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Different driving algorithms for a large random jet array (RJA) were tested and their performance 

characterized by comparing the statistics of the turbulence generated downstream of the RJA. Of 

particular interest was the spatial configuration of the jets operating at any given instant (an aspect 

that has not been documented in previous RJAs studies), as well as the statistics of their respective 

on/off times. All algorithms generated flows with non-zero skewnesses of the velocity fluctuation 

normal to the plane of the RJA (identified as an inherent limitation of the system resulting from the 

unidirectional forcing imposed from only one side of the RJA), and slightly super-Gaussian kurtoses 

of the velocity fluctuations in all directions.  It was observed that algorithms imposing spatial 

configurations generated the most isotropic flows, however they suffered from high mean flows and 

low turbulent kinetic energies. The algorithm identified as RANDOM generated the flow that, on an 

overall basis, most closely approximated zero-mean-flow homogeneous isotropic turbulence, with 

variations in horizontal and vertical homogeneities of RMS velocities of no more than 6%, 

deviations from isotropy (wRMS/uRMS) in the range of 0.62-0.77, and mean flows on the order of 7% 

of the RMS velocities (determined by averaging their absolute values over the three velocity 

components and three downstream distances).  A relatively high turbulent Reynolds number (ReT = 

uT ℓ/ν = 2360, where ℓ is the integral length scale of the flow and uT is a characteristic RMS velocity) 

was achieved using the RANDOM algorithm and the integral length scale (ℓ = 11.5 cm) is the largest 

reported to date. The quality of the turbulence in our large facility demonstrates the ability of RJAs 

to be scaled-up and to be the laboratory system most capable of generating the largest quasi-

homogeneous isotropic turbulent regions with zero mean flow.  
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I. Introduction 

Although turbulent flows are, in general, neither homogeneous nor isotropic, the 

study of homogeneous isotropic turbulence plays a fundamental role in furthering 

our understanding of the physics of turbulent flows, as it is the simplest realization 

of the latter. An important advantage of studying homogenous isotropic turbulence 

is that it isolates the self-interaction of turbulent fluctuations (Orszag, 1977), and 

avoids complications arising from additional processes encountered in natural and 

man-made flows, such as density stratification, mean shear and the effects of fluid-

solid boundaries (Tsinober, 2004). Consequently, homogeneous isotropic turbulent 

flows are often used to study the fundamental properties and mechanisms of 

turbulence (e.g. internal intermittency, spectral energy transfer). Despite the fact 

that homogeneous isotropic turbulence is a (relatively) simple flow, it can be 

difficult to create in the laboratory, since mean velocity gradients are generally 

necessary for the initial production of turbulent kinetic energy. 

 

 To date, the most commonly studied homogeneous isotropic turbulent flow 

has been grid-generated wind tunnel turbulence, which can achieve relatively high 

Reynolds numbers, given recent advances such as the development of active grids 

(Makita, 1991; Mydlarski and Warhaft, 1996) and low-viscosity-fluid wind tunnels 

(Bodenschatz et al. 2014). However, the existence of a mean flow in such 

arrangements can present a problem in certain situations. For example, Lagrangian 

measurements in such experimental setups require moving the apparatus with the 

mean flow, an impractical condition for a variety of reasons (e.g. the need to 

translate camera systems, the requirement of long flow facilities to follow a stream 

for a relatively long time interval). These impracticalities can be overcome by 

utilizing zero-mean-flow turbulence. Moreover, homogeneous isotropic turbulence 

with zero mean flow permits the study of the fluctuating components of the velocity 

(and their ensuing effects in phenomena such as turbulent scalar transport, mixing 

and particle dispersion) in isolation. The generation of three-dimensional 

homogeneous isotropic turbulence with zero-mean flow has been attempted using 

diverse novel systems, the first of which involved one, or two, parallel grids 

(separated by certain distance) oscillating in the direction normal to the plane of the 
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grids (Thomson and Turner, 1975; McDougall, 1979; Brumley and Jirka, 1987; De 

Silva and Fernando, 1994; Villermaux et al. 1995; Srdic et al. 1996; Shy et al. 1997; 

Ott and Mann, 2000; McKenna, 2004; Blum et al. 2010; and Blum et al. 2011). 

Although, the optimal mesh sizes, strokes and frequencies of the grid’s oscillation 

have been proposed, the flows generated by this type of system suffer from large 

mean flows (with the minimum values of mean flows being approximately 25% of 

the root-mean-square (RMS) velocities, and maximum values of 60% and 30% for 

single and double oscillating grids, respectively). Additionally, the oscillation of 

the grid is accomplished by coupling the grid to a mechanical system driven by a 

motor, thus making it more difficult to build large experimental setups for 

experiments at high Reynolds numbers. 

 

 Another approach to generating nearly zero-mean-flow homogeneous 

isotropic turbulence has been to place loudspeakers pointing towards the center of 

a chamber (Hwang and Eaton, 2004; Webster et al. 2004; Warnaars et al. 2006; Lu 

et al. 2008; Goepfert et al. 2010; and Chang et al. 2012), with the locations of the 

speakers obeying symmetry with respect to the chamber’s center. Typically the 

loudspeakers push fluid through circular orifices to generate pulsed (synthetic) jets 

and induce vortex rings. Although the quality of the turbulent flow is better than 

that generated by oscillating grids (very low mean flows that are approximately 

isotropic), the desired flow is confined to a small region in the center of the 

chamber. For example, Chang et al. (2012), with the use of 32 loudspeakers, were 

able to generate an almost zero-mean-flow homogeneous isotropic turbulence at the 

center of a chamber with a Taylor-microscale Reynolds number (Reλ) of 

approximately 480. However, the central (isotropic) volume of this flow covered a 

radius of only 5 cm. A similar method to create such flows uses symmetrically 

placed propellers pointing towards the center of a chamber containing a fluid 

(Fallon and Rogers, 2002; Birouk et al. 2003; De Jong et al. 2009; and 

Zimmermann et al. 2010). Again, the homogeneity and isotropy of the flow ends 

up being limited to a small central region. 

 

 Symmetrically arranged rotating elements have also been employed to 

achieve zero-mean-flow turbulence. Rotating grids (Liu et al. 1999) and propellers 

(Berg et al. 2006) have been used to create homogeneous isotropic turbulent flow 
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in the center of a rectangular tank. However the levels of turbulence were modest 

(Re
λ
 ~ 290 and 172, respectively) and the isotropic flow was limited to a central 

volume of approximately 4×4×4 cm3. Two counter-rotating disks in cylindrical 

containers have been widely used (introduced by Douady et al. 1991 and further 

used by Fauve et al. 1993; Maurer et al. 1994; Cadot et al. 1995; Belin et al. 1996; 

Aumaitre et al. 2000; Mordant et al. 2001; and Voth et al. 2002). Due to the physical 

characteristics of this type of system, it generates a cylindrical region of turbulence, 

with axial extension depending on the size of the tank (e.g. Machicoane et al. 

(2014), and references therein), negligible mean flow and relatively high Re
λ
 (Voth 

et al. (2002) reached Re
λ
=970.) However, the flow suffers from anisotropy and the 

radial extent of the optimal flow covers only a few centimeters. In a modification 

of this technique Liberzon et al. (2005) used eight counter-rotating disks to generate 

the turbulence. However, the flow generated at the center of their tank had a low 

Reynolds number (Re
λ
 ~ 40). 

