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Abstract 

Computations of transonic viscous flows are very challenging. The major 

difficulty comes from the discontinuity in the solution across a shock wave, 

causing undesired oscillations in the solution. In this work we focus on 

minimizing the oscillations by the use of a limiter to control the amount of 

diffusivity. This limiter provides the right amount of viscosity to capture a sharp 

shock and an accurate solution in high gradient regions. The limiter employs 

changes in pressure and entropy and has been implemented into the Streamline 

Upwind Finite Element Method. A mesh adaptation strategy has been employed 

to further enhance the accuracy of the solution. Results of simulations over RAE 

2822 airfoil and ONERA M6 wing indicate significant improvements to the 

solution with this implementation. 
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Résumé 

Les calculs des écoulements visqueux transsoniques constituent un grand défi. 

La difficulté principale vient de la discontinuité dans la solution à travers une 

onde de choc, causant des oscillations non désirées dans la solution. Dans ce 

travail nous nous concentrons à réduire au minimum les oscillations par 

l'utilisation d'un limiteur pour contrôler la quantité de diffusivité. Ce limiteur 

fournit la bonne quantité de viscosité pour capturer un choc propre et une 

solution précise dans des régions de gradient élevées. Le limiteur est fonction 

des changements de pression et d'entropie et a été implémenté dans une 

méthode élément fini décentrée de type SUPG. Une stratégie d'adaptation de 

maillage a été utilisée pour augmenter davantage l'exactitude de la solution. Des 

résultats de simulations sur l'aile RAE 2822 et l'aile d'ONERA M6 montrent des 

améliorations significatives de la solution avec l'approche proposée. 
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1. Introduction 

ln the early 1950s when production fighter designs began pushing closer 

to the sound barrier, aircraft designers found that the drag on these aircraft 

increased substantially when the planes traveled near Mach 1, a phenomenon 

known as the transonic drag rise. This increase in drag is due to the formation of 

shock waves over portions of the airplane, which typically begins around Mach 

0.8, and reaches a maximum at Mach 1. Because of its source, this type of drag 

is referred to as wave drag. The wave drag occurs in two ways. First, and 

primarily, the strong adverse pressure gradient across the shock causes the 

boundary layer to separate from the surface - this creates pressure drag due to 

flow separation. Second, even if the boundary layer did not separate, there is a 

loss of total pressure across the shock which ultimately would cause a net static 

pressure imbalance in the drag direction - also a pressure drag. 

A 3D visualization of local supersonic pockets that could appear in 

transonic flight over various parts of the plane is contained in Figure 1-1. The 

Prandtl-Glauert condensation cloud [33], assumes a conical shape around the 

wings - the shock wave corresponds to the termination of the cloud, towards the 

aft of the plane, which gives rise to the characteristic fiat base of the cone. 
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Figure 1-1: Prandtl-Glauert condensation cloud on a transonic F IA-18 Hornet 

plane (media release, USS Constellation, July 7, 1999 [990707-N-6483G-001]) 

No closed-form analytical formulas exist to predict the transonic drag rise. 

The prediction of transonic drag is so difficult that Jobe [18] in 1985 states: "The 

numerous authors in the field of numerical transonic aerodynamics have 

reached a consensus: Transonic drag predictions are currently unreliable by any 

method". 

Advances in Computational Fluid Dynamics (CFD) during the last 40 years 

have made it possible to predict transonic drag. However, CFD is still very 

challenging, principally due to uncertainties in the calculation of the shock­

induced separated flow. 

Considerable effort has been devoted to the calculation of transonic 

viscous flows around airfoils, aircraft wings or complete aircraft using Finite 

Element Method (FEM), involving both structured and unstructured grids. The 

numerical simulations of compressible viscous flows results in a tightly coupled 

system of nonlinear equations in which parameters often take extreme values. 

Such problems place special demands on the solution algorithm. Flow 

features such as boundary and shear layers, recirculation zones and shock 
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waves need to be accurately resolved to achieve an accurate solution. 

Furthermore, due to the mesh-dependent nature of CFD solutions, it is important 

to cluster grid points to regions of important flow physics. However, it is difficult 

to determine a priori where the mesh must be refined in order to accurately 

capture the physics of the flow. 

FEM makes use of 'a spatial discretization and a weighted residual 

formulation to arrive at a system of matrix equations. The most common 

weighted residual formulation employed is the Galerkin method [6], in which 

weight and interpolation functions are identical. When applied to fluid flows or 

convective heat transfer, this method leads to a nonsymmetrical matrix 

associated with the convective terms, and as a consequence the solutions are 

often corrupted by spurious node-to-node oscillations. It is also known that the 

Galerkin FEM gives rise to central-difference type approximations of differential 

operators, leading to instability and upwind differencing must be used on the 

convective terms to obtain stable solutions. The drawback shown by this 

approach is that upwind differences are only first-order accu rate , compared to 

central differences that are second-order accurate. Subsequently, it becomes 

apparent that a combination of central and upwind differences can improve 

solutions that employ either upwind or central differences alone. For a simple 

one dimensional model problem, it was possible to select the combination which 

resulted in exact nodal solutions. Equivalently, the proper amount of artificial 

diffusion could be added to the central formulation, procedure usually referred to 

as optimal or smart upwind method. 

An initial upwind FEM was presented by Christie et al. [19] for the one 

dimensional advection-diffusion equation, by modifying weighting functions to 

achieve the upwind effect. In essence, the element upstream of anode is 

weighted more heavily than the element downstream of a node. This method 

was later generalized to the two dimensional case by Heinrich et al. [20]. 

Because the modified weighting function is applied to ail terms in the equations, 

these formulations le ad to consistent Petrov-Galerkin weighted residual 

methods. 
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Hughes [21] introduced a simple method for generating upwind elements, 

which made use of a modified quadrature rule for the convection term, while 

Hughes and Atkinson [22], using a different approach, derived an optimal 

upwind method from a variational principle, demonstrating that upwind methods 

may be developed from a firm theoretical basis. Many optimal upwind FEM give 

exact solution for the one dimensional problem, but when generalized to 

multidimensional flow situations some of these formulations are far from optimal, 

generating solutions that often exhibit excessive diffusion perpendicular to the 

flow direction. In addition, Galerkin formulation may provide in many instances 

oscillation free solutions which are more accurate than upwind solutions. To 

address criticism caused by the above results, Brooks et al.[13], introduced the 

Streamline Upwind Petrov-Galerkin (SUPG) formulation, where the added 

viscosity has an anisotropic character, acting just in the flow direction. This is 

achieved through the standard Galerkin weighting functions by adding a 

streamline upwind perturbation, which acts just in the flow direction. This method 

successfully incorporates streamline upwind concept, which precludes the 

possibility of excessive crosswind diffusion while eliminates artificial diffusion 

that plagues many classical upwind schemes by the consistent Petrov-Galerkin 

formulation. Additionally, the method is quite easy to implement and does not 

require the use of higher order weighting functions. Further investigations of 

SUPG method in the context of the multidimensional advection-diffusive 

equation were done by Johnson [23] and Navert [24], who established optimal 

convergence rates and a strong discontinuity capturing property, even when the 

discontinuity is skewto the mesh. In Hughes et al. [25], the SUPG procedure of 

[13] is generalized to hyperbolic systems of conservation laws, with emphasis on 

high speed flows with shocks. 

SUPG is an excellent method for problems with smooth solutions, but 

typically introduces localized oscillations about sharp internai and boundary 

layers. To improve upon the situation, Hughes et al. [30] added a discontinuity 

capturing term to the formulation, which provides additional control over 

gradients in the discrete solution and considerably increases the robustness of 
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the methodology. The developments were restricted to the scalar advection­

diffusion equation. In Hughes et al. [31], the discontinuity capturing operator has 

been generalized to multidimensional systems. 

It is weil known that application of Galerkin FEM for fluid flow introduces 

numerical instabilities. First, the lack of a diffusive term in the continuity equation 

makes the advective-diffusive Navier-Stokes system of equations an incomplete 

parabolic one. The incompressible constraint leads to an indetermination of the 

system of governing equations since the unknown pressures have to be 

computed from the continuity equation. One method to solve the indetermination 

employs different function spaces for the velocity and pressure interpolation (e.g. 

quadratic- velocity and linear-pressure). This approach is known as Babuska­

Brezzi stability condition [6], but in general ifs not attractive from an 

implementation standpoint. Secondly, modeling non-symmetric advective terms 

by employing symmetric operators (such as centered finite differences or 

Galerkin basis functions) leads to solutions corrupted by spurious oscillations. 

The Babuska-Brezzi stability condition, also known as inf-sup condition 

[26][27], are not easy to implement in practice, especially for three dimensional 

computations. However, N'Dri et al. [28] proposed a mixed space-time finite 

element formulation where the approximation spaces for velocity and pressure 

satisfy the LBB stability condition, showing that this formulation is stable and 

also applicable to transient viscous flows. A more common way of solving flow 

problems is by circumventing the Babuska-Brezzi criterion. A key idea is to treat 

Petrov-Galerkin formulations as devices to enhance stability without upsetting 

consistency. Hughes et al.[29] exploited this idea for Stokes flow. 

Thus, the weighting function which multiplies the momentum-balance 

residual is not simply the Galerkin weight Wh, but Wh plus another term, 

sometimes referred to as the 'perturbation' of the Galerkin weighting function. 

This formulation may be considered a Petrov-Galerkin method and proved to be 
o 

convergent for rather general C combinations of velocity and pressure, in 

particular equal-order interpolations very attractive from a computational 

standpoint. 
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ln a recent research [32], Almeida et al. introduced a Consistent 

Approximate Upwind Method (CAU).The idea is to keep the SUPG perturbation 

term over the streamline direction and add, in a consistent way, a non-linear 

perturbation to provide the control over the derivatives in the direction of the 

approximate gradient, avoiding completely spurious oscillations. This method is 

further combined with an h-adaptive mesh refinement procedure, as the finite 

element mesh near discontinuities in the flow must be fine enough in order to 

accurately solve ail flow details. 

1.1. Dissertation directions 

This dissertation focuses on how to improve the capture of discontinuity of 

the compressible viscous Navier-Stokes (N-S) solution, such as a shock wave. 

We adopt a reliable shock detector formulation and apply it to the SUPG finite 

element formulation. 

Our development is based on the success of our current capability to 

accurately compute the compressible viscous Navier-Stokes equations [9] as 

long as no strong discontinuity exists in the flow field. Basic FEM CFD 

formulation is demonstrated in Chapter 2. Our proposed shock detection can 

eliminate the limitation of the existing Navier-Stokes solver. 

To demonstrate these benefits, we implement the shock detector including 

enhancement techniques such as mesh adaptation to the current N-S solver and 

apply it to transonic viscous flow past airfoils and wings. Chapter 3 contains the 

development of such detection and mesh adaptation. Comparisons with 

experimental data indicate good agreement for both 2D and 3D flows, as shown 

in Chapters 4 and 5. Chapter 6 summarizes this dissertation and suggests 

possible extension. 
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2. Governing Equations 

ln this chapter, a brief overview of the field equations and solution strategies are 

given. Also, the Finite Element Navier-Stokes Analysis Package (FENSAP), 

which was used as a Navier-Stokes solver for this work is introduced and a 

succinct description of software implementation and computation algorithms are 

added. 

2.1. Navier Stokes equations in differential form 

The fundamental equations that govern the fluid flow of a Newtonian fluid (i.e. 

stress varies linearly with strain rates) are obtained based on the following 

universallaws of conservation: 

1. Conservation of mass: "matter can neither be created nor destroyed". 

2. Conservation of momentum: "the total force acting on a fluid particle is equal 

to the time rate of change of its momentum - Newton's lex seconda". 

3. Conservation of energy: "energy can neither be created nor destroyed - First 

Law of Thermodynamics" 

Note: According to Einstein theory, E = m . c 2 (E stands for energy, m for mass, c 

for speed of light in vacuum) i.e. for a small variation in mass, a physical system 

can have an immense variation in energy. However, in fluid flow problems the 

energy variation does not generally exceed 105kJ/kg, so the variation of mass is 

practically negligible. For problems that do not contain nuclear reactions or other 

kind of transformations that allow for mass to be transformed into energy, the 

above conservation principles ho Id . 

The derivation of the fundamental equations of fluid dynamics will not be 

presented here. A derivation based on the postulated relations between stress 

and rate of strain and heat flux and temperature gradient is treated for instance 

by Schlichting [8]. As we are going to use Navier-Stokes equations to obtain 

solutions for air flow around aerodynamic 20 and 30 objects, the assumptions of 

homogeneous and uniform fluid without mass diffusion or chemical reactions are 

made. 
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2.1.1. Continuity equation 

Let's consider an infinitesimal control volume (CV) that is bounded by its control 

surface (CS). The Conservation of Mass law applied to a fluid that passes 

through CV yields the following equation of continuity: 

ap + V. (pV)=O 
at 

(2-1) 

where p is fluid density and V is the fluid velocity. Using the formula for 

divergence applied to pV we get 

V . (pV)=V ·Vp+pV· V 

and the substantial derivative 

D( )=~+V .v( ) 
Dt at 

can now be used to write the continuity equation as: 

Dp +p(V.V)=O. 
Dt 

(2-2) 

(2-3) 

(2-4) 

The above equation is obtained in the hypothesis that the control volume is 

fixed, and the changes to the fluid properties are done as the fluid flows through 

the CV. This approach is called Eulerian, by opposition to a Lagrangian 

approach, which considers the observer that records fluid properties moving 

together with the fluid element. The first approach is commonly used in fluid 

mechanics. 

