
Learning human motion with reduced marker sets
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Abstract

We address the problem of human body motion prediction in the context of a reduced

marker set, which is a case often encountered in productions where markers are occluded,

mislabeled or noisy. We aim to find a subset of motion-capture markers that are able to

provide fast and high-quality prediction for joint transform. The difficulty of capturing

the motion of a performer in this context comes from the harsh environment in which it

takes place. Indeed, strong and varying lighting, smoke generators, and other visual pol-

lution is often part of the show, leading to motion capture systems that are cumbersome

and expensive. Nevertheless, there has been a greater demand for integrating these mo-

tion capture effects in shows, but none of the state-of-the-art technique can handle such

environments with few markers.

Our main contributions are as follows. First, we select subsets of markers that pro-

vide complete information on the motion by comparing different automatic approaches

to computing optimized marker layouts. Then, we develop a robust motion prediction

method for reduced marker sets. We do so by training a deep denoising network, a deep

learning algorithm that compensate for noise and system latency. In addition, we provide

a complete pipeline for data cleaning, prediction and motion reconstruction.
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Abrégé

Dans cette thèse, nous appliquons une technique d’apprentissage automatique à la pre-

diction de mouvements humains. L’objectif est d’utiliser un nombre réduit de marqueurs

qui captent les mouvements. Cette problematique est souvent rencontrée dans les pro-

ductions où les marqueurs sont cachés, mal étiquetés ou bruités. Nous cherchons un sous-

ensemble de marqueurs de capture de mouvements capables de fournir une prédiction

rapide et de haute qualité pour le mouvement des articulations humaines. La difficulté

d’enregistrer et de suivre le mouvement d’un acteur dans ce contexte provient souvent

de l’environnement dans lequel la capture se déroule. En effet, un éclairage puissant et

varié, des générateurs de fumée et d’autres pollutions visuelles font souvent partie des

spectacles, conduisant à des systèmes de capture de mouvement encombrants et coûteux.

Néanmoins, l’integration de ces effets de capture de mouvements a suscité un engoue-

ment important dans les productions, mais aucune des techniques de pointe ne peut gérer

de tels environnements avec peu de marqueurs.

Nos principales contributions sont les suivantes. Tout d’abord, nous sélectionnons des

sous-ensembles de marqueurs qui fournissent des informations complètes sur le mou-

vement en comparant différentes approches automatiques. Ensuite, nous développons

une méthode de prédiction de mouvements robuste pour des ensembles de marqueurs

réduits. De la sorte, nous implémentons un réseau de débruitage profond, un algorithme

d’apprentissage en profondeur qui compense le bruit et la latence de certains systèmes.

Enfin, nous fournissons une procédure complète pour le nettoyage des données, l’algorithme

de prédiction et la reconstruction des mouvements.
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Chapter 1

Introduction

Computer-generated imagery and computer animation are largely integrated in our ev-

eryday lives. It is used in video games, movies and special effects in the entertainment

industry and advertisement. Significant contributions on techniques for digitizing the

movement of people, animals or objects appeared since the late 90’s. This is essentially

linked to the democratization of optical motion capture systems. This area is specifically

focused on capturing human motion in order to synthesise smooth animation.

The first step to animate a 3D character is to capture the motion from an actor in a stu-

dio. Then, the raw marker data captured by the optical system require to be ”cleaned”.

This step is done by softwares and animators and consists of fixing erroneous markers:

they can be occluded, swapped, mislabeled, or the signal can be noisy. This step is usu-

ally time consuming and expensive. Moreover, once the data is cleaned, further steps are

necessary including ”solving”, where rigid bodies are fitted to markers, and ”reconstruc-

tion”, where inverse kinematics is used to recover the character’s skeleton.

Data-driven techniques, such as machine learning, offer an attractive set of tools for

modeling the patterns of data and further predict new ones. Hence, we want to design a

robust algorithm that is capable of both handling corrupt data and accurately predicting

the motion. For this use, we have implemented a residual network (ResNet). According

to [Hol18], this deep denoising feed-forward network can learn from corrupted data and
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replace the ”solving” stage of the optical motion pipeline. For this prediction task, we

train the network to map from marker positions to joint transforms directly.

Additionally, we evaluate the relevance of different data model evaluation techniques

for motion prediction. Our goal is to set up a validation model that will test the network’s

ability to predict poses from new data. For a given task, models’ details such as validation

techniques can vary in the literature, making it sometimes hard to navigate and improve.

Thus, we compare two different validation models in this thesis and try to establish a

a complete pre-processing pipeline when dealing with motion capture data. The first

one is k-fold cross-validation, a non-exhaustive cross validation method that involves

partitioning the data into subsets, performing the validation analysis on one subset, and

the training on the remaining ones. This is a common method for classification tasks. The

second approach is a modified cross-validation inspired from time-series forecasting. We

adapt our previous method to take into account the temporal order of the motion data.

Finally, we evaluate the impact of both validation methods on the model’s performance.

There has been a greater demand for integrating motion capture effects in live shows,

concerts, and theatrical events. The difficulty of capturing the motion of a performer in

this context comes from the harsh environment in which it takes place. Indeed, strong and

varying lighting, smoke generators, and other visual pollution is often part of the show,

and traditional optical systems often fail in these environments. One of the solution is

to reduce the number of body markers that we use and track. This helps reducing the

noise, and the impact of swaps and mislabelling. In other words, we aim at finding a

subset of motion-capture markers that are able to provide fast and high-quality prediction

for a complete human motion. This is still an area of active research in facial or hand

motion simulation where the motion and marker placement is very intricate. We will

consider previous work from Liu et al [LZWM06] and on the symmetry of human gait

Ha et al. [HWPR+10] to chose combinations of only 6 markers to learn from.

The alliance of a fast and robust neural network with a reduced marker set constitutes

a new domain with largely unstudied potential for full body motion. In this thesis, we
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successfully evaluated the best validation techniques for motion capture data, and build

a complete pipeline for pose estimation with only 6 markers, i.e. we were able to do the

”solving” step for the raw reduced data as well as the retargetting step. The experimental

results demonstrate that our method can quickly generate plausible human motions on a

frame-by-frame basis.
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Chapter 2

Literature review

This thesis bridges the gap between traditional computer animation techniques and flour-

ishing artificial intelligence techniques. This section contextualizes our research in these

two area and provide a brief literature survey on previous papers that used machine

learning approaches to learning animated motion from motion capture.

2.1 Motion capture

A significant part of full body motion estimation is to register the motion, a process

known as human motion capture. The main aspect is to capture large scale body move-

ments, which are the movements of the head, arms, torso, and legs. The systems used to

capture human motion consist of subsystems for sensing and processing, most of them

rely on placing devices on the subject and in the surroundings which transmit or receive

generated signals. These sensor technologies can be either active sensing such as cam-

eras equipped with markers in a MoCap system, or passive sensing such as force sensors,

gyroscope, reflective markers etc. We are mostly interested in building a pose estimation

system from a MoCap system, that is by placing markers on a studio actor and record

the motion with cameras. The markers information is then used as input data for our

learning algorithm.
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Human motion capture data usually needs to be ”cleaned”, ”solved” and ”recon-

structed” due to interference that occur during a capture. Occlusions can cause mis-

labelling, too many markers may inhibit natural movement. Moreover, markers mis-

labelling or disappearance is amplified as the number of markers increases. Park et

al. [PH06] have studied the impact of using a very large set of markers (approximately

350) to capture skin deformation, and found that dynamic motions tend to have more dis-

connected marker trajectories. They developed a cleaning method to counter the numer-

ous marker swaps and occlusions. However, this approach requires a high computation

power and is time-consuming. Extensive research is conducted on finding good body

landmarks (see Steimle et al. [SBLW+17]). To the extent possible, the markers are placed

on body landmarks so that they can more easily be used to approximate the motion of the

skeleton. Recent work by Koźbiał et al. [KMS20] uses 3D scans and mid-surface projection

to evaluate and locate points of interests for body landmarks. These points of interest can

provide valuable information on where to position markers, especially in a setting where

we are reducing their number.