 

 Random jet arrays (RJAs) are relatively new systems that have been 

developed and used to generate approximately homogeneous isotropic turbulence 

with zero mean flow (Variano et al. 2004; Lavertu, 2006; Variano and Cowen, 

2008; Delbos et al. 2009; Khorsandi et al. 2013; and Bellani and Variano, 2014). A 

(single) RJA is a planar configuration of jets that, randomly and independently, turn 

on and off to produce turbulence downstream of the array. The RJA is able to create 

a nearly homogenous flow (albeit with an unavoidable decay in the direction normal 

to the plane of the jets) with a negligible mean flow (less than 10% of the RMS 

velocities in all directions) over a large spatial region (Variano and Cowen, 2008). 

Additionally, the isotropy of the flow is of the same order as that of grid-generated, 

wind tunnel turbulence and relatively high Reynolds numbers can be reached (Reλ 

= 314 in Variano and Cowen, 2008). The isotropy, quantified as the ratio of RMS 

velocities (i.e. uα-RMS/uβ-RMS), measured in mono-planar RJAs (Variano et al. 2004 

(0.81); Lavertu, 2006 (0.66); Variano and Cowen, 2008 (0.79); Delbos et al. 2009 

(0.76); Khorsandi et al. 2013 (0.71)) can be as low as two-thirds, presumably 

resulting from the forcing from only one plane. Most recently, Bellani and Variano 

(2014) placed two RJAs separated by a distance and facing each other. The resulting 

profile of the turbulent kinetic energy had zero slope at the tank center due to the 

underlying symmetry of their arrangement. This configuration generated a nearly 
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homogeneous isotropic turbulent flow with a negligible mean flow at the center of 

the tank. Using this arrangement, the isotropy was significantly improved 

(compared to single RJAs) and found to be in the range 0.95-0.99 in the center of 

the tank. The Taylor-microscale Reynolds number was 334 and the region of 

homogeneity and isotropy was roughly 0.4×0.4×0.2 m3 (the largest reported to 

date). 

 

 The present investigation is motivated by the growing interest in random jet 

arrays as laboratory systems that are the most capable of accurately approximating 

zero-mean-flow homogeneous isotropic turbulence. The objective of this work is to 

study different RJA driving algorithms to investigate the statistics of the resulting 

flow in an attempt to both describe and optimize the characteristics of the generated 

turbulence, while concurrently identifying the limitations of such systems. 

 

II. Experimental setup 

The experiments were carried out in a 1.5×2.4×0.9 m3 section of a large glass tank 

(1.5×6.0×0.9 m3) in the Environmental Hydraulics Laboratory in the Department 

of Civil Engineering and Applied Mechanics at McGill University. The tank was 

filled with water and its top was open to the ambient air. 

 

 A planar random jet array was used to produce a turbulent flow in the tank 

(Figure 1). The three other vertical sides of the measurement region were the side 

walls, which consisted of panes of tempered glass, as did its bottom.  The top of the 

tank was open to the ambient air, with a free surface of water. The RJA consists of 

10 columns of 6 bilge pumps (Rule 25D, 500 GPH) attached to a vertical sheet of 

high density polyethylene (1 x 1.5 m2). The jet array is based on that of Variano and 

Cowen (2008), but built to a larger scale. The jets are equally spaced in the 

horizontal and vertical directions (with center to center distance, M, of 15 cm) 

having symmetric boundary conditions, which were chosen to minimize possible 

secondary flows, in analogy with oscillating grid turbulence (Fernando and De 

Silva, 1993). The pumps draw water in from their base and discharge it from an 

outlet oriented perpendicularly to the plane of the jet array – see figure 1(c). Since 

the suction and discharge occur simultaneously into the same fluid volume, there is 
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a zero net mass flow rate in a control volume containing the pump, which is 

essential to generate the zero mean flow in the tank. A 15 cm extension (3.18 cm in 

diameter) is attached to the outlet of each pump to straighten the flow upon its exit 

from the pumps. The random jet array is controlled using a custom algorithm 

programmed in LabVIEW, which independently turns the pumps on and off. 

Downstream of the jet array, the jets merge, generating a region of turbulence that 

decays in the direction normal to the plane of the jet array. The independent 

functioning of each pump allowed us to explore different driving algorithms 

(section IV) and compare the statistics of the resulting turbulent flows (section V). 
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(a) 

(b) 

 

(c) 

Figure 1. Experimental facility: (a) schematic of the apparatus: side view (not to scale); (b) a 

photograph of the random jet array; (c) a close-up, side view of the bilge pumps in which one can 

observe their inlets (on their blue bottoms) and the gray PVC extensions to their outlets. 
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III. Measurement technique and post-processing 

Velocity measurements were obtained using a Nortek Vectrino acoustic Doppler 

velocimeter (ADV). The ADV probe consists of a central transmitter (which emits 

short ultrasonic pulses) and four receivers that collect the acoustic signals reflected 

from particles in the measurement volume. Details of the principles of operation of 

ADVs can be found in Voulgaris and Trowbridge (1998), McLelland and Nicholas 

(2000), and the Vectrino Velocimeter User Guide (Nortek, 2004). Given that the 

ultrasonic pulses do not reflect from clean water, hollow glass microspheres 

(Potters Industries Sphericel #110P8) with a density (ρp) of 1.1 ± 0.05 kg/m3 were 

added to the water to increase the ADV’s signal-to-noise ratio (SNR). The size 

distribution of the particles was such that 10% of the particles’ diameters (Dp) were 

smaller than 5 µm, 50% smaller than 10 µm, 90% smaller than 21 µm, and 97% 

smaller than 25 µm.  The minimum acceptable values of the SNR and correlation 

recommended by the manufacturer are 17 dB and 70%, respectively. Their values 

are calculated by the Vectrino software for each velocity measurement. The SNR 

has its usual definition of SNR= 20log10(Amplitudesignal/Amplitudenoise) and the 

correlation is a measure of the similarity of two pulse echoes being measured by 

the instrument (hence in the range 0-100%).  Details of the calculations can be 

found in the Vectrino Velocimeter User Guide (Nortek, 2004).  Sufficient particles 

were mixed with the water to maintain the values above 20 dB and 97% at all times, 

ensuring an optimal quality of our measurements. Furthermore, the particles 

passively followed the flow given their low Stokes number: St = τ0/τη, where τη = 

(ν/ε)1/2 is the Kolmogorov time scale of the flow (with the dissipation rate of 

turbulent kinetic energy per unit mass being estimated as ε = u3/ℓ, where ℓ is the 

integral length scale of the flow) and τ0 = ρp Dp
2/(18µ) is the particle response time 

(where µ=0.001 Ns/m2 is the dynamic viscosity of water). The Stokes number in 

the present experiments was within the range 9.4×10-9 - 2.3×10-7, well below 1, 

ensuring that the particles passively followed the flow.   

 

 The sampling volume of the ADV is located 5 cm below the probe, thus 

minimizing flow disturbances, and was set to its maximum volume of 0.42 cm3. 

The power level of the ADV was also set to the maximum value. Selecting the 

maximum values of power and volume results in the highest SNR and correlation 

for the system. The ADV was connected to a computer that controlled the parameter 
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settings and data acquisition through the Vectrino software. 2.25×105 data points 

were recorded for each experiment at the ADV’s maximum sampling rate of 25 Hz, 

for a total duration of 2.5 hours.  The latter represents 1000 to 3000 integral time 

scales, depending on the downstream distance from the RJA. A record of this length 

ensured that statistics up to fourth order (i.e. kurtosis) were converged. 

