
346

Na�/H� Exchangers

Molecular Diversity and Relevance to Heart 

JOHN ORLOWSKIa

Department of Physiology, McGill University, Montreal, H3G 1Y6, Canada

ABSTRACT: During the last several years, significant advances have been
made in our understanding of the molecular, cellular, and physiological diver-
sity of mammalian Na�/H� exchangers. This transporter forms a multigene
family of at least six members (NHE1−NHE6) that share ~20−60% amino acid
identity. NHE1 is the most predominant isoform expressed in heart and it con-
tributes significantly to myocardial pHi homeostasis, which is important for
maintaining contractility. However, hyperactivation of NHE1 during episodes
of cardiac ischemia and reperfusion disrupts the intracellular ion balance,
leading to cardiac dysfunction and damage in several animal models, but
which can be prevented by pharmacological antagonists of NHE1. Molecular
studies have indicated that the predicted transmembrane segments M4 and M9
contain several residues involved in drug sensitivity. Molecular dissection of
the drug binding region should facilitate the rational design of more potent and
isoform-specific drugs that may provide therapeutic benefit in the prevention
of cardiac ischemia and reperfusion injuries.

ROLES OF THE Na�/H� EXCHANGER IN CARDIAC PHYSIOLOGY
AND PATHOPHYSIOLOGY

Myocardial function is greatly influenced by changes in intracellular pH (pHi). For
example, myocardial acidosis results in marked decreases in contractility,1 which is as-
sociated with reduced myosin-ATPase activity,2 diminished binding of Ca2+ to tropo-
nin C of the contractile apparatus,3 decreased ion currents through voltage-activated
Na+ and Ca2+ channels,4−6 and reductions in gap junction conductance.7 Hence, reg-
ulation of pHi is of critical importance for maintaining cardiac function.

At least three different ion transporters contribute to myocardial pHi regulation;
the Cl−/HCO3

− exchanger,8,9 the Na+-HCO3
− cotransporter,10,11 and the Na+/H+ ex-

changer.12−14 An increase in pHi activates the Cl−/HCO3
− exchanger, which extrudes

intracellular HCO3
− for extracellular Cl−. By contrast, intracellular acidification ac-

tivates both the Na+-HCO3
− cotransporter and the Na+/H+ exchanger, with the latter

being the predominant mechanism for restoring myocardial pHi to the neutral range
(pHi 7.1 to 7.3).10,11,13

Aside from its role in normal myocardial pHi homeostasis, accumulating evi-
dence points to the Na+/H+ exchanger as a contributing factor in the pathophysiology
of cardiac ischemia and reperfusion injuries. During cardiac ischemia, ATP stores
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are depleted as a consequence of depressed mitochondrial activity and lactic acid
levels are increased due to anaerobic metabolism of glucose. This results in a rapid
decrease in both intracellular and extracellular pH, which precipitates a series of oth-
er changes in myocardial ion homeostasis, primarily Na+

i and Ca2+
i overloads,

which then lead to cardiac dysfunction and tissue damage (for further details15−19).
Ischemia elevates Na+

i by two mechanisms: the acidosis that occurs during the first
few minutes of ischemia leads to an influx of Na+ by activation of the Na+/H+ ex-
changer, and the diminished ATP levels cause depression of Na+,K+-ATPase activity,
which normally extrudes Na+

i. Indeed, the Na+/H+ exchanger accounts for as much
as 50% of the cardiac membrane’s basal permeability to Na+ following intracellular
acidification.20−22 Furthermore, the reduction in ATP levels also causes a decrease
in the pHi sensitivity (or threshold for activation) of the Na+/H+ exchanger, thereby
impairing its ability to fully restore pHi to neutral.23 The net result is a chronic state
of cellular acidosis.