In addition, an automatic approach to computing optimized marker layouts is crucial

for a precise study of movements, as presented in Dagnes et al. [DMV+19] and Schröder

et al. [SMB15]. It was mainly applied to hand motion reconstruction, which can be com-

plex due to the hand anatomy. The use of a reduced marker set does not change the hand

movement perception. This result was presented in Hoyet et al. [HRMO12], showing that

for the majority of cases 8 markers produces sufficiently high quality motions. This ob-

servation is supported by other studies on hand motion reconstruction. In Wheatland et.

al [WJZ13] using Principal Component Analysis coupled with a linear regression model,

they were able to reconstruct hand motion close to the original with a sparse marker set

of three to six markers. Other selective automatic approaches are derived from PCA, in

order to isolate and select markers that carry the most information about the full body

movement. In their paper, Liu et al. [LZWM06] present a selective approach for mo-

tion learning and reconstruction based on principal feature analysis (PFA) (see Cohen et
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al. [CXZ+02]). Their results show that a set of six markers is consistent and stable under

different initial settings. However, this linear technique is not optimal to predict complex

motion and requires many local basis for interpolating large data. In order to efficiently

train a neural network, we want to reduce the data dimensionality and select markers

that maintain the most information to accurately predict a pose.

Techniques that infer human motion from partial information are part of a larger story,

especially when it comes to commercial devices. One of the first popularized game that

uses partial information was the Wii Balance Board. It is capable to provide reliable in-

formation about the full body pose from ground reaction forces. Such applications were

further studied by Yin et al. [YP03] for their FootSee device, and it becomes a very pow-

erful and accurate tool when coupled with hand tracking devices that provide arm move-

ment information (see Ha et al. [HBL11]). Another user interface that uses force sensor

is the Tango ball by Kry et al. [KP08], that measures the contact pressures and acceler-

ation for hand movement reconstruction. Whereas these techniques work well for VR

headsets or the Wii and provide a solid point of departure for real-time application, they

are not highly accurate and usually need to be coupled with other non-intrusive sensing

techniques like cameras, which was explored in Aladdin et al. [AK12].

2.2 Machine learning

Machine learning techniques are attracting the interest of the computer animation com-

munity from speech animation in Taylor et al. [TKY+17] to hand pose estimation in Ober-

weger et al. [OWL]. Properties of ML systems, such as artificial neural networks (ANN),

include high scalability and automatic features learning. These networks have been eval-

uated by Du et al. [DWW15], among others, to be very efficient for data-driven motion

prediction.

Recently, more methods employing convolutional neural network (CNN) based learn-

ing approaches led to important progress for single-person 3D pose estimation (see [LC14,
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LZC15, TKS+16]). For full body mocap data, a family of methods based on deep recur-

rent neural networks (RNNs) and encoder-recurrent-decoder (ERD) have shown good

performance on this task while also trying to predict poses. For instance, Martinez et

al. [MBR17] focus on learning time-dependant representation that perform task such as

long-term human motion synthesis and short-term prediction. Whereas [FLFM15] pro-

pose an ERD approach to motion recognition and prediction, where the model is a recur-

rent neural network that incorporates nonlinear encoder and decoder networks before

and after recurrent layers.

We are particularly interested in networks able to handle corrupted or partial data. De-

noising neural networks usually outperforms other models for this task. It was first intro-

duced by Vincent et al. [VLL+10] as an unsupervised-learning method to train stacked de-

noising autoencoders in order to guide the learning of higher representation. Denoising

autoencoders achieve state of the art results for classification, regression or data-recovery

tasks (see [AVT+17, LTMH13]). Recent work on denoising autoencoders from Mall et

al. [MLCC] and Holden et al. [HSKJ15, HSK16] introduce custom noise functions to syn-

thesize and edit motion. In continuity with these results, Holden et al. [Hol18] present

a deep neural network approach to denoising corrupted motion capture data. The latter

implement a multi-layer residual neural network (ResNet) coupled with a custom noise

function for motion prediction. We take inspiration from deep artificial neural networks

and denoising networks to predict the joint transforms of reduced marker sets.
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Chapter 3

Motion capture concepts

Traditional character animation includes manually positioning the 3D characters, it in-

volves skilled artists and takes large amount of time. Motion capture (or MoCap) was

introduced as a digital rotoscoping1 technique to produce faster and more realistic mo-

tion. Nowadays, this method works by recording actors performing a desired motion in

a studio, capturing and tracking their movements (see Figure . The techniques won its

spurs in the entertainment industry. For instance, in Peter Jackson’s movie ”Lord of the

Rings: The Two Towers”, the character Gollum played by Andy Serkis was revealed to

be animated with motion capture. It was during the process of creating Gollum that the

technology developed by WETA 2 was created to allow motion capture actors to act in real

time on set. Then, motion capture was popularized and improved to a point of creating

believable characters and environments. James Cameron’s ”Avatar” (2008) is an example

of hyper realistic capture of movement and facial expressions.

3.1 Optical systems and markers

We are particularly interested in application where the captured motion is used to provide

controlling functionalities; meaning that it could be used as an interface to games, virtual

1https://archive.org/details/themakingofbrilliance1985
2https://www.wetafx.co.nz/
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Figure 3.1: A dancer wearing a suit used in an optical motion capture system.

environments, animation or real time motion detection and prediction. As previously

seen on Figure 3.1, data acquisition is implemented using special markers attached to an

actor. Only a black and white images (2 bits) of these points are captured, and not the

images of the actor’s body. This is called an optical system. Traditionally, performers

wear markers near each joint to identify the motion by the positions or angles between

the markers.

We are particularly interested in two types of markers that provide different infor-

mation about the position and movement: the passive markers and the active markers.

In passive optical systems, the cameras emit infrared radiation, reflected by the markers

whose surface is coated with reflective tape, then sent back to these same cameras, which

have IR filters to cut out all other illumination. The positions in the spatial frame of each

marker is deduced by triangulation from the image processing of a minimum of 2 cam-

eras. Generally, markers need to be tracked by a software engine, that is to say: register

them in an identification tracking list from the T-pose (initial T position of the actor); and
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sometimes manage occlusions and swappings. In active optical systems, instead of re-

flecting the light, the markers emit their own signal. The active markers directly emit an

infrared signal captured by photosensitive cells. The cells are sensitive to a type of wave-

length and can identify active markers in real time. These markers are therefore identified

automatically and immediately in real time dynamic points with 3D coordinates in virtual

space.

Our goal is to infer joint positions from markers, we need to have identified mark-

ers, or at least a set of them. Hence, we will deal with passive markers that have been

identified or labelled in a pre-processing step. We didn’t have access to an active optical

system, however, our algorithm is also compatible with active markers or a mix of active

and passive markers with small changes in nomenclature and labelling.

