Role of Immune System in Chronic Primary Pain Conditions

Vivek Verma

Integrated Program in Neuroscience

Faculty of Medicine

McGill University

Montréal, Québec, Canada

A thesis submitted to McGill University in partial

fulfillment of the requirements of the degree of

Doctor of Philosophy

© 2021 Vivek Verma

Table of contents

Table of contentsi
Table of figures v
List of abbreviationsvii
Abstract1
Résumé4
Acknowledgments
Preface9
1. Contribution of authors9
2. Novel contributions to knowledge11
I. Introduction
1. Pain
2. Inflammation14
3. Neuro-immune molecular overlap16
4. The interaction
4.1. Peripheral nociceptor sensitization during inflammation
4.2. Sensory ganglia and inflammation19
4.3. Central nervous system's response to peripheral inflammation

5. Transformation to chronic pain22
6. Analgesic effects of the immune system23
7. Therapeutic opportunities24
8. Conclusion
9. References
II. The dichotomous role of epiregulin in pain
1. Abstract
2. Introduction
3. Methods
3.1. Cohort description
3.2. Outcome measures
3.3. Genotyping42
3.4. Mouse subjects44
3.5. Data analyses47
4. Results
4.1. Among all EGFR receptors and ligands, only EREG was associated with pain
4.2. EREG gene has two functional minor haplotypes51
4.3. H3 and H2 haplotypes of EREG protects from chronic pain

4.4. H3 haplotype of <i>EREG</i> is a risk for acute pain57
4.5. EREG has a dichotomous role in pain behavior in mice
5. Discussion
6. Conflict of interest statement67
7. Supplemental content 67
8. Acknowledgments68
9. References
III. Unbiased immune profiling reveals a Natural Killer cell-peripheral nerve axis ir
fibromyalgia77
1. Abstract77
2. Introduction
3. Methods79
3.1. The Canadian cohort79
3.2. The German cohort
3.3. Data analysis
4. Results
4.1. Characteristics of the Canadian cohort90
4.2. Assessment of immune cell subsets in fibromyalgia
4.3. State of circulating NK cells in fibromyalgia93

4.4. Enriched immune cell type activation pathways in fibromyalgia
4.5. Peripheral recruitment of NK cells in fibromyalgia
5. Discussion
6. Conflict of interest statement 106
7. Supplemental content
8. Acknowledgments
9. References
IV. Discussion and integrative summary119
1. Chronic primary pain119
2. Epiregulin: an important modulator of pain121
3. Peripheral neuroimmune interaction in fibromyalgia
4. Limitations
5. Conclusion
6. References
Appendices
1. Contribution of the thesis author to other projects
2. Supplementary materials of chapter II136
3. Supplementary materials of chapter III200

Table of figures

Figure I-1: Pain amplification through reciprocal paracrine signaling20
Figure I-2: Chronification of nociceptive and neuropathic pain22
Figure II-1: Selection of acute and chronic pain phenotypes in the (A) OPPERA and (B) UKB cohorts
Figure II-2: Quantile–quantile plot of 2407 SNPs in genes coding for EGFR superfamily receptors and ligands
Figure II-3: The EREG gene has 2 minor haplotypes. (A) Regional plot of EREG. (B) Illustration of the 16 SNPs in EREG linkage disequilibrium plot. (C) The sequence of 3 haplotypes with frequency >5% within EREG gene locus
Figure II-4: H3 and H2 haplotypes of EREG protects from chronic clinical pain. (A and B) OPPERA cohort, (C and D) UKB cohort
Figure II-5: H3 haplotype of EREG is a risk for acute clinical pain. (A and B) OPPERA cohort, (C and D) UKB cohort
Figure II-6: The effects of systemically administering an EREG monoclonal antibody (mAb, 5 μg) in mouse models of pain60
Figure III-1: The summary of the experimental flow
Figure III-2: Differential abundance of immune cells in fibromyalgia syndrome (FMS) compare to controls
Figure III-3: Differential state of NK cell subsets in fibromyalgia syndrome (FMS) compare to controls
Figure III-4: NK cells activation assay in fibromyalgia syndrome (FMS) cases and control subjects
Figure III-5: Enrichment of immune cell type activation pathways in FM patients compared to healthy controls

Figure III-6: ULBP expression and NK cell recruitment at the peripheral nerves in	
FMS	100
Figure III-7: Heuristic model of natural killer (NK) cells' contribution to fibromyalgia	
syndrome (FMS) pathogenesis	.104

List of abbreviations

Abbreviation	Description
ADNKA	Antibody-Dependent NK cell Activation
AECRP	Alan Edwards Centre for Research on Pain
AF	Alexa-fluor
AIDS	Acquired Immune Deficiency Syndrome
AMPA	α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ANOVA	Analysis of variance
APC	Allophycocyanin
ATP	Adenosine Tri-Phosphate
BAI	Beck Anxiety Inventory
BDI	Beck Depression Inventory
BDNF	Brain-Derived Neurotrophic Factor
BMD	B-Mono-Dc
BMI	Body Mass Index
CCL	Chemokine (C-C motif) Ligand
CCR	CC chemokine receptor
CD	Cluster of Differentiation
CERC	Canada Excellence Research Chairs
CFA	Complete Freund's Adjuvant
CIM-11	Classification Internationale des Maladies-11
CPI	Characteristic Pain Intensity
CPSQ	Comprehensive Pain Symptom Questionnaire
CNS	Central Nervous System
CO ₂	Carbon dioxide
COX	Cyclo-OXygenase
CRP	C-reactive protein
CV	Cross-Validation
CXCL	chemokine (C-X-C motif) Ligand
CXCR	chemokine (C-X-C motif) Receptor
DC	Dendritic Cells
DMSO	Dimethyl Sulfoxide
DNA	DeoxyriboNucleic Acid
DNAM	DNAX Accessory Molecule
DRG	Dorsal Root Ganglion / Dorsal Root Ganglia
EDTA	Ethylenediaminetetraacetic acid
EGFR	Epidermal growth factor receptor
EM	Expectation Maximization
EQTL	Expression Quantitative Trait Loci

EREG	Epiregulin
ESR	Erythrocyte Sedimentation Rate
FBS	Fetal Bovine Serum
FDR	False Discovery Rate
FITC	Fluorescein isothiocyanate
FMO	Fluorescent Minus One
FMS	Fibromyalgia Syndrome
GAP	Global Assessment of Pain
HIV	Human Immunodeficiency Virus
HLA	Human Leukocyte Antigen
HW	Hardy-Weinberg
IASP	International Association for the Study of Pain
ICD	International Classification Of Diseases
IENF	intra-epidermal nerve fiber
IENFD	intra-epidermal nerve fiber deficiency
IG	Immunoglobulin
IL	Interleukin
IMDM	Iscove's Modified Dulbecco's Media
IRB	Institutional Review Board
ITIM	immunoreceptor tyrosine-based inhibitory motif
IU	International Units
IV	Intravenous
LASER	Light Amplification by Stimulated Emission of Radiation
LPS	lipopolysaccharide
MD	Maryland
MHC	Major Histocompatibility Complex
MS	Multiple Sclerosis
MUHC	McGill University Health Centre
NCAM	Neural Cell Adhesion Molecule
NIAID	National Institute for Allergy and Infectious Diseases
NIH	National Institutes of Health
NJ	New Jersey
NK	Natural Killer
NKA	NK Activation
NLR	NOD-like
NMDA	N-Methyl-D-aspartate
NOD	Nucleotide-binding Oligomerization Domain
NRS	Numeral Rating Scale
NSAIDs	Non-Steroidal Anti-Inflammatory Drugs
NY	New York
ON	Ontario

OPPERA	Orofacial Pain: Prospective Evaluation and Risk Assessment
OR	Odds Ratio
PBMC	Peripheral Blood Mononuclear Cells
PBS	Phosphate-Buffered Saline
PE	Phycoerythrin
PILL	Pennebaker Inventory for Limbic Languidness
PMT	PhotoMultiplier Tubes
PSQI	Pittsburgh Sleep Quality Index
PSS	Perceived Stress Scale
QC	Quality Control
QTL	Quantitative Trait Loci
RA	Rheumatoid Arthritis
RDC	Research Diagnostic Criteria
REDCap	Research Electronic Data Capture
REF	Reference
RI-MUHC	Research Institute of the McGill University Health Centre
RNA	RiboNucleic Acid
RPMI	Roswell Park Memorial Institute
SCL90R	Symptom Checklist-90-Revised
SD	Standard Deviation
SE	Standard Error
SEM	Standard Error of the Mean
SEP	Sub-Epidermal nerve plexus
SNI	Spared Nerve Injury
SNP	Single nucleotide polymorphism
TACTILE	T-cell Activation, Increased Late Expression
TIGIT	T-cell Immunoreceptor With Ig And ITIM Domains
TLR	Toll-Like Receptors
TMD	TemporoMandibular Disorders
t-SNE	t-distributed Stochastic Neighbor Embedding
UK	United Kingdom
UKB	UK Biobank
ULBP	UL16 Binding Protein
UMAP	Uniform Manifold Approximation and Projection
UNC	University of North Carolina
US	United States
USA	United States of America
UTR	UnTranslated Region
UV	Ultra-Violet
WHO	World Health Organization
WT	Wild Type

Abstract

International classification of diseases-11 (ICD-11) classifies chronic primary pain conditions like temporomandibular pain disorders and fibromyalgia syndrome under Chapter 21 ("*symptoms, signs or clinical findings, not elsewhere classified*"). such conditions lack well-defined etiology and diagnosis. Our understanding of chronic primary pain conditions is incomplete, and these conditions are not just limited to anomalies in sensory perception of pain but involve multiple systems. The immune system is one of those contributors to the pathophysiology of chronic primary pain. This thesis explores the role of the immune system in pain modulation. Specifically, we will focus on two chronic primary pain conditions: temporomandibular disorder (TMD) and fibromyalgia syndrome (FMS). Chapter I would summarize the literature on the general involvement of the immune system in enhancing and resolving pain, and how immune cells and neurons interact due to neuro-immune molecular overlap.

Chapter II will describe my first research project representing an important example of reverse translational research in the area of pain genetics and immunology. Here, we found an association between an inflammatory mediator, epiregulin (EREG), and chronic TMD through statistical genetics approaches. TMD, a major cause of nondental pain in the orofacial region, is characterized by craniofacial pain involving the joint, masticatory muscles, or muscle innervations of the head and neck. We found that loss of function EREG genetic variants are associated with chronic TMD and chronic pain intensity. Next, we found that the same genetic variants are analgesic during the acute stages of pain development. We then validated these associations in the large independent cohort.

Finally, we were able to confirm this dichotomous role of EREG in pain through animal pain models.

Chapter III deciphers the role of the immune response in another chronic musculoskeletal pain condition-fibromyalgia syndrome (FMS). FMS, a common rheumatic disease, is characterized by chronic widespread pain, fatigue, and, sleep and cognitive difficulties. Pathogenesis of this syndrome remains elusive leading to a lack of objective diagnosis and specific treatment. Although the immune system's involvement in FMS is irrefutable, the specifics are yet to be deciphered. Furthermore, numerous studies have described the presence of small fiber neuropathy in FMS patients, but the mechanism of development of this neuropathy is unknown. In chapter III, we investigate peripheral blood mononuclear cells (PBMCs) through flow cytometry and differential gene expression in a case-control manner. We found that the FMS cases have fewer circulating natural killer (NK) cells. Furthermore, these cells were activated and exhausted in FMS patients. Coculturing these cells with HLA-/- cell line (an activation stimulus for NK cells) showed that the NK cells from FMS patients are hyperactive compare to controls. Lastly, skin biopsies from an independent cohort showed increased expression of ULBP (NK activation ligand) and recruitment of NK cells on the peripheral nerves of the patients.

In summary, this thesis advances our current understanding of the immune system's involvement in chronic primary pain conditions. Firstly, it demonstrates the dichotomies role of EREG in pain development being protective against acute pain but contributing to chronic pain. Secondly, we found the contribution of NK cells to FMS through its association with peripheral nerves in FMS. Both of these findings are novel

steppingstones on our understanding of the pathophysiology of chronic pain and have therapeutics implementations in the treatment of chronic primary pain conditions.

Résumé

La 11^{ième} version de la classification internationale des maladies (CIM-11) classe les affections chroniques de la douleur primaire, comme les troubles de la douleur temporomandibulaire et le syndrome de fibromyalgie, au chapitre 21 ("symptômes, signes ou constatations cliniques, non classés ailleurs"). Ces affections n'ont pas d'étiologie et de diagnostic bien définis. Notre compréhension des affections primaires de la douleur chronique est incomplète, et ces affections ne se limitent pas qu'aux anomalies de la perception sensorielle de la douleur mais impliquent aussi de multiples systèmes. Le système immunitaire est l'un de ceux qui contribuent à la physiopathologie de la douleur primaire chronique. Cette thèse explore le rôle du système immunitaire dans la modulation de la douleur. Plus précisément, nous nous concentrerons sur deux conditions de douleur primaire chronique: le trouble temporomandibulaire (TMD) et le syndrome de fibromyalgie (FMS).

Le chapitre I résumera la littérature sur l'implication générale du système immunitaire dans l'amélioration et la résolution de la douleur, et sur la manière dont les cellules immunitaires et les neurones interagissent en raison du chevauchement moléculaire neuro-immunitaire.

Le chapitre II décrira mon premier projet de recherche qui représente un exemple important de recherche translationnelle inverse dans le domaine de la génétique et de l'immunologie de la douleur. Nous y avons trouvé une association entre un médiateur inflammatoire, l'épireguline (EREG), et la TMD chronique par le biais d'une approche statistique de la génétique. Nous avons découvert que des variantes génétiques de

l'EREG de type perte de fonction sont associées à la TMD chronique et à l'intensité de la douleur chronique. Ensuite, nous avons découvert que les mêmes variantes génétiques sont analgésiques pendant les stades aigus du développement de la douleur. Nous avons ensuite validé ces associations dans une grande cohorte indépendante. Enfin, nous avons pu confirmer ce rôle dichotomique de l'EREG dans la douleur grâce à des modèles animaux de douleur.

Le chapitre III décrypte le rôle de la réponse immunitaire dans un autre état de douleur musculo-squelettique chronique, le FMS. Le FMS, une maladie rhumatismale courante, se caractérise par une douleur chronique généralisée, de la fatique et des troubles cognitifs et du sommeil. La pathogenèse de ce syndrome reste insaisissable, ce qui entraîne un manque de diagnostic objectif et des traitements spécifiques. Bien que l'implication du système immunitaire dans le FMS soit irréfutable, les spécificités restent encore à être déchiffrés. En outre, de nombreuses études ont décrit la présence d'une neuropathie des petites fibres chez les patients atteints du FMS, mais le mécanisme de développement de cette neuropathie est inconnu. De plus, dans ce chapitre, nous étudions les cellules mononucléaires du sang périphérique (PBMC) par cytométrie de flux et par expression différentielle de l'expression des gènes. Nous avons constaté que les cas de FMS ont moins de cellules immunitaires de type « tueuses naturelles » (NK, pour « Natural Killer » en anglais) en circulation. De plus, ces cellules étaient activées et épuisées chez les patients atteints du FMS. La co-culture de ces cellules avec la lignée cellulaire HLA-/- (un stimulus d'activation pour les cellules NK) a montré que les cellules NK des patients atteints du FMS sont hyperactives par rapport à celles chez les témoins. Enfin, des biopsies de la peau provenant d'une cohorte indépendante ont montré une

expression accrue de l'ULBP (ligand d'activation des NK) et un recrutement de cellules NK sur les nerfs périphériques des patients.

En résumé, cette thèse fait progresser notre compréhension actuelle de l'implication du système immunitaire dans les affections chroniques de la douleur primaire. Tout d'abord, elle démontre le rôle des dichotomies de l'EREG dans le développement de la douleur, étant protectrice contre la douleur aiguë mais contribuant à la douleur chronique. Deuxièmement, nous avons découvert la contribution des cellules NK au FMS par son association avec les nerfs périphériques dans le FMS. Ces deux découvertes constituent de nouvelles étapes dans notre compréhension de la physiopathologie de la douleur chronique et ont des applications thérapeutiques dans le traitement des affections primaires de la douleur chronique.

Acknowledgments

First and foremost, I am grateful to my supervisor, Prof. Luda Diatchenko. She believed in me even during times of self-doubt. Luda's philosophical quotes are not only famous in our lab but also among other faculty members. *"As a researcher, 95% of what you'll do, you'll fail in it. But it will teach you something for sure, 100%*" helped me to keep sailing through this academic odyssey. *"Perseverance is harmful after a point*" taught me how and when to decide to pull brakes, switch lanes, and update my destinations. *"In today's world, one can find one journal article about anything*" made me realize how important it is to be a critique of the information in front of us and to be aware of our own biases. Along with learning how to do research, being Luda's student has contributed to my emotional maturity. Thanks to her humility, debating with her over scientific hypotheses is like having a heart-to-heart talk with a colleague, no filters, no hierarchy, just science, and often, humor. Her commendable feedbacks and extraordinary efficiency are noteworthy.

Secondly, I would like to thank my advisory committee members, Prof. Irah King and Prof. Ji Zhang for their continuous support. Dr. King's involvement in the development and maturation of my research project was beyond the responsibilities of a committee member which surely stems from his passion for immunology. Here, I would like to thank Prof. Laura Stone for being an excellent PhD mentor and getting me involved in chronic pain, even before my PhD enrollment.

Next, I would like to thank Prof. Carolina Beraldo Meloto. As my first mentor in Diatchenko's lab, she helped me in transitioning from a dentist to a researcher. While

Luda was the beacon, Carol was in the lab with me, training me from pipetting to thinking like a clinician-scientist. Dr. Katerina Zorina-Lichtenwalter, PhD student in Luda's lab then, was my "fellow inmate" in the grad life who exposed me to the new "North American" social life and guided me throughout the PhD process. Dr. Ryan Lichtenwalter, a geek with astonishing skillsets, taught me many complex concepts (like Principal Component Analysis) through easier-to-understand explanations. Dr. Marc Parisien, a maverick bioinformatician, exposed me to the world of computer coding. Nothing was more fun in the lab than having "coffee mug" discussions with Marc on topics like the future of the universe and the simulation theory of existence. I am grateful to Dr. Marc Parisien for proofreading the French abstract of this thesis and providing his valuable feedbacks. In addition, Dr. Samar Khoury, Dr. Alex Samoshkin, Dr. Pavel Gris, Dr. Stefano Cattaneo, Francesca Montagna, Sarah Jane Martinez, Dr. Rodrigo Benavides, Dr. Anne-Julie Chabot-Doré, Shawn Wen, Nicol Tugarinov, Masha Verner, Richie Klares, and Alex Linton have been a very supportive lab-mates.

I would like to thank my friends: Rahul, Ravi, Prabir, Karan, Janaki, Akanksha, Fahad, Mahendra, and Sreenath: thank you for putting up barbecues in the middle of winters; you guys rock! Lastly, I am grateful to my parents and my wife, Aparna. I couldn't imagine any achievement in my life without your benevolent support.

Preface

1. Contribution of authors

This thesis describes the mechanistic involvement of the immune system in chronic pain conditions through three manuscripts.

Chapter I is a literature review summarizing our current understanding of the immune system, inflammation, and neuroimmune interactions in the perception of pain and its establishment as a chronic ailment. This chapter originally appeared as:

<u>Verma V</u>, Sheikh Z, Ahmed AS. *Nociception and role of the immune system in pain*. Acta Neurol Belg. 2015 Sep;115(3):213-20. doi: 10.1007/s13760-014-0411-y. Epub 2014 Dec 30. PMID: 25547878.

This manuscript was conceived and written entirely by me. Sheikh Z and Ahmed AS helped with the discussion and proofreading of the manuscript. Dr. Luda Diatchenko has provided her valuable feedbacks for this review post-publication. Her feedbacks are included in this thesis.

Chapter II focuses on epiregulin, an inflammatory mediator and a growth factor, and its contrasting effect on pain during acute and chronic stages of pain. This chapter originally appeared as:

<u>Verma V</u>, Khoury S, Parisien M, Cho C, Maixner W, Martin LJ, Diatchenko L. *The dichotomous role of epiregulin in pain*. Pain. 2020 May;161(5):1052-1064. doi: 10.1097/j.pain.000000000001792. PMID: 31917773

This manuscript was conceived and written by me under Dr. Diatchenko's active guidance. Khoury S and Parisien M provided their expertise in statistical genetics. Maixner W contributed through proofreading and critical corrections before the manuscript submission. The animal experiments were performed by Martin LJ and Cho C at the University of Toronto.

Chapter III is a case-control study of fibromyalgia, a common and debilitating chronic pain condition. It includes immunophenotyping of peripheral blood mononuclear cells this is currently a manuscript that is being prepared for submission:

<u>Verma V</u>, Drury G, Al-Aubodah T, Özdağ AN, Nijnik A, Wen X, Tugarinov N, Verner M, Klares RIII, Linton A, Piccirillo C, Fitzcharles MA, Ingelmo PM, Parisien M, Zhang J, Bernard N, Üçeyler N, Sommer C, King IL, Meloto CB, Diatchenko L. *An unbiased immune profiling approach reveals a Natural Killer cell-peripheral nerve axis in fibromyalgia*. 2021

I have been involved with this project even before joining Dr. Diatchenko's lab as a PhD student (as a research assistant in 2014). Under the supervision of Diatchenko L and Meloto CB, I have worked on the research proposal, informed consent forms, patient recruitment and data collection, processing of blood samples, and analysis of the data. Drury G contributed through her background in immunology and expertise in flow cytometry. Parisien M provided his valuable inputs for mRNA data analysis. Fitzcharles MA and Ingelmo PM helped us with the evaluation and recruitment of the study participants. Piccirillo C and Al-Aubodah T aided in designing and conducting three immunophenotyping panels. Sommer C, Özdağ AN, and Üçeyler N planned and conducted skin biopsies, imaging, and quantification. King IL and Zhang J are my

advisory committee members and have been intellectually contributing towards the development of the experiments and the manuscript. Natural killer (NK) cell activation assays were performed by Bernard N and her team. Nijnik A helped with setting up the protocol for processing blood samples. Wen X, Tugarinov N, Verner M, Klares R III, and Linton A helped with the processing of blood samples. The work on this manuscript was ongoing at the time of thesis submission.

2. Novel contributions to knowledge

Chapter II (The dichotomous role of epiregulin in pain) elaborates the role of epiregulin (EREG) in pain. It shows for the first time that EREG could be analgesic during acute stages of pain development but increases the risk of establishment of chronic pain. This discovery was first made through a statistical genetic approach, validated in an independent population cohort, and was confirmed in animal models of pain. In addition, this chapter identifies two mutations of the *EREG* gene as novel response biomarkers for EREG–based pharmacotherapy of chronic pain.

Chapter III (An unbiased immune profiling reveals a Natural Killer cell-peripheral nerve axis in fibromyalgia.) proposes an original heuristic model of natural killer (NK) cells' contribution to fibromyalgia syndrome (FMS) pathogenesis. Through unbiased evaluation of human peripheral blood mononuclear (PBMC) cells in FMS and matched controls, we found that the depletion of NK cells is the strongest immune cell disturbance in FMS. The NK cells were activated, exhausted, but hyperactive. Lastly, NK cells in FMS patients were recruited to peripheral nerve fibers, which expressed NK activation ligand.

I. Introduction

The most vital function of the nervous system is to provide information about the occurrence or threat of an injury. One of the ways this is done is in the form of pain. However, sometimes established pain can go beyond its protective role, thus becoming a disease than just being a symptom. Such painful conditions usually remain refractory to available treatments. Likewise, as part of the immune system response, inflammation is a protective reaction involving host cells, blood vessels, proteins, and other mediators, which is intended to eliminate the initial cause of cell injury, the necrotic cells and tissues resulting from the original insult, and to initiate the process of repair. Pain scientists have studied intensely the chemical mediators released during inflammation that are responsible for the associated abnormal pain states. Moreover, it is well established that the immune system can alter sensory and emotional processing and plays a pivotal role in the development and maintenance of persistent pain. Hence, addressing the intricate interplay between the immune system and the nervous system, understanding immunity's role in nociception, and knowledge about the establishment of pain following inflammation can provide novel pharmacological pathways to effectively manage various painful conditions.

1. Pain

Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Unlike other sensory modalities, it is not the direct expression of a sensory event but rather the product of elaborate processing by the brain of a variety of neural signals. Pain can be nociceptive or neuropathic. Neuropathy is characterized by pathological ectopic electro-chemical discharges from the involved sensory nerves. Direct nerve injury, damage, or dysfunction causes neuropathic pain. Nociceptive pain can be an acute physiological response to injury or pathophysiological in origin, due to inflammation. The excitation threshold of polymodal nociceptors drops during inflammation. Moreover, initially, mechano-insensitive nerves (silent nociceptors) become mechano-sensitive, adding to the nociceptive input to the central nervous system (CNS). These changes in the neuronal response during inflammation are known as peripheral sensitization. By virtue of neuroplasticity, neurons in the spinal cord undergo central sensitization, thereby increasing the response to stimuli, decreasing the threshold for nociceptive firing, and expansion of the receptive field. Central sensitization can persist from weeks to months and is more common during neuropathic pain conditions [1].

2. Inflammation

Any transient and early response to injury, characterized by inflammation, is associated with the activation of stereotypical leukocytes namely, neutrophils and monocytes, blood vessel reactions, and the release of numerous chemical mediators. The vascular and cellular reactions during inflammation are triggered by soluble factors. These factors are generated or activated in response to the inflammatory stimulus, such as infection, tissue necrosis, immune reactions, foreign bodies, hypoxia, etc., and are produced by immune cells and/or derived from the plasma proteins. When acute inflammation is successful in eliminating the offenders, the reaction subsides. However, if the response fails to clear the invaders, it can progress to a chronic phase. Chronic inflammation is an inflammation

of prolonged duration (weeks or months) in which inflammation, tissue injury, and attempts to repair coexist in varying combinations. It may follow acute inflammation or can begin insidiously, as a low-grade, smoldering response without any manifestations chronologically prior to acute reaction. Normally, inflammation is terminated when the offending agent is eliminated. The reaction resolves rapidly because the mediators are broken down and dissipated. Also, the leukocytes have a short life span in the tissues. In addition, anti-inflammatory mechanisms are activated that serve to control the immune response and prevent it from causing any excessive damage to the host.

Dolor (Pain) has always been recognized as a cardinal sign of inflammation. Recent evidence supports the notion that the immune cells, glia, and neurons form an integrated network in which immune responses modulate the excitability of pain pathways [2]. The interplay of specific leukocyte subpopulations, resident cells, pro-algesic mediators, and downstream products results in pain during inflammation [3]. Peripheral nerves also affect the tissue by releasing neuropeptides like substance P (SP), calcitonin gene-related peptide (CGRP), somatostatin, vasoactive intestinal polypeptide, and galanin from their sensory endings. This release causes vasodilatation, plasma extravasation, migration and recruitment of macrophages, and degranulation of mast cells, leading to aggravation of tissue injury. This phenomenon is called neurogenic inflammation, where the nerves antidromically contribute towards peripheral inflammation [4].

3. Neuro-immune molecular overlap

Neuroimmune interactions play a critical role both in the initiation and propagation of peripheral inflammation. These interactions are not only significant in influencing the perception of pain but are also associated with emotions like depression associated with pain [5]. Many inflammatory mediators influence the functioning of sensory nerves and central processing of nociception. Similarly, neurogenic inflammation is evidenced by the role of neurotransmitters in aggravating inflammation. The co-existence of receptors for a considerable number of molecules in both the nervous and immune system suggests functional integration of these two distinct systems.

Interleukin 1 (IL-1) and tumor necrosis factor- α (TNF- α) are the most important proinflammatory cytokines. IL-1 is a known pyrogen and induces transcription of cyclooxygenase-2 (COX-2). This, in turn, increases the production of prostaglandin E2 (PGE2). On the other hand, TNF- α is involved in a bidirectional cause-effect relationship with activation of inflammasomes [6]. High sensitivity C-reactive protein (hs-CRP) is another marker of inflammation with well-established diagnostic significance. Serum levels of inflammatory mediators and hs-CRP are positively associated with pain [7, 8].

Immune mediators directly influence neurons through their specific receptors, thus expressing effects from peripheral nerve modulation to complex cognitive alterations. These chemicals can also induce vagal or circumventricular organ-mediated reflexes, thus modulating the autonomous nervous system [9]. On the other hand, the immune system is influenced by the nervous system through the hormonal and neuronal

pathways. The hormonal pathway majorly consists of the hypothalamic-pituitary-adrenal axis (HPAA) which is stimulated by IL-1 [10] and hypothalamic-pituitary-gonadal axis (HPGA) [11]. Glucocorticoids are the end products of HPAA and are crucial in the suppression of the immune system. End products of HPGA are majorly, estrogen, and androgens in females and males, respectively. Estrogen instigates and androgens suppress immune responses. Consequently, inflammatory and autoimmune disorders are more common in females [12]. It is also noteworthy that chronic pain conditions are considerably more prevalent among females [13]. In addition to neurogenic inflammation, the nerves influence the immune system through the autonomous nervous system. Catecholamines exert an anti-inflammatory effect by facilitating the Th2 immune response. The presence of β 2 adrenergic receptors on lymphocytes further corroborates this direct interaction [14]. An inflammatory reflex of the parasympathetic system and acetylcholine through α -nicotinic receptors on macrophages [15] inhibit the production of pro-inflammatory cytokines. Thus, the influence of the nervous system on the immune system and vice versa is complex and multi-directional and is associated with multiple outcomes.

4. The interaction

The following event descriptions attempt to explain interactions between the nervous system and the immune system during generation, propagation, perception, and establishment of pain in consideration with participating anatomical sites:

4.1. Peripheral nociceptor sensitization during inflammation

Inflammatory mediators with pro-nociceptive functions [16] are generated during inflammation. These include prostaglandins, bradykinin, serotonin, histamine, SP, thromboxanes, platelet-activating factor (PAF), purines and its derivatives [17] (such as adenosine and adenosine triphosphate (ATP)), protons (H+), free radicals, cytokines [18] (such as interleukins (ILs) and TNF), and neurotrophins, especially nerve growth factor (NGF) [19]. Some of these agents can directly activate nociceptors, while others by acting through immune cells. Inputs from the resident immune cells (like mast cells and resident macrophages) and immune-related cells (including keratinocytes and fibroblasts) recruit systemic immune cells, leading to peripheral sensitization. This condition is further exacerbated by direct and indirect consequences of inflammatory mediators (like decrease in pH, increase in temperature, vasodilatation, etc.).

Mast cells are the sentinels and the first responders of peripheral inflammation. They also play a crucial role in the establishment of pain [20]. Damaged nerves release TNF- α [21] and IL-15 [22], leading to the recruitment of macrophages and T cell infiltration. Cytokines, ATP, bradykinin, NGF (which also stimulates mast cells to release histamine and serotonin), PGE2, and PGI2 stimulate peripheral A δ and C nerves. This leads to the release of neuropeptides, SP, CGRP, prostaglandins, and glutamate, which in turn aggravates inflammation. As these events are caused due to active participation of peripheral nerves, it is known as neurogenic inflammation [23]. Hence, nerves and immune cells are involved in a vicious cycle with a feed-forward mechanism, stimulating each other and propagating both inflammation and nociception.

4.2. Sensory ganglia and inflammation

Cytons of the peripheral sensory nerves lie in the trigeminal ganglion (TG) and dorsal root ganglia (DRG) along with glial cells. Microglia (MG) are derived from distinct macrophage populations and play a crucial role in the immunity of the nervous system [24]. Microgliosis (increase in density of MG due to migration and local proliferation associated with rapid change in morphology, gene expression profile, and physiology) is a common finding in case of nerve injury, neuropathy, and painful conditions [25]. Involved primary afferent nerves release neuregulin-1 which binds to erbB2 receptors on MG and contributes hypersensitivity allodynia. up-regulation towards and Moreover, of matrix metalloproteinase-9 (MMP-9) in involved nerves causes increased expression of CD11b and P38 mitogen-activated protein kinases (p38MAPK) phosphorylation in MG. This has been linked with the associated mechanical hypersensitivity [26]. As MG expresses both CCR7 and CXCR3; the release of CCL21 (exclusively during the noxious event) leads to purinergic receptor P2X4 up-regulation which is associated with allodynia [27], whereas CCL2 is released from nerves during pain and causes monocyte migration in CNS. The presence of CCR2 on both neurons and MG hints towards its possible role in nociception and central sensitization [28].

Additionally, a series of obvious immune-related activities of MG is associated with the occurrence of hypersensitivity and allodynia. These include activation of toll-like receptors (TLRs) and nod-like receptors (NLRs) in MG during painful conditions, [29] interferon (IFN-γ)-mediated stimulation of MG [30], synthesis and release of cytokines [31], brain-derived neurotrophic factor (BDNF) and nitric oxide, expression of MHC-II on pain

activated MG [32] and CD40-CD154-mediated communication between MG and T cells [33].

Noxious stimulation also leads to the formation of gap junctions between central neurons and satellite glial cells (SGC). This pathological communication between neurons and SGC leads to increased afferent input and enhanced neuronal excitability, which can spread to neighboring dermatomes as well [25, 34]. Reduced expression of inward rectifying K+ Channel, Kir 4.1 on SGC during pain is also been linked to increased mechanical hypersensitivity [35]. Reciprocal paracrine signaling loop involving CGRP and PGE2 (Fig. 1) further accentuates the noxious stimulus perception by CNS [36].

Figure I-1: Pain amplification through reciprocal paracrine signaling

This series of neuro-immuno-glial interactions alter the central processing of somatosensory inputs leading to widespread, longer-lasting allodynia and secondary hyperalgesia. This eventually contributes to central sensitization [37].

4.3. Central nervous system's response to peripheral inflammation

Time-dependent and somatotopically relevant glial activation in CNS is related to inflammatory injury and pain. Soluble mediators released by reactive immune-competent cells diffuse and bind to receptors on presynaptic and postsynaptic terminals to modulate excitatory and inhibitory synaptic transmissions, resulting in a nociceptive hypersensitivity. Growing evidence suggests that, apart from aiding communication between the immune cells, specific cytokines play a role in brain signaling to produce neurochemical, neuroendocrine, neuroimmune, and behavioral changes related to inflammation [38]. 'Sickness response', a well-documented effect of peripheral inflammation, and its role in the aggravation of pain perception and associated psychiatric conditions like depression is a well-described clinical condition.

Cytokines like IL-1, TNF, IL-6, and IL-10 are known to centrally influence nociception. Circulating IL-6, released during the peripheral inflammatory event, elicits the release of PGE2 through the COX-2 pathway from the endothelial cells in the CNS [39]. Physical remodeling of the neuronal cytoarchitecture (aided by glial cells) occurs after the onset of persistent acute pain and leads to the transition from acute pain into a chronic pain state. These pain-transmitting neurons become more sensitive, react more intensely to stimuli, and grow more connections to second-order neurons within the CNS [40]. This phenomenon, known as neuroplasticity, along with neuronal priming due to inflammatory mediators plays a crucial role in the prognosis of any painful condition (including its resolution or chronification).

5. Transformation to chronic pain

The prevalence of chronic pain can range from 10.1 to 55.2 % where often a prolonged experience of acute pain leads to chronic pain [13]. The transition of acute to chronic pain (chronification) occurs in discrete pathophysiological steps (Fig. 2). Apart from the genetic predisposition, the intensity and the duration of initial noxious stimuli play a critical role in this process. Unlike acute pain, which is usually a symptom of inflammation or/and tissue damage, chronic pain is a poorly understood disease in itself. In such cases, the pain goes way beyond its protective purpose and affects the quality of life of the patient. A disproportion of pro-inflammatory and anti-inflammatory cytokines is known to be a contributory cause of chronic pain and associated pain behavior. For example, TNF- α causes a release of CCL-2, which interacts positively with both NMDA and AMPA receptors in the neurons. This adversely affects central descending pain modulation, leading to failure of resolution state [40]. Moreover, co-localization of IL-1 β and NMDA

receptors on neurons, and phosphorylation of NMDA on being stimulated by IL-1, explains the direct role of the immune system in establishing the nociceptive neuronal circuit [41]. Thus, being embedded into psycho-neuro-endocrine feedback loops, cytokines can perpetuate a vicious connection between inflammation and pain/sickness behavior, contributing towards the chronification of pain [42].

6. Analgesic effects of the immune system

Contrary to the villainous projection of the immune system, the pieces of evidence also support the analgesic effects of immune cells and mediators in painful conditions. During inflammation, neutrophils containing opioid peptides migrate into the tissue. Chemokines, adhesion molecules, neurokinins, such as SP recruit these 'analgesic' cells. Recent research has also confirmed the expression of endorphins in T cells, macrophages, and fibroblasts [43]. Additionally, Endothelin-B receptor activation during inflammation leads to the release of β -endorphin from keratinocytes [44]. Moreover, the expression of opioid receptors on peripheral nerves increases in response to inflammation and this further exaggerates the analgesic effect of endogenous immune-derived opioid peptides [45].

Certain specialized mediators (lipoxins, resolvins, and neuroprotectins) aid in the resolution of inflammation [46]. Lipoxins (LXA4 and LXB4) are generated from arachidonic acid via the phospholipase A2–lipoxygenase pathway. It facilitates the resolution of inflammation by stopping the recruitment of neutrophils, attenuating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, and blocking phosphorylation of p38MAPK and extracellular signal-regulated kinase (ERK) [47].

Lipoxin receptors are expressed on astrocytes and administration of lipoxin A4, or its stable analogs attenuate inflammation-induced pain [48]. Resolvins (RvD1, AT-RvD1, and RvE1) are a family of pro-resolution mediators that are biosynthesized from the omega-3 fatty acids. Resolvin-specific G-protein-coupled receptors (GPCRs) are expressed not only on neutrophils and macrophages but also on microglia, nociceptors, neuronal body, and, pre- and post-synaptic nerve endings. It directly inhibits transient receptor potential channels, TRPV1, TRPV3, TRPV4, and TRPA1 (nociceptors) activity, and downregulates ERK, COX2, and NF-kB activities in the central neurons, therefore, demonstrating analgesic effects in spontaneous, inflammatory, and post-operative pain models [49]. Similarly, neuroprotectins prevent glial proinflammatory responses and reverse nerve injury-induced neural plasticity and long-term potentiation, thus protecting against neuropathic pain [50]. The purinergic system also participates in the neuroimmune interplay to decrease pain perception. P1R, which is activated by adenosine, facilitates central analgesia [51]. Also, in DRG, P2X7R in SGC inhibits P2X3R expression by activation of P2Y1Rs via SGC-derived ATP, thus preventing inflammatory pain in rats [52]. Lastly, immune modulation through cytokines like IL-4, IL-10, and TNF soluble receptors (TNFSR) could provide novel strategies for pain therapeutic development.[65]

7. Therapeutic opportunities

Most commonly used painkillers belong to the class of non-steroidal anti-inflammatory drugs (NSAIDs) and target inflammation to control pain. Currently available drugs of other therapeutic categories, like amitriptyline, ceftriaxone, methotrexate, minocycline, and rifampin are being explored as analgesics due to their effect on the neuroimmune interface [53]. For example, in a recent *in vivo* study, minocycline, a broad-spectrum antibiotic drug, prevented lipopolysaccharide-induced microglia/macrophage activation and cytokine responses in the spinal cord and DRG, thus relieving hyperalgesia [54].

Consistent with the potent role of the immune system mediators in the pain, specific cytokine inhibitors like IL-1 receptor antagonists and TNF inhibitors, primarily developed as anti-inflammatory drugs, demonstrate their potential as novel analgesics as well [55, 56]. Moreover, intra-thecal gene therapy augmenting IL-10 (an anti-inflammatory cytokine released by TH2 cells) expression has shown promising results in neuropathic pain conditions [57]. Similarly, CCR2 antagonization has demonstrated its in vivo efficacy too [58]. The kinins, bradykinin, kallidin, and their metabolites are vasoactive peptides that are implicated in the propagation of pain and inflammation. Identification and optimization of aryl sulfone-based bradykinin (B1) antagonists and confirmation of their analgesic effects in various animal models promise a new class of novel pain killers [59]. Microglial CX3CL1 release is mediated through cathepsin S and is regulated by the P2X7 receptor [60]. Therefore, (1) P2X7 receptor antagonism or (2) protease cathepsin S inhibition [61], or (3) direct CX1CL3 antagonism can potentially provide pain control. Likewise, complement C5a antagonism exhibited inhibition of inflammatory hyperalgesia in animal models [62]. Another promising area of research is the pharmacological utilization of antiinflammatory and pro-resolution immune mediators. Investigating this, researchers confirm that intrathecal bolus injection of lipoxins and resolvins attenuates cytokine release from astrocytes, leading to potent suppression of inflammation-induced mechanical hypersensitivity [63].
Due to the heavy involvement of inflammatory mediators in pain mechanisms [64] and given the redundancy in and robustness of the immune system, the expectation of profound analgesia by antagonizing a single mediator appears impracticable.

8. Conclusion

Current research demonstrates the multi-dimensional involvement of the immune system and inflammation in the generation, potentiation, and chronification of pain. Immune cells and mediators play well-defined roles at various physio-anatomical landmarks of the pain pathways. Understanding of participation of glial cells and their role in the regulation of pain also provide a promising avenue in studying pain mechanisms. Additionally, glial modulators and their efficacy confirm glia-mediated immune system involvement in nociception. On one hand, antagonizing various immune responses (and mediators) appears as an inconclusive approach to manage pain. On the other hand, independent anti-inflammatory and pro-resolution immune mediators provide new domains for pharmacological exploration in the development of safer and effective analgesics. To summarize, our understanding of the role of the neuro-immune interface in pain is still juvenile. Furthermore, our incomplete understanding of the nervous system architecture further complicates our comprehension of various pain conditions. Future work in understanding the intricacies of the two systems promises a premise for long-waited effective pain management strategies.

9. References

- Baranauskas G, Nistri A (1998) Sensitization of pain pathways in the spinal cord: cellular mechanisms. Prog Neurobiol 54:349–365
- Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nature Med 16(11):1267–1276
- Hackel D, Pflücke D, Neumann A, Viebahn J, Mousa S, Wischmeyer E, Roewer N, Brack A, Rittner HL (2013) The connection of monocytes and reactive oxygen species in pain. PLoS ONE 8(5):2
- 4. Schaible HG, Richter F (2004) Pathophysiology of pain. Langenbecks Arch Surg
- Walker AK, Kavelaars A, Heijnen CJ, Dantzer R (2014) Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 66(1):80–101. doi:10.1124/pr.113.008144. Print 2014. Review. PubMed PMID: 24335193; PubMed Central PMCID: PMC3880465
- Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT (2014) Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci 8:315. doi:10.3389/fnins.2014.00315. eCollection 2014. Review. PubMed PMID: 25339862; PubMed Central PMCID: PMC4188030
- Ren K, Torres R. (2009) Role of interleukin-1beta during pain and inflammation. Brain Res Rev 60(1):57–64. doi:10.1016/j.brainresrev.2008.12.020. Epub 2008 Dec 31. Review. PubMed PMID: 19166877; PubMed Central PMCID: PMC3076185

- Stannus OP, Jones G, Blizzard L, Cicuttini FM, Ding C (2013) Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: a prospective cohort study. Ann Rheum Dis 72(4):535–40. doi:10.1136/annrheumdis-2011-201047. Epub 2012 May 12. PubMed PMID: 22580582
- Otmishi P, Gordon J, El-Oshar S, Li H, Guardiola J, Saad M, Proctor M, Yu J (2008) Neuroimmune interaction in inflammatory diseases. Clin Med Circ Respirat Pulm Med 2:35–44. PubMed PMID: 21157520; PubMed Central PMCID: PMC2990232
- 10. Eskandari F, Webster JI, Sternberg EM (2003) Review: neural immune pathways and their connection to inflammatory diseases. Arthritis Res Ther 5(6):251–265
- 11. Cutolo M, Wilder RL (2000) Review: different roles for androgens and estrogens in the susceptibility to autoimmune rheumatic diseases. Rheum Dis Clin North Am 26(4):825–839
- 12. Olsen NJ, Kovacs WJ. Gonadal steroids and immunity. Endocr Rev. 1996 Aug;17(4):369–84. Review. PubMed PMID: 8854050
- 13. Voscopoulos C, Lema M (2010) When does acute pain become chronic? Br J Anaesth 105(Suppl 1):i69–i85
- 14. Kin NW, Sanders VM (2006) Review: it takes nerve to tell T and B cells what to do. J Leukoc Biol 79(6):1093–1104
- 15. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388

- 16. Momin A, McNaughton PA (2009) Regulation of firing frequency in nociceptive neurons by pro-inflammatory mediators. Experimental Brain Res 196:45–52
- 17. Burnstock G (2009) Purinergic receptors and pain. Curr Pharm Des 15:1717–1735
- 18. Miller RJ, Jung H, Bhangoo SK et al (2009) Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol 194:417–449
- 19. Watson JJ, Allen SJ, Dawbarn D (2008) Targeting nerve growth factor in pain: what is the therapeutic potential? BioDrugs 22:349–359
- 20. Chatterjea D, Martinov T (2014) Mast cells: versatile gatekeepers of pain. Mol Immunol. pii: S0161–5890(14)00054–6. doi:10.1016/j.molimm.2014.03.001.
 [Epub ahead of print]
- 21. Shubayev VI et al (2006) TNFα-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Mol Cell Neurosci 31:407–415
- 22. Gómez-Nicola D, Valle-Argos B, Suardíaz M, Taylor JS, Nieto-Sampedro M (2008) Role of IL-15 in spinal cord and sciatic nerve after chronic constriction injury: regulation of macrophage and T-cell infiltration. J Neurochem 107:1741–1752
- 23. Richardson JD, Vasko MR (2002) Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther 302(3):839–845
- 24. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45
- 25. Calvo M, Zhu N, Tsantoulas C, Ma Z, Grist J, Loeb JA, Bennett DL (2010) Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. J Neurosci 30:5437–5450

- 26. Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR (2008) Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 14:331–336
- 27. Thalakoti S et al (2007) Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache 47:1008–1023
- 28. Zhang J, Shi XQ, Echeverry S, Mogil JS, De KY, Rivest S (2007) Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci 27:12396–12406
- 29. Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, Choi SY, Park K, Kim JS, Akira S, Na HS, Oh SB, Lee SJ (2007) A critical role of toll-like receptor 2 in nerve injuryinduced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 282:14975–14983
- 30. Tsuda M, Masuda T, Kitano J, Shimoyama H, Tozaki-Saitoh H, Inoue K (2009) IFN-gamma receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci USA 106:8032–8037
- 31. Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28:5189–5194
- 32. Sweitzer SM, White KA, Dutta C, DeLeo JA (2002) The differential role of spinal MHC class II and cellular adhesion molecules in peripheral inflammatory versus neuropathic pain in rodents. J Neuroimmunol 125:82–93

- 33. Cao L, Palmer CD, Malon JT, De Leo JA (2009) Critical role of microglial CD40 in the maintenance of mechanical hypersensitivity in a murine model of neuropathic pain. Eur J Immunol 39:3562–3569
- 34. Thalakoti S et al (2007) Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache 47:1008–1023
- 35. Vit JP, Ohara PT, Bhargava A, Kelley K, Jasmin L (2008) Silencing the Kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury. J Neurosci 28:4161–4171
- 36. Capuano A et al (2009) Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology. Mol Pain 5:43
- 37. Mifflin KA, Kerr BJ (2014) The transition from acute to chronic pain: understanding how different biological systems interact. Can J Anaesth 61(2):112–122
- 38. Kronfol Z, Remick DG (2000) Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry 157(5):683–694
- 39. Oka Y et al (2007) Interleukin-6 is a candidate molecule that transmits inflammatory information to the CNS. Neuroscience 145:530–538
- 40. Wei F, Guo W, Zou S, Ren K, Dubner R (2008) Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci 28:10482–10495
- 41. Guo W et al (2007) Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27:6006–6018

- 42. Ahrens C, Schiltenwolf M, Wang H (2012) Cytokines in psychoneuroendocrine immunological context of nonspecific musculoskeletal pain. Schmerz 26(4):383– 388
- 43. Jessop DS et al (2010) Endomorphins in rheumatoid arthritis, osteoarthritis, and experimental arthritis. Ann NY Acad Sci 1193:117–122
- 44. Khodorova A et al (2003) Endothelin-B receptor activation triggers an endogenous analgesic cade at sites of peripheral injury. Nat Med 9:1055–1061
- 45. Stein C (1993) Peripheral mechanisms of opioid analgesia. Anesth Analg 76:182– 191
- 46. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual antiinflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361
- 47. Serhan CN (2005) Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 73:141–162
- 48. Svensson CI, Zattoni M, Serhan CN (2007) Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. J Exp Med 204:245–252
- 49. Yoo S, Lim JY, Hwang SW (2013) Resolvins: endogenously-Generated Potent Painkilling Substances and their Therapeutic Perspectives. Curr Neuropharmacol 11(6):664–676
- 50. Xu ZZ, Liu XJ, Berta T, Park CK, Lü N, Serhan CN, Ji RR (2013) Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Ann Neurol 74(3):490–5. doi:10.1002/ana.23928. Epub 2013 Sep 4

- 51.Zylka MJ et al (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60:111–122
- 52. Chen Y et al (2008) Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proc Natl Acad Sci USA 105:16773–16778
- 53. Grace PM, Hutchinson MR, Maier SF, Watkins LR (2014) Pathological pain and the neuroimmune interface. Nat Rev Immunol 14:217–231. doi:10.1038/nri3621
- 54. Yoon SY, Patel D, Dougherty PM (2012) Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes. Neuroscience 221:214–224
- 55. Listing J et al (2005) Infections in patients with rheumatoid arthritis treated with biologic agents. Arthritis Rheum 52:L3403–L3412
- 56. Torres R et al (2009) Hyperalgesia, synovitis and multiple biomarkers of inflammation are suppressed by interleukin 1 inhibition in a novel animal model of gouty arthritis. Ann Rheum Dis 68:1602–1608
- 57. Soderquist RG et al (2010) Release of plasmid DNA encoding IL-10 from PLGA microp s facilitates long-term reversal of neuropathic pain following a single intrathecal administration. Pharm Res 27:841–854
- 58. Serrano A, Paré M, McIntosh F, Elmes SJ, Martino G, Jomphe C, Lessard E, Lembo PM, Vaillancourt F, Perkins MN, Cao CQ (2010) Blocking spinal CCR2 with AZ889 reversed hyperalgesia in a model of neuropathic pain. Mol Pain 6:90
- 59. Biswas K, Aya T, Qian W, Peterkin TA, Chen JJ, Human J, Hungate RW, Kumar G, Arik L, Lester-Zeiner D, Biddlecome G, Manning BH, Sun H, Dong H, Huang M,

Loeloff R, Johnson EJ, Askew BC (2008) Aryl sulfones as novel bradykinin B1 receptor antagonists for treatment of chronic pain. Bioorg Med Chem Lett 17:4764–4769

- 60. Clark AK, Wodarski R, Guida F, Sasso O, Malcangio M (2010) Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. Glia 14:1710– 1726
- 61. Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci USA 104(25):10655–10660
- 62. Ting E et al (2008) Role of complement C5a in mechanical inflammatory hypernociception: potential use of C5a receptor antagonists to control inflammatory pain. Br J Pharmacol 153:1043–1053
- 63. Abdelmoaty S, Wigerblad G, Bas DB, Codeluppi S, Fernandez-Zafra T, El-Awady el-S, Moustafa Y, Abdelhamid Ael-D, Brodin E, Svensson CI (2013) Spinal actions of lipoxin A4 and 17(R)-resolvin D1 attenuate inflammation-induced mechanical hypersensitivity and spinal TNF release. PLoS ONE 8(9):e75543
- 64. Block BM, Hurley RW, Raja SN (2004) Mechanism-based therapies for pain. Drug News Perspect 17(3):172–186

65.Vanderwall AG and Milligan ED (2019) Cytokines in Pain: Harnessing EndogenousAnti-Inflammatory Signaling for Improved Pain Management. Front Immunol. 2019;10: 3009

II. The dichotomous role of epiregulin in pain

1. Abstract

It has recently been shown that epidermal growth factor receptor (EGFR) contributes to the pathogenesis of pain. We scanned genetic markers within genes coding for receptors of the EGFR family (EGFR, ERBB2, ERBB3, and ERBB4) and their ligands (AREG, BTC, EGF, EPGN, EREG, HBEGF, MUC4, NRG1, NRG2, NRG3, NRG4, and TGFA) for association with self-reported pain intensity in patients with chronic facial pain who participated in the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) cohort. We found that only epiregulin (EREG) was associated with pain. The strongest effect was observed for a minor allele at rs6836436 in EREG, which was associated with lower chronic pain intensity. However, the same allele was associated with higher facial pain intensity among cases with recent onset of facial pain. Similar trends were observed in an independent cohort of UK Biobank (UKB) where the minor allele at rs6836436 was associated with a higher number of acute pain sites but a lower number of chronic pain sites. Expression quantitative trait loci analyses established rs6836436 as a loss-of-function variant of EREG. Finally, we investigated the functional role of EREG using mouse models of chronic and acute pain. Injecting mice with an EREG monoclonal antibody reversed established mechanosensitivity in the complete Freund's adjuvant and spared nerve injury models of chronic pain. However, the EREG monoclonal antibody prolonged allodynia when administered during the development of complete

Freund's adjuvant-induced mechanosensitivity and enhanced pain behavior in the capsaicin model of acute pain.

2. Introduction

The establishment of chronic pain is often a result of the body's inability to restore physiological homeostasis after acute pain.[24] Both acute and chronic pain states have a large genetic component, which we have now started to identify.[31,51] The Orofacial Pain Prospective Evaluation and Risk Assessment (OPPERA) study was designed to examine and identify biopsychosocial, environmental, and genetic factors that contribute to the onset and chronicity of orofacial pain.[26] In the OPPERA cohort, case-control association analysis that focused on a common orofacial pain condition, temporomandibular disorders (TMDs), using a panel of 358 pain-relevant candidate genes, revealed that the genes encoding for the epidermal growth factor receptor (EGFR) and its ligand epiregulin (EREG) had the highest association with TMD risk.[30] However, genes of other EGFR ligands and receptors have not been tested for their association with human pain phenotypes.

Epiregulin, a member of the epidermal growth factor (EGF) family of peptide growth factors, plays important role in angiogenesis and vascular remodeling. It is a potent mitogen with direct and indirect proinflammatory effects.[37] Epiregulin binds to EGFR (ErbB1) and ErbB4 (HER4) but also stimulates the signaling of ErbB2 (HER2/Neu) and ErbB3 (HER3) through ligand-induced heterodimerization with a cognate receptor. Blocking EGFR with pharmacologically available small molecules and monoclonal

antibodies produce analgesia in animals[30] and chronic pain patients.[19–21] For the current study, we hypothesized that the EREG–EGFR pathway uniquely contributes to the development and persistence of pain.

For the first time, we systematically screened single-nucleotide polymorphisms (SNPs) in all gene loci belonging to EGFR family receptors (namely, EGFR, ERBB2, ERBB3, and ERBB4) and their ligands (namely, AREG, BTC, EGF, EPGN, EREG, HBEGF, MUC4, NRG1, NRG2, NRG3, NRG4, and TGFA) for their association with reported clinical pain in the OPPERA cohort. We chose to use characteristic pain intensity (CPI) as an outcome measure because of its clinical significance.[11] Our analysis indicated that from the 16 genes screened, only EREG gene SNPs were associated with CPI. Next, we characterized the association between EREG variants and other pain severity phenotypes, namely, acute pain intensity and the number of other chronic painful comorbidities in OPPERA. The same *EREG* variant that was protective for chronic pain intensity increased the risk for acute pain intensity in OPPERA. We then validated the dichotomous effect of EREG using an independent cohort from the UK Biobank (UKB). We also demonstrated the direction of the genetic effect of the identified SNPs on the corresponding mRNA expression level through subsequent cis-expression quantitative trait loci (eQTL) analyses from 2 independent studies. Finally, the dichotomous role of EREG for pain phenotypes was tested using mouse models of chronic and acute pain sensitivity.

3. Methods

3.1. Cohort description

The OPPERA cohort was used as a discovery cohort for this study. The study methods have been described in detail elsewhere.[2] In summary, the prospective cohort study enrolled 3263 participants between May 2006 and November 2008 at 4 US study sites: Baltimore, Maryland; Buffalo, New York; Chapel Hill, North Carolina; and Gainesville, Florida, from which 3161 were genotyped. To be eligible for enrollment, the participants had to satisfy the selection criteria determined during telephone screening and at the baseline clinical visit. The facial pain characteristics were collected using the OPPERA Comprehensive Pain Symptom Questionnaire (CPSQ), and TMD was diagnosed by trained examiners using the Research Diagnostic Criteria for TMD (RDC/TMD).10 Participants were followed at quarterly (3 monthly) intervals after the baseline visit with questionnaires and clinical visits. The project's protocol was approved by the institutional review boards at each OPPERA study site and McGill University. Written informed consent was obtained from each participant before their enrollment.

To replicate our findings from OPPERA, data from UKB were used. Described in detail elsewhere,[44] the UKB study is a large prospective multicenter study of people living in the United Kingdom that had recruited [503,325] individuals between 2006 and 2010. Follow-up data were collected after 2012. Ethics approval for the UK Biobank study was obtained from the northwest Centre for Research Ethics Committee (11/NW/0382), and all participants provided written informed consent. Their participation involved completing

questionnaires, undergoing an interview with a trained nurse during which a range of physical measures was collected, and donating samples of blood, urine, and saliva.

3.2. Outcome measures

The OPPERA study used the Research Diagnostic Criteria to define TMD cases.[10] According to this criteria, an individual was deemed as a chronic TMD case if an examiner had confirmed pain in the orofacial area for at least 5 days a month for \geq 6 months and either \geq 3 temporomandibular muscle groups or \geq 1 temporomandibular joint painful to palpation or jaw movement. In addition, the OPPERA study used the CPSQ questionnaire, a self-report instrument, to assess the presence of multiple pain symptoms and associated characteristics.[40]

Comprehensive Pain Symptom Questionnaire asked the following screening question:

"Have you ever had pain in your face, jaw, temple, in front of the ear, or the ear, not including toothache or ear infection?"

If the participant answered "yes" to the aforementioned question, s/he was asked the following:

- (1) "How many years or months ago did your facial pain begin?"
- (2) "How would you describe the duration of your facial pain?"
- (3) "How would you rate your facial pain at the present time, i.e., right now?"
- (4) "In the past 6 months, how intense was your worst facial pain?"
- (5) "In the past 6 months, on average, how intense was your facial pain?"

