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Abstract

In this work we solve two new matrix models, using standard and new technigques  Phe to
models are based on matrix ensembles not previously considered. They are represented In
special form of antisymmetiic matiices and are classified in the DUHI generator ensenble
[t 15 shown that, in the double scaling himit, then fice energy has the same belinonr as
previous models desciibing otiented and unonented sutfaces, We also found an acdditional

solution for the chapter 3 model



Résumé

Dans ce travail, nous avons résolus deux nouveaux modeles de matiices en utilisant les
teclimgues standard ainst que quelques-unes de notie ciu Les deux modéles sont hasds
sut des ensembles de matniees qun n’avatent jamais été étndiés  Ils sont 1eprésentés par
nne fornme speciale de matrices anti-symmetigues et sont classés dans ensemible des
pencratents DI I est montié que leur énerere hibre, dans la double Tite d ¢ehelle,
posscde le meme comportement entique que d'antres modeles déja étndics et décinant
des smfaces onentées et non-onentées . Nouns avons également, trouvé une solution addi-

tronnelle pour le modéle du chapitre 3.
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Introduction

String theoty has evolved rapidly in the last five to seven years. This tevival, due m part
to ref. [1} with the discovery of gauge and gravitational anomaly cancelation, was nnly

on the theoretical side.

Unfortunately, stiing theotists ate limmted to a perturbative expansion, which s not
sufficient to provide wital mformation such as the tine ground state of the theary  In
other words, thete are many ways to compacify a D = 10 stung, theory to 1) 4, and
a non-perturbative approach wonld be necessaty to elinnnate some solutions by showing,

that they aie inconsistent,

The quantity of interest in first quantized stiing theoty is the followimg patlmteoral
(partition function) (2],
Z ~ Z DgDX ¢~ rotv (0 1)

topol

where Spary is the Polyakov action,

1 o . ,
Spoty = 5= / 426 /G900, X" X" G, (X) (0 2)

In this equation, G, is a D-dimensional embedding space-tume metiie, whereas gy, 15 the
wolld-sheet metric. Oue approach is to write the world-sheet metie i the conlinmal
gauge, gap = €°gap This simplfies the action heeanse ¢ vamshies i the action, bot thepe
are also new contnibutions from the path mtesial measnre T lis gives nse to the quuantam

Liouville theory, where the Liouville action s
26 - [) ‘, c . -
—"l‘g‘-“— (120’ \/f/(//”b(')“l,‘/()b(:) { K ]e'.'l} Iy ')/
187
One obseives that for D = 26, the field ¢ decouples! and the quantnm theors 1 confor

mally mvariant. Thisis an example of a critical sting theory Althonglthe s loal ple

IThis 15 tine when one adds local couterterms to cancel the world-shear coanologiral con it
expliined in section 1.2



they present technical difficulties when evaluating amplitudes for large genus number
The sitnation is even more compaicated in non-critical stiing theottes where there 1s no

conformal invariance

An alternative approach, called dynamical triangulation (3, 4], was used for numetical
stuclies of non-critical stiing theories. The idea is to discietize the stiing wotld-sheet with
small flat plaquettes, connect them together in all possible ways, and (try to) 1ecover the
continuum hit, "This cortesponds to a sum over all possible deformations for a given
gemits number and also over all genns Thiee years ago some 1ematkable progress was
made [5, 6, 7] on the analytic side, at least for simple theoties However. this method 1s
currently restricted to non-critical stiing embedded m D <1 dnnensions - this 1s because

the analvtie methods nsed for D < 1 don't apply for ngher danensional stimg theoties
) = PP ! g

Even though a stiimg theorv m D = 0 may appear not to contam much physies, 1t
provides a simple starting point It also serves as a toy model, which could bhe useful m
understanding, and doing more comphicated calculations - in the same way as we acquire
some experience with infintte dinensional integials to better understand ther functional

analogs

In this woik, chapter one is devoted to a review of matrix models, including the
important relation between the topological expansion of 2-D quantum gravity and the
perturhative expansion - via Fexnman graphs - of matiix models This idea is cential
to matrix models T also discuss the exact solution of matiix models, the double scaling
lhimit, their fiee encigy, and finally a classification scheme for the models within the
context of symunetnie spaces  In chapter two I show the caleulation of a model with
complen matnices, mtrodueing the scahing relations and the cittical values Some of the
results derved for this model can be applied to the two other models discussed Ty
chapter thiee and four, I'show the caleulations of these two new models m D = 0 The
teasons for studving them are that they were part of a classification seheme, It also they
provided an opportunity to extend the tedhnigues for <olvimg matin models, namely via
shew-orthogonal polynonnals [8] We also had to solve them to compare with previous
models to seeaf the plivaes tevealed by the fice encigy 15 the same  Indeed, flom 1ts senies
expansion, we can say if the model describes unotiented suifaces m addition to oriented
ones, and, by caleulating an appropriate 1atio, we can say if 1t 1s the same as previous

models (discussed in chapter twe). The appendix, which piesents low-order pertuibative



calculations for various matrix models, can also help to find whether or not the model

‘ includes unorientable surfaces.

Finally, I conclude with a discussion and a comparison of the two models’ fiee energies,

and a comparison with other models.



Chapter 1

Review of matrix models

In this chapter I explain the hasic concepts of matrix models, starting with the Polyakov
path integial in string theory. We then look at two approaches to get some information
fiom the partition function: Liouville theoty and dynamical triangulation The 1clation
between matiix models and dynamical triangulation is explained, and the exact solution of
a simple model, using Hermitian matrices, 1s sketched. Finally, I intioduce a classification

for matrix models hased on symmetric spaces, and discuss the problem of the 1eduction

of the matiix integral.

1.1 Polyakov path integral

In string theoty, we geneially want to calculate stiing scattering amplitudes, this s just
the string equivalent of the usual calculations that we are doing in quantum field theory
(e g QED). The fundamental quantity, from which we can derive almost all quatitics of

interest, is the following partition function, or Polyakov path integial (2],

Z= Z 9" /DgabD—\'“ e Sraly (1.1)

topol

whete gqp 18 the wotld-sheet metiic, and the X* are the cmbedding variables of the
siuifaces  Inascattering amplitude caleulation, one also includes various vertes operators
m the path mtegial, The sum over topologies, liere, 1s equivalent to a sum to all orders of
loops in two-dimensional quantum field theoty We talk about topologies hecanse stimg

interactions correspond to the sutfaces which we may distingiish fiom one another by



their topology (e.g. the number of handles, or the genus). Foi example, fig 1.1 gives a

comparison of graphs in quantum field theory and in stiing theory.

Figure 1.1: Comparison of interactions in quantum field theory and sting theon

The sum over topologies is generally wiitten as a sum over yx, the Euler chatacter,
where
X = 2 - 2(#handles) — (#tholes). (12)

‘The number of holes is just the number of asymptotic stiings. The number of handles s,
for example, 0 in the first graph and 1 in the second. So for a fixed number of asymptotic

strings (for a given interaction), we sum over all possible handles.

1.2 Liouville theory

The Polyakov path integral is weighted by the following action (2],
1 2 A N g ,
S))oly = —2—%-&-’-/(1'{ 0(,.\' a[,/\ G,,U(.X) (] ‘)

One can fix the diffeomorphism ficedom of the inetric on the world-sheet by choosmg the
conformal gauge,
Jab = ed‘!}ab (1 b

where we can always choose, locally, §.p = 6, The action then becomes

Spoty = Z}&' / 020 \/35" 0 X 0, X" G, (X). (15)
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So, in this classical action the conformal mode decouples. We would like to keep this

property when gquantizing the theory. Taking care of the regularization of the path integral

measure, one gets,
26— D 9 2 4 , , 9
g | doda JIRG(a,0'\W R + [ do\/gp. (1.6)

The first term s non-local. It has two contributions, —D, coming from the embedding
pait, DX, and 26, coming form the metric part Dgq,. The second term, involving a
bate cosinological constant, can he eliminated with appropriate local countertenms in the

action,

In the conformal gauge the previous equation becomes local,

2 - D ) - - hol _
%8—~ o §(5™ 0,006 + 21 (17)

This is the Liouville action. As was explained in the mtioduction, the ficld @ decouples
for D = 26, but even then, there ate technical difficulties when evaluating amplitudes
for lamge genus number.  Stiing theoties with conformal invariance are called cutical.
Recently, some progress was made in the nnderstanding of non-critical string theories
(non-conformally invariant). Some such models were found to be completely soluble, using
matiix models, although they are very simple. In the following I discuss in detail the idea
of dynamical titangulations as an alteinative regularization for non-critical string theoties
1 also explain the relation of this 1egulator to matiix models, which is the foundation of

the present work.

1.3 Dynamical triangulations

We consider, for simplicity, D = 0 (i e no embedding spacetime) In that case the path

mtegral reduces to,

Z = Z Dy e AN, (18)

topol

The Euler number, ), comes ftom an Einstein tern, whereas the other one is a cosmo-
logical constant term (A4 is the area). Obviously, the intetesting part of this theory is in
defining Dga. One solution to the problem is through dynamical tiiangulation [3]. In

this procedure we constiucet sutfaces from small, fixed-size plaquettes Suppose that these



are squares of side @. Then the functional integral f Dgas is replaced by a sum over all
numbers of plaquettes n, and a sum over all possible tilings for a given n (the tihngs are
the possible ways to connect the squares in order to generate surfaces of a given penus

number). We write the result in terms of the free energy,
F=-logZ=3 3 Y (o) e (19
topol n  tilings

where 4 = na? is the area, and g, = ¢ 1s the stnng coupling. By using a loganthm
we implicitly consider only the connected giaphs, as i quantumn field theory Wiathow
it, there would be a different sum on the right-hand side to account for the disconnected

picces

1.4 Matrix models

The relation with matrix models can now be seen by considering the following matrix

integral,

Z:/d¢e”‘s (110)
where S = NTr[1¢? + 24] and ¢,, is an N x N hermitian matrix. The flat measure
defined as N

dp=[[dé. [[ d(Red,)d(Ims,). (111
=1 1N

This integration can be evaluated perturbatively in the coupling b, naing Fevinman
diagiam techniques. For example, the ¢ tetm is tepresented by a cross of two pans of
lines (fig 1.2).

The details can be found in [9] Here we simply point out that the dual graphs of the
Feynman diagrams correspond to the tihng of swifaces with small squares The wdea ol
dual graph is not new. Given a general graph, one can constiuct its dual by tracing, to

cach line, its perpendicular (fig 13). The translation rules are as follows,
propagatols  —  edges
matrix interactions - faces

closed loops == vertices

~J



Y/ V/

a < c <
TS < <
V/ VA

Figure 1.2: Feynman vertex and propagator for a matrix path integral.

