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Abstract

Computations of transonic viscous flows are very challenging. The major
difficulty comes from the discontinuity in the solution across a shock wave,
causing undesired oscillations in the solution. In this work we focus on
minimizing the oscillations by the use of a limiter to control the amount of
diffusivity. This limiter provides the right amount of viscosity to capture a sharp
shock and an accurate solution in high gradient regions. The limiter employs
changes in pressure and entropy and has been implemented into the Streamline
Upwind Finite Element Method. A mesh adaptation strategy has been employed
to further enhance the accuracy of the solution. Results of simulations over RAE
2822 airfoil and ONERA M6 wing indicate significant improvements to the

solution with this implementation.
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Résumé

Les calculs des écoulements visqueux transsoniques constituent un grand défi.
La difficulté principale vient de la discontinuité dans la solution a travers une
onde de choc, causant des oscillations non désirées dans la solution. Dans ce
travail nous nous concentrons a réduire au minimum les oscillations par
l'utilisation d'un limiteur pour contréler la quantité de diffusivité. Ce limiteur
fournit la bonne quantité de viscosité pour capturer un choc propre et une
solution précise dans des régions de gradient élevées. Le limiteur est fonction
des changements de pression et d'entropie et a été implémenté dans une
méthode élément fini décentrée de type SUPG. Une stratégie d'adaptation de
maillage a été utilisée pour augmenter davantage I'exactitude de la solution. Des
résultats de simulations sur l'aile RAE 2822 et |'aile dONERA M6 montrent des

améliorations significatives de la solution avec I'approche proposée.
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1. Introduction

In the early 1950s when production fighter designs began pushing closer
to the sound barrier, aircraft designers found that the drag on these aircraft
increased substantially when the planes traveled near Mach 1, a phenomenon
known as the transonic drag rise. This increase in drag is due to the formation of
shock waves over portions of the airplane, which typically begins around Mach
0.8, and reaches a maximum at Mach 1. Because of its source, this type of drag
is referred to as wave drag. The wave drag occurs in two ways. First, and
primarily, the strong adverse pressure gradient across the shock causes the
boundary layer to separate from the surface — this creates pressure drag due to
flow separation. Second, even if the boundary layer did not separate, there is a
loss of total pressure across the shock which ultimately would cause a net static
pressure imbalance in the drag direction — also a pressure drag.

A 3D visualization of local supersonic pockets that could appear in
transonic flight over various parts of the plane is contained in Figure 1-1. The
Prandtl-Glauert condensation cloud [33], assumes a conical shape around the
wings — the shock wave corresponds to the termination of the cloud, towards the

aft of the plane, which gives rise to the characteristic flat base of the cone.



Figure 1-1: Prandtl-Glauert condensation cloud on a transonic F/A-18 Hornet
plane (media release, USS Constellation, July 7, 1999 [990707-N-6483G-001])
No closed-form analytical formulas exist to predict the transonic drag rise.
The prediction of transonic drag is so difficult that Jobe [18] in 1985 states: “The
numerous authors in the field of numerical transonic aerodynamics have
reached a consensus: Transonic drag predictions are currently unreliable by any
method”.

Advances in Computational Fluid Dynamics (CFD) during the last 40 years
have made it possible to predict transonic drag. However, CFD is still very
challenging, principally due to uncertainties in the calculation of the shock-
induced separated flow.

Considerable effort has been devoted to the calculation of transonic
viscous flows around airfoils, aircraft wings or complete aircraft using Finite
Element Method (FEM), involving both structured and unstructured grids. The
numerical simulations of compressible viscous flows results in a tightly coupled
system of nonlinear equations in which parameters often take extreme values.

Such problems place special demands on the solution algorithm. Flow
features such as boundary and shear layers, recirculation zones and shock



waves need to be accurately resolved to achieve an accurate solution.
Furthermore, due to the mesh-dependent nature of CFD solutions, it is important
to cluster grid points to regions of important flow physics. However, it is difficult
to determine a priori where the mesh must be refined in order to accurately
capture the physics of the flow.

FEM makes use of ‘a spatial discretization and a weighted residual
formulation to arrive at a system of matrix equations. The most common
weighted residual formulation employed is the Galerkin method [6], in which
weight and interpolation functions are identical. When applied to fluid flows or
convective heat transfer, this method leads to a nonsymmetrical matrix
associated with the convective terms, and as a consequence the solutions are
often corrupted by spurious node-to-node oscillations. It is also known that the
Galerkin FEM gives rise to central-difference type approximations of differential
operators, leading to instability and upwind differencing must be used on the
convective terms to obtain stable solutions. The drawback shown by this
approach is that upwind differences are only first-order accurate, compared to
central differences that are second-order accurate. Subsequently, it becomes
apparent that a combination of central and upwind differences can improve
solutions that employ either upwind or central differences alone. For a simple
one dimensional model problem, it was possible to select the combination which
resulted in exact nodal solutions. Equivalently, the proper amount of artificial
diffusion could be added to the central formulation, procedure usually referred to
as optimal or smart upwind method.

An initial upwind FEM was presented by Christie et al. [19] for the one
dimensional advection-diffusion equation, by modifying weighting functions to
achieve the upwind effect. In essence, the element upstream of a node is
weighted more heavily than the element downstream of a node. This method
was later generalized to the two dimensional case by Heinrich et al. [20].
Because the modified weighting function is applied to all terms in the equations,
these formulations lead to consistent Petrov-Galerkin weighted residual

methods.



Hughes [21] introduced a simple method for generating upwind elements,
which made use of a modified quadrature rule for the convection term, while
Hughes and Atkinson [22], using a different approach, derived an optimal
upwind method from a variational principle, demonstrating that upwind methods
may be developed from a firm theoretical basis. Many optimal upwind FEM give
exact solution for the one dimensional problem, but when generalized to
multidimensional flow situations some of these formulations are far from optimal,
generating solutions that often exhibit excessive diffusion perpendicular to the
flow direction. In addition, Galerkin formulation may provide in many instances
oscillation free solutions which are more accurate than upwind solutions. To
address criticism caused by the above results, Brooks et al.[13], introduced the
Streamline Upwind Petrov-Galerkin (SUPG) formulation, where the added
viscosity has an anisotropic character, acting just in the flow direction. This is
achieved through the standard Galerkin weighting functions by adding a
streamline upwind perturbation, which acts just in the flow direction. This method
successfully incorporates streamline upwind concept, which precludes the
possibility of excessive crosswind diffusion while eliminates artificial diffusion
that plagues many classical upwind schemes by the consistent Petrov-Galerkin
formulation. Additionally, the method is quite easy to implement and does not
require the use of higher order weighting functions. Further investigations of
SUPG method in the context of the multidimensional advection-diffusive
equation were done by Johnson [23] and Navert [24], who established optimal
convergence rates and a strong discontinuity capturing property, even when the
discontinuity is skew to the mesh. In Hughes et al. [25], the SUPG procedure of
[13] is generalized to hyperbolic systems of conservation laws, with emphasis on
high speed flows with shocks.

SUPG is an excellent method for problems with smooth solutions, but
typically introduces localized oscillations about sharp internal and boundary
layers. To improve upon the situation, Hughes et al. [30] added a discontinuity
capturing term to the formulation, which provides additional control over

gradients in the discrete solution and considerably increases the robustness of



the methodology. The developments were restricted to the scalar advection-
diffusion equation. In Hughes et al. [31], the discontinuity capturing operator has
been generalized to multidimensional systems.

It is well known that application of Galerkin FEM for fluid flow introduces
numerical instabilities. First, the lack of a diffusive term in the continuity equation
makes the advective-diffusive Navier-Stokes system of equations an incomplete
parabolic one. The incompressible constraint leads to an indetermination of the
system of governing equations since the unknown pressures have to be
computed from the continuity equation. One method to solve the indetermination
employs different function spaces for the velocity and pressure interpolation (e.g.
quadratic- velocity and linear-pressure). This approach is known as Babuska-
Brezzi stability condition [6], but in general it's not attractive from an
implementation standpoint. Secondly, modeling non-symmetric advective terms
by employing symmetric operators (such as centered finite differences or
Galerkin basis functions) leads to solutions corrupted by spurious oscillations.

The Babuska-Brezzi stability condition, also known as inf-sup condition
[26][27], are not easy to implement in practice, especially for three dimensional
computations. However, N'Dri et al. [28] proposed a mixed space-time finite
element formulation where the approximation spaces for velocity and pressure
satisfy the LBB stability condition, showing that this formulation is stable and
also applicable to transient viscous flows. A more common way of solving flow
problems is by circumventing the Babuska-Brezzi criterion. A key idea is to treat
Petrov-Galerkin formulations as devices to enhance stability without upsetting
consistency. Hughes et al.[29] exploited this idea for Stokes flow.

Thus, the weighting function which multiplies the momentum-balance
residual is not simply the Galerkin weight wh, but wh plus another term,
sometimes referred to as the ‘perturbation’ of the Galerkin weighting function.

This formulation may be considered a Petrov-Galerkin method and proved to be

0
convergent for rather general C combinations of velocity and pressure, in
particular equal-order interpolations very attractive from a computational

standpoint.



In a recent research [32], Almeida et al. introduced a Consistent
Approximate Upwind Method (CAU).The idea is to keep the SUPG perturbation
term over the streamline direction and add, in a consistent way, a non-linear
perturbation to provide the control over the derivatives in the direction of the
approximate gradient, avoiding completely spurious oscillations. This method is
further combined with an h-adaptive mesh refinement procedure, as the finite
element mesh near discontinuities in the flow must be fine enough in order to

accurately solve all flow details.

1.1. Dissertation directions

This dissertation focuses on how to improve the capture of discontinuity of
the compressible viscous Navier-Stokes (N-S) solution, such as a shock wave.
We adopt a reliable shock detector formulation and apply it to the SUPG finite
element formulation.

Our development is based on the success of our current capability to
accurately compute the compressible viscous Navier-Stokes equations [9] as
long as no strong discontinuity exists in the flow field. Basic FEM CFD
formulation is demonstrated in Chapter 2. Our proposed shock detection can
eliminate the limitation of the existing Navier-Stokes solver.

To demonstrate these benefits, we implement the shock detector including
enhancement techniques such as mesh adaptation to the current N-S solver and
apply it to transonic viscous flow past airfoils and wings. Chapter 3 contains the
development of such detection and mesh adaptation. Comparisons with
experimental data indicate good agreement for both 2D and 3D flows, as shown
in Chapters 4 and 5. Chapter 6 summarizes this dissertation and suggests

possible extension.



2. Governing Equations

In this chapter, a brief overview of the field equations and solution strategies are
given. Also, the Finite Element Navier-Stokes Analysis Package (FENSAP),
which was used as a Navier-Stokes solver for this work is introduced and a
succinct description of software implementation and computation algorithms are
added.

2.1. Navier Stokes equations in differential form

The fundamental equations that govern the fluid flow of a Newtonian fluid (i.e.
stress varies linearly with strain rates) are obtained based on the following
universal laws of conservation:

1. Conservation of mass: “matter can neither be created nor destroyed”.

2. Conservation of momentum: “the total force acting on a fluid particle is equal
to the time rate of change of its momentum — Newton's lex seconda”.

3. Conservation of energy: “energy can neither be created nor destroyed — First

Law of Thermodynamics”
Note: According to Einstein theory, E=mc*(E stands for energy, m for mass, ¢

for speed of light in vacuum) i.e. for a small variation in mass, a physical system
can have an immense variation in energy. However, in fluid flow problems the
energy variation does not generally exceed 10°kJ/kg, so the variation of mass is
practically negligible. For problems that do not contain nuclear reactions or other
kind of transformations that allow for mass to be transformed into energy, the
above conservation principles hold.

The derivation of the fundamental equations of fluid dynamics will not be
presented here. A derivation based on the postulated relations between stress
and rate of strain and heat flux and temperature gradient is treated for instance
by Schlichting [8]. As we are going to use Navier—Stokes equations to obtain
solutions for air flow around aerodynamic 2D and 3D objects, the assumptions of
homogeneous and uniform fluid without mass diffusion or chemical reactions are

made.



2.1.1. Continuity equation
Let's consider an infinitesimal control volume (CV) that is bounded by its control
surface (CS). The Conservation of Mass law applied to a fluid that passes

through CV yields the following equation of continuity:

P v .(pV)= ]
o +V-(pV)=0 (2-1)

where p is fluid density and V is the fluid velocity. Using the formula for

divergence applied to pV we get

V- (pV)=V-Vp+pV-V (2-2)
and the substantial derivative

p()_a()

—r=""7I4V.V 2-3

o = tV-V() (2-3)

can now be used to write the continuity equation as:

%’?+ p(V-V)=0. (2-4)

The above equation is obtained in the hypothesis that the control volume is
fixed, and the changes to the fluid properties are done as the fluid flows through
the CV. This approach is called Eulerian, by opposition to a Lagrangian
approach, which considers the observer that records fluid properties moving
together with the fluid element. The first approach is commonly used in fluid

mechanics.