The responses to the above-mentioned question (1) were numerical (years and months) The responses to question (2) were collected as either "persistent," "recurrent," or "one time," whereas, the responses to the questions (3) to (4) were collected using a numerical rating scale (NRS) where 0 was marked as "no pain" and 10 was "pain as bad as it could be." Measuring pain intensity on an NRS is a valid and clinically meaningful measure of pain severity.[13] Characteristic pain intensity is an arithmetic mean of the 3 NRS ratings, namely, pain right now, worst pain in 6 months, and average pain in 6 months. Contrary to NRS alone, CPI is temporally stable, [33] provides a more reliable estimation of pain severity,[11,47] and has been demonstrated to be a significant predictor of TMD chronicity.[12] Hence, we chose CPI as our primary outcome measure. Of 3161 genotyped OPPERA participants, 399 participants were excluded due to missing or poorquality phenotype data. Of the remaining 2762 participants, 1626 never had pain in the facial region. Characteristic pain intensity scores were not calculated for these 1626 participants. Eight hundred ninety-four of the remaining 1136 participants had facial pain for more than 3 months. We restricted our analysis to the participants with either persistent (n = 124) or recurrent (n = 264) facial pain to comply with the latest definition of chronic pain according to the International Association for the Study of Pain (IASP).[45] The CPI scores of these 388 OPPERA participants at baseline were considered as the chronic pain intensity (Fig. 1A). Follow-up CPI scores of the controls with a CPI at baseline of zero were considered as an acute pain intensity marker (n = 213) (Fig. 1A), and participants with acute CPI >0 were considered as acute facial pain cases (n = 112). Other phenotypes from OPPERA included the number of comorbid pain conditions present from fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, interstitial cystitis, arthritis, and chronic pelvic pain, and TMD caseness, as described earlier.

- Baseline Follow-up visit after 3 month TMD cases Controls Controls (n = 878)(n = 1,884)(n = 454)i) Have you ever had pain in your face, jaw, i) Have you ever had pain in temple, in front of ear, or in the ear? your face, jaw, temple, in front of ear, or in the ear? No Yes (n = 1.136)(n = 1,626)ŧ ii) How many years or months ago did your facial pain begin?" > 3 months ≤3 months (n = 894) (n = 242)Yes No (n = 213)(n = 241)iii) How would you describe the duration of your facial pain? Persistent Recurrent One-time NA (n = 264)(n = 44)(n = 460)(n = 124)**Acute Pain Intensity Chronic Pain Intensity**
- B UK Biobank

A OPPERA

Figure II-1: Selection of acute and chronic pain phenotypes in the (A) OPPERA and (B) UKB cohorts.

As part of the UKB data collection framework, participants were asked: "In the last month, have you experienced any of the following that interfered with your usual activities?" (UKB data-field ID: 6159). Participants could choose all that apply from the following options: headache, facial pain, neck or shoulder pain, back pain, stomach or abdominal pain, hip pain, knee pain, pain all over the body, none of the above, and prefer not to answer. We generated a quantitative trait ranging from 0 to 8, corresponding to the number of sites reported as painful. Those reporting to have "pain all over the body" were assigned the maximum score of 8. If the site was painful for not more than a month, it was counted as an acute pain site. If a bodily site remained painful on follow-up after 2 or more years, then it was counted as a chronic pain site.

Caseness for participant's pain sites were established as follows in UKB (Fig. 1B):

(1) Participants who reported no pain sites at baseline and follow-up were treated as controls.

(2) If a participant reported pain at a particular body site for 1 month but not for 3 months, s/he was classified as an acute pain case for that particular site.

(3) If a participant reported pain at a particular site for 1 month at baseline and at the same site for more than 3 months at follow-up, s/he was classified as a chronic case for that particular site.

3.3. Genotyping

Peripheral venous whole blood was collected at each OPPERA site into 5-mL polyethylene tubes containing ethylenediaminetetraacetic acid (EDTA) (Vacutainer; Beckton Dickinson and Company, Franklin Lakes, NJ), and the tubes were stored in a

-80°C freezer.[41] Genomic DNA was purified using the protocols of Qiagen extraction kits. Samples were genotyped using the Illumina HumanOmni2.5Exome-8v1A array (Illumina, Inc, San Diego, CA) at the Center for Inherited Disease Research (Johns Hopkins University, Baltimore, MD). The details of genotyping and QC procedures have been described elsewhere.[42] Genotyping results were returned for 3221 unique samples, representing the study participants. All the genotyped SNPs with minor allele frequency (MAF) greater than 5% in gene loci belonging either to EGF-family receptors (namely, EGFR, ERBB2, ERBB3, and ERBB4) or ligands (namely, AREG, BTC, EREG, EGF, EPGN, EREG, HBEGF, MUC4, NRG1, NRG2, NRG3, NRG4, and TGFA) were chosen for the association analyses (n = 2407).

UKB's genetic data for 488,288 participants were used. As described in detail elsewhere,[8] blood samples were collected from participants on their visit to a UKB assessment center, and the samples were stored at the UKB facility in Stockport, UK. Over a period of 18 months, samples were retrieved, DNA was extracted, and shipped to Affymetrix Research Services Laboratory for genotyping. A subset of 49,940 participants was genotyped using the Applied Biosystems UK BiLEVE Axiom Array by Affymetrix (now part of Thermo Fisher Scientific).[48] The remaining 438,348 participants were genotyped using the closely related Applied Biosystems UK Biobank Axiom Array that shares 95% marker content with the UK BiLEVE Axiom Array. Routine quality checks were performed during the process of sample retrieval, DNA extraction, and genotype calling.

3.4. Mouse subjects

Male adult (7-9 weeks of age) CD1 [CrI:CD1 (ICR)] mice were acquired from Charles River Laboratories (Saint Constant, QC, Canada) and used for all experiments. All mice were housed in groups of 4 upon arrival, and procedures were conducted in accordance with the animal care standards set forth by the Canadian Council on Animal Care and were approved by the University of Toronto's Biosciences Panel on Laboratory Animal Care. All animals were maintained within a temperature-controlled environment (23 ± 1°C) with a 12:12 h light:dark cycle. A compressed cotton nesting square and crinkled paper bedding were provided in each cage as a source of environmental enrichment. All mice had access to food (Harlan Teklad 8604) and water ad libitum.

3.4.1. Anti-EREG monoclonal antibody

A blocking/neutralizing EREG monoclonal antibody (mAb) (NBP2-21992; Novus Biologicals, Oakville, ON, Canada) was diluted in phosphate-buffered saline (PBS) and administered directly into the tail vein (5 μ g/5 μ L). Control mice were injected with an equivalent volume of PBS.

3.4.2. Mouse behavioral assays

3.4.2.1. von Frey tests

Mechanosensitivity was measured using the simplified up-down (SUDO) method with von Frey hairs to estimate the 50% withdrawal threshold in pressure units (g/mm2).[7] Mice were placed on a perforated metal floor (with 5-mm-diameter holes placed 7 mm apart) within small Plexiglas cubicles ($9 \times 5 \times 5$ -cm high), and a set of 8 calibrated von Frey

fibers (Stoelting Touch Test Sensory Evaluator Kit no. 2 to no. 9; ranging from \sim 0.015 to \sim 1.3 g of force) was applied to the plantar surface of the hind paw until the fibers bowed and then held for 3 seconds. The threshold force required to elicit withdrawal of the paw (median 50% withdrawal) was determined twice on each hind paw (and averaged) for all measurements, with sequential measurements separated by at least 20 minutes.

3.4.2.2. Complete Freund's adjuvant

Complete Freund's adjuvant (CFA) (50%; Sigma-Aldrich, Oakville, ON, Canada) was injected intraplantar in a volume of 20 μ L into the left hind paw using a 100- μ L microsyringe with a 30-gauge needle. Mice were tested for mechanical thresholds of the injected hind paw using the von Frey test as described above, before, and at selected time points after CFA injection. The EREG mAb or vehicle control was injected 1 or 3 days after CFA injection.

3.4.2.3. Spared nerve injury

Spared nerve injury (SNI), an experimental nerve injury designed to produce neuropathic pain, was performed under isoflurane/oxygen anesthesia as described previously.[6,9] Briefly, using an operating microscope (X40), the 3 terminal branches of the sciatic nerve (tibial, sural, and common peroneal) were exposed. The tibial and common peroneal nerves were cut, after tight ligation with 6.0 silk, "sparing" the sural nerve. The incisions were closed in layers using interrupted sutures (6-0 Vicryl). Mice recovered on a heating pad—carefully monitored to prevent overheating—until ambulatory as per standard operating procedures. Mice were tested for mechanical sensitivity before and 14 days after surgery using the von Frey test as described above, except that the "spared" sural

region was targeted for SNI by applying the fibers to the hind paw. After von Frey's mechanical testing on day 14, mice were injected (intravenously) with the EREG mAb or vehicle control and then tested for mechanical sensitivity 16, 19, 21, and 23 days after surgery.

3.4.2.4. Capsaicin assay

Mice were placed on a tabletop within Plexiglas cylinders (30-cm high and 30-cm diameter) and allowed to habituate for 15 minutes. Mice then received a subcutaneous injection of capsaicin (2.5 μ g; Sigma-Aldrich) into the plantar left hind paw (20 μ L) and were digitally videotaped for 10 minutes. Video files were later scored for the total duration (s) of licking/biting (ie, nocifensive behavior) of the injected paw. Two hours after capsaicin behavior, mechanosensitivity was measured using the SUDO method (as described above). Care was taken to avoid the capsaicin injection site when testing mechanosensitivity. In these experiments, mice were pretreated with the EREG mAb or vehicle control 2 days before capsaicin injection. Withdrawal thresholds for the uninjected paw were also measured to determine whether the EREG mAb altered mechanical thresholds per se.

3.4.3. Antibody measurements

The concentration of the EREG mAb antibody conjugated to Alexa-647 (NBP2-21992AF647; Novus Biologicals) was determined using the Cytation 5 Cell Imaging Multi-Mode Reader (Biotek, Winooski, VT). In brief, either PBS or the EREG mAB-Alexa-647 was injected intravenously, and after 2, 5, or 7 days, mice were euthanized to collect

blood. Blood was centrifuged at 5000 rpm for 20 minutes at 4°C to separate plasma and kept at -80°C until analysis. Plasma samples (100 µL/well) along with known standard concentrations of the EREG mAb were loaded into a 96-well microplate for fluorescence-based intensity measurement (Invitrogen, Burlington, ON, Canada). Using the multimode plate reader, the fluorescence intensity of Alexa-647 was measured with a bandwidth of 20 nm (640-nm excitation and 681-nm emission). A standard curve was generated based on the fluorescence intensity values from the known standard concentrations, which was then used to calculate the concentration of the EREG mAB in the plasma samples.

3.5. Data analyses

The additive model of inheritance was assumed for all genetic analyses. The family-wise error rate was controlled using the Benjamini–Hochberg's false discovery rate (FDR) method5 at a 5% threshold. Pain phenotypes were considered as dependent variables, and minor allele counts of SNPs were independent variables for Poisson and logistic regression models for count and binary outcome measures, respectively. For initial screening of all the 2407 SNPs in the EGFR family of receptors and ligands against chronic pain intensity, multivariate linear regression was conducted using PLINK (Broad Institute, Cambridge, MA), version 1.09.35 Haplotype analyses were performed using Haplo.stats v1.7.7 (R-package),[23] which implements an expectation-maximization–derived score to test for a statistically significant association between haplotypes and outcome measurements. The statistical methods implemented in this R-package assume that all subjects are unrelated and that haplotypes are ambiguous (due to the unknown linkage phase of the genetic markers), while also allowing for missing alleles. Hence, unrelated participants from the OPPERA and UKB cohorts were selected using a second-

degree relatedness threshold as implemented in Kinship-based INference for Genomewide association studies (KING).[28] The effects of all rare haplotypes with the estimated frequency >5% in OPPERA and >2% in UK Biobank were compared against the effect of one ancestral haplotype. Generalized linear modeling was used to test for an association between genotypes and phenotypes. As the OPPERA participants were recruited in 4 study sites, recruitment sites were introduced as covariates in the regression models. Age, sex, and the first 3 principle components (the markers of ancestry) were also included as covariates to adjust for population stratification. Similarly, the UKB data analyses were corrected for sex, age, ethnic background, and genotyping platforms. R v3.5.2 was used as the language and environment for statistical computation. Haplotype structure of EREG was analyzed using Haploview v 4.2.4

For eQTL analysis, 2 large-scale data sets, namely, the Framingham Heart Study (FHS)18 and the Genotype-Tissue Expression (GTEx) project14 (version 7), were used. The FHS data are available at dbGaP under the accession numbers phs000342 and phs000724. The GTEx data are also available at dbGAP under the accession number phs000424.v7.p2.

For mouse experiments, von Frey's data were analyzed using repeated-measures analysis of variance (ANOVA), followed where appropriate by Tukey's honest significant difference post hoc test. Capsaicin nocifensive behavior was analyzed using independent t-tests.

4. Results

4.1. Among all EGFR receptors and ligands, only EREG was associated with pain

Our primary outcome measure, CPI, was well characterized in the OPPERA study. Hence, we used OPPERA as our discovery cohort. A total of 2407 genotyped SNPs with MAF >5% situated within the 16 genes of EGFR family receptors (ie, EGFR, ERBB2, ERBB3, and ERBB4) and their ligands (AREG, BTC, EGF, EPGN, EREG, HBEGF, MUC4, NRG1, NRG2, NRG3, NRG4, and TGFA) were screened for an association with CPI **OPPERA** 2; supplementary in (Fig. Table 1, available at http://links.lww.com/PAIN/A937). Only 7 SNPs passed the FDR threshold of 5% after correcting for age, sex, recruitment site, and the first 3 principal components (Table 1). All significantly associated SNPs were located in the EREG gene with their minor alleles associated with less pain. Therefore, EREG was chosen as our primary candidate gene for further investigation.

Figure II-2: Quantile–quantile plot of 2407 SNPs in genes coding for EGFR superfamily receptors and ligands, showing a significant association (FDR < 0.05) between 7 EREG SNPs and chronic characteristic pain intensity (CPI) in OPPERA cohort. EGFR, epidermal growth factor receptor; EREG, epiregulin; FDR, false discovery rate.

Table 1

Linear regression analyses of all the genes in EGFR receptor family and its ligands, and chronic characteristic pain intensity (CPI) in OPPERA cohort, corrected for age, sex, and the first 3 principal components.

Gene	SNP	Ref	Min	Base pair location	β	<i>P</i> -value	FDR
EREG	rs10518126	G	A	75,243,119	-11.09	0.0000078	0.00944**
EREG	rs57839099	G	А	75,243,813	-11.09	0.0000078	0.00944**
EREG	rs200889776	G	А	75,240,770	-10.41	0.00002	0.011*
EREG	rs57933408	G	А	75,243,828	-10.51	0.00002	0.011*
EREG	rs201835071	G	А	75,237,587	-9.99	0.00003	0.011*
EREG	rs72859363	А	G	75,246,112	-10.24	0.00003	0.011*
EREG	rs6836436	A	С	75,230,930	-8.84	0.00013	0.041*

FDR \leq 0.01: "**" 0.05: "*". Only significant results (FDR \leq 5%) are presented.

β, slope of least-squares line; EGFR, epidermal growth factor receptor; EREG, epiregulin; FDR, false discovery rate; Min, minor allele; Ref, reference allele; SNP, single-nucleotide polymorphism (rs ID).

4.2. *EREG* gene has two functional minor haplotypes

Of 2407 tested SNPs in the EGFR family of receptors and ligands, 7 SNPs within EREG were found to be significantly associated with CPI. The association results of the EREG SNPs were visualized along with their local linkage disequilibrium (LD), recombination patterns, and genomic region position. This regional plot of EREG (Fig. 3A) uncovered substantial LD structure between EREG SNPs, with one LD block within the gene (Fig. 3B; Supplementary Table 2, available at http://links.lww.com/PAIN/A937). Furthermore, haplotype analysis identified 2 minor haplotypes, herein referred to as H2 and H3, with frequencies 17.3% and 5.8%, respectively, in OPPERA. All 7 significant SNPs were markers for the H3 haplotype of EREG (Fig. 3C), while we have previously reported the association of the H2 haplotype of EREG, marked by the functional SNP, rs2367707 with TMD,30 and the H3 haplotype of EREG was not detected in our earlier analysis due to its relatively low frequency. A marker of the H3 haplotype, rs6836436, was deemed potentially functional because it was located in the 5'UTR region of EREG. Finally, the presence of reference allele (A) at rs1993665 exclusively marked the major haplotype (herein referred to as H1). Hence, rs1993665, rs6836436, and rs2367707 were chosen as the markers of H1, H2, and H3 haplotypes of EREG for haplotype association analyses in both OPPERA and UKB cohorts. Their minor allele counts and frequencies in OPPERA and UK Biobank are shown in Table 2. Haplotype frequencies based on the 3 marker SNPs in EREG as derived using expectation–maximization (E-M) algorithm were 67.33% and 74.65% for H1, 20.39% and 19.91% for H2, and 7.61% and 2.77% for H3 in OPPERA and UKB, respectively (Table 3). Expression quantitative trait loci databases, namely, FHS and GTEx, were scanned for the H2 (rs2367707) and H3 (rs6836436) SNP markers.

Expression quantitative trait loci analyses revealed that both minor alleles at rs2367707 and rs6836436 were associated with decreased mRNA levels of EREG in the peripheral blood (Table 4).

Figure II-3: The EREG gene has 2 minor haplotypes. (A) Regional plot of EREG. (B) Illustration of the 16 SNPs in EREG linkage disequilibrium plot, numbers inside each cell indicate r2 values, and color reflects D' value, ranging from white to red, (ie, 0-1). (C) The sequence of 3 haplotypes with frequency >5% within EREG gene locus. Major and minor alleles of EREG SNPs genotyped in OPPERA, and SNPs significantly associated with CPI from Figure 2 are highlighted in green. Marker SNPs, namely, rs1993665, rs2367707, and rs6836436, for haplotypes H1, H2, and H3, respectively, are highlighted in yellow. CPI, characteristic pain intensity; EREG, epiregulin.

Table 2

Minor allele counts of the marker S	SNPs in OPPERA	and UK Biobank cohorts
-------------------------------------	----------------	------------------------

MAC	Cohort	H1 marker SNP (rs1993665)		H2 marker SNP (rs2367707)		H3 marker SNP (rs6836436)	
		n	Frequency	n	Frequency	n	Frequency
0	OPPERA	1361	49.4%	1672	60.7%	2368	86.0%
1		1082	39.3%	956	34.7%	349	12.7%
2		312	11.3%	127	4.6%	38	1.4%
0	UK Biobank	267,521	58.5%	281,970	61.7%	432,835	94.7%
1		163,181	35.7%	154,109	33.7%	23,650	5.2%
2		26,568	5.8%	21,191	4.6%	785	0.2%

MAC, minor allele counts; n, number of participants.

Table 3

Haplotype frequencies of *EREG* as estimated through expectation–maximization (E-M) algorithm.

Haplotype*	OPPERA (n = 2755)	UK Biobank (n = 473,879)
H1	67.33%	74.65%
H2	20.39%	19.91%
H3	7.61%	2.77%
Log-likelihood	-4400.5	-563884.5
Ir stat for no LD†	3404.9	588,766.6
Р	8.63×10^{-08}	4.99×10^{-23}

* Haplotypes with frequencies > 5% in OPPERA and > 2% in UK Biobank.

† Likelihood ratio test statistic contrasting the log-likelihood for the estimated haplotype frequencies vs the log-likelihood under the null assuming that the alleles from all the 3 loci are in linkage equilibrium. EREG, epiregulin; LD, linkage disequilibrium.

Table 4

Cis-eQTL in blood for the marker SNPs of minor haplotypes in *EREG*.

Cohort	n	SNP	Haplotype	β	Р
FHS	2770	rs2367707	H2	-0.14	$1.2 imes 10^{-16}$
		rs6836436*	H3	NA	NA
GTEx	369	rs2367707	H2	-0.09	$2.4 imes 10^{-02}$
		rs6836436	H3	-0.27	1.4×10^{-04}

* H3 marker SNP, rs6836436, was not genotyped in Framingham Heart Study cohort.

eQTL, Expression quantitative trait loci; EREG, epiregulin; FHS, Framingham heart study; GTEx, Genotype-Tissue Expression project; n, number of participants; SNP, single-nucleotide polymorphism; β , slope of least-squares line.

4.3. H3 and H2 haplotypes of *EREG* protects from chronic pain

We hypothesized that genetic variability within the EREG locus may affect chronic pain intensity. From the OPPERA cohort, chronic pain intensity at baseline, TMD case status, and the number of chronic pain comorbidities were chosen as the chronic pain phenotypes for this study. Haplotype association analyses confirmed our previously reported protective role for the H2 haplotype for TMD case status (n = 2,755, OR = 0.84, FDR = 0.032, Fig. 4A).[30] Furthermore, the H3 haplotype of EREG was associated with lower chronic pain intensity (n = 388, β = -8.06, FDR = 0.033, Fig. 4B) and was marginally protective against the number of chronic pain comorbidities (n = 2,748, β = -0.07, FDR = 0.08). For validation of these results, we used the UKB cohort. Pain intensity was not collected in the UKB cohort. Hence, we used the number of reported chronic pain body sites as a substitute for chronic pain intensity. Although pain severity in terms of intensity and anatomical extent are different phenotypes, they are correlated.[3,49] Painful sites were considered chronic if the pain persisted at the same site for at least 2 years, and the number of reported chronic pain body sites was used as a substitute for chronic pain intensity. In addition, the substantial size of the UKB cohort allowed us to consider pain at each of the 8 reported body sites as individual chronic pain phenotypes for this analysis. H2 was protective for the report of at least one chronic pain site (n = 196,534, OR = 0.95, FDR = 0.031, Fig. 4C) in UKB, whereas the presence of the H3 haplotype was associated with a decrease in the number of chronic pain sites (n = 196,534, β = -0.21, FDR = 0.003, Fig. 4D) and was protective for chronic hip pain (n = 191,669, OR = 0.66, FDR = 0.028). The results of all chronic pain phenotypes are summarized in Table 5. Together, both the H2 and H3 haplotypes showed protective properties towards chronic pain with the H3

haplotype displaying a stronger effect size consistent with its eQTL strength (defined by the slope, β , of the eQTL analysis, Table 4).

Table 5

Haplotype association to analyze the relationship between chronic pain phenotypes and EREG haplotypes.

Cohort	Chronic pain phenotype	n	Prevalence	Haplotype II		Haplotype III	
				Estimate	FDR	Estimate	FDR
OPPERA	Chronic pain intensity TMD case status No. of chronic pain comorbidities	388 2755 2748	88.66%† 31.87% 78.93%‡	$\beta = -3.11$ OR = 0.84 $\beta = -0.04$	0.245 0.032* 0.174	$\begin{split} \beta &= -8.06\\ \text{OR} &= 0.79\\ \beta &= -0.07 \end{split}$	0.033* 0.083 0.080
UK Biobank	Chronic pain all over the body Chronic stomach or abdominal pain Chronic headache Chronic neck or shoulder pain Chronic back pain Chronic hip pain Chronic knee pain Chronic facial pain No. of chronic pain sites	190,866 191,111 191,859 192,507 192,922 191,669 192,796 190,832 196,534	0.05% 0.18% 0.56% 0.90% 1.11% 0.47% 1.05% 0.03% 2.93%‡	$\begin{array}{l} \text{OR} = 1.08 \\ \text{OR} = 1.09 \\ \text{OR} = 0.91 \\ \text{OR} = 0.96 \\ \text{OR} = 0.98 \\ \text{OR} = 0.98 \\ \text{OR} = 0.94 \\ \text{OR} = 0.77 \\ \beta = -0.031 \end{array}$	0.660 0.340 0.112 0.309 0.521 0.700 0.138 0.305 0.107	$\begin{array}{l} {\sf OR} = 0.95\\ {\sf OR} = 0.50\\ {\sf OR} = 0.96\\ {\sf OR} = 0.80\\ {\sf OR} = 0.83\\ {\sf OR} = 0.66\\ {\sf OR} = 0.99\\ {\sf OR} = 0.27\\ {\sf \beta} = -0.15 \end{array}$	0.913 0.055 0.804 0.082 0.081 0.028* 0.966 0.204 0.003*

FDR < 0.001: "*** 0.05: "*."

‡ Prevalence of at least one chronic pain comorbidity/chronic pain site among total number of participants.

β, slope of least-squares line; CPI, characteristic pain intensity; EREG, epiregulin; FDR, false discovery rate; n, valid number of participants; OR, odds ratio.

⁺ Prevalence of TMD cases among n with valid chronic pain intensity scores at baseline.

Figure II-4: H3 and H2 haplotypes of EREG protects from chronic clinical pain. (A and B) OPPERA cohort. (A) Bar plot of average minor allele counts of rs1993665, rs2367707, and rs6836436, (markers for haplotypes H1, H2, and H3, respectively) among chronic TMD cases and controls and (B) plot of mean chronic pain intensity at baseline for minor allele counts of rs1993665, rs2367707, and rs6836436, (markers for haplotypes H1, H2, and H3, respectively) in the OPPERA cohort. (C and D) UKB cohort. (C) Bar plot of average minor allele counts of rs1993665, rs2367707, and rs6836436, (markers for haplotypes H1, H2, and H3, respectively) in the OPPERA cohort. (C and D) UKB cohort. (C) Bar plot of average minor allele counts of rs1993665, rs2367707, and rs6836436, (markers for haplotypes H1, H2, and H3, respectively) among chronic pain cases (at least one chronic pain site) and controls and (D) plot of mean number of chronic pain sites for minor allele counts of rs1993665, rs2367707, and rs6836436, (markers for haplotypes H1, H2, and H3, respectively) in the UKB cohort. Symbols represent mean \pm SEM; false discovery rates (FDRs) were derived by generalized linear modelling for haplotype association; *FDR < 0.05; **FDR < 0.01. EREG, epiregulin; TMD, temporomandibular disorders.

4.4. H3 haplotype of *EREG* is a risk for acute pain

Next, we tested the association of functional EREG haplotypes with acute clinical pain. To study the effects of minor haplotypes of EREG on acute pain, the first quarterly followup CPI scores measured in controls with baseline CPI = 0 were chosen as acute pain phenotype from the OPPERA cohort. Participants with no facial pain at baseline but CPI >0 after 3 months were considered acute facial pain cases (Fig. 5A). The number of reported acute (not more than 3 months) painful body sites was used as a marker of acute pain severity in UKB. In addition, participants with at least one reported acute painful site (n = 137.852) were contrasted against participants with no reported pain at all (n = 137.852)333,921). Haplotype H3 was strongly associated with acute pain but, unexpectedly, in the opposite direction compared with chronic pain. The presence of minor haplotype H3 was associated with an increase in acute pain intensity at follow-up (n = 213, β = 8.68, FDR = 0.039, Fig. 5B) in the OPPERA cohort. In the UKB, H3 was a risk factor for self-reported acute pain of at least one site (n = 471,773, OR = 1.34, FDR = 0.0002, Fig. 5C) and the total number of acute pain sites (n = 471,773, β = 0.028, FDR = 0.003, Fig. 5D). Moreover, haplotype H3 was associated with increased odds of having acute pain all over the body (n = 335,565, OR = 1.33, FDR = 0.0003). No significant association was detected between acute pain phenotypes and haplotype H2. The results of acute pain phenotypes are summarized in Table 6.

Figure II-5: H3 haplotype of EREG is a risk for acute clinical pain. (A and B) OPPERA cohort. (A) Bar plot of average minor allele counts of rs1993665, rs2367707, and rs6836436, (markers for haplotypes H1, H2, and H3, respectively) among acute facial pain cases and (B) plot of mean of acute pain intensity at follow-up in controls for minor allele counts of rs1993665, rs2367707, and rs6836436, (markers for haplotypes H1, H2, and H3, respectively) in the OPPERA cohort. (C and D) UKB cohort. (C) Bar plot of average minor allele counts of rs1993665, rs2367707, and rs6836436, (markers for haplotypes H1, H2, and H3, respectively) in the OPPERA cohort. (C and D) UKB cohort. (C) Bar plot of average minor allele counts of rs1993665, rs2367707, and rs6836436, (markers for haplotypes H1, H2, and H3, respectively) among acute pain cases (at least one acute pain site) and controls. (D) A plot of the mean number of acute pain sites for minor allele counts of rs1993665, rs2367707, and rs6836436, (markers for haplotypes H1, H2, and H3, respectively) in the UK Biobank (UKB) cohort. Symbols represent mean 6 SEM; false discovery rates (FDRs) were derived by generalized linear modelling for haplotype association; *FDR, 0.05; **FDR, 0.01. EREG, epiregulin.

Table 6

Cohort	Acute pain phenotype	n 213	Prevalence 52.58%†	Haplotype II		Haplotype III	
				Estimate	FDR	Estimate	FDR
OPPERA	Acute pain intensity Acute facial pain			$\begin{array}{l} \beta = -1.83 \\ \text{OR} = 0.76 \end{array}$	0.517 0.289	$\begin{array}{l} \beta = 8.68 \\ \text{OR} = 1.99 \end{array}$	0.0390* 0.121
UK Biobank	Acute pain all over the body	335,565	0.87%	OR = 1.01	0.909	OR = 1.33	0.0003**
	Acute stomach or abdominal pain	352,780	5.34%	OR = 0.99	0.261	OR = 0.94	0.066
	Acute headache	388,126	13.96%	OR = 0.99	0.246	OR = 1.00	0.771
	Acute neck or shoulder pain	369,264	9.57%	OR = 1.02	0.083	OR = 1.01	0.611
	Acute back pain	373,432	10.58%	OR = 0.99	0.672	OR = 0.98	0.447
	Acute hip pain	346,291	3.57%	OR = 0.99	0.820	OR = 0.98	0.758
	Acute knee pain	356,768	6.40%	OR = 1.00	0.810	OR = 1.03	0.408
	Acute facial pain	338,577	1.37%	OR = 0.97	0.405	OR = 0.95	0.541
	No. of acute pain sites	471,773	29.22%‡	$\beta = -0.001$	0.752	$\beta = 0.028$	0.003*
	At least one acute pain site			OR = 1.01	0.909	OR = 1.34	0.0002**

Haplotype association to analyze the relationship between acute pain phenotypes and EREG haplotypes.

FDR < 0.001: "**" 0.05: **.*

† Prevalence of participants with acute pain intensity at follow-up > 0 among n with valid acute pain intensity scores at follow-up.

± Prevalence of at least one acute pain site

β, slope of least-squares line; CPI, characteristic pain intensity; EREG, epiregulin; FDR, false discovery rate; n, valid number of participants/cases and controls; number of controls (no pain at all) is 333,936 for all the UK Biobank phenotypes: OR, odds ratio.

4.5. EREG has a dichotomous role in pain behavior in mice Because our human genetic association results indicated that the H2 and H3 haplotypes may have a protective role against chronic pain and that these haplotypes were associated with lower EREG mRNA in the blood (Table 4), we hypothesized that blocking EREG would reduce pain hypersensitivity in mouse models of chronic pain. For these experiments, we blocked EREG by peripheral administration of an EREG mAb (5 µg) directly into the tail vein. Strikingly, mice injected with a single intravenous injection of the EREG mAb recovered quicker than control mice when the mAb was administered 3 days after CFA (ie, the peak of allodynia) (two-way ANOVA, treatment × repeated measures: F3,42 = 5.53, P = 0.003, Fig. 6A). Since mice recovered from CFA-induced hypersensitivity by day 7 (t14 = 1.35, P = 0.2), it was difficult to determine whether the EREG mAb had long-lasting effects on allodynia or was specific for inflammatory pain. Thus, we assessed whether the EREG mAb reversed mechanosensitivity using the SNI model. For the SNI experiments, we administered the mAb 14 days after surgery to ensure that postoperative inflammation had resolved and that chronic mechanosensitivity had been established. As shown in Figure 6B, administration of the EREG mAb reversed mechanical hypersensitivity produced by SNI for up to 1 week after administration (twoway ANOVA, treatment × repeated measures: F5, 84 = 10.49, P < 0.001). In a subset of mice, we tracked the levels of the EREG mAb (conjugated to Alexa-647) by measuring fluorescence intensity in the blood plasma 2, 5, and 7 days after mAb administration. The concentration of the EREG mAb was significantly elevated at all time points after injection compared with control mice (two-way ANOVA, treatment × day after injection: F2, 17 = 4.4, P = 0.027, Fig. 6C).

Figure II-6: The effects of systemically administering an EREG monoclonal antibody (mAb, 5 μ g) in mouse models of pain. (A) Mice injected with the EREG mAb 3 days after CFA, as indicated by the arrow have higher paw withdrawal thresholds (g/mm2) compared with control mice 5 days after CFA; n = 8/group. (B) The EREG mAb or vehicle control was administered 14 days after SNI surgery, as indicated by the arrow. A single administration of the mAb reverses mechanical allodynia for up to 1 week. (C) The concentration of EREG mAb in the blood plasma of mice after a single tail vein

administration; n = 4/group. (D) Mice injected with the EREG mAb 1 day after CFA, as indicated by the arrow have lower paw withdrawal thresholds (g/mm2) than control mice 7 days after CFA; n = 8/group. (E) Pretreatment with the EREG mAb, 2 days before testing increases nocifensive behavior in the intraplantar capsaicin test of acute pain; n = 18 to 20/group. (F) A subset of mice from E was tested for mechanosensitivity after intraplantar capsaicin injection; n = 8/group. Mice injected with the EREG mAb have lower paw withdrawal thresholds (g/mm2) in the capsaicin injected paw, but not the uninjected paw when compared with controls. BL: baseline. *P < 0.05; **P < 0.001; ***P < 0.001 compared with capsaicin-injected paw in F. CFA, complete Freund's adjuvant; EREG, epiregulin.

Considering that the human genetic association results indicated that lost function H2 and H3 haplotypes were a risk for acute pain, we further hypothesized that blockade of EREG during the development of pain states may prolong or enhance hypersensitivity. Administration of the EREG mAb 1 day after CFA (ie, during the development of hypersensitivity) delayed the natural recovery time course of mechanosensitivity (two-way ANOVA, treatment × repeated measures: F2, 28 = 5.4, P = 0.001, Fig. 6D). This effect seemed to be independent of an inflammatory state per se, as levels of white blood cells were not different in mice that received the EREG mAb or vehicle control (supplementary Table 3, available at http://links.lww.com/PAIN/A937). Next, we injected capsaicin as a model of acute pain (measuring both nocifensive and mechanical withdrawal thresholds). Pre-treatment with the EREG mAb 2 days before capsaicin increased nocifensive behavior (t14 = 2.54, P = 0.02, Fig. 6E) and decreased mechanical pain thresholds in the injected, but not un-injected paw (two-way ANOVA, treatment × paw: F1, 28 = 4.91, P = 0.03, Fig. 6F).
5. Discussion

In this study, we report the results of genetic screening within 16 genes of the EGFR family of receptors and ligands for their association with acute and chronic pain states. First, we identified EREG as the strongest sole contributor with 2 functional genetic variants and discovered a new haplotype H3 of EREG marked by the presence of a minor allele at SNP rs6836436. Second, and more surprisingly, we found that EREG has a dichotomous role in the pathophysiology of pain with its loss-of-function variants associated with decreased chronic pain severity but increased acute pain severity. We validated the results of this association analysis using mouse models of pain, where we found that neutralizing EREG with a mAb either reversed or enhanced pain behavior in chronic vs acute pain models, respectively.

Together, our results combined with previous reports [22,30] suggest that EREG mitigates pain during the early stages of its development but eventually contributes to the establishment of chronic pain. Therefore, in addition to current pharmacotherapy of conditions with nonsteroidal anti-inflammatory chronic pain drugs. opioids. corticosteroids, anxiolytics, muscle relaxants, antidepressants, anticonvulsants, and benzodiazepines, inhibition of EREG-EGFR complex formation could serve as a novel strategy to control chronic pain. Epiregulin-targeted therapy would not only be efficient in managing chronic pain but may provide a safer alternative to currently available drugs for EGFR inhibition because EGFR inhibitors have side effects such as skin rash.[20] Nonetheless, more definitive studies such as functional assays for rs6836436, preclinical experiments to further explore the role of EREG in acute and chronic pain, and clinical

trials for EREG inhibitors as analgesics are required to substantiate the role of EREG in the pathogenesis of pain.

Like other chronic diseases, early intervention is associated with better outcomes with chronic pain. Hence, there is a need to identify potential chronic pain patients during the acute stage for timely and optimal disease management. On one hand, a risk biomarker indicates the potential for developing a disease in an individual who does not currently have an identifiable clinical disease. Being associated with increased chronic pain severity and risk for developing chronic TMD, the presence of a major allele at rs6836436 or rs2367707 in acute pain patients might serve as a risk biomarker of chronic pain development. Nevertheless, it is important to recognize that pain is a highly polygenic trait, and the contribution of each allele to the appreciable minor allelic frequency is expected to be modest. That is, why we do not suggest rs6836436 or rs2367707 by themselves will act as sole predictors of pain states but could be useful inclusions into a screening panel of genetic markers for pain profiling. Conversely, a response biomarker could identify individuals who are more likely to experience a favorable or unfavorable effect from drug treatment. The current findings suggest that the presence of a major allele at rs6836436 or rs2367707 may serve as a favorable response biomarker for EREG-EGFR-based pharmacotherapy of chronic pain. Thus, studying EREG gene polymorphism could accelerate the development of personalized pain medicine.

Although we used a TMD-centric cohort (OPPERA) as a discovery cohort, our results do not suggest that the association between EREG and pain phenotypes is specific to TMD or orofacial pain. We identified an association between EREG SNPs and a number of chronic pain conditions, independent of body site. This suggests that EREG contributes to TMD through mechanisms overlapping with other chronic pain conditions.[27] Symptoms of chronic TMD such as generalized pain sensitivity, sleep, concentration difficulties, depression, bowel complaints, and headaches often overlap with those of more generalized chronic pain conditions such as fibromyalgia and chronic fatigue syndrome.[1] However, our conclusions may be limited based on the statistical power of the discovery cohort, OPPERA. With a TMD incidence rate of 8% and MAF of EREG's H2 and H3 haplotype at 17.3% and 5% in the OPPERA follow-up cohort, respectively, the data lacked sufficient power to analyze the association between EREG and the onset of TMD in OPPERA or other associated pain phenotypes. Moreover, because of limited acute CPI at follow-up data, we could not confirm whether captured patients would resolve TMD in the OPPERA cohort or whether they would remain chronic.

It is important to recognize the absence of a good replication cohort for our discovery findings. We used CPI as a pain intensity marker in OPPERA, but this phenotype is rarely collected in large community cohorts such as UKB. Thus, we used the number of painful sites as markers of acute and chronic pain severity in UKB. Although pain severity in terms of intensity and anatomical extent are correlated[3,49], these are clearly different phenotypes with potentially overlapping pathophysiology. Furthermore, the original discovery cohort was TMD-centric, while the UKB subjects reported pain across all body sites. Here, we viewed orofacial pain as an idiopathic pain condition and assumed that EREG contributes to it through molecular mechanisms shared by other chronic pain conditions, as suggested in our previous work.[30] Overall, our second analysis in the UKB cohort was a validation of the primary findings from OPPERA rather than a true

replication. It, however, unambiguously supported the dichotomous nature of EREG's contribution to pain.

We previously showed that both EGFR and EREG displayed a genetic association with chronic TMD where EREG showed the strongest association.[30] The current study confirms the association of haplotype H2 with chronic TMD in a different subset of OPPERA subjects (Table 5) and also demonstrated that the same haplotype H2 was associated with the presence of at least one chronic pain site in UKB. Although haplotype H3 was not identified in our earlier studies—due to its low frequency—it has a stronger effect than H2, as is evident from the strength of associations with pain phenotypes (Tables 5 and 6) and eQTL analysis (Table 4). However, both haplotypes, H2, and H3 are loss-of-function variants. Although we do not know the exact molecular mechanisms through which haplotypes H2 and H3 control EREG mRNA levels, we have shown earlier that rs2367707 (a marker of H2) reduces the stability of the mRNA, and the 5'UTR location of rs6836436 (a marker of H3) suggests control of transcription. The absence of association of haplotype H2 with acute pain phenotypes (Table 6) is likely a reflection of its effect size rather than evidence for a unique contribution of H3, but not H2 to acute pain. An inverse relationship exists between the effect sizes and the allele frequencies for all phenotypic traits.[34] It is also possible that state-dependent stimuli regulating EREG transcription and mRNA stability contribute equally to chronic pain, but only regulation of transcription contributes to acute pain.

Our current results are also in line with our previous report on the effect of EREG in animal pain models. We previously showed that administration of EREG but not other EGFR

ligands to mice in the late phase of the formalin test increased pain sensitivity.[30] Mouse experiments in this study assessed the impact of blocking EREG in different pain models at different time points and were designed to support and complement the human genetic analysis. Mice treated with the EREG mAb during peak CFA allodynia (i.e., 3 days after CFA) recovered quicker than control mice; SNI-induced allodynia was also reversed for up to 1 week after EREG mAb administration. These results provide generalizability across chronic pain assays and suggest that EREG neutralization may offer a novel analgesic strategy for established chronic pain. Furthermore, the EREG mAb delayed recovery from CFA when administered during the development of CFA-induced allodynia (i.e., 1 day after CFA). EREG neutralization also enhanced nocifensive pain behavior and acute mechanosensitivity in mice injected with capsaicin. Broadly, these data support the findings from the human genetic analysis, where the H3 haplotype was found to be protective for chronic pain, but a risk marker for acute pain.

Although the signaling mechanisms of EREG on acute and chronic pain have yet to be discovered, a recently published independent study has reported similar dichotomous effects of EREG, where the application of EREG onto the spinal dorsal nerve roots of rats reduced evoked c-fiber responses but increased spontaneous activity in spinal dorsal horn neurons.[22] Furthermore, immune system dysfunctions including allergic and autoimmune disease comorbidities[16,29,36,46] and elevated levels of proinflammatory cytokines[38,43,50] are common among chronic pain conditions. Because EREG is temporally15 and causally[17,32] associated with activation of the immune system and inflammation,[37] EREG may contribute to pain through a systemic process. For instance, EREG is involved with the production of proinflammatory cytokines in macrophages,[39],

and EREG is increased during cutaneous wound inflammation and healing.[25] Thus, EREG production may be necessary for the resolution of inflammation and the natural recovery from pain; however, EREG may trigger the expression of signaling cascades in primary afferent nerves or in the dorsal horn that promotes long-term changes in neuronal excitability.[15,30,32] Nevertheless, a full understanding of the role of EREG in modulating pain severity through the immune and/or nervous system will require simultaneous study of EREG, immune cells, inflammation, and pain responses, both preclinically and clinically.

In conclusion, this study confirms the previously reported role of EREG in the pathogenesis of human chronic pain and preclinical pain models.[30] In addition, this study discovered an analgesic role for EREG during the early stages of pain, while an opposite-pronociceptive role in establishing chronic pain. Explicitly, this study is an example of a human \rightarrow mouse translational research that further affirms EREG's potential as a biomarker of chronic pain, demystifies EREG-mediated pathogenesis of pain, and suggests a novel, nonopioid therapy for chronic pain.

6. Conflict of interest statement

The authors have no conflicts of interest to declare.

7. Supplemental content

Supplemental digital content associated with this article can be found online at http://links.lww.com/PAIN/A937 and also as Appendix 2 of this thesis.

8. Acknowledgments

The authors express gratitude towards the participants who have devoted their time and effort in support of this research. The OPPERA program also acknowledges resources provided by the respective host universities: University at Buffalo, University of Florida, University of Maryland-Baltimore, and University of North Carolina-Chapel Hill. The authors also acknowledge the OPPERA investigators, namely, Richard Ohrbach, Roger B. Fillingim, Joel D. Greenspan, Gary Slade, and Shad Smith who collected and published the original OPPERA findings. In addition, the authors are thankful to Ryan Lichtenwalter and Andrey Bortsov for their help with data analyses and Marcia Roy for technical assistance. This work was supported by Canadian Excellence Research Chairs (CERC) Program (L.D.), the Canada Research Chairs (C.R.C.) program (L.J.M.), and National Institutes of Health (NIH) grants: U01DE017018 (OPPERA cohort), RO1DE016155 (UNC cohort), P01NS045685, and R03DE023592. The current study was conducted under the UK Biobank application no. 20802. The contents of this article are solely the responsibility of the authors and do not represent the official views of the OPPERA investigators, the UK Biobank team, or NIH.

9. References

[1]. Aaron LA, Burke MM, Buchwald D. Overlapping conditions among patients with chronic fatigue syndrome, fibromyalgia, and temporomandibular disorder. Arch Intern Med 2000;160:221–7.

[2]. Bair E, Brownstein NC, Ohrbach R, Greenspan JD, Dubner R, Fillingim RB, Maixner W, Smith SB, Diatchenko L, Gonzalez Y, Gordon SM, Lim PF, Ribeiro-Dasilva M, Dampier D, Knott C, Slade GD. The study protocol, sample characteristics, and loss to follow-up: the OPPERA prospective cohort study. J Pain 2013;14(12 suppl):T2–19.

[3]. Barbero M, Fernandez-de-Las-Penas C, Palacios-Cena M, Cescon C, Falla D. Pain extent is associated with pain intensity but not with widespread pressure or thermal pain sensitivity in women with fibromyalgia syndrome. Clin Rheumatol 2017;36:1427–32.

[4]. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263–5.

[5]. Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B 1995;57:289–300.

[6]. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. PAIN 1988;33:87–107.

[7]. Bonin RP, Bories C, De Koninck Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol Pain 2014;10:26.

[8]. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O'Connell J, Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, Allen N, Donnelly P, Marchini J. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018;562:203–9.

[9]. Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. PAIN 2000;87:149–58.

[10]. Dworkin SF, LeResche L. Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. J Craniomandib Disord 1992;6:301–55.

[11]. Dworkin SF, Von Korff M, Whitney CW, Le Resche L, Dicker BG, Barlow W. Measurement of characteristic pain intensity in field research. PAIN 1990;41:S290.

[12]. Epker J, Gatchel RJ, Ellis E III. A model for predicting chronic TMD: practical application in clinical settings. J Am Dent Assoc 1999;130:1470–5.

[13]. Farrar JT, Young JP Jr, LaMoreaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. PAIN 2001;94:149–58.

[14]. GTEx_Consortium. The genotype-tissue expression (GTEx) project. Nat Genet 2013;45:580–5.

[15]. Harada M, Kamimura D, Arima Y, Kohsaka H, Nakatsuji Y, Nishida M, Atsumi T, Meng J, Bando H, Singh R, Sabharwal L, Jiang JJ, Kumai N, Miyasaka N, Sakoda S, Yamauchi-Takihara K, Ogura H, Hirano T, Murakami M. Temporal expression of growth factors triggered by epiregulin regulates inflammation development. J Immunol 2015;194:1039–46.

[16]. Hoffmann RG, Kotchen JM, Kotchen TA, Cowley T, Dasgupta M, Cowley AW Jr. Temporomandibular disorders and associated clinical comorbidities. Clin J Pain 2011;27:268–74.

[17]. Homma T, Kato A, Sakashita M, Takabayashi T, Norton JE, Suh LA, Carter RG, Harris KE, Peters AT, Grammer LC, Min JY, Shintani-Smith S, Tan BK, Welch K, Conley DB, Kern RC, Schleimer RP. Potential involvement of the epidermal growth factor receptor ligand epiregulin and matrix metalloproteinase-1 in pathogenesis of chronic rhinosinusitis. Am J Respir Cell Mol Biol 2017;57:334–45.

[18]. Joehanes R, Zhang X, Huan T, Yao C, Ying SX, Nguyen QT, Demirkale CY, Feolo ML, Sharopova NR, Sturcke A, Schaffer AA, Heard-Costa N, Chen H, Liu PC, Wang R, Woodhouse KA, Tanriverdi K, Freedman JE, Raghavachari N, Dupuis J, Johnson AD, O'Donnell CJ, Levy D, Munson PJ. Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies. Genome Biol 2017;18:16.

[19]. Kersten C, Cameron MG. Cetuximab alleviates neuropathic pain despite tumour progression. BMJ Case Rep 2012;2012:bcr1220115374.

[20]. Kersten C, Cameron MG, Laird B, Mjaland S. Epidermal growth factor receptor inhibition (EGFR-I) in the treatment of neuropathic pain. Br J Anaesth 2015;115:761–7.

[21]. Kersten C, Cameron MG, Mjåland S. Epithelial growth factor receptor (EGFR)inhibition for relief of neuropathic pain—a case series. Scand J Pain 2013;4:3–7.

[22]. Kongstorp M, Schjølberg T, Jacobsen DP, Haugen F, Gjerstad J. Epiregulin is released from intervertebral disks and induces spontaneous activity in pain pathways. PAIN Rep 2019;4:e718.

[23]. Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, Schaid DJ. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Hum Hered 2003;55:56–65.

[24]. Loeser JD, Melzack R. Pain: an overview. Lancet 1999;353:1607–9.

[25]. Magnusson JE, Fisher K. The involvement of dopamine in nociception: the role of D(1) and D(2) receptors in the dorsolateral striatum. Brain Res 2000;855:260–6.

[26]. Maixner W, Diatchenko L, Dubner R, Fillingim RB, Greenspan JD, Knott C, Ohrbach R, Weir B, Slade GD. Orofacial pain prospective evaluation and risk assessment study—the OPPERA study. J Pain 2011;12(11 suppl):T4–11.e12.

[27]. Maixner W, Fillingim RB, Williams DA, Smith SB, Slade GD. Overlapping chronic pain conditions: implications for diagnosis and classification. J Pain 2016;17(9 suppl):T93–107.

[28]. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics 2010;26:2867– 73.

[29]. Marchand F, Perretti M, McMahon SB. Role of the immune system in chronic pain. Nat Rev Neurosci 2005;6:521–32.

[30]. Martin LJ, Smith SB, Khoutorsky A, Magnussen CA, Samoshkin A, Sorge RE, Cho C, Yosefpour N, Sivaselvachandran S, Tohyama S, Cole T, Khuong TM, Mir E, Gibson DG, Wieskopf JS, Sotocinal SG, Austin JS, Meloto CB, Gitt JH, Gkogkas C, Sonenberg N, Greenspan JD, Fillingim RB, Ohrbach R, Slade GD, Knott C, Dubner R, Nackley AG, Ribeiro-da-Silva A, Neely GG, Maixner W, Zaykin DV, Mogil JS, Diatchenko L. Epiregulin and EGFR interactions are involved in pain processing. J Clin Invest 2017;127:3353–66.

[31]. Meloto CB, Benavides R, Lichtenwalter RN, Wen X, Tugarinov N, Zorina-Lichtenwalter K, Chabot-Dore AJ, Piltonen MH, Cattaneo S, Verma V, Klares R III, Khoury S, Parisien M, Diatchenko L. Human pain genetics database: a resource dedicated to human pain genetics research. PAIN 2018;159:749–63.

[32]. Murakami M, Harada M, Kamimura D, Ogura H, Okuyama Y, Kumai N, Okuyama A, Singh R, Jiang JJ, Atsumi T, Shiraya S, Nakatsuji Y, Kinoshita M, Kohsaka H, Nishida M, Sakoda S, Miyasaka N, Yamauchi-Takihara K, Hirano T. Disease-association analysis of an inflammation-related feedback loop. Cell Rep 2013;3:946–59.

[33]. Ohrbach R, Turner JA, Sherman JJ, Mancl LA, Truelove EL, Schiffman EL, Dworkin SF. The research diagnostic criteria for temporomandibular disorders. IV: evaluation of psychometric properties of the Axis II measures. J Orofac Pain 2010;24:48–62.

[34]. Park JH, Gail MH, Weinberg CR, Carroll RJ, Chung CC, Wang Z, Chanock SJ, Fraumeni JF Jr, Chatterjee N. Distribution of allele frequencies and effect sizes and their interrelationships for common genetic susceptibility variants. Proc Natl Acad Sci U S A 2011;108:18026–31. [35]. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559–75.

[36]. Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med 2010;16:1267–76.

[37]. Riese DJ II, Cullum RL. Epiregulin: roles in normal physiology and cancer. Semin Cell Dev Biol 2014;28:49–56.

[38]. Rodriguez-Pintó I, Agmon-Levin N, Howard A, Shoenfeld Y. Fibromyalgia and cytokines. Immunol Lett 2014;161:200–3.

[39]. Shirasawa S, Sugiyama S, Baba I, Inokuchi J, Sekine S, Ogino K, Kawamura Y, Dohi T, Fujimoto M, Sasazuki T. Dermatitis due to epiregulin deficiency and a critical role of epiregulin in immune-related responses of keratinocyte and macrophage. Proc Natl Acad Sci USA 2004;101:13921–6.

[40]. Slade GD, Bair E, By K, Mulkey F, Baraian C, Rothwell R, Reynolds M, Miller V, Gonzalez Y, Gordon S, Ribeiro-Dasilva M, Lim PF, Greenspan JD, Dubner R, Fillingim RB, Diatchenko L, Maixner W, Dampier D, Knott C, Ohrbach R. Study methods, recruitment, sociodemographic findings, and demographic representativeness in the OPPERA study. J Pain 2011;12(11 suppl):T12–26.

[41]. Smith SB, Maixner DW, Greenspan JD, Dubner R, Fillingim RB, Ohrbach R, Knott C, Slade GD, Bair E, Gibson DG, Zaykin DV, Weir BS, Maixner W, Diatchenko L. Potential

genetic risk factors for chronic TMD: genetic associations from the OPPERA case control study. J Pain 2011;12(11 suppl):T92–101.

[42]. Smith SB, Parisien M, Bair E, Belfer I, Chabot-Dore AJ, Gris P, Khoury S, Tansley S, Torosyan Y, Zaykin DV, Bernhardt O, de Oliveira Serrano P, Gracely RH, Jain D, Jarvelin MR, Kaste LM, Kerr KF, Kocher T, Lahdesmaki R, Laniado N, Laurie CC, Laurie CA, Mannikko M, Meloto CB, Nackley AG, Nelson SC, Pesonen P, Ribeiro-Dasilva MC, Rizzatti-Barbosa CM, Sanders AE, Schwahn C, Sipila K, Sofer T, Teumer A, Mogil JS, Fillingim RB, Greenspan JD, Ohrbach R, Slade GD, Maixner W, Diatchenko L. Genomewide association reveals contribution of MRAS to painful temporomandibular disorder in males. PAIN 2019;160:579–91.

[43]. Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 2004;361:184–7.

[44]. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015;12:e1001779.

[45]. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, Cohen M, Evers S, Finnerup NB, First MB, Giamberardino MA, Kaasa S, Korwisi B, Kosek E, Lavand'homme P, Nicholas M, Perrot S, Scholz J, Schug S, Smith BH, Svensson P, Vlaeyen JWS, Wang

SJ. Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). PAIN 2019;160:19–27.

[46]. Verma V, Sheikh Z, Ahmed AS. Nociception and role of immune system in pain. Acta Neurol Belg 2015;115:213–20.

[47]. Von Korff M, Ormel J, Keefe FJ, Dworkin SF. Grading the severity of chronic pain. PAIN 1992;50:133–49.

[48]. Wain LV, Shrine N, Miller S, Jackson VE, Ntalla I, Soler Artigas M, Billington CK, Kheirallah AK, Allen R, Cook JP, Probert K, Obeidat M, Bosse Y, Hao K, Postma DS, Pare PD, Ramasamy A, Consortium UKBE, Magi R, Mihailov E, Reinmaa E, Melen E, O'Connell J, Frangou E, Delaneau O, Ox GSKC, Freeman C, Petkova D, McCarthy M, Sayers I, Deloukas P, Hubbard R, Pavord I, Hansell AL, Thomson NC, Zeggini E, Morris AP, Marchini J, Strachan DP, Tobin MD, Hall IP. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med 2015;3:769–81.

[49]. Wolfe F. Pain extent and diagnosis: development and validation of the regional pain scale in 12,799 patients with rheumatic disease. J Rheumatol 2003;30:369–78.

[50]. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007;45:27– 37.

[51]. Zorina-Lichtenwalter K, Meloto CB, Khoury S, Diatchenko L. Genetic predictors of human chronic pain conditions. Neuroscience 2016;338:36–62.

III. Unbiased immune profiling reveals a Natural Killer cell-peripheral nerve axis in fibromyalgia.

1. Abstract

Fibromyalgia syndrome (FMS) is a common rheumatic disease characterized by chronic widespread pain, fatigue, and, sleep and cognitive difficulties. Pathogenesis of this syndrome remains elusive leading to a lack of objective diagnosis and specific treatment, although the association of immune system abnormalities and small fiber neuropathy have been reported. To advance our understanding of FMS pathophysiology, a casecontrol study using unbiased genome-wide approaches at cellular and mRNA levels was conducted. Evaluation of peripheral blood mononuclear cells found circulating natural killer (NK) cells to be depleted in FMS patients. Immunophenotyping and functional testing of NK cells in FMS patients revealed a hyperactivated, yet exhausted profile including decreased expression of CD16, CD96, and CD226 and increased CD107a and TIGIT expression. Whole blood transcriptomics showed marked similarities between FMS and infectious, autoimmune, malignant, and neurodegenerative diseases. Lastly, skin biopsies from an independent cohort showed increased expression of the NK activation ligand, ULBP, on the subepidermal nerves in FMS that correlated with the presence of NK cells near the peripheral nerves and reduced epidermal nerve density. Collectively, our results suggest that chronic activation and redistribution of NK cells from the circulation to the peripheral nerves contribute to the pathology associated with FMS.

2. Introduction

Fibromyalgia syndrome (FMS) is the second most common rheumatic disease[1] with global prevalence ranging from 1-12.5% in women and 0-5.1% in men.[2, 3] It is characterized by chronic widespread pain, fatigue, sleep disturbance, anxiety, depression, and cognitive difficulties. This syndrome is often associated with an array of other symptoms like restless leg syndrome, irritable bowel syndrome, vulvodynia, irritable bladder, xerostomia, and dry eyes. [4] The diagnosis of FMS is given to individuals with chronic widespread pain for which no alternative cause can be identified.[5] Vague diagnostic criteria often lead to misdiagnosis and contribute to heterogeneity among the patient group. Moreover, FMS, being one of the functional somatic syndromes that are otherwise medically unexplained[6], lacks a definitive treatment. Incomplete understanding of the etiology and pathogenesis of FMS is a major obstacle in modeling the disease in animal assays, further hampering the pre-clinical research. In summary, the lack of objective diagnosis and poorly understood aetiopathogenesis of FMS are the two most important hindrances in identifying and treating FMS patients.

