classification problems, the ANN method gave the most 

accurate results (88% for both weed and nitrogen classification problems). At the full 

growth stage, once again the discriminant analysis gave the best results for the combined 

case (79%). AIso, ANN results were the best for the other two cases (weeds alone- 85% 

and nitrogen alone- 88%). 

It is noteworthy that, in all three classification problems, the discriminant analysis 

resulted in the best classification results for the early growth stage, whereas the ANNs 

performed better at tasseling and full maturity. The higher classification accuracy 

obtained by the discriminant analysis in the early growth stage emphasizes the usefulness 

of this approach over the DT and ANN methods. It is difficult to say why one method is 

performed better than the other as they are based on different princip les. However, it is 

clear that different classification methods should be tried for a given situation to 

determine the most accurate method. As stated earlier, compared to the other stages, in 

the early growth stage, more reflectance differences were evident between treatments in 

the visible portion, where the most significant wavebands are selected by the stepwise 

approach. This may explain why discriminant analysis provided the best results. 

In precision agriculture, critical decisions need to be made at the early growth 

stage of the crop to determine site-specific herbicide and fertilizer application rates. Our 

study shows that the discriminant analysis may be a better classification method at this 

stage. 

3.5 Conclusions 

This study compared three different methods of analyzing hyperspectral data, 

namely ANNs, DTs, and discriminant analysis for identifying weed and nitrogen stresses 

in corn. The discriminant analysis was found to provide the best classification accuracy at 

the early growth stage (more than 75%), whereas, better accuracy was obtained with 

ANN models, at the tasseling and full maturity stages. Misclassification rates for two 

target variables at the same time were too high (25% or greater) to be considered of 

practical use, regardless of the method of classification used. However, when one target 
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at a time was considered (nitrogen application rate, or weed treatment) misclassification 

rates were below 20%, and as low as Il % for cross-validation data. 

This study has demonstrated that correctly chosen narrow waveband 

hyperspectral aerial observations can be used as an important source of information in 

identifying weed and nitrogen stresses. The choice of image classification method is 

important, but dependent on the stage of maturity of the crop. Discriminant functions 

based on a restricted set of wavebands, as determined by a stepwise selection technique, 

can be used for this purpose. 
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PREFACE TO CHAPTER 4 

The results of Chapter 3 indicated that airborne imagery could be used for weed 

and nitrogen stress determination by the use of discriminant analysis method, especially 

during the early growth stages of the crop. Thereafter, the study was focused on using 

very narrow-waveband, ground-based spectral observations for discriminating nitrogen 

and water stress. In the summer of 2002, an experiment was laid out to study the spectral 

response of corn, under different irrigation regimes and nitrogen application rates. 

Spectral observations were acquired from a handheld spectroradiometer in 2150 narrow 

wavebands from 350-2500 nm. The overall goal of the study was to examine the 

applicability of ground-based narrow-waveband hyperspectral observations in monitoring 

corn growth under different water availability conditions and different nitrogen 

application rates. Discriminant analysis and stepwise approaches were used for this 

investigation. 

Research papers based on the chapter: 

Karimi, Y., S. O. Prasher, H. McNairn, R. B. Bonnell, P. Dutilleul, and P. K. Goel. 

2004. Discriminant analysis of hyperspectral data for assessing water and nitrogen 

stresses in corn. Transaction of the ASAE (in press). 
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CHAPTER4 

W ATER AND NITROGEN STRESS ASSESSMENT IN CORN DY 

APPLYING DISCRIMINANT ANALYSIS TO HYPERSPECTRAL 

DATA 

4.1 Abstract 

The development and implementation of both economically and environmentally 

sustainable precision crop management systems can be greatly enhanced through the use 

of remote sensing. In this study, the potential of narrow-waveband hyperspectral 

observations in the discrimination of nitrogen and water stresses in corn was investigated. 

A field experiment was conducted in the summer of 2002 at the Macdonald Research 

Farm, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada. Corn was grown in 

fort y, 9.0 m x 10.0 m, test plots laid out in a split plot design with irrigation (non­

irrigated, irrigated) as the main treatment and nitrogen fertilizer application rate (50, 100, 

150, 200, and 250 kg ha-1
) as the sub-treatment. Hyperspectral measurements in 2151 

wavebands (350 to 2500 nm) were made with a field spectroradiometer during the entire 

growing season. Using a stepwise procedure, the most effective wavebands capable of 

discriminating treatment effects were selected. By applying a discrimination procedure 

with a well-chosen subset of the selected wavebands, treatments were correctly classified 

with more than 95% accuracy. Specific narrow wavebands, from different portions of the 

spectrum, allowed the discrimination of plots differing in their irrigation and nitrogen 

treatments. This study supports past work suggesting that greater spectral resolution 

should lead to more consistent relationships between the spectral data and different crop 

status indicators. 

4.2 Introduction 

The applications of remote sensmg (RS) in agricultural field include: crop 

identification (Saha and Jonna, 1994; Foody et al., 1989), crop stress detection (Cibula 
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and Carter, 1992; Carter, 1994; Lelong-Camille et al., 1998), crop disease detection 

(Lorenzen and Jensen, 1989; PeilUelas et al., 1995), weed detection (Everitt et al., 1995, 

1996; Goel et al., 2002), irrigation performance (Bastiaanssen and Bos, 1999; 

Sakthivadivel et al., 1999; Bastiaanssen et al., 2000), yield estimation (Maas, 1988; 

Clevers, 1997; Singh et al., 2002), and, in general, crop management and precision 

farming (Moran et al., 1997; Pearson et al., 1994; Anderson et al., 1999). Besides the 

large area that can be studied, the increased application of RS systems in agricultural 

management is mainly due to the improvements in spatial, spectral and temporal 

resolution of remotely sensed observations (Yang et. al., 2002). Multispectral remote 

sensing systems offered information in limited bands, whereas hyperspectral sensors 

collect information in a large number of very naITOW wavebands (Lillesand and Kiefer, 

2000). With the launch of new hyperspectral RS satellites, the focus of CUITent research 

has shifted to investigating the possibilities ofhyperspectral RS. 

Hyperspectral RS cou Id offer great opportunities in recognizing, modeling, and 

categorizing terrestrial ecological characteristics (Thenkabail et al., 2003). Specific 

narrow-band RS observations within certain portions of the spectral regions can 

significantly improve the classification accuracies and discrimination capabilities of RS 

in vegetation and agricultural crops (Bork et al., 1999; Elvidge and Chen, 1995; 

Thenkabail et al., 2002). As Gao (1999) demonstrated in the mapping of mangrove 

forests in a temperate zone, greater spectral resolution can now play a relatively greater 

role than spatial resolution. 

Thenkabail et al. (2002) showed that the narrowband vegetation indices provided 

a more accurate estimation of crop parameters than did equivalent broadband-based 

indices. Similarly, Blackburn (1999) reported that for estimation of chlorophyll a, 

chlorophyll band carotenoids, wavebands of 680 nm, 635 nm and 470 nm, respectively, 

were optimal. The literature supports the conclusion that hyperspectral data could 

provide considerable additional information in the estimation of various crop 

characteristics compared to similar information obtained from broadband sensors 

(Blackburn, 1998; Carter, 1998; Elvidge and Chen, 1995; Thenkabail et al., 2002 and 

2000; Asner et al., 2000). 
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However, unlike multispectral data analysis, hyperspectral data are more 

complicated, given the large volume of infonnation obtained over a short period of time, 

it requires the development and testing of new methods and algorithms of data analysis 

(Thenkabail et al., 2002). These issues are becoming more crucial with the advent of new 

generations of satellites using hyperspectral sensors. For example, the data storage 

requirements for Hyperion imagery (220 narrow wavebands with 30 m spatial resolution) 

is about 70-fold that of Landsat imagery for a similar aerial coverage (Thenkabail et al., 

2002). 

For the same electromagnetic spectrum, hyperspectral data will typically have 

hundreds, if not thousands, of wavebands, thus reducing the bandwidth of individual 

wavebands. Therefore, it will be important to pre-detennine a sub-set of narrow­

wavebands that could be used to provide detailed infonnation on targets of interest, such 

as vegetation, soil, etc. However, more research needs to be conducted in this area, 

including establishing acceptable spatial and spectral accuracy levels. 

Currently, efforts are being made to recognize important wavebands that can 

discriminate among different targets (e.g. crop vs. weeds). In a recent study, by 

comparing hyperspectral and multispectral-based vegetation indices, Thenkabail et al. 

(2002) found that narrow wavebands strongly correlated with a number of crop 

characteristics. In another study, Vrindts et al. (2002) used discriminant analysis, with 

both laboratory and field observations, to discriminate between weeds and crops (sugar 

beet and maize). The laboratory study allowed crop-weed classification with <1% 

misclassification errors. However, the misclassification rate was 85% for corn and 3% for 

weeds in the field study. The value of shortwave infrared (SWIR) spectral reflectance for 

detennining equivalent water thickness (EWT) at leaf level was investigated by Ceccato 

et al. (2001). They concluded that although the SWIR is sensitive to EWT, the SWIR 

reflectance alone is not sufficient for assessing EWT at leaf level. Estimating LAI using 

data acquired by the Hyperion satellite and applying vegetation indices derived from NIR 

and SWIR wavebands was investigated by Gong et al. (2003). They found that the 

wavelengths of 820, 1040, 1200, 1250, 1650, 2100, and 2260 nm were the most valuable 

bands for estimation of LAI. 
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This study was undertaken to determine the best hyperspectral narrow wavebands 

to discriminate between different water and nitrogen stresses and their interactions in a 

corn field. In this study we used different multivariate discriminant analysis approaches. 

Canopy reflectance observations, collected in the range from 350 to 1800 nm, were 

analyzed to determine which wavebands cou Id be used to classify types of water and 

nitrogen stresses. 

4.3 Materials and methods 

4.3.1 Study site and experimental details 

During the 2002 growing season, a split-plot experiment was conducted on sandy 

soil at the Research farm of Macdonald Campus, McGill University in Ste-Anne-de­

Bellevue, Quebec, Canada. A schematic diagram of the experimental design is presented 

in Figure 4.1. 

This soil belongs to the St. Amable complex, which has deep sandy deposits 

subtended by a clay layer (Lajoie, 1960). Corn (Zea mays L. cv., Hybrid DKC42-22) was 

grown in fort y, 9.0 m x 10.0 m, test plots laid out in a split-plot design with 4 blocks. In 

each block, irrigation (non-irrigated, irrigated from 19 July 2002 onward) was the main 

treatment and nitrogen fertilizer application rate (50, 100, 150,200, and 250 kg ha-1
) was 

the sub-treatment. Corn was sown on 22 May 2002. Corn plots were planted under two 

irrigation schemes and five different nitrogen treatments. Each sub-plot consisted of 12 

rows of corn with rows running east-west, with 75 cm row spacing and population of 

76,000 plants per ha. 

4.3.2 Collection of Spectral Data 

Hyperspectral data were acquired throughout the season, usmg a handheld 

spectroradiometer (FieldSpec Pro model, Analytical Spectral Device, Boulder, CO, USA) 

with 2151 wavebands from 350 to 2500 nm (1.0 nm bandwidth) and a 15° field ofview. 

This spectroradiometer contains three different sensors to coyer the spectral range of 350 

to 2500nm. The raw spectra acquired with the field spectroradiometer was converted to 

57 



Plot size 9 m x 10 m 

N1 1 IN4 N3 N1 N4 N5 1 1 N2 1 IN4 
r---

N4 N2 N2 N5 N1 N1 N1 N2 

N5 N2 N5 N3 N3 N4 N5 N1 

N2 N1 N1 N4 N2 N3 N4 N3 

N3 1 IN~ ~ EJ ~ ~ ~ ~5 
N-Irr N-Irr Irr Irr N-Irr Irr N-Irr Irr 

Figure 4.1 Experimentallayout, 2002 (NI - N5 are: 50, 100, 150,200,250 kg N ha .1, respectively, lIT and N-Irr are: 
irrigated and non-irrigated treatments). 
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reflectance using a white reference panel. A white reference was taken to measure aIl the 

reflected light from a white reference panel, which is considered to be equal to the 

radiation reaching the target. This was checked regularly at a lOto 15 min interval. Six 

measurements were collected per plot and the mean value was used in the data analysis. 

For each plot, the first three measurements were made with the spectroradiometer sensor 

placed directly over corn plants and the other three were made with the instrument 

located between corn rows. Due to excessive noise in the water absorption region and 

sorne technical problems in the calibration of the third sensor, the measurements ranging 

from 1345 to 1430 nm and 1800 to 2500 nm, respectively, were removed from the 

spectral data set, thereby leaving 1364 wavebands for analysis. Since irrigation only 

began on 19 July, attempts to discriminate the irrigation treatment were limited to 

sampling dates after this date: 31 July, 10 August, and 26 August. The mean spectral 

response of corn under different nitrogen application rates and water treatments is 

illustrated in Figure 4.2 a and b for the data sets collected on 31 July from irrigated and 

non-irrigated treatments, respectively. In non-irrigated plots, the treatments that received 

200 and 250 kg N ha- I had comparatively greater reflectance responses. Whereas, in 

irrigated plots the treatments that received 50 and 100 kg N ha- I provided a greater 

response in the visible and near infrared. Although, it is hard to assess why such response 

occurred, it may be attributable to different chemical components of the plants tissues 

(e.g., chlorophyll). Similarly, the lower response from the treatments with higher nitrogen 

application rates cou Id be explained by increased osmotic potential due to excessive 

nitrogen in the irrigated treatments. Furthermore, at the spectral range of 1450-1750 nm 

the reflectance values were higher in the non-irrigated plots. In addition, there was 

greater variation between treatments in that region. The figure c1early demonstrates the 

difference in reflectance values for the various treatments, and it also shows that certain 

wavebands in the visible region and many more in the near infrared region can be useful 

in c1assifying different treatments. 

4.3.3 Plant parameters 

Various crop parameters, such as plant height, leaf greenness, leaf area index 

(LAI), biomass, and soil moisture, were measured during the entire growing season. Crop 
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Figure 4.2 Measured spectral response curves of corn under irrigated and non-irrigated 
conditions with different nitrogen application rate at July 31, 2002 (Nso-N2S0 = 50, 100, 150, 200, 
250 kg ha- I nitrogen treatments). 
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yield and final biomass were also recorded at the harvesting time. In each plot, the height 

of ten different plants was measured. LAI was measured using a LAI-2000 Plant Canopy 

Analyzer (Li-Cor, Inc., Lincoln, Nebraska, USA). LAI has no dimension; however, it can 

be expressed as m2 foliage area per m2 ground area. SP AD Chlorophyll meter (Minolta 

Camera Ltd., Osaka, Japan) was used to measure the greenness or the amount of 

chlorophyll in plants. Ten representative plants from each plot were harvested and 

weighed for the estimation of biomass. Crop yield was ca1culated by harvesting ten 

representative plants, from each plot. Table 4.1 shows the variations in plant parameters 

as a function of different water and nitrogen treatments. 

4.3.4 Data analysis 

The ground-based canopy hyperspectral data were analyzed with the statistical software 

package SAS (Version 8.20, Cary, NC, USA). Firstly, to discriminate between different 

treatments, a set of suitable wavelengths were selected using the STEPDISC procedure of 

SAS. Next, in order to evaluate the discrimination capability of the selected wavelengths, 

two SAS procedures, namely DISCRIM and CANDISC, were used. In addition, Principal 

Component Analysis (PCA) was applied to not only reduce the dimensionality of the 

datasets, but also to generate an uncorrelated data set from correlated data. 

The STEPDISC procedure can perform discriminant analysis using one of three 

procedures: forward selection, backward elimination, or stepwise. The stepwise 

procedure is a combination of forward selection and backward elimination methods, 

where forward selection is used for the inclusion of a variable and backward elimination 

for the removal of variables no longer significant in the mode!. It is recommended that 

the entry significance level for variables be set somewhere between 0.25 and 0.5, and 

0.15 for variable removal (Johnson, 1998). Although the STEPDISC procedure is 

supposed to select the most significant variables suitable for discrimination of the 

treatments, there are no guarantees that the finally selected variables are the best set of 

variables, particularly when there is high collinearity in data (Murray, 1977; Johnson, 

1998; Vrindts et al., 2002). Johnson (1998) noted that while it was counterintuitive, a 

small subset of well-chosen variables often allows a better discrimination between 

treatments than with the entire set of variables. 
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Table 4.1 Plant parameters as a function of different treatments (average of four replicates). 

Irrigated Non-Irrigated 

Nitrogen Nso N100 N1so N200 N2S0 Nso N100 N1so N200 N250 

Yield kg ha'· 10101 10318 12003 12467 12406 6638 7048 7890 7914 8820 

25-Jul 5063 5360 5109 6375 5256 4966 4837 4238 5395 5411 

Biomass 
27-Aug 12319 14838 13962 15204 13920 9335 9889 11837 11778 11696 

(kg ha'· ) 

Final 18275 20569 21859 23032 23689 13700 13953 15480 15698 17738 

31-Jul 2.37 2.45 2.70 2.88 2.54 1.91 2.44 2.60 2.59 2.61 

LAI 7-Aug 3.64 4.02 4.20 4.23 4.08 3.08 3.35 3.70 3.88 3.67 

16-Aug 3.22 3.29 3.59 3.64 3.69 2.21 2.34 2.68 2.84 2.77 

31-Jul 37.5 40.5 47.1 46.8 48.8 37.6 37.5 44.3 44.5 44.3 

SPAD 9-Aug 32.8 44.7 48.1 52.4 47.2 38.3 45.9 44.8 54.8 42.7 

21-Aug 36.3 44.8 49.2 51.9 50.2 32.2 35.2 36.9 36.4 36.9 

31-Jul 142.6 153.3 159.8 174.8 166.2 141.2 140.7 149.5 148.2 144.2 
Plant Height 

(cm) ll-Aug 204.3 222.5 223.2 233.2 222.2 202.1 181.7 200.9 201.3 199.3 

21-Aug 215.2 229.7 230.0 242.0 232.7 210.4 191.0 196.8 201.3 210.9 

Nso-N2S0= 50,100,150,200, and 250 kg ha'· nitrogen treatments 
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Using the DISCRIM and CANDISC procedures of SAS, the suitability of the 

selected wavelengths and/or a subset of selected wavebands were examined with 

discriminant models. Based on the quantitative variables, the DISCRIM procedure 

calculates different discriminant functions for categorizing observations into groups. 