2.1.2. Momentum equations

Applying Newton's Second Law of dynamics for a fluid element passing through
an infinitesimal and fixed CV, we get the following formulation of momentum

equation:
g(pV)+V- pYV=pf+V.o, (2-5)

The above formula contains, in the left hand side, the rate of increase of

momentum per unit volume in the CV, the second term being the rate of



momentum lost by convection (per unit volume) through the CS. On the right
hand side, the first term represents the body forces per unit volume, while the
second term represents the surface forces per unit volume. On the left hand

side, the divergence is applied to the tensor pVV, and can be expanded as:
V-pVV=pV-VV+V(V-pV) (2-6)

Substituting equation (2-6) into equation (2-5), and simplifying the result through
the continuity equation (2-4) we can write the momentum equation as:

p%=pf+v-0'ij. (2-7)

In this equation, o, represents the stress tensor, which contains the normai

stresses and shearing stresses. For a Newtonian fluid, it's possible to derive a
general deformation law that relates the stress tensor to the pressure and

velocity components [8]. In compact tensor notation, expression of o, becomes:

ou,
o, = pa,,w(%Jrl}wyzgxﬂ i, jok =123 (2-8)

J axi k

where 5, is the Kroneker delta function (6, =1if i= jand 6,=0if i#j), U, U, Uy
represent the three components of the velocity vectorV, X, X, X, represent the
three components of the position vector, x4 is the coefficient of dynamic
viscosity, and 1 is the second coefficient of viscosity. After substituting the
Stokes relation,

2u+34=0 , (2-9)
into equation (2-8) and taking into account eq. (2-3), we obtain the Navier-

Stokes equation in differential form:

DV 0 ou, Ou,| 2. ou
CASIPYIR PR P [CLO) I 210
P PP axj[”(axj ax,.} 3 ”#ka] 19

The Navier-Stokes equations form the basis upon which the entire science of
viscous flow theory has been developed. Strictly speaking, the term Navier-

Stokes equations refers to the components of viscous momentum equation (2-

10). However, it is common practice to include the continuity equation and the



energy equation in the set of equations referred to as the Navier-Stokes

equations.

2.1.3. Energy equation

Applying the First Law of thermodynamics for a fluid element passing through an
infinitesimal and fixed CV, we get the following formulation of the energy
equation:

%+V-E,V=%—?—V'q+Pf'V+V'(0'ij'V) (2-11)

where E, is the total energy per unit volume given by
V2
E = p(e + B3 + potential energy +] (2-12)

and e is the internal energy per unit mass. The first term of the left hand side of

equation (2-11) represents the rate of increase of E, in the CV, while the second

term represents the rate of total energy lost by convection (per unit volume)
through the CS. The first term on the right hand side of equation (2-11) is the
rate of heat produced per unit volume by external agencies, while the second
term is the rate of heat lost by conduction (per unit volume) through the CS. The
third term on the right hand side of equation (2-11) represents the work done on
the CV (per unit volume) by the body forces, while the fourth term represents the
work done on the CV (per unit volume) by the surface forces. Fourier's law for
the heat transfer will be assumed, so the heat transfer can be expressed as
q=—xVT, (2-13)

where £ is the coefficient of thermal conductivity and T is the temperature.

2.2. Navier Stokes equations in conservation form
Conservation-law form is a convenient way of writing the field equations, and
bellow we give this compact vector form of compressible Navier-Stokes
equations in Cartesian coordinates, without body forces, mass diffusion, finite
rate chemical reactions or external heat addition,[7].

10



oU OE oF G _

— t—t—+—=0, (2-14)
o0 oOx oy Oz

where U, E, F and G are vectors given by:

P
ou

U=|pv|, (2-13)
oW
E

E= puv—t,, , (2-16)
pZIW_TXZ
(Et +p)u_urxx _vrxy _Wsz +qx

pv
puv—Txy
F= v +p-t, : (2-17)
pvw_TyZ

(E, +p)v—urxy -VT,—WT,_+q,

ow
pUw =1,
G-= pw—1,, , (2-18)
pw’ +p-t,
(Et +P)W_uTxZ VT, —WT_,+4q,

where the components of the stress tensor 7, are :

ou Ov ow

T =M 2————|,
3 ox o0y Oz
2 ov oOu oOw

T, =-HM2——————|,
3 oy Ox Oz
2 ow Ou Ov

T, =—pM2———-——|,
3 0z Ox Oy
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ey = 242,
Xy H ay ox yx!

(8w auj
sz :u + = sz !

o oz
ov ow
T, = y[—a;+5) =7,. (2-19)
For air in a laminar flow, the viscosity is defined empirically by Sutherland’s law
YY" (1, +110
Tl ( =t ) (2-20)
u, \T, T+110

where T refers to the temperature in Kelvin, and variables noted with the
subscript « are reference values, [9]. The total or stagnation enthalpy is defined

as

H=lypr, 7V P (2-21)
2 y=1p

where y is the ratio of specific heat and equals 1.4 for air. The thermal
conductivity k of formula equation (2-13) can be computed in a similar way as
the laminar dynamic viscosity:

3/2
x [T (Tw+133.7j_ (2-22)
k, \T. T+133.7

0

The equation of state for an ideal gas, necessary to close the system of

equations, is:

P _gr, (2-23)
P

where R represents the gas constant.

2.3. Reference variables
In FENSAP, the non-dimensional variables were obtained with respect to four

input parameters, namely reference pressure p_, temperature?_, length L and

the norm of the velocity vector//_ . In the limit of ideal gas approximation, we can

define the following non-dimensional quantities:

12



M, = \/IS.;T , (2-24)
A,

p. = Ié’; , (2-25)
i, =120 =y (2-26)
Re, = Lello (2-27)

He

where the asterisks in equation (2-26) indicates non-dimensional variable.

2.4. Spalart-Allmaras turbulence model

The turbulence model used to compute solutions of transonic flows in this work
is the one-equation Spalart-Allmaras model. A detailed discussion and
comparison about few turbulence models available, including Spalart-Allmaras is
presented in reference [10]. The model solves a PDE over the whole field for a
working variablev', from which the effective eddy viscosity v, is computed from
a relation

v, =, . (2-28)

The transport equation that gives v'is:

—~ ~ ~ ~ ~ ~\ 2
W o & Sy i[(vw)a_ma" ov }cwlfw_Rl [3) , (2-29)
eoo

o ) R, an, | o, T an, ox,
where
o~ 1 vV 1{ 6u. Ou,
S=S+—"F—Ff,, §=20,Q,, Q =—| L] 2-30
Rew K_zdz fv2 [/ A ] i 2[axj axi J ( )

In the equation (2-30) d represents the distance to the wall, and f,, and f,

are defined as:

3

4 4
=2 =1- , . 2-31
Ju 13'*'031 S 1+ 47, ( )
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~

where y =Y with v being the laminar viscosity. The destruction term is formed
Vv

with:
1
1+cS, 6 6 v

= w ,g=r+c, \r'—rhr= — . 2-32
I g[g6+c33] & 2( )’ x*d*Re, S+Vf,, ( )

The closure coefficients of the model are:
¢, =0.1335 ,¢,, =0.622,¢c,,=7.1, ¢ =% (2-33)
¢, = c—";+(iﬂ, ¢, =03, ¢, =2, k=041 (2-34)

K (o2

2.5. Boundary conditions (BC)

The Navier-Stokes system of equations, comprising a scalar continuity equation,
three scalar momentum equations and one scalar energy equation is a non-
linear, coupled, hybrid system, or elliptic-hyperbolic in space. For this kind of set
of equations, no boundary conditions have been mathematically defined to date.
For this reason, physical considerations will be used to define the boundary
conditions.

Research done on solid wall viscous flows, revealed that the relative velocity
between the solid wall and the flow is zero in the subsonic and low supersonic
regimes. Also, the velocity component normal to the wall is zero. These two very
important observations are called “no slip” and “no penetration”, respectively.

In CFD there are an inlet boundary and an exit boundary. At the inlet, a specified
velocity profile is imposed, while for the exit boundary only the pressure variable

( for subsonic and transonic) is imposed along the entire surface, meaning that
the flow is fully developed or aa—vzo. At a plane of symmetry, the following
n

conditions apply:
Vp-i=0; Vp-i=0; V(,)-i=0; V(,)7i=0 (2-35)

where subscripts t1 and t2 indicate velocity tangential components.
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2.6. Finite Element Method (FEM) formulation

The finite element method was initially used in the field of structural analysis,
and the concept of “element” originates in the techniques used in stress
calculations, where a continuous media was divided into many substructures of
various shapes, analyzed separately and then re-assembled.

It is convenient at this point to write Navier-Stokes equations (2-4), (2-10) and

(2-11) in index-free fashion. If the gradient of a scalar quantity ¢ is written as:

V¢:¢i:a_¢f+a—(p]‘+a—¢lg (2-36)
T Tyl T e

and the divergence of a vector quantity @ is written as:

a(l)x 6q)y aq)z
+ +

Vo=, = & Pl (2-37)
we can write then the Navier-Stokes equations:
(puk ),k =0 , k=1nsd continuity eq., (2-38)
puuw, =0, , i,j=1lnsd momentum eq., (2-39)
(pu,H)’, = (K'T,m +u,7, ),/ [,m,n=1nsd energy eq., (2-40)

where “nsd“ stands for “number of space dimensions”, u represents the velocity
vector, x represents the coefficient of thermal conductivity, T is temperature, H is

enthalpy, p the density, o the stress tensor and r the shear stress tensor.

The field equations are written for a space domain, Q, that in finite element
analysis is subdivided into a number of elements of arbitrary shape and size,
the restrictions being that the elements may not overlap, have to cover the
whole computational domain and have to obey conformity condition, i.e. two
elements must share a face or a node. Each element contains a number of
points that are situated either on the sides or inside the element. At these points,
the values of the unknowns and their derivatives have to be determined, and the
total number of unknowns at the nodes, and their derivatives are called the
degrees of freedom of the numerical problem. The field variables are

approximated by linear combinations of known basis functions N (also known as

15



shape or interpolation functions) .We can therefore write for an approximate

solution # of u(x):
ia(x)=>uN,(x), (2-41)

where the summation extends over all nodes, and u, represents the unknowns

at the nodes. A common choice for the shape functions N are polynomials of
different order within each element and zero outside the considered element,
with the observation that the higher the order, the more computer power is

needed. As a consequence of this property the shape functions satisfy to:
N,(e)(x)= 0 if xnot in element (e) (2-42)
and for any point x, we have:
N,(“’)(x ,)=8,, &,being Kronekerdelta function (2-43)
Based on the requirement to represent exact a constant function

u(x) = constant we can write another condition for N:

Z N,(e)(x)= 1, for all xe(e) (2-44)

As an example, in FENSAP the shape functions are chosen to be polynomials of
first order, which means the first derivatives are constants, and the second
derivatives and higher are zero. This choice has advantages and disadvantages:
the simplicity of the first order polynomial offers economical use of available
computer power for large industrial size flow problems, while some extra
methods have to be used in order to deal with the satisfaction of stability
condition, known as the Babuska-Brezzi condition, [6]. A complete discussion
about elements and shape functions used in finite element analysis can be found
in [11]. The method of weighted residual or weak formulation will be now
introduced, and for detailed derivations please refer to [6], [12].

Starting frorh equations (2-38), (2-39), and (2-40) we multiply them by a given
weighting function W and integrate across the entire computational domain in
order to obtain the weak formulation of the conservation of mass, momentum

and energy. Conservation of mass in weak formulation then reads:
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IW“’”’ (pu,),dQ2=0, k=1,nsd (2-45)
Q

and after applying Green-Gauss theorem to the above integral we get:

_[ch”"' (puk)dQ—cj'W “"pu,n,dl =0 (2-46)
Q r

Similarly, the conservation of momentum in weak formulation reads:

jW’””’" (p wu -0, )dQ =0, i,j=1,nsd (2-47)

Q

and applying Green-Gauss we get:

IW”’"’" (p uu, )dQ + IW’I'.""”O'U.dQ - 4W’"”’"0',.jnid[‘ =0 (2-48)
r

Q Q

The conservation of energy in weak formulation reads:

IW”'(pu,H—KT,m —unrn,)ldQ =0, m,nl=1,nsd (2-49)
E _

or after applying the divergence theorem:

fwilow H -«T, —u,z, JdQ—§w " (pwH —£T, —u,z, n,dC =0 (2-50)
Q T

The advantage of writing the equations (2-45), (2-47) and (2-49) using the
divergence theorem is that the second order diffusion derivatives in the
momentum end energy equations are now reduced to first order derivatives.
That means the shape functions have to be differentiated just one time at the
most, and this condition is exploited by FENSAP which uses first order , linear

shape functions N.

2.7. Artificial viscosity (AV)

It's well known that the convective terms in Navier-Stokes equations generate
non-physical oscillations in the solution, when symmetric operators like
elementary Galerkin shape functions (or equivalehtly centered finite difference
stencil) are used. Also, in FENSAP there is another source of this spurious
behavior, called oscillations, and that's the use of the same order shape
functions for pressure and velocity, contravening to Babuska-Brezzi condition.