Both, central and peripheral nervous systems are affected in FMS. Changes in gray matter volume in the specific regions of the brain, decreased functional connectivity in the descending pain-modulating system, and increased activity in the pain matrix are suggestive of central sensitization in FMS.[7-9] Increased peripheral nerve demyelination, decreased dermal and intra-epidermal nerve fibers in FMS patients[10-12], and, presence of sensorial symptoms[13] such as paraesthesia, hyperalgesia, and allodynia are suggestive of peripheral neuropathy in FMS. Moreover, similarities between FMS and

chronic inflammatory demyelinating polyneuropathy (CIDP) are suggestive of chronic immunologic dysregulation in FMS.[11, 14]

There is a plethora of evidence demonstrating immune dysregulation in FMS. Epidemiological studies have shown that allergic[15-17] and autoimmune[18, 19] comorbidities are more common among FMS patients. Targeted exome sequencing [20], and proteome-wide[21] studies have identified molecular signatures consistent with low-grade chronic inflammation in FMS patients. Transcriptome-wide approaches found the relevance of immune response pathways and homeostasis to the experience of FMS.[22] Previous studies also hint towards defective cytotoxic immune response [23], increased activation of lymphocytes, and increased expression of cell adhesion molecules on neutrophils and monocytes[24] in FMS. However, specific immune players and neuro-immune interactions involved in the pathogenesis of FMS remain to be discovered.[25]

3. Methods

3.1. The Canadian cohort

3.1.1. Study population

The Canadian cohort was collected under the research project approved by the institutional review board (IRB), Faculty of Medicine, McGill University (IRB Study Number A05-M50-14B). PS: Power and Sample Size Calculation tool [26] was used to calculate the sample size based on a previous study[27] (Supplementary Figure 1). Forty-four FMS patients and 46 matched controls were deemed sufficient to reject the null hypothesis that the population means of the experimental and control groups are equal with probability

(power, 1 - β) 80% and type I error (α) \leq 5%. The participants were recruited at the rheumatology clinics of McGill University, Alan Edwards Centre for Research on Pain's (AECRP) clinic, and the Research Institute of the McGill University Health Centre (RI-MUHC). The participants were enrolled by advertising the study in the local newspapers, at MUHC and McGill University bulletin boards and websites, and through mass emails.

The following inclusion criteria were applied to determine eligibility to participate in this study: (1) ability to write and speak in English and/or French, (2) agrees to provide signed and dated informed consent form, (3) willingness to comply with all study procedures and to be available for the duration of the study, and, (4) aged 40 years and more. An individual was excluded from the study if s/he had: (1) medical or psychiatric condition that is uncontrolled, (2) participated in a clinical study that may interfere with participation in this study, (3) had prior or current drug and/or alcohol abuse, or (4) had anything that would place the individual at increased risk or preclude the individual's full compliance with or completion of the study. As the specific inclusion criterion for FMS cases, patients were required to have a clinical diagnosis of fibromyalgia made by a rheumatologist, based on the 2010 criteria.[5] Lastly, a participant must have been never diagnosed with any chronic pain condition and should not have a history of depression to be deemed as a control.

3.1.2. Outcome measures

The primary outcome measure for this study was the case status of FMS. The secondary outcome measure was the global assessment of pain[28]. Apart from age, body mass index, and detailed medical history, other tertiary outcome measures collected are

summarized in Supplementary Table 1. All demographic, anthropometric, clinical, and patient-reported outcomes were collected and managed using Research Electronic Data Capture (REDCap) electronic data capture tools [29] which is a secure, web-based application designed to support data capture for research studies hosted at RI-MUHC.

3.1.3. Blood sample collection

Fifteen mL of peripheral blood samples were collected in ethylene diamine tetraacetic acid (EDTA) vacutainer tubes from each participant through the median cubital vein. Two and a half mL of whole blood was preserved in PAXgene[™] blood RNA tubes (Qiagen, Hilden, Germany) and stored in a -80°C freezer for RNA extraction. PBMCs were fractionated from the remaining whole blood using Ficoll[™]-based density gradient.[30] PBMCs (3 vials with 5 million cells in each) were resuspended in heat-inactivated human plasma-derived serum (H4522, Sigma-Aldrich, Canada) and 10% dimethyl sulfoxide (DMSO, D128-500, Fisher Scientific, Ontario, Canada), and, cryopreserved in liquid nitrogen for flow cytometry and NK activation assay.

3.1.4. mRNA sequencing

RNA from whole blood was isolated from PAXgene collection tubes according to the provider's protocol (PreAnalytiX GmbH, 08/2005, REF: 762174). The average mRNA concentration was 120 ng/µL and 25 µL of mRNA per sample was sequenced using Illumina's NovaSeq[™] 6000 S2 SR100 platform at Génome Québec, Montreal, QC, Canada.

3.1.5. Flow cytometry

One vial of the cryopreserved PBMCs was split into three to stain for cytokines, chemokines, and regulatory T-cells (Tregs). Another vial was split into two to stain for Bcells, monocytes and dendritic cells (DCs), and, natural killer (NK) cells. Experimental design, selection of the antibodies and fluorochromes, antibody concentrations, and flow cytometer photomultiplier tubes' (PMTs) voltages were optimized to minimize technical artifacts in downstream computational analysis.[31] Details of the excitation LASER, channel filters, clones, antibody isotype, fluorochromes, manufacturer and catalog number, and the quantity of reagents used for all the flow cytometry panels are summarized in Supplementary Table 2. Cryopreserved PBMCs were rapidly thawed in a 37°C water bath, resuspended in IMDM with 10% fetal bovine serum (FBS), and incubated in 37°C with 5% CO₂ for 1 hour to improve detection of cell surface markers.[32] Viability staining was performed using Zombie NIR™ (423106; BioLegend, San Diego, CA, USA) and nonspecific mAb binding was minimized by the use of TruStain FcX reagent[™] (422302; BioLegend, San Diego, CA, USA), as per the manufacturer's instructions. Subsequently, the cells were stained for extracellular markers. Intracellular staining was preceded with permeabilization as per the manufacturer's protocol (421002; BioLegend, San Diego, CA, USA). Following the staining, the PBMCs were fixed in 2% paraformaldehyde and stored at 4°C in dark for data acquisition on the next day. Unstained cells, single-stained cells, and fluorescent minus one controls (FMOs) were used as controls. UltraComp eBeads[™] were used for compensation of all fluorochromes. Using SPHERO[™] alignment particles, the coefficients of variation (CVs), peak channels, and histogram distributions were aligned before every flow cytometry run to standardize

data acquisition across all the batches. Around two million total events were acquired from each sample on LSRFortessa[™] (BD Biosciences) at the Flow Cytometry and Cell Sorting Facility of McGill University and the Immunophenotyping platform of RI-MUHC. Acquisitions of all the batches were performed within 24 hours of staining.

3.1.6. NK activation assay

Cryopreserved PBMCs from randomly chosen 14 cases and 14 controls were thawed, counted, and resuspended in RPMI 1640 medium supplemented with 10% FBS, 2 mM I-glutamine, 50 IU/mI penicillin, and 50 mg/mI streptomycin (henceforth, R10 medium) at 4 x 10⁶/mL for overnight resting. Each sample was split into four: two (one for stimulation and the other as unstimulated control) for human leukocyte antigen null (HLA^{-/-}) assay and two for antibody-dependent NK activation (ADNKA) assay.

HLA^{-/-} assay is described in detail elsewhere.[33] For this assay, lymphoblastoid cell line (LCL) 721.221, a kind gift from Dr. Galit Alter (Ragon Institute, Harvard University, Cambridge, MA, USA) to Dr. Nicole Bernard, was used as the stimulant. In short, rested PBMCs (effector) were cocultured with 221 cells (target) at an E:T ratio of 5:1 in 200 μL of R10 in V-bottom 96-well plates. PBMCs cultured alone in R10 served as an unstimulated negative control.

Details of the ADNKA assay are described elsewhere.[34] In short, NKr.CCR5 (CEM) cells infected with HIV (iCEM; from the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH, Germantown MD, USA, from Dr. Alexandra Trkola) cells, recombinant gp120 (HIV-1 Env rgp120 from HIV-1Bal), and HIVIG pooled plasma from HIV infected donors

(Catalog #3957, HIV-IG from NABI and NHLBI) were obtained from the NIH AIDS Reagent Program. 1×10^6 cells (50 µL) iCEM cells and 50 µL of pre-diluted opsonizing Abs (HIV+Ig or HIV-Ig, 50 µg/mL in R10) were added to the rested PBMCs (effector) in V-bottom 96-well plates (E:T ratio of 1:1).

One hour after the initiation of the cocultures, 1.33 µL (final dilution of 1:1500) of GolgiStop[™] (pre-diluted 1:10 in PBS; cat. 554724; BD Biosciences, Mississauga, ON, Canada) and 2 µL (final dilution 1:1000) of Golgiplug[™] (pre-diluted 1:10 in PBS; cat. 555029; BD Biosciences, Mississauga, ON, Canada) were added. BV711-conjugated anti-CD107a (5 µL/well; cat. 328640; BioLegend) was also added at the beginning of the coculture. Both the cocultures (HLA^{-/-} and ADNKA) were incubated for six hours at 37°C in a humidified 5% CO2 incubator. After incubation, the plates were wrapped in aluminum foil and stored in a 4°C fridge overnight. The next day, the cells were stained with UV Live/Dead[™] Fixable Blue cell stain kit, as per manufacturer's directions (cat. L34961; Thermofisher, Waltham, MA) and with reagents described in Supplementary Table 1.

3.2. The German cohort

The details of the study population and skin biopsy procedures are summarized elsewhere.[12] In short, 382 participants were screened and 117 women (median age of 52 years, range: 22-75 years) with FMS were enrolled. Six mm skin punch biopsies were obtained from the right lateral lower leg and upper thigh of the participants. The skin biopsies from 17 FMS patients and 11 controls were randomly selected for this study. The project was approved by the Ethics Committee of the University of Würzburg, Medical Faculty Germany, (#121/14), and all study participants gave written informed consent.

3.2.1. Skin microscopy

Twenty µm thick sections were prepared and two sections were loaded per slide. The slides were blocked with 10% bovine serum albumin (BSA) in phosphate buffer saline (PBS) for 30 minutes at room temperature. Anti-ULBP goat monoclonal antibody(mAb,1:50; R&D 1298), anti-CD3 (168; BIO-RAD, MCA1477) with rat anti-human 1:500 with Cy3 (54; Dianova, 112-165-167), goat anti-rat 1:100 and anti-CD56 goat mAb (1:100; R&D AF2408) along with PGP9.5 rabbit anti-human mAb (1:200; Zytomed 516-3344) were used as primary antibodies in 10% BSA/PBS and 0.3 Triton. The sections were incubated overnight at 4°C with the primary antibodies. Followed by incubation, staining was performed with Cy3 donkey anti-goat mAb (1:50; Dianova 705-165-147) and Alexa Fluor 488 donkey anti-rabbit mAb (1:400; Dianova 711-545-152). Nuclei were stained with 1.5 µg/mL 4',6-diamidino-2-phenylindole di-lactate (DAPi), and Vectashield[™] (Vectorlabs, H-1000-10) was used as mounting medium. Quantification of intra-epidermal nerve fiber deficiency (IENFD), ULBP+ sup-epidermal plexus (SEP), and CD56+ nucleated cells was performed by an independent investigator blinded to subject group allocation. IENFD was assessed on an Axioplot™ microscope (Zeiss, Oberkochen, Germany) and was defined as normal if there were ≥ 5.4 fibers/mm. All other Immunofluorescence microscopy was performed on ApoTome™ microscope (Zeiss, Oberkochen, Germany). Both the microscopes were equipped with an AxioCam[™] MRm camera (Zeiss) and SPOT software (Diagnostic Instruments, Sterling Heights, MI) was used. The area of interest was 100 µm from the dermis-epidermis border. All the assessments were performed with a 40x objective and optical sectioning. Images from the whole sample were Z-stacked to follow the nerve fibers and NK cells. The

subepidermal neural plexus (SEP), located in the zone of 100 µm from the basement membrane, were counted regardless of the individual length of nerve segments. Then, each segment was checked for ULBP positivity one by one, as the ratio and degree of ULBP staining of SEP could show variability even within a section. If the shape of SEP could be distinguished from the ground, they were marked as positive regardless of their staining strength. Then, the percentage of ULBP positive SEP was calculated by dividing the number of ULBP stained SEPs by the number of total SEPs. The CD56⁺ NK cells, which were alone or in contact with subepidermal neural plexus segments, were counted manually. As Schwann cells may also be stained by CD56, the cells that had a discusshaped nucleus were excluded.

3.3. Data analysis

3.3.1. Flow cytometry

Flow cytometry data was compensated using Flowjo v10.7.3 (Treestar, Ashland, OR). Cells of interest were identified as per the gating strategy described in Supplementary Figure 2. Data from all five flow cytometry panels were analyzed using VoPo[35]. In brief, the cells were clustered into coherent subpopulations based on the expression of all cell phenotype markers using a robust bootstrapped meta-clustering algorithm. A random forest algorithm was applied to the dataset comprised of all cell cluster features to estimate the magnitude of differences in features separating the controls from the patients. Using a leave-group-out cross-validation procedure the Random Forest model predicted the probability that each sample belonged to the patient group. The p-value (p) from a Wilcoxon Rank Sum Test was used to test the null hypothesis that the predicted probabilities of a sample to be from a patient or control were equal. As this approach does not rely on an individual cell-to-population partition but instead integrates multiple clustering solutions to predict patient phenotype, it has less variability compared to individual solutions. Finally, cells were projected using t-Distributed UMAP (t-UMAP) into two dimensions for visualization using uwot R package v0.1.9.

3.3.2. Pathway analyses

The Enrichment of hematopoietic cell type activation pathways in FMS patients compared to healthy controls was estimated via two genome-wide approaches, namely at the transcriptomics level and at the genomics level. Total mRNA from the whole blood was sequenced as described earlier, section 3.1.4. The transcriptomics data were mapped on the human genome GRCh37/hg19 using the STAR aligner[36], then featureCount was used to count reads mapped to each gene[37]. The analysis for differential gene expression between FMS and healthy controls performed using DEseq2[38] in each sex separately, then combined using the inverse variance-based approach proposed in METAL[39]. Pathway analyses were performed using the Gene Ontology (GO)[40] for cell types of hematopoietic origin for genes involved in cell activation (December 2020 version from http://baderlab.org/GeneSets) using fgsea.[41]

At the genetics level, we first performed a genome-wide association study (GWAS) in the UK Biobank (UKB) project.[42, 43] Cases were defined as individuals reporting "fibromyalgia" for field 20002 "Non-cancer illness code, self-reported" or with generalized pain all over the body (n=8,086), while controls defined as individuals with no reported pain (n=197,050). The GWAS was computed using SAIGE, taking into account the

disproportionate case-to-control ratio and cryptic relatedness.[44] Sex, age, age squared, genotyping array, dummy-coded recruitment centers, and the largest 40 principal components were used as co-variables. The second GWAS was performed in the HUNT study.[45] There, cases were defined as per the American College of Rheumatology's 2016 criteria (n=2,818), while controls as individuals with no pain (n=16,901). The GWAS was computed using BOLT-LMM[46], with birth-year, sex, genotyping batch, and the first four principle components as co-variables. Single nucleotide polymorphism (SNP)-level summary results from both UKB and HUNT were given as input to MAGMA[47], to derive gene-level summary results for each cohort. MAGMA was used again to perform a metaanalysis of both UKB and HUNT studies, still at the gene level. Finally, the gene-level summary information was used by MAGMA to infer pathway-level summaries in the same GO version as above. Because of enhanced power to detect differences at the transcriptomics level compared to at the genetic level where effect sizes are more subtle, we focused at the genomics level on pathways with "regulation of <cell type> activation", while for genetics we required larger gene sets, so we focused on pathways without the regulation, thus simply "<cell type> activation", where <cell type> is a cell type of hematopoietic origin. The current study was conducted under UK biobank application no. 20802.

3.3.3. Other data analyses

Results from NK activation assays were analyzed using mixed model analyses with age, sex, and BMI as fixed effects, and, batch and sample ID as random effects. R package Ime4 v1.1.26 was used. Analysis of variance (ANOVA) with Tukey's correction and

Pearson's product-moment correlation was used for analyzing skin biopsy results. R package ggplot2 v3.3.2 was used for making the plot. All statistical analyses were performed using R v4.0.3. Lastly, the entire experiment plan is illustrated in Figure 1.

Figure III-1: The summary of the experimental flow. Whole blood from the Canadian cohort was split for isolating peripheral blood mononuclear cells (PBMCs) and for mRNA **PBMCs** aliquoted for cryopreservation and seauencina. were used for immunophenotyping using flow cytometry and NK activation assays. mRNA was isolated and sequenced from the whole blood of the same cohort and was used for differential pathways analysis using Gene Ontology (GO) database. GWAS results derived from the UK biobank and the HUNT cohorts and were used along with the differential pathways analysis using Gene Ontology (GO) database as well. Microscopic analysis was performed on the skin biopsies from the German cohort. (Created with BioRender.com)

4. Results

4.1. Characteristics of the Canadian cohort

The blood samples were collected from 90 participants, of which 44 were diagnosed as fibromyalgia patients. Similar to the previously reported prevalence of FMS[2], 97.7% of the cases were women. Hence, the majority of the recruited controls were women (91.3%) to match the number of cases. Mean age and BMI did not differ significantly between the control group and the FMS patients.

FMS patients had significantly higher pain scores, a higher proportion of their days were in pain, and had more painful body sites than the controls. Cases were 2.9 times more likely to suffer from headaches (p-value: 0.023), 4.5 times more likely to suffer from abdominal cramps (p-value: 0.0008), and 5.3 times more likely to suffer from depression (p-value: 0.0005). Fatigue and poor sleep quality were more common among the cases. The detailed description of the study population is summarized in Table 1.

Table 1: Characteristics of the Canadian cohort						
	Controls (n = 46)	Cases (n = 44)	Total (N = 90)	p-value		
Age				0.960		
Mean (SD)	55.6 (9.7)	55.5 (8.3)	55.6 (9.0)			
Range	40.0 - 77.0	40.0 - 73.0	40.0 - 77.0			
Gender				0.361		
Women	42 (91.3%)	43(97.7%)	85 (94.4%)			
Men	4 (8.7%)	1 (2.3%)	5 (5.6%)			
BMI				0.170		
N-Miss	3	2	5			
Mean (SD)	26.4 (5.8)	28.4 (7.8)	27.3 (6.6)			
Range	17.9 - 40.9	18.8 - 57.1	17.9 - 57.1			
Highest pain †				< 0.001		
Mean (SD)	2.7 (6.3)	24.9 (19.9)	13.5 (18.3)			
Range	0.0 - 28.5	1.0 - 90.0	0.0 - 90.0			

Average pain ^{\dagger}				< 0.001
Mean (SD)	2.4 (4.5)	17.6 (13.6)	9.7 (12.5)	
Range	0.0 - 24.0	0.0 - 52.5	0.0 - 52.5	
Lowest pain [†]				< 0.001
Mean (SD)	1.0 (2.7)	6.7 (8.8)	3.8 (7.0)	
Range	0.0 - 15.0	0.0 - 50.0	0.0 - 50.0	
% day in pain [*]				< 0.001
Mean (SD)	37.3 (44.6)	96.2 (17.6)	65.7 (45.2)	
Range	0.0 - 100.0	12.0 - 100.0	0.0 - 100.0	
No. of painful sites [*]				< 0.001
N-Miss	0	1	1	
Mean (SD)	2.8 (3.0)	13.0 (3.5)	7.7 (6.1)	
Range	0.0 - 12.0	5.0 - 19.0	0.0 - 19.0	
Headache [*]				0.023
No	20 (44.4%)	9 (21.4%)	29 (33.3%)	
Yes	25 (55.6%)	33 (78.6%)	58 (66.7%)	
Abdominal cramps [*]				< 0.001
No	29 (64.4%)	12 (28.6%)	41 (47.1%)	
Yes	16 (35.6%)	30 (71.4%)	46 (52.9%)	
Depression [*]				< 0.001
No	38 (84,4%)	21 (50.0%)	59 (67.8%)	
Yes	7 (15.6%)	21 (50.0%)	28 (32.2%)	
Fatigue [*]	()	(******)		< 0.001
No problem	12 (26.7%)	0 (0.0%)	12 (13.8%)	
Slight or mild problem	25 (55.6%)	5 (11.9%)	30 (34.5%)	
Moderate problem	2 (4.4%)	7 (16.7%)	9 (10.3%)	
Severe problem	6 (13.3%)	30 (71.4%)	36 (41.4%)	
Trouble thinking/remembering				< 0.001
No problem	25 (55.6%)	1 (2.4%)	26 (29.9%)	
Slight or mild problem	17 (37.8%)	16 (38.1%)	33 (37.9%)	
Moderate problem	0 (0.0%)	2 (4.8%)	2 (2.3%)	
Severe problem	3 (6.7%)	23 (54.8%)	26 (29.9%)	
Overall sleep quality[#]				< 0.001
Very good	11 (24.4%)	3 (7.1%)	14 (16.1%)	
Fairly good	26 (57.8%)	9 (21.4%)	35 (40.2%)	
Fairly bad	7 (15.6%)	17 (40.5%)	24 (27.6%)	
Very bad	1 (2.2%)	13 (31.0%)	14 (16.1%)	
Waking up tired (unrefreshed) [*]				< 0.001
No problem	19 (42.2%)	1 (2.4%)	20 (23.0%)	
Slight or mild problem	19 (42.2%)	2 (4.8%)	21 (24.1%)	
Moderate problem	2 (4.4%)	6 (14.3%)	8 (9.2%)	
Severe problem	5 (11.1%)	33 (78.6%)	38 (43.7%)	

[†] Global assessment of pain (GAP); * Patient Self-report Survey for the Assessment of Fibromyalgia; #component 1 of Pittsburgh Sleep Quality Index (PSQI); BMI: body mass index; SD: standard deviation; N-Miss: no. of missing data points.

4.2. Assessment of immune cell subsets in fibromyalgia We started with analyzing differential immunophenotypes of the PBMCs in FMS compared to matched cases in a hypothesis-free manner. No significant batch effects between flow cytometry runs were observed as there were no evident batch-specific cell clusters on the t-SNE plot (Supplementary Figure 3A). Neither the total cell count nor the viability differed between FMS cases and controls (t = -1.08, p-value = 0.283 and t = 0.87, p-value = 0.388; Supplementary Figure 3B and 3C, respectively). Assignment of PBMC phenotypes was based on the presence of expression of various immunophenotypical markers (supplementary figures 4-8).

With the available choice of markers, we were able to evaluate T helper cell subsets (Th1, Th2, Th17, and Treg), T cytotoxic cells (Tc1, Tc2, and Tc17), B cell subsets (plasmablast, naïve, translational, marginal zone, and memory B cells), monocyte subsets (classical, intermediate and non-classical), dendritic cells (DC, plasmacytoid DC and myeloid DC), NK cell subsets (CD56^{bri}, transitional and terminal NK cells), and, NKT cells (CD4+ and CD8+ NKTs). Cyto panel, chemo panel, Treg panel, BMD panel, and NK panel had 10, 12, 11, 14, and 14 markers, respectively, apart from viability staining. To quantify novel immune cells, unsupervised gating strategies were implemented, which in theory, could explore 39,936 immune cell subsets. (with 10, 12, 11, 14 and 14 markers per panel, $2^{10} + 2^{12} + 2^{11} + 2^{14} + 2^{14}$ marker combinations are possible.) Single cells across samples were projected into two dimensions using t-distributed UMAP for all the panels (Figure 2). Among all the PBMCs investigated, NK cell subsets were best able to differentiate FMS

cases and controls (p-value < 10^{-4}). Specifically, there were significantly fewer circulating CD56^{bri} NK cells in FMS patients (Figure 2E).

Figure III-2: Differential abundance of immune cells in fibromyalgia syndrome (FMS) compare to controls. Single cells across samples were projected into two dimensions using t-distributed UMAP in the Cyto (a), Chemo (b), Treg (c), BMD (d) and NK (e) flow cytometry panel datasets. Cells were colored by their computed differentiation score, which depicts the degree of association with FMS, where lighter the color, more significant is the association. The direction of frequency differences between case and control samples is shown in Figures f-j where red and blue represent increased and decreased frequencies in cases, respectively.

4.3. State of circulating NK cells in fibromyalgia

As depletion of circulating NK cells was associated with FMS, we examined a number of the surface markers on NK cells: CD16, CD107a, TIGIT, CD96, CD226, CD158e, CD159a, CD159c, and CD314. We observed the difference in expression of CD16, CD107a, TIGIT, CD96, and CD226 with type I error < 5%. Specifically, circulating NK cells had decreased surface expression of CD16, and, increased surface expression of

degranulation marker, CD107a, and TIGIT (Figure 3), suggesting a hyperactive state of NK cells in FMS.

Figure III-3: Differential states of NK cell subsets in fibromyalgia syndrome compare to controls. The direction of differences in expression between case and control samples for CD16, CD107a, TIGIT, CD96 and CD226 are shown in figures a-e. Red and blue represent increased and decreased frequencies in cases, respectively.

Next, we investigated if the *in-vitro* activation profile of the circulating NK cells from FMS patients differed from that of the controls. Two assays to activate NK cells were implemented. Co-culturing with HLA^{-/-} cells stimulates NK cells to reveal their direct cytotoxicity functional potential. Whereas, antibody-dependent NK cell activation

(ADNKA) measures NK cell activation following incubation with Ab opsonized targets cells. Alive CD3⁻CD14⁻CD19⁻ but CD16⁺CD56⁺ were identified as NK cells (Supplementary Figure 9a). Responses measured by CCL4, CD107a, and IFN_γ production were quantified as the proportion of NK cells positive for the aforesaid markers. A typical response of stimulated and unstimulated cells for CCL4, CD107a, and IFN_γ production is shown in Supplementary Figure 9B, 9C, and 9D, respectively. There were no differences in CCL4+, CD107a+ and IFN_γ+ NK cells proportions between FMS cases and controls in unstimulated samples (t-stat = 1.33, 0.98 and 0.18, and, p-value = 0.19, 0.33 and 0.86 for CCL4+, CD107a+ and IFN_γ+ NK cells, respectively; Supplementary Figures 10a-c). Incubation of NK cells with activating stimuli led to significant increase in expression of CCL4, CD107a and IFN_γ (t-stat = 13.30, 15.35 and 6.52, and, p-value = 2.8×10^{-24} , 1.9×10^{-28} and 2.6×10^{-9} for CCL4+, CD107a⁺ and IFN_γ+ NK cells, respectively; Supplementary Figures 11a-c).[48]

Response to activating stimulus, HLA^{-/-} cells, differed between FMS patients and controls. Significantly more NK cells of FMS patients became CCL4⁺ (β = 13.98, p-value = 0.02; Figure 7A) and CD107a⁺ (β = 17.04, p-value = 0.0006, Figure 4b) after activation. IFNγ response did not differ between FMS cases and controls in HLA^{-/-} assay (β = 0.13, p-value = 0.96, Figure 4c). ADNKA assay did not show statistically significant difference between cases and controls, although similar trends of hyperactive response in FMS cases were seen for CCL4 and CD107a response (β = 2.00, 10.27 and -1.63, and, p-value = 0.67, 0.10 and 0.55 for CCL4⁺, CD107a⁺ and IFNγ⁺ NK cells, respectively; Figures 4d-f).

Figure III-4: NK cells activation assay in fibromyalgia syndrome (FMS) and control subjects. The NK cells were co-cultured with either I. Human Leukocyte Antigen null (HLA^{-/-}) cell line or II. opsonized HIV+ cells (antibody-dependent NK activation (ADNKA) assay). Changes between unstimulated and stimulated NK cells in expression of NK activation markers, CCL4 (a and d), CD107a (b and e) and IFN_Y (c and f) are shown. Green boxplot depicts controls and red boxplots depicts FMS cases. Whiskers represent interquantile range, horizontal black lines represent group medians. Green and red lines connect group means of controls and FMS cases, respectively. P-values and β values represent the interaction term: *condition x case-status* of the mixed model with age, sex and BMI as fixed effects, and, batch and sample ID as random effects. UNSTIM: unstimulated; STIM: stimulated.

4.4. Enriched immune cell type activation pathways in fibromyalgia

To corroborate our findings of circulating NK cell activation in FMS, mRNA was extracted from the peripheral whole blood of FMS patients and controls of the Canadian cohort and was sequenced using Illumina's NovaSeq[™] 6000 S2 SR100 platform. Pathway analysis was performed on the differentially expressed genes to test for enrichment of immune cell activation pathways. At the whole blood transcriptomics level, FMS patients showed significant enrichment for cell activation and with strongest and only significant contribution by NK cell activation pathways (enrichment scores of 0.26 and 0.5 with FDR 0.02 and 0.06, respectively, Figure 5A). Similarly, at the genetics level, a meta-analysis of the GWAS summary results from both UKB and HUNT, FMS patients showed significant enrichment for cell activation pathway primarily driven by activation of NK cells (FDR=0.02 and 0.05 for cell activation and NK cell activation, respectively, Figure 5B).

Figure III-5: Enrichment of hematopoietic cell type activation pathways in FM patients compared to healthy controls. (A) Enrichment at the genomics level, from transcriptomics of white blood cells from the Canadian cohort. (B) Enrichment at the genetics level, from combined genome-wide association studies in the UKB and the HUNT.

Abbreviations for cell types are natural killer (NK), alpha-beta ($\alpha\beta$), and gamma-delta ($\delta\gamma$).

4.5. Peripheral recruitment of NK cells in fibromyalgia

Peripheral nerve pathologies are often reported in fibromyalgia syndrome.[49] Hence, we hypothesized that depletion of circulating NK cells, and, its activated and exhausted profile is associated with its recruitment to and consequent degeneration of peripheral nerves in FMS patients. Using immunofluorescent microscopy, we found increased expression of NK activation ligand, UL16 binding protein (ULBP) in the subepidermal nerve plexus of FMS patients (Figure 6A and B). Moreover, recruitment of NK cells (nucleated CD56⁺ cells) near peripheral nerves was seen in the skin biopsies of FMS patients but not in control (Figure 6C and D). Keratinocytes and subepidermal nerves are

expected to express ULBP[50] (Figure 6A and B) and CD56[51] (Figure 6C and D), respectively.

When evaluated quantitatively, there were significantly more ULBP+ subepidermal plexus in FMS patients (p-value = 0.01, Figure 6E). Interestingly, this increased ULBP expression in FMS was not associated with the diagnosis of intra-epidermal nerve fiber (IENF) deficiency (p-value = 0.91, Supplementary Figure 12). ULBP expression was also correlated with Fibromyalgia Severity Questionnaire (FSQ) scores ($\rho = 0.5$, p-value = 0.01, Figure 6H). Although recruitment of NK cells was not significantly associated with the case-status (Figure 6F), it was correlated with ULBP expression on the nerves ($\rho = 0.5$, p-value = 0.5, p-value = 0.01, Figure 6G) and was significantly associated with FSQ score ($\rho = 0.4$, p-value = 0.04, Figure 6I).

Figure III-6: ULBP expression and NK cell recruitment at the peripheral nerves are associated with FMS

Immunostaining of the skin from (A) a control and (B) an FMS patient with nerves stained with anti-PGP9.5 (red) and NK activation ligand stained with anti-ULBP (green). High magnification image of the area in the white dashed box shows co-staining (marked with arrows) of PGP9.5 and ULBP in FMS but not in control. White dashed ovals show SEP. (C) and (D) are micro-images from a control and an FMS patient stained for PGP9.5 (green), nuclei (DAPI in blue) and CD56 (red). Arrows mark NK cells seen in proximity of an SEP in FMS but not in control. Boxplots showing distribution of (E) ULBP+ SEP and (F) SEP with NK cells, stratified by case-status. Whiskers represent standard errors and numbers are the p-values derived from Welch's two-sample t-test. (G) depicts correlation between NK cells and ULBP near SEP. (H) and (I) show correlations between ULBP expression on SEP and red depict controls (n=11) and FMS cases (n=17), respectively. Linear regression and it's 95% confidence interval are shown as a black line and gray shaded area, respectively. Numbers denote p-values from Kendall's rank correlation. *p < 0.05.

FMS: fibromyalgia syndrome; ULBP: UL16 binding protein; SEP: Subepidermal plexus; NK: natural killer; IENFD: intra-epidermal nerve fiber deficiency; FSQ: fibromyalgia screening

5. Discussion

Although a recent meta-analysis showed upregulated immune-inflammatory and compensatory immune-regulatory system in FMS, the precise involvement of the immune system in the pathogenesis of FMS remains elusive.[52] At the cellular level, previous studies have demonstrated alternation of several blood cell types,[53, 54] including depletion of circulating NK cells[53, 54] in FMS patients. Furthermore, NK cell activity has been shown to correlate negatively with right hemisphere activity in the secondary somatosensory and motor cortices, thalamus, and, bilaterally related to activity in the posterior cingulate cortex in FMS.[55] Here, we employed the unbiased multiparametric flow cytometry data from all the PBMCs to evaluate immune cell subset contributions to FMS. We found that the circulating NK cells display the strongest difference between

FMS cases and controls. Specifically, we found the circulating CD56^{bri} NK subset to be depleted in FMS patients.

We have explored the differential state of circulating NK cells and found that these cells were exhausted yet activated in FMS patients with decreased CD16 expression, and increased CD107a and TIGIT expression. Similar to CD16 expression, decreased expression of CD226 (DNAX Accessory Molecule-1, DNAM-1) and CD96 (T Cell-Activated Increased Late Expression Protein, TACTILE) are associated with NK cell activation.[56] This profile of circulating NK cells is typically associated with their prolonged activation and exhaustion.[57, 58]

We then questioned where the CD56^{bri} NK cells can be redistributed and hypothesized that they are recruited to peripheral nerves in FMS patients where they consequently degenerate the peripheral nerves. This hypothesis was based on the high prevalence of small fiber neuropathy in FMS patients ranges from 45-59%, depending on the method of estimation.[49, 59] Most FMS patients show a variable degree of intraepidermal nerve fiber deficiency, irrespective of neuropathy.[8] Ligands for the activating NK receptor, CD314, MHC class I chain-related protein A (MICA) and B (MICB), and UL16-binding proteins (ULBP1-6) are not physiologically expressed on mature sensory neurons.[60] Nevertheless, extravasation of circulating NK cells and its CD314 (NKG2D)-mediated recruitment is associated with partially damaged peripheral nerves in mice.[60] We have identified a higher expression of NK activation ligand, ULBP, on the peripheral nerves of FMS patients. Being derived from an independent FMS cohort, our

immunofluorescence data on ULBP expression and NK cell's peripheral recruitment validates our initial discovery and hypothesis of the potential re-distribution of NK cells from the circulation to the peripheral nerves.

Based on our results, we propose a new heuristic model of the pathogenesis of FMS (Figure 7). According to this model, in FMS, peripheral nerves express NK activation ligand(s), leading to the extravasation and peripheral recruitment of circulating NK cells. Notably, ULBP expression on the intraepidermal nerve fibers is associated with FMS caseness both with and without IENF deficiency (Figure 8a) and there is only a weak anti-correlation between ULBP expression and IENF density ($\rho = -0.4$, p-value = 0.07, Figure 8g). However, because of the significant association of ULBP expression with FMS severity (Figure 8d), it is possible that in some FMS patients even when the nerves are being marked by ULBP for removal by the NK cells, they continue to regrow, masking IENF deficiency but not preventing the pain symptoms. Lastly, the site of this neuroimmune interaction between NK cells and subepidermal nerve plexuses could justify some of the dermatological manifestations[48] of FMS. Nevertheless, the cause of NK-ligand expression on the peripheral nerve of FMS patients is unknown and will require

further investigation. Moreover, it is unclear if ULBP expression is a cause, consequence, or exacerbator of the nerve damage in FMS.

There are striking similarities between FMS and other autoimmune diseases.[61] A recent study has demonstrated that FMS pain is caused by IgG autoantibodies that sensitize peripheral sensory neurons, thus providing direct evidence favoring autoimmunity in FMS.[62] NK cells play multiple crucial roles in linking innate and adaptive immune responses to either promote or protect against the onset of autoimmune conditions. Reduction in peripheral blood NK cells reported in autoimmune patients is related to their

Figure III-7: Heuristic model of natural killer (NK) cells' contribution to fibromyalgia syndrome (FMS) pathogenesis. Compare to controls (a), FMS patients (b) express the natural killer (NK) activation ligand on the peripheral nerves, promoting extravasation, recruitment, and activation of the circulated NK cells. (Created with BioRender.com)

trafficking to damaged tissues[63]. CD56^{bri} NK cell subset has been shown to play a role

in different disease states, such as cancer, neuroinflammation, and infection.[64] In addition, the CD56^{bri} NK cell subset has been associated with tissue-specific recruitment in multiple autoimmune diseases.[63, 64] Hence, our results can provide an additional link to the autoimmune hypothesis of FMS. Nevertheless, the most important piece of this puzzle, the antigen invoking immune response in FMS remains to be discovered.

Transcriptomics data from the whole blood show that FMS shares similarities with infectious diseases, autoimmune diseases like rheumatoid arthritis and multiple sclerosis, malignancies, and neurodegenerative diseases. NK cell activation and exhaustion have been reported in various infections, chronic inflammation conditions, autoimmune disorders, and cancers.[65] Hyperactivation of NK cells, as was observed in our *in-vitro* activation assay for FMS patients (Figure 4), has been reported in multiple autoimmune diseases.[63]

It is important to stress that although our findings suggest a critical role of NK cells in the pathogenesis of FMS, it does not exclude the possibility that other immune cell types could also contribute to this process in either consequent, inter-dependent, or independent manner. Our flow cytometry, genetics, and transcriptomics data support immune dysregulation in FMS where NK cell-neuron interaction could be a partial explanation for FMS etiopathogenesis. The contribution of multiple immune cells to chronic inflammation that drives neurodegeneration has been reported[66] when the role of NK cells in neurodegeneration and pain modulation is only recently been recognized[60]. Hence, Immune system exploration using holistic approaches such as immune cell profiling with mass cytometry and single-cell RNA sequencing in FMS over

the course of the disease development are needed to further explore the immune system's involvement in FMS. Similarly, the causes of NK activation ligand expression by peripheral nerves in FMS warrants further investigations.

To conclude, this study identified a novel neuro-immune interface between peripheral nerves and NK cells in FMS patients that suggests a mechanism for FMS pathogenesis and a new direction in the development of therapeutic options to treat this poorly managed syndrome.

6. Conflict of interest statement

The authors have no conflicts of interest to declare.

7. Supplemental content

Supplemental content associated with this manuscript is attached as Appendix 3 of this thesis.

8. Acknowledgments

We would like to express our gratitude towards the research participants in Canada and Germany. We acknowledge critical support from the RI-MUHC, REDCap support team, flow cytometry facility of McGill University and RI-MUHC immunophenotyping platforms, Nicol Bernard's lab, and, the clinical research staff of RI-MUHC and AECRP. This work was supported by Canadian Excellence Research Chairs (CERC) program, (Grant number: CERC09). We would like to thank Dr. Sonia Néron, Dr. Megan Levings, and Dr. Natalie Stanley for their consultation.

9. References

Clauw DJ. Fibromyalgia: a clinical review. JAMA-J Am Med Assoc.
 2014;311(15):1547-55. Epub 2014/04/17. doi: 10.1001/jama.2014.3266

Queiroz LP. Worldwide epidemiology of fibromyalgia. Curr Pain Headache Rep.
 2013;17(8):356. Epub 2013/06/27. doi: 10.1007/s11916-013-0356-5

3. Creed F. A review of the incidence and risk factors for fibromyalgia and chronic widespread pain in population-based studies. Pain. 2020;161(6):1169-76. Epub 2020/02/11. doi: 10.1097/j.pain.000000000001819

Arnold LM, Bennett RM, Crofford LJ, Dean LE, Clauw DJ, Goldenberg DL, et al.
 AAPT Diagnostic Criteria for Fibromyalgia. J Pain. 2019;20(6):611-28. doi:
 10.1016/j.jpain.2018.10.008

5. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Hauser W, Katz RS, et al. Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. J Rheumatol. 2011;38(6):1113-22. Epub 2011/02/03. doi: 10.3899/jrheum.100594

 Borchers AT, Gershwin ME. Fibromyalgia: A Critical and Comprehensive Review. Clinical Reviews in Allergy & Immunology. 2015;49(2):100-51. Epub 2015/10/09. doi: 10.1007/s12016-015-8509-4

 Cagnie B, Coppieters I, Denecker S, Six J, Danneels L, Meeus M. Central sensitization in fibromyalgia? A systematic review on structural and functional brain MRI. Seminars in Arthritis and Rheumatism. 2014;44(1):68-75. Epub 2014/02/11. doi: 10.1016/j.semarthrit.2014.01.001

 Vecchio E, Lombardi R, Paolini M, Libro G, Delussi M, Ricci K, et al. Peripheral and central nervous system correlates in fibromyalgia. Eur J Pain. 2020;24(8):1537-47.
 Epub 2020/06/02. doi: 10.1002/ejp.1607

 Yunus MB. Editorial Review: An Update on Central Sensitivity Syndromes and the Issues of Nosology and Psychobiology. Current Rheumatology Reviews.
 2015;11(2):70-85. Epub 2015/07/04. doi: 10.2174/157339711102150702112236

10. Evdokimov D, Dinkel P, Frank J, Sommer C, Uceyler N. Characterization of dermal skin innervation in fibromyalgia syndrome. PLoS One. 2020;15(1):e0227674. Epub 2020/01/14. doi: 10.1371/journal.pone.0227674

 Caro XJ, Winter EF. Evidence of abnormal epidermal nerve fiber density in fibromyalgia: clinical and immunologic implications. Arthritis Rheumatol.
 2014;66(7):1945-54. Epub 2014/04/11. doi: 10.1002/art.38662

12. Evdokimov D, Frank J, Klitsch A, Unterecker S, Warrings B, Serra J, et al. Reduction of skin innervation is associated with a severe fibromyalgia phenotype. Ann Neurol. 2019;86(4):504-16. Epub 2019/08/04. doi: 10.1002/ana.25565

13. Kosehasanogullari M, Erdinc Gunduz N, Akalin E. Is Fibromyalgia Syndrome a Neuropathic Pain Syndrome? Arch Rheumatol. 2019;34(2):196-203. doi:
10.5606/ArchRheumatol.2019.7244

14. Caro XJ, Winter EF, Dumas AJ. A subset of fibromyalgia patients have findings suggestive of chronic inflammatory demyelinating polyneuropathy and appear to respond to IVIg. Rheumatology (Oxford). 2008;47(2):208-11. Epub 2008/01/23. doi: 10.1093/rheumatology/kem345

Baraniuk JN, Zheng Y. Relationships among rhinitis, fibromyalgia, and chronic fatigue. Allergy Asthma Proc. 2010;31(3):169-78. Epub 2010/07/10. doi: 10.2500/aap.2010.31.3311

16. Baraniuk JN, Clauw D, Yuta A, Ali M, Gaumond E, Upadhyayula N, et al. Nasal secretion analysis in allergic rhinitis, cystic fibrosis, and nonallergic fibromyalgia/chronic fatigue syndrome subjects. Am J Rhinol. 1998;12(6):435-40. Epub 1999/01/12. doi: 10.2500/105065898780707964

17. Tuncer T, Butun B, Arman M, Akyokus A, Doseyen A. Primary fibromyalgia and allergy. Clin Rheumatol. 1997;16(1):9-12. Epub 1997/01/01. doi: 10.1007/BF02238757

 Giacomelli C, Talarico R, Bombardieri S, Bazzichi L. The interaction between autoimmune diseases and fibromyalgia: risk, disease course and management. Expert Rev Clin Immunol. 2013;9(11):1069-76. Epub 2013/10/31. doi:

10.1586/1744666X.2013.849440

Clauw DJ. Fibromyalgia and related conditions. Mayo Clin Proc. 2015;90(5):680 Epub 2015/05/06. doi: 10.1016/j.mayocp.2015.03.014

20. Zhang Z, Feng J, Mao A, Le K, La Placa D, Wu X, et al. SNPs in inflammatory genes CCL11, CCL4 and MEFV in a fibromyalgia family study. PLoS One. 2018;13(6):e0198625. Epub 2018/06/22. doi: 10.1371/journal.pone.0198625

21. Han CL, Sheng YC, Wang SY, Chen YH, Kang JH. Serum proteome profiles revealed dysregulated proteins and mechanisms associated with fibromyalgia syndrome in women. Sci Rep. 2020;10(1):12347. Epub 2020/07/25. doi: 10.1038/s41598-020-69271-w

22. Lukkahatai N, Walitt B, Espina A, Wang D, Saligan LN. Comparing Genomic Profiles of Women With and Without Fibromyalgia. Biol Res Nurs. 2015;17(4):373-83. Epub 2015/05/28. doi: 10.1177/1099800415589785

23. Behm FG, Gavin IM, Karpenko O, Lindgren V, Gaitonde S, Gashkoff PA, et al. Unique immunologic patterns in fibromyalgia. BMC Clin Pathol. 2012;12:25. Epub 2012/12/19. doi: 10.1186/1472-6890-12-25

24. Macedo JA, Hesse J, Turner JD, Ammerlaan W, Gierens A, Hellhammer DH, et al. Adhesion molecules and cytokine expression in fibromyalgia patients: increased L-selectin on monocytes and neutrophils. J Neuroimmunol. 2007;188(1-2):159-66. Epub 2007/07/03. doi: 10.1016/j.jneuroim.2007.06.002

25. Sluka KA, Clauw DJ. Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience. 2016;338:114-29. Epub 2016/10/27. doi:

10.1016/j.neuroscience.2016.06.006

26. Dupont WD, Plummer WD, Jr. Power and sample size calculations. A review and computer program. Control Clin Trials. 1990;11(2):116-28. Epub 1990/04/01. doi: 10.1016/0197-2456(90)90005-m

27. Russell IJ, Vipraio GA, Michalek JE, Craig FE, Kang YK, Richards AB.
Lymphocyte markers and natural killer cell activity in fibromyalgia syndrome: effects of low-dose, sublingual use of human interferon-alpha. J Interferon Cytokine Res.
1999;19(8):969-78. Epub 1999/09/07. doi: 10.1089/107999099313523

28. Carlsson AM. Assessment of Chronic Pain .1. Aspects of the Reliability and Validity of the Visual Analog Scale. Pain. 1983;16(1):87-101. doi: Doi 10.1016/0304-3959(83)90088-X

29. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow

process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-81. doi: 10.1016/j.jbi.2008.08.010

30. Tripodi D, Lyons S, Davies D. Separation of peripheral leukocytes by Ficoll density gradient centrifugation. Transplantation. 1971;11(5):487-8. Epub 1971/05/01. doi: 10.1097/00007890-197105000-00010

31. Brummelman J, Haftmann C, Nunez NG, Alvisi G, Mazza EMC, Becher B, et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat Protoc. 2019;14(7):1946-69. Epub 2019/06/05. doi: 10.1038/s41596-019-0166-2

32. Lemieux J, Jobin C, Simard C, Neron S. A global look into human T cell subsets before and after cryopreservation using multiparametric flow cytometry and twodimensional visualization analysis. J Immunol Methods. 2016;434:73-82. doi: 10.1016/j.jim.2016.04.010

33. Tremblay-McLean A, Coenraads S, Kiani Z, Dupuy FP, Bernard NF. Expression of ligands for activating natural killer cell receptors on cell lines commonly used to assess natural killer cell function. BMC Immunology. 2019;20(1):8. doi:

10.1186/s12865-018-0272-x

34. Lisovsky I, Kant S, Tremblay-McLean A, Isitman G, Kiani Z, Dupuy FP, et al. Differential contribution of education through KIR2DL1, KIR2DL3, and KIR3DL1 to

antibody-dependent (AD) NK cell activation and ADCC. J Leukoc Biol. 2019;105(3):551-63. Epub 2019/01/31. doi: 10.1002/JLB.4A0617-242RRR

35. Stanley N, Stelzer IA, Tsai AS, Fallahzadeh R, Ganio E, Becker M, et al. VoPo leverages cellular heterogeneity for predictive modeling of single-cell data. Nat Commun. 2020;11(1):3738. Epub 2020/07/29. doi: 10.1038/s41467-020-17569-8

36. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. Epub 2012/10/30.
doi: 10.1093/bioinformatics/bts635

37. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923-30. Epub 2013/11/15. doi: 10.1093/bioinformatics/btt656

38. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. Epub 2014/12/18. doi: 10.1186/s13059-014-0550-8

39. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26(17):2190-1. Epub 2010/07/10. doi: 10.1093/bioinformatics/btq340

40. Gene Ontology C. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021;49(D1):D325-D34. Epub 2020/12/09. doi: 10.1093/nar/gkaa1113

41. Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene set enrichment analysis. bioRxiv. 2021:060012. doi: 10.1101/060012

42. Allen NE, Sudlow C, Peakman T, Collins R, Biobank UK. UK biobank data: come and get it. Sci Transl Med. 2014;6(224):224ed4. Epub 2014/02/21. doi: 10.1126/scitranslmed.3008601

43. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. Epub 2015/04/01. doi: 10.1371/journal.pmed.1001779

Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, et al.
Efficiently controlling for case-control imbalance and sample relatedness in large-scale
genetic association studies. Nat Genet. 2018;50(9):1335-41. Epub 2018/08/15. doi:
10.1038/s41588-018-0184-y

45. Krokstad S, Langhammer A, Hveem K, Holmen TL, Midthjell K, Stene TR, et al. Cohort Profile: the HUNT Study, Norway. Int J Epidemiol. 2013;42(4):968-77. Epub 2012/08/11. doi: 10.1093/ije/dys095 46. Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjalmsson BJ, Finucane HK, Salem RM, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47(3):284-90. Epub 2015/02/03. doi: 10.1038/ng.3190

47. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11(4):e1004219. Epub 2015/04/18. doi: 10.1371/journal.pcbi.1004219

48. Laniosz V, Wetter DA, Godar DA. Dermatologic manifestations of fibromyalgia.
Clin Rheumatol. 2014;33(7):1009-13. Epub 2014/01/15. doi: 10.1007/s10067-014-24883

49. Martinez-Lavin M. Fibromyalgia and small fiber neuropathy: the plot thickens! Clin Rheumatol. 2018;37(12):3167-71. Epub 2018/09/22. doi: 10.1007/s10067-018-4300-2

50. Jan Chalupny N, Sutherland CL, Lawrence WA, Rein-Weston A, Cosman D. ULBP4 is a novel ligand for human NKG2D. Biochemical and Biophysical Research Communications. 2003;305(1):129-35. doi: 10.1016/s0006-291x(03)00714-9

51. Panicker AK, Buhusi M, Thelen K, Maness PF. Cellular signalling mechanisms of neural cell adhesion molecules. Front Biosci. 2003;8:d900-11. Epub 2003/04/18. doi: 10.2741/1014

52. Andres-Rodriguez L, Borras X, Feliu-Soler A, Perez-Aranda A, Angarita-Osorio N, Moreno-Peral P, et al. Peripheral immune aberrations in fibromyalgia: A systematic review, meta-analysis and meta-regression. Brain Behav Immun. 2020;87:881-9. Epub 2019/12/31. doi: 10.1016/j.bbi.2019.12.020

53. Kwiatkowska KM, Bacalini MG, Sala C, Kaziyama H, de Andrade DC, Terlizzi R, et al. Analysis of Epigenetic Age Predictors in Pain-Related Conditions. Front Public Health. 2020;8:172. Epub 2020/06/26. doi: 10.3389/fpubh.2020.00172

54. Landis CA, Lentz MJ, Tsuji J, Buchwald D, Shaver JL. Pain, psychological variables, sleep quality, and natural killer cell activity in midlife women with and without fibromyalgia. Brain Behav Immun. 2004;18(4):304-13. Epub 2004/05/26. doi: 10.1016/j.bbi.2003.11.001

55. Lekander M, Fredrikson M, Wik G. Neuroimmune relations in patients with fibromyalgia: a positron emission tomography study. Neurosci Lett. 2000;282(3):193-6. Epub 2000/03/16. doi: 10.1016/s0304-3940(00)00901-0

 Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol. 2015;15(4):243-54. Epub 2015/03/07. doi: 10.1038/nri3799

57. Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17

(ADAM17). Blood. 2013;121(18):3599-608. Epub 2013/03/15. doi: 10.1182/blood-2012-04-425397

58. Judge SJ, Murphy WJ, Canter RJ. Characterizing the Dysfunctional NK Cell: Assessing the Clinical Relevance of Exhaustion, Anergy, and Senescence. Front Cell Infect Microbiol. 2020;10:49. Epub 2020/03/03. doi: 10.3389/fcimb.2020.00049

59. Grayston R, Czanner G, Elhadd K, Goebel A, Frank B, Uceyler N, et al. A systematic review and meta-analysis of the prevalence of small fiber pathology in fibromyalgia: Implications for a new paradigm in fibromyalgia etiopathogenesis. Semin Arthritis Rheum. 2019;48(5):933-40. Epub 2018/10/14. doi:

10.1016/j.semarthrit.2018.08.003

60. Davies AJ, Kim HW, Gonzalez-Cano R, Choi J, Back SK, Roh SE, et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell. 2019;176(4):716-28 e18. Epub 2019/02/05. doi: 10.1016/j.cell.2018.12.022

61. Meester I, Rivera-Silva GF, Gonzalez-Salazar F. Immune System Sex Differences May Bridge the Gap Between Sex and Gender in Fibromyalgia. Front Neurosci. 2019;13:1414. Epub 2020/02/06. doi: 10.3389/fnins.2019.01414

62. Goebel A, Gentry C, Cuhadar U, Krock E, Vastani N, Sensi S, et al. Passive transfer of fibromyalgia pain from patients to mice. 2019:713495. doi: 10.1101/713495 %J bioRxiv

Gianchecchi E, Delfino DV, Fierabracci A. NK cells in autoimmune diseases:
 Linking innate and adaptive immune responses. Autoimmun Rev. 2018;17(2):142-54.
 Epub 2017/11/29. doi: 10.1016/j.autrev.2017.11.018

64. Michel T, Poli A, Cuapio A, Briquemont B, Iserentant G, Ollert M, et al. Human CD56bright NK Cells: An Update. J Immunol. 2016;196(7):2923-31. Epub 2016/03/20. doi: 10.4049/jimmunol.1502570

65. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503-10. Epub 2008/04/22. doi: 10.1038/ni1582

 Yang Q, Wang G, Zhang F. Role of Peripheral Immune Cells-Mediated Inflammation on the Process of Neurodegenerative Diseases. Front Immunol.
 2020;11:582825. Epub 2020/11/13. doi: 10.3389/fimmu.2020.582825

IV. Discussion and integrative summary

1. Chronic primary pain

Chronic primary pain (CPP) is defined as pain in one or more anatomical regions that persists or recurs for longer than 3 months and is associated with significant emotional distress or functional disability (interference with activities of daily life and participation in social roles) and that cannot be better accounted for by another chronic pain condition. [1] CPP is idiopathic, meaning, the etiology of CPP remains unknown and the biological findings contributing to the pain problem may or may not be recognized. According to the International Classification of Diseases (ICD) 11th revision[2] by World Health Organization (WHO), major group (MG) 30.0: CPP is further classified as follows:

MG	CONDITION	EXAMPLE
30.00	Chronic primary visceral pain	Chronic primary pelvic pain syndrome
30.01	Chronic widespread pain	Fibromyalgia syndrome
30.02	Chronic primary musculoskeletal pain	Chronic primary lower back pain
30.03	Chronic primary headache or orofacial pain	Chronic primary temporomandibular disorder pain

High co-prevalence and similar epidemiological profile of CPP could be explained by overlapping biopsychosocial vulnerabilities and common underlining mechanisms.[3] In this thesis, we have focused on temporomandibular disorder (TMD) and fibromyalgia syndrome (FMS). The comorbidity of FMS in TMD patients is 24%[4] and 75%[5] of FMS patients suffer from TMD. Along with high co-prevalence between TMD and FMS, the following clinical symptoms of the two CPP conditions overlap considerably[6]:

- i. presence of trigger points in taut bands of muscles
- ii. presence of consistent tender points in defined soft tissue locations
- iii. dull-aching pain
- iv. fluctuating pain intensity
- v. presence of psychological comorbidities such as fatigue, depression, insomnia, and anxiety
- vi. allergic and autoimmune comorbidities[7-12]

All CPP conditions are unequivocally multifactorial syndromes with overlapping pathways of vulnerability.[13] CPP is associated with a prolonged but reversible increase in the excitability and synaptic efficacy of neurons in central nociceptive pathways, known as central sensitization.[14] Nociceptors are the primary sensory neurons innervating skin, muscle, joints, and viscera that selectively respond to noxious or potentially tissue-damaging stimuli.[15] The term, peripheral sensitization is used to describe the hyperexcitability and hypersensitivity of nociceptors which precedes central sensitization. The immune system's involvement in both central and peripheral sensitizations is well

recognized.[16, 17] This thesis describes the involvement of the immune system in CPP modulation using TMD and FMS cohorts as prototypical examples.

2. Epiregulin: an important modulator of pain

Chapter II (The dichotomous role of epiregulin in pain) demonstrates that epiregulin (EREG) is an analgesic during acute stages of pain but contributes to chronic pain. EREG is expressed predominantly in the placenta and peripheral blood leukocytes.[18] Tissue inflammation and repair are complementary biological processes.[19, 20] Even though EREG is classified as a growth factor, multiple studies are favoring its role as an inflammatory mediator. These studies can be summarized in the following categories:

- Increased EREG expression in chronic inflammatory conditions: EREG levels are reported to be increased in:
 - 1.1. Chronic kidney disease[21],
 - 1.2. Hypoxic stress[22],
 - 1.3. UVB-exposed skin[23],
 - 1.4. Multiple sclerosis (MS) and rheumatoid arthritis (RA),[24] and,
 - 1.5. Oral lichen planus[25]
- 2. EREG causes inflammation: EREG is causally associated with inflammation and its expression temporally precedes inflammatory response:
 - 2.1. EREG induces sinus inflammation through matrix metallopeptidase-1 (MMP-1).[26]

- 2.2. EREG induces neuroinflammation through Mitogen-activated protein kinase (MAPK) and Nuclear Factor-kappa B (NF-κB) pathways.[27]
- 2.3. EREG contributes to lung inflammation.[28]
- 2.4. Pro-inflammatory effects of EREG in MS and RA are mediated through interleukin (IL)-6.[24]
- Inflammation induces EREG expression: Various inflammatory mediators are known to increase EREG levels through feed-forward loops:
 - 3.1. IL-1β increases EREG levels.[29]
 - 3.2. Lipopolysaccharides (LPS) induce EREG production through toll-like receptor-4 (TLR-4).[30]
 - 3.3. IL-6 and IL-17 exacerbate EREG transcription and secretion.[31]
 - 3.4. Suppression of inflammation with dexamethasone reduces EREG levels.[32]

Hence, the analgesic role of EREG during acute stages of pain could be at least partially mediated through its inflammatory effects. In other words, inflammation could be protective during the acute stages of pain. This has been observed not only in the UK Biobank dataset, where anti-inflammatory drugs are associated with increased chronic lower back pain but also through animal experiments, where suppressing inflammation with dexamethasone interferes with pain resolution (unpublished). Monitoring the effects of EREG blockage on the systemic biomarkers of inflammation such as plasma levels of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), the levels of TNF α , IL-1 β , and IL-6, and immune cell recruitment at the site of inflammation in inflammatory pain animal models like CFA-induced hyperalgesia could test if the dichotomous role of EREG is indeed mediated through inflammation.

