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ABSTRACT

Low-density parity-check (LDPC) codes are a type of error correcting code that

are frequently used in high-performance communications systems, due to their abil-

ity to approach the theoretical limits of error correction. However, their iterative

soft-decision decoding algorithms suffer from high computational complexity, energy

consumption, and auxiliary circuit implementation difficulties. It is of particular

interest to develop energy-efficient LDPC decoders in order to decrease cost of op-

eration, increase battery life in portable devices, lessen environmental impact, and

increase the range of applications for these powerful codes.

In this dissertation, we propose four new LDPC decoder designs with the pri-

mary goal of improving energy efficiency over previous designs. First, we present a

bidirectional interleaver based on transmission gates, which reduces wiring complex-

ity and associated parasitic energy losses. Second, we present an iterative decoder

design based on pulse-width modulated min-sum (PWM-MS). We demonstrate that

the pulse width message format reduces switching activity, computational complex-

ity, and energy consumption compared to other recent LDPC decoder designs. Third,

we present decoders based on differential binary (DB) algorithms. We also propose

an improved differential binary (IDB) decoding algorithm, which greatly increases

throughput and reduces energy consumption compared to recent decoders of similar

error correction capability. Finally, we present decoders based on gear-shift algo-

rithms, which use multiple decoding rules to minimize energy consumption. We

propose gear-shift pulse-width (GSP) and IDB with GSP (IGSP) algorithms, and

xiv



demonstrate that they achieve superior energy efficiency without compromising er-

ror correction performance.
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ABRÉGÉ

Les codes LDPC sont un type de code correcteur d’erreurs qui sont fréquemments

utilisés dans les systèmes de communications à haute performance. Cependant, leurs

algorithmes de décodage iteratifs à décisions souples souffrent d’une complexité de

calcul et d’une consommation d’énergie élevée, ainsi que des difficultés auxiliaires

d’implementation en circuit électronique. Il est d’intérêt particulier de mettre au

point des décodeurs des codes LDPC à basse consommation d’énergie afin de dimin-

uer le coût de l’opération, augmenter l’autonomie des appareils portables, réduire

l’impact sur l’environnement, et augmenter le nombre d’applcations pour ces codes

puissants.

Dans ce manuscrit, nous proposons quatre conceptions nouvelles de décodeur

de codes LDPC pour lesquelles le but primaire est la réduction de la consomma-

tion d’énergie par rapport aux designs précédents. Premièrement, nous présentons

un entrelaceur bidirectionnel basé sur les portes de transmission, qui réduit la com-

plexité de filage et les pertes d’énergie parasitaires associées. Deuxièmement, nous

présentons une conception de décodeur iteratif basée sur l’algorithme min-somme

avec modulation de largeur d’impulsion. Nous démontrons que le format des mes-

sages de largeur d’impulsion réduit l’activité de commutation, la complexité in-

formatique, et la consommation d’énergie par rapport aux autres conceptions de

décodeur les plus récentes. Troisièmement, nous présentons des décodeurs basés sur

les algorithmes binaires différentiels. Nous préposons aussi un algorithme binaire

xvi



différentiel amélioré (IDB), qui augmente grandement le débit et réduit la consom-

mation d’énergie par rapport aux décodeurs récents avec une capacité de correction

d’erreurs similiaire. Finalement, nous présentons des conceptions de décodeur basées

sur les algorithmes de changement de braquet, qui utilisent les règles de décodage

multiples pour minimiser la consommation d’énergie. Nous proposons les algorithmes

de largeur d’impulsion avec changement de braquet (GSP) et IDB avec GSP (IGSP),

et démontrons qu’ils atteignent une efficacité d’énergie supérieure sans compromettre

la capacité de correction d’erreurs.
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PREFACE

This dissertation presents several novel designs that advance the state of the art

of LDPC decoding.

The first design we present is a bidirectional interleaver based on transmission

gates for multi-mode LDPC codes. This design uses transmission gates to imple-

ment a multi-mode circular shift network, which allows a decoder to support multiple

LDPC codes. The transmission gates both save silicon area relative to unidirectional

multiplexing, and allow the processing nodes to exchange messages over the same

wires on successive clock cycles, thus reducing the number of interleaver wires by half.

While this design is not greatly successful in reducing energy consumption (due to

the need for inefficient tristate buffers), it reduces silicon area by 28% relative to a

reference unidirectional interleaver.

In PWM-MS, we propose encoding belief messages in a sign-magnitude pulse

width format. Doing so offers four major advantages in the energy domain: low

switching activity, reduced routing congestion, simple computational units, and off-

set min-sum (OMS) implementable for negligible cost over standard min-sum. A

PWM-MS decoder designed in 0.13µm CMOS for a (660, 484) LDPC code has an

area of 5.76 mm2. At an SNR of 5.5 dB, this decoder has an average throughput

of 5.71 Gbps, average power consumption of 376 mW, and energy consumption of

65.8 pJ per information bit. Compared to bit-serial min-sum (BS-MS), a similar

decoder architecture implementing the same code with the same technology, this

represents a 19% improvement in energy efficiency. Notably, this design improves

xix



energy efficiency without using any algorithmic heuristics, or otherwise sacrificing

error correction performance.

We also present circuit layout designs of LDPC decoders based on differential

binary (DB) algorithms. The first of these algorithms, called differential decoding

with binary message passing (DD-BMP), and its modified variant (MDD-BMP),

were described in prior works. When used with a certain class of LDPC code called

finite geometric (FG) codes, these algorithms have been shown to produce good error

correction performance, despite their low computational complexity - within 0.75 to

1 dB of floating point SPA, and up to 0.5 dB better than the standard min-sum

algorithm (MSA). This dissertation presents the first hardware designs of these algo-

rithms. We designed decoders of (273, 191), (1023, 781), and (4095, 3367) FG-LDPC

codes in 65 nm CMOS, which achieve respective areas of 0.28 mm2, 1.38 mm2, and

15.37 mm2, average throughputs of 37 Gbps, 75 Gbps, and 141 Gbps, and energy

efficiencies of 4.9 pJ/bit, 13.2 pJ/bit, and 37.9 pJ/bit. These designs challenge the

common belief that FG codes are too complex for efficient hardware implementa-

tion.

We also present a new DB algorithm called IDB, for “improved differential

binary”, which has improved error correction performance for non-FG codes, and

created a circuit design for the (2048, 1723) LDPC code specified in the IEEE

802.3an (10GBASE-T) standard. This decoder achieves an area of 1.44 mm2, aver-

age throughput of 172 Gbps, and an energy efficiency of 2.8 pJ/bit, which represent

major improvements over previous decoders of this code with similar error correction

performance.
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Finally, we present novel decoding algorithms based on gear-shift decoding,

along with accompanying hardware designs. In gear-shift decoding, multiple de-

coding rules may be applied at different stages of decoding a frame. This can be

applied to energy-efficient decoding by first attempting low-complexity decoding al-

gorithms, then switching to high-complexity algorithms if decoding fails. In this way,

energy efficiency can be increased without sacrificing error correction performance.

We show that PWM-MS and IDB are naturally amenable to this strategy, and use

them as the basis of two gear-shift algorithms: gear-shift pulse-width (GSP), and IDB

with GSP (IGSP). We again implement these algorithms for the (2048, 1723) LDPC

code in 65 nm CMOS. Our unpipelined GSP decoder achieves an area of 5.29 mm2,

average throughput of 65.8 Gbps, and an energy efficiency of 37.5 pJ/bit, while a

pipelined GSP decoder achieves the same area, 88.1 Gbps throughput, and energy

efficiency of 39.3 pJ/bit. These represent slight improvements in energy efficiency

and major improvements in throughput over previous decoders with the same level

of error correction performance. Our IGSP decoder circuit layout design achieves

an area of 6.00 mm2, average throughput of 100.3 Gbps, and an energy efficiency

of 14.6 pJ/bit, which are even larger improvements, albeit at the expense of higher

silicon area.
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presented herein was performed by the co-authors.
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5, and performed simulations of the decoders described therein. The results of these

simulations appear in Figs. 4–9b and 5–4.

Saied Hemati developed the pulse-width modulated message exchange concept

that forms the basis of our PWM-MS LDPC decoder, and was a co-developer of

the DD-BMP and MDD-BMP algorithms, for which we present hardware designs

in Chapter 5. He also contributed the degree-2 variable node design for PWM-MS

decoders described in Section 4.3.1, and the PWM-MS check node design shown in

Fig. 4–3.

All of the listed co-authors participated in the development of ideas and editorial

aspects of the papers in which they are credited, but did not perform any further
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CHAPTER 1

Introduction

1.1 Motivation

Error control coding is a discipline of information and coding theory used to

ensure reliable transmission of information over an unreliable channel. In the most

basic sense, this is accomplished by adding structured redundancy to the information

to be transmitted, thus allowing the receiver to detect (and possibly correct) errors

induced by corrupting noise. It has many uses in computing and communications,

and has become an indispensable part of modern applications in these fields [1].

Low density parity check (LDPC) codes are one such type of error control code.

Originally described by Robert Gallager in 1962 [2] [3], their proposed iterative de-

coding algorithms were too computationally complex to be practical at the time. As

such, they were largely forgotten until the 1990s, when the discovery of Turbo codes

in 1993 [4] led to renewed interest in iterative decoding algorithms.

The major motivating factor behind this interest was that Turbo codes, with

a decoding algorithm consisting of iterative soft-decision message-passing, could

achieve error correction performance approaching the theoretical limit. This limit,

called the “Shannon limit” after its discoverer Claude Shannon, is a hard upper

bound on the information-carrying capacity of a channel [5]. In other words, this

limit states the maximum achievable efficiency of an error control code. The practi-

cal implications of getting closer to the Shannon limit are that a higher information
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throughput becomes possible, spectral bandwidth is used more efficiently, and less

power can be used in signal transmission compared to other error correction codes.

LDPC codes were soon re-discovered, and like Turbo codes, were found to achieve

near-capacity performance under iterative message-passing decoding [6] [7] [8].

Since then, LDPC codes have been a topic of great interest in multiple fields,

especially information theory, signal processing, communications, and very large-

scale integration (VLSI). Proof of the popularity of LDPC codes can be seen in

their selection for use in several current and upcoming standards for communications

systems:

• For terrestrial wireless communications, WiMax (IEEE 802.16e) [9], Wi-Fi

(IEEE 802.11n), [10], and wireless personal area networks (WPAN) (IEEE

802.15.3c) [11].

• For satellite communications, DVB-S2 [12].

• For wireline communications, 10 gigabit per second Ethernet (IEEE 802.3an-

2006) [13], and broadband over power lines (IEEE 1901) [14].

• For long-haul fibre-optic communications, ITU G.975.1 [15].

In addition to communications systems, LDPC codes have also been proposed

for error correction in data storage, particularly Flash memory [16].

However, despite their popularity, LDPC codes face a number of implementation

difficulties owing to the high computational complexity of their decoders. Practical

LDPC codes generally have block lengths ranging from a few hundred to a few

thousand bits, all of which require recomputing at every iteration of the decoding

process. Another major implementation challenge for a decoder is the communication
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structure necessary to support the message passing. Straightforward fully parallel

architectures require thousands of interconnections, leading to congested routing

networks, and significant energy loss due to wiring parasitics [17].

Because many applications of LDPC codes require energy consumption to be

as low as possible, there is a high demand for energy efficient decoders. Thermal

management is a limiting factor in many systems, particularly large systems-on-

chip (SoCs) and microprocessors in which performance is temperature- or hotspot-

limited [18]. This is especially true in the emerging field of three-dimensional chip

stacks [19]. Energy efficiency is key in embedded systems, which typically have

highly constrained power budgets and limited thermal management options [20].

Perhaps the greatest source of demand is from battery-powered gadgets, such as lap-

top computers, smartphones, and tablets - these all have large and highly competitive

markets, and require energy efficiency to be a top design priority in order to extend

battery life. Another application is datacenter servers, as the cost of operation is pri-

marily dependant on power consumption [21] [22], and the increasing popularity of

decentralized computing is driving higher demand for datacenter resources. Emerg-

ing or niche fields requiring energy efficient communications exist as well, such as

sensor networks, building monitoring, smart warehouses, and implantable medical

devices [23]. Finally, increased efficiency leads to lower cost of operation, and in

aggregates of large numbers of devices, also reduces the need for energy generation

infrastructure and associated environmental costs.
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To address this problem, this dissertation proposes four novel energy-efficient

LDPC decoder designs. The first is a bidirectional interleaver based on transmis-

sion gates, which attempts to address energy consumption by reducing interconnect

complexity. The second is a pulse width modulated min-sum (PWM-MS) decoder.

The third is a series of decoders based on differential binary (DB) algorithms: the

previously proposed differential decoding with binary message passing (DD-BMP)

algorithm and its modified variant (MDD-BMP) [24]. We also propose an improved

differential binary (IDB) decoding algorithm, and present an accompanying hard-

ware design. Finally, the fourth design is a series of decoders based on energy-efficient

gear-shift decoding algorithms, which are algorithms that use multiple update rules.

Our previously mentioned PWM-MS and IDB decoders are highly adaptable to this

concept. We propose two gear-shift algorithms based thereupon called gear-shift

pulse-width (GSP) and IDB with GSP (IGSP) and their hardware designs.

1.2 Objectives

The primary goal of this research is to produce LDPC decoder designs with

improved energy efficiency compared to previously published designs. Secondary

design goals are hardware efficiency, high throughput, and good error correction

performance. Recently published LDPC decoder designs, particularly those that

are designed for energy efficiency, are used as benchmarks. However, as trade-offs

between conflicting goals are a necessary part of design, justifiable trade-offs that

increase energy efficiency are given the highest consideration.
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1.3 List of Publications

The work presented in this dissertation has been published in the following

peer-reviewed scholarly publications:

• K. Cushon, W. J. Gross, and S. Mannor. Bidirectional interleavers for LDPC

decoders using transmission gates. In Proceedings of the IEEE Workshop on

Signal Processing Systems, pages 232 237, Tampere, Finland, 2009.

• K. Cushon, C. Leroux, S. Hemati, S. Mannor, and W. J. Gross, “A Min-Sum

Iterative Decoder Based on Pulsewidth Message Encoding,” IEEE Transactions

on Circuits and Systems-II: Express Briefs, vol. 57, no. 11, pp. 893 897, Nov.

2010.

• K. Cushon, C. Leroux, S. Hemati, S. Mannor, andW. J. Gross, “High-Through-

put Energy-Efficient LDPC Decoders Using Differential Binary Message Pass-

ing,” IEEE Transactions on Signal Processing vol. 62, no. 3, pp. 619 631,

Mar. 2014.

• K. Cushon, S. Hemati, S. Mannor, and W. J. Gross, “Energy-Efficient Gear-

Shift LDPC Decoders,” in Proceedings of the 2014 IEEE International Con-

ference on Application-Specific Systems, Architectures and Processors (ASAP),

pp. 219 223, Zürich, Switzerland, Jun. 2014.

1.4 Dissertation Outline

The remainder of this dissertation is structured as follows.

Chapter 2 provides background for the material presented in the later chap-

ters. It contains a review of LDPC codes, including commonly-used decoding algo-

rithms, as well as the problems and strategies of hardware decoder implementation.
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It also reviews energy consumption in micro-electronic circuits, and strategies used in

energy-efficient digital circuit design. Finally, this chapter also provides a literature

review of energy-efficient LDPC decoders, including state-of-the-art designs.

Chapter 3 proposes a bi-directional interleaver and circular shift network for

multi-mode quasi-cyclic (QC) LDPC codes. This interleaver halves the number of

required wires and occupies less area than the equivalent unidirectional design. This

chapter is based in part on material from our conference paper [25].

Chapter 4 proposes an LDPC decoder design based on pulse-width encoded

message exchange, which we refer to as a pulse-width modulated min-sum (PWM-MS)

decoder. This message encoding increases energy efficiency by reducing switching

activity and computational complexity. We also present an ASIC layout design of

a PWM-MS decoder. This chapter is based in part on material from our journal

paper [26].

Chapter 5 describes a series of LDPC decoders based on differential binary

(DB) algorithms. We present the first hardware designs of the DD-BMP and MDD-

BMP algorithms [24], as well as the first fully parallel implementations of FG-LDPC

codes. We also present an improved differential binary (IDB) decoding algorithm,

and design it in hardware for the (2048,1723) LDPC code from the IEEE 802.3an

(10GBASE-T) standard [13]. Post-layout results for these decoders are compared

with other state-of-the-art energy-efficient LDPC decoder designs. This chapter is

based in part on material from our journal paper [27].
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Chapter 6 explores decoders based on gear-shift algorithms that are capable of

decoding using multiple algorithms. We show that the the PWM-MS and IDB algo-

rithms from the previous chapters can be extended or combined to create gear-shift

algorithms with little hardware overhead. We introduce and GSP and IGSP algo-

rithms, and show that they achieve energy efficiency comparable to low-complexity

decoding algorithms, and the error correction performance of offset min-sum. We

also propose hardware designs for these decoders that take advantage of architectural

commonalities to attain good area efficiency. As before, we present circuit layout re-

sults and perform comparisons with previously proposed decoder designs. Material

from this chapter also appears in our conference paper [28].

Finally, Chapter 7 discusses possible avenues for future research, and concludes

the dissertation.

1.5 Summary

Many applications exist for energy efficient LDPC decoders - there are cur-

rent applications in communications, and emerging applications in fields such as

implanted biomedical devices. However, the high complexity of the required compu-

tations and message passing clashes with the low energy requirement. Many different

approaches have been taken to make energy efficient LDPC decoders. Dynamic en-

ergy dominates total energy consumption in published decoder designs down to 65

nm, though static energy is an important consideration with smaller processes. The

goal of this research is to improve energy efficiency over previously published LDPC
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decoder designs by addressing the factors contributing to dynamic energy consump-

tion - computational complexity, switching activity, interconnect parastitics, and

supply voltage.
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CHAPTER 2

Background and Literature Review

2.1 Introduction

This chapter will provide background information and a review of relevant prior

literature.

First, a brief overview and tutorial on LDPC codes will be given, followed by

descriptions of the most well-known decoding algorithms: the Gallager A and B

algorithms, the sum-product algorithm (SPA), and the min-sum algorithm (MSA)

and its variants. The next section will review the evolution of LDPC decoder design

and complexity management strategies, with examples from the literature. This

review will emphasize designs intended to be energy-efficient. Finally, this section

will be concluded with an overview of general strategies for energy reduction in

digital CMOS circuits, and how they were applied to the designs presented in this

dissertation.

2.2 LDPC Codes

An LDPC code is defined by a parity check matrix H. An (n, k) LDPC code

has a parity check matrix with dimensions k rows by n columns. The elements

of H describe the relationships between n received symbols, which are represented

by the columns, and k parity checks, which are represented by the rows. As this
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Figure 2–1: The parity check matrix of a (16, 8) regular LDPC code with column
weight 2 and row weight 4.

dissertation is heavily focused on practical circuit implementation, we will restrict

our consideration to binary LDPC block codes.∗

A bit i participates in parity check j if Hi,j = 1, otherwise Hi,j = 0. The name

“low-density parity check” comes from the sparsity of non-zero entries in H. The

row and column weights of H are defined as the number of non-zero entries in a

given row or column, respectively. If all rows have equal weight and all columns have

equal weight, then the code is said to be regular; otherwise, it is irregular. Figure

2–1 shows an example parity check matrix for a (16, 8) regular LDPC code.

A frame d = (d0, d1, ..., dn−1) constitutes a valid codeword if and only if:

∗ Non-binary definitions of LDPC codes date back to the original Gallager thesis
[2], but have failed to gain popularity among implementors due to obnoxiously high
decoding complexity and low throughput compared to binary codes [29] [30] [31].
Likewise, LDPC convolutional codes have also been investigated in the literature [32],
but have been largely ignored in favor of block codes for practical implementations.
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dHT = 0. (2.1)

This is defined as the syndrome of d. If the syndrome computed over GF(2) is

a zero vector, then all parity checks are satisfied. A non-zero syndrome implies one

or more unsatisfied checks.

Encoding, which is typically performed by the transmitter, is done using a gen-

erator matrix G in which:

GHT = 0. (2.2)

The matrix G has dimensions of k×n. Given a vector b of k arbitrary informa-

tion bits b = (b0, b1, ..., bk−1), a frame, or valid codeword x = (x0, x1, ..., xn−1), can

be generated as follows:

x = bG. (2.3)

Alternatively, x is equivalent to the concatenation of b with a vector of n − k

parity bits p, i.e. x = (x0, x1, ..., xn−1) = (b0, b1, ..., bk−1, p0, p1, ..., pn−k−1). Thus, G

consists of a k × k identity matrix and a k × (n − k) non-systematic portion. The

non-systematic portion of G, Gp, can be used without the systematic portion to

generate p:

p = bGp. (2.4)
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Figure 2–2: A communication system showing LDPC encoding and decoding.

After the frame x is constructed, it is then transmitted through a channel,

where it may be corrupted by noise γ. The receiver acquires the noisy frame y =

(y0, y1, ..., yn−1), which serves as input to the decoder, which in turn produces as

output the decoded frame h. At this point, the parity portion of h can be discarded,

since it serves no use to the receiver, leaving h′ = (h0, h1, ..., hk−1). If decoding is

successful, then h′ = b. Figure 2–2 illustrates the process of encoding, transmission,

and decoding.

2.2.1 Tanner Graphs

An LDPC code can also be described using a graphical model called a Tanner

graph [33]. These graphs provide a generic realization and decoding framework for

many codes. In particular, LDPC and Turbo codes can both be described using

Tanner graphs, and decoded using iterative message-passing algorithms operating

on these graphs [34] [35].
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Figure 2–3: Tanner graph representation of the (16, 8) LDPC code whose parity
check matrix is shown in Figure 2–1.

Figure 2–3 shows a Tanner graph representation of the (16, 8) LDPC code from

Figure 2–1. A Tanner graph is a bipartite graph that describes the constraints or

parity check equations of a linear block code, and thus is an alternate representation

of the parity check matrix H. One set of vertices, called the variable nodes (VNs),†

represent the variables, or estimations of the decoded message. They are equivalent

to the columns of H. The other set of vertices, called the check nodes (CNs),‡

represent the parity check constraints, or the rows of H. An edge between VN i and

CN j exists if and only if symbol i participates in parity check j. Edges are thus

equivalent to non-zero elements in H. The number of edges incident to a node is

called the degree of the node. The variable node degrees (dv) and check node degrees

(dc) are equivalent to the column and row weights of H, respectively.