3.2 Motion capture file format

In the animation jargon, the whole character that is animated is called a skeleton. It is

composed of bones that are linked in a hierarchical structure. They are the smallest seg-

ment subject to individual rotation and translation changes during the motion. To repre-

sent the local position, orientation or scale changes of a bone we introduce a parameter

called a channel. Finally, the animation is comprised of a number of frames, where for

each frame the channel data for each bone is defined.

We use the bioVision hierarchical data (BVH) data format from the Carnegie Mellon

University Motion Capture Database, or CMU. A BVH file consists of two parts: the

first section details the hierarchy and initial pose (T-pose) of the skeleton, and the second

section, or motion section, provides the channel data for each frame (see Figure 3.2). The

structure of the files is similar to a hierarchical tree structure, where a node contains a

bone. The root of the hierarchical tree is the hips and all the other bones derive from it.

For instance in Figure 3.3, we can see that the Left Elbow has the Left Shoulder as parent

node and the Left Wrist as child node, the left Shoulder has the Left Collar as parent node
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Figure 3.2: An example BVH file with two joints attached to the root (hips).

etc. The translation of the origin of the bone is defined with respect to its parent’s origin,

meaning that every information is given in local coordinates. The root is the only node

in the tree that does not have a parent node, and the nodes at the extremities that do not

have a child node are called End Sites. The bvh files from the Carnegie Mellon University

Motion Capture Database that we use in this project are hierarchical trees with 32 nodes.

3.3 Kinematics chain

The motion of an individual bone consists of translation, rotation and scale, which can

be merged together to give an overall transform using homogeneous coordinates. The

combination order of these different transforms give the full transform matrix of a given

bone and follow

M = TRS, (3.1)

where S, R and T are the separate scale, rotation and translation matrices respectfully.

The construction of the rotation matrix R, can be easily done by multiplying together the
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Figure 3.3: Hierarchical Structure of a sample BVH file with the sample T-pose of the

skeleton.

rotation matrices for each of the different channel, this gives for our case the new rotation

matrix:

R = RzRxRy. (3.2)

We can rewrite the transform matrix M into homogeneous coordinates simply by adding

a last row such that:

M =


Tx

R Ty

Tz

0 0 0 1


. (3.3)

Normally, the root is the only bone that has per-frame translation data, however each

bone has a local offset that needs to be added to the local matrix stack. Therefore, Tx, Ty

and Tz represent the summation of a bone’s local position and frame translation data.

Now, to obtain a global matrix transform for a given bone, the local transform needs

to be pre-multiplied by its parent’s global transform. The following equation exemplifies

this process for the LeftAnkle in Figure 3.3:
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v′0 = MHipsMLeftHipMLeftKneeMLeftAnkle[0, 0, 0, 1]T

v′1 = MHipsMLeftHipMLeftKneeMLeftAnklev,
(3.4)

where v′0 and v′1 are the endpoints of the bone with local orientation v, Mi are the local

transforms of the bones involved in the hierarchical chain, and [0, 0, 0, 1]T is the local

origin of the LeftAnkle.
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Chapter 4

Machine learning background

Machine learning models are typically well adapted to learn from incomplete or noisy

datasets, since many models are designed to capture the inherent noise and data com-

plexity. In our approach, we are trying to skip the solving stage of the optical motion

pipeline and directly learn from the raw motion data. In this chapter, we provide a de-

scription of our neural network, as well as the metrics and the hyperparameters that we

tune.

4.1 Artificial neural network

Artificial neural networks are one of the main tools used in machine learning. As the

“neural” part of their name suggests, their systems are inspired by the neuronal con-

nections in brains. Neural networks are known to be universal function approximators,

most of the time the functions are nonlinear. The ANN task is to optimize weight values

through a learning method.

Such networks can be broken down into layers. The inputs to the neural network con-

stitute the input layer. This layer consists of passive nodes, they only transmit the signal

to the following layers: the hidden layers. There is an arbitrary number of these layers

with arbitrary number of neurons. The nodes are modifying the signal (and changing the

14



Figure 4.1: Diagram of an artificial neural network. V: input weight matrix, W: output

weight matrix, σ: activation function (function that is used to optimize the weight). In

our task, the input layer is the marker position and the output layer is the joint transform.

weights), they are active. The number of neurons in the output layer corresponds to the

number of the output values of the neural network. The nodes in this layer are also active.

The network is essentially learning how to produce the output within desired accu-

racy corresponding to an input pattern. The final result is the updated optimal weights.

Our aim is to predict the class of an input vector, see Figure 4.1. This is called a classifi-

cation task. To do this we implement a Supervised Learning method since such methods

require a training set which consists of input vectors and a target vector associated with

each input vector.

4.1.1 Activation functions

We previously learned that ANNs consist of various layers of interconnected artificial

neurons. The neurons are powered by activation functions which help in switching them

On/Off. Each neuron receives an input and weights, which is then added with static bias

value (unique to each neuron layer). The sum is then passed to an appropriate activation

function that determines the final output of the neuron, see Figure 4.2.
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Figure 4.2: Example of a neuron with its inputs, corresponding weights, a bias, and the

activation function applied to the weighted sum of the inputs.

The activation function transforms its inputs into outputs that have a certain range. It

is essentially the switch that turns the neuron On or Off. Without an activation function,

the output signal becomes a simple linear function, and the network will act as a linear

regression model with limited learning power.

We are particularly interested in rectified linear unit (ReLu) activation functions. A

ReLU function is simply,

σ(x) = max(0, x). (4.1)

The function returns 0 for negative inputs, but returns positive values back. Thus, such

activation functions’ main property is sparsity.

Moreover, this function and its derivative are both monotonic. This is important be-

cause neural networks are trained using the process gradient descent. It consists of a

backward propagation step (chain rule) to get the change in weights in order to reduce

the loss after every epoch. It is important to note that the derivatives play an important

role in updating of weights.
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Figure 4.3: A skipped connection in Residual learning.

4.1.2 Residual networks

Now that we have defined the components of a network and the activation function, we

are interested in the network architecture. We take inspiration from Holden et al. [Hol18]

and opt to build a inception deep residual network (ResNet). This model has already won

its spurs in pattern recognition in Szegedy et al. [SIVA17]. The ResNet model, with ReLu

activation function, solves a major problem with deep neural networks. When deeper

networks start converging, a degradation problem occurs: with the network depth in-

creasing, accuracy gets saturated and then degrades rapidly. This is called the vanishing

gradient problem and was a limitation on previous application of deep action recognition.

In a residual network, the objective is to fit a residual mapping and skip connections.

Instead of learning a direct mapping x → y with underlying function H(x), we define

a residual function using F (x) = H(x) − x (called a ”shortcut connection”), which can

be re-framed into H(x) = F (x) + x, where F (x) and x represent the stacked non-linear

layers and the identity function (input=output) respectively (see Figure 4.3). In this way,

we resolve the degradation problem.

4.1.3 Metrics

Our neural network solves a classification task, hence we need a supervised learning

metric to evaluate its performance. In our model, and for each frame, the observations
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are the marker positions around joints and the class they are matched to is the associated

joint transform. An observation belongs to a unique class, hence we choose to use the

classification accuracy as metric. The accuracy can be defined as the ratio of number of

correct predictions to the total number of input samples. For the validation set, the metric

is computed at the end of each epoch and on the complete validation dataset. The train

set metric is computed at the end of each batch and the average is constantly updated

until the epochs end.