Secondly, it would be appropriate to assume that the observed dichotomy of EREG in pain depends on its site of action and time of release. A recently published study[33] reports that the application of EREG onto the spinal dorsal nerve roots of rats reduced evoked c-fiber responses, but increased spontaneous activity in spinal dorsal horn neurons. This corroborates the findings of Chapter III and supports the hypothesis of timedependent, tissue-specific modulation of pain by EREG. Lastly, the tissue remodeling role of EREG may contribute to its immediate analgesic function while its high concentration and/or prolonged exposure could sensitize the nociceptors. Notably, our results do not suggest that the association between EREG and pain phenotypes is specific to TMD or orofacial pain. We identified an association between EREG SNPs and a number of chronic pain conditions, independent of the anatomical site of the symptom. This suggests that EREG contributes through the mechanisms common for different chronic pain conditions. Nevertheless, a full understanding of the role of EREG in modulating pain severity through the immune and /or nervous system will require simultaneous study of EREG, immune cells, inflammation, and pain responses, both preclinically and clinically.

While Chapter II demonstrates an analgesic role for EREG during the early stages of pain, but an opposite-pronociceptive role in establishing chronic pain, Chapter III deciphers the role of the immune response in another chronic musculoskeletal pain condition fibromyalgia.

3. Peripheral neuroimmune interaction in fibromyalgia

Chapter III (Unbiased immune profiling reveals a Natural Killer cell-peripheral nerve axis in fibromyalgia) describes peripheral neuroimmune interaction in FMS. It shows that FMS is associated with the depletion of circulating NK cells and their activation and exhaustion. In addition, it shows that the peripheral nerves express NK activation ligand, ULBP, which leads to the extravasation and peripheral recruitment of NK cells at subepidermal nerve plexuses in FMS. Cytotoxicity is an essential element of the immune response to infections, cancers, inflammation, and tissue repair. The role of cytotoxic immunity in form of NK cell response to nerve injury and pain modulation has been described only recently.[34, 35] Chapter III advances our understanding of cytotoxic immunity in CPP such as FMS.

Davies A. et. al.[35] has demonstrated that anatomically restricted expression of RAE1 protein, another NK activation ligand, on the peripheral axons of injured sensory neurons, leads to NK cell recruitment and clearance of the damaged nerve fibers in mice. According to this study, NK cell-mediated clearance of damaged nerves protects from pain in the mouse neuropathic pain model. Our results suggest that the expression of ULBP leads to the recruitment of NK cells at the peripheral nerves in FMS. However, expression of ULBP by the peripheral nerves in FMS could either be a cause or consequence of damaged (or potentially damaged) nerves. Cellular stress has been attributed as the cause of CD314 (NKG2D) ligand expression, leading to activation of the NK cells. This

stress could be caused by numerous conditions such as rapid cell replication (either physiological, e.g. embryological development, physiological response to pathology, e.g. repair and regeneration, or pathological, e.g. tumorigenesis), activation of cellular pathways that are associated with infections (e.g. signaling pathways triggered by Toll-like receptors and NOD-like receptors), or metabolic markers of oxidation, aging or chronic inflammation (e.g. oxidized low-density lipoproteins, advanced glycation end product or heat shock proteins).[36] Lastly, EGFR agonism can upregulate the expression of CD314 activation ligands[37] and expression of these ligands could be diminished using anti-EGFR molecules[38]. Hypothetically, EGFR-mediated NK-activation ligand expression could link the findings of Chapter II and Chapter III of this thesis. Nevertheless, this hypothesis warrants further research.

4. Limitations

Like any research project, both the projects described in Chapters II and III of this thesis have their limitations. The EREG project (Chapter II) lacks analyses from a follow-up cohort of pain patients. As at least some individuals identified as acute pain patients would fail to resolve their pain, labeling them as acute patients is inaccurate. Secondly, although we were able to infer the functionality of the EREG gene variants (H2 and H3) through eQTL databases, more definitive functional assays are needed to confirm that H2 and H3 are loss-of-function mutations.

The FMS project (Chapter III) attempts to holistically investigate the contribution of immune cells to FMS. However, due to the limitations of the current experimental design,

granulocytes (neutrophils, basophils, and eosinophils) were excluded from the downstream analyses. Similarly, other innate lymphoid cells (ILC2 and 3) and $\gamma\delta T$ cells were not considered due to the limitations on the number of markers that can be included on the flow cytometry panels. Lastly, I acknowledge that the proposed heuristic model of NK cells' contribution to FMS lacks causal associations to establish NK cells' role in FMS.

5. Conclusion

To conclude, this thesis underscores the importance of the immune system in pain modulation. Firstly, with the example of EREG, we demonstrate that inflammation, a cardinal immune response often associated with chronic pain, could be protective during the early stages of pain development. An important therapeutic implication of this finding would be to use anti-inflammatory drugs with caution in acute pain conditions. Besides, these findings suggest a new non-opioid-based pain management strategy that utilizes EREG-EGFR pathways of pain modulation.

Secondly, this thesis describes the novel pathophysiological roles of NK cells and suggests a heuristic model of NK cells' contribution to FMS pathogenesis. Without preclinical studies to establish causation, it would be too precarious to predict clinical applications of these findings. Nonetheless, it warrants further exploration of the peripheral neuroimmune interactions in FMS.

Overall, both the projects described in Chapters II and III highlight the importance of taking research from "bedside" to bench. In Chapter I, statistical genetic approaches identified the dichotomous role of EREG which stimulated basic science investigation in animal pain

models. Similarly, discoveries of Chapter III are from observational studies in humans and these results are suggestive of animal experiments to develop novel fibromyalgia animal models and subsequent therapies. Consequently, this thesis is a testament to the utility of reverse translational research.

6. References

1. Nicholas M, Vlaeyen JWS, Rief W, Barke A, Aziz Q, Benoliel R, et al. The IASP classification of chronic pain for ICD-11: chronic primary pain. Pain. 2019;160(1):28-37. Epub 2018/12/27. doi: 10.1097/j.pain.000000000001390

International Classification of Diseases 11th Revision: World Health Organization (WHO); [cited 2021, 27-Jan]. 09/2020:[Available from: https://icd.who.int/browse11/l-m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f1326332835.

3. Maixner W, Fillingim RB, Williams DA, Smith SB, Slade GD. Overlapping Chronic Pain Conditions: Implications for Diagnosis and Classification. J Pain. 2016;17(9 Suppl):T93-T107. Epub 2016/09/03. doi: 10.1016/j.jpain.2016.06.002

4. Yunus MB. The prevalence of fibromyalgia in other chronic pain conditions. Pain Res Treat. 2012;2012:584573. Epub 2011/12/23. doi: 10.1155/2012/584573

5. Plesh O, Wolfe F, Lane N. The relationship between fibromyalgia and temporomandibular disorders: prevalence and symptom severity. J Rheumatol. 1996;23(11):1948-52. Epub 1996/11/01.

 Fricton JR. The relationship of temporomandibular disorders and fibromyalgia: implications for diagnosis and treatment. Curr Pain Headache Rep. 2004;8(5):355-63.
 Epub 2004/09/14. doi: 10.1007/s11916-996-0008-0

Baraniuk JN, Zheng Y. Relationships among rhinitis, fibromyalgia, and chronic fatigue. Allergy Asthma Proc. 2010;31(3):169-78. Epub 2010/07/10. doi: 10.2500/aap.2010.31.3311

8. Baraniuk JN, Clauw D, Yuta A, Ali M, Gaumond E, Upadhyayula N, et al. Nasal secretion analysis in allergic rhinitis, cystic fibrosis, and nonallergic fibromyalgia/chronic fatigue syndrome subjects. Am J Rhinol. 1998;12(6):435-40. Epub 1999/01/12. doi: 10.2500/105065898780707964

9. Tuncer T, Butun B, Arman M, Akyokus A, Doseyen A. Primary fibromyalgia and allergy. Clin Rheumatol. 1997;16(1):9-12. Epub 1997/01/01. doi: 10.1007/BF02238757

10. Giacomelli C, Talarico R, Bombardieri S, Bazzichi L. The interaction between autoimmune diseases and fibromyalgia: risk, disease course and management. Expert Rev Clin Immunol. 2013;9(11):1069-76. Epub 2013/10/31. doi:

10.1586/1744666X.2013.849440

Clauw DJ. Fibromyalgia and related conditions. Mayo Clin Proc. 2015;90(5):680 Epub 2015/05/06. doi: 10.1016/j.mayocp.2015.03.014

12. Fredricson AS, Khodabandehlou F, Weiner CK, Naimi-Akbar A, Adami J, Rosen A. Are there early signs that predict development of temporomandibular joint disease? J Oral Sci. 2018;60(2):194-200. Epub 2017/11/23. doi: 10.2334/josnusd.17-0073

 Diatchenko L, Nackley AG, Slade GD, Fillingim RB, Maixner W. Idiopathic pain disorders--pathways of vulnerability. Pain. 2006;123(3):226-30. Epub 2006/06/17. doi: 10.1016/j.pain.2006.04.015

14. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2-S15. Epub 2010/10/22. doi:
10.1016/j.pain.2010.09.030

Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med.
 2010;16(11):1248-57. Epub 2010/10/16. doi: 10.1038/nm.2235

16. Matsuda M, Huh Y, Ji RR. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J Anesth. 2019;33(1):131-9. Epub 2018/11/19. doi: 10.1007/s00540-018-2579-4

 Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology.
 2018;129(2):343-66. Epub 2018/02/21. doi: 10.1097/ALN.00000000002130

18. Toyoda H, Komurasaki T, Uchida D, Morimoto S. Distribution of mRNA for human epiregulin, a differentially expressed member of the epidermal growth factor family. Biochem J. 1997;326 (Pt 1):69-75. Epub 1997/08/15. doi: 10.1042/bj3260069

 Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026-30. Epub 2017/06/10. doi: 10.1126/science.aam7928

 Pastore S, Mascia F, Mariani V, Girolomoni G. The epidermal growth factor receptor system in skin repair and inflammation. J Invest Dermatol. 2008;128(6):1365-74. Epub 2007/12/01. doi: 10.1038/sj.jid.5701184

21. Fouli GE, Gnudi L. The Future: Experimental Therapies for Renal Disease in Diabetes. Nephron. 2019;143(1):3-7. Epub 2018/09/27. doi: 10.1159/000492825

22. Kyotani Y, Takasawa S, Yoshizumi M. Proliferative Pathways of Vascular Smooth Muscle Cells in Response to Intermittent Hypoxia. Int J Mol Sci. 2019;20(11). Epub 2019/06/05. doi: 10.3390/ijms20112706

 Zhang N, Zhong Z, Wang Y, Yang L, Wu F, Peng C, et al. Competing endogenous network analysis identifies IncRNA Meg3 activates inflammatory damage in UVB induced murine skin lesion by sponging miR-93-5p/epiregulin axis. Aging (Albany NY). 2019;11(22):10664-83. Epub 2019/11/26. doi: 10.18632/aging.102483

24. Harada M, Kamimura D, Arima Y, Kohsaka H, Nakatsuji Y, Nishida M, et al. Temporal expression of growth factors triggered by epiregulin regulates inflammation development. J Immunol. 2015;194(3):1039-46. Epub 2015/01/04. doi: 10.4049/jimmunol.1400562

25. Kumagai K, Horikawa T, Gotoh A, Yamane S, Yamada H, Kobayashi H, et al. Up-regulation of EGF receptor and its ligands, AREG, EREG, and HB-EGF in oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(6):748-54. Epub 2010/10/19. doi: 10.1016/j.tripleo.2010.06.022

26. Homma T, Kato A, Sakashita M, Takabayashi T, Norton JE, Suh LA, et al. Potential Involvement of the Epidermal Growth Factor Receptor Ligand Epiregulin and Matrix Metalloproteinase-1 in Pathogenesis of Chronic Rhinosinusitis. Am J Respir Cell Mol Biol. 2017;57(3):334-45. Epub 2017/04/12. doi: 10.1165/rcmb.2016-0325OC

27. Yang XP, Fu JY, Yang RC, Liu WT, Zhang T, Yang B, et al. EGFR transactivation contributes to neuroinflammation in Streptococcus suis meningitis. J Neuroinflammation. 2016;13(1):274. Epub 2016/10/21. doi: 10.1186/s12974-016-0734-0

28. Bauer AK, Fostel J, Degraff LM, Rondini EA, Walker C, Grissom SF, et al. Transcriptomic analysis of pathways regulated by toll-like receptor 4 in a murine model of chronic pulmonary inflammation and carcinogenesis. Mol Cancer. 2009;8:107. Epub 2009/11/21. doi: 10.1186/1476-4598-8-107

29. Massip-Copiz M, Clauzure M, Valdivieso AG, Santa-Coloma TA. Epiregulin (EREG) is upregulated through an IL-1beta autocrine loop in Caco-2 epithelial cells with reduced CFTR function. J Cell Biochem. 2018;119(3):2911-22. Epub 2017/11/02. doi: 10.1002/jcb.26483

30. Hsu D, Fukata M, Hernandez YG, Sotolongo JP, Goo T, Maki J, et al. Toll-like receptor 4 differentially regulates epidermal growth factor-related growth factors in response to intestinal mucosal injury. Lab Invest. 2010;90(9):1295-305. Epub 2010/05/26. doi: 10.1038/labinvest.2010.100

31. Murakami M, Harada M, Kamimura D, Ogura H, Okuyama Y, Kumai N, et al. Disease-association analysis of an inflammation-related feedback loop. Cell Rep. 2013;3(3):946-59. Epub 2013/02/26. doi: 10.1016/j.celrep.2013.01.028

32. Kadmiel M, Janoshazi A, Xu X, Cidlowski JA. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye. Exp Eye Res. 2016;152:10-33. Epub 2016/09/08. doi: 10.1016/j.exer.2016.08.020

33. Kongstorp M, Schjolberg T, Jacobsen DP, Haugen F, Gjerstad J. Epiregulin is released from intervertebral disks and induces spontaneous activity in pain pathways. Pain Rep. 2019;4(2):e718. Epub 2019/05/02. doi: 10.1097/PR9.0000000000000718

34. Davies AJ, Rinaldi S, Costigan M, Oh SB. Cytotoxic Immunity in Peripheral Nerve Injury and Pain. Front Neurosci-Switz. 2020;14:142. Epub 2020/03/11. doi: 10.3389/fnins.2020.00142

35. Davies AJ, Kim HW, Gonzalez-Cano R, Choi J, Back SK, Roh SE, et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell. 2019;176(4):716-28 e18. Epub 2019/02/05. doi: 10.1016/j.cell.2018.12.022

36. Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31(1):413-41. Epub 2013/01/10. doi: 10.1146/annurev-immunol-032712-095951

37. Vantourout P, Willcox C, Turner A, Swanson CM, Haque Y, Sobolev O, et al. Immunological visibility: posttranscriptional regulation of human NKG2D ligands by the EGF receptor pathway. Sci Transl Med. 2014;6(231):231ra49. Epub 2014/04/11. doi: 10.1126/scitranslmed.3007579

38. Okita R, Wolf D, Yasuda K, Maeda A, Yukawa T, Saisho S, et al. Contrasting Effects of the Cytotoxic Anticancer Drug Gemcitabine and the EGFR Tyrosine Kinase Inhibitor Gefitinib on NK Cell-Mediated Cytotoxicity via Regulation of NKG2D Ligand in
Non-Small-Cell Lung Cancer Cells. PLoS One. 2015;10(10):e0139809. Epub

2015/10/07. doi: 10.1371/journal.pone.0139809

Appendices

1. Contribution of the thesis author to other projects

- Parisien M, Dagostino C, Samoshkin A, El-Hachem N, Drury G, Huising J, Verma V, Grant AV, Meloto CB, Mogil J, Allegri M, Diatchenko L. <u>Impaired inflammatory</u> <u>response in people with acute low back pain increases risk of pain chronicity</u>.
 [Manuscript in preparation.]
- van Tilburg MAL, Parisien M, Boles RG, Drury GL, Smith-Voudouris J, Verma V, Khoury S, Chabot-Doré AJ, Nackley AG, Smith SB, Whitehead WE, Zolnoun DA, Slade GD, Tchivileva I, Maixner W, Diatchenko L. (2020). <u>A genetic polymorphism</u> <u>that is associated with mitochondrial energy metabolism increases risk of</u> <u>fibromyalgia.</u> Pain, 161(12):2860-2871. PMID: 32658146
- Benavides R., Vsevolozhskaya O., Cattaneo S, Zaykin D., Brenton A., Parisien M., Verma V., Khoury S., Gilron I., Diatchenko L. (2020). <u>A Functional Polymorphism</u> in the ATP-Binding Cassette B1 Transporter Predicts Pharmacologic Response to <u>Combination of Nortriptyline and Morphine in Neuropathic Pain Patients.</u> Pain, 161 (3), 619-629. PMID: 31738228
- Meloto CB., Benavides R., Lichtenwalter RN., Wen X., Tugarinov N., Zorina-Lichtenwalter K., Chabot-Doré AJ., Piltonen MH., Cattaneo S., Verma V., Klares R. 3rd, Khoury S., Parisien M., Diatchenko L. (2018). <u>Human pain genetics</u> <u>database: a resource dedicated to human pain genetics research.</u> Pain, 159(4):749-763. PMID: 29300278

2. Supplementary materials of chapter II

Supplementary Table 1: Evaluation of receptor and ligand genes in Epithelial

Growth Factor family

	RECEPTORS:	EGFR, ERBB2, ERBB3, ERBB4		
GENES	LIGANDS:	AREG*, BTC, EGF, EPGN, EREG, HBEGF, MUC4, NRG1, NRG2, NRG3, NRG4, TGFA		
PHENOTYPE:		CHARACTERISTIC PAIN INTENSITY		
MODEL		ADDITIVE		
COVARIA	TES:	RECRUITMENT SITE, GENDER, AGE, PCA (first three eigenvectors)		
FDR THRESHOLD:		FDR < 5%		
MAF:		>5% (total 2407 unimputed SNPs, *none in AREG)		

GENE	SNP	Chromosome	BASE PAIR	BETA	P-val	FDR
EREG	rs10518126 (G/A)	4	75243119	-11.09	0.0000078	0.00944
EREG	rs57839099 (G/A)	4	75243813	-11.09	0.0000078	0.00944
EREG	rs200889776 (G/A)	4	75240770	-10.41	0.00002	0.011
EREG	rs57933408 (G/A)	4	75243828	-10.51	0.00002	0.011
EREG	rs201835071 (G/A)	4	75237587	-9.99	0.00003	0.011
EREG	rs72859363 (A/G)	4	75246112	-10.24	0.00003	0.011
EREG	rs6836436 (A/C)	4	75230930	-8.84	0.00013	0.0405
NRG3	rs1764075 (A/G)	10	83968400	-5.51	0.00028	0.07365
TGFA	rs79124432 (C/A)	2	70676332	6.56	0.001	0.3396
NRG3	rs1764074 (G/A)	10	83968230	-4.05	0.00114	0.27392
NRG3	rs1764077 (A/C)	10	83973325	-4.92	0.00131	0.28342
ERBB4	rs61197595 (C/A)	2	213192590	6.02	0.00141	0.28342
ERBB4	rs1505366 (C/A)	2	213191389	5.49	0.00201	0.3552
ERBB4	rs4146051 (G/A)	2	213189994	5.49	0.00207	0.3552
ERBB4	rs16775 (A/G)	2	213189297	4.44	0.00315	0.49118
TGFA	rs3771515 (G/A)	2	70695562	5.03	0.00327	0.49118
ERBB4	rs17335169 (G/A)	2	212437161	-7.22	0.00368	0.49477
NRG1	rs4458836 (C/A)	8	31578885	4.02	0.0037	0.49477
NRG3	rs1739764 (G/A)	10	83946635	-4.71	0.00403	0.51054
NRG2	rs443587 (A/C)	5	139290232	-3.86	0.00483	0.58069
ERBB4	rs10199212 (A/G)	2	212345416	6.43	0.00628	0.64118
ERBB4	rs60764990 (A/G)	2	213159957	7.25	0.00667	0.64118
ERBB4	rs905882 (A/C)	2	213188733	4.76	0.00703	0.64118
EGFR	rs11977660 (A/G)	7	55162336	-2.94	0.00722	0.64118
NRG1	rs7006093 (G/A)	8	31519062	7.64	0.00735	0.64118
ERBB4	rs6727114 (G/A)	2	212752193	-3.36	0.00759	0.64118
NRG3	rs2255228 (A/G)	10	84403376	-4.20	0.00762	0.64118
NRG3	rs12269018 (G/A)	10	83882883	-4.17	0.00768	0.64118
NRG3	rs76122081 (A/G)	10	83798079	-5.11	0.00773	0.64118
NRG2	rs3777102 (A/G)	5	139257603	-3.33	0.00814	0.65318
TGFA	rs11466229 (G/A)	2	70722763	3.98	0.00914	0.7096
ERBB4	rs77945488 (A/G)	2	213225704	4.10	0.00953	0.71646
NRG3	rs12248317 (G/A)	10	83792458	6.32	0.01032	0.74405
NRG1	rs4552856 (G/A)	8	31555139	4.00	0.01051	0.74405
NRG3	rs4933819 (G/A)	10	83764742	-2.73	0.01111	0.76405
EGFR	rs11971051 (A/T)	7	55170578	-2.93	0.01179	0.78829
ERBB4	rs10497961 (G/A)	2	213043071	5.10	0.01338	0.81733
NRG1	rs2919373 (G/A)	8	32431859	-3.08	0.01435	0.81733
NRG3	rs594418 (A/G)	10	84385052	-3.46	0.01474	0.81733
NRG3	rs11192604 (A/G)	10	83880996	4.79	0.01495	0.81733
ERBB4	rs13407198 (A/G)	2	212712835	-3.03	0.01515	0.81733
ERBB4	rs72933751 (C/A)	2	212779081	-5.04	0.01535	0.81733
NRG2	rs6868928 (C/A)	5	139270729	-3.17	0.01571	0.81733
NRG3	rs1764073 (C/A)	10	83965348	-2.97	0.01586	0.81733

ERBB4	rs2371438 (A/G)	2	212965531	4.99	0.01627	0.81733
NRG3	rs59144097 (A/C)	10	84473414	6.41	0.01666	0.81733
NRG2	rs6860347 (G/A)	5	139262117	2.53	0.01735	0.81733
EPGN	rs6821364 (A/G)	4	75176692	4.72	0.01748	0.81733
NRG3	rs12772014 (A/C)	10	83954965	-2.61	0.01775	0.81733
ERBB4	rs9283525 (C/A)	2	213360073	-3.36	0.01866	0.81733
NRG1	rs6468121 (C/A)	8	32500809	2.52	0.0187	0.81733
ERBB4	rs1394799 (A/G)	2	213230879	4.00	0.01883	0.81733
NRG1	rs4733362 (A/G)	8	32428968	-2.45	0.01912	0.81733
TGFA	rs3771502 (A/G)	2	70717507	3.50	0.01958	0.81733
NRG3	rs11815249 (G/A)	10	83764410	-3.51	0.01977	0.81733
ERBB4	rs12104709 (C/G)	2	213264873	3.44	0.01998	0.81733
ERBB4	rs6747637 (A/C)	2	212406789	2.47	0.01999	0.81733
ERBB3	rs877636 (A/G)	12	56480583	-2.57	0.02044	0.81733
NRG1	rs4236710 (A/G)	8	32428759	-2.44	0.02052	0.81733
ERBB4	rs1439248 (A/G)	2	212687395	-2.75	0.02125	0.81733
NRG2	rs10515509 (G/A)	5	139290054	-3.56	0.02205	0.81733
NRG1	rs2466059 (A/G)	8	32472617	-4.30	0.02233	0.81733
ERBB4	rs75401106 (G/A)	2	212272475	-4.22	0.02233	0.81733
NRG1	rs7012268 (G/A)	8	31560051	6.02	0.02253	0.81733
EGFR	rs2110290 (A/G)	7	55172768	-2.65	0.02263	0.81733
ERBB4	rs1025753 (C/A)	2	212722915	-2.84	0.02286	0.81733
NRG1	rs7838546 (G/A)	8	31947880	3.85	0.02292	0.81733
NRG3	rs7907146 (G/A)	10	83819987	3.97	0.02319	0.81733
EGFR	rs3778866 (C/A)	7	55166368	-2.57	0.02343	0.81733
NRG1	rs2919378 (G/A)	8	32569669	3.32	0.02398	0.82432
NRG1	rs4733359 (G/A)	8	32424651	-2.36	0.02445	0.82432
MUC4	rs56703338 (A/C)	3	195496198	-3.72	0.0248	0.82432
ERBB4	rs7572366 (G/A)	2	213119367	4.94	0.025	0.82432
NRG1	rs73239840 (A/G)	8	31570464	3.38	0.02581	0.83796
NRG3	rs67093168 (A/C)	10	84398084	3.08	0.02611	0.83796
ERBB4	rs10932383 (A/G)	2	212409676	2.42	0.02776	0.86159
ERBB4	rs4321319 (A/C)	2	212361511	-3.89	0.02817	0.86159
NRG1	rs6989889 (G/A)	8	31987432	2.61	0.02852	0.86159
EGFR	rs4947974 (G/A)	7	55168912	-2.63	0.02866	0.86159
ERBB2	rs4252596 (C/A)	17	37855834	-4.02	0.02953	0.86159
NRG2	rs76328935 (G/A)	5	139401520	-4.80	0.02953	0.86159
NRG3	rs1649940 (A/G)	10	83953623	-2.63	0.02959	0.86159
NRG3	rs12572464 (A/G)	10	84000985	3.33	0.02971	0.86159
NRG3	rs1739779 (G/A)	10	83933057	-2.89	0.03097	0.86682
ERBB4	rs55663096 (G/A)	2	212406723	3.00	0.03105	0.86682

ERBB4	rs839509 (C/A)	2	212822297	2.93	0.03125	0.86682
NRG1	rs7007662 (G/A)	8	31952745	2.41	0.03179	0.86682
ERBB4	rs6435629 (G/A)	2	212367912	-2.39	0.03194	0.86682
ERBB4	rs7601515 (G/A)	2	213190493	2.40	0.03282	0.86682
NRG1	rs34841210 (A/C)	8	31545671	-2.34	0.03306	0.86682
NRG3	rs56697116 (A/G)	10	84469791	5.66	0.03309	0.86682
NRG1	rs6468085 (G/A)	8	32000665	-3.38	0.03347	0.86682
ERBB4	rs3791689 (A/G)	2	212259223	2.24	0.035	0.86682
ERBB4	rs4672617 (A/C)	2	212364807	-2.66	0.03536	0.86682
NRG3	rs9419959 (G/A)	10	83977442	-2.94	0.03541	0.86682
ERBB4	rs35159481 (G/A)	2	212378456	3.23	0.03604	0.86682
TGFA	rs1448927 (A/G)	2	70702233	-2.29	0.03694	0.86682
NRG3	rs10884116 (G/A)	10	83823067	3.58	0.03698	0.86682
ERBB4	rs7571561 (A/G)	2	213386267	-2.44	0.03806	0.86682
ERBB4	rs13010155 (A/C)	2	212366429	-2.30	0.0383	0.86682
ERBB4	rs2204070 (A/G)	2	213043927	-2.80	0.03973	0.86682
NRG1	rs1996563 (A/C)	8	32239586	2.98	0.04015	0.86682
NRG1	rs16879153 (G/A)	8	32192397	2.69	0.04038	0.86682
ERBB4	rs839530 (A/G)	2	212802765	3.46	0.0405	0.86682
NRG3	rs544711 (G/A)	10	84647566	-2.17	0.04078	0.86682
NRG1	rs10156318 (G/A)	8	32177114	3.46	0.04189	0.86682
NRG3	rs1649942 (A/G)	10	83951691	-2.40	0.04209	0.86682
TGFA	rs1880039 (A/G)	2	70687052	3.28	0.04264	0.86682
ERBB4	rs13423636 (G/A)	2	213354898	-3.31	0.0429	0.86682
NRG1	rs7813211 (G/A)	8	31526127	5.50	0.04325	0.86682
ERBB4	rs10190653 (A/G)	2	213366879	-3.30	0.04326	0.86682
EGFR	rs62459764 (G/A)	7	55186800	3.68	0.04353	0.86682
ERBB4	rs10932382 (G/A)	2	212395971	2.71	0.04358	0.86682
NRG3	rs10884060 (G/A)	10	83789830	-2.61	0.04373	0.86682
NRG3	rs12266991 (A/G)	10	83784487	5.03	0.04448	0.86682
ERBB4	rs73073372 (C/A)	2	212772374	3.12	0.04456	0.86682
NRG2	rs34566928 (C/A)	5	139406956	-3.49	0.04558	0.86682
NRG3	rs12251206 (A/G)	10	84516525	-4.03	0.04597	0.86682
NRG3	rs594530 (G/A)	10	84394945	-3.21	0.04676	0.86682
ERBB3	rs10876870 (C/A)	12	56478002	-2.19	0.04683	0.86682
EGFR	rs2472520 (G/C)	7	55265940	-2.16	0.04834	0.86682
ERBB4	rs74911002 (A/C)	2	213270590	-3.71	0.04839	0.86682
ERBB4	rs13409739 (G/A)	2	212580184	2.32	0.04879	0.86682
NRG1	rs56716642 (G/A)	8	32170923	2.43	0.04921	0.86682
NRG3	rs34290487 (G/A)	10	84489286	4.13	0.04923	0.86682
NRG1	rs6468090 (G/A)	8	32076049	2.57	0.04952	0.86682

ERBB4	rs4278873 (A/G)	2	212361074	-2.57	0.04966	0.86682
ERBB4	rs201425105 (C/A)	2	212998148	3.62	0.04986	0.86682
NRG3	rs1983680 (A/G)	10	83792004	-3.42	0.04993	0.86682
ERBB4	rs13034566 (A/G)	2	213240767	-2.17	0.05004	0.86682
ERBB4	rs839520 (A/G)	2	212817095	2.27	0.05054	0.86682
NRG1	rs2466075 (G/A)	8	32432949	-2.07	0.05063	0.86682
ERBB4	rs73073370 (G/A)	2	212772221	2.98	0.05129	0.86682
ERBB4	rs62182566 (A/G)	2	213049183	-2.68	0.0515	0.86682
ERBB4	rs1482381 (A/G)	2	213399007	-3.19	0.05193	0.86682
NRG1	rs16879801 (A/G)	8	32570493	3.58	0.05255	0.86682
NRG3	rs10786907 (A/C)	10	83908249	3.64	0.05279	0.86682
NRG3	rs4326733 (A/G)	10	84650672	2.66	0.05285	0.86682
ERBB4	rs13391359 (A/G)	2	212771670	-2.78	0.05378	0.86682
ERBB4	rs6732969 (A/G)	2	212437072	-2.49	0.05429	0.86682
NRG1	rs62506865 (A/C)	8	31501160	-2.43	0.05501	0.86682
ERBB4	rs17344252 (G/A)	2	212973223	4.58	0.05646	0.86682
NRG3	rs7922851 (A/G)	10	84463852	4.85	0.05705	0.86682
ERBB4	rs839523 (G/A)	2	212816089	2.22	0.0571	0.86682
NRG3	rs7903899 (A/G)	10	84502161	-4.09	0.0582	0.86682
NRG1	rs2466093 (G/A)	8	32448785	-5.95	0.05856	0.86682
ERBB4	rs16848584 (A/G)	2	213316592	4.95	0.05894	0.86682
NRG1	rs1462902 (A/G)	8	31927566	-2.26	0.05923	0.86682
ERBB4	rs59043430 (G/A)	2	212283669	-2.16	0.05925	0.86682
NRG3	rs73320364 (A/G)	10	83902826	5.36	0.05939	0.86682
ERBB4	rs62182574 (A/C)	2	213057843	-2.53	0.05988	0.86682
ERBB4	rs17413177 (A/G)	2	212419760	-4.52	0.06004	0.86682
NRG3	rs1649947 (C/A)	10	83874965	-2.51	0.06005	0.86682
NRG1	rs16879304 (A/G)	8	32240840	3.38	0.0607	0.86682
ERBB4	rs13413099 (A/G)	2	212573962	-2.08	0.06109	0.86682
ERBB4	rs12470850 (A/C)	2	212414621	-2.53	0.06113	0.86682
NRG1	rs4295616 (G/A)	8	31521424	5.17	0.06154	0.86682
ERBB4	rs3791697 (G/A)	2	212272614	-2.16	0.06157	0.86682
NRG1	rs1462900 (A/C)	8	31927638	-2.31	0.06178	0.86682
NRG1	rs1081062 (A/G)	8	31500264	2.25	0.06188	0.86682
ERBB4	rs1521653 (A/T)	2	213028042	2.09	0.06191	0.86682
NRG2	rs1800954 (A/G)	5	139245086	-2.64	0.06195	0.86682
TGFA	rs3771514 (G/A)	2	70697667	2.38	0.06254	0.86682
TGFA	rs446086 (C/A)	2	70756057	-2.33	0.06257	0.86682
EGFR	rs2293348 (G/A)	7	55266757	-2.26	0.06285	0.86682
ERBB4	rs12994961 (A/G)	2	212576980	3.49	0.06342	0.86682
NRG1	rs10100667 (G/A)	8	32099102	-2.03	0.06358	0.86682

NRG4	rs1499063 (G/A)	15	76274512	-2.28	0.06444	0.86682
TGFA	rs374640 (A/G)	2	70753882	2.34	0.0647	0.86682
NRG3	rs1649943 (G/A)	10	83950665	-2.06	0.06532	0.86682
NRG3	rs2114818 (G/A)	10	83876526	2.44	0.06574	0.86682
NRG1	rs56080487 (A/G)	8	31574045	-2.38	0.06621	0.86682
NRG1	rs11778887 (A/G)	8	32156724	2.28	0.06624	0.86682
ERBB4	rs73077353 (A/C)	2	212773893	2.78	0.0668	0.86682
ERBB4	rs1394782 (A/G)	2	213200920	2.05	0.06704	0.86682
NRG1	rs66743588 (A/G)	8	31596882	-2.39	0.06827	0.86682
EGFR	rs6958497 (A/G)	7	55161746	-3.18	0.06838	0.86682
NRG3	rs12774724 (G/A)	10	83958152	-1.99	0.06857	0.86682
ERBB4	rs905879 (C/A)	2	213189366	2.04	0.06955	0.86682
NRG1	rs2466068 (G/A)	8	32436680	-2.14	0.06993	0.86682
NRG1	rs13258892 (G/A)	8	32423537	2.05	0.07051	0.86682
ERBB4	rs7568763 (A/G)	2	213351973	-2.86	0.07069	0.86682
NRG1	rs10103952 (A/G)	8	32556270	3.32	0.0707	0.86682
EGFR	rs1140475 (G/A)	7	55266417	3.05	0.07122	0.86682
NRG3	rs661469 (A/G)	10	84386093	-2.59	0.07133	0.86682
TGFA	rs378322 (G/A)	2	70762905	2.88	0.07241	0.86682
ERBB4	rs6744796 (A/G)	2	212828793	2.13	0.07244	0.86682
ERBB4	rs62182572 (G/A)	2	213057695	-2.40	0.0726	0.86682
NRG3	rs11816151 (A/G)	10	83704329	4.85	0.07312	0.86682
ERBB4	rs6435660 (G/A)	2	212571939	1.93	0.07396	0.86682
TGFA	rs199690423 (G/A)	2	70744008	2.40	0.07476	0.86682
NRG1	rs4733094 (G/A)	8	31597593	-2.43	0.07489	0.86682
ERBB4	rs6745717 (A/G)	2	212577231	2.50	0.0751	0.86682
NRG3	rs7894461 (C/A)	10	83963016	-2.02	0.07528	0.86682
NRG2	rs17208017 (A/G)	5	139342616	4.41	0.07542	0.86682
NRG1	rs1481762 (G/A)	8	31991227	1.95	0.07571	0.86682
ERBB4	rs201340763 (C/A)	2	213202606	2.01	0.07589	0.86682
NRG3	rs2644212 (A/C)	10	84519876	2.41	0.0759	0.86682
ERBB4	rs16847171 (A/G)	2	212765359	3.13	0.07612	0.86682
NRG3	rs10509459 (G/A)	10	84484387	-3.73	0.07627	0.86682
ERBB4	rs1394792 (A/G)	2	213178165	2.42	0.0763	0.86682
ERBB4	rs13417149 (G/A)	2	213353515	5.30	0.07654	0.86682
NRG1	rs13270788 (A/G)	8	31630983	-2.01	0.07696	0.86682
NRG1	rs73239823 (A/G)	8	31555911	2.23	0.07739	0.86682
TGFA	rs10489984 (G/A)	2	70772455	2.93	0.0775	0.86682
ERBB4	rs707284 (G/A)	2	212839046	2.03	0.07787	0.86682
ERBB4	rs62182583 (A/G)	2	213060796	-2.36	0.07794	0.86682
ERBB4	rs839521 (G/A)	2	212817010	2.10	0.07795	0.86682

ERBB4	rs62182978 (T/A)	2	212581721	-3.54	0.07822	0.86682
TGFA	rs34079678 (G/A)	2	70726852	2.55	0.07909	0.86682
NRG3	rs1832586 (A/C)	10	84400246	-2.10	0.07918	0.86682
EGFR	rs17290392 (G/A)	7	55247610	2.75	0.07925	0.86682
NRG3	rs932512 (G/A)	10	83933812	-3.84	0.0793	0.86682
TGFA	rs1807968 (A/G)	2	70708261	-1.92	0.07987	0.86682
TGFA	rs426081 (A/G)	2	70750531	2.36	0.07987	0.86682
ERBB4	rs62178826 (G/A)	2	212370790	-3.27	0.08006	0.86682
ERBB4	rs10174412 (G/A)	2	212570416	-2.05	0.08045	0.86682
ERBB4	rs7607086 (A/G)	2	213105651	4.33	0.08149	0.86682
NRG1	rs7014221 (A/G)	8	31582959	2.19	0.08156	0.86682
NRG1	rs7845525 (G/C)	8	32295728	2.36	0.08174	0.86682
NRG1	rs3802158 (G/A)	8	32404896	-1.90	0.08206	0.86682
NRG3	rs2820110 (G/A)	10	84519695	2.36	0.08266	0.86682
NRG1	rs7844425 (A/C)	8	32375617	-2.05	0.0828	0.86682
ERBB4	rs17344915 (A/G)	2	213052379	-2.39	0.08317	0.86682
NRG1	rs200685858 (T/A)	8	32104629	1.92	0.08342	0.86682
NRG1	rs9297178 (G/A)	8	31542212	-2.22	0.08355	0.86682
ERBB4	rs3828243 (A/C)	2	212276710	1.88	0.0836	0.86682
NRG3	rs2132377 (G/A)	10	84638905	2.07	0.08395	0.86682
NRG1	rs4733130 (A/G)	8	32406994	-1.89	0.08436	0.86682
NRG3	rs543506 (A/C)	10	84520727	2.34	0.08451	0.86682
NRG3	rs10786964 (G/A)	10	83967446	-1.89	0.08516	0.86682
NRG3	rs1010875 (G/A)	10	84501184	-3.59	0.08532	0.86682
NRG3	rs12358407 (A/C)	10	83769695	-2.35	0.08551	0.86682
NRG1	rs66560030 (A/C)	8	31515559	2.16	0.08563	0.86682
ERBB4	rs1025752 (A/G)	2	212723459	-1.86	0.08606	0.86682
NRG3	rs7908131 (G/A)	10	83966320	-1.95	0.08611	0.86682
NRG3	rs646282 (G/A)	10	84385067	-2.25	0.08657	0.86682
NRG3	rs1336287 (C/A)	10	83953716	-1.89	0.08659	0.86682
NRG3	rs678139 (G/A)	10	84416129	-2.84	0.08713	0.86682
NRG3	rs586982 (A/G)	10	84417577	-2.84	0.08713	0.86682
ERBB4	rs839519 (G/A)	2	212817319	2.19	0.08744	0.86682
NRG3	rs1010874 (G/A)	10	84501091	-3.62	0.08748	0.86682
ERBB4	rs62182573 (A/G)	2	213057811	-2.34	0.08751	0.86682
NRG3	rs4933824 (C/A)	10	83819125	3.33	0.08818	0.8674
ERBB4	rs80175157 (G/A)	2	212969727	4.06	0.08829	0.8674
EGFR	rs887824 (C/A)	7	55206861	-3.30	0.08886	0.86798
NRG1	rs7833971 (A/G)	8	32420054	-2.27	0.08907	0.86798
NRG1	rs57495084 (C/A)	8	31543081	-2.17	0.08976	0.87118
ERBB4	rs1836719 (A/G)	2	212259228	-1.88	0.09037	0.87321

NRG1	rs13266217 (G/A)	8	31764280	-2.18	0.09076	0.87321
NRG1	rs1081063 (G/A)	8	31500222	-2.20	0.09129	0.87321
NRG3	rs12357753 (G/A)	10	83920714	-2.99	0.09142	0.87321
ERBB4	rs16847178 (A/G)	2	212766642	-2.30	0.09199	0.87473
NRG3	rs10884217 (A/C)	10	83872700	2.54	0.09248	0.87473
NRG3	rs4933811 (A/G)	10	83675990	-2.05	0.09267	0.87473
NRG3	rs11192136 (G/A)	10	83763784	3.55	0.09489	0.89219
ERBB4	rs73985878 (A/G)	2	212670359	3.51	0.09666	0.89942
NRG3	rs1649956 (A/G)	10	83927984	-2.33	0.09667	0.89942
ERBB3	rs2292239 (C/A)	12	56482180	-1.83	0.09678	0.89942
ERBB4	rs7586610 (A/G)	2	213119487	3.98	0.09811	0.90181
NRG1	rs4733313 (G/A)	8	32118416	1.81	0.09902	0.90181
ERBB4	rs57566572 (A/G)	2	212747035	2.48	0.09904	0.90181
NRG2	rs75949957 (G/A)	5	139280113	3.17	0.09928	0.90181
MUC4	rs6792437 (G/A)	3	195479226	-2.65	0.0996	0.90181
EGFR	rs17172433 (G/A)	7	55142435	2.59	0.09961	0.90181
NRG2	rs1800953 (A/C)	5	139251469	-2.07	0.09966	0.90181
NRG3	rs12571344 (A/G)	10	83898148	-2.52	0.1004	0.90373
NRG3	rs1555241 (G/A)	10	83901664	-1.90	0.101	0.90373
ERBB4	rs13384518 (G/A)	2	212573365	-1.90	0.1015	0.90373
NRG2	rs6885391 (A/C)	5	139254229	-3.86	0.102	0.90373
NRG1	rs79027555 (G/A)	8	32055223	-3.83	0.1022	0.90373
ERBB4	rs75981138 (G/A)	2	212760650	2.77	0.1023	0.90373
NRG3	rs12261149 (A/G)	10	83968703	-1.80	0.1025	0.90373
NRG3	rs1739778 (G/A)	10	83931542	-2.32	0.1032	0.90658
NRG3	rs7090079 (A/G)	10	84634637	2.42	0.1041	0.9068
NRG3	rs10736177 (G/A)	10	83839348	-2.23	0.1053	0.9068
ERBB4	rs73985830 (G/A)	2	212607788	3.46	0.1055	0.9068
NRG1	rs1381871 (G/A)	8	31935302	-2.06	0.1063	0.9068
NRG3	rs11598813 (G/A)	10	83993952	3.16	0.1063	0.9068
ERBB4	rs73073344 (A/G)	2	212760472	2.38	0.1068	0.9068
NRG1	rs60806417 (A/C)	8	31525033	-1.95	0.1071	0.9068
NRG1	rs62506914 (G/A)	8	31548360	-2.10	0.1071	0.9068
ERBB4	rs707283 (G/A)	2	212834170	2.14	0.1073	0.9068
ERBB4	rs73073183 (G/A)	2	212407500	2.70	0.1074	0.9068
NRG1	rs28556775 (G/A)	8	31523036	-2.06	0.1083	0.9068
NRG1	rs7463426 (A/G)	8	31523972	-2.06	0.1083	0.9068
ERBB4	rs10191397 (A/G)	2	213127742	4.31	0.1084	0.9068
NRG3	rs4140411 (G/A)	10	83866166	-2.16	0.1085	0.9068
NRG3	rs7899474 (G/A)	10	83775626	-1.97	0.1089	0.907
EGFR	rs845559 (G/A)	7	55247960	2.26	0.1095	0.90885

NRG3	rs688413 (C/A)	10	84385896	-2.04	0.1104	0.91044
NRG3	rs2024785 (A/C)	10	83664796	3.56	0.1108	0.91044
NRG1	rs2466062 (A/G)	8	32443090	-1.84	0.1113	0.91044
NRG3	rs1333208 (C/A)	10	84666081	2.77	0.1116	0.91044
NRG3	rs10786961 (G/A)	10	83964123	-1.80	0.1128	0.91044
NRG1	rs17645417 (A/G)	8	32351333	-1.69	0.1131	0.91044
NRG3	rs2494026 (A/C)	10	84442373	2.15	0.1136	0.91044
TGFA	rs375668 (A/C)	2	70737888	2.05	0.1139	0.91044
NRG1	rs4733267 (G/A)	8	31504639	-2.07	0.114	0.91044
ERBB4	rs11679499 (T/A)	2	212729377	1.77	0.114	0.91044
NRG1	rs2466066 (G/A)	8	32438416	2.01	0.1141	0.91044
NRG3	rs17098803 (C/A)	10	83714374	2.83	0.1145	0.91044
ERBB4	rs3791692 (A/G)	2	212264598	1.71	0.1147	0.91044
ERBB4	rs3791686 (A/G)	2	212258353	-1.74	0.1153	0.91044
ERBB4	rs6740652 (G/A)	2	212405590	-1.79	0.1155	0.91044
NRG1	rs2976525 (A/C)	8	32572983	2.31	0.1159	0.91044
ERBB4	rs9288433 (G/A)	2	212407077	-1.80	0.1163	0.91044
ERBB4	rs7559679 (A/G)	2	212471642	-2.57	0.1165	0.91044
NRG1	rs1038280 (G/A)	8	31992258	1.72	0.1171	0.91217
NRG3	rs12260741 (A/G)	10	83670914	2.75	0.118	0.91362
ERBB4	rs62178805 (A/G)	2	212359302	-3.08	0.1189	0.91362
ERBB4	rs905883 (A/G)	2	213188470	2.17	0.1198	0.91362
EGFR	rs17336765 (G/A)	7	55228379	3.36	0.1201	0.91362
ERBB4	rs62184542 (G/A)	2	212781787	-2.25	0.1203	0.91362
NRG1	rs2439273 (A/G)	8	32490310	-2.18	0.1208	0.91362
NRG1	rs4733329 (A/G)	8	32274540	2.67	0.1209	0.91362
NRG3	rs61858778 (C/A)	10	84645510	1.83	0.1209	0.91362
ERBB4	rs1910866 (A/C)	2	213183696	2.09	0.1217	0.91362
NRG3	rs910584 (A/G)	10	83662187	-2.25	0.122	0.91362
ERBB4	rs6435693 (A/G)	2	213009160	3.12	0.1221	0.91362
ERBB4	rs78568172 (G/A)	2	212775465	2.81	0.1224	0.91362
NRG3	rs11191761 (G/A)	10	83669286	2.72	0.1226	0.91362
ERBB4	rs10165449 (A/G)	2	212303073	1.67	0.1226	0.91362
NRG1	rs7825175 (G/A)	8	32416274	-2.06	0.1237	0.91628
NRG3	rs1609605 (G/A)	10	84655185	-1.69	0.1239	0.91628
EGFR	rs58711464 (A/G)	7	55092322	2.01	0.1241	0.91628
EGFR	rs10245472 (G/A)	7	55147478	2.14	0.1249	0.91937
ERBB4	rs2043888 (A/G)	2	212768779	-2.34	0.126	0.92088
ERBB4	rs62178790 (A/G)	2	212327460	-2.92	0.1267	0.92088
TGFA	rs450419 (A/G)	2	70744107	1.78	0.1269	0.92088
NRG3	rs1764094 (A/C)	10	83988809	-2.93	0.1274	0.92088

NRG3	rs1764096 (G/A)	10	83990050	-2.93	0.1274	0.92088
NRG3	rs1649978 (G/A)	10	83990684	-2.93	0.1274	0.92088
ERBB4	rs4300779 (G/A)	2	213183765	2.06	0.1282	0.92233
NRG3	rs10883909 (A/C)	10	83680766	-1.85	0.1299	0.92233
ERBB4	rs16846917 (C/A)	2	212697542	1.81	0.1303	0.92233
NRG1	rs327329 (A/G)	8	31853498	-1.89	0.1305	0.92233
ERBB4	rs62178804 (A/G)	2	212358064	-3.04	0.1309	0.92233
NRG3	rs1649933 (A/G)	10	83885277	-1.77	0.1317	0.92233
NRG1	rs4733319 (G/A)	8	32235881	-2.40	0.1318	0.92233
NRG3	rs73320389 (G/A)	10	83916033	4.35	0.1318	0.92233
TGFA	rs17639251 (A/G)	2	70776281	2.64	0.132	0.92233
ERBB4	rs72941345 (C/A)	2	212409600	-1.97	0.1321	0.92233
NRG3	rs2132375 (G/A)	10	84550812	-2.85	0.1322	0.92233
NRG3	rs11195974 (A/G)	10	84551558	-2.85	0.1322	0.92233
NRG1	rs16878405 (G/A)	8	31750300	-3.20	0.1328	0.92384
NRG2	rs11746363 (G/A)	5	139353857	-2.16	0.1337	0.92418
ERBB4	rs1851196 (A/G)	2	212470620	-2.32	0.1338	0.92418
ERBB4	rs16846519 (G/A)	2	212440969	-3.51	0.134	0.92418
TGFA	rs3771494 (A/G)	2	70725352	1.97	0.1348	0.9244
ERBB4	rs2030458 (G/A)	2	212376761	1.59	0.1348	0.9244
NRG1	rs2466094 (A/G)	8	32448731	-1.71	0.1364	0.92812
ERBB4	rs7597007 (A/C)	2	212592044	-1.73	0.1364	0.92812
ERBB4	rs2030457 (G/A)	2	212376745	1.57	0.1365	0.92812
NRG3	rs7069209 (A/G)	10	84589789	-1.85	0.1373	0.93093
EGFR	rs2075102 (A/C)	7	55253305	1.62	0.1384	0.93187
NRG1	rs2346770 (A/G)	8	31964752	-3.36	0.1385	0.93187
NRG3	rs74146712 (A/G)	10	83763627	-2.32	0.1386	0.93187
NRG3	rs7100526 (G/A)	10	83719888	2.06	0.1398	0.93636
NRG1	rs2466049 (G/A)	8	32514916	-2.61	0.1406	0.93636
NRG3	rs1649962 (G/A)	10	83982090	-2.80	0.1412	0.93636
ERBB4	rs10164675 (C/A)	2	213187034	-2.64	0.1418	0.93636
NRG1	rs12056766 (G/A)	8	31513887	-1.89	0.1429	0.93636
NRG3	rs2207773 (A/G)	10	83793043	-1.52	0.143	0.93636
ERBB4	rs4673661 (G/A)	2	213205047	1.75	0.143	0.93636
ERBB4	rs16847170 (C/A)	2	212764825	2.62	0.1451	0.93636
NRG1	rs2439292 (G/A)	8	32446882	1.59	0.1475	0.93636
NRG3	rs61863009 (G/A)	10	84003522	2.32	0.1475	0.93636
NRG2	rs4912894 (G/A)	5	139236962	1.66	0.1479	0.93636
ERBB4	rs17878516 (C/G)	2	212654554	-1.70	0.1482	0.93636
EGF	rs6840890 (A/G)	4	110912940	3.28	0.1502	0.93636
NRG1	rs1481736 (G/A)	8	31980642	1.61	0.1511	0.93636

EGFR	rs6593210 (G/A)	7	55254186	-1.89	0.1513	0.93636
NRG3	rs490164 (G/A)	10	84597496	2.14	0.1525	0.93636
NRG1	rs13252152 (A/G)	8	31955149	1.58	0.1526	0.93636
NRG2	rs7734418 (C/A)	5	139405701	-2.88	0.1528	0.93636
ERBB4	rs13006832 (G/A)	2	213223044	-1.72	0.1529	0.93636
NRG3	rs9664256 (A/G)	10	83777755	-1.49	0.153	0.93636
ERBB4	rs1347889 (A/G)	2	212781914	-1.53	0.1544	0.93636
NRG3	rs34979473 (A/G)	10	84530942	2.09	0.1549	0.93636
NRG3	rs342371 (A/G)	10	84589285	1.64	0.155	0.93636
NRG1	rs79035035 (G/A)	8	32219907	2.51	0.1552	0.93636
TGFA	rs6708768 (A/C)	2	70752195	2.64	0.1554	0.93636
ERBB4	rs9808028 (A/G)	2	212305314	1.59	0.1564	0.93636
NRG3	rs35702195 (A/G)	10	83889114	4.16	0.1565	0.93636
ERBB4	rs3942465 (A/G)	2	213042489	1.94	0.1569	0.93636
NRG2	rs75043106 (A/G)	5	139382248	-2.27	0.1575	0.93636
ERBB4	rs6711391 (A/G)	2	213162300	2.15	0.1575	0.93636
ERBB4	rs6711487 (A/G)	2	212597041	-1.62	0.1581	0.93636
NRG1	rs10503892 (A/G)	8	31705433	-2.08	0.1588	0.93636
NRG1	rs2466073 (G/A)	8	32433312	1.48	0.1588	0.93636
NRG1	rs11786653 (G/A)	8	32106774	-1.54	0.1591	0.93636
EGFR	rs2075109 (G/A)	7	55218903	-1.46	0.1599	0.93636
EGF	rs6810393 (C/A)	4	110912687	3.20	0.1603	0.93636
NRG1	rs17706408 (A/G)	8	32208121	2.59	0.1604	0.93636
EGFR	rs1050171 (A/G)	7	55249063	1.54	0.1606	0.93636
NRG3	rs11191796 (A/G)	10	83678141	3.37	0.1609	0.93636
NRG3	rs10884225 (G/A)	10	83880290	2.65	0.161	0.93636
ERBB4	rs7422053 (A/T)	2	212563738	-1.70	0.1626	0.93636
NRG3	rs17100442 (G/A)	10	84423731	2.26	0.1628	0.93636
NRG1	rs901561 (A/G)	8	32143462	-1.63	0.1639	0.93636
NRG4	rs10851884 (G/A)	15	76290042	1.52	0.1647	0.93636
NRG3	rs77967961 (G/A)	10	83784627	-1.90	0.1649	0.93636
NRG1	rs13255747 (G/A)	8	31763811	-1.80	0.1655	0.93636
NRG3	rs1614787 (A/C)	10	83959179	-1.58	0.1656	0.93636
NRG3	rs10884099 (G/A)	10	83815369	2.56	0.1662	0.93636
NRG1	rs6993043 (G/A)	8	31965188	1.55	0.1669	0.93636
ERBB4	rs72933754 (A/G)	2	212781536	-2.46	0.1672	0.93636
NRG1	rs1545961 (G/A)	8	32173356	1.57	0.1676	0.93636
NRG1	rs35233333 (A/G)	8	32429734	1.67	0.1677	0.93636
ERBB4	rs10208623 (A/G)	2	212703221	-1.56	0.1684	0.93636
NRG1	rs6468086 (A/C)	8	32000759	-1.90	0.1693	0.93636
NRG3	rs12240519 (G/A)	10	83878316	2.75	0.17	0.93636

NRG1	rs13250687 (C/A)	8	31721106	-2.90	0.171	0.93636
NRG3	rs11192423 (C/A)	10	83839893	3.52	0.1715	0.93636
NRG3	rs74143892 (G/A)	10	83729383	3.65	0.1716	0.93636
NRG1	rs17716295 (C/A)	8	32317917	-1.61	0.1722	0.93636
ERBB2	rs35797841 (G/A)	17	37850777	2.70	0.1725	0.93636
NRG1	rs28406305 (G/A)	8	32357923	-1.60	0.1726	0.93636
NRG1	rs1503499 (A/G)	8	31655026	1.73	0.1729	0.93636
ERBB4	rs78325609 (G/A)	2	212555195	2.87	0.1734	0.93636
NRG3	rs2207778 (G/A)	10	83773214	-2.12	0.174	0.93636
NRG1	rs4733325 (A/G)	8	32247220	-1.45	0.1745	0.93636
NRG3	rs10732795 (G/A)	10	83826122	-2.13	0.1745	0.93636
EGFR	rs763317 (G/A)	7	55095197	-1.47	0.175	0.93636
NRG1	rs12680844 (G/A)	8	31991415	-2.46	0.1758	0.93636
EGFR	rs17172438 (A/G)	7	55151537	1.88	0.1759	0.93636
NRG2	rs13165725 (A/G)	5	139279459	-1.71	0.1765	0.93636
NRG1	rs723811 (A/G)	8	32527281	1.91	0.1768	0.93636
TGFA	rs3755377 (G/A)	2	70732852	1.52	0.1768	0.93636
EGFR	rs58786160 (G/A)	7	55185301	-1.64	0.1771	0.93636
EGFR	rs2058502 (A/G)	7	55177869	1.48	0.178	0.93636
ERBB4	rs16848108 (G/A)	2	213120523	-1.71	0.1781	0.93636
NRG1	rs3924999 (G/A)	8	32453358	1.58	0.1787	0.93636
NRG1	rs4733272 (A/G)	8	31612816	-1.78	0.179	0.93636
NRG3	rs2281471 (G/A)	10	83690009	3.51	0.1791	0.93636
NRG3	rs12569561 (G/A)	10	83865848	1.46	0.1793	0.93636
NRG1	rs13265568 (C/A)	8	31651944	-2.96	0.1794	0.93636
NRG1	rs10095694 (G/A)	8	32499740	-1.49	0.1795	0.93636
EGFR	rs2280653 (A/G)	7	55276094	1.76	0.1796	0.93636
ERBB4	rs73066385 (A/G)	2	213151653	-2.57	0.1796	0.93636
NRG1	rs7014535 (A/G)	8	32569803	2.55	0.1798	0.93636
EGFR	rs202028278 (A/G)	7	55156803	-1.61	0.1798	0.93636
NRG3	rs7913415 (A/G)	10	83677849	2.45	0.1807	0.93636
NRG1	rs4422736 (G/A)	8	32370520	2.42	0.1809	0.93636
NRG2	rs1422187 (A/G)	5	139276748	-1.54	0.181	0.93636
NRG1	rs7824399 (G/A)	8	32141515	-1.57	0.1814	0.93636
NRG1	rs60559257 (A/G)	8	32172176	-1.79	0.1838	0.93636
NRG4	rs8036952 (G/A)	15	76284238	2.92	0.1838	0.93636
NRG3	rs17095111 (A/G)	10	83989092	-2.40	0.1839	0.93636
NRG1	rs11776959 (G/A)	8	31948864	1.50	0.1841	0.93636
ERBB4	rs13019524 (A/G)	2	213251503	-1.61	0.1863	0.93636
NRG1	rs199942240 (T/A)	8	32279530	-1.94	0.1866	0.93636
NRG1	rs34861396 (G/A)	8	31498467	-1.55	0.187	0.93636