The elevation of Na+
i reduces the transmembrane Na+ gradient, thereby inhibit-

ing Na+/Ca2+ exchangers that, under normal conditions, extrude Ca2+
i in exchange

for Na+
o. Moreover, if Na+

i increases sufficiently the Na+/Ca2+ exchanger could re-
verse and mediate Ca2+ influx. This Ca2+

i overload is associated with cardiac ar-
rhythmias and, if untreated, contributes to contractile failure. Reperfusion of the
failing heart with physiological fluids to restore pHi is the standard approach to res-
cuing the tissue, but may lead to further tissue damage. This has been referred to as
the “pH paradox.” Rapid removal of the acidic extracellular fluid generates a large
transmembrane pH gradient that drives Na+/H+ exchange. This further augments
Na+

i and markedly elevates Ca2+
i, causing reperfusion arrhythmias, contractile fail-

ure, and cellular necrosis. Thus, the Na+/H+ exchanger appears to play a central role
in injuries caused by ischemia and reperfusion.

The involvement of Na+/H+ exchangers in ischemia- and reperfusion-induced in-
juries, however, is most convincingly demonstrated by animal studies showing that
treatment with amiloride, a relatively weak inhibitor of the Na+/H+ exchanger, sig-
nificantly reduces Na+ and Ca2+ overload and is cardioprotective.24 Similar protec-
tive effects are obtained with amiloride analogues,25−33 and benzoyl guanidinium
compounds such as HOE694,34−38 HOE642 (cariporide),39−43 and compound 246,44

which are more potent and selective antagonists of the Na+/H+ exchanger. The ben-
eficial effects of these compounds are obtained only during the early stages (within
several minutes) of ischemia and reperfusion when the Na+/H+ exchanger is most
active. The antiarrhythmic action of amiloride has also been demonstrated in human
clinical studies, where it suppressed inducible ventricular tachycardia45 and sponta-
neous ventricular premature beats.46 Thus, these observations strongly implicate
overactivation of the Na+/H+ exchanger as a central factor in ischemia- and
reperfusion-induced injuries.

EXPRESSION AND LOCALIZATION OF Na�/H� EXCHANGER
ISOFORMS IN HEART

In mammals, at least six Na+/H+ exchanger isoforms (NHE1 to NHE6) are known
to exist and they exhibit distinct differences in their primary structures (~20−60%
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amino acid identity), patterns of tissue expression, membrane localization, function-
al properties, and physiological roles.47,48 

Mammalian cardiac tissue expresses predominantly the NHE1 mRNA,49−52 albe-
it minor amounts of NHE2 mRNA are also detected in some species.50 Indeed,
NHE1 is present in virtually all tissues and most cell types examined, consistent with
its proposed “housekeeping” role to maintain intracellular pH and cell vol-
ume.49,53,54 Thus, the functional characteristics of the cardiac sarcolemmal Na+/H+

exchanger described in numerous studies are most likely those of NHE1.
Recent immunological studies have demonstrated that NHE1 is localized pre-

dominantly at the intercalated disc regions and to a lesser extent along the transverse
tubular systems of both atrial and ventricular muscle cells.81 Unexpectedly, NHE1
was not detected along the lateral sarcolemmal membranes. This distribution differs
somewhat from the Cl−/HCO3

− exchangers which accumulate mainly at the lateral
sarcolemma and transverse tubules of isolated adult rat ventricular myocytes.55 The
location of the other major cardiac pH regulatory protein, the Na+-HCO3

− cotrans-
porter, is currently unknown. The physiological relevance of the high density of
NHE1 at the intercalated discs is unclear. While speculative, in this region it may
serve to regulate the opening of gap junction channels, which are highly sensitive to
minor fluctuations in pHi within the physiological range,7,56 and thereby to influence
impulse conduction between myocytes.

The heart also expresses NHE6, but it is localized to the mitochondria inner
membrane57 where it is responsible for extruding Na+ from the alkaline matrix of
respiring mitochondria58 and, as such, may contribute to organellar volume homeo-
stasis.59 This process may also be functionally coupled to the efflux of Ca2+ from
the mitochondria by the recycling of Na+ between the mitochondrial Na+/H+ and
Na+/Ca2+ exchangers.59,60 There are indications that the mitochondrial NHE is also
responsible for mediating transport of NH4