4.2 Hyperparameters tuning

In order to optimally solve our machine learning problem we will have to tune several

hyperparameters, scaling them will change the performance of our metric. Since there

is no predefined way of choosing them, we started from the information in Holden et

al. [Hol18] and refined them from there.

Mini batch

We know that an epoch is one forward pass and one backward pass of all the training

examples. However, this step can be very long and memory expensive. Especially in

our case, our machines could not fit the whole dataset. The first step for boosting our

algorithm when dealing with a lot of samples is to cut an epoch into multiple mini batches

iteration. The batch size defines the number of samples that will be propagated through

the network for this iteration. For example if you have 1000 training samples and a batch

size is 500, then two iteration will be needed to complete one epoch. This technique has

a lot of advantages: it reduces the cost of memory and it trains faster, because we update

the weights after each propagation. We used mini batches of size 256, as presented in

Holden et al. [Hol18].
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Regularization

When we want to reduce the model high variance, in the case of overfitting, we can in-

crease the data or add a regularization term, this reduces the complexity of the model. In

our case we added l2 regularization. Increasing the regularization parameter results in a

greater weights decay during the gradient descent update. Hence, the weights of most of

the hidden units will be close to zero and the network will be simpler.

Learning decay rate

An other way to speed up the process is to slowly reduce the learning rate over time. This

is called learning rate decay. If you start with a relatively large learning rate, the training

will be faster. In order to have a higher chance to reach a global minima we slowly reduce

it over time.
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Chapter 5

Methodology

In this chapter we will detail our technical approach. We will give a detail description

of the experimental data, followed by how the markers are positioned and the features

extracted. Then, we will describe the the different pre-processing approaches that we

explored as well as the hyperparameters of our network. A brief description on the rea-

soning behind the hyperparameters for this specific model will be given. Finally, we will

cover the inverse kinematic and smoothing methods used for motion reconstruction. An

overview of our pipeline for predicting a motion with a reduced marker set is displayed

in Figure 5.1.

5.1 Pre-processing

Data pre-processing is an essential step to enhance the network efficiency. This step in-

cludes several techniques like cleaning, normalization, feature extraction, transformation

etc. We will go through each of them in this section. In our case the type of data are mo-

tion capture files, with different motion types and character sizes. We aim at creating a

pre-processing pipeline that scales and standardizes the input files as well as sorting and

splitting them into training and validation sets to prepare for training. To this end, we

will explore two validation techniques applicable to our classification task.
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Figure 5.1: Outline of the pipeline for motion prediction. The first step includes pre-

processing the data and feeding the reduced markers’ global position to the trained

ResNet. The second step consists of retrieving the global joint transform predicted by

the network. The last step is post-processing, which involves building the kinematics

chain back and smoothing the motion.

5.1.1 Input data

The first step for data cleaning is to make a selection from the available motion capture

data. We are interested in single human motion only from the CMU dataset1. In particular

we selected the following motions:

• Locomotion: running, walking, jumping.

• Interaction with environment: climbing, swing, walking on uneven terrain, walk-

ing on a path with obstacles.

• Physical activities: solo dance, acrobatics, martial arts, kicks, boxing, stretching.

• Situations and Scenarios: common behaviors, communication gestures and sig-

nals.
1http://mocap.cs.cmu.edu/
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This collection consists of 2332 different files, which represents 3.9 million frames.

These files are in a biovision hierarchy character animation format 2.

5.1.2 Marker positioning

A crucial step in the methodology is the selection and position of the markers. This section

encompasses some pre-processing techniques such as normalization, feature extraction

and transformation. We overview the marker positioning algorithm in the first place,

then we provide further details about the marker sets and parameters.

Technical approach for markers placement

We reproduced the framework from the pre-processing section of Holden et al. [Hol18]

to our subject matter. Before generating markers, we need to scale the motion data. Our

framework deals with character motion of uniform height and potentially different pro-

portions. Hence, we compute a scaling factor s from the T-pose, using the average lengths

of the character’s joints. We also keep information about the joint hierarchy. These pa-

rameters are kept in a metadata file that is saved and kept for motion reconstruction.

In our dataset, a motion data file defines the motion of a single character with j joints

and n poses. Using the rotation and translation component of the joints stored in the

motion files, we compute the global homogeneous transformation matrices of all joints

for every pose and store it in Y ∈ Rn×j×3×4. Then we generate m markers around the

selected joints for each frame following a normal probability density function N (µ, σ2).

This local marker configuration is represented by a matrix Z ∈ Rn×j×m×3. We also set the

skinning weights for the marker offsets w ∈ Rm×j . These weights define the marker-to-

joint association. In principle, a marker can be place perfectly on a joint (trivial skinning

weight), or show movements of more than one joint if placed further away. Altogether, we

can now compute the weighted local offset Ẑ ∈ Rn×m×3 for markers, such that we only

carry information about the offset of the markers and their skinned joints. It is simply

2https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html
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computed,

Ẑ =

j∑
i=0

wi � Zi, (5.1)

where � represents a component-wise multiplication.

In order to train our network, we must compute the set of global marker positions

X ∈ Rn×m×3 using the linear blend skinning function defined as

LBS(Y, Z) =

j∑
i=0

wi � (Yi ⊗ Zi), (5.2)

where⊗ represents the homogeneous transformation matrix multiplication of each of the

marker offset in Zi by Yi for each of the m markers.

Moreover, we transform the poses into a local reference space to standardize the data

for training. We take the root position (hips) as reference for each frame and compute the

local frames as

Y ∗ =
F−1

s
⊗ Y, (5.3)

where s is the scaling factor and F ∈ Rn×3×4 is the reference frames matrix.

Reduced Marker sets

We conduct four sets of experiments, each with a different configuration of markers. For

each of these experiments we decide to set trivial skinning weights for the markers’ off-

set and generate our own marker positions according to a normal distribution N (0, 0.1)

around the selected joints. These parameters deal with data corruption. In this configu-

ration, the markers will be positioned randomly and close to their assigned joints, in a 3D

sphere of small radius for minimal mismatch and corruption. The four sets of markers

are display in Table 5.1 below.

The baseline of our algorithm is computed on the full set with 32 markers (Set A). This

is the standard setting for motion capture. The Set B from the above table is motivated

by Liu et al. [LZWM06], the 6 markers are the most stable under PCA and thus, carry the
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Set ID Number of markers m Configuration
Set A 32 On all the joints.
Set B 6 from Liu et al. [LZWM06] On the head, the right fore-

arm, the left arm, the right
leg and on the left and right
toes.

Set C 6 Symmetrical On the left and right hands,
the left and right feet, on the
hips and on the neck.

Set D 2 On the head and the hips.

Table 5.1: Marker set configurations.

Figure 5.2: Marker configuration of Set C: 6 markers are placed on the left and right

hands, the left and right feet, on the hips and on the neck.

most information about the other ones. The hypothesis is that this configuration should

score the highest on our machine learning model. We try to challenge this result by adding

Set C with 6 markers positioned symmetrically on the body. This is motivated by the

human gait that is often assumed to be symmetrical with right and left sides performing

identical motions, and was studied in Hsiao-Wecksler et al. [HWPR+10]. According to

this plane of symmetry, we place the markers in the upper and lower body where the

contribution of each limb to propulsion and control tasks is predominant (legs, arms,

hips, feet), from Saghedi et al. [SAPL00]. This setting is displayed in Figure 5.2. Finally,

we push the limits of our algorithm by placing only two central markers (Set D).
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5.2 Model evaluation and training

In this section we will detail the structure of the network as well as two different vali-

dation techniques. For the training process, we use the Cedar3 cluster, available through

Compute Canada, and trained on 2 GPUs with 6 CPU cores per GPU and 64GB per node.