† Also called “bit”, “equality”, and in general (non-binary) cases, “digit” or “sym-
bol” nodes.

‡ Also called “parity” or “subcode” nodes.
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2.3 Decoding Algorithms

While many reasonable message-passing algorithms for decoding LDPC codes

have been devised, this section will describe the most prominent and important ones:

the Gallager A and B algorithms, the sum-product algorithm (SPA), the min-sum

algorithm (MSA), and MSA variants offset min-sum (OMS) and normalized min-sum

(NMS).

2.3.1 Gallager A and B Algorithms

Gallager originally proposed two different algorithms for decoding LDPC codes

[2]. The first is a low-complexity bit-flipping algorithm which is better known today

as the “Gallager B” algorithm.

I. Initialization

This algorithm operates entirely in the binary domain and takes as input a block

of n bits from the channel:

yv ∈ {0, 1} ∀ 0 ≤ v < n (2.5)

The initial variable-to-check messages are set to the received bits:

mv→c = yv (2.6)

II. Check node computations

Next, the check-to-variable messages are computed as the modulo-2 sum of all

inputs to the check node, excluding the input from the edge for which the output is

being calculated:
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mc→v =
⊕

v′∈Nc\v

mv′→c, (2.7)

where Nc is the set of VNs neighbouring check node c, and the
⊕

symbol

signifies modulo-2 addition.

III. Variable node computations

Now the variable-to-check messages are re-computed using the messages received

from the check nodes:

mv→c =















mv→c, if |{c : mc→v = mv→c}| ≥ bk ,

mv→c, if otherwise.

(2.8)

Put differently, the variable node flips the value of an outgoing message if at least

bk of the incoming messages suggests that it should. The threshold bk can vary with

the iteration number k, and can take any integer value in the range dv−1
2

≤ bk ≤ dv−1.

The Gallager A algorithm is, in fact, a special case of Gallager B in which

bk = dv − 1. In other words, an outgoing message flips only when all incoming

messages disagree with its current value.

IV. Output

The estimation of the decoded codeword h can be computed by majority vote

of each variable node’s outputs:

hv =



















0, if
∑

c∈Nv

mc→v ≤
dv
2
,

1, if otherwise.

(2.9)
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Some alternative ways of computing h are to assign hv a random bit if the sum

is exactly zero, or to leave hv unassigned until all outputs of variable node v are in

agreement.

Equations 2.7 - 2.9 are then iteratively repeated until some criterion for stopping

is met. Usually, this is when a valid codeword is detected (i.e., hHT = 0), or when

a maximum iteration limit kmax is reached.

In both the variable and check node computations, the calculation for a given

outgoing edge excludes the input from that edge. This is because this information is

intrinsic to the calculation, while the contributions from the other edges are extrinsic

information. Including the intrinsic information would create feedback loops between

neighbouring nodes that bias the message update calculations in favour of their

current values. This reduces the error correction performance of the algorithm.

However, as will be shown in later chapters of this dissertation, this can be used as

a heuristic to reduce computational complexity, particularly in the check node.

2.3.2 The Sum-Product Algorithm

In addition to the simple bit-flipping algorithm described above, Gallager also

proposed a decoding algorithm which operated on probabilities, which he called

“probabilistic decoding” [2]. While much more computationally complex, this algo-

rithm gives much better error correction performance, as it can take into account

the level of confidence in which a bit is correct. This algorithm turned out to be a

form of the sum-product algorithm [34], which is itself a special case of Pearl’s belief

propagation algorithm [36].
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Like the Gallager A & B algorithms, the basic principle of this algorithm is the

exchange of messages, or “beliefs”, between the variable and check nodes. When a

processing node is activated, it reads the messages from neighbouring nodes over the

graph’s edges, and updates its belief based on these messages. Unlike the Gallager

A & B algorithms, which are “hard decision”, the sum-product algorithm is “soft

decision” - the exchanged messages and internal node computations operate on multi-

level likelihood estimations rather than a hard estimation of the decoded bit.

The modern formulation of the sum-product LDPC decoding algorithm is as

follows.

I. Initialization

The variable nodes are initialized with soft information from the channel. The

n-element vector L contains the real-valued log-likelihood ratios (LLRs) of each of

the n received symbols: §

Lv = ln

[

P (xv = 0|yv)

P (xv = 1|yv)

]

∈ R ∀ 0 ≤ v < n . (2.10)

In most studies of LDPC decoder performance, a binary phase-shift keying

(BPSK) channel with additive white Gaussian noise (AWGN) is used. In this special

case, it can be shown that the LLRs are a function of the received values y and

channel noise variance σ2:

§ The SPA works in the logarithmic domain as a matter of computational simpli-
fication, as products of raw probabilities become sums of LLRs.
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Lv =
2

σ2
· yv ∈ R ∀ 0 ≤ v < n . (2.11)

The initial VN-to-CN messages are set to L, while the iteration number (indi-

cated by the superscript on m) is initialized to 0:

m0
v→c = Lv (2.12)

II. Check node computations

Next, the CN-to-VN messages are computed. The SPA check node operation is:

mk
c→v = 2 · atanh





∏

v′∈Nc\v

tanh

(

mk
v′→c

2

)



 . (2.13)

III. Variable node computations

Now, the iteration number k is incremented, and the new VN-to-CN messages

are computed based on the previous iteration’s CN-to-VN messages:

mk
v→c = Lv +

∑

c′∈Nv\c

mk−1
c′→v, (2.14)

IV. Output

To generate the estimation of the decoded block h, a hard decision for each bit

is computed at the VNs based on a sum of all incoming messages from neighbouring

VNs:
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hk
v =



















0, if Lv +
∑

c∈Nv

mk−1
c→v ≥ 0 ,

1, if otherwise.

(2.15)

As before, Equations 2.13 - 2.15 are repeated iteratively until a stopping criterion

is met, such as detection of a valid codeword or reaching the maximum iteration limit

kmax.

In practical implementations, SPA-based decoders face major implementation

problems owing mainly to two factors. The first is the difficulty of computing the

transcendental functions tanh and atanh [17]. The second related problem is the

imprecise representation of real numbers in systems with a finite number of quanti-

zation bits, which can lead to major degradations in error correction performance -

particularly due to numerical saturation in the output of tanh and atanh [37].

However, SPA is still widely accepted as the “gold standard” of LDPC decoding

algorithms, as it has been proven to be optimal on cycle-free graphs [7] [38] [39].

Practical LDPC codes are not cycle-free, although SPA decoding with high-precision

floating-point computations often results in the best attainable error correction per-

formance - cases where it does not are usually noted in the literature when discovered.

2.3.3 The Min-Sum Algorithm

The MSA can be considered a heuristic variant of the SPA in which the transcen-

dental functions in the check nodes are replaced with simpler computations. Like the

SPA, the MSA is a belief propagation algorithm operating over a graphical model of

the code [40]. They are, in fact, highly similar - the only difference is the check node
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operation, in which the magnitude of the outgoing messages is set to the minimum

of the incoming messages.

Thus, Equation 2.13 above is replaced with:

mk
c→v =

∏

v′∈Nc\v

sgn
(

mk
v′→c

)

· min
v′∈Nc\v

(∣

∣mk
v′→c

∣

∣

)

. (2.16)

The initialization, VN update, and hard decision equations are the same as in

the SPA.

2.3.4 Normalized and Offset Min-Sum

As the MSA check node operation is an approximation of the optimal SPA

operation, there is a loss in error correction performance compared to the SPA.

However, as the MSA CN messages consistently have higher magnitude than in

SPA [41], correction factors can be applied to minimize this loss [42].

In the normalized min-sum algorithm (NMSA), the output of the check node is

scaled by a constant factor α, with 0 < α < 1:

mk
c→v = α ·

∏

v′∈Nc\v

sgn
(

mk
v′→c

)

· min
v′∈Nc\v

(∣

∣mk
v′→c

∣

∣

)

. (2.17)

In the offset min-sum algorithm (OMSA), a subtractive offset β, with β > 0, is

applied to the magnitude:

mk
c→v =

∏

v′∈Nc\v

sgn
(

mk
v′→c

)

· min
v′∈Nc\v

(

max
(∣

∣mk
v′→c − β

∣

∣ , 0
))

. (2.18)

The correction factors α and β can also be applied simultaneously, in which

case the algorithm is known as normalized offset min-sum. Typical values for α and
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β are 0.75 and 1, respectively, although the optimal values depend on the LDPC

code, channel, and internal number representation of the decoder. A carefully tuned

NMSA/OMSA decoder can generally achieve error correction performance within

0.1 dB of an SPA decoder [43]. With certain codes, NMSA/OMSA can actually

outperform SPA due to the effects of cycles in the code’s graph [44].

2.3.5 A Note on Quantization

Until now, we have only considered decoding algorithms operating over the range

of real numbers. However, any practical decoder implementation must necessarily

have a finite number of quantization levels, which will have a negative impact on the

decoder’s performance due to numerical saturation and quantization error. LDPC

decoder implementations in software generally use high-precision floating point num-

bers; however, 4 to 7 bits of quantization is generally sufficient to achieve negligible

(or at least justifiable) performance loss compared to floating-point numbers [45].

VLSI decoder implementations generally use as few quantization bits as possible to

reduce memory and computational unit complexity.

Quantization schemes generally involve clipping LLR values above a certain

threshold Tclip, and dividing the range [−Tclip, Tclip] into 2q uniform intervals, where q

is the number of quantization bits [46]. Some more advanced quantization techniques

have been proposed to increase error correction performance, such as adaptively

varying Tclip based on channel noise estimations or the number of unsatisfied parity

checks [47].
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2.4 Literature Review of LDPC Decoder Architectures

This section will review the progression and current state of LDPC decoder

hardware architectures, with an emphasis on energy-efficient design.

2.4.1 Early Attempts and Decoder Architectures

The first VLSI implementation of an LDPC decoder was presented by Blanksby

and Howland in 2002 [17], and was a fully-parallel SPA-based design, with the check

node computations performed via look-up tables. This design soon became em-

blematic of the difficulties of implementing LDPC decoders, particularly with the

interconnections required to support fully parallel message passing. Routing conges-

tion caused this design to be quite area-inefficient, with 50% utilization. High wiring

delay and parasitics also caused it to have a longer critical path and higher power

consumption than expected.

While the check node computation problem could be eased by MSA-based de-

coders, the routing problem was (and remains) a serious issue affecting the viability

of LDPC codes. This led to the co-development of architecture-aware LDPC codes

- i.e., LDPC codes in which the parity-check matrix H has a regular structure that

can be exploited in hardware implementations [48] - and partially-parallel decoder

architectures for these codes [49].

The most important and prominent type of architecture-aware LDPC code is

the quasi-cyclic (QC)-LDPC code [50]. In these codes, the H matrix is composed of

sub-blocks of circulant permutation matrices - usually in the form of circularly shifted

identity matrices. Figure 2–4 shows an example of one such code. This (648, 486)
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Figure 2–4: Example of an H matrix for a quasi-cyclic (QC)-LDPC code, showing
its construction from blocks of circularly shifted identity matrices.

QC-LDPC code from the IEEE 802.11n standard [10] is made up of 27 × 27 sub-

blocks that are either an identity matrix circularly shifted to the right ρ places, or

a zero matrix (indicated by a dash). The expanded block illustrates how the model

matrix of sub-blocks translates to a conventional binary H matrix.

QC-LDPC codes became popular standard codes because they lend themselves

well to efficient partially parallel implementations, allowing designers to avoid the

problems faced by early fully parallel decoders. Partially parallel architectures im-

plement a subset of the overall graph, and multiplex the message passing and node

computations over time. At the extreme end of this concept are serial decoders [51],

which implement a single processing element and compute each entry in H serially

like a microprocessor. However, serial decoding results in throughput too low for
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Figure 2–5: Basic architecture for a partially parallel decoder of QC-LDPC codes.

most modern communications applications. Partially parallel architectures aim for

a good trade-off between hardware complexity and throughput.

Figure 2–5 shows a straightforward (though inefficient) partially parallel de-

coder architecture for QC-LDPC codes. The H matrix is processed one sub-block at

a time, with the partial results stored in memory. The VN and CN blocks are con-

nected through circular shift networks, which implement all the necessary sub-block

permutations in H.

2.4.2 Efficiency Improvements

While these early efforts established the basic algorithms and decoder archi-

tectures, a great deal of research effort has since gone into improving upon them.

Improvements in hardware and algorithmic efficiency generally also improve energy

efficiency, either by reducing the amount of computational “work” needed to decode

a frame, or lessening auxiliary circuit implementation issues (such as high parasitic

losses in wiring due to routing congestion).
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Layered decoding algorithms are one such improvement. Conventional decoding

uses a strict two-phase-per-iteration message-passing schedule, in which all VN mes-

sages are computed and transmitted, followed by all CN messages (this is sometimes

referred to as a “flooding” schedule). Layered decoding algorithms encompass a range

of algorithms in which subsets of the graph (referred to as “layers”) update their be-

liefs in sequence, which are then immediately made available to successive layers.

For instance, in row-layered decoding [52], subsets of CNs (i.e., rows of H) update

in sequence, with the neighbouring VNs immediately updating their beliefs before

the next layer of CNs is processed. As a result, the VNs update their beliefs several

times per iteration. Column-layered decoding [53] is the same concept with the layers

divided into columns. Layered decoding is very popular in modern partially-parallel

VLSI implementations, since it significantly reduces the average number of itera-

tions required for convergence to a valid codeword - generally by about a factor of 2.

Other message passing schedules similarly yield faster convergence. Turbo-decoding

message passing is a special case of row-layered decoding in which each sub-matrix

“layer” has a column weight of 1 - this allows VN and CN circuitry to be significantly

simplified [54]. An interesting area of ongoing work is residual belief propagation,

which uses a type of informed dynamic message passing [55].

In spite of all the interest in partially-parallel decoders, a number of highly-

parallel and fully-parallel decoder designs have been proposed. These generally make

use of more efficient circuit architectures or heuristics to avoid the hardware com-

plexity and routing issues made famous in [17].
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One example, called broadcasting, reduces computational and routing complex-

ity by computing only one outgoing message per node, and broadcasting it to all

neighbouring nodes. A half-broadcasting min-sum decoder is proposed in [56], in

which broadcasting is applied to the CNs, while the VNs compute unique messages

for each outgoing edge as in Equation 2.14. While this is a heuristic, the error cor-

rection performance loss can be mostly recovered with local computations in the

VN, i.e., if a VN detects that it produced the minimum message, it increases the

magnitude of the corresponding message slightly. In this way, the performance loss

can be reduced to approximately 0.1 dB. A non-heuristic variant of broadcasting

is presented in [57], in which the VNs broadcast a single message, and CNs broad-

cast 4 messages: first and second minima, the index of the input that produced the

first minimum, and the one-bit product of the signs of all incoming messages. The

“true” min-sum CN-to-VN messages can then be recovered without any loss via local

computations in the VN.

Bit-serial architectures are proposed specifically as energy-efficient LDPC de-

coder designs in [58] and [59]. In these designs, the messages are exchanged bit-

serially over single wires. This not only reduces routing congestion, but also com-

putational complexity, as the primary operations of the MSA (i.e., addition and

minimum-finding) are very amenable to bit-serial computation. Despite being fully
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parallel,¶ these decoders avoid routing congestion and impractical size due to these

characteristics.

The authors of [58] further argue that higher parallelism can be used to improve

energy efficiency through voltage and frequency scaling (VFS). Reducing the supply

voltage greatly reduces the energy use of a circuit, as dynamic energy consumption

scales with V 2
DD. A fully parallel decoder can achieve a given throughput with a lower

clock frequency than a less parallel decoder, and can therefore use a lower supply

voltage.

Some partially parallel decoders (albeit with a high degree of parallelism) have

also been proposed as energy-efficient architectures. One example is [60], which

proposes decoders of the (2048, 1723) 10 Gbps Ethernet LDPC code. This code is

made up of 64×64 permutation sub-matrices, which is exploited using techniques the

authors refer to as node grouping and wire bundling. In the implemented decoder,

all VNs are implemented in parallel. Each sequentially transmits a single VN-to-

CN message, then receives the returning messages from the CNs (as dv = 6 in this

code, a decoding iteration thus takes 12 clock cycles). The computations are non-

heuristic offset min-sum, with a post-processing phase for improving error correction

¶ There is an argument that bit-serial architectures are not fully parallel, as they
multiplex computation and message passing over time. However, the cited designs
are generally considered fully parallel as they implement the entire graph in parallel
- every edge and processing node maps to a unique instance in the circuit. In this
dissertation, we use the term “fully node-parallel” when a distinction between the
two is required.
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performance in the high SNR region by lowering error floors.‖ As this decoder

achieves high throughput, VFS is applied to dramatically increase energy efficiency.

A similar architecture called “shift-structured decoding” is presented in [61]. In

this design, each VN has fixed connections to a subset of its neighbouring CNs. The

CNs are connected together in a circular shift register, which is used to pass messages

directly between the CNs for intra-iteration computations. A second inter-iteration

communication network between the CNs is used to complete the CN computations.

Originally proposed for QC-LDPC codes, this architecture has also been applied to

RS-based codes, including the 10 Gbps Ethernet code [62].

Split-row min-sum is another proposed energy-efficient decoding architecture

[63]. Split-row decoding uses a heuristic algorithm that divides the H matrix into

several columns, or sub-codes. Check node computations for each sub-code are per-

formed separately, using limited information from other columns. In other words,

the “global” CNs are replaced with several “local” ones with considerably reduced

complexity. While the original split-row algorithm had a significant loss in error cor-

rection performance, a revised version presented in [64] gained back most of this loss

with improved inter-column communication and offsetting computations. A fully-

parallel implementation of improved split-row for the 10 Gbps Ethernet LDPC code

achieved very high throughput and area efficiency. Prior to the designs presented in

this dissertation, split-row also had the best reported energy efficiency for this code.

‖ The topic of error floors is covered in more detail in Chapter 5.
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Another approach to energy efficient LDPC decoding is to use a simpler de-

coding algorithm, thus trading off error correction performance for reductions in

complexity and energy cost. There are many decoding algorithms across the perfor-

mance/complexity range of LDPC decoding. At the low-complexity end of this range

are hard decision algorithms, such as the aforementioned Gallager A and B algo-

rithms, bit flipping [65], and majority-based algorithms [66]. At the high-complexity

end are SPA and MSA. In the middle are a variety of different decoding algorithms,

each offering a different balance between complexity, speed, and error correction

performance. Some notable examples are the heuristic variants of MSA mentioned

above, hybrid hard-soft algorithms like bootstrap decoding [67], and weighted bit

flipping [68]. However, it is generally not desirable to give up significant (or even

any) error correction performance, as near-capacity performance is the main reason

for using LDPC codes in the first place. Furthermore, communication standards

generally include stringent requirements for frame (FER) or bit error rate (BER)

that the less complex algorithms cannot achieve.

Two notable examples of reduced-complexity algorithms that achieve error cor-

rection performance similar to MSA are stochastic algorithms [69] and differential

decoding with binary message passing (DD-BMP) [24]. In stochastic decoding, inter-

node communication is performed with stochastic Bernoulli streams wherein the sta-

tistical properties constitute the information being exchanged. These streams are

transmitted over single wires, as in bit-serial min-sum, so these decoders do not

face routing congestion problems. VN and CN computations are also greatly simpli-

fied in the stochastic domain, although additional memory elements are needed to
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“decouple” the stochastic streams. Fully parallel stochastic LDPC decoder designs

can be found in [70] and [71]. Relaxed half-stochastic (RHS) decoding is a variant in

which VN computations are performed in the definite number domain, while message

passing and CN computations are performed in the stochastic domain [72].

DD-BMP is a decoding algorithm in which the VNs and CNs exchange binary

messages, and the VNs update their beliefs by applying the differential sum of their

inputs to their previous states. This algorithm is discussed in more detail in Chapter

5, in which we present VLSI designs of DD-BMP decoders, along with an improved

version of this algorithm (called “improved differential binary”, or IDB).

Finally, various analog iterative decoders have also been proposed and built

[73], [74]. As they operate in the analog domain, these decoders compute continu-

ously and settle into a steady-state equilibrium as they converge, thus avoiding the

unnecessary message exchanges that occur in digital decoders. In theory, these char-

acteristics give them very good energy efficiency, potentially much better than digital

decoders. However, they are considerably limited by practical factors, especially de-

vice mismatch and on-chip process variation. As such, block sizes longer than a few

dozen bits are not currently practical. These analog decoders also have much lower

throughput compared to digital decoders, in part due to their small block lengths.

2.5 Energy Consumption in Digital CMOS Circuits

In digital CMOS circuits, causes of energy consumption can be classified as

either static or dynamic [75]. Static energy refers to constant leakage currents that

are present even when the circuit is inactive, such as subthreshold conduction in

switched-off transistors, electron tunnelling through transistor gates, and leakage
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through reverse-biased diodes. Dynamic energy refers to energy dissipated when

circuit nodes switch from one voltage level to another. This causes energy to be

consumed charging parasitic capacitances, as well as through short-circuit currents

caused when an input to a logic gate transitions.

Although static energy consumption has been observed to increase as a share of

total energy at smaller manufacturing process sizes, dynamic energy is the dominant

factor in LDPC decoder ICs. For instance, in [64], which presents a fully parallel

split-row min-sum LDPC decoder in 65 nm CMOS, static power accounts for only

0.5-1% of the total power. Our own research projects, also fully parallel LDPC

decoders implemented in 65 nm technology, affirm this number, with leakage ac-

counting for 0.5-3%. Furthermore, recent developments in manufacturing processes

have shown that gate leakage currents can be greatly reduced - [76] demonstrates 45

nm transistors with gate leakage currents reduced 2-3 orders of magnitude compared

to 65 nm transistors. At even smaller process sizes, emerging devices like fin-FETs

have proven successful in keeping leakage currents below practical limits [77] [78].

Leakage can also be controlled using standard circuit design techniques. Sub-

threshold currents, for instance, can be reduced by using transistors with high thresh-

old voltages. Power gating is another effective technique for eliminating leakage

currents in parts of the circuit that are not in use.

Since dynamic energy is the dominant factor, it is a much better target for reduc-

tion efforts than static energy. The dynamic energy of a circuit can be approximated

by:
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Edyn =
∑

nodes

αnodeCnodeV
2
DD , (2.19)

Where αnode, the switching activity for a given circuit node, is defined as the

number of 0-to-1 transitions (1-to-0 transitions are not considered to consume power

because they do not draw any charge from the supply voltage), Cnode is the total

parasitic capacitance of the node, and VDD is the supply voltage.