To stabilize the solution, artificial viscosity is added in the following form:
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Continuity Eq. —¢,,, {V (BVp)+V- ( B . )} (2-51)

x Momentum Eq. ¢,,, (v -(BVu)+V -(B%, .Vu )} (2-52)
y Momentum Eq. - ¢,,,,{V-(BVv)+V-(B., Vv )} (2-53)
z Momentum Eq. -,V -(BYw)+V -(B2, .Vw)} (2-54)

Energy Eq. —¢,,{V-(BVH)+V -(B". VH )} (2-55)

where B? and Brepresent the tensors of projection on gradient and streamline

direction, respectively.

The above defined artificial viscosity (AV) is of anisotropic type. There were
observations that good results are obtain, using the 1D flow analogy, if the AV is
applied in the streamline direction. Another preferred direction for AV addition is
the cross wind, or gradient direction. FENSAP uses a combination of the two,
and in equations (2-51) to (2-55), the first term in the bracket represents AV in
the streamline direction, while the second term represents the AV in the gradient
of flow variable direction. A more detailed discussion will be carried out in the
next chapter, where the Streamline Upwind (SU) and Streamline Upwind Petrov-
Galerkin (SUPG) stabilisation methods are explained.

2.8. FENSAP - solving strategy
A set of nine flow equations (2-20), (2-21), (2-22), (2-23), (2-38), (2-39), (2-40),

and nine unknowns ( p,p,T,H,u,,u,x ) have been described in this chapter.

When the governing equations contain algebraic expressions, this expression
and one of its variables can be lagged in the solution process, [9]. The equation
of state gives the temperature in function of the density and pressure,
Sutherland’s law relates the dynamic viscosity to the temperature, the thermal
conductivity law relates the thermal conductivity to the temperature and the total
enthalpy is expressed in function of pressure, density and velocity components.
The temperature, dynamic viscosity, thermal conductivity and total enthalpy are
lagged variables, and are therefore computed only after the density, velocity

components and pressure have been solved. The governing flow system has
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thus been reduced to five equation and five unknowns. A further simplification
can be made in the case of adiabatic flows, because the energy equation is not
solved any more, but the total enthalpy invariance along a streamline of the flow
is used instead. The density is replaced in continuity and momentum equations
based on equation (2-21), and now the flow system to be solved contains four

PDEs and four unknowns p,u,,i=123. As the equations to be solved contain

non linear convective terms, the Lax-Milgram theorem that guarantees the
uniqueness of the solution can not be applied to the system of equations.
However, this system can be linearized, for example by Newton's method, and if
the initial guess of the solution is good, the process will converge to the solution
of the non-linear system, [9].

The discretized linear system of equations are solved iteratively based on the

generalized minimum residual (GMRES) method.
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3. Methodology

This chapter elaborates on the artificial viscosity schemes used to stabilize the
FEM, on grids and on mesh adaptation algorithms used in this work. The
discontinuities detection technique used to capture the shock waves in transonic
viscous flows is presented and the numerical implementation within the

commercial on-the-shelf software FENSAP is shown.

3.1. Streamline Upwind (SU) and SU Petrov-Galerkin (SUPG)

The stabilization techniques described herein are numerical tools able to correct
for instabilities introduced by the finite element Galerkin formulation for Navier-
Stokes equations. The Galerkin method, that has as a particularity the fact that
the shape functions and weighting functions are similar, when applied to
structures or heat conduction problems, gives birth to symmetric stiffness
matrixes. In this case, it can be shown that the solution possesses the “best
approximation” property, i.e. the difference between the finite element solution
and the exact solution is minimized with respect to a certain norm. It's largely
because of this “best approximation” property that Galerkin method was applied
with such a success in structural applications. However, for fluid flow problems,
the Galerkin method encountered challenging problems. The cause is that in
fluid flows and convection heat transfer, the matrix associated to convection
terms is nonsymmetrical, and as a result the “best approximation” property is
lost. In practice, the solutions are affected by oscillations that resemble low
frequency noise - oscillations being most likely to appear in convection
dominated flows (high Reynolds numbers) when a downstream boundary
condition forces a rapid change in the solution, [12].

In FENSAP, Galerkin finite element method was implemented, and as a solution
stabilization technique the SUPG formulation has been implemented.
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3.1.1. The stabilization of one-dimensional convective dominated
flow

For a simple 1D case we will show the numerical diffusivity that is able to

stabilize the solution. We consider the convective 1D problem where velocity u

transports a scalar ¢ through the computational domain Qc R' (just the

transformations on the convective term will be shown):

op
22 3-1
" Ox (3-1)

The stability condition generally requires that for each incorrect variation of the
transported variable ¢ , the convective governing term should correct and
compensate such an error. Lets consider now the central finite difference
operator applied to equation (3-1) , where the subscripts (i —1) and (i + 1) indicate
the grid points located upwind and downwind from the grid point i, respectively.

We can write:

092 P =P (3-2)
Ox 2Ax

where clearly appears that the sensitivity of the convective term with respect to

the variation of scalar ¢, is zero. The conclusion is that modeling the convective

terms of Navier-Stokes equations with spatially symmetrical operators leads
towards neutral stability. The first attempt to recover the algorithm stability is the
use of upwind finite difference schemes, so that the spatial derivatives of the

variable in each nodal point (i) depends on the value assumed at the node itself
(i) and on the value at the node at an upwind location. The directional stability is

therefore recovered, on the expense of the formulation accuracy. An equivalent
stabilisation can be obtained by mixing a convective term modeled with a

centered finite difference stencil and an artificial diffusivity (viscosity) term:

u-%zu@ ;ioi—l =u(pi+12;x¢i—1 +“§x._¢i+' +Aifi_¢i_l ,ifu>0
u._aa%zuq)i ;;p”l =u¢"‘12;f""1 +u§x_—(p,~+1 +Ai(20i_¢i_l sifu<0

The above two formulae can be combined in only one formulation:
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—, Ax —q, =,
u'%z|u[¢l+]2;l_l+lu‘2 . Pin +A2x§201 ¢"‘,f0ranyu (3_3)
where
~ Ax
F o luiax (3-4)
2
defines the numerical diffusivity that directly depends on the magnitude of

convective phenomena and the characteristic grid dimension Ax, and |u| is the

absolute value of the local velocity. The interpretation of this result is that
stabilized schemes could be obtained using centered differencing and artificial
diffusivity approach as in equation (3-3) , and the goal is to correct the under

diffusivity of the Galerkin scheme using the above described idea.

3.1.2. Upwind and Streamline Upwind stabilisation

The Galerkin formulation can be stabilized using the addition of artificial
balancing integral able to compensate the negative diffusivity of the weighted
residual method. An appropriate choice of the artificial contribution intensity
could lead, for a 1D case, to the exact nodal solution — such upwind schemes
are called optimal or smart, [6]. The artificial diffusivity in the optimal upwind

scalar schemes could be defined as:

i :

k —( 5 g (3-5)

¢ = coth(a)—% (3-6)
L

a="r (3-7)

where :

h, is the characteristic length of the element;

a , is the elementary grid Peclet number;

k, is the physical fluid diffusivity

¢, is a stabilisation coefficient able to modify the intensity of artificial diffusivity

with reference to the magnitude of convection transport phenomena.
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The application of upwind scalar schemes to multidimensional flow conditions
leads often to non controlled over-diffusion solutions, in particular showing non
physical cross wind diffusion, because of the isotropic character of the balancing
operator.

In order to eliminate the drawbacks shown by the scalar schemes, the
streamline upwind technique has been developed, where the upwind effect is
concentrated in principle along the streamline direction. In such a method, the
balancing operator, in the form of a diffusive term, acts exclusively in the
streamline direction as an anisotropic artificial diffusivity. The artificial diffusivity

assumes therefore a tensorial character and could be expressed as follows:

~

k,=k-uu,, (3-8)

14

where:

u, =u, /|ul, defines the velocity components unit vector.
lu|=\/u,u; , defines the velocity norm.

k , represents the artificial diffusivity already defined with reference to the scalar
upwind technique.

Let's look now at the form of the tensorial balancing term. The divergence of the
symmetric part of the Cauchy stress tensor that appears in the molecular

diffusive term can be written as:
(ki/ (“i,j T, )) ;= (kij (ui,j » ;¥ (k,j (“j,i )) ; (3-9)
and reversing the derivation order on the second term we get:

(&, (u,, )) I (&, (“f,i » ;= (kij (“,-,,- » it (k,-j (“,-,,- », : (3-10)

The diffusive integral term in Galerkin residual formulation (equation (2-48)) can

be written as:

[wren,da = [wWrenlk, + b, d (3-11)
Q

Q
where the diffusivity explicitly appears as the sum of physical and artificial

contribution:

J‘Winom (kij )“i,de + J‘w:"om (l:u )’li,fdQ (3-12)
Q

Q
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Now we can introduce in the second term of expression (3-12) the artificial
diffusivity expression of (3-8) and we get the expression of the stabilisation

integral as:

[Wrrkuuu, dQ. (3-13)

LAV AN Y
Q

Substituting the versor u, in accordance with its definition, it is possible to write:

u,

fwren = ew u, dQ (3-14)

a "l
From the above equation (3-14) clearly appears that the tensorial stabilisation

term has the form of a convective integral that must be controlled.

3.1.3. Streamline Upwind - Petrov Galerkin stabilisation

The consistency of the stabilisation methods could be recovered extending the
weights perturbation, limited to the convective integral in the streamline upwind
scheme, to each term that is contained in the residual Navier-Stokes formulation
(2-48). In such a way, the built residual structure assumes the character of a
Petrov-Galerkin formulation, due to the introduction of different function spaces
used for the approximation of the solution and of the variations (weights).Such a
residual stabilized finite element formulation for convection dominated flows is
called streamline upwind — Petrov Galerkin ( SUPG) , [12].

Lets now consider a flow domain Qe R™ which has a boundary I" defined by

piecewise continuous functions. Consider also a point x,(i =1,nsd) belonging to
Q, and n, as the component along i direction of the normal unit vector to

I" (positive direction toward the inner of the domain). The domain boundary T is

split into two subsets I', and I', that satisfy the following relations:
r,ur, =T (3-15)

r,AT,=0 (3-16)

24



The domain Q is subdivided into a finite number of elements Qe =1,numel

where numel represents the total number of elements in the domain. We denote

by T', the boundary of the element Q,, and the following relations are true:
U, Q,=Q (3-17)
N,Q,=0 (3-18)

The interior boundary T, is defined as:

r.,=9,1,-T (3-19)
Recall the PDE that governs the steady compressible flow:
mu,  —o, =0 (3-20)

(ow,), =0 (3-21)
with the following set of boundary conditions:

u, = g,——> I, essential Dirichlet BC
(3-22)
¢,n, = h ——> [, natural Neumann BC

As the classical Galerkin method uses identical collections of trial and weighting
functions, the weights are continuous across the inter-element boundaries. Such
a property is lost in the case of SUPG formulation, due to the set of weights that

modify the original Galerkin functions on an element basis as follows:

W = W 4 g (3-23)
where W™ is the Galerkin weight applied to the momentum equation and p™”
is the stabilising streamline upwind like contribution. The application of such a
perturbation introduces the discontinuity of the above mentioned weighting
function, but the perturbation function still has the integrability property on the

element scale. Let's consider a point x belonging to the interior boundaryT;

nt

and arbitrarily establish a positive orientation for the normal direction across the

boundary. We define n*and n~ as the unit vectors normal to I, in the

considered nodal positionx. The relation between the two unit normal vectors is

expressed by:

n* =-n (3-24)
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Introducing for simplicity a term that accounts for the sum of convection and

diffusive fluxes:
L=X+A =puu, —c,, (3-25)
It's possible to show that the jump across the neighbouring elements of yx, at the
considered nodal pointx, defined as:
b )= o Jn =2mf o0 (3-26)
is an invariant with respect to the adopted sign convention for I, , .

On the basis of above mentioned perturbation, the SUPG method applied to

Navier-Stokes equations leads to the following residual stabilized formulation:
2 [ lenw, Jowie, i 3 fprloum, )-p, Jan-

—Z jwm’"[c,j Jar - jthr 0

ml

(3-27)

where W, is the restriction of weight function on the boundary of the

computational domain.

An equivalent way of writing (3-27) is:

ZIW""”" ouu U) o,“]dQ Z jW’”"”‘[cn]

T

" 3-28
- |W, ci.ni—h, dl' =0 ( )
[Wilo,n-n)

It is worth to observe that from the obtained residual form of the integral problem
is possible to extract original differential expression of the Navier-Stokes
boundary problem.

The fundamental aspect that characterizes the obtained stabilized finite element

formulation in comparison to the classical upwind schemes is that the streamline
upwind perturbation function p™” plays its role at the interior of the element
where the perturbation itself is continuous.