5.2.1 Model validation techniques

For data-driven prediction tasks, One wants to estimate how accurately a predictive

model will perform in practice. To this end, we often split our data into a train and a

test set: the training set is used to prepare or train the model and the test set used to eval-

uate the final model. In our experiments, we choose a 80:20 split for the training/testing

ratio. In order to tune parameters and add regularization constraints during the training,

we also implement a validation set. It provides an unbiased evaluation of the model fit on

the training dataset. We explore different ways of partitioning our dataset. In this way we

want to evaluate the performance of validation model for classification tasks on MoCap

data.

We first explore k-fold cross-validation to partition our data. This technique systemat-

ically splits the data into k groups, each given a chance to be a held out model. The goal

of cross-validation is to test the model’s ability to predict new data that was not used in

the estimation. It gives an insight on how well the model generalizes to an independent

dataset for instance.

First, we shuffle randomly the observations, and split the dataset into k groups (we

used k = 10). For each iteration, a group is kept as a hold out or test data set, and

the remaining groups compose the training set. The evaluation score of the iteration is

kept and we move on the next iteration. At the end of all the iterations, we estimate the

accuracy of your machine learning model by averaging the scores derived in all the k

cases of cross validation. This procedure is detailed in Figure 5.3. We can see that each

3https://docs.computecanada.ca/wiki/Cedar
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Figure 5.3: Diagram of k-fold cross-validation when n = 12 observations and k = 3. After

shuffling, a total of 3 models will be trained and tested.

sample is used in the hold out set 1 time and used to train the model k − 1 times. In our

first model architecture we used k = 10.

A main observation is that k-fold cross validation only yields meaningful results when

the structure of the system being studied does not evolve over time. The order of the data

is important in this case, and ignoring it can introduce systematic differences between

the training and validation sets. Hence, we introduce a second approach inspired from

backtesting for time series forecasting. Its goal is to make future predictions from previ-

ous time-related data. In the case of time series data, fast methods like exhaustive k-fold

cross validation do not work. The time dimension of observations means that we cannot

randomly split them into groups.
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Figure 5.4: A Train-Test split that respect temporal order of observations, when n = 3

observations and k = 3. After shuffling, a total of 3 models will be trained and tested.

In our method, we will consider each motion file as a time-related observation and

we will not split. Hence, each motion file will belong to one set only: training, validation

or testing (see Figure 5.4). We shuffle the test files without changing the temporal order

of the frames inside them. Then, we apply the previous method with the number of

observations being the number of files instead of the number of frames (k = #files), and

the width of the training/testing sets is the number of frames in the files. In this way, the

train-test split respects temporal order of observations.
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Algorithm 1: One iteration of training. It takes as input a mini-batch of n poses Y and
updates the network weights Θ .

Input: Y ∈ Rn×j×3×4 , F ∈ Rn×3×4

Output: Ŷ ∈ Rn×j×3×4

Function Train(Y , F):

Y ∗ ←− F−1

s
⊗ Y

Ẑ ←−
∑j

i=0wi � Zi
X ←− LBS(Y, Z)
.
X̂ ←− (X−xµ)

xσ
// Normalization

Ẑ ←− (Z−zµ)
zσ

// Normalization

Ŷ ←− Resnet([X̂Ẑ]; ∆) // concatenation then input to the
Residual Network

Ŷ ←− (Ŷ � yσ) + yµ // Denormalization

loss←− l1(Ŷ , Y ) // Loss

Θ←− Nesterov(Θ,∇loss) // Weight update

return Ŷ
End Function

5.2.2 Network structure

The model is trained using a supervised learning method, we implemented a residual

network with 6 dense ReLU layers (see Figure 5.5). The network takes as an input a batch

of n frames of marker positions m ∈ Rn×m×3 and the associated pre-weighted marker

configuration Ẑ ∈ Rn×m×3. The output of the network is the corresponding batch of n

joint transform Ŷ . We used the Keras (Tensorflow) backend with its build in weighted

accuracy metric. We also use the l1 norm as loss metric,

j∑
n=1

|yn − ŷn|wn, (5.4)

where w is the skinning weight of the marker at that joint position (in our case it is either 1

if there is a marker associated to that joint or 0), ŷn ∈ Ŷ is the prediction and yn ∈ Y is the
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Figure 5.5: Diagram of the ResNet layers, from Holden et al. [Hol18].

true value. The full network pipeline is adapted from Holden et al. [Hol18] is described

in Algorithm 1.

We trained the network for 200 epochs. Recent studies form Keskar et al. [KS17] and

Fetterman et al. [FKA19] show that adaptive optimization methods tend to perform well

in the initial portion of training but are outperformed by stochastic gradient descent (of-

ten abbreviated SGD) at later stages. Hence, we use the Amsgrad version of the Adam

optimizer (see Reddi et al. [RKK19]) for the first 150 epochs, and SGD for the remaining of

the training. Since we use SGD in the last steps of the training, we update the weights of

the network using the Nesterov momentum method from Sutskever et al. [SMDH13]. Fi-
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nally, since our data is of high-dimenstionality, we decide to use L2 regularization for the

Kernel and Bias regularizer. Once the training is over, we store the weights for prediction.

5.3 Post-processing

Once we have trained our network on the 3.9 million frames and saved the network train-

ing weights, we can finally do motion estimation, that is test the network for new data.

This is essentially the pipeline previously shown in Figure 5.1. The first step is to estimate

the global joint transform from new global marker positions. We get the global marker

positions by either recording a motion in a studio or by automatically generating them

using the previous marker positioning method. We opt for the latter and we generate

markers on .bvh files from the CMU Dataset that are not part of the training nor valida-

tion sets. When this estimation step is done we are left with the predicted global joint

transform for the new markers.

5.3.1 Motion reconstruction

The important step in our process is to rebuild the local kinematic chain, and have final

brand new BVH file. The joint positions and rotations are in the world (global) frame after

training, however we are interested in their local position an rotation to reconstruct a full

skeleton. In this section we detail the algorithm that helps us rebuild the joint hierarchy

from the global joint transforms.

First, we orthogonalize the rotational parts of the joint transforms using singular value

decomposition. Moreover, recalling the markers positioning method from Section 5.1.2,

we keep the metadata information about the joint hierarchy of the .bvh file, and can easily

map the joints to their position in the hierarchy, see Figure 5.6. This step helps us define

the joints hierarchy. In this way we know the joints parents and position in the skeleton.

We then rebuild the kinematics chain from the end of the skeleton (toes and hands) to
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Figure 5.6: Simplified diagram of the joint mapping.

the root. We pass the orthogonalized global data to a Jacobian inverse-kinematics based

retargeting solution to extract the local joint transforms.

5.3.2 Temporal smoothing

The last step is essentially smoothing the motion in order to remove any residual high

frequency noise or jitter from the output. We used the Stravinsky-Golay algorithm from

Press et al. [PT90] to improve the precision of the data without distorting the signal ten-

dency. The filter fits a degree three polynomial. Thus, we assume locally that the data

have a jerk of zero, which is a good prior for our motion capture data Flash et al. [FH85].