2.1.2. Momentum equations 

Applying Newton's Second Law of dynamics for a fluid element passing through 

an infinitesimal and fixed CV, we get the following formulation of momentum 

equation: 

a 
-(pV)+ V· pVV =pf + V . (Yi) 

at 
(2-5) 

The above formula contains, in the left hand side, the rate of increase of 

momentum per unit volume in the CV, the second term being the rate of 
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momentum lost by convection (per unit volume) through the CS. On the right 

hand side, the first term represents the body forces per unit volume, while the 

second term represents the surface forces per unit volume. On the left hand 

side, the divergence is applied to the tensor pVV, and can be expanded as: 

V· pVV=pV .VV+V(V. pV) (2-6) 

Substituting equation (2-6) into equation (2-5), and simplifying the result through 

the continuity equation (2-4) we can write the momentum equation as: 

DV 
p-=pf+V·aij. 

Dt 
(2-7) 

ln this equation, a ij represents the stress tensor, which contains the normal 

stresses and shearing stresses. For a Newtonian fluid, it's possible to derive a 

general deformation law that relates the stress tensor to the pressure and 

velocity components [8]. In compact tensor notation, expression of aij becomes: 

(
ÔUi ÔUj] ôuk .. a .. =-pJ .. +1I -+- +JÂ- 1,J,k=1,2,3 

lj lj r ôx a lj ôx 
j ~ k 

(2-8) 

where J ij is the Kroneker delta function (J u= 1 if i = j and J ij =0 if i:l; j ) , u1, u2, u3 

represent the three components of the velocity vectorV , x1, x2, x3 represent the 

three components of the position vector, jl is the coefficient of dynamic 

viscosity, and Â is the second coefficient of viscosity. After substituting the 

Stokes relation, 

2jl+3Â=0 , (2-9) 

into equation (2-8) and taking into account eq. (2-3), we obtain the Navier­

Stokes equation in differential form: 

pDV =Pf_VP+~[jl(aUi + ÔUj ]_ ~Jijjlaukl 
Dt ôXj ôxj ÔXi 3 ôxk 

(2-10) 

The Navier-Stokes equations form the basis upon which the entire science of 

viscous flow theory has been developed. Strictly speaking, the term Navier-

Stokes equations refers to the components of viscous momentum equation (2-

10). However, it is common practice to include the continuity equation and the 
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energy equation in the set of equations referred to as the Navier-Stokes 

equations. 

2.1.3. Energy equation 

Applying the First Law of thermodynamics for a fluid element passing through an 

infinitesimal and fixed CV, we get the following formulation of the energy 

equation: 

BEt BQ () -+V·EV=--V·q+pC·V+V· (j·V & '& lj 

(2-11 ) 

where Et is the total energy per unit volume given by 

E, = { e + ~2 + potenlial energy + ... J (2-12) 

and e is the internai energy per unit mass. The first term of the left hand side of 

equation (2-11) represents the rate of increase of E, in the CV, while the second 

term represents the rate of total energy lost by convection (per unit volume) 

through the CS. The tirst term on the right hand side of equation (2-11) is the 

rate of heat produced per unit volume by external agencies, while the second 

term is the rate of heat lost by conduction (per unit volume) through the CS. The 

third term on the right hand side of equation (2-11) represents the work done on 

the CV (per unit volume) by the body forces, while the fourth term represents the 

work done on the CV (per unit volume) by the surface forces. Fourier's law for 

the heat transfer will be assumed, so the heat transfer can be expressed as 

q=-KVT, (2-13) 

where k is the coefficient of thermal conductivity and T is the temperature. 

2.2. Navier Stokes equations in conservation form 

Conservation-Iaw form is a convenient way of writing the field equations, and 

bellow we give this compact vector form of compressible Navier-Stokes 

equations in Cartesian coordinates, without body forces, mass diffusion, finite 

rate chemical reactions or external heat addition,[7]. 
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au + aE + aF + aG = 0 
al ax ay az' , 

where U, E, F and Gare vectors given by: 

E= 

F= 

G= 

p 

pu 

u= pv , 

pw 

El 

pu 
pu2+ p - Txx 

PUV-Txy 

PUW-Txz 

(El + p}u -UT xx -VTxy -WTxz + qx 

pv 

PUV-Txy 

pv2 + P-T
yy 

PVW-Tyz 

(El + P}v-UTxy -VTyy -WTyz +qy 

pw 

PUW-Txz 

PVW-Tyz 
2 pw + p-Tzz 

(El + P}w-UTxz -VTyz -WTzz +qz 

where the components of the stress tensor T ij are: 

T = ~ 11(2 au _ av - 8w] 
xx 3"'" ax ay az ' 

T =~J1(2av _au_8w], 
yy 3 ayax az 

T = ~ 11(2 8w _ au - av] 
zz 3"'" az ax ay' 

(2-14) 

(2-15) 

(2-16) 

(2-17) 

(2-18) 
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T~~P(: + ~)~Ty" 

'xz = J{: + !:) = 'zx' 

Ty,~P(: +:)~T~ (2-19) 

For air in a laminar flow, the viscosity is defined empirically by Sutherland's law 

(2-20) 

where T refers to the temperature in Kelvin, and variables noted with the 

subscript 00 are reference values, [9]. The total or stagnation enthalpy is defined 

as 

H=!V2+~P 
2 r-1p' 

(2-21 ) 

where r is the ratio of specifie heat and equals 1.4 for air. The thermal 

conductivity k of formula equation (2-13) can be computed in a similar way as 

the laminar dynamic viscosity: 

K T Too + 133.7 
( )

3/2 

Koo = T
oo 

-( T + 133.7 ). 
(2-22) 

The equation of state for an ideal gas, necessary to close the system of 

equations, is: 

P =RT , (2-23) 
P 

where R represents the gas constant. 

2.3. Reference variables 

ln FENSAP, the non-dimensional variables were obtained with respect to four 

input parameters, namely reference pressure Poo' temperature Too ' length Loo and 

the norm of the velocity vectorVoo • In the limit of ideal gas approximation, we can 

define the following non-dimensional quantities: 
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M = Voo 
00 ~yRT",' 

Poo 
Poo = RT ' 

'" 

• y • 1 
H", =--Poo +- , 

y-1 2 

where the asterisks in equation (2-26) indicates non-dimensional variable. 

2.4. Spalart-Allmaras turbulence model 

(2-24) 

(2-25) 

(2-26) 

(2-27) 

The turbulence model used to compute solutions of transonic flows in this work 

is the one-equation Spalart-Allmaras model. A detailed discussion and 

comparison about few turbulence models available, including Spalart-Allmaras is 

presented in reference [10]. The model solves a POE over the whole field for a 

working variable v, from which the effective eddy viscosity Vr is computed trom 

a relation 

(2-28) 

The transport equation that gives vis: 

av av s-- 1 a [( _)av av av] 1 (V)2 
-+U-=Cbl V + v+v -+-- -cw1/w Re_ d ,(2-29) at ) ax j Œ Re 00 ax k ax k ax k ax k _ 

where 

- 1 v 1 [au i au j J s = S +----2 -2 IV2' S = ~2nijnij' nij = - --- . 
Re", If: d 2 ax) axi 

(2-30) 

ln the equation (2-30) d represents the distance to the wall, and Iv2 and Ivl 

are defined as: 

{" -1- X 
J v2 - 1 -vi' ' 

+ ..uvl 
(2-31 ) 
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where X = ~ with v being the laminar viscosity. The destruction term is formed 
v 

with: 

The closure coefficients of the model are: 

2 
Cbl =0.1335 ,Cb2 =0.622, cvl =7.1, (j=-

3 

2.5. Soundary conditions (SC) 

(2-32) 

(2-33) 

(2-34) 

The Navier-Stokes system of equations, comprising a scalar continuity equation, 

three scalar momentum equations and one scalar energy equation is a non­

linear, coupled, hybrid system, or elliptic-hyperbolic in space. For this kind of set 

of equations, no boundary conditions have been mathematically defined to date. 

For this reason, physical considerations will be used to define the boundary 

conditions. 

Research done on solid wall viscous flows, revealed that the relative velocity 

between the solid wall and the flow is zero in the subsonic and low supersonic 

regimes. Also, the velocity component normal to the wall is zero. These two very 

important observations are called "no slip" and "no penetration", respectively. 

ln CFD there are an inlet boundary and an exit boundary. At the inlet, a specified 

velocity profile is imposed, while for the exit boundary only the pressure variable 

( for subsonic and transonic) is imposed along the entire surface, meaning that 

ôV 
the flow is fully developed or - = O. At a plane of symmetry, the following 

ôn 

conditions apply: 

Vp· fi = 0; V p' fi = 0; V(Vtl )' fi = 0; V(~2)' fi = 0; 

where subscripts t1 and t2 indicate velocity tangential components. 

(2-35) 
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2.6. Finite Element Method (FEM) formulation 

The finite element method was initially used in the field of structural analysis, 

and the concept of "element" originates in the techniques used in stress 

calculations, where a continuous media was divided into many substructures of 

various shapes, analyzed separately and then re-assembled. 

It is convenient at this point to write Navier-Stokes equations (2-4), (2-10) and 

(2-11) in index-free fashion. If the gradient of a scalar quantity cp is written as: 

ôm - ôm - ôm -Vcp=cp=_'t'i+_'t' j+_'t'k 
,1 ôx ôy ôz 

and the divergence of a vector quantity <D is written as: 

V<D = <D . = ô<D x + ô<D y + ô<D Z 

1,1 ôx ôy ôz 

we can write then the Navier-Stokes equations: 

(p U k ),k = 0 , k = 1, nsd continuity eq., 

PUJUi,j =(J'ijJ ' i,j=l,nsd momentum eq., 

(2-36) 

(2-37) 

(2-38) 

(2-39) 

(2-40) 

where "nsd" stands for "number of space dimensions", U represents the velocity 

vector, K represents the coefficient of thermal conductivity, T is temperature, H is 

enthalpy, p the density, (J' the stress tensor and T the shear stress tensor. 

The field equations are written for a space domain, Q, that in finite element 

analysis is subdivided into a number of elements of arbitrary shape and size, 

the restrictions being that the elements may not overlap, have to cover the 

whole computational domain and have to obey conformity condition, i.e. two 

elements must share a face or anode. Each element contains a number of 

points that are situated either on the sides or inside the element. At these points, 

the values of the unknowns and their derivatives have to be determined, and the 

total number of unknowns at the nodes, and their derivatives are called the 

degrees of freedom of the numerical problem. The field variables are 

approximated by linear combinations of known basis functions N (also known as 
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shape or interpolation functions) .We can therefore write for an approximate 

solution îi ofu(x): 

(2-41) 

where the summation extends over ail nodes, and Ui represents the unknowns 

at the nodes. A common choice for the shape functions N are polynomials of 

different order within each element and zero outside the considered element, 

with the observation that the higher the order, the more computer power is 

needed. As a consequence of this property the shape functions satisfy to: 

N}e)(x)=O ifxnotinelement(e) (2-42) 

and for any point x J we have: 

(2-43) 

Based on the requirement to represent exact a constant function 

u(x) = constantwe can write another condition for N: 

(2-44) 

As an example, in FENSAP the shape functions are chosen to be polynomials of 

first order, which means the first derivatives are constants, and the second 

derivatives and higher are zero. This choice has advantages and disadvantages: 

the simplicity of the first order polynomial offers economical use of available 

computer power for large industrial size flow problems, while some extra 

methods have to be used in order to deal with the satisfaction of stability 

condition, known as the Babuska-Brezzi condition, [6]. A complete discussion 

about elements and shape functions used in finite element analysis can be found 

in [11]. The method of weighted residual or weak formulation will be now 

introduced, and for detailed derivations please refer to [6], [12]. 

Starting from equations (2-38), (2-39), and (2-40) we multiply them by a given 

weighting function W and integrate across the entire computational domain in 

order to obtain the weak formulation of the conservation of mass, momentum 

and energy. Conservation of mass in weak formulation then reads: 

16 



Jwcont(pUk ),kdn = 0, k = 1,nsd 
n 

and after applying Green-Gauss theorem to the above integral we get: 

JW,k
cont 

(pu k )dn-fw cont pUkDkdr = 0 
n r 

Similarly, the conservation of momentum in weak formulation reads: 

Jwmom(puju;,j -(Tij,}}dn = 0, i,j = 1,nsd 
n 

and applying Green-Gauss we get: 

J w mom (pu jU;,j }dn + J w,7m 
(T ijdn - f w mom 

(T ijD;dr = 0 
n n r 

The conservation of energy in weak formulation reads: 

(2-45) 

(2-46) 

(2-47) 

(2-48) 

Jwen(pulH - KT,m -Un'nl tdn = 0, m,n,l = 1,nsd (2-49) 
n 

or after applying the divergence theorem: 

Jw,:n(puIH - KT,m -Un'nl }:in- fwen(pu,H - KT,m -Un'n' ):.,dr = 0 (2-50) 
n r 

The advantage of writing the equations (2-45), (2-47) and (2-49) using the 

divergence theorem is that the second order diffusion derivatives in the 

momentum end energy equations are now reduced to first order derivatives. 

That means the shape functions have to be differentiated just one time at the 

most, and this condition is exploited by FENSAP which uses first order , linear 

shape functions N. 

2.7. Arlificial viscosify (A V) 

It's weil known that the convective terms in Navier-Stokes equations generate 

non-physical oscillations in the solution, when symmetric operators like 

elementary Galerkin shape functions (or equivalently centered finite difference 

stencil) are used. Also, in FENSAP there is another source of this spurious 

behavior, ca lied oscillations, and that's the use of the same order shape 

functions for pressure and velocity, contravening to Babuska-Brezzi condition. 

To stabilize the solution, artificial viscosity is added in the following form: 
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Continuity Eq. -Geont {V. (BVp) + V· (B:"oss Vp)} 

x Momentum Eq. -Gmom {V. (BVu)+ V· (B;ross Vu)} 

yMomentumEq. -Gmom {V . (BVv)+ V . (B;rossVv )} 

z MomentumEq. -Gmom {V . (BVw)+ V . (B:':ossVw )} 

Energy Eq. -Gen {V. (BV H)+ V· (B:oss V H)} 

(2-51 ) 

(2-52) 

(2-53) 

(2-54) 

(2-55) 

where B:oss and B represent the tensors of projection on gradient and streamline 

direction, respectively. 