 

 Velocity measurements were taken over a range of distances from the jet 

array (5.5M - 9.3M) with the probe measurement volume located in the center of 

the plane parallel to the RJA. The flow in planes parallel to the RJA was measured 

in Khorsandi (2011) and was shown to be statistically homogeneous at sufficient 

distances (> 5M) from the individual jets of the RJA due to the symmetry of the 

apparatus. Figure 2 reproduces two figures from Khorsandi (2011) for one 

representative driving algorithm (“RANDOM” – see the next section for the details 

of its operation).  Figure 2a) indicates that a horizontal transect of W is constant 

to within -0.08 to +0.13 cm/s and that wRMS is constant to within 6% of its mean 

value at that location.  (Quoting percentages for the mean velocities is not sensible, 

as their nominal value is zero.)  Figure 2b) indicates that U and W fall within 

the ranges -0.19 to +0.11 cm/s and -0.22 to +0.04 cm/s, respectively, and that uRMS 

and wRMS are constant to within 5% and 4% of their respective mean values. Thus 

the flow generated by the RJA operating using the RANDOM algorithm can be 

classified as homogeneous, to a reasonable approximation.  Full homogeneity tests 

were not performed for all the 9 algorithms discussed herein.  But although the 

homogeneity of a generated flow may be somewhat algorithm dependent in the 

near-field, it is reasonable to expect that this dependence should decay with 

increasing distance from the RJA, as the flow continues to mix and differences in 

velocity are eliminated, as would be expected given the underlying symmetries of 

the driving algorithms (to be discussed), and as also demonstrated by Variano and 

Cowen (2008). 
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                   (a)                                                                             (b) 

Figure 2. Horizontal and vertical homogeneity for the RANDOM algorithm. (a) W and wRMS 

velocities along a horizontal line passing through z/M = 1.5 measured at x/M = 7.3. (b) U, W, 

uRMS and wRMS velocities along a vertical line passing through y/M = 0.  (U and uRMS measured at 

x/M = 5.5.  W and wRMS measured at x/M = 7.3.) Adapted from Khorsandi (2011).  

 

It is known that the u and v components of the RMS velocity are 

overestimated by the ADV systems (Voulgaris and Trowbridge, 1998; Khorsandi 

et al. 2012).  Due to the geometry of the ADV, the velocities measured by its four 

receivers are at a very small angle from the transmitter beam, resulting in a higher 

precision in the w component of the velocity (Nortek, 2004). Therefore the probe 

was oriented such that its measured v and w components of velocity were located 

in a plane parallel to the RJA (Figure 1a).  This configuration allows the noise 

correction method for axisymmetric flows of Khorsandi et al. (2012) to be applied, 

correcting the known overestimation in the u and v components of the RMS 

velocity. To use the correction method of Khorsandi et al. (2012), the ADV probe 

is oriented so that measured (average) statistics of the v and w velocities can be 

assumed to be identical, given the RJA’s underlying symmetries. (This assumption 

was validated by making 3 separate measurements of the 3 components of velocity, 

each using the ADV oriented in a way that the measurements were made using its 

highest-precision (z) direction.  Axisymmetry was confirmed, with the variations in 

vRMS and wRMS being less than 2% for each of the 3 downstream distances studied 
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herein, using the RANDOM algorithm, to be discussed shortly.)  The excess noise 

variance in the y-direction can then be inferred by subtracting the variance of w 

from that of the overestimated variance of v (i.e. σ2
v-noise = v2 - v2true, where v2true 

= w2, and where σ2
v-noise is defined as the noise variance in v, assuming that the 

true signal and the noise are statistically uncorrelated). The noise variance in v is 

converted to that of u using the ADV’s transformation matrix. The true variance of 

u is then obtained by subtracting the calculated noise variance in u from the 

calculated variance in u. The interested reader is referred to Khorsandi (2011) and 

Khorsandi et al. (2012) for more details on this noise correction procedure. (Note 

the different coordinate system in those references.) 

 

IV. Jet driving patterns 

The ability to independently operate and control each jet in the array allowed us to 

investigate different RJA driving algorithms generating the turbulence. Of 

particular interest was the spatial configuration of the pumps turned on at any given 

instant, as well as the statistics of their respective on/off times. Given the results of 

Variano and Cowen (2008), who found a superior performance of random 

algorithms over deterministic ones, we focus mainly on driving algorithms that are 

spatial variations with a random element whose on/off times are randomly selected 

from normal distributions with their respective mean (μ) and standard deviation (σ). 

Table 1 summarizes the relevant parameters for each algorithm tested in the present 

experiments, which are grouped into 4 different classes of algorithms.  

 

 

 

 

 

 

 

 

 

Table 1. Summary of algorithm parameters 

Group Algorithm µon [s] σon [s] µoff [s] σoff [s] 
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1 RANDOM 12 4 108 36 

2 

4SECTRANDOM1 12 4 108 36 

4SECTRANDOM2 6 1.5 48 12 

4SECTRANDOM3 4 1 32 8 

4SECTRANDOM4 2 0.5 16 4 

3 

CHESSBOARD ∞ ∞ ∞ ∞ 

EQUALCHESS 12 0 12 0 

RANDOMCHESS 12 4 12 4 

4 RANDOMNUMBER 
Threshold = 0.98; t = 0.4 s 

20 19.8 20 19.8 

 

 

 The RANDOM algorithm is that used by Khorsandi (2011) and Khorsandi 

et al. (2013). It was proposed in Variano and Cowen (2008) as the “sunbathing” 

algorithm and its parameters were optimized by both groups. We do not, therefore, 

investigate any further optimization of this class of algorithm. However, neither 

group documented the results of other classes of algorithms. When the RANDOM 

algorithm is used, each pump is independently and randomly turned on and off. The 

on and off times are random values determined from normal distributions with 

adjustable mean (μ) and standard deviation (σ). For the RJA used herein, Khorsandi 

(2011) investigated variations of mean on times (ranging from 3-12 s) and mean off 

times (ranging from 15 to 108 s) with the standard deviations fixed at 1/3 of the 

respective mean times (e.g. σon/μon = σoff/μoff = 1/3). The 1/3 ratio was chosen 

following the analysis of Variano and Cowen (2008), who found very little 

sensitivity of the mean flow and RMS velocities to the values of σon and σoff. In the 

examination of different mean on and off times, Khorsandi (2011) identified that 

larger times improved the statistics of the flow. The larger on/off times are 

presumably required given: i) the size of the facility, and ii) the time required for 

the turbulence generated by the RJA jets to propagate downstream. Short on/off 

times fail to sustain an optimal turbulent flow in a large tank since the effects of the 

turbulence generated by the small injections of momentum rapidly vanish within a 

short distance from the RJA, and the flows generated by adjacent jets do not spread 

apart far enough to interact and therefore homogenize the flow.. Khorsandi et al. 

(2013) found that the optimal values for their larger RJA were (μon, σon) = (12, 4) 
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seconds and (μoff , σoff) = (108, 36) seconds, such that, on average, 10% of the pumps 

are on (or working). We use the same parameters in our investigations of the 

RANDOM algorithm.  

 

 Given the large positive values of the skewness of the u velocity measured 

in the works of Lavertu (2006), Variano and Cowen (2008), and Khorsandi et al. 

(2013), we hypothesized that the RANDOM algorithm may be susceptible to the 

operation of a single jet (or few adjacent jets), which might cause local, short-term 

large flows (and hence the large values of skewness). To test this hypothesis a new 

algorithm named 4SECTRANDOM was proposed and tested. In this algorithm, the 

RJA is divided into four sections of 3 by 5 pumps (group 2 in Table 1). The jets in 

a given quadrant (e.g. upper left) were then individually turned on and off over 

random intervals (in the same fashion as in RANDOM) and the rest of the quadrants 

turned their pumps on and off to obey (odd) symmetry (in both the y and z 

directions) with respect to the center of the RJA to ensure a statistically 

homogeneous distribution of working pumps. In other words, the “master” quadrant 

independently and randomly turned on the jets while the other three “slave” 

quadrants operated their jets in a manner that would enforce symmetry. Figure 3 

shows an instantaneous state of the jet array using an algorithm of the class 

4SECTRANDOM. Different on and off times were tested under this conditions (see 

Table 1). 
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Figure 3. Example of a given instantaneous state of the planar array using the 4SECTRANDOM 

algorithms (front view). Filled circles represent jets turned on. At this instant, three jets are on in the 

“master” (upper left) quadrant and the other three “slave” quadrants turn their jets on to enforce 

symmetry with respect to the center. 