The filter is applied separately to each dimension of the joints rotation. Finally, we use

Blender4 as software to visualize the final motion. It is a free open source software.

4https://www.blender.org/
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Chapter 6

Results and discussion

This chapter highlights our most important findings on how efficient both pre-processing

methods are on a large dataset and on how robust our method is to reconstruct full body

motion from reduced marker sets. We first introduce the results for the k-fold cross-

validation technique then we compare them with the second validation method. On all

experiments, the preliminary step is to tune the hyper-parameters then to train the ResNet

on 4 marker configurations: 32 markers, 6 symmetrical markers, 6 markers from Liu et

al. [LZWM06] and 2 markers (in Table 5.1). At the end of this section we will have esti-

mated the adequate validation technique for training motion data on a ResNet and the

optimal reduced marker sets.

6.1 K-fold cross-validation

We conduct three experiments with k-fold cross-validation. We display the training re-

sults using loss and accuracy graphs and we summarize the fine-tuning process in Ta-

ble 6.1. Then, we predict a new motion with the trained weights and compare the move-

ment accuracy with the training accuracy.
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Table 6.1: Hyper-parameter fine-tuning for the CMU dataset with k-fold cross-validation.

Experiment Regularizer Optimizer Learning
Rate (Adam)

Optimizer Decay
Rate (Adam)

1 10−4 0.001 10−3

2 10−4 0.005 10−3

3 10−4 0.005 10−6

4 10−6 0.001 10−4

6.1.1 Hyperparameters tuning

The best hyper-parameter combination is found using a grid-search algorithm. We will

mainly focus on the regularization term and the Adam optimizer learning rate and decay.

We do not change the SGD learning rate and decay, they are respectively 0.001 and 10−6.

We start fine-tuning with simple parameters used in Holden et al. [Hol18] and with a

regularization parameter of 10−4; from this point we first tune the regularization then the

optimizer learning rate and decay. We show a subset of the exhaustive search in Table 6.1

and the optimization curves Figure 6.1.

The errors are plotted in Figure 6.1 where training is done until 200 epochs. We can

quickly discard Experiment 2; with this learning rate and decay combination for the

Adam optimizer, the network fails to reach a global minima at that stage. Hence, when

switching to SGD at 150 epochs, the loss curve drastically decreases and continues to de-

crease at the end of the plot. This indicates that the training is not done by the end of the

200 epochs.

In contrast, Experiment 1 seems to be stuck at a global minima from the start. There is

a slight improvement in Experiment 3. However, the loss curve indicates that the train-

ing loss essentially converges after just ten epochs. In order to understand the underlying

potential problems, we also plot the loss and accuracy curves of the other marker sets, see

Figures 1, 2, 3 in the Appendix. The network does not generalize well to new data, and

this happens for all marker subsets. Whereas both the validation and Training accuracy

increase over time, the validation accuracy curve is unstable and jumps. This result de-

scribes a random guess for the output. Moreover, the accuracy and training loss curves
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Figure 6.1: K-fold cross-validaiton: residual network optimization curves for the baseline

marker set (32 markers).

overlap. In fact, the validation loss is slightly lower than the training loss. This suggests

that the model remains incapable of learning the distribution or that the model learns

the underlying distribution extremely fast. The latter is potentially due to the sampling

procedures that is inaccurate and that duplicate observations exist in the training and

validation datasets.

Whereas the other learning curves, the training loss plot of Experiment 4 decreases

to a point of stability after 180 epochs, this is the optimal fit learning curve. Hence, the

optimized model and hyperparameters are picked from this last experiment. For k-fold

cross-validation best settings are a L2 regularization of 10−6 and a learning rate of 0.001 for

the Adam with 10−4 decay steps. The SGD optimizer’s optimal parameter are a learning

rate of 0.001 with decay steps of 10−6 and a 0.9 momentum.
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Table 6.2: Training and Validation scores for the model trained with k-fold cross-

validation.

Set ID Number of markers Test Score Validation Score
A 32 markers 93.24% 93.21%
B 6 markers from 89.31% 89.31%
C 6 symmetrical markers 92.67% 92.75%
D 2 markers 69.07% 69.04%

6.1.2 Training result

We now have the best hyperparameters configuration for training our network. Under

these settings we are interested in knowing how well each marker set performs. The

validation and training scores are displays in Table 6.2. Our Resnet achieves the highest

score on the complete set of markers, with a 93.21% accuracy. This comes close to the Set

C with a 92.75% accuracy.

Nonetheless, one may notice from Figure 6.2 that the model tends to overfit on all

marker sets. Even if the jumps in the accuracy curves could be due to the mini batch iter-

ation, the curves tend to overlap and the validation curve scores higher than the training

curve on average. Furthermore, the network completely fails to learn the underlying dis-

tribution and patterns when we only use two markers, suggesting that two markers are

not enough to generalize a full body motion.

6.1.3 Motion simulation

In this section we aim at challenging the previous results by evaluating the network per-

formance on new data and how this transcribes on a 3D motion. We decide to predict

a new motion with the same marker set configuration than the one scoring the highest

during the training step. Hence we place 32 markers and pick a simple walk motion with

a 90◦ turn to the right.

The results show that the network does not generalize to new data. From Figure 6.3

we can see that the original motion is a smooth 90◦ turn to the right, while the predicted

35



-

0 100 200

10−1

10−0.5

Epoch

E
rr
or

Set A: Loss

Training Loss
Validation Loss

0 100 200

10−1

10−0.5

Epoch

E
rr
or

Set B: Loss

Training Loss
Validation Loss

0 100 200

10−1

10−0.5

Epoch

E
rr
or

Set C: Loss

Training Loss
Validation Loss

0 100 200

10−0.6

10−0.4

Epoch

E
rr
or

Set D: Loss

Training Loss
Validation Loss

0 100 200

0.85

0.9

Epoch

E
rr
or

Set A: Accuracy

Training Accuracy
Validation Accuracy

0 100 200
0.84

0.86

0.88

Epoch

E
rr
or

Set B: Accuracy

Training Accuracy
Validation Accuracy

0 100 200

0.9

0.91

0.92

0.93

Epoch

E
rr
or

Set C: Accuracy

Training Accuracy
Validation Accuracy

0 100 200

0.69

0.69

Epoch

E
rr
or

Set D: Accuracy

Training Accuracy
Validation Accuracy

Figure 6.2: Results for the CMU dataset with k-fold cross-validation. Set A: 32 markers,

Set B: 6 markers from Liu et al. [LZWM06], Set C: 6 symmetrical markers, Set D: 2 markers.
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Figure 6.3: Comparison of the prediction and ground truth motion. The 7 matching

frames are taken 2 s apart. Top: Ground truth motion. Bottom: Motion predicted by

our network on the marker set that scores the highest (32 markers) trained with k-fold

cross-validation.

motion is a stiff turn without leg motion. The character fails to move its knees and only

the hip’s position and rotation is learned and reconstructed. The positions and rotations

of both arms are also inaccurate. This observation is also verified by the rotation curves

of the character’s left knees in Figure 6.4.