NRG1	rs1503486 (G/A)	8	31609577	-1.47	0.187	0.93636
ERBB4	rs1394780 (A/C)	2	213283190	-1.64	0.1874	0.93636
NRG1	rs9297191 (A/G)	8	32283471	1.51	0.1875	0.93636
NRG4	rs1874953 (C/G)	15	76236837	1.44	0.1877	0.93636
NRG1	rs2221349 (G/A)	8	31650609	1.67	0.1881	0.93636
NRG1	rs7833021 (A/G)	8	32016694	1.77	0.1888	0.93636
NRG1	rs983598 (C/A)	8	32163416	-1.38	0.1891	0.93636
NRG1	rs981817 (G/A)	8	31986192	-1.44	0.1894	0.93636
NRG3	rs2065539 (G/A)	10	84537562	1.45	0.1895	0.93636
ERBB4	rs12998591 (G/A)	2	212787427	2.38	0.1899	0.93636
ERBB4	rs12478244 (G/A)	2	213226396	-2.41	0.1899	0.93636
NRG1	rs12679454 (G/A)	8	31612756	-2.88	0.19	0.93636
NRG3	rs10884342 (G/A)	10	83974586	-1.50	0.1906	0.93636
ERBB4	rs11680307 (G/A)	2	212997024	-1.43	0.1913	0.93636
NRG3	rs2256108 (A/G)	10	84472269	1.41	0.1914	0.93636
EGFR	rs917880 (G/A)	7	55162011	1.45	0.1917	0.93636
ERBB4	rs17347530 (A/G)	2	213222446	-2.07	0.1926	0.93636
NRG2	rs6580288 (A/G)	5	139245762	-1.65	0.1929	0.93636
EGFR	rs7801956 (G/A)	7	55214443	2.80	0.1937	0.93636
NRG1	rs4531002 (G/A)	8	32501987	1.47	0.1939	0.93636
ERBB4	rs71422750 (C/A)	2	212542930	2.23	0.1942	0.93636
NRG3	rs17100804 (G/A)	10	84571432	-1.93	0.1945	0.93636
NRG1	rs1481744 (A/G)	8	32020990	1.74	0.1949	0.93636
NRG1	rs13282123 (A/G)	8	32377064	1.83	0.1952	0.93636
NRG3	rs17100775 (C/A)	10	84524550	2.63	0.1956	0.93636
EGF	rs113097224 (A/G)	4	110837520	2.89	0.1957	0.93636
ERBB4	rs16847741 (C/A)	2	212987580	2.62	0.196	0.93636
ERBB4	rs839517 (G/A)	2	212817777	1.58	0.1961	0.93636
EGFR	rs11979158 (A/G)	7	55159349	1.84	0.1962	0.93636
ERBB4	rs201596760 (A/G)	2	212328438	-1.43	0.1966	0.93636
NRG1	rs10954827 (A/G)	8	31952710	1.47	0.1973	0.93636
ERBB4	rs1836717 (A/G)	2	212292699	-1.56	0.1973	0.93636
ERBB4	rs6755568 (G/A)	2	213283749	-1.82	0.1976	0.93636
NRG1	rs1685117 (C/A)	8	32197182	-2.13	0.1977	0.93636
ERBB4	rs60194994 (A/C)	2	212297335	-1.60	0.1982	0.93636
TGFA	rs3771481 (A/C)	2	70759302	3.48	0.1988	0.93636
NRG1	rs13249321 (A/G)	8	31688285	1.63	0.1992	0.93636
NRG1	rs3847131 (G/A)	8	32282019	-1.44	0.1997	0.93636
TGFA	rs2215020 (A/C)	2	70745840	3.73	0.1999	0.93636
NRG1	rs16878890 (A/G)	8	32020891	2.27	0.2001	0.93636
NRG1	rs10503904 (A/G)	8	32164687	-2.46	0.2002	0.93636

ERBB4	rs1818755 (G/A)	2	212375171	1.37	0.2003	0.93636
ERBB4	rs16847747 (G/C)	2	212990837	2.59	0.2011	0.93636
ERBB4	rs11689233 (G/A)	2	213317794	-1.96	0.2026	0.93636
ERBB4	rs11684546 (G/A)	2	212695511	2.16	0.2042	0.93636
EGFR	rs2192293 (G/A)	7	55098289	-1.37	0.2043	0.93636
NRG2	rs4912936 (G/A)	5	139293166	1.70	0.205	0.93636
ERBB4	rs16846100 (C/A)	2	212278218	-1.63	0.2056	0.93636
NRG1	rs2126613 (G/A)	8	31961283	-1.39	0.2059	0.93636
ERBB4	rs10196652 (A/C)	2	213330413	-1.93	0.2059	0.93636
ERBB4	rs6435632 (G/A)	2	212378524	1.48	0.206	0.93636
ERBB4	rs13395652 (A/G)	2	212303506	1.46	0.2062	0.93636
NRG2	rs73271418 (G/A)	5	139261005	-1.79	0.2063	0.93636
EPGN	rs72654839 (A/C)	4	75181247	2.05	0.2067	0.93636
NRG1	rs7829124 (A/G)	8	31509494	1.60	0.2074	0.93636
NRG3	rs10885506 (A/C)	10	84681635	1.37	0.2078	0.93636
NRG1	rs2466058 (G/A)	8	32507149	-2.17	0.2089	0.93636
ERBB4	rs12466141 (G/A)	2	213029233	2.24	0.2091	0.93636
ERBB4	rs13020474 (G/A)	2	212866473	2.11	0.2097	0.93636
NRG1	rs13273150 (G/A)	8	32429174	2.62	0.2104	0.93636
NRG1	rs2439327 (A/G)	8	32512309	-2.21	0.2105	0.93636
NRG1	rs1481765 (G/A)	8	32078971	1.88	0.2108	0.93636
NRG3	rs61858783 (G/A)	10	84659477	-2.13	0.2108	0.93636
NRG1	rs1473438 (A/G)	8	31733759	1.39	0.2114	0.93636
ERBB4	rs56388911 (A/G)	2	213116827	-1.62	0.2115	0.93636
EGFR	rs17172435 (G/A)	7	55146471	1.75	0.2117	0.93636
ERBB4	rs12990694 (G/A)	2	212695924	2.13	0.2121	0.93636
NRG1	rs6995821 (C/A)	8	31970568	1.54	0.2125	0.93636
EGFR	rs10277413 (A/C)	7	55238464	-1.43	0.2125	0.93636
EREG	rs2367707 (G/A)	4	75248434	1.65	0.2126	0.93636
NRG1	rs10103750 (A/C)	8	32596998	1.67	0.213	0.93636
NRG1	rs1503491 (G/A)	8	31642106	-1.63	0.2138	0.93636
ERBB4	rs11305823 (A/C)	2	213316734	1.53	0.214	0.93636
EGFR	rs4947986 (G/A)	7	55221655	-1.55	0.2141	0.93636
EGFR	rs4947979 (A/G)	7	55195625	-1.60	0.2152	0.93636
TGFA	rs62151581 (A/C)	2	70768180	-2.16	0.2166	0.93636
NRG3	rs11192252 (A/G)	10	83798259	2.16	0.2177	0.93636
ERBB4	rs2135160 (A/G)	2	213214467	-2.35	0.2182	0.93636
NRG3	rs55670857 (G/A)	10	84498654	2.51	0.2184	0.93636
NRG1	rs2976527 (G/A)	8	32577452	1.47	0.2191	0.93636
NRG3	rs1577464 (A/G)	10	84533447	-2.12	0.2191	0.93636
ERBB4	rs6435690 (G/A)	2	212975239	1.34	0.2192	0.93636

ERBB4	rs1357139 (C/A)	2	213050781	-1.37	0.2198	0.93636
NRG1	rs75016101 (A/C)	8	31879230	-1.40	0.2202	0.93636
NRG1	rs7836913 (A/G)	8	32068180	-1.59	0.2205	0.93636
NRG1	rs2929484 (G/A)	8	31866079	-1.43	0.221	0.93636
NRG3	rs59698716 (A/G)	10	83983440	2.90	0.2212	0.93636
NRG3	rs12416296 (A/G)	10	84428646	2.06	0.2213	0.93636
ERBB4	rs7570124 (C/A)	2	213319545	3.15	0.2219	0.93636
NRG1	rs2466044 (A/G)	8	32501626	-2.36	0.222	0.93636
NRG1	rs16879552 (G/A)	8	32411216	2.67	0.2222	0.93636
NRG3	rs2494021 (A/G)	10	84477066	1.48	0.2243	0.93636
ERBB4	rs7603379 (A/C)	2	213345437	2.83	0.2244	0.93636
NRG3	rs7085170 (A/G)	10	84038059	1.36	0.2248	0.93636
ERBB4	rs1566926 (A/G)	2	213220898	1.37	0.2249	0.93636
NRG2	rs7707550 (A/T)	5	139410945	-1.33	0.2251	0.93636
NRG4	rs11072567 (A/G)	15	76298744	1.30	0.2255	0.93636
NRG1	rs10954822 (A/G)	8	31907266	-2.05	0.2258	0.93636
NRG3	rs61858784 (A/G)	10	84661523	3.01	0.2265	0.93636
NRG1	rs10503901 (G/A)	8	32085171	1.91	0.2274	0.93636
EGFR	rs2740761 (G/A)	7	55255986	-1.58	0.2282	0.93636
NRG1	rs16879085 (G/A)	8	32132644	-2.48	0.2286	0.93636
NRG3	rs659561 (C/A)	10	84303712	-2.27	0.2286	0.93636
ERBB4	rs1595062 (G/A)	2	212251070	1.40	0.2286	0.93636
ERBB4	rs6730119 (G/A)	2	212519028	-1.29	0.2288	0.93636
NRG1	rs2045796 (A/C)	8	31949047	1.52	0.2298	0.93636
NRG1	rs1680167 (G/A)	8	31778474	1.33	0.2303	0.93636
ERBB4	rs17347606 (A/C)	2	213226977	-2.10	0.2309	0.93636
NRG1	rs6981660 (A/G)	8	32298476	-1.36	0.2313	0.93636
NRG3	rs11194700 (C/A)	10	84255527	3.00	0.2317	0.93636
EGFR	rs4140770 (A/G)	7	55141476	1.32	0.2323	0.93636
EPGN	rs16850898 (A/G)	4	75175677	2.93	0.2327	0.93636
EPGN	rs75967466 (A/G)	4	75176983	2.93	0.2327	0.93636
NRG3	rs11192402 (A/C)	10	83835232	-1.41	0.2331	0.93636
BTC	rs10005235 (A/G)	4	75697820	1.80	0.2334	0.93636
NRG1	rs2439313 (G/A)	8	32533316	1.25	0.2336	0.93636
ERBB4	rs77159266 (G/A)	2	213364056	-2.22	0.2337	0.93636
ERBB4	rs10185729 (A/G)	2	212842777	-1.63	0.2351	0.93636
NRG1	rs2466064 (G/A)	8	32441203	-1.37	0.2358	0.93636
NRG3	rs1937969 (A/G)	10	84223444	-1.43	0.2361	0.93636
ERBB4	rs34306926 (G/A)	2	212826392	1.78	0.2361	0.93636
NRG1	rs10109194 (C/A)	8	32537995	2.18	0.2369	0.93636
ERBB4	rs2371272 (A/G)	2	212329352	-1.31	0.2369	0.93636

MUC4	rs9832033 (G/A)	3	195538901	2.10	0.237	0.93636
TGFA	rs3849383 (A/C)	2	70710420	1.31	0.2371	0.93636
NRG1	rs2439315 (G/A)	8	32530811	1.91	0.2372	0.93636
ERBB4	rs186694905 (G/A)	2	213239209	-2.15	0.2375	0.93636
NRG3	rs479772 (G/A)	10	84624927	-1.43	0.2378	0.93636
ERBB4	rs72946560 (G/A)	2	212581988	-2.55	0.238	0.93636
MUC4	rs842226 (G/A)	3	195478861	-2.61	0.2384	0.93636
NRG1	rs10503926 (C/A)	8	32541216	1.24	0.2392	0.93636
NRG1	rs7827391 (G/A)	8	32542912	1.24	0.24	0.93636
ERBB4	rs13413335 (A/C)	2	213288664	-1.95	0.2402	0.93636
NRG3	rs1040674 (A/G)	10	83681283	-1.68	0.2404	0.93636
ERBB4	rs76666265 (T/A)	2	212855248	1.37	0.2404	0.93636
NRG3	rs10748994 (G/A)	10	84237629	-1.42	0.2415	0.93636
NRG1	rs11775675 (G/A)	8	32262505	-1.39	0.2418	0.93636
NRG1	rs116111265 (A/C)	8	32482753	-2.01	0.2419	0.93636
NRG1	rs4733363 (T/A)	8	32451286	1.34	0.2427	0.93636
ERBB4	rs16847879 (A/G)	2	213067535	-1.61	0.2428	0.93636
NRG3	rs342390 (C/A)	10	84582514	1.72	0.2434	0.93636
NRG1	rs12548924 (A/G)	8	32383339	1.62	0.2436	0.93636
ERBB4	rs4673629 (A/G)	2	212586244	-1.24	0.2437	0.93636
ERBB4	rs72949534 (G/A)	2	213199479	-1.75	0.2442	0.93636
TGFA	rs17005644 (A/G)	2	70696953	1.68	0.2449	0.93636
NRG1	rs17721282 (G/A)	8	32443025	-1.42	0.245	0.93636
NRG1	rs989735 (G/A)	8	31916730	-1.28	0.246	0.93636
NRG3	rs10748869 (G/A)	10	83776091	-1.19	0.2462	0.93636
ERBB4	rs6732730 (A/G)	2	213009392	2.54	0.2466	0.93636
NRG1	rs1481742 (C/A)	8	32021186	1.53	0.2471	0.93636
NRG1	rs1487155 (A/G)	8	32195259	1.30	0.2471	0.93636
NRG1	rs6999843 (G/A)	8	32447277	-1.42	0.2472	0.93636
NRG2	rs6893652 (G/A)	5	139270855	-1.57	0.2473	0.93636
ERBB4	rs839536 (G/A)	2	212810155	1.56	0.2474	0.93636
NRG1	rs2347507 (G/A)	8	32235025	-1.83	0.2476	0.93636
ERBB4	rs75592307 (A/G)	2	213255912	-2.06	0.2483	0.93636
NRG1	rs2976514 (G/A)	8	32538038	1.21	0.2484	0.93636
ERBB4	rs6746949 (C/A)	2	212360994	-1.26	0.2492	0.93636
NRG1	rs10113308 (A/G)	8	32492391	1.77	0.2493	0.93636
NRG1	rs7822564 (A/G)	8	32132882	-1.33	0.2499	0.93636
NRG1	rs2466092 (A/G)	8	32464939	-1.92	0.2499	0.93636
ERBB4	rs16848751 (A/G)	2	213389346	-1.33	0.25	0.93636
ERBB4	rs13427258 (G/A)	2	213076051	1.21	0.2501	0.93636
NRG1	rs7841220 (G/A)	8	31943664	-1.33	0.2506	0.93636

ERBB4	rs1965462 (A/G)	2	212464224	-2.15	0.2506	0.93636
ERBB4	rs36040938 (G/A)	2	212412272	-1.56	0.2515	0.93636
NRG1	rs756265 (A/G)	8	31769937	-1.27	0.2518	0.93636
NRG1	rs67993561 (G/A)	8	32437234	-1.40	0.2522	0.93636
EPGN	rs75220201 (A/G)	4	75176211	2.92	0.2529	0.93636
ERBB4	rs28529590 (A/G)	2	213241394	1.43	0.2532	0.93636
ERBB4	rs7556879 (A/G)	2	212465328	-1.68	0.2533	0.93636
ERBB4	rs4435392 (A/G)	2	212411658	-1.63	0.2536	0.93636
ERBB4	rs17406681 (G/A)	2	212403387	-1.56	0.2539	0.93636
NRG3	rs1414767 (G/A)	10	83972768	1.30	0.254	0.93636
ERBB4	rs13002712 (A/G)	2	212587321	-1.27	0.254	0.93636
NRG3	rs1577463 (C/A)	10	84551067	-1.78	0.2541	0.93636
BTC	rs6842284 (G/A)	4	75717119	-1.23	0.2547	0.93636
EGFR	rs759160 (A/G)	7	55181442	-1.41	0.2552	0.93636
NRG3	rs3903435 (A/C)	10	83776457	-1.17	0.2564	0.93636
NRG3	rs56163553 (G/A)	10	84479425	2.14	0.2564	0.93636
NRG1	rs56362701 (C/A)	8	31671457	-1.23	0.2575	0.93636
ERBB4	rs16848458 (A/G)	2	213227254	-1.73	0.2579	0.93636
NRG1	rs4733342 (A/G)	8	32349236	1.77	0.258	0.93636
NRG3	rs6584612 (G/A)	10	84038461	1.28	0.2581	0.93636
NRG4	rs334951 (A/G)	15	76300995	2.49	0.2582	0.93636
ERBB4	rs16846127 (G/A)	2	212285785	-1.37	0.2585	0.93636
NRG3	rs1739765 (C/A)	10	83950540	-1.33	0.2589	0.93636
NRG1	rs1481628 (G/A)	8	31779265	1.26	0.2593	0.93636
NRG3	rs17099325 (A/C)	10	83826908	2.55	0.2606	0.93636
NRG3	rs2144393 (A/G)	10	83851010	-1.77	0.261	0.93636
ERBB4	rs73073158 (G/A)	2	212383724	-1.27	0.2617	0.93636
EGFR	rs729969 (G/A)	7	55128207	1.71	0.2618	0.93636
NRG3	rs79319236 (A/G)	10	84674420	-2.60	0.2618	0.93636
NRG3	rs12250654 (A/G)	10	84646857	-2.21	0.262	0.93636
ERBB4	rs4673613 (A/G)	2	212264642	-1.32	0.262	0.93636
NRG1	rs6986716 (C/A)	8	32247739	1.54	0.263	0.93636
EGFR	rs10228436 (G/A)	7	55238268	-1.28	0.2635	0.93636
ERBB4	rs11895509 (G/A)	2	212412738	1.95	0.2635	0.93636
ERBB4	rs16847207 (A/G)	2	212791249	1.90	0.2635	0.93636
NRG1	rs13249578 (G/A)	8	31945918	-1.27	0.2638	0.93636
NRG3	rs7078253 (A/C)	10	84136681	-1.64	0.2648	0.93636
NRG1	rs1111307 (G/A)	8	32092536	1.92	0.2654	0.93636
NRG3	rs12416404 (G/A)	10	84685218	-1.30	0.266	0.93636
ERBB4	rs4145961 (A/G)	2	213074216	1.33	0.2667	0.93636
NRG1	rs1462904 (C/A)	8	31926881	-1.23	0.2674	0.93636

NRG1	rs16878772 (A/C)	8	31941211	-2.51	0.2683	0.93636
EGFR	rs2302534 (A/G)	7	55136397	1.14	0.2683	0.93636
NRG3	rs597803 (G/A)	10	84395625	-1.32	0.2688	0.93636
NRG3	rs12572315 (A/G)	10	83775851	2.47	0.2695	0.93636
NRG1	rs2439320 (A/G)	8	32524802	1.17	0.2696	0.93636
NRG1	rs2439275 (A/T)	8	32488687	1.26	0.2708	0.93636
ERBB4	rs12470608 (A/G)	2	212737233	1.74	0.2717	0.93636
ERBB4	rs11679952 (G/A)	2	212621848	-1.28	0.2718	0.93636
NRG3	rs4329625 (G/A)	10	84035428	1.88	0.2725	0.93636
EGFR	rs11506105 (G/A)	7	55220177	-1.17	0.273	0.93636
NRG1	rs2919382 (A/G)	8	32560765	1.37	0.2733	0.93636
ERBB4	rs16825005 (G/A)	2	212304565	-1.37	0.2735	0.93636
ERBB4	rs10188926 (G/A)	2	213275304	-1.85	0.2736	0.93636
ERBB4	rs7423708 (A/C)	2	212645885	-1.26	0.274	0.93636
ERBB4	rs10932377 (A/G)	2	212362263	-1.20	0.2741	0.93636
ERBB4	rs12616932 (A/C)	2	212824999	1.37	0.2742	0.93636
NRG1	rs2466067 (A/G)	8	32437994	-1.26	0.2749	0.93636
NRG1	rs1965365 (G/A)	8	31650080	1.36	0.2754	0.93636
ERBB4	rs13383863 (A/C)	2	213284021	-1.77	0.2763	0.93636
NRG3	rs72819813 (A/G)	10	83775532	2.44	0.2764	0.93636
ERBB4	rs12620169 (G/A)	2	212362328	-1.30	0.2777	0.93636
ERBB4	rs10180494 (A/G)	2	212796981	-1.23	0.2777	0.93636
ERBB4	rs7574462 (A/G)	2	212888988	-1.24	0.2784	0.93636
NRG3	rs1333217 (G/A)	10	84579830	-1.30	0.279	0.93636
TGFA	rs1851610 (G/A)	2	70699159	-1.18	0.2791	0.93636
NRG3	rs17099862 (G/A)	10	84121782	-1.50	0.2795	0.93636
NRG3	rs73311340 (A/C)	10	84675910	-2.46	0.2798	0.93636
NRG3	rs2225809 (G/A)	10	84051375	1.21	0.2802	0.93636
ERBB4	rs17414466 (C/A)	2	212796443	-1.39	0.2802	0.93636
EGFR	rs12669749 (C/A)	7	55235804	1.76	0.2803	0.93636
ERBB4	rs1568519 (A/C)	2	213006392	-2.00	0.2815	0.93636
BTC	rs10009801 (A/G)	4	75694208	1.42	0.2817	0.93636
NRG3	rs10884065 (A/G)	10	83794761	-1.53	0.2817	0.93636
NRG3	rs17101193 (C/A)	10	84744926	2.14	0.2822	0.93636
NRG3	rs17101196 (A/G)	10	84745040	2.14	0.2822	0.93636
ERBB4	rs16848454 (A/G)	2	213226366	2.29	0.2826	0.93636
TGFA	rs7562947 (A/G)	2	70758123	-1.65	0.2833	0.93636
EGFR	rs6969570 (A/G)	7	55203838	-1.69	0.2835	0.93636
ERBB4	rs6435707 (C/A)	2	213386112	1.20	0.2835	0.93636
EREG	rs1017734 (C/A)	4	75253120	1.36	0.2852	0.93636
NRG1	rs2347501 (G/A)	8	32294151	1.24	0.2857	0.93636

ERBB4	rs114549502 (C/A)	2	212782888	2.61	0.2858	0.93636
NRG1	rs9297186 (C/A)	8	31960376	-1.74	0.2859	0.93636
ERBB4	rs714393 (G/A)	2	212698718	-1.17	0.286	0.93636
ERBB4	rs1394788 (A/G)	2	213211349	1.46	0.2867	0.93636
ERBB4	rs10166403 (A/G)	2	213291199	-1.66	0.2871	0.93636
ERBB3	rs10783779 (A/C)	12	56491880	-1.15	0.2877	0.93636
NRG3	rs12243071 (G/A)	10	84675278	1.29	0.2878	0.93636
NRG1	rs17665212 (G/A)	8	32448542	-1.26	0.2881	0.93636
NRG3	rs17101130 (C/A)	10	84698466	1.90	0.2884	0.93636
ERBB4	rs6733265 (A/G)	2	212428192	-1.79	0.2885	0.93636
NRG3	rs10883934 (A/G)	10	83689496	-1.25	0.2888	0.93636
ERBB4	rs979124 (A/G)	2	213384978	1.18	0.2888	0.93636
NRG3	rs17099667 (A/G)	10	84019116	2.33	0.2889	0.93636
NRG1	rs4373483 (A/G)	8	32242079	1.13	0.289	0.93636
NRG3	rs17101125 (G/A)	10	84693490	2.08	0.2894	0.93636
NRG1	rs2919370 (G/A)	8	32476816	1.20	0.2895	0.93636
NRG1	rs13260545 (A/G)	8	32417600	1.31	0.2897	0.93636
ERBB4	rs2118891 (A/G)	2	212679643	2.29	0.2904	0.93636
NRG1	rs1481758 (G/A)	8	32131798	1.39	0.2907	0.93636
NRG2	rs3756675 (G/A)	5	139238893	-1.61	0.2913	0.93636
NRG3	rs2248956 (G/A)	10	84485323	1.19	0.2923	0.93636
NRG1	rs4733308 (G/A)	8	32082436	1.16	0.2925	0.93636
ERBB4	rs11689581 (G/C)	2	212598084	1.41	0.2927	0.93636
NRG1	rs17646307 (A/G)	8	32398122	2.13	0.2928	0.93636
NRG2	rs6859144 (A/G)	5	139237341	-1.59	0.2941	0.93636
NRG3	rs12763193 (G/A)	10	84740839	-1.15	0.2942	0.93636
ERBB4	rs7578784 (A/G)	2	212807645	1.15	0.2943	0.93636
ERBB4	rs17334842 (C/A)	2	212407857	-1.44	0.2947	0.93636
ERBB4	rs7598440 (G/A)	2	212793198	-1.19	0.2948	0.93636
NRG3	rs10883973 (A/G)	10	83717632	1.67	0.2949	0.93636
TGFA	rs58635657 (G/A)	2	70729314	-1.25	0.2964	0.93636
NRG1	rs1685102 (A/G)	8	32199128	1.17	0.2966	0.93636
NRG3	rs11192840 (A/G)	10	83935947	2.02	0.2967	0.93636
NRG1	rs4566990 (G/A)	8	31573695	1.16	0.2971	0.93636
NRG3	rs1764072 (A/G)	10	83964496	1.62	0.2972	0.93636
EGFR	rs17289984 (G/A)	7	55227510	1.67	0.2975	0.93636
NRG3	rs342365 (A/C)	10	84500019	1.18	0.2983	0.93636
NRG3	rs79642569 (G/A)	10	84511025	2.42	0.2983	0.93636
NRG3	rs1937970 (A/G)	10	84223466	-1.24	0.2991	0.93636
ERBB4	rs13417523 (G/A)	2	213282779	-1.69	0.2992	0.93636
NRG3	rs12413431 (A/G)	10	84362174	-1.77	0.2993	0.93636

EGFR	rs984654 (A/G)	7	55144156	-1.32	0.2995	0.93636
ERBB4	rs114304818 (A/G)	2	212513114	-2.22	0.3	0.93636
ERBB2	rs2643194 (A/G)	17	37853048	-1.15	0.3003	0.93636
NRG2	rs17118539 (A/G)	5	139303341	-1.41	0.3005	0.93636
NRG1	rs34998122 (G/A)	8	32281229	-1.15	0.3007	0.93636
BTC	rs28576102 (A/G)	4	75704143	1.36	0.3007	0.93636
ERBB4	rs10804195 (A/G)	2	212327353	-1.16	0.3009	0.93636
NRG1	rs73232416 (G/A)	8	31833651	1.86	0.301	0.93636
NRG1	rs201848136 (A/C)	8	32472569	1.18	0.3012	0.93636
ERBB4	rs1026882 (A/G)	2	213387389	1.15	0.3015	0.93636
ERBB4	rs12694281 (G/A)	2	213314038	-1.13	0.3018	0.93636
ERBB4	rs6743565 (A/G)	2	212381610	2.95	0.3028	0.93636
ERBB4	rs62186270 (A/G)	2	213261454	2.20	0.3028	0.93636
NRG1	rs1383966 (A/C)	8	32084692	1.26	0.303	0.93636
NRG3	rs9943299 (A/G)	10	83640808	1.47	0.3031	0.93636
EGFR	rs12535578 (G/A)	7	55154586	-1.28	0.3032	0.93636
TGFA	rs2862851 (G/A)	2	70712802	-1.15	0.3033	0.93636
NRG3	rs75508896 (G/A)	10	84668677	2.65	0.3034	0.93636
ERBB4	rs60630046 (A/G)	2	213243275	-1.85	0.3041	0.93636
NRG3	rs7078771 (G/A)	10	84689060	2.00	0.3044	0.93636
ERBB4	rs13018333 (G/A)	2	212546810	1.78	0.305	0.93636
NRG3	rs7079963 (A/C)	10	84666953	1.24	0.3053	0.93636
NRG1	rs7005124 (A/C)	8	32167730	-1.15	0.3062	0.93636
NRG3	rs1474 (G/C)	10	83974642	-1.13	0.3062	0.93636
ERBB4	rs6725395 (A/C)	2	212375386	1.10	0.3062	0.93636
NRG1	rs6996957 (G/A)	8	32306984	1.14	0.3066	0.93636
NRG1	rs2439322 (A/G)	8	32520472	1.09	0.3072	0.93636
NRG3	rs11191834 (G/C)	10	83688360	-1.32	0.3073	0.93636
NRG1	rs12056821 (A/C)	8	31966653	1.27	0.3077	0.93636
NRG1	rs1685101 (G/A)	8	32197913	-1.76	0.3078	0.93636
NRG1	rs16878370 (G/A)	8	31719490	-1.50	0.3084	0.93636
ERBB2	rs2934971 (A/C)	17	37854507	-1.13	0.3086	0.93636
NRG1	rs35767550 (C/A)	8	31507844	-1.35	0.3098	0.93636
ERBB4	rs11892564 (A/G)	2	213226544	1.29	0.3098	0.93636
ERBB4	rs13030304 (C/A)	2	212283146	1.39	0.3108	0.93636
NRG3	rs12416668 (A/G)	10	83655048	-2.13	0.3113	0.93636
ERBB4	rs13032114 (C/A)	2	212578978	-1.10	0.3113	0.93636
ERBB4	rs2204853 (A/G)	2	213316826	-1.52	0.3114	0.93636
ERBB4	rs35248812 (A/C)	2	212567389	1.48	0.3124	0.93636
ERBB4	rs7573807 (C/A)	2	212687864	1.34	0.3124	0.93636
ERBB4	rs2289086 (A/G)	2	212285103	-1.12	0.3127	0.93636

ERBB4	rs4673618 (G/A)	2	212310843	1.17	0.3127	0.93636
NRG3	rs926929 (G/A)	10	83847988	-1.37	0.3131	0.93636
NRG4	rs201770710 (A/C)	15	76246609	1.32	0.3132	0.93636
NRG1	rs2919391 (C/A)	8	32525041	-1.47	0.3136	0.93636
ERBB4	rs73087372 (G/A)	2	212895680	1.97	0.3138	0.93636
ERBB4	rs979042 (G/A)	2	213146827	1.15	0.3139	0.93636
NRG2	rs197197 (A/C)	5	139348915	-1.11	0.3149	0.93636
NRG3	rs7914963 (A/G)	10	83732122	2.45	0.3151	0.93636
ERBB4	rs73076904 (G/A)	2	212439576	2.90	0.3151	0.93636
ERBB4	rs17416620 (G/A)	2	213033533	-1.64	0.3154	0.93636
NRG1	rs1947734 (G/A)	8	31937903	-1.16	0.3155	0.93636
EGF	rs11569017 (T/A)	4	110902111	-2.39	0.3156	0.93636
ERBB4	rs1836724 (A/G)	2	212244952	1.10	0.316	0.93636
NRG3	rs1333211 (A/G)	10	84545849	-1.87	0.3163	0.93636
ERBB4	rs13387495 (A/G)	2	213285057	-1.77	0.3167	0.93636
ERBB4	rs13401244 (A/G)	2	213125563	2.62	0.3168	0.93636
NRG1	rs12678940 (A/G)	8	31958544	1.25	0.3169	0.93636
EGFR	rs17172430 (G/A)	7	55122650	1.57	0.3174	0.93636
NRG1	rs13271344 (A/G)	8	31919990	-1.13	0.3181	0.93636
ERBB4	rs6718189 (A/G)	2	213264247	1.09	0.3181	0.93636
NRG1	rs7827456 (G/A)	8	31888494	-1.14	0.3187	0.93636
ERBB4	rs6435667 (C/A)	2	212627805	2.33	0.3187	0.93636
EGFR	rs17335808 (A/G)	7	55112112	2.09	0.3191	0.93636
ERBB4	rs839539 (A/C)	2	212811801	-1.54	0.3193	0.93636
NRG1	rs10096770 (A/G)	8	32325220	-1.14	0.3198	0.93636
NRG3	rs342393 (A/G)	10	84515820	1.22	0.3202	0.93636
NRG3	rs12783350 (A/G)	10	84530063	1.18	0.3206	0.93636
NRG3	rs12411365 (G/A)	10	83837703	1.08	0.3215	0.93636
NRG1	rs10097263 (G/A)	8	32071743	1.08	0.3217	0.93636
ERBB4	rs13409719 (C/A)	2	212814557	-1.73	0.3224	0.93636
BTC	rs6813883 (A/C)	4	75717808	-1.07	0.324	0.93636
NRG1	rs10503907 (A/G)	8	32172010	-1.13	0.3243	0.93636
EGFR	rs12668175 (A/C)	7	55178579	2.22	0.3245	0.93636
ERBB4	rs3791704 (A/G)	2	212284621	-1.18	0.3247	0.93636
ERBB4	rs12988214 (G/A)	2	212650241	1.43	0.3248	0.93636
NRG1	rs62500194 (A/G)	8	32403057	-1.43	0.3249	0.93636
ERBB4	rs201832813 (G/A)	2	213218533	1.33	0.3253	0.93636
NRG1	rs394738 (A/G)	8	31807295	2.65	0.3255	0.93636
ERBB4	rs2371444 (A/G)	2	212975953	-1.13	0.3257	0.93636
NRG3	rs168200 (A/G)	10	84604557	1.46	0.3258	0.93636
ERBB4	rs10176432 (G/A)	2	212861363	1.43	0.3261	0.93636

ERBB4	rs12104833 (G/A)	2	212965276	1.33	0.3262	0.93636
NRG1	rs35110336 (A/G)	8	32169540	-1.10	0.3263	0.93636
NRG1	rs17624592 (A/G)	8	32122424	-2.25	0.3271	0.93636
ERBB4	rs12694267 (G/A)	2	213069051	1.03	0.3277	0.93636
BTC	rs2864668 (A/G)	4	75717660	-1.06	0.3285	0.93636
NRG3	rs7091020 (G/A)	10	83796920	-2.14	0.3286	0.93636
NRG1	rs57941555 (A/C)	8	32024269	-2.28	0.33	0.93636
NRG1	rs59501354 (A/G)	8	32190403	1.71	0.33	0.93636
EGFR	rs17290225 (G/A)	7	55238253	-2.32	0.3302	0.93636
NRG1	rs7002024 (A/G)	8	32079552	1.16	0.3307	0.93636
ERBB4	rs7563378 (C/A)	2	212846898	-1.23	0.3314	0.93636
NRG1	rs2062055 (A/G)	8	31743113	-1.15	0.3317	0.93636
ERBB4	rs1857796 (A/G)	2	213164837	1.48	0.3317	0.93636
ERBB4	rs12464239 (G/A)	2	212896904	1.68	0.3325	0.93636
ERBB4	rs7564926 (A/G)	2	212961992	1.31	0.3326	0.93636
NRG3	rs193178 (C/A)	10	84583413	1.29	0.3328	0.93636
ERBB4	rs6435628 (A/G)	2	212319043	-1.38	0.333	0.93636
NRG1	rs1383895 (A/G)	8	31703542	-1.07	0.3343	0.93636
NRG3	rs12249088 (G/A)	10	83922529	2.19	0.3346	0.93636
NRG3	rs1339797 (A/C)	10	84404982	1.18	0.335	0.93636
NRG3	rs7342133 (G/A)	10	83790207	1.01	0.3351	0.93636
ERBB4	rs35633854 (A/G)	2	212421476	-1.22	0.3355	0.93636
NRG1	rs11774962 (A/G)	8	32256384	-1.01	0.336	0.93636
NRG1	rs7844483 (A/G)	8	32263846	1.06	0.3361	0.93636
NRG2	rs7723119 (A/G)	5	139411703	-1.09	0.3362	0.93636
NRG3	rs11195990 (A/G)	10	84557079	2.45	0.3367	0.93636
ERBB4	rs16847425 (G/A)	2	212853298	-2.12	0.3368	0.93636
TGFA	rs3771475 (A/G)	2	70769328	-1.70	0.337	0.93636
NRG3	rs6584400 (G/A)	10	83656526	1.36	0.3373	0.93636
ERBB4	rs16848535 (C/A)	2	213292130	2.08	0.3381	0.93636
ERBB4	rs80044823 (A/G)	2	212887517	-2.41	0.3385	0.93636
NRG3	rs12358815 (C/A)	10	83668325	-1.74	0.3391	0.93636
NRG3	rs10883951 (G/A)	10	83697630	-1.12	0.3391	0.93636
NRG1	rs7006475 (A/C)	8	32353970	1.04	0.3395	0.93636
NRG2	rs3777106 (A/G)	5	139247971	-1.38	0.3395	0.93636
NRG3	rs11195073 (A/G)	10	84333628	-1.63	0.34	0.93636
NRG1	rs13279876 (A/G)	8	31638990	-1.40	0.3401	0.93636
NRG1	rs6986789 (G/A)	8	32250029	-1.02	0.3402	0.93636
ERBB4	rs13408475 (G/A)	2	212379238	-1.22	0.3406	0.93636
NRG1	rs10954821 (G/A)	8	31898990	-1.08	0.341	0.93636
NRG3	rs12358632 (G/A)	10	84111459	-2.09	0.3411	0.93636

NRG1	rs7815226 (A/G)	8	31964189	1.08	0.3412	0.93636
ERBB4	rs17337014 (A/G)	2	212864752	1.77	0.3413	0.93636
ERBB4	rs2135159 (G/A)	2	213214465	1.53	0.3416	0.93636
ERBB4	rs10175279 (G/A)	2	212859518	-1.08	0.342	0.93636
NRG1	rs16879067 (G/A)	8	32121424	1.33	0.3432	0.93636
NRG1	rs4733373 (A/G)	8	32605583	1.47	0.3432	0.93636
NRG2	rs4404729 (G/A)	5	139407044	-1.07	0.3434	0.93636
NRG4	rs10444808 (G/A)	15	76272822	2.15	0.3435	0.93636
ERBB4	rs11898476 (G/A)	2	212397409	1.75	0.3442	0.93636
ERBB4	rs10497966 (C/A)	2	213113079	-1.38	0.3443	0.93636
NRG3	rs11195057 (A/G)	10	84329093	1.30	0.3444	0.93636
EGFR	rs11772801 (A/C)	7	55204196	2.09	0.3459	0.93636
NRG1	rs13259768 (A/G)	8	31579119	-1.11	0.3463	0.93636
NRG1	rs72612103 (G/A)	8	31969872	-1.69	0.3463	0.93636
NRG1	rs73234156 (A/G)	8	32425102	2.00	0.3466	0.93636
NRG3	rs11192849 (A/G)	10	83938041	1.84	0.3468	0.93636
ERBB4	rs10205863 (A/T)	2	213237665	-1.69	0.3468	0.93636
NRG3	rs17682831 (A/G)	10	84497360	1.33	0.3474	0.93636
NRG3	rs1649952 (A/G)	10	83920935	1.16	0.3475	0.93636
ERBB4	rs200382732 (G/A)	2	212243614	1.03	0.349	0.93636
NRG1	rs4602844 (G/A)	8	32451898	-1.51	0.3495	0.93636
ERBB4	rs2135161 (A/G)	2	213136747	-1.46	0.3499	0.93636
TGFA	rs4852604 (A/G)	2	70694437	-1.06	0.35	0.93636
NRG3	rs4933836 (G/A)	10	84137873	-1.06	0.35	0.93636
ERBB4	rs10192485 (A/G)	2	212556137	-1.02	0.35	0.93636
NRG1	rs78672160 (G/A)	8	32509782	-2.01	0.3503	0.93636
NRG3	rs12414020 (C/A)	10	83978303	-1.73	0.3506	0.93636
EGFR	rs6950826 (A/G)	7	55223176	-0.98	0.3511	0.93636
NRG1	rs61156846 (A/G)	8	32467567	-2.48	0.3515	0.93636
NRG3	rs17760956 (A/C)	10	84690341	-1.01	0.3515	0.93636
NRG3	rs10749058 (G/A)	10	84401508	-1.06	0.3522	0.93636
ERBB4	rs4302167 (A/C)	2	212333423	1.16	0.3528	0.93636
EGF	rs3733625 (A/G)	4	110933004	-1.98	0.3532	0.93636
NRG3	rs7079037 (G/A)	10	84535582	1.07	0.3536	0.93636
NRG1	rs73582342 (A/G)	8	32187756	1.63	0.3537	0.93636
ERBB4	rs12052282 (A/C)	2	213045240	1.00	0.354	0.93636
NRG1	rs7000397 (A/G)	8	32383863	-1.05	0.3542	0.93636
NRG1	rs2919384 (A/G)	8	32559943	1.10	0.3559	0.93636
NRG1	rs17713685 (A/G)	8	32261582	-1.10	0.356	0.93636
EGFR	rs17337023 (T/A)	7	55238874	-1.05	0.3563	0.93636
ERBB4	rs6722322 (G/A)	2	212604921	1.07	0.3563	0.93636

NRG3	rs4933837 (G/A)	10	84242262	-1.10	0.3568	0.93636
ERBB4	rs6738304 (G/A)	2	212989308	-1.00	0.3568	0.93636
ERBB4	rs1851179 (G/A)	2	212399084	1.07	0.3578	0.93636
NRG1	rs4543501 (A/C)	8	32496505	1.06	0.3579	0.93636
ERBB4	rs61424783 (A/C)	2	213084876	0.96	0.3584	0.93636
ERBB4	rs9288448 (C/A)	2	213085697	0.96	0.3584	0.93636
ERBB4	rs4292044 (A/G)	2	212761152	1.99	0.3585	0.93636
NRG1	rs4733346 (G/A)	8	32369226	1.58	0.3591	0.93636
ERBB4	rs6755027 (G/A)	2	213053239	0.99	0.3594	0.93636
NRG1	rs12548779 (A/G)	8	31912250	-1.00	0.3599	0.93636
ERBB4	rs10174916 (A/G)	2	212439695	-1.21	0.3601	0.93636
NRG1	rs16878368 (C/A)	8	31718367	1.58	0.3608	0.93636
ERBB4	rs71422758 (A/G)	2	212652224	-1.09	0.3608	0.93636
NRG1	rs10093107 (G/A)	8	32026449	-1.02	0.3611	0.93636
NRG3	rs2820100 (C/A)	10	84491173	1.04	0.3611	0.93636
NRG1	rs1542517 (G/A)	8	31959943	-1.65	0.3612	0.93636
NRG1	rs1158105 (A/C)	8	32130916	1.19	0.3616	0.93636
NRG3	rs10884019 (G/A)	10	83757021	1.57	0.3616	0.93636
ERBB4	rs10932384 (A/C)	2	212409848	-1.01	0.3623	0.93636
NRG1	rs1487145 (A/G)	8	32134461	-1.07	0.3625	0.93636
NRG2	rs265165 (A/G)	5	139353723	1.05	0.3638	0.93636
EGFR	rs2017000 (A/G)	7	55242609	-1.12	0.3646	0.93636
NRG1	rs16878394 (C/A)	8	31727061	-2.39	0.3647	0.93636
NRG3	rs3740350 (C/A)	10	84151515	-1.07	0.365	0.93636
ERBB4	rs16848380 (G/A)	2	213194322	1.72	0.3654	0.93636
ERBB4	rs10192302 (A/C)	2	212408179	1.03	0.3657	0.93636
NRG1	rs13259346 (A/G)	8	32511006	-1.00	0.366	0.93636
NRG3	rs17099306 (A/C)	10	83823289	-1.60	0.3663	0.93636
NRG1	rs1503488 (G/A)	8	31691010	1.10	0.3664	0.93636
EGFR	rs17289099 (A/G)	7	55123214	1.86	0.3664	0.93636
NRG3	rs72829364 (G/A)	10	84431429	1.12	0.3668	0.93636
ERBB4	rs6725181 (G/A)	2	212530466	1.40	0.3674	0.93636
NRG3	rs7075400 (A/G)	10	84131104	-1.25	0.3675	0.93636
NRG3	rs1335624 (A/C)	10	84440148	1.03	0.3678	0.93636
NRG1	rs10107049 (G/A)	8	32035502	-1.00	0.3683	0.93636
NRG1	rs4733327 (C/A)	8	32254397	-0.96	0.3683	0.93636
NRG1	rs1481761 (G/A)	8	32008253	-1.01	0.3686	0.93636
EGFR	rs17172448 (G/A)	7	55207220	-1.98	0.369	0.93636
NRG1	rs1471387 (G/A)	8	31935612	-1.00	0.3691	0.93636
NRG1	rs10092307 (A/G)	8	32332633	0.98	0.3695	0.93636
NRG3	rs7895428 (A/G)	10	84122467	-1.10	0.3705	0.93636

NRG3	rs9971107 (C/A)	10	84122925	-1.10	0.3705	0.93636
NRG3	rs34499222 (G/A)	10	84223349	1.88	0.3705	0.93636
NRG1	rs7009043 (A/G)	8	31524553	-0.98	0.3707	0.93636
NRG1	rs1081064 (C/A)	8	31500207	-1.08	0.3708	0.93636
EGFR	rs6593206 (A/C)	7	55180110	-1.02	0.371	0.93636
NRG2	rs2060296 (G/A)	5	139323257	1.02	0.371	0.93636
ERBB4	rs17413728 (A/G)	2	212508093	-1.87	0.3712	0.93636
NRG3	rs73320353 (A/G)	10	83896099	1.97	0.3715	0.93636
NRG1	rs10097555 (A/G)	8	32346295	0.97	0.3719	0.93636
NRG3	rs17099627 (A/G)	10	83978695	-1.64	0.3719	0.93636
EGFR	rs11773818 (G/A)	7	55123968	-1.13	0.3726	0.93692
NRG1	rs11774564 (A/G)	8	32316935	1.38	0.3729	0.93692
BTC	rs28517341 (A/G)	4	75700367	1.44	0.3735	0.93698
NRG3	rs2065538 (A/G)	10	84537367	1.02	0.3738	0.93698
ERBB4	rs2371315 (C/A)	2	212393907	-1.02	0.3751	0.93698
NRG3	rs519003 (A/G)	10	84598255	1.07	0.3754	0.93698
NRG1	rs4733108 (G/A)	8	31947675	-0.99	0.377	0.93698
NRG3	rs11192921 (G/A)	10	83952106	-0.98	0.3771	0.93698
ERBB4	rs7562782 (A/G)	2	213192268	1.09	0.3771	0.93698
NRG3	rs10884648 (A/G)	10	84141592	-1.04	0.3772	0.93698
TGFA	rs3732247 (G/A)	2	70692557	-1.16	0.3777	0.93698
ERBB4	rs114609408 (A/C)	2	213143171	-1.99	0.378	0.93698
NRG3	rs11196259 (A/G)	10	84620787	1.20	0.3781	0.93698
ERBB4	rs16847218 (G/A)	2	212795233	1.62	0.3788	0.93698
NRG1	rs6468104 (A/C)	8	32303612	0.98	0.379	0.93698
NRG1	rs12677942 (G/A)	8	31539942	-1.18	0.38	0.93698
ERBB4	rs72946542 (A/G)	2	212577157	-1.70	0.3801	0.93698
NRG1	rs11777461 (G/A)	8	32364970	1.53	0.3803	0.93698
EGFR	rs12535226 (A/T)	7	55156419	-0.92	0.3809	0.93698
NRG3	rs1335625 (A/G)	10	84479555	-0.94	0.3811	0.93698
NRG3	rs72177668 (A/G)	10	83857812	-1.07	0.3816	0.93698
NRG1	rs2439279 (A/G)	8	32466409	1.01	0.3821	0.93698
ERBB4	rs7426206 (A/G)	2	212984455	-1.01	0.3825	0.93698
NRG1	rs13260061 (A/C)	8	31585000	-1.03	0.3828	0.93698
NRG1	rs6468096 (A/G)	8	32165687	-0.97	0.3832	0.93698
ERBB4	rs35785239 (A/G)	2	212355255	-0.96	0.3835	0.93698
NRG1	rs1481763 (C/A)	8	31993810	-0.98	0.3847	0.93698
ERBB4	rs12470836 (G/A)	2	213209008	1.40	0.3849	0.93698
NRG1	rs9642725 (A/C)	8	32147878	0.93	0.3855	0.93698
ERBB2	rs2952155 (G/A)	17	37861718	-1.00	0.387	0.93698
NRG3	rs7477796 (G/A)	10	84538744	1.00	0.3875	0.93698

HBEGF	rs2237077 (A/G)	5	139720400	-1.04	0.3875	0.93698
NRG3	rs72197632 (G/A)	10	83781542	-1.02	0.3881	0.93698
NRG1	rs17624997 (G/A)	8	32137649	1.44	0.3892	0.93698
TGFA	rs12473408 (A/G)	2	70776384	-0.93	0.3894	0.93698
NRG3	rs2245896 (A/G)	10	84463662	0.97	0.3901	0.93698
ERBB4	rs1357127 (G/A)	2	212948287	-1.47	0.3903	0.93698
NRG3	rs72827304 (A/C)	10	84022385	-1.23	0.391	0.93698
ERBB4	rs13019783 (A/C)	2	212538415	1.59	0.3911	0.93698
NRG2	rs264350 (A/G)	5	139362321	0.95	0.3912	0.93698
NRG3	rs584702 (A/C)	10	84315531	1.23	0.3913	0.93698
TGFA	rs432203 (A/C)	2	70764688	0.94	0.3924	0.93698
NRG3	rs12769829 (G/A)	10	83958312	-0.94	0.3925	0.93698
ERBB4	rs7576673 (A/G)	2	212423302	-1.18	0.3928	0.93698
NRG3	rs7923865 (A/G)	10	84461072	-1.07	0.3932	0.93698
NRG1	rs9801737 (G/A)	8	31912379	-0.93	0.3933	0.93698
ERBB4	rs6719517 (G/A)	2	212979399	-0.93	0.3933	0.93698
NRG1	rs1842637 (A/G)	8	31722926	-1.25	0.3934	0.93698
NRG3	rs4586096 (A/C)	10	84430088	0.95	0.3934	0.93698
NRG1	rs327416 (G/A)	8	31826219	-1.27	0.3941	0.93698
NRG3	rs10884943 (C/A)	10	84328619	-1.46	0.3944	0.93698
ERBB4	rs6753466 (A/G)	2	213248130	0.94	0.3957	0.93698
MUC4	rs2246901 (A/C)	3	195489009	0.95	0.3958	0.93698
ERBB4	rs34706082 (G/A)	2	212712046	1.49	0.3958	0.93698
NRG3	rs7084937 (G/A)	10	83993404	0.97	0.3972	0.93698
NRG1	rs10808318 (A/G)	8	31919211	-0.96	0.3974	0.93698
MUC4	rs12630536 (G/A)	3	195480414	0.97	0.3974	0.93698
ERBB4	rs60268595 (G/A)	2	212819976	2.28	0.3975	0.93698
EGFR	rs1554718 (G/A)	7	55255963	0.93	0.398	0.93698
NRG2	rs56354014 (G/A)	5	139260292	-2.10	0.3981	0.93698
ERBB4	rs1948877 (A/G)	2	213219641	0.99	0.3981	0.93698
TGFA	rs77291713 (G/A)	2	70720450	2.06	0.3983	0.93698
NRG1	rs16878885 (G/A)	8	32019682	1.06	0.3988	0.93698
NRG1	rs4624987 (G/A)	8	32396704	1.85	0.3988	0.93698
EGFR	rs4947491 (G/A)	7	55169291	0.97	0.3991	0.93698
ERBB4	rs10932432 (G/A)	2	213164193	0.98	0.3991	0.93698
ERBB4	rs6435661 (A/G)	2	212572127	0.98	0.3993	0.93698
BTC	rs72867579 (A/G)	4	75698204	1.36	0.3999	0.93698
ERBB4	rs6435663 (G/A)	2	212575671	0.97	0.4004	0.93698
NRG1	rs1386440 (G/A)	8	32177531	-0.93	0.4006	0.93698
ERBB4	rs6707285 (C/A)	2	213067749	0.89	0.4009	0.93698
ERBB4	rs10204324 (A/G)	2	212984466	-0.91	0.401	0.93698

NRG1	rs1383961 (C/A)	8	32098055	0.98	0.4015	0.93698
ERBB4	rs1505353 (C/A)	2	213203057	-0.95	0.4017	0.93698
MUC4	rs3096333 (A/G)	3	195496792	0.90	0.4023	0.93698
NRG1	rs2439282 (G/A)	8	32462701	-1.33	0.4024	0.93698
ERBB4	rs76812495 (A/G)	2	212882485	-2.09	0.4026	0.93698
NRG3	rs915345 (A/G)	10	84459894	0.92	0.4029	0.93698
NRG3	rs8421 (A/G)	10	84746621	-0.93	0.4045	0.93698
ERBB4	rs3883913 (A/C)	2	212566034	0.89	0.4047	0.93698
TGFA	rs4852608 (A/C)	2	70698531	0.92	0.4048	0.93698
NRG3	rs12776248 (A/C)	10	84490409	1.18	0.4049	0.93698
BTC	rs6532366 (C/A)	4	75683103	-1.47	0.4055	0.93698
NRG1	rs2919390 (A/C)	8	32526955	-0.90	0.4056	0.93698
ERBB4	rs3748962 (A/G)	2	212251864	-0.97	0.4065	0.93698
NRG3	rs2068877 (A/G)	10	83651520	-1.71	0.4066	0.93698
ERBB4	rs72931605 (A/G)	2	212693775	-1.42	0.407	0.93698
HBEGF	rs13385 (G/A)	5	139712878	1.10	0.4072	0.93698
NRG1	rs7839597 (A/G)	8	32188594	-1.03	0.4074	0.93698
NRG3	rs645769 (G/A)	10	84263757	-1.02	0.4076	0.93698
NRG1	rs17665441 (C/A)	8	32455027	-0.94	0.4084	0.93698
NRG1	rs7001942 (C/A)	8	32287232	0.98	0.4086	0.93698
NRG3	rs72825440 (G/A)	10	83861185	-1.74	0.4086	0.93698
NRG2	rs11955691 (G/A)	5	139313021	-1.16	0.4093	0.93698
MUC4	rs729593 (C/A)	3	195517909	1.30	0.4095	0.93698
ERBB4	rs10932426 (A/G)	2	213073599	0.99	0.41	0.93698
ERBB4	rs7605095 (A/C)	2	212308833	-1.07	0.4107	0.93698
EGFR	rs4947490 (G/A)	7	55160538	0.92	0.4109	0.93698
TGFA	rs77982178 (C/A)	2	70768922	0.90	0.4115	0.93698
ERBB4	rs72946572 (G/A)	2	212585204	1.61	0.4127	0.93698
EGF	rs2298999 (G/A)	4	110911907	0.91	0.4129	0.93698
ERBB4	rs2128322 (C/A)	2	213384313	-1.37	0.4129	0.93698
NRG3	rs7902158 (A/G)	10	83723457	1.01	0.4134	0.93698
NRG1	rs13279596 (A/G)	8	31736024	-0.97	0.4136	0.93698
NRG3	rs1764076 (A/G)	10	83969034	1.71	0.4139	0.93698
ERBB4	rs7579502 (G/A)	2	212986680	-0.88	0.4144	0.93698
NRG1	rs16879099 (A/G)	8	32137313	-1.61	0.4152	0.93698
ERBB4	rs1879637 (A/G)	2	212868624	0.92	0.4154	0.93698
NRG3	rs10884204 (G/A)	10	83867428	-0.99	0.416	0.93698
MUC4	rs2641773 (C/A)	3	195528226	-0.85	0.416	0.93698
NRG3	rs2484452 (A/G)	10	84464685	0.92	0.4162	0.93698
TGFA	rs454305 (A/G)	2	70736219	0.93	0.417	0.93698
NRG2	rs62383916 (A/G)	5	139395099	-1.42	0.4171	0.93698

NRG1	rs10100501 (G/A)	8	32254835	1.76	0.418	0.93698
NRG1	rs55973232 (C/A)	8	32231597	-1.45	0.4186	0.93698
ERBB4	rs55866026 (A/G)	2	212796378	0.92	0.419	0.93698
NRG1	rs16879088 (G/A)	8	32133284	-1.64	0.4198	0.93698
NRG1	rs10503929 (A/G)	8	32613983	-1.23	0.4199	0.93698
EREG	rs2367708 (A/G)	4	75248544	1.12	0.4203	0.93698
NRG3	rs7072670 (G/A)	10	84045401	0.91	0.4207	0.93698
ERBB4	rs839524 (C/A)	2	212815801	-1.25	0.4207	0.93698
NRG3	rs72823898 (G/A)	10	83787261	1.73	0.4209	0.93698
NRG1	rs2347503 (A/G)	8	32232827	-1.36	0.4211	0.93698
NRG3	rs3740349 (A/C)	10	84151628	-1.77	0.4216	0.93698
NRG3	rs594612 (A/G)	10	84267826	-0.96	0.4225	0.93698
ERBB4	rs6719664 (A/G)	2	212525039	1.30	0.4226	0.93698
NRG3	rs1024193 (G/A)	10	83852321	-0.92	0.4228	0.93698
ERBB4	rs12473131 (G/A)	2	212845292	1.15	0.4229	0.93698
NRG3	rs489466 (A/G)	10	84648966	0.87	0.423	0.93698
ERBB4	rs16847406 (G/A)	2	212845314	1.59	0.4233	0.93698
NRG3	rs10509454 (G/A)	10	84260043	-1.27	0.424	0.93698
NRG1	rs975199 (G/A)	8	31700703	0.97	0.4249	0.93698
ERBB4	rs58905892 (C/A)	2	212586970	-1.59	0.4252	0.93698
EGFR	rs56208956 (G/A)	7	55167063	1.57	0.4256	0.93698
ERBB4	rs10200942 (A/G)	2	212378991	0.93	0.4258	0.93698
NRG1	rs6987816 (G/A)	8	31896196	1.84	0.426	0.93698
ERBB4	rs74409401 (A/G)	2	212878653	-1.14	0.4265	0.93698
ERBB4	rs12475523 (G/A)	2	212245284	0.87	0.4267	0.93698
BTC	rs6843005 (G/A)	4	75684474	0.83	0.4271	0.93698
ERBB4	rs11903508 (G/A)	2	212825238	2.14	0.4271	0.93698
NRG3	rs4143817 (C/A)	10	84099660	-1.28	0.4275	0.93698
NRG1	rs2919392 (G/A)	8	32524451	0.84	0.4277	0.93698
NRG1	rs201709327 (A/G)	8	31993497	-0.89	0.4281	0.93698
ERBB4	rs13021712 (G/A)	2	212565358	-0.93	0.4282	0.93698
ERBB4	rs1394791 (C/A)	2	213297810	1.13	0.4287	0.93704
ERBB4	rs7426203 (G/A)	2	212555823	-0.90	0.4297	0.93704
ERBB4	rs10172967 (A/G)	2	212787989	-0.89	0.4297	0.93704
ERBB4	rs7591137 (G/A)	2	212585422	-0.87	0.4311	0.93704
ERBB4	rs2062937 (G/A)	2	213218396	-0.89	0.4315	0.93704
ERBB4	rs13385826 (A/G)	2	212295478	-0.94	0.4318	0.93704
NRG2	rs35740825 (G/A)	5	139311588	-1.22	0.4324	0.93704
NRG2	rs34596629 (G/A)	5	139320512	-1.22	0.4324	0.93704
NRG1	rs17624670 (G/A)	8	32126374	1.08	0.4325	0.93704
NRG1	rs372373 (G/A)	8	31847539	-1.15	0.4326	0.93704