2.6 Energy Reduction Strategies for LDPC Decoders

When deciding how to approach the problem of making LDPC decoders more

energy efficient, it is important to note that the most relevant metrics of perfor-

mance for iterative decoders are energy consumed per unit of information decoded

and throughput per unit area [79]. The reason for the former is that power consump-

tion alone is not a meaningful metric, as it gives no indication of how much work is

completed through that power use. Likewise for area and throughput, as nearly any

figure for either can be achieved by using differing degrees of parallelism, or with

multiple decoders in parallel. Therefore, these so-called “efficiency metrics” give a

more meaningful assessment of performance, because they normalize the capacity to

do computational work with the quantity of resources consumed in doing so.

Of course, these are not the only important LDPC decoder metrics. Practical

applications also require certain standards for error correction performance (e.g., a

maximum bit error rate for a given set of channel conditions) and decoding latency.

A Gallager B decoder will be much more energy-efficient than an offset min-sum

decoder, but won’t find much use in a modern communication system due to its
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poor error correction capability. As in any engineering problem, there are several

contradicting design goals that must be balanced and kept within practical limits.

Based on our review of prior works, reducing computational complexity is one of

the most effective ways to improve energy efficiency. The two concepts are actually

closely linked, since reducing the amount of computational “work” done in decoding

will naturally lead to a reduction in energy spent per decoded bit. In (2.19) above,

this corresponds to a reduction in the number of circuit nodes over which summation

is performed. This can be done without applying heuristics, as in the partially-

parallel 10 Gbps Ethernet decoder of [60], or with heuristics, as in split-row min-

sum [64]. However, in heuristic methods, the trade-off of error correction performance

must be taken into account.

Another way to reduce energy consumption is to reduce switching activity and

routing complexity, particularly in the inter-node communication network (com-

monly referred to as the interleaver). One reason for this is that the interleaver

tends to have many long wires, crossing from one side of the die to another to con-

nect distant nodes, and thus they have high parasitic capacitance and resistance

causing energy loss. Routing congestion contributes to this problem, since it cre-

ates longer wires by two different mechanisms: larger die sizes, and fewer wires with

direct connections. Some prior examples of wiring reduction are broadcasting [56],

bit-serial [58], and binary message algorithms [24].

One final strategy is supply voltage scaling. Since dynamic energy consumption

is proportional to V 2
DD, and in subthreshold conduction, the dominant component

of static energy loss, current varies exponentially with VDD, reducing the supply
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voltage generally leads to increased energy efficiency - but only to a certain point.

At low enough voltages (which are generally in the subthreshold region, when VDD

is lower than the device threshold voltage vt), static energy consumption becomes

dominant, as it scales more slowly with reduced VDD than dynamic energy. Thus,

past a certain point, lowering the supply voltage will actually increase the amount

of energy consumed per operation.

Furthermore, supply voltage scaling results in a throughput trade-off, since

CMOS circuits operate more slowly at reduced voltage. As noted in [58], highly

parallel architectures can achieve a given throughput with a lower supply voltage

than less parallel designs, making them good candidates for energy-efficient design.

The partially-parallel 10 Gbps Ethernet decoder of [60] and split-row min-sum [64]

are other examples of highly-parallel decoders that make use of voltage and frequency

scaling.

2.7 Summary

This chapter has provided a summary of background information and prior work

relevant to this dissertation. The background information included a description of

LDPC codes, their matrix and graph definitions, and their most well-known decoding

algorithms: the Gallager A and B algorithms, the SPA, and the MSA and variants.

This was followed by a literature review of LDPC decoder architectures, beginning

with the first VLSI designs, and ending with state-of-the-art energy-efficient designs.

Finally, a brief primer on energy consumption and low-energy design techniques in

digital CMOS circuits was given, along with strategies for energy-efficient LDPC

decoder design that were used in designing the works presented herein.
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CHAPTER 3

A Multi-Mode LDPC Decoder Interleaver Based On Transmission Gates

3.1 Introduction

One of the energy reduction strategies identified in the previous chapter is to

reduce routing congestion. In highly parallel LDPC decoders, the interleaver (i.e.,

the message-passing network between the VNs and CNs) causes congested routing

conditions, leading to many long wires and increased buffering requirements. These

increase the amount of energy consumed, due to higher parasitic capacitances in

longer wires, and of course the extra energy consumed by the buffers themselves [17].

Therefore, it is a good place to focus effort for an energy-efficient design.

As pointed out in [80], there is an immense volume of data exchanged over

the interleaver. Let us consider the (2048, 1723) 10 Gbps Ethernet LDPC code

[81]. The graph of this code has 12288 edges, over which 2 messages are exchanged

every iteration. With 4-bit messages, as in [60], 98304 bits are exchanged over the

interleaver every iteration. If we assume an average of 5 iterations per decoded frame,

that makes 491520 bits exchanged to decode a frame of 2048 bits. At 10 Gbps coded

throughput, this comes to 2.4× 1012 bits per second exchanged over the interleaver

- quite a large amount of data. Reducing parasitic losses over these wires, even by a

small amount, will therefore lead to considerable energy savings.

More complexity is added to the interleaver if the decoder must support multiple

codes. Standards for wireless communication, notably WiMax [9] and Wi-Fi [10], are
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designed to achieve good performance over a wide range of channel conditions. To

that end, they define several different codes of varying rate and block length. Thus in

a low-noise channel, for instance, a higher-rate code would be used to achieve higher

information throughput, while in a noisy, congested channel, a lower-rate code would

increase the probability of decoding success. Supporting multiple codes in a single

decoder requires a flexible interleaver with configurable switching logic, in addition

to the basic interconnections.

The aforementioned standards take interleaver complexity into consideration

by using QC-LDPC codes.∗ As a result, partially-parallel architectures are well-

suited to these codes, and achieve throughput per area superior to fully-parallel

architectures [82] [83]. In addition, multiple code support can be easily achieved by

adding the necessary permutations to the circular shift networks. For the reasons

outlined in Section 2.6, a more highly parallel implementation of these codes might

achieve superior energy efficiency. A parallel multi-mode decoder would face major

implementation problems in routing congestion and shift network design, however.

The architecture proposed in this chapter aims to solve those problems by using

tristate buffers and a bidirectional circular shift network architecture based on trans-

mission gates. Inter-node messages are transferred over the same wires, and through

the same shift networks, on alternating clock cycles. Because this design halves the

required number of shifters and wires in the interconnection framework, the full ad-

vantages are realized in highly parallel decoder architectures, ideally with single-wire

∗ See Section 2.4.1 for a brief overview of QC-LDPC codes.
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Figure 3–1: Canonical LDPC decoder architecture.

Figure 3–2: LDPC decoder architecture with a bidirectional interleaver.

message passing to minimize routing congestion. Thus, some decoding algorithms

well-suited to this interleaver design are stochastic [71], differential binary [24], and

bit-serial min-sum [58]. However, the bidirectional switch design is equally applicable

to generic interleavers, and could be beneficial in any decoder design suffering from

interleaver routing congestion.

3.2 LDPC Interleaving

A very simplified architecture for an LDPC decoder is shown in Fig. 3–1. Each

variable node (VN) sends out messages to the check nodes (CN), with the circular

shift network implementing the required interconnections. The CNs then generate

the parity check result and send it back through another shift network, which reverses

the shift performed by the first, thus sending the CN messages back to the originating
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VNs. This basic architecture has undergone several modifications and improvements

while maintaining the same basic functionality, such as with split-row decoding [63]

and broadcasting [56].

In a QC decoder, the VNs and CNs are divided into sub-blocks, and all node

interconnections consist solely of circular shifts local to the sub-block. Support for

multiple codes (or, in a partially parallel design, multiple rows of the same code)

is accomplished through the use of shift networks. These shift networks connect

their inputs and outputs together in multiple combinations depending on a selection

input. In the context of QC codes, these combinations consist of a range of circular

shifts, which additionally may be around multiple block lengths. Hence, they are

sometimes referred to as switch networks or circular shift networks.

Our bidirectional architecture, shown in Fig. 3–2, does not require the second set

of shifters on the CN-to-VN path or the accompanying wiring. Instead, the internode-

messages are driven over the same wires using tristate buffers. The shifters, which

would ordinarily be implemented using standard CMOS muxes in the unidirectional

design, are implemented using one-hot transmission gate muxes. This design requires

2 clock cycles to complete a decoding cycle, since the VN-to-CN and CN-to-VN

message transfers can’t take place at the same time. On the first clock of each

decoding cycle, the VN-to-CN transfer occurs, and the result of the parity check is

stored in flip-flops at the CNs. On the next clock cycle, the CN-to-VN transfer is

driven back through the shifters.

The same mux selection vector is used for both cycles. Fig. 3–3 illustrates a

3-bit circular shift network made of transmission gates, which can shift 0 or 1 bits to
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the left. When driven in “reverse” (CN-to-VN), the reverse of the shift performed

in the “forward” (VN-to-CN) direction is applied. An alternative explanation is

that since a transmission gate is logically equivalent to a switch, the shift network

connects the appropriate VNs and CNs together on a single bus wire.

Although this interleaver architecture can be used with any LDPC decoder, we

chose to implement it for a binary message passing decoder of the IEEE 802.11n

codes for several reasons. The main reason is that this design is most advantageous

for highly parallel decoders implementing multi-mode codes, since the most circular

shift networks and wires will be saved. Binary message decoders, besides being

practical to implement in fully parallel by virtue of their single-bit-width messages,

also have very simple check nodes; the complete check node function for a given bit

is the XOR of every other bit. This is equivalent to the sign update function seen

in the check nodes of other LDPC decoding algorithms, including the sum-product

and min-sum algorithms. A schematic for this function is shown in Fig. 3–4.

IEEE 802.11n was chosen for the code because it is a high profile multi-mode

code, with a size and complexity suitable for our architecture. It has 3 codeword

block lengths (n = 648, 1296, or 1944) and 4 rates for each length (R = 1
2
, 2

3
, 3

4
, or

5
6
), for a total of 12 modes.

Previous research in LDPC interleaving has been focused mainly on partially

parallel or block serial architectures. Since these designs require circular shift net-

works supporting a large number of shifts and sub-block sizes, they are typically

based on the well-known Benes network, as in [84], or barrel shifters, as in [85]

and [86]. These are unsuitable for highly parallel decoders, which require a larger
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Figure 3–3: A circular shift network composed of transmission gates performs both
the forward and reverse circular shift, depending on which direction the signal is
driven.

number of less generalized shifters. Furthermore, these designs do not address the

routing congestion problem that occurs in highly parallel decoders.

3.3 System Architecture

Our system design is divided into 12 separate row processors, so called because

they each implement one row of Hbm, where Hbm is defined as one row of H in

permuation matrix form (as shown in Fig. 2–4 on p. 23). This is the minimum

necessary to fully implement the IEEE 802.11n codes, as the rate R = 1
2
codes require

12 check node blocks. Each of these row processors is multi-mode and implements
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Figure 3–4: Schematic of a check node with n bits.

rows belonging to between 3 and 12 codes. Row 12 in our design implements the

bottom rows from all 12 codes, while row 1 implements only the top rows of the

3 R = 1
2
codes. The reason for this bottom-up superposition is to take advantage

of commonalities in the right-hand side parity check portion of the Hbm matrices

(referring back to Fig. 2–4, notice the dual-diagonal of zero entries on the right

hand side - this structure is common to all 12 codes, so a bottom-up superposition

completely eliminates the need for shift networks in that region).

Since each row processor is in parallel with and independent from the others,

this section will focus on describing in detail the architecture of a single generalized

row processor.

A block-level row processor schematic is shown in Figs. 3–5 and 3–6. Fig. 3–5

shows the VN-to-CN (forward) operation, while Fig. 3–6 illustrates the CN-to-VN

(backward) operation.

Before decoding begins, the decoder controller must select one of the 12 sup-

ported modes using the sel input. This selection signal sets the code used in the
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Figure 3–5: Top level block diagram of our bidirectional system, in VN-to-CN (for-
ward) operation with the data flow highlighted.

Figure 3–6: Top level block diagram of our bidirectional system, in CN-to-VN (re-
verse) operation with the data flow highlighted.

interleaver. It controls both the input muxes and the transmission gate shift net-

works.

The interleaver cycle begins with the en fwd signal being set to logic 1, and

the VN blocks transmitting their messages into the input at the left side of Fig 3–5.

Because not all VN blocks connected to the row processor necessarily contribute to

the parity check in every mode, there must be a way to disable the VNs in question or

42



prevent them from affecting the result. In a binary decoder, this can be accomplished

by setting these bits to 0. This task is performed by the input muxes.

The width of the datapath originating at each VN block is equal to the sub-block

size z of the current code, which can be 27, 54, or 81. Since each block is re-used

in multiple modes, it must be able to support the sub-block size of the largest code

it is used in. When a shorter code is active, the upper bits of each sub-block are

disabled, along with the corresponding drivers and check nodes. The number of VN

blocks contributing to each row processor is equal to the maximum row weight of

the codes it implements. In this system, this number ranges between 10 and 22.

Next, the data flows through the VN-to-CN (forward) tristate drivers. Since

en fwd is set, the buffers are on and the data is driven onto the internal bus into

the circular shift networks. The shift networks are of the form shown in Fig. 3–3.

The shifted data is then input to the XNOR tree. The XNOR output constitutes

the (inverted) parity result, which must now be de-shifted and output back to the

VNs. The result is stored in a register of width equal to the largest sub-block size

supported by the row. In this design, this width is zmax = 81 for all row processors.

On the next clock cycle, en fwd is cleared and the CN-to-VN (reverse) path

is activated as shown in Fig. 3–6. The parity result passes from the register into

the CN-to-VN tristate driver bank, and from there into the “back” end of the shift

networks. In order to ensure a high clock frequency, each wire on the bus is driven

by a dedicated inverter. The shift networks perform the inverse of the shifts that

they performed on the previous cycle, after which the data carries on to the 2-

input XOR intrinsic bit filters. As shown in Fig. 3–4, the final step in the check
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node computation is to take the XOR of the overall parity result with the bit that

originated from each VN. The original bit is provided by the VNs themselves, which

have been holding their state over the last clock cycle. These results serve as the

interleaver output and are sent back to the VNs.

The internal structure of the transmission gate circular shift networks is essen-

tially as shown in Fig. 3–3. Transmission gates with one-hot decoding connect every

combination of front- and back-side wires needed to implement the required circu-

lar shifts. Redundant gates are merged, while unnecessary ones (those connecting

wires that do not connect to any other transmission gates) are optimized out. The

decoders themselves take sel as input and produce the one-hot control signals. The

complementary signals are not required because our transmission gate standard cell

includes an inverter.

3.4 Circuit Design

We synthesized the bidirectional interleaver system as described using the STMi-

croelectronics 90 nm CMOS design kit and standard cell library, augmented with a

fully custom transmission gate cell. The schematic and layout views of the trans-

mission gate cell are shown in Figures 3–7 and 3–8, respectively. The cell is sized to

conform with the library cell grid and has dimensions 1.12µm × 3.92µm, for a total

area of 4.39µm2 - equal to 1 minimal-size NAND gate, or 1.33 minimal-size inverters.

All transistors have the minimum length of 0.1µm. The transmission gate NMOS

has a width of 0.32µm, while the PMOS has a width of 0.48µm. These sizes were

chosen to be as wide as possible and thus minimize resistance, while having balanced

propagation of rising and falling inputs.
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Figure 3–7: Schematic view of the transmission gate cell, showing transistor sizes.

In order to quantify improvements over the equivalent unidirectional interleaver,

we also synthesized a reference system with seperate VN-to-CN and CN-to-VN shift

networks as per the architecture shown in Fig. 3–1. The reference system uses

standard CMOS muxes to implement the shift networks. It also does not have

sequential elements and thus completes one decoding cycle per clock cycle. Otherwise

it is equivalent to the bidirectional system - both use the same sel input and interface

to the VNs. Both systems constitute a complete implementation of the interleaver

and check nodes for a complete LDPC decoder using stochastic or differential binary

algorithms.

45



Figure 3–8: Layout of the transmission gate cell, with rulers showing the cell’s overall
dimensions (1.12µm × 3.92µm).

Synthesis results for both systems are summarized in Table 3–1. The bidirec-

tional system is 28% smaller overall than the reference system for an equal throughput

in terms of decoding cycles (DCs) per second. The area savings arises mainly from

the elimination of the second shift network. The transmission gate mux architecture

does not actually result in any savings compared to standard CMOS muxes, due to

the need for additional decoding logic.
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Table 3–1: Synthesis results

Bidir. system Reference system

Cell area (µm2) 7.63× 105 1.06× 106

Gate equiv. 144.2k 199.7k

fclk 729 MHz 364 MHz

Clocks per DC 2 1

DCs per second 3.64× 108 3.64× 108

The clock frequency of the bidirectional system was targetted to exactly double

that of the reference system in order to compare area for equal throughputs. The

frequency of the reference system is purely nominal; naturally additional area and

speed tradeoffs can be made in both systems.

The cell area utilized by each category of logic for the bidirectional interleaver

is shown in Table 3–2. Sequential elements account for only 3.3% of the total area.

The shift network, and the tristates that drive it, account for more than half the

total area. Note that the area figure for the transmission gates includes the inverters

used to generate the complementary control signals. The remainder is made up of

CMOS combinational logic.

The interleaver portion of the bidirectional system - consisting of the trans-

mission gate shift networks, the decoders for the transmission gates, and the tristate

drivers - has a total area of 3.98×105µm2, or 75.2k equivalent gates. In the reference

system, the interleaver logic occupies an area of 7.20 × 105µm2, or 136.2k equiva-

lent gates, giving an area reduction of 45%. The remainder of the size difference is

accounted for by the flip-flops in the bidirectional system.
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Table 3–2: Logic utilization

Cell type Area (µm2)

Transmission gates 1.86× 105

Tristates 2.08× 105

Flip-flops 2.47× 104

All other logic 3.44× 105

In order to ensure the integrity of the bidirectional datapath through synthesis,

all bidirectional elements were instantiated directly as a cell-level netlist in verilog.

This included the transmission gates as well as the tristate buffers. The standard,

unidirectional CMOS portions of the circuit - the VN interfaces, decoders, XORs,

and flip-flops - were synthesized normally. Timing in the bidirectional system was

determined using a combination of static timing analysis and HSPICE simulations.

For these simulations, the critical path and wire loading were extracted from the

synthesis result and used to create a model circuit as shown in Fig. 3–9. The pe-

ripheral CMOS logic gates and slewing on the input signal were all imported from

synthesis into this SPICE model. The effects of switching transients on the trans-

mission gates are ignored because the selection inputs are constant during decoding.

Net resistances are ignored because they are insignificant compared to the equivalent

ohmic resistance of the active transmission gate [87].

The propagation delay through this path - from the input of one of the drivers,

through the transmission gate, to the output of the opposite layer of static CMOS -

was then measured, and the worst-case delay substituted back into the static timing

result. This model circuit was also used to determine the strengths of the tristate

drivers, with stronger drivers being assigned to the most heavily loaded paths. As
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Figure 3–9: SPICE circuit used to determine timing.

expected, the critical path is on the “forward” path due to the extra levels of logic

in the XNOR tree.

It should be noted that the bidirectional and reference systems are both capable

of throughput several times greater than required for IEEE 802.11n. At the maxi-

mum net bit rate of 600 megabits per second and codeword size of 1944 bits, both

systems can support over 1000 iterations per codeword, which is far greater than

needed for any reasonable decoding algorithm. The respective maximum speeds of

each system prove that the bidirectional interleaver does not incur any performance

penalty relative to the reference system.

One disadvantage of the bidirectional interleaver is that it cannot be pipelined to

increase throughput. The unidirectional architecture could therefore achieve higher

throughput via pipelining. However, this would require an additional flip-flop for

each variable and check node and thus incur a significant increase in area. Thus, the

main advantage of this design is the reduction in area and routing, as this reduction
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Figure 3–10: Interconnect model used to estimate energy consumption.

cannot be matched by partially parallel architectures without sacrificing a dispropor-

tionate amount of throughput. The primary reason for this is the shift networks in

a partially parallel system must support more shift combinations, and no significant

area savings occur until the architecture has been largely serialized. Furthermore,

partially parallel systems incur extra overhead due to the additional memory and

logic required to handle intermediate results.

3.5 Energy Analysis

While the bidirectional interleaver design has less logic and wiring overhead

than the baseline unidirectional design, it requires tristate drivers, which consume

more energy than ordinary buffers or inverters for an equal drive strength. The

transmission gates also result in higher equivalent resistance on the interleaver wires.

Therefore, it is not immediately clear whether the bidirectional system is more energy

efficient than the unidirectional one.

In order to model the energy consumption compared to a unidirectional inter-

leaver, we can use the interconnect model shown in Figure 3–10. In this model,

50



the wire resistance (and in the case of the bidirectional circuit, transmission gate

resistance) are lumped into a single resistance Rload, while wire capacitance and gate

capacitances of downstream logic are lumped into Cload. The resulting model is a

simple series RC circuit.

We can now compare the energy required to charge Cload from zero voltage to

Vdd in the two circuits. The energy stored in the capacitor is equal to
[

1
2
· CloadV

2
dd

]

.

It can be shown that the energy dissipated by Rload is not dependent on its value,

and is also equal to
[

1
2
· CloadV

2
dd

]

. The total energy expended is therefore CloadV
2
dd -

with Vdd constant, energy is entirely determined by Cload, which we can expect to be

lower in the bidirectional circuit.

However, the lower Cload in the bidirectional circuit must be balanced against the

higher internal energy dissipated in tristate buffers compared to normal buffers. In

addition, the higher Rload caused by the transmission gates creates a need for tristate

buffers with higher drive strength to achieve the same timing - higher drive strength

translates directly to higher energy. This is also indirectly an energy efficiency issue,

as we want fast transitions to minimize short-circuit energy losses in downstream

logic.

The break-even point between driver type and average wire length can be found

with the following:

Lwire =
Etristate − Ebuffer

CL · V 2
dd

, (3.1)
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where Lwire is the difference in average interleaver wire length, Etristate is the

internal energy expended by a tristate buffer switching from 0 to 1 (i.e. the dy-

namic energy consumption caused by switching at circuit nodes internal to the cell),

Ebuffer is the internal energy of a conventional buffer, and CL is the capacitance

per unit length of wiring. Using the appropriate values from the STMicroelectronics

datasheets [88] [89], we obtain Lwire = 466 µm, meaning the average interleaver wire

must be 466 µm shorter in the bidirectional interleaver to break even on energy.

This amount of wiring savings is unlikely to occur, except in a very large chip.