Additionally, the motion curve of the left knee rotation jumps and is not smooth, even

after the Savitzy-Golay filter. In this way, We can also infer that the predicted joint rotates

at the same time as the ground truth motion but at different angles. With the previous

93.21% accuracy score on the complete marker set, we would expect the curve to have

roughly the same distribution and be smoother. In this case we have two options: ei-

ther the motion reconstructed step is erroneous or the model is overfitting. Since the

inverse kinematic chain has been tested for different test .bvh motions without errors,

we are almost certain that the problem comes from the model. More precisely, k-fold

cross-validation may not be suited for our dataset. This method underestimates the rela-

tion between frames of the same motion file. This assumption is supported by the joint

rotation curve in Figure 6.4: the jumps indicates that the model does not learn the rela-

tionship between the frames for the same joint and tends to take guesses at each frame.

Hence, even if the loss and accuracy curves of our previous results looked correct, the

test was inconclusive. In fact, we are far from the potential 93.21% score on the complete
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Figure 6.4: X-axis rotation of the left knee joint after Savitzky-Golay smoothing from

frame 110 to frame 150. This corresponds to a 90◦ right turn.

marker set. This last observation also question our loss metric, thus we will conduct more

experiment in the next seciton.

6.2 Time-related observation

We previously stated that k-fold cross-validation was not a suitable technique for splitting

our the frames. In this section, we fix this issue by training our network on a data split

that respect the temporal order of the observations, that is when using the individual files

as observation. In this way, we aim at predicting smoother joint transforms.
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Table 6.3: Hyper-parameter fine-tuning for the CMU dataset with the time-related obser-

vation method.

Experiment Regularizer Optimizer Learning
Rate (Adam)

Optimizer Decay
Rate (Adam)

1 10−6 0.001 10−4

2 10−4 0.001 10−4

3 10−4 0.005 10−4

6.2.1 Hyperparameters tuning

We compile the hyper-parameters in Table 6.3 for the time-related data split. The SGD

learning and decay rates remain the same, and are respectively 0.001 and 10−6. We also

look for the best hyperparameters using a grid-search algorithm. However, we take as

starting point the set that performed the highest with k-fold cross validation. We show a

subset of the exhaustive search in Table 6.3.

From the optimization curves in Figure 6.5 we can see that the first two experiments

have approximately the same plots. The slopes are reaching a local minima after 5 epochs

then remain steady. The first two models fail to explore relevant weights in hidden units.

This is highlighted in the Figures 4 and 5 in the Appendix.

The training and loss curves of the first experiment are identical, implying that the

model overfit. Whereas in Experiment 2, the validation losses start to increase again af-

ter few epochs and the generalization gap is large. We simplify the network and reach

a global minima by: decreasing the regularization from 10−6 to 10−4 and starting with a

larger learning rate of 0.005. Although the loss error is higher with these hyper-parameters,

the plot of training loss for Experient 3 decreases smoothly to a point of stability. We will

therefore use these parameters for the training.
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Figure 6.5: Time-Related Observations: residual network optimization curves for the

baseline marker set (32 markers).

6.2.2 Training result

The training results are shown in Figure 6.6 on Experiment 3. This time, the network

scores the lowest when trained on two markers and the highest when trained on 6 mark-

ers placed symmetrically. Nonetheless, all networks tend to converge quickly and remain

steady after less than 100 epochs, especially on the validation set. A simple fix would be

to add an early stopping callback to stop training once the validation curve has stopped

improving.

We also notice a large gap between the validation and training curves for Set A. A

large generalization gap is usually a sign of unrepresentative training data, meaning that

the validation data may have features not represented in your training data. However,

this trend disappears when we reduce the number of markers. Thus, a more plausible

40



-

0 100 200

10−1

10−0.5

Epoch

E
rr
or

Set A: Loss

Training Loss
Validation Loss

0 100 200

10−1

10−0.5

Epoch

E
rr
or

Set B: Loss

Training Loss
Validation Loss

0 100 200

10−1

10−0.5

Epoch

E
rr
or

Set C: Loss

Training Loss
Validation Loss

0 100 200

10−0.6

10−0.4

Epoch

E
rr
or

Set D: Loss

Training Loss
Validation Loss

0 100 200

0.85

0.9

Epoch

E
rr
or

Set A: Accuracy

Training Accuracy
Validation Accuracy

0 100 200
0.84

0.86

0.88

Epoch

E
rr
or

Set B: Accuracy

Training Accuracy
Validation Accuracy

0 100 200

0.9

0.91

0.92

0.93

Epoch

E
rr
or

Set C: Accuracy

Training Accuracy
Validation Accuracy

0 100 200

0.69

0.69

Epoch

E
rr
or

Set D: Accuracy

Training Accuracy
Validation Accuracy

Figure 6.6: Experiment 3: Results for the CMU dataset trained on time related observa-

tions (with motion files as observations).
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Table 6.4: Training and Validation scores for the model trained with time-related obser-

vations.

Set Number of markers Test Score Validation Score
A 32 markers 93.63% 82.29%
B 6 markers from Liu et al. [LZWM06] 89.63% 86.72%
C 6 Symmetrical markers 92.83% 91.60%
D 2 markers 69.07% 68.75%

explanation would be that we tend to mis-classify the joints more often when we give a

marker per joint. Finally, from Table 6.4 we can see that the set with two markers posi-

tioned symmetrically (Set C) on the body scores the highest.

6.2.3 Motion simulation

We previously saw a disconnection between the network output and the motion simula-

tion and reconstruction. Hence, we aim at evaluating how robust this network architec-

ture is. To this end, we are going to predict a new motion for the marker configuration

that scored the highest. We select two new motions to predict: the first one is the same

walk as used previously in Section 6.1.3, and the second one is a stair climb. From the .bvh

motion files we place 6 markers symmetrically, since they are the markers that scored the

highest during the training step, and predict the new joint transforms.

The first motion is the same simple walk with 90◦ right turn. This time, the motion

is smooth and the joints’ transforms match the ground truth motion almost everywhere.

We can see from the Figure 6.8 that the two rotation curves of the left knee have the

same distribution and almost overlay. The smoothness of the rotation curve indicates that

the network successfully learns the time-dependency of a joint through different frames.

However, the network still fails at learning movement subtleties: on Figure 6.8 there are

small rotations between 7 s and 9 s on the ground truth motion that are not appearing on

the network output. This is not coming from the Savitzky-Golay filter, as the raw motion

was also not capturing the jumps.
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Figure 6.7: Comparison of the prediction and ground truth motion. The 7 matching

frames are taken 2 s apart. Top: Ground truth motion. Bottom: Motion predicted by

our network on the marker set that scores the highest (32 markers) trained with Time

related observaiton.

Finally, from the Figure 6.7 only the character’s arms are not matching. This is also ob-

servable on the second predicted motion on Figure 6.9 and the associated left arm rotation

in Figure 6.10. This result highlights the model limitation. Out of all the limbs, the arms

are harder to predict. This can be explained by the size of the bones: the arms, forearms

and hands are shorter bones than the legs. Hence, the joint location are closer and the net-

work has a higher chance to mislabel the joint and give erroneous joint transform. Since

this model also takes into account the previous frames, the error is propagated through

the motion.

6.3 Discussion

In this section we summarize our prominent results and expose the model limitations.

Originally, k-fold cross-validation is a reference basis for classification tasks, however

it does is not work for learning full body motions. By shuffling the frames we skew

the learning process since frames from the same file happen in the training and valida-

tion sets. This leads to an immediate overfit and incorrect accuracy curves. We found a

solution and remedied the problem by implementing a time related approach to cross-
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Figure 6.8: Plots showing the x-axis rotation of the left knee joint for the first 200 frames

after Savitzky-Golay smoothing.

validation. Training the data with this technique and the residual network showed valu-

able improvement in the output.