NRG1	rs13275885 (G/A)	8	32071975	-0.87	0.4328	0.93704
ERBB4	rs75719406 (G/A)	2	213187448	-1.15	0.4329	0.93704
NRG3	rs2246165 (A/C)	10	84461630	1.31	0.434	0.93858
NRG4	rs334941 (G/A)	15	76294870	1.79	0.4357	0.93924
NRG1	rs6983573 (C/A)	8	31602067	1.07	0.4359	0.93924
EGFR	rs6970029 (C/A)	7	55252226	0.86	0.436	0.93924
NRG1	rs4403369 (A/G)	8	31544898	1.17	0.4363	0.93924
MUC4	rs201296070 (G/A)	3	195505739	-2.01	0.4372	0.93924
EREG	rs1460008 (A/G)	4	75254282	1.05	0.4374	0.93924
NRG1	rs7825588 (G/A)	8	32504401	1.34	0.4378	0.93924
NRG1	rs74354821 (G/A)	8	32158293	-0.88	0.4383	0.93924
NRG3	rs7085184 (A/G)	10	84038093	0.89	0.4384	0.93924
ERBB4	rs12162287 (C/A)	2	212579897	-0.99	0.4385	0.93924
EREG	rs1460007 (A/G)	4	75254258	1.08	0.4386	0.93924
NRG3	rs12265466 (G/A)	10	84001018	-1.22	0.4397	0.93952
ERBB4	rs10497945 (A/C)	2	212418110	-0.97	0.4397	0.93952
NRG1	rs2129533 (A/C)	8	32161552	-0.87	0.4399	0.93952
NRG3	rs715687 (A/G)	10	84571953	-0.88	0.4406	0.93982
ERBB4	rs13383860 (A/G)	2	213253930	0.99	0.4412	0.93982
NRG1	rs16879273 (G/A)	8	32231847	-1.39	0.4415	0.93982
EGFR	rs2075106 (A/G)	7	55253425	0.84	0.4416	0.93982
ERBB4	rs6435701 (G/A)	2	213283512	0.86	0.4423	0.94047
NRG1	rs10087434 (A/G)	8	31983067	0.85	0.4427	0.94049
NRG3	rs61862999 (A/G)	10	83991403	-0.94	0.4438	0.94119
ERBB4	rs2090863 (G/A)	2	213078668	0.80	0.4439	0.94119
NRG3	rs10884546 (C/A)	10	84082731	-1.22	0.4442	0.94119
NRG1	rs2881544 (G/A)	8	32112409	0.88	0.4448	0.94135
NRG3	rs41412145 (G/A)	10	83844839	-1.78	0.4453	0.94135
ERBB4	rs1521545 (A/C)	2	212938165	1.18	0.4457	0.94135
TGFA	rs7568707 (G/A)	2	70777550	0.93	0.4463	0.94135
EGF	rs11569061 (A/G)	4	110913193	1.89	0.4467	0.94135
NRG3	rs56161908 (A/C)	10	84570531	-1.52	0.4472	0.94135
BTC	rs28822209 (G/A)	4	75690673	1.00	0.4476	0.94135
NRG1	rs72612106 (C/A)	8	32280768	1.80	0.4485	0.94135
NRG1	rs11775517 (A/G)	8	31663923	0.98	0.4486	0.94135
ERBB4	rs6435654 (G/A)	2	212547935	-0.81	0.4487	0.94135
NRG1	rs66963240 (G/A)	8	32392283	-0.82	0.4496	0.94135
NRG1	rs939077 (C/A)	8	32245538	-0.82	0.4497	0.94135
NRG3	rs56304721 (G/A)	10	84227466	-1.19	0.4497	0.94135
NRG1	rs10098433 (T/A)	8	32600843	1.10	0.4507	0.94135
NRG3	rs568271 (A/C)	10	84631585	-0.86	0.4508	0.94135

NRG2	rs3822741 (G/A)	5	139238921	-1.05	0.4508	0.94135
ERBB4	rs7569142 (G/A)	2	213294557	-0.87	0.4511	0.94135
ERBB2	rs2952156 (G/A)	17	37876835	-0.82	0.4518	0.94135
ERBB4	rs13021324 (A/G)	2	212350245	0.98	0.4522	0.94135
NRG3	rs2475797 (A/G)	10	84690140	-0.86	0.4528	0.94135
NRG1	rs1481756 (G/A)	8	31967245	0.82	0.4534	0.94135
NRG1	rs4590398 (C/A)	8	31850576	-0.88	0.4535	0.94135
TGFA	rs1523300 (A/C)	2	70769365	-0.82	0.4535	0.94135
NRG3	rs7087569 (C/A)	10	84100509	1.20	0.4543	0.94135
TGFA	rs72912113 (G/A)	2	70774248	1.21	0.4549	0.94135
NRG2	rs7736276 (G/A)	5	139335948	-1.15	0.4552	0.94135
NRG3	rs505087 (G/A)	10	84502803	-0.97	0.4553	0.94135
NRG4	rs10851885 (A/G)	15	76304503	0.96	0.4562	0.94135
NRG3	rs72831329 (A/G)	10	84565780	-1.49	0.4562	0.94135
TGFA	rs201827816 (C/G)	2	70778627	0.92	0.4564	0.94135
TGFA	rs199985861 (A/C)	2	70778629	0.92	0.4564	0.94135
EGFR	rs6964705 (C/A)	7	55209637	0.83	0.4575	0.94187
NRG3	rs12573797 (G/C)	10	83764714	1.56	0.4579	0.94187
ERBB4	rs61631854 (G/A)	2	212377672	-0.95	0.4581	0.94187
NRG3	rs10748842 (A/G)	10	83649739	1.23	0.4586	0.94187
NRG1	rs1023910 (A/G)	8	31825486	-0.94	0.4588	0.94187
ERBB4	rs77200750 (G/A)	2	212465243	1.67	0.459	0.94187
ERBB4	rs67044368 (A/G)	2	212573895	1.09	0.4605	0.94377
NRG2	rs2916092 (A/G)	5	139414752	-0.91	0.4609	0.94377
ERBB4	rs10192514 (G/A)	2	213216431	1.17	0.4611	0.94377
ERBB4	rs1384289 (G/A)	2	213339192	-1.62	0.4628	0.94644
NRG3	rs200838641 (G/A)	10	84158436	-0.86	0.4642	0.94751
ERBB4	rs57445671 (A/G)	2	212377043	-1.16	0.4642	0.94751
NRG3	rs10509451 (G/A)	10	84032154	1.23	0.4647	0.94751
HBEGF	rs7268 (C/A)	5	139712550	0.78	0.4649	0.94751
NRG1	rs16878500 (A/C)	8	31801518	-1.37	0.4663	0.94787
NRG1	rs71512629 (A/G)	8	32308302	-1.02	0.4663	0.94787
NRG1	rs7835014 (A/G)	8	31995958	-1.13	0.4675	0.94787
NRG1	rs733230 (G/C)	8	31802582	1.01	0.4679	0.94787
ERBB4	rs6435692 (A/G)	2	213008886	-0.83	0.4685	0.94787
NRG1	rs7001060 (A/C)	8	32066467	-1.35	0.4689	0.94787
NRG3	rs342395 (G/A)	10	84622010	1.16	0.4691	0.94787
ERBB4	rs16825008 (A/G)	2	212304841	-0.88	0.4694	0.94787
ERBB4	rs10196354 (A/G)	2	212382646	-0.87	0.4695	0.94787
NRG3	rs72825496 (A/G)	10	84011500	1.19	0.4697	0.94787
NRG3	rs11194491 (G/A)	10	84225687	-0.83	0.4698	0.94787

ERBB4	rs13014726 (G/A)	2	213224540	-1.04	0.4698	0.94787
NRG1	rs57627142 (A/C)	8	32193198	-1.05	0.4708	0.94816
NRG2	rs192371066 (A/G)	5	139311848	-1.10	0.4708	0.94816
TGFA	rs443120 (A/G)	2	70743064	-1.28	0.4717	0.94816
NRG3	rs7082760 (A/G)	10	83828745	-0.96	0.4724	0.94816
NRG3	rs10884110 (A/G)	10	83820418	-1.01	0.4726	0.94816
ERBB4	rs7569828 (G/A)	2	212243534	1.76	0.4726	0.94816
NRG2	rs9686629 (A/G)	5	139329066	-1.10	0.4727	0.94816
NRG1	rs12546943 (G/A)	8	32170223	-0.99	0.4731	0.94817
NRG1	rs7819063 (G/A)	8	31499408	0.93	0.4743	0.94978
NRG1	rs28392732 (G/A)	8	32267235	1.06	0.4755	0.95063
NRG3	rs585597 (A/G)	10	84315759	-0.83	0.476	0.95063
NRG1	rs6468095 (G/A)	8	32164476	-0.99	0.4761	0.95063
ERBB4	rs4530297 (A/G)	2	212453661	1.00	0.4763	0.95063
NRG3	rs4341481 (A/G)	10	84713797	0.75	0.4768	0.95083
NRG1	rs35216206 (A/G)	8	31854803	-1.23	0.4794	0.95388
NRG1	rs1487146 (A/G)	8	32134420	0.88	0.4794	0.95388
NRG2	rs17118604 (A/G)	5	139375692	1.39	0.4796	0.95388
NRG3	rs201423217 (A/G)	10	84457944	0.78	0.48	0.95388
NRG3	rs17559164 (G/A)	10	83875533	-1.03	0.4808	0.95388
NRG2	rs2436389 (A/C)	5	139416265	0.84	0.4809	0.95388
NRG1	rs13266401 (A/G)	8	31887758	1.40	0.4811	0.95388
ERBB4	rs12467708 (A/G)	2	212689053	1.12	0.4831	0.95627
ERBB4	rs16848137 (A/G)	2	213136366	-0.90	0.4833	0.95627
ERBB4	rs4630710 (A/G)	2	213211617	0.95	0.4835	0.95627
ERBB4	rs4673664 (G/A)	2	213277649	0.78	0.4842	0.95687
ERBB4	rs1818752 (C/A)	2	212507648	-1.41	0.485	0.95767
ERBB4	rs1972820 (A/G)	2	212243422	0.77	0.4869	0.96004
NRG3	rs2483299 (G/A)	10	84652722	0.77	0.487	0.96004
ERBB4	rs13026255 (A/G)	2	212596915	-0.80	0.4879	0.96065
NRG1	rs989465 (A/C)	8	32105334	0.79	0.4883	0.96065
NRG3	rs17099777 (A/C)	10	84075777	-0.84	0.4887	0.96065
NRG1	rs16879366 (A/G)	8	32286041	-1.22	0.4892	0.96065
ERBB4	rs55951977 (G/A)	2	212602010	-0.80	0.4903	0.96065
NRG1	rs17620153 (G/A)	8	31976837	-0.74	0.4905	0.96065
NRG3	rs2144468 (C/G)	10	83684106	-0.90	0.4905	0.96065
NRG2	rs67151903 (G/A)	5	139363583	1.57	0.4909	0.96065
ERBB4	rs4673616 (A/C)	2	212281381	-0.84	0.4909	0.96065
EGFR	rs723527 (A/G)	7	55134872	0.74	0.4913	0.96065
MUC4	rs2688515 (G/A)	3	195527471	-0.71	0.494	0.96431
ERBB4	rs16848048 (G/A)	2	213110812	-1.55	0.4941	0.96431

NRG3	rs1889709 (A/C)	10	84469007	-0.83	0.4944	0.96431
NRG3	rs11193683 (A/C)	10	84079184	-0.85	0.4959	0.96431
ERBB4	rs4672612 (G/A)	2	212245489	0.76	0.4964	0.96431
ERBB4	rs839533 (G/A)	2	212808107	-0.93	0.4965	0.96431
ERBB4	rs6757068 (A/G)	2	212615516	-0.73	0.4966	0.96431
NRG1	rs7841677 (A/C)	8	32078855	0.77	0.4971	0.96431
NRG1	rs956203 (A/G)	8	31910758	-0.79	0.4976	0.96431
NRG3	rs7083829 (A/G)	10	83719445	1.24	0.4979	0.96431
NRG3	rs7099000 (G/A)	10	83719507	1.24	0.4979	0.96431
NRG2	rs35342155 (G/A)	5	139300789	-0.92	0.4984	0.96431
NRG3	rs10509440 (G/A)	10	83736634	1.29	0.4993	0.96431
EGFR	rs845550 (G/A)	7	55236774	-1.28	0.4995	0.96431
EGFR	rs17586344 (A/G)	7	55140398	-1.08	0.4996	0.96431
NRG3	rs4933830 (A/G)	10	83873131	-0.85	0.5	0.96431
EGFR	rs78265168 (G/A)	7	55114589	1.80	0.5006	0.96431
NRG3	rs6584407 (A/G)	10	83676409	-0.82	0.5016	0.96431
NRG1	rs11782671 (G/A)	8	32290601	0.72	0.5031	0.96431
ERBB4	rs7586570 (A/C)	2	212243737	1.79	0.5034	0.96431
ERBB4	rs10932386 (A/G)	2	212450199	1.12	0.5036	0.96431
ERBB4	rs55988979 (A/G)	2	212684970	0.82	0.5043	0.96431
TGFA	rs3771492 (G/A)	2	70728877	-1.40	0.5044	0.96431
MUC4	rs67175307 (G/A)	3	195479237	1.56	0.5045	0.96431
NRG1	rs9297190 (A/G)	8	32258926	-0.79	0.5048	0.96431
NRG3	rs11196077 (A/G)	10	84574375	-1.00	0.5054	0.96431
EGFR	rs2072454 (A/G)	7	55214348	-0.69	0.5057	0.96431
EGFR	rs10258429 (G/A)	7	55238087	-1.27	0.5057	0.96431
ERBB4	rs7565960 (G/A)	2	212242434	-0.79	0.5059	0.96431
ERBB4	rs116254091 (G/A)	2	213114344	-1.49	0.5059	0.96431
NRG1	rs2919385 (G/A)	8	32557831	1.73	0.506	0.96431
EGFR	rs1013127 (A/G)	7	55139068	0.90	0.5062	0.96431
NRG1	rs16879882 (C/A)	8	32584095	1.83	0.5068	0.96431
NRG3	rs10883898 (G/A)	10	83670126	-0.80	0.5075	0.96431
ERBB4	rs61250365 (A/G)	2	212428646	-0.83	0.5077	0.96431
ERBB4	rs78307325 (G/A)	2	212892543	-1.64	0.5085	0.96431
NRG3	rs2246633 (A/G)	10	84457148	0.73	0.5087	0.96431
BTC	rs10029520 (G/A)	4	75680724	0.70	0.5089	0.96431
NRG1	rs13276200 (A/G)	8	31835829	-1.22	0.5093	0.96431
NRG1	rs4352806 (A/G)	8	32238916	1.41	0.5096	0.96431
NRG2	rs265161 (G/A)	5	139391486	-0.92	0.5096	0.96431
NRG1	rs1381874 (G/A)	8	31942557	-1.16	0.5106	0.96545
ERBB4	rs55651117 (C/A)	2	212467401	-1.43	0.5133	0.96735

EGFR	rs17172446 (G/A)	7	55202598	0.83	0.5137	0.96735
NRG1	rs28569837 (G/A)	8	32285094	0.77	0.514	0.96735
BTC	rs13129461 (A/G)	4	75705267	0.78	0.514	0.96735
ERBB4	rs1836712 (A/G)	2	212312191	-1.48	0.5141	0.96735
EGFR	rs7795564 (G/A)	7	55124829	-0.72	0.515	0.96735
ERBB4	rs4672614 (A/G)	2	212350088	0.84	0.5151	0.96735
ERBB4	rs6735769 (A/G)	2	212434037	-0.82	0.5158	0.96735
NRG1	rs72586969 (G/A)	8	32536429	0.70	0.5169	0.96735
ERBB4	rs7608189 (A/G)	2	212382106	-0.91	0.5187	0.96735
NRG1	rs776401 (A/G)	8	31716962	0.74	0.5193	0.96735
NRG1	rs1979565 (A/G)	8	32102493	0.74	0.5193	0.96735
ERBB4	rs13024094 (G/A)	2	212560354	-0.93	0.5197	0.96735
ERBB4	rs71422752 (A/G)	2	212575971	-1.11	0.5199	0.96735
ERBB4	rs12613571 (A/G)	2	212845994	1.25	0.5199	0.96735
ERBB4	rs17325821 (G/A)	2	213336689	0.85	0.52	0.96735
NRG1	rs10808317 (G/A)	8	31816746	-0.82	0.5208	0.96735
ERBB4	rs1371203 (A/G)	2	212683946	0.82	0.5212	0.96735
ERBB4	rs75605905 (G/A)	2	212333563	0.83	0.5213	0.96735
EREG	rs1993665 (A/G)	4	75234486	-0.79	0.5216	0.96735
NRG3	rs7915217 (A/G)	10	84098115	1.02	0.5217	0.96735
ERBB4	rs3791699 (G/A)	2	212274447	-0.80	0.5225	0.96735
ERBB4	rs1910861 (G/A)	2	213211407	-0.72	0.5227	0.96735
ERBB4	rs12475861 (A/G)	2	212415948	0.81	0.5232	0.96735
EGFR	rs1468726 (G/A)	7	55165999	0.77	0.5234	0.96735
ERBB4	rs11895168 (C/A)	2	212242192	0.72	0.5235	0.96735
ERBB4	rs9678219 (G/A)	2	212937649	-0.93	0.5256	0.96735
NRG3	rs7358197 (G/A)	10	84030522	1.23	0.5263	0.96735
ERBB4	rs4490118 (A/C)	2	212330865	-0.77	0.5266	0.96735
ERBB4	rs7588431 (G/A)	2	212650985	0.69	0.527	0.96735
EGFR	rs11238354 (A/G)	7	55227064	0.77	0.5275	0.96735
ERBB4	rs7419310 (G/A)	2	212583563	-0.78	0.528	0.96735
EGFR	rs11760524 (A/G)	7	55221167	1.04	0.5282	0.96735
TGFA	rs7579830 (A/G)	2	70711183	1.49	0.5282	0.96735
NRG1	rs900103 (A/G)	8	32001009	0.89	0.5285	0.96735
NRG3	rs342372 (G/A)	10	84589336	-0.67	0.5285	0.96735
NRG3	rs7476649 (G/A)	10	84087761	-0.92	0.5286	0.96735
NRG3	rs7072481 (A/G)	10	84030537	0.73	0.53	0.96735
NRG3	rs514237 (G/A)	10	84505577	0.75	0.53	0.96735
ERBB4	rs75469068 (A/C)	2	213171575	-1.02	0.5302	0.96735
NRG3	rs342375 (G/A)	10	84590820	-0.67	0.5303	0.96735
MUC4	rs863582 (A/G)	3	195478694	-0.68	0.5307	0.96735

ERBB4	rs16847152 (G/A)	2	212736394	0.68	0.5309	0.96735
ERBB4	rs16847082 (A/G)	2	212718670	0.83	0.5312	0.96735
ERBB4	rs13382194 (A/G)	2	212378743	-0.68	0.5318	0.96735
NRG3	rs7069578 (G/A)	10	84179887	-0.87	0.5319	0.96735
ERBB4	rs1402711 (C/A)	2	212863006	0.70	0.5334	0.96735
ERBB4	rs72948566 (C/A)	2	212687528	0.77	0.534	0.96735
NRG1	rs6468091 (G/A)	8	32087606	-1.25	0.5343	0.96735
ERBB4	rs2177035 (C/A)	2	212891401	-0.79	0.535	0.96735
EGFR	rs6593207 (A/G)	7	55196855	1.02	0.5357	0.96735
NRG3	rs10884361 (G/A)	10	83981964	1.07	0.5362	0.96735
NRG3	rs2246879 (A/G)	10	84455202	1.04	0.5364	0.96735
NRG1	rs201525202 (A/G)	8	32310209	0.67	0.5366	0.96735
NRG3	rs11192447 (G/A)	10	83848397	-1.31	0.5366	0.96735
ERBB4	rs17415079 (A/G)	2	212856363	-1.05	0.5369	0.96735
ERBB4	rs62178819 (G/A)	2	212370193	-1.02	0.5371	0.96735
NRG1	rs10503919 (C/A)	8	32399742	-0.88	0.5378	0.96735
ERBB4	rs62178817 (C/A)	2	212368624	-1.07	0.5381	0.96735
NRG3	rs1937968 (A/C)	10	84222280	-0.73	0.5383	0.96735
BTC	rs5028443 (A/G)	4	75678122	0.65	0.5397	0.96735
ERBB4	rs7604206 (C/A)	2	212584780	0.70	0.5398	0.96735
TGFA	rs12617813 (G/A)	2	70778190	0.66	0.5399	0.96735
NRG1	rs2347496 (A/C)	8	32288932	0.67	0.5405	0.96735
NRG3	rs2348332 (C/A)	10	84389603	1.08	0.5405	0.96735
ERBB4	rs17259208 (A/G)	2	213316586	0.74	0.5413	0.96735
EGFR	rs2075108 (A/G)	7	55254322	-1.17	0.5415	0.96735
ERBB4	rs12622730 (A/G)	2	212435213	-0.79	0.5416	0.96735
ERBB4	rs17344065 (A/G)	2	212947759	-0.89	0.5421	0.96735
ERBB4	rs12694263 (G/A)	2	213003179	-1.04	0.5423	0.96735
ERBB4	rs62182993 (G/A)	2	212599288	0.74	0.5428	0.96735
NRG3	rs12570292 (G/A)	10	83755561	-0.90	0.5429	0.96735
ERBB4	rs6714941 (C/A)	2	212539997	-0.66	0.5432	0.96735
ERBB4	rs1439235 (G/A)	2	212709028	0.81	0.5432	0.96735
ERBB4	rs6754899 (G/A)	2	212576043	-0.64	0.5441	0.96735
ERBB4	rs2371283 (A/G)	2	212386868	-1.10	0.5458	0.96735
NRG3	rs652183 (A/C)	10	84381535	0.68	0.5459	0.96735
NRG1	rs7844698 (G/A)	8	32345693	0.66	0.5468	0.96735
NRG1	rs4501543 (A/G)	8	32454484	-0.68	0.5469	0.96735
TGFA	rs1597253 (A/G)	2	70765713	-0.87	0.5477	0.96735
BTC	rs72660307 (A/C)	4	75678027	-1.40	0.5481	0.96735
NRG3	rs1080293 (G/A)	10	83896260	0.75	0.5481	0.96735
NRG1	rs10088313 (C/A)	8	32390061	1.30	0.5483	0.96735
NRG3	rs11813781 (A/G)	10	83718762	1.10	0.5483	0.96735
-------	-------------------	----	-----------	-------	--------	---------
NRG1	rs56129386 (G/A)	8	32129651	1.00	0.5486	0.96735
NRG1	rs7005288 (A/G)	8	32620467	-0.82	0.5493	0.96735
EGFR	rs9692301 (A/G)	7	55243754	-0.73	0.5504	0.96735
ERBB4	rs1521657 (G/A)	2	213023438	-0.79	0.5511	0.96735
ERBB4	rs985995 (G/A)	2	213341614	-0.78	0.5512	0.96735
NRG1	rs6651144 (A/G)	8	32382668	-0.65	0.5514	0.96735
NRG3	rs11196606 (A/C)	10	84706653	0.63	0.5518	0.96735
NRG1	rs10503913 (A/G)	8	32234113	0.87	0.5519	0.96735
NRG3	rs7909484 (G/A)	10	84206002	-0.74	0.5521	0.96735
MUC4	rs79077800 (G/A)	3	195537660	0.87	0.5523	0.96735
NRG3	rs6584426 (A/G)	10	83732093	0.73	0.5532	0.96735
EGFR	rs17336282 (G/A)	7	55203978	0.75	0.5534	0.96735
NRG1	rs16878763 (A/G)	8	31936063	-0.69	0.5536	0.96735
NRG1	rs111450459 (G/A)	8	31844866	-0.75	0.554	0.96735
EGFR	rs845561 (A/G)	7	55252708	-0.77	0.554	0.96735
NRG3	rs77891870 (G/A)	10	83709730	-1.33	0.5558	0.96735
ERBB4	rs62178818 (A/G)	2	212370172	-0.99	0.5563	0.96735
MUC4	rs56065813 (G/A)	3	195520719	0.68	0.5568	0.96735
NRG1	rs201837009 (G/A)	8	31903654	-0.63	0.5574	0.96735
ERBB4	rs4561599 (G/A)	2	212356281	-0.69	0.5578	0.96735
NRG3	rs639839 (C/A)	10	84363327	-1.03	0.5579	0.96735
NRG1	rs4733330 (C/A)	8	32274960	-0.62	0.5583	0.96735
NRG1	rs13253155 (G/A)	8	32368723	-0.81	0.5587	0.96735
NRG2	rs265158 (A/G)	5	139390467	-0.81	0.5587	0.96735
NRG1	rs3735775 (G/A)	8	32585423	0.80	0.5588	0.96735
ERBB4	rs10932414 (G/A)	2	212893219	-1.01	0.5589	0.96735
NRG3	rs2249964 (G/A)	10	84452076	0.66	0.559	0.96735
NRG1	rs13255716 (A/G)	8	31842475	0.66	0.5592	0.96735
MUC4	rs9837428 (A/G)	3	195486869	0.66	0.5596	0.96735
NRG3	rs342374 (G/A)	10	84590002	-0.62	0.5606	0.96735
NRG1	rs900102 (G/A)	8	32120188	0.62	0.5607	0.96735
EGFR	rs67652465 (A/G)	7	55258033	-0.76	0.5607	0.96735
NRG3	rs3904726 (A/G)	10	84091078	-0.86	0.5611	0.96735
NRG3	rs11192265 (C/A)	10	83801263	-0.65	0.5614	0.96735
NRG3	rs6584870 (G/A)	10	84431179	-0.64	0.5617	0.96735
MUC4	rs2291652 (G/A)	3	195477791	0.65	0.5617	0.96735
NRG3	rs17100097 (A/G)	10	84218664	-0.69	0.5622	0.96735
NRG3	rs7069222 (G/A)	10	83756102	0.70	0.5631	0.96735
BTC	rs977266 (A/G)	4	75717601	-0.61	0.5634	0.96735
ERBB4	rs1394783 (A/G)	2	213201725	-0.69	0.5639	0.96735

BTC	rs11938093 (T/A)	4	75675841	-0.71	0.5644	0.96735
NRG1	rs57944175 (G/A)	8	32474242	-1.20	0.5647	0.96735
NRG3	rs7068082 (G/A)	10	84458075	-0.73	0.565	0.96735
NRG1	rs810284 (A/G)	8	31768052	0.87	0.5651	0.96735
BTC	rs61604859 (G/A)	4	75718619	1.15	0.5662	0.96735
NRG3	rs617738 (C/A)	10	84322815	-0.66	0.5674	0.96735
NRG3	rs492203 (A/G)	10	84678512	-0.64	0.5674	0.96735
NRG3	rs10787129 (T/A)	10	84168912	-0.65	0.5675	0.96735
ERBB4	rs2033647 (A/G)	2	212302127	-0.67	0.5681	0.96735
NRG3	rs6584402 (G/A)	10	83663215	-0.69	0.5682	0.96735
NRG3	rs1937984 (A/G)	10	84152990	-0.67	0.5683	0.96735
NRG3	rs3908834 (G/A)	10	84078217	-0.83	0.5686	0.96735
NRG3	rs7068961 (A/G)	10	84000308	-0.90	0.5689	0.96735
ERBB4	rs1829615 (A/G)	2	212547777	-0.61	0.5693	0.96735
NRG2	rs6864507 (A/C)	5	139237379	-1.48	0.5696	0.96735
HBEGF	rs4912711 (C/A)	5	139718525	-0.97	0.5696	0.96735
NRG1	rs57310164 (G/A)	8	31732302	-0.65	0.5701	0.96735
MUC4	rs1806440 (G/A)	3	195517124	0.83	0.5701	0.96735
ERBB4	rs7603039 (A/G)	2	212788895	-0.73	0.5702	0.96735
ERBB4	rs10183757 (G/A)	2	212539559	-0.61	0.5706	0.96735
NRG1	rs73252749 (A/G)	8	32316734	-0.71	0.5707	0.96735
MUC4	rs56350323 (C/A)	3	195525746	-1.08	0.5708	0.96735
ERBB4	rs75989563 (A/G)	2	213350702	-1.32	0.5717	0.96735
TGFA	rs930655 (G/A)	2	70684451	-0.65	0.5718	0.96735
ERBB4	rs34819491 (G/A)	2	212561232	-0.77	0.5721	0.96735
NRG2	rs12520398 (G/A)	5	139405072	-0.61	0.5724	0.96735
BTC	rs4352548 (A/G)	4	75683594	-0.82	0.5728	0.96735
EGFR	rs9649847 (G/A)	7	55187138	0.97	0.573	0.96735
NRG1	rs4288331 (A/G)	8	31520547	-0.65	0.5734	0.96735
ERBB3	rs705708 (G/A)	12	56488913	-0.62	0.574	0.96735
NRG3	rs581628 (G/A)	10	84265169	-0.67	0.5742	0.96735
NRG1	rs2976532 (G/A)	8	32594251	0.67	0.5743	0.96735
MUC4	rs3103954 (A/C)	3	195516630	0.83	0.5751	0.96795
NRG1	rs4373486 (G/A)	8	31791685	0.79	0.5758	0.96795
ERBB4	rs1851168 (A/G)	2	212535145	-0.60	0.5766	0.96795
NRG3	rs7077048 (G/A)	10	84111105	-0.83	0.577	0.96795
NRG1	rs12056925 (A/C)	8	32486892	-1.46	0.5776	0.96795
EGFR	rs3752651 (A/G)	7	55229543	-0.80	0.5782	0.96795
ERBB4	rs34621071 (A/G)	2	212522651	1.01	0.5784	0.96795
NRG2	rs11738832 (G/A)	5	139294677	0.64	0.5799	0.96795
EGFR	rs6970262 (G/A)	7	55259763	-0.62	0.5802	0.96795

ERBB4	rs6727581 (A/G)	2	212299979	-1.11	0.5802	0.96795
NRG1	rs17630744 (A/G)	8	32145945	1.34	0.5806	0.96795
ERBB4	rs2076818 (A/G)	2	212261968	0.99	0.5811	0.96795
ERBB4	rs11693914 (A/G)	2	212867025	-0.94	0.5814	0.96795
ERBB4	rs1595066 (G/A)	2	212241725	-0.67	0.5815	0.96795
ERBB4	rs201134330 (A/G)	2	212983286	-0.61	0.5815	0.96795
NRG3	rs10884538 (G/A)	10	84080228	-0.69	0.5821	0.96795
MUC4	rs2259331 (G/A)	3	195501258	0.64	0.5822	0.96795
ERBB4	rs58138021 (C/A)	2	213135289	-1.08	0.5824	0.96795
EGFR	rs940810 (G/A)	7	55277387	-0.73	0.5825	0.96795
EGFR	rs4947973 (G/A)	7	55161056	0.63	0.5827	0.96795
NRG1	rs67222611 (A/G)	8	32469506	-1.12	0.5841	0.96924
NRG3	rs4933814 (A/C)	10	83755315	-0.81	0.5845	0.96924
NRG3	rs1739766 (C/A)	10	83875762	0.59	0.5848	0.96924
TGFA	rs200348663 (A/C)	2	70683994	-0.62	0.5865	0.96924
NRG1	rs4535704 (A/G)	8	32474622	-0.62	0.587	0.96924
EREG	rs1017733 (A/G)	4	75252350	0.73	0.5872	0.96924
NRG3	rs7069393 (A/C)	10	83875405	-0.92	0.5872	0.96924
NRG1	rs796549 (G/A)	8	31768217	0.82	0.5884	0.96924
ERBB4	rs1521636 (A/G)	2	213117976	-0.63	0.5888	0.96924
ERBB4	rs12471583 (A/G)	2	212244718	0.67	0.5905	0.96924
NRG3	rs1763060 (G/A)	10	84571876	-0.63	0.5928	0.96924
NRG3	rs74147915 (G/A)	10	84120739	1.23	0.5931	0.96924
ERBB4	rs77824825 (A/G)	2	212948255	-0.78	0.5942	0.96924
NRG1	rs776385 (G/A)	8	31736625	-0.61	0.5949	0.96924
ERBB3	rs2229046 (A/G)	12	56487201	1.03	0.595	0.96924
NRG3	rs10884056 (G/A)	10	83788206	0.67	0.5951	0.96924
NRG1	rs10808324 (G/A)	8	32295903	0.61	0.5952	0.96924
ERBB4	rs68029722 (A/G)	2	212692219	0.66	0.5954	0.96924
NRG2	rs265148 (A/G)	5	139400779	0.65	0.5959	0.96924
NRG1	rs28374316 (A/G)	8	32562293	-0.83	0.5969	0.96924
NRG3	rs4933812 (A/C)	10	83688892	-0.63	0.5977	0.96924
NRG3	rs7070560 (A/G)	10	84048346	0.97	0.5979	0.96924
NRG3	rs10509449 (G/A)	10	84022458	1.00	0.5985	0.96924
NRG4	rs76466466 (A/G)	15	76289451	-1.11	0.5988	0.96924
NRG3	rs11193401 (G/A)	10	84040843	-0.78	0.5988	0.96924
ERBB4	rs6435681 (G/A)	2	212783175	0.68	0.5988	0.96924
EGFR	rs12535536 (A/G)	7	55154381	-0.63	0.5997	0.96924
MUC4	rs2688482 (G/A)	3	195529118	-0.57	0.5999	0.96924
ERBB4	rs59197841 (G/A)	2	212241339	1.29	0.5999	0.96924
EGF	rs10023272 (A/G)	4	110886804	0.61	0.6008	0.96924

ERBB4	rs13035133 (A/G)	2	212654817	0.57	0.6009	0.96924
NRG1	rs12542743 (G/A)	8	32318355	-0.55	0.6011	0.96924
NRG1	rs11989919 (A/G)	8	32502626	-1.17	0.602	0.96924
ERBB4	rs7588792 (C/A)	2	212626917	0.73	0.6025	0.96924
NRG2	rs265151 (C/A)	5	139378986	0.72	0.6027	0.96924
NRG3	rs12220854 (A/G)	10	83954600	-1.00	0.6038	0.96924
NRG1	rs16879814 (A/G)	8	32573583	-0.60	0.6041	0.96924
MUC4	rs67882058 (A/G)	3	195485439	0.58	0.6045	0.96924
NRG3	rs11193797 (G/A)	10	84093995	0.77	0.6047	0.96924
ERBB4	rs6757140 (G/A)	2	213279029	-0.58	0.6048	0.96924
ERBB4	rs1521662 (A/C)	2	213129211	-0.62	0.6049	0.96924
NRG3	rs17099329 (A/C)	10	83828693	1.18	0.6055	0.96924
NRG1	rs28712850 (C/A)	8	31769225	0.79	0.6073	0.96924
NRG3	rs560083 (G/A)	10	84614844	-0.62	0.6079	0.96924
TGFA	rs17005666 (G/A)	2	70705402	1.21	0.6083	0.96924
TGFA	rs17005692 (G/A)	2	70712860	1.21	0.6083	0.96924
ERBB4	rs6435689 (G/A)	2	212975064	-0.62	0.6084	0.96924
NRG1	rs117470596 (G/A)	8	32201394	-1.06	0.6092	0.96924
NRG1	rs17731664 (A/G)	8	32586085	0.89	0.6092	0.96924
NRG1	rs10092449 (G/A)	8	32563363	-0.80	0.6094	0.96924
ERBB4	rs10207020 (G/A)	2	213107619	0.61	0.6104	0.96924
EGFR	rs17172451 (G/A)	7	55222755	-0.63	0.6108	0.96924
NRG3	rs973634 (G/A)	10	83871324	0.56	0.6114	0.96924
ERBB4	rs1851185 (G/A)	2	212527729	-0.62	0.6117	0.96924
ERBB2	rs2643195 (G/A)	17	37853118	-0.56	0.6118	0.96924
ERBB4	rs6747405 (A/C)	2	212574618	-0.82	0.6133	0.96924
NRG1	rs13255161 (G/A)	8	31921721	-0.55	0.6135	0.96924
EGFR	rs712831 (G/A)	7	55242782	0.63	0.6135	0.96924
NRG1	rs7822917 (C/A)	8	32190881	-0.65	0.6144	0.96924
MUC4	rs2550271 (G/A)	3	195484916	-0.54	0.6149	0.96924
NRG3	rs2644207 (A/C)	10	84489741	0.54	0.6152	0.96924
MUC4	rs2641776 (G/C)	3	195515617	-1.19	0.6173	0.96924
ERBB4	rs6435639 (A/G)	2	212403323	0.61	0.6175	0.96924
ERBB4	rs72945096 (G/A)	2	212553271	-0.80	0.6175	0.96924
ERBB4	rs1402708 (G/A)	2	212832434	1.10	0.6176	0.96924
ERBB4	rs1521648 (C/A)	2	213039476	0.57	0.6177	0.96924
NRG3	rs2348553 (G/A)	10	84601325	-0.66	0.6184	0.96924
ERBB4	rs13390226 (G/A)	2	212739861	0.86	0.6184	0.96924
NRG3	rs910585 (G/A)	10	83662048	-0.61	0.6186	0.96924
ERBB4	rs7595473 (A/G)	2	212428439	-0.62	0.619	0.96924
EGFR	rs2293347 (G/A)	7	55268916	0.94	0.6191	0.96924

NRG3	rs520775 (A/G)	10	84680228	-1.07	0.6192	0.96924
ERBB4	rs16846013 (G/A)	2	212250195	-0.68	0.6198	0.96924
NRG3	rs524577 (G/A)	10	84642168	1.06	0.6202	0.96924
ERBB4	rs1464443 (A/C)	2	212914726	-0.59	0.6203	0.96924
ERBB4	rs2017322 (A/G)	2	212723516	-0.74	0.6209	0.96924
ERBB4	rs62182564 (G/A)	2	213040280	0.61	0.6212	0.96924
MUC4	rs13095016 (G/C)	3	195515594	0.66	0.6215	0.96924
ERBB4	rs12476100 (G/A)	2	212534520	-0.56	0.6218	0.96924
BTC	rs967875 (G/A)	4	75718067	0.53	0.6219	0.96924
BTC	rs4585380 (G/A)	4	75673363	-0.61	0.622	0.96924
NRG3	rs342368 (A/C)	10	84565851	0.56	0.6221	0.96924
NRG3	rs7099976 (G/A)	10	83865764	-0.61	0.6228	0.96924
NRG1	rs7012841 (A/G)	8	32102970	0.72	0.6235	0.96924
NRG1	rs776387 (A/G)	8	31738051	-0.53	0.6238	0.96924
NRG1	rs1565031 (G/A)	8	32201135	-0.71	0.6239	0.96924
NRG3	rs1576987 (A/G)	10	84680499	0.54	0.6239	0.96924
ERBB4	rs16848640 (A/C)	2	213338904	-1.02	0.6241	0.96924
ERBB4	rs13018908 (A/C)	2	213221111	0.74	0.6258	0.96924
NRG1	rs6468067 (G/A)	8	31629500	0.61	0.6265	0.96924
NRG3	rs7094235 (G/A)	10	83802818	0.92	0.6268	0.96924
NRG3	rs7099539 (G/A)	10	83804209	0.92	0.6268	0.96924
NRG1	rs970998 (G/A)	8	32201084	-0.54	0.6271	0.96924
NRG3	rs581354 (C/A)	10	84647206	0.78	0.6272	0.96924
EGF	rs72676957 (A/G)	4	110902684	-1.00	0.6274	0.96924
ERBB4	rs1521654 (T/A)	2	213027954	0.79	0.6276	0.96924
ERBB4	rs13432680 (A/C)	2	213068720	-0.54	0.6277	0.96924
NRG1	rs13257203 (G/A)	8	31541283	0.53	0.6279	0.96924
MUC4	rs842223 (G/A)	3	195483076	0.62	0.6293	0.96924
ERBB4	rs10221912 (A/G)	2	212322368	1.11	0.6296	0.96924
ERBB4	rs4580336 (A/G)	2	213090009	0.53	0.6296	0.96924
NRG3	rs12249883 (A/G)	10	83995904	-0.61	0.6298	0.96924
ERBB4	rs4673649 (A/G)	2	212956761	-0.66	0.6298	0.96924
NRG3	rs73319118 (G/A)	10	83658507	1.32	0.6302	0.96924
NRG1	rs10102746 (C/A)	8	32046770	0.67	0.6304	0.96924
NRG2	rs12515886 (C/G)	5	139394586	-0.51	0.6309	0.96924
ERBB4	rs10185241 (A/G)	2	213244124	0.52	0.631	0.96924
ERBB4	rs58853206 (C/A)	2	212243380	1.28	0.6311	0.96924
NRG3	rs11195188 (G/A)	10	84359114	0.65	0.6317	0.96924
ERBB4	rs1836715 (A/G)	2	212307077	-0.60	0.6323	0.96924
NRG1	rs10097712 (G/A)	8	32133418	0.93	0.6324	0.96924
MUC4	rs73891120 (G/A)	3	195536430	1.18	0.6324	0.96924

NRG1	rs17635931 (A/C)	8	32264311	-0.56	0.633	0.96924
NRG3	rs2347331 (C/G)	10	83737461	0.58	0.6336	0.96924
NRG1	rs17728839 (A/G)	8	32517515	1.10	0.6339	0.96924
EGF	rs2298982 (A/G)	4	110846796	-0.78	0.6339	0.96924
EGF	rs11568978 (A/G)	4	110889909	0.87	0.6342	0.96924
NRG3	rs571797 (G/A)	10	84503055	-0.65	0.6343	0.96924
NRG3	rs2494023 (A/C)	10	84484985	0.51	0.6344	0.96924
NRG1	rs1354334 (C/A)	8	31680070	0.51	0.6352	0.96924
TGFA	rs3732253 (G/A)	2	70676098	0.62	0.6352	0.96924
TGFA	rs11466212 (A/G)	2	70757358	-0.89	0.636	0.96924
ERBB4	rs10445735 (A/G)	2	212913183	-0.79	0.6363	0.96924
EGFR	rs1558542 (G/A)	7	55134272	0.67	0.6364	0.96924
NRG3	rs10786762 (G/A)	10	83670102	-0.60	0.6364	0.96924
NRG1	rs2200033 (G/A)	8	31815670	-0.58	0.637	0.96924
NRG1	rs7006674 (G/A)	8	31575884	-0.60	0.6378	0.96924
NRG3	rs342398 (G/A)	10	84620220	0.69	0.6383	0.96924
ERBB4	rs10207288 (A/G)	2	212541377	-0.55	0.6391	0.96924
TGFA	rs731461 (G/A)	2	70748334	-0.61	0.6394	0.96924
NRG2	rs6895139 (G/A)	5	139295821	0.92	0.64	0.96924
NRG2	rs58447715 (G/A)	5	139355739	1.02	0.6403	0.96924
NRG3	rs7089781 (G/A)	10	84566090	-0.70	0.6406	0.96924
ERBB4	rs7419259 (C/A)	2	212620510	0.55	0.6406	0.96924
NRG1	rs113490374 (A/G)	8	31898477	0.92	0.6407	0.96924
EGFR	rs4947492 (A/G)	7	55187992	-0.50	0.6413	0.96924
ERBB4	rs839498 (A/C)	2	212828771	1.01	0.6414	0.96924
NRG3	rs201345318 (A/C)	10	83908532	-0.60	0.6416	0.96924
NRG3	rs10884251 (G/A)	10	83908565	-0.60	0.6416	0.96924
NRG2	rs34308038 (G/A)	5	139396184	0.96	0.6421	0.96924
NRG1	rs28662908 (A/G)	8	31507015	0.61	0.6423	0.96924
NRG3	rs17098797 (C/A)	10	83709652	0.88	0.6423	0.96924
NRG3	rs10884066 (G/A)	10	83794963	-0.54	0.6423	0.96924
ERBB4	rs16847917 (G/A)	2	213080786	0.93	0.6423	0.96924
NRG1	rs73578505 (A/G)	8	31721340	-0.69	0.6425	0.96924
NRG3	rs10748871 (G/A)	10	83790407	-0.49	0.6429	0.96924
NRG2	rs264347 (G/A)	5	139360590	0.51	0.6432	0.96924
EGFR	rs56246439 (A/C)	7	55103964	-0.65	0.6433	0.96924
NRG3	rs1124305 (A/G)	10	83900555	-0.52	0.6443	0.96924
EREG	rs7662139 (A/C)	4	75232431	0.66	0.6452	0.96924
EREG	rs4694683 (G/A)	4	75243702	0.66	0.6452	0.96924
NRG3	rs74146134 (G/A)	10	84393476	0.88	0.6453	0.96924
NRG1	rs17669617 (A/G)	8	32579109	0.63	0.6454	0.96924

ERBB4	rs4672648 (A/G)	2	213399917	-0.63	0.6458	0.96924
NRG3	rs10786760 (G/A)	10	83664575	-0.56	0.6461	0.96924
NRG1	rs73578534 (G/A)	8	31750239	-0.68	0.6465	0.96924
NRG1	rs4733303 (A/G)	8	32019288	0.50	0.647	0.96924
NRG3	rs1416851 (G/A)	10	84335691	0.56	0.6471	0.96924
ERBB4	rs62184480 (G/A)	2	212654200	0.55	0.6489	0.97012
ERBB4	rs6734836 (A/G)	2	213233631	0.51	0.649	0.97012
BTC	rs77548995 (A/G)	4	75693867	-0.95	0.6491	0.97012
ERBB4	rs1098065 (A/G)	2	212835954	0.99	0.6493	0.97012
NRG1	rs1948098 (A/G)	8	32184932	-0.52	0.65	0.97056
ERBB4	rs7425448 (G/A)	2	212558540	-0.66	0.6518	0.97096
ERBB4	rs1473636 (G/A)	2	212882190	-0.69	0.6518	0.97096
MUC4	rs2688513 (A/G)	3	195505664	0.67	0.6529	0.97096
ERBB4	rs1505372 (A/C)	2	213316470	-0.52	0.6531	0.97096
NRG1	rs7839411 (A/G)	8	31996755	-0.91	0.6533	0.97096
ERBB4	rs6732128 (A/C)	2	212528298	0.60	0.6533	0.97096
NRG2	rs265147 (A/G)	5	139400532	0.56	0.654	0.97096
ERBB4	rs76168336 (A/G)	2	212384219	-0.88	0.6542	0.97096
NRG1	rs2466052 (A/G)	8	32511640	-0.98	0.6547	0.97096
NRG3	rs2224076 (A/G)	10	83852072	-0.55	0.6547	0.97096
NRG3	rs11196399 (A/G)	10	84665013	0.51	0.6547	0.97096
NRG3	rs1649949 (G/A)	10	83916424	0.55	0.6562	0.97107
ERBB4	rs17335043 (A/C)	2	212426466	0.74	0.6563	0.97107
ERBB4	rs6712126 (G/A)	2	212916157	0.64	0.6564	0.97107
NRG3	rs4360649 (A/G)	10	84661601	0.51	0.6568	0.97107
NRG3	rs34321233 (A/G)	10	84351856	-0.75	0.657	0.97107
NRG3	rs604482 (C/A)	10	84412569	-0.74	0.6572	0.97107
ERBB4	rs12475812 (A/C)	2	212688964	0.66	0.658	0.97165
ERBB4	rs13002674 (A/G)	2	212733164	0.59	0.6584	0.97165
NRG3	rs10885239 (G/A)	10	84470658	-0.54	0.66	0.97342
ERBB4	rs3791691 (G/A)	2	212264560	-0.58	0.662	0.97376
ERBB4	rs13421680 (A/G)	2	212416029	-0.52	0.6622	0.97376
ERBB4	rs2371277 (A/G)	2	212554979	-0.57	0.6628	0.97376
ERBB4	rs11887237 (A/C)	2	212305570	-0.84	0.6634	0.97376
NRG3	rs11193663 (C/A)	10	84076732	-0.62	0.664	0.97376
NRG3	rs17100444 (G/A)	10	84424078	-0.55	0.6648	0.97376
ERBB4	rs4366846 (G/A)	2	213379537	-0.57	0.6651	0.97376
NRG1	rs170576 (G/A)	8	31793055	0.69	0.6657	0.97376
ERBB4	rs35762488 (A/G)	2	212546559	0.71	0.667	0.97376
NRG3	rs10884936 (C/A)	10	84321914	-0.76	0.6674	0.97376
ERBB4	rs66522864 (A/G)	2	212966947	0.47	0.6677	0.97376

EGFR	rs1024748 (A/C)	7	55128339	0.61	0.668	0.97376
NRG1	rs7012325 (A/G)	8	32545333	-0.96	0.6681	0.97376
NRG3	rs1649934 (G/A)	10	83884894	-0.47	0.6682	0.97376
ERBB4	rs10932398 (A/G)	2	212627259	-0.47	0.6687	0.97376
NRG3	rs12241441 (G/A)	10	84008661	-0.67	0.6691	0.97376
ERBB4	rs13413659 (A/C)	2	212382319	1.06	0.6693	0.97376
NRG1	rs13276181 (G/A)	8	32242498	0.47	0.6694	0.97376
NRG3	rs11595839 (A/C)	10	84205078	-0.68	0.6712	0.97376
NRG3	rs74920288 (C/A)	10	84231001	-0.51	0.6734	0.97376
TGFA	rs77929275 (G/A)	2	70707199	-0.51	0.6737	0.97376
ERBB4	rs2371275 (A/G)	2	212555154	0.46	0.6737	0.97376
EGF	rs10002971 (A/C)	4	110896050	0.51	0.6738	0.97376
ERBB4	rs7560730 (A/G)	2	212990868	-0.64	0.674	0.97376
TGFA	rs3911077 (G/A)	2	70717078	-0.51	0.6741	0.97376
NRG3	rs679571 (G/A)	10	84329838	0.48	0.6743	0.97376
ERBB4	rs17744862 (A/G)	2	212244520	0.94	0.6754	0.97376
NRG3	rs660464 (G/A)	10	84350877	0.47	0.6756	0.97376
NRG1	rs13252799 (A/G)	8	32379953	-0.59	0.6769	0.97376
ERBB4	rs2102996 (G/A)	2	212841868	-0.95	0.6775	0.97376
EGFR	rs845560 (G/A)	7	55250794	0.53	0.6776	0.97376
ERBB4	rs62184063 (G/C)	2	213203096	0.75	0.678	0.97376
NRG1	rs6985581 (A/G)	8	32319538	-0.44	0.6786	0.97376
ERBB4	rs13423759 (A/C)	2	212245972	1.17	0.6787	0.97376
BTC	rs72855860 (G/A)	4	75714054	0.63	0.6794	0.97376
NRG3	rs7081891 (G/A)	10	83821592	-0.45	0.6799	0.97376
ERBB4	rs12694259 (G/A)	2	212895366	0.46	0.6801	0.97376
NRG3	rs614287 (G/A)	10	83931937	0.47	0.6805	0.97376
NRG1	rs1699125 (A/G)	8	31781905	0.61	0.681	0.97376
TGFA	rs11466191 (C/G)	2	70780081	-0.51	0.681	0.97376
BTC	rs11734944 (A/G)	4	75681217	-0.45	0.6813	0.97376
ERBB4	rs7570613 (A/G)	2	212629579	0.53	0.6817	0.97376
EGFR	rs1015793 (A/G)	7	55114316	0.61	0.682	0.97376
TGFA	rs199828822 (G/A)	2	70723562	-0.45	0.6825	0.97376
NRG3	rs578080 (A/G)	10	84501882	-0.51	0.6826	0.97376
NRG2	rs171951 (C/A)	5	139372149	0.45	0.6826	0.97376
ERBB4	rs201229648 (A/T)	2	212552218	-0.45	0.6828	0.97376
NRG3	rs2783413 (A/G)	10	84455315	0.46	0.6829	0.97376
ERBB4	rs200822862 (A/C)	2	213151322	-0.44	0.683	0.97376
ERBB4	rs13414946 (G/A)	2	212296470	-0.74	0.6832	0.97376
EGF	rs11568993 (G/A)	4	110897315	-0.84	0.6833	0.97376
ERBB4	rs12151481 (G/A)	2	213111238	0.52	0.6835	0.97376

EGFR	rs759159 (C/A)	7	55179400	0.46	0.6837	0.97376
ERBB4	rs17346713 (A/G)	2	213156498	0.55	0.6839	0.97376
EGFR	rs13244925 (C/A)	7	55192256	-0.44	0.6842	0.97376
NRG1	rs186649104 (G/A)	8	32153473	0.99	0.6847	0.97376
NRG1	rs16878953 (A/G)	8	32044425	0.59	0.6856	0.97376
NRG1	rs76369822 (A/G)	8	32061785	0.93	0.6859	0.97376
NRG3	rs7101028 (A/C)	10	83785860	-0.44	0.6867	0.97376
ERBB4	rs7567959 (G/A)	2	212521325	-0.43	0.6878	0.97376
NRG1	rs435904 (G/A)	8	31789101	0.64	0.688	0.97376
NRG1	rs7845510 (A/G)	8	32579646	0.68	0.6881	0.97376
NRG2	rs77864329 (G/A)	5	139256795	0.91	0.6881	0.97376
NRG3	rs2434068 (G/A)	10	83974607	-0.90	0.6883	0.97376
NRG1	rs327359 (G/A)	8	31803458	0.64	0.6891	0.97376
NRG3	rs1764065 (A/G)	10	83942004	-0.46	0.6892	0.97376
NRG3	rs201735485 (C/A)	10	84495694	0.43	0.6894	0.97376
BTC	rs1452310 (A/G)	4	75715125	0.61	0.6897	0.97376
NRG3	rs2820107 (A/G)	10	84494274	0.43	0.6897	0.97376
NRG3	rs7069367 (A/G)	10	84074976	0.52	0.6901	0.97376
NRG1	rs199974185 (A/G)	8	32364690	0.47	0.6907	0.97376
NRG2	rs975642 (A/G)	5	139384490	0.42	0.6909	0.97376
EGF	rs12506362 (G/A)	4	110922680	0.92	0.6911	0.97376
MUC4	rs75411247 (G/A)	3	195533190	0.86	0.6916	0.97376
ERBB4	rs16846352 (G/A)	2	212378242	-0.64	0.6918	0.97376
NRG3	rs981776 (G/A)	10	83872165	0.43	0.692	0.97376
NRG3	rs12218527 (A/G)	10	84026285	-0.59	0.6921	0.97376
NRG1	rs56126917 (A/G)	8	32590992	0.60	0.6922	0.97376
ERBB4	rs62182999 (A/G)	2	212605745	0.48	0.6923	0.97376
BTC	rs1349634 (G/A)	4	75718547	0.43	0.6928	0.97376
MUC4	rs1104760 (A/G)	3	195517321	-0.54	0.693	0.97376
NRG3	rs2483300 (A/G)	10	84653084	0.44	0.6937	0.97417
EGFR	rs10241326 (G/A)	7	55248787	0.44	0.6942	0.97431
ERBB4	rs13423577 (A/G)	2	212520563	-0.69	0.6948	0.97444
NRG3	rs12265039 (G/A)	10	84578104	-0.44	0.6951	0.97444
EGFR	rs7795743 (A/G)	7	55250130	0.43	0.6961	0.97484
NRG1	rs13254149 (G/A)	8	32348088	-0.53	0.6962	0.97484
MUC4	rs11922145 (T/A)	3	195520807	-0.57	0.6966	0.97484
NRG3	rs17655972 (G/A)	10	83825479	0.44	0.6972	0.97511
NRG1	rs76558928 (A/G)	8	31862492	-0.97	0.6977	0.97524
NRG1	rs62497650 (G/A)	8	32238984	0.43	0.6993	0.97642
NRG1	rs28547336 (A/G)	8	32576545	0.52	0.6994	0.97642
NRG3	rs10884421 (G/A)	10	84017046	0.43	0.7	0.97642