The 1cason why we only get squares (quadrilaterals) is that the interaction is quartic. In

general, for a @M interaction , one would get M-gons (M=34,5,...).

Figure 1.3: A graph and its dual equivalent.

We will now use the result obtained by 't Hooft [10], that the matrices o1ganize the
topological expansion of the dual giaphs. This statement requires some explanation We
start by counting the factors of N entering in the evaluation of a Feynman giaph Fo
cach interaction we have a factor of N, because there is an N in the action We also have

a factor of 1/N for each propagator. And finally, for each closed loops, we have anothel



factor of N. This is because in a closed loop we are summing over mdices (i ¢ taking a
trace), so we get the dimension of the matnix, N. So, for a given Feynman diagram, the
overall factor of N is,

NIN-PNL = NF-E+HY = 4 (11
where x = F — E +V (Euler character for sutfaces made of polygons) We also used the
dual graph correspondence. We see, then, that cach Fexnman diagram can be classihd

by the Euler character of the sutface in its conresponding dual graph

If we compare then our Feynman diagtam expansion of eq.1 10 with the expansion
in eq.1 9, we notice that they are the same with 1/N playing the 1ole of a bare stumg

coupling constant g,. So we write the free energy for this matiix model as,

F=-logZ= Z Z(;%)“(-—b)"[[zlmgs],,‘,( (r13)
X n

where the number of tilings for a given n and \ was evaluated for low genus smiface [9],

1
[taings)ny = (=b) "0~ 71O+ Of

]TV*) (11

In this equation, b, depends on the regulanzation scheme nsed and 1s a negative nunmber!
A is independent of that particular choice, and €'y carnies mformation about the penus

expansion. Using this result, the fice eneigy becomes,

~v E "\ "l -

]: - Z 1)0 ' C “ ].')
dA 1

il el b ¥ A/ﬂ -Ax G

Zx /A(N) (b,_) 02) Cx (116)

where the summation over n was replaced Ly an atea mtegial, and n by A/a? Now we

12

want to recover the continuum limit, @ — 0 In order to keep the integral fimte we liave
to take b/b. — 1 while fixing 4g = %/ log(b./b). Ts is to avoid a possible divergence m
(b/bc)’l/"-. With these definitions, we have,

dA 1 A
[ -\, /Ay - A\(u .
F o~ Z/ 4 ‘\/ ]()”‘ ’)('/[) ) C (“10) \ {11

We can define a new renormalization constant via gy = N Hlogh /b)Y Tt G be Lept

finite by taking the so-called double scaling himt N - e and bfb, - 1 oo the

n fact, we defined our be to have an opposite sign to that of 1ef {9}, an added a nnnus i froue of
This is for further convemence and doesn’t affect the analy s1s.




critical point, one can write gp as
1
or = 3 (be/b - 1)"1H7/2 (118)

where 4 is known as the critical index of the string susceptibility. We have the simple
relation, A = 1 — /2, and one finds [11] that v = —1/2. In this analysis, it is understood
that b — b., but b, is a negative number, and eq.1.10 appears to be divergent. The cure

for this problem 1s to vse analytical continuation for negative b.

Although the above calenlation was cained out with a factor of N in the action, it
shonld be noted that theie are other definitions of this action (and also of the double
scahng Innt). For example, n the following we will give the action an overall facto
of # mstead of N, and we will let # — N We can accomplish this with the following

transformation, ¢ — (8/N)Y2¢, and rewrite the action as,

-

S

1l

NTT[§¢ +I¢}
l‘zﬁ b .d 274
NTgo y + 350

b .
3(%)&]- (1.19)

1l

1 -
BTr[50" +
2
So, our previous calculation for gg arc essentially unchanged, all that we have to do is to

1eplace N by 8, and b by b(8/N). We get,

bc —~14+v/2
gn=%<ﬁf—1> (1.20)

whicl is the result found in [12] if we let b = b,. In fact the two approaches are equivalent?.

Above we fitst set 8 = N, and let b — b.. In the other appioach used below, we set b = b,

and let ;3 — N. It is just a matter of choosing one parameter or another (in the action)

1.5 Orientability and the double-scaling limit

One mteresting feature of the double-line graphs is that thev allow us to sav if their dual

sraph equivalent contains unorientable m addition to orientable ones.

To see this, consider the Hermutian matiix model, with piopagator < ¢u,0 >=

{7(\“1(\(,‘.. This propagator is represented by a double-line, one for each index. One can

*We point out, however, that the N-powers counting is slightly different. For fuither details, sce [12].

10



only connect the indices a-d, and t-c (fig. 1.2). So a given veitex will have connected
double lines, each line having an atrow in the opposite direction of the other. Two
connected arrows in the same direction implics contraction of indices This means that
one cannot twist a propagator, because the directions of the arrows wounld not mateh On
the other hand, ther are no problems with an even number of twists because we can always
untwist the lines. In terms of the dual graphs equivalent, we would say that the swiface
is orientable. A twisted propagator would correspond, mn the dual graph, to cutting an
edge and reversing its orientation (fig 1.4) Twisted propagators, and hence unonentable

surfaces, would be possible with other matrices, such as antisymmetiic ones

I b

RN

:\\‘:,__—___// bo©
X I

’/r_*\\ °

Figure 1.4: Orientable and unorientable suifaces.

One could think here that the Feynman expansion of a given model would tell us
if there are unorientable surfaces in addition to the onentable ones m the contimuum
limit. When one goes to the double-scaling limit, however, the contiibution fiom the
unorientable surfaces may not survive. One such example 15 the antisymmetiie matn
model, which has the same free eneigy as the Hermntian matnx model, despite the fac
that its dual graph had unoiientable suifaces Low otder calculations are done e the
appendix for five different types of matrices including Hernntian inatniees ‘The reason
why unotientable contribution disappear in the donble-sealing linit 15 not entinely cleq
[13]. So even though the dual graph of a Feymmnan expansion gives na hoth hinds of
contributions, we actually have to solve for the free eneigy to see whieh contnbutions

survive in the continuum limit (as explained in the next section) This 15 one imotivation

11



for solving the new matrix models in chapters 3 and 4.

1.6 Exact solution of Hermitian matrix model

The calculation 1n section 1 4 was carried out to show that 1t 1s possible to 1ccover the
contimnnn hmt, and also to point out the way to do it (i e double scaling limit). We
will use the same kind of limit in solving matrix models, but this time we will solve them
exactly. To illustiate this procedute, let’s consider the following sumple model whete we

nse a N x N Hermitian matrix ¢,

Zy = /d¢e‘s(¢> (1.21)

N
= /deH(dm, e SENAL (7). (1.22)
1=1

In the second line, ¢ was diagonalized using unitaiy matiices, and the z)s are its eigen-
values. The mtegral over the unitary group (dU) 1s irtelevant here, because it is only an

overall normalization constant. Ay 1s a Vandermonde determinant,

. N
1 o, x} o
2 —_
T ls To
An(z)= [ (& -z,)=det _ (123)
1<9<i<N :
1 zp 13 .. a‘x"l

Above, thic factor A% is the Jacobian for the change in variables form those in the measure
(1.11) and those 1n eq 1.22 In solving matrix models, one always uses the techniquc of
gomng fiom an integral over (all the elements of) a matrix to an integral over cigenvalucs

[14], or some simpler set of parameters.

By tiansforming the determinant (adding multiples of columns), we can get the fol-

lowing, form,

P(xy) Pr) P(xy) ... Pyvo(x)
Po(ry) Pi(ra) Py(ra) . Py _ (x
Ax(r) = det o(' 2) Pi(r2)  Para) A 3( 2) (1 24)
Po(ry) Pi(ry) Pa(aw) Py_1{xa)
whete the P's are orthogonal polynomials defined as,
/(1.1‘ eSO PU2)Py(x) = birhy (123)

12



The partition function is then easily found,

-1
Z =N H h,. (1 26)
1=0

Instead of working out all the weights i, and the polynonnals ( which would reque a lot

of work for large N), one generally consider ratios of pairtition functions,

hy 1 ZnZna . - o=
;l-N_-; (1 + —,\7> = T = CI\'P[“(]:NH = 2Fv + fl\—l)] (1.27)
, O*F
= X TS R
Aan;O(\l) [ 01\'-’}' (128)

In the large NV limit, one has 8% F ~ — log(hx /ha-1). So the problem s reduced to findmg
the ratio of the last two weights and then integiating twice This tatio can be found by
using a recursion relation for Ry, where Ry = hy/hioy, amd 0 Po= Py 4+ SiPoy IRoly
The recuision telation will have the form M /N = function of Ry Ry By, ete o
egive this equation, for large N with & — N, we will need what 1s called asealing ansate
This comes from the fact that we want to “expand” the tegion of mterest near a cntieal
value of R. The justification for such an ansatz 1s given m chapter 2 The other detals

can be found in [7, 15]

The 1esult, known as the Painlevé I equation, is
1.
t=f2—~§0,2f (129)

where 92F = f, and ¢ = NY/5|1 — b./b| is called a scaling patameter. For large ¢, one

finds the following solution for F,

4 1 7 ,
= —t32 4 _lopt —~ ——t 524 . 30
F=gpt tagloest- gt (1.30)

Each factor differ from the other by t7%/2 = N=2|1 — b./b|=2t" = ¢4 where vy = —1/2

This result agrees with the previous analysis, section 1 4

Concerning the orientability, we rematk that the first term i the solution for 77 s
52 ~ N2 while in the sccond one we have logt ~ N* "This tells us that the st renm
corresponds to a sphere and the second to a torus Domg the <iome at all orders we wonld
find that only the even Eulet mumbers sutfaces appear Butat does not mean that we anlh
have onientable simifaces Indeed, the Klem bhottle s nnorrontable bhut s Foader inber g
x = 0. The analysis of section 1 3, though, tells us that there are only contriibutions from
oriented surfaces for this model In general we cannot make this assminption based on the

solution for the free encrgy only, and we have to compatre with other known models

13



1.7 Classification of matrix models

I will now introdnee a sunple classification scheme for matrix models, based on symmetric
spaces  The justification of such a classification is that 1t gives all the models for which
the rednetion of the matrix integral allows for a solution by a polynomial method (as
sketched in the previous section). Indeed, we want to solve various models tor different
matnx ensemble, but we cannot choose any type of matiices in any combination (the
chowee of the potential 1s also 1estiicted), because it could be impossible to i1educe the
matux integral to an mtegial over eigenvalues (or some simpler set of patameters) This
reduction is necessaty because usually | the matrix integral 1s nnpossible to cvaluate
diteetly. So we need some hind of classification, o1 restiictions, on tlie types of models

This 15 where symmetiic spaces comes into play

1.7.1 Symmetric spaces

Symmetiic spaces can be considered as an extension to the usual classification of Lie
groups. A partial definition is as follows: any symmetric space X can be realized as a
set of cosets G/IK of a connected Lie group G on one of its subgroups K. This is only a
pattial definition hecause homogeneous spaces also satisfy this definition. The difference
between the two spaces 1s that symmetric spaces satisfy some symmetries not found in
the homogeneous case The classical types [16, 17], ate listed 1n table 1.1. The two new
models, 1 chapter 3 and 4, ate i the DIII ensemble In fact, we generally talk about
generator ensembles which are the set of matiices associated to the symmetiic spaces®
They cortesponds, for chapter 3, to n odd, and for chapter 4, to n even. The next section

deals with the 1eduction of matnx integrals, and the Jacobians for some of the matiix

ensembles are given.