 

 To further investigate the effect of the spatial distributions of operating jets, 

less intermittent patterns were also explored. In the CHESSBOARD algorithm 

(group 3 in Table 1), 50% of the pumps were on at all times following the pattern 

depicted in Figure 4. The EQUALCHESS algorithm changed the state of all jets 

(from on to off and vice versa) in a chessboard distribution every 12 seconds. And 

the RANDOMCHESS algorithm changed the state of the chessboard at intervals 

determined from a normal distribution with mean (μ) of 12 seconds and standard 

deviation (σ) of 4 seconds. The latter algorithm decouples the random nature of the 

forcing in space and time, by having a deterministic forcing in space, but a random 

one in time. The mean on times and standard deviation in the chess-like algorithms 

were selected as 12 and 4 seconds, respectively – the same values as used in the 

RANDOM algorithm. This served to isolate the effect of the spatial distribution of 

the operating jets on the generated turbulence. 

 

 Finally, inspired by the functioning of an active grid, the 

RANDOMNUMBER algorithm turned the jets on and off independently if a 

random number (between 0 and 1) generated for each pump was greater than a 

certain threshold (0.98). A new random number was generated every 0.4 seconds. 

The threshold and the period for the random number generation are taken in analogy 
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with the active grid operation of Mydlarski and Warhaft (1998), which has similar 

characteristics to a RJA (i.e. varying open and closed portions, resulting in discrete 

jets), as well as similar dimensions (a mesh of 8 x 8 winglets in a wind tunnel of 

0.9 x 0.9 m2 cross section). 

 

Figure 4. Chessboard spatial distribution of jets (front view). 

 

V. Results 

In this section the statistics of the turbulent flows generated by the different 

algorithms are compared to i) characterize the differences that result from  the 

variation of driving patterns, and ii) identify the optimal algorithm for the 

production of high-Reynolds-number, homogeneous, isotropic zero-mean-flow 

turbulence. An “optimal” algorithm is defined as one that generates turbulence with 

the lowest possible mean flow (U/uRMS, V/vRMS, W/wRMS << 1), high degrees 

of isotropy (uRMS ≈ vRMS ≈ wRMS; Su = Sv = Sw = 0; and Ku = Kv = Kw) and (ideally) 

high RMS velocity. Measurements at different downstream positions (x/M) from 

the RJA were performed (for each algorithm) to quantify the decay of the generated 

turbulence. Table 2 presents the results at different measurement positions for all 

the algorithms tested. It is important to mention that measurements at x/M=9.3 were 

not performed for some algorithms due to the low levels of turbulence generated at 

that farthest downstream location. 
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Table 2. Measurement position, mean flow, RMS velocity components, isotropy, skewness, kurtosis and turbulent kinetic energy (TKE) for the different algorithms tested. 

Algorithm x/M 
U 

[cm/s] 

V 

[cm/s] 

W 

[cm/s] 

uRMS 

[cm/s] 

vRMS=wRMS
1

 

[cm/s] 
U/uRMS V/vRMS W/wRMS wRMS / uRMS Su Sv Sw Ku Kv Kw 

TKE 

[cm2/s2] 

Group 1 

RANDOM 

5.5 -0.02 -0.11 -0.15 3.06 1.90 -0.01 -0.06 -0.08 0.62 1.09 0.2 0.13 4.60 4.61 4.15 8.28 

6.7 -0.01 0.04 -0.08 2.65 1.67 0 0.03 -0.05 0.63 1.26 0.04 0.08 5.05 4.62 4.02 6.31 

9.3 -0.31 0.04 -0.23 1.55 1.20 -0.2 0.03 -0.19 0.77 1.42 0.15 0.33 6.72 5.02 4.38 2.64 

Group 2  

4SECTRANDOM1 

5.5 0.24 0.18 -0.30 4.18 1.67 0.06 0.11 -0.18 0.40 1.5 0.28 0.18 5.65 5.60 4.35 11.54 

6.7 0.39 0.15 -0.13 3.47 1.62 0.11 0.09 -0.08 0.47 1.49 0.17 0.33 5.71 5.58 4.73 8.62 

9.3 0.34 0.01 -0.15 2.22 1.21 0.15 0.01 -0.12 0.55 1.84 -0.13 0.45 7.81 6.08 5.22 3.92 

4SECTRANDOM2 

5.5 -0.13 -0.17 -0.05 2.18 1.38 -0.06 -0.13 -0.04 0.64 1.42 0.29 0.28 6.33 5.40 4.84 4.28 

6.7 0.13 0.11 0.06 1.95 1.23 0.07 0.09 0.05 0.63 1.59 0.09 0.43 6.70 6.60 4.87 3.41 

9.3 -0.09 -0.07 0.06 1.02 0.72 -0.09 -0.1 0.09 0.71 1.86 -0.28 0.52 9.08 5.93 5.00 1.03 

4SECTRANDOM3 

5.5 -0.85 -0.55 0.09 1.49 0.99 -0.57 -0.55 0.09 0.67 1.7 0.45 0.30 8.60 7.15 5.89 2.10 

6.7 -0.06 0.07 -0.03 1.44 0.92 -0.04 0.08 -0.04 0.64 1.72 0.15 0.41 7.58 7.85 5.16 1.89 

9.3 -0.38 0.05 0.04 0.59 0.53 -0.65 0.09 0.07 0.89 1.41 -0.2 0.49 7.78 6.03 5.70 0.45 

4SECTRANDOM4 
5.5 0.17 0.09 -0.15 1.50 0.87 0.12 0.1 -0.18 0.58 1.69 0.16 0.37 8.51 9.99 7.31 1.88 

6.7 -0.22 -0.04 -0.15 1.02 0.65 -0.21 -0.06 -0.24 0.64 1.91 -0.07 0.59 9.45 8.26 7.16 0.94 

Group 3 

CHESSBOARD 

5.5 0.52 1 0.42 1.51 1.28 0.34 0.78 0.33 0.85 0.85 0.26 -0.23 4.42 4.69 3.90 2.77 

6.7 0.23 0.64 0.10 1.17 0.87 0.19 0.73 0.12 0.75 1.07 0.33 0.02 4.91 4.83 3.49 1.45 

EQUALCHESS 
5.5 -0.46 0.71 0.47 1.44 1.02 -0.32 0.7 0.46 0.71 1.65 -0.03 0.27 7.50 6.02 4.91 2.08 

6.7 -0.99 0.67 0.33 0.57 0.70 -1.75 0.95 0.46 1.24 0.68 -0.19 0.12 6.29 3.35 3.14 0.66 

RANDOMCHESS 
5.5 -0.48 0.57 0.29 1.40 1.01 -0.34 0.57 0.29 0.72 1.58 0.17 0.35 7.27 5.64 4.66 1.99 

6.7 -0.89 0.79 0.45 0.75 0.76 -1.19 1.04 0.59 1.01 1.16 -0.28 0.08 8.53 3.83 3.41 0.86 

Group 4 

RANDOMNUMBER 

5.5 -0.5 0.32 -0.23 2.70 1.81 -0.18 0.18 -0.13 0.67 1.29 0.02 0.13 5.11 4.69 3.98 6.91 

6.7 -0.77 0.18 -0.18 1.91 1.40 -0.4 0.13 -0.13 0.73 1.49 -0.21 0.28 6.43 4.85 4.18 3.79 