The above defined a rtifi ci a 1 viscosity (AV) is of anisotropie type. There were 

observations that good results are obtain, using the 10 flow analogy, if the AV is 

applied in the streamline direction. Another preferred direction for AV addition is 

the cross wind, or gradient direction. FENSAP uses a combination of the two, 

and in equations (2-51) to (2-55), the first term in the bracket represents AV in 

the streamline direction, while the second term represents the AV in the gradient 

of flow variable direction. A more detailed discussion will be carried out in the 

next chapter, where the Streamline Upwind (SU) and Streamline Upwind Petrov­

Galerkin (SUPG) stabilisation methods are explained. 

2.8. FENSAP - so/ving strategy 

A set of nine flow equations (2-20), (2-21), (2-22), (2-23), (2-38), (2-39), (2-40), 

and nine unknowns ( p,p,T,H,ui,Jl,K ) have been described in this chapter. 

When the governing equations contain algebraic expressions, this expression 

and one of its variables can be lagged in the solution process, [9]. The equation 

of state gives the temperature in function of the density and pressure, 

Sutherland's law relates the dynamic viscosity to the temperature, the thermal 

conductivity law relates the thermal conductivity to the temperature and the total 

enthalpy is expressed in function of pressure, density and velocity components. 

The temperature, dynamic viscosity, thermal conductivity and total enthalpy are 

lagged variables, and are therefore computed only after the density, velocity 

components and pressure have been solved. The governing flow system has 
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thus been reduced to five equation and five unknowns. A further simplification 

can be made in the case of adiabatic flows, because the energy equation is not 

solved any more, but the total enthalpy invariance along a streamline of the flow 

is used instead. The density is replaced in continuity and momentum equations 

based on equation (2-21), and now the flow system to be solved contains four 

PDEs and four unknowns p, ui , i = 1,2,3 . As the equations to be solved contain 

non linear convective terms, the Lax-Milgram theorem that guarantees the 

uniqueness of the solution can not be applied to the system of equations. 

However, this system can be linearized, for example by Newton's method, and if 

the initial guess of the solution is good, the process will converge to the solution 

of the non-linear system, [9]. 

The discretized linear system of equations are solved iteratively based on the 

generalized minimum residual (GMRES) method. 
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3. Methodology 

This chapter elaborates on the artificial viscosity schemes used to stabilize the 

FEM, on grids and on mesh adaptation algorithms used in this work. The 

discontinuities detection technique used to capture the shock waves in transonic 

viscous flows is presented and the numerical implementation within the 

commercial on-the-shelf software FENSAP is shown. 

3.1. Streamline Upwind (SU) and SU Petrov-Galerkin (SUPG) 

The stabilization techniques described herein are numerical tools able to correct 

for instabilities introduced by the finite element Galerkin formulation for Navier­

Stokes equations. The Galerkin method, that has as a particularity the fact that 

the shape functions and weighting functions are similar, when applied to 

structures or heat conduction problems, gives birth to symmetric stiffness 

matrixes. In this case, it can be shown that the solution possesses the "best 

approximation" property, i.e. the difference between the finite element solution 

and the exact solution is minimized with respect to a certain norm. It's largely 

because of this "best approximation" property that Galerkin method was applied 

with such a success in structural applications. However, for fluid flow problems, 

the Galerkin method encountered challenging problems. The cause is that in 

fluid flows and convection heat transfer, the matrix associated to convection 

terms is nonsymmetrical, and as a result the "best approximation" property is 

lost. In practice, the solutions are affected by oscillations that resemble low 

frequency noise - oscillations being most likely to appear in convection 

dominated flows (high Reynolds numbers) when a downstream boundary 

condition forces a rapid change in the solution, [12]. 

ln FENSAP, Galerkin finite element method was implemented, and as a solution 

stabilization technique the SUPG formulation has been implemented. 
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3.1.1. The stabilization of one-dimensional convective dominated 

flow 

For a simple 10 case we will show the numerical diffusivity that is able to 

stabilize the solution. We consider the convective 10 problem where velocity u 

transports a scalar rp through the computational domain 0 c RI Gust the 

transformations on the convective term will be shown): 

Brp 
u·-

Bx 
(3-1) 

The stability condition generally requires that for each incorrect variation of the 

transported variable rp , the convective governing term should correct and 

compensate such an error. Lets consider now the central finite difference 

operator applied to equation (3-1) , where the subscripts (i -1) and (i + 1) indicate 

the grid points located upwind and downwind from the grid point i, respectively. 

We can write: 

u. Brp ~ U rpi+l - rpi-! 
ex 2Llx 

(3-2) 

where clearly appears that the sensitivity of the convective term with respect to 

the variation of scalar rp; is zero. The conclusion is that modeling the convective 

terms of Navier-Stokes equations with spatially symmetrical operators leads 

towards neutral stability. The first attempt to recover the algorithm stability is the 

use of upwind finite difference schemes, so that the spatial derivatives of the 

variable in each nodal point (i) depends on the value assumed at the node itself 

(i) and on the value at the node at an upwind location. The directional stability is 

therefore recovered, on the expense of the formulation accuracy. An equivalent 

stabilisation can be obtained by mixing a convective term modeled with a 

centered finite difference stencil and an artificial diffusivity (viscosity) term: 

I
Bm m. -m. 1 m. I- m . 1 uLlx -m. 1 +2m -m. 1 u. _'1' ~ U '1'/ '1'/- = U '1'/+ '1'/- + _. '1'1+ '1'/ '1'/- if U > 0 
ex Llx 2Llx 2 Llx2 

' 

u. Brp ~ U rpi - rpi+l = U rpi-! - rpi+l + uLlx . - rpi+l + 2rpi - rpi-l if U < 0 
ex Llx 2Llx 2 Llx2 

' 

The above two formulae can be combined in only one formulation: 
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where 

~ lul~ 
k=-

2 ' 

(3-3) 

(3-4) 

defines the numerical diffusivity that directly depends on the magnitude of 

convective phenomena and the characteristic grid dimension ~, and lui is the 

absolute value of the local velocity. The interpretation of this result is that 

stabilized schemes could be obtained using centered differencing and artificial 

diffusivity approach as in equation (3-3) , and the goal is to correct the under 

diffusivity of the Galerkin scheme using the above described idea. 

3.1.2. Upwind and Streamline Upwind stabilisation 

The Galerkin formulation can be stabilized using the addition of artificial 

balancing integral able to compensate the negative diffusivity of the weighted 

residual method. An appropriate choice of the artificial contribution intensity 

could lead, for a 1 D case, to the exact nodal solution - such upwind schemes 

are called optimal or smart, [6]. The artificial diffusivity in the optimal upwind 

scalar schemes could be defined as: 

where: 

1 ç = coth(a)--
a 

lulh 
a=-

2k 

h, is the characteristic length of the element; 

a, is the elementary grid Peclet number; 

k , is the physical fluid diffusivity 

(3-5) 

(3-6) 

(3-7) 

ç, is a stabilisation coefficient able to modify the intensity of artificial diffusivity 

with reference to the magnitude of convection transport phenomena. 
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The application of upwind sca/ar schemes to multidimensional flow conditions 

leads often to non controlled over-diffusion solutions, in particular showing non 

physical cross wind diffusion, because of the isotropie character of the balancing 

operator. 

ln order to eliminate the drawbacks shown by the scalar schemes, the 

stream/ine upwind technique has been developed, where the upwind effect is 

concentrated in principle along the streamline direction. In such a method, the 

balancing operator, in the form of a diffusive term, acts exclusively in the 

streamline direction as an anisotropie artificial diffusivity. The artificial diffusivity 

assumes therefore a tensorial character and could be expressed as follows: 

(3-8) 

where: 

D} = u} /Ilull, defines the velocity components unit vector. 

Iluil = ~UiUi , defines the velocity norm. 

k , represents the artificial diffusivity already defined with reference to the scalar 

upwind technique. 

Let's look now at the form of the tensorial balancing term. The divergence of the 

symmetric part of the Cauchy stress tensor that appears in the molecular 

diffusive term can be written as: 

(k (u . + u .. )) = (k (u . ),\ + (k (u .. ),\ 
!/ l,) ),/ ,} !/ l,) J,} !/ ),/ J,} (3-9) 

and reversing the derivation order on the second term we get: 

(k(u)) +(k(u)) =(k(u .)) +(k(u .. ),\. 
!/ /'),} IJ ),/ ,} IJ /,),} IJ ),) J,i (3-10) 

The diffusive integral term in Galerkin residual formulation (equation (2-48)) can 

be written as: 

fW,~omO"ildQ = fW,~om(kil + 'k;) ~i,)dQ (3-11 ) 
Q Q 

where the diffusivity explicitly appears as the sum of physical and artificial 

contribution :' 

(3-12) 
Q Q 
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Now we can introduce in the second term of expression (3-12) the artificial 

diffusivity expression of (3-8) and we get the expression of the stabilisation 

integral as: 

fwmomkuuudQ. 
,1 1 j l,j 

(3-13) 
n 

Substituting the versor uj in accordance with its definition, it is possible to write: 

1 W,~om I~II ku jUi,jdQ (3-14) 

From the above equation (3-14) clearly appears that the tensorial stabilisation 

term has the form of a convective integral that must be controlled. 

3.1.3. Streamline Upwind - Petrov Galerkin stabilisation 

The consistency of the stabilisation methods could be recovered extending the 

weights perturbation, limited to the convective integral in the sfreamline upwind 

scheme, to each term that is contained in the residual Navier-Stokes formulation 

(2-48). In such a way, the built residual structure assumes the character of a 

Petrov-Galerkin formulation, due to the introduction of different function spaces 

used for the approximation of the solution and of the variations (weights).Such a 

residual stabilized finite element formulation for convection dominated flows is 

called sfreamline upwind - Pefrov Galerkin ( SUPG) , [12]. 

Lets now consider a flow domain Q E R nsd which has a boundary r defined by 

piecewise continuous functions. Consider also a point xi(i = 1,nsd) belonging to 

Q, and Di as the component along i direction of the normal unit vector to 

r (positive direction toward the inner of the domain). The domain boundary r is 

split into two subsets rg and rh that satisfy the following relations: 

(3-15) 

(3-16) 
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The domain n is subdivided into a finite number of elements ne,e = 1,numel 

where numel represents the total number of elements in the domain. We denote 

by re the boundary of the element ne' and the following relations are true: 

The interior boundary rin! is defined as: 

Recall the POE that governs the steady compressible flow: 

pu u.-O'.=o 
j I,j Ij.j 

{PUJ,i =0 

with the following set of boundary conditions: 

U i = gi ~rg' essentialDirichletBC 

O'i/n i = hi ~rh,naturalNeumannBC 

(3-17) 

(3-18) 

(3-19) 

(3-20) 

(3-21 ) 

(3-22) 

As the classical Galerkin method uses identical collections of trial and weighting 

functions, the weights are continuous across the inter-element boundaries. Such 

a property is lost in the case of SUPG formulation, due to the set of weights that 

modify the original Galerkin functions on an element basis as follows: 

(3-23) 

where W mom is the Galerkin weight applied to the momentum equation and pmom 

is the stabilising streamline upwind like contribution. The application of such a 

perturbation introduces the discontinuity of the above mentioned weighting 

function, but the perturbation function still has the integrability property on the 

element scale. Let's consider a point x belonging to the interior boundary rin! 

and arbitrarily establish a positive orientation for the normal direction across the 

boundary. We define n+ and n- as the unit vectors normal to rin! in the 

considered nodal position x. The relation between the two unit normal vectors is 

expressed by: 

+ -n =-n (3-24) 
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Introducing for simplicity a term that accounts for thesum of convection and 

diffusive fluxes: 

(3-25) 

It's possible to show that the jump across the neighbouring elements of x; at the 

considered nodal pointx, defined as: 

[xn]= (x; -x~~; = x;n; +x~n~ (3-26) 

is an invariant with respect to the adopted sign convention for r iot . 

On the basis of above mentioned perturbation, the SUPG method applied to 

Navier-Stokes equations leads to the following residual stabilized formulation: 

l J[wmom(puju;,J+ W,~omoJdQ+ l J[pmom(puju;,J_pmomoij,JdQ-
e ~ e ~ 

(3-27) 
- l Jwmom[oijnJdr - JWhh;dr = 0 

e 'in! 'h 
where Wh is the restriction of weight function on the boundary of the 

computational domain. 

An equivalent way of writing (3-27) is: 

l J w mom ' [(pu jU;,j)- 0 ij,j ]dQ - l J W mom [0 ijn;]dr -
e ne 

(3-28) 
- JWh(oijn; -h;)dr = 0 

lh 

It is worth to observe that from the obtained residual form of the integral problem 

is possible to extra ct original differential expression of the Navier-Stokes 

boundary problem. 

The fundamental aspect that characterizes the obtained stabilized finite element 

formulation in comparison to the classical upwind schemes is that the streamline 

upwind perturbation function pmom plays its role at the interior of the element 

where the perturbation itself is continuous. 

The expression of streamline upwind perturbation of weights pmom is defined 

starting from the modification of the convective weight obtained for the 

streamline upwind method (3-14). The equivalence between the modification of 
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the convective weight and the introduction of the tensorial diffusive balancing 

integral permits us to write the following, [6]: 

(3-29) 

The discontinuous effect introduced by the perturbation pmom can be seen in 

Figure 3-1, where three consecutive nodes in an one dimensional case were 

used, the flow direction was indicated with the arrow and the weights for Petrov 

Galerkin scheme were drawn in dotted line. The fact that the slopes of the shape 

functions are different at node A determines the weights discontinuity as shown. 