1.7.2  Reduction of the matrix integral

There are a few wayvs to 1educe a matiix integral, depending on the type of matrix or

the matnx ensemble  For example, for the Hermitian matrix model, one can simply

i topological terms, the generator ensemble is dentified with the tangent space of a symmetiic space
Fyponentiation of the generators gives us the so-called circular ensemble, which we will not discnss here
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Cartan’s System of

notation | X=G/K Rank restiicted | Multiphaty
100ts

AT SL(n, R)/SO(n) n—-1 | lme=1

All SU(2n)/Sp(n) n-—1 Ao m, = 1

Al SU(p,q)/S(U(p) x U(q)) | n=mum{p,q) | p =1, C, my =2, my -1

p>q.BC, | my =2, my =0
my - 2p - q)
BD I SO(p,q)/SO(p) x SO(q) | n=min(p,q) | p = q.D, m, = 1
p > q.03, ma - (p-q)
m, =1
D III SO(2n)/U(n) nf2 n= 200 Ly o= myy e 1
=2 R oy = e ]
BC, my =
ClI Sp(n, R)/U(n) n C, m,, = 1
cl Sp(p,q)/Sp(p) x Sp(q) n=min(p,q) | p = q, C, My = may e 3
p>q, BCym, =4, myy =3

my = A(p - q)

Table 1.1: Classification of the symumctiie spaces

diagonalize the matrix as 1t is done in Metha's book [14] The result 1s that we get an
integral over the ecigenvalues with a Jacobian in terms of these erpemaliues  The dea

behind this reduction 1s to simplify the matrix integral

The symmetiic spaces mtioduced 1 the pievious subsection give us a systematie
approach to identify the matiix ensemble for which a snmlar reduction s possible Loy
these spaces, however, the procedure of teducing the matnx ntegral 1s more comples An
analogy can be used to understand how the Jacobian and the set of integranon parameters
arise. Consider the volume element in flat space written i cattestan coardhinates and
spherical coordinates, [TV, dz, = dwdrr¥=1  Spherical svumetiy would allow us to
integrate out the angular part dw with r¥=1 being the Jacobian and o the ntepration
vartable For a synunetiie space (matiix ensemble) the Haar measnre can be decompe o
in the same way with the syvinmetiy provided by the associated gronp T doing <o we pet
the Jacobian and also a sct of parameters (which are not nececanlv the cyonvalues of the
matrices). In the example above the symmetiy 1s given by the coset SOCN 4 1) [50O0N )
which is the vector limit of 1ectangnlar matnices as studied m [18] (oot teallv s o vecto

model). For the technical details the reader is referred to Helgason™s hook [17]. Let s e



Cartan’s System of
notation } 1estricted roots Jacobian
Al Any HI-’E:_-TJI
1<)
All Anoy H |z, — x|
1<)
CI Cn [T 122 - 22| I
1<)
D HI n=2%,Cc |[[=2-2]]=
1<)
n=2k+1, BC, H(x? - z?)" H’L?
1<)

Table 1 2. Symmetric spaces and their Jacobians

say here that there is a 1elation between the multiplicities of the roots and the exponents
in the Jacobian Table I 2 gives some syminetric spaces and their associated Jacoban
It should be noted here that matiix models with Hermitian matrices, antisymmetric
mattices, ete, are not part of this classification. In fact they belong to the moie standard

groups like U(n),SO(n), Sp(2n), and so on.

The symmetric spaces classification gives not only a broad 1ange of models which are
reducible (and a systematic way of reducing them), but also a convenient way to 1ecognize

the different matrix madels.
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Chapter 2

Complex matrix model with special
couplings

In this chapter I will show the calculation of a matiix model with complex matniees [19)

U(N YA

In terms of groups, we say that they form the generator ensemble of the coset FiRY -1 A1

with N = M [18]. The purpose of this model is to ntroduce some of the ideas that will he
used in solving the two other models Among other things, the ansatz used in the solution
of the mode] here will be used, with slight modifications, in the two others because of the

similarities between the polynomials used in both case.

2.1 Partition function

We first write the matrix integral as,
Zy = /dMe-f’V““ (21)
where,
V(M) = aMTM 4 b2 (0t ary? (2)

and A1 is a complex, N x N, matnx  The special conphngs (M) were nsed 1o
preserve a U(N) x U(N) symmetry which allows M to Le diaponahzed (¢ g0 no (arlyran
MT2ar terms). This structure comes ont diectly of the coset constineion [18] Afte

reduction to an integial over cigenvalues. we find the following Jacobia,

N N
T = [Tl [](a? - <3)? (23)
1=1

1<)

17



and the partition function becomes,

o N
Zy = / Hdm.je‘m’(")

% =]
o N N b s
= 27V / H dy, H(TJ:' - y)° e~ Blay+3v7) (2.4)
0 =1

1<)

. . 2
Between the first and the second line we made a change of coordinate, y, = v, dy, =
2¢,de,, in order to get a Jacobian expressible in terms of a Vandermonde determinant

(more on this below). To do this integral, however, we will need fitst to define orthogonal

polynomuials.

2.2 Orthogonal polynomials

Orthogonal polynomials ate necessary because the Jacobian will be rewritten as a de-
terminant  After some manipulation of the determinant, the entiies will be orthogonal
polynomials P. So the whole determinant will give us a sum of products of these P’s
The exponential in the integral will serve as a measure weight for the polynomials and we
will be able to evaluate the paitition function. Let’s define the following polynomials on
the half-line,

P = y* + lower orders (2.5)

and

/ At PP, = hebi, (2.6)
0

where dye = dye™?V¥) We point out that they are different thai: those for the Hermitian
matrix model because in that case they were defined on the whole axis. We <ee that the
partition function, once evaluated. will be wiitten 1 terms of i's But the fice energy can
be related to aratio of 2's, so at the end of the calculation we will nced to know a ratio
of two Zi's. Such ratios are denoted as Ry = hy/hi-y where R appeais m the {ollowing

tecutsion relation for the P's,
yPe = Pyt + SiPre + Ry Py (27)

which can casily be found from eq.2 5 and ¢q.2.6. So our problem is reduced to finding an

expression for the R's and S’s. In most matrix models, including the one that we solved

18



in chapter 3, the evaluation of the partition function is not so hard. The compheated
part of the problem comes in finding expressions for the auxihary values appeanng w the

recursion relations for the polynomials, such as Sineq2 7.

2.3 Recursion relations

Here, the approach we will follow 1s that we are going to tiy to find recursion relanions
for the P’s other than (2.7). In doing so we'll find a set of two self-consistent equations

in tetms of R, S, k, a, b, and 3. \We consider fiist,
é)yPk =kP_y+lo = Z Dy, I {(28)
!

where Dyy =0for! > k -1, and Diy-y =& The cocfficients Dy, for Il <k — 1, can be

found using the following integration,

o0 d ,
/0 dy (' PeR) = ~PUOP(O) (2.9)

= -0 /:o dp(a + by) P 1y
+ /(1;1(1’,0!,11. + PO, ) (210)
to get a general relation for the coefficients, |
Dighy + Diphie = Bhy(abey + b[bisry + Sibiy + Ridiory]) — Pi(0)P(0) (211)

Assigning different values to [, we can find some useful relations,

=k 2D;che =0 = Blula+ bSi) ~ PE0) (212)
l=k =1 Dis_thioy + Diorphie = My = Blu—y(bRL) — Po(0)4 1(0) (213)
=k —2 Dip_2hig = —P(0)Ps_(0) (211)
l<k—=1 Dishy=-I(0)P(0) (2 15)

We sce that because of the boundary termns, the P(0)'s, the derivative of the polynonials

involve all lower order polynomials (i e. the lower bound on [is ze10) So, as they stand

eq.2.12-2 15 are not useful But, in combimngeqs 212 and 213, we can elimmate the
boundary terms,

PROYPE(0) = (k— BuR)H: (216

= % a+bS)(a+bSi_y )i (217)
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So, we finally have, )
(a +bSi)(a + bSk-1) Ry = (-ﬁ- ~ bR)? (2.18)

This 1ecursion relation will be slightly modified below to get one of the two relations

needed to solve for R and S To get another we will consider imstead,

y0,P = kP +1l0. =Y FuP, (219)
{

where Fiy = 0 for I > k, and Fiy = k. The extra y will eliminates boundaiy terms

Again, to get the cocfficients, we consider a particular integral,

o0

/ dyyd,(ec VP P) = - dp PPy
0

= —ﬁ/ dpyla + by) PPy
0
+/ dp (Piyoy Py + PrydyPi) (2.21)
0
from which we get a general relation for the F's,

Fohi+ Fiahe = Blyla(besery + Sibiy + Ribioiy)
+0{bp20 + (Sis1 + Sk )brsry
+(Ris1 + SE+ R)éwy
+(Sk + Sk—1)Ribiry
+RiRi-16k-24}] — b ghy. (2.22)

As before, we assign different values to [. In fact, I = & is sufficient to get the other
1ecutsion relation (there are no boundary terms here, and we could get a 1ecuision relation

with a finite number of terms)
l=k: 2F e = ﬁhk[aSk + b(Riqr + SE + RL)] - hy ('2.'23)

aud using Frx = &, we finally have,

2k +1
7——— = aSk + b(Ry + Ry + Sk) (2 24)
This is our fitst relation. Replacing in €q.2.18, we get a second 1elation,
1
(a4 bS)a+0S )Ry = —-[S)\ a+ bSy)+b(Riyy — Ri) ~ ),]7 (2 23)
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2.4 Choice of the scaling ansatz

Before going on to the planar approximation and the solutions of the tecutsion 1elations,
we need to find suitable ansatz for R, S. The choice that we will make 1= not artbitian
We are not just dealing with power series expansion In fact this choee s based on the
fact that we want to “expand” the region of interest, which will requie the mtiodudction

of scaling parameters and so on

Let me start with a genetic 1ecursion relation of the foim,

% = F(RuaRnil)' “)- (.-2 2(;)

We introduce, for convenience, A = N/3 and write

An
N

= F(RmRn:tla---)- (227)

In the limit n = N — oo, we will use the notation R,y = (). Now, for large N and

n ~ N, we consider the following Taylor expansion of R,(A) where v = /N ~ |,

n—-N 9 1 /n-N\* 02 . '
Rn()\) = R(/\) + N ',‘()'.I'ER)::I + ":‘-)‘ ("“—I‘V—”‘> “"‘:]l', 1 *‘ (2 25)

Given that the dependence of R,(\) on A occurs as AJN m eq 2 27, and that m the It

n = N — oo this equation yields R()), we guess that the n dependence can he witten as
R.(A) = R(An/N) (229)
for large N and n ~ N.