Different parameters that can be used for the development of discriminant 

functions are the individual within-group covariance matrices, or the pooled covariance 

matrix, and prior probabilities of the groups. The misclassification matrices were 

calculated by determining the number of wrongly classified groups in any single classes. 

In CANDISC, all the data set is used for developing the model and no subset is used for 

validation, while the performance of the discriminant models is evaluated using a cross­

validation method in the DISCRIM procedure. 

Also PCA, a procedure which can be employed with correlated data, can generate 

a set of uncorrelated variables from a set of correlated variables. These newly generated 

variables are called principal components (PCs). Overall, the goal of using PCA is to 

reduce the dimensionality of the dataset to an optimal level and, thus, introducing a new 

set of meaningful variables (Johnson, 1998). 

4.4 Results and Discussion 

4.4.1 Selection of wavebands 

Considering the combination of two irrigation and five nitrogen fertilizer levels, 

there were ten groups (or populations), which were used for discrimination purposes with 

the STEPDISC procedure. The summary of the results of the STEPDISC procedure are 

presented in Table 4.2 a to c for reflectance data collected on 31 July, and 10 and 26 

August 2002, respectively. The STEPDISC procedure was able to select the most 

effective of the 1364 wavebands for discriminating between different treatments. The 

numbers ofselected wavebands were 39 for 31 Julyand 10 August, and 38 for 26 August. 

AIso, among all three datasets, sorne ultraviolet wavebands (350-400 nm) were selected. 

For the 31 July data set, the selected wavebands chosen were primarily in the visible 

portion of the spectrum, rather than in the infrared region and shortwave infrared (SWIR), 

as has been found in other two data sets. 
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Table 4.2 a STEPDISC results for waveband selection for July 31,2002, data set 

Number Wavelength Partial 

Step ln Entered Removed R-Square F Value Pr> F 

1 1 420 0.5135 3.52 0.0044 
2 2 453 0.5678 4.23 0.0014 
3 3 448 0.5244 3.43 0.0058 
4 4 407 0.5857 4.24 0.0017 
5 5 488 0.5255 3.20 0.0097 
6 6 471 0.5142 2.94 0.0159 
7 7 446 0.5001 2.67 0.0265 
8 8 678 0.5004 2.56 0.0333 
9 9 426 0.4862 2.31 0.0525 

10 10 498 0.5916 3.38 0.0103 
11 11 677 0.5448 2.66 0.0329 
12 12 365 0.5140 2.23 0.0673 
13 13 360 0.6614 3.91 0.0067 
14 14 389 0.6556 3.60 0.0112 
15 15 428 0.6292 3.02 0.0261 
16 16 445 0.6373 2.93 0.032 
17 17 398 0.6939 3.53 0.0173 
18 18 414 0.7210 3.73 0.0159 
19 19 392 0.7352 3.70 0.0191 
20 20 489 0.7825 4.40 0.0121 
21 21 364 0.7445 3.24 0.0406 
22 22 647 0.8675 6.55 0.005 
23 23 662 0.8157 3.94 0.0333 
24 22 446 0.6982 2.06 0.1616 
25 23 643 0.8408 4.69 0.0201 
26 24 456 0.8303 3.81 0.0459 
27 25 642 0.9277 8.55 0.0084 
28 26 513 0.9393 8.59 0.0145 
29 27 493 0.9646 17.01 0.0032 
30 28 583 0.9947 92.98 0.0003 
31 29 691 0.9929 52.08 0.0039 
32 30 413 0.9999 1940.24 0.0005 
33 31 594 0.999 279.72 0.0036 
34 32 499 1 77901.90 0.0028 
35 33 436 1 103678.00 0.0024 
36 34 354 0.9999 2864.65 0.0142 
37 35 588 1 Infty <.0001 
38 36 388 1 Infty <.0001 
39 37 654 1 Infty <.0001 
40 38 496 1 Infty <.0001 
41 39 613 1 Infty <.0001 
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Table 4.2 b STEPDISC results for waveband selection for August 10, 2002, 
data set 

Number Wavelength Partial 

Step ln Entered Removed R-SQuare F Value Pr> F 

1 1 496 0.4046 2.26 0.0451 
2 2 370 0.7309 8.75 <.0001 
3 3 510 0.5662 4.06 0.002 
4 4 508 0.5167 3.21 0.009 
5 5 1500 0.4913 2.79 0.0196 
6 6 1789 0.4733 2.50 0.0343 
7 7 432 0.5091 2.77 0.0225 
8 8 375 0.462 2.19 0.062 
9 9 1504 0.541 2.88 0.0207 

10 10 511 0.5385 2.72 0.0281 
11 11 492 0.4991 2.21 0.0666 
12 12 1503 0.4715 1.88 0.1175 
13 13 394 0.5003 2.00 0.1004 
14 14 414 0.7249 4.98 0.0022 
15 15 506 0.5384 2.07 0.0974 
16 16 1502 0.5809 2.31 0.073 
17 17 380 0.6692 3.15 0.0269 
18 18 373 0.6449 2.62 0.0559 
19 19 493 0.654 2.52 0.0689 
20 20 454 0.7701 4.09 0.0157 
21 21 457 0.8233 5.18 0.0085 
22 22 443 0.7789 3.52 0.0373 
23 23 452 0.7749 3.06 0.065 
24 24 499 0.8618 4.85 0.0246 
25 25 703 0.9587 15.46 0.0017 
26 26 413 0.9596 13.20 0.0055 
27 27 445 0.9627 11.47 0.0158 
28 28 1129 0.9925 43.84 0.005 
29 29 420 0.9968 68.16 0.0145 
30 30 367 0.9968 76.69 0.0129 
31 31 1514 1 94594.6 0.0025 
32 32 1471 1 2879414.00 0.0005 
33 33 794 1 5951096.00 0.0003 
34 34 1145 1 9092832.00 0.0003 
35 35 598 1 252066.00 0.0015 
36 36 467 0.9999 4220.56 0.0113 
37 37 699 1 Infty <.0001 
38 38 1142 1 Infty <.0001 
39 39 770 1 Infty <.0001 
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Table 4.2 c STEPDISC results for waveband selection for August 26, 2002, data set 

Number Wavelength Partial 

Step ln Entered Removed R-Square F Value Pr> F 

1 1 461 0.6469 6.11 <.0001 
2 2 388 0.4994 3.21 0.008 
3 3 425 0.4949 3.05 0.0113 
4 4 724 0.4931 2.92 0.015 
5 5 1798 0.4670 2.53 0.0311 
6 6 396 0.4919 2.69 0.0244 
7 7 1231 0.5319 3.03 0.0145 
8 6 461 0.3646 1.53 0.1938 
9 7 1227 0.546 3.21 0.0108 

10 8 426 0.5291 2.87 0.0198 
11 9 379 0.5168 2.61 0.0318 
12 10 373 0.5696 3.09 0.0159 
13 11 386 0.5274 2.48 0.0435 
14 12 1561 0.5671 2.77 0.0296 
15 13 435 0.5603 2.55 0.0436 
16 12 373 0.3972 1.32 0.2944 
17 13 456 0.5822 2.79 0.0307 
18 14 1167 0.6439 3.42 0.0141 
19 15 444 0.6448 3.23 0.0198 
20 16 1232 0.7379 4.69 0.0043 
21 17 1210 0.6937 3.52 0.0174 
22 16 1231 0.521 1.69 0.1822 
23 17 1295 0.7594 4.91 0.0042 
24 18 420 0.6987 3.35 0.024 
25 19 1177 0.7656 4.36 0.0103 
26 20 458 0.7722 4.14 0.0151 
27 21 384 0.7907 4.2 0.0176 
28 22 1173 0.8773 7.15 0.0036 
29 23 460 0.8451 4.85 0.0183 
30 24 1240 0.9095 7.82 0.0064 
31 25 1184 0.9405 10.53 0.0048 
32 26 375 0.9168 8.26 0.0095 
33 27 1196 0.974 23.4 0.0015 
34 28 1297 0.9953 104.93 0.0002 
35 29 370 0.9887 32.94 0.0077 
36 30 451 0.9988 204.9 0.0049 
37 31 1239 0.9989 250.38 0.004 
38 32 1168 1 49415.8 0.0035 
39 33 1149 1 32459.6 <.0001 
40 34 432 1 7091.84 0.009 
41 35 1159 1 6.78E+08 <.0001 
42 36 440 1 Infty <.0001 
43 37 1200 1 Infty <.0001 
44 38 1312 1 Infty <.0001 
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As mentioned earlier, Johnson (1998) had reported that, although it was difficult 

to explain, a smaller subset of well-chosen variables may often pennit better 

discrimination between treatments than can be obtained with the entire set of variables, 

selected by the STEPDISC procedure, particularly wh en inter-collinearity exists in the 

data. However, there is no systematic method for selecting this subset of variables. Below, 

we propose a systematic method of variable selection based on the DISCRIM procedure 

of SAS. 

4.4.2 Discriminant analysis 

The DISCRIM procedure was used to select the best subset of data which could 

discriminate between different categories within the data. For this purpose, different 

DISCRIM models were applied using various numbers of wavebands, chosen on the 

basis of their order of entry in the STEPDISC procedure selection. In the development of 

DISCRIM models, the data can be divided into two parts. The first part is used for the 

construction and development of the model (calibration), while the second "unseen" part 

is used to validate the classification accuracy of the model. Since our data sets are small, 

we repeatedly used "take one data-out approach" for cross-validation. A summary of the 

results for all three data sets is presented in Table 4.3. Generally speaking, using all 

wavebands selected with the STEPDISC procedure provided higher accuracy in the 

calibration phase than during cross-validation. However, using subsets of wavebands, 

based on their order of entry into the STEPDISC procedure, decreased classification 

accuracy for the calibration data sets. For cross-validation, the accuracy first increased up 

to a certain numbers of wavebands and then decreased thereafter. The classification 

matrices for the 31 July and 10 August data sets showed that the DISCRIM procedure 

was fully able to classify all different treatments. For the 26 August data set, the 

misidentification rates were 2.5% and 5% respectively for calibration and validation data 

sets (Table 4.3). 

The classification results for the cross validation data sets are provided in Table 

4.4 a and b for the 31 July and 26 August datasets. The results for the August 10 data set 

are similar to those for the July 31 data set. The wavelengths of the selected wavebands 
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are also listed in the table. For the 31 July data set, aIl selected wavebands are within 350 

- 700 nm (about 50% are in the green region). In the case of 26 August data set, nearly 

44% of the selected wavebands are located in near-infrared region. Although 43% of the 

selected wavebands are located in the green region for the August 10 data set, sorne 

wavebands from the near-infrared and SWIR (20 %) region were also chosen. This 

supports previous work that showed the SWIR spectral data along with that from other 

wavelengths can be useful for water stress detection. These wavebands are mainly 

concentrated around a wavelength of 1500 nm. 

Comparing results for different chosen subsets, one notes that, whenever the F 

value approaches infinity, the DISCRIM procedure is no longer able to discriminate 

treatments in a significant way. For example, on 31 July, the discrimination error risk of 

the DISCRIM procedure was estimated to be 57.5 percent when applied to aIl selected 

wavebands from STEPDISC (39 wavebands), whereas for the first 34 wavebands (for 

which F was not very large), the DISCRIM procedure was able to fully and correctly 

discriminate the different treatments. Similarly, zero discrimination error was obtained 

with the first 30 selected wavebands on 10 August. For 26 August, in the best case (first 

25 wavebands), the DISCRIM procedure exhibited a 95% accuracy. In the case of the 31 

July data, the DISCRIM procedure was able to fully and correctly classify variables, 

using anywhere from 26 to 34 wavebands. 

In addition to the DISCRIM procedure, a canonical discriminant analysis (CDA) 

was performed by applying CANDISC procedure. The main challenge was how to 

choose an effective subset from the wavebands, selected from the STEPDISC procedure. 

For this purpose the CANDISC procedure was performed with different subsets. In the 

selection of subsets, different wavebands were again selected based on their entrance 

order in the STEPDISC procedure. The best results for the three sampling dates, with 

classes being the irrigation and nitrogen treatments, were obtained using a subset of 20 

wavebands (results of CANDISC for 31 July are given in Table 4.5). In aIl three cases, a 

squared canonical correlation of approximately 0.99 was obtained. The total variance 

explained by only the first two canonical functions were 94.6,83.7, and 93.7 % for the 31 

July, and 10 and 26 August data sets, respectively. Using the first two canonical variables, 

68 



Table 4.3 Summary ofmisc1assification matrices obtained from DISCRIM procedure (%) 

luly 31, 2002 Au ust 10 2002 August 26 2002 
~ S VI -a c c .. c c c VI c c ra 0 ra ra 0 -a 0 oC oC 0 .... c ::I~ .. :2 .. ::1 .. .. QI 

~ ~ ~ o~ ra > ii o ra .. o ra ; :2 > ; :2 .. -a ~~ :2 .. -a 
u= u= a ::1 a ra ra a ra 

~ .... > ~ > e 0 
~ u ~ 

39 0.0 57.5 39 0.0 70.0 38 2.5 42.5 
34 0.0 0.0 36 0.0 27.5 35 2.5 10.0 
30 0.0 0.0 30 0.0 0.0 31 2.5 7.5 
25 0.0 5.0 25 0.0 10.0 27 2.5 5.0 
20 0.0 25.0 20 0.0 27.5 25 2.5 5.0 
15 0.0 40.0 15 0.0 42.5 20 2.5 15.0 
10 10.0 45.0 10 10.0 50.0 15 5.0 37.5 
5 15.0 77.5 5 0.0 95.0 10 7.5 50.0 
3 47.5 70.0 3 20.0 95.0 5 2.5 92.5 

Table 4.4a Classification Matrix obtained from DISCRIM procedure for cross 
validation case in July 31 data sets 

Predicted 
Irr- Irr- Irr- Irr- Irr- Nlrr- Nlrr- Nlrr- Nlrr- Nlrr-
N50 N lOo N'50 N zoo N Z50 N50 NlOo N'50 N zoo NZ50 Total 

Irr-N5o 4 0 0 0 0 0 0 0 0 0 4 

Irr-N,oo 0 4 0 0 0 0 0 0 0 0 4 

Irr-N'5o 0 0 4 0 0 0 0 0 0 0 4 

Irr- N200 0 0 0 4 0 0 0 0 0 0 4 

ii Irr- N250 0 0 0 0 4 0 0 0 0 0 4 

= Nlrr- N50 0 0 0 0 0 4 0 0 0 0 4 -C.J « Nlrr- N,oo 0 0 0 0 0 0 4 0 0 0 4 

Nlrr- N'50 0 0 0 0 0 0 0 4 0 0 4 

Nlrr- N zoo 0 0 0 0 0 0 0 0 4 0 4 

Nlrr- NZ50 0 0 0 0 0 0 0 0 0 4 4 

Total 4 4 4 4 4 4 4 4 4 4 40 

Selected 420,453,448,407,488,471,678,426,498,677,365,360,389,428,445,398,414, 
wavebands 392,489,364,647,662,643,456,642,513,493,583,691,413 

- - - -, Irr - Irngated, Nlrr - non-Irngated, Nso-N2SO- 50, 100, 150, 200, and 250 kg ha mtrogen 
treatments. 
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Table 4.4b Classification Matrix obtained from DISCRIM procedure for cross 
rd f . A t 26 d t t va 1 a Ion case In ugus , a a se s 

Predicted 
Irr- Irr- Irr- Irr- Irr- NIrr- NIrr- NIrr- NIrr- NIrr-
Nso N lOo N1so N200 N2S0 Nso N 100 N1so N200 N2S0 Total 

Irr-Nso 4 0 0 0 0 0 0 0 0 0 4 

Irr-N 1oo 0 4 0 0 0 0 0 0 0 0 4 

Irr-N 1so 0 0 4 0 0 0 0 0 0 0 4 

Irr- N200 0 0 0 3 0 0 0 1 0 0 4 

-; Irr- N2S0 0 0 0 0 4 0 0 0 0 0 4 

= NIrr- Nso 0 0 0 0 0 4 0 0 0 0 4 -CJ « NIrr- N100 0 0 0 0 0 0 4 0 0 0 4 

NIrr- N1so 0 0 0 1 0 0 0 3 0 0 4 

NIrr- N200 0 0 0 0 0 0 0 0 4 0 4 

NIrr- N25Q 0 0 0 0 0 0 0 0 0 4 4 

Total 4 4 4 4 4 4 4 4 4 4 40 

Selected 388,425,724,1798,396,1227,426,379,386,1561,435, 456,1167,444,1232, 
wavebands 1210,1295,420,1177,458,384,1173,460,1240,1184 

- - - ·1 Irr - Irngated, Nlrr - non-Irngated, Nso-N2SO- 50, 100, 150, 200, and 250 kg ha mtrogen 
treatments. 