Furthermore, that figure gives only break-even energy - to obtain significant energy

savings using this design, at least a few times that would be needed. Therefore,

it can be said that the effectiveness of a transmission gate interleaver as an energy

saving architecture is marginal. It is, however, more area-efficient than the equivalent

interleaver using unidirectional logic, as we have already shown.

This assessment is supported by the results presented in [90], which describes a

decoder of the 10GBASE-T LDPC code using a bidirectional interleaver. While this

design is smaller than most contemporary decoders for this code, it is not the most

energy efficient - detailed comparisons between this decoder and others can be found

in Tables 5–1 and 5–4 in Chapter 5.

3.6 Summary

In this chapter, we presented a bidirectional interleaver architecture for LDPC

decoders. We synthesized a fully parallel interleaver, including check nodes, for a

stochastic LDPC decoder, implementing the 12 codes specified in the IEEE 802.11n

draft standard. Due to the reduced amount of shuffling and interconnect framework
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required in our design, our system is significantly smaller than the equivalent in-

terleaver implemented in unidirectional CMOS logic. The complete system is 28%

smaller than the reference system and achieves equivalent throughput. However,

it is not as effective as an energy saving architecture, due to the increased energy

demands of tristate drivers compared to their non-tristate equivalents.
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CHAPTER 4

Pulse Width Modulated Min-Sum Decoding

4.1 Introduction

This chapter describes a new approach to low power iterative decoding called

pulse width modulated min-sum (PWM-MS). In PWM-MS, messages are exchanged

over single wires, with their magnitudes encoded using a single pulse of variable

width. This technique has a number of advantages in the power domain: single wire

messages reduce overall wire lengths and parasitic capacitances, it has significantly

lower average switching activity in the interleaver compared to bit-serial min-sum,

and it has very simple computational units.

While the variable node processing consists of simple addition, the check node

processors represent a large part of the complexity in a min-sum iterative decoder.

The reason for this is that each check node must compute the minima of all incoming

extrinsic messages for each of its outputs. It is also possible to apply heuristics to

the check node computation, reducing complexity at the cost of some error correc-

tion performance. Split-row min-sum [64], and the single minimum with correction

technique for bit-serial min-sum in [58] are examples of this. Pulse width encoded

messages, on the other hand, are naturally suited to min-sum decoding, as finding

the minima of these messages is very simple, eliminating this source of complexity.

A VLSI circuit design of a PWM-MS decoder with a (660, 484) LDPC code in

0.13µm CMOS achieved throughput of 5.71 Gbps, an area of 5.76 mm2, and energy
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Figure 4–1: Some examples of pulse width encoded messages. The message y is the
check node result produced from the inputs a, b, and c.

consumption of 65.8 pJ per information bit decoded at an SNR of 5.5 dB. This is

roughly a 19% improvement in energy efficiency over the similar bit-serial min-sum

(BS-MS) architecture [58].

This project was the subject of a journal article published in the November 2010

issue of IEEE Transactions on Circuits and Systems-II [26].

4.2 Pulse Width Message Encoding

In an iterative decoder, the switching activity generated by message passing has

a particularly high priority for reduction. One reason for this is message passing

represents a great volume of exchanged information, as mentioned in Chapter 3.

Representing these messages in a power-efficient format can have a large impact on

the circuit’s overall power consumption [80].

In our proposed pulse width message encoding, the messages between the vari-

able and check nodes are exchanged in sign-magnitude format, with the magnitude

determined by the width of a digital pulse, and transferred over single wires. Figure
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4–1 shows some examples of one possible pulse width encoding scheme, in which the

first bit of each message is a sign bit. The subsequent bits indicate magnitude, with

the signal held at logic 1 for a number of clock cycles equal to the magnitude. The

length of a decoding iteration in clock cycles is thus equal the maximum message

magnitude, plus 1 for the sign bit. Since this number can be set arbitrarily, it is

possible to have a non-power-of-2 number of quantization levels.

One of the key motivations for using such a message encoding scheme is the

very low switching activity. Using the encoding scheme shown in Figure 4–1, for

instance, each message has a maximum of one 0-to-1 transition per decoding cycle.

This low activity translates directly to low dynamic power consumption. Switching

activity could be reduced even further using a transition-based encoding, in which

the signal holds the same state as the sign bit, then transitions to indicate magnitude.

However, this would result in a more complex CMOS circuit implementation as it

requires transition-sensitive circuitry. For these works, we consider only the level-

based scheme as indicated in Figure 4–1.

Since the activity factor varies as the decoding process proceeds, it is more

relevant to characterize switching activity using the total transition count observed

during decoding [80]. Figure 4–2 plots the simulated average number of transitions

per edge in the Tanner graph per decoded codeword for pulse width min-sum (PWM-

MS), pulse width offset min-sum (PWM-OMS), and bit-serial min-sum (BS-MS) to

serve as comparison. This result shows that PWM has lower switching activity

than BS-MS for all given values of the number of quantization bits q and SNR. The

difference is relatively minor at q = 4 (about 5%), though at q = 6 this advantage
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Figure 4–2: The average number of transitions per edge per decoded codeword, for
the (660, 484) LDPC code used in this work.

increases to over 25%. This is because switching activity for PWM-MS remains

roughly constant with q. In BS-MS, the average transition count increases with

the number of bits. Results for offset min-sum (PWM-OMS and BS-OMS) are also

plotted, with PWM-OMS showing a similar advantage.

4.3 Low Complexity Architecture of PWM-MS Decoders

Besides low switching activity, another major advantage of PWM-MS is that it

results in a very low complexity check node. As shown in the check node schematic

of Figure 4–3, the minimum of a group of messages can be computed with a single

AND gate. The check node is fully combinatorial, so the CMOS implementation is

very compact and power is further saved by the lack of sequential elements. The

XOR gate network is used to determine the signs of the outgoing messages on each

edge, while the AND gates determine the magnitudes in accordance with (2.16).
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Figure 4–3: PWM-MS check node of degree dc = 4.

A control signal ctrl selects the appropriate output during the sign and magnitude

computation phases. A parity output is used for convergence detection and early

termination logic.

Not only is this check node architecture very compact, it offers an exact im-

plementation of the min-sum check node function. There is no performance loss

resulting from the application of heuristics.

The PWM-MS variable node is shown in Figure 4–4. It consists of a modified

up/down counter on each incoming edge, which converts the incoming PWMmessage

to 2’s complement binary. When ctrl is high, the up/down counters load their sign

bits from their corresponding inputs, and reset their magnitudes to zero. Thereafter,

they continue to count up or down for each clock cycle that their inputs remian
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Figure 4–4: PWM-MS variable node of degree dv = 3.

high. An adder network computes the hard decision bit estimation, as well as the

outgoing messages on each edge. Down counters on each outgoing edge take the

binary messages as input, and encode them in PWM format. The down counters

load new values from the adder outputs when ctrl is high.

One decoding iteration has a latency of 2q−1 clock cycles, where q is the message

quantization width in bits. On the first cycle of every iteration, nodes compute and

exchange the sign bits of their respective messages. The sequence of computations

on this cycle begins in the VNs. The global control signal ctrl goes active, which

loads the magnitudes of the m
(k)
v→c messages and passes the sign bits through to the

VN outputs. In the CNs, the signs of the m
(k)
c→v messages are computed in the XOR

gate network. Back in the VNs, these sign bits are stored in the up/down counters,

which are also reset to zero by ctrl. On the 2q − 2 subsequent clock cycles, the

message magnitudes are exchanged. The VN down counters count down internally,

with their outputs transitioning from 1 to 0 when their count reaches zero. In the
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CNs, the AND gates find the minima of their incoming messages, as the first input

that transitions to 0 causes the output to transition to 0 as well. Back in the VNs,

the up/down counters count up or down based on their stored sign bit as long as the

incoming signal remains at 1. When it transitions to 0, the counter holds its current

value. At this point, the value stored in the up/down counter is the final m
(k)
c→v

message of the corresponding edge. To conserve power by preventing unnecesary

switching in the VN adder networks, the up/down counter output updates only on

the first clock cycle of every iteration, when ctrl is active. It is set to 0 otherwise.

After 2q − 1 cycles, ctrl goes active again and the next decoding iteration begins.

One notable property of this variable node design is that it can be used to im-

plement offset min-sum for a negligible increase in complexity, as opposed to other

decoder architectures including bit-serial. This is because the sign-magnitude format

of PWM allows the offset to be efficiently applied in the variable node. The offset is

implemented by setting the output counters to transition when their internal count

reaches the OMS offset value, β, rather than zero. Furthermore, applying an offset

reduces the maximum message magnitude. With pulse-width message encoding, this

reduces the number of clock cycles per iteration, and increases throughput accord-

ingly. For instance, with 4-bit quantization and an offset of 1, the maximum message

magnitude decreases from 7 to 6, and the number of clock cycles per iteration from

8 to 7, increasing throughput by 12.5%. It is therefore very advantageous to use

PWM-OMS over PWM-MS.
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Figure 4–5: Special architecture for PWM-MS variable node with degree dv = 2.

4.3.1 Degree-2 Variable Nodes

For LDPC codes with degree-2 VNs, such as the Wi-Fi and WiMax standard

codes, the special VN architecture shown in Figure 4–5 can be used. In this archi-

tecture, one of the up/down counters is initialized to Lv, the initial channel data,

rather than zero. Fewer adders are then needed to compute the outgoing messages

and hard decision bit. However, the up/down counter that initializes to Lv requires

an additional bit to accommodate the larger values it can now reach. This archi-

tecture attains 5-10% lower area in ASIC synthesis than a degree-2 VN using the

“conventional” architecture shown in Figure 4–4.

4.3.2 Augmented Early Termination Check

Decoders with many low-degree VNs also include additional circuitry to perform

an augmented early termination check. This is necessary because low-degree nodes

have a high likelihood of the hard decision bit hv differing from the signs of the

outgoing messages, leading to cases where all parity checks are satisfied, but the
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Figure 4–6: Sign-checking circuit for PWM-MS variable nodes.

decoded bits h contain errors. These cases arise because the initial channel data, Lv,

participates in the calculation of hv, but does not participate in the calculation of

the outgoing messages.

These cases can be prevented by adding the circuit shown in Figure 4–6 to

each VN. This circuit detects whether or not hv is in agreement with the outgoing

messages during the sign computation phase of each iteration (this is also when hv

is updated). If it is not, the parity checks used for early termination are unreliable,

and so early termination is augmented using these sign checks in the VNs. All sign

checks as well as parity checks must be satisfied for early termination to occur.

In theory, it is possible for these “false terminations” to occur with any degree

of VN, depending on the exact values of dv and q. However, in our simulations, they

were only observed occurring in degree-2 VNs. For codes where min (dv) ≥ 4, these

events are vanishingly rare and so the sign check circuitry is not necessary.

4.4 Design Results

We designed PWM-OMS decoders in three different configurations using the

IBM CMRF8SF standard-Vt 0.13 µm CMOS design kit to obtain estimates for sil-

icon area, throughput, and power consumption. We also designed PWM-OMS and
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Figure 4–7: Block diagram of the designed decoder.

PWM-MS decoder prototypes on a Xilinx Virtex-5 LX330 FPGA for verification and

BER/FER measurements. In all cases, the LDPC code used is a (660, 484) regular

(4, 15) progressive edge growth based LDPC code. This code has also been used

in [58] for verifying the bit-serial approach. This section contains discussion of these

results, as well as comparisons with other decoders.

Figure 4–7 shows a top-level block diagram of the designed decoder. It is a

fully node-parallel architecture, and interconnections between the nodes are each a

single wire. Early termination logic uses parity checks from the check nodes to detect

convergence. A state machine Ctrl generates control signals and acts as the off-chip

interface.

We designed PWM-OMS decoders in both unpipelined and pipelined configu-

rations. Figure 4–8 shows a more detailed block diagram of a single VN and CN

pair, which illustrates the difference between the unpipelined and pipelined versions.

The critical path of the unpipelined decoders is traced in red, while the critical path

for the pipelined version is traced in blue. In the unpipelined decoders, the DCs

are bypassed during the sign computation phase. This allows the new signs to be
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Figure 4–8: Detailed block diagram of the PWM-MS decoders showing the critical
paths of the unpipelined decoders (in red) and the pipelined decoder (in blue).

calculated in the CNs and registered in the UDCs on the same clock cycle. However,

the critical path is not from one UDC to a UDC in another VN, but rather from

a UDC through the early termination block to the controller. In the pipelined de-

coder design, the DCs are not bypassed. Thus, during the sign computation phase,

the new sign does not reach the UDCs until the next clock cycle - this causes the

pipelined decoders to have one extra clock cycle of latency per iteration. This also

necessitates the UDC and DC control signals to be separate. In the unpipelined

decoders, the UDC ctrl, DC ctrl, and CN ctrl signals are all equivalent. However,

in the pipelined decoders, UDC ctrl and CN ctrl are equivalent, while DC ctrl is
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Figure 4–9: Decoding performance for different quantization levels of offset min-sum
with an offset of 1 (a), and for 4-bit PWM-MS and PWM-OMS decoders implemented
on FPGA (b).

equal to UDC ctrl time-delayed by 1 clock cycle. In the pipelined case, the critical

path is completely internal to the VN, and runs from the UDC to the DC.

The impact of the number of quantization bits on the BER performance of

PWM-OMS is shown in Figure 4–9a. In terms of the number of quantization bits,

q = 4 results in a very small performance loss compared to q = 6, while q = 3

incurs another loss of 0.4-0.5 dB. Figure 4–9b shows the BER and FER performance

of the FPGA decoder prototypes. For this code, OMS gives a performance gain of

0.4-0.5 dB over conventional min-sum. All BER tests use a maximum of 15 decoding
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iterations. These FPGA prototype results exactly match results obtained with a

software model. These performance tests used an emulated Gaussian channel [91].

Table 4–1 shows ASIC post-layout design results for our decoder in 0.13µm

CMOS, alongside the bit-serial approximate min-sum decoder in [58]. Comparisons

between our decoder and this one are particularly relevant, as they both use the

same process size, supply voltage, and LDPC code. They also have architectural

similarities - both are fully node-parallel with single-wire node interconnections, and

both were designed primarily for low-power applications. Throughput and power

for our designs were calculated using post-layout simulations, with back-annotated

delays and wiring parasitics, and includes the clock trees.

We designed 3 configurations of PWM-OMS decoders. Configuration A is opti-

mized for decoding performance. Configuration B is optimized for energy efficiency,

while configuration C is optimized for throughput.

Since our decoder architecture uses OMS and no heuristics in the check node,

configuration A achieves a coding gain of approximately 0.5 dB over conventional

4-bit min-sum with a maximum of 15 iterations, as shown in Figure 4–9b. On the

other hand, [58] incurs a loss of 0.1 dB due to a check node approximation. We note

that with q = 3, PWM-OMS can achieve approximately the same BER performance

as the 4-bit approximate min-sum used in [58]. Hence, in configurations B and C,

we trade off this 0.6 dB coding gain for reduced area, higher throughput, and better

energy efficiency.

Configuration A has 7 clock cycles per decoding iteration. In standard min-

sum, 8 cycles would be required - 1 for the message sign, plus 7 for the 3 bits of
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Table 4–1: Post-Layout Results and Comparison With Bit-Serial Min-Sum

This work [58]

Architecture PWM-OMS
Bit-serial
approx.
MS

LDPC code (660, 484) (660, 484)

Process and supply
voltage

0.13µm / 1.2 V
0.13µm /
1.2 V

Configuration A B C n/a

Quantization width
[bits]

4 3 3 4

Pipelining no no yes yes

Clock cycles / iteration 7 3 4 4

Clock frequency [MHz] 150 150 250 300

Core area [mm2] 5.76 4.50 4.54 7.3

Cell area [mm2] 4.24 3.31 3.30 5.26

Gate equivalent [Kgates] 556 434 433 690

Max. iterations 15 15

Coding gain [dB]a 0.5 -0.1 -0.1 -0.1

Avg. information
throughput (5.5 dB)

[Gbps]
5.71 9.18 12.2 17.1

Avg. power (5.5 dB)
[mW]

376 465 819 1383

Avg. energy per decoded
bit (5.5 dB) [pJ/bit]

65.9 50.7 67.1 80.9

T/P per unit area [Gbps
/ mm2]

0.99 2.04 2.69 2.34

T/P per unit area per
unit power [Gbps /

(mm2 · W)]
2.64 4.39 3.28 1.69

a Relative to conventional min-sum with q = 4 and 15 max. iterations.
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Figure 4–10: Average power consumption (a) and energy efficiency (b) for a PWM-
OMS decoder with q = 4.

magnitude. However, since we implement offset min-sum, we apply an offset of 1,

reducing the maximum magnitude to 6. Likewise, configuration B takes only 3 cycles

per decoding iteration (1 for the sign, and 2 for the magnitude). Pipelining adds a

cycle of latency, so configuration C requires 4 cycles.

Area is reduced relative to bit-serial min-sum due to the simpler check node.

We define average throughput as the throughput achieved by immediately beginning

decoding of a new codeword once the current one has converged. Average throughput

is therefore determined by the average number of iterations required for convergence,

and varies for different values of SNR. Raw throughput is lower, due to both the lower

clock frequencies and (in the case of configuration A) higher number of clock cycles

per iteration. In terms of throughput per unit area, however, configuration C is 15%

higher than [58]. We also define another metric that takes power consumption into
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account: throughput per unit area per unit power. In these terms, all 3 PWM-OMS

designs are superior to [58]. Energy efficiency, defined in terms of energy consumed

per decoded bit, is also better in PWM-OMS. Plots of average power consumption

and energy efficiency for the A decoder over a range of SNR values are shown in

Figure 4–10. Energy efficiency was determined by dividing average power by the

average throughput at each given value of SNR.

The complexity and energy efficiency of PWM-OMS also compare favourably

with other recent LDPC decoders, although differences in the process size and LDPC

code make direct comparisons difficult. One example is the partially parallel OMS

decoder in [60], which implements a (2048, 1723) Reed-Solomon based code in 65

nm CMOS. It achieves an average information throughput of 47.7 Gbps at 5.5 dB

SNR, with power of 2800 mW and energy of 58.7 pJ/bit.

Another recent architecture is the 90 nm fully node- and bit-parallel min-sum

decoder in [92], which achieves an information throughput of 13.21 Gbps, with an

average power of 1323 mW and energy of 98 pJ/bit at 5 dB SNR. It should be noted

that these figures are without early termination, which was used to greatly increase

throughput and decrease energy in [58], [60], and this work. But since [92] partitions

long inter-node wires with registers, early termination would be less effective due

to added complexity and increased latency. In addition, this architecture requires

parallel check nodes, which become very complex at high degrees, whereas in this

work the check node complexity is extremely low, even at high degrees.
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If we assume energy consumption per information bit scales quadratically with

feature size, the scaled energy of [60] is 279 pJ/bit and [92] is 204 pJ/bit, giving this

work respective improvements of 76% and 68%.

4.4.1 Energy Impact of Loading and Interfacing

One additional consideration to make with these results is that the figures for

power and energy do not include any I/O buffering, and assume that all channel

data Lv and hard decision bits hv are loaded and unloaded in parallel. This is an

important distinction between fabricated decoders, such as [58], and those that report

results based on post-layout simulations, such as this work. Fabricated decoders must

necessarily include I/O buffers and wire bond pads to provide an off-chip interface,

which will consume additional energy.

In addition, if test data generation and result evaluation are not included on the

fabricated die, Lv and hv must be loaded and unloaded from off-chip test equipment.

Doing so in a fully parallel manner would require a prohibitively large number of

I/O ports. For highly parallel decoder designs, the most common solution to this

is to connect the Lv and hv registers together as shift registers, as this technique

requires little hardware overhead. The data is then shifted in and out of the chip in

a semi-parallel or serial manner. This consumes more energy than parallel loading,

because of large amounts of switching activity in these shift registers, and also be-

cause this loading and unloading takes more time, and so leakage losses are greater.

Therefore, in addition to the inherent uncertainty of post-layout energy consumption

as compared to fabricated silicon, the impact of I/O buffers and data loading must

be considered. This section will examine those factors.

70



If test data and hard decision bits are loaded from off-chip, each decoded bit

requires q = 4 bits loaded into the chip and 1 bit loaded out. Using dynamic energy

consumption tables from the standard cell library datasheets [93], this adds 0.786

pJ/bit from the core power supply.∗ This amounts to an increase of 1.2%.

For calculating the energy cost of non-fully-parallel loading and unloading, we

assume all Lv registers begin cleared, hv registers are loaded with zeroes at the tail

of the chain, and both Lv and hv are random data with an average activity factor of

0.5. We also assume w output pins for offloading hv, and q ·w input pins for loading

Lv. Thus, loading and unloading require ⌈ n
w
⌉ clock cycles (recalling that the code

block length n is 660 in this case).

With these parameters, serial loading (i.e., w = 1) has a total energy cost of 74.2

pJ/bit - more than doubling the energy consumed by decoding. As mentioned before,

this high figure can be attributed to the long period of high switching activity as

Lv and hv are shifted through their respective registers. If we use the same number

of input pins as [58] (44 pins, meaning w = 11), then loading adds a much more

manageable 6.73 pJ/bit. Together, loading and I/O add 7.52 pJ/bit, making the total

energy consumption 73.4 pJ/bit - still an approximately 9% improvement over [58],

∗ The pad sides of I/O buffers are driven from a separate, generally higher-voltage
power supply with very strong drivers relative to anything found in the chip core,
since these are designed to drive signals across circuit board traces. Consequently,
pad-side energy consumption is much higher than the core side. However, it is
reasonable to ignore pad-side energy for our purposes, since it originates from a
separate supply, and is dependent on the chip package and test equipment. Other
designs in the literature do likewise.
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but significantly diminished from our earlier figure of 19%. From this result, we can

conclude that loading presents a significant energy cost, and that an energy-efficient

design should use as high of a degree of parallelism as the number of I/O pins will

allow.

Due to the degree of uncertainty of post-layout energy estimation, it is possible

that our PWM-OMS designs actually consume more energy than BS-MS, particularly

if we take loading and I/O into account. However, the standard in the literature for

non-fabricated LDPC decoders is to report “core-only” power and energy based off

post-layout back-annotated simulations and ignore loading and I/O, such as in [64]

and [94]. One argument in favor of this measure is that an LDPC decoder would

not be placed on a separate die in practical applications, but rather as part of an

SoC, so I/O is irrelevant, and any necessary deserialization is not a core part of

the decoder. In addition, some fabricated LDPC decoders perform test pattern

generation and BER/FER monitoring on-die, and use external I/O pins only to set

parameters and read status signals, such as [60]. Because of these reasons, and to

maintain consistent reporting standards with previous works, we therefore ignore

deserialization, non-fully-parallel loading, and I/O in our reported energy and power

results.