We now use the following identities for a general function f,

J J
— (Ao, =zy = A= {230
S ADlemr = Az2f(A 0)
071 On
—f(Av)lizy = AT=——f(A (231
oo (Av)]e=y BIe (A) )
and rewrite the R expansion as,
n-N 1 n—N\*
2(A) =~ R() ——R(A) + =2 =) ")+ (22
R,(A) >~ R(N) + A ¥ R(\)+2 ( E ) IA) 4 )
. where the piime denotes a derivative with respect to A
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Expanding the recuision 1elation for A >~ A;, R~ R, (with N — oo and n >~ N ). we
first have,
where RR(A.) = R, We also know that near these critical values the recursion 1elation
takes the form,

A=F(R,R,R",..). (2 34)

So we t1y a scaling solution for A ~ A, (which is the expansion we talked about above),
BH(R(A) = Re) = f(B (A = A)) (235)
and define the scaling parameter ¢ as,
t= [\ = A). (2.36)

The derivative appearing in the R expansion takes the form,

R=JR0) = 6745 (2.37)
"n__ 9
R = =5 R()

BH(=p°) f

We now write R,(A) for n = N 41 using the scaling solutions for M\, R, R'.. ..

Rvad®) = Rew g () 43 (S50 om0y

2
w2 (R b+
A : 1222 -
Ret 07 (104 S5(-00 + 1 gms(-07F 4.
13

R. (1 + 37 exp (-1@%{%) f) . (2 39)

i

i

In the last line we just used a 1escaling of f and also made the change a — 1 — v so that

the scaling parameter takes the form,

t=37(\S - N). (2 -10)

[
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2.5 Planar approximation

In the so-called planar appronimation, ansatz are reduced to the nimmum That s the
are reduced to constants ( A = N — oo, so, Ryyy — Rand S — S ) los, tosethe
with the criticality condition, will allow us to determine the critical values appeaning
these ansatz. We also let k — oo, while keeping k/g = A fixed. This 1s just the double

scaling limit. Eq.2.24 becomes,
2\ = a5 + 2bR + bS2. (2.41)
Similarly, from eq.2.25 we have,
(a +bS)*R = S%(a+bS)*/4
R = S§%/4. (2 12)
Inserting in eq.2.41 we find,
2\ = aS +3/2b5% (2 13)

We now require, for criticality [5], 9sA = 0 = a + 3bS  This gives us the cnncal valie
S. = —a/3b. Inserting i ¢q.2 43 and 2.42 we also get Ao = —a*/12band B, = ' a’/b" N

we choose A, = 1/2 and R, = 1, then we find all the values,
Ae=1/2 R, =1 . =2
a=1 b=-1/6.

2.6 Solutions of the recursion relations

We are now ready to insert the full ansatz in onr two recursion 1elations We choose the

scaling solutions to be,

d
SN4l = ‘2(1—,6“‘<:x1)(w—l/3"“52)f) (217
9 :
Rygy = 1-p47# cxp(—l/}""a)(q(, FAT g bl ) DG,

where t is defined by t = (,3/2— N)37" We also wite N stead of L Lecanse ve e anly
interested 1n the large N behavior of R and S (and so we replace b by N o aun recuroon

relations) In the R ansatz we added some more degrees of freedom by evpandimg the
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order eq.2 25 eq.2.24

L 4/9=4/9 1=1
p Go=2f g0 = 2f
prv n=f 90 = 2g1

2 = g gy = 1J4f" — 2 | 2t =2/3f2 = 1/3g5+1/6g) —1/12 g}

Table 2 1+ Lowest order solutions of the two recuision relations for the complex matiices
matnx model

g function in powers of 47 Tlus will b~ necessary to get consistent solutions bevond

leading order in 7Y, Doing the same thiug for f would only vield redundant equations

After inserting in the recuision relations, and working out the lowest order equations
we see that a consistent solution requites ;¢ = 2v. For the two 1ecursion relations. the

1esults are given, order by order, in table 2 1.

From eq 2.24, we obtain the values of the exponents, v = 1/5, and p = 2/5, which is
consistent with our previous relation between 1 and v. Also, using the 1elations between
the g coefficients and f from the fitst recursion relation, we get, at order 57 =2 in the

second 1ecursion 1elation, a diffeiential equation for f,

A= —1/12f" (:

(SN
!
Sy
-1
~—

w hich s the well-known Painlevé I equation, upon renormalizationof t. At oider 777 and
J7E7Y we simply get equahities (e g 0 = 0), which come from our ciiticality 1equitement

( fiust derivative of A with 1espect to S is zero)

2.7 Solution for the free energy

We can solve this equation pertubatively for large t. So, the value of R is determined All

that we have to do is to solve for the partition function. One casily finds (as in chaptel
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1),

AV
Zy =27"N1]] e (2.48)
1=1
We calculate, as usual, the ratio,
ZNp1 2Ny 2(N + Dhn
o ( ONhy — = (L UNRy
N N
~ 1~ 13—2/5_(]0
= 1 - 370 RERD
The ratio of the Z’s can also be expressed as.
Zni1Zy-
]n__IV_%_Q__Ll = ~(Fyg = 2Fv + Faoy)
N
_0'F
T ON?
_ ot \* 0*F
ON/j ot?
0‘2
= -p72/5, at[; (2 50)
Finally, by comparing eqs.2.49 and 2.50, we have
_osO'F _a/s
-0 2/5—8—[2— = In(l-2fp 215
_IH—?/SFN ~ __.2[/}—!/')
F" ~ 2f (201)
From the Painlevé I equation, we can find a well-known power senes solution for f
1., 19V2 .
=V oyt 2Ty (250
f 9 30364 ’
Replacing in eq.2.51 we get,
s 1 oy 19V2
F'=2yo? o =2 o NIy RO
& 48 18432 ’

From the power series, we 1ecogmize that the model deseribes even Enler nuber surfaces,
only, in agrcement with the 1esults in the appendix Indeed, cach power of ¢ difler from
the other by,

t—5/2 — (ﬂ _ N)—S/'z[j—-‘i/’.%/(——l/’))

BH1-N/B)
~ N~Y1-N/p) (254

i
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in the liinit that 8 — N. So we have even powers of N only. And because this is exactly
the same series as for the Hermitian matrix model, we conclude that this model describes

oriented smfaces only.

In fact, to compare with other models, we generally consider a ratio of cocfficients
to take mto account that F and t have unknown normahzation. For example, 1n the

following scries,

F" = t"2(co + [ [ ext™/?*) (2.55)
k=1
one would consider ratios like,
C,Cr
Lk (2 50)
Cilm

whete 3 + & = 1+ m, so that all powers of t cancels. Here, and throughout the thesis, we

will use the 1atio cyea/c? (involving the first three cocfficients). We havz,

This value will serve as a reference when solving other models.




Chapter 3

First model in the DIII generator
ensemble

In this chapter we consider the first of the two models m the DI geneiator ensemble

matrices are the generators of SO(2n)/U(n) for n odd As usual, we will define veen
sion relations for the orthogonal polynomials (section 3 2), but i the evaluation of the
determinant (section 3.3) we will also need to define recursion relations for the paitition
function itself as well as for an auxiliary quantity This 1s a vanation on a staudard tech-
nique used for other models. In section 35 we will solve these tecmsion telations with
ansatz based on those used in chapter 2. Finally, i section 3 6 we solve for the free enerpa

and compate with previous models.

3.1 Partition function

The Jacobian for this model is,

N N
g =L T2 - oy )

1<)

And we are going to make the analysis with the potential Vo= ad” 1 5/207 "[he teaon
why there are no linear or cubic term is that we are dealing with antisyninetie imat e
(defined at the end of the appendix) And we know that odd powers of antisvinnct
matiices are traceless. We use in fact the simplest form for a potential - Higher arde

potential would only yield mote complicated equations “The pattition function can then
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be written as follows,

o N
Zy = / H(Il‘,je'ﬁv(’f) (3.2)
—oo T
o N N N )
= 2"”/ TT v TT v [T (3 — wp)iePtovrer2en, (33)
0 1 t 1<

Between the first and the second line, we used the substitution y, = 22, dy, = 2x,da,.
The complicated part of this integral is the Jacobian For convenience of evaluation we

will tewrite it as a determinant [14]. This is the usual approach to this kind of problem.