FENSAP uses shape function of first order, therefore the derivatives are 

constants. It is interesting to note that in this case, the divergence of the diffusive 

fluxes is equal to zero 

(J . = 0 
Ij,) 

(3-30) 

and the function pmom does not play any stabilisation effect on the diffusive 

integral. We can say that in this case SUPG formulation becomes SU 

formulation. 

The coefficient k for multidimensional computations has the form: 

~ (9Içhç + 1]uI]hl] +suçhç) k = -'------"---''-------'-------'-----''-----'-'-
2 

(3-31 ) 

where: 

1] = coth(al])--l 
al] 
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(3-32) 

ln the above formulae eÇ el] and eÇ are the unit vectors of the computational 

frame of reference that has the directions q,1J,ç while hç,hl],hç are the 

corresponding elementary length scales. 

3.2. Shock wave defecfor definifion 

Jameson et al. [14] used a finite volume discretization in conjunction with 

carefully designed dissipative terms of third order to efficiently solve the Euler 

equations for transonic regime in arbitrary domains. The shock sensor defined in 

[14] (see equation 3-37 in following section) was used to adaptively construct the 

dissipative terms blending the second and fourth differences. 

Based on the formulation of equation 3-37, we constructed the shock sensor for 

the finite element method treated in the present work (see equation 3-41). While 

in the finite volume scheme the sensor in calculated for each ce Il , in the finite 

element method the sensor is calculated for each node of the computational 

domain. 

3.2.1. Shock detector for 20 inviscid flow 

To prevent the tendency of odd and even point decoupling, or checker board 

situation, and to prevent the appearance of oscillations in regions containing 

severe pressure gradients in the neighborhood of shock waves or stagnation 

points, it proves necessary to augment the finite volume scheme by the addition 

of artificial dissipative terms [1] [14]. The governing equation in conservation 

form will be (similar to equation (2-14), after neglecting viscous terms): 

~(hw)+Qw-Dw=O 
dt 

(3-33) 

where h is the cell area, Q is the spatial discretization operator, D is the 

dissipative operator and w represents the dependent variable. A sketch of the 
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discretization is given in Figure 3-2 [14]. Extensive numerical experiments [14] 

have established that an effective form for Dw is a blend of second and fourth 

order differences with coefficients which depend on the local pressure gradient. 

The construction of the dissipative terms for each of the four dependent 

variables is similar. For the density we have: 

(3-34) 

where Dxp and Dyp are the corresponding contributions for the two directions, 

written in conservation form: 

(3-35) 

The terms on the right ail have a similar form: 

(3-36) 

where &(2) and &(4) are adapted to the flow. Now, we define the shock sensor Vi,} 

as a normalized second order difference of pressure [14]: 

\Pi+I,} - 2 Pi,} + Pi-l,} \ 

Vi,} = \Pi+l,} \ + 2\Pi,J \ + \Pi-l,} \ 
(3-37) 

Then, 

(3-38) 

(3-39) 

where typical values for constants K(2)andK(4) are [14]: 

K(2) =! K(4) = _1_ 
4' 256 

(3-40) 

It has been found [14] that in smooth regions of the flow, the scheme is not 

sufficiently dissipative unless the fourth differences are included, while near the 

shocks it has been found that the fourth differences tend to introduce 
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overshoots, and therefore they are switched off by subtracting &(2) fromK(4) in 

equation (3-39). The shock sensor has values of the order of magnitude 10-5 
, if 

the flow does not show any discontinuities, like shock waves, and its value 

increases by several orders of magnitudes in the vicinity of afore mentioned 

discontinuities. 

3.2.2. Shock Sensor implemented in FENSAP 

As in this work the domain discretization is of unstructured type, the mesh in 

discussion will be unstructured, three-dimensional one. A representation of a 2D 

unstructured mesh is given in Figure 3-3, where the elements are represented 

by triangles. For simplicity, we are going to use this diagram to explain the local 

and global derivatives of a flow property, as weil as the discontinuity detection 

mechanism. The discussion will also apply to a 3D mesh with tetrahedron cells. 

The shock sensor defined by equation (3-37) is for a structured mesh, as in 

Figure 3-2. For an unstructured mesh, the formula (3-37) has to be slightly 

modified. To compute the shock sensor for node "0" in Figure 3-3, we have to 

determine ail the elements that have node "0" in common, and then calculate the 

minimum and maximum pressure for ail nodes that are related to node "0" 

through a cell. These pressures are denoted by Pmax and Pmin' and together 

with the pressure at the node "0" constitute the ingredients used to compute the 

shock sensor value at the node "0" under discussion. The same procedure is to 

be followed for ail nodes in the mesh, and we end up with a shock sensor vector 

that has the length in accordance with the number of the nodes in the mesh. The 

formula used to compute the sensor is given below: 

IPmax - 2· Pcurrenl nade + Pmin 1 

v currenl nade = 2 
P max + . P currenl node + P min 

(3-41) 

Another particularity of FENSAP is the use of local and global derivatives. The 

local derivative is denoted by the Greek letter '1' while the global derivative is 

denoted by the same letter, but with a hat 'ÎI. The presence of these two types 
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of derivatives is going to be used to form 'irst and second order artificial viscosity 

schemes, as will be explained later in this section. 

To explain the idea of local and global derivatives, we can employ, again for 

simplicity, a 10 flow situation. Let's consider the scalar flow property rp in three 

consecutive nodes (i1 (i -1) and (i + 1). The spatial discretization is not uniform, 

so from node (i -1) to node (i) and node (i) to node (i + 1) we have distances 

hi_1 and hi , respectively. The situation is shown in Figure 3-4. 

Computing the derivatives of rp in ail nodes will have to take into account that 

the property rp itself is continuous, but not derivable in the nodes. We can only 

say that the slope of rp from node i -1 to i is a i _1 and from node i to i + 1 be 

a i +l . In node i, for example, we can only take the approximation of the slope 

based on the values a i _1 and a i +1 previously computed: 

a = rpi+1 - rpi-I = rpi - rpi-I. hi_1 + rpi+1 - rpi. hi = 
, hi_1 + hi hi_1 hi_1 + hi hi hi_1 + hi 

hi_1 h 
=a· +ai+l · ' 

i-I hi_1 + hi hi_1 + hi 

(3-42) 

where a = rpi - rpi-I and a = rpi+1 - rpi . This expression (3-42) represents a 
,-1 h ,+1 h 

,-1 , 

weighted summation of derivatives just before and just after the current node. 

The above discussion about local and global derivatives extends to 20 and 3D 

cases as weil, and this concludes the global and local derivatives used in 

FENSAP. 

3.2.3. Entropy based shock detection 

A plane progressive perturbation in a fluid was observed to transform, in time, 

into a discontinuity surface for velocity, pressure, density, temperature. As we 

are interested to detect, for a steady flow, the zones that contain such a jump in 

above mentioned flow variables, the shock detector formula (3-41) has been 

chosen. The main ingredient used in (3-41) is the fluid pressure calculated in ail 
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nodes of the discretized domain. Apart from pressure, we will also investigate if 

entropy would be a suitable parameter. From the definition, we can write [15] : 

T P 
S-So =c In--Rln-

p To Po 
(3-43) 

where the function s represents the entropy per unit mass at a given state, p 

and T are pressure and temperature, respectively, at the same state, 

cp represents the specifie heat at constant pressure, R the gas constant while 

the subscript 0 indicates the corresponding initial state values of the variables. 

Relation (3-43) can also be written as: 

(3-44) 

where the specifie heats at constant pressure and constant volume have the 

expressions: 

R r·R 
Cv =--, cp =--, r=1.4 . 

r-1 r-1 
(3-45) 

From the equation of state (2-23) we can obtain a more useful expression for the 

entropy change: 

(3-46) 

As far as we are concerned, the initial entropy serves just as a reference, and 

we will only be interested in the variation of entropy. Therefore, from equation (3-

46) -Iast expression, we retain for sensor definition just the term L that is 
pY 

responsible for variation. We obtain the nodal value of the sensor in the form: 

(p) (p) (p) - -2· - +-
pY max pY current node pY min 

Vcurrent node = () () () PPP - +2· - +-
pY max pY current node pY min 

(3-47) 
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3.3. Streamline and Cross Wind directions definition 

As was discussed before, in order to obtain valid, oscillations free solutions of 

the Navier-Stokes equation, artificial viscosity (AV) has to be used, Through 

extensive analysis and numerical experiments [6] [13],it was determined that AV 

has to be applied anisotropie in order to compensate for low diffusivity, as in the 

continuity equation case, or for instabilities generated by convection terms, as in 

momentum or energy equations, ln FENSAP, AV is added in the streamline and 

cross wind directions, as will be explained further, 

Considering the vectors v(V;, V2'~) and a(ap a2,aJ (see Figure 3-5), we can 

project a on Vas follows: 

(3-48) 

where V was divided by its norm, in order to transform it into an unitary vector, 

Now, we want the projection to be in the direction of velocity, so we multiply (3-

48) by the velocity versor as follow: 

P , , 'V d' , (V; V2 V3 ) V roJectlOnm lrectIon = al ']\1+a2 ']\1+a3 ']\1 ']\1 = 

( ) V;i+V2j+~k ( 2 ) 1 . = alV; + a2V2 + a3~ 2 = alV; + a2 V; V2 + a3V;~ --21+ 
Ilvll Il vII 

( 2 ) 1 . ( 2) 1 + alV;V2 +a2V2 +a3V2~ --2 J+ alV;~ +a2V2~ +a3~ --2 k = 
IIvli IIVII 

(3-49) 

r 
V;2 V;V

2 V;~ ]lall ~ II~II' v, v, V,' v,~, a, ~ Ba 
V;~ V2~ ~ a3 

We notice the form of B , and the tensor operation between B and a in order 

to obtain the desired projection, For the cross wind direction projection, the role 

of V is taken by 0), and the projection tensor B changes accordingly, Looking 

back at the definition of artificial viscosity formulae (2-51) to (2-55) and having in 

mind the already defined local and global derivatives, for the pressure, for 

example, we can write the expression of tensor B~ross as: 
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(3-50) 

that means the local gradient of pressure is projected onto the global (or hat) 

gradient of pressure. A similar procedure will be applied to the other flow 

properties, and B~ross' B~ross' B;ross' B:'oss are now defined. 

It is to be noted that differences between the local and global derivatives (or 

gradients, as we operate in a three dimensional space) are to be seen just if 

there is a variation of the flow property. Otherwise the gradient direction and 

magnitude in the two situations will be identical. 

3.4. Arlificial Viscosity Switching Scheme 

Artificial viscosity is used in FENSAP as a stabilization method for the field 

equations, as briefly indicated in the previous section. We want now to explain 

what first order AV and second order AV mean, as we will explain later the AV 

switching procedure based on the flow behavior. As we know, the shape 

functions used here are of the first order type, which means their variation is 

linear, the first derivative is a constant, and higher order derivatives are zero. 

Based on this, the first order AV could be synthesized by the expression: 

(3-51 ) 

where ~j is defined by equation (3-8) and W is the weight function. Similarly, 

using the global derivative this time, the following stabilisation integral can be 

defined: 

(3-52) 

We can attempt now to define the FENSAP's second or der AV as the difference 

between two first order terms defined by equation (3-51) and equation (3-52): 
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_ fk au; aw dQ+R f'k aû; aw dQ=-fk(au; -R aû;]aw dO. 
ij~-a p ij~-a ija p~-~-o UA} x} 0 UA} x} 0 x} UA) UA} 

\ l' J V V 

(3-53) 

a b 

Using the integrals a and b of the above equation (3-53) we can rewrite, using 

the convex combination: 

-1· a + R . b = -(1- R + R ). a + R . b = -(1- R L + R (b - a) ppp pp" p '---y---J . 

Simulated 
second -order 

(3-54) 

The coefficient Rp should be equal to 1, if we are to obtain the fully second or der 

AV, and can be seen that setting Rp=O we obtain the fully first order AV defined 

in equation (3-51). These results are going to be used for switching procedure, 

with the observation that constant Rp is now replaced by the calculated value of 

the shock sensor given by equation (3-41). It is to be noted here that in practice, 

as the normalized shock sensor rarely reaches zero value, the corresponding AV 

in case of shock will not be fully first order. However, in case of a discontinuity, 

we are going to use terms like "first order dominated" AV in the discontinuity 

region where the shock sensor gets a low value, and "second order dominated" 

AV in the other regions of the domain that are discontinuities free. The above 

first and second order AV discussion is valid when diffusion is added in 

streamline and gradient (cross-wind) directions. 

Figure 3-6 contains an explanation of the AV switching procedure applied to 

obtain transonic solutions of Navier Stokes equation. The core of the algorithm is 

represented by the calculation, in every node of the mesh, of the shock detector 

value (in the flowchart as the input variable we have the pressure, but if we want 

to use the entropy based sensor, we need to have the density available also -

see equation (3-47». The normalisation is necessary because formula (3-41) 

provides a domain of variation for the sensor between order 10-9 and order 

oflO-2 
, with the low values in regions with no shocks, and high values in regions 

with shocks. We need therefore a sensor value of 1 outside shocks, and close to 

zero value in the shock region. The sensor is then used to compute the AV term 
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as in equation (3-54) and determine if the situation corresponds to a first order 

dominated AV or a second order dominated AV. We want now to introduce other 

important FEN SAP variables - the ratios of AV in the conti nuit y equation to AV in 

the momentum and energy equations, Figure 3-7. The introduction of these 

parameters (first two fields of the "Ratio parameters" subtitle in FENSAP GUI) is 

explained by the type of equations we have to solve: one continuity equation, 

that intrinsic contains no natural viscosity terms, three scalar momentum 

equations, that feature natural viscosity terms in the Cauchy stress tensor, one 

energy equation that features as weil natural viscosity. 