Table 4.5 Canonical discriminant analysis for Irrigation with Nitrogen as c1ass 
variable, using the first 20 selected wavebands (July 31, 2002) 

Squared 
Canonical Canonical Cumulative Approx 

Eigenvalues Correlations Correlations Variability F Value Pr> F 

1 368.650 0.999 0.997 0.833 5.15 <.0001 
2 50.295 0.990 0.981 0.946 3.06 <.0001 

3 8.480 0.946 0.895 0.966 2.11 <.0001 

4 6.270 0.929 0.862 0.980 1.8 0.0026 

5 4.684 0.908 0.824 0.990 1.48 0.0436 
6 1.927 0.811 0.658 0.995 1.11 0.3439 
7 1.183 0.736 0.542 0.997 0.93 0.5916 

8 0.842 0.676 0.457 0.999 0.79 0.7321 
9 0.339 0.503 0.253 1 0.54 0.8642 
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the irrigation and nitrogen treatments were distinguished into different classes for each of 

the sampling dates (Figure 4.3-4.5). These Figures show that, using only two canonical 

variables, CDA was able to differentiate most of the classes. 

The PCA was carried out next using the PRINCOMP procedure of the SAS 

software. PRINCOMP was applied both to wavebands, selected through the STEPDISC 

procedure, and to the complete reflectance data sets for the three days. For the 31 July 

data set, the first 10 eigenvalues of the covariance matrix, the difference between 

successive eigenvalues, the proportion of the covariance explained by each eigenvalue, 

and the cumulative proportion of the explained variance is presented in Table 4.6. With 

pre-selected wavebands, 93.5% of the variance was explained by the first PC, whereas, 

using aIl wavebands, only 89.2 percent of the variance was explained by the first Pc. 

Similarly, using aIl wavebands, the variance explained by the first PC was 77.5% and 

99.2% for August 10 and 26, respectively. It was 78.7% and 61.7% for August 10 and 26, 

respectively, using the wavebands selected with the STEPDISC procedure. In aIl cases, 

more than 99 percent of variance was explained by the first five PCs. Moreover, the 

ability of PCs for classifying the different treatments with DISCRIM and CANDISC 

procedures was also explored. For aIl three days, although the DISCRIM procedure was 

able to identify the different treatments during the calibration step, no satisfactory results 

were obtained during the cross-validation phase. This may have resulted from the limited 

number of samples for each treatment (four in our case). Similarly, CANDISC models 

were also developed using different number of PCs. The results showed that CANDISC 

may produce better classification accuracies with higher numbers ofPCs. 

4.5 Conclusions 

Appropriately selected narrow waveband hyperspectral observations can be used as a 

valuable source of information regarding agricultural crop parameters. A stepwise 

approach was highly effective in selecting the significant wavebands for further analysis. 

Using aIl wavebands identified by the stepwise procedure and various discriminant 

analysis methods, differentiation between the various irrigation and nitrogen treatments 
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Figure 4.3 Canonical discriminant analysis of July 31 data set with irrigation and nitrogen as class 
variables (Irr = irrigated, Nlrr = non-irrigated, NI-N5= 50,100,150,200, and 250 kg ha- I nitrogen treatments). 
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Figure 4.4 Canonical discriminant analysis of August 10 data set with irrigation and nitrogen as class 
variables (Irr = irrigated, Nlrr = non-irrigated, NI-N5= 50,100,150,200, and 250 kg ha- I nitrogen treatments). 

73 



Can1 
30 

20 

10 

o 

-10 

-20 

-30 

-40 

-15 

ee 
e e 

c 

-10 

a 
aa a 

b b b 
c b c 

c 

-5 

d h 
dd h 

o 

Can2 

i 

i 

9 9 
9 

ii f f 

5 

ff 

a: Irr + NI f: NIrr + NI 
b: Irr + N2 g: NIrr + N2 
c: Irr + N3 h: NIrr + N3 
d: Irr + N4 i: NIrr + N4 
e: Irr + N5 j: NIrr + N5 

10 

j 
j 

15 

Figure 4.5 Canonical discriminant analysis of August 26 data set with irrigation and nitrogen as 
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Table 4.6 Eigenvalues of the correlation matrix ca1culated from PRINCOMP procedure 
(July 31, 2002) 

Using aIl wavebands 
Using selected wavebands from 

n STEPDISC 
o '"""C 
3 :1. m 9 '"""C n m 9 '"""C n 

'"0 ::s 00· '"1 s:: 00· '"1 s:: o (") 
(1) ;!:l 0 3 (1) ;!:l 0 3 ::s _. 
::s '"0 ::s '"0 (1)'"0 (1) 

0 E. (1) 
0 s:: ::s E:.. < '"1 < '"1 

~ ...... III (1) d. III III (1) :l 
en 2" ::s ::. 2" ::s o· ::. 

(") 0 < (") < (1) (1) ::s (1) (1) ::s en (1) en (1) 

Prin 1 1216.791 1139.710 0.892 0.892 35.530 33.347 0.935 0.935 
Prin2 77.081 28.699 0.057 0.949 2.184 2.051 0.058 0.993 
Prin3 48.382 33.047 0.036 0.984 0.133 0.072 0.004 0.996 
Prin4 15.335 12.954 0.011 0.995 0.061 0.037 0.002 0.998 
Prin5 2.380 1.028 0.002 0.997 0.025 0.015 0.001 0.998 
Prin6 1.353 0.629 0.001 0.998 0.010 0.001 0.000 0.999 
Prin7 0.723 0.333 0.001 0.999 0.009 0.002 0.000 0.999 
Prin8 0.390 0.092 0.000 0.999 0.007 0.001 0.000 0.999 
Prin9 0.298 0.079 0.000 0.999 0.005 0.001 0.000 0.999 

Prin10 0.219 0.057 0.000 0.999 0.005 0.001 0.000 0.999 

was not al ways successful. However, wh en a weIl-chosen subset of selected wavebands 

was used, the results from the discriminant analysis methods were greatly improved. 

The discriminant analysis method was found to be very use fui in identifying 

different treatments, showing only 5% misclassification rate for the 26 August 

observations, and 0% misclassification rates for the 31 July and 10 August observations. 

However, the number of significant wavebands varied with time. The CDA showed good 

capability in identifying the different treatments. The variability that could be explained 

by the first two canonical functions was more than 94% for the 31 July and 26 August 

data sets, and about 84% for the 10 August data. Principal component analysis was also 

found to be use fui in highlighting and reducing data dimensionality. 
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PREFACE TO CHAPTER 5 

We have so far detennined that hyperspectral infonnation, collected from both 

airborne and handheld sensors, cou Id be used for differentiating between weed, nitrogen 

and water stresses in a corn field. Thereafter, the study was focused on using a crop 

growth model, namely sncs, for the prediction of crop yield under such stresses. First, 

the applicability of model was evaluated for our climatic conditions, and th en efforts 

were made to link the model with hyperspectral data. This was accomplished by 

estimating the LAI values of the crop canopy from remote sensing observation, and using 

these LAI values in the model. Chapter 5 is focused on nitrogen and water treatments. 

The effect of weed treatments on crop yield estimation, using the sncs model, is 

discussed in Chapter 6. 

Research papers based on the chapter: 

Karimi, Y., S. O. Prasher, H. McNairn, R. B. BonneIl, and P. K. Goel. 2004. Coupling 

sncs crop growth model with remote sensing data for corn growth simulation in 

Eastern Canada. (under preparation). 
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CHAPTER5 

MODE LING CORN GROWTH IN SOUTHWESTERN QUEBEC 

WITH THE STICS MODEL 

5.1 Abstract 

Crop growth models have shown promise in simulating crop biomass and in yield 

prediction on a field scale. However, their applications have remained restricted due to 

their huge data requirements. Considering the capability of remote sensing in data 

collection, the main objectives of the study were to: (i) evaluate the performance of 

STICS, a crop growth model, for Eastern Canada, (ii) to estimate LAI values from 

hyperspectral observations, and (iii) to incorporate the LAI values thus determined into 

the sncs model. 

The data for the model evaluation were obtained from 2000 to 2002 at the 

Macdonald Campus Farm of McGill University, Ste-Anne-de-Bellevue, Quebec, Canada. 

Corn was grown under different agricultural practices, including different rates of 

irrigation and nitrogen application. The model was calibrated using the data collected 

from the treatments that received the recommended nitrogen fertilizer rate for the region. 

The remaining data were used for the validation of the model. Both calibration and 

validation were performed on the basis of measured yield, biomass, and LAI. The 

calibration and evaluation of the STICS model illustrated that the model has the potential 

capacity to simulate corn growth in Eastern Canada. 

The year 2000 data was used for LAI estimation from airborne hyperspectral 

observations. Hyperspectral observations were collected using a Compact Airborne 

Spectrographie Imager (CASI) sensor, in 72 narrow wavebands from 407-949 nm. 

Observations were made three times over the growing season: 30, 66 and 86 days after 

sowing, corresponding to early growth, tasseling and fully-mature stages, respectively. 

Crop growth parameters such as LAI, leaf greenness (SP AD), and plant height were also 

measured at the same time. A support vector machine algorithm (SVM) was used to 

develop regression models for LAI estimation from hyperspectral data. Using a leave-
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one-out method for cross-validation the capacity of the SVM-based model to estimate 

LAI was investigated. 

Crop yield and biomass were better simulated than under the standard application 

of the model, which confirmed previous studies. 

5.2 Introduction 

The growing demand for greater agricultural production makes agriculture a 

highly strategic domain. In this regard, availability of reliable and accessible information 

on crop production estimates, early in the growing season, is an important issue. Two 

main approaches to generating such information are statistical methods and crop growth 

models. With statistical methods (Makowski et al., 2001), measured crop yield is related 

to one or more parameters. The relationship obtained is used to predict the yield in 

upcoming years. The simplicity of these methods is their main advantage. However, the 

disadvantage of these methods is that they do not consider variations in growth 

parameters over the entire season. Crop growth models, on the other hand, simulate crop 

growth by defining relationships between various crop growth characteristics, weather 

parameters, soil properties, and nutrient availability. 

Crop growth models simulate crop growth and development in terms of daily dry 

matter production, thereby allowing them to make simulations at any time during the 

growth season, as weIl as the final yield at harvest. Earlier versions of crop models 

usually simulated crop growth and yield under homogeneous field conditions. However, 

recently developed models are able to simulate plant growth in non-homogeneous areas 

(Irmak et al., 2000). 

The use of these models in crop growth monitoring is limited due to enormous 

data requirements of models in terms of soil conditions and agricultural practices over the 

entire growing season. With the existing methods, data collection is labor-intensive and 

time-consuming. In this regard, with remote sensing techniques large quantities of such 

information can be easily and more frequently collected for large areas (Erickson, 1984; 

Atkinson and Tatnall, 1997). However, the potential of remote sensing in crop 

production estimation is not fully investigated (Moulin et al., 1998). For a more 
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quantitative analysis, more advanced approaches are required to estimate yields, 

inc1uding the incorporation of RS observations into crop growth models (Wiegand et al., 

1986). Many researchers have tried to link remote sensing systems with various crop 

growth models. These inc1ude SUCROS (Clevers and Leeuwen, 1996; Clevers, 1997; 

Guérif and Duke, 1998), SWAP (Mi chaud et al., 1998), CROPGRO-Soybean (Innak et 

al., 2000), ROT ASK (Clevers et al., 2000) and STICS (Prévot et al., 2000a,b). Amongst 

these models STICS stands outs for its flexibility (Brisson et al., 1998). Moreover, in the 

STICS model the observed data can be used directly (such as LAI, an important 

parameter reflecting ground biomass coyer) as model input. Its adaptability provides an 

added advantage in linking STICS with remote sensing observations. 

Reflectance from an object or a target such as a crop canopy is the consequence of 

numerous factors, which adds difficulty to the remote sensing technique's differentiation 

and quantification of objects. To conquer this complexity, more comprehensive 

measurements are needed, which cou Id be acquired with the use of hyperspectral sensors 

that offer data acquisition in much narrower wavebands, and which appear to be a more 

effective tool for data collection than multispectral sensors. Given the complexities of 

this recent technology, the present research was conceived with a more controlled and 

defined experimental setup. In this con tex t, first the STICS model was calibrated and 

validated for the project environment. Next, LAI values were estimated from 

hyperspectral remote sensing observations using a support vector machine approach. 

Lastly, the coupling of STICS with hyperspectral RS was investigated by way of using 

RS-derived LAI values in the STICS model. This investigation was carried out under 

conditions, reflecting different nitrogen application rates and different water regimes. The 

project sought to provide a tool for efficient management of agricultural fields and better 

simulation of crop biomass and yield. 

In order to test the perfonnance of the model, it was essential to compare 

predicted values with observed data. A widely used method for this comparison is the 

correlation-regression analysis (Teo et al., 1992; Chapman et al., 1993; Mayer et al. 

1994; Retta et al., 1996; Kiniry et al., 1997; Kobayashi and Salam, 2000), wherein the 

correlation between estimated and measured data is detennined by applying at-test to 

evaluate prediction accuracy (Teo et al., 1992; Kiniry et al., 1997; Kobayashi and Salam, 
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2000). The regression analysis can determine the measure of relationship between the 

estimated and observed data. It can also provide a simultaneous test for a slope value of 

one and intercept value of zero, which are the values in the case of full agreement 

between simulated and measured data. For this evaluation, null and alternative 

hypotheses can be set as: 

Ho : Slope = 1 and Y - Intercept = 0 5.1 

Hl : Slope ;t; 1 or Y - Intercept ;t; 0 5.2 

Furthermore, simulated and measured data can be directly evaluated by using 

various methods that deal with the differences between simulated and observed data. 

Root mean square error (RMSE), relative RMSE (RRMSE), mean square deviation 

(MSD), and mean deviation (MD) are sorne examples of these methods (Retta et al., 

1996; Kiniry et al., 1997; Kobayashi and Salam, 2000). 

The overall goals of this study were to: (i) to evaluate the performance of STICS, 

a crop growth model, for monitoring corn growth under different growth conditions in 

southwestern Quebec, (ii) to estimate crop parameters such as LAI using remote sensing 

data, and (iii) to link remote sensing data with the STICS model. 

5.3 Materials and Methods 

5.3.1 Study site and experimental details 

Experiments were conducted at the Research Farm of Macdonald Campus, 

McGill University in Ste-Anne-de-Bellevue, Quebec, Canada from 2000-2002 growing 

seasons. Corn, the main crop of the region, was selected and grown under different 

agricultural practices, including different weed control regimes, and different rates of 

irrigation and nitrogen fertilizer application. Corn was planted at a 0.75 m row spacing 

and at a density of 76,000 plants haol
• 

Experimental details for the years 2000 and 2002, are presented in sections 3.3.1 

and 4.3.1, respectively. In 2001, a field experiment was carried out at the Lods 

Agronomy Research Center of Macdonald Campus, McGill University, Ste-Anne-de-
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Plot size 9 m x 9 m 

W2 WI W4 W3 .- ~ .---------~ .. ~ +---------- --~ 

INoHN,I~ [;I;G [;I;G N-Irr N2 No NI N2 No N1 

W4 W2 W3 WI 
.. ~ .. ~+ ~ .. ~ 

HN,INOIHNOH HN,INoIHN,H Irr 

No : No nitrogen 
NI : Normal nitrogen 
N2 : High nitrogen 

W 1 : No weed control 
W2 : Grass control 
W 3 : Broad leaf control 
W 4: Full weed control 

/N 
WI W3 W2 W4 .. ~ .. ~ .. .. . ~ 

INol N,H IN,IN,INoIIN' IN,IN,I ~ Irr 
W3 W4 WI W2 

~-----. .. ~ +----------. .--------. 

HN,INoIINoIN,H INoIN,IN,1 HN,INol N-Irr 
W2 WI W4 W3 

+------•• ------. +----------- •• ------- ~ 

1 N,I Nol N,IINoIN,H INoIN' H INo IN,IN, Ilrr 
W4 W2 W3 WI 

+---------. • ~ .----------Jo. ~ 

1 N,I N,INo Il N,I NoH INo IN,IN' Il N,I N,INo 1 N-Irr 

Figure 5.1 Experimentallayout, 2001 (lrr, N-Irr are irrigated and non-irrigated treatments, respectively). 

81 



Bellevue, Québec, Canada (45°25' 45"N lat., 73°56 'OO"W long.). A schematic diagram of 

the experimental design is shown in Figure 5.1. Corn plots were arranged in a split-split 

plot layout, with two irrigation water regimes (with and without), three nitrogen 

application rates (60, 120, and 250 kg N ha- I
), and four weed controls regimes (no control, 

control of grasses, control ofbroad-Ieafs, control ofboth) as main, sub, and sub-sub-plots, 

respectively. 

5.3.2 Crop parameters 

Measurements of various crop canopy and other parameters, including plant 

height, leaf greenness, LAI, biomass and soil moisture, were taken during the entire 

growth period. Crop yield and final biomass were measured at season's end. The LAI (m2 

foliage area per m2 ground area) was measured with a LAI-2000 Plant Canopy Analyzer 

(Li-Cor, Inc., Lincoln, Nebraska, USA). Biomass was estimated on the basis of five to ten 

plants per plot that were harvested and weighed. Finally, ten representative plants from 

each plot were harvested and used to estimate crop yield and final biomass. 

5.3.3 Methodology 

Different components of the STICS model, describing various mechanisms, were 

first calibrated, and th en validated. Furthermore, considering the ability of the STICS 

model to use LAI data as input, the LAI values were estimated from aerial remote sensing 

data, using support vector machine (SVM), a new innovative data mining tool (Vapnik 

1995; Burges 1998). Finally, using the estimated LAI values as input data in STICS, crop 

yield was simulated. 