We have,

Po(y1) Pi(y1) cee Pay-1(y1)
P0,Po(y1)  ¥*o,Pi(n1) ... 0y Panai(yn)
NN Po(y2) Pi(y2) e Pan_y\(y2)
T122 1]t = 5)" = det . (3.4)
! 1<) . : ¥
| 20, Po(yn) ¥20,Plyx) - Oy Panoi(yw) |

The P’s are the usual orthogonal polynomials on the half-line, defined as

Pa(y) =y" +lo. Py(y) =1 (3.5)
/ dp Po(y)Pn(y) = Anbmn du = dye PV (36)
0

and fiom which we derive the following rccursion relation,

yPn = Pn+l + SnPn + RnPn—l' (37)

3.2 Recursion relations

From the form of the determinant it is clear that we have to find a 1ecuision relation for
y29,Pu(17) Tndeed, the recuision relation will tell us how to decompose the determant
to evalnate it. This idea will be elanified later. So we fitst wiite the general form of the

tecursion relation,
n+l

!/QOUPH=7?P,,.H+ZF"|[P[ :ZFH.IPI (3 S)
=0

(=0



The F’s are Fpne1 =n, Fay=0fori>n + 1, and F,; undetermmed for [ < n + 1 One

generally starts by considering the following integral,
® 2 d gy = .l
dyy "_'(e PnPrn) = - (IUPan(' Ty (3m
0 dy 0

oo
= —'2/ dy P,,(P,,,+\ + Svn pm + Rmpm-—l)ch‘“
0
= _26n,m+1hn - 25,,,6,,‘,"/1" - QRm(Sn‘m»lhn

= -Q[y]n‘mhm- (3 10)

The bracket notation in the last line requires some explanation The hracket with the
subscripts n,m means all possible paths from P, to 12, In 1epeated appheationsof e 3 7
In this case, because there is only one y. we apph the reansion relation only onee oy
a term [y*], one would apply the recursion relation A trnes T other words, the tesultine
polynomals of y* P,, will have different degrees and then scalar product with 2, wall be
different than zero only if it is of the same degice  \ pictnie can help to see what happen
(fig 3.1) Each horizontal line represents a polynomial with a dhifferent degree \\ hen one
of them is multiplied by y2, for example, there ate different paths possible according, to
each term 1n the recursion relation Suppose that we want to calenlate fdye 2 ydp e,
Then we have to collect all P, tetms coming out of y° £, The calenlation is as follows,

%
hn[y2]n,n - / dy e—ﬂvyzpnpn
0

= / dye PV Py(Rup1 Pa + S P+ R.Py+ )
0
= (R + SE+ RN, (311

This result can be read directly from fig 3 1

We can also do the previous mtegial duectly (withont mtegrating by parts) I the

case we get

It

x d , < '
/ (]y yQ“(e.—’ﬁ‘ PNPWI) / (h/ I/_)( --‘j‘/”)"«”\ Il“I),” ! / ’/'/ ’/"‘ 8 /'I’l/”“

0 d.’/ JU 0

~ .
i / dyy*e™™ P, P! (y
JO
= _‘3[3/-)‘; '<I/)}”"”h'“ + Z(l‘n I((/ luhm ¢ /'m I"’/ u/’u ){" ]"'1
{

= —IB[?/QV’(]/)]",flllllrl + 1:.",7”}[1!! t [":u,nhn (3 ] 1)
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ntl —-——- n+\
n - P <<Snpn
n-1 - -
! RnPn-I
. ~N
“‘3 — Rn-l\R R P

n"n-1"n-2

Figure 3.1: Pictorial representation of a scalar product of two polynomials.

Cotnparing the two results, we have,

Fomhm + Fonha = By V' (9))n.mbm - 2[y)nmbim. (3.15)

To find the different coefficients we simply have to assign different values to m. We
start with m = n and we stop with m = n+ 3. This is because our potential V is of order
two. So y?V' is of order three. When the difference between m and n is four o1 nore,

[¥?V'(y)]n.m is obviously zero. The coefficients are,

m=n — F, .= g[y'zvl(y)]n,n = [Ylnn
m=n-1 = Fooa=BFV @h-1n = 2yla10~ (0 = 1) R,
m=n-2 = Fo.0= 0LV (Y)]r-2.0RaRu-1
m=n-3 = F.3= B8V (y)}-3.RnRa-1Rn-2
m<n-3 - F,,=0.

For simplicity we will write C = [y?V'(y)] and D = [y]. The recursion relation can finally

be wiitten as

y:.'aypn — 12Pn+1 + (-g-cn'n — Dn,n) Pn + (,BCTI‘-LTI -n- I)RnP‘n—l +
ﬂcn—anan—-an-? + ,BCn-—&anRn—lRﬂ-‘Q n-3 (316)
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3.3 Ewvaluation of the determinant

We can now cvaluate the partition function But instead of dompg it ditectly, we will
find a recursion relation for Z. The way to do 1t is to consider the upper two hnes of the
determinant, and look at all the possible products of polynonnals giving non zero answers
We wiite the Jacobian of the partition function Zx,4, as,
[ Poy1) Piy) .. Pon—o(n) Pavar(in

Povtn) Pav il

Pynolin)  Pox 1an) iy Cuy) "ol
(

{

) )
( ) !
Pan_o(yp) Pax-i(y2) Pev(u2) Paxyilu)
J = det : Pyy o) Piy_i(u2) )

! 1]
)3\'('/.’) )3\ YA

L J

where the ' denotes y2%9,.

We will now show how to find one of these contributions before listing them all. For
example consider the 2 x 2 block in the upper nght corner. In Py there s a factor Pyp
coming from the 1ecuision relation that we found Soin the evaluation of the determmant
we will have a term Iihe (VN +1) < Piy(y1), Poviilin) > Zov The (N4 1) factor comes
from the fact that we have (N+1) such terms (the other ones bewg Py (38 (1),
etc ) The tetm Zn 1s just the subdetermmant that s left after the elnmmation of the
two rows and columns. The notation Z 1epresents the deterunmant, and 2 the partition
function, which is just an integiation with apptopriate weights of 77 So we see how
the evalnation of the partition function arises The deternnnant 15 a sum of products of
polynomials, and we 1ntegrate over these products using then orthogonality ielation It
should be noted here that the factor 2= 1 the partition luinction (3 3) was not taken mto
account because one can alwaysedefine 2 = 2= Z and at the end of the calenlation, we

considet a ratio of 2’s for which these factors are ntelevant,

We now make a list of all the contiibutions with a crude praph of the fitst two lines

nf the determinant in each case

Pyv_y Pon g Pyx_o Pyn_y @ /(ja
Pl Pl Jj P/ 6)7\/ ﬁ

IN~4 IN -3 AN-9 2N -] A y __,”zyj_
| ~ .
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(< Piyyys Pan > = < Poyy Pongy >)(N + 1) 2w

Pan_4 Pon-3 Pan_s

/ / !
P?N—-d P?N-—I! P‘ZN—?

< R:IN—{-I‘PQN‘I > (N + 1)}’/\(

In the last case we had to define another “partition function™ Y» in order to avoid an

infinite recursion relation due to the following pattern,

P’)N_G

-

! '
P”N-—ﬁ 2N-4

r4

3!
121‘\'-6

< 1)'.1.’\'-H’P"N—I >< PQ/NvP?N*I! >< PQIN_Q,PQN_.5 >.

Indeed, in that case, we can go down to the first column using the lasv term in the

recursion relation for 2.

We can now write the recursion relation for the partition function,

Zvn = (V+ 1)< Py Pays1 > = < Phyoy Pov >)2x + N(V + 1)

< Pox_oyPoxy1 > (K Pon_, Pan > = < Py, Poncy >)2n -1
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'—N(jv + 1)(.‘\7 - 1) < PQIAV__Q, P21V+[ >< [)-5‘\1_3, P.);\' >
. < P‘éf\’.-‘;\ P?N—] > ZN._? e (‘/\f + 1) < 3'\'__1, Pg‘\'.‘ 1 > )'\ (3 18)

But now we must also find a 1ecursion relation for the Y's Bv consudening the uppes

right corner of Zy,; we have the following contiibutions,

D D D Dl B R L3t )
T ZEZN=-4 TIN-3 TIN=2 I Ayl TIN AN FINIT
D! DL ! 2 nt ]2 { )
TN T3 TIN=3 ToN=2 P 9N Qv
Pon_s Panes @ 2 Pinoy| Py Pin1(i2)
\\
’ ' ' 1 b
Pon_a Pon_s Pyn_o Pin_) 2N P ;QH(.U;))
A4

< Pyy,Pan_o> NZy_

i)

o F T S 7 e B T o RSN ) e B R 7 i)
Pay_4 N1 Py P'ﬁ/w 1(12)
Poivoa  Pivg  DPiny h\@ Plvii(y2)
N~
< PQIAI,PQN..:} > NYn_i
We immediately write down,
Yv = N< Py o Poan>Znv1 =N <Py g, Pay > V) (3.19)
1
Yy = (N+1) <Py, Povia> 2y —(N+ 1)< Py o Pavyr -+ Yy 1320

We now define, for later convenience (we want to have a siooth planar it as N v« )

the following two ansatz,

Zy Yy
Wy = ‘ Xy == 5 - (32
N 2y N Bbhon - N e N bl ’
‘ and rewrite eqs.3.18 and 3 20 in terms of polynomials in W oand X' After some algehrane
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manmpulations, eq 3 18 becomes

WyWy_ 4N 2
Wy WeWn oy - st ([yzvl(?/)]QN,'ZNH - —-)

b g3
--VZH——;—@I—V‘ (IUQV'(?J)]:ZN—LQN - %)
+Mgiu[y2v'(y)]w-x,2/v+1 + Ron Roy 1 Rana = 0. (322)
Aud similarly for ¢q.3.20,
XnnWy — [y'ZVI(yi)]?N'?N”meWN + Ron 42Xy = 0. (3.23)

3.4 Planar approximation

We now turn to the planar approximation to get the critical valnes for IV and X', We

fitst have to expand the paths i eqs.3.22, 3.23,

WV (Dovanvs2 — [ay® + by avans2 = a+ D(San + San s + Savs2) (3.24)

[PV Wavaver = [ay’ + 08 avansr = a(Son + Savsr)
+0(Royyo + Ronyr + Ron + 5221\'4—1 + S’:;)N + Sanv+15:0)(3 25)

Using the ciitical values found in chapter 2 (except for N/3, more on this in the next
seetion), a =1,b=-1/6, S =2, R =1, and N/f — 1/4, eq.3 24 becomes a + 3bS = 0,
and ¢q.3 25 becomes 2aS + 3bR + 3bS5? = 2/2. Our two recursion relations, eqs 3 22, 3.23,

take the simple form,

N34+ 3W24+31W4+1 = 0 (3.26)
XW+X =0 (3.27)
The solutions are 1" = —1 (tuple root), while X' 1emams undetermmed  We don t

know the cirtical value of X', but it turns out that it will be determmed when solving the

1ecutsion relations
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3.5 Scaling ansatz