9.3 -0.66 0.09 -0.10 1.06 1.08 -0.63 0.09 -0.09 1.02 0.82 -0.12 0.18 5.54 4.43 3.68 1.72 

                                                 

1 Note that vRMS = wRMS due to our noise elimination procedure described in Section III which assumes the flow is statistically isotropic in the y-z plane. 
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Mean and RMS velocity 

Although all the algorithms generate turbulence with a low mean flow (less than 1 

cm/s in any given direction), it is preferable to normalize the mean velocities with 

their respective RMS velocities to compare the strength of the mean flow on a  

relative basis. Considering this parameter, the RANDOM and the different 

4SECTRANDOM algorithms produce turbulence with the smallest mean flow in 

all directions. RANDOM (at x/M = 5.5 and 6.7) and 4SECTRANDOM2 (at the 

three downstream positions) generated the weakest mean flows (essentially 10% or 

less of the value of their respective RMS velocities in all directions). On the other 

hand, the chessboard-like and RANDOMNUMBER algorithms exhibited large 

relative mean flows (reaching values as high as 1.75 in the worst case). It was also 

observed that the RANDOMNUMBER algorithm resulted in values of U/uRMS 

(velocity component normal to the plane of the RJA) being always higher than that 

of the other two components of the velocity (a trend not observed in any of the other 

algorithms tested). Although it is difficult to conclusively explain this observation 

using single-point Eulerian measurements as is the case herein, this may be due to 

a large number of jets operating during excessively long periods resulting in large 

U overall, which is consistent with the fact that the RANDOMNUMBER 

algorithm was characterized by the longest value of μon of all random algorithms, 

as well as large standard deviations.. Alternately expressed, such a scenario is 

possible given that the jets only change their state if the generated number is higher 

than the threshold, increasing the chances of jets maintaining their on state for a 

long time, as opposed to the other algorithms, which alternate the state of the jet in 

a “cyclical mode” at times defined by the on and off parameters (whose normal 

distributions reduce the possibility of excessively long intervals of jets operating). 

 

 As mentioned in section III, the noise correction of Khorsandi et al. (2012) 

for the RMS velocities was applied to improve the accuracy of the turbulence 

measurements. Due to the symmetry of the flow and the assumptions involved in 

the correction, wRMS and vRMS are thus identical. We note that uRMS (normal to the 

jet array plane) is larger than wRMS for 21 of the 23 cases examined herein. The 

higher values of uRMS can possibly be attributed to it being the velocity component 

in the jet exit direction. We note that the measurements of Lavertu (2006) and 
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Khorsandi et al. (2013) are consistent with the present results undertaken in the 

same experimental facility. Moreover Variano and Cowen (2008) also observed the 

RMS of the velocity component in the direction normal to the plane of the RJA to 

be the largest.  Regarding the 4SECTRANDOM class of algorithms, we observe 

that the RMS values increase with μon (4SECTRANDOM4 having the smallest μon 

and 4SECTRANDOM1 the largest). The same effect was observed during the 

exploration of variations of the RANDOM algorithms of Khorsandi (2011). The 

increase in the calculated RMS with μon may be attributed to the longer periods of 

injection of momentum, facilitating its propagation in the downstream direction, 

and favoring the development of longer “instantaneous gradients of velocity,” 

allowing time for increased turbulent production. (See Variano and Cowen (2008), 

§5.3 for an extensive discussion of the effects of μon.) The 3 chessboard-based and 

the RANDOMNUMBER algorithms produce low RMS velocities, presumably 

caused by the large number of jets on at a given time, a drawback previously 

observed in RJAs. Variano and Cowen (2008) studied the effect of the average 

number of operating jets on the RMS velocities and found an optimal value over 

which additional (working) jets only serve to reduce the RMS velocities. In their 

RJA, the RMS velocities were maximized with 12.5% of pumps working, on 

average. Consistent with this finding, in our experimental facility the RANDOM 

and 4SECTRANDOM4 algorithms generate flows with the largest RMS velocities 

with (on average) 10% of the pumps on. 

 

Isotropy, skewness and kurtosis 

The isotropy of the flows is first quantified comparing the ratio wRMS/uRMS (Table 

2). As already noted, we find that uRMS is generally larger than wRMS for almost all 

combinations of driving algorithm and downstream position. The flows generated 

by the chessboard patterns and the RANDOMNUMBER algorithms have better 

isotropy (close to one in some cases). The isotropy of the flows generated by the 

4SECTRANDOM algorithms seems to be somewhat altered by changing the values 

of μon. The anisotropy observed using the RANDOM and 4SECTRANDOM 

algorithms is not entirely surprising. It presumably arises from the asymmetric 

forcing (from only one side of the tank), and has previously been observed in 

turbulent flows produced by random jet arrays (Variano and Cowen, 2008; 
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Khorsandi et al. 2013) as well as in active grid generated turbulence (Makita, 1991; 

Mydlarski and Warhaft, 1996). Lastly, the isotropy is observed to increase slightly 

with increasing distance from the jet array for most of the algorithms investigated, 

similar to that observed by Khorsandi et al. (2013). Essentially, the anisotropy 

resulting from the generation of the turbulence by the jets is gradually “forgotten” 

as the flow returns to isotropy away from the RJA. Bellani and Variano (2014), who 

used two RJAs facing each other, also observed that the isotropy improved in the 

central region of their tank. Hence, the additional symmetry of their bi-planar RJA 

system reduces the effect of the decay away from a single RJA and thus improves 

the isotropy of the flow. 

 

 The skewness (Sα = α3/α23/2) quantifies the asymmetry of the distribution 

of velocity fluctuations. A negative skewness implies that negative fluctuations are 

more probable than positive ones, and conversely for positive skewness. The 

calculated values of Sv and Sw are close to zero (indicating essentially equal 

contributions from positive and negative fluctuations) and is effectively unaltered 

by the algorithm considered. Given the symmetry of the RJA, such results i) are 

expected, and ii) validate the statistically homogeneous nature of the flow in planes 

parallel to the RJA. Su is found to be positive and order 1 for all the algorithms 

tested. Similarly, Variano and Cowen (2008) obtained a skewness of the velocity 

component normal to the plane of the RJA of 1.04. The non-zero skewness of a 

velocity component is apparently an unavoidable feature of the jet array that 

presumably results from the unidirectional forcing in the tank and subsequent decay 

of the turbulence in one direction. The injection of momentum occurs from the jet 

array and propagates in the downstream direction. Related to this argument, Maxey 

(1987) and Variano and Cowen (2008) claimed that in nearly homogeneous 

turbulence, in which the turbulent kinetic energy (TKE) decays in a given direction 

(e.g. downstream of a grid or RJA), there is a turbulent flux of TKE from the regions 

of higher TKE to lower TKE leading to a non-zero velocity skewness. 

 

 The kurtosis (Kα = α4/α22) quantifies the importance of the tails of the 

distribution of velocity fluctuations, such that a high kurtosis is associated with 

frequently occurring large fluctuations. (A Gaussian distribution exhibits K=3.) 

Although, large fluctuations may not be desirable in certain situations (e.g. inertial 
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effects becoming important in particle dispersion due to strong and large 

displacements, or excessive flapping of a scalar source released into a flow), they 

do not result in anisotropies unless the kurtoses of the different velocity components 

are unequal. The RANDOM algorithm produces a flow with smaller and 

approximately similar kurtoses (in the three directions), which are nevertheless 

super-Gaussian. Other algorithms have higher kurtoses that are considerably 

different in the 3 directions and are thus, in that sense, less isotropic. Moreover, 

although effectively Gaussian statistics (S = 0, K = 3) are often defined in the study 

of homogeneous flows, probability distribution functions of velocity fields with 

super-Gaussian characteristics are relevant to other areas of fluid mechanics, such 

as the complex intermittent wind fields in which wind turbines operate (e.g. Good 

and Warhaft, 2011). 