The expression of streamline upwind perturbation of weights p™” is defined

starting from the modification of the convective weight obtained for the
streamline upwind method (3-14). The equivalence between the modification of
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the convective weight and the introduction of the tensorial diffusive balancing

integral permits us to write the following, [6]:
p"" = ku, W /|u (3-29)
The discontinuous effect introduced by the perturbation p™” can be seen in

Figure 3-1, where three consecutive nodes in an one dimensional case were
used, the flow direction was indicated with the arrow and the weights for Petrov
Galerkin scheme were drawn in dotted line. The fact that the slopes of the shape
functions are different at node A determines the weights discontinuity as shown.
FENSAP uses shape function of first order, therefore the derivatives are
constants. It is interesting to note that in this case, the divergence of the diffusive
fluxes is equal to zero

6 =0 (3-30)

y.J
and the function p™" does not play any stabilisation effect on the diffusive
integral. We can say that in this case SUPG formulation becomes SU
formulation.

The coefficient k for multidimensional computations has the form:

P (Gush, +7uh, +Guh,)

(3-31)

where:
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_ ‘“Ah:
¢ 2k

u, =€,-u, U =e -u, U =€, U (3-32)
In the above formulae e, e, and e, are the unit vectors of the computational
frame of reference that has the directions &,7.S while h,,h ,h, are the

corresponding elementary length scales.

3.2. Shock wave detector definition

Jameson et al. [14] used a finite volume discretization in conjunction with
carefully designed dissipative terms of third order to efficiently solve the Euler
equations for transonic regime in arbitrary domains. The shock sensor defined in
[14] (see equation 3-37 in following section) was used to adaptively construct the
dissipative terms blending the second and fourth differences.

Based on the formulation of equation 3-37, we constructed the shock sensor for
the finite element method treated in the present work (see equation 3-41). While
in the finite volume scheme the sensor in calculated for each cell, in the finite
element method the sensor is calculated for each node of the computational

domain.

3.2.1. Shock detector for 2D inviscid flow

To prevent the tendency of odd and even point decoupling, or checker board
situation, and to prevent the appearance of oscillations in regions containing
severe pressure gradients in the neighborhood of shock waves or stagnation
points, it proves necessary to augment the finite volume scheme by the addition
of artificial dissipative terms [1] [14]. The governing equation in conservation

form will be (similar to equation (2-14), after neglecting viscous terms):
%(hw)+ Ow—Dw=0 (3-33)

where & is the cell area, Q is the spatial discretization operator, D is the

dissipative operator and w represents the dependent variable. A sketch of the
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discretization is given in Figure 3-2 [14]. Extensive numerical experiments [14]
have established that an effective form for Dw is a blend of second and fourth
order differences with coefficients which depend on the local pressure gradient.
The construction of the dissipative terms for each of the four dependent
variables is similar. For the density we have:

Dp=D.p+D p (3-34)
where D, p and D p are the corresponding contributions for the two directions,

written in conservation form:
"2 z (3-35)

The terms on the right all have a similar form:

i+—7 +=, +—,J
> At 2. i35

h 1
i+,
d | =—2 {5_(22 .(Pm,j ~Pi; )_ 5(42 (pi+2,j =3P, T3P, = Pia, )} (3-36)

where £ and £) are adapted to the flow. Now, we define the shock sensor v,

as a normalized second order difference of pressure [14]:

_ Piv,j —2pi,j + pi—l,f’ (3-37)

Pia it 2’pi,j’ + ‘pi—l,j’

L, ;

Then,
£?) =D max{v,,, v, (3-38)

i+, j
5/

P =max(o,[x(4>—g<23 D (3-39)
i+§,j i+5,j

where typical values for constants «® and «*) are [14]:
@=L w1 (3-40)
4 256
It has been found [14] that in smooth regions of the flow, the scheme is not
sufficiently dissipative unless the fourth differences are included, while near the

shocks it has been found that the fourth differences tend to introduce

29



overshoots, and therefore they are switched off by subtracting ¢® fromx® in

equation (3-39). The shock sensor has values of the order of magnitude10~, if
the flow does not show any discontinuities, like shock waves, and its value
increases by several orders of magnitudes in the vicinity of afore mentioned

discontinuities.

3.2.2. Shock Sensor implemented in FENSAP

As in this work the domain discretization is of unstructured type, the mesh in
discussion will be unstructured, three-dimensional one. A representation of a 2D
unstructured mesh is given in Figure 3-3, where the elements are represented
by triangles. For simplicity, we are going to use this diagram to explain the local
and global derivatives of a flow property, as well as the discontinuity detection
mechanism. The discussion will also apply to a 3D mesh with tetrahedron cells.
The shock sensor defined by equation (3-37) is for a structured mesh, as in
Figure 3-2. For an unstructured mesh, the formula (3-37) has to be slightly
modified. To compute the shock sensor for node “0” in Figure 3-3, we have to_
determine all the elements that have node “0” in common, and then calculate the
minimum and maximum pressure for all nodes that are related to node “0”

through a cell. These pressures are denoted by p_ .. and p_ ., and together

with the pressure at the node "0” constitute the ingredients used to compute the
shock sensor value at the node “0” under discussion. The same procedure is to
be followed for all nodes in the mesh, and we end up with a shock sensor vector
that has the length in accordance with the number of the nodes in the mesh. The

formula used to compute the sensor is given below:

L _ pmax - 2 : pcurrent node + pmin

current node — 2
p max +2- p current node + p min

(3-41)

Another particularity of FENSAP is the use of local and global derivatives. The
local derivative is denoted by the Greek letter yw while the global derivative is

denoted by the same letter, but with a hat . The presence of these two types
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of derivatives is going to be used to form first and second order artificial viscosity
schemes, as will be explained later in this section.
To explain the idea of local and global derivatives, we can employ, again for

simplicity, a 1D flow situation. Let's consider the scalar flow property ¢ in three
consecutive nodes (i), (i—1) and (i +1). The spatial discretization is not uniform,
so from node (i—1) to node (i) and node (i) to node (i+1) we have distances
h_, and h, , respectively. The situation is shown in Figure 3-4.

Computing the derivatives of ¢ in all nodes will have to take into account that
the property ¢ itself is continuous, but not derivable in the nodes. We can only
say that the slope of ¢ from node i—1to i is «,, and from node i to i+1 be
a,,. In node i, for example, we can only take the approximation of the slope

based on the values «, , and «,,, previously computed:

o = Pin =Py _ P~ P h, L P 7O h _
" h,+h h, h_ +h h, h_ +h

i |

_ h h,
Q- T T
h_ +h h_ +h

1 i

(3-42)

where ¢, =(p_;qo__1 and «,,, =% This expression (3-42) represents a

-1 :
weighted summation of derivatives just before and just after the current node.
The above discussion about local and global derivatives extends to 2D and 3D
cases as well, and this concludes the global and local derivatives used in
FENSAP. '

3.2.3. Entropy based shock detection

A plane progressive perturbation in a fluid was observed to transform, in time,
into a discontinuity surface for velocity, pressure, density, temperature. As we
are interested to detect, for a steady flow, the zones that contain such a jump in
above mentioned flow variables, the shock detector formula (3-41) has been

chosen. The main ingredient used in (3-41) is the fluid pressure calculated in all
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nodes of the discretized domain. Apart from pressure, we will also investigate if
entropy would be a suitable parameter. From the definition, we can write [15] :
s—sy=c,In2~Rln2- (3-43)
T, P

where the function s represents the entropy per unit mass at a given state, p

and T are pressure and temperature, respectively, at the same state,

c,represents the specific heat at constant pressure, R the gas constant while

the subscript o indicates the corresponding initial state values of the variables.

Relation (3-43) can also be written as:

R
§—s,=c,In 1[20-)”” , (3-44)
o\ P
where the specific heats at constant pressure and constant volume have the

expressions:

c,=——,c,=——, y=14. (3-45)

R y-R
e I |

From the equation of state (2-23) we can obtain a more useful expression for the

entropy change:

1
- 14
s—3,=7-¢,In &(ﬁ}y —em (2] 2 |-, lnﬁ,_lnp_gj (3.46)
p pO p p() p p()

As far as we are concerned, the initial entropy serves just as a reference, and

we will only be interested in the variation of entropy. Therefore, from equation (3-

46) -last expression, we retain for sensor definition just the term % that is
P

responsible for variation. We obtain the nodal value of the sensor in the form:

ax current node min
current node
max current node min

(3-47)
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3.3. Streamline and Cross Wind directions definition

As was discussed before, in order to obtain valid, oscillations free solutions of
the Navier-Stokes equation, artificial viscosity (AV) has to be used. Through
extensive analysis and numerical experiments [6] [13],it was determined that AV
has to be applied anisotropic in order to compensate for low diffusivity, as in the
continuity equation case, or for instabilities generated by convection terms, as in
momentum or energy equations. In FENSAP, AV is added in the streamline and
cross wind directions, as will be explained further.

Considering the vectors V(V,,%,,V,) and a(a,,a,,a,) (see Figure 3-5), we can

project a on V as follows:
V3

a-V=V.a=gq, . HV“ +a, 'M+a3-m

(3-48)

where V was divided by its norm, in order to transform it into an unitary vector.
Now, we want the projection to be in the direction of velocity, so we multiply (3-
48) by the velocity versor as follow:

v, Vv, 1V

Projectionianirection=(a +a,-—~+a -—3]-—=
VAV

—(a; +ayly +ap,) A AYVE (g oy ey L

) M

+{app, +a, 17} +a3VV)” W i+(ayy, +ayy, +a3V2)” T
Vv: vy, vy, | a

vv, Vi VJV,|a,|=Ba

“ I vy, vV, Vi |a,

(3-49)

1

We notice the form of B , and the tensor operation between B and a in order
to obtain the desired projection. For the cross wind direction projection, the role
of V is taken by ®, and the projection tensor B changes accordingly. Looking
back at the definition of artificial viscosity formulae (2-51) to (2-55) and having in
mind the already defined local and global derivatives, for the pressure, for

example, we can write the expression of tensor B?_ _ as:

Ccross
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(VY (VBN(VB) (VPM),
B, = |(A)\vh), (VAR  (VAL(VA) (3-50)
' (VBL(P) VL)  (VB)

that means the local gradient of pressure is projected onto the global (or hat)

gradient of pressure. A similar procedure will be applied to the other flow

B’ ., B” . B are now defined.

cross ! cross ! Cross

properties, and B

It is to be noted that differences between the local and global derivatives (or
gradients, as we operate in a three dimensional space) are to be seen just if
there is a variation of the flow property. Otherwise the gradient direction and

magnitude in the two situations will be identical.

3.4. Artificial Viscosity Switching Scheme

Artificial viscosity is used in FENSAP as a stabilization method for the field
equations, as briefly indicated in the previous section. We want now to explain
what first order AV and second order AV mean, as we will explain later the AV
switching procedure based on the flow behavior. As we know, the shape
functions used here are of the first order type, which means their variation is
linear, the first derivative is a constant, and higher order derivatives are zero.
Based on this, the first order AV could be synthesized by the expression:

—dQ (3-561)

Ou, oW
o a

where E-,- is defined by equation (3-8) and W is the weight function. Similarly,

using the global derivative this time, the following stabilisation integral can be

defined:
[, 2. 57 e (3-52)
Q axj axj

We can attempt now to define the FENSAP’s second order AV as the difference

between two first order terms defined by equation (3-51) and equation (3-52):
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- [k 2 s g R, [k, 2 Ot a—WdQ— jk, ——R o, a—WdQ (3-53)
3 v 8xj 6xj 3 v j Y ax

.

B Z—

a b
Using the integrals a and 5 of the above equation (3-53) we can rewrite, using
the convex combination:
~l-a+R,-b=—(1-R,+R,)-a+R,-b=—{1-R, Ja+R, (b-a) . (3-54)

Simulated
second —order

The coefficient Rp should be equal to 1, if we are to obtain the fully second order
AV, and can be seen that setting Rp=0 we obtain the fully first order AV defined

in equation (3-51). These results are going to be used for switching procedure,

with the observation that constant Rp is now replaced by the calculated value of

the shock sensor given by equation (3-41). It is to be noted here that in practice,
as the normalized shock sensor rarely reaches zero value, the corresponding AV
in case of shock will not be fully first order. However, in case of a discontinuity,
we are going to use terms like “first order dominated” AV in the discontinuity
region where the shock sensor gets a low value, and “second order dominated”
AV in the other regions of the domain that are discontinuities free. The above
first and second order AV discussion is valid when diffusion is added in

streamline and gradient (cross-wind) directions.