Let us look now at the full recursion relations that we want to solve,

Wit WaWaot = 08N oSy + Sav) + (o + Roxan + Ran 2+ Sy
+SZy + San+1Sow) - :1‘3\- - ')' _\.l%“_:_‘. (a+b0(Sonir 4+ Sox + Sovy))
Wy Ron(Royvgy + Rz.\' + Rox 1+ Siy_y + St Siv aSov)
—ﬁv;b@—\— <1(b)\ + Sovoy) - l—?—) 4 RovRon 1Ry 9 = 0 (3 28)

Ryv ity
b

The next step is to find suitable ansatz for 2, .S, W and X' Here are some temarhs about

Xy Wy - (a 4+ b(S_)/\'+g + Songr +508)) FHavia Ny 0 (329)

these ansatz. Fiist, the entical values for a, b, R, and S are the same as those 1 sechion
2.5. The reason for this 1s that we can do the same analvars here as we dhd i chapter
2. Indecd, the potential is the same, and the polynomials are defined on the hall hine
both cases. In fact this analysis is independent of the form of the Jacolan  Only the
result for the partition function Zy is affected as well as the entical value of N/j3 The
other difference comes fiom the fact that for R and S, the mdex s 2N 1 = 2(N { [/2)

So, we will write [/2 instead of [ in the exponential W and X have standard ansaty,

Ronyr = 1—-/3“""<3XP(~%/3~ g,)(’/OJ”W BT L) (3 30)
Sovet = 2(1 =7 "“\P(—£ Ot)f) (331)
Wrhy = =1+ 37 exp(=167" J )(ho + A7y B, 4 ) (332)
Xvp = Xo-— u-”oxp(—l/r"% Who+ B YA+ 3 "+ ) (333)

t = 3~V(:11-13—.N). (331

After mserting the ansatz in the 1ecursion relations, eqs 328 and 329 (at f ™ Grde
), and using ¢ = = 2/5,0 = p=v = 1/5, we find the results grvenm table 31 \We
sec that a consistent solution 1equines that X, = 0 In domg <o, we get two differontial

equations defining hy and ky,

0 = 6f + hoko + Ky (1345
0 = —6f —12fhg+ h3 + 3hohty + hy — 6k (336)



order cq.3 28 eq 3 29

B-1/5 0 hoX. =0
215 6fX, =0 —6f — goXc + M X — hoko — ki = 0

f35 | —3gh — 6gohg + hj + 3hohy | 3f' + 6fho + goko — hiko + hokg — hoky
+h = 6fko ~ 6fhoXc =0 | k§/2 = giXe + gpXc + hoXo — k) =0

Table 3.1: Lowest order solutions of the two recursion relations for the DIII - odd n -
mat1ix model.

We used the fact that gy = 2f, found from the chapter 2 analysis with Ry and Sy ansatz
Using the known solution for f (same as in chapter 2 but with ¢t — 2t ), and power sciies

solution for hy and kg,we find a set of algebiaic equations that we can solve Finallv, we

endd up with 4 solutions,

he = +2V3tY% + gt" F %‘g/—;t"g/“ F... (3.37)
ke = F2V3t/4 4 -gt“‘ + E;—;/—St‘g“ +...

and
he = £2V3t/4 - %t‘l ¥ %@t’g/“ +... (3.38)
ko = F2V3/4 4+ %t"‘ + 15’3—8‘/%*’/4 + ..

It turns out that we will only need hg in the solution of the frce encigy.

3.6 Solution of the free energy

We can now look at the fice energy. We start with egs. 3 21 and we mvert the one with

~
L

Zn ]
3 N = NBbhoy_ Wy (3.39)
N1

Znr

_ﬁ% = (N +1)Bbhons1Wayr. (3.40)
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Takiag the ratio of the two expressions we get,

ZNe1 2N _ (A" + 1)h2,\'+ln'1\v+1 Wy

2 Nhawa Wy fevnReyeps (341

The W's can be written,

Wy = =11 =87 (hg+hi B~ 4 ... = 57150 - B=250, + h.o.))
= =11 = heB~ Y5 = (hy — 1p)B~Y®) + h.o. (3 42)
Wy = —=1(1-=8"Y5(hg+h "o+ ho))
= =11 =hef 3~ n 3%+ ho (3 43)

From which we calculate the ratio of 11”’s,

Wysr o 1=hof71% = (hy = hy)a=2*
Wy 1 = hoB-1/5 — b, 3-2/5
= (1 - ’?0;6"1/5 - (hy — ]16)ﬁ—?/5) (1 + /7(J,U_l/5 + hlﬁh_)/r, T /I;";,f 1/,])

= 1= B2+ (hy + h3)B5 = (hy = hp)p™2?
1 4 hy5=%/5, (3 44)

il

Similarly, for the R’s,
Ranyr~ Roy =1 — f7%3gy = 1 — p~2/52f, (3 15)

We then have,

Zni1Zh-1

5 ~ (1 =2f8751 = 2f 7)Y+ W25 1 — (4f - W)~ (3 16)

The ratio of the Z’s can also be expressed as m (2 50),

JEwnZyo o0

oz oz’ 310
So we finally have, by comparing cqs. 3.46 and 3.47,
O°F .
=BT = (1= (4f =187
~ —Af s
F" o~ 4f - H, 5 48)
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Between the first and the second line we used the expansion of the natural logarithm

Using the solution for f and the solutions (3.37) for hg, we find,

F"=8t'/? ¢ iz—gt*’“ + ggt“Q ... (3 49)

In that case, the universal ratio yiclds 83/9, which is a new result. Doing the same with

(3 38), we get,

V3 13
F" = 8t1/2 __.1*3/4 - _t—Q . 3
F 5 96 + (3 30)

In this second case the ratio is —13/9, which is the same result as in [20, 21] although the
matux ensemble m these papers s different. From previous solutions this 1s the expected
1atio for the fice energy of pure 2D guantum gravity with oriented and unoriented smfaces
One surprising 1esult is that our two solutions differ only by #=2 (vetified np to 15th order

of "), which is the term corresponding to the torus and the Klein bottle.
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Chapter 4

Second model in the DIII generator
ensemble

In this chapter we consider the second of the two models in the DIIT generator ensemble
- matrices are the generators of SO(2n)/U(n), n even. Again, we will need to define
recursion relations, but due to the nature of the Jacobian, we will fiist find relations
between orthogonal polynomials and skew-orthogonal polynomials (section 42) Tlis 1s
a new technique. In section 4.3 we will define suitable quantities fiom wlieh 1ecursion
relations will emerge. Standard scaling ansatz are proposed in section 4 6 and a solution
for the principal recursion relation is found Finally, i the last section, we solve for thie

frce encrgy and , again, compare with previous mwodels.

4.1 The partition function

The Jacobian for this model is,
N N
J = [Tl (el = 23 (1
1 1<}
and we ale going to make the analysis, as usual, with the potential V-2 ar? ¢ hf2 0!

The partition function can then be written as follows
1 )

s N
Zny = / Hd.r,]e'ﬂv(’?) (42
-,
o N N
= 2-N/ Hdh H(y’ _ yJ)/le—/i(ay, Ph/2y) (1 3)
0 1 t<]
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Between the first and the second line, we used the substitution y, = z2, dy, = 2z.dz,

The compheated part is, again, the Jacobian. For convenience of evaluation we rewrite it

as a detenmnant (8], We have,

Qo(yn)  Qilwr) . Qan-1(y1)
ayQO(yl) ale(yl) e ayQZN—l(.’/l)
N Qolya)  Qi(y2) e Qav-1(y2)
[T - v,)" = det
1<
| 0,Qo(yn) 0,1 (yv) o 0yQan-1(yn) |

where the Qs are Mctha'’s skew-orthogonal polynomials,

Qu(y) =y +Lo.

and
1 _av
<QuQ, >0 [ eVQQ - €10) = auaz
with
2,941 = 1
241 = -1

all others being 0. With these definitions we can easily evaluate Zy,

N-1
ZN = 2“\’1 n H q,.
1==0

(4.7)
(48)

(49)

Here we used skew-orthogonal polynomials because with the orthogonal ones, Z,

cannot he evaluated (i.e. gives an infinite recursion relation for P, this is what we found

in chapter 2). On the other hand, with @ polynomials, Zy is easy to find, but the prablem

15 to establish recursion relations for them and the ¢'s. Indeed, the only know 1ecursion

relation is wfinite [8] The approach that we will follow is to 1elate the @ polynomials

with the P polynomials (these are the usual orthogonal polynomials for which recuision

telations are well-known, o1 at least. casy to find)

4.2 Relation between P and Q polynomials

We start with the general expansion of the P's in term of the Q's.

Py, = Qo+ wiQaoy +win@Qo 0+ .

-
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Puyy = Qoupr +61Q2 +82Q0 - + e

In order to find odd and even §'s and w 's, we will conader four @ products I the
calculation we take the @ product of a P polynomal and a @ polvnonual  The tust
line will show the result using the expansion of s i teims of Qs The following ones

transform the @ product in a P product (orthogonal polvnomial relation) We have

'

< Q21—2]a P2:+1 >Q = 6:,2]91-]
1 v
= E/d?le Q=2 Phy = Qg Prt)

1 ,
= '/dye_d" Q?!—.’j()rjj'.’l-fl

2
1 "‘ﬁ" o 1 ! - N b)
= ‘2‘6 Qz:-sz.’u 1|() -3 dy (=31 )e Q2> J;I.’u |
1 , o
= 3 < BV Qur0)s Porvr >p = 5 Q0 0, () P01 (0) (11

Similarly, for < QQ,_.QJ, Pg, >0, < QQ,_QJ.H,P'_), > and < (2‘_), STTAL Dy ge W Tese

tively have,

Wy 2)-1Gi-; = % < BV'Qaigy, Po > p "%(2‘2:~2)(())[)‘11(()) (L1
s = 5 <BVQazyi P >p =5 Qu sy (0)Pa0)

-—-:12-(22 + 1)610112, (4 111)

=& 2410~ = %< BV'Qa—zyi1s Paur >p -%Qz.-z;w(“)qu f(0). (415)

We will now consider the above equations for specific values of 3 For eq. 4.12,

1 , 1
£2Q—y = 5 < BV 'Qaray, Prvay >p —',éQ.n. 2,{0) %, 1(0)

1 l
1= 0—- 6).0(11-—0 = ’é < J(” + IH/)Q_),. P!l?) >p "Té(p):'l(”)l)_'nl(”)

1 ]
0@ = ‘Q‘ﬂ <(a+by)(Py+10), Py 2p -5 W03, 4 (0)
1 1
¢ = 5/31)/12,“ — 3(2.)»(f))[’m1(”) i,

1 . ]
J=1—= o1 = 5 <SBV'Qus, Povy >p = 5000 )] 10

1
£l,2(I:-—l = ‘50?1—2(())])'_))+l(()) (] 1)

In the next-to-last line, the P product 1s 0 becanse the hghest 7 polviomal e the ()

expansion is of order 2: — 2, When multiplied by the first detivative of the potential (of
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order y' ), we get at most a 2: — 1 order polynomial which is not sufficient to produce

something m a prodact with Po.