Diffusivity, either natural or artificial, has a stabilizing effect on the system of 

equations. The fa ct that continuity equation has no intrinsic diffusivity is 

translated into more artificial viscosity needed for stabilization than in the 

momentum equation, for example. This is the reason for the use of ratios 

MomentumA V Energy AV . 
----- and . To be clearer, the ratios refer to the AV 
Continuity A V Continuity AV 

coefficients, and not to the whole AV term, as defined by equations (2-51) - (2-

55). For example, in Figure 3-7 this AV coefficient has the value 1.0e-06 
• In 

computations it was observed that the adjustment of the ratio has more 

stabilizing effect than adjustment of the AV coefficient. 

Going back to the diagram of Figure 3-6, we see that the computed value of the 

shock sensor is compared to a threshold, S. This value is not computed, but 

extracted from the fact that if the flow does not have discontinuities, sensor value 

has the value of around 1, i.e. second order dominated AV. For values of the 

sensor lower than 1, we consider the flow has first order dominated AV, Figure 

3-8. 

Implementing the switching scheme, we fixed the value of threshold at a value of 

0.95. The logic of the switching procedure indicates that for values of the sensor 

1 th S 0 95 th t· MomentumAV coeff.. t t Rh· d· t ower an =. e ra 10 IS se o---E!..., w ere Rm ln Ica es 
Continuity AV coeff. F 

the initial ratio, and F represents a factor that divides that initial ratio to obtain 
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the current ratio. In this case, the flow is considered to have first order 

dominated AV. 

For the case when the sensor value is higher than 8=0.95, the ratio 

Momentum A V coeff. . R . . 
------- IS set to~, where G represents a factor that dlvldes the 
Continuity AV coeff. G 

initial ratio Rm to obtain the current ratio. In this case, the flow is considered to 

have second order dominated AV. In the results section, the values for Rm ,F , 

Gand 8 will be given. Another interesting feature about the threshold 8 is that 

we can use it to introduce more or less first order effect into the scheme, Figure 

3-9. The benefit of more first order in a transonic flow is that the shock capturing 

is better, but the disadvantage is that the first order AV introduces more 

oscillations in the solution. In the case of Figure 3-9 (a) the solution will feature a 

first order dominated AV and a good shock capturing, while the situation in case 

(b) is that the second order is dominant, having the effect of a poor shock 

capturing. After the switching was complete for node J, the code updates J =J+1, 

and repeats the procedure. After ail nodes have been used and ail nodes have a 

value for the shock sensor and a value for AV coefficient, the normal solving 

procedure continues until a solution is obtained. 

3.5. Mesh generation 

One of the first steps in computing a numerical solution to the equations that 

describe a physical process is the conStruction of a grid. The physical domain 

must be covered with a mesh, so that discrete volumes or elements are 

identified where the conservation laws can be applied. A weil constructed grid 

greatly improves the quality of the solution. Difficulties with numerical 

simulations, such as the lack of convergence to a desired level can often be 

explained by a poor grid quality. In this work, the meshes used are of 

unstructured type. In comparison with structured mesh, the unstructured meshes 

do not have to be segmented into blocks due to the topology of the domain and 

configuration of interest, a task that is time consuming for specialists working in 
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the field. Another advantage for an unstructured mesh, e.g. a 3D tetrahedrons 

mesh, is that the flow behaviour is better captured in ail three space directions. 

The commercial software ICEM CFO was used as a tool to generate the initial 

grids for the test cases presented in the following chapters. Because the 

problem in discussion includes viscous effects, the mesh sought has to have a 

high density in regions with viscous interfaces, which in our case lie around the 

solid wall of the wing or airfoil. For a better resolution of the boundary layer, a 

mixed mesh is used: close to the wall a number of prism layers are placed, while 

the rest of the domain is filled with tetras. A hybrid mesh is obtained in this 

manner, with the observation that in the generation process the elements with a 

pyramid shape should be avoided, as they are not accepted either by the flow 

solver or the mesh adaptation software. 

ln Chapter 4 a 20 flow solution is obtained for RAE 2822 airfoil. The mesh used 

in this simulation is three dimensional with symmetric boundary conditions (BC) 

at the root and tip. The inputs that ICEM CFO requires in order to generate a 

mesh are the topology, in the form of *.tin file, and the boundary conditions 

generically designated as family_boco file. 

3.6. Mesh adaptation 

Ouring a typical CFO analysis, an important effort is devoted to the mesh 

generation process. Mesh generation is not only time consuming, but also the 

resulting mesh may not be completely appropriate to sufficiently resolve ail 

details of the flow. Mesh adaptation methodology is a powerful tool, not only to 

improve solver accuracy but also to allow simulations to start from an arbitrarily 

coarse initial grid. OPTIGRIO, a robust and efficient 3D automatic mesh 

adaptation with CAO integrity tool, was used in the present work. The adaptation 

procedure uses an a posteriori interpolation error estimate, whose magnitude 

and direction are controlled by the matrix of local second derivatives of a 

selected flow variable. This error is projected over the mesh edges, and drives 

the nodal movement algorithm, as weil as the edge refinement, coarsening and 

face swapping strategies, [17]. The adaptation process, however, can take 
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several solution - adaptation cycles, depending on the quality of the initial grid 

and the complexity of the test case. Chapter 5 contains detailed description of 

how OPTIGRID cycles have been used for the ONERA M6 wing test case. 

OPTIGRID offers automatic solution-based anisotropie mesh adaptation, as weil 

as geometry based mesh smoothing of the initial mesh, even before a solution is 

attempted. The latter feature is quite important, as it is not unusual for a CFD 

code to fail simply because of a poor initial grid, e.g., grids with cells that have 

negative volumes, are too skewed or are degenerate. Once a solution is 

launched, the basic adaptation operation includes node movement, edge 

refinement, coarsening and swapping for hybrid grids consisting of any 

combination of tetrahedrons, prisms, hexahedra and pyramids. 

The solution-based adaptation is driven by an a posteriori error estimation based 

on the Hessian of a selected scalar flow variable, since for FEM-FVM solvers 

with linear basis functions the truncation error is dominated by the second 

derivatives. The eigenvectors and the eigenvalues of H give the local direction 

and the local magnitude of the stretching, respectively. In this manner, 

anisotropy is gradually created. The goal of the adaptation is to equally-distribute 

the error on the adapted grid, where the error along an edge in the Riemannian 

metric is computed as: 

1 

& = f~XT H(s )xds (3-55) 
o 

where x is the vector that defines the edge, and H is the absolute value of the 

Hessian matrix of the adaptation variable,[17]. 

The sequence of operations begins with node movement, edge refinement and 

edge swapping on solid boundaries, to satisfy a minimum and maximum edge 

length constraint, as weil as a curvature constraint, yielding substantial surface 

CAD improvements. The process then continues with node movement in the 

entire domain, followed by refinement and coarsening, then swapping, before 

concluding with additional node movement. OPTIGRID preserves CAD integrity 

by re-projecting boundary points onto the original surfaces during the adaptation 

process. 
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Figure 3-1: Comparison between linear Galerkin and Petrov-Galerkin weights 
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Figure 3-2: Arbitrary 2D mesh used to illustrate the discontinuity detector 

definition for a finite volume scheme 
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Figure 3-3: Arbitrary unstructured 2D mesh used to illustrate shock detector, 

local and global derivative definitions 
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Figure 3-4: Global and local derivatives for 1 D flow 
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Figure 3-5: Streamline and cross wind directions at mesh point A 
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RAE 2822 airfoil. (b) Shock sensor variation through the shock wave 
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Figure 3-9: RAE 2822 transonic viscous flow: (a) 8ensor contours for threshold 

8=0.99 -first order dominated AV coefficient (b) 8ensor contours for threshold 

8=0.9 -second order dominated AV coefficient 
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4. Numerical results - RAE 2822 airfoil test case 

To validate the implementation of the shock detector within the SU/SUPG 

scheme, two standard test cases have been chosen: the transonic airfoil RAE 

2822, which will be shown in this chapter, and the ONERA M6 wing test case 

that constitutes the subject of the next chapter. 

The main tool used in this analysis was FENSAP, as the flow solver. ICEM 

CFD commercial software was used for mesh generation and Field View 

commercial software was used for solution visualization. The simulations were 

performed at McGill's CFD LAB. Computers used were CFD LAB's 16 CPU SGI 

ORIGIN cluster, CLUMEQ's SGI Origin 3800 cluster (64 CPUs, 128Mb RAM, 

600MHz) and CLUMEQ's Beowulf Cluster (256 CPUs, 1.5Gb RAM , 1.6 GHz). 

4. 1. Geometry 

The computed RAE2822 test case corresponds to the experimental condition 9 

listed in [16].The dimensions used to define the airfoil for the present solution are 

given in the Table 4-1 below: 

Characteristic length 0.3809 m 

Reference area 0.0171 m2 

Span 0.045 m 

Table 4-1: RAE 2822 reference dimensions 

The computational domain is of C type, with 15 chord lengths spacing in front of 

the leading edge, after the trailing edge, above the airfoil and below the airfoil. 

The airfoil detailed geometry is given in Appendix A. 

4.2. Flow'parameters 

The performed simulations consider the RAE 2822 airfoil at low angle of atlack 

(AOA) , low transonic Mach number and high Reynolds number, as follows: 

46 



Mach number (M) 0.73 

Reynolds number (Re) 6.5 million 

Angle of Attack (AOA) 2.79 degrees 

Free stream static pressure 101325 Pa 

Free stream static temperature 288 K 

.. 
Table 4-2: Reference conditions for RAE 2822 transonlc simulations. 

ln this work, the one equation Spalart-Allmaras (SA) turbulence model was used 

to obtain transonic viscous simulations. To investigate if the transition length 

can be neglected, we performed a simulation considering 10% of the chord as 

the transition length, and then compared this result with the result where flow 

was considered turbulent starting right from the leading edge. The error between 

the two cases was within 1 0-03 %, therefore the flow is considered to be turbulent 

from the very beginning and the transition length is neglected for the following 

simulations. 

The other important settings are the AV coefficient, CFL number and the 

GMRES parameters. These parameters are used to control the quality of the 

solution (AV) and the code convergence (CFL, GMRES). For each simulation 

the values of the above parameters will be indicated. 

Through numerical experiments at the CFO Lab it has been determined that 

FENSAP, for the 20 test case RAE 2822 airfoil, requires approximately 15 chord 

lengths between the wall and the location of the external boundary. 

4.3. Computation mesh 

The grid used in this chapter for 20 flow computations is in fact 30. The wall is 

represented by the rectangular wing described in [16], and the free stream 

velocity vectors are situated in planes normal to the wing's longitudinal axes. 

The grid is unstructured and the cells are in the shape of tetrahedrons and 

prisms. A large number of cells are placed in the vicinity of the solid boundary, in 

order to resolve the boundary layer. 

The complete domain of the mesh and the leading edge and trailing edge details 

are shown in Figures 4-1 and 4-2. The total number of elements contained in 

47 



the grid is 282,595 tetrahedrons and 160,710 prisms organized in 15 layers. The 

total number of nodes contained in the domain is 141,756, the approximate 

number of nodes on the wall is 5,673 and the file size in ASCII format is 21 Mb. 

Another important characteristic of this grid is the minimum grid spacing near the 

wall. A value of approximately 3e-06 m was chosen to ensure the proper 

capture of the boundary layer. 

4.4. Discussion of results 

The present solution accuracy is measured through comparisons to wind tunnel 

measurements and other CFD solutions. The relative error between 

aerodynamic coefficients is computed based on a simple formulation shown in 

the equation (4-1) below. 

ICI computation - CI test 1 

lic, = , 
CI test 

1 Cd computation - Cd test 1 

liC = 
d Cd test 

(4-1) 

Other parameters, like the pressure distribution on the airfoil, are compared 

graphically superimposing experimental data, other CFD data and present 

solution. 

ln this section an unstructured mesh was used to obtain the solution of the 

system of equations. Three separate cases are investigated and each case is 

based on the same numerical scheme and flight conditions. However, they differ 

on the type of artificial viscosity method used. The three approaches are: 

• Streamline Upwind ( SU ) with fully first order AV option 

• SU with fully second order AV option 

• SU plus the shock detector implementation 

When the fully first order AV is selected, the coefficient Rp in equation (3-54) is 

set to 0, which corresponds to a value of 0 in the field U%second order" of Figure 

3-6. In this case we expect a solution that shows oscillations, particularly in 

regions of high gradients. When the fully second order AV is selected, the 

coefficient Rp in equation (3-54) is set to 1, which corresponds to 100 in the field 

U%second order" of Figure 3-6. In this case the simulated second order AV is 
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used, and the solution is expected to show fewer oscillations than in the fully first 

order case. The third case refers to the blended first and second order AV 

scheme based on the shock detector, and is expected to pravide better results 

than the previous two cases. 

4.4.1. SU scheme without shock detector 

The SU scheme as it is implemented in FENSAP and as we discussed in 

Chapter 3, has the capability of choosing the AV arder fram the beginning. The 

limits we discuss here in terms of AV arder are fully first order AV and fully 

second order AV, but any combination of first and second order AV can be 

selected. An important parameter used to 'obtain the solution is the ratio Rm as 

defined in Chapter 3; it has different values for first and second order AV, as will 

be indicated below. By simulating separately fully first and second order AV, we 

want to determine the limitations intraduced in each case, and to prepare the 

implementation of a scheme that automatically exploits the advantages that each 

AV order has to offer. 

4.4.1.1. FuUy tirst order AV scheme 

The fully first order AV scheme is expected to pravide sharp shock capturing 

with overshoots and oscillations in the solution befare and after the shock wave. 