 

Turbulent kinetic energy (TKE) 

The turbulent kinetic energy per unit mass (tabulated in Table 2 and plotted in 

Figure 5) is defined as ½(u2 + v2 + w2) and used to quantify the intensity of the 

turbulence at various downstream distances, for the algorithms investigated herein. 

One observes that all the algorithms with a chessboard configuration produce low 

levels of TKE. The lower values associated with these algorithms presumably result 

from the large number of jets operating at a given time (50% of jets on), which 

reduces the RMS velocities. Variano and Cowen (2008) found that for their RJA, 

the RMS velocities were maximized with 12.5% of working jets on average.  Hence, 

having 50% of the jets on at a given time (as is the case for this class of chessboard 

algorithms) may result in insufficient velocity differences/fluctuations, and be the 

cause of the low TKE. An intermediate level of turbulence was created using the 

RANDOMNUMBER algorithm. The RANDOM and 4SECTRANDOM series of 

algorithms produce the highest values of TKE, again resulting from the lower (but 

not too low) number of working jets (10% on average). 

 

 The TKE was also found to increase with increasing mean on times of the 

jets for the 4SECTRANDOM series of algorithms. RANDOM and 

4SECTRANDOM1 produce the turbulence with the highest TKE for a given 

downstream distance (~10 cm2/s2 at x/M = 5.5). The TKE resulting from 
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4SECTRANDOM1 is about 30% higher than that in RANDOM, but exhibits a 

larger mean flow and anisotropy (Table 2). The higher mean flow may be a 

consequence of the imposition of the same number of jets operating in all quadrants 

(in the 4SECTRANDOM series of algorithms), which reduces the randomness and 

therefore possibly generate larger mean flows. Furthermore, an increased mean 

flow can advect the effects of individual jets (originating from the RJA) farther 

downstream, resulting in the measured increased anisotropy.  

 

Figure 5. Evolution of the TKE with downstream distance. 

 

Evaluation of the algorithms 

As previously noted, the optimal algorithm should generate approximately 

homogeneous isotropic turbulence in our tank with a zero mean flow. Additionally, 

high levels of turbulence are desirable (as quantified by a large value of turbulent 

kinetic energy) to achieve Reynolds numbers that are more representative of “real” 

flows. The requirement of a negligible mean flow eliminates the algorithms of the 

chessboard type, as they create mean flows as large as 175% of the value of the 

RMS velocity. However, it should be noted that these algorithms are the least 

anisotropic. Consequently, these algorithms would be suitable for investigations in 

which the mean flow and high levels of turbulence are not significant limitations, 

but isotropy is an important requirement. Furthermore, if we restrict the strength of 

the mean flow to be less than 10% of the RMS value in all the directions, only 

4SECTRANDOM2 and RANDOM (at x/M = 5.5 and 6.7) can be considered as 
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possible optimal algorithms, with the latter exhibiting a marginally smaller average 

mean flow (averaged over the absolute value of the mean flow for the nine cases 

corresponding to the three flow directions and three downstream positions) of 7% 

as compared to 8% for 4SECTRANDOM2.  For these two cases, the isotopy 

(wRMS/uRMS) fell in the range of 0.62-0.77 for the RANDOM driving algorithm and 

in the range of 0.63-0.71 for the 4SECTRANDOM2 algorithm. 

 

 The TKE generated using the RANDOM algorithm is higher than that of 

4SECTRANDOM2. Additionally, the turbulence generated using the RANDOM 

algorithm apparently decays at a slower rate than that created by 

4SECTRANDOM2 (see Figure 6) when considering the decay in physical space, 

which is indeed the relevant case in the present context (as opposed to 

characterizing the decay as a function of eddy turnover time, for example). 

Furthermore, the TKE at x/M=9.3 using the RANDOM algorithm has decreased to 

32% of its value at x/M=5.5 while for 4SECTRANDOM2 the TKE has decreased 

to 24% of its respective value at x/M=5.5. As previously noted, none of the 

algorithms studied herein eliminated the non-zero skewness in the x-component of 

the velocity (1.09-1.42 for RANDOM and 1.42-1.86 for 4SECTRANDOM2), 

suggesting that it is characteristic of all mono-planar RJA systems (as compared 

with the bi-planar system presented by Bellani and Variano, 2014). Also, the 

kurtoses are higher than that of a Gaussian distribution (K=3) for all the algorithms 

tested, however, it is the closest to the Gaussian value in all directions when using 

the RANDOM driving algorithm (average over the nine cases of 4.80, as compared 

to 6.08 for 4SECTRANDSOM2). Hence, we conclude that our optimal driving 

algorithm is RANDOM, as it generates turbulence with negligible mean flow (less 

than 10% the RMS value in all directions at x/M=5.5 and 6.7), high turbulent kinetic 

energy, and an acceptable degree of isotropy (especially when compared with the 

other algorithms tested). 



Author accepted version.  Final publication as: 
Perez-Alvarado, A., Mydlarski, L.M., Gaskin, S.J. (2016) Effect of the driving algorithm on the turbulence 
generated by a random jet array, Experiments in Fluids, 57(2): 1-15. doi:10.1007/s00348-015-2103-7 

23 

 

Figure 6. Downstream evolution of TKE for the RANDOM and 4SECTRANDOM2 algorithms. 

 

 The turbulent Reynolds number (ReT = uT ℓ/ν) was also calculated (see table 

3), where ℓ is the integral length scale of the flow and uT is a characteristic RMS 

velocity. ℓ is calculated from the spatial autocorrelation function ((r)) of the y-

component of the velocity. To be able to measure ℓ, the ADV probe was translated 

at a constant speed (0.2 m/s) in the y-direction. The spatial autocorrelation was 

subsequently calculated assuming Taylor’s hypothesis, which was valid given that 

the translation velocity was an order of magnitude larger than the characteristic 

RMS velocity. The spatial autocorrelation functions ((r)) used for the calculation 

of ℓ at the three downstream positions are plotted in figure 7. To account for the 

slight anisotropy in the velocity components, we calculated a characteristic velocity 

uT = (1/3(u2
RMS + v2

RMS + w2
RMS))1/2 following the definition used by Variano and 

Cowen (2008) for their RJA. 

 

4 5 6 7 8 9 10 11
1

2

3

4

5

6

7
8
9

10

x/M

T
K

E
 [

c
m

2
/s

2
]

 

 

RANDOM

4SECTRANDOM2



Author accepted version.  Final publication as: 
Perez-Alvarado, A., Mydlarski, L.M., Gaskin, S.J. (2016) Effect of the driving algorithm on the turbulence 
generated by a random jet array, Experiments in Fluids, 57(2): 1-15. doi:10.1007/s00348-015-2103-7 

24 

 Figure 7. Spatial autocorrelations at different distances from the RJA. 

 

 The fact that ReT reaches its highest value at x/M = 6.7 may imply that the 

flow is still under development at x/M = 5.5. This result is consistent with the 

description of a jet-merging region extending up to x/M = 6, as suggested by 

Variano and Cowen (2008). Furthermore, the little change in ℓ between x/M=6.7 

and x/M = 9.3 supports the idea that the flow is still developing at x/M = 5.5. Thus, 

we recommend that the measurements in investigations using the turbulent flow 

generated by RANDOM should be performed at positions farther downstream than 

x/M=5.5, although more measurements would be necessary to fully quantify the 

evolution of the flow downstream of the RJA. 

 

Table 3. Characteristic velocity (uT), integral length scale (ℓ) and ReT for the flow generated using 

the RANDOM algorithm. ν = 1x10-6 m2/s. 