5.3.3.1 STICS model and its modules 

STICS simulates daily growth in terms of aboveground biomass (carbon and 

nitrogen) of crop, and the LAI on the basis of soil parameters and climatic data over a 

period ranging from emergence to harvest time. In STICS, evaporation can be ca1culated 

by the Priestly-Taylor (PT), Penman (PE), or stomatal resistance model (SW). The soil 

profile is divided into a maximum of five homogenous layers. For simulation purposes, 

each layer is defined by its water and nitrogen content. Moreover, the soil properties 

included for each layer are thickness, bulk density, field capacity, and wilting point. 
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Interaction between plant and soil is done by roots, which are defined by their length 

distribution in the soil profile. The crop growth simulation is performed on the basis of 

carbon and nitrogen balance. As a result, agricultural production (biomass, yield) can be 

computed, and environmental impact (water and nitrogen leaching) of different 

agricultural conditions can be assessed (Brisson et al., 1998). 

The crop growth period is divided into seven stages for the entire growing season 

(Table 5.1). These stage classifications are slightly different from the ones generally used 

in agronomy. The stages are defined to facilitate simulating LAI and grain filling. 

Dividing the growth period into various stages makes it possible to simulate different 

crops or species. In sncs, the simulation starts by determining the seed germination 

time, which is related to soil temperature at sowing depth. The germination starts wh en 

the sum of degree-days meets a defined threshold value for the specified crop. 

Table 5.1 Crop development stages in sncs 
Fortran Description 

notation 

ILEV day-of-the-year of occurrence stage LEV (emergence) 

IAMF 
day-of-the-year of occurrence AMF (greatest acceleration in leaf 

growth, end of the juvenile phase) 

ILAX day-of-the-year of occurrence LAX (Maximum LAI value) 

IDRP day-of-the-year of occurrence DRP (beginning of grain filling) 

ISEN day-of-the-year of occurrence SEN (beginning of net senescence) 

IMAT day-of-the-year of occurrence MAT (Physiological maturity) 

IREC day-of-the-year of occurrence REC (Harvest) 

To estimate the LAI values, growth period is divided into four stages namely: 

two growth stages, one stability stage and one senescence stage. Since, the model 

assumes that the radiation is mainly intercepted by the plant canopy, it is important to 

have an accurate estimation of LAI. For the stability phase, where interception is at its 

maximum value, accuracy of LAI estimation has less significance. LAI is estimated with 

a non-linear equation for the period from emergence to the maximum LAI. A constant 
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value LAI is assumed for the period between maXImum LAI and the beginning of 

senescence. For the senescence period, the LAI is assumed to decrease linearly. One of 

the important features of STICS is that measured LAI values can be incorporated in the 

simulation process. The model also offers non-linear relationships of LAI with time, and 

interpolates LAI on daily basis. This feature is use fui when the user has a series of 

measured LAI that can replace the simulated LAI. 

For the calculation of yield components, a period of variable duration is set to 

calculate grain number, based on the mean growth rate of the crop canopy during this 

period. The total dry matter and the nitrogen content of the grain are related to the above 

ground biomass by sorne harvest indices (nitrogen and carbon harvest indices). These 

indices are used to calculate the magnitude of grains and the quantity of nitrogen in 

grams. 

In STICS, root growth is defined in term of its length. Based on the radiation use 

efficiency, root biomass is calculated from the above ground foliage, and in turn, the root 

length is estimated from root biomass. The root front development depends on the crop 

variety, crop temperature, soil depth, and water availability. In the model, the active root 

front rate is related to soil water conditions and crop temperature. 

The crop growth is simulated in the model using seven different modules, namely: 

development, shoot growth, yield component, root growth, water balance, thermal 

environment and nitrogen balance. For each module, a number of input variables and 

parameters are required. While the values of certain parameters are fixed for a particular 

condition, often variable values (e.g., climatic data) change with time. In addition, there 

are sorne structural parameters, which are different from the input parameters, and are 

independent from the soil, the plant, and the crop management practices. The variables 

are further grouped as, external, internaI driving, and output variables, which are based 

on climatic data, come from other modules, and are calculated within a module, 

respectively. A detailed description of STICS is provided in appendix A. 

5.3.3.1.1 Inputs and outputs 

In the STICS model, aIl inputs and outputs are arranged in different files. The first 

input file contains climatic data, which include date, climatic station information, 
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minimum and maximum temperatures, radiation, and rainfall. A monthly summary of 

climatic data is provided in Table 5.2. The second input file contains parameters relating 

to cultural practices. It includes aIl the data regarding plant species, seeding information, 

growth stages, fertilization, irrigation, tillage and input of organic residues. Table 5.3 

provides necessary information on cultural practices variables for the growth period. The 

third input file specifies the permanent characteristics of the soil, which are required for 

the simulation, including texture, soil depth, field capacity, and permanently wilting point 

of different layers (to a maximum of five). 

Sorne of the models outputs for crop growth are: nitrogen content of the plant and 

soil, soil moisture, LAI, biomass, yield and grain number, which are calculated on a daily 

basis. These parameters are formatted and split up into different output files along with 

other output parameters. A sample set of input and output data files are given in a CD. 

5.3.3.1.2 Calibration of the model 

The model calibration was performed by adjusting different parameters based on 

data from the treatments that received 120 - 150 kg N ha-1 (the recommended application 

rate of the region) during the simulation period. Crop growth stages defined in the model 

depend on agronomical growth stages and the variety of crop. For corn, they are "silking", 

"ons et of grain" and "physiological maturity". These growth stages are redefined in the 

STICS model, as shown in Table 5.1 (Brisson et al., 1998, 2002). In addition, LAI, 

biomass and grain yield parameters, which describe the development of the biomass (e.g., 

optimum temperature, conversion efficiency factor) and grain yield (e.g., maximum and 

minimum grain numbers), were adjusted to match the observed yield (Table 5.4), along 

with the range of the parameters that were used for testing. The adjustment procedure 

was performed by a trial and error method. In each trial, an effort was made to optimize 

one parameter, assuming that other parameters values remained constant. In this way, the 

optimum combination of the parameters was obtained. 

5.3.3.1.3 Evaluation of the Model Performance 

For the evaluation of the STICS model, the yield, biomass, and simulated LAI 

data used for model calibration were not used. The performance of the model was 
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Table 5.2 Mean monthly temperature, relative humidity, and total precipitation for the 
growing season during the simulation period and for a normal year (based on Ste Anne 
station) 

May June July August September October 

Precipitation (mm) 132.3 87.0 79.2 123.9 82.5 26.1 

0 Radiation (MJ m-2
) 528.1 574.1 618.8 525.5 404.1 247.3 

0 
0 11.) 
N 1-0 Min. 7.6 11.2 14.4 14.2 8.2 3.9 1-0 ::s 
ro ..... 
11.) 

ro __ 
1-00 Max. 17.9 21.4 24.1 23.7 18.7 13.0 >- 11.) U 
0.._ 
E 

Mean 12.7 16.3 19.3 18.9 13.4 8.5 11.) 

E-< 

Precipitation 70.5 57.7 36.6 56.9 78.3 77.9 

- Radiation (MJ m-2
) 582.0 617.5 624.0 575.8 416.9 NIA 

0 
0 11.) 
N 1-0 Min. 9.3 13.7 14.1 14.7 10.1 6.0 

1-0 ::s 
ro ..... 
11.) 

ro __ 
1-00 Max. 20.2 24.8 24.5 27.8 21.6 14.8 >- l1.)u 
0.._ 
E 

Mean 14.7 19.3 19.3 21.2 15.8 10.4 11.) 

E-< 

Precipitation 146.2 68.6 31.9 8.4 64.5 64.6 

N Radiation (MJ m-2
) 623.0 723.1 920.7 710.6 556.7 366.6 

0 
0 11.) 
N 1-0 Min. 6.9 12.4 17.0 16.0 12.5 3.3 1-0 ::s 
ro ..... 
11.) 

ro __ 
1-00 Max. 15.2 22.0 26.8 26.6 23.5 11.3 >- l1.)u 
0.._ 
E 

Mean 11.1 17.2 21.9 21.3 18.0 7.3 11.) 

E-< 

Precipitation 74.8 68.3 82.5 85.6 100.3 86.5 -- Radiation (MJ m-2
) 

11.)0 NIA NIA NIA NIA NIA NIA 01)0\ 
roO\ 
1-0- 11.) 
11.) 1 1-0 Min. 0.6 7.3 12.5 15.4 14.1 9.3 >- ::s 
ro\O ..... ro __ 
00\ 1-00 

Max. 10.7 18.5 23.4 26.2 24.6 19.8 M- l1.)u - 0.._ 
E 

Mean 5.7 12.9 18.0 20.8 19.4 14.6 ~ 
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Table 5.3 Details on cultural practices 

Year Operation Date Specifie details 
Sowing May 30 76000 seeds ha·' 

0.75 m row spacing 

0 Harvest October 10 
0 Fertilization a. May 30 10-l20-50, in aIl plots (N-P205-K20) (kg ha·') 0 
~ 

b. June 01 o in N60; 10 in N 12o; 90 in N250 (N kg ha- I
) 

c. July 12 50 in N60; 100 in N 12o; 150 in N250 (N kg ha- I
) 

Sowing May 10 76000 seeds ha-' 
0.75 m row spacing 

Harvest October 12 - F ertilization a. May 10 35-80, in aIl plots (N-P205) (kg ha-') 0 
0 b. May 10 o in N60; 10 in N 12o; 90 in N250 (N kg ha- I

) ~ 

c. July 03 50 in N60; 100 in N 120; 150 in N250 (N kg ha- I
) 

Irrigation a. July 25 40 mm 
b. August 03 50mm 

Sowing May 22 76000 seeds ha- 1 

0.75 m row spacing 
Harvest October 08 
F ertilization a. May 22 1O-l20-50, in aIl plots (N-P20 5-K20) (kg ha- 1

) 

b. June 01 0,5,25,45, and 65 (N kg/ha) in N50, N\Oo, 
N 150, N200, and N250 treatments, respectively 

c. July 12 15,60,90,120, and 150 (N kg/ha) in N50, 

~ 
N 1OO, N150, N200, and N250 Treatments, 

0 respectively 0 
~ 

Irrigation July 19 28mm a. 
b. July 29 16mm 
c. August 01 18 mm 
d. August 04 16mm 
e. August 08 14mm 
f. August 12 16mm 
g. August 16 16mm 
h. August 21 18mm 
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Table 5.4 Adjusted model parameters 

Parameter Description tEvaluation Value 
Ranee used 

stlevamf juvenile stage duration (degree-days) 200-450 300 
stamflax duration between the stages AMF and 

300-550 450 
LAX (degree-days) 

dlaimax maximum growth rate of LAI 0.0011-0.002 0.0017 
efcroiveg conversion efficiency (before flowering) 3.4-6.0 5.5 
efcroirepro conversion efficiency (after flowering) 3.0-5.0 4.6 
cgrainvO minimum grain number (grains m-.l) 100-500 300 
pmaxIgram maximum weight of one grain (% water 

0.250-0.450 0.300 
content) 

teopt Optimal temperature for the biomass 
20-30 22.0 growth (oC) 

evaluated on the basis of regressions between observed and simulated data. Regression 

analyses were performed for these data, and the intercepts and slopes of regression lines 

were determined and compared with their ideal values of 0 and 1, respectively. Several 

statistical methods (Addiscott and Whitmore, 1987; Brisson et al., 2002) were used for a 

proper evaluation (Table 5.5). For applying these methods, the analysis was done using 

IRENE (Integrated Resources for Evaluating Numerical Estimates), a statistical software 

(Fila et al., 2003). From linear regression, bias in the data can be obtained from the 

intercept and slope; on the other hand, the model's dependability can be calculated with 

the coefficient of determination (r2
) (Brisson et al., 2002). 

Modeling Efficiency (EF), which is considered an indicator of the overall 

correspondence between the measured and estimated values, explains the goodness of fit 

of the predicted values with observed values. In the case of biased data, if the data are 

strongly correlated, EF is supposed to do a better job than r2
• A negative value of EF 

shows that model prediction to be very po or. Furthermore, RMSE can be used as an 

indicator of the mean distance between measured and estimated data (Kobayashi and 

Salam, 2000). Since the numerical value of RMSE is subjected to overall observed data 

values (mean and the range) and the units of measurement it is advantageous to use 
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RRMSE over RMSE (Bellocchi et al., 2002). The value of the RRMSE can vary from 0 

to infinity. A lower numerical value of RRMSE indicates a better performance of the 

model. However, it should be noted that RMSE and mean bias error (MBE) display 

various features of the overall deviation between estimated and measured data. The 

optimal values of aIl indices, indicating a full agreement between estimated and measured 

values are given in Table 5.5. 

Table 5.5 Statistical criteria used in evaluation ofmodel performance 

Statistical criteria Optimal Definition 
value 

Least square regression 1,0, 1 
Slope, Intercept, r = coefficient of 
determination 

Root mean square error 
0 

1 n 2 

RMSE = ~-;; "fr(E; -0;) 

Relative RMSE (%) RRMSE = 
RMSE 

0 
0 

Mean bias error 0 MBE= tE;-O; 
;;1 n 

n 

Model efficiency 
I(E; -0;)2 

1 EF = 1- ;;1 
n 

~::CO; - 0)2 
;;1 

n 

Modified model efficiency 
IIE;-O;I 

1 EF; = 1- ;;1 

tlo;-Ol 
;;1 

-
n: being the number of observation, 0: observed value, 0: mean of the observed values 
E: estimated value by model 

5.3.3.2 Estimation of LAI using RS data 

The estimation of LAI was accomplished using experimental data collected in 

2000. For estimation of LAI from hyperspectral aerial observations, the acquired aerial 

images were first imported into ENVI 3.5 (Environment for Visualizing Images) software, 
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which is an image processing system designed to provide comprehensive analysis of 

airbome and satellite remote sensing data. The mean retlectance values of each 

experimental unit/plot were determined. Then, for determining the relationship between 

the retlectance data and LAI values, a SVM method was used. A brief explanation of the 

SVM approach follows. 

5.3.3.2.1 Support vector macbine 

The SVM algorithm is a machine leaming technique based on statistical theory 

(Vapnik, 1995) that can be used for both classification and regression purposes. In a 

classification problem, the aim is to train a SVM model to develop a function to be used 

for separating treatments into different classes using unseen data. The best classifier 

would be the optimum function that can maximize its distances with nearest neighbor 

points in each class (the optimal separating hyperplane). The SVMs have emerged as a 

popular technique to perform data mining tasks such as classification, regression and 

automated detection of outliers. In this section, a brief overview of the theory of SVMs, 

and an explanation of the motivation for their use in this study is given (as compared to 

other classification techniques). For more detail on the mathematical concepts readers are 

referred to Burges (1998) and Vapnik (1995). 

5.3.3.2.2 Tbeory of SVMs 

SVMs can be considered as "maximal margin classifiers." For a given training 

sample belonging to two different classes, SVMs derives a classification function, (a 

hyper-plane) which is at a maximum distance from the closest points belonging to both 

the classes. These closest points are called as the "support vectors". It is solely the 

support vectors (and not the other training samples) that affect the actual decision 

function. According to Vapnik's theory on statistical leaming (Vapnik, 1995), the 

probability of classification errors from decision functions thus obtained are dependent 

only on the number of support vectors and the number of training samples, but not on the 

dimensionality of the training samples. Such a decision function is called an "optimal 

separating hyper-plane" (OSH). 
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Assuming that the two classes to be distinguished are linearly separable, and 

denoting the training samples as XI to X M ' where M is the number of training samples. 

Let each sample be labeled by y = {+1,-1} depending upon which class it belongs to. The 

equation of the separating hyper-plane can be written as foIlows: 

M 

J(x) = Ia;y;(x;ex)+b 5.3 
;=1 

The coefficients a; and b are obtained upon solving a quadratic programming problem 

[which is internaIly accomplished by the SVM package (Chang and Lin, 2004)]. It is 

interesting to note that aIl training examples apart from the support vectors have alpha 

values equal to zero (and thus do not affect the equation of the OSH). An example under 

testing is classified by finding its signed distance to the OSH. The farther the sample is 

from the OSH, the more the reliability of the classification result. 

The discussion so far has been restricted to binary classification in those cases 

where the data are linearly separable. For training samples that are not linearly separable, 

the data have to be transferred onto a space of higher dimensionality (caIled the "feature 

space") where a reliable linear separation can be computed. The additional attributes to 

map the data onto the feature-space have to be non-linear functions of the already 

existing attributes. Let us denote such a mapping onto feature-space by <l>, such that 

z = <l>(x) is the feature-point corresponding to a data item x. The equation of the OSH in 

feature-space can then be written as foIlows: 

M 

J(x) = l a;y;(<l>(xJ e <l>(x)) + b 5.4 
;= 1 

However, computing the mapping <l> is often not feasible in practice. The way to 

circumvent this difficulty is to employa so-caIled "kernel function" K(x,y) which is 

equal to the dot product of <l>(x) and <l>(y). Substituting the dot product in the above 

equation by the kernel, the OSH becomes: 

M 

J(x) = Ia;y;K(x;,x) + b 5.5 
;=1 
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While designing a non-linear SVM classifier, the user has to choose an 

appropriate kemel. The most commonly used kemels are the radial basis function kemel 

(RBF), the sigmoid kemel and the polynomial kemel. (the RBF kemels given as 

K( ) -y(t-y)~ x, Y = e· are known to be the most popular). Furthennore the user also 

has to choose the appropriate parameter such as gamma for the RBF kemel, and a 

parameter C which is essentially a tradeoff explaining how severely classification errors 

are to be penalized. The quality of the classification can be greatly affected by C, in that 

a very large value to this parameter can overfit the data. 