Figure 3-6 contains an explanation of the AV switching procedure applied to
obtain transonic solutions of Navier Stokes equation. The core of the algorithm is
represented by the calculation, in every node of the mesh, of the shock detector
value (in the flowchart as the input variable we have the pressure, but if we want
to use the entropy based sensor, we need to have the density available also —
see equation (3-47)). The normalisation is necessary because formula (3-41)

provides a domain of variation for the sensor between order 10~ and order

of107?, with the low values in regions with no shocks, and high values in regions
with shocks. We need therefore a sensor value of 1 outside shocks, and close to

zero value in the shock region. The sensor is then used to compute the AV term
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as in equation (3-54) and determine if the situation corresponds to a first order
dominated AV or a second order dominated AV. We want now to introduce other
important FENSAP variables - the ratios of AV in the continuity equation to AV in
the momentum and energy equations, Figure 3-7. The introduction of these
parameters (first two fields of the “Ratio parameters” subtitle in FENSAP GUI) is
explained by the type of equations we have to solve: one continuity equation,
that intrinsic contains no natural viscosity terms, three scalar momentum
equations, that feature natural viscosity terms in the Cauchy stress tensor, one

energy equation that features as well natural viscosity.

Diffusivity, either natural or artificial, has a stabilizing effect on the system of
equations. The fact that continuity equation has no intrinsic diffusivity is
translated into more artificial viscosity needed for stabilization than in the
momentum equation, for example. This is the reason for the use of ratios

Momentum AV and Energy AV

— ———= . To be clearer, the ratios refer to the AV
Continuity AV Continuity AV

coefficients, and not to the whole AV term, as defined by equations (2-51) — (2-
55). For example, in Figure 3-7 this AV coefficient has the value 1.0e™* . In
computations it was observed that the adjustment of the ratio has more
stabilizing effect than adjustment of the AV coefficient.

Going back to the diagram of Figure 3-6, we see that the computed value of the
shock sensor is compared to a threshold, S. This value is not computed, but
extracted from the fact that if the flow does not have discontinuities, sensor value
has the value of around 1, i.e. second order dominated AV. For values of the
sensor lower than 1, we consider the flow has first order dominated AV, Figure
3-8.

Implementing the switching scheme, we fixed the value of threshold at a value of
0.95. The logic of the switching procedure indicates that for values of the sensor

lower than S=0.95 the ratio Momentum AV coeff. is set toR—I;", where R indicates

Continuity AV coeff.

the initial ratio, and F represents a factor that divides that initial ratio to obtain
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the current ratio. In this case, the flow is considered to have first order
dominated AV.
For the case when the sensor value is higher than $=0.95, the ratio

Mom.entl.JmAVcoeff. is set to&, where G represents a factor that divides the
Continuity AV coeff. G

initial ratio R to obtain the current ratio. In this case, the flow is considered to
have second order dominated AV. In the results section, the values forR, , F,

G and S will be given. Another interesting feature about the threshold S is that
we can use it to introduce more or less first order effect into the scheme, Figure
3-9. The benefit of more first order in a transonic flow is that the shock capturing
is better, but the disadvantage is that the first order AV introduces more
oscillations in the solution. In the case of Figure 3-9 (a) the solution will feature a
first order dominated AV and a good shock capturing, while the situation in case
(b) is that the second order is dominant, having the effect of a poor shock
capturing. After the switching was complete for node J, the code updates J =J+1,
and repeats the procedure. After all nodes have been used and all nodes have a
value for the shock sensor and a value for AV coefficient, the normal solving

procedure continues until a solution is obtained.

3.5. Mesh generation

One of the first steps in computing a numerical solution to the equations that
describe a physical process is the construction of a grid. The physical domain
must be covered with a mesh, so that discrete volumes or elements are
identified where the conservation laws can be applied. A well constructed grid
greatly improves the quality of the solution. Difficulties with numerical
simulations, such as the lack of convergence to a desired level can often be
explained by a poor grid quality. In this work, the meshes used are of
unstructured type. In comparison with structured mesh, the unstructured meshes
do not have to be segmented into blocks due to the topology of the domain and

configuration of interest, a task that is time consuming for specialists working in
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the field. Another advantage for an unstructured mesh, e.g. a 3D tetrahedrons
mesh, is that the flow behaviour is better captured in all three space directions.
The commercial software ICEM CFD was used as a tool to generate the initial
grids for the test cases presented in the following chapters. Because the
problem in discussion includes viscous effects, the mesh sought has to have a
high density in regions with viscous interfaces, which in our case lie around the
solid wall of the wing or airfoil. For a better resolution of the boundary layer, a
mixed mesh is used: close to the wall a number of prism layers are placed, while
the rest of the domain is filled with tetras. A hybrid mesh is obtained in this
manner, with the observation that in the generation process the elements with a
pyramid shape should be avoided, as they are not accepted either by the flow
solver or the mesh adaptation software. .

In Chapter 4 a 2D flow solution is obtained for RAE 2822 airfoil. The mesh used
in this simulation is three dimensional with symmetric boundary conditions (BC)
at the root and tip. The inputs that ICEM CFD requires in order to generate a
mesh are the topology, in the form of *.tin file, and the boundary conditions

generically designated as family_boco file.

3.6. Mesh adaptation

During a typical CFD analysis, an important effort is devoted to the mesh
generation process. Mesh generation is not only time consuming, but also the
resulting mesh may not be completely appropriate to sufficiently resolve all
details of the flow. Mesh adaptation methodology is a powerful tool, not only to
improve solver accuracy but also to allow simulations to start from an arbitrarily
coarse initial grid. OPTIGRID, a robust and efficient 3D automatic mesh
adaptation with CAD integrity tool, was used in the present work. The‘ adaptation
procedure uses an a posteriori interpolation error estimate, whose magnitude
and direction are controlled by the matrix of local second derivatives of a
selected flow variable. This error is projected over the mesh edges, and drives
the nodal movement algorithm, as well as the edge refinement, coarsening and

face swapping strategies, [17]. The adaptation process, however, can take

38



several solution — adaptation cycles, depending on the quality of the initial grid
and the complexity of the test case. Chapter 5 contains detailed description of
how OPTIGRID cycles have been used for the ONERA M6 wing test case.
OPTIGRID offers automatic solution-based anisotropic mesh adaptation, as well
as geometry based mesh smoothing of the initial mesh, even before a solution is
attempted. The latter feature is quite important, as it is not unusual for a CFD
code to fail simply because of a poor initial grid, e.g., grids with cells that have
negative volumes, are too skewed or are degenerate. Once a solution is
launched, the basic adaptation operation includes node movement, edge
refinement, coarsening and swapping for hybrid grids consisting of any
combination of tetrahedrons, prisms, hexahedra and pyramids.

The solution-based adaptation is driven by an a posteriori error estimation based
on the Hessian of a selected scalar flow variable, since for FEM-FVM solvers
with linear basis functions the truncation error is dominated by the second
derivatives. The eigenvectors and the eigenvalues of H give the local direction
and the local magnitude of the stretching, respectively. In this manner,
anisotropy is gradually created. The goal of the adaptation is to equally-distribute
the error on the adapted grid, where the error along an edge in the Riemannian

metric is computed as:

£= ]\/xTH(s)xds (3-55)

where x is the vector that defines the edge, and H is the absolute value of the
Hessian matrix of the adaptation variable [17].

The sequence of operations begins with node movement, edge refinement and
edge swapping on solid boundaries, to satisfy a minimum and maximum edge
length constraint, as well as a curvature constraint, yielding substantial surface
CAD improvements. The process then continues with node movement in the
entire domain, followed by refinement and coarsening, then swapping, before
concluding with additional node movement. OPTIGRID preserves CAD integrity
by re-projecting boundary points onto the original surfaces during the adaptation
process.
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Figure 3-1: Comparison between linear Galerkin and Petrov-Galerkin weights
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Figure 3-2: Arbitrary 2D mesh used to illustrate the discontinuity detector

definition for a finite volume scheme
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Figure 3

-3: Arbitrary unstructured 2D mesh used to illustrate shock detector,

local and global derivative definitions
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Figure 3-4: Global and local derivatives for 1D flow
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Figure 3-8: (a) Shock sensor contours for a 2D transonic viscous flow around
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Figure 3-9: RAE 2822 transonic viscous flow: (a) Sensor contours for threshold
S=0.99 —first order dominated AV coefficient (b) Sensor contours for threshold
S$=0.9 —second order dominated AV coefficient
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4. Numerical results - RAE 2822 airfoil test case
To validate the implementation of the shock detector within the SU/SUPG

scheme, two standard test cases have been chosen: the transonic airfoil RAE
2822, which will be shown in this chapter, and the ONERA M6 wing test case
that constitutes the subject of the next chapter.

The main tool used in this analysis was FENSAP, as the flow solver. ICEM
CFD commercial software was used for mesh generation and Field View
commercial software was used for solution visualization. The simulations were
performed at McGill's CFD LAB. Computers used were CFD LAB’s 16 CPU SGl
ORIGIN cluster, CLUMEQ’s SGI Origin 3800 cluster (64 CPUs, 128Mb RAM,
600MHz) and CLUMEQ’s Beowulf Cluster (256 CPUs, 1.6Gb RAM , 1.6 GHz).

4.1. Geometry
The computed RAE2822 test case corresponds to the experimental condition 9
listed in [16].The dimensions used to define the airfoil for the present solution are

given in the Table 4-1 below:

Characteristic length | 0.3809 m

Reference area 0.0171 m2

Span 0.045 m
Table 4-1: RAE 2822 reference dimensions

The computational domain is of C type, with 15 chord lengths spacing in front of

the leading edge, after the trailing edge, above the airfoil and below the airfoil.
The airfoil detailed geometry is given in Appendix A.

4.2. Flow parameters

The performed simulations consider the RAE 2822 airfoil at low angle of attack

(AOA), low transonic Mach number and high Reynolds number, as follows:
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Mach number (M) 0.73
Reynolds number (Re) 6.5 million
Angle of Attéck (AOA) 2.79 degrees
Free stream static pressure 101325 Pa
Free stream static temperature 288 K

Table 4-2: Reference conditions for RAE 2822 transonic simulations.
In this work, the one equation Spalart-Allmaras (SA) turbulence model was used
to obtain transonic viscous simulations. To investigate if the transition length
can be neglected, we performed a simulation considering 10% of the chord as
the transition length, and then compared this result with the result where flow

was considered turbulent starting right from the leading edge. The error between
the two cases was within10™ %, therefore the flow is considered to be turbulent

from the very beginning and the transition length is neglected for the following
simulations.

The other important settings are the AV coefficient, CFL number and the
GMRES parameters. These parameters are used to control the quality of the
solution (AV) and the code convergence (CFL, GMRES). For each simulation
the values of the above parameters will be indicated.

Through numerical experiments at the CFD Lab it has been determined that
FENSAP, for the 2D test case RAE 2822 airfoil, requires approximately 15 chord

lengths between the wall and the location of the external boundary.

4.3. Computation mesh

The grid used in this chapter for 2D flow computations is in fact 3D. The wall is
represented by the rectangular wing described in [16], and the free stream
velocity vectors are situated in planes normal to the wing’s longitudinal axes.
The grid is unstructured and the cells are in the shape of tetrahedrons and
prisms. A large number of cells are placed in the vicinity of the solid boundary, in
order to resolve the boundary layer.

The complete domain of the mesh and the leading edge and trailing edge details

are shown in Figures 4-1 and 4-2. The total number of elements contained in
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the grid is 282,595 tetrahedrons and 160,710 prisms organized in 15 layers. The
total number of nodes contained in the domain is 141,756, the approximate
number of nodes on the wall is 5,673 and the file size in ASCII format is 21Mb.
Another important characteristic of this grid is the minimum grid spacing near the
wall. A value of approximately 3e-06 m was chosen to ensure the proper

capture of the boundary layer.

4.4. Discussion of results

The present solution accuracy is measured through comparisons to wind tunnel
measurements and other CFD solutions. The relative error between
aerodynamic coefficients is computed based on a simple formulation shown in

the equation (4-1) below.

-C

[test

e

| computation

c C

_ d computation ~ ™ dtest ( 4 1)

Fe, = C > e c

Itest dlest

Other parameters, like the pressure distribution on the airfoil, are compared
graphically superimposing experimental data, other CFD data and present
solution.
In this section an unstructured mesh was used to obtain the solution of the
system of equations. Three separate cases are investigated and each case is
based on the same numerical scheme and flight conditions. However, they differ
on the type of artificial viscosity method used. The three approaches are:

e Streamline Upwind ( SU ) with fully first order AV option

¢ SU with fully second order AV option

e SU plus the shock detector implementation
When the fully first order AV is selected, the coefficient Rp in equation (3-54) is

set to 0, which corresponds to a value of 0 in the field “Y%second order” of Figure
3-6. In this case we expect a solution that shows oscillations, particularly in
regions of high gradients. When the fully second order AV is selected, the

coefficient Rp in equation (3-54) is set to 1, which corresponds to 100 in the field

“%second order” of Figure 3-6. In this case the simulated second order AV is
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used, and the solution is expected to show fewer oscillations than in the fully first
order case. The third case refers to the blended first and second order AV
scheme based on the shock detector, and is expected to provide better results

than the previous two cases.