4.5 Summary

In this section, we presented a new iterative decoding technique called pulse

width modulated min-sum (PWM-MS), and implemented it for a (660, 484) regular

(4, 15) LDPC code. The advantages of this architecture include very low complexity

check nodes, and low message exchange switching activity. Our post-layout VLSI
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design of a decoder with 4 bits of message quantization achieved a core area of 5.76

mm2, and an average information throughput of 5.71 Gbps at 5.5 dB SNR. It also

achieved an energy efficiency of 65.9 pJ/bit at this SNR, and a coding gain of 0.5 dB

over conventional min-sum owing to the use of the offset min-sum algorithm. This

coding gain can be traded off for additional improvements in area, throughput, and

energy by reducing the number of quantization levels. These results for area and

energy represent respective improvements of 21% and 19% compared to the similar

bit-serial min-sum decoder architecture. These results also compare favourably with

other recent LDPC decoder architectures.
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CHAPTER 5

Decoders Based On Differential Binary Message Passing Algorithms

5.1 Introduction

This chapter presents LDPC decoder designs using differential binary (DB) al-

gorithms, such as the differential decoding with binary message passing (DD-BMP)

algorithm.

While DD-BMP has been shown to achieve error correction performance equal

or superior to MSA when used with LDPC codes based on finite geometries (FG-

LDPC codes) [95], it has never before been analyzed in hardware. At the system

level, this algorithm has several qualities that are useful in energy-efficient designs.

The variable and check nodes are both very simple, which translates to lower area

and power consumption in VLSI chips. Furthermore, binary message exchange that

is highly amenable to broadcasting means wiring overhead is very low, and since the

signs of the memories rarely flip, switching activity is low as well. Finally, DD-BMP

has a low average number of iterations required for convergence to a valid codeword,

giving it a very high average throughput. Voltage and frequency scaling (VFS) can

be applied, trading off throughput for reduced dynamic energy consumption.

Furthermore, FG-LDPC codes, while very powerful, are also highly complex,

which has been an obstacle to their widespread use [96]. In this project, we revise the

DD-BMP algorithm to make it more amenable to VLSI implementation, and design

fully parallel decoders using DD-BMP and modified DD-BMP (MDD-BMP) in 65
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nm CMOS for (273, 191), (1023, 781), and (4095, 3367) FG-LDPC codes. We show

that these algorithms overcome the implementation complexity of FG-LDPC codes,

and demonstrate low area, high throughput, and high energy efficiency competitive

with other state-of-the-art decoder designs.

We also present a new decoding algorithm called IDB, for “improved differential

binary” message passing, which is suitable for decoding LDPC codes other than FG

codes. It was noted in [24] that DD-BMP exhibits poor error correction performance

with non-FG codes. In this work, we find that this poor performance is due to

trapping sets [97] and propose two algorithmic modifications to overcome them:

degeneration, and relaunching. We then present a fully parallel IDB decoder design

for the (2048, 1723) Reed-Solomon-based LDPC code specified in the IEEE 802.3an

(10GBASE-T) standard [13], and show that it achieves significant improvements

in area, throughput, and energy efficiency over other decoders with similar error

correction performance.

5.2 FG-LDPC Codes and the DD-BMP Algorithm

LDPC codes are classified into several types based on the method used to con-

struct them. One of these types is based on Euclidean (EG) and projective (PG)

geometries over finite fields, collectively known as finite geometric (FG) codes [95].

These codes are known to have excellent error correction performance and high min-

imum distances. In addition, their encoding can be performed in linear time with

simple feedback shift registers. However, FG-LDPC codes have a much higher num-

ber of edges in their Tanner graph representations and higher degree nodes than

many other types of LDPC codes. The (273, 191), (1023, 781), and (4095, 3367)
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FG-LDPC codes used in this work have variable and check node degrees (dv, dc) of

(17, 17), (32, 32) and (64, 64) respectively. This high complexity has been an obstacle

to their widespread use, as noted in the hybrid soft bit-flipping decoder presented

in [96]. This implementation is highly routing-limited, even with a partially parallel

architecture. With DD-BMP and its variants, however, we have produced efficient

VLSI designs of FG-LDPC codes, demonstrating that these powerful codes are not

too complex for widespread application. It should also be noted that DD-BMP is

not limited to use with FG-LDPC codes, as it has also been found to perform well

with any code with high row and column weights [24].

The DD-BMP algorithm implemented in this work is based on [24]. A number

of changes have been made to make it more amenable to VLSI implementation. In

particular, a random process used during initialization has been eliminated, the hard

decision bits are not functions of their previous values, and convergence detection is

performed with parity checks as in [58] and [26], rather than a syndrome check.

First, the log-likelihood ratios (LLRs) Lv of the received bits are read from the

channel:

Lv = ln

[

P (xv = 0|yv)

P (xv = 1|yv)

]

, (5.1)

where xv is the vth transmitted bit, and yv is the vth value received from the

channel.

Next, the variable nodes are initialized with quantized LLRs:
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M (0)
v,c =











































−2q−1, if Lv ≤ −Tclip

2q−1 − 1, if Lv ≥ Tclip









Lv
(

Tclip

2q−1

)







 , if otherwise.

(5.2)

where Mv,c is the memory corresponding to the edge between variable node v

and check node c, Tclip is the LLR clipping threshold, and q is the number of bits of

quantization. For the decoder designs presented in this paper, we use Tclip = 10.5 and

q = 6, and thus our quantization step is 0.328125, giving the quantized values the

equivalent of 4.39 integer bits (including sign) and 1.61 fractional bits. However, for

the sake of simplicity, quantized values are treated internally as q-bit signed integers

as per Equation 5.2, and thus differ from the “true” LLR values by a scaling factor

equal to the quantization step. This value of Tclip is optimized for the decoder designs

presented in this chapter, and offers a slight improvement in error rate performance

and convergence speed compared to a conventional fixed-point number representation

with an integer number of bits representing the magnitude and sign.

The variable-to-check messages are determined by the signs of the values in the

corresponding memories:

b(k)v→c = sgnr

(

M (k)
v,c

)

, (5.3)

where b
(k)
v→c is the single-bit message from variable node v to check node c at

iteration k, with k being initially set to 0, and sgnr is a sign function modified so

that sgnr (0) = 1.
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The check node operation consists of:

b(k)c→v =
∏

v′∈Vj\v

sgnr

(

b
(k)
v′→c

)

, (5.4)

where b
(k)
c→v is the single-bit message from check node c to variable node v at

iteration k, and Vj is the set of variable nodes incident to check node c.

At this point, the iteration count k is incremented and the variable node oper-

ation updates the memories Mv,c as follows:

M (k)
v,c = M (k−1)

v,c +







s ·
∑

c′∈Ci\c

b
(k−1)
c′→v







 , (5.5)

where the arbitrary scaling factor s has been added to the original algorithm to

improve performance.

The hard decision bits of each variable node are computed by a majority vote

of the sign bits of each memory Mv,c and the initial channel data Lv:

h(k)
v =



















0, if sgnr (Lv) +
∑

c∈Ci

sgnr

(

M (k)
v,c

)

≥ 0

1, if otherwise.

(5.6)

The check and variable node operations are repeated iteratively until either a

valid codeword is detected, or the iteration count k reaches a limit kmax.

5.3 Architectural Description

The check node function of DD-BMP is implemented in CMOS with a network

of XOR gates, as shown in Figure 5–1. Figure 5–1a shows a direct implementation,

with separate connections to and from each adjacent variable node. The check nodes
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(a) (b)

Figure 5–1: DD-BMP check node schematics for non-broadcast (a) and broadcast
(b) versions.

can also be adapted to a “broadcasting” type as shown in Figure 5–1b. In this

architecture, the 2-input XOR gates are relocated to the variable nodes, where their

intrinsic contribution to the global check result is removed locally, and each CN has

a single “broadcast” output. Because sign computation makes up the entirety of the

CN operation in DD-BMP, this results in a decoder that is logically equivalent to the

non-broadcasting version. However, the broadcasting version yields a simpler inter-

node connection structure which tends to produce better results with automated

place-and-route tools. In [56], broadcasting resulted in a 26% reduction in the average

node-to-node wire length of a generic fully parallel decoder of a (2048, 1723) Reed-

Solomon (RS) based LDPC code [81].

The variable node schematic is shown in Figure 5–2. It consists of 2-input XOR

gates at the inputs to implement broadcasting, an adder network to compute the

sums of the input messages, and accumulators to perform the memory operations.

The binary logic 0 and 1 respectively correspond to the +1 and −1 messages used
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Figure 5–2: DD-BMP variable node schematic.

Figure 5–3: MDD-BMP variable node schematic.

in DD-BMP. The accumulators take the sums of the incoming CN-to-VN messages

as input, and change their stored value by the corresponding amount. The stored

values saturate at the maximum positive and negative numbers to prevent overflow.

The variable-to-check message outputs are taken from the sign bits of these

accumulators. The initial values of the accumulators are set with soft decision data

received from the channel. Finally, the hard decision bit is determined by a majority

vote of all accumulator signs, plus the sign of the initial channel data.
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Modified DD-BMP (MDD-BMP) is a variant of the original algorithm in which

only a single memory is assigned to each variable node, replacing the unique variable-

to-check messages with a single global message. Hence the memory update function

of Equation 5.5 is replaced with:

M (k)
v = M (k−1)

v +

⌊

s ·
∑

c′∈Ci

b
(k−1)
c′→v

⌋

. (5.7)

The variable node schematic for MDD-BMP is shown in Figure 5–3. This sim-

plification results in a loss in BER performance, though it also greatly reduces the

complexity of the variable node. We demonstrate that in the case of MDD-BMP, the

performance degradation is small, while the complexity reduction is significant, so

using MDD-BMP in VLSI implementations is well justified. Furthermore, it allows

the broadcasting concept to be applied to the variable-to-check messages. In this

work, we present results for decoders based on both DD-BMP and MDD-BMP.

At the system level, these architectures posses several merits that are useful

in energy-efficient designs. The variable and check nodes are both simple, which

translates to lower area and power consumption in VLSI chips. Furthermore, binary

message exchange and broadcasting reduces wiring overhead. Since several succes-

sive messages opposing the value stored in a VN must be received before the sign

of the VN changes, switching activity is also low [24]. Furthermore, DD-BMP is

amenable to efficient highly parallel architectures. Unlike some other fully node-

parallel decoder architectures such as bit-serial min-sum [58] and our previous pulse

width min-sum decoder from Chapter 4, iterations in DD-BMP complete in a single

clock cycle. As a result, DD-BMP tends to converge to a valid codeword rapidly,
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giving it a very high average throughput. Voltage and frequency scaling (VFS) can

be applied, trading off throughput for reduced dynamic energy consumption.

5.4 Design Results

We designed DD-BMP and MDD-BMP decoders for a (273, 191) FG-LDPC

code, as well as an MDD-BMP decoders for (1023, 781) and (4095, 3367) codes using

TSMC 65 nm 7LM single-Vt CMOS technology. Due to high memory requirements,

designs using the larger codes with DD-BMP turned out to be impractical. All

decoders are fully parallel, and use an early termination scheme based on parity

check satisfaction. In addition, none of the decoders employ pipelining, and therefore

iterations complete in a single clock cycle with no additional latency.

All results presented herein are based on post-layout simulations of ASIC stan-

dard cell designs, and include the clock tree, with back-annotated delays and wiring

parasitics. Each decoder was produced using the same design flow: we used Cadence

RTL Compiler Ultra for logic synthesis, Cadence EDI System for place and route,

Synopsys VCS for post-layout simulation, and Synopsys Primetime for power esti-

mation. All presented results use “typical” operating conditions. For nominal supply

voltage, these are TT process, VDD = 1.0 V, and T = 25◦C. For reduced supply

voltage results, these are TT process, VDD = 0.8 V, and T = 25◦C. Results for both

voltages are obtained using design kit libraries.

Figure 5–4 shows the BER performance of our designs, along with baselines

of min-sum (MSA) and offset min-sum (OMS). All use 6 quantization bits and 31

maximum iterations. With these parameters and codes, OMS delivers performance

within 0.1 dB of floating point SPA (FP-SPA). These measurements all use random
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Figure 5–4: BER performance of the codes in this work decoded with DD-BMP,
MDD-BMP, offset MSA (OMS), and MSA. All simulations use 6 quantization bits
and 31 maximum iterations.

codewords, with binary phase-shift keying (BPSK) modulation, and noise added

using an emulated additive white Gaussian noise (AWGN) channel. These results

were obtained with software simulations, and in the case of the (273, 191) code, with

a prototype implemented on a Xilinx Virtex-5 LX330 FPGA.

The number of quantization bits q and scaling factor s are selected to give the

best trade-off between performance and area. For the (273, 191) decoders, q = 6

and s = 1 are used, while for the (1023, 781) and (4095, 3367) decoders, q = 6 and

s = 0.5 are used. As shown, decoding of the (273, 191) code is slightly worse than

MSA with both DD-BMP and MDD-BMP. The longer codes exhibit performance
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between OMS and MSA when decoded with MDD-BMP, with the (1023, 781) code

performing 0.7 dB worse than OMS and 0.4 dB better than MSA at a BER of

10−6. The (4095, 3367) code delivers the best relative performance, being about

0.4 dB worse than OMS and 0.5 dB better than MSA. Standard MSA performs

quite poorly with these codes, because numerical saturation occurs in the high-

degree VNs. Thus, DD-BMP and MDD-BMP can perform better, despite having less

inter-node information exchange. In addition, the updating rules of DD-BMP and

MDD-BMP are based on relaxed successive substitution, which underestimates the

reliability of check node outputs. This has been shown to improve the error correction

performance of iterative decoders in general [98]. MSA, by contrast, overestimates

check-to-variable messages compared to SPA. These problems can be solved with

OMS, although it is very costly to implement, due to the high degree check nodes in

these codes. These results demonstrate that DD-BMP and MDD-BMP achieve good

error correction performance that is suitable for many applications, despite having

far lower complexity than MSA. Notably, a highly parallel decoder based on MSA or

its variants would be too complex for a practical VLSI implementation of the longer

FG-LDPC codes.

Simulation results for throughput, average iteration count, power consumption,

and energy efficiency are shown in Figures 5–5, 5–6, 5–7, and 5–8 respectively. The

data sets for both nominal supply voltage (VDD = 1.0 V) and reduced supply voltage

(VDD = 0.8 V) are obtained by post-layout simulations using standard cell libraries

for each of the respective supply voltages. In these simulations the decoders are
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Figure 5–5: Average throughput for the designed decoders.

operated continuously. Once the decoder signals completion, either through conver-

gence detection or by reaching the iteration limit, another codeword is immediately

loaded and decoding begins again. The values for energy efficiency were calculated

by dividing power by throughput.

The full post-layout ASIC design results are summarized in Table 5–1, alongside

results for comparable previously published decoders. For the shorter codes, DD-

BMP and MDD-BMP have highly area-efficient implementations, despite their high

node degrees and edge counts, demonstrating that FG-LDPC codes can be efficiently

implemented in VLSI. In the case of the (4095, 3367) code, the huge number of edges

(262,080) and high node degrees lead to severe routing congestion, which results

in much lower utilization, clock frequency, and energy efficiency. Despite this, our

design using the (4095, 3367) code is still practicable. Furthermore, its decoding
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Table 5–1: Post-Layout Design Results and Comparisons With Other Works

This work [64] [60] [96]

Decoding algorithm DD-BMP MDD-BMP MDD-BMP MDD-BMP Split-row MS Offset MS Hybrid SBF

LDPC code (273, 191) (273, 191) (1023, 781) (4095, 3367) (2048, 1723) (2048, 1723) (1057, 813)

Node degrees (dv , dc) (17, 17) (17, 17) (32, 32) (64, 64) (6, 32) (6, 32) (33, 33)

Edge count 4641 4641 32736 262080 12288 12288 34881

Technology 65 nm 65 nm 65 nm 65 nm 65 nm 65 nm 180 nm

Quantization bits 6 6 6 6 5 4 4

Area 1.44 mm2 0.276 mm2 1.38 mm2 15.37 mm2 4.84 mm2 5.35 mm2 7.4 mm2

Utilization 89% 90% 93% 43% 97% 84.5% 50%

Decoding iterations 31 31 31 31 11 8 + 6 post proc. 40

Supply voltage (V) 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.3 0.7 1.2 0.7 1.8

Clock frequency (MHz) 400 270 550 380 360 260 180 120 195 35 700 100 345

Min. throughput (Gbps) 3.41 2.30 4.69 3.24 11.5 8.31 23.0 15.3 36.3 6.52 15.8 2.26 0.25

Av. throughput (Gbps)∗ 26.9 18.2 37.4 25.8 74.8 54.0 140.9 93.9 92.8 16.6 47.7 6.67 1.05

Av. power (mW)∗ 894 375.2 183 79.3 989 441 5354 2210 1359 62 2800 144 1450

Av. energy (pJ/bit)∗ 33.3 20.6 4.88 3.07 13.2 8.16 37.9 23.5 14.6 3.7 58.7 21.5 1381

Scaled energy (pJ/bit)† 33.3 4.88 13.2 37.9 8.64 40.8 153.9

Scaled tpt. (Gbps/mm2)‡ 18.7 135.5 54.2 9.2 19.2 8.92 1.1

∗ Averages are measured at Eb/N0 = 4.5 dB in this work, at Eb/N0 = 4.55 dB in [64], at Eb/N0 = 5.5
dB in [60], and at BER = 10−5 in [96].

† Energy scaled to 1.0 V and 65 nm process.

‡ Average throughput per unit area scaled to 65 nm at constant frequency.
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Figure 5–6: Average iteration counts for the designed decoders.

throughput exceeds 200 Gbps for values of Eb/N0 above 5.5 dB. It also has the largest

BER performance gain over MSA, and the smallest gap to OMS performance.

Due to differing codes and other parameters, it is difficult to make fair compar-

isons between this work and other energy-efficient designs. However, scaled through-

put per unit area and energy per decoded bit are considered to be the most mean-

ingful efficiency metrics for comparing decoders under similar conditions [79].

Two different designs for an energy-efficient min-sum decoder are presented

in [64] and [60], the former using a split-row approach and the latter using a grouped-

parallel approach. Compared to [60], MDD-BMP with the (1023, 781) code achieves

6.1 times greater throughput per unit area and approximately 3.1 times the energy

efficiency after scaling to a 1.0 V supply voltage. Compared to the split-row decoder

in [64], this MDD-BMP decoder achieves 2.8 times greater throughput at nominal
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Figure 5–7: Average power for the designed decoders.

supply voltage, but has 35% higher energy consumption per decoded bit after supply

voltage scaling to 1.0 V. However, since [64] uses a 1.3 V supply, scaling would con-

siderably reduce its throughput, and MDD-BMP has 10.6% better energy efficiency

at the nominal voltages.

In addition, both [64] and [60] use a (2048, 1723) LDPC code that is known to

have an early error floor - the offset MSA of [60] exhibits an error floor at BER =

10−10 that is overcome with post processing. Split-row [64], which uses normalized

MSA with check node heuristics, only provides results down to BER = 10−7 and

does not investigate the presence of an error floor. FG-LDPC codes, on the other

hand, are well known for the absence of early error floors. This is confirmed by the

BER measurements in Figure 5–4, which show that DD-BMP and MDD-BMP do

not exhibit any error floor above BER = 10−11, even with the short (273, 191) code.
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Figure 5–8: Average energy per decoded bit for the designed decoders.

The hybrid soft bit-flipping (SBF) decoder in [96] uses a (1057, 813) FG-LDPC

code very similar to the (1023, 781) code used in this work, and achieves performance

approximately 0.2 dB better than MDD-BMP. However, even with a partially parallel

architecture, this algorithm is more computationally intensive and highly routing-

limited, and throughput is much lower than fully parallel designs. DD-BMP and

MDD-BMP also achieve better energy efficiency after scaling for process technology

and supply voltage.

5.5 Use With Other LDPC Codes

Although we have shown that differential binary (DB) algorithms are an effec-

tive, energy-efficient means of decoding FG-LDPC codes, it is not always practical

or possible to use an FG code. In particular, communications standards mandate

the use of standard codes, and there are currently no standards that use FG codes.
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Figure 5–9: BER/FER performance of IDB with the (2048, 1723) RS-LDPC code,
compared to the original MDD-BMP algorithm with 100 iterations, and 4-bit OMS
with 20 iterations.

Simulation results in [24] show that DD-BMP can effectively decode randomly

generated LDPC codes, as long as the VN degree is high enough, but suffers from

poor error correction performance otherwise. We have also verified that MDD-BMP

has poor decoding performance for a (2048, 1723) RS-based LDPC code with (dv, dc)

of (6, 32) [81]. This code is used in the IEEE 802.3an standard for 10 Gbps Ethernet

(10GBASE-T) [13], and is also a common benchmark code for highly parallel LDPC

decoder implementations.

Figure 5–9 plots the BER/FER performance of this code decoded using MDD-

BMP with q = 6, s = 0.5 and kmax = 100, and offset min-sum (OMS) with q = 4

and kmax = 20. MDD-BMP performs considerably worse than OMS with this code,
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and additionally exhibits a high “error floor” - a region in which the slope of the

curve falls significantly above a certain signal-to-noise ratio.

The topic of error floors and their causes in LDPC codes has been the subject of

several previous works. It is well known that a major cause of error floor behaviour

is the presence of inherent structural flaws in the code’s graph. Due to these flaws,

certain error patterns occurring in small sub-graphs are maintained or strengthened

under iterative message passing. Consequently, the decoding algorithm is “trapped”

in this error pattern, and fails as it is unable to correct it.

In [99], this phenomenon was observed in a (2640, 1320) Margulis LDPC code.

The cause was identified as “near-codewords” on account of the stability of these

structures under iterative decoding, despite them not being valid codewords. The

term trapping sets was introduced in [97] to describe in general the patterns which

cause these failures in LDPC codes over an AWGN channel. An (a, b) trapping set is

defined as a subgraph consisting of a erroneous VNs (the “weight” of the set), with

an extrinsic message degree (EMD) of b (i.e., the number of unsatisfied CNs incident

to the erroneous VNs).