Sitnnlarly, eqs 4 13 and 4.14, with 7 = 0.1, and eq 4 15 with 3 = 0 only, vields sinnlar

tesults Upon dividing these by 3 and h, we assemble all the useful recuision 1elations

the following,

h
ﬂh2t+1
&2(1!—!
Bligy 41

0

Wiy
Bha,

=

Pha,

— W20,
Bha,
v
ﬁthH

Q?t(O)P'Zt-H(O)

b 1
2 2 Bhyn (418)
1 Q2-2(0) Pau41(0)
2 Bhais (4.19)
[(a + bS,) = wab] - ———~——Q2'(33219)2'(0) (4.20)
1.Q2,-2(0) P, (0) ,
—-2-————————-—-——'8112' (4 21)
1
é‘[bRQH-] - frl(a + bS?x) + (571‘-‘):1 - fx?b]
1Q2,41(0)P(0) (20 +1) .
-5 /}’7'21 - 5 (4 22)
b 1 Q21-l(0)1)'2r(0) :
R R (4.23)
1 1 Q2,41(0)Po,41(0) .
5[(& + ()Sf),.H) bf,]] - E ;3/2‘21*-1 . (42-])

4.3 Scaling quantities

Instead of working directly with the quantities in the above relations, we will choose
suitable variables which have a smooth planar limit. Let us define the following scaling

quantities,

”/' — _(_11__ ‘\»' — Q.’r(o) }r Q’x-}-l(
ﬁth P?t(o) PZ:(O)) (4 25)
Pi41(0) _ B0y
P(0) Jhy
Now consider egs. 4.18 - 4 24 wrnitten m terms of these quantities
v, b 1N A,
= 573 Sad (4 20)
Ray 4 2 2 27y
Enlll Ny, -
R sl LA (4.27)
Roip1RoRay ) 2720201292
0 = 0+b52, —w,]l)—:\,."g, (4 28)
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w1 I‘V, -1 1 .\-, ~1 “'1'._

el RAAES - (120)
RQIR‘Zt—l 22’2:—12_’:~.’
—2“‘, = szH.l - E:](” + 1)5.’1) -+ (f:l“‘ll Sl.‘w’
. 241
—Y Ay, — L.’_g__’ (130
zwellir b 1 Yoy L
RQlRQH—l 2 2 Z?zAIZ.?t—J e
_'25:1"1/1 )',.“w,“
TOUT o bSqa - bEy — 2L RN
Rorm: a 241 — Bén 7 (-1 32)

4.4 Planar approximation and critical values

It tuins out that we will need to know only the ciitiecal valnes of ¥V oand WL heeause for

a, b, ete, we use the same values as in chapter 3 So, we wiite
b‘_""‘]./G /\:I/;'?'“” 1/l 5""2 Z M 'l Wi Py

a4 — ] ]? ~ ] "1 i l-—)/'.3 {l w ot {ln

where the values for A and Z can be casilv found usimg the exphiat form piven i section

(4 33)

4 5. With these critical values, egs.4 26, 4 28, and 4 29 hecomes,

121V = —1 44V (131
0 = 44w -1V (4 85)
oW = -y (136)

Combining eqs.4.36 and 4.35, we get a 1elation with X and Woonly  Using eq. 4 34 we
solve for X and W,

1
4\’ = =
2
. 1
‘ W = '1*5 (1 “l)
One also finds that w; = —=2. To complete the analvears we will also work ont the othe

critical values Eqs 4 27.4 30 4 31 and 4 32 hecomes
£ ! ,

12 = 6 (] u"d)
1 402 ]
G = 64'§(fl4))" ().{—)\x NGy READ)
1 1 1.
‘]‘—2‘(4)'2 = '1'§+ 'é) 10,
1 2 1 2.,
—661 = §+6‘51 “+ 5\ 4 H,

from which we get & =2, &§ = -3/2,Y =1/2, and w, =3
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4.5 Recursion relation for W's

Before gomg farther, we can take a look at the free energy to see exactly what quantities

we have to know. The solution for the partition function was found to be,
N-1
Zy=2""N'] 4. (4.42)
1=1]

As nsual we consider a 1atio of 2’s,

but,
RS _ ( qn )( GN -1 )—l _ gnhan—ohyn -y A 1 (1 44)
Wy_i Bhan ) \Phon_a an-1hanliony gaoy RayRany

S0

s’./‘ ; Z A ]. “' 4

N+l N-] N

-___._‘__.__—,_(1+_. R ,R =

le\, ' ]V ) 2N av-t H".\'_l

And the ratio of 2’s is 1elated to F”. So all we have to know is the 1atio Wy /Wy_,,

(4 45)

something that we can casily find with a recursion 1elation for the W's (of course we also

have to find the differential equation satisfied by the function used in the W ansatz)

To find this tecursion relation we only need eqs 4 26. 4 28, and 4.29. From (4.28) we

have,
+ bS5, — X, Ay,
-y = : (4.46)
b
Putting in (4 29),
((l + bS‘)t - -\’1A21)‘Vn-—l . _1_ \’1—1'421 (_1 4—)
fiRg,Rg._l B 2 Z.’.!—IZZI-Z I
From (4 26) we also have,
9 207,
\, = Za (b -
-'1211-1 R‘_’MI
A 215,
o) = ——=(b—- ——
] "’z—l( R?.z—l )
Replacing in (4 47) we get,
. Zn Ao, 21¥, . Az, 21
g1 Zo-2(@+DSo, — (b- DWiZy = —bRy,Roy_) —22222(p L), (4.48)
Anyr Raypq Aoy Ro,y
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Multiplying by Ag ;A2 1 R4 and rearranging terms, we obtain,
129,231 Ag Ass W Wio) 4+ [Zoc1 Ao Aga(@ + 085) = 2o 2o Ay An b

= Ap Ao 1Ry Ry Wy + PR Ry R iAo =000 (119)

At this point we can look at A and Z, and try to express them as functions of known

quantities (a, b, S, etc). Starting from,

P2(0) .
—1372—,- = ((l + bsl) ([ "”)
and,
P(0)P_1(0) = —(i — BOR), (1 51)
we have, ,
. B0) -
4, = B (a+bS,) (1 52)
e (=i + 1)/B+ bRuy) )
_ —-(1+1 + bR, 4 _1 (7 +1 .
z, = oS = (= bR (153)

So we can rewrite eq.4.49 as,

(_ (21; 1) + bR?x-H)(*%’: + bRQ!)[QM;I - ,)R‘_g, f'I]”/""
2 b?
+R2i+l(a + bSQ,)(a + b52'+1)[(—--‘-ﬁ-2‘”/,_]) + “2‘“R2:R21—l] = O (/] 51‘)

4.6 Scaling ansatz

We now have to choose smtable ansatz for solving omr recusion relation The choiee 1,

similar to the model of chapter 3

Royyy = 1+~ (3‘°<5XD("éﬁ_u%)\’!lo g ) (1755)
Sower = 2L Frexpl— 572 )) 1%
Wy = —1—15(1 - B'f‘exp(#/}“"%)(lu, S R Y B (157
and, as usual,
%:i—-t/j”“. (4 58
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order coeflicient

6—1/5 0

B3 6f =h}+hy

Table 4.1: Lowest order solutions of the recuision relation for the DIII - even n - matrix
model.

Again. the general index 7 is replaced by NV because we are only interested in the large N
gamn, g

limit.

Using some information from the model of chapter 2 (with a factor of 1/2 for each

derivative because of a different normalization for t),

g = 2f
_ [
a1 = 5

_ _]'__II 2
g2 = 16f f

and using ¢ = u = 2/5, p =v =1/5, we find the coeflicients listed in table 4.1.

So the solution for W can be written,

1
Wy = 50~ B713ho + 67 Phy + . )

1

= ﬁ(l — hofTHE =BT ) (4.59)
1

Wy = -13(1 = B ho + (hy + hg)B™°+ .)))

1 .

= il - hofi™% — (hy + Bg)B720 4. ). (4.60)

4.7 Solution for the free energy

\We are now ready to calculate the free energy. A simple calculation gives,

Z AN+l 2 N—1 l H’,.\

. = (1+
z2 U+5 Wyot

YRan Ron -
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ZN+IZA_1 “;N
l = r TS,
( z3 ) In(Ron Ron - T )
2F 1 - 3-2
__ﬂ—?u.a___ = ]n _____@_____‘_1;'[,
ot? 1 — hyo-2
= =74 + hppm (161)

where the ratio for the I¥'s was obviously the same as in chapter 3 (their ansatz ae
identical). So,
F'=4f — h,. (1.62)

Now, we know that f satisfy the Painlevé I equation, t = f? ~ & /. and a well hnown

power series solution is,

f — 2t1/2 — __l_t—’.’ 49

_ --‘)/2 , "-
384 seosaa’ T (163)

Replacing in 6f = h3 + hf, we find a similar serics for hq,

ho = £2V3t'/4 - %t“‘ F %-‘gt-"“ + (4.64)

Finally,

V3 13
F'=df —hj o~ 81?3 ——¢=3/1 - -2
f 0o =8 F 5 96 t+

. . . . . . .
The difference in powers of ¢ is again t~**, which 1s the same as m chapter 3. So we can

(1 65)

say that this models deseribes unoniented suifaces for sure, as well as onented ones o

compare with previous model, we consider the ratio of cocflicients,

CQC2_8X——,1')—2 2

= = (1 66)
4 (@p? 9

This is the same ratio as what was found in the first solution of chapter 3, so this moded

describes exactly the same physics.
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Conclusion

No one can deny the importance of string theory in today’s theoretical physics. The idea
of using 1-D objects mstead of point-like particles, the hope for quantizing gravity, and

the unification of all interactions, are all equally good reasons for studying string theory.

Unfortunately, our perturbative approach to stiing theory 1s not sufficient to answer
such questions as “what is the tine ground state of the theory”™ A non-pertarbative

approach 1s needed.