4.4.1. SU scheme without shock detector

The SU scheme as it is implemented in FENSAP and as we discussed in
Chapter 3, has the capability of choosing the AV order from the beginning. The
limits we discuss here in terms of AV order are fully first order AV and fully
second order AV, but any combination of first and second order AV can be

selected. An important parameter used to ‘obtain the solution is the ratio Ry, as

defined in Chapter 3; it has different values for first and second order AV, as will
be indicated below. By simulating separately fully first and second order AV, we
want to determine the limitations introduced in each case, and to prepare the
implementation of a scheme that automatically exploits the advantages that each

AV order has to offer.

4.4.1.1. Fully first order AV scheme

The fully first order AV scheme is expected to provide sharp shock capturing
with overshoots and oscillations in the solution before and after the shock wave.
To obtain the final solution for this case, we used the restart procedure, i.e. the
solution obtained in a parametric cycle becomes the initial solution for the next
parametric cycle. All settings are unaltered from one parametric cycle to the

next, with the exception of AV and/or Rp,. Hence, the first simulation A has as

initial conditions the boundary condition values of flow variables for the first
parametric cycle, and AV=0.1 (see Table 4-3).The second parametric cycle is
restarted from the first one, to produce a second intermediate solution that will
be the initial condition for the third parametric cycle. The process continues in
this manner, and simulation A ends with the tenth parametric cycle that has

AV=5e-5 and Ry,=1.0. The obtained solution shows a good convergence, but is
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very diffusive and shows no shock capturing. From this solution, we restart
simulation B, continuing to reduce the diffusivity in the system from one
parametric cycle to the next by reducing the AV coefficient, but maintaining
Rm=1.0 (see Table 4-3).

The final solution of simulation B is still very diffusive, but from this solution we
restart another simulation with AV=1e-09 and Ry;=0.5. In this way, modifying

ratio Rm we reduce the diffusivity in the momentum equation and improve the
shock capturing. The solution does not show a shock wave, but the trend is

good. After another restart procedure with AV=1e-09 and R;=0.2, we obtain a

less diffused solution and the formation of a weak shock. We performed then a
last restart and reduced further the diffusivity in the momentum equation, to
obtain the final solution for this case. The solution shown in Figure 4-3 and
Figure 4-4 was obtained with an AV = 1e-09, R, = 0.08, CFL = 500 and default

settings for GMRES.

Parametric cycle # AV coefficients for AV coefficients for

simulation A simulation B

1 0.1 1e-05

2 0.07 7e-06

3 0.03 4e-06

4 0.009 1e-06

5 0.006 7e-07

6 0.002 3e-07

7 0.0008 9e-08

8 0.0004 5e-08

9 9e-05 1e-08

10 5e-05 5e-09

Table 4-3: AV coefficients corresponding to each parameter cycle of simulations

Aand B

A sharp shock capturing was obtained only after a decrease of the ratio R, to a
value of 0.08. For a higher diffusivity of the momentum equation (i.e. ratio Ry

higher than 0.08) the shock was not captured or was smeared and for a lower

value (i.e. ratio R, lower than 0.08) there are large oscillations before and after

the shock. For the final solution, the overall matching against test data is off and

S0



the oscillations are present and more visible towards the trailing edge (TE) , but
the captured shock is sharp and a cross section through the shock wave shows
a Mach number variation without non-physical overshoot-undershoot. We
retained the positive aspect of this scheme (the shock capturing) for a future
implementation of an automatic computational device that sets the proper AV in
the system of equations based on the presence of flow property discontinuities.
Figure 4-3 and Figure 4-4 show the pressure distribution and Mach number

variation for the final solution of this case.

4.4.1.2. Fully second order AV scheme

For this case, the solution is expected to show a good shock capturing and fewer
oscillations, as a result of the second order AV smoothing effect. The restart
procedure explained in the previous subsection was also used to obtain the final
solution for this case. The first set of 10 parametric cycles form simulation A,
with the AV coefficients shown in Table 4-3 and ratio Ry=1.0. The obtained

solution is very diffusive, in spite of the good convergence (Figure 4-5 (a)), and
we therefore proceed to simulation B, which is a restart from the final solution of
simulation A. In simulation B we further progressively reduce the AV coefficient

(Table 4-3) but keep Ry,=1.0. The final solution of simulation B (convergence

shown in Figure 4-5 (b)) is still diffusive, and the shock is not properly captured.

The overall residual level increases a little as we decrease the artificial viscosity
coefficient. The recommended value for this coefficient is around 1E-6 and for
this value we obtained a convergence level of order 1E-11. The residual level
increases only after we decrease the artificial viscosity coefficient below the 1E-6
limit, in our attempt to capture a clean shock. The artificial viscosity added to the
system helps stabilize the scheme and obtaining a low convergence level. A
compromise between convergence level and shock capturing was reached at an
artificial coefficient of approximately 1E-10.

The level of convergence for the lift and drag coefficients of simulations A and B
is given in Figure 4-6, Table 4-4 and Table 4-5. The difference between the
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current value of drag and the value from the previous iteration is plotted in
logaritmic scale as shown in Figure 4-6 (b), and a similar diagram is shown for

the lift coefficient in Figure 4-6 (a).

Iteration 2000 Iteration 2500 lteration 3000
Cl 0.800117 0.808272 0.809462
Cd 0.021915 0.022466 0.0225122

Table 4-4: Aerodynamic coefficients for the iterations 2000, 2500 and 3000

From 2000 to 2500 From 2500 to 3000
Relative error ClI 1.01% 0.14%
Relative error Cd | 2.5% 0.21%

Table 4-5: Relative error for aerodynamic coefficients

The best solution was obtained for Rppn=0.5 and the Mach contour lines,

pressure distribution, Mach variation and convergence are given in Figure 4-7 to
Figure 4-9. The contour lines shown are smoother and the pressure distribution
matching is more accurate than in the previously discussed fully first order case.
The CFL was set to 500, AV=1e-10 and the default setting for GMRES. The
convergence after 300 iterations dropped three orders of magnitude with an

overall residual of approximate10™® and the Spalart-Allmaras residual decreased

two orders of magnitude and stabilized at approximate10™ . The position of the
shock is obtained closed to the middle of the airfoil, as the test indicates, but the
peak values in the pressure distribution diagram are not reached, generating a
lower coefficient of lift than in the experiment. The Mach number variation
through the shock wave displays an overshoot that is not physical, this
overshoot being observed in other computations that used second order AV
schemes. The introduction of the shock wave detector will improve this
overshoot behavior, switching off the second order AV terms in the vicinity of the

discontinuities.
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4.4.2. SU scheme with shock detector

Knowing from the previous two subsections about the advantages and
disadvantages that either first order or second order AV schemes introduce, we
developed an AV scheme that for transonic viscous flows automatically
diminishes the contribution of the second order AV terms in the cells that have
been identified of having a value of the corresponding shock sensor lower than a
predefined threshold (parameter S). This implementation introduced in the flow
solver code three new parameters S, F and G, and their influence was discussed
in Chapter 3. The final solution of this case was obtained through the restart
procedure previously discussed in the fully first order AV subsection. In the final
restart cycle, an initial setting of S=0.99, F=10 and G=1 was tried generating a
first order AV dominated solution with oscillations in the region of the shock. To
improve the situation, the contribution of each parameter S, F and G has been
analyzed leading to the conclusion that parameter F has a dominant effect
against the other two parameters S and G. We assigned for the parameters S
and G the values S=0.95 and G=1.4 and numerical experiments were performed
in order to determine the most appropriate value for the parameter F.

The best solution was obtain for F=8 while the other parameters of the flow
solver were AV=1e-10, CFL=100, GMRES set for 510 iterations for the
momentum equation and 160 for the turbulence equation (with the remark that
this increased number of iterations improves the solution accuracy, but slows
down the computation). On a 16 CPU execution, one time step was performed in
about 38 seconds, with the total time for this simulation of 3.27 hours. The final
solution of this case (see Figure 4-10 to Figure 4-13) is in good agreement with
the experimental data and other CFD results. The Mach contour lines indicate a
smooth solution, and a good shock capturing. The pressure distribution matches
the test data, and the overshoot in the shock region is attenuated.

The final parametric cycle has 300 iterations, but after the first 100 iterations the

overall residual drops one order of magnitude and stabilizes at

approximately10™ while the coefficients of lift and drag reached steady state.
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Since this is a restart solution, the overall residual drops globally from 10"

to107% . The aerodynamic coefficients are shown in Table 4-6 and Table 4-7.

Table 4-6: Cj and Cy4 from experiment and present solution (hybrid mesh and

Experimental Computation — Relative error

results,[34] present solution £ [%] - eq.(4-1)
Lift Coefficient C, 0.803 0.8218 2.34
Drag Coefficient Cy 0.0168 0.01963 14.4

SU + shock detector)

Other Computation — Relative error

CFD,[34] present solution £ [%] - eq.(4-1)
Lift Coefficient Cy 0.8415 0.8218 2.34
Drag Coefficient Cy 0.0181 0.01963 8.45

Table 4-7: Cjand C for other CFD and for present solution (hybrid mesh and
SU + shock detector)

The aerodynamic coefficients for 1%t and 2™ order artificial viscosity are shown in
the Table 4-8 below:

Experimental Other Computation | Computation — Computation —
results,[34] CFD,[34] -SU + shock | 1% order AV 2" order AV
detector
Y 0.803 0.8415 0.8218 0.7058 0.8141
Cq 0.0168 0.0181 0.01963 0.02449 0.02038

Table 4-8: C; and C4 comparison

4.5. Comparison between SU and SU with shock detector

To evaluate the performance of the newly introduced AV scheme within SU we
superpose the pressure distribution of the cases discussed in the previous three

subsections (see Figure 4-14).
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Both fully second order and shock sensor solution are in good agreement with
experimental data, while the fully first order shows a disagreement for the shock
position and peak pressures. The positive aspect of fully first order AV solution is
the sharp shock capturing and this feature was exploited by the SU + sensor
algorithm. The shock sensor solution shows almost no overshoot in the shock
region, and the suction portion of this solution matches better to experimental
data. The automatic computation of the shock sensor for any mesh point
(parameter Ry, of equations (3-53) and (3-54)) and the dynamic allocation of the

AV in the computational domain based on the presence of discontinuities made
a significant improvement to the solution accuracy for the transonic viscous flows
around the RAE 2822 airfoil.
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Figure 4-1: (a) RAE 2822 Hybrid Mesh (tetras and prisms). (b) Airfoil detail.
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(b)

Figure 4-2: (a) RAE 2822 Leading edge detail. (b) RAE 2822 Trailing edge detail.
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Figure 4-3: RAE 2822 transonic viscous solution using tetra mesh and SU fully
first order AV scheme. (a) Mach contours. (b) Shock wave detail.
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Figure 4-4: RAE 2822 transonic viscous solution using tetra mesh and SU fully
first order AV scheme. (a) Wall Coefficient of Pressure distribution —
experimental and present solution data. (b) Mach number variation through the

shock wave.
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Figure 4-5: Overall Residuals for fully second order AV case: (a) Simulation A.
(b) Simulation B.
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Figure 4-7: RAE 2822 transonic viscous solution using tetra mesh and SU fully

second order AV scheme. (a) Mach contours. (b) Shock wave detail.
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Figure 4-8: RAE 2822 transonic viscous solution using tetra mesh and SU fully
second order AV scheme. (a) Wall Coefficient of Pressure distribution —
experimental and present solution data. (b) Mach number variation through the

shock wave.
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Figure 4-10: (a) Mach contours of the RAE 2822 transonic solution obtained
using a tetra mesh and SU + shock sensor AV scheme. (b) Zoom in the shock

region of (a).
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Figure 4-11: RAE 2822 transonic solution obtained using a tetra mesh and SU +
shock sensor AV scheme. (a) Cp distribution at the wall — present solution

against experimental data. (b) Mach number variation through the shock wave.
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5. Numerical Results - ONERA M6 wing test case

The ONERA M6 wing is a classic CFD validation case for external flows. It has
almost become a standard for CFD codes because of its inclusion as a
validation case in numerous CFD papers over the years. In the proceedings of a
single conference, the 14th AIAA CFD Conference (1999), the ONERA M6 wing
was included in 10 of the approximately 130 papers! We thus chose ONERA M6

wing to validate the shock detection implementation code for a 3D viscous flow.

5.1. Wing’s Geometry

The dimensions used to define the wing for the present solution are given in the
Table 5-1. The root airfoil data and the picture of the wing in the wind tunnel can
be found in Appendix B. The computation domain stretches approximately 30
root chord lengths above and below the wing’s surface, in front of the leading
edge and after the trailing edge and in the span direction starting from the

symmetry plane.

Wing planform Swept back
Aspect ratio 3.8
Leading-edge sweep 30.0 degrees
Trailing-edge sweep 15.8 degrees
Taper ratio 0.562
Mean aerodynamic chord 0.6461 m
Semi span 1.1963 m
Reference area 0.7532 m2

Table 5-1: ONERA M6 wing reference dimensions
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5.2. Flow parameters

Reference conditions were chosen in order to match the test 2308 specified in
the experimental data report [5] and they are presented in the Table 5-2. The
values for the flow solver parameters CFL, AV and GMRES are going to be

indicated for each simulation of this chapter.