The related concept of stopping sets, which determine error floor performance

of LDPC codes over the binary erasure channel, was studied in [100]. Error floor

behaviour has also proven to be a major issue in the (2048, 1723) RS-LDPC code,

as the 10 Gbps Ethernet specification mandates very low BER performance. The

dominant trapping sets of this code, termed absorbing sets, are defined as a special

subclass of trapping set which is guaranteed to be stable under Gallager bit-flipping
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decoding [101]. Additional analysis of the formation and dynamics of absorbing sets

is performed in [102].

There have also been a number of implementation-oriented methods proposed

for lowering the error floors of LDPC codes by overcoming or avoiding trapping sets.

A prominent example is [60], which presents a hardware implementation of an OMS

decoder for the (2048, 1723) RS-LDPC code employing a post-processing decoding

stage. This technique has proven highly effective at overcoming the dominant (8, 8)

absorbing set of this code, and thereby lowering the error floor. Another hardware

implementation in [103] proposes an iterative decoding algorithm with backtracking,

which attempts to collapse trapping sets by identifying participating bits and flipping

them. The stochastic decoders in [71] and [72] can employ redecoding, which restarts

decoding with a different random number generator seed - since these algorithms

are probabilistic, decoding may thus take a different trajectory and avoid entering

a trapping set that caused a previous attempt to fail. Similarly, in dithered belief

propagation, random processes are used in attempts to avoid or break out of trapping

sets [104].

Likewise, early error floors and poor error correction performance are issues

that must be solved for DB algorithms to be of practical use with general (non-

FG) LDPC codes. In this work, we will focus on the (2048, 1723) RS-LDPC code,

due to its importance to the IEEE 802.3an standard, the large body of prior work

investigating its trapping sets, and its high popularity as an implementation target

for highly-parallel decoder architectures.
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Figure 5–10: The dominant (4, 12) trapping set of the (2048, 1723) RS-LDPC code
under MDD-BMP decoding.

5.6 Trapping Sets

A detailed examination of the failure cases of MDD-BMP with the (2048, 1723)

code revealed that decoding failures in the error floor region occurred due to trapping

sets with very low weights and high EMDs. The dominant set among these is a (4, 12)

trapping set, the subgraph of which is shown in Figure 5–10. It is easy to see how this

configuration fails under MDD-BMP decoding: each of the erroneous VNs receives

3 messages opposing the incorrect bit, and 3 reinforcing it. These messages sum to

0, and so the state of the VN does not change. The decoder is therefore deadlocked

and unable to correct these errors.

This set can, in fact, be considered an absorbing set in the context of MDD-BMP,

because it is stable under bit-flipping operations. This arises because MDD-BMP

employs VN message broadcasting (i.e., each VN computes a single global message,

which is sent to all neighbouring check nodes). We therefore define a weak absorbing

set as a set of VNs, such that at least dv/2 of each VN’s neighbouring CNs are
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connected to the set an even number of times. This differs from the absorbing set

definition given in [101] and [102], in which strictly greater than dv/2 of each VN’s

neighbours must have an even number of connections to the set. We henceforth refer

to this as a strong absorbing set to distinguish it from a weak one. The (2048, 1723)

RS-LDPC code contains a great number of weak absorbing sets. Many of these,

such as the (4, 12) set detailed above, are very small in size and have very large

multiplicities, and thus result in the severe error floor seen in Figure 5–9 [97].

Furthermore, the use of binary messages exacerbates the vulnerability of MDD-

BMP to trapping sets, as a strong extrinsic message cannot overcome a group of

weak intrinsic messages. One consequence of this is that once a (weak) absorbing set

is entered, it cannot be escaped, regardless of the LLR values in the participating

VNs.

5.7 An Improved Differential Binary Algorithm

While a variety of algorithmic methods have been proposed for lessening the

impact of trapping sets, none are particularly applicable to MDD-BMP, or to the

weak absorbing sets that dominate its error floor with the 10 Gbps Ethernet LDPC

code.

For instance, in the post-processing decoding phase of [60], the magnitudes of

messages from unsatisfied check nodes are scaled up, while messages from satisfied

check nodes are scaled down, but this technique is ineffective with binary messages.

The backtracking algorithm of [103] attempts to escape trapping sets by flipping

VNs connected to unsatisfied CNs, but this is only effective for trapping sets with

few candidate VNs. For the case of our (4, 12) weak absorbing set, there are only 4
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erroneous VNs out of 384 candidates, so a large number of trials would be needed

to be effective. The random sign flip (RSF) technique of [104] faces a similar is-

sue. Other techniques, such as bi-mode decoding [105], significantly increase the

complexity of VLSI implementations.

We propose instead two low-complexity modifications to the MDD-BMP algo-

rithm, called degeneration and relaunching. We refer to MDD-BMP with either

or both of these modifications as IDB, for “improved differential binary” decoding

algorithm.

The degeneration technique modifies the VN operation such that an offset d is

subtracted from the differential value at each iteration. The MDD-BMP variable

node update function of (5.7) is thus modified to:

M (k)
v = M (k−1)

v +

⌊

s ·
∑

c′∈Ci

b
(k−1)
c′→v

⌋

− d · sgnr

(

M (k−1)
v

)

. (5.8)

This will cause the stored value Mv to “degenerate” towards zero over time,

unless the message sum has a magnitude equal to or greater than d. Also note

that if M
(k−1)
v and the message sum are sufficiently small, Mv will oscillate between

positive and negative values on successive iterations. The primary purpose of this

is to provide a mechanism to break up weak absorbing sets. The VNs in such a

set with dv/2 connections to falsely satisfied CNs will have an incoming message

sum of zero, and will therefore eventually change sign and possibly cause the set to

collapse. Returning to our (4, 12) weak absorbing set example in Figure 5–10, it can
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be readily seen that flipping the sign of one or more VNs will quickly correct the

remaining VNs.

However, while the degeneration technique is effective at overcoming the weak

absorbing sets that beleaguer MDD-BMP, it is ineffective at correcting strong ab-

sorbing sets. This is because flipping a VN in a strong absorbing set would require a

large value of d, which would then cause correct bits outside the set to be erroneously

flipped and propagate errors through the entire graph. In fact, strong absorbing sets,

including the infamous (8, 8) set that has been the subject of much scrutiny in prior

works, make up the dominant failure modes of IDB with degeneration. We also

observe that these sets are encountered with much greater frequency than in OMS.

As noted above, the use of binary messages contributes to this, as an absorbing set

cannot be disrupted by a small number of strong extrinsic messages.

In order to further improve the performance of IDB, we propose another algo-

rithmic modification called “relaunching”. Prior works have noted that since the

decoding outcome is dependent on the initial state of the decoder, an unsuccessful

decoding attempt can possibly be corrected by applying small perturbations to the

initial state and retrying. For example, the concept of “redecoding” for stochas-

tic LDPC decoders was introduced in [107], and is also used in [71]. As stochastic

decoding is a probabilistic process, redecoding re-attempts decoding with the same

initial channel LLR values, but a different random number generator (RNG) seed.

Similarly, the random initial state (RIS) technique proposed in [104] re-attempts

decoding with random changes applied to the initial channel data.
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With the relaunching technique, we divide the decoding process into multiple

phases denoted by an index p. At the start of each phase, the variable nodes are

reset to the initial channel LLR values with an offset applied as follows:

M (0,p)
v = sgnr (Lv) ·max

(

1− sgnr (Lv)

2
, |Lv| − F (p, v)

)

, (5.9)

where F (p, v) is a non-negative function of the decoding phase p and VN index

v. Decoding then proceeds normally, until a valid codeword is detected or kp
max

iterations have passed. If the decoder did not converge to a valid codeword, p is

incremented and the next phase of decoding begins, or if p is the final phase, failure

is declared and decoding stops.

The relaunching technique is similar to RIS in that it attempts to circumvent

decoding failures by re-attempting decoding with different initial channel values.

However, in relaunching, the changes applied to the initial channel values are deter-

ministic, their magnitudes can never be increased or their signs flipped as a result of

these changes, and different phases p may use different values for the parameters s

and d in the VN update function.

5.7.1 Parameter Selection

The IDB algorithm has a large design space with several parameters: s, d,

number of phases p, kp
max, and even the relaunch function F (p, v). This section

describes the trade-offs associated with each parameter, and presents a balanced

decoding schedule that is used in the subsequent IDB decoder design.
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The parameters s and d control the VN update function. As mentioned ear-

lier, setting s < 1 improves error correction performance through successive relax-

ation [98]. However, lower values of s also increase the average number of iterations

required for convergence, reducing throughput. Very low values of s should also be

avoided, since they may cause the sum of incoming messages to be incorrectly trun-

cated to zero, or unable to overcome the degeneration factor d. In terms of hardware

impact, s = 2x (where x is an integer) can be implemented with no additional hard-

ware, which makes s = 1 and s = 0.5 attractive options. Other values require one or

more additional adders in the VN, which increase the amount of logic, critical path,

and energy consumption of the decoder. While s = 0.75 is a reasonable value in

terms of algorithmic performance, the additional circuit and implementation costs

are much higher than the benefits of this value. Thus, we consider only s = 1 and

s = 0.5.

For d, the value should be as small as possible. As mentioned before, a large

value of d can cause correct bits or majority inputs to be overruled. Thus, d = 1 is

optimal, as representing any smaller number would require additional hardware.

The relaunching function F (p, v) would ideally be random, as in the RIS tech-

nique upon which it is based [104]. However, large amounts of random data necessi-

tating a large number of RNGs would be required for this, which conflicts with the

design goals of energy efficiency and low area. Instead, we chose a modulo function,

using only adders and comparator. This design was found to have very little impact

on error correction performance compared to random data, while also being much

simpler.
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Table 5–2: Decoding Schedule For IDB With Relaunching

Phase (p) F (p, v) kp
max s d

0 1 45 1 1

1 1 45 0.5 1

2 - 6 [(p+ v − 1) mod 5 + 1] 45 0.5 1

Finally, the number of phases p and iterations per phase kp
max is primarily de-

pendent on the desired level of error correction performance. In this case, we would

like to achieve BER/FER performance comparable to or better than the split-row

min-sum [64], stochastic [71], and RHS algorithms [72]. A lower priority in this

design is maximum latency, or worst-case performance, which is determined by the

maximum number of iterations.

The IDB decoder designed in this work uses the parameters and decoding sched-

ule shown in Table 5–2. The initial phase applies a uniform offset of 1 to the initial

LLR data. The relaxation factor s of 1 reduces error correction performance for this

phase, but also reduces the average number of iterations, thus giving higher average

throughput. The next phase uses the same uniform offsets with s = 0.5. In successive

phases, offset values from 1 to 5 are assigned sequentially to each Lv. All phases have

a degeneration factor of 1, and 45 maximum iterations, giving the overall decoding

process 315 maximum iterations.

The error correction performance of IDB is shown in Figure 5–9, along with OMS

(q = 4, kmax = 20) and MDD-BMP (q = 6, kmax = 100) as baselines. The parameters

used for IDB with only the degeneration technique are q = 6, s = 0.5, kmax = 45,

and d = 1, while IDB with both the relaunching and degeneration techniques uses

q = 6 and the schedule from Table 5–2 (labelled in the legend as 7x45 iter.) As these
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Figure 5–11: Cumulative and marginal FER/BER performance of IDB with re-
launching, at Eb/N0 = 4.5dB, using the schedule shown in Table 5–2.

results show, degeneration is hugely successful in improving the error correction

performance over MDD-BMP. The error floor is reduced by at least 2 orders of

magnitude, and BER performance within 0.7 dB of OMS is achieved in the waterfall

region. The improvement from relaunching is less dramatic but still significant, about

0.4 dB around BER = 10−7. Notably, this gives IDB error correction performance

comparable to split-row min-sum [64], stochastic [71], and relaxed half-stochastic

algorithms [72], but with much lower computational complexity.

The cumulative and marginal error correction performance for each relaunching

phase at Eb/N0 = 4.5dB is plotted in Figure 5–11. The marginal error rate of a

phase p is defined as the proportion of frames (or bits) that are not successfully

decoded during phase p, out of all frames (or bits) in which phase p is reached.
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These results show the effectiveness of relaunching at correcting frames that could

not be decoded successfully with a single phase of IDB. In addition, despite the high

maximum number of iterations for the overall decoding process (315), we observe

that the vast majority of frames decode successfully in the first phases, meaning that

the average number of iterations is much lower (see Figure 5–16). We also observe

steeply diminishing returns in the marginal performance of each phase, from which

we can conclude increasing the number of phases will not significantly improve error

correction performance. It is also notable that the marginal BER is higher than the

marginal FER for each relaunch, meaning that relaunching improves the FER more

than it improves the BER, and thus also increases the average number of bit errors

per frame error. This shows that relaunching corrects a greater proportion of frame

errors with few bit errors, such as the (8, 8) and other small absorbing sets.

A histogram showing the distribution of the number of iterations required for

convergence to a valid codeword Eb/N0 = 4.5dB is shown in Figure 5–12. A total of

108 randomly generated frames are plotted. This histogram also shows the mean and

points of interest for the cumulative distribution function D. This again shows that

the convergence performance of IDB is very fast on average, but also has a very long-

tailed distribution. The overall mean is 6.68 iterations, and 99% of frames converge

in 17 or fewer iterations, but a non-negligible number of frames also converge after

200 or more iterations. This histogram also justifies the choice of kp
max = 45 for each

schedule entry - after 45 iterations, decoding is more likely to be successful after

a relaunch, which can be seen in the peaks of the distributions for each individual

phase rising above the rightmost edge of the previous phase.
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Figure 5–13 shows the error correction performance of IDB decoding with other

LDPC codes with other construction methods: (648, 324) and (648, 540) irregular

quasi-cyclic (QC)-LDPC codes from the Wi-Fi (IEEE 802.11n) specification [10],

and a (660, 484) regular progressive edge growth (PEG) based code, with (dv, dc) =

(4, 15). As expected, MDD-BMP and IDB perform quite poorly with the Wi-Fi

codes, due to the presence of large numbers of degree-2 VNs in these codes. IDB

fares slightly better with the (648, 540) code, as it has fewer of these low degree

nodes, but is still 0.6 - 1.0 dB worse than OMS. The performance of IDB with

the (660, 484) PEG-based code is considerably better, greatly improving over MDD-

BMP and approaching within 0.4 dB of OMS at its closest point. However, IDB also

exhibits a severe error floor with this code. These results again show that for best
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Figure 5–13: BER performance of IDB decoding with other LDPC codes, along with
MDD-BMP and OMS for comparison. All decoders use 6 bits of quantization. IDB
uses the decoding schedule from Table 5–2, OMS and MDD-BMP use 20 and 45
maximum iterations respectively.

results, DB decoding algorithms should be used in conjunction with codes that lack

low degree VNs.

5.8 Design Results For IDB

As with DD-BMP and MDD-BMP, we have created an ASIC standard cell

design of an IDB decoder, and used post-layout simulations to estimate the through-

put, power consumption, and energy efficiency. This design uses the (2048, 1723)

RS-LDPC code used in the 10 Gbps Ethernet specification, with 6 bits of quantiza-

tion, and employs degeneration and relaunching according to the decoding schedule

shown in Table 5–2. This design employs the same process technology (TSMC 65

nm 7LM single-Vt CMOS), software tools, design flow, and operating conditions as
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Figure 5–14: Layout view of the IDB decoder design.

specified in Section 5.4, and again post-layout simulations are used to obtain all cir-

cuit performance metrics. Figure 5–14 shows a screenshot of the layout view of the

IDB decoder within Cadence EDI.

A top level block diagram of the designed IDB decoder is shown in Figure 5–

15. Architecturally, the IDB decoder is highly similar to MDD-BMP, the algorithm

from which it is based. As before, this decoder is not pipelined, and each iteration

completes in a single clock cycle. The degeneration function is implemented internally

by the accumulators. Relaunching requires a channel data buffer to retain the original

values of Lv throughout the decoding process, which is labelled “Lv buffer” in the

figure. The values for M
(0,p)
v - that is, Lv − F (p, v) - are computed in parallel with

arithmetic modules between the Lv buffer and the accumulators. Thus each relaunch

takes a single clock cycle and can be performed concurrently with the final iteration
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Figure 5–15: Top level block diagram of the IDB decoder, showing a check node, 2 neighbouring variable
nodes, and other top-level components. The critical path is traced in red.
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Table 5–3: IDB Decoder Critical Path (Typical Operating Conditions)

Component Delay (ps)

Accumulator output (start point) —

VN-CN buffers & interconnect 299

Check node 368

CN-VN buffers & interconnect 353

Input XOR 236

Adder 260

Accumulator (end point) 407

Total 1923

of the previous phase. The load control signal causes the accumulators in each VN

to load Lv − F (p, v) at the start of each decoding phase. The decoding phase p is

generated by the controller state machine and distributed to all VNs, where it is

used to determine F (p, v) and s (v is constant for each given VN). As before, early

termination is based on parity checks generated at the CNs. If all parity checks are

satisfied, decoding stops and the next frame is loaded into the Lv buffer. Otherwise,

decoding continues according to the schedule in Table 5–2.

The critical path of the IDB decoder is traced in red in Figure 5–15. It begins at

the accumulator output of one VN, passes through a CN and on to a neighbouring

VN, ending at the VN’s accumulator registers. Table 5–3 details the critical path

and the delay accrued through each segment. Despite the lack of pipelining, IDB

achieves a much faster critical path than min-sum based decoders due to simpler

node logic. In particular, the IDB check node is simply a dc-input XOR gate, and

does not need to find the smallest magnitude among the input messages. The VN

adder tree is simpler, as it needs only to add dv inputs of 1 bit each. In addition,
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the smaller silicon area results in lower buffering and interconnect delay for the long

inter-node connections along the critical path.

The post-layout results of the IDB decoder are summarized in Table 5–4, along

with other state-of-the-art decoders using the (2048, 1723) RS-LDPC code as com-

parison. IDB presents very large improvements in area, throughput, and energy

efficiency. In terms of silicon area, IDB is 48% smaller than the next smallest de-

coder design, which is the partially-parallel layered OMS decoder of [90]. It is 57%

smaller than MTFM-based stochastic [71], which is the next smallest fully-parallel

architecture.

At Eb/N0 = 5.5 dB, the average throughput of IDB is 171.8 Gbps, which is

7% greater than the throughput reported for relaxed half-stochastic (RHS) [72],

and approximately 3.5 times greater than [60]. The average throughput of the IDB

decoder at Eb/N0 = 4.55 dB is 126.3 Gbps, which is an improvement of 36% over

split-row min-sum at the same signal-to-noise ratio [64].

Despite the much lower computational complexity of the IDB algorithm, IDB

achieves error correction performance comparable to min-sum and stochastic-based

decoders. At a BER of 10−7, correction performance is approximately 0.05 dB better

than split-row min-sum, and 0.05 dB and 0.1 dB worse than MTFM-based stochastic

and RHS, respectively. However, IDB requires an iteration limit of 315 to reach this

level of performance, which is much higher than most other architectures. As a

result, the worst-case latency and minimum throughput of IDB compare poorly.

However, the MTFM-based stochastic decoder of [71], with an iteration limit of 400,
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Table 5–4: Post-Layout Design Results for IDB and Comparisons With Other Works

This work [64] [60] [90] [71] [72]

Decoding algorithm IDB Split-row MS Offset MS Layered OMS Stoch. MTFM RHS
LDPC code (2048,1723) (2048,1723) (2048,1723) (2048,1723) (2048,1723) (2048,1723)
Technology 65 nm 65 nm 65 nm 90 nm 90 nm 65 nm

Quantization bits 6 5 4 4 6 4
Area (scaled to 65 nm) (mm2) 1.44 4.84 5.35 5.35 (2.79) 6.38 (3.33) 4.41

Utilization 95% 97% 84.5% 84.4% 95% 94.4%
Decoding iterations 315 (7 × 45) 11 8 + 6 post proc. 4 400 50

Eb/N0 at BER = 10−7 (dB) 4.5 4.55 4.25 4.4 4.45 4.4
Supply voltage (V) 1.0 0.8 1.3 0.7 1.2 0.7 1.2 0.8 1.0 1.0

Clock frequency (MHz) 520 350 195 35 700 100 137 85 500 448
Min. throughput (Gbps) 3.38 2.28 36.3 6.52 14.9 2.13 11.7 7.23 2.56 9.18

Av. throughput (4.55 dB) (Gbps) 126.3 85.0 92.8 16.6 - - 11.7 7.23 - -
Av. power (4.55 dB) (mW) 462 192 1359 62 - - - - - -

Av. energy (4.55 dB) (pJ/bit) 3.65 2.26 14.6 3.7 - - - - - -
Av. throughput (5.5 dB) (Gbps) 171.8 115.6 - - 47.7 6.67 11.7 7.23 61.3 160

Av. power (5.5 dB) (mW) 478 199 - - 2800 144 - - - -
Av. energy (5.5 dB) (pJ/bit) 2.78 1.72 - - 58.7 21.5 - - - -

Scaled energy (pJ/bit)‡ 3.65∗ / 2.78† 8.64∗ 40.8† - - -
Scaled throughput (Gbps/mm2)§ 87.7∗ / 119.3† 19.2∗ 8.92† 4.19† 18.4† 36.3†

∗ Eb/N0 = 4.55 dB † Eb/N0 = 5.5 dB ‡ Energy scaled to 1.0 V.

§ Average throughput per unit area scaled to 65 nm at constant frequency.
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Table 5–5: Wiring Complexity of the Designed Decoders

Decoder
Tot. wire
length (m)

Tot. interleaver
wire length (m)

Interleaver
wiring per
edge (µm)

IDB (2048,1723) 10.957 5.055 411.36

DD-BMP (273,191) 7.920 3.586 772.69

MDD-BMP (273,191) 1.793 0.337 72.53

MDD-BMP (1023,781) 13.998 10.899 332.91

MDD-BMP (4095,3367) 225.687 207.517 791.81

is the highest out of all the surveyed decoders. Additionally, as noted in [108], a

significantly higher minimum throughput can be guaranteed with input buffering.

Table 5–5 shows a comparison of the wiring complexity of the IDB decoder

with the DD-BMP and MDD-BMP decoders. The total wiring length of the IDB

decoder is 10.957 m, which is 64% lower than the 30.598 m reported for the same

code in [60]. The reduction can be attributed to the smaller die size of IDB, as

well as the use of broadcasting for inter-node (interleaver) wires. These results also

clearly demonstrate the wiring advantage of MDD-BMP and IDB over DD-BMP.

The DD-BMP (273, 191), MDD-BMP (1023, 781), and IDB decoders have similar

die sizes and utilization factors, but DD-BMP has a much higher average interleaver

wire length, due to the need to send unique VN-to-CN messages.