The above binary classification scheme can be easily extended for K classes. 

Such schemes follow two approaches: one-against-all and one-against-one. In the fonner 

approach, K SVMs are trained with examples of one particular class being trained 

against those of aIl other classes. In the latter, K(K -1)/2 SVMs are created in a binary 

tree-like fashion. While the fonner strategy is positively more efficient in tenns of 

training time, the latter strategy has been empirically shown to yield more desirable 

results (Hsu and Lin, 2002). 

SVM was also extended to regression problems by introducing a loss function. 

Four typical loss functions that could be used are: Quadratic, Laplacian, Huber, and E­

insensitive (Gunn, 1998). Quadratic loss function's principles are similar to those of the 

conventional least square error. The quadratic loss function is more sensitive to outliers 

than Laplacian. The Huber loss function is assumed to be robust loss function for the case 

of data with an unidentified distribution. Gunn (1998) reported that the three loss 

functions, quadratic, Laplacian, and Huber could eliminate the sparseness in the support 

vector. The E-insensitive loss function was introduced by Vepnik (1995) to explain the 

sparse set of the support vector machine that is an approximation ofHuber's loss function. 

In the present study, SVM regression models were developed based on the E-insensitive 

loss function. To find the optimal epsilon (E) value, different SVM models were trained 

using various epsilon values. Better estimations were generally obtained with lower 

epsilon values. 

The SVM is trained with a set of data containing both independent and dependent 

variables. Therefore, SVM was trained using a portion of the data set (75%) containing 
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the dependent and independent variables. The remaining 25% of data was used for testing 

purposes. Considering the smaller size of our data set, the evaluation of the model was 

performed using leave-one-out cross-validation. For this procedure the existing data set is 

split into n pair of separate sets. Using different combinations of n-l sets, SVM models 

are trained, and tested with the remaining set. 

5.3.3.3 Coupling STICS with remote sensing 

The sncs model can be Iinked to remote sensing data by direct use of LAI 

values estimated from RS observations. Most of the crop models need continuous LAI 

values (e.g. daily base) for the entire simulation period. However, the availability of the 

remote sensing data is Iimited to a few measurement dates, so estimated LAI values must 

be interpolated/extrapolated for the simulation period. 

Since the remote sensing data in the year 2000 was available for three dates only 

during the crop growing season, the SVM method was used to estimate LAI values from 

hyperspectral data. Next, the sncs model was run for the nitrogen treatment in weed­

free plots and the simulated LAI compared with the corresponding LAI values estimated 

from the remote sensing data for the three dates. The LAI parameters were adjusted so 

that the simulated and estimated (from RS) were close to each other. The applicability 

and accuracy of this approach was evaluated by comparing the simulated resuIts with the 

observed yield and biomass data. Such a comparison was done for different crop 

management conditions to evaluate the procedure. 

5.4 Results and Discussion 

The results of the analyses, aimed at calibration and evaluation of sncs model 

performance, are presented and discussed in section 5.4.1. Discussions on the estimation 

of the LAI values using hyperspectral observations are given in section 5.4.2. Finally, in 

the section 5.4.3 a discussion on the use of estimated LAI values on the STICS model is 

provided. 
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5.4.1 Calibration and Evaluation of STICS Model 

The analysis was perfonned using data collected from different nitrogen and 

water treatments (weed-free) during the years 2000 to 2002. The simulated and the mean 

measured treatment crop yields, total aboveground biomass, and LAI are shown in 

Figures 5.2, 5.3, and 5.4, respectively. Generally, for ail three parameters, the simulated 

values are in close agreement with measured values. 

The basic statistics for model validation are given in Table 5.6. It is evident from 

the table that the values of ail parameters for the simulated data are comparable to the 

ones for the observed data. The results of the regression analysis are given in Table 5.7. 

The correlation between observed and simulated yield was 0.95, which indicated that the 

model established a very good relationship between observed and simulated yield. The 

following regression equation was derived: 

y = 0.92 X + 0.82 5.6 

where Y and X were the simulated and mean measured yield values (Mg ha-1
), 

respectively. The regression parameters, intercept and slope were not significantly 

different from their ideal values of 0 and 1 (P :::;; 0.05), respectively, which clearly 

indicated that the model was able to simulate crop yield very weIl. The MBE was low 

which implied that the model did not under- or over-predict the yield values. The RMSE 

and RRMSE of yield were 0.85 (Mg ha-1
), and 11%, respectively. These values are also 

considered to be low. The EF was calculated to be 0.89, which, once again confinns a 

good model perfonnance. 

The basic statistics of biomass for model validation are also given in Table 5.6. 

Similar to yield, for biomass the parameters obtained from the simulated data are 

comparable to those obtained from the observed data. The correlation between observed 

and simulated biomass was 0.96. The following regression equation was derived: 

y = 1.06 X - 0.65 5.7 
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Figure 5.4 Comparison ofmeasured and estimated LAI (for model evaluation). 

Table 5.6 Basic statistics for estimated and measured corn crop parameters 

Statistic Yield* Biomass* LAI* 

Estimated Measured Estimated Measured Estimated Measured 
Number of 
Data 19 19 19 19 72 72 

Minimum 4.34 4.09 6.89 7.80 0.06 0.11 

Maximum 12.59 12.47 23.34 23.69 3.97 4.23 

Mean 8.09 7.91 16.06 15.72 2.03 2.09 

Median 7.3 7.86 16.56 15.48 2.04 2.28 
Standard 

2.567 2.648 5.207 4.811 1.333 1.352 
Deviation 
Standard Error 0.589 0.608 1.195 1.104 0.157 0.159 
Coefficient of 

0.317 0.335 0.324 0.306 0.657 0.646 
variation (CV) 

-1 * )'le1d and bl0mass are In Mg ha ,LAI IS umtless 
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Table 5.7 Statistical comparison ofmeasured and estimated corn crop 

parameter values 

Index * Yield Biomass LAI 
RMSE 0.850 1.068 0.514 
RRMSE 0.107 0.068 0.246 
MBE 0.172 0.333 -0.059 
EF 0.891 0.948 0.853 
EFI 0.691 0.778 0.602 
R 0.946 0.981 0.927 
intercept 0.82 -0.65 0.18 
slope 0.92 1.06 0.94 

~ * RMSE= Root mean square error (Mg ha ), RRMSE = RelatIve RMSE, MBE = 
Mean bias error, (Mg ha -1) EF = Madel efficiency, EFI = Modified EF 

where Y is the simulated biomass and X is the mean measured biomass values (Mg ha- I
). 

Once again, the intercept and slope were not significantly different from their ideal values 

of 0 and 1 (P ~0.05), respectively. The RMSE and RRMSE of biomass were 1.07 (Mg 

ha- I
) and 7%, respectively. The EF also showed a high value of 0.95. AlI these 

parameters testify to good model performance. The MBE was 0.33, which could be 

considered to be low, given the range of biomass values from 7.8 ta 23.69 (Mg ha- I
). 

Thus, the model neither und er- nor over-predicted biomass. 

The performance of the model in the simulation of LAI appears to be good given 

comparable statistics for simulated and observed LAI data (Table 5.6). The correlation 

between the simulated and observed LAI was quite satisfactory (r=0.93), however, it is 

lower than those for yield and biomass (Table 5.7, Figs 5.1, 5.2, 5.3). The folIowing 

regression equation for measured and simulated LAIs was derived: 

y = 0.940 X + 0.180 5.8 

where Y is the simulated LAI and X is the mean measured LAI values. The intercept and 

slope were not significantly different from their ideal values of 0 and 1 (P ~ 0.05), 

respectively, indicating satisfactory model performance. The RMSE of LAI was 0.51, 
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and RRMSE was 25%, which also suggest that the model performance was good. The EF 

was 0.85, which further proves that the simulation of LAI values was satisfactory. The 

closeness of MBE value to its optimal value indicates that the model performed very weIl, 

without under- or over-prediction. 

5.4.2 Estimation of LAI values 

LAI values, estimated from the hyperspectral measurements with SVM models 

for various epsilon (f) values, were constructed using 75% of the data for training, and 

the model performance was tested using the remaining 25% of the data. A summary of 

the regression analysis of estimated LAI values using the SVM algorithrn and the 

observed LAI is given in Table 5.8 for training and testing data set for the three different 

flight dates. The results demonstrate that lower f values generally provide a better 

estimation. Although, high correlations were obtained for the training data (r2 > 0.80), the 

same was very low for testing data. Moreover, the performance was poor for the second 

and third fights for which the best-case r value for the testing data was 0.38. 

IdeaIly, the regression parameters, intercept and slope should be close to 0 and 1, 

respectively for a perfect match. However, it was observed that in most cases, including 

training and testing data sets, the intercepts and si opes were significantly different from 0 

and 1 (P ~.05), respectively. This indicates that the model did not perform that weIl. This 

is not surprising given the strict nature of this statistical test. Moreover, it should be noted 

that poorer performance is not uncommon with smaller data sets, which is true in our case. 

In the case of smaller data sets, the leave-one-out method can be applied. A summary of 

the regression parameters for this method is shown in Table 5.9 for different f values. A 

comparison of Tables 5.8 and 5.9 indicates that better results were obtained with the 

leave-one-out method. This also confirms that with more data, SVM can do a better job. 

In the case of training, the best correlation coefficients were obtained using f values of 

0.01 (first and second flight data set) and 0.10 (third flight data set), however, for testing 

Data an f value of 0.01 provided the highest correlation coefficient for aIl the three 

flights. Thus, it again appears that the SVM models constructed using lower f values 

yielded better results. 
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For better visualization of the relationship between the observed and estimated LAI, the 

results for optimal value of E are plotted for both training and testing cases (Figures 5.5 to 

5.7). The data are well distributed around the regression lines. The statistics ca1culated for 

the best cases are given in Table 5.10. Although the intercept and slope were signiticantly 

different from 0 and 1 (P ~.05), it appears that there remains a relationship between the 

estimated and measured LAI values. In the case of testing data, for the tirst flight data the 

correlation was slightly less than the training one, however, in the second and third flights, 

the correlations for testing data were comparable to those for the training data. This again 

explains the prediction capability of SVM model. Lower RMSE and RRMSE values also 

indicate that the model performance could be considered to be acceptable. The lowest and 

highest RMSE of 0.17 (Mg ha- I
) and 0.528 (Mg ha- I

) were obtained for the training data 

set of tirst flight and second flight data set, respectively. The same was true for RRMSE: 

7% for the training set of the third flight and 25% for the testing data of the tirst flight. 

These values indicate that the performance difference between the best and the worst 

models was reasonably low, and the models were reliable. 

5.4.3 Coupling STICS mode) with RS 

The STICS simulation results for both yield and biomass, obtained from the 

model using the default LAI values generated by the model during the process of model 

validation, and those obtained when the LAI values were derived from RS observations 

are shown in Table 5.11. Although, STICS performed well with the simulated LAI values, 

the model performed much better with LAI values estimated from RS observations. It 

should be noted that the availability of the remote sensing observations was limited to 

only three flights, and the performance could be improved even further, had there been a 

more frequent collection of RS data. In the validation processes (without RS information) 

the STICS model overestimated yield for all three nitrogen application rates by an 

average of 10.4%. With RS-derived LAI values there was an underestimation for the 

normal nitrogen application rate and overestimation for low and high nitrogen 
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Table 5.8 Regression prediction results using SVM software 

a) Training data set 

E First Fli2ht Second FIi~ht Third Flight 
Value r L Slope Inter ~ Slope Inter r Z Slope Inter 
0.01 0.807 0.714 0.26 0.862 0.570 1.67 0.737 0.462 2.03 
0.02 0.807 0.704 0.27 0.879 0.731 1.02 0.848 0.774 0.86 
0.05 0.803 0.692 0.29 0.881 0.727 1.03 0.851 0.759 0.92 
0.10 0.778 0.646 0.34 0.880 0.721 1.06 0.845 0.728 1.04 
0.20 0.722 0.526 0.46 0.875 0.699 1.13 0.829 0.671 1.30 
0.50 0.332 0.184 0.88 0.862 0.570 1.67 0.737 0.462 2.03 

b) Testing data set 

E First Flight Second FIi~ ht Third Flight 
Value l Slope Inter r Z Slope Inter r L Slope Inter 
0.01 0.562 0.467 0.40 0.334 0.189 3.02 0.275 0.240 2.91 
0.02 0.557 0.458 0.41 0.303 0.281 2.56 0.333 0.354 2.54 
0.05 0.571 0.447 0.43 0.317 0.280 2.56 0.354 0.369 2.49 
0.10 0.554 0.420 0.47 0.341 0.279 2.56 0.380 0.382 2.44 
0.20 0.533 0.363 0.55 0.382 0.276 2.57 0.373 0.372 2.49 
0.50 0.606 0.164 0.86 0.334 0.189 3.02 0.275 0.240 2.91 
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Table 5.9 Regression prediction results using SVM software with the leave-one-out 

method 

a) Training data set 

E First Fligbt Second FIi~ ht Third Fli2ht 
Value rL Slope Inter ,J Slope Inter rL Slope Inter 
0.01 0.844 0.759 0.218 0.827 0.592 1.663 0.691 0.490 1.854 
0.02 0.843 0.757 0.222 0.813 0.657 1.227 0.791 0.709 1.132 
0.05 0.848 0.748 0.241 0.813 0.652 1.252 0.801 0.704 1.147 
0.10 0.839 0.715 0.295 0.813 0.639 1.312 0.810 0.689 1.195 
0.20 0.760 0.599 0.432 0.818 0.612 1.409 0.807 0.654 1.324 
0.50 0.462 0.222 0.859 0.799 0.543 1.830 0.691 0.477 1.907 

b) T esting data set 
E First Flight Second Flight Third Flight 

Value ~ Slope Inter rL Slope Inter rL Slope Inter 
0.01 0.575 0.587 0.392 0.827 0.592 1.663 0.69 0.490 1.854 
0.02 0.507 0.530 0.466 0.258 0.289 2.736 0.356 0.406 2.262 
0.05 0.504 0.516 0.485 0.275 0.293 2.722 0.360 0.403 2.273 
0.10 0.482 0.482 0.529 0.299 0.298 2.702 0.358 0.392 2.306 
0.20 0.383 0.384 0.638 0.314 0.294 2.718 0.371 0.379 2.348 
0.50 0.163 0.116 0.966 0.254 0.229 3.083 0.327 0.294 2.606 
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Table 5.10 Statistical comparison ofmeasured and estimated LAI values using the SVM 

model 

First Fli2ht Second Flight Third Fli2ht 
Index * Test Train Test Train Test Train 

RMSE 0.249 0.156 0.489 0.528 0.389 0.285 

RRMSE 25.4 16.0 12.3 13.3 10.5 7.5 

MBE 0.570 0.831 0.755 0.716 0.618 0.014 

EF 0.417 0.754 0.478 0.442 0.318 0.791 

EFI -0.024 -0.025 0.068 0.038 -0.075 0.595 

r 0.758 0.918 0.910 0.894 0.831 0.900 

intercept C 0.392 0.218 1.663 1.830 1.854 1.195 

slope C 0.587 0.758 0.592 0.543 0.490 0.689 
- ·1 - 0 -* RMSE- Root mean square error (Mg ha ), RRMSE - RelatIve RMSE (Yo), MBE - Mean 

bias error (Mg ha -1), EF = Model efficiency, EFI = Modified EF, 
~ The parameters are significantly different (p < 0.05). 

Table 5.11 Summary ofmeasured and simulated (with and without using remote 

sensing data) yield and biomass for year 2000 data (Mg ha -1) 

Yield Biomass 
Observed Validation Simulated- Observed Validation Simulated-

RS RS 
Low 4.80 6.28 5.23 15.12 16.63 14.29 
nitrogen 
Nonnal 6.11 6.97 5.92 17.47 18.45 15.59 
nitrogen 
High 6.75 8.31 7.24 19.91 22.00 18.9 
nitrogen 
Mean 5.89 6.74 6.13 17.50 19.03 16.61 
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application rates, resulting in an overall of 4.1 % overestimation of yield. This indicates 

an overall 6.3% improvement in yield prediction. In the case of biomass, the evaluation 

processes resulted in 8.7% overestimation, while in the coupled process the results 

showed an underestimation of 5 %, which still shows a small improvement in model 

performance. Thus, it can be concluded that with the coupling of a crop growth model 

such as snes with RS observations, better yield prediction cou Id be expected. 

5.5 Conclusions 

This study demonstrates that the snes model shows promise for simulating corn 

growth in southwestern Quebec. The correlation coefficient between the observed and 

simulated values of grain yield, biomass and LAI were 0.96, 0.98, and 0.93, respectively. 

The corresponding modeling efficiencies were 0.93, 0.95, and 0.85. All these values are 

indicative of good model performance. 

Although, the performance of the SVM model for the estimation of LAI values 

from a limited number of RS data were less than desirable, the relationship between the 

estimated and measured LAI values revealed the potential usefulness of the SVM model 

for this purpose. It can be concluded that SVM models cou Id be successfully constructed 

for the prediction of LAI values from larger RS data sets. 

Despite of the relatively poorer LAI estimations from RS, the coupling of these 

values with the crop growth model still improved its performance. 
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PREFACE TO CHAPTER 6 

The application of the sncs model to simulate corn yield under different water 

regimes and nitrogen application rates, and further coupling of the model with the 

hyperspectral information was described in Chapter 5. In this Chapter, the applicability of 

the STICS model will be studied for yield prediction in weed-infested areas. This study 

was performed with data collected in 2000. A procedure was proposed to incorporate the 

effect of weeds in crop growth modeling. Various steps associated with this procedure 

will be described in this Chapter. 