Matiix models can be viewed as an attempt to provide such non-petturbative informa-
tion Indeed, by using matnx itegral, we can solve some simple stimg models The two
new matnx models studhed i this thesis were choosen for manv reasons Fiisthy, they were
part of a classification scheme  Secondly, they were solved to compare then fice energy
with other models with the hope that 1t would confirm the vahdity of mterpietation of
previous results and perhaps show new phases of simple stiing models Finally, looking at
the contributions in the fice encigy and comparing with low-na1der perturbative analysis

could help in deternuning if even Euler number surfaces includes unoriented surfaces

As an aside, the solution of these models allowed us to extend the techniques used
in solving matrix models  In chapter 3, we solved a recuision :elation for the partition
func tion as well as those for the usual polynonnals Morcover, we had to define two kinds
of partition functions i order to get a set of two finite 1ecursion relations In chapter 4,
we used shew-orthogonal polynomals imstead of the usual orthogonal polvnomials Due
to infimite recuision relations, however, we also had to 1elate the former to the latter In
domg so, we finally found a set of finite recuision relations, with which we conld <olve the

model.

We now summarize our two main 1esults, with their impheations. Fiistly, for cach of
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the models, the free energy was the same as other models previously studied and using,
completely different matrix ensembles (ratio —13/9 ) This means the followmg f the
model wete to describe gravity coupled to some other system, then we expect that different
regulators would introduce a dependence of the fice energy on a couphng parameter Uaing,
different matiix ensembles would vield different results But this s not the case so ow

models describe pure gravity, as it was tist assumed for previons solutions

Sccondly, although both models vield exactly the same result, there s an additional
solution for n-odd (ratio 83/9 )  This solution differs from the other one only by the
coefficient of the torus/Ilem bottle term So all tatios that do not unolve this term are
the same in both solutions A simlar effect was found i [22] for QRSD matiices although
the physical interpretation was clear i that case Hereat vemams unelear for the new

solution

I will conclude here with an mdication of what could be done to develop matin
models further. Another problem with matiix models 1s that almost all of them require
their own particular method of solution Theie ts no standatd approach to salving all the
models - such an appioach would be interesting  In fact this s just the same problem as
petforming ordinary mtegration, with the difference here that the maodels are followimg, o
classification scheme  Concerng the solution of the matis mtesral one could also try
to solve without ciagonalizing the matnces fist Finallv one conld conader not ondy the
tiling of suifaces, but also of volumes, hvper-vohunes, ete Such models conld yield ~ome

msight into 1egulators for higher dimensionnal, and more realistic theoies of gravty



Appendix A

Low-order perturbative calculations

In this appendix, we show the calculation of the low order expansion of some matrix

modols,

Let us first recall the basic quantity that we want to expand perturbatively. In matnix

maodels we generally start from,

7 IMexp(—=XTr M2 — ANTr M) &
200 _ J dM exp(= 5T r = Y (1) (A1)
Z(0) [ dM exp(-ETr M?) ort
with €[ d N7y M2Y(Tr M)
N dMexp(—=5Tr M r M)
o = V[ AM (=5 ‘ (A.2)

K o~ 12
k! [ dM exp(-5Tr M?)
where the Z(0) factor in the denominator was added for normalization, and M is an
N x N matrix. So, except for k=0, which contains no information (i.e. 29 = 1, the lowest
order in this perturbation seties comes fiom the coefficient,

N JdMexp(=5Tr M)A M MM,

NN exp(— ST AR = N < A MMyl >= N < Tr M >

(A 3)

Before performing the caleulations, we state some basic results using Ganssian inte-

grals,




So,

fo— Nod
Y 4 N 2n 2r ’ 0
1\,1-/11 rT,T,e ?Erlzﬁum(?{’:‘ (A
and we write,
K, 6, .
<7 >=7—‘V—=7\7' (A 6)

We will now calculate the lowest order coefficient for 1eal symmetric, real antisymmet-
ric, Hermitian, complex, and DIIT matiices, all N x N This will give us the lowest orde

powers of N, and hence the kind of sutfaces that appear i cach case

A.1 Real symmetric matrices

It turns out that a four-matiix calculation 1equires the result of a two matns calenlation .

so we start with .

JdSe 2" %'s, 5
[dSe5Trs

We first remark that the trace of the matiix squaied can be decomposed as follows.,

< S,JS“ >= (A7)

TrS*=5,5,=5,5,=52+2) s (A.8)

1<

So, when we have two diffetent indices (i=k different than j=I), there will be a factor of
two in the denominator. The result is 6wy /2N Due to the symmetry of the matiees,
there is another term with the indices interchanged. Finally, in the case that 1-h=1,
there should be only one N factor in the denominator. The following result tahes mto

account all possibilities,

1
<SS >=(6ud, + 5:161/\)5:\-, (A9

We can now casily evaluate the coefficient 2,

N<TrS'> = N<S8,5:SuS,>
= N<S5;5 >< SuS, > +N < 5,50 >< S5, >
+N < 8,5, >< SkSu >
= 2N < 5,5k ><SuSu > +N < S,Su >< S5, -
1

1 1
= 2N[-2~N(6l]6]k + 5:1-5]])57\7(5“'51: + 8r,bu)] + N(’;N;(ﬁ,/é;l + buby )
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(5116k, + 61,6;,1)
1
o = N+ N+ NP+ N°) + (N®+ N+ N + N)|

= %[2/\/2 + 5N + 5N (A.10)

In that case, we see that there are contributions from oriented and unoriented sutfaces.

A.2 Real antisymmetric matrices

Again, we calculate first < A, Ay . \We proceed as above, decomposing the trace of the

matnx squared as follows,

TrA? = A4,A,, = -A, A, = -2) A%, (A 11)
1<)
So, when we have two different indices (i=k different than j=l), there will be a factor
of two in the denominator. The result is §46,;/2N. Due to the antisymmetry of the
mattices, there is another term with the indices interchanged and a minus sign. Finally.
in the case that i=j=k=I, the 1esult should be 0. The following expression, again, takes
imto account all possibilitics,
1

v (A 12)

< .4,’,.4“ >= (6,k5]{ - 6116]k)

The evaluation of the coeflicient 15 similar to the symmetric case, except that we have to

take 1into account the minus signs,

N<TrA'*'> = N« .4,1.4]k.4“.41, >
= 2N QA AN >< Apdy > +N < Ay >< Apdy, >
1 1 1
= QN{EV(&U@L - b, 5“)2-1;/:(&151: — b1 bu)) + J\’m((s,;ﬁﬂ = b0b4)
(6,064, — 8,,680)
1

= V- N2 NZE N 4 (NP~ N =N +N)

1.
= I[m\ﬂ—?s.w‘+N°]. (A.13)

Agamn, there are contributions from otiented and unoriented surfaces In that case we

. hnow that m the continuum hinut (double scaling), only orented surfaces survives.



A.3 Hermitian matrices

Agan, we need < M,, My, >. We proceed as above, decomposing the tiace of the matin
squared. But we will use the fact that a Hetmitian matiin can be wutten as VM - 8 44 1,

where S is a real symmetric and 4 1s a real antisymmetnie matny \We have,

v

TrM?=TrS* —TrA=S)+2> (8 +.4)) (A

1<

This is just a combination of both preceeding results So we will have, as well,

<MuMy> = <85,85u>-<4,4y>

1
= (6uby + 5'151k)§7\/-

1
~ (6651 — 640,1) N
1

= 7V—6|15]k. (A 10)

For the coefficient, we simply have,

N<TrM*> = 2N < MMy >< MyM, > +N < My, My >< M, >
1
N
= (2N? 4+ N9). (A 16)

i 1
= 2 6:‘:0115&1611 + Néxlé)k(sﬂ&l.l

In that case, there are only contributions fiom even Euler number smfaces which desenihes,
here, oriented surfaces. This can casily be seen 1n the products of the delta functions m

the next-to-last line.

A.4 Complex matrices

Again, we need to caleulate < C,,Cyy > We will wiite C' = A + 113, where A and 13 e

1

real matrices, without any paiticular symmetiics’  We proceed as above, decompooiny,

the trace of the matrix squared We have,

TrC?=TrclC = Tr(A" =1 B7)(A 4 113))

'In 18], a special form of complex matiices 1s used, but it turn ont to be equivaleut to the ane tha
we have here except for a factor of 2 m the trace of the mati to the fonrth powe



Tr(ATA-1BTA+1ATB + B"B)
TrATA+TrB"B

Y AL+> B! (A.17)
Ly t.J

This factor of 1 for both summations will 1esult in a factor of N in the denominator. The

two-mnattix product gives us,

<Cleu> = <(Ay+iB,) (Au +iBu) >
= < (A, —1B,)(Au +1By) >
= < AJ,A“ >4+ < BJ,BH > —1 < BJ,AH > 41 < AJ,BH >
5]k611 61k‘51{

N N

2
= _Néjkéll'

For the coefficient, we get

N <Tr(cie)?s =

In this particular calculation, there

with Hermitian matrices, we sce tha

(A 18)

N < (CT),]CJk(CT)leI: >
N < (€, 0k >< (CHuCy > +
N < (ch,cn >< (M >

2 2 2

2
N’N(S:kéu N—ékﬁu + Nﬁéuéﬂﬁékkéﬂ

4(2N?). (A 19)

are only contributions from the sphere. Comparing

t the tilings are different on a microscopic scale but

the double-scaling continuum is the same.

A.5 DIII generator ensemble matrices

The result, hete, will be calculated e

the DI generator ensemble SO(2n)

G

xpliaitly using the representation of the matunices for

JU(n),

(XX .
_(_\.2 __\,l) (A 20)

whete Xy, Xy € SO(n) algebra, and aie antisymmetric. We have, first,

TrM?=2TrX? +

TrX3)=-4) X7, —4) N3, (A.21)

1< 1<)
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Now, we will calculate the fourth power of the matrix expheitly, and decompose 1t mto

products of antisymmetric matrices (1.e. .\, .X5). We have,

N<TrG'> = N<TreX{+2X{ + 8XIXZ = 4N \h X X)) >

1 7
= 2—1—6(2N2 ~ 3N+ Ny) + 2{5(21\“ - 3N' 4 N 4
1 1
8 N? -9 A1 \,'0 . AV \[0
--16( N+ N%) 4-—16(1 NY)
= N?-92N'4 NO (A 22)

where we used the results for antisymmetiic matiices (both the tinal iesult and the two-
mattices product). So, again, we have contubutions from otiented and wnotiented st
faces. Comparing with symmetric matrices, we see that we have different contnibntions

at low order (ratio cocp/c? is different), but the double-sealing contimum is the same

Cr
n
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