Algorithm x/M uT [cm/s] ℓ [cm] ReT ≡ uT ℓ/ν 

RANDOM 

5.5 2.35 7.5 1760 

6.7 2.05 11.5 2360 

9.3 1.33 11.6 1540 

 

 We compare the results of the flow generated by the RANDOM algorithm 

with previous investigations in Table 4. The results show that our system performs 

quite well when compared with other ones.  Although the mean flow in our system 

is not zero, it was lower than that in most previous similar systems. The integral 

length scale (ℓ) in our flow is the largest reported. Our ratio ℓ/M = 0.77 at x/M = 6.7 
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is almost the same as the value of ℓ/M = 0.76 of Variano and Cowen (2008) at x/M 

= 6.0, which may be interpreted as a sign of the similarity in the development of the 

two flows despite the larger scale of our facility.  A large integral length scale can 

be useful for the study of the effects of large scales in turbulence. Moreover, along 

with the Re, large values of ℓ allow the existence of an inertial subrange covering a 

broad range of (readily measurable) scales. The anisotropy in Table 4 corresponds 

to the lowest ratio of RMS velocities measured at the center of the experimental 

facilities (in our study it is wRMS/uRMS). Although some studies reported the 

variation of the ratio of the RMS velocities in a central plane, others reported the 

values at the center of their tank, thus for a fair comparison the values used in Table 

4 are those measured at the center of the apparatuses. The moderate anisotropy in 

our system is its largest drawback. However, it could be eliminated by converting 

our system into a double RJA, by the addition of a second RJA facing our existing 

one. The Reynolds number in our system is one of the highest reported to date and 

comparable to that of other RJAs (Variano and Cowen, 2008, and Bellani and 

Variano, 2014). The homogeneity of the flow in planes parallel to the RJA covers 

a large area of approximately 0.75×0.75 m2 (see Khorsandi (2011)). Such a large 

homogeneous region cannot be achieved in most other types of systems, and it is 

thus encouraging that a relatively high quality turbulent flow was generated in a 

facility of this size.  The approximately zero-mean-flow homogeneous isotropic 

turbulence generated by our large random jet array proves the flexibility of RJAs to 

be scaled to study turbulent flows at larger scales. 
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Table 4. Comparison with other studies of zero-mean-flow, homogeneous isotropic turbulence. 

System Max (Uα/𝑢𝛼𝑅𝑀𝑆
) ℓ [cm] 

Anisotropy 

(𝑢𝛼𝑅𝑀𝑆
 /𝑢𝛽𝑅𝑀𝑆

) 
ReT Reference 

Single RJA 0.08 7.5 0.62 1760 Present work, RANDOM at x/M=5.5 

Single RJA 0.05 11.5 0.63 2360 Present work, RANDOM at x/M=6.7 

Single RJA 0.2 11.6 0.77 1540 Present work, RANDOM at x/M=9.3 

Single RJA 0.07 7.6 0.79 3220 Variano and Cowen (2008) at x/M=6 

Facing dual RJA 0.1 9.5 0.95 2000 Bellani and Variano (2014) 

Two oscillating grids 0.3 2.2 0.9 75 Srdic et al. (1996) 

Two oscillating grids 0.28 0.3 0.9 55 Shy et al. (1997) 

Rotating grids 0.7 4.7 0.85 2540 Liu et al. (1999) 

Propellers 0.1 6 0.9 504 Zimmermann et al. (2010) 

Loudspeakers 0.1 2.8 0.97 1590 Hwang and Eaton (2004) 

Loudspeakers 0.04 3.6 0.95 2040 Goepfert et al. (2010) 

Loudspeakers 0.04 9.9 0.94 4230 Chang et al. (2012) 

 

VI. Conclusions 

Different driving algorithms for a planar random jet array were tested to compare 

the statistics of the generated turbulence downstream of the RJA in an attempt to 

both further characterize their performance and find an optimal algorithm that 

approximates zero-mean-flow homogeneous isotropic turbulence. The algorithm 

identified as RANDOM generated a flow with relatively high turbulent kinetic 

energy and the most closely approximated zero-mean-flow homogeneous isotropic 

turbulence (on an overall basis), exhibiting variations in horizontal and vertical 

homogeneity of no more than 6%, and mean flows of 7% of the RMS velocities 

averaged over (the absolute value of the) three velocity components and three 

downstream distances measured herein.  The measured anisotropy (wRMS/uRMS in 

the range of 0.62-0.77) was not negligible, but could be reduced at the expense of 

other desirable characteristics of the flow (e.g. Reynolds number/downstream 

position; zero mean flow). Also, it should be noted that all of the tested algorithms 

produced non-zero skewness of the fluctuating velocity normal to the plane of the 

RJA, as well as super-Gaussian kurtoses of all the three components of velocity. 

This is identified as an inherent limitation of the system resulting from the 

unidirectional forcing imposed from only one side of the RJA. This non-zero 

skewness could be overcome (at least at the center of the tank) by placing two RJAs 

facing each other such as the apparatus built by Bellani and Variano (2014). The 

results of Bellani and Variano (2014) showed that the isotropy is improved in a 
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relatively large central section of the tank, however, the evolution of the skewness 

and kurtosis of the velocity components was not discussed. Our RANDOM 

algorithm (also called the “sunbathing” algorithm) generates turbulent flow with a 

relatively high Reynolds number (ReT = 2360) and the largest reported integral 

length scale (ℓ = 11.5 cm) for a random jet array. These results validate the 

versatility of random jet arrays and their ability to be scaled up and continue to 

generate approximately homogeneous isotropic flow with negligible mean flow. 

Lastly, the present tabulation and review of the 9 driving algorithms studied herein, 

including those not deemed optimal, may be used by future researchers who require 

certain specific characteristics in a flow (e.g. large kurtosis/high levels of 

intermittency) and who may be less concerned with those that were the focus of the 

present research (e.g. zero-mean flow). 

 

 

 

Appendix. Sources of error and uncertainty 

analysis 

The purpose of this section is to describe the potential sources of error and quantify 

their effect on the results. It is important to note that the total uncertainty arises from 

the i) ADV uncertainty, and ii) propagation of the ADV uncertainties due to the 

corrections performed. The analysis that follows considers each potential source of 

error in the velocity measurements conducted by acoustic Doppler velocimetry. The 

uncertainty analysis models of Voulgaris and Trowbridge (1998) and Taylor (1997) 

are used to estimate the uncertainty. The sources of error are then combined to 

calculate the uncertainty in each component of the velocity. Finally, the total 

relative uncertainty resulting from the propagation of the ADV uncertainty is 

calculated. 

 

A.1 Acoustic Doppler velocimetry uncertainties 

Voulgaris and Trowbridge (1998) identified three sources of error for the total 

velocity along each receiver beam (σt): i) sampling error (σm), caused by the 

inability of the system to resolve the phase shift of the return pulse, ii) Dopler noise 
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(σD), due to random scatter motions within the sample volume, and iii) error 

resulting from the mean velocity shear within the sampling volume (σu). σu becomes 

important in the presence of sharp velocity gradients (e.g. in boundary or mixing 

layers). However, in homogeneous flows like those produced by our algorithms, the 

mean velocity gradients are negligible far enough from the RJA. Thus, the mean 

velocity shear error was neglected in our calculations. In the following sections the 

sampling and Doppler errors are calculated individually. The calculations are made 

for the RANDOM algorithm at the three downstream positions investigated (similar 

results are obtained for the other algorithms, but not presented herein). 