To obtain the final solution for this case, we used the restart procedure, i.e. the 

solution obtained in a parametric cycle becomes the initial solution for the next 

parametric cycle. Ali settings are unaltered fram one parametric cycle to the 

next, with the exception of AV and/or Rm. Hence, the first simulation A has as 

initial conditions the boundary condition values of flow variables for the first 

parametric cycle, and AV=O.1 (see Table 4-3).The second parametric cycle is 

restarted fram the first one, to praduce a second intermediate solution that will 

be the initial condition for the third parametric cycle. The pracess continues in 

this manner, and simulation A ends with the tenth parametric cycle that has 

AV=5e-5 and Rm=1.0. The obtained solution shows a good convergence, but is 
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very diffusive and shows no shock capturing. From this solution, we restart 

simulation B, continuing to reduce the diffusivity in the system from one 

parametric cycle to the next by reducing the AV coefficient, but maintaining 

Rm=1.0 (see Table 4-3). 

The final solution of simulation B is still very diffusive, but from this solution we 

restart another simulation with AV=1e-09 and Rm=0.5. In this way, modifying 

ratio Rm we reduce the diffusivity in the momentum equation and improve the 

shock capturing. The solution does not show a shock wave, but the trend is 

good. After another restart procedure with AV=1e-09 and Rm=0.2, we obtain a 

less diffused solution and the formation of a weak shock. We performed then a 

last restart and reduced further the diffusivity in the momentum equation, to 

obtain the final solution for this case. The solution shown in Figure 4-3 and 

Figure 4-4 was obtained with an AV = 1e-09, Rm = 0.08, CFL = 500 and default 

settings for GMRES. 

Parametric cycle # AV coefficients for AV coefficients for 

simulation A simulation B 

1 0.1 1e-05 

2 0.07 7e-06 

3 0.03 4e-06 

4 0.009 1e-06 

5 0.006 7e-07 

6 0.002 3e-07 

7 0.0008 ge-08 

8 0.0004 5e-08 

9 ge-05 1e-08 

10 5e-05 5e-09 

Table 4-3: AV coefficients corresponding to each parameter cycle of simulations 

Aand B 

A sharp shock capturing was obtained only after a decrease of the ratio Rm to a 

value of 0.08. For a higher diffusivity of the momentum equation (i.e. ratio Rm 

higher than 0.08) the shock was not captured or was smeared and for a lower 

value (i.e. ratio Rm lower than 0.08) there are large oscillations before and after 

the shock. For the final solution, the overall matching against test data is off and 
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the oscillations are present and more visible towards the trailing edge (TE) , but 

the captured shock is sharp and a cross section through the shock wave shows 

a Mach number variation without non-physical overshoot-undershoot. We 

retained the positive aspect of this scheme (the shock capturing) for a future 

implementation of an automatic computational device that sets the proper AV in 

the system of equations based on the presence of flow property discontinuities. 

Figure 4-3 and Figure 4-4 show the pressure distribution and Mach number 

variation for the final solution of this case. 

4.4.1.2. FuUy second order AV scheme 

For this case, the solution is expected to show a good shock capturing and fewer 

oscillations, as a result of the second order AV smoothing effect. The restart 

procedure explained in the previous subsection was also used to obtain the final 

solution for this case. The first set of 10 parametric cycles form simulation A, 

with the AV coefficients shown in Table 4-3 and ratio Rm=1.0. The obtained 

solution is very diffusive, in spite of the good convergence (Figure 4-5 (a)), and 

we therefore proceed to simulation B, which is a restart from the final solution of 

simulation A. In simulation B we further progressively reduce the AV coefficient 

(Table 4-3) but keep Rm=1.0. The final solution of simulation B (convergence 

shown in Figure 4-5 (b)) is still diffusive, and the shock is not properly captured. 

The ove ra Il residual level increases a liUle as we decrease the artificial viscosity 

coefficient. The recommended value for this coefficient is around 1 E-6 and for 

this value we obtained a convergence level of order 1 E-11. The residual level 

increases only after we decrease the artificial viscosity coefficient below the 1 E-6 

limit, in our attempt to capture a clean shock. The artificial viscosity added to the 

system helps stabilize the scheme and obtaining a low convergence level. A 

compromise between convergence level and shock capturing was reached at an 

artificial coefficient of approximately 1 E-1 O. 

The level of convergence for the lift and drag coefficients of simulations A and B 

is given in Figure 4-6, Table 4-4 and Table 4-5. The difference between the 
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current value of drag and the value from the previous iteration is plotted in 

logaritmic scale as shown in Figure 4-6 (b), and a similar diagram is shown for 

the lift coefficient in Figure 4-6 (a). 

Iteration 2000 Iteration 2500 Iteration 3000 

CI 0.800117 0.808272 0.809462 

Cd 0.021915 0.022466 0.0225122 

Table 4-4: Aerodynamic coefficients for the iterations 2000,2500 and 3000 

From 2000 to 2500 From 2500 to 3000 

Relative error CI 1.01% 0.14% 

Relative error Cd 2.5% 0.21% 

Table 4-5: Relative error for aerodynamic coefficients 

The best solution was obtained for Rm=0.5 and the Mach contour lines, 

pressure distribution, Mach variation and convergence are given in Figure 4-7 to 

Figure 4-9. The contour lines shown are smoother and the pressure distribution 

matching is more accurate than in the previously discussed fully first order case. 

The CFL was set to 500, AV=1e-10 and the default setting for GMRES. The 

convergence after 300 iterations dropped three orders of magnitude with an 

overall residual of approximate 1 0-09 and the Spalart-Allmaras residual decreased 

two orders of magnitude and stabilized at approximate 1 0-05 
. The position of the 

shock is obtained closed to the middle of the airfoil, as the test indicates, but the 

peak values in the pressure distribution diagram are not reached, generating a 

lower coefficient of lift than in the experiment. The Mach number variation 

through the shock wave displays an overshoot that is not physical, this 

overshoot being observed in other computations that used second order AV 

schemes. The introduction of the shock wave detector will improve this 

overshoot behavior, switching off the second order AV terms in the vicinity of the 

discontinuities. 
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4.4.2. SU scheme with shock detector 

Knowing from the previous two subsections about the advantages and 

disadvantages that either first order or second order AV schemes introduce, we 

developed an AV scheme that for transonic viscous flows automatically 

diminishes the contribution of the second order AV terms in the cells that have 

been identified of having a value of the corresponding shock sensor lower than a 

predefined threshold (parameter S). This implementation introduced in the flow 

solver code three new parameters S, F and G, and their influence was discussed 

in Chapter 3. The final solution of this case was obtained through the restart 

procedure previously discussed in the fully first order AV subsection. In the final 

restart cycle, an initial setling of S=0.99, F=10 and G=1 was tried generating a 

first order AV dominated solution with oscillations in the region of the shock. To 

improve the situation, the contribution of each parameter S, F and G has been 

analyzed leading to the conclusion that parameter F has a dominant effect 

against the other two parameters Sand G. We assigned for the parameters S 

and G the values S=0.95 and G=1.4 and numerical experiments were performed 

in order to determine the most appropriate value for the parameter F. 

The best solution was obtain for F=8 while the other parameters of the flow 

solver were AV=1e-10, CFL=100, GMRES set for 510 iterations for the 

momentum equation and 160 for the turbulence equation (with the remark that 

this increased number of iterations improves the solution accuracy, but slows 

down the computation). On a 16 CPU execution, one time step was performed in 

about 38 seconds, with the total time for this simulation of 3.27 hours. The final 

solution of this case (see Figure 4-10 to Figure 4-13) is in good agreement with 

the experimental data and other CFD results. The Mach contour lines indicate a 

smooth solution, and a good shock capturing. The pressure distribution matches 

the test data, and the overshoot in the shock region is atlenuated. 

The final parametric cycle has 300 iterations, but after the first 100 iterations the 

overall residual drops one order of magnitude and stabilizes at 

approximatelylO-08 while the coefficients of lift and drag reached steady state. 
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Since this is a restart solution, the overall residual drops globally from 10-01 

tolO-os. The aerodynamic coefficients are shown in Table 4-6 and Table 4-7. 

Experimental Computation - Relative error 

results,[34) present solution E [%) - eq.(4-1) 

Lift Coefficient CI 0.803 0.8218 2.34 

Drag Coefficient Cd 0.0168 0.01963 14.4 

Table 4-6: CI and Cd from experiment and present solution (hybrid mesh and 

SU + shock detector) 

Other Computation - Relative error 

CFD,[34) present solution E [%) - eq.(4-1) 

Lift Coefficient CI 0.8415 0.8218 2.34 

Drag Coefficient Cd 0.0181 0.01963 8.45 

Table 4-7: CI and Cd for other CFD and for present solution (hybrid mesh and 

SU + shock detector) 

The aerodynamic coefficients for 1 st and 2nd order artificial viscosity are shown in 
the Table 4-8 below: 

Experimental Other Computation Computation - Computation -
results,[34) CFD,[34) -SU + shock 1st order AV 2"d order AV 

detector 

CI 0.803 0.8415 0.8218 0.7058 0.8141 

Cd 0.0168 0.0181 0.01963 0.02449 0.02038 

Table 4-8: CI and Cd comparison 

4.5. Comparison between SU and SU with shock detector 

To evaluate the performance of the newly introduced AV scheme within SU we 

superpose the pressure distribution of the cases discussed in the previous three 

subsections (see Figure 4-14). 
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Both fully second order and shock sensor solution are in good agreement with 

experimental data, while the fully first order shows a disagreement for the shock 

position and peak pressures. The positive aspect of fully first order AV solution is 

the sharp shock capturing and this feature was exploited by the SU + sensor 

algorithm. The shock sensor solution shows almost no overshoot in the shock 

region, and the suction portion of this solution matches better to experimental 

data. The automatic computation of the shock sensor for any mesh point 

(parameter Rp of equations (3-53) and (3-54)) and the dynamic allocation of the 

AV in the computational domain based on the presence of discontinuities made 

a significant improvement to the solution accuracy for the transonic viscous flows 

around the RAE 2822 airfoil. 
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(a) 

(b) 

Figure 4-1: (a) RAE 2822 Hybrid Mesh (tetras and prisms). (b) Airfoil detail. 
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(a) 

(b) 

Figure 4-2: (a) RAE 2822 Leading edge detail. (b) RAE 2822 Trailing edge detail. 
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10 .000 

Figure 4-3: RAE 2822 transonic viscous solution using tetra mesh and SU fully 

first order AV scheme. (a) Mach contours. (b) Shock wave detail. 
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Figure 4-4: RAE 2822 transonic viscous solution using tetra mesh and SU fully 

first order AV scheme. (a) Wall Coefficient of Pressure distribution -

experimental and present solution data. (b) Mach number variation through the 

shock wave. 
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Figure 4-5: Overall Residuals for fully second order AV case: (a) Simulation A. 

(b) Simulation B. 
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Figure 4-6: CI and Cd convergence for fully second order case: (a) Coefficient of 

lift convergence for the restart solutions A and B. (b) Coefficient of drag 

convergence for the restart solution A and B. 
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(a) 

(b) 

Figure 4-7: RAE 2822 transonic viscous solution using tetra mesh and SU fully 

second order AV scheme. (a) Mach contours. (b) Shock wave detail. 
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Figure 4-8: RAE 2822 transonic viscous solution using tetra mesh and SU fully 

second order AV scheme. (a) Wall Coefficient of Pressure distribution­

experimental and present solution data. (b) Mach number variation through the 

shock wave. 
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Figure 4-9: Histograms - RAE 2822 transonic viscous solution using tetra mesh 

and SU fully second order AV scheme. (a) Overall residual. (b) Spalart-Allmaras 

residual. 
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Figure 4-10: (a) Mach contours of the RAE 2822 transonic solution obtained 

using a tetra mesh and SU + shock sensor AV scheme. (b) Zoom in the shock 

region of (a). 
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Figure 4-11: RAE 2822 transonic solution obtained using a tetra mesh and SU + 

shock sensor AV scheme. (a) Cp distribution at the wall- present solution 

against experimental data. (b) Mach number variation through the shock wave. 
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Figure 4-12: RAE 2822 transonic solution obtained using a tetra mesh and SU + 

shock sensor AV scheme - Histograms: (a) Coefficient of lift CI. (b) Coefficient of 

drag Cd. 
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Figure 4-13: RAE 2822 transonic solution obtained using a tetra mesh and SU + 

shock sensor AV scheme - Histograms for Overall residual and Spalart-Allmaras 

residual. 
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Figure 4-14: Cp comparison for SU fully first order, SU fully second order and 

SU + shock sensor. 
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5. Numerical Results - ONERA M6 wing test case 

The ONERA M6 wing is a classic CFO validation case for external flows. It has 

almost become a standard for CFO codes because of its inclusion as a 

validation case in numerous CFO papers over the years. In the proceedings of a 

single conference, the 14th AIAA CFO Conference (1999), the ONERA M6 wing 

was included in 10 of the approximately 130 papers! We thus chose ONERA M6 

wing to validate the shock detection implementation code for a 3D viscous flow. 

5.1. Wing's Geometry 

The dimensions used to define the wing for the present solution are given in the 

Table 5-1. The root airfoil data and the picture of the wing in the wind tunnel can 

be found in Appendix B. The computation domain stretches approximately 30 

root chord lengths above and below the wing's surface, in front of the leading 

edge and after the trailing edge and in the span direction starting from the 

symmetry plane. 

Wing planform Swept back 

Aspect ratio 3.8 

Leading-edge sweep 30.0 degrees 

Trailing-edge sweep 15.8 degrees 

Taper ratio 0.562 

Mean aerodynamic chord 0.6461 m 

Semi span 1.1963 m 

Reference area 0.7532 m2 

Table 5-1: ONERA M6 wing reference dimensions 
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5.2. Flow parameters 

Reference conditions were chosen in order to match the test 2308 specified in 

the experimental data report [5] and they are presented in the Table 5-2. The 

values for the flow solver parameters CFL, AV and GMRES are going to be 

indicated for each simulation of this chapter. 