Mach number (M) 0.8395
Reynolds number (Re) 11.72 million
Angle of Attack (AOA) 3.06 degrees
Angle-of-Sideslip 0.0 degrees
Free stream static pressure 93,993 Pa
Free stream static temperature 288 K

Table 5-2: ONERA M6 wing flight conditions

For the 3D test case, the recommended location of the external boundary is

located approximately 25 chord lengths from the wall.

5.3. Computation meshes

Figures 5-1 through 5-5 illustrate the grids used to obtain the final solution.
Figure 5-1 is the original grid used in this simulation, generated using the
commercial software ICEM CFD. The meshes in Figure 5-2 and Figure 5-3
have been obtained after the first two adaptation cycles, while the meshes in
Figure 5-4 and Figure 5-5 correspond to the third adaptation cycle. Table 5-3
shows the mesh statistics after each adaptation cycle.

The recommended OPTIGRID settings used for the adaptation were the target
number of nodes and 10 internal iterations. For the first adaptation the target
was 1.15 million nodes, the second was 1.1 million and 1 million for the last
adaptation. The code attempted to equi-distribute the error through node
movement, refinement, coarsening and edge swapping, and the final number of

nodes are shown in Table 5-3.
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The total number of nodes has been reduced by 23% after three adaptation
cycles. The meshes used in other computations ([2],[3],[4]) have a number of
nodes comparable to the number of nodes in our final mesh obtained after the

third adaptation cycle ( see Table 5-4).

Initial grid Cycle 1 Cycle 2 Cycle 3
Total Nodes 1,237,031 | 813,026 | 1,043,951 | 956,663
Totalnodesonthewall | 88093 | 72,745 | 91,562 | 71,204
Tetras 2,122,490 | 558,306 800,562 | 1,440,847
Prisms 1,656,150 | 1,367,610 | 1,721,380 | 1,338,640
Table 5-3: Meshes properties
Reference Reference Reference Present mesh
[2] (31 [4]
Mesh type C, C-O, Hybrid, Hybrid,
structured structured unstructured unstructured
Number of nodes 316,932 665,856 830,476 956,663

Table 5-4: Comparison between present mesh and other CFD meshes

5.4. Discussion of results
The procedure we used for this 3D test case is similar to what we performed for
the 2D test case of Chapter 4 with the exception that now we are going to use
another tool, OPTIGRID (see also Chapter 3.6). The adaptation strategies of
OPTIGRID are the following [9]:

¢ Moving nodes — equi-distribute the error throughout the domain by

moving the position of the grid points.
¢ Refinement — reduce the error throughout the domain by adding new grid

points where the error is higher than a target error threshold.
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o Coarsening — equi-distribute the error throughout the domain by removing
grid points where the error is lower than the target error threshold.
o Edge swapping — reconnect edges to optimize their orientation and to
better align the grid to uni-directional flow features.
The goal is to minimize and make the error uniform everywhere, while
maintaining an acceptable number of grid points. Node movement is the only
continuous operation and it may be viewed as the driving force of mesh
adaptation. Refinement, coarsening and edge swapping are binary (yes/no)
operations that complement the action of node movement and should be viewed
as a way to accelerate convergence to an optimum grid. In detail, the description
of the mesh adaptation procedure is given in Figure 5-6. For example, the first
adaptation cycle starts from an original ICEM CFD generated mesh, and the
corresponding solution generated by FENSAP. Then, OPTIMESH is executed
and the outcome is a newly generated mesh (the adapted one) and an
interpolated solution for the new mesh obtained from the initial solution.
FENSAP is restarted with the newly adapted mesh and the interpolated solution

as the initial condition to obtain the final solution.

If the solution after one adaptation cycle is not accurate enough, then the latest
solution will be used to make another adaptation cycle as described by the
flowchart of Figure 5-6. The measure of accuracy of the solution is often either
the lift or drag coefficient, depending on the flight condition. In the case of a
cruise flight condition, drag coefficient is the preferred measure of accuracy. At
take-off and landing lift coefficient is monitored. The adaptation cycle is halted
when global convergence of the lift or drag coefficient is achieved. This often
requires at least a three to four decimal place accuracy of either the lift or drag
coefficient. The ONERA M6 test case required three adaptation cycles to attain

global convergence.
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The values for parameters G and S determined for the 2-D case RAE 2822 are
used for the 3-D test case ONERA M6 wing. Just parameter F is modified from
F=8 in 2D test case to F=4 in 3D test case.

Through numerical experiments (see Chapter 4) it has been determined that
values as G=1.4 and S=0.95 can be set as default values, while the parameter F
can be varied in order to achieve the desired accuracy of the solution. The
parameter F will have a dominant effect on the shock capturing and its value will

be indicated in each of the following simulations.

5.4.1. Initial solution

The initial solution was obtained through several parametric cycles, through the
restart procedure described in Chapter 4. At each parametric cycle, a new AV
coefficient is selected and approximately 200 iterations are performed.
Therefore, using the parameter F=1 the solution is obtained after 1,332
iterations, and an average time of 30 seconds per iteration was needed, using
32 CPUs. This solution has been generated to serve as the initial condition for
the next simulation, where the parameter F will be used to control the amount of
diffusivity in the system based on the computed shock sensor. This solution is
robust, but as we expected the shock wave on the upper surface in not well
captured. Due to the high amount of diffusivity in the solution the shock is
smeared, as shown in Figure 5-7 and Figure 5-8.

The convergence of the solution is illustrated by the Cl and Cd histograms, while
the overall residual drops three orders of magnitude, reaching an order of

magnitude of10™” . Due to the diffusive character of the solution, the pressure
distribution does not match the experimental data, and as a consequence the lift
and drag coefficients are inaccurate and the drag is too large due to the artificial
viscous contribution. In the experiment, the wing section corresponding to 80%
of the wing semi span features two shock waves, one closer to the LE and the

other positioned towards the middle of the wing,[5].
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Neither shock is properly captured in the initial solution; our goal is to modify the
parameter in the AV allocation logic for proper shock capturing. Parameter F will
be increased, allowing less AV for the momentum equation when we are in the
first order dominated region of the domain. The amounts of AV applied in each

parameter cycle of this initial solution are indicated in Table 5-5. The start value
is 107 , while the end value is the lowest possible in FENSAP. An AV
coefficient of 10-10 will be maintained in the following simulations, but the
amount of AV that corresponds to the momentum equation will be progressively

decreased by the means of parameter F.

Parametric cycle # | AV coefficient
1 0.0001
2 1e-05
3 1e-06
4 1e-07
5 1e-08
6 1e-09
7 1e-10

Table 5-5: AV coefficients corresponding to each parametric cycle - initial

solution.

5.4.2. Restart solution before mesh adaptation

We now restart based on the previously obtained solution, and try to decrease
the AV in the momentum equation by modifying the parameter F. Through
numerical experiments, a value of F=4 was determined to provide a good
solution. Below, two types of shock sensors have been tried: one based on the
second derivative of pressure, and one based on the second derivative of

entropy.
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5.4.2.1. Solution obtained using a shock sensor based on pressure

The solution herein was obtained using 32 CPUs, providing a computation
speed of approximately 30 seconds per iteration. The other settings were
CFL=500, AV=1e-10 and default settings for GMRES. We notice a very small
variation in the lift and drag coefficients before they reached steady state,
indicating that the initial solution used to restart the present one was not far from
the correct one. The shock is captured better this time, given the reduced AV we
have been using for the momentum equation and the graphs in Figure 5-9 and
Figure 5-10 are evidence of this fact.

Other CFD, [3] | Computation — Relative error
present solution | €[%] -eq.(4-1)
Lift Coefficient C, 0.26806 0.2709 1.06
Drag Coefficient Cy 0.01717 0.01801 4.89

Table 5-6: ONERA M6 — aerodynamic coefficients for intermediate solution.

The aerodynamic coefficients are comparable to values obtained by Kalitzin [3].
However, there still exist oscillations in the solution.

5.4.2.2. Solution obtained using a shock sensor based on entropy

As an attempt to clean up the oscillations from the solution, the shock sensor is
calculated now based on the second derivative of entropy. The solution is given
in Figure 5-11 and Figure 5-12. The settings are the same as in the pressure
based shock detector. However, the differences between pressure and entropy
detection solutions are not significant and the oscillations did not disappear.

Therefore, the following simulations will be based on the pressure sensor.

5.4.3. Solution after mesh adaptation

The solution shown in previous section and obtained for F=4 displays a
preliminary agreement with test data that has to be improved, but the presence
of the oscillations is undesired and they have to be removed. The method we

used to improve the solution is the mesh adaptation and the procedure is
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explained in Figure 5-6. Through mesh adaptation we expect to improve the
solution convergence and obtain a better comparison to the experimental data

and other CFD solutions.

The first adaptation cycle solution is shown in Figure 5-13. The FENSAP
settings are CFL=500, AV=1e-10, default values for GMRES, while the minimum
clearance to the wail was set in OPTIMESH at 2.5e-5. We can see an
immediate improvement of the solution, both in reduction of oscillations and
shock capturing. The shock waves after adaptation are less smeared than
before adaptation and at the 80% span station both shocks are sharper.

We proceed now with the second adaptation cycle, as shown in Figure 5-14.
The settings for the flow solver and mesh adaptation are kept the same as in the
first adaptation cycle, except the target number of nodes. As we are not after a
mesh size reduction, the target number of nodes influence is not going to be
discussed herein. The shock waves are now better captured and the
experimental data is better matched. The single problem remained to be solved
being the presence of oscillations. This motivates us to attempt a third
adaptation cycle.

The settings of this third adaptation cycle are CFL=150, AV=1e-10, GMRES
=160 for turbulence equation and =375 for the momentum equation, leading to
an average time of 4 minutes and 30 seconds per iteration, using 16 CPUs. The
simulation required 120 iterations and a convergence of three order of
magnitude drop with an order of magnitude of 10 has been achieved (see
Figure 5-15 to Figure 5-23).

The Cp contours of this solution show that the oscillations have been removed
by the third adaptation cycle. Based on the coefficient of drag convergence
criterion we can retain this solution as the final one for this transonic viscous flow

simulation (see Table 5-7).
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Initial Solution after first Solution after second | Solution after third

solution adaptation cycle adaptation cycle adaptation cycle
Lift Coefficient C, 0.26722 0.27151 0.26967 0.26213
Drag Coefficient C4 | 0.01994 0.01865 0.01733 0.01664

Table 5-7: Aerodynamic coefficients values for each solution

The initial solution for this test case was obtained for a grid of approximately 1.2
million mesh points, but was affected by oscillations. After two adaptation cycles
the solution improved, but still showed oscillations. We stopped the adaptation
after the third adaptation cycle because the oscillations were almost completely
removed and the shock capturing was good. Also, the Cd decreased from one
adaptation cycle to the other showing signs of convergence — Table 5-8.

Between initial Between first and Between second

solution and first second adaptation and third

adaptation cycle cycles adaptation cycles
Relative error - C 1.6 % 0.67 % 2.8 %
Relative error - Cd 6.4 % 7.07 % 3.98 %

Table 5-8: Relative error for aerodynamic coefficients

The pressure coefficient distribution at each span location compares very well
with other numerical solutions ([2],[3],[4]) and the experimental data. The use of
grid adaptation has allowed the double shock at the 80% span station to be

captured.

Determining the cause of differences between the computation and experiment
requires sensitivity studies with respect to such things as the grid, turbulence
model, and algorithms. Refining the resolution of the boundary layer may
improve comparisons. Further stream wise refinement of the grid would help
capture the shocks on the upper surface and reduce small oscillations at the TE.

The highest Mach number on the wing is obtained at the tip of the wing, close to
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the LE. This value is slightly larger than normal and probably is generated in

conjunction with the mesh size in that region.

The lambda shock wave obtained in the present numerical simulation of the
transonic viscous flow around ONERA M6 wing presents the interaction of two
shock waves that appear on the wing’s upper surface. One of them is situated
on the wing’s upper surface in the vicinity of the LE and the other traverses
diagonally the middle of the upper surface of the wing. The waves seem to have
a similar intensity before the joining region, situated at about 80% of the wing
semi span. After they coalesce, a stronger single shock wave is formed that
continues towards the tip of the wing. Such a strong shock constitutes an

important contribution in the overall drag coefficient presented in the Table 5-9.