+ from the mitochondrial matrix.61

STRUCTURAL AND FUNCTIONAL FEATURES
OF THE Na�/H� EXCHANGER

The NHE isoforms exhibit similar membrane topologies, with 12 predicted mem-
brane-spanning (M) regions at the N-terminus and a large cytoplasmic region at the
C-terminus. The most highly conserved regions of the NHE isoforms are the mem-
brane-spanning segments, which probably mediate cation transport and drug bind-
ing. The C-terminal regions are highly hydrophilic and exhibit a lower degree of
similarity among isoforms. Structural studies indicate that this latter region is in-
volved in regulation by growth factors and other mitogens, consistent with it being
oriented towards the cytoplasmic side of the membrane.47,48

Even less is known about the tertiary or quaternary structure of Na+/H+ exchang-
ers, although recent evidence suggests that they exist in the membrane as ho-
modimers.62,63 The site of interaction between the monomers resides in the putative
transmembranous region,63 possibly linked by disulfide bonding,62 although the pre-
cise location(s) of contact have yet to be defined.

As mentioned above, the NHE is a known target for inhibition by the diuretic
compound amiloride and its analogues.64 Amiloride analogues containing hydro-
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phobic substituents on the 5-amino group of the pyrazine ring have higher affinity
and specificity for the NHE relative to other ion transporters. Using a heterologous
expression system, NHE isoforms exhibit a wide range of affinities for amiloride and
its analogues, which span over two orders of magnitude and show the following or-
der of sensitivity: NHE1 ≥ NHE2 � NHE3.65,66 Recently, HOE69467,68 and its re-
lated compound HOE64239 have also been found to inhibit the isoforms with a
similar rank order as the amiloride compounds, but over a larger concentration range
(three to four orders of magnitude). Other pharmacological agents, such as cimeti-
dine, clonidine, and harmaline, also exhibit differential affinities for the NHE iso-
forms.65,66 While these compounds are chemically unrelated to amiloride or
HOE694, they possess either an imidazoline or guanidinium moiety and hence bear
some structural similarity to these compounds.

Biochemical analyses indicate that inhibition by amiloride compounds, cimeti-
dine,73 and HOE69467 is reduced by high external Na+. This competitive inhibition
suggests they bind near the external Na+ transport site and may also share a common
site. However, under different anionic buffer conditions, amiloride and its deriva-
tives also inhibit transport noncompetitively, suggesting that the external Na+- and
amiloride-binding sites may not be identical.74,75 Furthermore, the extracellular
Na+- and amiloride-binding sites can be altered independently of each other using
genetic selection techniques.76 Taken together, these data indicate that amiloride and
other antagonists probably interact with multiple sites on the exchanger.

Consistent with this idea, recent molecular studies of human NHE1 have shown
that two predicted membrane-associated domains are targets for interaction with
amiloride and its analogues. Residues in the fourth (Phe161, Leu163, Gly174)77,78 and
the ninth (His349)79 transmembrane segments appear to contribute to amiloride sen-
sitivity without affecting Na+ affinity. Likewise, mutagenesis of a homologous resi-
due in the fourth transmembrane domain of rabbit NHE2 (Leu143 → Phe143) also
reduced its sensitivity to amiloride compounds.80 However, mutations at each of
these sites produced only modest changes in drug sensitivity and did not confer the
degree of drug resistance observed for the NHE3 isoform.65,67,77 Thus, other resi-
dues of the exchanger are presumably involved in determining drug sensitivity.

A recent analysis of chimeric NHE1 and NHE3 proteins identified a 66 amino
acid segment containing the putative ninth transmembrane (M9) domain and its ad-
jacent loops that significantly influences drug sensitivity.68 Homologous substitu-
tion of this region between isoforms caused a reciprocal change in the drug
sensitivities of NHE1 and NHE3 by one to three orders of magnitude, depending on
the drug. The greatest changes in affinity were for ethylisopropylamiloride and
HOE694. These alterations differ from those caused by mutations at His349 in the
putative M9 domain of human NHE1, where either a modest twofold increase
(His349 → Tyr or Phe) or twofold decrease (His349 → Gly or Leu) in amiloride sen-
sitivity was observed, whereas other amino acid substitutions at this position had no
effect.79 This suggests that other residues within this region serve as major determi-
nants in conferring drug sensitivity. Further molecular dissection of the drug binding
region could be helpful in developing more potent and isoform-specific drugs that
may be of therapeutic benefit in the prevention of cardiac ischemia and reperfusion
injuries.
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