Maeh number (M) 0.8395 

Reynolds number (Re) 11.72 million 

Angle of Attaek (AOA) 3.06 degrees 

Angle-of-Sideslip 0.0 degrees 

Free stream statie pressure 93,993 Pa 

Free stream statie temperature 288 K 

Table 5-2: ONERA M6 wing flight conditions 

For the 3D test case, the recommended location of the external boundary is 

located approximately 25 chord lengths from the wall. 

5.3. Computation meshes 

Figures 5-1 through 5-5 illustrate the grids used to obtain the final solution. 

Figure 5-1 is the original grid used in this simulation, generated using the 

commercial software ICEM CFD. The meshes in Figure 5-2 and Figure 5-3 

have been obtained after the first two adaptation cycles, while the meshes in 

Figure 5-4 and Figure 5-5 correspond to the third adaptation cycle. Table 5-3 

shows the mesh statistics after each adaptation cycle. 

The recommended OPTIGRID settings used for the adaptation were the target 

number of nodes and 10 internai iterations. For the first adaptation the target 

was 1.15 million nodes, the second was 1.1 million and 1 million for the last 

adaptation. The code attempted to equi-distribute the error through node 

movement, refinement, coarsening and edge swapping, and the final number of 

nodes are shown in Table 5-3. 
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The total number of nodes has been reduced by 23% after three adaptation 

cycles. The meshes used in other computations ([2],[3],[4]) have a number of 

nodes comparable to the number of nodes in our final mesh obtained after the 

third adaptation cycle ( see Table 5-4). 

Initial grid Cycle 1 Cycle 2 Cycle 3 

Total Nodes 1,237,031 813,026 1,043,951 956,663 

Total nodes on the wall 88,093 72,745 91,562 71,204 

Tetras 2,122,490 558,306 800,562 1,440,847 

Prisms 1,656,150 1,367,610 1,721,380 1,338,640 

Table 5-3: Meshes propertles 

Reference Reference Reference Present mesh 

[2] [3] [4] 

Mesh type C, C-O, Hybrid, Hybrid, 

structured structured unstructured unstructured 

Number of nodes 316,932 665,856 830,476 956,663 

Table 5-4: Comparison between present mesh and other CFO meshes 

5.4. Discussion of results 

The procedure we used for this 30 test case is similar to what we performed for 

the 20 test case of Chapter 4 with the exception that now we are going to use 

another tool, OPTIGRIO (see also Chapter 3.6). The adaptation strategies of 

OPTIGRIO are the following [9]: 

• Moving nodes - equi-distribute the error throughout the domain by 

moving the position of the grid points. 

• Refinement - reduce the error throughout the domain by adding new grid 

points where the error is higher than a target error threshold. 
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• Coarsening - equi-distribute the error throughout the domain by removing 

grid points where the error is lower than the target error threshold. 

• Edge swapping - reconnect edges to optimize their orientation and to 

better align the grid to uni-directional flow features. 

The goal is to minimize and make the error uniform everywhere, while 

maintaining an acceptable number of grid points. Node movement is the only 

continuous operation and it may be viewed as the driving force of mesh 

adaptation. Refinement, coarsening and edge swapping are binary (yes/no) 

operations that complement the action of node movement and should be viewed 

as a way to accelerate convergence to an optimum grid. In detail, the description 

of the mesh adaptation procedure is given in Figure 5-6. For example, the first 

adaptation cycle starts from an original ICEM CFD generated mesh, and the 

corresponding solution generated by FENSAP. Then, OPTIMESH is executed 

and the outcome is a newly generated mesh (the adapted one) and an 

interpolated solution for the new mesh obtained from the initial solution. 

FENSAP is restarted with the newly adapted mesh and the interpolated solution 

as the initial condition to obtain the final solution. 

If the solution after one adaptation cycle is not accurate enough, then the latest 

solution will be used to make another adaptation cycle as described by the 

flowchart of Figure 5-6. The measure of accuracy of the solution is often either 

the lift or drag coefficient, depending on the flight condition. In the case of a 

cruise flight condition, drag coefficient is the preferred measure of accuracy. At 

take-off and landing lift coefficient is monitored. The adaptation cycle is halted 

when global convergence of the lift or drag coefficient is achieved. This often 

requires at least a three to four decimal place accuracy of either the lift or drag 

coefficient. The ONERA M6 test case required three adaptation cycles to attain 

global convergence. 
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The values for parameters Gand S determined for the 2-D case RAE 2822 are 

used for the 3-D test case ONERA M6 wing. Just parameter F is modified from 

F=8 in 20 test case to F=4 in 3D test case. 

Through numerical experiments (see Chapter 4) it has been determined that 

values as G=1.4 and S=0.95 can be set as default values, while the parameter F 

can be varied in order to achieve the desired accuracy of the solution. The 

parameter F will have a dominant effect on the shock capturing and its value will 

be indicated in each of the following simulations. 

5.4.1. Initial solution 

The initial solution was obtained through several parametric cycles, through the 

restart procedure described in Chapter 4. At each parametric cycle, a new AV 

coefficient is selected and approximately 200 iterations are performed. 

Therefore, using the parameter F=1 the solution is obtained after 1,332 

iterations, and an average time of 30 seconds per iteration was needed, using 

32 CPUs. This solution has been generated to serve as the initial condition for 

the next simulation, where the parameter F will be used to control the amount of 

diffusivity in the system based on the computed shock sensor. This solution is 

robust, but as we expected the shock wave on the upper surface in not weil 

captured. Due to the high amount of diffusivity in the solution the shock is 

smeared, as shown in Figure 5-7 and Figure 5-8. 

The convergence of the solution is iIIustrated by the CI and Cd histograms, while 

the overall residual drops three orders of magnitude, reaching an order of 

magnitude oflO-o7
• Due to the diffusive character of the solution, the pressure 

distribution does not match the experimental data, and as a consequence the lift 

and drag coefficients are inaccurate and the drag is too large due to the artificial 

viscous contribution. In the experiment, the wing section corresponding to 80% 

of the wing semi span features two shock waves, one closer to the LE and the 

other positioned towards the middle of the wing,[5]. 
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Neither shock is properly captured in the initial solution; our goal is to modify the 

parameter in the AV allocation logic for proper shock capturing. Parameter F will 

be increased, allowing less AV for the momentum equation when we are in the 

first order dominated region of the domain. The amounts of AV applied in each 

parameter cycle of this initial solution are indicated in Table 5-5. The start value 

is 10-04 ,while the end value is the lowest possible in FENSAP. An AV 

coefficient of 10-10 will be maintained in the following simulations, but the 

amount of AV that corresponds to the momentum equation will be progressively 

decreased by the means of parameter F. 

Parametric cycle # AV coefficient 

1 0.0001 

2 1e-05 

3 1e-06 

4 1e-07 

5 1e-08 

6 1e-09 

7 1e-10 

Table 5-5: AV coefficients corresponding to each parametric cycle - initial 

solution. 

5.4.2. Restart solution before mesh adaptation 

We now restart based on the previously obtained solution, and try to decrease 

the AV in the momentum equation by modifying the parameter F. Through 

numerical experiments, a value of F=4 was determined to provide a good 

solution. Below, two types of shock sensors have been tried: one based on the 

second derivative of pressure, and one based on the second derivative of 

entropy. 
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5.4.2.1. Solution obtained using a shock sensor based on pressure 

The solution herein was obtained using 32 CPUs, providing a computation 

speed of approximately 30 seconds per iteration. The other settings were 

CFL=500, AV=1e-10 and default settings for GMRES. We notice a very small 

variation in the lift and drag coefficients before they reached steady state, 

indicating that the initial solution used to restart the present one was not far from 

the correct one. The shock is captured betler this time, given the reduced AV we 

have been using for the momentum equation and the graphs in Figure 5-9 and 

Figure 5-10 are evidence of this fact. 

Other CFD, [3] Computation - Relative error 

present solution E [%] - eq.(4-1) 

Lift Coefficient CI 0.26806 0.2709 1.06 

Drag Coefficient Cd 0.01717 0.01801 4.89 

Table 5-6: ONERA M6 - aerodynamic coefficients for intermediate solution. 

The aerodynamic coefficients are comparable to values obtained by Kalitzin [3]. 

However, there still exist oscillations in the solution. 

5.4.2.2. Solution obtained using a shock sensor based on entropy 

As an attempt to clean up the oscillations from the solution, the shock sensor is 

calculated now based on the second derivative of entropy. The solution is given 

in Figure 5-11 and Figure 5-12. The settings are the same as in the pressure 

based shock detector. However, the differences between pressure and entropy 

detection solutions are not significant and the oscillations did not disappear. 

Therefore, the following simulations will be based on the pressure sensor. 

5.4.3. Solution after mesh adaptation 

The solution shown in previous section and obtained for F=4 displays a 

preliminary agreement with test data that has to be improved, but the presence 

of the oscillations is undesired and they have to be removed. The method we 

used to improve the solution is the mesh adaptation and the procedure is 
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explained in Figure 5-6. Through mesh adaptation we expect to improve the 

solution convergence and obtain a better comparison to the experimental data 

and other CFD solutions. 

The first adaptation cycle solution is shown in Figure 5-13. The FENSAP 

settings are CFL=500, AV=1e-10, default values for GMRES, while the minimum 

clearance to the wall was set in OPTIMESH at 2.5e-5. We can see an 

immediate improvement of the solution, both in reduction of oscillations and 

shock capturing. The shock waves after adaptation are less smeared than 

before adaptation and at the 80% span station both shocks are sharper. 

We proceed now with the second adaptation cycle, as shown in Figure 5-14. 

The settings for the flow solver and mesh adaptation are kept the same as in the 

first adaptation cycle, except the target number of nodes. As we are not after a 

mesh size reduction, the target number of nodes influence is not going to be 

discussed herein. The shock waves are now better captured and the 

experimental data is better matched. The single problem remained to be solved 

being the presence of oscillations. This motivates us to attempt a third 

adaptation cycle. 

The settings of this third adaptation cycle are CFL=150, AV=1e-10, GMRES 

=160 for turbulence equation and =375 for the momentum equation, leading to 

an average time of 4 minutes and 30 seconds per iteration, using 16 CPUs. The 

simulation required 120 iterations and a convergence of three order of 

magnitude drop with an order of magnitude of 10-08 has been achieved (see 

Figure 5-15 to Figure 5-23). 

The Cp contours of this solution show that the oscillations have been removed 

by the third adaptation cycle. Based on the coefficient of drag convergence 

criterion we can retain this solution as the final one for this transonic viscous flow 

simulation (see Table 5-7). 
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Initial Solution after tirst Solution after second Solution after third 

solution adaptation cycle adaptation cycle adaptation cycle 

Lift Coefficient CI 0.26722 0.27151 0.26967 0.26213 

Drag Coefficient Cd 0.01994 0.01865 0.01733 0.01664 

.. 
Table 5-7: Aerodynamlc coefficients values for each solution 

The initial solution for this test case was obtained for a grid of approximately 1.2 

million mesh points, but was affected by oscillations. After two adaptation cycles 

the solution improved, but still showed oscillations. We stopped the adaptation 

after the third adaptation cycle because the oscillations were almost completely 

removed and the shock capturing was good. Also, the Cd decreased from one 

adaptation cycle to the other showing signs of convergence - Table 5-8. 

Between initial Between tirst and Between second 
solution and tirst second adaptation and third 
adaptation cycle cycles adaptation cycles 

Relative error - CI 1.6 % 0.67 % 2.8 % 

Relative error - Cd 6.4 % 7.07% 3.98% 

Table 5-8: Relative error for aerodynamic coefficients 

The pressure coefficient distribution at each span location compares very weil 

with other numerical solutions ([2],[3],[4]) and the experimental data. The use of 

grid adaptation has allowed the double shock at the 80% span station to be 

captured. 

Determining the cause of differences between the computation and experiment 

requires sensitivity studies with respect to such things as the grid, turbulence 

model, and algorithms. Refining the resolution of the boundary layer may 

improve comparisons. Further stream wise refinement of the grid would help 

capture the shocks on the upper surface and reduce small oscillations at the TE. 

The highest Mach number on the wing is obtained at the tip of the wing, close to 
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the LE. This value is slightly larger than normal and probably is generated in 

conjunction with the mesh size in that region. 

The lambda shock wave obtained in the present numerical simulation of the 

transonic viscous flow around ONERA M6 wing presents the interaction of two 

shock waves that appear on the wing's upper surface. One of them is situated 

on the wing's upper surface in the vicinity of the LE and the other traverses 

diagonally the middle of the upper surface of the wing. The waves seem to have 

a similar intensity before the joining region, situated at about 80% of the wing 

semi span. After they coalesce, a stronger single shock wave is formed that 

continues towards the tip of the wing. Such a strong shock constitutes an 

important contribution in the overall drag coefficient presented in the Table 5-9. 

Other CFD, [3] Computation - Relative error 

present solution E [%] - eq.(4-1) 

Lift Coefficient CI 0.26806 0.2621 2.22 

Drag Coefficient Cd 0.01717 0.01664 3.09 
. . rel Table 5-9. Aerodynamlc coefficients for 3 adaptation cycle solution . 
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(a) 

(b) 

Figure 5-1: Initial mesh (i.e. before adaptation) (a) Upper surface view. (b) Wing 

root detail. 
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(a) 

(b) 

Figure 5-2: (a) Top view of the mesh obtained after 1st adaptation. (b) Top view 

of the mesh obtained after 2nd adaptation. 
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(a) 

(b) 

Figure 5-3: (a) Mesh obtained after 1 st adaptation - view at 80% wing semi 

span. (b) Mesh obtained after 2nd adaptation - view at 80% wing semi span. 
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(a) 

(b) 

Figure 5-4: (a) Top view of the mesh obtained after 3rd adaptation. (b) Mesh 

obtained after 3rd adaptation - view at the wing root. 