Research papers based on the chapter: 

Karimi, Y., S. O. Prasher, H. McNairn, R. B. BonneIl, and P. K. Goel , 2004. 

Incorporating the effects of weeds in crop growth modeling. Agricultural Systems 

(Submitted for publication). 
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CHAPTER6 

INCORPORA TING THE EFFECT OF WEEDS INTO CROP 

GROWTH MODELING 

6.1 Abstract 

Currently, the accuracy of field-scale crop growth simulation models under weed­

infested conditions is limited due to the complexity of weed-crop interactions. A 

procedure taking into account the effect of weed stresses on crop growth, in a manner that 

can be incorporated into most crop models, is proposed and demonstrated for a corn crop 

with the crop growth model STICS. A correction factor is applied to the 

observedJestimated leaf area index (LAI) values to obtain an LAI corrected for the weed 

infested areas. Applicability of the method was tested by using data obtained from a field 

experiment, carried out in the 2000 growing season, at the research farm of McGill 

University, Ste Anne de Bellevue, Quebec, Canada. The experiment was laid out in a 

split-plot design, with four-weed control management strategies (no control, control of 

grasses, control of broadleaf plants, and control of both) in the main plots, and three 

different nitrogen application rates (60, 120, and 250 kg N ha-1
) in subplots, with four 

replications. Extensive observations were made of weedy conditions in test plots and 

many other crop-growth influencing parameters. Using corrected LAI values as input to 

the crop growth model, it was possible to accurately estimate yield on the weed-infested 

areas of the field. 

6.2 Introduction 

The adverse effect of weeds on crop yield is weIl understood and has been widely 

documented by various researchers (Wilcut et al., 1987; McLennan et al., 1991; Donald 

and Khan, 1992; Knezevic et al., 1994; Mamolos and Kalburtji, 2001). However, reliable 

methods for quantitative estimation of weed effects on crop growth are still lacking. 

Many field studies have been conducted to develop models to assess the effect of weeds 

on crop yield losses. Many researchers have developed empirical regression models to 
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estimate crop yield los ses by relating yield to weed characteristics such as density, 

biomass, etc. (Dew, 1972; Cousens, 1985a,b; Cousens et al., 1987; Kropff and Lotz, 

1992; Knezevic et al., 1997; Ngouajio et al., 1999a; Canner et al., 2002, Lemieux et al., 

2003). However, the extrapolation of these results is limited due to the spatial and 

temporal variability of input parameters. 

Cousens (1985b) developed a simple two-parameter hyperbolic model to describe 

yield loss as a function of weed density. The model was also extended to inc1ude crop 

density as an additional parameter (Cousens, 1985a). In comparison to previously 

published models, both methods were able to provide better yield loss estimations. 

Ngouajio et al. (1999b) and Lemieux et al. (2003) used relative leafarea (the ratio of the 

weed leaf area to the total leaf area) based models to develop a decision support system 

for post-emergence herbicide applications. However, they pointed out that accurate 

estimation of crop losses due to weed effects is the most complicated component of any 

decision support system because of the complex relationship between weeds and crops. 

Using multiple regression and path analysis, Mamolos and Kaburtji (2001) studied the 

effect of Canada thistle density, biomass, and N concentration on wheat yield. The wheat 

yield was more affected by N concentration as compared to Canada thistle biomass or 

density. 

Most of the above models were developed on the basis of a single crop type and a 

single weed species at a specific location, which limits the applicability of these models. 

Moreover, the collection of necessary input parameters for these models, like weed 

density and relative leaf coyer, is time-consuming and labor-intensive. Also, estimation 

of crop yield by mathematical models in the presence of weeds is rather difficult. No 

CUITent conceptual model can take into account the effect of weeds due to the lack of a 

c1ear-cut relationship between the weeds and crop growth and yield. 

In the case of crops grown under normal field conditions (i.e. without any weed 

stress) higher values of LAI will represent better vegetative growth, which will often 

translate into higher yields. In weed-infested fields, however, higher LAI values may not 

imply higher vegetative growth of the crop. The higher LAI values would be the result of 

both weeds and the main crop. 

109 



Recent research in precision agriculture has demonstrated that crop growth 

parameters, such as LAI, leafN content and plant height, can be determined accurately 

by remote sensing under a range of stresses (Foody et al., 1989; Cibula and Carter, 

1992; Pearson et al., 1994; Saha and Jonna, 1994; Clevers, 1997; Moran et al., 1997; 

Lelong-Camille et al., 1998; Anderson et al., 1999; McNairn et al., 2001; Pacheco et 

al., 2001; Haboudane et al., 2002; Singh et al., 2002; Strachan et al., 2002). With 

remote sensing, it is possible to identify not only the stress-free areas of the field but 

also those that are under water, nitrogen and weed stresses (Borregaard et al. 2000, 

Cho et al., 2002; Goel et al. 2002, Karimi et al., 2004). Once the weedy and non­

weedy areas of the field are located, it should be possible to isolate the impact ofweeds 

on LAI values and, consequently, use the "corrected" LAI values in modeling. 

Although in most mathematical models, LAI values are simulated, sorne models do 

allow the use of observed LAI values at different stages of crop growth as input 

(Brisson et al., 1998). The latter gives one an opportunity to "adjust" the LAI values as 

per the prevailing growth conditions in the field. 

The overall goal of this study was to develop a method that would allow crop 

growth models to simulate yield in weedy areas. The applicability of the method is 

demonstrated using the STICS crop growth model. 

6.3 Materials and Methods 

6.3.1 Experimental detail 

The experiment was conducted at the Lods Agronomy Research Center of 

Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec, Canada 

(45°25'45"N lat., 73°56'00"W long.) in 2000. Corn was planted on May 30 at a density 

of 7.6 plants m-2
. The experiment was laid out in a split-plot design, with four-weed 

management strategies as the main treatment units and three nitrogen application rates as 

the sub treatment, in quadruplicate. Each plot (20 m x 20 m) consisted of 26 corn rows. 

The four weed treatments were: no weed control (Wl), control of grass species (W2), 

control of broadleaf species (W3), and full weed control (W4). The three nitrogen 

application rates consisted of: low nitrogen (60 kg N ha-!, N60), normal nitrogen (120 kg 

N ha-!, N120), and high nitrogen (250 kg N ha-!, N250). Weeds were controlled by selective 
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use of herbicides on June 26. At sowing time, minimal amounts of N were applied, 

namely at rates of 10, 20, and 90 kg N ha-! for the N60, N 120 and N250 treatments 

respectively, and the remainder broadcast on July 1ih
. 

6.3.2 Crop parameters 

Measurements of various crop canopy and other parameters, including plant 

height, leaf greenness, LAI, biomass and soil moi sture, were taken. Crop yield and final 

biomass were measured at the season's end. The LAI (m2 foliage area per m2 ground 

area) was measured with a LAI-2000 Plant Canopy Analyzer (Li-Cor, Inc., Lincoln, 

Nebraska, USA). Biomass was estimated on the basis of five to ten plants per plot that 

were harvested and weighed. Finally, ten representative plants from each plot were 

harvested and used to estimate crop yield and final biomass. Table 6.1 shows the 

variations in plant parameters as a function of different weed and nitrogen treatments. 

6.3.3 Weed survey 

To determine weed populations, a weed survey was performed on July 14 and 

again on August 15, 2000. In each plot, weeds were counted at three and four randomly 

chosen 0.5 x 0.5 m quadrates during the first and second survey, respectively. The 

collected data were: weed types, density, plant height, and ground coverage. The percent 

of weed coyer was also estimated visually in each quadrate. The most prevailing grassy 

weeds were Yellow Nutsedge (Cyperus esculentus L.), Bamyard grass [Echinochloa 

Crus-galli (L.) Beauv.], and crabgrass [Digitaria ischaemum (Schreb.) Mühl], whereas 

the dominant broadleaf weeds were Canada thistle [Cirsium arvensis (L.) Scop.], Sow­

thistle (Sonchus oleraceus L.), Redroot pigweed (Amaranthus retroflexus L.), and lamb's 

quarters (Chenopodium album L.). For more details, readers are referred to Goel et al. 

(2003b). 

Verification of weed populations in different treatments indicated that the most 

dominant weeds were grassy weeds. AIso, there were minimal broadleaf weeds present in 

the field. Therefore, the plots were re-categorized into no-weed (consisting of W2 and 

W4), and weedy treatments (including W1 and W3). 
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Table 6.1 Details of various crop parameters based on different treatments during entire growth season 

Date 
Weed No-weed control Grass control 8road leaf control Full-weed control Experimental 

Nitrogen N60 N I20 N250 N60 N 120 N250 N60 N120 N250 N60 N I20 N250 Min Max 

6-Jul-00 1.139 1.124 1.498 1.099 0.784 1.399 0.586 0.853 l.l25 0.771 0.714 1.056 0.300 2.175 
..... 27-Jul-00 1.986 3.064 3.779 1.635 1.976 2.684 1.634 2.223 2.724 1.473 1.785 2.256 0.775 4.455 ~ 
....:l ll-Aug-OO 3.970 4.450 5.166 2.883 3.155 4.233 3.884 4.626 4.463 2.835 3.444 3.698 2.035 6.185 

26-Aug-00 4.035 4.259 4.574 2.960 3.667 3.831 3.677 4.336 4.271 2.901 3.314 3.646 2.270 5.310 
30-Jun-00 34.9 35.7 41.7 32.5 36.6 40.6 32.6 36.2 41.7 33.3 34.7 39.3 26.1 43.7 
18-Jul-00 28.3 30.7 40.6 33.1 37.0 46.5 28.5 34.3 41.0 32.5 33.3 37.6 23.4 52.6 

~ 25-Jul-00 33.1 36.4 43.1 41.5 44.0 48.7 34.7 39.9 46.1 38.6 42.1 46.3 27.8 54.4 
A... 8-Aug-00 34.9 43.2 45.1 42.4 46.7 51.6 42.7 46.5 44.1 42.3 46.0 43.4 30.8 56.8 CI) 

9-Aug-00 38.9 44.9 52.6 46.0 53.1 55.8 42.2 51.1 54.4 47.1 53.0 55.4 30.2 57.0 

25-Aug-00 34.4 44.6 51.8 44.2 48.1 53.1 34.8 46.4 52.0 39.9 45.1 45.8 28.3 55.2 - 19-Jun-00 7.2 7.4 7.5 7.4 8.1 7.7 8.1 7.6 7.7 6.9 7.9 8.2 6.1 9.6 ..c: 
01) 27-Jun-OO 18.8 20.1 21.3 18.8 19.9 20.1 18.7 19.5 21.2 18.3 19.3 20.6 14.9 23.7 "di ~ 

..c: E 18-Jul-00 61.7 68.1 89.2 66.7 73.2 92.4 58.1 70.0 83.5 56.1 65.4 74.4 38.5 98.0 - '-" § 25-Jul-00 88.7 95.2 121.3 98.6 112.5 129.1 82.7 102.3 118.1 80.5 102.1 113.8 61.6 139.7 
i5: 8-Aug-00 165.4 173.7 204.4 169.9 194.0 217.6 152.8 183.2 206.5 159.0 182.7 199.6 114.4 230.5 

26-Jun-00 36.0 36.0 32.7 36.4 33.8 35.7 37.3 37.2 38.3 36.1 38.3 37.9 30.4 42.0 
~ ,-., 
1-< u 29-Jun-00 33.0 34.6 31.4 31.8 29.7 31.5 33.5 31.7 31.2 29.5 32.9 32.0 24.0 39.9 
;:::l .-_ b 

30-Jun-00 33.1 33.8 32.9 32.1 33.9 34.0 34.3 34.4 34.0 34.3 35.6 35.3 27.3 39.5 en il) 

.- E o ._ 
4-Jul-00 36.6 37.6 35.4 38.1 36.5 38.0 39.0 41.0 37.8 37.6 35.8 39.2 25.4 44.5 

::;E ~ ... 
25-Jul-00 26.9 27.5 27.8 26.3 27.2 25.9 29.1 27.0 27.5 27.6 27.8 27.5 21.5 33.8 :::: ~ 

o~ 
CI)~ 5-Aug-00 32.1 34.6 30.9 33.0 31.8 3l.l 32.9 32.1 30.6 33.8 31.7 30.9 27.5 38.3 

25-Aug-00 34.0 32.5 33.7 32.2 32.2 31.4 34.4 33.8 32.7 34.3 33.0 32.6 27.1 40.2 
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6.3.4 Methodology 

The STICS crop growth model was selected because of its comprehensive 

capabilities for simulating crop growth under varying geohydrologic and cropping 

conditions (Brisson et al., 1998). The model simulates daily growth over the entire 

growing season on the basis of aboveground biomass of the crop, leaf area index, and soil 

parameters, according to climatic data. In the model, soil is divided into different 

homogenous layers. For simulation purposes, each layer is defined by its own water and 

nitrogen content. Roots modulate plant-soil interactions, which are in part defined by 

root distribution in the soil. The model computes crop production (biomass and yield) and 

environmental impact (water and nitrogen leaching) under different agronomie practices. 

The main advantage of the model is that the information related to LAI can be 

incorporated easily into the model. So, the field variability can be accounted for in the 

model by incorporating the parameters affecting crop growth (Brisson et al., 1998). 

The LAI measurements/estimations in weedy areas cannot be used directly in a 

model because they would be greater in weedy areas merely as a result of the presence 

of both crop and weed canopies, and thus would not be a reflection of a stronger 

vegetative crop. Actually, the crop would be suffering in weedy areas and the "true" 

crop LAI values would al ways be less than those in non-weedy areas. 

The LAI measurements could be made in the experimental field in both weedy 

and non-weedy areas with the help of a Plant Canopy Analyzer but such measurements 

are impractical on a field scale. As stated earlier, optical remote sensing measurements 

can be used to estimate LAI values in the field (Pacheco et al., 2001; Strachan et al., 

2002; Goel et al., 2003a). However, one still needs to account for the weedy and non­

weedy areas of the field as the LAI estimations in weedy areas may not be correct. We 

propose a methodology which can overcome this problem. Since ground measurements 

of LAI values were available to us, they were used to demonstrate the proposed 

methodology. The method should work equally weIl when only remote sensing 

observations are available. 

In this regard, the weedy plots' mean measured LAI values were calculated and 

related to the corresponding values in non-weedy plots. A linear relationship existed 

between the two sets of LAI values. However, as stated before, this relationship would 
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not be of much use as the LAI values in weedy areas would be the result of both the 

crop and the weeds, and although these values will be higher than the corresponding 

values in the non-weedy areas, the "true" LAI values in weedy areas would actually be 

less because of the competition between the crop and the weeds. 

An altemate strategy was developed to incorporate the effect of weeds into crop 

growth modeling. First, the mathematical model was run iteratively with different LAI 

values to bring the simulated crop yield closer to the observed crop yield in weedy 

areas. The final set of LAI values would represent the "true" LAI values of the crop 

(only) in weedy areas. This "true" set of LAI values can be related to the measured 

LAI values in weedy areas, representing both the crop and the weeds. If this 

relationship tums out to be satisfactory, then this will allow us to correct the 

estimated/measured LAI values in weedy areas, and hence the "true" LAI values could 

be used with mathematical modeling to estimate crop yields. As mentioned before, 

remote sensing can be used to not only locate the weedy areas on the field but also 

provide good estimates oftheir LAI values. 

To demonstrate this method, the sncs crop growth model, which does not 

take into account the effect of weeds, was run iteratively by changing the input 

parameters for LAI (i.e. the relevant growth stage parameters and dlaimax, a parameter 

for defining the maximum rate of LAI increase) so that the simulated crop yield 

matched with the observed crop yield. This was done for the weedy plots only. Once a 

good set of LAI values were detennined, they were plotted against the LAI values 

measured/estimated in the field, and a linear relationship between the two was 

observed. This linear relationship was used to transfonn the measured/estimated LAI 

values in weedy areas to the "correct" crop LAI values. 

As stated earlier, due to the prevailing weedy conditions in our test plots, the 

weed treatments were reclassified as weedy and no-weed treatments, each consisting of 

twenty-four test plots. For each weed treatment, there were eight plots per nitrogen 

treatment. For each nitrogen treatment in the weedy plots, the STICS model was run 

iteratively with the mean data for that treatment, and a set of LAI values was obtained. 

In this way, three sets of LAI values were obtained for the weedy plots. These LAI 

values represent the "true" crop LAI values in the weedy plots as they were obtained 
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by matching the simulated crop yields with the observed ones. These LAI values were 

plotted against the corresponding mean of the measured LAI values, and a linear 

relationship between them was developed. Next, this relationship was used to convert 

the observed LAI values in the weedy plots to "true" LAI values in each individual plot. 

The "true" LAI values were further used to simulate yield in weed-plots using the 

STIeS model. 

One of the weaknesses of this is that the same data source was used for model 

development and validation. Therefore, to overcome this problem, the parent data set 

was randomized and divided into two subsets: 75% for the LAI relationship 

development and 25% for its validation. The mean values in the developmental data set 

were used to obtain the LAI relationship, which was used to obtain the "true" LAI 

values for each plot in the 25% validation data set. The "true" LAI values, thus 

obtained, were used in the STIeS model to estimate crop yield. To check for the 

robustness of the LAI relationship, a five-fold cross-validation procedure was used 

where the data was randomized five times and the above steps were repeated. 

6.4 Results and discussion 

The variation in the measured mean LAI from the weed and no-weed 

treatments, along with the best fit line (r 2 = 0.97), are shown in Figure 6.1. As 

expected, the LAI values in the weed plots were higher than those in the no-weed plots. 

This is because of the presence of both weed and main crop canopies in weedy areas. 