IDB also demonstrates major improvements in the iterative decoder performance

metrics defined in [79]. IDB achieves energy per decoded bit of 2.78 pJ/bit at Eb/N0

= 5.5 dB, and 3.65 pJ/bit at Eb/N0 = 4.55 dB. This is 14 times lower than the

offset min-sum decoder of [60], and 58% lower than split-row min-sum at the same

values of Eb/N0. Finally, in terms of throughput per unit area, IDB’s result of 119.3

109



3.5 4 4.5 5 5.5 6 6.5
0

20

40

60

80

100

120

140

160

180

200

220

240

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t 

(G
b

p
s
)

E
b
/N

0
 [dB]

 

 

3.5 4 4.5 5 5.5 6 6.5
0

5

10

15

20

25

30

A
v
e

ra
g

e
 I

te
ra

ti
o

n
s

Throughput (1.0V)

Throughput (0.8V)

Avg. iterations

Figure 5–16: Average throughput and iteration count for the designed IDB decoder.

Gpbs/mm2 at 5.5 dB is 3.3 times greater than RHS, and 87.7 Gpbs/mm2 at 4.55 dB

is 4.6 times greater than split-row min-sum.

If energy consumption due to off-chip I/O and data loading is taken into account

using the method described in Section 4.4.1, the energy per decoded bit increases by

75.5 pJ/bit for w = 1, 5.06 pJ/bit for w = 16, and 2.52 pJ/bit for w = 32.∗ Since

IDB decoding requires few iterations on average, the energy cost of loading is many

times higher than the decoding process itself if w is small. However, we also note

that [64] does not include data loading or off-chip I/O, and [60], while fabricated,

∗ The datasheets for the TSMC 65 nm I/O library used for this design do not
include information on dynamic power consumption, so these results are estimated
using values from the 130 nm library used in Chapter 4 [93], scaled quadratically by
process size and supply voltage.
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Figure 5–17: Average power consumption and energy per decoded bit for the designed
IDB decoder.

contains on-die test and characterization logic that performs test vector generation

and FER/BER, and so the energy consumption due to I/O and data loading is

expected to be much smaller than if the Lv and hv data were communicated off-chip.

However, it is not clear whether this characterization circuitry is included in the

reported results for power and energy, or whether the decoder core is on a separate

power supply.

Figure 5–16 plots the average throughput and average number of decoding iter-

ations for the designed IDB decoder over a range of values for Eb/N0. Throughput

is low at low values of Eb/N0, due to the high decoding iteration limit and a large

proportion of frames failing to decode. However, throughput increases greatly over

the waterfall region, as the average number of decoding iterations decreases. This

result demonstrates the large difference between average and worst-case performance
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for IDB - despite having a maximum iteration limit of 315, the average is under 7

for Eb/N0 above 4.5 dB.

The average power consumption and energy efficiency of the IDB decoder are

plotted in Figure 5–17. Power consumption is high at low Eb/N0, because degen-

eration in deadlocked VNs causes interleaver wires to toggle continuously between

0 and 1. Power is lower in the waterfall region, but afterwards increases monotoni-

cally due to the increasing frequency of loading new frames into the decoder, which

consumes more power than ordinary decoding iterations. Energy per decoded bit de-

creases monotonically with Eb/N0, due to the decreasing average number of decoding

iterations (and thus computational effort) needed to decode each frame.

In addition, the low area and power consumption of IDB decoders make designs

with multiple parallel decoders a practical possibility, which we refer to as a multi-

core decoder. We note that an IDB decoder architecture with 2 or 3 cores would

have a lower area than [64] or [60], assuming the impact of overhead circuitry is

insignificant. If each processing core is assigned a different frame to decode, an

n-core decoder would increase the average throughput by a factor of n over a single-

core decoder, while throughput per unit area and energy efficiency remain roughly

constant. Furthermore, because the relaunching technique of IDB consists of several

independent decoding attempts, each core could also be assigned to work on different

phases of the same frame, reducing the maximum decoding latency and increasing

minimum throughput - an advantage that is not available to most other decoding

algorithms.
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5.9 Summary

This section has introduced the IDB algorithm, and presented LDPC decoders

using the DD-BMP, MDD-BMP, and IDB algorithms. We demonstrate fully par-

allel designs of (273, 191), (1023, 781), and (4095, 3367) FG-LDPC codes in 65 nm

CMOS, overcoming the implementation complexity of these powerful codes. These

decoders achieve BER performance up to 0.5 dB better than MSA, as well as low

complexity, high throughput, and excellent energy efficiency. Our design using the

(2048, 1723) IEEE 802.3an LDPC code using IDB achieves BER performance within

0.25 dB of offset MSA, and has much lower area, higher throughput, and greater

energy efficiency than other decoder architectures with similar error correction per-

formance. The MDD-BMP decoder for the (273, 191) code achieves an area of 0.28

mm2, throughput of 37 Gbps, energy efficiency of 4.9 pJ/bit, and BER performance

within 0.2 dB of MSA at a bit error rate of 10−6. For the (1023, 781) code, the MDD-

BMP decoder achieves an area of 1.38 mm2, throughput of 75 Gbps, energy efficiency

of 13.2 pJ/bit, and BER performance 0.4 dB better than MSA. Finally, the decoder

for the (4095, 3367) code achieves an area of 15.37 mm2, throughput of 141 Gbps,

energy efficiency of 38.0 pJ/bit, and BER performance 0.5 dB better than MSA.

Because these designs achieve very high throughputs, VFS can be applied to reduce

their power consumption while still maintaining sufficient throughput for high-speed

communications applications. Compared to other recent energy-efficient LDPC de-

coder designs, DD-BMP, MDD-BMP, and especially IDB offer favorable trade-offs

for area, throughput, error correction performance, and power consumption. Due to
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the low area of IDB relative to other designs, multi-core decoder architectures are

feasible, and would increase both the minimum and average decoding throughput.
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CHAPTER 6

Gear-Shift Decoder Designs

6.1 Introduction

As we have seen in previous works and in the previous chapters of this disser-

tation, one of the most effective ways to improve the energy efficiency of an LDPC

decoder is to use a less complex decoding algorithm. Good heuristic decoding algo-

rithms, such as split-row min-sum [64] and the IDB algorithm described in Chapter

5, can achieve greatly reduced complexity and increased energy efficiency at the cost

of only a small amount of error correction performance. Very simple decoding algo-

rithms, such as syndrome decoding and Gallager A, use the least possible amount of

energy, but sacrifice a large amount of these codes’ error correcting capabilities.

This compromise can be avoided by making a decoder capable of using multi-

ple algorithms. Consider for instance a decoder implementing 2 algorithms: a low-

complexity algorithm with poor error correction performance, and a high-complexity

algorithm with excellent error correction performance. Decoding is first attempted

with the low-complexity algorithm. If it fails, decoding is attempted with the high-

complexity algorithm. Assuming failure of the first algorithm is a relatively uncom-

mon event, the average energy cost per decoded frame of the second algorithm is

very low, since it is rarely used. The composite decoder therefore has average energy

efficiency similar to the low-complexity algorithm, while having the error correction

performance of the high-complexity algorithm.
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The concept of multi-algorithm iterative decoders was introduced in [106] as

“gear-shift decoding”. Gear-shift decoders are defined as decoders that can switch

between a set of different decoding rules while a frame is being decoded. Several

previous decoders that have multiple decoding “phases” thus qualify as gear-shift

decoders, such as [60] and [71] with their post-processing phases. IDB employs the

gear-shift concept with relaunching, as the VN update rule varies between phases.

Even Gallager B, with its variable threshold parameter, can be considered a gear-shift

algorithm.

Previous designs of gear-shift or multi-phase decoding have mostly had the goal

of optimizing convergence time or improving error correction performance, and thus

run the higher-complexity algorithms first, followed by the lower-complexity ones.

For instance, the tri-mode decoder proposed in [109] employs three different algo-

rithms with a wide range of complexity and a high degree of hardware commonality:

a one-step majority algorithm, and two differential binary algorithms. However, it

does not investigate operation as a gear-shift decoder. A brute-force approach to

a multi-algorithm decoder can be found in [110], where multiple parallel decoders

using different algorithms work simultaneously. A variable quantization scheme is

proposed in [47], in which the dynamic range and precision of inter-node messages is

variable from one iteration to another, improving BER performance. Since the total

number of quantization bits is constant, this technique does not have a significant

impact on energy consumption. We instead propose the reverse approach, with the

goal of minimizing energy consumption: begin with lower-complexity algorithms,

and switch to higher-complexity algorithms as decoding proceeds. To the best of our
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knowledge, the only gear-shift decoder design focused on improving energy efficiency

is the variable-precision split-row min-sum design presented in [111]. This decoder

first attempts split-row min-sum decoding with 3 quantization bits, then switches to

4 bits after a small number of iterations.

One drawback of gear-shift decoding is that extra logic is needed to implement

multiple decoding rules, especially in the straightforward case where each algorithm

is implemented as a dedicated decoder. The split-row min-sum decoder mentioned

above is an example - extra multiplexing logic and adaptations are required to sup-

port variable quantization, and the resulting decoder is 5% larger and 8% slower

than a conventional split-row min-sum decoder [64], for a 9% reduction in energy

per bit.

However, depending on the choice of decoder architecture and algorithms, dif-

ferent decoding rules can be implemented with minimal overhead. This can arise

from hardware commonality between different algorithms, or an intrinsic ability of a

given algorithm to use variable quantization without significant logic overhead. One

example of the latter is bit-serial min-sum, where it was noted that varying the num-

ber of quantization bits in inter-node messages from one iteration to another could

be done for little added cost [58]. However, this idea was not explored any further.

Likewise, two of the algorithms presented in this dissertation - IDB and PWM-

MS - are highly amenable to gear-shift decoding. PWM-MS can support variable

message width without any changes whatsoever to the node circuitry - we call this a

GSP decoder, for “gear-shift pulse-width”. Combination IDB/GSP (or IGSP, “IDB
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with gear-shift pulse-width”) decoders can also be implemented with modest addi-

tional computational complexity over a conventional PWM-MS decoder, and allow

application of the gear-shift concept to greatly reduce average energy consumption.

The remainder of this chapter will describe gear-shift decoding schedules for the

GSP and IGSP decoders, their hardware architectures, and ASIC post-layout design

results.

6.2 Efficiency of Gear-Shift Decoding

Consider a gear-shift decoder with N “gears”, or decoding stages. Assuming

that the stages are attempted in order from lowest energy consumption to highest,

and these stages are labelled from 1 to N , the average energy consumed in decoding

a frame is:

Eavg =
N
∑

n=1

Pn · En (6.1)

where Pn is the proportion of frames in which stage n is begun, and En is the

average energy consumed during that stage when it is invoked. An alternate form of

this equation is:

Eavg = E1 +
N
∑

n=2

(

n−1
∏

ν=1

FERν

)

· En (6.2)

where FERν is the failure rate (or frame error rate) of stage ν, given that all

previous stages have been attempted and failed. P1 = 1 because stage 1 is always

attempted for every frame.

From Equation 6.2, it is clear that in practical usage (i.e., the decoding algo-

rithms, LDPC code, and decoder parameters are chosen so that most frames are

118



decoded successfully under given channel conditions), E1 will be the dominant term

as the FER products will greatly reduce the contributions from successive E terms.

Thus, the average energy consumption of the overall decoder is determined by the

energy consumption of the first stage. However, the error correction performance

is determined by the individual stage with the best performance (BER/FER per-

formance equal to or better than the best individual stage can be guaranteed by

re-initializing at each stage with the initial channel inputs). Thus, the main appeal

of gear-shift decoding is that it can achieve the average energy efficiency of a low-

complexity algorithm, like IDB, while also having the error correction performance

of a high-complexity algorithm, like offset MSA.

However, this does not take into account the overhead incurred by implementing

multiple decoding algorithms in hardware. In a straightforward design, in which stage

is implemented as a separate decoder, most stages would sit idle for all but a small

fraction of time. Since the later stages are the ones using more complex algorithms,

and thus having greater silicon area, the resulting decoder would have very poor

area efficiency. This also impacts energy efficiency, since the unused stages consume

leakage power (power gating them would not be terribly practical, since they must

be ready to operate quickly if they are needed). Thus, a high degree of hardware

commonality between the different stages is important, but even if this is the case,

hardware efficiency will be limited by the necessity of leaving portions of the circuit

idle during decoding with the less complex stages.
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6.3 The GSP and IGSP Decoding Algorithms

In order to support a variable maximum message width, the min-sum variable

node update of Equation 2.14 is changed to:

M (k)
v→c = Lv +

∑

c′∈Ci\c

m
(k−1)
c′→v (6.3)

m(k)
c→v = sgnr

(

M (k)
v→c

)

·min
(

m(k)
max,

∣

∣M (k)
v→c

∣

∣

)

(6.4)

Note that Equation 6.3 is identical to Equation 2.14, save for mv→c (the message

from VN v to CN c) being replaced with Mv→c (the memory associated with that

message). In other words, the internal computations function identically to PWM-

MS, and it is only the inter-node messages that are affected. Equation 6.4 determines

the actual message, reducing its magnitude to a maximum of m
(k)
max, which is the

maximum message magnitude at iteration k. It is also worth nothing that no scaling

is ever applied to Lv, regardless of the value of m
(k)
max. This is because simulations

found that using the unscaled Lv resulted in better error correction performance.

In conventional PWM-MS, mmax is fixed at 2q − 1 − β, where β is the offset

value for offset min-sum (our designs all use β = 1, which is a typical implementation

value). In GSP, mmax is set to a low value for the first iterations, and is raised

gradually until it reaches 2q − 1− β, which is equivalent to offset min-sum with full

q-bit precision. In other words, decoding begins with magnitude-limited message

exchanges that consume less energy than using the decoder’s full precision. If the

frame does not converge to a valid codeword, the magnitude limit is incrementally

increased on successive iterations, which increases the energy cost per iteration but
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Figure 6–1: Example waveforms of inter-node messages in GSP decoding. A low value
for mmax truncates high-magnitude messages, thus reducing information exchange
and error correction performance, but also reduces the number of clock cycles per
decoding iteration.

also the error correction capability of the decoder. Each of these precision levels can

be considered a “stage” or “gear” n in Equations 6.1 and 6.2. Additionally, with

lower values of mmax, iterations complete in fewer clock cycles. This is because on

average, iterations with lower mmax have a higher impact on convergence normalized

per clock cycle. In other words, using a lower mmax results in a lower convergence

time than higher values of mmax.

Figure 6–1 shows examples of GSP messages, and demonstrates the truncating

effect of mmax values that are lower than the maximum value that can be con-

tained in the Mv→c memories. This figure also demonstrates how the pulse-width

sign-magnitude format supports non-power-of-2 message widths, unlike conventional

binary number encoding, which allows for more “gears” and more gradual transitions

in message width.

121



The IGSP algorithm uses IDB as its first stage (or stages, if relaunching is

used), then switches to GSP for the final stages. IDB offers considerable power

savings over min-sum based algorithms, since it requires only a single memory in

the VN compared to one per edge of the code’s graph connecting to the VN - these

memories can be disabled with clock gating while the decoder is operating in IDB

mode. However, additional circuitry is required in the VNs to support IDB decoding,

so we can expect IGSP decoders to have a higher silicon area for a given maximum

clock frequency compared to GSP.

6.3.1 Parameter and Schedule Design

In general, gear-shift algorithms have a much larger optimization space than non-

gear-shift algorithms, since the former may make use of multiple decoding algorithms,

message-passing resolution levels, or internal arithmetic resolution levels.

One technique that can be used to analytically optimize an iterative decoder

is density evolution [41]. Density evolution compares the Gaussian “densities” of

messages from one iteration to the next, and so provides a quantitative measure

of progress made in error correction. Density evolution has, in fact, been used to

optimize parameters and compare the relative performance of different decoding

algorithms [112], including optimization for low energy consumption [80].

It may be possible to use density evolution to optimize decoding schedules for

the GSP and IGSP algorithms. However, the variable message resolution of these

gear-shift algorithms causes difficulties with the use of “classical” density evolution.

Adaptations may be possible, but this would constitute a major research effort,

and furthermore the focus of this chapter is on circuit implementation issues - in
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Table 6–1: GSP decoding schedule

Phase Iterations mmax Clock cycles

1 6 2 18 (24)∗

2 5 3 20 (25)∗

3 4 4 20 (24)∗

4 3 5 18 (21)∗

5 2 6 14 (16)∗

Total 20 — 90 (110)∗

∗ Numbers in parentheses are for pipelined GSP.

Table 6–2: IGSP decoding schedule

Phase Algorithm Iterations mmax Clock cycles

1 IDB 15 — 15

Reset all Mv→c to original Lv 1

2 Offset MS 6 2 18

3 Offset MS 5 3 20

4 Offset MS 4 4 20

5 Offset MS 3 5 18

6 Offset MS 2 6 14

Total — 35 — 106

particular, hardware commonality between the different decoding phases, and relative

performance compared to other decoders. We therefore opt to leave this theoretical

optimization as future work.

We have instead devised an empirical procedure for developing “good” decoding

schedules, similar to the procedure for the IDB algorithm described in Section 5.7.1.

These decoding schedules for GSP and IGSP using the (2048, 1723) 10 gigabit Ether-

net LDPC code are summarized in Tables 6–1 and 6–2 respectively. These schedules
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are based around decoders with q = 4 (as in other min-sum decoders of this code

such as [60] and [90]) and clipping threshold Tclip = 8.0.

Despite the very large design space for GSP and IGSP, two guidelines can be

applied to drastically reduce it. The first is that, according to the gear-shift princi-

ple, decoding should begin with the simplest available algorithm, and end with the

most complex. The second is that the simpler algorithms should be used until the

next more complex one would be considerably more effective. This will minimize

energy consumption and maximize throughput, as the vast majority of frames will

be decoded by the earlier phases, which involve less computation and use fewer clock

cycles per iteration.

In addition to minimizing energy consumption and maximizing throughput, we

also require that error correction performance be equal to that of the most complex

phase, or at least have no significant loss. The metric we use is that if the overall

decoder has kmax iterations across all decoding phases, it should achieve similar

performance to kmax iterations of the most complex algorithm.

One final consideration is maximum latency. This is a low priority in these

designs, but it must still be constrained to a practical value. We chose 105 clock

cycles as a soft upper limit, since this is the maximum latency of the PWM-OMS

decoder presented in Chapter 4. The final schedules ended up exceeding this limit

slightly, being 106 clock cycles for IGSP and 110 clock cycles for pipelined GSP.

The schedules of Tables 6–1 and 6–2 were then developed according to these

guidelines, and optimized for average convergence time by trial and error. Although

our highest priority optimization goal is energy efficiency, this cannot be accurately
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modeled in such high-level simulations. Thus, energy consumption is modeled as the

average number of clock cycles required for convergence. This optimization procedure

has the additional benefit of maximizing throughput.

For the GSP schedule in Table 6–1, decoding begins with 6 iterations of OMS

with mmax = 3. This is sufficient to successfully decode most frames in the waterfall

region. Should decoding fail to converge, successive phases increase mmax while

reducing the number of iterations. The final phase applies 2 iterations of full 4-bit

OMS. GSP can be also pipelined in the same way as a standard PWM-MS decoder,

which adds 1 clock cycle of latency per decoding iteration. Table 6–1 shows clock

cycle counts for pipelined GSP in parentheses.

For the IGSP schedule in Table 6–2, decoding begins with 15 iterations of IDB.

Again, this number was chosen so that most frames in the waterfall region successfully

decode during this phase. The parameters used for IDB decoding are s = 0.5 and

d = 1. The IDB relaunching technique is not used in this schedule, since including

it would require additional hardware, as well as add too much latency to justify its

performance increase. If IDB fails to decode the frame, all VN output counters are

reset to the original values of Lv, and decoding proceeds using the GSP schedule

from Table 6–1. The reset is beneficial, since when the IDB phase fails to decode

the frame, it generally leaves the decoder in a state less likely to decode successfully

using GSP, and also requires more iterations on average to complete decoding.

Figures 6–2 and 6–3 respectively show histograms of decoding iterations for GSP

and IGSP at Eb/N0 = 4.25dB, with annotations showing the mean, and points of

interest in the cumulative distribution function D. A total of 6 · 107 frames were
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Figure 6–2: Iteration count histogram for GSP, using the decoding schedule in Table
6–1. The bar at 21 iterations shows frames that failed to decode within 20 iterations,
and are counted as 20 in statistical calculations.

simulated for each histogram. These results demonstrate how each decoding phase is

designed so that it successfully decodes most frames it begins, in accordance with the

above guidelines. One particularly notable characteristic of Figure 6–3 is that the

distribution has separate peaks for the IDB and GSP decoding portions. For IGSP,

we found it worthwhile to continue IDB for several iterations beyond the peak, as

IDB is very “cheap” in terms of time and energy compared to GSP. Other histograms

similar to these, using different parameters, were used to aid in the optimization of

these schedules by finding the set of parameters which resulted in the lowest mean

without compromising error correction performance.

Figure 6–4 plots the simulated BER/FER performance of GSP using this code

and schedule, along with the IDB phase of IGSP, and a baseline of standard OMS
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Figure 6–3: Iteration count histogram for IGSP, using the decoding schedule in Table
6–2. The bar at 36 iterations shows frames that failed to decode within 35 iterations,
and are counted as 35 in statistical calculations.

with 20 iterations and q = 4. GSP actually achieves performance a very small

amount better than OMS - this can be attributed to the message truncation having

an effect similar to that of successive relaxation, and thus improving error correction

performance [98]. IGSP achieves the same overall performance as GSP, since it

resets to the original channel data after the IDB phase and then applies the same

decoding schedule. Although the IDB phase has much poorer performance than

GSP, its FER shows that it will successfully decode the vast majority of frames

for Eb/N0 ≥ 4.5dB and will therefore considerably increase energy efficiency in this

region as per Equation 6.4.

The average decoding iterations and clock cycles required for GSP, IGSP, and

OMS using these schedules are plotted in Figure 6–5. The clock cycle count for OMS
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Figure 6–4: BER/FER for GSP, standard OMS, and the IDB phase of IGSP. The
overall BER/FER performance of IGSP is equivalent to GSP.

is determined using a standard PWM-MS decoder. Clock cycle plots are displayed for

both the unpipelined and pipelined versions of GSP and PWM-MS. Since pipelining

adds 1 clock cycle of latency per iteration to both GSP and PWM-MS, the pipelined

decoders require more clock cycles to converge. While the iteration counts for OMS

and GSP are nearly identical, the average clock cycle count for GSP is approximately

half that of OMS. Due to its IDB decoding phase, IGSP has the highest average

iteration count, but also the lowest average clock cycle count for Eb/N0 ≥ 4.5dB,

where the vast majority of frames complete decoding before reaching the min-sum

phases.
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Figure 6–5: Average number of decoding iterations and clock cycles per decoded
frame for GSP, IGSP, and standard OMS.