82 



(a) 

(b) 

Figure 5-5: (a) Mesh obtained after 3rd adaptation - view at 80% wing semi 

span. (b) Mesh obtained after 3rd adaptation - view at 95% wing semi span. 
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Apply another 
adaptation cycle 

No 

START 

Read: initial grid & solution 

Execute OPTIMESH 

Write: adapted grid, 
Interpolated initial solution 

Execute FENSAP 

Write: new solution 
corresponding to adapted grid 

Yes Is solution 
acceptable? >-------+l{ STOP 

Figure 5-6: Mesh adaptation procedure 
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Figure 5-7: Initial solution obtained for F=1 (a) Cp distribution on the wing.(b) 

Mach number contours at 80% of wing semi span. 
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Figure 5-8: Initial solution obtained for F=1 (a) CI and Cd coefficients. (b) Wall 

pressure coefficient distribution at 80% wing semi span. 
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Figure 5-9: Solution obtained for F=4, isotropie grid and pressure shock sensor. 

(a) Cp distribution on the wing - top view. (b) Mach contours at 80% wing semi 

span. 
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Figure 5-10: Solution obtained for F=4, isotropie grid and pressure shoek 

sensor. (a) CI and Cd histograms. (b) Cp distribution eomparison. 
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Figure 5-11: Solution obtained for F=4, isotropie grid and entropy shock sensor. 

(a) Cp contours on the wing - top view. (b) Mach contours at 80% of the wing 

semi span. 
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Figure 5-12: (a) Solution obtained for F=4, isotropie grid and entropy shoek 

sensor - Cp distribution eomparison. (b) Cp eomparison between the two shoek 

sensor types. 
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Figure 5-13: 1 st adaptation cycle solution: (a) Cp contours on the wing - top 

view. (b) Wall Cp comparison at 80% ofwing semi span. 
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Figure 5-14: 2nd adaptation cycle solution: (a) Cp contours on the wing - top 

view. (b) Wall Cp comparison at 80% of wing semi span. 
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Figure 5-15: 3rd adaptation cycle solution: (a) Isometric view of the wing; Cp 

distribution on the wing, and Mach contours in the symmetry plane. (b) Top view 

of the wing with Cp contours. 
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Figure 5-16: 3rd adaptation cycle solution; Cp distribution at the wall­

comparison: (a) 20% of the wing semi span. (b) 44% of the wing semi span. 
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Figure 5-17: 3rd adaptation cycle solution; Cp distribution at the wall -

comparison: (a) 65% of the wing semi span. (b) 80% of the wing semi span. 
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Figure 5-18: 3rd adaptation cycle solution; Cp distribution at the wall­

comparison: (a) 90% of the wing semi span. (b) 95% of the wing semi span. 
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Figure 5-19: 3rd adaptation cycle solution; (a) Cp distribution at the wall, 99% of 

the wing semi span - comparison. (b) Mach contours at 99% of the wing semi 

span. 
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Figure 5-20: 3rd adaptation cycle solution; (a) Mach contours at 20% of the wing 

semi span. (b) Mach contours at 44% of the wing semi span. 

98 



(a) 

(b) 

.1./85 

10.000 

Figure 5-21: 3rd adaptation cycle solution; (a) Mach contours at 65% of the wing 

semi span. (b) Mach contours at 80% of the wing semi span. 
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Figure 5-22: 3rd adaptation cycle solution; (a) Mach contours at 90% of the wing 

semi span. (b) Mach contours at 95% of the wing semi span. 
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Figure 5-23: 3rd adaptation cycle solution; (a) CI and Cd histograms. (b) 

Residuals histograms. 
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6. Conclusions 
ln this dissertation we developed an Artificial Viscosity (AV) coupled with a 

discontinuity detector for the Streamline Upwind Petrov-Galerkin (SUPG) Finite 

Element Method (FEM) for the compressible Navier-Stokes (N-S) equations. 

Because AV may modify the actual physics of the fluid flow by generating an 

over diffused solution, it is important to keep the amount of AV at a minimum 

while still maintaining a stable scheme. Moreover, in the standard central 

difference discretization, AV is necessary to avoid odd and even decoupling. 

ln this work, we propose a systematic way to augment the AV term to 

produce a sharp shock solution. We introduce an iterative scheme: relatively 

high AV is used for the first parametric cycle to provide the starting solution that 

is stable but over-diffused. Then we restart the parametric cycle with less 

amount of AV. The procedure is repeated until AV is less than certain value. This 

approach also emphasizes how sensitive to the initial solution the final solution 

is, when very low AV is employed. Since a good initial guess is required, this 

procedure has proved to be robust and provided a good approximate solution of 

the unaltered N-S equations. 

There are two types of AV, computed based on local and global derivatives 

of flow variables. The firsf order AV is computed based purely on local variation, 

while the second order AV employs both local and global variations. It is weil 

known that first order AV leads to sharp shock capturing at the expense of 

accuracy, while the second order AV leads to accu rate solutions but tends to 

smear the shock. Therefore, in areas of the computational domain that exhibit 

high gradients of flow properties we select first order AV and obtain first order 

dominated artificial diffusivity, while in the rest of the domain we select second 

order AV to get second order dominated artificial diffusivity. 

ln this dissertation, AV type selection is performed throughout the 

computational domain and at every simulation time step, employing a 

discontinuity detector computed based on the normalized second order 

difference of. pressure. The AV amount supplemented into the system is 

constructed as a blended first and second order AV. 
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To further improve the quality of the final solution, we also employ mesh 

adaptation techniques. Mesh points are clustered around flow discontinuities and 

zones showing high gradients of flow properties, and the mesh becomes more 

stretched after each adaptation cycle. In the case of a large number of 

adaptation cycles the cell size becomes sm ail enough to allow for AV be 

computed just using first order terms, eliminating the need of a shock detector. 

For a sufficiently refined mesh the AV coefficient can be selected to be zero and 

the solution is still accurate and stable. 

Numerical results of two and three dimensional simulations of transonic 

viscous flows indicated that shock detector applied to SUPG FEM shows 

significant improvement for transonic viscous flow simulations and behaves as a 

limiter to dynamically control AV type. In three dimensional simulations it was 

necessary to employ mesh adaptation together with shock detection. Mesh 

adaptation further improved the smoothness of the solution away from the 

shock, while maintaining sharp discontinuities. Without mesh adaptation in 3D 

simulations, the solution shows spurious oscillations and the lambda shock wave 

is not sharp. 

This dissertation has shown successful implementation of AV together with 

mesh adaptation to Streamline Upwind Petrov-Galerkin (SUPG) FEM. While our 

main focus is limited to fluid flow FEM, the underlined idea in this work is not 

limited. It can be extended to initial-boundary value problems which contain 

discontinuities in the domain. 

6. 1. Future work 

The present work on artificial viscosity (AV) selection coupled with mesh 

adaptation technique for 20 and 3D transonic viscous flows presents good 

results for RAE 2822 airfoil and ONERA M6 wing test cases. An immediate 

extension of this work is to solve the transonic viscous flow for a more complex 

geometry (e.g. OLR transonic wing) and this constitutes work in progress at 

McGill's CFO Lab. The goal is to obtain a versatile finite element code to be 

used for industrial transonic aerodynamics problems. However, to improve the 
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artificial viscosity mechanism discussed in this dissertation, several options may 

be considered in the future work: 

• Jameson [35] indicated four limiters (Minmod, Van Leer, Superbee, 

alfa-mean) within symmetric limited positive (SLIP) and finite volume 

(FV) schemes. Based on these limiters, a new shock sensor 

definition within FEM can be investigated for viscous dominated 

flows. 

• Implementation of a new AV switching logic that insures the second 

order AV terms are completely turned off in regions with shocks. The 

outcome expected is a sharper shock and ultimately a better drag 

and lift prediction. 

• Optimization of parameters F, G, S used in AV switching. Moreover, 

a reduction of the number of parameters used in the present 

implementation from three to just one will be attractive from an 

industrial perspective. 

• The present solutions were obtained using hybrid meshes (high 

aspect ratio prismatic elements in the viscous interface and 

tetrahedrons in the rest of the domain). However, it will be more 

economic to obtain transonic viscous solutions using tetrahedron 

grid elements for ail computational domain. This approach will 

require a study of boundary layer resolution and shock capturing 

mechanisms for this type of mesh. 

These recommendations could ail reinforce the quality of transonic viscous flow 

solutions obtained using the present software package. 
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7. Appendix A - RAE 2822 measured coordinates, [16] 

xlc zlc lower zlc upper 

0.00000 0.00000 0.00000 

0.00060 0.00317 0.00323 

0.00241 0.00658 0.00642 

0.00541 0.00957 0.00945 

0.00961 0.01273 0.01269 

0.01498 0.01580 0.01579 

0.02153 0.01880 0.01875 

0.02923 0.02180 0.02163 

0.03806 0.02472 0.02445 

0.04801 0.02761 0.02726 

0.05904 0.03042 0.03004 

0.07114 0.03315 0.03280 

0.08427 0.03584 0.03552 

0.09840 0.03844 0.03817 

0.11349 0.04094 0.04073 

0.12952 0.04333 0.04321 

0.14645 0.04561 0.04558 

0.16422 0.04775 0.04778 

0.18280 0.04977 0.04987 

0.20215 0.05167 0.05187 

0.22221 0.05340 0.05377 

0.24295 0.05498 0.05556 

0.26430 0.05638 0.05713 

0.28622 0.05753 0.05848 

0.30866 0.05843 0.05967 

0.33156 0.05900 0.06070 

0.35486 0.05919 0.06155 

0.37851 0.05893 0.06220 

0.40245 0.05817 0.06263 

0.42663 0.05689 0.06285 

0.45099 0.05515 0.06286 

0.47547 0.05297 0.06261 

0.50000 0.05044 0.06212 

0.52453 0.04761 0.06135 

0.54901 0.04452 0.06030 

0.57336 0.04127 0.05895 

0.59754 0.03791 0.05733 

0.62149 0.03463 0.05547 

0.64514 0.03110 0.05339 
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xie zle lower zle upper 

0.66845 0.02770 0.05112 

0.69134 0.02438 0.04857 

0.71378 0.02118 0.04612 

0.73570 0.01812 0.04338 

0.75705 0.01524 0.04075 

0.77778 0.01256 0.03795 

0.79785 0.01013 0.03514 

0.81720 0.00792 0.03231 

0.83578 0.00594 0.02948 

0.85355 0.00422 0.02670 

0.87048 0.00273 0.02397 

0.88651 0.00149 0.02131 

0.90160 0.00049 0.01874 

0.91574 -0.00027 0.01627 

0.92886 -0.00081 0.01393 

0.94096 -0.00113 0.01170 

0.95200 -0.00125 0.00964 

0.96194 -0.00125 0.00775 

0.97077 -0.00113 0.00606 

0.97847 -0.00094 0.00455 

0.98502 -0.00071 0.00326 

0.99039 -0.00048 0.00218 

0.99459 -0.00026 0.00132 

0.99759 -0.00009 0.00069 

0.99940 0.00001 0.00030 

1.00000 0.00000 0.00000 

Figure 7-1: RAE 2822 transonic airfoil - model cross section, [16] 
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8. Appendix B - ONERA M6 wing data, [5] 

xii z/l xii z/l 

0.0 0.0 0."1761446 O.04SqZ~6 

0.0000165 0.0006914 0.40135(,7 O."4<\'IZn 
O.00006'H .. 0.0014416 O.4~14~~3 O.04Rl,Q "\"1 

O.OOOIf>15 0.0022554 0.4528441 0.0479]')1 
O.01)"3n~ 0.01)313132 O.41flll'H 0.04116'>1 
0.000550'1 0.00409<;9 O.5032'H4 O.04"1C/03 
0.01)0'16<;7 0.0051343 0.52824"" O.04o;021)~ 

O."012'1r:.q 0.001,25Q8 0.5531)9~7 0.('\4:H.741 
0.OO131r:.4 O.00747B4 O.S7B041 0.0421".'14 
0.002'5441 0.OO:nQ5f! 0."023151 0.040<;241 
0.00"14428 0.010Z1"3 O.626iH04 I).O"lsn6L3 
0.004570/, 0.0111419 0.6511093 0.03"8990 
0.on5'H'51 O.onHI)Q 0.67'52126 O.034Q54~ 

0.0071112 0.01'509'51 0.69(')3021 0.0329 /.02 
0.(1)'18411 0.1J1"AQA4 0.7231QQ') 0.030R662 
0.012447'1 o. 01 ~J75H O.146'U.58 0.O}'H165 
0.0156171 O.070l>nO O.710'5Q9!\ 0.0265'>0'5 
0.Ol!~4609 0.0224545 0.7Q410'55 O.02430n 
0.0241067 0.I)l42004 O. 'H 1'oA?'1 O.0?\~q4? 

0.029100~ 0.02<;13245 0.1$407324 0.1)] Q58H 

0.0364261 O.Oln317 O. ~63R"b'. O.OPOC/l'; 
0.04441\5' 0.02'l7Q 12 0.8%1\7.3<; 0.0\4'>1"1'>1 
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0.16'."'116 O.1)41Q')Qn 0.9731161 0.01)401'10 
O. 1 ~1 '1321 0.0416214 0.9191.1)20 0.01"l17 7Q6 
O.ZUI109(' 0.0'.5051)7 l).q~4250'\ 0.00;>65 /.7 
0.2453310 O.O/.623'51l 0.'HFJ'iJ.52 0.01)7.12'i1 
O.2717'"l7f'1 0.('\ 47 1Q Q7 tl. q t.l21 1.;\ ~ O.OOI()·77~ 

O.2?91113 O.04794Q4 o.'.:)q<;ZlJqO 0.0('\17.<'1/15 
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Figure 8-1: Design values for root section coordinates of the symmetrical profile 
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Figure 8-2: ONERA M6 semi-span wing 
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Figure 8-3: Additional remarks for ONERA M6 wing 
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