NRG1	rs73592164 (A/C)	8	32255924	0.61	0.7004	0.97642
TGFA	rs408990 (G/A)	2	70744617	0.64	0.7016	0.97642
NRG1	rs4733304 (G/A)	8	32023292	0.65	0.7022	0.97642
NRG1	rs16878764 (A/C)	8	31936552	-0.45	0.7025	0.97642
NRG1	rs113074948 (A/C)	8	31806295	-0.71	0.7031	0.97642
ERBB3	rs2292238 (A/C)	12	56493822	-0.42	0.7033	0.97642
NRG3	rs2881608 (A/G)	10	83812026	-0.43	0.7033	0.97642
ERBB4	rs6715314 (G/A)	2	213017607	-0.44	0.7034	0.97642
EGFR	rs76692262 (A/G)	7	55089831	0.62	0.7036	0.97642
NRG1	rs7013361 (C/A)	8	32363288	0.45	0.7041	0.97642
ERBB4	rs10200506 (A/G)	2	213040853	0.58	0.7048	0.97642
NRG3	rs342367 (T/A)	10	84565339	-0.42	0.7056	0.97642
NRG3	rs580298 (A/G)	10	84678397	0.58	0.7057	0.97642
ERBB4	rs62182615 (G/A)	2	213111971	0.48	0.706	0.97642
NRG3	rs10883899 (A/G)	10	83670383	-0.75	0.7092	0.97642
NRG1	rs1383893 (G/A)	8	31724648	0.43	0.7093	0.97642
NRG1	rs200427989 (G/A)	8	31508288	-0.44	0.7098	0.97642
EGFR	rs845551 (G/A)	7	55237283	0.46	0.7105	0.97642
NRG1	rs34442697 (A/G)	8	32008543	-0.74	0.7112	0.97642
NRG3	rs910583 (G/A)	10	83741277	0.46	0.7123	0.97642
NRG3	rs10736175 (G/A)	10	83824944	-0.45	0.7124	0.97642
ERBB4	rs16848675 (A/G)	2	213349997	-0.87	0.7132	0.97642
NRG1	rs28719657 (G/A)	8	32234017	0.50	0.7136	0.97642
NRG3	rs12767156 (G/A)	10	83813595	-0.45	0.7137	0.97642
NRG1	rs73590130 (A/G)	8	31614608	-0.53	0.7138	0.97642
ERBB4	rs1505369 (A/G)	2	213318593	0.40	0.7142	0.97642
EGFR	rs2330951 (A/C)	7	55174342	0.49	0.7147	0.97642
NRG1	rs2347502 (A/C)	8	32231416	0.39	0.7148	0.97642
ERBB4	rs7585000 (A/C)	2	212264818	-0.43	0.7154	0.97642
NRG3	rs56117798 (G/A)	10	83978031	0.77	0.7155	0.97642
NRG1	rs10093683 (C/G)	8	32528312	-0.61	0.7157	0.97642
NRG3	rs10786787 (G/A)	10	83730893	0.44	0.7158	0.97642
ERBB4	rs6435670 (C/A)	2	212655885	0.44	0.7161	0.97642
ERBB4	rs10189506 (G/A)	2	213239858	-0.50	0.7164	0.97642
ERBB4	rs10469656 (G/A)	2	212486350	-0.54	0.717	0.97642
NRG1	rs13251778 (A/G)	8	31815427	0.59	0.7171	0.97642
EGFR	rs6593211 (G/A)	7	55277964	0.42	0.7177	0.97642
NRG1	rs1947911 (G/A)	8	32081795	-0.70	0.7185	0.97642
NRG3	rs505079 (A/G)	10	84623627	-0.41	0.7186	0.97642
ERBB4	rs12618175 (A/C)	2	212864886	0.39	0.7191	0.97642
NRG1	rs10216782 (G/A)	8	32234759	-0.51	0.7203	0.97642

ERBB4	rs4439896 (A/G)	2	212345458	-0.44	0.7203	0.97642
ERBB4	rs2033646 (G/A)	2	212322858	-0.56	0.7204	0.97642
MUC4	rs2641772 (A/G)	3	195531841	0.38	0.7206	0.97642
NRG3	rs17099657 (A/G)	10	84005517	0.66	0.7207	0.97642
ERBB4	rs7573568 (A/G)	2	213391696	-0.51	0.7208	0.97642
ERBB4	rs1351593 (G/A)	2	213394605	-0.51	0.7208	0.97642
NRG1	rs2975503 (T/A)	8	32574124	0.42	0.7209	0.97642
EGFR	rs4947978 (C/A)	7	55186456	-0.40	0.721	0.97642
NRG1	rs75263811 (A/G)	8	31919857	-0.88	0.7213	0.97642
NRG3	rs7919853 (G/A)	10	84556953	0.52	0.7214	0.97642
NRG3	rs11195879 (A/G)	10	84531521	-0.56	0.7219	0.97642
BTC	rs1869172 (A/C)	4	75718366	0.55	0.7226	0.97642
NRG2	rs2436387 (C/A)	5	139419985	-0.41	0.7233	0.97642
BTC	rs11097375 (C/A)	4	75695676	0.52	0.7238	0.97642
NRG3	rs2644202 (G/A)	10	84501148	0.55	0.7238	0.97642
ERBB4	rs10194693 (A/C)	2	212945761	0.56	0.724	0.97642
NRG3	rs71483400 (G/A)	10	83873157	-0.67	0.7251	0.97642
NRG3	rs12767327 (C/A)	10	83813700	-0.43	0.7252	0.97642
ERBB4	rs10164682 (G/A)	2	213062018	-0.39	0.7254	0.97642
ERBB4	rs10188703 (G/A)	2	212379150	-0.39	0.7276	0.97642
NRG1	rs28366800 (G/A)	8	32255252	-0.40	0.7277	0.97642
TGFA	rs538118 (A/G)	2	70676639	-0.39	0.728	0.97642
TGFA	rs61025727 (A/G)	2	70756681	-0.57	0.7281	0.97642
ERBB4	rs6749560 (G/A)	2	212256192	-0.45	0.7288	0.97642
MUC4	rs11928440 (A/G)	3	195500758	0.53	0.7293	0.97642
TGFA	rs416254 (G/A)	2	70766404	-0.37	0.7303	0.97642
NRG3	rs512064 (C/A)	10	84623726	-0.39	0.7306	0.97642
MUC4	rs73079395 (C/A)	3	195481111	0.98	0.7306	0.97642
NRG3	rs1414771 (G/A)	10	84013558	-0.80	0.7307	0.97642
ERBB4	rs10932374 (G/A)	2	212244403	-0.45	0.7307	0.97642
NRG3	rs6421337 (G/A)	10	83747396	0.43	0.7309	0.97642
NRG3	rs12265675 (A/G)	10	84079745	-0.50	0.7317	0.97642
MUC4	rs882605 (C/A)	3	195517553	-0.47	0.7317	0.97642
ERBB4	rs6742399 (G/A)	2	212300055	-0.37	0.7317	0.97642
TGFA	rs62151575 (A/G)	2	70734687	0.58	0.7321	0.97642
NRG1	rs2466103 (A/C)	8	32412304	0.42	0.7323	0.97642
ERBB4	rs2371279 (C/A)	2	212553703	-0.41	0.7329	0.97642
NRG3	rs73312903 (G/A)	10	84158251	-0.48	0.7331	0.97642
NRG2	rs2560711 (A/G)	5	139394941	0.43	0.7331	0.97642
MUC4	rs2177336 (G/A)	3	195516878	-0.46	0.7332	0.97642
MUC4	rs1106502 (A/G)	3	195517258	-0.46	0.7332	0.97642

NRG1	rs6987310 (A/G)	8	31675630	0.47	0.7338	0.97642
ERBB4	rs4132462 (G/A)	2	212635589	0.42	0.7341	0.97642
NRG3	rs999889 (G/A)	10	84279949	-0.41	0.7346	0.97642
ERBB4	rs4569408 (A/G)	2	212330564	0.42	0.7367	0.97642
NRG1	rs7010141 (A/C)	8	31925511	0.99	0.7384	0.97642
NRG3	rs2881607 (A/G)	10	83809837	0.38	0.7385	0.97642
NRG3	rs7917405 (A/G)	10	84618072	0.45	0.7386	0.97642
TGFA	rs404420 (G/A)	2	70733526	-0.40	0.7393	0.97642
NRG1	rs34423096 (A/T)	8	32548077	0.39	0.7394	0.97642
NRG3	rs7922963 (G/A)	10	84445140	-0.43	0.7396	0.97642
ERBB4	rs10205553 (A/G)	2	212559948	-0.36	0.7398	0.97642
NRG1	rs2881542 (C/A)	8	32058903	0.84	0.74	0.97642
NRG1	rs34195089 (A/G)	8	31870957	0.53	0.7407	0.97642
EGFR	rs10280515 (A/G)	7	55173700	0.71	0.741	0.97642
NRG3	rs7096123 (A/G)	10	84033986	0.38	0.7411	0.97642
ERBB4	rs12373751 (G/A)	2	212936891	0.43	0.7415	0.97642
NRG1	rs6992907 (A/G)	8	32227926	-0.35	0.7427	0.97642
NRG1	rs5006809 (G/A)	8	32228088	-0.35	0.7427	0.97642
NRG1	rs1383888 (A/G)	8	31758989	-0.43	0.7428	0.97642
NRG1	rs1462874 (A/C)	8	31851335	0.41	0.743	0.97642
NRG1	rs1626771 (G/A)	8	32220852	0.37	0.7431	0.97642
ERBB4	rs1851184 (A/G)	2	212523424	0.34	0.7431	0.97642
NRG3	rs673049 (G/A)	10	84386973	0.36	0.7434	0.97642
NRG3	rs2249075 (A/G)	10	84483977	0.50	0.7441	0.97642
ERBB4	rs9288445 (G/A)	2	212847371	-0.43	0.7444	0.97642
NRG3	rs1764097 (G/A)	10	83991317	-0.59	0.7445	0.97642
NRG1	rs7840880 (G/A)	8	31840506	0.94	0.7447	0.97642
NRG1	rs1714422 (G/A)	8	32212219	-0.50	0.745	0.97642
NRG3	rs1739768 (G/A)	10	83881713	-0.68	0.7452	0.97642
EGFR	rs884225 (A/G)	7	55274084	-0.58	0.7455	0.97642
NRG1	rs10108099 (A/T)	8	32232651	-0.48	0.7456	0.97642
ERBB4	rs4321317 (A/G)	2	212346739	0.38	0.7467	0.97733
NRG1	rs17603876 (A/G)	8	31668404	-0.64	0.7472	0.97745
NRG3	rs10509445 (A/G)	10	83795839	-0.36	0.7482	0.97823
NRG3	rs17656252 (G/A)	10	83832049	0.58	0.7492	0.97859
NRG1	rs55694684 (A/G)	8	31859236	-0.65	0.7495	0.97859
ERBB4	rs961593 (A/G)	2	212408554	0.36	0.75	0.97859
ERBB4	rs57878911 (A/G)	2	212582994	-0.68	0.7501	0.97859
BTC	rs1377032 (A/G)	4	75712104	0.49	0.7511	0.9792
ERBB4	rs4100599 (G/A)	2	212308372	-0.42	0.7519	0.9792
NRG3	rs7073972 (G/A)	10	84237349	-0.38	0.752	0.9792

NRG3	rs951204 (A/G)	10	84048765	-0.45	0.7522	0.9792
ERBB4	rs16846200 (A/C)	2	212311744	-0.46	0.7529	0.97958
NRG1	rs12216802 (A/G)	8	32340967	0.41	0.7537	0.98003
NRG2	rs74505169 (G/A)	5	139358324	0.68	0.7544	0.98003
ERBB4	rs6721178 (C/A)	2	212845714	0.40	0.7548	0.98003
NRG3	rs2253822 (A/G)	10	84443346	0.49	0.7554	0.98003
NRG3	rs10786827 (C/A)	10	83787265	-0.33	0.7558	0.98003
BTC	rs10005089 (G/A)	4	75694606	0.41	0.7559	0.98003
NRG2	rs60293875 (G/A)	5	139413164	-0.52	0.7562	0.98003
NRG1	rs776398 (A/G)	8	31765337	0.34	0.7565	0.98003
ERBB4	rs6710350 (A/G)	2	213073735	-0.50	0.7573	0.98014
NRG2	rs12163954 (A/G)	5	139299907	0.59	0.7574	0.98014
NRG1	rs16879327 (G/A)	8	32257621	0.50	0.7584	0.98031
ERBB4	rs11901482 (A/C)	2	212381919	0.39	0.7587	0.98031
MUC4	rs73892864 (A/G)	3	195487537	-0.73	0.7593	0.98031
NRG3	rs12259197 (G/A)	10	84028006	0.67	0.7596	0.98031
NRG1	rs34566719 (C/G)	8	31693944	-0.66	0.7598	0.98031
NRG3	rs6584594 (A/G)	10	84014053	0.40	0.761	0.98031
NRG3	rs73306568 (G/A)	10	83721941	0.58	0.7613	0.98031
NRG1	rs1564126 (A/C)	8	31925867	-0.34	0.7614	0.98031
NRG3	rs10885087 (G/A)	10	84409894	-0.33	0.7614	0.98031
BTC	rs28431134 (G/A)	4	75688733	0.40	0.7616	0.98031
NRG3	rs11192502 (G/A)	10	83859375	-0.58	0.763	0.98062
EGF	rs3822286 (G/A)	4	110925459	-0.78	0.763	0.98062
HBEGF	rs2074611 (G/A)	5	139722345	-0.53	0.7634	0.98062
ERBB4	rs7421820 (G/A)	2	212588627	0.44	0.7643	0.98062
TGFA	rs13393308 (G/A)	2	70744323	0.92	0.7644	0.98062
ERBB4	rs12987596 (G/A)	2	212856539	0.33	0.7646	0.98062
NRG3	rs635481 (A/G)	10	84311992	0.34	0.7647	0.98062
NRG1	rs80062976 (G/A)	8	32602697	0.56	0.7655	0.98113
NRG1	rs7823498 (A/G)	8	32403573	0.39	0.7669	0.98188
NRG3	rs7093158 (C/A)	10	84065441	0.36	0.7669	0.98188
NRG1	rs16879886 (A/G)	8	32584857	0.48	0.7679	0.98191
NRG3	rs112309006 (A/C)	10	84332354	0.31	0.7685	0.98191
NRG1	rs2439312 (G/A)	8	32412359	0.39	0.7693	0.98191
ERBB4	rs77762486 (A/G)	2	212385664	-0.59	0.7698	0.98191
NRG1	rs12541309 (G/A)	8	32545001	-0.42	0.77	0.98191
EGFR	rs11976696 (A/G)	7	55232333	0.38	0.77	0.98191
NRG1	rs17721043 (G/A)	8	32436875	-0.39	0.7701	0.98191
NRG2	rs12655558 (A/T)	5	139395233	0.55	0.7704	0.98191
ERBB4	rs7604094 (A/C)	2	212378925	-0.31	0.7706	0.98191

ERBB4	rs960824 (A/G)	2	212871592	-0.34	0.7725	0.98273
NRG1	rs4733347 (G/A)	8	32376010	-0.36	0.7735	0.98273
ERBB4	rs1020126 (C/A)	2	212703601	-0.42	0.7735	0.98273
NRG1	rs2466048 (A/C)	8	32516055	-0.31	0.7738	0.98273
NRG3	rs17727747 (A/G)	10	83790082	-0.32	0.774	0.98273
BTC	rs9307118 (A/G)	4	75682484	-0.31	0.7741	0.98273
ERBB4	rs1505377 (G/A)	2	213304043	0.38	0.7741	0.98273
NRG3	rs10736173 (G/A)	10	83822865	0.38	0.7772	0.98556
NRG3	rs1414753 (G/A)	10	84031455	0.33	0.7778	0.98556
NRG3	rs17687943 (A/G)	10	84696792	0.29	0.7782	0.98556
NRG1	rs11998291 (A/G)	8	31984536	-0.81	0.779	0.98556
NRG1	rs59861679 (A/G)	8	32295287	-0.37	0.779	0.98556
NRG1	rs11993611 (G/A)	8	32305720	0.32	0.7805	0.98556
NRG2	rs4440417 (G/A)	5	139332206	0.61	0.782	0.98556
ERBB4	rs57053115 (G/A)	2	212717793	-0.42	0.7822	0.98556
NRG1	rs62500167 (G/A)	8	32269907	-0.33	0.7824	0.98556
ERBB4	rs62182968 (A/C)	2	212579954	0.37	0.7824	0.98556
NRG1	rs7819870 (A/C)	8	31575497	-0.35	0.7834	0.98556
NRG1	rs9918832 (A/G)	8	32282597	0.34	0.7839	0.98556
NRG3	rs17688475 (A/G)	10	84724996	0.44	0.7859	0.98556
ERBB4	rs10177211 (A/C)	2	212475771	-0.40	0.7861	0.98556
NRG3	rs12771529 (A/C)	10	84625558	0.52	0.7869	0.98556
NRG3	rs11193660 (G/A)	10	84076497	0.53	0.7876	0.98556
ERBB4	rs7422464 (A/C)	2	212511895	-0.56	0.7877	0.98556
EGFR	rs759169 (G/A)	7	55154636	-0.41	0.7878	0.98556
MUC4	rs62282509 (G/A)	3	195529431	0.34	0.7878	0.98556
ERBB4	rs12994785 (G/A)	2	212857425	-0.30	0.7885	0.98556
NRG1	rs17690742 (G/A)	8	31914399	0.29	0.7888	0.98556
NRG3	rs9804192 (G/A)	10	84611008	0.34	0.789	0.98556
TGFA	rs11466297 (A/C)	2	70675707	-0.57	0.7898	0.98556
MUC4	rs2293232 (G/A)	3	195497143	0.38	0.7898	0.98556
NRG3	rs1937977 (G/A)	10	84185858	-0.37	0.7902	0.98556
ERBB4	rs6722300 (G/A)	2	212544685	-0.32	0.7906	0.98556
NRG3	rs17100728 (A/G)	10	84511080	0.59	0.7917	0.98556
ERBB4	rs16846896 (G/A)	2	212695168	-0.48	0.7918	0.98556
ERBB4	rs1521539 (G/A)	2	212889635	-0.59	0.7932	0.98556
NRG1	rs17603821 (G/A)	8	31667034	-0.38	0.7935	0.98556
ERBB4	rs10497960 (G/A)	2	212952125	0.35	0.7936	0.98556
NRG1	rs16879922 (G/A)	8	32611221	-0.40	0.7941	0.98556
ERBB4	rs7564414 (A/G)	2	212585498	-0.56	0.7945	0.98556
NRG1	rs2919381 (A/G)	8	32563924	-0.29	0.7948	0.98556

ERBB4	rs13412270 (C/A)	2	212586298	0.54	0.795	0.98556
NRG2	rs265150 (G/A)	5	139376819	0.49	0.7955	0.98556
NRG1	rs6999872 (A/C)	8	32024994	0.45	0.7956	0.98556
NRG2	rs76178519 (G/A)	5	139295721	0.55	0.7958	0.98556
ERBB4	rs72933746 (A/G)	2	212777973	-0.38	0.7959	0.98556
NRG3	rs2453688 (G/A)	10	84592691	0.34	0.7961	0.98556
NRG3	rs4073987 (A/G)	10	84427307	0.39	0.7963	0.98556
ERBB4	rs10176100 (A/G)	2	212545621	0.28	0.7964	0.98556
ERBB4	rs1009142 (A/G)	2	212440500	0.44	0.7969	0.98556
ERBB4	rs1402766 (C/A)	2	213033301	-0.29	0.7977	0.98556
NRG1	rs12680129 (A/G)	8	32443145	0.59	0.7985	0.98556
ERBB4	rs144265625 (G/A)	2	213016573	0.49	0.7987	0.98556
NRG1	rs10954811 (G/A)	8	31586453	-0.33	0.799	0.98556
MUC4	rs73081320 (G/A)	3	195495721	0.66	0.799	0.98556
NRG3	rs10884515 (G/A)	10	84071965	-0.31	0.7994	0.98556
ERBB4	rs6710946 (A/G)	2	212295875	-0.32	0.7994	0.98556
NRG3	rs10884296 (G/A)	10	83933237	0.57	0.8004	0.98556
MUC4	rs9844491 (G/A)	3	195521531	0.28	0.8007	0.98556
NRG1	rs73672011 (A/G)	8	31823564	0.58	0.801	0.98556
TGFA	rs11126273 (A/C)	2	70715824	-0.50	0.801	0.98556
ERBB4	rs10048673 (A/G)	2	213083282	0.27	0.8018	0.98556
NRG3	rs7915399 (A/C)	10	83996992	-0.39	0.8019	0.98556
EGFR	rs2227983 (G/A)	7	55229255	0.32	0.8021	0.98556
EGF	rs2298989 (G/A)	4	110891673	0.28	0.8031	0.98556
EGF	rs4444903 (G/A)	4	110834110	0.27	0.8033	0.98556
TGFA	rs6546610 (G/A)	2	70771302	-0.27	0.8038	0.98556
NRG1	rs10103976 (G/A)	8	32481673	-0.29	0.8041	0.98556
NRG1	rs1386438 (C/A)	8	32195543	0.27	0.8045	0.98556
NRG1	rs7835765 (G/A)	8	32549845	0.28	0.8056	0.98556
NRG1	rs66775327 (G/A)	8	31552367	-0.45	0.8058	0.98556
NRG1	rs67883841 (A/G)	8	31721830	0.32	0.8059	0.98556
MUC4	rs73204000 (A/C)	3	195479681	0.36	0.8059	0.98556
NRG1	rs6990973 (A/G)	8	32010945	0.53	0.8062	0.98556
NRG3	rs4297406 (A/G)	10	84048527	-0.35	0.8062	0.98556
NRG1	rs4504593 (A/G)	8	31689095	0.28	0.8064	0.98556
NRG3	rs72827348 (G/A)	10	84084069	0.32	0.8066	0.98556
NRG1	rs4276645 (G/A)	8	32257673	-0.29	0.8076	0.98556
NRG1	rs7001724 (A/C)	8	32212426	-0.28	0.808	0.98556
ERBB4	rs1402716 (A/C)	2	212882926	-0.29	0.8086	0.98556
NRG1	rs10503915 (A/G)	8	32285177	0.32	0.809	0.98556
ERBB4	rs4673628 (A/G)	2	212543924	-0.26	0.8102	0.98556

ERBB4	rs939645 (A/G)	2	212916758	0.34	0.8104	0.98556
NRG1	rs17631978 (G/A)	8	32181948	-0.28	0.8106	0.98556
EGF	rs11568943 (G/A)	4	110883121	-0.43	0.8109	0.98556
ERBB4	rs1402770 (G/A)	2	213114560	0.30	0.8112	0.98556
NRG3	rs12255719 (A/G)	10	83974087	0.38	0.8113	0.98556
ERBB4	rs13028597 (A/G)	2	212719203	0.30	0.8114	0.98556
ERBB4	rs6731193 (A/G)	2	213379961	-0.26	0.8114	0.98556
NRG1	rs12550153 (G/A)	8	32260010	0.30	0.8115	0.98556
NRG1	rs7831866 (G/A)	8	32264966	-0.29	0.8118	0.98556
TGFA	rs10178514 (G/A)	2	70745446	0.71	0.8126	0.98556
TGFA	rs3771504 (G/A)	2	70712005	-0.28	0.8132	0.98556
EGF	rs17253063 (A/G)	4	110894449	0.28	0.8133	0.98556
ERBB4	rs12329252 (A/C)	2	212385723	0.28	0.8134	0.98556
NRG3	rs17100439 (A/G)	10	84423164	0.63	0.8137	0.98556
ERBB4	rs7595207 (G/A)	2	212452598	0.32	0.8138	0.98556
NRG3	rs10884462 (G/A)	10	84040680	-0.33	0.814	0.98556
ERBB4	rs6708035 (A/G)	2	212516742	-0.29	0.814	0.98556
ERBB4	rs2371573 (G/A)	2	213214303	-0.26	0.8148	0.98557
ERBB4	rs7591480 (G/A)	2	213040865	-0.27	0.8152	0.98557
NRG1	rs9297180 (A/G)	8	31592637	0.60	0.8156	0.98557
NRG2	rs6896087 (A/G)	5	139375932	0.25	0.8158	0.98557
NRG3	rs7069727 (A/G)	10	83798469	0.24	0.8162	0.98557
NRG1	rs1623372 (A/G)	8	32215602	-0.27	0.8166	0.98557
NRG1	rs4733323 (C/A)	8	32239849	-0.25	0.8171	0.98557
ERBB4	rs10168303 (A/G)	2	213097913	-0.24	0.8177	0.98557
NRG1	rs16879809 (G/A)	8	32572873	-0.37	0.8181	0.98557
ERBB4	rs13395352 (A/G)	2	212959784	0.31	0.8181	0.98557
ERBB4	rs12473610 (C/A)	2	213192198	0.32	0.8187	0.9858
ERBB4	rs12467225 (G/A)	2	212244657	0.28	0.82	0.98677
ERBB4	rs6745160 (C/A)	2	213130540	-0.24	0.8207	0.98677
NRG1	rs1503495 (G/A)	8	31684724	0.26	0.821	0.98677
ERBB4	rs72933744 (A/G)	2	212777775	-0.33	0.8212	0.98677
NRG3	rs72819694 (G/A)	10	84605536	0.47	0.8225	0.98677
NRG3	rs7074029 (G/A)	10	84210756	-0.33	0.8233	0.98677
ERBB4	rs11676241 (C/G)	2	212308141	-0.25	0.824	0.98677
NRG3	rs4562759 (A/G)	10	83835639	-0.25	0.8249	0.98677
ERBB4	rs17336942 (A/G)	2	212861073	0.24	0.8252	0.98677
ERBB4	rs12466094 (A/G)	2	213117008	-0.37	0.8252	0.98677
ERBB4	rs35880620 (G/A)	2	213243651	0.31	0.8252	0.98677
ERBB4	rs12992515 (A/C)	2	212267373	-0.26	0.826	0.98677
ERBB4	rs72945031 (A/G)	2	212534921	-0.34	0.8264	0.98677

ERBB4	rs6752616 (A/G)	2	212535653	-0.34	0.8264	0.98677
NRG1	rs62500235 (G/A)	8	32484731	-0.39	0.8265	0.98677
NRG1	rs79008058 (G/A)	8	32016151	0.52	0.8266	0.98677
NRG1	rs16879927 (A/G)	8	32612705	-0.36	0.8267	0.98677
NRG3	rs17100701 (A/G)	10	84509231	0.64	0.8273	0.98677
NRG3	rs17100713 (G/A)	10	84510336	0.64	0.8273	0.98677
NRG1	rs12155594 (G/A)	8	31606595	-0.43	0.8295	0.9872
ERBB4	rs10932375 (A/G)	2	212340022	-0.27	0.8301	0.9872
NRG1	rs7815849 (G/A)	8	31833448	-0.27	0.8305	0.9872
NRG1	rs2347506 (G/A)	8	32234929	0.24	0.8305	0.9872
ERBB4	rs984773 (A/G)	2	212723026	-0.27	0.831	0.9872
NRG3	rs17099664 (A/G)	10	84016070	0.42	0.8312	0.9872
ERBB4	rs6435699 (G/A)	2	213061726	-0.34	0.8319	0.9872
EGFR	rs917881 (G/A)	7	55162305	0.31	0.832	0.9872
NRG3	rs11812850 (G/A)	10	84173117	-0.29	0.8326	0.9872
NRG1	rs12546380 (A/G)	8	32535920	0.25	0.833	0.9872
ERBB4	rs1357142 (G/A)	2	213017462	-0.26	0.8331	0.9872
EGF	rs2298978 (G/A)	4	110837667	-0.23	0.8333	0.9872
ERBB4	rs12694262 (A/G)	2	212931980	0.34	0.8333	0.9872
NRG1	rs11996981 (G/A)	8	32271517	-0.25	0.8334	0.9872
NRG3	rs480220 (C/A)	10	84504702	0.25	0.8343	0.98741
NRG3	rs645168 (G/A)	10	84395218	0.34	0.8344	0.98741
NRG3	rs2207768 (A/G)	10	83802403	0.24	0.8351	0.98763
NRG1	rs7832999 (G/A)	8	32247244	0.34	0.8354	0.98763
NRG1	rs1016165 (A/G)	8	31824555	0.24	0.837	0.98885
ERBB4	rs62182620 (A/G)	2	213127670	-0.36	0.8379	0.98885
ERBB4	rs11889311 (C/A)	2	213040887	0.25	0.838	0.98885
NRG3	rs10884989 (G/A)	10	84357748	0.23	0.8381	0.98885
ERBB4	rs2860059 (A/G)	2	212852895	-0.26	0.8387	0.98885
NRG1	rs6982890 (G/A)	8	32615098	0.27	0.8389	0.98885
ERBB4	rs2371303 (A/G)	2	212443357	0.34	0.8397	0.98931
NRG3	rs11194106 (A/G)	10	84148715	-0.36	0.8417	0.98985
EGF	rs11568994 (G/A)	4	110897535	0.23	0.8418	0.98985
EGF	rs2298991 (C/A)	4	110892012	-0.22	0.8424	0.98985
EGFR	rs7796139 (A/G)	7	55175876	0.26	0.8436	0.98985
NRG2	rs59615734 (A/G)	5	139411146	-0.25	0.8437	0.98985
NRG3	rs61864200 (C/A)	10	84068130	0.33	0.8439	0.98985
NRG3	rs17100953 (G/A)	10	84621316	-0.29	0.8444	0.98985
NRG2	rs11167875 (G/A)	5	139384602	0.21	0.8449	0.98985
ERBB4	rs72948506 (G/A)	2	212618440	0.24	0.845	0.98985
ERBB4	rs13428633 (A/G)	2	212820953	-0.45	0.8461	0.98985

ERBB4	rs73070304 (A/C)	2	213202226	0.55	0.8468	0.98985
NRG1	rs7000590 (G/A)	8	32400628	0.24	0.8469	0.98985
EGFR	rs6972246 (G/A)	7	55159983	-0.29	0.8476	0.98985
NRG2	rs265152 (G/A)	5	139379707	0.24	0.8479	0.98985
ERBB4	rs2008506 (G/A)	2	213207306	0.54	0.8481	0.98985
MUC4	rs2550241 (A/G)	3	195498942	-0.21	0.8482	0.98985
ERBB4	rs10497948 (A/G)	2	212492126	0.27	0.8485	0.98985
ERBB4	rs16848412 (A/G)	2	213215340	0.54	0.8485	0.98985
ERBB4	rs17418814 (C/A)	2	213164792	0.28	0.8488	0.98985
ERBB4	rs10164847 (G/A)	2	212379145	-0.21	0.849	0.98985
NRG3	rs4933265 (A/G)	10	83712877	-0.27	0.8492	0.98985
MUC4	rs3107764 (C/G)	3	195518330	-0.21	0.8495	0.98985
NRG1	rs4129581 (A/G)	8	32298100	-0.26	0.8501	0.98985
ERBB4	rs57038689 (A/G)	2	212682706	-0.31	0.8504	0.98985
EGFR	rs2075101 (G/A)	7	55250026	0.21	0.8512	0.98985
ERBB4	rs7608095 (G/A)	2	213070451	-0.21	0.8519	0.98985
NRG3	rs2494028 (G/A)	10	84465162	0.35	0.8521	0.98985
NRG1	rs16875654 (A/G)	8	31913615	-0.54	0.8522	0.98985
NRG1	rs73234154 (G/A)	8	32424829	0.32	0.8523	0.98985
ERBB4	rs17344783 (G/A)	2	213040157	0.22	0.8525	0.98985
NRG1	rs1383887 (A/G)	8	31753156	0.20	0.8534	0.99028
NRG3	rs11817202 (C/A)	10	83809752	-0.22	0.8537	0.99028
NRG1	rs1481624 (G/A)	8	31779956	-0.22	0.8541	0.99028
NRG2	rs12517577 (A/C)	5	139240190	0.33	0.8547	0.9905
ERBB4	rs2371572 (A/C)	2	213214174	0.20	0.8557	0.99064
NRG1	rs28707215 (G/A)	8	31503226	-0.24	0.8567	0.99064
NRG1	rs2919389 (G/A)	8	32588901	-0.19	0.8568	0.99064
ERBB4	rs13022952 (C/A)	2	213125175	0.30	0.8571	0.99064
ERBB4	rs974968 (A/C)	2	213318641	-0.20	0.8572	0.99064
ERBB4	rs10174063 (A/G)	2	212864338	0.20	0.8574	0.99064
NRG1	rs7002063 (A/G)	8	31803534	-0.23	0.8577	0.99064
ERBB4	rs34687398 (A/C)	2	213023995	-0.20	0.859	0.99152
NRG1	rs16878344 (C/A)	8	31702323	-0.26	0.8599	0.99152
NRG1	rs1481728 (C/A)	8	32116927	-0.25	0.8612	0.99152
NRG1	rs6992010 (A/G)	8	32117412	-0.25	0.8612	0.99152
NRG1	rs62500177 (G/A)	8	32280225	-0.19	0.8612	0.99152
NRG3	rs7088954 (C/A)	10	84088903	0.22	0.8613	0.99152
NRG1	rs4733305 (A/G)	8	32035790	-0.24	0.8614	0.99152
NRG3	rs6584455 (A/C)	10	83759053	0.20	0.8618	0.99152
ERBB4	rs4672626 (G/A)	2	212670425	-0.29	0.8632	0.99152
NRG3	rs71483383 (G/A)	10	83794591	-0.22	0.8636	0.99152

NRG3	rs12267711 (G/A)	10	84350913	0.41	0.8648	0.99152
EGF	rs11569121 (G/A)	4	110929128	0.30	0.8664	0.99152
ERBB4	rs77536379 (C/A)	2	212492021	-0.32	0.8664	0.99152
MUC4	rs79706438 (A/G)	3	195497121	0.43	0.8667	0.99152
ERBB4	rs1992026 (G/A)	2	212281672	-0.37	0.8667	0.99152
ERBB4	rs1505376 (A/G)	2	213303947	-0.18	0.8667	0.99152
NRG1	rs59110554 (A/C)	8	32120353	-0.21	0.8671	0.99152
NRG3	rs7073820 (A/C)	10	84177024	-0.23	0.8675	0.99152
ERBB4	rs13008370 (A/C)	2	212642374	0.19	0.8675	0.99152
NRG1	rs10096667 (G/A)	8	32150982	-0.24	0.8678	0.99152
NRG1	rs10503887 (C/A)	8	31633447	0.24	0.8679	0.99152
ERBB4	rs12995889 (A/G)	2	213050763	-0.38	0.8686	0.99152
EGFR	rs6954351 (G/A)	7	55171190	0.28	0.8689	0.99152
NRG1	rs4733332 (C/A)	8	32288374	0.20	0.869	0.99152
NRG3	rs12267852 (A/C)	10	84470373	0.35	0.8692	0.99152
NRG1	rs553950 (C/A)	8	31791362	-0.30	0.8694	0.99152
NRG3	rs60695870 (C/G)	10	84559415	-0.25	0.8697	0.99152
MUC4	rs2291650 (G/A)	3	195478188	0.22	0.87	0.99152
ERBB4	rs10197270 (G/A)	2	212929113	0.21	0.8724	0.9935
NRG3	rs73314451 (G/A)	10	84113016	-0.29	0.8733	0.9935
ERBB4	rs60490270 (G/A)	2	212641601	-0.25	0.8733	0.9935
NRG3	rs12773117 (A/C)	10	84559886	-0.24	0.8737	0.9935
NRG3	rs72827384 (G/A)	10	84155774	-0.21	0.8738	0.9935
TGFA	rs10489985 (A/G)	2	70772720	0.23	0.8744	0.99371
NRG1	rs6468122 (G/A)	8	32539327	-0.18	0.876	0.99429
ERBB4	rs3791700 (A/G)	2	212275020	-0.20	0.8776	0.99429
ERBB4	rs10173683 (G/C)	2	212545562	0.17	0.8783	0.99429
NRG3	rs4933818 (C/A)	10	83760211	0.19	0.8785	0.99429
NRG1	rs16879060 (C/A)	8	32118296	0.23	0.8793	0.99429
EGFR	rs845558 (G/A)	7	55247588	0.16	0.8795	0.99429
TGFA	rs11466285 (A/G)	2	70677439	-0.30	0.8798	0.99429
EGF	rs2255355 (A/C)	4	110891543	-0.27	0.8806	0.99429
TGFA	rs6749533 (A/G)	2	70691766	-0.24	0.8815	0.99429
ERBB4	rs7423124 (C/A)	2	212867291	0.16	0.8816	0.99429
ERBB4	rs17416172 (A/G)	2	212974828	-0.16	0.8817	0.99429
NRG4	rs17428804 (C/A)	15	76260430	-0.28	0.8821	0.99429
NRG3	rs2347332 (G/A)	10	83746494	0.18	0.8821	0.99429
ERBB3	rs812826 (G/A)	12	56495306	-0.24	0.883	0.99429
ERBB4	rs17346754 (G/A)	2	213159671	0.21	0.8834	0.99429
EGF	rs9992755 (A/G)	4	110882590	0.16	0.8835	0.99429
NRG1	rs984633 (C/A)	8	32166816	-0.23	0.8841	0.99429

NRG2	rs6891114 (A/G)	5	139372521	0.26	0.8848	0.99429
NRG1	rs16878243 (A/C)	8	31609048	-0.22	0.885	0.99429
EGFR	rs1404908 (G/A)	7	55262627	-0.16	0.8853	0.99429
NRG1	rs28411153 (A/G)	8	31993038	-0.18	0.8857	0.99429
ERBB4	rs1482378 (A/C)	2	213347104	-0.26	0.8857	0.99429
ERBB4	rs4672615 (G/A)	2	212356992	-0.16	0.8885	0.99429
ERBB4	rs11675580 (C/A)	2	213333945	-0.16	0.8894	0.99429
ERBB4	rs73988941 (A/G)	2	212882867	0.19	0.89	0.99429
NRG3	rs7921634 (C/G)	10	83637304	-0.17	0.8914	0.99429
NRG1	rs34825962 (G/A)	8	31731475	0.15	0.8916	0.99429
NRG3	rs7916696 (C/A)	10	84089539	0.24	0.8918	0.99429
ERBB3	rs2271189 (G/A)	12	56494991	-0.16	0.8919	0.99429
EGF	rs10470911 (A/C)	4	110865271	0.15	0.8933	0.99429
NRG1	rs2683768 (A/C)	8	31738311	-0.14	0.8955	0.99429
NRG1	rs7818821 (A/G)	8	32153164	-0.15	0.8956	0.99429
ERBB4	rs12996976 (A/G)	2	212726694	0.17	0.8956	0.99429
ERBB4	rs62184037 (A/G)	2	212977114	-0.15	0.8957	0.99429
NRG1	rs10503899 (A/G)	8	31947234	-0.15	0.8964	0.99429
TGFA	rs428225 (A/G)	2	70759161	0.14	0.8969	0.99429
NRG1	rs7000201 (A/G)	8	32224779	-0.21	0.897	0.99429
NRG3	rs57647976 (A/G)	10	84405406	0.24	0.8972	0.99429
EGFR	rs10235245 (G/A)	7	55192617	-0.15	0.8979	0.99429
EGFR	rs845552 (A/G)	7	55245507	-0.14	0.898	0.99429
TGFA	rs2166975 (G/A)	2	70677994	-0.16	0.8986	0.99429
NRG3	rs10884061 (G/A)	10	83790221	0.16	0.8988	0.99429
NRG1	rs3735776 (C/A)	8	32585434	0.18	0.8989	0.99429
ERBB4	rs16846161 (A/G)	2	212297838	-0.23	0.899	0.99429
NRG3	rs1475706 (G/A)	10	84685244	0.20	0.8993	0.99429
ERBB4	rs7421024 (G/A)	2	212604663	-0.25	0.8994	0.99429
MUC4	rs73085337 (A/G)	3	195529087	0.25	0.8995	0.99429
NRG1	rs10092055 (G/A)	8	32381411	-0.16	0.8996	0.99429
NRG3	rs12246695 (G/A)	10	83974268	0.23	0.8998	0.99429
NRG3	rs6585084 (G/A)	10	84733869	-0.27	0.9005	0.99429
NRG3	rs915349 (A/G)	10	84477898	0.14	0.9016	0.99429
NRG3	rs2172939 (G/A)	10	84607824	-0.14	0.902	0.99429
NRG3	rs342386 (A/G)	10	84611100	-0.14	0.902	0.99429
ERBB4	rs16847346 (A/G)	2	212827279	0.26	0.9031	0.99429
NRG3	rs1739769 (A/G)	10	83883951	-0.13	0.9032	0.99429
NRG3	rs35422267 (A/G)	10	83998003	0.20	0.9039	0.99429
ERBB4	rs34156842 (A/C)	2	212577264	-0.16	0.9039	0.99429
ERBB4	rs35145864 (G/A)	2	212359600	-0.14	0.9041	0.99429

NRG1	rs7830159 (A/G)	8	31645028	0.13	0.9042	0.99429
TGFA	rs3821261 (A/C)	2	70729253	-0.21	0.9045	0.99429
NRG3	rs3862550 (A/G)	10	84094771	0.15	0.9048	0.99429
NRG3	rs7092994 (A/G)	10	84735241	-0.13	0.9049	0.99429
ERBB4	rs6435655 (A/G)	2	212562538	0.13	0.9051	0.99429
NRG3	rs7894092 (C/A)	10	84066560	-0.15	0.9054	0.99429
ERBB4	rs10932439 (A/G)	2	213242374	0.13	0.9055	0.99429
ERBB4	rs62182562 (G/A)	2	213030170	-0.16	0.9059	0.99429
ERBB4	rs16848312 (G/A)	2	213173172	-0.18	0.906	0.99429
ERBB4	rs6745249 (G/A)	2	213130571	-0.12	0.9063	0.99429
EGFR	rs13222385 (A/G)	7	55251593	0.14	0.9067	0.99429
EGFR	rs10244108 (G/A)	7	55152337	0.14	0.9072	0.99429
NRG3	rs7099749 (A/G)	10	84576414	0.21	0.9077	0.99429
NRG1	rs12678982 (G/A)	8	32296794	-0.15	0.9078	0.99429
ERBB4	rs62184548 (A/C)	2	212808309	0.17	0.9086	0.99429
NRG2	rs13173983 (A/G)	5	139410510	0.14	0.9087	0.99429
ERBB2	rs1136201 (A/G)	17	37879588	-0.15	0.9088	0.99429
NRG1	rs1462891 (G/A)	8	31830933	-0.14	0.9092	0.99429
ERBB4	rs1521647 (A/G)	2	213040127	-0.20	0.9098	0.99429
NRG1	rs7826312 (G/A)	8	32400115	0.13	0.9099	0.99429
NRG3	rs342396 (G/A)	10	84621666	0.13	0.9099	0.99429
EGFR	rs7786831 (G/A)	7	55190489	-0.22	0.9102	0.99429
EGFR	rs12718937 (T/A)	7	55089451	-0.13	0.9105	0.99429
NRG3	rs11192970 (C/A)	10	83961273	-0.21	0.9106	0.99429
ERBB4	rs6740117 (A/G)	2	212384231	0.12	0.9107	0.99429
NRG3	rs17099789 (A/G)	10	84088573	0.14	0.912	0.99429
NRG3	rs6585083 (C/A)	10	84732356	-0.24	0.9123	0.99429
ERBB4	rs6754240 (G/A)	2	212764141	-0.13	0.9129	0.99429
NRG1	rs12547858 (G/A)	8	32487053	0.16	0.9132	0.99429
EGF	rs3796947 (A/G)	4	110870765	-0.18	0.9133	0.99429
ERBB4	rs62184064 (G/A)	2	213215895	0.19	0.9133	0.99429
ERBB4	rs10168850 (G/A)	2	213334523	-0.13	0.9133	0.99429
ERBB4	rs74894709 (A/G)	2	212956433	-0.18	0.9134	0.99429
ERBB4	rs78068641 (G/A)	2	212788333	-0.24	0.9137	0.99429
ERBB4	rs13027737 (G/A)	2	212718757	0.14	0.9138	0.99429
ERBB4	rs199532836 (G/A)	2	212719804	0.14	0.9138	0.99429
NRG2	rs6580353 (G/A)	5	139410687	-0.13	0.9145	0.99429
ERBB4	rs6758063 (G/A)	2	212582246	-0.12	0.9147	0.99429
NRG1	rs6999862 (G/A)	8	32194497	0.12	0.9153	0.99429
NRG3	rs2250933 (A/C)	10	84444585	0.20	0.9157	0.99429
NRG1	rs7011105 (A/G)	8	32537461	-0.12	0.9158	0.99429

ERBB4	rs4511675 (C/A)	2	213233739	-0.12	0.9166	0.99433
NRG3	rs7902584 (A/G)	10	84207574	0.15	0.9172	0.99433
ERBB4	rs72935738 (G/A)	2	212826952	0.15	0.9178	0.99433
NRG3	rs35860440 (G/A)	10	84587947	0.16	0.9179	0.99433
ERBB4	rs13383927 (C/A)	2	212336730	-0.12	0.919	0.99433
ERBB4	rs13028369 (G/A)	2	212360399	-0.15	0.9195	0.99433
NRG1	rs4733281 (A/G)	8	31778618	-0.13	0.9198	0.99433
NRG1	rs17705398 (G/A)	8	32195932	-0.15	0.9199	0.99433
ERBB4	rs11695227 (A/G)	2	212982171	-0.12	0.9203	0.99433
NRG1	rs10101580 (A/G)	8	32468951	-0.11	0.9205	0.99433
ERBB4	rs1949652 (A/G)	2	213110424	-0.10	0.9205	0.99433
NRG1	rs12546350 (G/A)	8	32397189	0.16	0.9208	0.99433
NRG3	rs11596426 (A/G)	10	84071127	0.16	0.9228	0.99594
EGFR	rs7796872 (G/A)	7	55179844	-0.16	0.9239	0.99594
NRG1	rs1462892 (G/A)	8	31830996	-0.12	0.9249	0.99594
NRG3	rs983086 (C/A)	10	84354158	0.10	0.9249	0.99594
EGFR	rs4947963 (A/G)	7	55088415	-0.11	0.9253	0.99594
NRG1	rs62508561 (A/G)	8	31610270	-0.12	0.9256	0.99594
NRG1	rs4489283 (G/A)	8	32399662	0.10	0.926	0.99594
NRG3	rs2348754 (G/A)	10	84715289	0.15	0.9263	0.99594
ERBB4	rs12469375 (A/G)	2	212492708	0.14	0.9268	0.99594
NRG1	rs73234151 (C/A)	8	32423538	0.12	0.9274	0.99594
NRG1	rs6999977 (A/G)	8	32173061	-0.14	0.9279	0.99594
ERBB4	rs17335518 (A/G)	2	212526025	0.10	0.9281	0.99594
EGF	rs4698756 (G/A)	4	110866442	0.10	0.9284	0.99594
NRG1	rs4584111 (A/G)	8	32299316	-0.10	0.9285	0.99594
NRG1	rs35544675 (A/C)	8	32422857	-0.12	0.9285	0.99594
NRG3	rs10883976 (A/G)	10	83720231	0.18	0.9291	0.99614
EGFR	rs759167 (C/A)	7	55127784	0.11	0.93	0.99644
ERBB4	rs77509092 (A/G)	2	213003783	-0.16	0.9302	0.99644
ERBB4	rs75051161 (A/G)	2	213131988	-0.16	0.931	0.99646
EGFR	rs1024750 (G/A)	7	55128731	0.12	0.9317	0.99646
NRG3	rs10884143 (G/A)	10	83840139	0.15	0.9324	0.99646
MUC4	rs842460 (A/G)	3	195536040	0.09	0.9324	0.99646
ERBB4	rs939224 (A/G)	2	213089095	0.09	0.9325	0.99646
ERBB4	rs12475565 (A/G)	2	213074560	0.12	0.9332	0.99646
EGF	rs6825106 (G/A)	4	110904502	0.13	0.9335	0.99646
NRG1	rs7821017 (C/A)	8	31607509	0.11	0.9336	0.99646
EGF	rs6824594 (A/G)	4	110904448	-0.09	0.9348	0.99646
ERBB4	rs6729362 (G/A)	2	212581902	-0.14	0.9354	0.99646
NRG3	rs1475707 (C/A)	10	84684932	-0.09	0.9356	0.99646

NRG2	rs265160 (A/C)	5	139390914	0.10	0.9361	0.99646
ERBB4	rs17262115 (C/A)	2	213398354	0.10	0.9367	0.99646
ERBB4	rs6756725 (A/C)	2	212650162	0.10	0.9372	0.99646
EGF	rs7670908 (G/A)	4	110892625	0.15	0.9373	0.99646
EGF	rs9991367 (G/A)	4	110894301	0.15	0.9373	0.99646
NRG1	rs17642273 (A/C)	8	32292231	-0.13	0.9378	0.99646
EGFR	rs12718939 (G/A)	7	55105320	-0.09	0.9381	0.99646
ERBB4	rs6435665 (G/A)	2	212591641	-0.12	0.9382	0.99646
ERBB4	rs201059849 (C/A)	2	213180395	0.11	0.9385	0.99646
EGF	rs4698803 (A/T)	4	110914427	0.11	0.9395	0.99649
NRG1	rs57086312 (A/G)	8	32026489	0.09	0.9402	0.99649
NRG2	rs2916093 (A/G)	5	139415532	-0.09	0.9402	0.99649
ERBB4	rs77488258 (A/G)	2	212308490	-0.18	0.9415	0.99649
NRG1	rs9297192 (G/A)	8	32283517	0.10	0.9417	0.99649
NRG2	rs71581525 (A/C)	5	139392069	0.14	0.9418	0.99649
EGFR	rs7780270 (A/C)	7	55151886	-0.08	0.9421	0.99649
ERBB4	rs4673633 (G/A)	2	212658297	-0.10	0.9421	0.99649
ERBB4	rs73985811 (G/A)	2	212571407	0.12	0.9426	0.99649
ERBB4	rs78047850 (G/A)	2	212389664	0.15	0.943	0.99649
NRG3	rs12415063 (A/C)	10	84560528	0.11	0.9432	0.99649
EGFR	rs13234622 (A/G)	7	55211879	-0.08	0.9435	0.99649
ERBB4	rs6719811 (G/A)	2	213194405	-0.15	0.9443	0.99657
NRG1	rs73592185 (G/A)	8	32276102	0.11	0.9444	0.99657
NRG3	rs12262500 (G/A)	10	84047246	-0.14	0.9454	0.99719
NRG1	rs6982316 (A/G)	8	32534755	-0.08	0.9462	0.99723
NRG1	rs1383890 (A/G)	8	31721207	0.07	0.9467	0.99723
NRG3	rs649536 (A/G)	10	84330895	0.07	0.9469	0.99723
MUC4	rs2259292 (A/G)	3	195501149	-0.07	0.9473	0.99723
NRG3	rs1649967 (G/A)	10	83907724	-0.07	0.9487	0.99723
ERBB4	rs13015805 (A/G)	2	213249244	-0.09	0.9497	0.99723
NRG2	rs6580323 (A/G)	5	139340779	-0.07	0.9499	0.99723
NRG3	rs10736174 (G/A)	10	83822961	-0.08	0.95	0.99723
ERBB4	rs4672621 (G/A)	2	212529506	-0.07	0.9502	0.99723
NRG1	rs2347505 (G/A)	8	32234782	-0.08	0.951	0.99723
NRG1	rs12549199 (G/A)	8	32548970	-0.09	0.9511	0.99723
MUC4	rs6809312 (A/G)	3	195479068	-0.07	0.9511	0.99723
ERBB4	rs62184493 (G/A)	2	212705127	0.10	0.9513	0.99723
MUC4	rs2259419 (A/G)	3	195505417	-0.06	0.9517	0.99723
ERBB4	rs16845990 (A/G)	2	212243011	-0.07	0.9519	0.99723
ERBB4	rs35853366 (A/G)	2	212940153	-0.08	0.9524	0.99723
ERBB4	rs72949628 (G/C)	2	212302122	-0.12	0.9526	0.99723

ERBB4	rs7561282 (G/A)	2	212453901	0.08	0.9529	0.99723
NRG3	rs12243625 (G/A)	10	84328538	0.14	0.9541	0.99805
MUC4	rs73205722 (A/G)	3	195485225	0.11	0.9547	0.99806
EGF	rs929446 (A/G)	4	110883344	0.06	0.956	0.99806
ERBB4	rs1357136 (G/A)	2	213103721	-0.06	0.9564	0.99806
NRG3	rs201178935 (G/A)	10	84561763	-0.06	0.9567	0.99806
ERBB4	rs16846210 (G/A)	2	212322255	0.08	0.9567	0.99806
ERBB4	rs1505357 (A/G)	2	213210229	-0.06	0.9573	0.99806
EGF	rs2237051 (A/G)	4	110901198	-0.06	0.9576	0.99806
MUC4	rs59408218 (G/C)	3	195515550	0.10	0.9586	0.99806
ERBB4	rs73071355 (G/C)	2	212744099	-0.06	0.9589	0.99806
NRG1	rs6468119 (G/A)	8	32401561	0.05	0.959	0.99806
ERBB4	rs10187387 (A/G)	2	212772588	0.06	0.9593	0.99806
NRG3	rs981168 (C/A)	10	84547861	0.06	0.9598	0.99806
NRG3	rs665296 (G/C)	10	84332163	0.05	0.9609	0.99806
EGFR	rs10251909 (A/T)	7	55262189	0.06	0.9612	0.99806
NRG1	rs10954810 (G/A)	8	31555743	-0.06	0.9628	0.99806
ERBB4	rs1546717 (G/A)	2	212902339	0.07	0.9628	0.99806
NRG3	rs17100087 (A/G)	10	84213251	0.05	0.9649	0.99806
NRG3	rs17746622 (A/G)	10	84571247	0.07	0.9653	0.99806
ERBB4	rs16847102 (G/A)	2	212722988	-0.07	0.9657	0.99806
NRG3	rs60827755 (A/G)	10	83647518	0.07	0.9659	0.99806
NRG3	rs11191965 (A/G)	10	83726634	0.08	0.9668	0.99806
ERBB4	rs10193855 (A/G)	2	212382485	0.05	0.9675	0.99806
NRG1	rs16879773 (G/A)	8	32551304	0.05	0.9676	0.99806
ERBB4	rs12694256 (A/G)	2	212858137	0.05	0.9679	0.99806
NRG3	rs7074306 (G/A)	10	84210966	0.05	0.9686	0.99806
NRG3	rs4933813 (G/A)	10	83689125	-0.05	0.9687	0.99806
ERBB4	rs9288450 (A/G)	2	213093843	-0.09	0.9697	0.99806
NRG3	rs12262125 (G/A)	10	84676828	-0.06	0.9699	0.99806
ERBB4	rs55890667 (A/C)	2	212667493	0.05	0.9709	0.99806
ERBB4	rs13017883 (C/A)	2	213054058	0.07	0.9712	0.99806
NRG1	rs72634868 (G/A)	8	32489391	0.08	0.9716	0.99806
NRG1	rs17671089 (A/C)	8	32621094	-0.07	0.9719	0.99806
ERBB4	rs4672620 (G/A)	2	212489679	-0.05	0.9729	0.99806
BTC	rs74657106 (G/A)	4	75711789	-0.07	0.9739	0.99806
NRG3	rs2247247 (A/G)	10	84383277	0.04	0.9743	0.99806
MUC4	rs3096336 (A/G)	3	195534013	-0.03	0.9743	0.99806
NRG3	rs12267229 (A/G)	10	83639303	0.08	0.9745	0.99806
MUC4	rs2258447 (G/A)	3	195479256	-0.05	0.975	0.99806
NRG3	rs2483307 (A/G)	10	84564127	0.03	0.9752	0.99806

ERBB4	rs10932387 (A/G)	2	212458206	0.04	0.9754	0.99806
ERBB4	rs7565327 (G/A)	2	212542748	-0.03	0.9759	0.99806
ERBB4	rs35419573 (A/G)	2	212624172	0.05	0.9759	0.99806
TGFA	rs1058211 (A/C)	2	70677819	0.07	0.9765	0.99806
ERBB4	rs13032986 (A/C)	2	212519135	0.04	0.9766	0.99806
NRG1	rs11984751 (G/A)	8	32273529	-0.04	0.9767	0.99806
NRG3	rs168201 (A/G)	10	84610081	0.03	0.9769	0.99806
NRG1	rs17719687 (A/G)	8	32414166	0.05	0.9776	0.99806
NRG3	rs59384209 (C/A)	10	84425342	-0.05	0.9779	0.99806
NRG3	rs72825487 (G/A)	10	83973760	-0.05	0.978	0.99806
NRG1	rs776404 (A/C)	8	31706695	-0.03	0.9782	0.99806
NRG3	rs2207767 (A/G)	10	83802473	0.03	0.9783	0.99806
NRG1	rs7841599 (A/G)	8	32199572	0.03	0.9784	0.99806
ERBB4	rs1521550 (G/A)	2	212958457	0.03	0.9795	0.99806
NRG3	rs501376 (A/C)	10	84570188	0.03	0.9797	0.99806
NRG3	rs576966 (C/A)	10	84678060	0.03	0.9798	0.99806
ERBB4	rs73986915 (G/A)	2	213135079	-0.05	0.98	0.99806
ERBB4	rs2170529 (G/A)	2	213328749	-0.03	0.98	0.99806
NRG3	rs3924461 (G/A)	10	84433391	0.03	0.9801	0.99806
ERBB4	rs201176747 (A/T)	2	212308965	-0.03	0.9801	0.99806
NRG1	rs11776203 (A/C)	8	32419119	0.03	0.9804	0.99806
ERBB4	rs2371276 (A/G)	2	212555085	0.03	0.9813	0.99806
ERBB4	rs6435659 (A/G)	2	212564895	-0.02	0.9826	0.99806
NRG3	rs12415782 (A/G)	10	84604382	0.04	0.9827	0.99806
NRG3	rs11196301 (A/G)	10	84634847	-0.03	0.9827	0.99806
NRG1	rs10106329 (A/G)	8	32214317	0.03	0.9833	0.99806
NRG1	rs13439861 (A/G)	8	32220702	0.03	0.9833	0.99806
ERBB4	rs73081389 (C/A)	2	212870284	0.03	0.9833	0.99806
EGFR	rs2740764 (A/C)	7	55267458	-0.03	0.9834	0.99806
EGF	rs28672708 (A/C)	4	110845886	-0.02	0.9841	0.99806
NRG1	rs62500191 (C/A)	8	32382264	0.03	0.9843	0.99806
NRG3	rs2644206 (A/G)	10	84493564	-0.02	0.9847	0.99806
EGF	rs4698800 (G/A)	4	110866508	-0.02	0.9854	0.99806
ERBB4	rs10189716 (A/G)	2	212380586	0.02	0.9854	0.99806
TGFA	rs3771507 (G/A)	2	70701923	-0.02	0.9867	0.99806
NRG1	rs3757930 (G/A)	8	32589118	0.02	0.9872	0.99806
ERBB4	rs10198754 (G/A)	2	212440041	-0.02	0.9872	0.99806
EGFR	rs12667668 (C/A)	7	55187053	-0.02	0.9877	0.99806
ERBB4	rs7594072 (G/A)	2	212380125	0.02	0.9879	0.99806
ERBB4	rs7594200 (G/A)	2	212380226	0.02	0.9879	0.99806
ERBB4	rs931817 (A/G)	2	213137150	-0.04	0.988	0.99806