6.4 Circuit Architecture of GSP and IGSP Decoders

As mentioned previously, GSP has a unique advantage in gear-shift decoding

in that the width of the inter-node messages can be varied without modifying the

node hardware. The only difference between GSP and conventional PWM-MS is the

controller state machine - the controller starts a new iteration after mmax + 1 clock

cycles, where mmax is the maximum inter-node message magnitude for that iteration.

Thus, for GSP, the VN and CN hardware is identical to PWM-MS.

For IGSP, the PWM-MS check node can also be used without modification,

since the IDB check node function is equivalent to the CN sign computation phase

in PWM-MS. However, the variable node requires additional hardware to support

both IDB and GSP operation. Figure 6–6 shows the circuit schematic for an IGSP
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Figure 6–6: Schematic for an IGSP variable node with degree dv = 3.

variable node with degree dv = 3. When operating in IDB mode, the input counters

are bypassed. The incoming messages mc→v are zero-padded to q bits in width and

input to the adder network. The delta value for the accumulator is calculated from

the global sum with the function ∆ = dv−2 · in. This converts the result of addition

in the {0, 1} domain to the {1,−1} domain used in IDB messaging. One of the

output counters is replaced with a combination IDB accumulator and GSP down

counter. In IDB mode, this module functions as an accumulator, applying the input

as a delta (minus the IDB degeneration factor) to its previously stored value, and

outputting its sign bit, which is distributed to all outgoing edges. In GSP mode,

it functions as a normal down counter. The adder network input for Lv is replaced

with zero in IDB mode, since the initial channel data does not participate in the

VN update in IDB. Finally, the hard decision bit dv is taken from the sign of the
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accumulator while in IDB mode, whereas in GSP mode it is taken from the sign of

the global sum in the adder network.

The IGSP VN extensively uses clock gating to reduce dynamic energy consump-

tion in IDB mode. Only the combination accumulator/counter and dv register are

active in IDB mode - all other output counters, all input counters, and the Lv register

are clock gated, meaning only q+1 registers are enabled in each VN. For our designs

using the (2048, 1723) LDPC code (which has dv = 6) and q = 4, this translates to

5 out of 53 registers active, for a reduction of 91%. In GSP mode, however, the full

width of each counter is always enabled during decoding, even if it is not necessary

to store the maximum possible message of mmax. This is because only 1 bit from

each input counter can be gated in our GSP schedule, and doing so would require

additional logic to support signed counting over multiple word widths, giving a poor

tradeoff between area, speed, and energy savings.

This IGSP decoder can be pipelined in a manner similar to GSP by passing the

VN inputs through the input UDCs, rather than bypassing them entirely. However,

due to IGSP’s IDB mode, this design would have additional drawbacks that are

not present in a pipelined GSP decoder. One is that it requires an active register

at each VN input. The designed decoder has 5 active registers per VN in IDB

mode: 4 in the combination accumulator/counter, and 1 for the hard decision bit.

Pipelining would add 6 more for (2048, 1723) LDPC code, more than doubling the

number of active registers in the decoder during IDB mode. Since our primary design

goal is energy efficiency, we wish to keep the number of active registers to a strict

minimum. Secondly, the added cycle of latency would have a much more pronounced
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effect on IDB than on GSP, raising the number of clock cycles per iteration from 1

to 2. Alternatively, the IDB algorithm could be altered to accommodate this extra

cycle of latency by using the Mv→c values from 2 cycles previously, and thus adding

1 clock cycle of latency to the beginning of the IDB decoding phase, rather than

for every iteration. However, this would require additional logic to implement in

hardware, and the effect of this alteration on the BER performance of IDB has not

been investigated. Therefore, we do not investigate pipelined IGSP in this work.

6.5 Design Results

As with the DB decoders, we have designed the previously described GSP and

IGSP decoders in TSMC 65 nm 7LM single-Vt CMOS. We present ASIC post-layout

results for three different decoder designs: unpipelined and pipelined versions of GSP

using the decoding schedule in Table 6–1, and an IGSP decoder using the schedule

in Table 6–2. All decoders are fully parallel, use the (2048, 1723) LDPC code from

the 10 Gbps Ethernet specification, and q = 4 bits of quantization for channel input

values. As before, post-layout simulations are used to characterize the silicon area,

throughput, and power consumption of these decoders.

In addition, the two GSP decoders can be run in “standard PWM-MS” mode,

in which all iterations use the full 4 bits of precision for message passing. Since

this requires only a change to the controller state machine, the hardware overhead

is negligible. Standard PWM-MS mode was used to collect results for OMS, which

we present as a baseline for comparison with GSP and IGSP.

A detailed system diagram showing the critical paths of GSP is shown in Fig.

6–7. The red line traces the critical path of the unpipelined decoder, while the
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Figure 6–7: Detailed block diagram of the GSP decoders showing the critical paths
of the unpipelined decoders (in red) and the pipelined decoder (in blue). A purple
line is used where the two intersect.

purple line traces the segment in which the pipelined and unpipelined critical paths

intersect. Although this decoder architecture is essentially identical to the PWM-

MS decoder in Chapter 4, the critical paths are different due to the larger code and

smaller manufacturing process used for GSP. For both the pipelined and unpipelined

decoders, the critical path begins at the controller and goes through the control signal

for loading the VN output counters. The critical path for the pipelined decoder ends

here, while for the unpipelined decoder, it continues through to the check node, the

early termination detection block, and back to the controller.
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Figure 6–8: Top level block diagram of the IGSP decoder, showing a check node, 2 neighbouring variable
nodes, and other top-level components. The critical path in GSP mode is traced in red, while the IDB mode
critical path is traced in blue. A purple line is used for segments where they intersect.
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Figure 6–8 shows the critical path for the IGSP decoder. The red line traces

the critical path of the decoder while it is in GSP mode, and the blue line traces

the critical path in IDB mode. The purple line shows where these critical paths

intersect. Unlike the GSP decoders, the IGSP critical paths originate in a VN, pass

through a CN and end in a different neighbouring VN. Since IGSP has extra logic

and interconnect delays compared to GSP, this VN-CN-VN path has a longer total

delay than the path through the early termination block.

The post-layout results for these designs are summarized in Table 6–3, along with

data for relevant prior works. To the best of our knowledge, the only other LDPC

decoder in the literature that employs the gear-shift approach to improve energy

efficiency is the adaptive word-width split-row decoder in [111]. This decoder has a

lower area and much better energy efficiency than GSP and IGSP, but the heuristic

split-row min-sum algorithm results in a BER performance loss of 0.4 dB. The other

decoders, [60] and [90], are included because they implement the offset min-sum

algorithm without additional heuristics (although [90] has worse BER performance

due to its very low iteration limit).

Compared to the offset min-sum decoder of [60], unpipelined GSP achieves 39%

higher scaled throughput and an 8% improvement in scaled energy per bit, while

pipelined GSP achieves an 85% improvement in scaled throughput and 4% lower

energy per bit. Notably, these 3 decoders are highly similar in terms of silicon area

and utilization.

IGSP further improves average throughput and energy efficiency, but at the cost

of having 11% higher silicon area and a 10% lower clock frequency than unpipelined
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Table 6–3: Post-Layout Results for GSP and IGSP Decoders, Including Comparisons With Other Works

This work [111] [60] [90]

Decoding algorithm GSP GSP IGSP Adaptive split-row Offset MS Layered OMS
LDPC code (2048,1723) (2048,1723) (2048,1723) (2048,1723) (2048,1723) (2048,1723)
Technology 65 nm 65 nm 65 nm 65 nm 65 nm 90 nm

Quantization bits 4 4 4 6 4 4
Area (scaled to 65 nm) (mm2) 5.29 5.29 6.00 5.10 5.35 5.35 (2.79)

Utilization 87% 88% 91% 96% 84.5% 84.4%
Decoding iterations 20 20 35 15 8 + 6 post proc. 4

Eb/N0 at BER = 10−7 (dB) 4.25 4.25 4.25 4.65 4.25 4.4
Supply voltage (V) 1.0 0.8 1.0 0.8 1.0 0.8 1.3 0.7 1.2 0.7 1.2 0.8

Clock frequency (MHz) 290 200 475 320 262 175 185 40 700 100 137 85
Min. throughput (Gbps) 6.53 4.50 8.76 5.90 4.98 3.35 25.3 5.4 14.9 2.13 11.7 7.23
Av. throughput (Gbps) 65.8 45.4 88.1 59.4 100.3 66.9 85.7 13.5 47.7 6.67 11.7 7.23

Av. power (mW) 2465.7 1059.0 3465.8 1445.9 1464.3 608.0 1172 73 2800 144 - -
Av. energy (pJ/bit) 37.5 23.3 39.3 24.3 14.6 9.1 13.6 3.9 58.7 21.5 - -

Scaled energy (pJ/bit)∗ 37.5† 39.3† 14.6† 8.05‡ 40.8† -
Scaled throughput (Gbps/mm2)§ 12.4† 16.7† 16.6† 16.8‡ 8.92† 4.19†

∗ Energy scaled to 1.0 V † Eb/N0 = 5.5dB ‡ Operating condition not specified

§ Average throughput per unit area scaled to 65 nm at constant frequency
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GSP. Despite the lower clock frequency, due to its IDB decoding phase it needs fewer

clock cycles on average to decode a frame (see Figure 6–5). Its average throughput of

100.3 Gbps at Eb/N0 = 5.5dB is the highest of all surveyed decoders, but due to its

higher area, it has scaled throughput almost identical to pipelined GSP and [111].

Among offset min-sum decoders, it has the best energy efficiency by a significant

margin - its scaled energy is 14.6 pJ/bit, which is 64% lower than [60] and 61% lower

than unpipelined GSP.

If energy consumption due to off-chip I/O and data loading is taken into account

using the method described in Section 4.4.1, the energy per decoded bit increases

by 53.8 pJ/bit for w = 1, 3.49 pJ/bit for w = 16, and 1.68 pJ/bit for w = 32 (all

three designs produced nearly identical results). As with IDB decoder presented

in Chapter 5, the most relevant prior works also ignore these factors (as in [111]

and [64]), or do not communicate Lv and hv off-chip (as in [60]).

Figures 6–9, 6–10, and 6–11 respectively plot the average throughput, power

consumption, and energy efficiency of the GSP and IGSP decoders, as well as baseline

performance for standard OMS that were obtained by running the GSP decoders in

PWM-MS mode. As before, these results were obtained via post-layout simulations

using design kit libraries for both nominal (VDD = 1.0V ) and reduced (VDD =

0.8V ) supply voltages, including the clock tree, and using back-annotated delay and

extracted RC parasitics.

The GSP decoders achieve considerably higher throughput than their PWM-

MS counterparts, with the pipelined version showing 68% improvement at Eb/N0 =

5.5dB, and the unpipelined version 84%. Power consumption for GSP increases
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Figure 6–9: Average throughput for GSP, IGSP, and standard OMS.

monotonically with Eb/N0, as the frequency of loading new frames increases. Energy

efficiency is roughly 20% improved in GSP compared to PWM-MS. This is not as

dramatic as the throughput improvement, since the sign computation phase and

frame loading consume much more energy than the magnitude phase, and this cost

is fixed between PWM-MS and GSP.

Somewhat surprisingly, pipelined GSP consumes only about 5% more energy

than unpipelined GSP, despite having an additional clock cycle per iteration. How-

ever, both decoders perform the same computation, so the only extra energy ex-

pended in the pipelined decoder is in the clock tree and registers during the extra

clock cycle. Furthermore, the higher clock frequency means leakage energy per de-

coded bit is lower in the pipelined decoder, which offsets some of the higher dynamic

energy.
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Figure 6–10: Average power consumption for GSP, IGSP, and standard OMS.

The IGSP decoder produces some interesting results because of its IDB decoding

mode. Throughput is low and power consumption is high at low Eb/N0, because IDB

decoding fails for nearly all frames. At 4.5 dB, throughput suddenly shoots upward

and power consumption goes downward. Referring back to Figure 6–4, approximately

98% of frames decode successfully during the IDB phase at this point, and so it can be

said that this is the “turning point” at which IDB begins to dominate the throughput,

power, and energy performance of the decoder. Beyond this point, IGSP has much

lower energy consumption than GSP, although the extra overhead related to the

inactive GSP components cause it to have 5.25 times as much energy consumption

as a dedicated IDB decoder. Interestingly, at high values of Eb/N0, pipelined GSP

overtakes IGSP in throughput - this is due to GSP’s higher clock frequency, and a

rapid drop in the average number of iterations and clock cycles per frame for GSP.
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Figure 6–11: Average energy per decoded bit for GSP, IGSP, and standard OMS.

6.6 Summary

This chapter presented LDPC decoding algorithms and architectures using gear-

shift techniques to improve energy efficiency. Gear-shift decoders can use multiple

update rules during decoding, and therefore allow for energy reduction strategies in

which simple, lower-energy algorithms are attempted first, followed by more complex

algorithms if earlier attempts fail.

PWM-MS and IDB are naturally amenable to these techniques, because there

is a high degree of hardware commonality between IDB and PWM-MS, and the

message resolution of PWM-MS can be varied without any additional hardware in

the processing nodes. This advantage is critical to achieving high area and energy

efficiency. Without a high degree of commonality between different decoding phases,

it is necessary to have hardware logic blocks that are idle while not being used, which
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is a highly inefficient use of silicon. Hence, these two algorithms form the basis of

our GSP (gear-shift pulse-width min-sum) and IGSP (IDB with GSP) decoding

algorithms.

Our ASIC designs of GSP decoders achieve large improvements in area efficiency,

and slight improvements in energy efficiency compared to other recent decoders which

employ the offset min-sum algorithm without additional heuristics. IGSP achieves

much larger improvements in throughput and energy efficiency without compromising

error correction performance, but at the cost of having higher silicon area.
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CHAPTER 7

Conclusion and Future Work

7.1 Advances

This dissertation has presented four separate works related to the energy effi-

cient decoding of LDPC codes. These works present valuable novel contributions to

decoder architecture and decoding algorithms, and make significant advances to the

state of the art in these fields.

First, we presented a bidirectional interleaver design based on transmission gates

and tristate buffers. This design allows the same shuffle networks and physical wires

to be used for variable-to-check node message passing and check-to-variable node

message passing. While not a great success in improving energy efficiency, this

design succeeds in improving area efficiency by 28% compared to a design using

conventional unidirectional CMOS logic. Furthermore, this pass-transistor based

design has potential for use in future research with ulta-low supply voltage circuits

(see Section 7.2.1 below).

Next, we presented a PWM-MS (pulse-width modulated min-sum) LDPC de-

coder. In this design, inter-node message passing occurs in a sign-magnitude pulse-

width format. This message format has the advantage of low switching activity, as

well as allowing the complex minimum-finding check node computation to be accom-

plished with a single AND gate. Our ASIC design of this decoder achieved a 19%
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energy efficiency improvement over the similar bit-serial min-sum decoder architec-

ture.

For the third project, we investigated and designed decoders based on differential

binary (DB) algorithms. Analysis of one of these algorithms, MDD-BMP (modified

differential decoding with binary message passing), led to the development of an

IDB (improved differential binary) decoding algorithm. Despite having much lower

computational complexity, IDB achieves error correction performance similar to the

split-row min-sum and stochastic decoding algorithms. Our ASIC design of an IDB

decoder achieved very large improvements in silicon area, throughput, and energy

efficiency compared to previous decoder designs in the literature.

Finally, we introduced energy efficient algorithms and decoder designs based

on the gear-shift concept. In gear-shift decoding, decoders can choose from multiple

different node computation rules during decoding. This can be used to reduce energy

consumption by first applying simpler decoding algorithms, then switching to more

complex ones if they fail. PWM-MS and IDB are naturally amenable to gear-shift

decoding, and formed the basis of our GSP (gear-shift pulse-width min-sum) and

IGSP (IDB with GSP) algorithms. ASIC designs of GSP achieved moderate increases

in area efficiency and slight increases in energy efficiency compared to offset min-sum

decoders, without compromising error correction performance. IGSP achieved much

larger improvements in throughput and energy efficiency, but at the cost of higher

silicon area.
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7.2 Possibilities for Future Research

A large amount of research interest continues to be shown in both LDPC codes

and energy efficient circuits. This section lists a few of the more promising approaches

to future research in these fields.

7.2.1 Ultra-Low Voltage Circuits

As mentioned in Chapter 2 of this dissertation, the dynamic energy consumption

of a digital circuit can be greatly reduced by reducing the supply voltage. Recent

research has examined the design and operation of circuits with supply voltages near

or below the transistor threshold voltage Vt. While circuits operate very slowly at

such voltages, they can theoretically have much greater energy efficiency than circuits

operating at the supply voltages typically used in CMOS technology. LDPC decoding

is naturally suited for these ultra-low voltage circuits, since its inherently parallel

nature allows it to achieve high decoding throughput even at low clock frequencies.

Some early work with simple LDPC decoders (using syndrome decoding and the

Gallager A algorithm) operating at sub-threshold supply voltage can be found in

[113].

There are, however, many challenges with such circuits. One of the most impor-

tant ones is that leakage energy becomes increasingly significant as supply voltage is

reduced, and becomes the dominant source of energy consumption below a certain

threshold. One proposed solution to this is to use logic blocks based heavily around

pass transistors [114] - since pass transistors are unpowered, they have zero leakage.

The bidirectional transmission gate interleaver presented in this dissertation could

possibly be used in an LDPC decoder based on this technique.
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7.2.2 Asynchronous Decoders

Asynchronous decoders are another possible area of interest. Significant amounts

of energy are expended in the clock tree of synchronous circuits, as well is in the

internal cycling of sequential elements. An asynchronous design would eliminate

both, but the issues of excessive handshaking circuitry and lack of design tools for

asynchronous circuits present a problem.

Some initial work in asynchronous min-sum and stochastic decoders has been

produced in [94] and [115]. Future efforts might focus on asynchronous stochas-

tic decoding, as the probabilistic nature of these decoders might allow handshaking

overhead to be considerably reduced (an erroneous or chronically slow bit caused

by inadequate handshaking or state transition enforcement would not have a catas-

trophic effect on the operation of a stochastic decoder).

Asynchronous circuitry has also been proposed to solve the problem of variation

in ultra-low voltage circuits [116] [117], so these two approaches have some overlap.

7.2.3 Statistical Computing

One final area of interest is a relatively new field known as statistical (or non-

deterministic) computing. Statistical computing is the study of inexact computing

methods and circuits, and their applications in tasks that are tolerant towards any

errors these methods might introduce [118]. By abandoning determinism, energy

consumption can be reduced through reduction of design margins, and the use of

probabilistic circuit elements that are smaller and consume less energy than their

deterministic counterparts (but only theoretically, as such elements have yet to be

demonstrated). Error correction coding is a natural application of this, since a certain
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probability of error is expected - much like in a stochastic decoder, a small number of

internal errors caused by probabilistic circuitry can be tolerated. LDPC codes, with

their high error correction performance, could also be used as a check on other results

of statistical computing, assuming the energy savings from probabilistic methods are

larger than the overhead incurred from encoding and decoding.
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Appendix A: Decoder Design Flow

This section describes the design and ASIC design flows of the LDPC decoders

presented in this dissertation.

Figure A-1: LDPC decoder design and verification flow.

Figure A-1 shows the design and verification flow. A Python script reads the

H matrix data for the LDPC code, along with a list of configuration options. The

G matrix data can also optionally be provided for test vector generation. This

script produces as output Verilog HDL for the decoder, as specified by H and the

configuration. It also produces simulators for verifying the produced HDL: a Python

simulator, which is primarily used for debugging, and C simulator, used for deep

BER simulations.
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Figure A-2: LDPC decoder ASIC design and power characterization flow.

Another Python script performs automated regression testing and verification

between the HDL and the two simulators. This script can produce test vectors for

any specified value of Eb/N0, as well as read fixed vectors from a file. These tests

ensure that the HDL is error-free, and that the simulators are bit- and cycle- accurate

representations of the HDL.

Once the HDL is generated and verified, the ASIC design flow begins. Figure

A-2 provides an overview of this process. The first step is logic synthesis, which is

performed using Cadence RTL Compiler Ultra. The synthesis tool is driven by a

basic script in Tool Command Language (TCL). The relevant portions of the design

kit are also provided as input (these are the standard cell specifications and metal
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layer parasitic data).

The next step of the design flow is layout, which is performed using Cadence

Encounter. The synthesized netlist and other design specification files produced by

RTL Compiler serve as input, along with the relevant design kit info. The silicon

area and clock frequency of the decoder is obtained once layout is complete - along

with software simulation data, this is sufficient to compute the decoding throughput,

as well. The output of this step is the post-layout Verilog netlist, post-layout timing

information, and extracted RC parasitics.

To obtain accurate power estimations, the switching activity of all nodes in the

circuit must be known. This information is obtained using post-layout simulations

with Synopsys VCS. A special Verilog testbench with 200 test vectors per data point

is used for these simulations. This step produces as output the switching activity of

the circuit in SAIF format.

The final step is to obtain power consumption estimations using the output

of the previous steps. The software used to compute the estimations is Synopsys

Primetime. This tool takes as input the post-layout netlist, extracted RC parasitics,

switching activity log, and the design standard cell specifications. The output is a

power report, which contains the power figures reported in this dissertation. Energy

efficiency for each decoder, measured as energy per decoded bit, is derived by dividing

power by throughput.

List of software tools and design kits used in this flow:

• Cadence RTL Compiler Ultra (versions v9.10-p104 1 and 11.20-s017 1)

• Cadence Encounter (version 09.12-s159 1)
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• Cadence IC (version IC.5.1.41)

• Synopsys VCS (version VCS D-2010.06)

• Synopsys Primetime (version D-2010.06-SP2)

• Mentor Graphics Modelsim SE (version 6.3)

• IBM 130nm CMR8SF-RVT Process SAGE-X Standard Cell Library (version

2.0)

• IBM CMRF8SF Process 1.2V/2.5V/3.3V Tolerant Inline GPIO Library (ver-

sion 1.0)

• TSMC TCBN65GPLUS 65nm Standard Cell Library (version 140B)

• TSMC TPFN65GPGV2OD3 65nm Standard I/O Library (version 200C)

• STMicro CORE90GPSVT 90nm Standard Cell Library (version 2.2)

• STMicro CORX90GPSVT 90nm Standard Cell Library (version 4.3)
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