First, since we aim at estimating human motions from a small set of the most informa-

tive markers we are interesting in the marker subset with the highest accuracy. The neural

network is scoring the highest with 6 markers symmetrically placed and the lowest with

two markers. Whereas the latter result was anticipated from the few of information car-

ried with two markers, we find that the hypothesis from Liu et al. [LZWM06] does not

hold. In fact, the subset found with Principal Component Analysis scores 86.72%, which

is barely higher than our baseline with 32 markers and is significantly lower than the

symmetrical marker set that scores 91.60%. Hence, our experimental results consolidate
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Figure 6.9: Comparison of the prediction and ground truth motion. The 7 matching

frames are taken 2 s apart. Top: Stair climb ground truth motion. Bottom: Motion pre-

dicted by our network on 6 markers placed symmetrically trained on time related obser-

vation.

Figure 6.10: Left: X-axis rotation of the left arm joint after Savitzky-Golay. This corre-

sponds to the stairs climb motion. Right: Left Arm position (in orange).

the hypothesis stating that the human gait is symmetrical on average, making the 6 sym-

metrical markers carrying more information in that setting and when trained on a large

dataset. In order to second this result, we have to consider that our dataset is 23.1 times

bigger than the dataset used to test PCA and train their model, making our method more

robust. We also notice that our model has an unrepresentative training dataset when at-

tempting to learn on 32 markers. This situation was identified by the large gap between
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the training and loss curves, despite some improvement over time. Since we are training

on time-related observations that has been shuffled and cross validated for this network,

a way to fix this would be to simply add more observations. They could be generated in

a motion capture lab for example. Additionally, the other loss plots decrease to a point

of stability before 200 epochs. A way to improve the model would be to add an early

stopping callback to stop training once the validation curve has stopped improving. At

this stage, the network requires more fine tuning to reduce the generalization gap. The

plots still show a potential overfit.

Secondly, the reconstructed motion was smooth and our model was able to accurately

learn joint rotations when trained on 6 markers. For instance, this did not hold with regu-

lar cross-validation. Our model is highly effective for walking and leg motions, showing

little to no difference with the ground truth motion after smoothing. The reconstructed

motions were visually credible and realistic. Nonetheless, the model had difficulty learn-

ing arm motion. This issue could potentially arise from two factors: the inverse kinemat-

ics or the classification. The joint positions in the output might be too close to each other,

leading to mismatches sometimes.

Finally, we are tackling the performance of the model. The pre-processing step takes

the most time with an average of 15 h. The training task for time-related observation takes

on average 10 h, while the prediction is done in 0.15 ms and the motion reconstruction

in 1.9 ms for 500 frames on average. Since we only need to train our model once for

every marker set configuration, our model show great potentials for real time motion

estimation.
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Chapter 7

Conclusion

In this thesis we have presented a complete pipeline for motion prediction with reduced

marker sets. We defined proper marker subsets for that task: 6 markers found with PCA, 6

markers placed symmetrically on the body from the symmetrical human gait, a complete

marker set as baseline and only 2 markers. Moreover, we have discussed different valida-

tion techniques for our machine learning model. The experimental results demonstrate

that our method can quickly generate plausible human motions, on a frame-by-frame

basis, and scales well with the size of the character and heterogeneity of motions. The

ResNet model reaches a 91.60% accuracy when trained on time-related observations and

for 6 markers placed symmetrically on the body. This new result challenges the previ-

ous literature on reduced markers for motion prediction, especially the work from Liu et

al. [LZWM06].

An important take away from this project shows that despite the complexity of motion

capture data, deep learning models are nonetheless less vulnerable to perturbations and

capable of capturing the inherent temporal relationships of the observations through the

frames. It is also observed that, while deep learning is extremely powerful, a lot of work

is required for its optimization and adapting it for dataset such as the one used in this

project. Below, I propose future directions for this project that I think will build upon the

results obtained in this thesis.
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7.1 Future work

Both the model and the reconstruction method are areas that would have great potential

for future improvements. First, we tackle the limitations of the dataset and the potential

network additions or changes. Then, to pinpoint the reason behind the motion recon-

struction potential failures, we suggest a different approach to our inverse kinematics

algorithm.

7.1.1 Model Improvement

Several model improvements could be made in future extensions. The optimization of

the ResNet can be done more thoroughly including using a larger dataset and adding

an early stopping callback. As of right now, we have modelled an ideal situation with

trivial skinning weight for marker positioning and limited noise, which is still rarely the

case. Hyper-parameters fine tuning can also be done more thoroughly and one may add

more constraints on the markers’ positions. Finally, potential further studies could also

evaluate the impact of adding or removing dense layers and implementing this pipeline

for real time motion estimation.

One drawback of this approach is the space and computational power required to run

the experiments, as the data represent roughly 10 GB of data, and the pre-processing and

training steps combined take up to 25 hours. Regarding the dataset, we believe that the

CMU dataset provides a complete and diverse training set and is overall very popular in

the literature. However, the files are now getting old and use different nomenclatures,

coordinate systems and scaling than the new free open-source MoCap datasets like the

SFU1, making it very hard to pre-process together. One may benefit from building a new

dataset in a studio or updating the CMU dataset to be compatible to the new motion

capture files available on the market.

1http://mocap.cs.sfu.ca/
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7.1.2 Motion reconstruction

Another limitation of our system is the inverse kinematics pipeline. Our methods is rely-

ing on the saved hierarchical information of the BVH files, and we are only exploring the

Jacobian inverse-kinematics based retargeting solution. This step is a tedious step in post-

processing. This project could highly benefit the use of a more advanced and adapting

Inverse Kinematics (IK) solver such as the one found in animation softwares like Maya2.

7.2 Closing remarks

This project has shown that a machine learning solution offer very promising results for

the future of human motion estimation. This project is part of a technological continuity

that is already implemented in fields such as biomechanics, medical imaging, the auto-

mated car, the film and video games industry, live streamed event etc. The power of the

Residual Network reside in its ability to robustly predict human motion. We believe that

further studies would be able to predict, create and anticipate future human movements

from such reduced marker sets.

2https://www.autodesk.ca/en/products/maya
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Figure 1: Experiment 1: Results for the CMU dataset with k-fold cross-validation,

with motion frames as observations. Set A: 32 markers, Set B: 6 markers from Liu et

al. [LZWM06], Set C: 6 symmetrical markers, Set D: 2 markers.
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Figure 2: Experiment 2: Results for the CMU dataset with k-fold cross-validation,with

motion frames as observations. Set A: 32 markers, Set B: 6 markers from Liu et

al. [LZWM06], Set C: 6 symmetrical markers, Set D: 2 markers.
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Figure 3: Experiment 3: Results for the CMU dataset with k-fold cross-validation,

with motion frames as observations. Set A: 32 markers, Set B: 6 markers from Liu et

al. [LZWM06], Set C: 6 symmetrical markers, Set D: 2 markers.
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Figure 4: Experiment 1: Results for the CMU dataset trained on time related observations

(with files as observations). Set A: 32 markers, Set B: 6 markers from Liu et al. [LZWM06],

Set C: 6 symmetrical markers, Set D: 2 markers.
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Figure 5: Experiment 2: Results for the CMU dataset trained on time related observations

(with files as observations). Set A: 32 markers, Set B: 6 markers from Liu et al. [LZWM06],

Set C: 6 symmetrical markers, Set D: 2 markers.
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