Furthermore, in both weedy and weed-free plots, the LAI values were proportional to 

nitrogen applications, causing higher LAI values in higher nitrogen application 

treatments (Figures 6.2 and 6.3). In the case of crop yield, although yield was 

proportional to LAI values in both weedy and weed-free plots, as expected, the yield 

was lower in the weedy plots. The difference between the yields of weedy and weed­

free plots was greater at lower LAI values, under the lower nitrogen application rates, 

as compared to the ones at high LAI values. This also implies that the effect of weed 

stress is more pronounced in the presence of nitrogen stress due to a greater 
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Figure 6.1 Measured LAI values in weedy and no-weed plots. 
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competition between weeds and crop for nutrients and water uptake (Figure 6.4). 

As stated earlier, no mathematical model can take into account the effect of 

weeds in a logical way, and the snes model is no exception. Following our approach, 

we need to correct the LAI values of weedy plots to find their "true" values. So, first 

the snes model was run iteratively by adjusting the LAI parameters to match the 

simulated yields with the measured ones in weedy plots. Next, the LAI values obtained 

from the model simulations were plotted against the mean measured LAI values in 

weedy plots (Figure 6.5). The relationship between the two was described by the 

following regression equation: 

y = 0.59 X + 0.06 (/ of 0.98; P ~0.05) 6.1 

where Y is the simulated ("True") LAI by the model and X is the mean measured LAI 

value in the weed plots. The high r2 value confirms a very good linear relationship 

between the estimated and measured LAI values. 

The applicability of the overall approach was tested by applying the snes model 

to each individual weedy plot. The "true" LAI values for each plot were estimated from 

equation 6.1, and the latter were used in the snes model to simulate crop yield. Figure 

6.6 shows the estimated versus the measured yield values for the weedy treatments. It is 

evident from the best fit line (equation 6.2) and the 1: 1 line that the model did an 

excellent job of simulating crop yield in the weedy plots. 

y = 0.98 X - 0.01 (r2 = 0.94; P ~0.05) 6.2 

where Y and X are the simulated and measured yields, respectively. At-test was 

performed and both the slope and the y-intercept were found to be not significantly 

different from one and zero, respectively. This proves that not only the model performed 

very weIl, but also the proposed approach was successful. The root mean square error 

(RMSE) was 0.43 Mg ha-l, and the relative RMSE (RRMSE), a ratio of RMSE to the 

mean observed yield, was 0.08, which, again, indicates an excellent agreement between 
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the observed and simulated yields (Table 6.3). AIso, the modeling efficiency of 0.93 

proves this point rather weIl. 

One of the weaknesses ofthis procedure is that the same data set was used for the 

development and testing, i.e. the average values were used for the development of the 

linear relationships and the individual plot values were used for model evaluation. 

Therefore, the evaluation was extended to unseen data. The overall data were divided into 

two sets, and a five-fold cross-validation was carried out with unseen data. A summary of 

the regression equations and corresponding r2 of aIl five-fold cross-validations is 

provided in Table 6.2 for both LAI and crop yield. Once again, higher values of r (0.95 

to 0.99) for the LAI relationship were found. The r values for crop yield ranged from 

0.78 to 0.97, which indicates good model performance. The model performance was also 

evaluated using the statistical tests on regression parameters. In four out of five 

repetitions, the regression parameters, intercept and slope, were not significantly different 

from 0 and 1 (p ~0.05), respectively, which represents consistently good performance by 

the model (Table 6.3). In the 4th repetition, although the higher value of r indicates a 

good model performance, the intercept of the regression line was significantly different 

from 1 (p ~0.05). The RMSE varied from 0.90 to 0.26 Mg ha-l, and RRMSE varied 

between 0.05 to 0.18, which demonstrate a good agreement between the observed and 

simulated crop yields in aIl five repetitions (Table 6.3). AIso, the EF varied between 0.75 

and 0.97, which is another indicator of satisfactory model performance. 

Therefore, it appears that the proposed approach can be used for the estimation of 

crop yield in weed-infested corn fields. Remote sensing may be used to first identify the 

weedy and weed-free areas in the field and th en to estimate LAI values in those areas. 

However, the proposed approach also required the determination of the "true" LAI values 

in weedy areas. In this paper, we use the measured crop yields in such are as but more 

work needs to be done to determine these important input parameters. 

6.S Conclusion 

In this study, an attempt was made to develop a procedure to account for the presence of 

weeds in crop growth models for better crop yield simulations. The procedure involved 
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the detennination of "true" LAI values in weedy areas which can th en be used in crop 

growth models to simulate crop yield. The overall approach was demonstrated by using 

the STICS mode\. With the proposed procedure, the crop yield in weedy areas was very 

weil simulated by the mode\. The high correlation coefficient, low mean difference, low 

mean absolute deviation, and high modeling efficiency demonstrated good model 

perfonnance in weedy areas. 

Table 6.2 Summary of the regression equations and r2 obtained using different data sets. 

Repetition LAI Yield 

Number 
Equation r 2 Equation r 2 

1 y = 0.60 X + 0.10 0.97 Y = 1.03 X - 0.34 0.93 

2 Y = 0.58 X + 0.28 0.95 Y = 0.68 X + 2.17 0.78 

3 Y = 0.64 X + 0.01 0.99 Y=0.74X+1.62 0.87 

4 Y = 0.62 X + 0.05 0.97 Y = 0.77 X + 1.21 0.97 

5 Y = 0.60 X + 0.07 0.97 Y = 0.95 X + 0.28 0.97 

Table 6.3 Statistical parameters caIculated for measured and simulated yield on weed 
treatments. 

Index * Complete set 1 2 3 4 5 

RMSE 0.43 0.41 1.00 0.67 0.44 0.26 

RRMSE 0.08 0.08 0.18 0.13 0.08 0.05 

MBE -0.14 -0.20 0.51 0.28 0.01 -0.001 

EF 0.92 0.90 0.69 0.82 0.93 0.97 

EFI 0.73 0.68 0.49 0.63 0.74 0.84 

R 0.97 0.96 0.88 0.93 0.99 0.99 
Intercept -0.01 -0.34 2.17 1.62 1.21"" 0.28 

Siope 0.98 1.03 0.68 0.74 0.77 0.95 
P(F) intercept = 0 

0.32 0.67 0.43 0.46 0.19 0.88 
& slope = 1 

* RMSE= Root mean square error, RRMSE = RelatIve RMSE, MBE = Mean bIas error, EF = 
Model efficiency, EFI = Modified mode! efficiency 

** Intercept is significantly different from zero (p ~.05) 
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CHAPTER 7 

SUMMARY AND GENERAL CONCLUSIONS 

7.1 Summary 

This study investigated the applicability of hyperspectral observations, acquired 

from airborne sensors or a handheld spectroradiometer, to distinguishing between various 

types of stresses: weeds, nitrogen and water. In addition, attempts were made to 

incorporate these stresses and hyperspectral data into crop growth modeling. A new 

technique to incorporate the effect ofweeds in corn fields into crop growth modeling was 

also developed. 

The objectives were met by carrying out three field studies, involving growing 

corn with different combinations of weed control and nitrogen fertilization rates in 2000, 

different combinations of weed control, nitrogen application rates and water regimes in 

2001, and various combination of nitrogen application rate and water regime in 2002. In 

2000, three aerial images were taken during the growing period, i.e., at early growth, 

tasseling, and full maturity, using a 72-waveband hyperspectral aerial sensor (407-nm to 

949-nm range). In the second and third year of the study, the spectral measurements were 

made using a handheld spectroradiometer (350-nm to 2500-nm with bandwidths of I-nm). 

Various crop physiological parameters were also measured. 

7.2 Conclusions 

A number of general conclusions were reached in this study. Their presentation in 

this section c10sely follows the order in which this study was done. 

(1) Hyperspectral aerial images taken in the year 2000 were analyzed for their 

applicability in discriminating between weeds and nitrogen stresses in a corn field. In this 

study, the ability of a stepwise approach in the selection of highly effective narrow 

wavebands was examined. The importance of these chosen narrow-waveband 

hyperspectral aerial observations was demonstrated in identifying weed and nitrogen 
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stresses. The study also revealed that discriminant functions based on a restricted set of 

wavebands showed better performance in the detection of stresses in early crop growth 

stages, which is an important and crucial stage in precision agriculture. Furthermore, the 

results of the discriminant analysis method were compared to those obtained with ANNs 

and DT algorithms. Consideration of two target variables at the same time (combined 

effect of weeds and nitrogen application rates) resulted in higher misclassification rates 

(25% or greater) for aIl three classification methods with the cross-validation (unseen) 

data set. However, when one target at a time was considered (nitrogen application rate, or 

weed treatment) better results were obtained. Misclassification rates for cross-validation 

data were below 20%, and the lowest misclassification rate was Il %. A comparison of 

the results obtained with the above methods showed that discriminant analysis could 

provide better classification accuracy at the early growth stage for aIl three classification 

problems: 75%, 87%, and 83%, for the combined effect of weeds and nitrogen 

application rates, weeds al one, and nitrogen application rates alone, respectively. At the 

tasseling stage, once again the discriminant analysis provided higher accuracy for the two 

target variables at the same time (71 %) while ANN models provided higher classification 

accuracy for the case of one target variable at a time (70%). 

(2) The possibility of improving the nitrogen stress detection in conjunction with 

water stress via the application of very narrow-waveband hyperspectral observations, 

taken with a handheld spectroradiometer in the year 2002, was explored. Data analysis 

was also performed using stepwise approaches, which were found previously to be highly 

effective in the selection of important narrow-wavebands. Various discriminant analysis 

methods were developed using aIl wavebands identified by the stepwise procedure, as 

weIl as different subsets from selected wavebands. Although when using aIl selected 

wavebands various irrigation and nitrogen treatments were not always successfully 

classified, considerable improvement was achieved wh en discriminant analysis methods 

were applied on a well-chosen subset of selected wavebands. 

The results of the discriminant analysis method indicated that this method could 

identify different nitrogen and water treatments, achieving a misclassification rate of only 

5% for the 26 August observations, and zero misclassification rates for the 31 Julyand 10 
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August observations. Furthennore, the applicability of canonical discriminant analysis 

(CDA) was tested in this study, and the results showed that the CDA has a good potential 

to identify different nitrogen and water treatments. The first two canonical functions 

explained more than 94% variability for the 31 July and 26 August data sets, and about 

84% for the August 10th data. 

(3) Considering the time, expense and site-specific restriction of field studies, 

efforts were made to evaluate the perfonnance of STICS, a crop growth model for 

southwestern Quebec. The applicability of the model was evaluated by comparing the 

predicted model output with measured values for grain yield, biomass and LAI. Predicted 

and measured values for these three crop parameters were weIl correlated with one 

another. Correlation coefficients of 0.97, 0.98, and 0.93 and model efficiencies (EF) of 

0.93, 0.95, and 0.85 for yield, biomass, and LAI, respectively, indicated good model 

perfonnance. Furthennore, the model was also linked to remote sensing observations by 

estimating LAI values from these observations. A new method of estimation based on an 

artificial intelligence system, called SVM, was used. While the model-generated LAI 

predictions were not so good, coupling the crop growth model with remote sensing 

observations resulted in an improvement in crop growth simulations. 

(4) For more accurate corn yield prediction in weed infested areas, attempts were 

made to explore the possibility of extending the application of crop growth modeling to 

such areas. A methodology was proposed that would account for the effect of weeds on 

crop growth, and thus could be used in crop growth modeling. Since LAI is an indicator 

of overall crop growth, the proposed procedure was based on differentiating the "true" 

LAI values of the crop in weedy areas. The "true" LAI values were th en used in the 

model for corn growth simulation. Simulated corn yield in weedy areas using this 

correction factor correlated weIl with the measured yield. 
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CHAPTER8 

CONTRIBUTIONS TO KNOWLEDGE AND SUGGESTIONS FOR 

FUTURE RESEARCH 

8.1 Contributions to Knowledge 

The specific contributions to knowledge from this study are: 

1. This study is the first of its kind in the application of a discriminant analysis 

algorithm along with a stepwise approach to simultaneously classify plant stress 

factors, namely weeds and nitrogen, and nitrogen and water. The stepwise 

approach allowed us to identify the most useful and effective narrow 

hyperspectral wavebands among highly complex data sets. The discriminant 

analysis method, when applied with those selected wavebands, was highly 

successful in identifying different types of stresses. 

2. This study is the first attempt to evaluate the STICS crop growth model for a corn 

field in southwestem Quebec. The model was also linked with hyperspectral 

observations. 

3. To the author's knowledge, this is the first field study investigating the possibility 

of applying a new artificial intelligence method, support vector machine (SVM), 

to estimate the crop parameter (LAI) from hyperspectral aerial images. 

4. A new procedure has been proposed to incorporate weed effects into crop growth 

modeling. This procedure will lead to more precise crop growth monitoring and 

yield estimation in both weedy and non-weedy areas. 
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8.2 Suggestions for Further Research 

1. To detennine the ability of hyperspectral observations to distinguish among 

various levels of combined effects of weed, nitrogen, and water stresses, it is 

suggested that a field experiment including aIl three factors be set up. During the 

entire growing period, hyperspectral observations should be taken at different 

growth stages. In addition, various cropping parameters (e.g., LAI, biomass, etc.) 

should also be collected coincidentaIly. 

2. One of the problems in this study was that the weed treatments were limited to 

grass and broad leaf type. It is suggested that an experiment with more specific 

weed combinations be set up, and hyperspectral data in different growth stages be 

acquired. AIso, more accurate spectral signature of various weeds and weed 

combinations at different growth stages should be assessed. The study should also 

be extended to other major crops of the region. 

3. One of the important steps in incorporating the weed effect in crop growth 

modeling was the establishment of a reliable technique to find the true crop LAI 

values in weed-infested areas. Further investigation is required to find more 

accurate methods for proper development of such relationships. 

4. To ex tend the application of the results ofthis study to larger areas and also other 

crop types, more work needs to be done. 

5. One of the important steps in incorporating the weed effect in crop growth 

modeling was the establishment of a relationship to find the true crop LAI values. 

For proper development of such relationships, further investigation is required to 

examine the ability of other methods of estimating LAI from hyperspectral data. 
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6. In this study the general ability of hyperspectral observations in crop growth 

monitoring was examined. To evaluate each portion of the spectrum., further 

research must to be perfonned. 

7. Further exploration of hyperspectral satellite (e.g., Hyperion) observations is 

needed to test the results from this study across larger regions (e.g., in national 

level). 
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APPENDIXA 

STICS model and it's modules 

The main objective of the STICS model is to simulate the effect of climatic 

conditions, soil and crop practices on agricultural production (quality and quantity) and 

the environment. STICS was developed as a generic model, easily adjustable to different 

plant types. This cornes from the generic nature of the formalism that was chosen. 

STICS simulates daily growth over a period from emergence to harvest on the 

basis of crop aboveground biomass (carbon and nitrogen), leaf area index and soil 

parameters and climatic data. The model simulates the growth of crop state variables (like 

LAI and biomass) in a daily time step based on the input data set. The sail is divided into 

different homogenous layers. For simulation purposes, each layer is defined by its water 

and nitrogen content. Interaction between plant and soil is done by roots, which are 

defined by their length distribution in the soil profile. In the STICS model, crop growth 

simulation is performed on the basis of carbon and nitrogen balance. As a result, this will 

lead to computing agricultural production (biomass, yield) and environmental impact 

(water and nitrogen leaching) under different agricultural conditions. 

To simulate crop growth, the model contains seven different modules, namely: 

development, shoot growth, yield component, root growth, water balance, thermal 

environment and nitrogen balance (Brisson et al., 1998). A brief on the modules is 

presented here, along with a summary of various parameters and variables (and their 

values) for each module in different tables. The FORTRAN notations, which are used to 

define the variables, are presented in these tables. 

A.t Development 

In the development module of STICS, crop growth period is divided into seven 

stages (Table 5.1) for the entire growing season. These stage classifications differ from 

the ones described in agronomy. The stages are defined in a way that is use fui for 

simulating LAI and grain filling and they may differ from agronomical stages. Dividing 

the growth period to various stages makes it possible to simulate different crops or 

specles. 
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In this module, the simulation will start by detennining the seed genninations, 

which is related to the soil temperature at sowing depth with the sum of degree-days 

(equation A.I), and it will occur when this sum meets a defined threshold value for the 

specified crop. The growth rate of the genninated plant is also related to the soil 

temperature and sowing depth by equation A.2. 

STPLTGER = IJ(TSOL(PROFSEM) - TGMIN) xPFZ(PROFSEM)] A.l 
I=/PLT 

ELONG = ELMAX[1- exp( -(BELONG x l TSOL(PROFSEM) - TGMIN)CELONG)] A.2 

where: 

/=/GER 

BELONG and CELONG are parameters of the curve of coleoptile elongation 

(degree-days) 

ELMAX is maximum elongation of the coleoptile in dark conditions (cm) 

ELONG is coleoptile elongation (cm) 

PROFSEM is sowing depth (cm) 

PFZ is water status of the soil (0 or 1) 

STPLTGER is sum of development units (degree-days) allowing gennination 

TGMIN is minimum threshold temperature used in the emergence stage 

TSOL is temperature of the soil 

In earlier crop growth models (i.e. CERES, ARCWHEAT, and SUCROS) air temperature 

was used to detennine the sowing-emergence phase occurrence. Afterward, the duration 

of the emergence was ca1culated on the base of soil water status. In sncs, duration of 

the emergence is simulated by the three factors: temperature, water status of the soil and 

sowing depth. Previous works showed that replacing the air temperature by a 

temperature near to the plant could give a better simulation of crop development. So far, 

sncs development was related to the surface temperature, which makes it possible to 

link the effect of drought (water deficit) on development to the temperature. 
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In earlier crop growth models (i.e. CERES, ARCWHEAT, and SUCROS) air 

temperature was used to determine the sowing-emergence phase occurrence. Afterward, 

the duration of the emergence was calculated on the base of soil water status. In sncs, 
duration of the emergence is simulated by the three factors: temperature, water status of 

the soil and sowing depth. Previous works showed that replacing the air temperature by a 

temperature near to the plant could give a better simulation of crop development. So far, 

STICS development was related to the surface temperature, which makes it possible to 

link the effect of drought (water deficit) on development to the temperature. 