Other CFD, [3] | Computation — Relative error
present solution € [%] - eq.(4-1)
Lift Coefficient C| 0.26806 0.2621 2.22
Drag Coefficient Cy 0.01717 0.01664 3.09

Table 5-9: Aerodynamic coefficients for 3™ adaptation cycle solution.
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Figure 5-1: Initial mesh (i.e. before adaptation) (a) Upper surface view. (b) Wing

root detail.
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(b)

Figure 5-2: (a) Top view of the mesh obtained after 1% adaptation. (b) Top view

of the mesh obtained after 2" adaptation.
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Figure 5-3: (a) Mesh obtained after 1% adaptation — view at 80% wing semi

span. (b) Mesh obtained after 2" adaptation — view at 80% wing semi span.
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Figure 5-4: (a) Top view of the mesh obtained after 3" adaptation. (b) Mesh
obtained after 3" adaptation — view at the wing root.
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Figure 5-6: Mesh adaptation procedure
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Figure 5-7: Initial solution obtained for F=1(a) Cp distribution on the wing.(b)

Mach number contours at 80% of wing semi span.
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Figure 5-9: Solution obtained for F=4, isotropic grid and pressure shock sensor.
(a) Cp distribution on the wing — top view. (b) Mach contours at 80% wing semi

span.
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Figure 5-10: Solution obtained for F=4, isotropic grid and pressure shock
sensor. (a) Cl and Cd histograms. (b) Cp distribution comparison.
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Figure 5-11: Solution obtained for F=4, isotropic grid and entropy shock sensor.

(a) Cp contours on the wing — top view. (b) Mach contours at 80% of the wing

semi span.
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Figure 5-14: 2" adaptation cycle solution: (a) Cp contours on the wing — top

view. (b) Wall Cp comparison at 80% of wing semi span.
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(b)

Figure 5-15: 3" adaptation cycle solution: (a) Isometric view of the wing; Cp
distribution on the wing, and Mach contours in the symmetry plane. (b) Top view

of the wing with Cp contours.
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Figure 5-16: 3" adaptation cycle solution; Cp distribution at the wall —

comparison: (a) 20% of the wing semi span. (b) 44% of the wing semi span.
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‘1 .5 T T T T T T
*x Test
= ----Slater
5 gl Nemess, | Kalitzin ]
§ - Nakahashi
'c" — Present solution
Il
_.j_‘,— -0.5F y
£
[v]
g A
c  {p* T
£ ol N
5
N
o)
[e2]
® 0.57 ]
o
(&)
1 1 L L 1
0 0.2 0.4 0.6 0.8 1
Chord [non-dim]
(b)
-1 .5 T T T L L
* Test
-F:- ----Slater
T 44 0w | Kalitzin :
§ — Present solution
[
«
& 057 8
g
Q
(72}
(o]
c
2 O 1
s
\O
)
o
w® 0.54 ]
[o 8
Q
1 i 1 1 L i 1
0 0.2 04 0.6 0.8 1

Chord [non-dim]
Figure 5-18: 3" adaptation cycle solution; Cp distribution at the wall —
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Figure 5-19: 3" adaptation cycle solution; (a) Cp distribution at the wall, 99% of

the wing semi span — comparison. (b) Mach contours at 99% of the wing semi

span.
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Figure 5-20: 3" adaptation cycle solution; (a) Mach contours at 20% of the wing
semi span. (b) Mach contours at 44% of the wing semi span.
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Figure 5-21: 3" adaptation cycle solution; (a) Mach contours at 65% of the wing

semi span. (b) Mach contours at 80% of the wing semi span.
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Figure 5-22: 3" adaptation cycle solution; (a) Mach contours at 90% of the wing

semi span. (b) Mach contours at 95% of the wing semi span.
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6. Conclusions

In this dissertation we developed an Artificial Viscosity (AV) coupled with a
discontinuity detector for the Streamline Upwind Petrov-Galerkin (SUPG) Finite
Element Method (FEM) for the compressible Navier-Stokes (N-S) equations.
Because AV may modify the actual physics of the fluid flow by generating an
over diffused solution, it is important to keep the amount of AV at a minimum
while still maintaining a stable scheme. Moreover, in the standard central
difference discretization, AV is necessary to avoid odd and even decoupling.

In this work, we propose a systematic way to augment the AV term to
produce a sharp shock solution. We introduce an iterative scheme: relatively
high AV is used for the first parametric cycle to provide the starting solution that
is stable but over-diffused. Then we restart the parametric cycle with less
amount of AV. The procedure is repeated until AV is less than certain value. This
approach also emphasizes how sensitive to the initial solution the final solution
is, when very low AV is employed. Since a good initial guess is required, this
procedure has proved to be robust and provided a good approximate solution of
the unaltered N-S equations.

There are two types of AV, computed based on local and global derivatives
of flow variables. The first order AV is computed based purely on local variation,
while the second order AV employs both local and global variations. 1t is well
known that first order AV leads to sharp shock capturing at the expense of
accuracy, while the second order AV leads to accurate solutions but tends to
smear the shock. Therefore, in areas of the computational domain that exhibit
high gradients of flow properties we select first order AV and obtain first order
dominated artificial diffusivity, while in the rest of the domain we select second
order AV to get second order dominated artificial diffusivity.

In this dissertation, AV type selection is performed throughout the
computational domain and at every simulation time step, employing a
discontinuity detector computed based on the normalized second order
difference of . pressure. The AV amount supplemented into the system is

constructed as a blended first and second order AV.
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To further improve the quality of the final solution, we also employ mesh
adaptation techniques. Mesh points are clustered around flow discontinuities and
zones showing high gradients of flow properties, and the mesh becomes more
stretched after each adaptation cycle. In the case of a large number of
adaptation cycles the cell size becomes small enough to allow for AV be
computed just using first order terms, eliminating the need of a shock detector.
For a sufficiently refined mesh the AV coefficient can be selected to be zero and
the solution is still accurate and stable.

Numerical results of two and three dimensional simulations of transonic
viscous flows indicated that shock detector applied to SUPG FEM shows
significant improvement for transonic viscous flow simulations and behaves as a
limiter to dynamically control AV type. In three dimensional simulations it was
necessary to employ mesh adaptation together with shock detection. Mesh
adaptation further improved the smoothness of the solution away from the
shock, while maintaining sharp discontinuities. Without mesh adaptation in 3D
simulations, the solution shows spurious oscillations and the lambda shock wave
is not sharp.

This dissertation has shown successful implementation of AV together with
mesh adaptation to Streamline Upwind Petrov-Galerkin (SUPG) FEM. While our
main focus is limited to fluid flow FEM, the underlined idea in this work is not
limited. It can be extended to initial-boundary value problems which contain

discontinuities in the domain.

6.1. Future work

The present work on artificial viscosity (AV) selection coupled with mesh
adaptation technique for 2D and 3D transonic viscous flows presents good
results for RAE 2822 airfoil and ONERA M6 wing test cases. An immediate
extension of this work is to solve the transonic viscous flow for a more complex
geometry (e.g. DLR transonic wing) and this constitutes work in progress at
McGill's CFD Lab. The goal is to obtain a versatile finite element code to be

used for industrial transonic aerodynamics problems. However, to improve the
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artificial viscosity mechanism discussed in this dissertation, several options may

be considered in the future work:

Jameson [35] indicated four limiters (Minmod, Van Leer, Superbee,
alfa-mean) within symmetric limited positive (SLIP) and finite volume
(FV) schemes. Based on these limiters, a new shock sensor
definition within FEM can be investigated for viscous dominated
flows.

Implementation of a new AV switching logic that insures the second
order AV terms are completely turned off in regions with shocks. The
outcome expected is a sharper shock and ultimately a better drag
and lift prediction.

Optimization of parameters F, G, S used in AV switching. Moreover,
a reduction of the number of parameters used in the present
implementation from three to just one will be attractive from an
industrial perspective.

The present solutions were obtained using hybrid meshes (high
aspect ratio prismatic elements in the viscous interface and
tetrahedrons in the rest of the domain). However, it will be more
economic to obtain transonic viscous solutions using tetrahedron
grid elements for all computational domain. This approach will
require a study of boundary layer resolution and shock capturing

mechanisms for this type of mesh.

These recommendations could all reinforce the quality of transonic viscous flow

solutions obtained using the present software package.
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7. Appendix A — RAE 2822 measured coordinates, [16]

x/c z/c lower z/c upper
0.00000 0.00000 0.00000
0.00060 0.00317 0.00323
0.00241 0.00658 0.00642
0.00541 0.00957 0.00945
0.00961 0.01273 0.01269
0.01498 0.01580 0.01579
0.02153 0.01880 0.01875
0.02923 0.02180 0.02163
0.03806 0.02472 0.02445
0.04801 0.02761 0.02726
0.05904 0.03042 0.03004
0.07114 0.03315 0.03280
0.08427 0.03584 0.03552
0.09840 0.03844 0.03817
0.11349 0.04094 0.04073
0.12952 0.04333 0.04321
0.14645 0.04561 0.04558
0.16422 0.04775 0.04778
0.18280 0.04977 0.04987
0.20215 0.05167 0.05187
0.22221 0.05340 0.05377
0.24295 0.05498 0.05556
0.26430 0.05638 0.05713
0.28622 0.05753 0.05848
0.30866 0.05843 0.05967
0.33156 0.05900 0.06070
0.35486 0.05919 0.06155
0.37851 0.05893 0.06220
0.40245 0.05817 0.06263
0.42663 0.05689 0.06285
0.45099 0.05515 0.06286
0.47547 0.05297 0.06261
0.50000 0.05044 0.06212
0.52453 0.04761 0.06135
0.54901 0.04452 0.06030
0.57336 0.04127 0.05895
0.59754 0.03791 0.05733
0.62149 0.03463 0.05547
0.64514 0.03110 0.05339
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x/c z/c lower z/c upper
0.66845 0.02770 0.05112
0.69134 0.02438 0.04857
0.71378 0.02118 0.04612
0.73570 0.01812 0.04338
0.75705 0.01524 0.04075
0.77778 0.01256 0.03795
0.79785 0.01013 0.03514
0.81720 0.00792 0.03231
0.83578 0.00594 0.02948
0.85355 0.00422 0.02670
0.87048 0.00273 0.02397
0.88651 0.00149 0.02131
0.90160 0.00049 0.01874
0.91574 -0.00027 0.01627
0.92886 -0.00081 0.01393
0.94096 -0.00113 0.01170
0.95200 -0.00125 0.00964
0.96194 -0.00125 0.00775
0.97077 -0.00113 0.00606
0.97847 -0.00094 0.00455
0.98502 -0.00071 0.00326
0.99039 -0.00048 0.00218
0.99459 -0.00026 0.00132
0.99759 -0.00009 0.00069
0.99940 0.00001 0.00030
1.00000 0.00000 0.00000

Soundary layer pross 8oundory leyar probe
]

wiring tnd pressure tubing

Soundary laysr probe

Detochoble lnading sdge

LI

Wiring and pressure Lubing

Soundary loysr ond woke probes

Detochobie troiling edge

Figure 7-1: RAE 2822 transonic airfoil — model cross section, [16]
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8. Appendix B - ONERA M6 wing data, [5]

x/1 z/| x/| z/1
0.0 0.0 0.3761446 0.04892496
0.N003165 0.N006914 0.4018567 N.04332792
0:0000696 0.0014415 0.4274223 0.046848373
0.00014675 0.0022554 0.4528441 0.0479351
0.0003232 0.0031382 0.64701197 9.0471651
0.0005508 0.0040959 0.5032514 0.0461903
0.0008657 0.0051343 0.5282424 0.0450207
0.0012R68 0.0042598 0.5530937 0.0436741
0.0013364 0.0074784 0.5773043 0.0421584
0.0025441 0.0037958 0.6023757 0.0405241
0.0034428 0.0102143 0.6268106 nN.0387613
0.0045704 0.0117419 0.6511093 0.0368990
0.0059751 0.01337n9 0.6752726 0.0349542
0.0077112 0.0150951 0.5993027 0.0329402
0.0098417 0.016R984 n.7231995 0.0308662
0.01246479 0.0187537 0.7469658 0.0237365
0.0156171 0.0706220 0.7705994 0.9265595
0.0194609 0.0224545 0.7941055 0.02530727
0.0241067 0.0242004 0.3174821 0.0219842
0.0297004 0.0258245 0.8407324 0.0195833
0.0364261 0.0273317 0.R63R564 0.0170915
0.0444852 0.0237912 0.8368235 0.0145051
0.0541249 0.n303278 N.9061705 n.0122339
0.0656301 0.037013% 0.9225334 0.0102727
0.9791366 0.0338372 0.9343345 0.00RSF27
0.09563564 0.0357742 N.9479946 0.0071423
0.1149795 0.0377923 n.as57a511 0.0059224
0.1378963 0.0338522 0.9661860 0.CN4RANT
0.1647376 0.0419940 0.9732361 0.00401°0
0.1319327 0.0436214 0.9792020 5.0n32795
0.2187096 0.0450577 0.914250% 0.0026547
0.2451310 0.0462358 0.9A85252 0.0n21257
n.2717918 0.0a71347 0.9721433 0.0016778
0.2931113 0.0479494 0.2952090 0.00129a5
0.3242726 0.04949n2 0.9972n30 0.0009773
0.35027130 0.0488183 1.0000539 0.0017057

Figure 8-1: Design values for root section coordinates of the symmetrical profile
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Figure 8-2: ONERA M6 semi-span wing
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Figure 8-3: Additional remarks for ONERA M6 wing
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