 

 

A.1.1 Sampling error 

Sampling error results from the inaccuracy of the A/D converter (in the ADV 

system) in resolving the changes in phase of the return pulse and the noise induced 

by the electronics. This error is independent of the flow and depends on the velocity 

range employed when operating the ADV. During our experiments the ADV’s ±0.3 

m/s velocity range was used for the velocity measurements at x/M= 5.5 and 6.7, 

while the ±0.1 m/s velocity range was used for the measurements at x/M=9.3. The 

sampling error can be calculated as (Voulgaris and Trowbridge, 1998): 

𝜎𝑚
2 =

𝑐2

4

1

𝑓2

1

4𝜋2
𝐾2𝜎𝑠

2
1

𝜏

1

(𝑇 − 𝑡0)
  , 

where c is the speed of sound in water (1481 m/s at 20 ˚C), ƒ is the operating 

frequency of the ADV (10 MHz), K  is an empirical constant (1.4, Zedel et al. 1996), 

σs
2 is the system’s uncertainty to resolve the phase (1.08 and 0.63 for the ±0.3 and 

±0.1 m/s velocity range, respectively), τ is the time between transmissions (4.35 

and 5.55 ms for the ±0.3 and ±0.1 m/s velocity range, respectively), T  is the inverse 

of the sampling frequency (0.04 s at a sampling frequency of 25 Hz), and t0 is the 

time required by the system to carry out the necessary conversions (2 ms). The 

calculated sampling error is shown in the following table.  

 

 

Table 5. Calculation of sampling error (σm
2). 

Algorithm x/M ADV's velocity range (m/s) σm
2 (m2/s2) 
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RANDOM 

5.5 ± 0.3 1.78E-06 

6.7 ± 0.3 1.78E-06 

9.3 ± 0.1 8.13E-07 

 

A.1.2 Doppler noise 

Doppler noise (an intrinsic feature in Doppler acoustic systems) is caused by: i) the 

finite residence time of the particles in the sampling volume, ii) turbulence within 

the sampling volume, and iii) beam divergence. Voulgaris and Trowbridge (1998) 

presented the following equations for the calculation of the Doppler noise (σD
2): 

𝜎𝐷
2 =

𝜋−1/2

16

𝑐2𝐵𝐷

𝑓2 𝑀𝐴𝐷𝑉  𝜏
  , 

where MADV (=11) is the number of acoustic pulses averaged for the calculation of 

the radial velocity, and BD is the total Doppler bandwidth broadening. BD is the RMS 

of the three individual contributions of the bandwidth broadening due to the (as 

mentioned above) finite residence time (Br), turbulence within the sample volume 

(Bt), and the beam divergence (Bd): 

𝐵𝐷
2 = 𝐵𝑟

2 + 𝐵𝑡
2 + 𝐵𝑑

2 . 

Br, Bt, and Bd can be calculated using the following expressions: 

𝐵𝑟 = 0.2
𝑈ℎ

𝑑
  , 

where Uh is the mean horizontal speed (i.e. Uh = (U2 + V2)1/2) and d is the 

transverse size of the sampling volume. 

𝐵𝑡 = 2.4
𝑓(ε𝑑)1/3

𝑐
  , 

where ε is the turbulence dissipation rate (estimated from u3/ℓ , where u is the 

characteristic velocity and ℓ is the integral length scale, both calculated in section 

V).  

𝐵𝑑 = 0.84sin (∆𝜃)
𝑓𝑈𝑐

𝑐
  , 

where ∆θ is the angle bisector between the transmitter and receiver (15˚ for our 

system), and Uc is the cross-beam or transverse velocity component (V). The 

following table summarizes the quantities used to ultimately calculate σD
2: 
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Table 6. Calculation of the Doppler noise (σD
2) 

Algorithm x/M Br (1/s) Bt (1/s) Bd (1/s) σD
2 (m2/s2) 

RANDOM 

5.5 3.5E-02 168.77 0.22 2.73E-06 

6.7 1.4E-02 127.64 0.11 2.06E-06 

9.3 9.6E-02 82.49 4.58 1.05E-06 

 

 

A.1.3 Uncertainty for the acoustic Doppler velocimetry 

measurements. 

 

The total uncertainty of the ADV measurements is calculated assuming random 

independent errors. It can be calculated using the following equation (Taylor, 1997):  

𝑇𝑜𝑡𝑎𝑙 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = √(𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦1)2 + (𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦2)2 + (𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦3)2 + ⋯ 

The total velocity uncertainty (σt-RMS
2) for the RMS velocity along each receiver 

beam of the ADV can then be calculated as the sum of the sampling error (σm
2) and 

the Doppler noise (σD
2). Recall that the error due to the mean velocity shear is 

negligible, thus σt-RMS
2 = σm

2 + σD
2, which is tabulated below: 

 

Table 7. Calculation of the total velocity uncertainty for the RMS along each receiver (σt-RMS
2) 

Algorithm x/M σt-RMS
2 (m2/s2) 

RANDOM 

5.5 4.51E-06 

6.7 3.84E-06 

9.3 1.86E-06 

 

We can assume that σt
2 is the same along each receiver beam if the receiver 

transducers are identical and ideal. Under this assumption, the uncertainty of the 

RMS velocity for each velocity component (σi-RMS
2) can be calculated using the 

ADV’s transformation matrix. The following table presents the uncertainties for the 

three RMS velocity components. 

 

Table 8. Calculation of the total uncertainty for each velocity component (σi-RMS
2) 

Algorithm x/M σx-RMS
2 (m2/s2) σy-RMS

2 (m2/s2) σz-RMS
2 (m2/s2) 

RANDOM 

5.5 3.71E-05 3.66E-05 2.40E-06 

6.7 3.16E-05 3.12E-05 2.05E-06 

9.3 1.53E-05 1.51E-05 9.90E-07 
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We note the smaller uncertainty for the z-component of velocity (w), as previously 

discussed, as well as in Khorsandi et al. (2012).  

 

A.2 Propagation of uncertainties 

As mentioned in section III, some corrections were applied to the calculated RMS 

velocities. The corrections included in some cases the combination of the three 

calculated RMS velocities resulting in a propagation of the uncertainties. The RMS 

velocity in the z-direction was not modified and thus the corresponding uncertainty 

remains the same as calculated in A.1.3 (i.e. wRMS = [w2 + σz-RMS
2]1/2). The RMS 

velocity in the y-direction was assumed to be the same as that of the z-direction due 

to the axisymmetric nature of the flow, then the uncertainty in v is the same as that 

of w (z-direction). On the other hand, the corrected RMS velocity in the x-direction 

was calculated using the three calculated RMS velocity components uRMS, vRMS, and 

wRMS (each one with a corresponding uncertainty). The expression used in the 

correction of uRMS (process described in section III) is the following: 

𝑢𝑐−𝑅𝑀𝑆 = [𝑢𝑅𝑀𝑆
2 −

(𝑎11
2 + 𝑎12

2 + 𝑎13
2  + 𝑎14

2 )

(𝑎21
2 + 𝑎22

2 + 𝑎23
2  + 𝑎24

2 )
(𝑣𝑅𝑀𝑆

2 − 𝑤𝑅𝑀𝑆
2 )]

1/2

 , 

where uc-RMS is the corrected RMS velocity, and aij are elements of the 

transformation matrix. The total relative uncertainties for the RMS velocities were 

calculated performing a step-by-step analysis of uncertainty propagation (Taylor, 

1997). The final results are presented in the following table: 

 

Table 9. Calculation of the total relative uncertainties for the RMS velocity components. 

Algorithm x/M % uRMS error % vRMS error % wRMS error 

RANDOM 

5.5 2.81 0.33 0.33 

6.7 3.18 0.37 0.37 

9.3 4.49 0.35 0.35 

 

The table above shows that the total relative uncertainty for the RMS velocity is 

less than 5% in any given direction, being the largest for the u-component of the 

velocity. 
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