A.2 Shoot Growth 

In the shoot growth module, the development of LAI is performed in four stages; 

including two growth stages (ILEV to ILAX), one stability stage (ILAX to ISEN) and 

one senescence stage (ISEN to !MAT). Since, in the model, the radiation is mainly 

intercepted by the canopy, it is important to have an accurate estimation of LAI, an 

indicator of canopy, at various growth phases. For the stability phase, where 

interception has its maximum value, accuracy has less importance. In the simulation 

processes, from emergence stage (ILEV) up to maximum LAI stage (ILAX), LAI is 

calculated with a non-linear equation and for the period between maximum LAI and 

beginning of senescence it was assumed that LAI has a constant value while for 

senescence period LAI decrease linearly. 

Between ILEV and ILAX the net leaf growth is calculated (equation A.3) using a 

net leaf development unit (ULAI), which includes values of l, 2.2 and 3 for the ILEV, 

juvenile stage (IMAF) and ILAX phase, respectively. A linear interpolation is used to 

compute the ULAI values between these numbers. A density is a defined target, below 

which there is no competition between the plants and above which the density will affect 

the leaf surface resulting in decreased leaf surface. 

DELTAI = DLAIMAX x (TCULT - TCMIN) 
1 + exp(5.5(2.2 - ULAI)) 

x min(TURFAC,INNS) x EFDENSITE x DENSITE A.3 

Where: 
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DELTAI is daily increase in LAI (m2 leaves m-2 soil surface day -1) 

DENSITE is sowing density (plants m -2) 

DLAIMAX is maximum rate of LAI development (m2 leaves m-2 soil degree 

dai l
) 

EFDENSITE is the density effect acting on the setting up of LAI 

INNS is nitrogen stress index (between 0 and 1) 

TeMIN is the minimum temperature at which growth will occur (CO) 

TeULT is the daily mean surface temperature (CO) 

TURF A e is turgescence stress index (between 0 and 1) 

ULAI is physiological time units for the calculation of the LAI between ILEV and 

ILAX 

In this module, the accumulation of aboveground biomass (DLTAMS) is related 

to intercepted radiation using a parabolic equation (equation A.4) with a maximum 

radiation use efficiency which has different values for various crops during different 

growing stages. Beer's law is the base for the estimation of the incidental radiation 

intercepted by the crop (equation A.5). 

DLTAMAS x 100 = [EBMAX x RA/NT -0.0815 x RA/NT 2
] x f(TCULT) 

x SWFAC x /NNS 

RA/NT = 0.95 x 0.50 x TRG[I- exp( -EXT/N x LA!)] 

A.4 

A.5 

Where: 

DLTAMAS is the crop growth rate (Mg ha -1 day -1) 

EBMAX is maximum radiation use efficiency (Mg ha -1 Ml -1 m-2
) 

EXTIN is extinction coefficient of photosynthetic active radiation in the canopy 

RAINT is photosynthetic active radiation intercepted by the crop canopy (Ml m-2
) 

S WF A e is the stomatal stress index (between 0 and 1) 

TRG is global solar radiation (Ml m -2 day -1) 

DLAMS will be affected individually by the water and nitrogen stresses. Final 

aboveground biomass is the total of daily DLAMS. 
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A.3 Yield Components Module 

In the yield components module, a period of variable duration is set to ca1culate 

grain number, based on the mean growth rate of the species canopy during this period 

(equation A.6). The total dry matter and the nitrogen content of the grain are related to 

the above ground biomass by applying sorne harvest indices (nitrogen and carbon harvest 

indices). These indices are used to ca1culate the magnitude of grains and the quantity of 

nitrogen in grains (equation A. 7). 

NBGRAINS= CGRAINx VITMOY + CGRAINVO A.6 

MA GRAIN = IRCARBx(I -IDRP) AND IRAZO= VITIRAZOx(I -IDRP) A.7 

Where: 

CGRAIN is slope of the relationship between grain number and growth rate 

during the NBJGRAINS before stage IDRP (grains g dry matter -1 day"l) 

CGRAINVO is number of grains produced when the growth rate is zero (grains 

m-2) 

1 is the running day 

IRAZO is nitrogen harvest index (g N grain g N planrl) 

IRCARB is carbon harvest index (g C grain g C plant -1) 

MA GRAIN is the dry matter of the grain (g m-2
) 

NBGRAINS is grain number (grains m-2
) 

VITMOYis mean daily growth rate while setting up the grain number, 

NBJGRAIN before the stage IDRP (g m -2 day -1) 

VITIRAZO is rate ofincrease of the nitrogen harvest index (g N grain g N plant-1 

day -1) 

Harvest indices are related to the length of time between IDRP and IMAT with an 

increasing linear function, while the effect ofwater and nitrogen stress are not considered 

in the evolution of the harvest index. 

A.4 Root Growth 

In this module, root growth is defined in term of their length, but is not directly 

related to the crop's above ground biomass. In fact, root biomass is distributed based on 

the radiation use efficiency determined, which is ca1culated on the basis of above ground 
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foliage with a parameter MSAERO (describing the threshold of above ground dry matter 

corresponding to the root allocation at the beginning of the cycle) early in the growth 

period. In the simulation process, water and nitrate are being taken from the soil by the 

root. The root development front depends on the crop variety, crop temperature, soil 

depth, and water availability. In the simulation, the active root front rate is related to the 

soil water conditions and the crop temperature (equation A.8). 

DELTAZ = CROIRAC x [min(TCULT, TCOPT) - TCMIN] x PFZ(ZRAC) A.8 

where: 

CROlRAC is the growth rate of the root front (cm degree-dai1
) 

DELTAZ is deepening ofroot front (cm) 

PFZ (2) is the water status of the soil at layer 2 (=0 ifHUMIN, otherwise =1) 

TCOPT is optimum temperature of the growth (0 C) 

ZRAC is root depth (cm) 

Root growth front begins at sowing depth and limits either at ILAX stages or the 

maximum soil depth. For each depth the effective root density is determined by the 

module (equation A.9). 

LRAC(Z) = LVOPT 
1 + exp( -S(Z - ZDEMI) 

A.9 

Where: 

LARC is the effective root density in the 2 layer of the soil (cm root cm·3 soil) 

LVOPT is optimum root density (cm root cm -3 soil) 

S is a parameter for calculating root density 

ZDEMI shows the depth where the root density is half of the surface root density 

Sand 2DEMI can be defined by equation A.1 o. 

S -4.6 d C 1.4) = an ZDEMI = max(ZRA - ZPRLIM + ZPENTE,-
ZLABOUR-ZPENTE S 

A.lO 

Where: 

ZLABOUR is plowing depth (cm) 

ZPENTE is the depth where the root density is half of the surface root density for 

the reference profile (cm) 

ZPRLIM de fines the maximum root density for reference profile (cm) 
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A.5 Water Balance 

In the water balance module, Penman's reference evapotranspiration equation is 

used to create an equation to calculate evaporation from the soil based on the availability 

of the energy at soil level and the maximal transpiration. By first using Beer's law, the 

potential evaporation from the soil is estimated (equation A.II). The water accessibility 

based on actual evaporation is then calculated. 

EOS = TETP x exp[ -(EXTIN - 0.2) x LAI] A.II 

where: 

EOS is maximum evaporation flux (mm day -1) 

EXTIN is extinction coefficient of photosynthetic active radiation in the canopy 

TETP is reference evaporation (mm day -1) 

To calculate the maximum transpiration from the crop, it is first assumed that 

there is no water scarcity in the system (soil and plant). The evaporation in the crop (EO) 

is deterrnined by equation A.I2, which is related to the LAI by a crop coefficient 

(KMAX). Maximal transpiration is obtained by subtracting EOS from EO (equation 

A.l3). 

EO = TETp[I + KMAX - 1 ] 
1 + exp(-I.5LAI - 3) 

EOP = (EO - EOS) x (1.4 - 0.4 EO ) 
EOS 

where: 

EO is an interrnediary variable for the calculation of evapotranspiration (mm 

da/) 

EOP is the maximum transpiration flux (mm day -1) 

KMAX is the maximum crop coefficient 

A.I2 

A.l3 

The actual transpiration (EP) is related to the maximal transpiration by a variable 

(TETA), which has a value between 0 and 5 and its value depends on water availability in 

the soil. The value of TET A is equal to 0 when the soil water content is at the wilting 
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point. In the daily time step simulation, it is assumed that the transpiration from the plant 

is equal to the root absorption. 

Using these evaporation, irrigation and precipitation values, a water balance is 

computed, with the assumption that in each layer the soil characteristics (field capacity, 

permanent wilting point and bulk density) are constant. The soil profile can be defined in 

five layers of varying depths. Each layer acts as a reservoir with the maximum and 

minimum capacity equal to field capacity and permanent wilting point respectively. 

Water balance is calculated on the base of a 1 cm sub-Iayer, which may not be necessary. 

However, this method of calculation is accurate for nitrogen and it is important for nitrate 

transfer. To calculate evapotranspiration based on the energy availability, first the 

potential evaporation is calculated. In the second step, using the potential evaporation 

and available water for crop usage, actual evaporation is determined. 

A.6 Crop Thermal Environment 

Variation in soil temperature not only depends on the surface conditions but also 

on thermal inertia of the surroundings. This inertia is lowers soil temperature with greater 

depths. In the calculation of the soil temperature, daily thermal amplitude at the depth (z), 

which is related to soil surface thermal amplitude, is used. In a thermal environmental 

module, simulation of the activities inside the soil are based on daily average surface 

temperature (TCULT) or the temperature of the soil (TSOL) in different layers, which are 

calculated by equations A.14 and A.15. 

TCULT = TMOY + (RN - (EP + ES) x 2.46)RA 
0.0864 x 1200 

TSOL(Z) = AMPLZ (TCULTVEILLE - TMIN) + 
AMPLSURF 

0.1 x (TCULTVEILLE - TSOLVEILLE(Z) + AMPLZ 
2 

where: 

AMPLSURF is the thermal amplitude at the soil surface (CO) 

AMPLZ is the amplitude at the depth Z (CO) 

EP is actual transpiration flux (mm day -1) 

ES is actual soil evaporation flux (mm day -1) 
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RA is aerodynamic resistance (s m -1) 

RN is net solar radiation (Ml m -2) 

TCULTVEILLE is daily mean surface temperature on the previous day (CO) 

TMIN is minimum temperature (0 C) 

TMOY is mean temperature (0 C) 

TSOLVEILLE is temperature of the soil at the depth Z, on the day before (CO) 

The amount of RN is related to LAI and calculated using equation A16 and the 

value of RA, which is used on a daily average base, is assumed constant (30 s m-I). 

RN = [1- 0.23 - (0.23 - ALBSOL) x exp( -0.75LAI)] x TRG x 0.72 - 0.9504 A.16 

Where ALBSOL is the bare dry soil albedo and TRG is global solar radiation (Ml 

-2 d -1) m ay . 

A.7 Nitrogen Balance 

In snes the nitrogen that is available to the crop cornes from two sources: 

fertilizer applied and mineralized nitrogen. Supplied nitrogen in the form of mineraIs is 

artificial nitrogen fertilizer and nitrogen from irrigation and precipitation. Three sources 

of nitrogen mineralization, which are taken into account, are crop residues (RES), 

humified organic matter (HUM), and the microbial biomass growing on organic matter 

(BIOM). The humification will occur up to a depth at least equal to the plowing depth. 

The potential rate of mineralization (which depends on the clay and limestone content of 

the soil), the thermal factor, and the water content has an effect on mineralization 

processes (equation Al 7 and A18) in each soil layer. 

VMINH(Z) = VPOT(Z) x FTH(Z) x FH(Z) 

VPOT(Z) = K2POT x NHUM 

where: 

FH is the soil water content, a correcting factor for the calculation of humus 

mineralization 

FTH is the temperature correction factor for the calculation of humus 

mineralization 

NHUM is the total amount of humus nitrogen in the soil (kg N ha-I) 
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VMINH is the rate ofhumus mineralization in each soillayer (kg N ha- I cm- I 

dai I
) 

VPOT is the potential rate of mineralization per layer at the reference temperature 

and water content (kg N ha- I cm- I dai I
) 

Mineralization of nitrogen and microbial biomass growth is the result of crop 

residues break down. Thus, the rot of microbial biomass will result in humus. The 

quality of the residue, temperature and the water availability of the soil determine the 

rottenness rate of the residue and fatality of the microflora. The CIN ratio of the crop 

residues defines their quality, which in tum determines the humification rate of residues. 

The fraction of the applied nitrogen which remains in its mineraI form is called 

"efficiency of the nitrogen fertilizer" (EFFN). In STICS, it is assumed that EFFN is equal 

to two thirds of applied nitrogen, while the rest of the fertilizer nitrogen (one third) is lost 

in its gaseous form. 

In each single soil layer, it is assumed that the transferred nitrogen from the upper 

layer is mixed with the water in the layer and excess water is drained to the next layer. 

This process will continue until the end of soil profile or where the soil water content is 

less than its water holding capacity. 

Comparing the nitrogen demand of the crop and the nitrogen supply of the soil 

will result in the nitrogen absorption of the crop. In the case of limiting the nitrogen 

supply, the actual nitrogen absorption is equal to the nitrogen supply. If there is no 

shortage in the nitrogen supply, maximum nitrogen demand (equation A.19) of the crop 

for daily product will be the actual nitrogen absorption rate. 

if MASEC2 1, DEMANDEr 1 Ox ADILMAXx DLTAMSx (1- BDILMAX) x MASECBDlLMAX 

if MASEC<1, DEMANDErl0xADILMAXxDLTAMAS A.19 

where: 

ADILMAX and BDILMAX are the parameters of the maximum curve of nitrogen 

demand (g N g dry mattef 1) 

DEMANDE is the daily nitrogen need ofplant (kg N ha- I dai I
) 

DLTAMAS is the growth rate of the plant (t ha- I dai I
) 

MASEC is above ground dry matter (t ha- I
) 
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APPENDIXB 

Details of the content of the CD-ROM are as follows: 

DirectorylSubdirectory 

"" J.:.j Yousef-Karimi 1 
El CJ Experimenta-Deta~s 

i±l . .:.J Year-2000 

i±l . .:J Year-2001 

i±l.:.J Year-2002 

i±l,...2.J Mode! 
Q TheSis-Text 

.=:;..:.J Yousef-Karimi 
;::: .jî Experimenta-Detaüs 1 

i±l .:.J Year-2CXX) 

t+i.2:J Year-2001 

i±l . .:J Year-2002 

i±l . ...:J Mode! 
. .:J TheSis-Text 

El CJ Yousef-Karimi 

El CJ Ex:erimenta-Detaüs 
~ dlear-2000 1 
[jj Cl Year-2001 
~ Cl Year-2002 

~ CJ Mooel 
CJ Thesis-Text 

E ,.j Yousef-Karimi 
E Cl Experimenta-Detals 

œ . .:J Year -200) 

œ::J Year-2001 1 
œ.:J Year -2002 

i±: Cl Mode! 
;.:J Thesis-Text 

Content 

The root directory contains a subdirectory YousefKarimi 

which is divided into three subdirectories, Experiment­

Details, Madel and Thesis-Text. 

This subdirectory is further divided into three sub­

subdirectories such as Year-2000, Year-2001 and Year-

2000, which respectively contain the detailed 

experimental data . 

In Year-2000 directory, hyperspectral CASI images, ASD 

spectral data, and other ground data are given in CASI­

Image, ASD-Data, and Ground-Data subdirectories, 

respectively. Each ofthese directories is further divided 

into various sub-subdirectories. The names of these 

subdirectories are self explanatory with their content. 

Readme file (in Year-2000 directory) also explain all 

these details. 

In Year-2001 directory, Ground data are given in a 

subdirectory named Ground-Data. Readme file (in Year-

2001 directory) also explain all these details. 
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~ ,.:J Yousef-Kaimi In Year-2002 directory, ASD spectral data and other 
;- ,.:J Experimenta-Detals 

.±: . ....:.J YeN -2OC() ground data are given in ASD-Data, and Ground-Data 
± ·21 YeN-2OO 1 
:f -.j YeN -2002 1 subdirectories, respectively. The ASD-data directory is 

:±: ~ Mode! 
further divided into various subdirectories named based Cl Thesis-Text 

on the measurement dates. Readme file (in Year-2002 

directory) also explain aIl these details. 

:-.. 2.J Yousef-Kaimi In Model directory, an example set of the aIl necessary 
[- '21 Experimenta-Detals 

:±: . ..2J YeN -2OC() files for running the STIeS model is listed and further 
:±:2.J YeN -200 1 
:t..2J YeN -200 2 details are in the readme file. 

:±: ~ Mode! 1 
c..:.J Thesis-Text 

,- ...2J Yousef-Kaimi Thesis-Text directory contains the thesis document in 
F...:..J Experimenta-Detals 

.±: ....J YeN-2OC() MS-WORD format. 
±....J Year-2001 
I..2J YeN -2002 

[±; ~ Mode! 
qThesis-Text 1 
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