NRG1	rs17705671 (A/G)	8	32198296	-0.02	0.9883	0.99806
ERBB4	rs35330898 (G/A)	2	212351335	0.02	0.9886	0.99806
EGFR	rs7781264 (G/A)	7	55230840	0.02	0.9896	0.99806
NRG2	rs1422188 (C/A)	5	139276664	-0.02	0.9896	0.99806
NRG1	rs1487152 (A/G)	8	32217225	0.01	0.9903	0.99806
ERBB4	rs1473638 (A/C)	2	212883383	-0.02	0.9903	0.99806
EGFR	rs11770506 (A/G)	7	55090379	0.01	0.9905	0.99806
NRG3	rs12244925 (A/G)	10	84049409	0.01	0.9906	0.99806
NRG1	rs117211909 (C/A)	8	31747717	-0.02	0.9916	0.99812
MUC4	rs73205719 (G/A)	3	195485085	-0.02	0.9916	0.99812
NRG1	rs73239835 (G/A)	8	31559986	-0.01	0.9919	0.99812
NRG3	rs4506582 (G/A)	10	84126885	-0.01	0.9932	0.99814
ERBB4	rs11901525 (A/G)	2	212382015	0.01	0.9937	0.99814
NRG1	rs2010243 (A/G)	8	31846380	0.01	0.9939	0.99814
NRG1	rs10103255 (C/G)	8	32488351	0.01	0.9939	0.99814
NRG3	rs2246386 (G/A)	10	84459893	0.01	0.9948	0.99814
NRG3	rs12256472 (C/A)	10	84668708	-0.01	0.9952	0.99814
ERBB4	rs10203022 (A/G)	2	212458790	-0.01	0.9953	0.99814
ERBB4	rs10932380 (A/G)	2	212390350	-0.01	0.9958	0.99814
NRG3	rs2152594 (G/A)	10	83952753	-0.01	0.9961	0.99814
ERBB4	rs6711080 (G/A)	2	213317329	0.01	0.9961	0.99814
ERBB4	rs6743763 (G/A)	2	213200363	-0.01	0.9966	0.99814
NRG1	rs17683983 (C/A)	8	31846839	0.00	0.9969	0.99814
NRG1	rs6987996 (G/A)	8	31506771	0.00	0.998	0.99851
NRG3	rs11192134 (G/A)	10	83763015	0.00	0.9981	0.99851
NRG1	rs4733372 (A/G)	8	32605388	0.00	0.9993	0.9993

Supplementary Table 2: Haplotype analysis of *EREG* gene

SNP1	SNP2	D'	LOD	R ²	95%CI_low	95%CI_hi	Distance	T stat
rs6836436	rs7662139	1	18.93	0.018	0.9	1	1501	1317.16
rs6836436	rs1993665	0.971	148.35	0.176	0.94	0.99	3556	-
rs6836436	rs201835071	0.929	367.82	0.771	0.9	0.96	6657	-
rs6836436	rs200889776	0.982	392.24	0.818	0.96	1	9840	-
rs6836436	rs10518126	0.982	389.82	0.811	0.96	1	12189	-
rs6836436	rs4694683	1	18.84	0.018	0.9	1	12772	-
rs6836436	rs57839099	0.982	388.93	0.811	0.96	1	12883	-
rs6836436	rs57933408	0.985	380.91	0.798	0.96	1	12898	-
rs6836436	rs72859363	0.942	371.46	0.78	0.91	0.97	15182	-
rs6836436	rs2367707	1	19.28	0.023	0.89	1	17504	-
rs6836436	rs2367708	0.934	15.92	0.017	0.8	0.98	17614	-
rs6836436	rs1017733	0.769	10.79	0.013	0.61	0.87	21420	-
rs6836436	rs1017734	0.057	0.46	0.001	0	0.13	22190	-
rs6836436	rs1460007	1	20.18	0.02	0.9	1	23328	-
rs6836436	rs1460008	0.76	10.23	0.012	0.59	0.87	23352	-
rs7662139	rs1993665	1	410.93	0.486	0.99	1	2055	2644.66
rs7662139	rs201835071	0.882	11.51	0.013	0.72	0.96	5156	-
rs7662139	rs200889776	1	15.86	0.016	0.88	1	8339	-
rs7662139	rs10518126	1	15.74	0.015	0.88	1	10688	-
rs7662139	rs4694683	0.999	873.55	0.995	0.98	1	11271	-
rs7662139	rs57839099	1	15.61	0.015	0.88	1	11382	-
rs7662139	rs57933408	1	15.32	0.015	0.88	1	11397	-
rs7662139	rs72859363	1	16.83	0.016	0.89	1	13681	-
rs7662139	rs2367707	0.985	607.74	0.755	0.97	1	16003	-
rs7662139	rs2367708	0.984	730.24	0.893	0.97	1	16113	-
rs7662139	rs1017733	0.979	660.26	0.821	0.96	0.99	19919	-
rs7662139	rs1017734	0.972	414.12	0.526	0.95	0.99	20689	-
rs7662139	rs1460007	0.972	712.02	0.882	0.95	0.99	21827	-
rs7662139	rs1460008	0.971	643.56	0.811	0.95	0.99	21851	-
rs1993665	rs201835071	0.963	129.86	0.156	0.92	0.99	3101	3447.98
rs1993665	rs200889776	1	139.65	0.159	0.98	1	6284	-
rs1993665	rs10518126	1	139.2	0.158	0.98	1	8633	-
rs1993665	rs4694683	1	410.24	0.485	0.99	1	9216	-
rs1993665	rs57839099	1	139.11	0.158	0.98	1	9327	-
rs1993665	rs57933408	1	136.09	0.154	0.98	1	9342	-
rs1993665	rs72859363	0.977	133.09	0.157	0.94	1	11626	-
rs1993665	rs2367707	0.897	395.63	0.503	0.87	0.92	13948	-
rs1993665	rs2367708	0.895	315.87	0.422	0.86	0.92	14058	-
rs1993665	rs1017733	0.88	332.69	0.44	0.85	0.91	17864	-
rs1993665	rs1017734	0.806	463.06	0.566	0.78	0.83	18634	-
rs1993665	rs1460007	0.886	302.29	0.409	0.85	0.91	19772	-
rs1993665	rs1460008	0.88	329.93	0.438	0.85	0.91	19796	-

rs201835071 rs200889776 1 458.46 0.945 0.99 1 3583 529.83 rs201835071 rs16518126 1 457.14 0.99 1 6532 - rs201835071 rs469463 0.881 1145 0.013 0.71 0.96 6115 - rs201835071 rs57933408 1 441.48 0.92 0.99 1 6226 - rs201835071 rs2367707 0.772 9.26 0.013 0.59 0.88 10847 - rs201835071 rs1017734 0.558 4.61 0.006 0.67 114763 - rs201835071 rs1017734 0.258 1.23 0.002 0.08 0.43 15533 - rs201835071 rs101773 0.258 1.23 0.002 0.08 0.43 15533 - rs20088976 rs10518126 1 487.3 0.99 1 3043 - rs200889776 rs1058126	SNP1	SNP2	D'	LOD	R ²	95%CI_low	95%CI_hi	Distance	T stat
rs201835071 rs160518126 1 457.14 0.942 0.99 1 5522 . rs201835071 rs57839099 1 456.19 0.942 0.99 1 6226 . rs201835071 rs57839099 1 441.48 0.922 0.99 1 6226 . rs201835071 rs2859736 0.955 426.88 0.896 0.93 0.98 8525 . rs201835071 rs2367708 0.792 9.76 0.011 0.62 0.88 10967 . rs201835071 rs1017734 0.558 4.61 0.006 0.36 0.71 14763 . rs201835071 rs1460007 0.881 1.23 0.002 0.84 1533 .	rs201835071	rs200889776	1	458.46	0.945	0.99	1	3183	5295.83
rs201835071 rs4694683 0.881 11.45 0.013 0.71 0.96 6115 . rs201835071 rs57839099 1 456.19 0.942 0.99 1 6221 . rs201835071 rs72859363 0.955 426.88 0.886 0.93 0.98 8525 . rs201835071 rs2367707 0.772 9.26 0.011 0.59 0.88 10847 . rs201835071 rs1017734 0.258 1.23 0.002 0.08 0.43 15533 . rs201835071 rs1460008 0.548 4.38 0.006 0.34 0.7 16695 . rs200889776 rs14600883 1 15.79 0.016 0.88 1 2932 . rs200889776 rs57833408 1 465.12 0.977 1 3043 . rs200889776 rs2367708 0.89 12.33 0.013 0.73 0.96 7774 .	rs201835071	rs10518126	1	457.14	0.942	0.99	1	5532	-
rs201835071 rs57839099 1 456.19 0.942 0.99 1 6226 . rs201835071 rs57833408 1 441.48 0.922 0.99 1 6226 . rs201835071 rs2367707 0.772 9.26 0.013 0.59 0.88 10847 - rs201835071 rs2367708 0.792 9.76 0.011 0.62 0.89 109877 - rs201835071 rs1017734 0.258 1.23 0.002 0.08 0.43 15533 - rs201835071 rs1460007 0.861 11.94 0.013 0.7 0.94 16671 - rs200889776 rs10518126 1 487.3 0.997 0.99 1 2349 7149.27 rs200889776 rs7389099 1 486.34 0.997 0.99 1 3043 - rs200889776 rs72859363 0.994 455.84 0.949 0.97 1 5342 -	rs201835071	rs4694683	0.881	11.45	0.013	0.71	0.96	6115	-
rs201835071 rs72859330 1 441.48 0.922 0.99 1 6241 . rs201835071 rs72859363 0.955 426.88 0.896 0.93 0.98 8525 - rs201835071 rs2367708 0.792 9.76 0.011 0.62 0.89 10957 - rs201835071 rs1017733 0.558 4.61 0.002 0.08 0.43 15533 - rs201835071 rs1460007 0.861 11.94 0.013 0.7 0.94 16671 - rs200889776 rs16518126 1 487.3 0.97 0.99 1 2349 7149.27 rs200889776 rs4694683 1 15.79 0.016 0.88 1 3043 - rs200889776 rs5783909 1 485.84 0.997 1 3042 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7664 - rs2008897	rs201835071	rs57839099	1	456.19	0.942	0.99	1	6226	-
rs201835071 rs72859363 0.955 426.88 0.896 0.93 0.98 8525 - rs201835071 rs2367707 0.772 9.76 0.101 0.59 0.88 10987 - rs201835071 rs1017733 0.558 4.61 0.000 0.36 0.71 14763 - rs201835071 rs1017734 0.258 1.23 0.002 0.08 0.43 15533 - rs201835071 rs1460007 0.861 11.94 0.013 0.7 0.94 16671 - rs200889776 rs10518126 1 487.3 0.997 0.99 1 2349 7149.27 rs200889776 rs5733408 1 466.12 0.977 0.99 1 3043 - rs200889776 rs7289303 0.944 455.84 0.947 1 5342 - rs200889776 rs101773 0.707 7.38 0.004 0.73 0.96 7774 -	rs201835071	rs57933408	1	441.48	0.922	0.99	1	6241	-
Ts201835071 rs2367707 0.772 9.26 0.013 0.59 0.88 10847 - rs201835071 rs2367708 0.792 9.76 0.011 0.62 0.89 10957 - rs201835071 rs1017734 0.258 1.23 0.002 0.08 0.43 15533 - rs201835071 rs1460007 0.861 11.94 0.013 0.7 0.94 16671 - rs200889776 rs16051826 1 487.3 0.997 0.99 1 2349 7149.27 rs200889776 rs4694683 1 15.79 0.016 0.88 1 2932 - rs200889776 rs57839099 1 466.42 0.97 1 3043 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs1017734 0.367 2.3 0.004 0.17 0.53 12350 - rs2008	rs201835071	rs72859363	0.955	426.88	0.896	0.93	0.98	8525	-
rs201835071 rs2367708 0.792 9.76 0.011 0.62 0.89 10957 - rs201835071 rs1017733 0.558 4.61 0.000 0.36 0.71 14763 - rs201835071 rs1460007 0.861 11.94 0.013 0.77 0.94 16671 - rs201835071 rs1460008 0.548 4.38 0.006 0.34 0.7 16695 - rs200889776 rs508483 1 15.73 0.997 0.99 1 3043 - rs200889776 rs57933408 1 466.12 0.977 1 5342 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7644 - rs200889776 rs1017734 0.367 2.33 0.014 0.73 0.96 7774 - rs200889776 <td>rs201835071</td> <td>rs2367707</td> <td>0.772</td> <td>9.26</td> <td>0.013</td> <td>0.59</td> <td>0.88</td> <td>10847</td> <td>-</td>	rs201835071	rs2367707	0.772	9.26	0.013	0.59	0.88	10847	-
rs201835071 rs1017733 0.558 4.61 0.006 0.36 0.71 14763 - rs201835071 rs1017734 0.258 1.23 0.002 0.08 0.43 15533 - rs201835071 rs1460007 0.861 11.94 0.013 0.7 0.94 16671 - rs201835071 rs1460008 0.548 4.38 0.006 0.34 0.7 16695 - rs200889776 rs57839099 1 486.34 0.997 0.99 1 3043 - rs200889776 rs57839099 1 486.34 0.977 1 5342 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7644 - rs200889776 rs1017734 0.367 2.3 0.014 0.17 0.53 12350 - rs200889776 rs1047734 0.367 2.3 0.004 0.17 0.53 12350 - rs200889776 rs1047734 0.367 2.3 0.004 0.17 0.53 1235	rs201835071	rs2367708	0.792	9.76	0.011	0.62	0.89	10957	-
rs201835071 rs1017734 0.258 1.23 0.002 0.08 0.43 15533 - rs201835071 rs1460007 0.861 11.94 0.013 0.7 0.94 16671 - rs201835071 rs1460008 0.548 4.38 0.006 0.34 0.7 16695 - rs200889776 rs1518126 1 487.3 0.997 0.99 1 3043 - rs200889776 rs57833099 1 486.34 0.997 0.99 1 3043 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs1017734 0.367 2.3 0.004 0.17 0.53 12350 - rs200889776 rs146007 1 17.08 0.017 0.89 1 13488 - rs200889776 rs146007 1 17.08 0.017 0.89 1 13488<	rs201835071	rs1017733	0.558	4.61	0.006	0.36	0.71	14763	-
rs201835071 rs1460007 0.861 11.94 0.013 0.7 0.94 16671 - rs200889776 rs1460008 0.548 4.38 0.006 0.34 0.7 16695 - rs200889776 rs10518126 1 487.3 0.997 0.99 1 2349 7149.27 rs200889776 rs57839099 1 486.34 0.997 0.99 1 3043 - rs200889776 rs57833408 1 466.12 0.977 0.99 1 3043 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs1017733 0.709 7.38 0.009 0.52 0.83 11580 - rs200889776 rs1460007 1 17.08 0.017 0.53 12350 - rs200889776 rs1460008 0.701 7.08 0.017 0.89 1 13488 - rs1051812	rs201835071	rs1017734	0.258	1.23	0.002	0.08	0.43	15533	-
rs201835071 rs1460008 0.548 4.38 0.006 0.34 0.7 16695 - rs200889776 rs10518126 1 487.3 0.997 0.99 1 2349 7149.27 rs200889776 rs57933408 1 466.34 0.997 0.99 1 3043 - rs200889776 rs57933408 1 466.12 0.977 0.99 1 3058 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs2367708 0.89 12.33 0.013 0.73 0.96 7774 - rs200889776 rs1017734 0.367 2.3 0.004 0.17 0.53 12350 - rs200889776 rs1460007 1 17.08 0.017 0.83 1 1348 - rs200889776 rs1460008 0.701 7.08 0.099 1 694 - rs10518126 rs4694683 1 4567 0.979 0.99 1 709 - <td>rs201835071</td> <td>rs1460007</td> <td>0.861</td> <td>11.94</td> <td>0.013</td> <td>0.7</td> <td>0.94</td> <td>16671</td> <td>-</td>	rs201835071	rs1460007	0.861	11.94	0.013	0.7	0.94	16671	-
rs200889776 rs10518126 1 487.3 0.997 0.99 1 2349 7149.27 rs200889776 rs4694683 1 15.79 0.016 0.88 1 2932 - rs200889776 rs57839099 1 486.34 0.997 0.99 1 3043 - rs200889776 rs236707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs236707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs236707 1 16.03 0.02 0.83 11580 - rs200889776 rs1017734 0.367 2.3 0.004 0.17 0.53 12350 - rs200889776 rs1460007 1 17.08 0.017 0.53 12350 - rs200889776 rs1460008 0.701 7.08 0.017 0.88 1 13488 - rs10518126 rs2857933408	rs201835071	rs1460008	0.548	4.38	0.006	0.34	0.7	16695	-
rs200889776 rs4694683 1 15.79 0.016 0.88 1 2932 - rs200889776 rs57839099 1 486.34 0.997 0.99 1 3043 - rs200889776 rs57933408 1 466.12 0.977 0.99 1 3058 - rs200889776 rs5267707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs1017734 0.367 2.3 0.013 0.73 0.96 7774 - rs200889776 rs1017734 0.367 2.3 0.004 0.17 0.53 12350 - rs200889776 rs1460007 1 17.08 0.007 0.83 13512 - rs10518126 rs4694683 1 15.67 0.015 0.88 1 583 6977.84 rs10518126 rs57834089 1 490.11 0.99 1 709 - rs10518126 rs57839099	rs200889776	rs10518126	1	487.3	0.997	0.99	1	2349	7149.27
rs200889776 rs57839099 1 486.34 0.997 0.99 1 3043 - rs200889776 rs57933408 1 466.12 0.977 0.99 1 3058 - rs200889776 rs72859363 0.994 455.84 0.949 0.97 1 5342 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs101773 0.709 7.38 0.009 0.52 0.83 11580 - rs200889776 rs1017734 0.367 2.3 0.004 0.17 0.53 12350 - rs200889776 rs1460007 1 17.08 0.017 0.89 1 13488 - rs10518126 rs4694683 1 15.67 0.015 0.88 1 583 6977.84 rs10518126 rs57933408 1 468.56 0.979 0.99 1 709 - <td< td=""><td>rs200889776</td><td>rs4694683</td><td>1</td><td>15.79</td><td>0.016</td><td>0.88</td><td>1</td><td>2932</td><td>-</td></td<>	rs200889776	rs4694683	1	15.79	0.016	0.88	1	2932	-
rs200889776 rs57933408 1 466.12 0.977 0.99 1 3058 - rs200889776 rs72859363 0.994 455.84 0.949 0.97 1 5342 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs2367707 1 16.03 0.013 0.73 0.96 7774 - rs200889776 rs1017733 0.709 7.38 0.009 0.52 0.83 11580 - rs200889776 rs1017734 0.367 2.3 0.004 0.17 0.53 12350 - rs200889776 rs1460007 1 17.08 0.017 0.89 1 13488 - rs200889776 rs1460008 0.701 7.08 0.009 0.51 0.83 13512 - rs10518126 rs57839099 1 490.11 1 0.99 1 709 - <t< td=""><td>rs200889776</td><td>rs57839099</td><td>1</td><td>486.34</td><td>0.997</td><td>0.99</td><td>1</td><td>3043</td><td>-</td></t<>	rs200889776	rs57839099	1	486.34	0.997	0.99	1	3043	-
rs200889776 rs72859363 0.994 455.84 0.949 0.97 1 5342 - rs200889776 rs2367707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs2367708 0.89 12.33 0.013 0.73 0.96 7774 - rs200889776 rs1017733 0.709 7.38 0.004 0.17 0.53 12350 - rs200889776 rs1460007 1 17.08 0.0017 0.83 13512 - rs200889776 rs1460008 0.701 7.08 0.009 0.51 0.83 13512 - rs10518126 rs4694683 1 15.67 0.015 0.88 1 583 6977.84 rs10518126 rs5783308 1 468.56 0.979 0.99 1 709 - rs10518126 rs2367708 0.889 12.21 0.013 0.73 0.96 5425 - rs105181	rs200889776	rs57933408	1	466.12	0.977	0.99	1	3058	-
rs200889776 rs2367707 1 16.03 0.02 0.87 1 7664 - rs200889776 rs2367708 0.89 12.33 0.013 0.73 0.96 7774 - rs200889776 rs1017733 0.367 2.3 0.004 0.17 0.53 12350 - rs200889776 rs1460007 1 17.08 0.017 0.89 1 13488 - rs200889776 rs1460008 0.701 7.08 0.009 0.51 0.83 13512 - rs10518126 rs4694683 1 15.67 0.015 0.88 1 583 6977.84 rs10518126 rs57839099 1 490.11 1 0.99 1 709 - rs10518126 rs2367707 1 15.91 0.02 0.87 1 5315 - rs10518126 rs2367708 0.889 12.21 0.013 0.73 0.96 5425 - rs	rs200889776	rs72859363	0.994	455.84	0.949	0.97	1	5342	-
rs200889776 rs2367708 0.89 12.33 0.013 0.73 0.96 7774 - rs200889776 rs1017733 0.709 7.38 0.009 0.52 0.83 11580 - rs200889776 rs1017734 0.367 2.3 0.004 0.17 0.53 12350 - rs200889776 rs1460007 1 17.08 0.017 0.89 1 13488 - rs200889776 rs1460008 0.701 7.08 0.009 0.51 0.83 13512 - rs10518126 rs4694683 1 15.67 0.015 0.88 1 694 - rs10518126 rs5733408 1 468.56 0.979 0.99 1 709 - rs10518126 rs2367707 1 15.91 0.02 0.87 1 5315 - rs10518126 rs1017733 0.706 7.26 0.009 0.51 0.83 9231 - <t< td=""><td>rs200889776</td><td>rs2367707</td><td>1</td><td>16.03</td><td>0.02</td><td>0.87</td><td>1</td><td>7664</td><td>-</td></t<>	rs200889776	rs2367707	1	16.03	0.02	0.87	1	7664	-
rs200889776 rs1017733 0.709 7.38 0.009 0.52 0.83 11580 - rs200889776 rs1017734 0.367 2.3 0.004 0.17 0.53 12350 - rs200889776 rs1460007 1 17.08 0.009 0.51 0.83 13512 - rs10518126 rs4694683 1 15.67 0.015 0.88 1 583 6977.84 rs10518126 rs57839099 1 490.11 1 0.99 1 694 - rs10518126 rs57839099 1 490.11 1 0.99 1 709 - rs10518126 rs52367707 1 15.91 0.02 0.87 1 5315 - rs10518126 rs107733 0.706 7.26 0.009 0.51 0.83 9231 - rs10518126 rs1017734 0.365 2.27 0.004 0.17 0.53 10001 - rs1	rs200889776	rs2367708	0.89	12.33	0.013	0.73	0.96	7774	-
rs200889776 rs1017734 0.367 2.3 0.004 0.17 0.53 12350 - rs200889776 rs1460007 1 17.08 0.017 0.89 1 13488 - rs200889776 rs1460008 0.701 7.08 0.009 0.51 0.83 13512 - rs10518126 rs4694683 1 15.67 0.015 0.88 1 694 - rs10518126 rs57839099 1 490.11 1 0.99 1 694 - rs10518126 rs57839099 1 490.11 1 0.99 1 709 - rs10518126 rs285707 1 15.91 0.02 0.87 1 5315 - rs10518126 rs1017734 0.365 2.27 0.004 0.17 0.53 10001 - rs10518126 rs117734 0.365 2.27 0.004 0.17 0.53 10001 - rs10518126 <td>rs200889776</td> <td>rs1017733</td> <td>0.709</td> <td>7.38</td> <td>0.009</td> <td>0.52</td> <td>0.83</td> <td>11580</td> <td>-</td>	rs200889776	rs1017733	0.709	7.38	0.009	0.52	0.83	11580	-
rs200889776 rs1460007 1 17.08 0.017 0.89 1 13488 - rs200889776 rs1460008 0.701 7.08 0.009 0.51 0.83 13512 - rs10518126 rs4694683 1 15.67 0.015 0.88 1 583 6977.84 rs10518126 rs57839099 1 490.11 1 0.99 1 694 - rs10518126 rs57933408 1 468.56 0.979 0.99 1 709 - rs10518126 rs2367707 1 15.91 0.02 0.87 1 5315 - rs10518126 rs2367707 1 15.91 0.02 0.87 1 5315 - rs10518126 rs1017733 0.706 7.26 0.009 0.51 0.83 9231 - rs10518126 rs1017734 0.365 2.27 0.004 0.17 0.53 10001 - rs10518126	rs200889776	rs1017734	0.367	2.3	0.004	0.17	0.53	12350	-
rs200889776 rs1460008 0.701 7.08 0.009 0.51 0.83 13512 - rs10518126 rs4694683 1 15.67 0.015 0.88 1 583 6977.84 rs10518126 rs57839099 1 490.11 1 0.99 1 694 - rs10518126 rs57839030 1 468.56 0.979 0.99 1 709 - rs10518126 rs2367707 1 15.91 0.02 0.87 1 5315 - rs10518126 rs2367708 0.889 12.21 0.013 0.73 0.96 5425 - rs10518126 rs1017733 0.706 7.26 0.009 0.51 0.83 9231 - rs10518126 rs1017734 0.365 2.27 0.004 0.17 0.53 10001 - rs10518126 rs1460008 0.698 6.97 0.009 0.5 0.83 111139 - <	rs200889776	rs1460007	1	17.08	0.017	0.89	1	13488	-
rs10518126 rs4694683 1 15.67 0.015 0.88 1 583 6977.84 rs10518126 rs57839099 1 490.11 1 0.99 1 694 - rs10518126 rs57933408 1 468.56 0.979 0.99 1 709 - rs10518126 rs72859363 0.997 459 0.952 0.98 1 2993 - rs10518126 rs2367707 1 15.91 0.02 0.87 1 5315 - rs10518126 rs2367708 0.889 12.21 0.013 0.73 0.96 5425 - rs10518126 rs1017733 0.706 7.26 0.009 0.51 0.83 9231 - rs10518126 rs1017734 0.365 2.27 0.004 0.17 0.53 10001 - rs10518126 rs1460007 1 16.94 0.017 0.89 1 11139 - rs4694683 rs57839099 1 15.53 0.015 0.87 1 126	rs200889776	rs1460008	0.701	7.08	0.009	0.51	0.83	13512	-
rs10518126 rs57839099 1 490.11 1 0.99 1 694 - rs10518126 rs57933408 1 468.56 0.979 0.99 1 709 - rs10518126 rs72859363 0.997 459 0.952 0.98 1 2993 - rs10518126 rs2367707 1 15.91 0.02 0.87 1 5315 - rs10518126 rs2367708 0.889 12.21 0.013 0.73 0.96 5425 - rs10518126 rs1017733 0.706 7.26 0.009 0.51 0.83 9231 - rs10518126 rs1017734 0.365 2.27 0.004 0.17 0.53 10001 - rs10518126 rs1460007 1 16.94 0.017 0.89 1 11139 - rs4694683 rs57839099 1 15.53 0.015 0.87 1 126 - rs4694683 rs2367707 0.989 614.97 0.759 0.97 1 4732 <	rs10518126	rs4694683	1	15.67	0.015	0.88	1	583	6977.84
rs10518126 rs57933408 1 468.56 0.979 0.99 1 709 - rs10518126 rs72859363 0.997 459 0.952 0.98 1 2993 - rs10518126 rs2367707 1 15.91 0.02 0.87 1 5315 - rs10518126 rs2367708 0.889 12.21 0.013 0.73 0.96 5425 - rs10518126 rs1017733 0.706 7.26 0.009 0.51 0.83 9231 - rs10518126 rs1017734 0.365 2.27 0.004 0.17 0.53 10001 - rs10518126 rs1460007 1 16.94 0.017 0.89 1 11139 - rs10518126 rs1460008 0.698 6.97 0.009 0.5 0.83 11163 - rs4694683 rs57933408 1 15.53 0.015 0.87 1 126 - rs4694683 rs2367707 0.989 614.97 0.759 0.97 1 4732 <td>rs10518126</td> <td>rs57839099</td> <td>1</td> <td>490.11</td> <td>1</td> <td>0.99</td> <td>1</td> <td>694</td> <td>-</td>	rs10518126	rs57839099	1	490.11	1	0.99	1	694	-
rs10518126rs728593630.9974590.9520.9812993-rs10518126rs2367707115.910.020.8715315-rs10518126rs23677080.88912.210.0130.730.965425-rs10518126rs10177330.7067.260.0090.510.839231-rs10518126rs10177340.3652.270.0040.170.5310001-rs10518126rs1460007116.940.0170.89111139-rs10518126rs14600080.6986.970.0090.50.8311163-rs4694683rs57839099115.530.0150.8811116746.08rs4694683rs5793408115.250.0150.871126-rs4694683rs23677070.989614.970.7590.9714732-rs4694683rs23677080.987737.760.8970.9714842-rs4694683rs10177330.982664.150.8240.9618648-rs4694683rs10177340.973415.480.5270.950.999418-rs4694683rs10177340.973712.520.8820.950.9910556-rs4694683rs14600070.973712.520.8820.950.9910566-rs4694683 <td>rs10518126</td> <td>rs57933408</td> <td>1</td> <td>468.56</td> <td>0.979</td> <td>0.99</td> <td>1</td> <td>709</td> <td>-</td>	rs10518126	rs57933408	1	468.56	0.979	0.99	1	709	-
rs10518126 rs2367707 1 15.91 0.02 0.87 1 5315 - rs10518126 rs2367708 0.889 12.21 0.013 0.73 0.96 5425 - rs10518126 rs1017733 0.706 7.26 0.009 0.51 0.83 9231 - rs10518126 rs1017734 0.365 2.27 0.004 0.17 0.53 10001 - rs10518126 rs1460007 1 16.94 0.017 0.89 1 11139 - rs10518126 rs1460008 0.698 6.97 0.009 0.5 0.83 11163 - rs4694683 rs57839099 1 15.53 0.015 0.87 1 126 - rs4694683 rs57933408 1 15.25 0.015 0.87 1 126 - rs4694683 rs2367707 0.989 614.97 0.759 0.97 1 4732 - rs4694683 rs1017734 0.973 415.48 0.527 0.99 14842 - <td>rs10518126</td> <td>rs72859363</td> <td>0.997</td> <td>459</td> <td>0.952</td> <td>0.98</td> <td>1</td> <td>2993</td> <td>-</td>	rs10518126	rs72859363	0.997	459	0.952	0.98	1	2993	-
rs10518126rs23677080.88912.210.0130.730.965425-rs10518126rs10177330.7067.260.0090.510.839231-rs10518126rs10177340.3652.270.0040.170.5310001-rs10518126rs1460007116.940.0170.89111139-rs10518126rs14600080.6986.970.0090.50.8311163-rs4694683rs57839099115.530.0150.8811116746.08rs4694683rs57933408115.250.0150.871126-rs4694683rs23677070.989614.970.7590.9714732-rs4694683rs23677080.987737.760.8970.9714842-rs4694683rs10177330.982664.150.8240.9618648-rs4694683rs10177340.973415.480.5270.950.999418-rs4694683rs14600070.973712.520.8820.950.9910556-rs4694683rs14600080.973644.340.8110.950.9910556-rs4694683rs14600080.973644.340.8110.950.9910580-rs57839099rs579334081467.590.970.9812299-rs578	rs10518126	rs2367707	1	15.91	0.02	0.87	1	5315	-
rs10518126rs10177330.7067.260.0090.510.839231-rs10518126rs10177340.3652.270.0040.170.5310001-rs10518126rs1460007116.940.0170.89111139-rs10518126rs14600080.6986.970.0090.50.8311163-rs4694683rs57839099115.530.0150.8811116746.08rs4694683rs57933408115.250.0150.871126-rs4694683rs72859363116.760.0160.8912410-rs4694683rs23677070.989614.970.7590.9714732-rs4694683rs23677080.987737.760.8970.9714842-rs4694683rs10177330.982664.150.8240.9618648-rs4694683rs10177340.973415.480.5270.999418-rs4694683rs14600070.973712.520.8820.950.9910556-rs4694683rs14600080.973644.340.8110.950.9910580-rs4694683rs14600080.973644.340.8110.950.9910580-rs4694683rs14600080.973644.340.8110.950.9910580-rs4694683	rs10518126	rs2367708	0.889	12.21	0.013	0.73	0.96	5425	-
rs10518126rs10177340.3652.270.0040.170.5310001-rs10518126rs1460007116.940.0170.89111139-rs10518126rs14600080.6986.970.0090.50.8311163-rs4694683rs57839099115.530.0150.8811116746.08rs4694683rs57933408115.250.0150.871126-rs4694683rs72859363116.760.0160.8912410-rs4694683rs23677070.989614.970.7590.9714732-rs4694683rs23677080.987737.760.8970.9714842-rs4694683rs10177330.982664.150.8240.9618648-rs4694683rs10177340.973415.480.5270.950.999418-rs4694683rs14600070.973712.520.8820.950.9910556-rs4694683rs14600080.973644.340.8110.950.9910580-rs57839099rs579334081467.590.9790.9812299-rs57839099rs579334081467.590.9220.9812299-rs57839099rs5793630.997458.060.9520.9812299-	rs10518126	rs1017733	0.706	7.26	0.009	0.51	0.83	9231	-
rs10518126rs1460007116.940.0170.89111139-rs10518126rs14600080.6986.970.0090.50.8311163-rs4694683rs57839099115.530.0150.8811116746.08rs4694683rs57933408115.250.0150.871126-rs4694683rs72859363116.760.0160.8912410-rs4694683rs23677070.989614.970.7590.9714732-rs4694683rs23677080.987737.760.8970.9714842-rs4694683rs10177330.982664.150.8240.9618648-rs4694683rs10177340.973415.480.5270.950.999418-rs4694683rs14600070.973712.520.8820.950.9910556-rs4694683rs14600080.973644.340.8110.950.9910580-rs57839099rs728593630.997458.060.9520.9812299-	rs10518126	rs1017734	0.365	2.27	0.004	0.17	0.53	10001	-
rs10518126rs14600080.6986.970.0090.50.8311163-rs4694683rs57839099115.530.0150.8811116746.08rs4694683rs57933408115.250.0150.871126-rs4694683rs72859363116.760.0160.8912410-rs4694683rs23677070.989614.970.7590.9714732-rs4694683rs23677080.987737.760.8970.9714842-rs4694683rs10177330.982664.150.8240.9618648-rs4694683rs10177340.973415.480.5270.950.999418-rs4694683rs14600070.973712.520.8820.950.9910556-rs4694683rs14600080.973644.340.8110.950.9910580-rs57839099rs579334081467.590.9790.9812299-rs57839099rs728593630.997458.060.9520.9812299-	rs10518126	rs1460007	1	16.94	0.017	0.89	1	11139	-
rs4694683rs57839099115.530.0150.8811116746.08rs4694683rs57933408115.250.0150.871126-rs4694683rs72859363116.760.0160.8912410-rs4694683rs23677070.989614.970.7590.9714732-rs4694683rs23677080.987737.760.8970.9714842-rs4694683rs10177330.982664.150.8240.9618648-rs4694683rs10177340.973415.480.5270.950.999418-rs4694683rs14600070.973712.520.8820.950.9910556-rs4694683rs14600080.973644.340.8110.950.9910580-rs57839099rs579334081467.590.9790.991155822.15rs57839099rs728593630.997458.060.9520.9812299-	rs10518126	rs1460008	0.698	6.97	0.009	0.5	0.83	11163	-
rs4694683rs57933408115.250.0150.871126-rs4694683rs72859363116.760.0160.8912410-rs4694683rs23677070.989614.970.7590.9714732-rs4694683rs23677080.987737.760.8970.9714842-rs4694683rs10177330.982664.150.8240.9618648-rs4694683rs10177340.973415.480.5270.950.999418-rs4694683rs14600070.973712.520.8820.950.9910556-rs4694683rs14600080.973644.340.8110.950.9910580-rs57839099rs579334081467.590.9790.9812299-rs57839099rs728593630.997458.060.9520.9812299-	rs4694683	rs57839099	1	15.53	0.015	0.88	1	111	6746.08
rs4694683 rs72859363 1 16.76 0.016 0.89 1 2410 - rs4694683 rs2367707 0.989 614.97 0.759 0.97 1 4732 - rs4694683 rs2367708 0.987 737.76 0.897 0.97 1 4842 - rs4694683 rs1017733 0.982 664.15 0.824 0.96 1 8648 - rs4694683 rs1017734 0.973 415.48 0.527 0.95 0.99 9418 - rs4694683 rs1460007 0.973 712.52 0.882 0.95 0.99 10556 - rs4694683 rs1460008 0.973 644.34 0.811 0.95 0.99 10580 - rs57839099 rs57933408 1 467.59 0.979 0.99 1 15 5822.15 rs57839099 rs72859363 0.997 458.06 0.952 0.98 1 2299 -	rs4694683	rs57933408	1	15.25	0.015	0.87	1	126	-
rs4694683 rs2367707 0.989 614.97 0.759 0.97 1 4732 - rs4694683 rs2367708 0.987 737.76 0.897 0.97 1 4842 - rs4694683 rs1017733 0.982 664.15 0.824 0.96 1 8648 - rs4694683 rs1017734 0.973 415.48 0.527 0.95 0.99 9418 - rs4694683 rs1017734 0.973 712.52 0.882 0.95 0.99 9418 - rs4694683 rs1460007 0.973 712.52 0.882 0.95 0.99 10556 - rs4694683 rs1460008 0.973 644.34 0.811 0.95 0.99 10580 - rs57839099 rs57933408 1 467.59 0.97 0.98 1 15 5822.15 rs57839099 rs72859363 0.997 458.06 0.952 0.98 1 2299 -	rs4694683	rs72859363	1	16.76	0.016	0.89	1	2410	-
rs4694683 rs2367708 0.987 737.76 0.897 0.97 1 4842 - rs4694683 rs1017733 0.982 664.15 0.897 0.96 1 8648 - rs4694683 rs1017734 0.973 415.48 0.527 0.95 0.99 9418 - rs4694683 rs1017734 0.973 712.52 0.882 0.95 0.99 10556 - rs4694683 rs1460007 0.973 712.52 0.882 0.95 0.99 10556 - rs4694683 rs1460008 0.973 644.34 0.811 0.95 0.99 10580 - rs57839099 rs57933408 1 467.59 0.99 1 15 5822.15 rs57839099 rs72859363 0.997 458.06 0.952 0.98 1 2299 -	rs4694683	rs2367707	0.989	614.97	0.759	0.97	1	4732	-
rs4694683 rs1017733 0.982 664.15 0.824 0.96 1 8648 - rs4694683 rs1017734 0.973 415.48 0.527 0.95 0.99 9418 - rs4694683 rs1460007 0.973 712.52 0.882 0.95 0.99 10556 - rs4694683 rs1460008 0.973 644.34 0.811 0.95 0.99 10580 - rs57839099 rs57933408 1 467.59 0.979 0.99 1 15 5822.15 rs57839099 rs72859363 0.997 458.06 0.952 0.98 1 2299 -	rs4694683	rs2367708	0.987	737.76	0.897	0.97	1	4842	-
rs4694683 rs1017734 0.973 415.48 0.527 0.95 0.99 9418 - rs4694683 rs1460007 0.973 712.52 0.882 0.95 0.99 10556 - rs4694683 rs1460008 0.973 644.34 0.811 0.95 0.99 10580 - rs57839099 rs57933408 1 467.59 0.979 0.99 1 15 5822.15 rs57839099 rs72859363 0.997 458.06 0.952 0.98 1 2299 -	rs4694683	rs1017733	0.982	664.15	0.824	0.96	1	8648	-
rs4694683 rs1460007 0.973 712.52 0.882 0.95 0.99 10556 - rs4694683 rs1460008 0.973 644.34 0.811 0.95 0.99 10580 - rs57839099 rs57933408 1 467.59 0.979 0.99 1 15 5822.15 rs57839099 rs72859363 0.997 458.06 0.952 0.98 1 2299 -	rs4694683	rs1017734	0.973	415.48	0.527	0.95	0.99	9418	-
rs4694683 rs1460008 0.973 644.34 0.811 0.95 0.99 10580 - rs57839099 rs57933408 1 467.59 0.979 0.99 1 15 5822.15 rs57839099 rs72859363 0.997 458.06 0.952 0.98 1 2299 -	rs4694683	rs1460007	0.973	712.52	0.882	0.95	0.99	10556	-
rs57839099 rs57933408 1 467.59 0.979 0.999 1 15 5822.15 rs57839099 rs72859363 0.997 458.06 0.952 0.98 1 2299 -	rs4694683	rs1460008	0.973	644.34	0.811	0.95	0.99	10580	-
rs57839099 rs72859363 0.997 458.06 0.952 0.98 1 2299 -	rs57839099	rs57933408	1	467.59	0.979	0.99	1	15	5822.15
	rs57839099	rs72859363	0.997	458.06	0.952	0.98	1	2299	-
LISD/039099 LISZ30//07 LT 15.75 0.02 0.87 11 4621 -	rs57839099	rs2367707	1	15.75	0.02	0.87	1	4621	-

SNP1	SNP2	D'	LOD	R ²	95%CI_low	95%CI_hi	Distance	T stat
rs57839099	rs2367708	0.888	12.08	0.013	0.73	0.96	4731	-
rs57839099	rs1017733	0.704	7.15	0.009	0.51	0.83	8537	-
rs57839099	rs1017734	0.36	2.19	0.004	0.16	0.53	9307	-
rs57839099	rs1460007	1	16.8	0.017	0.89	1	10445	-
rs57839099	rs1460008	0.696	6.86	0.009	0.5	0.83	10469	-
rs57933408	rs72859363	0.997	442.65	0.932	0.98	1	2284	4419.18
rs57933408	rs2367707	1	15.3	0.019	0.86	1	4606	-
rs57933408	rs2367708	1	16.51	0.016	0.88	1	4716	-
rs57933408	rs1017733	0.697	6.86	0.009	0.5	0.83	8522	-
rs57933408	rs1017734	0.425	2.98	0.005	0.23	0.59	9292	-
rs57933408	rs1460007	1	16.47	0.016	0.88	1	10430	-
rs57933408	rs1460008	0.689	6.58	0.008	0.49	0.82	10454	-
rs72859363	rs2367707	0.826	10.09	0.014	0.65	0.92	2322	3361.28
rs72859363	rs2367708	0.892	12.75	0.014	0.74	0.96	2432	-
rs72859363	rs1017733	0.704	7.79	0.009	0.52	0.83	6238	-
rs72859363	rs1017734	0.233	0.97	0.002	0.05	0.41	7008	-
rs72859363	rs1460007	1	18.12	0.017	0.89	1	8146	-
rs72859363	rs1460008	0.697	7.5	0.009	0.51	0.82	8170	-
rs2367707	rs2367708	0.989	686.67	0.824	0.97	1	110	6495.89
rs2367707	rs1017733	0.933	635.85	0.79	0.91	0.95	3916	-
rs2367707	rs1017734	0.967	561.89	0.67	0.95	0.98	4686	-
rs2367707	rs1460007	0.987	671.6	0.812	0.97	1	5824	-
rs2367707	rs1460008	0.929	624.02	0.782	0.91	0.95	5848	-
rs2367708	rs1017733	0.983	756.17	0.897	0.97	1	3806	5402.54
rs2367708	rs1017734	0.988	483.24	0.591	0.97	1	4576	-
rs2367708	rs1460007	0.987	834.48	0.963	0.97	1	5714	-
rs2367708	rs1460008	0.975	735.02	0.885	0.96	0.99	5738	-
rs1017733	rs1017734	0.989	535.04	0.637	0.97	1	770	6176.11
rs1017733	rs1460007	0.996	780.45	0.911	0.98	1	1908	-
rs1017733	rs1460008	0.993	897.75	0.983	0.98	1	1932	-
rs1017734	rs1460007	0.999	496.85	0.596	0.98	1	1138	5619.06
rs1017734	rs1460008	0.999	553.27	0.647	0.98	1	1162	-
rs1460007	rs1460008	1	795.41	0.921	0.99	1	24	3605.47

Supplementary Table 3: Percentage of white blood cells at baseline and following CFA injection (Day 3 and Day 7) for mice treated with vehicle control or the epiregulin mAb. The p-values are shown for Tukey's post-hoc testing comparing the different time-points.

Blood cell type	Time-point	Control (% ± S.D.)	Epiregulin mAb (% ± S.D.)	p-value
Lymphocyte	Baseline	78.75 ± 27.37	80.0 ± 24.67	0.98
	Day 3	$\textbf{71.86} \pm \textbf{24.31}$	68.25 ± 20.31	0.67
	Day 7	70.37 ± 22.61	73.37 ± 22.97	0.85
Monocyte	Baseline	4.38 ± 3.33	$\textbf{2.45} \pm \textbf{0.86}$	0.93
	Day 3	$\textbf{4.0} \pm \textbf{3.29}$	3.96 ± 1.44	0.99
	Day 7	$\textbf{8.0} \pm \textbf{3.10}$	4.48 ± 1.15	0.10
Neutrophil	Baseline	14.0 ± 9.74	12.5 ± 4.16	0.96
	Day 3	21.75 ± 10.30	24.88 ± 8.10	0.76
	Day 7	17.63 ± 6.36	17.13 ± 2.79	0.99

3. Supplementary materials of chapter III

Supplementary Figure 1: Sample size calculation to capture immunophenotype difference with 80% power and 5% type-I error.

Supplementary Figure 2: Gating strategy to export cells of interest for further flow cytometry data analyses.

Supplementary Figure 3: Quality control of the flow cytometry data. (A) t-SNE projection of cells stratified according to the batch. Boxplots showing (B) the total number of cells acquired and viability. Colors, green and red are used to depict controls and fibromyalgia syndrome (FMS) cases.

Supplementary Figures 4: Markers' Expression in the Cyto panel dataset. Single peripheral blood mononuclear cell samples projected on t-distributed Uniform Manifold Approximation and Projection (UMAP) dimensions. Normalized expressions of all the functional and phenotypic markers are represented through a color scale (low, dark blue to high, yellow).

Supplementary Figures 5: Markers' expression in the Chemo panel dataset. Single peripheral blood mononuclear cell samples projected on t-distributed Uniform Manifold Approximation and Projection (UMAP) dimensions. Normalized expressions of all the functional and phenotypic markers are represented through a color scale (low, dark blue to high, yellow).

Supplementary Figures 6: Markers' Expression in the Treg panel dataset. Single peripheral blood mononuclear cell samples projected on t-distributed Uniform Manifold Approximation and Projection (UMAP) dimensions. Normalized expressions of all the functional and phenotypic markers are represented through a color scale (low, dark blue to high, yellow).

Supplementary Figures 7: Markers' Expression in the BMD panel dataset. Single peripheral blood mononuclear cell samples projected on t-distributed Uniform Manifold Approximation and Projection (UMAP) dimensions. Normalized expressions of all the functional and phenotypic markers are represented through a color scale (low, dark blue to high, yellow).

Supplementary Figures 8: Markers' Expression in the NK panel dataset. Single peripheral blood mononuclear cell samples projected on t-distributed Uniform Manifold Approximation and Projection (UMAP) dimensions. Normalized expressions of all the functional and phenotypic markers are represented through a color scale (low, dark blue to high, yellow).

Supplementary Figure 9: NK activation assay: gating strategy and effect of stimulation

Supplementary Figure 10: Difference in NK activation markers between FMS cases and controls at baseline (unstimulated cells).

Supplementary Figure 11: Effect of stimulation on NK cells with either HLA^{-/-} cells or opsonized cells on NK cells.

Supplementary Figure 12: ULBP expression and NK cell recruitment at the peripheral nerves are associated with FMS. Boxplots showing the distribution of (A) ULBP + SEP and (B) SEP with NK cells are stratified by the case status. Green, yellow and red depict controls, FMS cases, and FMS cases with IENFD, respectively. Statistics in (h) and (i) are based on one-way ANOVA followed by Tukey's posthoc comparison. Boxplots are presented as mean ± s.e.m. FMS: fibromyalgia syndrome; ULBP: UL16 binding protein; SEP: Subepidermal plexus; NK: natural killer; IENFD: intra-epidermal nerve fiber deficiency

Supplementary Table 1: Tertiary Outcome Measures

No.	Title	Description	Ref.
1	Pennebaker Inventory for Limbic Languidness (PILL)	PILL measures the tendency of people to notice and report a broad array of physical symptoms and sensations.	[1]
2	Symptom Checklist-90- Revised (SCL90R)	SCL90R helps in evaluating a broad range of psychological problems and symptoms of psychopathology.	[2]
3	Pittsburgh Sleep Quality Index (PSQI)	Pittsburgh Sleep Quality Index (PSQI) is a self-administered questionnaire that assesses sleep quality and disturbances over a one- month time interval.	[3]
4	Perceived Stress Scale (PSS)	PSS measures the degree to which situations in one's life are appraised as stressful.	[4]
5	Beck's Anxiety Index (BAI)	BAI is a self-report measure of anxiety	[5]
6	Beck's Depression Index (BDI)	BDI is a self-report measure of anxiety	[6]

References

 Pennebaker JW. Putting Stress into Words - Health, Linguistic, and Therapeutic Implications. Behaviour research and therapy. 1993;31(6):539-48. doi: Doi 10.1016/0005-7967(93)90105-4

2. Derogatis LR. SCL-90-R : symptom checklist-90-R : administration, scoring & procedures manual. 3 ed. Minneapolis: National Computer Systems; 1994.

3. Buysse DJ, Reynolds CF, 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193-213. doi: 10.1016/0165-1781(89)90047-4

4. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(4):385-96.

 Beck AT, Steer RA. Manual for the Beck anxiety inventory. San Antonio, TX: Psychological Corporation. 1990.

 Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Archives of general psychiatry. 1961;4(6):561-71. doi: 10.1001/archpsyc.1961.01710120031004

210

Cyto Panel								
LASER- channel (nm)	Antibody	lsotype	Clone	Fluorochrome	Manufacturer	Catalog no.	µl/test	
355 - 379/28	Ki-67	lgG1, к	B56	BV395	BD Biosciences	564071	6	
405 - 450/40	IL-17A	lgG1, к	N49-653	V450	BD Biosciences	560610	4	
405 - 525/50	CD8a	lgG1, к	RPA-T8	V500	BD Biosciences	560774	3	
405 - 780/60	CD3	lgG2a, к	OKT3	BV785	Biolegend	317330	3	
488 - 530/30	CD4	lgG1, к	RPA-T4	FITC	BD Biosciences	555346	3	
488 - 695/40	IL-2	lgG2a, к	MQ1-17H12	PerCP-Cy5.5	BD Biosciences	560708	4	
561 - 582/15	FoxP3	lgG1, к	236A/E7	PE	Thermofisher (eBio)	12-4777-42	6	
561 - 780/60	IFNγ	lgG1, к	4S.B3	PE-Cy7	BD Biosciences	560741	1	
640 - 670/14	IL-4	lgG1, к	8D4-8	APC	BD Biosciences	561233	4	
640 - 730/45	CD45RA	lgG2b, к	HI100	AF700	BD Biosciences	560673	4	
640 -780/60	Viability	n/a	n/a	eFluor780	Thermofisher (eBio)	65-0865-18	1	
	T		Che	emo Panel	T	I	1	
LASER- channel (nm)	Antibody	Isotype	Clone	Fluorochrome	Manufacturer	Catalog no.	µl/test	
355 - 379/28	Ki-67	lgG1, к	B56	BV395	BD Biosciences	564071	6	
405 - 450/40	CXCR3	lgG1, к	1C6/CXCR3	BV421	BD Biosciences	562558	5	
405 - 525/50	CD8a	lgG1, к	RPA-T8	V500	BD Biosciences	560774	3	
405 - 660/20	CXCR5	lgG2a, к	2G8	BV650	BD Biosciences	563981	5	
405 - 780/60	CD3	lgG2a, к	OKT3	BV785	Biolegend	317330	3	
488 - 530/30	CD4	lgG1, к	RPA-T4	FITC	BD Biosciences	555346	3	
488 - 695/40	CD19	lgG1, к	HIB19	PerCP-Cy5.5	Biolegend	302230	2	
561 - 582/15	FoxP3	lgG1, к	236A/E7	PE	Thermofisher (eBio)	12-4777-42	6	
561 - 610/20	CRTH2	lgG2a, к	BM16	PE-CF594	BD Biosciences	563501	5	
561 - 780/60	CCR6	lgG1, к	11A9	PE-Cy7	BD Biosciences	560620	5	
640 - 670/14	CD25	lgG1, к	M-A251	APC	BD Biosciences	555434	4	
640 - 730/45	CD45RA	lgG2b, к	HI100	AF700	BD Biosciences	560673	4	
640 -780/60	Viability	n/a	n/a	eFluor780	Thermofisher (eBio)	65-0865-18	1	

Supplementary Table 2: Flow cytometry panels

Treg Panel									
LASER- channel (nm)	Antibody	lsotype	Clone	Fluorochrome	Manufacturer	Catalog no.	µl/test		
355 - 379/28	Ki-67	lgG1, к	B56	BV395	BD Biosciences	564071	6		
405 - 450/40	Helios	lgG	22F6	Pacific Blue	Biolegend	137220	2		
405 - 525/50	CD8a	lgG1, к	RPA-T8	V500	BD Biosciences	560774	3		
405 - 610/20	CD3	lgG2a, к	OKT3	BV785	Biolegend	317330	3		
405 - 660/20	CD4	lgG1, к	RPA-T4	FITC	BD Biosciences	555346	3		
488 - 695/40	TIGIT	lgG1, к	MBSA43	PE-eFluor710	Thermofisher (eBio)	46-9500-42	2		
561 - 582/15	FoxP3	lgG1, к	236A/E7	PE	Thermofisher (eBio)	12-4777-42	6		

561 - 610/20	CD127	lgG1, к	eBioRDR5	PE-eFluor610	Thermofisher (eBio)	61-1278-42	2
561 - 780/60	FcRL3	lgG2b, к	H5	Biotin*	BD Biosciences	565056	1
	*Streptavidin	n/a	n/a	PE-Cy7	Thermofisher (eBio)	25-4317-82	5
640 - 670/14	CD25	lgG1, к	M-A251	APC	BD Biosciences	555434	4
640 - 730/45	CD45RA	lgG2b, к	HI100	AF700	BD Biosciences	560673	4
640 -780/60	Viability	n/a	n/a	eFluor780	Thermofisher (eBio)	65-0865-18	1

BMD Panel									
LASER- channel (nm)	Antibody	lsotype	Clone	Fluorochrome	Manufacturer	Catalog no.	µl/test		
355 - 379/28	CD14	lgG2b, к	MFP9	BUV395	BD Biosciences	563561	5		
355 - 740/35	CD21	lgG1, к	B-ly4	BUV737	BD Biosciences	564437	2.5		
405 - 450/40	CD38	lgG1, к	HIT2	BV421	Biolegend	303526	5		
405 - 610/20	CD56	lgG1, к	HCD56	BV605	Biolegend	318334	5		
405 - 660/20	CD16	lgG1, к	3G8	BV650	Biolegend	302042	1.25		
405 - 710/50	CD10	lgG1, к	HI10a	BV711	Biolegend	312226	5		
405 - 780/60	CD27	lgG1, к	M-T271	BV786	BD Biosciences	740972	2.5		
488 - 530/30	CD19	lgG1, к	HIB19	BB515	BD Biosciences	564457	5		
488 - 695/40	HLA-DR	lgG2a, к	G46-6	BB700	BD Biosciences	566480	5		
561 - 582/15	CD282	lgG2a, к	TL2.1	PE	Biolegend	309708	10		
561 - 610/20	lgD	lgG2a, к	IA6-2	PE-CF594	BD Biosciences	562540	5		
561 - 780/60	CD11c	lgG1, к	Bly6	PE-Cy7	BD Biosciences	561356	5		
640 - 670/14	CD123	lgG1, к	32703	APC	R&D Systems	FAB301A	10		
640 -780/60	CD3	lgG1, к	UCHT1	APC-Cy7	Biolegend	300426	5		
640 -780/60	Viability	n/a	n/a	Zombie NIR™	Biolegend	423106	0.005		

NK Panel									
LASER- channel (nm)	Antibody	lsotype	Clone	Fluorochrome	Manufacturer	Catalog no.	µl/test		
355 - 379/28	CD226	lgG1, к	DX11	BUV395	BD Biosciences	742498	10		
355 - 670/25	CD3	lgG1, к	UCHT1	BUV661	BD Biosciences	565065	0.32		
355 - 740/35	CD56	lgG2b, к	NCAM16	BUV737	BD Biosciences	564447	5		
405 - 450/40	CD107a	lgG1, к	H4A3	BV421	Biolegend	328626	5		
405 - 610/20	CD335	lgG1, к	9E2	BV605	Biolegend	331926	5		
405 - 660/20	CD159c	lgG1, к	134591	BV650	BD Biosciences	748165	5		
405 - 710/50	CD158e	lgG1, к	DX9	BV711	BD Biosciences	564102	5		
405 - 780/60	CD314	lgG1, к	1D11	BV785	Biolegend	320830	5		
488 - 530/30	CD57	lgM, к	TBO1	BB515	BD Biosciences	565285	1.25		
561 - 582/15	CD96	lgG1, к	6F9	PE	BD Biosciences	562379	5		
561 - 610/20	CD8a	lgG1, к	RPA-T8	AF594	Biolegend	301056	5		
561 - 780/60	CD159a	lgG1, к	REA110	PE-Vio770	Miltenyi Biotec	130-113-567	1		
640 - 670/14	TIGIT	lgG1, к	MBSA43	APC	Thermo Fisher Sci.	17-9500-42	5		
640 - 730/45	CD16	lgG1, к	3G8	AF700	Biolegend	302026	1.25		
640 -780/60	CD19	lgG1, к	HIB19	APC-Cy7	Biolegend	302218	5		
640 -780/60	CD14	lgG2b, к	MFP9	APC-Cy7	BD Biosciences	333945	5		
640 -780/60	Viability	n/a	n/a	Zombie NIR™	Biolegend	423106	0.005		

NKA Panel									
LASER- channel (nm)	Antibody	lsotype	Clone	Fluorochrome	Manufacturer	Catalog no.	µl/test		
355 - 450/40	Viability	n/a	n/a	Blue fluor.	Thermo Fisher Sci.	L34961	0.3		
405 - 525/50	IFNγ	lgG1, к	B27	BV510	BD Biosciences	563287	5		
405 - 610/20	CD56	lgG1, к	HCD56	BV605	Biolegend	318334	4		
405 - 710/50	CD107a	lgG1, к	H4A3	BV711	Biolegend	328640	5		
405 - 780/60	CD3	lgG2a, к	OKT3	BV785	Biolegend	317330	3		
405 - 780/60	CD14	lgG2a, к	M5E2	BV785	Biolegend	301840	1		
405 - 780/60	CD19	lgG1, к	HIB19	BV785	Biolegend	302240	1		
561 - 582/15	CD57	lgM, к	TBO1	PE	Thermo Fisher Sci.	12-0577-42	2		
561 - 780/60	CD159c	lgG1	REA205	PE-Vio770	Miltenyi Biotec	130-120-449	1		
640 - 670/14	CD159a	lgG1, к	REA110	APC	Miltenyi Biotec	130-114-089	1		
640 - 730/45	CCL4	lgG1, к	D21-1351	AF700	BD Biosciences	561278	2.5		
640 -780/60	CD16	lgG1, к	3G8	APC-Cy7	BD Biosciences	557758	2		